Composite turbine blade design options for Claude (open) cycle OTEC power systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penney, T R
1985-11-01
Small-scale turbine rotors made from composites offer several technical advantages for a Claude (open) cycle ocean thermal energy conversion (OTEC) power system. Westinghouse Electric Corporation has designed a composite turbine rotor/disk using state-of-the-art analysis methods for large-scale (100-MW/sub e/) open cycle OTEC applications. Near-term demonstrations using conventional low-pressure turbine blade shapes with composite material would achieve feasibility and modern credibility of the open cycle OTEC power system. Application of composite blades for low-pressure turbo-machinery potentially improves the reliability of conventional metal blades affected by stress corrosion.
Refractory metal alloys and composites for space nuclear power systems
NASA Technical Reports Server (NTRS)
Titran, Robert H.; Stephens, Joseph R.; Petrasek, Donald W.
1988-01-01
Space power requirements for future NASA and other U.S. missions will range from a few kilowatts to megawatts of electricity. Maximum efficiency is a key goal of any power system in order to minimize weight and size so that the Space Shuttle may be used a minimum number of times to put the power supply into orbit. Nuclear power has been identified as the primary power source to meet these high levels of electrical demand. One method to achieve maximum efficiency is to operate the power supply, energy conservation system, and related components at relatively high temperatures. For systems now in the planning stages, design temperatures range from 1300 K for the immediate future to as high as 1700 K for the advanced systems. NASA Lewis Research Center has undertaken a research program on advanced technology of refractory metal alloys and composites that will provide baseline information for space power systems in the 1900's and the 21st century. Special emphasis is focused on the refractory metal alloys of niobium and on the refractory metal composites which utilize tungsten alloy wires for reinforcement. Basic research on the creep and creep-rupture properties of wires, matrices, and composites are discussed.
NASA Technical Reports Server (NTRS)
Mengshoel, Ole Jakob; Poll, Scott; Kurtoglu, Tolga
2009-01-01
In this paper, we investigate the use of Bayesian networks to construct large-scale diagnostic systems. In particular, we consider the development of large-scale Bayesian networks by composition. This compositional approach reflects how (often redundant) subsystems are architected to form systems such as electrical power systems. We develop high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems. The largest among these 24 Bayesian networks contains over 1,000 random variables. Another BN represents the real-world electrical power system ADAPT, which is representative of electrical power systems deployed in aerospace vehicles. In addition to demonstrating the scalability of the compositional approach, we briefly report on experimental results from the diagnostic competition DXC, where the ProADAPT team, using techniques discussed here, obtained the highest scores in both Tier 1 (among 9 international competitors) and Tier 2 (among 6 international competitors) of the industrial track. While we consider diagnosis of power systems specifically, we believe this work is relevant to other system health management problems, in particular in dependable systems such as aircraft and spacecraft. (See CASI ID 20100021910 for supplemental data disk.)
Metal- and intermetallic-matrix composites for aerospace propulsion and power systems
NASA Astrophysics Data System (ADS)
Doychak, J.
1992-06-01
Successful development and deployment of metal-matrix composites and intermetallic- matrix composites are critical to reaching the goals of many advanced aerospace propulsion and power development programs. The material requirements are based on the aerospace propulsion and power system requirements, economics, and other factors. Advanced military and civilian aircraft engines will require higher specific strength materials that operate at higher temperatures, and the civilian engines will also require long lifetimes. The specific space propulsion and power applications require hightemperature, high-thermal-conductivity, and high-strength materials. Metal-matrix composites and intermetallic-matrix composites either fulfill or have the potential of fulfilling these requirements.
Refractory metal alloys and composites for space power systems
NASA Technical Reports Server (NTRS)
Stephens, Joseph R.; Petrasek, Donald W.; Titran, Robert H.
1988-01-01
Space power requirements for future NASA and other U.S. missions will range from a few kilowatts to megawatts of electricity. Maximum efficiency is a key goal of any power system in order to minimize weight and size so that the space shuttle may be used a minimum number of times to put the power supply into orbit. Nuclear power has been identified as the primary source to meet these high levels of electrical demand. One way to achieve maximum efficiency is to operate the power supply, energy conversion system, and related components at relatively high temperatures. NASA Lewis Research Center has undertaken a research program on advanced technology of refractory metal alloys and composites that will provide baseline information for space power systems in the 1900's and the 21st century. Basic research on the tensile and creep properties of fibers, matrices, and composites is discussed.
Composite power system well-being analysis
NASA Astrophysics Data System (ADS)
Aboreshaid, Saleh Abdulrahman Saleh
The evaluation of composite system reliability is extremely complex as it is necessary to include detailed modeling of both generation and transmission facilities and their auxiliary elements. The most significant quantitative indices in composite power system adequacy evaluation are those which relate to load curtailment. Many utilities have difficulty in interpreting the expected load curtailment indices as the existing models are based on adequacy analysis and in many cases do not consider realistic operating conditions in the system under study. This thesis presents a security based approach which alleviates this difficulty and provides the ability to evaluate the well-being of customer load points and the overall composite generation and transmission power system. Acceptable deterministic criteria are included in the probabilistic evaluation of the composite system reliability indices to monitor load point well-being. The degree of load point well-being is quantified in terms of the healthy and marginal state indices in addition to the traditional risk indices. The individual well-being indices of the different system load points are aggregated to produce system indices. This thesis presents new models and techniques to quantify the well-being of composite generation and, direct and alternating current transmission systems. Security constraints are basically the operating limits which must be satisfied for normal system operation. These constraints depend mainly on the purpose behind the study. The constraints which govern the practical operation of a power system are divided, in this thesis, into three sets namely, steady-state, voltage stability and transient stability constraints. The inclusion of an appropriate transient stability constraint will lead to a more accurate appraisal of the overall power system well-being. This thesis illustrates the utilization of a bisection method in the analytical evaluation of the critical clearing time which forms the basis of most existing stability assessments. The effect of employing high-speed-simultaneous or adaptive reclosing schemes is presented in this thesis. An effective and fast technique to incorporate voltage stability considerations in composite generation and transmission system reliability evaluation is also presented. The proposed technique can be easily incorporated in an existing composite power system reliability program using voltage stability constraints that are constructed for individual load points based on a relatively simple risk index. It is believed that the concepts, procedures and indices presented in this thesis will provide useful tools for power system designers, planners and operators and assist them to perform composite system well-being analysis in addition to traditional risk assessment.
Protection of Advanced Electrical Power Systems from Atmospheric Electromagnetic Hazards.
1981-12-01
WORDS (Continue on reverse aide if neceeary and Identify by block number) Aircraft Induced Voltages Filters Composite Structures Lightning Transients...transients on the electrical systems of aircraft with metal or composite structures. These transients will be higher than the equipment inherent hardness... composite material in skin and structure. In addition, the advanced electrical power systems used in these aircraft will contain solid state components
Advanced refractory metals and composites for extraterrestrial power systems
NASA Technical Reports Server (NTRS)
Titran, R. H.; Grobstein, Toni L.
1990-01-01
Concepts for future space power systems include nuclear and focused solar heat sources coupled to static and dynamic power-conversion devices; such systems must be designed for service lives as long as 30 years, despite service temperatures of the order of 1600 K. Materials are a critical technology-development factor in such aspects of these systems as reactor fuel containment, environmental protection, power management, and thermal management. Attention is given to the prospective performance of such refractory metals as Nb, W, and Mo alloys, W fiber-reinforced Nb-matrix composites, and HfC precipitate-strengthened W-Re alloys.
Research on Aerodynamic Characteristics of Composite powered Unmanned Airship
NASA Astrophysics Data System (ADS)
Chen, Yu; Wang, Yun; Wang, Lu; Ma, Chengyu; Xia, Jun
2017-10-01
The main structure of the composite powered unmanned airship is consists of airbags and four-rotor system, which airbag increases the available lift, and has more advantages in terms of load and flight when compared with the traditional four-rotor. In order to compare the aerodynamic performance of the composite powered unmanned airship and the traditional four-rotor, the SIMPLE algorithm and the RNG k-epsilon model method are be used. The energy consumption of the composite powered unmanned airship is lesser than the traditional four-rotor under the same load and range was found.
Advanced materials for space nuclear power systems
NASA Technical Reports Server (NTRS)
Titran, Robert H.; Grobstein, Toni L.; Ellis, David L.
1991-01-01
The overall philosophy of the research was to develop and characterize new high temperature power conversion and radiator materials and to provide spacecraft designers with material selection options and design information. Research on three candidate materials (carbide strengthened niobium alloy PWC-11 for fuel cladding, graphite fiber reinforced copper matrix composites for heat rejection fins, and tungsten fiber reinforced niobium matrix composites for fuel containment and structural supports considered for space power system applications is discussed. Each of these types of materials offers unique advantages for space power applications.
NASA Technical Reports Server (NTRS)
El-Genk, Mohamed S. (Editor); Hoover, Mark D. (Editor)
1991-01-01
The present conference discusses NASA mission planning for space nuclear power, lunar mission design based on nuclear thermal rockets, inertial-electrostatic confinement fusion for space power, nuclear risk analysis of the Ulysses mission, the role of the interface in refractory metal alloy composites, an advanced thermionic reactor systems design code, and space high power nuclear-pumped lasers. Also discussed are exploration mission enhancements with power-beaming, power requirement estimates for a nuclear-powered manned Mars rover, SP-100 reactor design, safety, and testing, materials compatibility issues for fabric composite radiators, application of the enabler to nuclear electric propulsion, orbit-transfer with TOPAZ-type power sources, the thermoelectric properties of alloys, ruthenium silicide as a promising thermoelectric material, and innovative space-saving device for high-temperature piping systems. The second volume of this conference discusses engine concepts for nuclear electric propulsion, nuclear technologies for human exploration of the solar system, dynamic energy conversion, direct nuclear propulsion, thermionic conversion technology, reactor and power system control, thermal management, thermionic research, effects of radiation on electronics, heat-pipe technology, radioisotope power systems, and nuclear fuels for power reactors. The third volume discusses space power electronics, space nuclear fuels for propulsion reactors, power systems concepts, space power electronics systems, the use of artificial intelligence in space, flight qualifications and testing, microgravity two-phase flow, reactor manufacturing and processing, and space and environmental effects.
Energy Finite Element Analysis Developments for Vibration Analysis of Composite Aircraft Structures
NASA Technical Reports Server (NTRS)
Vlahopoulos, Nickolas; Schiller, Noah H.
2011-01-01
The Energy Finite Element Analysis (EFEA) has been utilized successfully for modeling complex structural-acoustic systems with isotropic structural material properties. In this paper, a formulation for modeling structures made out of composite materials is presented. An approach based on spectral finite element analysis is utilized first for developing the equivalent material properties for the composite material. These equivalent properties are employed in the EFEA governing differential equations for representing the composite materials and deriving the element level matrices. The power transmission characteristics at connections between members made out of non-isotropic composite material are considered for deriving suitable power transmission coefficients at junctions of interconnected members. These coefficients are utilized for computing the joint matrix that is needed to assemble the global system of EFEA equations. The global system of EFEA equations is solved numerically and the vibration levels within the entire system can be computed. The new EFEA formulation for modeling composite laminate structures is validated through comparison to test data collected from a representative composite aircraft fuselage that is made out of a composite outer shell and composite frames and stiffeners. NASA Langley constructed the composite cylinder and conducted the test measurements utilized in this work.
NASA Astrophysics Data System (ADS)
El-Genk, Mohamed S.; Hoover, Mark D.
1991-07-01
The present conference discusses NASA mission planning for space nuclear power, lunar mission design based on nuclear thermal rockets, inertial-electrostatic confinement fusion for space power, nuclear risk analysis of the Ulysses mission, the role of the interface in refractory metal alloy composites, an advanced thermionic reactor systems design code, and space high power nuclear-pumped lasers. Also discussed are exploration mission enhancements with power-beaming, power requirement estimates for a nuclear-powered manned Mars rover, SP-100 reactor design, safety, and testing, materials compatibility issues for fabric composite radiators, application of the enabler to nuclear electric propulsion, orbit-transfer with TOPAZ-type power sources, the thermoelectric properties of alloys, ruthenium silicide as a promising thermoelectric material, and innovative space-saving device for high-temperature piping systems. The second volume of this conference discusses engine concepts for nuclear electric propulsion, nuclear technologies for human exploration of the solar system, dynamic energy conversion, direct nuclear propulsion, thermionic conversion technology, reactor and power system control, thermal management, thermionic research, effects of radiation on electronics, heat-pipe technology, radioisotope power systems, and nuclear fuels for power reactors. The third volume discusses space power electronics, space nuclear fuels for propulsion reactors, power systems concepts, space power electronics systems, the use of artificial intelligence in space, flight qualifications and testing, microgravity two-phase flow, reactor manufacturing and processing, and space and environmental effects. (For individual items see A93-13752 to A93-13937)
Electrified Automotive Powertrain Architecture Using Composite DC–DC Converters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hua; Kim, Hyeokjin; Erickson, Robert
In a hybrid or electric vehicle powertrain, a boost dc-dc converter enables reduction of the size of the electric machine and optimization of the battery system. Design of the powertrain boost converter is challenging because the converter must be rated at high peak power, while efficiency at medium-to-light load is critical for the vehicle system performance. By addressing only some of the loss mechanisms, previously proposed efficiency improvement approaches offer limited improvements in size, cost, and efficiency tradeoffs. This article shows how all dominant loss mechanisms in automotive powertrain applications can be mitigated using a new boost composite converter approach.more » In the composite dc-dc architecture, the loss mechanisms associated with indirect power conversion are addressed explicitly, resulting in fundamental efficiency improvements over wide ranges of operating conditions. Several composite converter topologies are presented and compared to state-of-the-art boost converter technologies. It is found that the selected boost composite converter results in a decrease in the total loss by a factor of 2-4 for typical drive cycles. Furthermore, the total system capacitor power rating and energy rating are substantially reduced, which implies potentials for significant reductions in system size and cost.« less
Electrified Automotive Powertrain Architecture Using Composite DC–DC Converters
Chen, Hua; Kim, Hyeokjin; Erickson, Robert; ...
2017-01-01
In a hybrid or electric vehicle powertrain, a boost dc-dc converter enables reduction of the size of the electric machine and optimization of the battery system. Design of the powertrain boost converter is challenging because the converter must be rated at high peak power, while efficiency at medium-to-light load is critical for the vehicle system performance. By addressing only some of the loss mechanisms, previously proposed efficiency improvement approaches offer limited improvements in size, cost, and efficiency tradeoffs. This article shows how all dominant loss mechanisms in automotive powertrain applications can be mitigated using a new boost composite converter approach.more » In the composite dc-dc architecture, the loss mechanisms associated with indirect power conversion are addressed explicitly, resulting in fundamental efficiency improvements over wide ranges of operating conditions. Several composite converter topologies are presented and compared to state-of-the-art boost converter technologies. It is found that the selected boost composite converter results in a decrease in the total loss by a factor of 2-4 for typical drive cycles. Furthermore, the total system capacitor power rating and energy rating are substantially reduced, which implies potentials for significant reductions in system size and cost.« less
NASA Astrophysics Data System (ADS)
Dehne, Hans J.
1991-05-01
NASA has initiated technology development programs to develop advanced solar dynamic power systems and components for space applications beyond 2000. Conceptual design work that was performed is described. The main efforts were the: (1) conceptual design of self-deploying, high-performance parabolic concentrator; and (2) materials selection for a lightweight, shape-stable concentrator. The deployment concept utilizes rigid gore-shaped reflective panels. The assembled concentrator takes an annular shape with a void in the center. This deployable concentrator concept is applicable to a range of solar dynamic power systems of 25 kW sub e to in excess of 75 kW sub e. The concept allows for a family of power system sizes all using the same packaging and deployment technique. The primary structural material selected for the concentrator is a polyethyl ethylketone/carbon fiber composite also referred to as APC-2 or Vitrex. This composite has a nearly neutral coefficient of thermal expansion which leads to shape stable characteristics under thermal gradient conditions. Substantial efforts were undertaken to produce a highly specular surface on the composite. The overall coefficient of thermal expansion of the composite laminate is near zero, but thermally induced stresses due to micro-movement of the fibers and matrix in relation to each other cause the surface to become nonspecular.
NASA Technical Reports Server (NTRS)
Dehne, Hans J.
1991-01-01
NASA has initiated technology development programs to develop advanced solar dynamic power systems and components for space applications beyond 2000. Conceptual design work that was performed is described. The main efforts were the: (1) conceptual design of self-deploying, high-performance parabolic concentrator; and (2) materials selection for a lightweight, shape-stable concentrator. The deployment concept utilizes rigid gore-shaped reflective panels. The assembled concentrator takes an annular shape with a void in the center. This deployable concentrator concept is applicable to a range of solar dynamic power systems of 25 kW sub e to in excess of 75 kW sub e. The concept allows for a family of power system sizes all using the same packaging and deployment technique. The primary structural material selected for the concentrator is a polyethyl ethylketone/carbon fiber composite also referred to as APC-2 or Vitrex. This composite has a nearly neutral coefficient of thermal expansion which leads to shape stable characteristics under thermal gradient conditions. Substantial efforts were undertaken to produce a highly specular surface on the composite. The overall coefficient of thermal expansion of the composite laminate is near zero, but thermally induced stresses due to micro-movement of the fibers and matrix in relation to each other cause the surface to become nonspecular.
Performance and Mass Modeling Subtleties in Closed-Brayton-Cycle Space Power Systems
NASA Technical Reports Server (NTRS)
Barrett, Michael J.; Johnson, Paul K.
2005-01-01
Contents include the following: 1. Closed-Brayton-cycle (CBC) thermal energy conversion is one available option for future spacecraft and surface systems. 2. Brayton system conceptual designs for milliwatt to megawatt power converters have been developed 3. Numerous features affect overall optimized power conversion system performance: Turbomachinery efficiency. Heat exchanger effectiveness. Working-fluid composition. Cycle temperatures and pressures.
Graphite fiber/copper matrix composites for space power heat pipe fin applications
NASA Astrophysics Data System (ADS)
McDanels, David L.; Baker, Karl W.; Ellis, David L.
1991-01-01
High specific thermal conductivity (thermal conductivity divided by density) is a major design criterion for minimizing system mass for space power systems. For nuclear source power systems, graphite fiber reinforced copper matrix (Gr/Cu) composites offer good potential as a radiator fin material operating at service temperatures above 500 K. Specific thermal conductivity in the longitudinal direction is better than beryllium and almost twice that of copper. The high specific thermal conductivity of Gr/Cu offers the potential of reducing radiator mass by as much as 30 percent. Gr/Cu composites also offer the designer a range of available properties for various missions and applications. The properties of Gr/Cu are highly anisotropic. Longitudinal elastic modulus is comparable to beryllium and about three times that of copper. Thermal expansion in the longitudinal direction is near zero, while it exceeds that of copper in the transverse direction.
Assessment of flywheel energy storage for spacecraft power systems
NASA Technical Reports Server (NTRS)
Rodriguez, G. E.; Studer, P. A.; Baer, D. A.
1983-01-01
The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension, and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, which evolved at the Goddard Space Flight Center (GSFC), is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides a potential alternative configurations that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions. Critical technologies identified are those pertaining to the energy storage element and are prioritized as composite wheel development, magnetic suspension, motor/generator, containment, and momentum control. Comparison with a 3-kW, 250-Vdc power system using either NiCd or NiH2 for energy storage results in a system in which inertial energy storage offers potential advantages in lifetime, operating temperature, voltage regulation, energy density, charge control, and overall system weight reduction.
Energy and momentum management of the Space Station using magnetically suspended composite rotors
NASA Technical Reports Server (NTRS)
Eisenhaure, D. B.; Oglevie, R. E.; Keckler, C. R.
1985-01-01
The research addresses the feasibility of using magnetically suspended composite rotors to jointly perform the energy and momentum management functions of an advanced manned Space Station. Recent advancements in composite materials, magnetic suspensions, and power conversion electronics have given flywheel concepts the potential to simultaneously perform these functions for large, long duration spacecraft, while offering significant weight, volume, and cost savings over conventional approaches. The Space Station flywheel concept arising out of this study consists of a composite-material rotor, a large-angle magnetic suspension (LAMS) system, an ironless armature motor/generator, and high-efficiency power conversion electronics. The LAMS design permits the application of appropriate spacecraft control torques without the use of conventional mechanical gimbals. In addition, flywheel systems have the growth potential and modularity needed to play a key role in many future system developments.
An Integrated, Layered-Spinel Composite Cathode for Energy Storage Applications
NASA Technical Reports Server (NTRS)
Hagh, Nader; Skandan, Ganesh
2012-01-01
At low operating temperatures, commercially available electrode materials for lithium-ion batteries do not fully meet the energy and power requirements for NASA fs exploration activities. The composite cathode under development is projected to provide the required energy and power densities at low temperatures and its usage will considerably reduce the overall volume and weight of the battery pack. The newly developed composite electrode material can provide superior electrochemical performance relative to a commercially available lithium cobalt system. One advantage of using a composite cathode is its higher energy density, which can lead to smaller and lighter battery packs. In the current program, different series of layered-spinel composite materials with at least two different systems in an integrated structure were synthesized, and the volumetric and gravimetric energy densities were evaluated. In an integrated network of a composite electrode, the effect of the combined structures is to enhance the capacity and power capabilities of the material to levels greater than what is possible in current state-of-the-art cathode systems. The main objective of the current program is to implement a novel cathode material that meets NASA fs low temperature energy density requirements. An important feature of the composite cathode is that it has at least two components (e.g., layered and spinel) that are structurally integrated. The layered material by itself is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated, thereby delivering a large amount of energy with stable cycling. A key aspect of the innovation has been the development of a scalable process to produce submicronand micron-scale particles of these composite materials. An additional advantage of using such a composite electrode material is its low irreversible loss (.5%), which is primarily due to the unique activation of the composite. High columbic efficiency (greater than 99%) upon cycling may indicate the formation of a stable SEI (solid-electrolyte interface) layer, which can contribute to long cycle life. The innovation in the current program, when further developed, will enable the system to maintain high energy and power densities at low temperatures, improve efficiency, and further stabilize and enhance the safety of the cell.
Research on intelligent power distribution system for spacecraft
NASA Astrophysics Data System (ADS)
Xia, Xiaodong; Wu, Jianju
2017-10-01
The power distribution system (PDS) mainly realizes the power distribution and management of the electrical load of the whole spacecraft, which is directly related to the success or failure of the mission, and hence is an important part of the spacecraft. In order to improve the reliability and intelligent degree of the PDS, and considering the function and composition of spacecraft power distribution system, this paper systematically expounds the design principle and method of the intelligent power distribution system based on SSPC, and provides the analysis and verification of the test data additionally.
Metal- and intermetallic-matrix composites for aerospace propulsion and power systems
NASA Technical Reports Server (NTRS)
Doychak, J.
1992-01-01
The requirements for high specific strength refractory materials of prospective military, civil, and space propulsion systems are presently addressed in the context of emerging capabilities in metal- and intermetallic-matrix composites. The candidate systems encompass composite matrix compositions of superalloy, Nb-Zr refractory alloy, Cu-base, and Ti-base alloy types, as well as such intermetallics as TiAl, Ti3Al, NiAl, and MoSi2. The brittleness of intermetallic matrices remains a major consideration, as does their general difficulty of fabrication.
A digital computer simulation and study of a direct-energy-transfer power-conditioning system
NASA Technical Reports Server (NTRS)
Burns, W. W., III; Owen, H. A., Jr.; Wilson, T. G.; Rodriguez, G. E.; Paulkovich, J.
1974-01-01
A digital computer simulation technique, which can be used to study such composite power-conditioning systems, was applied to a spacecraft direct-energy-transfer power-processing system. The results obtained duplicate actual system performance with considerable accuracy. The validity of the approach and its usefulness in studying various aspects of system performance such as steady-state characteristics and transient responses to severely varying operating conditions are demonstrated experimentally.
DOT National Transportation Integrated Search
1978-11-01
The seminar was organized at the request of UMTA to disseminate accurate information on, and experience with, composite (aluminum and steel) third, or contact rail, in wayside power distribution systems of electrified urban rail properties. The semin...
Development of lightweight structural health monitoring systems for aerospace applications
NASA Astrophysics Data System (ADS)
Pearson, Matthew
This thesis investigates the development of structural health monitoring systems (SHM) for aerospace applications. The work focuses on each aspect of a SHM system covering novel transducer technologies and damage detection techniques to detect and locate damage in metallic and composite structures. Secondly the potential of energy harvesting and power arrangement methodologies to provide a stable power source is assessed. Finally culminating in the realisation of smart SHM structures. 1. Transducer Technology A thorough experimental study of low profile, low weight novel transducers not normally used for acoustic emission (AE) and acousto-ultrasonics (AU) damage detection was conducted. This included assessment of their performance when exposed to aircraft environments and feasibility of embedding these transducers in composites specimens in order to realise smart structures. 2. Damage Detection An extensive experimental programme into damage detection utilising AE and AU were conducted in both composites and metallic structures. These techniques were used to assess different damage mechanism within these materials. The same transducers were used for novel AE location techniques coupled with AU similarity assessment to successfully detect and locate damage in a variety of structures. 3. Energy Harvesting and Power Management Experimental investigations and numerical simulations were undertaken to assess the power generation levels of piezoelectric and thermoelectric generators for typical vibration and temperature differentials which exist in the aerospace environment. Furthermore a power management system was assessed to demonstrate the ability of the system to take the varying nature of the input power and condition it to a stable power source for a system. 4. Smart Structures The research conducted is brought together into a smart carbon fibre wing showcasing the novel embedded transducers for AE and AU damage detection and location, as well as vibration energy harvesting. A study into impact damage detection using the techniques showed the successful detection and location of damage. Also the feasibility of the embedded transducers for power generation was assessed..
NASA Astrophysics Data System (ADS)
Mendoza, Edgar A.; Kempen, Cornelia; Sun, Sunjian; Esterkin, Yan
2014-09-01
This paper describes recent progress towards the development of an innovative light weight, high-speed, and selfpowered wireless fiber optic sensor (WiFOS™) structural health monitor system suitable for the onboard and in-flight unattended detection, localization, and classification of load, fatigue, and structural damage in advanced composite materials commonly used in avionics and aerospace systems. The WiFOS™ system is based on ROI's advancements on monolithic photonic integrated circuit microchip technology, integrated with smart power management, on-board data processing, wireless data transmission optoelectronics, and self-power using energy harvesting tools such as solar, vibration, thermoelectric, and magneto-electric. The self-powered, wireless WiFOS™ system offers a versatile and powerful SHM tool to enhance the reliability and safety of avionics platforms, jet fighters, helicopters, commercial aircraft that use lightweight composite material structures, by providing comprehensive information about the structural integrity of the structure from a large number of locations. Immediate SHM applications are found in rotorcraft and aircraft, ships, submarines, and in next generation weapon systems, and in commercial oil and petrochemical, aerospace industries, civil structures, power utilities, portable medical devices, and biotechnology, homeland security and a wide spectrum of other applications.
Power losses of soft magnetic composite materials under two-dimensional excitation
NASA Astrophysics Data System (ADS)
Zhu, J. G.; Zhong, J. J.; Ramsden, V. S.; Guo, Y. G.
1999-04-01
Soft magnetic composite materials produced by powder metallurgy techniques can be very useful for construction of low cost small motors. However, the rotational core losses and the corresponding B-H relationships of soft magnetic composite materials with two-dimensional rotating fluxes have neither been supplied by the manufacturers nor reported in the literature. This article reports the core loss measurement of a soft magnetic composite material, SOMALOY™ 500, Höganäs AB, Sweden, under two-dimensional excitations. The principle of measurement, testing system, and power loss calculation are presented. The results are analyzed and discussed.
Wright, Steven A.; Pickard, Paul S.; Vernon, Milton E.; Radel, Ross F.
2017-08-29
Various technologies pertaining to tuning composition of a fluid mixture in a supercritical Brayton cycle power generation system are described herein. Compounds, such as Alkanes, are selectively added or removed from an operating fluid of the supercritical Brayton cycle power generation system to cause the critical temperature of the fluid to move up or down, depending upon environmental conditions. As efficiency of the supercritical Brayton cycle power generation system is substantially optimized when heat is rejected near the critical temperature of the fluid, dynamically modifying the critical temperature of the fluid based upon sensed environmental conditions improves efficiency of such a system.
Lipman, Peter W.
2007-01-01
Plutons thus provide an integrated record of prolonged magmatic evolution, while volcanism offers snapshots of conditions at early stages. Growth of subvolcanic batholiths involved sustained multistage open-system processes. These commonly involved ignimbrite eruptions at times of peak power input, but assembly and consolidation processes continued at diminishing rates long after peak volcanism. Some evidence cited for early incremental pluton assembly more likely records late events during or after volcanism. Contrasts between relatively primitive arc systems dominated by andesitic compositions and small upper-crustal plutons versus more silicic volcanic fields and associated batholiths probably reflect intertwined contrasts in crustal thickness and magmatic power input. Lower power input would lead to a Cascade- or Aleutian-type arc system, where intermediate-composition magma erupts directly from middle- and lower-crustal storage without development of large shallow plutons. Andean and southern Rocky Mountain–type systems begin similarly with intermediate-composition volcanism, but increasing magma production, perhaps triggered by abrupt changes in plate boundaries, leads to development of larger upper-crustal reservoirs, more silicic compositions, large ignimbrites, and batholiths. Lack of geophysical evidence for voluminous eruptible magma beneath young calderas suggests that near-solidus plutons can be rejuvenated rapidly by high-temperature mafic recharge, potentially causing large explosive eruptions with only brief precursors.
Radiation Protection of New Lightweight Electromagnetic Interference Shielding Materials Determined
NASA Technical Reports Server (NTRS)
1996-01-01
Weight savings as high as 80 percent could be achieved by simply switching from aluminum electromagnetic interference (EMI) shielding covers for spacecraft power systems to EMI covers made from intercalated graphite fiber composites. Because EMI covers typically make up about one-fifth of the power system mass, this change would decrease the mass of a spacecraft power system by more than 15 percent. Intercalated graphite fibers are made by diffusing guest atoms or molecules, such as bromine, between the carbon planes of the graphite fibers. The resulting bromine-intercalated fibers have mechanical and thermal properties nearly identical to pristine graphite fibers, but their resistivity is lower by a factor of 5, giving them better electrical conductivity than stainless steel and making these composites suitable for EMI shielding.
Power generation from base excitation of a Kevlar composite beam with ZnO nanowires
NASA Astrophysics Data System (ADS)
Malakooti, Mohammad H.; Hwang, Hyun-Sik; Sodano, Henry A.
2015-04-01
One-dimensional nanostructures such as nanowires, nanorods, and nanotubes with piezoelectric properties have gained interest in the fabrication of small scale power harvesting systems. However, the practical applications of the nanoscale materials in structures with true mechanical strengths have not yet been demonstrated. In this paper, piezoelectric ZnO nanowires are integrated into the fiber reinforced polymer composites serving as an active phase to convert the induced strain energy from ambient vibration into electrical energy. Arrays of ZnO nanowires are grown vertically aligned on aramid fibers through a low-cost hydrothermal process. The modified fabrics with ZnO nanowires whiskers are then placed between two carbon fabrics as the top and the bottom electrodes. Finally, vacuum resin transfer molding technique is utilized to fabricate these multiscale composites. The fabricated composites are subjected to a base excitation using a shaker to generate charge due to the direct piezoelectric effect of ZnO nanowires. Measuring the generated potential difference between the two electrodes showed the energy harvesting application of these multiscale composites in addition to their superior mechanical properties. These results propose a new generation of power harvesting systems with enhanced mechanical properties.
Duray, S J; Lee, S Y; Menis, D L; Gilbert, J L; Lautenschlager, E P; Greener, E H
1996-01-01
This study was designed to investigate a new method for generating interfacial debonding between the resin matrix and filler particles of dental composites. A pilot study was conducted to evaluate laser-induced acoustic emission in dental resins filled with varying quantities of particles. Model systems of 50/50 BisGMA/TEGDMA resin reinforced with 0, 25, and 75 wt% 5-10 micrometers silanated BaSiO(6) were analyzed. The sample size was 3.5 mm diameter x 0.25-0.28 mm thick. A continuous wave CO2 laser (Synrad Infrared Gas Laser Model 48-1) was used to heat the composite samples. Acoustic events were detected, recorded and processed by a model 4610 Smart Acoustic Monitor (SAM) with a 1220A preamp (Physical Acoustic Corp.) as a function of laser power. Initially, the acoustic signal from the model composites produced a burst pattern characteristic of fracturing, about 3.7 watts laser power. Acoustic emission increased with laser power up to about 6 watts. At laser powers above 6 watts, the acoustic emission remained constant. The amount of acoustic emission followed the trend: unfilled resin > composite with 25 wt% BaSiO(6) > composite with 75 wt% BaSiO(6). Acoustic emission generated by laser thermal heating is dependent on the weight percent of filler particles in the composite and the amount of laser power. For this reason, laser thermal acoustic emission might be useful as a nondestructive form of analysis of dental composites.
NASA Astrophysics Data System (ADS)
Nair, Nirmal-Kumar
As open access market principles are applied to power systems, significant changes are happening in their planning, operation and control. In the emerging marketplace, systems are operating under higher loading conditions as markets focus greater attention to operating costs than stability and security margins. Since operating stability is a basic requirement for any power system, there is need for newer tools to ensure stability and security margins being strictly enforced in the competitive marketplace. This dissertation investigates issues associated with incorporating voltage security into the unbundled operating environment of electricity markets. It includes addressing voltage security in the monitoring, operational and planning horizons of restructured power system. This dissertation presents a new decomposition procedure to estimate voltage security usage by transactions. The procedure follows physical law and uses an index that can be monitored knowing the state of the system. The expression derived is based on composite market coordination models that have both PoolCo and OpCo transactions, in a shared stressed transmission grid. Our procedure is able to equitably distinguish the impacts of individual transactions on voltage stability, at load buses, in a simple and fast manner. This dissertation formulates a new voltage stability constrained optimal power flow (VSCOPF) using a simple voltage security index. In modern planning, composite power system reliability analysis that encompasses both adequacy and security issues is being developed. We have illustrated the applicability of our VSCOPF into composite reliability analysis. This dissertation also delves into the various applications of voltage security index. Increasingly, FACT devices are being used in restructured markets to mitigate a variety of operational problems. Their control effects on voltage security would be demonstrated using our VSCOPF procedure. Further, this dissertation investigates the application of steady state voltage stability index to detect potential dynamic voltage collapse. Finally, this dissertation examines developments in representation, standardization, communication and exchange of power system data. Power system data is the key input to all analytical engines for system operation, monitoring and control. Data exchange and dissemination could impact voltage security evaluation and therefore needs to be critically examined.
Toroid Joining Gun. [thermoplastic welding system using induction heating
NASA Technical Reports Server (NTRS)
Buckley, J. D.; Fox, R. L.; Swaim, R J.
1985-01-01
The Toroid Joining Gun is a low cost, self-contained, portable low powered (100-400 watts) thermoplastic welding system developed at Langley Research Center for joining plastic and composite parts using an induction heating technique. The device developed for use in the fabrication of large space sructures (LSST Program) can be used in any atmosphere or in a vacuum. Components can be joined in situ, whether on earth or on a space platform. The expanded application of this welding gun is in the joining of thermoplastic composites, thermosetting composites, metals, and combinations of these materials. Its low-power requirements, light weight, rapid response, low cost, portability, and effective joining make it a candidate for solving many varied and unique bonding tasks.
NASA Technical Reports Server (NTRS)
Mengshoel, Ole Jakob; Poll, Scott; Kurtoglu, Tolga
2009-01-01
This CD contains files that support the talk (see CASI ID 20100021404). There are 24 models that relate to the ADAPT system and 1 Excel worksheet. In the paper an investigation into the use of Bayesian networks to construct large-scale diagnostic systems is described. The high-level specifications, Bayesian networks, clique trees, and arithmetic circuits representing 24 different electrical power systems are described in the talk. The data in the CD are the models of the 24 different power systems.
High-Capacity Communications from Martian Distances Part 2: Spacecraft Antennas and Power Systems
NASA Technical Reports Server (NTRS)
Hodges, Richard E.; Kodis, Mary Anne; Epp, Larry W.; Orr, Richard; Schuchman, Leonard; Collins, Michael; Sands, O. Scott; Vyas, Hemali; Williams, W. Dan
2006-01-01
This paper summarizes recent advances in antenna and power systems technology to enable a high data rate Ka-band Mars-to-Earth telecommunications system. Promising antenna technologies are lightweight, deployable space qualified structures at least 12-m in diameter (potentially up to 25-m). These technologies include deployable mesh reflectors, inflatable reflectarray and folded thermosetting composite. Advances in 1kW-class RF power amplifiers include both TWTA and SSPA technologies.
Composite rotor blades for large wind energy installations
NASA Technical Reports Server (NTRS)
Kussmann, A.; Molly, J.; Muser, D.
1980-01-01
The design of large wind power systems in Germany is reviewed with attention given to elaboration of the total wind energy system, aerodynamic design of the rotor blade, and wind loading effects. Particular consideration is given to the development of composite glass fiber/plastic or carbon fiber/plastic rotor blades for such installations.
Qualitative Description of Electric Power System Future States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hardy, Trevor D.; Corbin, Charles D.
The simulation and evaluation of transactive systems depends to a large extent on the context in which those efforts are performed. Assumptions regarding the composition of the electric power system, the regulatory and policy environment, the distribution of renewable and other distributed energy resources (DERs), technological advances, and consumer engagement all contribute to, and affect, the evaluation of any given transactive system, regardless of its design. It is our position that the assumptions made about the state of the future power grid will determine, to some extent, the systems ultimately deployed, and that the transactive system itself may play anmore » important role in the evolution of the power system.« less
Improved power transfer to wearable systems through stretchable magnetic composites
NASA Astrophysics Data System (ADS)
Lazarus, N.; Bedair, S. S.
2016-05-01
The use of wireless power transfer is common in stretchable electronics since physical wiring can be easily destroyed as the system is stretched. This work presents the first demonstration of improved inductive power coupling to a stretchable system through the addition of a thin layer of ferroelastomeric material. A ferroelastomer, an elastomeric polymer loaded with magnetic particulates, has a permeability greater than one while retaining the ability to survive significant mechanical strains. A recently developed ferroelastomer composite based on sendust platelets within a soft silicone elastomer was incorporated into liquid metal stretchable inductors based on the liquid metal galinstan in fluidic channels. For a single-turn inductor, the maximum power transfer efficiency rises from 71 % with no backplane, to 81 % for a rigid ferrite backplane on the transmitter side alone, to 86 % with a ferroelastomer backplane on the receiver side as well. The coupling between a commercial wireless power transmitter coil with ferrite backplane to a five-turn liquid metal inductor was also investigated, finding an improvement in power transfer efficiency from 81 % with only a rigid backplane to 90 % with the addition of the ferroelastomer backplane. Both the single and multi-turn inductors were demonstrated surviving up to 50 % uniaxial applied strain.
Energy loss analysis of an integrated space power distribution system
NASA Technical Reports Server (NTRS)
Kankam, M. D.; Ribeiro, P. F.
1992-01-01
The results of studies related to conceptual topologies of an integrated utility-like space power system are described. The system topologies are comparatively analyzed by considering their transmission energy losses as functions of mainly distribution voltage level and load composition. The analysis is expedited by use of a Distribution System Analysis and Simulation (DSAS) software. This recently developed computer program by the Electric Power Research Institute (EPRI) uses improved load models to solve the power flow within the system. However, present shortcomings of the software with regard to space applications, and incompletely defined characteristics of a space power system make the results applicable to only the fundamental trends of energy losses of the topologies studied. Accountability, such as included, for the effects of the various parameters on the system performance can constitute part of a planning tool for a space power distribution system.
DC conductivity and magnetic properties of piezoelectric-piezomagnetic composite system
NASA Astrophysics Data System (ADS)
Hemeda, O. M.; Tawfik, A.; A-Al-Sharif; Amer, M. A.; Kamal, B. M.; El Refaay, D. E.; Bououdina, M.
2012-11-01
A series of composites (1-x) (Ni0.8Zn0.2Fe2O4)+x (BaTiO3), where x=0%, 20%, 40%, 60%, 80% and 100% BT content, have been prepared by the standard ceramic technique, then sintered at 1200 °C for 8 h. X-ray diffraction analysis shows that the prepared composites consist of two phases, ferrimagnetic and ferroelectric. DC electrical resistivity, thermoelectric power, charge carriers concentration and charge carrier mobility have been studied at different temperatures. It was found that the DC electrical conductivity increases with increasing BT content. The values of the thermoelectric power were positive and negative for the composites indicating that there are two conduction mechanisms, hopping and band conduction, respectively. Using the values of DC electrical conductivity and thermoelectric power, the values of charge carrier mobility and the charge carrier concentration were calculated. Magnetic measurements (hysteresis loop and magnetic permeability) show that the magnetization decreases by increasing BT content. M-H loop of pure Ni0.6 Zn0.4 Fe2O4 composite indicates that it is paramagnetic at room temperature and that the magnetization is diluted by increasing the BT content in the composite system. The value of magnetoelectric coefficient for the composites decreases by increasing BT content for all the compositions except for 40% BT content, which may be due to the low resistivity of magnetic phase compared with the BT phase that causes a leakage of induced charges on the piezoelectric phase. Since both ferroelectric and magnetic phases preserve their basic properties in the bulk composite, the present BT-NZF composite are potential candidates for applications as pollution sensors and electromagnetic waves.
Manufacturing of 57cm carbon-carbon composite ion optics for the NEXIS ion engine
NASA Technical Reports Server (NTRS)
Beatty, John S.; Snyder, John Steven; Shih, Wei
2005-01-01
Exploration of the outer planets can be taxing on the ion optics of ion propulsion systems because of the higher power and propellant throughout than the present state-of-the art. Carbon-carbon composite ion optics are an enabling technology extending the life of ion optics operated at high specific impulse, power, and propellant throughout because of their low erosion rates compared to molybdenum ion optics.
NASA Astrophysics Data System (ADS)
Li, Jian; Plotnikov, Yuri; Lin, Wendy W.
2008-02-01
A low power wireless sensor network was developed to monitor the microcrack events in aerospace composites. The microcracks in the composites mostly result from a stress loading or temperature and/or humidity cycles. Generally, a single microcrack is too small to be detected by conventional techniques such as X-ray or ultrasonic C-scan. The whole developed sensor network is aimed to capture the released acoustic signals by the microcracking events in real time. It comprises of a receiving station as well as a series of sensor nodes. Each sensor node includes two acoustic emission transducers as well as two signal amplification and data acquisition channels. Much of our development effort has been focused on reducing the power consumption of each node and improving the detection reliability for each event. Each sensor node is battery-powered and works in a sleep mode most of time. Once a microcrack is initiated in the composite, the acoustic signal triggers the node and wakes it up. The node will then react in several microseconds and digitize the signal. The digitized data is sent to the station wirelessly. The developed wireless sensor network system has been validated with microscopy of microcracked samples after temperature and humidity cycling and has proved to be an effective tool for microcracking detection. Furthermore, our low power consumption design and sophisticated wireless transmission mechanism enables a system with great potential for field structural health monitoring applications.
Wang, Yongcheng; Tang, Jing; Peng, Zheng; Wang, Yuhang; Jia, Dingsi; Kong, Biao; Elzatahry, Ahmed A; Zhao, Dongyuan; Zheng, Gengfeng
2014-06-11
We report the development of a multifunctional, solar-powered photoelectrochemical (PEC)-pseudocapacitive-sensing material system for simultaneous solar energy conversion, electrochemical energy storage, and chemical detection. The TiO2 nanowire/NiO nanoflakes and the Si nanowire/Pt nanoparticle composites are used as photoanodes and photocathodes, respectively. A stable open-circuit voltage of ∼0.45 V and a high pseudocapacitance of up to ∼455 F g(-1) are obtained, which also exhibit a repeating charging-discharging capability. The PEC-pseudocapacitive device is fully solar powered, without the need of any external power supply. Moreover, this TiO2 nanowire/NiO nanoflake composite photoanode exhibits excellent glucose sensitivity and selectivity. Under the sun light illumination, the PEC photocurrent shows a sensitive increase upon different glucose additions. Meanwhile in the dark, the open-circuit voltage of the charged pseudocapacitor also exhibits a corresponding signal over glucose analyte, thus serving as a full solar-powered energy conversion-storage-utilization system.
Sensible heat receiver for solar dynamic space power system
NASA Astrophysics Data System (ADS)
Perez-Davis, Marla E.; Gaier, James R.; Petrefski, Chris
A sensible heat receiver is considered which uses a vapor grown carbon fiber-carbon (VGCF/C) composite as the thermal storage medium and which was designed for a 7-kW Brayton engine. This heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver thermal analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The sensible heat receiver compares well with other latent and advanced sensible heat receivers analyzed in other studies, while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The concept also satisfies the design requirements for a 7-kW Brayton engine system. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material.
Sensible heat receiver for solar dynamic space power system
NASA Technical Reports Server (NTRS)
Perez-Davis, Marla E.; Gaier, James R.; Petrefski, Chris
1991-01-01
A sensible heat receiver considered in this study uses a vapor grown carbon fiber-carbon (VGCF/C) composite as the thermal storage media and was designed for a 7 kW Brayton engine. The proposed heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver thermal analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The sensible heat receiver compares well with other latent and advanced sensible heat receivers analyzed in other studies while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The concept also satisfies the design requirements for a 7 kW Brayton engine system. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material.
Sensible heat receiver for solar dynamic space power system
NASA Technical Reports Server (NTRS)
Perez-Davis, Marla E.; Gaier, James R.; Petrefski, Chris
1991-01-01
A sensible heat receiver is considered which uses a vapor grown carbon fiber-carbon (VGCF/C) composite as the thermal storage medium and which was designed for a 7-kW Brayton engine. This heat receiver stores the required energy to power the system during eclipse in the VGCF/C composite. The heat receiver thermal analysis was conducted through the Systems Improved Numerical Differencing Analyzer and Fluid Integrator (SINDA) software package. The sensible heat receiver compares well with other latent and advanced sensible heat receivers analyzed in other studies, while avoiding the problems associated with latent heat storage salts and liquid metal heat pipes. The concept also satisfies the design requirements for a 7-kW Brayton engine system. The weight and size of the system can be optimized by changes in geometry and technology advances for this new material.
Advanced radiator concepts feasibility demonstration
NASA Astrophysics Data System (ADS)
Rhee, Hyop S.; Begg, Lester; Wetch, Joseph R.; Juhasz, Albert J.
1991-01-01
An innovative pumped loop concept for 600 K space power system radiators is under development utilizing direct contact heat transfer, which facilitates repeated startup/shutdown of the power system without complex and time-consuming coolant thawing during power startup. The melting/freezing process of Li in a NaK flow was studied experimentally to demonstrate the Li/NaK radiator feasibility during startup (thawing) and shutdown (cold-trapping). Results of the vapor grown carbon fiber/composite thermal conductivity measurements are also presented.
Advanced radiator concepts feasibility demonstration
NASA Astrophysics Data System (ADS)
Rhee, Hyop S.; Begg, Lester; Wetch, Joseph R.; Juhasz, Albert J.
An innovative pumped loop concept for 600 K space power system radiators is under development utilizing direct contact heat transfer, which facilitates repeated startup/shutdown of the power system without complex and time-consuming coolant thawing during power startup. The melting/freezing process of Li in a NaK flow was studied experimentally to demonstrate the Li/NaK radiator feasibility during startup (thawing) and shutdown (cold-trapping). Results of the vapor grown carbon fiber/composite thermal conductivity measurements are also presented.
Solar power satellite system definition study. Part 3: Preferred concept system definition
NASA Technical Reports Server (NTRS)
1978-01-01
A concise but complete system description for the preferred concept of the Solar Power Satellite System is presented. Significant selection decisions included the following: (1) single crystal silicon solar cells; (2) glass encapsulated solar cell blankets; (3) concentration ratio 1; (4) graphite composite materials for primary structure; (5) electric propulsion for attitude control; (6) klystron RF amplifier tubes for the transmitter; (7) one kilometer diameter transmitter with a design trans mission link output power of 5,000 megawatts; (8) construction in low earth orbit with self-powered transfer of satellite modules to geosynchronous orbit; and (9) two-stage winged fully reusable rocket vehicle for transportation to low earth orbit.
Fuel flexibility via real-time Raman fuel-gas analysis for turbine system control
NASA Astrophysics Data System (ADS)
Buric, M.; Woodruff, S.; Chorpening, B.; Tucker, D.
2015-06-01
The modern energy production base in the U.S. is increasingly incorporating opportunity fuels such as biogas, coalbed methane, coal syngas, solar-derived hydrogen, and others. In many cases, suppliers operate turbine-based generation systems to efficiently utilize these diverse fuels. Unfortunately, turbine engines are difficult to control given the varying energy content of these fuels, combined with the need for a backup natural gas supply to provide continuous operation. Here, we study the use of a specially designed Raman Gas Analyzer based on capillary waveguide technology with sub-second response time for turbine control applications. The NETL Raman Gas Analyzer utilizes a low-power visible pump laser, and a capillary waveguide gas-cell to integrate large spontaneous Raman signals, and fast gas-transfer piping to facilitate quick measurements of fuel-gas components. A U.S. Department of Energy turbine facility known as HYPER (hybrid performance system) serves as a platform for apriori fuel composition measurements for turbine speed or power control. A fuel-dilution system is used to simulate a compositional upset while simultaneously measuring the resultant fuel composition and turbine response functions in real-time. The feasibility and efficacy of system control using the spontaneous Raman-based measurement system is then explored with the goal of illustrating the ability to control a turbine system using available fuel composition as an input process variable.
A Real-Time Decision Support System for Voltage Collapse Avoidance in Power Supply Networks
NASA Astrophysics Data System (ADS)
Chang, Chen-Sung
This paper presents a real-time decision support system (RDSS) based on artificial intelligence (AI) for voltage collapse avoidance (VCA) in power supply networks. The RDSS scheme employs a fuzzy hyperrectangular composite neural network (FHRCNN) to carry out voltage risk identification (VRI). In the event that a threat to the security of the power supply network is detected, an evolutionary programming (EP)-based algorithm is triggered to determine the operational settings required to restore the power supply network to a secure condition. The effectiveness of the RDSS methodology is demonstrated through its application to the American Electric Power Provider System (AEP, 30-bus system) under various heavy load conditions and contingency scenarios. In general, the numerical results confirm the ability of the RDSS scheme to minimize the risk of voltage collapse in power supply networks. In other words, RDSS provides Power Provider Enterprises (PPEs) with a viable tool for performing on-line voltage risk assessment and power system security enhancement functions.
Parametric study of laminated composite material shaft of high speed rotor-bearing system
NASA Astrophysics Data System (ADS)
Gonsalves, Thimothy Harold; Kumar, G. C. Mohan; Ramesh, M. R.
2018-04-01
In this paper some of the important parameters that influence the effectiveness of composite material shaft of high speed rotor-bearing system on rotor dynamics are analyzed. The type of composite material composition, the number of layers along with their stacking sequences are evaluated as they play an important role in deciding the best configuration suitable for the high-speed application. In this work the lateral modal frequencies for five types of composite materials shaft of a high-speed power turbine rotor-bearing system and stresses due to operating torque are evaluated. The results are useful for the selection of right combination of material, number of layers and their stacking sequences. The numerical analysis is carried out using the ANSYS Rotor dynamic analysis features.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dvorak, G.J.
1974-10-01
The research effort was concentrated on metal matrix composites, such as the Al--B, Al--Be, Cu--W, and similar systems. It was found that in as- fabricated composites with soft matrices fatigue failure can be prevented if the composite shakes down during cyclic loading. The fatigue strength of heat- treated composites is affected by residual microstresses, but failure can be prevented if the total microstresses are kept within the respective fatigue limits (at 10 to the 7th power cycles) of the constituents. These criteria for prevention of fatigue failure in metal matrix composite systems were verified by extensive comparisons of theoretical predictionsmore » with available experimental results. (GRA)« less
A methodology for thermodynamic simulation of high temperature, internal reforming fuel cell systems
NASA Astrophysics Data System (ADS)
Matelli, José Alexandre; Bazzo, Edson
This work presents a methodology for simulation of fuel cells to be used in power production in small on-site power/cogeneration plants that use natural gas as fuel. The methodology contemplates thermodynamics and electrochemical aspects related to molten carbonate and solid oxide fuel cells (MCFC and SOFC, respectively). Internal steam reforming of the natural gas hydrocarbons is considered for hydrogen production. From inputs as cell potential, cell power, number of cell in the stack, ancillary systems power consumption, reformed natural gas composition and hydrogen utilization factor, the simulation gives the natural gas consumption, anode and cathode stream gases temperature and composition, and thermodynamic, electrochemical and practical efficiencies. Both energetic and exergetic methods are considered for performance analysis. The results obtained from natural gas reforming thermodynamics simulation show that the hydrogen production is maximum around 700 °C, for a steam/carbon ratio equal to 3. As shown in the literature, the found results indicate that the SOFC is more efficient than MCFC.
Structurally integrated fiber optic damage assessment system for composite materials.
Measures, R M; Glossop, N D; Lymer, J; Leblanc, M; West, J; Dubois, S; Tsaw, W; Tennyson, R C
1989-07-01
Progress toward the development of a fiber optic damage assessment system for composite materials is reported. This system, based on the fracture of embedded optical fibers, has been characterized with respect to the orientation and location of the optical fibers in the composite. Together with a special treatment, these parameters have been tailored to yield a system capable of detecting the threshold of damage for various impacted Kevlar/epoxy panels. The technique has been extended to measure the growth of a damage region which could arise from either impact, manufacturing flaws, or static overloading. The mechanism of optical fiber fracture has also been investigated. In addition, the influence of embedded optical fibers on the tensile and compressive strength of the composite material has been studied. Image enhanced backlighting has been shown to be a powerful and convenient method of assessing internal damage to translucent composite materials.
Alluri, Nagamalleswara Rao; Vivekananthan, Venkateswaran; Chandrasekhar, Arunkumar; Kim, Sang-Jae
2018-01-18
Contrary to traditional planar flexible piezoelectric nanogenerators (PNGs), highly adaptable hemispherical shape-flexible piezoelectric composite strip (HS-FPCS) based PNGs are required to harness/measure non-linear surface motions. Therefore, a feasible, cost-effective and less-time consuming groove technique was developed to fabricate adaptable HS-FPCSs with multiple lengths. A single HS-CSPNG generates 130 V/0.8 μA and can also work as a self-powered muscle monitoring system (SP-MMS) to measure maximum human body part movements, i.e., spinal cord, throat, jaw, elbow, knee, foot stress, palm hand/finger force and inhale/exhale breath conditions at a time or at variable time intervals.
Inertial Energy Storage for Spacecraft
NASA Technical Reports Server (NTRS)
Rodriguez, G. E.
1984-01-01
The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides potential alternative that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions.
ICAN: Integrated composites analyzer
NASA Technical Reports Server (NTRS)
Murthy, P. L. N.; Chamis, C. C.
1984-01-01
The ICAN computer program performs all the essential aspects of mechanics/analysis/design of multilayered fiber composites. Modular, open-ended and user friendly, the program can handle a variety of composite systems having one type of fiber and one matrix as constituents as well as intraply and interply hybrid composite systems. It can also simulate isotropic layers by considering a primary composite system with negligible fiber volume content. This feature is specifically useful in modeling thin interply matrix layers. Hygrothermal conditions and various combinations of in-plane and bending loads can also be considered. Usage of this code is illustrated with a sample input and the generated output. Some key features of output are stress concentration factors around a circular hole, locations of probable delamination, a summary of the laminate failure stress analysis, free edge stresses, microstresses and ply stress/strain influence coefficients. These features make ICAN a powerful, cost-effective tool to analyze/design fiber composite structures and components.
The approach to engineering tasks composition on knowledge portals
NASA Astrophysics Data System (ADS)
Novogrudska, Rina; Globa, Larysa; Schill, Alexsander; Romaniuk, Ryszard; Wójcik, Waldemar; Karnakova, Gaini; Kalizhanova, Aliya
2017-08-01
The paper presents an approach to engineering tasks composition on engineering knowledge portals. The specific features of engineering tasks are highlighted, their analysis makes the basis for partial engineering tasks integration. The formal algebraic system for engineering tasks composition is proposed, allowing to set the context-independent formal structures for engineering tasks elements' description. The method of engineering tasks composition is developed that allows to integrate partial calculation tasks into general calculation tasks on engineering portals, performed on user request demand. The real world scenario «Calculation of the strength for the power components of magnetic systems» is represented, approving the applicability and efficiency of proposed approach.
Pixelized Device Control Actuators for Large Adaptive Optics
NASA Technical Reports Server (NTRS)
Knowles, Gareth J.; Bird, Ross W.; Shea, Brian; Chen, Peter
2009-01-01
A fully integrated, compact, adaptive space optic mirror assembly has been developed, incorporating new advances in ultralight, high-performance composite mirrors. The composite mirrors use Q-switch matrix architecture-based pixelized control (PMN-PT) actuators, which achieve high-performance, large adaptive optic capability, while reducing the weight of present adaptive optic systems. The self-contained, fully assembled, 11x11x4-in. (approx.= 28x28x10-cm) unit integrates a very-high-performance 8-in. (approx.=20-cm) optic, and has 8-kHz true bandwidth. The assembled unit weighs less than 15 pounds (=6.8 kg), including all mechanical assemblies, power electronics, control electronics, drive electronics, face sheet, wiring, and cabling. It requires just three wires to be attached (power, ground, and signal) for full-function systems integration, and uses a steel-frame and epoxied electronics. The three main innovations are: 1. Ultralightweight composite optics: A new replication method for fabrication of very thin composite 20-cm-diameter laminate face sheets with good as-fabricated optical figure was developed. The approach is a new mandrel resin surface deposition onto previously fabricated thin composite laminates. 2. Matrix (regenerative) power topology: Waveform correction can be achieved across an entire face sheet at 6 kHz, even for large actuator counts. In practice, it was found to be better to develop a quadrant drive, that is, four quadrants of 169 actuators behind the face sheet. Each quadrant has a single, small, regenerative power supply driving all 169 actuators at 8 kHz in effective parallel. 3. Q-switch drive architecture: The Q-switch innovation is at the heart of the matrix architecture, and allows for a very fast current draw into a desired actuator element in 120 counts of a MHz clock without any actuator coupling.
NASA Astrophysics Data System (ADS)
Gao, Yi
The development and utilization of wind energy for satisfying electrical demand has received considerable attention in recent years due to its tremendous environmental, social and economic benefits, together with public support and government incentives. Electric power generation from wind energy behaves quite differently from that of conventional sources. The fundamentally different operating characteristics of wind energy facilities therefore affect power system reliability in a different manner than those of conventional systems. The reliability impact of such a highly variable energy source is an important aspect that must be assessed when the wind power penetration is significant. The focus of the research described in this thesis is on the utilization of state sampling Monte Carlo simulation in wind integrated bulk electric system reliability analysis and the application of these concepts in system planning and decision making. Load forecast uncertainty is an important factor in long range planning and system development. This thesis describes two approximate approaches developed to reduce the number of steps in a load duration curve which includes load forecast uncertainty, and to provide reasonably accurate generating and bulk system reliability index predictions. The developed approaches are illustrated by application to two composite test systems. A method of generating correlated random numbers with uniform distributions and a specified correlation coefficient in the state sampling method is proposed and used to conduct adequacy assessment in generating systems and in bulk electric systems containing correlated wind farms in this thesis. The studies described show that it is possible to use the state sampling Monte Carlo simulation technique to quantitatively assess the reliability implications associated with adding wind power to a composite generation and transmission system including the effects of multiple correlated wind sites. This is an important development as it permits correlated wind farms to be incorporated in large practical system studies without requiring excessive increases in computer solution time. The procedures described in this thesis for creating monthly and seasonal wind farm models should prove useful in situations where time period models are required to incorporate scheduled maintenance of generation and transmission facilities. There is growing interest in combining deterministic considerations with probabilistic assessment in order to evaluate the quantitative system risk and conduct bulk power system planning. A relatively new approach that incorporates deterministic and probabilistic considerations in a single risk assessment framework has been designated as the joint deterministic-probabilistic approach. The research work described in this thesis illustrates that the joint deterministic-probabilistic approach can be effectively used to integrate wind power in bulk electric system planning. The studies described in this thesis show that the application of the joint deterministic-probabilistic method provides more stringent results for a system with wind power than the traditional deterministic N-1 method because the joint deterministic-probabilistic technique is driven by the deterministic N-1 criterion with an added probabilistic perspective which recognizes the power output characteristics of a wind turbine generator.
Composite Flywheels Assessed Analytically by NDE and FEA
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Baaklini, George Y.
2000-01-01
As an alternative to expensive and short-lived lead-acid batteries, composite flywheels are being developed to provide an uninterruptible power supply for advanced aerospace and industrial applications. Flywheels can help prevent irregularities in voltage caused by power spikes, sags, surges, burnout, and blackouts. Other applications include load-leveling systems for wind and solar power facilities, where energy output fluctuates with weather. Advanced composite materials are being considered for these components because they are significantly lighter than typical metallic alloys and have high specific strength and stiffness. However, much more research is needed before these materials can be fully utilized, because there is insufficient data concerning their fatigue characteristics and nonlinear behavior, especially at elevated temperatures. Moreover, these advanced types of structural composites pose greater challenges for nondestructive evaluation (NDE) techniques than are encountered with typical monolithic engineering metals. This is particularly true for ceramic polymer and metal matrix composites, where structural properties are tailored during the processing stages. Current efforts involving the NDE group at the NASA Glenn Research Center at Lewis Field are focused on evaluating many important structural components, including the flywheel system. Glenn's in-house analytical and experimental capabilities are being applied to analyze data produced by computed tomography (CT) scans to help assess the damage and defects of high-temperature structural composite materials. Finite element analysis (FEA) has been used extensively to model the effects of static and dynamic loading on aerospace propulsion components. This technique allows the use of complicated loading schemes by breaking the complex part geometry into many smaller, geometrically simple elements.
Optimization of light quality from color mixing light-emitting diode systems for general lighting
NASA Astrophysics Data System (ADS)
Thorseth, Anders
2012-03-01
Given the problem of metamerisms inherent in color mixing in light-emitting diode (LED) systems with more than three distinct colors, a method for optimizing the spectral output of multicolor LED system with regards to standardized light quality parameters has been developed. The composite spectral power distribution from the LEDs are simulated using spectral radiometric measurements of single commercially available LEDs for varying input power, to account for the efficiency droop and other non-linear effects in electrical power vs. light output. The method uses electrical input powers as input parameters in a randomized steepest decent optimization. The resulting spectral power distributions are evaluated with regard to the light quality using the standard characteristics: CIE color rendering index, correlated color temperature and chromaticity distance. The results indicate Pareto optimal boundaries for each system, mapping the capabilities of the simulated lighting systems with regard to the light quality characteristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, Dileep; Kim, Taeil; Zhao, Weihuan
Thermal energy storage (TES) systems that are compatible with high temperature power cycles for concentrating solar power (CSP) require high temperature media for transporting and storing thermal energy. To that end, TES systems have been proposed based on the latent heat of fusion of the phase change materials (PCMs). However, PCMs have relatively low thermal conductivities. In this paper, use of high-thermal-conductivity graphite foam infiltrated with a PCM (MgCl2) has been investigated as a potential TES system. Graphite foams with two porosities were infiltrated with MgCl2. The infiltrated composites were evaluated for density, heat of fusion, melting/freezing temperatures, and thermalmore » diffusivities. Estimated thermal conductivities of MgCl2/graphite foam composites were significantly higher than those of MgCl2 alone over the measured temperature range. Furthermore, heat of fusion, melting/freezing temperatures, and densities showed comparable values to those of pure MgCl2. Results of this study indicate that MgCl2/graphite foam composites show promise as storage media for a latent heat thermal energy storage system for CSP applications.« less
Transport and breakdown analysis for improved figure-of-merit for AlGaN power devices
NASA Astrophysics Data System (ADS)
Coltrin, Michael E.; Kaplar, Robert J.
2017-02-01
Mobility and critical electric field for bulk AlxGa1-xN alloys across the full composition range (0 ≤ x ≤ 1) are analyzed to address the potential application of this material system for power electronics. Calculation of the temperature-dependent electron mobility includes the potential limitations due to different scattering mechanisms, including alloy, optical polar phonon, deformation potential, and piezoelectric scattering. The commonly used unipolar figure of merit (appropriate for vertical-device architectures), which increases strongly with increasing mobility and critical electric field, is examined across the alloy composition range to estimate the potential performance in power electronics applications. Alloy scattering is the dominant limitation to mobility and thus also for the unipolar figure of merit. However, at higher alloy compositions, the limitations due to alloy scattering are overcome by increased critical electric field. These trade-offs, and their temperature dependence, are quantified in the analysis.
NASA Technical Reports Server (NTRS)
Perez-Davis, Marla E.; Gaier, James R.
1990-01-01
In the foreseeable future, an expedition may be undertaken to explore the planet Mars. Some of the power source options being considered for such a mission are photovoltaics, regenerative fuel cells and nuclear reactors. In addition to electrical power requirements, environmental conditions en route to Mars, in the planetary orbit and on the Martian surface must be simulated and studied in order to anticipate and solve potential problems. Space power systems components such as photovoltaic arrays, radiators, and solar concentrators may be vulnerable to degradation in the Martian environment. Natural characteristics of Mars which may pose a threat to surface power systems include high velocity winds, dust, ultraviolet radiation, large daily variation in temperature, reaction to components of the soil, atmosphere and atmospheric condensates as well as synergistic combinations. Most of the current knowledge of the characteristics of the Martian atmosphere and soil composition was obtained from the Viking 1 and 2 missions in 1976. A theoretical study is presented which was used to assess the effects of the Martian atmospheric conditions on the power systems components. A computer program written at NASA-Lewis for combustion research that uses a free energy minimization technique was used to calculate chemical equilibrium for assigned thermodynamic states of temperature and pressure. The power system component materials selected for this study include: silicon dioxide, silicon, carbon, copper, and titanium. Combinations of environments and materials considered include: (1) Mars atmosphere with power surface material, (2) Mars atmosphere and dust component with power surface material, and (3) Mars atmosphere and hydrogen peroxide or superoxide or superoxide with power system material. The chemical equilibrium calculations were performed at a composition ratio (oxidant to reactant) of 100. The temperature for the silicon dioxide material and silicon, which simulate photovoltaic cells, were 300 and 400 K; for carbon, copper and titanium, which simulate radiator surfaces, 300, 500, and 1000 K. All of the systems were evaluated at pressures of 700, 800, and 900 Pa, which stimulate the Martian atmosphere.
Composite materials molding simulation for purpose of automotive industry
NASA Astrophysics Data System (ADS)
Grabowski, Ł.; Baier, A.; Majzner, M.; Sobek, M.
2016-08-01
Composite materials loom large increasingly important role in the overall industry. Composite material have a special role in the ever-evolving automotive industry. Every year the composite materials are used in a growing number of elements included in the cars construction. Development requires the search for ever new applications of composite materials in areas where previously were used only metal materials. Requirements for modern solutions, such as reducing the weight of vehicles, the required strength and vibration damping characteristics go hand in hand with the properties of modern composite materials. The designers faced the challenge of the use of modern composite materials in the construction of bodies of power steering systems in vehicles. The initial choice of method for producing composite bodies was the method of molding injection of composite material. Molding injection of polymeric materials is a widely known and used for many years, but the molding injection of composite materials is a relatively new issue, innovative, it is not very common and is characterized by different conditions, parameters and properties in relation to the classical method. Therefore, for the purpose of selecting the appropriate composite material for injection for the body of power steering system computer analysis using Siemens NX 10.0 environment, including Moldex 3d and EasyFill Advanced tool to simulate the injection of materials from the group of possible solutions were carried out. Analyses were carried out on a model of a modernized wheel case of power steering system. During analysis, input parameters, such as temperature, pressure injectors, temperature charts have been analysed. An important part of the analysis was to analyse the propagation of material inside the mold during injection, so that allowed to determine the shape formability and the existence of possible imperfections of shapes and locations air traps. A very important parameter received from computer analysis was to determine the occurrence of the shrinkage of the material, which significantly affects the behaviour of the assumed geometry of the tested component. It also allowed the prediction of existence of shrincage of material during the process of modelling the shape of body. The next step was to analyse the numerical analysis results received from Siemens NX 10 and Moldex 3D EasyFlow Advanced environment. The process of injection were subjected to shape of prototype body of power steering. The material used in process of injection was similar to one of excepted material to be used in process of molding. Nextly, the results were analysed in purpose of geometry, where samples has aberrations in comparison to a given shape of mold. The samples were also analysed in terms of shrinkage. Research and results were described in detail in this paper.
Lightweight Damage Tolerant, High-Temperature Radiators for Nuclear Power and Propulsion
NASA Technical Reports Server (NTRS)
Craven, Paul D.; SanSoucie, Michael P.
2015-01-01
NASA is increasingly emphasizing exploration to bodies beyond near-Earth orbit. New propulsion systems and new spacecraft are being built for these missions. As the target bodies get further out from Earth, high energy density systems, e.g., nuclear fusion, for propulsion and power will be advantageous. The mass and size of these systems, including supporting systems such as the heat exchange system, including thermal radiators, will need to be as small as possible. Conventional heat exchange systems are a significant portion of the total thermal management mass and size. Nuclear electric propulsion (NEP) is a promising option for high-speed, in-space travel due to the high energy density of nuclear fission power sources and efficient electric thrusters. Heat from the reactor is converted to power for use in propulsion or for system power. The heat not used in the power conversion is then radiated to space as shown in figure 1. Advanced power conversion technologies will require high operating temperatures and would benefit from lightweight radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature, thermal conductivity, and mass. These properties combine to allow significant decreases in the total mass of the radiators and significant increases in the operating temperature of the fins. A Center-funded project at NASA Marshall Space Flight Center has shown that high thermal conductivity, woven carbon fiber fins with no matrix material, can be used to dissipate waste heat from NEP systems and because of high specific power (kW/kg), will require less mass and possibly less total area than standard metal and composite radiator fins for radiating the same amount of heat. This project uses an innovative approach to reduce the mass and size required for the thermal radiators to the point that in-space NEP and power is enabled. High thermal conductivity carbon fibers are lightweight, damage tolerant, and can be heated to high temperature. Areal densities in the NASA set target range of 2 to 4 kg/m2 (for enabling NEP) are achieved and with specific powers (kW/kg) a factor of about 7 greater than conventional metal fins and about 1.5 greater than carbon composite fins. Figure 2 shows one fin under test. All tests were done under vacuum conditions.
Literacy and Community Pariticpation. Prepublication Draft.
ERIC Educational Resources Information Center
Peschke, Edith
Literacy experts in composition have examined the exclusionary forces of academic discourse, and have identified various forms of classroom power that result from the system of academic literacy. Little is understood about the power relations that function to relate and regulate the classroom. Largely a humanistic notion, literacy has been defined…
Achievable flatness in a large microwave power transmitting antenna
NASA Technical Reports Server (NTRS)
Ried, R. C.
1980-01-01
A dual reference SPS system with pseudoisotropic graphite composite as a representative dimensionally stable composite was studied. The loads, accelerations, thermal environments, temperatures and distortions were calculated for a variety of operational SPS conditions along with statistical considerations of material properties, manufacturing tolerances, measurement accuracy and the resulting loss of sight (LOS) and local slope distributions. A LOS error and a subarray rms slope error of two arc minutes can be achieved with a passive system. Results show that existing materials measurement, manufacturing, assembly and alignment techniques can be used to build the microwave power transmission system antenna structure. Manufacturing tolerance can be critical to rms slope error. The slope error budget can be met with a passive system. Structural joints without free play are essential in the assembly of the large truss structure. Variations in material properties, particularly for coefficient of thermal expansion from part to part, is more significant than actual value.
An integrtated approach to the use of Landsat TM data for gold exploration in west central Nevada
NASA Technical Reports Server (NTRS)
Mouat, D. A.; Myers, J. S.; Miller, N. L.
1987-01-01
This paper represents an integration of several Landsat TM image processing techniques with other data to discriminate the lithologies and associated areas of hydrothermal alteration in the vicinity of the Paradise Peak gold mine in west central Nevada. A microprocessor-based image processing system and an IDIMS system were used to analyze data from a 512 X 512 window of a Landsat-5 TM scene collected on June 30, 1984. Image processing techniques included simple band composites, band ratio composites, principal components composites, and baseline-based composites. These techniques were chosen based on their ability to discriminate the spectral characteristics of the products of hydrothermal alteration as well as of the associated regional lithologies. The simple band composite, ratio composite, two principal components composites, and the baseline-based composites separately can define the principal areas of alteration. Combined, they provide a very powerful exploration tool.
Load Composition Model Workflow (BPA TIP-371 Deliverable 1A)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, David P.; Cezar, Gustavo V.
This project is funded under Bonneville Power Administration (BPA) Strategic Partnership Project (SPP) 17-005 between BPA and SLAC National Accelerator Laboratory. The project in a BPA Technology Improvement Project (TIP) that builds on and validates the Composite Load Model developed by the Western Electric Coordinating Council's (WECC) Load Modeling Task Force (LMTF). The composite load model is used by the WECC Modeling and Validation Work Group to study the stability and security of the western electricity interconnection. The work includes development of load composition data sets, collection of load disturbance data, and model development and validation. This work supports reliablemore » and economic operation of the power system. This report was produced for Deliverable 1A of the BPA TIP-371 Project entitled \\TIP 371: Advancing the Load Composition Model". The deliverable documents the proposed work ow for the Composite Load Model, which provides the basis for the instrumentation, data acquisition, analysis and data dissemination activities addressed by later phases of the project.« less
Material system for tailorable white light emission and method for making thereof
Smith, Christine A.; Lee, Howard W.
2004-08-10
A method of processing a composite material to tailor white light emission of the resulting composite during excitation. The composite material is irradiated with a predetermined power and for a predetermined time period to reduce the size of a plurality of nanocrystals and the number of a plurality of traps in the composite material. By this irradiation process, blue light contribution from the nanocrystals to the white light emission is intensified and red and green light contributions from the traps are decreased.
Material system for tailorable white light emission and method for making thereof
Smith, Christine A [Livermore, CA; Lee, Howard W. H. [Fremont, CA
2009-05-19
A method of processing a composite material to tailor white light emission of the resulting composite during excitation. The composite material is irradiated with a predetermined power and for a predetermined time period to reduce the size of a plurality of nanocrystals and the number of a plurality of traps in the composite material. By this irradiation process, blue light contribution from the nanocrystals to the white light emission is intensified and red and green light contributions from the traps are decreased.
Utility interconnection issues for wind power generation
NASA Technical Reports Server (NTRS)
Herrera, J. I.; Lawler, J. S.; Reddoch, T. W.; Sullivan, R. L.
1986-01-01
This document organizes the total range of utility related issues, reviews wind turbine control and dynamic characteristics, identifies the interaction of wind turbines to electric utility systems, and identifies areas for future research. The material is organized at three levels: the wind turbine, its controls and characteristics; connection strategies as dispersed or WPSs; and the composite issue of planning and operating the electric power system with wind generated electricity.
The challenge of developing structural materials for fusion power systems
NASA Astrophysics Data System (ADS)
Bloom, Everett E.
1998-10-01
Nuclear fusion can be one of the most attractive sources of energy from the viewpoint of safety and minimal environmental impact. Central in the goal of designing a safe, environmentally benign, and economically competitive fusion power system is the requirement for high performance, low activation materials. The general performance requirements for such materials have been defined and it is clear that materials developed for other applications (e.g. aerospace, nuclear fission, fossil energy systems) will not fully meet the needs of fusion. Advanced materials, with composition and microstructure tailored to yield properties that will satisfy the specific requirements of fusion must be developed. The international fusion programs have made significant progress towards this goal. Compositional requirements for low activation lead to a focus of development efforts on silicon carbide composites, vanadium alloys, and advanced martensitic steels as candidate structural material systems. Control of impurities will be critically important in actually achieving low activation but this appears possible. Neutron irradiation produces significant changes in the mechanical and physical properties of each of these material systems raising feasibility questions and design limitations. A focus of the research and development effort is to understand these effects, and through the development of specific compositions and microstructures, produce materials with improved and adequate performance. Other areas of research that are synergistic with the development of radiation resistant materials include fabrication, joining technology, chemical compatibility with coolants and tritium breeders and specific questions relating to the unique characteristics of a given material (e.g. coatings to reduce gas permeation in SiC composites) or design concept (e.g. electrical insulator coatings for liquid metal concepts).
Mars Mission Analysis Trades Based on Legacy and Future Nuclear Propulsion Options
NASA Astrophysics Data System (ADS)
Joyner, Russell; Lentati, Andrea; Cichon, Jaclyn
2007-01-01
The purpose of this paper is to discuss the results of mission-based system trades when using a nuclear thermal propulsion (NTP) system for Solar System exploration. The results are based on comparing reactor designs that use a ceramic-metallic (CERMET), graphite matrix, graphite composite matrix, or carbide matrix fuel element designs. The composite graphite matrix and CERMET designs have been examined for providing power as well as propulsion. Approaches to the design of the NTP to be discussed will include an examination of graphite, composite, carbide, and CERMET core designs and the attributes of each in regards to performance and power generation capability. The focus is on NTP approaches based on tested fuel materials within a prismatic fuel form per the Argonne National Laboratory testing and the ROVER/NERVA program. NTP concepts have been examined for several years at Pratt & Whitney Rocketdyne for use as the primary propulsion for human missions beyond earth. Recently, an approach was taken to examine the design trades between specific NTP concepts; NERVA-based (UC)C-Graphite, (UC,ZrC)C-Composite, (U,Zr)C-Solid Carbide and UO2-W CERMET. Using Pratt & Whitney Rocketdyne's multidisciplinary design analysis capability, a detailed mission and vehicle model has been used to examine how several of these NTP designs impact a human Mars mission. Trends for the propulsion system mass as a function of power level (i.e. thrust size) for the graphite-carbide and CERMET designs were established and correlated against data created over the past forty years. These were used for the mission trade study. The resulting mission trades presented in this paper used a comprehensive modeling approach that captures the mission, vehicle subsystems, and NTP sizing.
Smart nanocoated structure for energy harvesting at low frequency vibration
NASA Astrophysics Data System (ADS)
Sharma, Sudhanshu
Increasing demands of energy which is cleaner and has an unlimited supply has led development in the field of energy harvesting. Piezoelectric materials can be used as a means of transforming ambient vibrations into electrical energy that can be stored and used to power other devices. With the recent surge of micro scale devices, piezoelectric power generation can provide a convenient alternative to traditional power sources. In this research, a piezoelectric power generator composite prototype was developed to maximize the power output of the system. A lead zirconate titanate (PZT) composite structure was formed and mounted on a cantilever bar and was studied to convert vibration energy of the low range vibrations at 30 Hz--1000 Hz. To improve the performance of the PZT, different coatings were made using different percentage of Ferrofluid (FNP) and Zinc Oxide nanoparticles (ZnO) and binder resin. The optimal coating mixture constituent percentage was based on the performance of the composite structure formed by applying the coating on the PZT. The fabricated PZT power generator composite with an effective volume of 0.062 cm3 produced a maximum of 44.5 μW, or 0.717mW/cm3 at its resonant frequency of 90 Hz. The optimal coating mixture had the composition of 59.9%FNP + 40% ZnO + 1% Resin Binder. The coating utilizes the opto-magneto-electrical properties of ZnO and Magnetic properties of FNP. To further enhance the output, the magneto-electric (ME) effect was increased by subjecting the composite to magnetic field where coating acts as a magnetostrictive material. For the effective volume of 0.0062 cm 3, the composite produced a maximum of 68.5 μW, or 1.11mW/cm 3 at its resonant frequency of 90 Hz at 160 gauss. The optimal coating mixture had the composition of 59.9% FNP + 40% ZnO + 1% Resin Binder. This research also focused on improving the efficiency of solar cells by utilizing the magnetic effect along with gas plasma etching to improve the internal reflection. Preliminary results showed an improvement in solar cell efficiency from 14.6% to 17.1%.
Quiet Clean Short-haul Experimental Engine (QCSEE)
NASA Technical Reports Server (NTRS)
Willis, W. S.
1979-01-01
The design, fabrication, and testing of two experimental propulsion systems for powered lift transport aircraft are given. The under the wing (UTW) engine was intended for installation in an externally blown flap configuration and the over the wing (OTW) engine for use in an upper surface blowing aircraft. The UTW engine included variable pitch composite fan blades, main reduction gear, composite fan frame and nacelle, and a digital control system. The OTW engine included a fixed pitch fan, composite fan frame, boilerplate nacelle, and a full authority digital control. Many acoustic, pollution, performance, and weight goals were demonstrated.
An Introduced Hybrid Graphene/Polyaniline Composites for Improvement of Supercapacitor
NASA Astrophysics Data System (ADS)
Tayel, Mazhar B.; Soliman, Moataz M.; Ebrahim, Shaker; Harb, Mohamed E.
2016-01-01
Supercapacitors represent an attractive alternative for portable electronics and automotive applications due to their high capacitance, specific power and extended life. In fact, the growing demand of portable systems and hybrid electric vehicles, memory protection in complementary metal-oxide-semiconductor (CMOS), logic circuit, videocassette recorders (VCRs), compact disc (CD) players, personal computers (PCs), uninterruptible power supply (UPS) in security alarm systems, remote sensing, smoke detectors, etc. require high power in short-term pulses. Therefore, in the last 20 years, supercapacitors have been required for the development of large and small devices driven by electrical power. In this paper, graphene oxide (GO) was synthesized by improved Hummers method. Two polyaniline (PANI)/graphene oxide nanocomposites electrode materials were prepared from aniline, GO and ammoniumpersulfate (APS) by in situ chemical polymerization with the mass ratios (mGO:mAniline) 10:90 and 30: 70 in ice bath. The crystal structure and the surface topography of all materials were characterized by means of x-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), Raman spectroscopy and scanning electron microscopy (SEM). The electrochemical properties of the composites were evaluated by cyclic voltammetry (CV), charge-discharge measurements and electrical impedance spectroscopy (EIS), respectively. The results show that the composites have similar and enhanced cyclic voltammetry performance compared with pure PANI based electrode material. The graphene/PANI composite synthesized with the mass ratio (mANI:mGO) 90:10 possessed good capacitive behavior with a specific capacitance as high as 1509.35 F/g at scan rate of 1 mV/s in scanning potential window from -0.8 V to 0.8 V.
NASA Technical Reports Server (NTRS)
Crosson, William L.; Duchon, Claude E.; Raghavan, Ravikumar; Goodman, Steven J.
1996-01-01
Precipitation estimates from radar systems are a crucial component of many hydrometeorological applications, from flash flood forecasting to regional water budget studies. For analyses on large spatial scales and long timescales, it is frequently necessary to use composite reflectivities from a network of radar systems. Such composite products are useful for regional or national studies, but introduce a set of difficulties not encountered when using single radars. For instance, each contributing radar has its own calibration and scanning characteristics, but radar identification may not be retained in the compositing procedure. As a result, range effects on signal return cannot be taken into account. This paper assesses the accuracy with which composite radar imagery can be used to estimate precipitation in the convective environment of Florida during the summer of 1991. Results using Z = 30OR(sup 1.4) (WSR-88D default Z-R relationship) are compared with those obtained using the probability matching method (PMM). Rainfall derived from the power law Z-R was found to he highly biased (+90%-l10%) compared to rain gauge measurements for various temporal and spatial integrations. Application of a 36.5-dBZ reflectivity threshold (determined via the PMM) was found to improve the performance of the power law Z-R, reducing the biases substantially to 20%-33%. Correlations between precipitation estimates obtained with either Z-R relationship and mean gauge values are much higher for areal averages than for point locations. Precipitation estimates from the PMM are an improvement over those obtained using the power law in that biases and root-mean-square errors are much lower. The minimum timescale for application of the PMM with the composite radar dataset was found to be several days for area-average precipitation. The minimum spatial scale is harder to quantify, although it is concluded that it is less than 350 sq km. Implications relevant to the WSR-88D system are discussed.
Compositional descriptor-based recommender system for the materials discovery
NASA Astrophysics Data System (ADS)
Seko, Atsuto; Hayashi, Hiroyuki; Tanaka, Isao
2018-06-01
Structures and properties of many inorganic compounds have been collected historically. However, it only covers a very small portion of possible inorganic crystals, which implies the presence of numerous currently unknown compounds. A powerful machine-learning strategy is mandatory to discover new inorganic compounds from all chemical combinations. Herein we propose a descriptor-based recommender-system approach to estimate the relevance of chemical compositions where crystals can be formed [i.e., chemically relevant compositions (CRCs)]. In addition to data-driven compositional similarity used in the literature, the use of compositional descriptors as a prior knowledge is helpful for the discovery of new compounds. We validate our recommender systems in two ways. First, one database is used to construct a model, while another is used for the validation. Second, we estimate the phase stability for compounds at expected CRCs using density functional theory calculations.
QCSEE UTW engine powered-lift acoustic performance
NASA Technical Reports Server (NTRS)
Loeffler, I. J.; Samanich, N. E.; Bloomer, H. E.
1980-01-01
Powered-lift acoustic test of the Quiet Clean Short Haul Experimental Engine (QCSEE) under the wing (UTW) engine are reported. Propulsion systems for two powered-lift concepts were designed, fabricated, and tested. In addition to low noise features, the designs included composite structures, gear-driven fans, digital control, and a variable pitch fan (UTW). The UTW engine was tested in a static ground test facility with wing and flap segments to simulate installation on a short haul transport aircraft of the future. Powered-lift acoustic performance of the UTW engine is compared with that of the previously tested and reported QCSEE over-the-wing (OTW) engine. Both engines were slightly above the noise goal but were significantly below current FAA and modern wide-body jet transport levels. The UTW system in the powered-lift mode was penalized by reflected engine noise from the wing and flap system, while the OTW system was benefitted by a wing noise shielding effect.
Saturn systems holddown acoustic efficiency and normalized acoustic power spectrum.
NASA Technical Reports Server (NTRS)
Gilbert, D. W.
1972-01-01
Saturn systems field acoustic data are used to derive mid- and far-field prediction parameters for rocket engine noise. The data were obtained during Saturn vehicle launches at the Kennedy Space Center. The data base is a sorted set of acoustic data measured during the period 1961 through 1971 for Saturn system launches SA-1 through AS-509. The model assumes hemispherical radiation from a simple source located at the intersection of the longitudinal axis of each booster and the engine exit plane. The model parameters are evaluated only during vehicle holddown. The acoustic normalized power spectrum and efficiency for each system are isolated as a composite from the data using linear numerical methods. The specific definitions of each allows separation. The resulting power spectra are nondimensionalized as a function of rocket engine parameters. The nondimensional Saturn system acoustic spectrum and efficiencies are compared as a function of Strouhal number with power spectra from other systems.
Analysis of the Light Transmission Ability of Reinforcing Glass Fibers Used in Polymer Composites.
Hegedűs, Gergely; Sarkadi, Tamás; Czigány, Tibor
2017-06-10
This goal of our research was to show that E-glass fiber bundles used for reinforcing composites can be enabled to transmit light in a common resin without any special preparation (without removing the sizing). The power of the transmitted light was measured and the attenuation coefficient, which characterizes the fiber bundle, was determined. Although the attenuation coefficient depends on temperature and the wavelength of the light, it is independent of the power of incident light, the quality of coupling, and the length of the specimen. The refractive index of commercially available transparent resins was measured and it was proved that a resin with a refractive index lower than that of the fiber can be used to make a composite whose fibers are capable of transmitting light. The effects of temperature, compression of the fibers, and the shape of fiber ends on the power of transmitted light were examined. The measurement of emitted light can provide information about the health of the fibers. This can be the basis of a simple health monitoring system in the case of general-purpose composite structures.
Analysis of the Light Transmission Ability of Reinforcing Glass Fibers Used in Polymer Composites
Hegedűs, Gergely; Sarkadi, Tamás; Czigány, Tibor
2017-01-01
This goal of our research was to show that E-glass fiber bundles used for reinforcing composites can be enabled to transmit light in a common resin without any special preparation (without removing the sizing). The power of the transmitted light was measured and the attenuation coefficient, which characterizes the fiber bundle, was determined. Although the attenuation coefficient depends on temperature and the wavelength of the light, it is independent of the power of incident light, the quality of coupling, and the length of the specimen. The refractive index of commercially available transparent resins was measured and it was proved that a resin with a refractive index lower than that of the fiber can be used to make a composite whose fibers are capable of transmitting light. The effects of temperature, compression of the fibers, and the shape of fiber ends on the power of transmitted light were examined. The measurement of emitted light can provide information about the health of the fibers. This can be the basis of a simple health monitoring system in the case of general-purpose composite structures. PMID:28772996
Satellite power systems (SPS) concept definition study. Volume 2, part 1: System engineering
NASA Technical Reports Server (NTRS)
Hanley, G. M.
1980-01-01
Top level trade studies are presented, including comparison of solid state and klystron concepts, higher concentration on the solar cells, composite and aluminum structure, and several variations to the reference concept. Detailed trade studies are presented in each of the subsystem areas (solar array, power distribution, structures, thermal control, attitude control and stationkeeping, microwave transmission, and ground receiving station). A description of the selected point design is also presented.
A power propulsion system based on a second-generation thermionic NPS of the ``Topaz'' type
NASA Astrophysics Data System (ADS)
Gryaznov, Georgi M.; Zhabotinski, Eugene E.; Andreev, Pavel V.; Zaritski, Gennadie a.; Koroteev, Anatoly S.; Martishin, Viktor M.; Akimov, Vladimir N.; Ponomarev-Stepnoi, Nikolai N.; Usov, Veniamin A.; Britt, Edward J.
1992-01-01
The paper considers the concept of power propulsion systems-universal space platforms (USPs) on the basis of second-generation thermionic nuclear power system (NPSs) and stationary plasma electric thrusters (SPETs). The composition and the principles of layout of such a system, based on a thermionic NPS with a continuous power of up to 30 kWe allowing power augmentation by a factor of 2-2.5 as long as during a year, as well as SPETs with a specific impulse of at least 20 km/s and a propulsion efficiency of 0.6-0.7 are discussed. The layouts and the basic parameters are presented for a power propulsion system ensuring cargo transportation from an initial radiation-safe 800 km high orbit into a geostationary one using the ``Zenit'' and ``Proton'' launch systems for injection into an initial orbit. It is shown that the mass of mission-oriented equipment in the geostationary orbit in the cases under consideration ranges from 2500 to 5500 kg on condition that the flight time is not longer than a year. The power propulsion system can be applied to autonomous power supply of various spacecraft including remote power delivery. It can be also used for deep space exploration.
NASA Astrophysics Data System (ADS)
Kim, Hyo-Seok
The generation of electrical energy by piezoelectric polymer when mechanically stressed has motivated the investigation of poly(vinylidenefluoride-trifluoro ethylene) (PVDF-TrFE) devices as implantable physiological power supplies. The fragility, specific weight, and rigidity of traditional piezoelectric ceramics used have limited their applicability, although the concept of using piezoelectric elements as mechanically actuated electric power generators for implanted organs has been exploited to some extent. In contrast, piezoelectric polymers are flexible, light, resistant to mechanical fatigue, and efficient as voltage generators. Thus, they can be considered as a source for generating, through mechanical deformation, the electric power needed to fuel implanted artificial organs or to trigger assisting devices such as cardiac pacemakers. This study demonstrates the feasibility of power generation devices that create current from mechanical deformation. One type of power generating device is PVDF-TrFE copolymer and, when built on the pacemaker's lead, can use the motion of the heart as its power source. The other type of device is a Pt-Nafion-PEDOT (PNP) composite device which is fabricated using Perfluorosulfonate ionomeric polymer (Nafion) and conductive polymer, Poly(3,4-ethylenedioxythiophene), by electrochemical synthesis. The device will enable passive location-specific stimulation, thus mimicking the contraction signal of the normal heart. It can generate its own power and may therefore make the battery-lifetime longer. In other applications of these materials is an ultrasound transducer and receiver. Ultrasound transducer/receivers using PNP composite and PVDF as a reference transducer/receiver were studied in order to detect and locate the depth of material (alloy metal, polymer gel) by a pulse-echo method. In a time of flight (TOF) measurement, a transmitter emits short packets of ultrasound waves toward the surface of object in tissue, where they are reflected and then detected by a receiver. The time interval or frequency change between emission and detection is measured as an indicator for the distance. The purpose of this project is to conduct fundamental study into the material properties with an emphasis on polarization-related phenomena. This project specifically focuses on the power generating properties of the hybrid PNP composite device and its application. This device is a new system being applied for the first time because of its potential for generating power. The specific aspects of the devices being studied in the project encompass both macroscopic and microscopic properties of hybrid PNP composite. The microscopic properties include electrical property as measured by impedance spectroscopy and dielectric response characteristics to examine the power generating mechanism of induced polarization for PNP composite device. The produced current and power efficiency by mechanical deformation operation are compared.
Microstructures and Properties of Laser Cladding Al-TiC-CeO2 Composite Coatings
Kong, Dejun; Song, Renguo
2018-01-01
Al-TiC-CeO2 composite coatings have been prepared by using a laser cladding technique, and the microstructure and properties of the resulting composite coatings have been investigated using scanning electron microscopy (SEM), a 3D microscope system, X-ray diffraction (XRD), micro-hardness testing, X-ray stress measurements, friction and wear testing, and an electrochemical workstation. The results showed that an Al-Fe phase appears in the coatings under different applied laser powers and shows good metallurgical bonding with the matrix. The dilution rate of the coating first decreases and then increases with increasing laser power. The coating was transformed from massive and short rod-like structures into a fine granular structure, and the effect of fine grain strengthening is significant. The microhardness of the coatings first decreases and then increases with increasing laser power, and the maximum microhardness can reach 964.3 HV0.2. In addition, the residual stress of the coating surface was tensile stress, and crack size increases with increasing stress. When the laser power was 1.6 kW, the coating showed high corrosion resistance. PMID:29373555
Microstructures and Properties of Laser Cladding Al-TiC-CeO₂ Composite Coatings.
He, Xing; Kong, Dejun; Song, Renguo
2018-01-26
Al-TiC-CeO₂ composite coatings have been prepared by using a laser cladding technique, and the microstructure and properties of the resulting composite coatings have been investigated using scanning electron microscopy (SEM), a 3D microscope system, X-ray diffraction (XRD), micro-hardness testing, X-ray stress measurements, friction and wear testing, and an electrochemical workstation. The results showed that an Al-Fe phase appears in the coatings under different applied laser powers and shows good metallurgical bonding with the matrix. The dilution rate of the coating first decreases and then increases with increasing laser power. The coating was transformed from massive and short rod-like structures into a fine granular structure, and the effect of fine grain strengthening is significant. The microhardness of the coatings first decreases and then increases with increasing laser power, and the maximum microhardness can reach 964.3 HV 0.2 . In addition, the residual stress of the coating surface was tensile stress, and crack size increases with increasing stress. When the laser power was 1.6 kW, the coating showed high corrosion resistance.
Portable wireless ultrasonic systems for remote inspection
NASA Astrophysics Data System (ADS)
Zhong, C. H.; Croxford, A. J.; Wilcox, P. D.
2015-03-01
The weight and power storage of conventional wire and active wireless systems limit their applications to composite structures such as wind turbines and aerospace structures. In this paper, a structurally-integrated, inert, wireless guided wave system for rapid composite inspection is demonstrated. The wireless interface is based on electromagnetic coupling between three coils, one of which is physically connected to an ultrasonic piezoelectric transducer and embedded in the structure, while the other two are in a separate probing unit. Compact encapsulated sensor units are designed, built and successfully embedded into carbon fibre composite panel at manufacture. Chirp-based excitation is used to enable single-shot measurements with high signal-to-noise ratios to be obtained. Results from sensors embedded in carbon fibre reinforced composite panel show that signal amplitude obtained by embedding the sensor into composite is almost twice that of a surface-bonded sensor. The promising results indicate that the developed sensor can be potentially used for impact damage in a large composite structure.
Improving geothermal power plants with a binary cycle
NASA Astrophysics Data System (ADS)
Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.
2015-12-01
The recent development of binary geothermal technology is analyzed. General trends in the introduction of low-temperature geothermal sources are summarized. The use of single-phase low-temperature geothermal fluids in binary power plants proves possible and expedient. The benefits of power plants with a binary cycle in comparison with traditional systems are shown. The selection of the working fluid is considered, and the influence of the fluid's physicochemical properties on the design of the binary power plant is discussed. The design of binary power plants is based on the chemical composition and energy potential of the geothermal fluids and on the landscape and climatic conditions at the intended location. Experience in developing a prototype 2.5 MW Russian binary power unit at Pauzhetka geothermal power plant (Kamchatka) is outlined. Most binary systems are designed individually for a specific location. Means of improving the technology and equipment at binary geothermal power plants are identified. One option is the development of modular systems based on several binary systems that employ the heat from the working fluid at different temperatures.
NASA Astrophysics Data System (ADS)
Kebukawa, Y.; Aoki, J.; Ito, M.; Kawai, Y.; Okada, T.; Matsumoto, J.; Yano, H.; Yurimoto, H.; Terada, K.; Toyoda, M.; Yabuta, H.; Nakamura, R.; Cottin, H.; Grand, N.; Mori, O.
2017-12-01
The Solar Power Sail (SPS) mission is one of candidates for the upcoming strategic middle-class space exploration to demonstrate the first outer Solar System journey of Japan. The mission concept includes in-situ sampling analysis of the surface and subsurface (up to 1 m) materials of a Jupiter Trojan asteroid using high resolution mass spectrometry (HRMS). The candidates for the HRMS are multi-turn time-of-flight mass spectrometer (MULTUM) type and Cosmorbitrap type. We plan to analyze isotopic and elemental compositions of volatile materials from organic matter, hydrated minerals, and ice (if any), in order to understand origin and evolution of the Jupiter Trojan asteroids. It will provide insights into planet formation/migration theories, evolution and distribution of volatiles in the Solar System, and missing link between asteroids and comets on evolutional. The HRMS system allows to measure H, N, C, O isotopic compositions and elemental compositions of molecules prepared by various pre-MS procedures including stepwise heating up to 600ºC, gas chromatography (GC), and high-temperature pyrolysis with catalyst to decompose the samples into simple gaseous molecules (e.g., H2, CO, and N2) for isotopic ratio analysis. The required mass resolution should be at least 30,000 for analyzing isotopic ratios for simple gaseous molecules. For elemental compositions, mass accuracy of 10 ppm is required to determine elemental compositions for molecules with m/z up to 300 (as well as compound specific isotopic compositions for smaller molecules). Our planned analytical sequences consist of three runs for both surface and subsurface samples. In addition, `sniff mode' which simply introduces environmental gaseous molecules into a HRMS will be done by the system.
Carbon nanotubes as nanotexturing agents for high power supercapacitors based on seaweed carbons.
Raymundo-Piñero, Encarnación; Cadek, Martin; Wachtler, Mario; Béguin, François
2011-07-18
The advantages provided by multiwalled carbon nanotubes (CNTs) as backbones for composite supercapacitor electrodes are discussed. This paper particularly highlights the electrochemical properties of carbon composites obtained by pyrolysis of seaweed/CNTs blends. Due to the nanotexturing effect of CNTs, supercapacitors fabricated with electrodes from these composites exhibit enhanced electrochemical performances compared with CNT-free carbons. The cell resistance is dramatically reduced by the excellent conductivity of CNTs and by the good propagation of ions favored by the presence of opened mesopores. As a consequence, the specific power of supercapacitors based on these nanocomposites is very high. Another advantage related to the presence of CNTs is a better life cycle of the systems. The composite electrodes are resilient during the charge/discharge of capacitors; these are able to perfectly accommodate the dimensional changes appearing in the active material without mechanical damages. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
High temperature energy harvesters utilizing ALN/3C-SiC composite diaphragms
NASA Astrophysics Data System (ADS)
Lai, Yun-Ju; Li, Wei-Chang; Felmetsger, Valery V.; Senesky, Debbie G.; Pisano, Albert P.
2014-06-01
Microelectromechanical systems (MEMS) energy harvesting devices aiming at powering wireless sensor systems for structural health monitoring in harsh environments are presented. For harsh environment wireless sensor systems, sensor modules are required to operate at elevated temperatures (> 250°C) with capabilities to resist harsh chemical conditions, thereby the use of battery-based power sources becomes challenging and not economically efficient if considering the required maintenance efforts. To address this issue, energy harvesting technology is proposed to replace batteries and provide a sustainable power source for the sensor systems towards autonomous harsh environment wireless sensor networks. In particular, this work demonstrates a micromachined aluminum nitride/cubic silicon carbide (AlN/3C-SiC) composite diaphragm energy harvester, which enables high temperature energy harvesting from ambient pulsed pressure sources. The fabricated device yields an output power density of 87 μW/cm2 under 1.48-psi pressure pulses at 1 kHz while connected to a 14.6-kΩ load resistor. The effects of pulse profile on output voltage have been studied, showing that the output voltage can be maximized by optimizing the diaphragm resonance frequency based on specific pulse characteristics. In addition, temperature dependence of the diaphragm resonance frequency over the range of 20°C to 600°C has been investigated and the device operation at temperatures as high as 600°C has been verified.
Recent Progress in Electrical Insulation Techniques for HTS Power Apparatus
NASA Astrophysics Data System (ADS)
Hayakawa, Naoki; Kojima, Hiroki; Hanai, Masahiro; Okubo, Hitoshi
This paper describes the electrical insulation techniques at cryogenic temperatures, i.e. Cryodielectrics, for HTS power apparatus, e.g. HTS power transmission cables, transformers, fault current limiters and SMES. Breakdown and partial discharge characteristics are discussed for different electrical insulation configurations of LN2, sub-cooled LN2, solid, vacuum and their composite insulation systems. Dynamic and static insulation performances with and without taking account of quench in HTS materials are also introduced.
Flywheel Rotor Safe-Life Technology
NASA Technical Reports Server (NTRS)
Ratner, J. K. H.; Chang, J. B.; Christopher, D. A.; McLallin, Kerry L. (Technical Monitor)
2002-01-01
Since the 1960s, research has been conducted into the use of flywheels as energy storage systems. The-proposed applications include energy storage for hybrid and electric automobiles, attitude control and energy storage for satellites, and uninterruptible power supplies for hospitals and computer centers. For many years, however, the use of flywheels for space applications was restricted by the total weight of a system employing a metal rotor. With recent technological advances in the manufacturing of composite materials, however, lightweight composite rotors have begun to be proposed for such applications. Flywheels with composite rotors provide much higher power and energy storage capabilities than conventional chemical batteries. However, the failure of a high speed flywheel rotor could be a catastrophic event. For this reason, flywheel rotors are classified by the NASA Fracture Control Requirements Standard as fracture critical parts. Currently, there is no industry standard to certify a composite rotor for safe and reliable operation forth( required lifetime of the flywheel. Technical problems hindering the development of this standard include composite manufacturing inconsistencies, insufficient nondestructive evaluation (NDE) techniques for detecting defects and/or impact damage, lack of standard material test methods for characterizing composite rotor design allowables, and no unified proof (over-spin) test for flight rotors. As part of a flywheel rotor safe-life certification pro-ram funded b the government, a review of the state of the art in composite rotors is in progress. The goal of the review is to provide a clear picture of composite flywheel rotor technologies. The literature review has concentrated on the following topics concerning composites and composite rotors: durability (fatigue) and damage tolerance (safe-life) analysis/test methods, in-service NDE and health monitoring techniques, spin test methods/ procedures, and containment options. This report presents the papers selected for their relevance to this topic and summarizes them.
NASA Astrophysics Data System (ADS)
Ryals, Christopher Shannon
The objective of this study is to determine a predicted energy capacity of disaster debris for the production of emergency power using a combined heat and power (CHP) unit. A prediction simulation using geographic information systems (GIS) will use data from past storms to calculate an estimated amount of debris along with an estimated energy potential of said debris. Rather than the expense and burden of transporting woody debris such as downed trees and wood framing materials offsite, they can be processed (sorting and chipping) to provide an onsite energy source to provide power to emergency management facilities such as shelters in schools and hospitals. A CHP unit can simultaneously produce heat, cooling effects and electrical power using various biomass sources. This study surveys the quantity and composition of debris produced for a given classification of disaster and location. A comparison of power efficiency estimates for various disasters is conducted.
Optimizing Soft Magnetic Composites for Power Frequency Applications and Power-Trains
NASA Astrophysics Data System (ADS)
Lemieux, Patrick; Guthrie, Roderick; Isac, Mihaiela
2012-03-01
A new approach, together with a new family of soft magnetic composites (SMCs), has been developed and optimized for power alternating-current applications. The different technological and economic restrictions needed to maximize a composite's performance-to-cost ratio are presented. The experimental procedures to produce sintered lamellar SMCs are reported, together with magnetic results and the effects of different processing parameters on their performance. The present results are compared with corresponding data available for soft magnetic materials available on the market (laminations and composites). Data on the mechanical strength of these new SMC structures are also given. The new process results in magnetic and mechanical properties of different alloy systems that are better than those of any of the SMCs available. The present materials' energetic losses can be under 2 W/kg at 60 Hz, at 1 T, whilst their permeability exceeds 2000, while maintaining maximum induction above 1.7 T. These properties are very close to the best results for standard laminations on the market. The present process has the potential to be very inexpensive, owing to its simplicity. Even though not fully isotropic, recent three-dimensional machine designs and process advantages conferred by powder metallurgy techniques can be applied to this new family of lamellar particle composites. Through theoretical calculations and modeling exercises, it is briefly shown that this new kind of material can result in an improvement to the transportation sector where weight and efficiency of newly emerging electrical and hybrid power-trains are of prime importance.
NDT of fiber-reinforced composites with a new fiber-optic pump–probe laser-ultrasound system☆
Pelivanov, Ivan; Buma, Takashi; Xia, Jinjun; Wei, Chen-Wei; O’Donnell, Matthew
2014-01-01
Laser-ultrasonics is an attractive and powerful tool for the non-destructive testing and evaluation (NDT&E) of composite materials. Current systems for non-contact detection of ultrasound have relatively low sensitivity compared to contact peizotransducers. They are also expensive, difficult to adjust, and strongly influenced by environmental noise. Moreover, laser-ultrasound (LU) systems typically launch only about 50 firings per second, much slower than the kHz level pulse repetition rate of conventional systems. As demonstrated here, most of these drawbacks can be eliminated by combining a new generation of compact, inexpensive, high repetition rate nanosecond fiber lasers with new developments in fiber telecommunication optics and an optimally designed balanced probe beam detector. In particular, a modified fiber-optic balanced Sagnac interferometer is presented as part of a LU pump–probe system for NDT&E of aircraft composites. The performance of the all-optical system is demonstrated for a number of composite samples with different types and locations of inclusions. PMID:25302156
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Hyeokjin; Chen, Hua; Maksimovic, Dragan
An experimental 30 kW boost composite converter is described in this paper. The composite converter architecture, which consists of a buck module, a boost module, and a dual active bridge module that operates as a DC transformer (DCX), leads to substantial reductions in losses at partial power points, and to significant improvements in weighted efficiency in applications that require wide variations in power and conversion ratio. A comprehensive loss model is developed, accounting for semiconductor conduction and switching losses, capacitor losses, as well as dc and ac losses in magnetic components. Based on the developed loss model, the module andmore » system designs are optimized to maximize efficiency at a 50% power point. Experimental results for the 30 kW prototype demonstrate 98.5%peak efficiency, very high efficiency over wide ranges of power and voltage conversion ratios, as well as excellent agreements between model predictions and measured efficiency curves.« less
Optimum constrained image restoration filters
NASA Technical Reports Server (NTRS)
Riemer, T. E.; Mcgillem, C. D.
1974-01-01
The filter was developed in Hilbert space by minimizing the radius of gyration of the overall or composite system point-spread function subject to constraints on the radius of gyration of the restoration filter point-spread function, the total noise power in the restored image, and the shape of the composite system frequency spectrum. An iterative technique is introduced which alters the shape of the optimum composite system point-spread function, producing a suboptimal restoration filter which suppresses undesirable secondary oscillations. Finally this technique is applied to multispectral scanner data obtained from the Earth Resources Technology Satellite to provide resolution enhancement. An experimental approach to the problems involving estimation of the effective scanner aperture and matching the ERTS data to available restoration functions is presented.
Specific loss power in superparamagnetic hyperthermia: nanofluid versus composite
NASA Astrophysics Data System (ADS)
Osaci, M.; Cacciola, M.
2017-01-01
Currently, the magnetic hyperthermia induced by nanoparticles is of great interest in biomedical applications. In the literature, we can find a lot of models for magnetic hyperthermia, but many of them do not give importance to a significant detail, such as the geometry of nanoparticle positions in the system. Usually, a nanofluid is treated by considering random positions of the nanoparticles, geometry that is actually characteristic to the composite nanoparticles. To assess the error which is frequently made, in this paper we propose a comparative analysis between the specific loss power (SLP) in case of a nanofluid and the SLP in case of a composite with magnetic nanoparticles. We are going to use a superparamagnetic hyperthermia model based on the improved model for calculating the Néel relaxation time in a magnetic field oblique to the nanoparticle magnetic anisotropy axes, and on the improved theoretical model LRT (linear response theory) for SLP. To generate the nanoparticle geometry in the system, we are going to apply a Monte Carlo method to a nanofluid, by minimising the interaction potentials in liquid medium and, for a composite environment, a method for generating random positions of the nanoparticles in a given volume.
Comparison of vibration damping of standard and PDCPD housing of the electric power steering system
NASA Astrophysics Data System (ADS)
Płaczek, M.; Wróbel, A.; Baier, A.
2017-08-01
A comparison of two different types of electric power steering system housing is presented. The first considered type of the housing was a standard one that is made of an aluminium alloy. The second one is made of polydicyclopentadiene polymer (PDCPD) and was produced using the RIM technology. Considered elements were analysed in order to verify their properties of vibrations damping. This property is very important taking into account noise generated by elements of a car’s power steering system. During the carried out tests vibrations of analysed power steering housings were measured using Marco Fiber Composite (MFC) piezoelectric transducers. Results obtained for both considered power steering housings in case of the same parameters of vibrations excitations were measured and juxtaposed. Obtained results were analysed in order to verify if the housing made of PDCPD polymer has better properties of vibration damping than the standard one.
NASA Technical Reports Server (NTRS)
Lin, Qian; Harb, John N.
2004-01-01
This paper describes the development of a thick-film microcathode for use in Li-ion microbatteries in order to provide increased power and energy per area. These cathodes take advantage of a composite porous electrode structure, utilizing carbon nanotubes (CNT) as the conductive filler. The use of carbon nanotubes was found to significantly reduce the measured resistance of the electrodes, increase active material accessibility, and improve electrode performance. In particular, the cycling and power performance of the thick-film cathodes was significantly improved, and the need for compression was eliminated. Cathode thickness and CNT content were optimized to maximize capacity and power performance. Power capability of >50 mW/sq cm (17 mA/sq cm) with discharge capacity of >0.17 mAh/sq cm was demonstrated. The feasibility of fabricating thick-film microcathodes capable of providing the power and capacity needed for use in autonomous microsensor systems was also demonstrated.
Heat Rejection Concepts for Lunar Fission Surface Power Applications
NASA Technical Reports Server (NTRS)
Siamidis, John
2006-01-01
This paper describes potential heat rejection design concepts for lunar surface Brayton power conversion systems. Brayton conversion systems are currently under study by NASA for surface power applications. Surface reactors may be used for the moon to power human outposts enabling extended stays and closed loop life support. The Brayton Heat Rejection System (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Space Brayton conversion system designs tend to optimize at efficiencies of about 20 to 25 percent with radiator temperatures in the 400 K to 600 K range. A notional HRS was developed for a 100 kWe-class Brayton power system that uses a pumped water heat transport loop coupled to a water heat pipe radiator. The radiator panels employ a tube and fin construction consisting of regularly-spaced circular heat pipes contained within two composite facesheets. The water heat pipes interface to the coolant through curved sections partially contained within the cooling loop. The paper evaluates various design parameters including radiator panel orientation, coolant flow path, and facesheet thickness. Parameters were varied to compare design options on the basis of H2O pump pressure rise and required power, heat pipe unit power and radial flux, radiator area, radiator panel areal mass, and overall HRS mass.
Conceptual Core Analysis of Long Life PWR Utilizing Thorium-Uranium Fuel Cycle
NASA Astrophysics Data System (ADS)
Rouf; Su'ud, Zaki
2016-08-01
Conceptual core analysis of long life PWR utilizing thorium-uranium based fuel has conducted. The purpose of this study is to evaluate neutronic behavior of reactor core using combined thorium and enriched uranium fuel. Based on this fuel composition, reactor core have higher conversion ratio rather than conventional fuel which could give longer operation length. This simulation performed using SRAC Code System based on library SRACLIB-JDL32. The calculation carried out for (Th-U)O2 and (Th-U)C fuel with uranium composition 30 - 40% and gadolinium (Gd2O3) as burnable poison 0,0125%. The fuel composition adjusted to obtain burn up length 10 - 15 years under thermal power 600 - 1000 MWt. The key properties such as uranium enrichment, fuel volume fraction, percentage of uranium are evaluated. Core calculation on this study adopted R-Z geometry divided by 3 region, each region have different uranium enrichment. The result show multiplication factor every burn up step for 15 years operation length, power distribution behavior, power peaking factor, and conversion ratio. The optimum core design achieved when thermal power 600 MWt, percentage of uranium 35%, U-235 enrichment 11 - 13%, with 14 years operation length, axial and radial power peaking factor about 1.5 and 1.2 respectively.
NASA Technical Reports Server (NTRS)
Stimpert, D. L.
1979-01-01
High bypass geared turbofan engines with nacelles forming the propulsion system for short-haul passenger aircraft were tested for use in externally blown flap-type aircraft. System noise levels for a four-engine, UTW-powered aircraft operating in the powered lift mode were calculated to be 97.2 and 95.7 EPNdB at takeoff and approach, respectively, on a 152.4 m (500 ft) sideline compared to a goal of 95.0 EPNdB.
Demonstration of a wireless, self-powered, electroacoustic liner system.
Phipps, Alex; Liu, Fei; Cattafesta, Louis; Sheplak, Mark; Nishida, Toshikazu
2009-02-01
This paper demonstrates the system operation of a self-powered active liner for the suppression of aircraft engine noise. The fundamental element of the active liner system is an electromechanical Helmholtz resonator (EMHR), which consists of a Helmholtz resonator with one of its rigid walls replaced with a circular piezoceramic composite plate. For this system demonstration, two EMHR elements are used, one for acoustic impedance tuning and one for energy harvesting. The EMHR used for acoustic impedance tuning is shunted with a variable resistive load, while the EMHR used for energy harvesting is shunted to a flyback power converter and storage element. The desired acoustic impedance conditions are determined externally, and wirelessly transmitted to the liner system. The power for the receiver and the impedance tuning circuitry in the liner are supplied by the harvested energy. Tuning of the active liner is demonstrated at three different sound pressure levels (148, 151, and 153 dB) in order to show the robustness of the energy harvesting and storage system. An acoustic tuning range of approximately 200 Hz is demonstrated for each of the three available power levels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marquez, Andres; Manzano Franco, Joseph B.; Song, Shuaiwen
With Exascale performance and its challenges in mind, one ubiquitous concern among architects is energy efficiency. Petascale systems projected to Exascale systems are unsustainable at current power consumption rates. One major contributor to system-wide power consumption is the number of memory operations leading to data movement and management techniques applied by the runtime system. To address this problem, we present the concept of the Architected Composite Data Types (ACDT) framework. The framework is made aware of data composites, assigning them a specific layout, transformations and operators. Data manipulation overhead is amortized over a larger number of elements and program performancemore » and power efficiency can be significantly improved. We developed the fundamentals of an ACDT framework on a massively multithreaded adaptive runtime system geared towards Exascale clusters. Showcasing the capability of ACDT, we exercised the framework with two representative processing kernels - Matrix Vector Multiply and the Cholesky Decomposition – applied to sparse matrices. As transformation modules, we applied optimized compress/decompress engines and configured invariant operators for maximum energy/performance efficiency. Additionally, we explored two different approaches based on transformation opaqueness in relation to the application. Under the first approach, the application is agnostic to compression and decompression activity. Such approach entails minimal changes to the original application code, but leaves out potential applicationspecific optimizations. The second approach exposes the decompression process to the application, hereby exposing optimization opportunities that can only be exploited with application knowledge. The experimental results show that the two approaches have their strengths in HW and SW respectively, where the SW approach can yield performance and power improvements that are an order of magnitude better than ACDT-oblivious, hand-optimized implementations.We consider the ACDT runtime framework an important component of compute nodes that will lead towards power efficient Exascale clusters.« less
Heat Rejection Concepts for Brayton Power Conversion Systems
NASA Technical Reports Server (NTRS)
Siamidis, John; Mason, Lee; Beach, Duane; Yuko, James
2005-01-01
This paper describes potential heat rejection design concepts for closed Brayton cycle (CBC) power conversion systems. Brayton conversion systems are currently under study by NASA for Nuclear Electric Propulsion (NEP) applications. The Heat Rejection Subsystem (HRS) must dissipate waste heat generated by the power conversion system due to inefficiencies in the thermal-to-electric conversion process. Space Brayton conversion system designs tend to optimize at efficiencies of about 20 to 25 percent with radiator temperatures in the 400 to 600 K range. A notional HRS was developed for a 100 kWe-class Brayton power system that uses a pumped sodium-potassium (NaK) heat transport loop coupled to a water heat pipe radiator. The radiator panels employ a sandwich construction consisting of regularly-spaced circular heat pipes contained within two composite facesheets. Heat transfer from the NaK fluid to the heat pipes is accomplished by inserting the evaporator sections into the NaK duct channel. The paper evaluates various design parameters including heat pipe diameter, heat pipe spacing, and facesheet thickness. Parameters were varied to compare design options on the basis of NaK pump pressure rise and required power, heat pipe unit power and radial flux, radiator panel areal mass, and overall HRS mass.
Pulse Power Capability Of High Energy Density Capacitors Based on a New Dielectric Material
NASA Technical Reports Server (NTRS)
Winsor, Paul; Scholz, Tim; Hudis, Martin; Slenes, Kirk M.
1999-01-01
A new dielectric composite consisting of a polymer coated onto a high-density metallized Kraft has been developed for application in high energy density pulse power capacitors. The polymer coating is custom formulated for high dielectric constant and strength with minimum dielectric losses. The composite can be wound and processed using conventional wound film capacitor manufacturing equipment. This new system has the potential to achieve 2 to 3 J/cu cm whole capacitor energy density at voltage levels above 3.0 kV, and can maintain its mechanical properties to temperatures above 150 C. The technical and manufacturing development of the composite material and fabrication into capacitors are summarized in this paper. Energy discharge testing, including capacitance and charge-discharge efficiency at normal and elevated temperatures, as well as DC life testing were performed on capacitors manufactured using this material. TPL (Albuquerque, NM) has developed the material and Aerovox (New Bedford, MA) has used the material to build and test actual capacitors. The results of the testing will focus on pulse power applications specifically those found in electro-magnetic armor and guns, high power microwave sources and defibrillators.
Measurements of print-through in graphite fiber epoxy composites
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.; Jeunnette, Timothy T.; Anzic, Judith M.
1989-01-01
High-reflectance accurate-contour mirrors are needed for solar dynamic space power systems. Graphite fiber epoxy composites are attractive candidates for such applications owing to their high modulus, near-zero coefficient of thermal expansion, and low mass. However, mirrors prepared from graphite fiber epoxy composite substrates often exhibit print-through, a distortion of the surface, which causes a loss in solar specular reflectance. Efforts to develop mirror substrates without print-through distortion require a means of quantifying print-through. Methods have been developed to quantify the degree of print-through in graphite fiber epoxy composite specimens using surface profilometry.
Volume II: Compendium Abstracts
2008-08-01
project developed a fast and simple method of characterization for ceramic , polymer composite, and ceramic -composite materials systems. Current methods...incrementally at 1-inch intervals and displayed as a false-color image map of the sample. This experimental setup can be easily scaled from single ceramic ...low-power, high-force characteristics of lead zirconate titanate ( PZT ) and an offset-beam design to achieve rotational or near-linear translational
High Conductivity Carbon-Carbon Heat Pipes for Light Weight Space Power System Radiators
NASA Technical Reports Server (NTRS)
Juhasz, Albert J.
2008-01-01
Based on prior successful fabrication and demonstration testing of a carbon-carbon heat pipe radiator element with integral fins this paper examines the hypothetical extension of the technology via substitution of high thermal conductivity composites which would permit increasing fin length while still maintaining high fin effectiveness. As a result the specific radiator mass could approach an ultimate asymptotic minimum value near 1.0 kg/m2, which is less than one fourth the value of present day satellite radiators. The implied mass savings would be even greater for high capacity space and planetary surface power systems, which may require radiator areas ranging from hundreds to thousands of square meters, depending on system power level.
Research on grid connection control technology of double fed wind generator
NASA Astrophysics Data System (ADS)
Ling, Li
2017-01-01
The composition and working principle of variable speed constant frequency doubly fed wind power generation system is discussed in this thesis. On the basis of theoretical analysis and control on the modeling, the doubly fed wind power generation simulation control system is designed based on a TMS320F2407 digital signal processor (DSP), and has done a large amount of experimental research, which mainly include, variable speed constant frequency, constant pressure, Grid connected control experiment. The running results show that the design of simulation control system is reasonable and can meet the need of experimental research.
Tian, Liang
2017-03-06
Light, strong materials with high conductivity are desired for many applications such as power transmission conductors, fly-by-wire systems, and downhole power feeds. However, it is difficult to obtain both high strength and high conductivity simultaneously in a material. In this study, an Al/Ca (20 vol%) nanofilamentary metal-metal composite was produced by powder metallurgy and severe plastic deformation. Fine Ca metal powders (~200 µm) were produced by centrifugal atomization, mixed with pure Al powder, and deformed by warm extrusion, swaging, and wire drawing to a true strain of 12.9. The Ca powder particles became fine Ca nanofilaments that reinforce the compositemore » substantially by interface strengthening. The conductivity of the composite is slightly lower than the rule-of-mixtures prediction due to minor quantities of impurity inclusions. As a result, the elevated temperature performance of this composite was also evaluated by differential scanning calorimetry and resistivity measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tian, Liang
Light, strong materials with high conductivity are desired for many applications such as power transmission conductors, fly-by-wire systems, and downhole power feeds. However, it is difficult to obtain both high strength and high conductivity simultaneously in a material. In this study, an Al/Ca (20 vol%) nanofilamentary metal-metal composite was produced by powder metallurgy and severe plastic deformation. Fine Ca metal powders (~200 µm) were produced by centrifugal atomization, mixed with pure Al powder, and deformed by warm extrusion, swaging, and wire drawing to a true strain of 12.9. The Ca powder particles became fine Ca nanofilaments that reinforce the compositemore » substantially by interface strengthening. The conductivity of the composite is slightly lower than the rule-of-mixtures prediction due to minor quantities of impurity inclusions. As a result, the elevated temperature performance of this composite was also evaluated by differential scanning calorimetry and resistivity measurements.« less
Megawatt solar power systems for lunar surface operations
NASA Technical Reports Server (NTRS)
Adams, Brian; Alhadeff, Sam; Beard, Shawn; Carlile, David; Cook, David; Douglas, Craig; Garcia, Don; Gillespie, David; Golingo, Raymond; Gonzalez, Drew
1990-01-01
Lunar surface operations require habitation, transportation, life support, scientific, and manufacturing systems, all of which require some form of power. As an alternative to nuclear power, the development of a modular one megawatt solar power system is studied, examining both photovoltaic and dynamic cycle conversion methods, along with energy storage, heat rejection, and power backup subsystems. For photovoltaic power conversion, two systems are examined. First, a substantial increase in photovoltaic conversion efficiency is realized with the use of new GaAs/GaSb tandem photovoltaic cells, offering an impressive overall array efficiency of 23.5 percent. Since these new cells are still in the experimental phase of development, a currently available GaAs cell providing 18 percent efficiency is examined as an alternate to the experimental cells. Both Brayton and Stirling cycles, powered by linear parabolic solar concentrators, are examined for dynamic cycle power conversion. The Brayton cycle is studied in depth since it is already well developed and can provide high power levels fairly efficiently in a compact, low mass system. The dynamic conversion system requires large scale waste heat rejection capability. To provide this heat rejection, a comparison is made between a heat pipe/radiative fin system using advanced composites, and a potentially less massive liquid droplet radiator system. To supply power through the lunar night, both a low temperature alkaline fuel cell system and an experimental high temperature monolithic solid-oxide fuel cell system are considered. The reactants for the fuel cells are stored cryogenically in order to avoid the high tankage mass required by conventional gaseous storage. In addition, it is proposed that the propellant tanks from a spent, prototype lunar excursion vehicle be used for this purpose, therefore resulting in a significant overall reduction in effective storage system mass.
Remote Monitoring of the Structural Health of Hydrokinetic Composite Turbine Blades
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.L. Rovey
A health monitoring approach is investigated for hydrokinetic turbine blade applications. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs have advantages that include long life in marine environments and great control over mechanical properties. Experimental strain characteristics are determined for static loads and free-vibration loads. These experiments are designed to simulate the dynamic characteristics of hydrokinetic turbine blades. Carbon/epoxy symmetric composite laminates are manufactured using an autoclave process. Four-layer composite beams, eight-layer composite beams, and two-dimensional eight-layer composite blades are instrumented for strain. Experimental results for strainmore » measurements from electrical resistance gages are validated with theoretical characteristics obtained from in-house finite-element analysis for all sample cases. These preliminary tests on the composite samples show good correlation between experimental and finite-element strain results. A health monitoring system is proposed in which damage to a composite structure, e.g. delamination and fiber breakage, causes changes in the strain signature behavior. The system is based on embedded strain sensors and embedded motes in which strain information is demodulated for wireless transmission. In-service monitoring is critical due to the difficult environment for blade inspection and the cost of inspection downtime. Composite blade designs provide a medium for embedding sensors into the blades for in-situ health monitoring. The major challenge with in-situ health monitoring is transmission of sensor signals from the remote rotating reference frame of the blade to the system monitoring station. In the presented work, a novel system for relaying in-situ blade health measurements in hydrokinetic systems is described and demonstrated. An ultrasonic communication system is used to transmit sensor data underwater from the rotating frame of the blade to a fixed relay station. Data are then broadcast via radio waves to a remote monitoring station. Results indicate that the assembled system can transmit simulated sensor data with an accuracy of ±5% at a maximum sampling rate of 500 samples/sec. A power investigation of the transmitter within the blade shows that continuous max-sampling operation is only possible for short durations (~days), and is limited due to the capacity of the battery power source. However, intermittent sampling, with long periods between samples, allows for the system to last for very long durations (~years). Finally, because the data transmission system can operate at a high sampling rate for short durations or at a lower sampling rate/higher duty cycle for long durations, it is well-suited for short-term prototype and environmental testing, as well as long-term commercially-deployed hydrokinetic machines.« less
Fiber-optic technologies in laser-based therapeutics: threads for a cure.
Wang, Zheng; Chocat, Noémie
2010-06-01
In the past decade, novel fiber structures and material compositions have led to the introduction of new diagnostic and therapeutic tools. We review the structure, the material composition and the fabrication processes behind these novel fiber systems. Because of their structural flexibility, their compatibility with endoscopic appliances and their efficiency in laser delivery, these fiber systems have greatly extended the reach of a wide range of surgical lasers in minimally invasive procedures. Much research in novel fiber-optics delivery systems has been focused on the accommodation of higher optical powers and the extension to a broader wavelength range. Until recently, CO2 laser surgery, renowned for its precision and efficiency, was limited to open surgeries by the lack of delivery fibers. Hollow-core photonic bandgap fibers are assessed for their ability to transmit CO2 laser at surgical power level and for their applications in a range of clinical areas. Current fiber-delivery technologies for a number of laser surgery modalities and wavelengths are compared.
Integrated Power and Attitude Control Systems for Space Station
NASA Technical Reports Server (NTRS)
Oglevie, R. E.; Eisenhaure, D. B.
1985-01-01
Integrated Power and Attitude Control Systems (IPACS) studies performed over a decade ago established the feasibility of simultaneously storing electrical energy in wheels and utilizing the resulting momentum for spacecraft attitude control. It was shown that such a system possessed many advantages over other contemporary energy storage and attitude control systems in many applications. More recent technology advances in composite rotors, magnetic bearings, and power control electronics have triggered new optimism regarding the feasibility and merits of such a system. The paper presents the results of a recent study whose focus was to define an advanced IPACS and to evaluate its merits for the Space Station application. A system and component design concept is developed to establish the system performance capability. A system level trade study, including life-cycle costing, is performed to define the merits of the system relative to two other candidate systems. It is concluded that an advanced IPACS concept is not only feasible, but offers substantial savings in mass, and life-cycle cost.
Advanced Ceramic-Metallic Composites for Lightweight Vehicle Braking Systems
DOT National Transportation Integrated Search
2012-09-11
According to the Federal Transit Administration Strategic Research Plan [1]: Researching technologies to reduce vehicle weight can also lead to important reductions in fuel consumption and emissions. The power required to accelerate a bus and over...
The Hera Saturn entry probe mission
NASA Astrophysics Data System (ADS)
Mousis, O.; Atkinson, D. H.; Spilker, T.; Venkatapathy, E.; Poncy, J.; Frampton, R.; Coustenis, A.; Reh, K.; Lebreton, J.-P.; Fletcher, L. N.; Hueso, R.; Amato, M. J.; Colaprete, A.; Ferri, F.; Stam, D.; Wurz, P.; Atreya, S.; Aslam, S.; Banfield, D. J.; Calcutt, S.; Fischer, G.; Holland, A.; Keller, C.; Kessler, E.; Leese, M.; Levacher, P.; Morse, A.; Muñoz, O.; Renard, J.-B.; Sheridan, S.; Schmider, F.-X.; Snik, F.; Waite, J. H.; Bird, M.; Cavalié, T.; Deleuil, M.; Fortney, J.; Gautier, D.; Guillot, T.; Lunine, J. I.; Marty, B.; Nixon, C.; Orton, G. S.; Sánchez-Lavega, A.
2016-10-01
The Hera Saturn entry probe mission is proposed as an M-class mission led by ESA with a contribution from NASA. It consists of one atmospheric probe to be sent into the atmosphere of Saturn, and a Carrier-Relay spacecraft. In this concept, the Hera probe is composed of ESA and NASA elements, and the Carrier-Relay Spacecraft is delivered by ESA. The probe is powered by batteries, and the Carrier-Relay Spacecraft is powered by solar panels and batteries. We anticipate two major subsystems to be supplied by the United States, either by direct procurement by ESA or by contribution from NASA: the solar electric power system (including solar arrays and the power management and distribution system), and the probe entry system (including the thermal protection shield and aeroshell). Hera is designed to perform in situ measurements of the chemical and isotopic compositions as well as the dynamics of Saturn's atmosphere using a single probe, with the goal of improving our understanding of the origin, formation, and evolution of Saturn, the giant planets and their satellite systems, with extrapolation to extrasolar planets. Hera's aim is to probe well into the cloud-forming region of the troposphere, below the region accessible to remote sensing, to the locations where certain cosmogenically abundant species are expected to be well mixed. By leading to an improved understanding of the processes by which giant planets formed, including the composition and properties of the local solar nebula at the time and location of giant planet formation, Hera will extend the legacy of the Galileo and Cassini missions by further addressing the creation, formation, and chemical, dynamical, and thermal evolution of the giant planets, the entire solar system including Earth and the other terrestrial planets, and formation of other planetary systems.
Calculation of energy costs of composite biomass stirring at biogas stations
NASA Astrophysics Data System (ADS)
Suslov, D. Yu; Temnikov, D. O.
2018-03-01
The paper is devoted to the study of the equipment to produce biogas fuel from organic wastes. The bioreactor equipped with a combined stirring system ensuring mechanical and bubbling stirring is designed. The method of energy cost calculation of the combined stirring system with original design is suggested. The received expressions were used in the calculation of the stirring system installed in the 10 m3 bioreactor: power consumed by the mixer during the start-up period made Nz =9.03 kW, operating power of the mixer made NE =1.406 kW, compressor power for bubbling stirring made NC =18.5 kW. Taking into account the operating mode of single elements of the stirring system, the energy cost made 4.38% of the total energy received by the biogas station.
NASA Astrophysics Data System (ADS)
Peters, F.; Hünnekens, B.; Wieneke, S.; Militz, H.; Ohms, G.; Viöl, W.
2017-11-01
In this study, three different dielectric barrier discharges, based on the same setup and run with the same power supply, are characterized by emission spectroscopy with regards to the reduced electrical field strength, and the rotational, vibrational and electron temperature. To compare discharges common for the treatment on wood, a coplanar surface barrier discharge, a direct dielectric barrier discharge and a jet system/remote plasma are chosen. To minimize influences due to the setups or power, the discharges are realized with the same electrodes and power supply and normalized to the same power. To evaluate the efficiency of the different discharges and the influence on treated materials, the surface free energy is determined on a maple wood, high density fiberboard and wood plastic composite. The influence is measured depending on the treatment time, with the highest impact in the time of 5 s.
Environmental Durability Issues for Solar Power Systems in Low Earth Orbit
NASA Technical Reports Server (NTRS)
Degroh, Kim K.; Banks, Bruce A.; Smith, Daniela C.
1994-01-01
Space solar power systems for use in the low Earth orbit (LEO) environment experience a variety of harsh environmental conditions. Materials used for solar power generation in LEO need to be durable to environmental threats such as atomic oxygen, ultraviolet (UV) radiation, thermal cycling, and micrometeoroid and debris impact. Another threat to LEO solar power performance is due to contamination from other spacecraft components. This paper gives an overview of these LEO environmental issues as they relate to space solar power system materials. Issues addressed include atomic oxygen erosion of organic materials, atomic oxygen undercutting of protective coatings, UV darkening of ceramics, UV embrittlement of Teflon, effects of thermal cycling on organic composites, and contamination due to silicone and organic materials. Specific examples of samples from the Long Duration Exposure Facility (LDEF) and materials returned from the first servicing mission of the Hubble Space Telescope (HST) are presented. Issues concerning ground laboratory facilities which simulate the LEO environment are discussed along with ground-to-space correlation issues.
NASA Astrophysics Data System (ADS)
Ram Prabhakar, J.; Ragavan, K.
2013-07-01
This article proposes new power management based current control strategy for integrated wind-solar-hydro system equipped with battery storage mechanism. In this control technique, an indirect estimation of load current is done, through energy balance model, DC-link voltage control and droop control. This system features simpler energy management strategy and necessitates few power electronic converters, thereby minimizing the cost of the system. The generation-demand (G-D) management diagram is formulated based on the stochastic weather conditions and demand, which would likely moderate the gap between both. The features of management strategy deploying energy balance model include (1) regulating DC-link voltage within specified tolerances, (2) isolated operation without relying on external electric power transmission network, (3) indirect current control of hydro turbine driven induction generator and (4) seamless transition between grid-connected and off-grid operation modes. Furthermore, structuring of the hybrid system with appropriate selection of control variables enables power sharing among each energy conversion systems and battery storage mechanism. By addressing these intricacies, it is viable to regulate the frequency and voltage of the remote network at load end. The performance of the proposed composite scheme is demonstrated through time-domain simulation in MATLAB/Simulink environment.
Stirling Radioisotope Power System as an Alternative for NASAs Deep Space Missions
NASA Astrophysics Data System (ADS)
Shaltens, R. K.; Mason, L. S.; Schreiber, J. G.
2001-01-01
The NASA Glenn Research Center (GRC) and the Department of Energy (DOE) are developing a free-piston Stirling convertor for a Stirling Radioisotope Power System (SRPS) to provide on-board electric power for future NASA deep space missions. The SRPS currently being developed provides about 100 watts and reduces the amount of radioisotope fuel by a factor of four over conventional Radioisotope Thermoelectric Generators (RTG). The present SRPS design has a specific power of approximately 4 W/kg which is comparable to an RTG. GRC estimates for advanced versions of the SRPS with improved heat source integration, lightweight Stirling convertors, composite radiators, and chip-packaged controllers improves the specific mass to about 8 W/kg. Additional information is contained in the original extended abstract.
Induction Curing of Thiol-acrylate and Thiolene Composite Systems
Ye, Sheng; Cramer, Neil B.; Stevens, Blake E.; Sani, Robert L.; Bowman, Christopher N.
2011-01-01
Induction curing is demonstrated as a novel type of in situ radiation curing that maintains most of the advantages of photocuring while eliminating the restriction of light accessibility. Induction curing is utilized to polymerize opaque composites comprised of thiol-acrylate and thiol-ene resins, nanoscale magnetic particles, and carbon nanotubes. Nanoscale magnetic particles are dispersed in the resin and upon exposure to the magnetic field, these particles lead to induction heating that rapidly initiates the polymerization. Heat transfer profiles and reaction kinetics of the samples are modeled during the reactions with varying induction heater power, species concentration, species type and sample thickness, and the model is compared with the experimental results. Thiol-ene polymerizations achieved full conversion between 1.5 minutes and 1 hour, depending on the field intensity and the composition, with the maximum reaction temperature decreasing from 146 – 87 °C when the induction heater power was decreased from 8 – 3 kW. The polymerization reactions of the thiol-acrylate system were demonstrated to achieve full conversion between 0.6 and 30 minutes with maximum temperatures from 139 to 86 °C. The experimental behavior was characterized and the temperature profile modeled for the thiol-acrylate composite comprised of sub100nm nickel particles and induction heater power in the range of 32 to 20 kW. A 9°C average deviation was observed between the modeling and experimental results for the maximum temperature rise. The model also was utilized to predict reaction temperatures and kinetics for systems with varying thermal initiator concentration, initiator half-life, monomer molecular weight and temperature gradients in samples with varying thickness, thereby demonstrating that induction curing represents a designable and tunable polymerization method. Finally, induction curing was utilized to cure thiol-acrylate systems containing carbon nanotubes where 1 wt% carbon nanotubes resulted in systems where the storage modulus increased from 17.6 ± 0.2 to 21.6 ± 0.1 MPa and an electrical conductivity that increased from <10−7 to 0.33 ± 0.5 S/m. PMID:21765552
Investigation of Insulation Materials for Future Radioisotope Power Systems (RPS)
NASA Technical Reports Server (NTRS)
Cornell, Peggy A.; Hurwitz, Frances I.; Ellis, David L.; Schmitz, Paul C.
2013-01-01
NASA's Radioisotope Power System (RPS) Technology Advancement Project is developing next generation high temperature insulation materials that directly benefit thermal management and improve performance of RPS for future science missions. Preliminary studies on the use of multilayer insulation (MLI) for Stirling convertors used on the Advanced Stirling Radioisotope Generator (ASRG) have shown the potential benefits of MLI for space vacuum applications in reducing generator size and increasing specific power (W/kg) as compared to the baseline Microtherm HT (Microtherm, Inc.) insulation. Further studies are currently being conducted at NASA Glenn Research Center (GRC) on candidate MLI foils and aerogel composite spacers. This paper presents the method of testing of foils and spacers and experimental results to date.
Investigation of Insulation Materials for Future Radioisotope Power Systems
NASA Technical Reports Server (NTRS)
Cornell, Peggy A.; Hurwitz, Frances I.; Ellis, David L.; Schmitz, Paul C.
2013-01-01
NASA's Radioisotope Power Systems (RPS) Technology Advancement Project is developing next generation high-temperature insulation materials that directly benefit thermal management and improve performance of RPS for future science missions. Preliminary studies on the use of multilayer insulation (MLI) for Stirling convertors used on the Advanced Stirling Radioisotope Generator (ASRG) have shown the potential benefits of MLI for space vacuum applications in reducing generator size and increasing specific power (W/kg) as compared to the baseline Microtherm HT (Microtherm, Inc.) insulation. Further studies are currently being conducted at NASA Glenn Research Center on candidate MLI foils and aerogel composite spacers. This paper presents the method of testing of foils and spacers and experimental results to date.
Loss of Load Probability Calculation for West Java Power System with Nuclear Power Plant Scenario
NASA Astrophysics Data System (ADS)
Azizah, I. D.; Abdullah, A. G.; Purnama, W.; Nandiyanto, A. B. D.; Shafii, M. A.
2017-03-01
Loss of Load Probability (LOLP) index showing the quality and performance of an electrical system. LOLP value is affected by load growth, the load duration curve, forced outage rate of the plant, number and capacity of generating units. This reliability index calculation begins with load forecasting to 2018 using multiple regression method. Scenario 1 with compositions of conventional plants produce the largest LOLP in 2017 amounted to 71.609 days / year. While the best reliability index generated in scenario 2 with the NPP amounted to 6.941 days / year in 2015. Improved reliability of systems using nuclear power more efficiently when compared to conventional plants because it also has advantages such as emission-free, inexpensive fuel costs, as well as high level of plant availability.
Defining and Enabling Resiliency of Electric Distribution Systems With Multiple Microgrids
Chanda, Sayonsom; Srivastava, Anurag K.
2016-05-02
This paper presents a method for quantifying and enabling the resiliency of a power distribution system (PDS) using analytical hierarchical process and percolation theory. Using this metric, quantitative analysis can be done to analyze the impact of possible control decisions to pro-actively enable the resilient operation of distribution system with multiple microgrids and other resources. Developed resiliency metric can also be used in short term distribution system planning. The benefits of being able to quantify resiliency can help distribution system planning engineers and operators to justify control actions, compare different reconfiguration algorithms, develop proactive control actions to avert power systemmore » outage due to impending catastrophic weather situations or other adverse events. Validation of the proposed method is done using modified CERTS microgrids and a modified industrial distribution system. Furthermore, simulation results show topological and composite metric considering power system characteristics to quantify the resiliency of a distribution system with the proposed methodology, and improvements in resiliency using two-stage reconfiguration algorithm and multiple microgrids.« less
NASA Astrophysics Data System (ADS)
Wang, Jing; Shi, Chen; Feng, Jiayue; Long, Xi; Meng, Lingzhi; Ren, Hang
2018-01-01
The effects of oxygen plasma treatment power on Aramid Fiber III chemical structure and its reinforced bismaleimides (BMI) composite humidity resistance properties were investigated in this work. The aramid fiber III chemical structure under different plasma treatment power were measured by FTIR. The composite bending strength and interlinear shear strength with different plasma treatment power before and after absorption water were tested respectively. The composite rupture morphology was observed by SEM. The FTIR results showed that oxygen plasma treatment do not change the fiber bulk chemical structure. The composite humidity resistance of bending strength and interlinear shear strength are similar for untreated and plasma treated samples. The retention rate of composite bending strength and interlinear shear strength are about 75% and 94%, respectively. The composite rupture mode turns to be the fiber failure after water absorption.
An embedded fibre optic sensor for impact damage detection in composite materials
NASA Astrophysics Data System (ADS)
Glossop, Neil David William
1989-09-01
A structurally embedded fiber optic damage detection sensor for composite materials is described. The system is designed specifically for the detection of barely visible damage resulting from low velocity impacts in Kevlar-epoxy laminates. By monitoring the light transmission properties of optical fiber embedded in the composite, it was shown that the integrity of the material can be accurately determined. The effect of several parameters on the sensitivity of the system was investigated, including the effect of the optical fiber orientation and depth of embedding within the composite. A novel surface was also developed for the optical fibers to ensure they will fracture at the requisite damage level. The influence of the optical fiber sensors on the tensile and compressive material properties and on the impact resistance of the laminate was also studied. Extensive experimental results from impact tests are reported and a numerical model of the impact event is presented which is able to predict and model the damage mechanism and sensor system. A new and powerful method of nondestructive evaluation for translucent composite materials based on image enhanced backlighting is also described.
Increasing efficiency of TPP fuel suply system due to LNG usage as a reserve fuel
NASA Astrophysics Data System (ADS)
Zhigulina, E. V.; Khromchenkov, V. G.; Mischner, J.; Yavorovsky, Y. V.
2017-11-01
The paper is devoted to the analysis of fuel economy efficiency increase possibility at thermal power plants (TPP) due to the transition from the use of black oil as a reserve fuel to liquefied natural gas (LNG) produced at the very station. The work represents the technical solution that allows to generate, to store and to use LNG as the reserve fuel TPP. The annual amounts of black oil and natural gas that are needed to ensure the reliable operation of several power plants in Russia were assessed. Some original schemes of the liquefied natural gas production and storing as alternative reserve fuel generated by means of application of expansion turbines are proposed. The simulation results of the expansion process for two compositions of natural gas with different contents of high-boiling fractions are presented. The dependences of the condensation outlet and power generation from the flow initial parameters and from the natural gas composition are obtained and analysed. It was shown that the choice of a particular circuit design depends primarily on the specific natural gas composition. The calculations have proved the effectiveness and the technical ability to use liquefied natural gas as a backup fuel at reconstructed and newly designed gas power station.
A Novel Vaping Machine Dedicated to Fully Controlling the Generation of E-Cigarette Emissions
Soulet, Sébastien; Pairaud, Charly; Lalo, Hélène
2017-01-01
The accurate study of aerosol composition and nicotine release by electronic cigarettes is a major issue. In order to fully and correctly characterize aerosol, emission generation has to be completely mastered. This study describes an original vaping machine named Universal System for Analysis of Vaping (U-SAV), dedicated to vaping product study, enabling the control and real-time monitoring of applied flow rate and power. Repeatability and stability of the machine are demonstrated on flow rate, power regulation and e-liquid consumption. The emission protocol used to characterize the vaping machine is based on the AFNOR-XP-D90-300-3 standard (15 W power, 1 Ω atomizer resistance, 100 puffs collected per session, 1.1 L/min airflow rate). Each of the parameters has been verified with two standardized liquids by studying mass variations, power regulation and flow rate stability. U-SAV presents the required and necessary stability for the full control of emission generation. The U-SAV is recognised by the French association for standardization (AFNOR), European Committee for Standardization (CEN) and International Standards Organisation (ISO) as a vaping machine. It can be used to highlight the influence of the e-liquid composition, user behaviour and nature of the device, on the e-liquid consumption and aerosol composition. PMID:29036888
A Novel Vaping Machine Dedicated to Fully Controlling the Generation of E-Cigarette Emissions.
Soulet, Sébastien; Pairaud, Charly; Lalo, Hélène
2017-10-14
The accurate study of aerosol composition and nicotine release by electronic cigarettes is a major issue. In order to fully and correctly characterize aerosol, emission generation has to be completely mastered. This study describes an original vaping machine named Universal System for Analysis of Vaping (U-SAV), dedicated to vaping product study, enabling the control and real-time monitoring of applied flow rate and power. Repeatability and stability of the machine are demonstrated on flow rate, power regulation and e-liquid consumption. The emission protocol used to characterize the vaping machine is based on the AFNOR-XP-D90-300-3 standard (15 W power, 1 Ω atomizer resistance, 100 puffs collected per session, 1.1 L/min airflow rate). Each of the parameters has been verified with two standardized liquids by studying mass variations, power regulation and flow rate stability. U-SAV presents the required and necessary stability for the full control of emission generation. The U-SAV is recognised by the French association for standardization (AFNOR), European Committee for Standardization (CEN) and International Standards Organisation (ISO) as a vaping machine. It can be used to highlight the influence of the e-liquid composition, user behaviour and nature of the device, on the e-liquid consumption and aerosol composition.
Progress in materials and structures at Lewis Research Center
NASA Technical Reports Server (NTRS)
Glasgow, T. K.; Lauver, R. W.; Halford, G. R.; Davies, R. L.
1980-01-01
The development of power and propulsion system technology is discussed. Specific emphasis is placed on the following: high temperature materials; composite materials; advanced design and life prediction; and nondestructive evaluation. Future areas of research are also discussed.
Ghost suppression in image restoration filtering
NASA Technical Reports Server (NTRS)
Riemer, T. E.; Mcgillem, C. D.
1975-01-01
An optimum image restoration filter is described in which provision is made to constrain the spatial extent of the restoration function, the noise level of the filter output and the rate of falloff of the composite system point-spread away from the origin. Experimental results show that sidelobes on the composite system point-spread function produce ghosts in the restored image near discontinuities in intensity level. By redetermining the filter using a penalty function that is zero over the main lobe of the composite point-spread function of the optimum filter and nonzero where the point-spread function departs from a smoothly decaying function in the sidelobe region, a great reduction in sidelobe level is obtained. Almost no loss in resolving power of the composite system results from this procedure. By iteratively carrying out the same procedure even further reductions in sidelobe level are obtained. Examples of original and iterated restoration functions are shown along with their effects on a test image.
Distributed condition monitoring techniques of optical fiber composite power cable in smart grid
NASA Astrophysics Data System (ADS)
Sun, Zhihui; Liu, Yuan; Wang, Chang; Liu, Tongyu
2011-11-01
Optical fiber composite power cable such as optical phase conductor (OPPC) is significant for the development of smart grid. This paper discusses the distributed cable condition monitoring techniques of the OPPC, which adopts embedded single-mode fiber as the sensing medium. By applying optical time domain reflection and laser Raman scattering, high-resolution spatial positioning and high-precision distributed temperature measurement is executed. And the OPPC cable condition parameters including temperature and its location, current carrying capacity, and location of fracture and loss can be monitored online. OPPC cable distributed condition monitoring experimental system is set up, and the main parts including pulsed fiber laser, weak Raman signal reception, high speed acquisition and cumulative average processing, temperature demodulation and current carrying capacity analysis are introduced. The distributed cable condition monitoring techniques of the OPPC is significant for power transmission management and security.
Integrated actuation and energy harvesting in prestressed piezoelectric synthetic jets
NASA Astrophysics Data System (ADS)
Mane, Poorna
With the looming energy crisis compounded by the global economic downturn there is an urgent need to increase energy efficiency and to discover new energy sources. An approach to solve this problem is to improve the efficiency of aerodynamic vehicles by using active flow control tools such as synthetic jet actuators. These devices are able to reduce fuel consumption and streamlined vehicle design by reducing drag and weight, and increasing maneuverability. Hence, the main goal of this dissertation is to study factors that affect the efficiency of synthetic jets by incorporating energy harvesting into actuator design using prestressed piezoelectric composites. Four state-of-the-art piezoelectric composites were chosen as active diaphragms in synthetic jet actuators. These composites not only overcome the inherent brittle and fragile nature of piezoelectric materials but also enhance domain movement which in turn enhances intrinsic contributions. With these varying characteristics among different types of composites, the intricacies of the synthetic jet design and its implementation increases. In addition the electrical power requirements of piezoelectric materials make the new SJA system a coupled multiphysics problem involving electro-mechanical and structural-fluid interactions. Due to the nature of this system, a design of experiments approach, a method of combining experiments and statistics, is utilized. Geometric and electro-mechanical factors are investigated using a fractional factorial design with peak synthetic jet velocity as a response variable. Furthermore, energy generated by the system oscillations is harvested with a prestressed composite and a piezo-polymer. Using response surface methodology the process is optimized under different temperatures and pressures to simulate harsh environmental conditions. Results of the fractional factorial experimental design showed that cavity dimensions and type of signal used to drive the synthetic jet actuator were statistically significant factors when studying peak jet velocity. The Bimorph (˜50m/s) and the prestressed metal composite (˜45m/s) generated similar peak jet velocities but the later is the most robust of all tested actuators. In addition, an alternate input signal to the composite, a sawtooth waveform, leads to jets formed with larger peak velocities at frequencies above 15Hz. The optimized factor levels for the energy harvesting process were identified as 237.6kPa, 3.7Hz, 1MO and 12°C and the power density measured at these conditions was 24.27microW/mm3. Finally, the SJA is integrated with an energy harvesting system and the power generated is stored into a large capacitor and a rechargeable battery. After approximately six hours of operation 5V of generated voltage is stored in a 330microF capacitor with the prestressed metal composite as the harvester. It is then demonstrated that energy harvested from the inherent vibrations of a SJA can be stored for later use. Then, the system proposed in this dissertation not only improves on the efficiency of aerodynamic bodies, but also harvests energy that is otherwise wasted.
Manganese Nitride Sorption Joule-Thomson Refrigerator
NASA Technical Reports Server (NTRS)
Jones, Jack A.; Phillips, Wayne M.
1992-01-01
Proposed sorption refrigeration system of increased power efficiency combines MnxNy sorption refrigeration stage with systems described in "Regenerative Sorption Refrigerator" (NPO-17630). Measured pressure-vs-composition isotherms for reversible chemisorption of N2 in MnxNy suggest feasibility to incorporate MnxNy chemisorption stage in Joule-Thomson cryogenic system. Discovery represents first known reversible nitrogen chemisorption compression system. Has potential in nitrogen-isotope separation, nitrogen purification, or contamination-free nitrogen compression.
Development of Metamaterial Composites for Compact High Power Microwave Systems and Antennas
2016-05-01
for the eddy currents to decay and thus the reverse magnetizing field becomes significant at the surface of the material. This reverse field shields ...76 Appendix A: Ceramic Magnetics , Inc. Ferrite Data Sheets…………………………………81 Appendix B: Conference Presentations and Journal...Figure 21: Magnetic loss tangent as a function of frequency for each of the five ferrite composites
ACTN3 genotypes of Rugby Union players: distribution, power output and body composition.
Bell, W; Colley, J P; Evans, W D; Darlington, S E; Cooper, S-M
2012-01-01
To identify the distribution and explore the relationship between ACTN3 genotypes and power and body composition phenotypes. Case control and association studies were employed using a homogeneous group of players (n = 102) and a control group (n = 110). Power-related phenotypes were measured using the counter movement jump (CMJ) and body composition phenotypes by dual-energy X-ray absorptiometry (DXA). Statistics used were Pearson's chi-square, ANCOVA, coefficients of correlation and independent t-tests. Genotyping was carried out using polymerase chain reaction followed by enzymatic Ddel digestion. Genotype proportions of players were compared with controls (p = 0.07). No significant genotype differences occurred between forwards or backs (p = 0.822) or within-forwards (p = 0.882) or within-backs (p = 0.07). Relative force and velocity were significantly larger in backs, power significantly greater in forwards; in body composition, all phenotypes were significantly greater in forwards than backs. Correlations between phenotypes were greater for the RX genotype (p = 0.05-0.01). Relationships between ACTN3 genotypes and power or body composition-related phenotypes were not significant. As fat increased, power-related phenotypes decreased. As body composition increased, power-related phenotypes increased.
Advanced Integrated Power and Attitude Control System (IPACS) study
NASA Technical Reports Server (NTRS)
Oglevie, R. E.; Eisenhaure, D. B.
1985-01-01
Integrated Power and Attitude Control System (IPACS) studies performed over a decade ago established the feasibility of simultaneously satisfying the demands of energy storage and attitude control through the use of rotating flywheels. It was demonstrated that, for a wide spectrum of applications, such a system possessed many advantages over contemporary energy storage and attitude control approaches. More recent technology advances in composite material rotors, magnetic suspension systems, and power control electronics have triggered new optimism regarding the applicability and merits of this concept. This study is undertaken to define an advanced IPACS and to evaluate its merits for a space station application. System and component designs are developed to establish the performance of this concept and system trade studies conducted to examine the viability of this approach relative to conventional candidate systems. It is clearly demonstrated that an advanced IPACS concept is not only feasible, but also offers substantial savings in mass and life-cycle cost for the space station mission.
NASA Astrophysics Data System (ADS)
Meng, Xiaocheng; Che, Renfei; Gao, Shi; He, Juntao
2018-04-01
With the advent of large data age, power system research has entered a new stage. At present, the main application of large data in the power system is the early warning analysis of the power equipment, that is, by collecting the relevant historical fault data information, the system security is improved by predicting the early warning and failure rate of different kinds of equipment under certain relational factors. In this paper, a method of line failure rate warning is proposed. Firstly, fuzzy dynamic clustering is carried out based on the collected historical information. Considering the imbalance between the attributes, the coefficient of variation is given to the corresponding weights. And then use the weighted fuzzy clustering to deal with the data more effectively. Then, by analyzing the basic idea and basic properties of the relational analysis model theory, the gray relational model is improved by combining the slope and the Deng model. And the incremental composition and composition of the two sequences are also considered to the gray relational model to obtain the gray relational degree between the various samples. The failure rate is predicted according to the principle of weighting. Finally, the concrete process is expounded by an example, and the validity and superiority of the proposed method are verified.
NASA Astrophysics Data System (ADS)
Leung, Chung Ming; Li, Jiefang; Viehland, D.; Zhuang, X.
2018-07-01
Over the past two decades, magnetoelectric (ME) composites and their devices have been an important topic of research. Potential applications ranging from low-power sensing to high-power converters have been investigated. This review, first begins with a summary of multiferroic materials that work at room temperature. Such ME materials are usually in composites, and their ME effect generated as a product property of magnetostrictive and piezoelectric composite layers. After that, mechanisms, working principles, and applications of ME composites from heterostructural uncooled magnetic sensors, energy harvesters to highly efficient power converters will be discussed. First, the development of ME sensors in terms of materials and structures to enhance their sensitivities and to reduce noise level is reviewed and discussed. Second, the structure of ME-based energy harvesters is discussed and summarized. Third, the development of ME gyrators is summarized for power applications, including current/voltage conversion, power efficiency, power density and figures of merit. Results demonstrate that our ME gyrator has the ability to satisfy the needs of power conversion with superior efficiency (>90%), offering potential uses in power electronic applications.
Analysis of Application Power and Schedule Composition in a High Performance Computing Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmore, Ryan; Gruchalla, Kenny; Phillips, Caleb
As the capacity of high performance computing (HPC) systems continues to grow, small changes in energy management have the potential to produce significant energy savings. In this paper, we employ an extensive informatics system for aggregating and analyzing real-time performance and power use data to evaluate energy footprints of jobs running in an HPC data center. We look at the effects of algorithmic choices for a given job on the resulting energy footprints, and analyze application-specific power consumption, and summarize average power use in the aggregate. All of these views reveal meaningful power variance between classes of applications as wellmore » as chosen methods for a given job. Using these data, we discuss energy-aware cost-saving strategies based on reordering the HPC job schedule. Using historical job and power data, we present a hypothetical job schedule reordering that: (1) reduces the facility's peak power draw and (2) manages power in conjunction with a large-scale photovoltaic array. Lastly, we leverage this data to understand the practical limits on predicting key power use metrics at the time of submission.« less
Support Services for Ceramic Fiber-Ceramic Matrix Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurley, J.P.; Crocker, C.R.
2000-06-28
Structural and functional materials used in solid- and liquid-fueled energy systems are subject to gas- and condensed-phase corrosion and erosion by entrained particles. For a given material, its temperature and the composition of the corrodents determine the corrosion rates, while gas flow conditions and particle aerodynamic diameters determine erosion rates. Because there are several mechanisms by which corrodents deposit on a surface, the corrodent composition depends not only on the composition of the fuel, but also on the temperature of the material and the size range of the particles being deposited. In general, it is difficult to simulate under controlledmore » laboratory conditions all of the possible corrosion and erosion mechanisms to which a material may be exposed in an energy system. Therefore, with funding from the Advanced Research Materials Program, the University of North Dakota Energy and Environmental Research Center (EERC) is coordinating with NCC Engineering and the National Energy Technology Laboratory (NETL) to provide researchers with no-cost opportunities to expose materials in pilot-scale systems to conditions of corrosion and erosion similar to those occurring in commercial power systems.« less
NASA Technical Reports Server (NTRS)
Palac, Donald T.
2011-01-01
The Fission Surface Power Systems Project became part of the ETDP on October 1, 2008. Its goal was to demonstrate fission power system technology readiness in an operationally relevant environment, while providing data on fission system characteristics pertinent to the use of a fission power system on planetary surfaces. During fiscal years 08 to 10, the FSPS project activities were dominated by hardware demonstrations of component technologies, to verify their readiness for inclusion in the fission surface power system. These Pathfinders demonstrated multi-kWe Stirling power conversion operating with heat delivered via liquid metal NaK, composite Ti/H2O heat pipe radiator panel operations at 400 K input water temperature, no-moving-part electromagnetic liquid metal pump operation with NaK at flight-like temperatures, and subscale performance of an electric resistance reactor simulator capable of reproducing characteristics of a nuclear reactor for the purpose of system-level testing, and a longer list of component technologies included in the attached report. Based on the successful conclusion of Pathfinder testing, work began in 2010 on design and development of the Technology Demonstration Unit (TDU), a full-scale 1/4 power system-level non-nuclear assembly of a reactor simulator, power conversion, heat rejection, instrumentation and controls, and power management and distribution. The TDU will be developed and fabricated during fiscal years 11 and 12, culminating in initial testing with water cooling replacing the heat rejection system in 2012, and complete testing of the full TDU by the end of 2014. Due to its importance for Mars exploration, potential applicability to missions preceding Mars missions, and readiness for an early system-level demonstration, the Enabling Technology Development and Demonstration program is currently planning to continue the project as the Fission Power Systems project, including emphasis on the TDU completion and testing.
NASA Astrophysics Data System (ADS)
Wahl, Stefanie; Segarra, Ana Gallet; Horstmann, Peter; Carré, Maxime; Bessler, Wolfgang G.; Lapicque, François; Friedrich, K. Andreas
2015-04-01
Combined heat and power production (CHP) based on solid oxide fuel cells (SOFC) is a very promising technology to achieve high electrical efficiency to cover power demand by decentralized production. This paper presents a dynamic quasi 2D model of an SOFC system which consists of stack and balance of plant and includes thermal coupling between the single components. The model is implemented in Modelica® and validated with experimental data for the stack UI-characteristic and the thermal behavior. The good agreement between experimental and simulation results demonstrates the validity of the model. Different operating conditions and system configurations are tested, increasing the net electrical efficiency to 57% by implementing an anode offgas recycle rate of 65%. A sensitivity analysis of characteristic values of the system like fuel utilization, oxygen-to-carbon ratio and electrical efficiency for different natural gas compositions is carried out. The result shows that a control strategy adapted to variable natural gas composition and its energy content should be developed in order to optimize the operation of the system.
Analysis of Power Generating Speed Bumps Made of Concrete Foam Composite
NASA Astrophysics Data System (ADS)
Syam, B.; Muttaqin, M.; Hastrino, D.; Sebayang, A.; Basuki, W. S.; Sabri, M.; Abda, S.
2017-03-01
This paper discusses the analysis of speed bump made of concrete foam composite which is used to generate electrical power. Speed bumps are designed to decelerate the speed of vehicles before passing through toll gates, public areas, or any other safety purposes. In Indonesia a speed bump should be designed in the accordance with KM Menhub 3 year 1994. In this research, the speed bump was manufactured with dimensions and geometry comply to the regulation mentioned above. Concrete foam composite speed bumps were used due to its light weight and relatively strong to receive vertical forces from the tyres of vehicles passing over the bumps. The reinforcement materials are processed from empty fruit bunch of oil palm. The materials were subjected to various tests to obtain its physical and mechanical properties. To analyze the structure stability of the speed bumps some models were analyzed using a FEM-based numerical softwares. It was obtained that the speed bumps coupled with polymeric composite bar (3 inches in diameter) are significantly reduce the radial stresses. In addition, the speed bumps equipped with polymeric composite casing or steel casing are also suitable for use as part of system components in producing electrical energy.
Optimizing the noise characteristics of high-power fiber laser systems
NASA Astrophysics Data System (ADS)
Jauregui, Cesar; Müller, Michael; Kienel, Marco; Emaury, Florian; Saraceno, Clara J.; Limpert, Jens; Keller, Ursula; Tünnermann, Andreas
2017-02-01
The noise characteristics of high-power fiber lasers, unlike those of other solid-state lasers such as thin-disks, have not been systematically studied up to now. However, novel applications for high-power fiber laser systems, such as attosecond pulse generation, put stringent limits to the maximum noise level of these sources. Therefore, in order to address these applications, a detailed knowledge and understanding of the characteristics of noise and its behavior in a fiber laser system is required. In this work we have carried out a systematic study of the propagation of the relative intensity noise (RIN) along the amplification chain of a state-of-the-art high-power fiber laser system. The most striking feature of these measurements is that the RIN level is progressively attenuated after each amplification stage. In order to understand this unexpected behavior, we have simulated the transfer function of the RIN in a fiber amplification stage ( 80μm core) as a function of the seed power and the frequency. Our simulation model shows that this damping of the amplitude noise is related to saturation. Additionally, we show, for the first time to the best of our knowledge, that the fiber design (e.g. core size, glass composition, doping geometry) can be modified to optimize the noise characteristics of high-power fiber laser systems.
High Temperature, High Power Piezoelectric Composite Transducers
Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.
2014-01-01
Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242
NASA Astrophysics Data System (ADS)
Chen, Wanjun; He, Yongmin; Li, Xiaodong; Zhou, Jinyuan; Zhang, Zhenxing; Zhao, Changhui; Gong, Chengshi; Li, Shuankui; Pan, Xiaojun; Xie, Erqing
2013-11-01
Flexible and high performance supercapacitors are very critical in modern society. In order to develop the flexible supercapacitors with high power density, free-standing and flexible three-dimensional graphene/carbon nanotubes/MnO2 (3DG/CNTs/MnO2) composite electrodes with interconnected ternary 3D structures were fabricated, and the fast electron and ion transport channels were effectively constructed in the rationally designed electrodes. Consequently, the obtained 3DG/CNTs/MnO2 composite electrodes exhibit superior specific capacitance and rate capability compared to 3DG/MnO2 electrodes. Furthermore, the 3DG/CNTs/MnO2 based asymmetric supercapacitor demonstrates the maximum energy and power densities of 33.71 W h kg-1 and up to 22 727.3 W kg-1, respectively. Moreover, the asymmetric supercapacitor exhibits excellent cycling stability with 95.3% of the specific capacitance maintained after 1000 cycle tests. Our proposed synthesis strategy to construct the novel ternary 3D structured electrodes can be efficiently applied to other high performance energy storage/conversion systems.Flexible and high performance supercapacitors are very critical in modern society. In order to develop the flexible supercapacitors with high power density, free-standing and flexible three-dimensional graphene/carbon nanotubes/MnO2 (3DG/CNTs/MnO2) composite electrodes with interconnected ternary 3D structures were fabricated, and the fast electron and ion transport channels were effectively constructed in the rationally designed electrodes. Consequently, the obtained 3DG/CNTs/MnO2 composite electrodes exhibit superior specific capacitance and rate capability compared to 3DG/MnO2 electrodes. Furthermore, the 3DG/CNTs/MnO2 based asymmetric supercapacitor demonstrates the maximum energy and power densities of 33.71 W h kg-1 and up to 22 727.3 W kg-1, respectively. Moreover, the asymmetric supercapacitor exhibits excellent cycling stability with 95.3% of the specific capacitance maintained after 1000 cycle tests. Our proposed synthesis strategy to construct the novel ternary 3D structured electrodes can be efficiently applied to other high performance energy storage/conversion systems. Electronic supplementary information (ESI) available: Additional experimental details; calculations of the specific capacitances, and energy and power densities; additional SEM and optical images; XPS results; additional electrochemical results. See DOI: 10.1039/c3nr03923d
Integration of magnetic bearings in the design of advanced gas turbine engines
NASA Technical Reports Server (NTRS)
Storace, Albert F.; Sood, Devendra K.; Lyons, James P.; Preston, Mark A.
1994-01-01
Active magnetic bearings provide revolutionary advantages for gas turbine engine rotor support. These advantages include tremendously improved vibration and stability characteristics, reduced power loss, improved reliability, fault-tolerance, and greatly extended bearing service life. The marriage of these advantages with innovative structural network design and advanced materials utilization will permit major increases in thrust to weight performance and structural efficiency for future gas turbine engines. However, obtaining the maximum payoff requires two key ingredients. The first key ingredient is the use of modern magnetic bearing technologies such as innovative digital control techniques, high-density power electronics, high-density magnetic actuators, fault-tolerant system architecture, and electronic (sensorless) position estimation. This paper describes these technologies. The second key ingredient is to go beyond the simple replacement of rolling element bearings with magnetic bearings by incorporating magnetic bearings as an integral part of the overall engine design. This is analogous to the proper approach to designing with composites, whereby the designer tailors the geometry and load carrying function of the structural system or component for the composite instead of simply substituting composites in a design originally intended for metal material. This paper describes methodologies for the design integration of magnetic bearings in gas turbine engines.
Configuration and Calibration of High Temperature Furnaces for Testing Ceramic Matrix Composites
2014-10-01
Actual Furnace Cavity Stainless Steel Mesh Cage For Electrical Connections (both sides) High Temperature Power Lead Clamp Furnace Control TC’s Power... tests generate the basic properties such as modulus (E), ultimate tensile strength (UTS), proportional limit (PL), strain at failure (f), as well as...stress- strain behavior. Each material was tested at room temperature, at the maximum use temperature for the CMC system (as determined by the CMC
Lightweight Damage Tolerant Radiators for In-Space Nuclear Electric Power and Propulsion
NASA Technical Reports Server (NTRS)
Craven, Paul; SanSoucie, Michael P.; Tomboulian, Briana; Rogers, Jan; Hyers, Robert
2014-01-01
Nuclear electric propulsion (NEP) is a promising option for high-speed in-space travel due to the high energy density of nuclear power sources and efficient electric thrusters. Advanced power conversion technologies for converting thermal energy from the reactor to electrical energy at high operating temperatures would benefit from lightweight, high temperature radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature and mass. An effort at the NASA Marshall Space Flight Center to show that woven high thermal conductivity carbon fiber mats can be used to replace standard metal and composite radiator fins to dissipate waste heat from NEP systems is ongoing. The goals of this effort are to demonstrate a proof of concept, to show that a significant improvement of specific power (power/mass) can be achieved, and to develop a thermal model with predictive capabilities. A description of this effort is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gusev, S. I.; Karpov, V. N.; Kiselev, A. N.
2009-09-15
The results of systems tests of the 500 kV busbar magnetization-controllable shunting reactor (CSR), set up in the Tavricheskaya substation, including measurements of the quality of the electric power, the harmonic composition of the network currents of the reactor for different values of the reactive power consumed, the determination of the regulating characteristics of the reactor, the speed of response of the shunting reactor in the current and voltage stabilization modes, and also the operation of the reactor under dynamic conditions for different perturbations, are presented. The results obtained are analyzed.
NASA Astrophysics Data System (ADS)
Guyomar, Daniel; Lallart, Mickaël; Petit, Lionel; Wang, Xing-Jun
2011-06-01
The increasing use of composite materials has led to a dramatic change in the definition of safety standards. In particular, composite structures may be subjected to internal damages caused by external impacts that may not be detected by classical inspection methods. Additional constraints related to energy requirements may also be considered in order to make the system autonomous and possibly self-powered. The purpose of this paper is to present a low-cost impact detection and quantification scheme for thin plates or shells giving the whole history of the structure solicitation. Based on the analysis of the energy that has flown over a monitored area through the use of the elastic Poynting vector (that relates the mechanical power density of travelling waves), it is shown that this global energy balance may be linked in a simple way to the voltage output of piezoelectric elements in open-circuit condition. From this estimation, it is therefore possible to detect if an impact occurred inside the monitored area (in this case, the global energy balance would be positive) as well as its associated energy. If the impact occurs out of the frame, the global energy (and thus the obtained estimator) would be negative because of energy dissipation caused by internal losses and almost null. Thanks to this energy flow approach, the system is also independent from the boundary conditions of the structure. Experimental measurements aiming at validating the theoretical predictions showed that the technique permits detecting the impact area (inside/outside the frame) as well as an accurate estimation of the impact energy if the latter occurred inside the frame, both on a steel plate (with different boundary conditions) and an anisotropic composite structure.
A Trade Study of Two Membrane-Aerated Biological Water Processors
NASA Technical Reports Server (NTRS)
Allada, Ram; Lange, Kevin; Vega. Leticia; Roberts, Michael S.; Jackson, Andrew; Anderson, Molly; Pickering, Karen
2011-01-01
Biologically based systems are under evaluation as primary water processors for next generation life support systems due to their low power requirements and their inherent regenerative nature. This paper will summarize the results of two recent studies involving membrane aerated biological water processors and present results of a trade study comparing the two systems with regards to waste stream composition, nutrient loading and system design. Results of optimal configurations will be presented.
A decision support system using combined-classifier for high-speed data stream in smart grid
NASA Astrophysics Data System (ADS)
Yang, Hang; Li, Peng; He, Zhian; Guo, Xiaobin; Fong, Simon; Chen, Huajun
2016-11-01
Large volume of high-speed streaming data is generated by big power grids continuously. In order to detect and avoid power grid failure, decision support systems (DSSs) are commonly adopted in power grid enterprises. Among all the decision-making algorithms, incremental decision tree is the most widely used one. In this paper, we propose a combined classifier that is a composite of a cache-based classifier (CBC) and a main tree classifier (MTC). We integrate this classifier into a stream processing engine on top of the DSS such that high-speed steaming data can be transformed into operational intelligence efficiently. Experimental results show that our proposed classifier can return more accurate answers than other existing ones.
NASA Technical Reports Server (NTRS)
Tien, John K.
1990-01-01
The long term interdiffusional stability of tungsten fiber reinforced niobium alloy composites is addressed. The matrix alloy that is most promising for use as a high temperature structural material for reliable long-term space power generation is Nb1Zr. As an ancillary project to this program, efforts were made to assess the nature and kinetics of interphase reaction between selected beryllide intermetallics and nickel and iron aluminides.
Analysis of a Stand-Alone Power System for Remote-Site Applications
1986-05-01
ratio ......................... 7.5 C at rated output .................... 0.41 Bade material ......... ........... laminated wood composite Hub Material...steel lifting cables or slings and spreader bars are required (3) continental overland travel requires a flatbed truck with over-size travel permits
Energy Storage Flywheels on Spacecraft
NASA Technical Reports Server (NTRS)
Bartlett, Robert O.; Brown, Gary; Levinthal, Joel; Brodeur, Stephen (Technical Monitor)
2002-01-01
With advances in carbon composite material, magnetic bearings, microprocessors, and high-speed power switching devices, work has begun on a space qualifiable Energy Momentum Wheel (EMW). An EMW is a device that can be used on a satellite to store energy, like a chemical battery, and manage angular momentum, like a reaction wheel. These combined functions are achieved by the simultaneous and balanced operation of two or more energy storage flywheels. An energy storage flywheel typically consists of a carbon composite rotor driven by a brushless DC motor/generator. Each rotor has a relatively large angular moment of inertia and is suspended on magnetic bearings to minimize energy loss. The use of flywheel batteries on spacecraft will increase system efficiencies (mass and power), while reducing design-production time and life-cycle cost. This paper will present a discussion of flywheel battery design considerations and a simulation of spacecraft system performance utilizing four flywheel batteries to combine energy storage and momentum management for a typical LEO satellite. A proposed set of control laws and an engineering animation will also be presented. Once flight qualified and demonstrated, space flywheel batteries may alter the architecture of most medium and high-powered spacecraft.
Mechanically Strong Graphene/Aramid Nanofiber Composite Electrodes for Structural Energy and Power.
Kwon, Se Ra; Harris, John; Zhou, Tianyang; Loufakis, Dimitrios; Boyd, James G; Lutkenhaus, Jodie L
2017-07-25
Structural energy and power systems offer both mechanical and electrochemical performance in a single multifunctional platform. These are of growing interest because they potentially offer reduction in mass and/or volume for aircraft, satellites, and ground transportation. To this end, flexible graphene-based supercapacitors have attracted much attention due to their extraordinary mechanical and electrical properties, yet they suffer from poor strength. This problem may be exacerbated with the inclusion of functional guest materials, often yielding strengths of <15 MPa. Here, we show that graphene paper supercapacitor electrodes containing aramid nanofibers as guest materials exhibit extraordinarily high tensile strength (100.6 MPa) and excellent electrochemical stability. This is achieved by extensive hydrogen bonding and π-π interactions between the graphene sheets and aramid nanofibers. The trade-off between capacitance and mechanical properties is evaluated as a function of aramid nanofiber loading, where it is shown that these electrodes exhibit multifunctionality superior to that of other graphene-based supercapacitors, nearly rivaling those of graphene-based pseudocapacitors. We anticipate these composite electrodes to be a starting point for structural energy and power systems that harness the mechanical properties of aramid nanofibers.
Integrated Power and Attitude Control System (IPACS) technology developments
NASA Technical Reports Server (NTRS)
Eisenhaure, David B.; Bechtel, Robert; Hockney, Richard; Oglevie, Ron; Olszewski, Mitch
1990-01-01
Integrated Power and Attitude Control System (IPACS) studies performed over a decade ago established the feasibility of storing electrical energy in flywheels and utilizing the resulting angular momentum for spacecraft attitude control. Such a system has been shown to have numerous attractive features relative to more contemporary technology, and is appropriate to many applications (including high-performance slewing actuators). Technology advances over the last two decades in composite rotors, motor/generator/electronics, and magnetic bearings are found to support the use of IPACS for increasingly sophisticated applications. It is concluded that the concept offers potential performance advantages as well as savings in mass and life-cycle cost. Viewgraphs and discussion on IPACS are included.
Kim, Moonkeun; Lee, Sang-Kyun; Yang, Yil Suk; Jeong, Jaehwa; Min, Nam Ki; Kwon, Kwang-Ho
2013-12-01
We fabricated dual-beam cantilevers on the microelectromechanical system (MEMS) scale with an integrated Si proof mass. A Pb(Zr,Ti)O3 (PZT) cantilever was designed as a mechanical vibration energy-harvesting system for low power applications. The resonant frequency of the multilayer composition cantilevers were simulated using the finite element method (FEM) with parametric analysis carried out in the design process. According to simulations, the resonant frequency, voltage, and average power of a dual-beam cantilever was 69.1 Hz, 113.9 mV, and 0.303 microW, respectively, at optimal resistance and 0.5 g (gravitational acceleration, m/s2). Based on these data, we subsequently fabricated cantilever devices using dual-beam cantilevers. The harvested power density of the dual-beam cantilever compared favorably with the simulation. Experiments revealed the resonant frequency, voltage, and average power density to be 78.7 Hz, 118.5 mV, and 0.34 microW, respectively. The error between the measured and simulated results was about 10%. The maximum average power and power density of the fabricated dual-beam cantilever at 1 g were 0.803 microW and 1322.80 microW cm(-3), respectively. Furthermore, the possibility of a MEMS-scale power source for energy conversion experiments was also tested.
Thermal Insulation Performance of Flexible Piping for Use in HTS Power Cables
NASA Technical Reports Server (NTRS)
Fesmire, James E.; Augustynowicz, S. D.; Demko, J. A.; Thompson, Karen (Technical Monitor)
2001-01-01
High-temperature superconducting (HTS) cables that typically operate at temperatures below 80 K are being developed for power transmission. The practical application of HTS power cables will require the use of flexible piping to contain the cable and the liquid nitrogen coolant. A study of thermal performance of multilayer insulation (MLI) was conducted in geometries representing both rigid and flexible piping. This experimental study performed at the Cryogenics Test Laboratory of NASA Kennedy Space Center provides a framework for the development of cost-effective, efficient thermal insulation systems that will support these long-distance flexible lines containing HTS power cables. The overall thermal performance of the insulation system for a rigid configuration and for a flexible configuration, simulating a flexible HTS power cable, was determined by the steady-state liquid nitrogen boiloff method under the full range of vacuum levels. Two different cylindrically rolled material systems were tested: a standard MLI and a layered composite insulation (LCI). Comparisons of ideal MLI, MLI on rigid piping, and MLI between flexible piping are presented.
Lightweight Radiator for in Space Nuclear Electric Propulsion
NASA Technical Reports Server (NTRS)
Craven, Paul; Tomboulian, Briana; SanSoucie, Michael
2014-01-01
Nuclear electric propulsion (NEP) is a promising option for high-speed in-space travel due to the high energy density of nuclear fission power sources and efficient electric thrusters. Advanced power conversion technologies may require high operating temperatures and would benefit from lightweight radiator materials. Radiator performance dictates power output for nuclear electric propulsion systems. Game-changing propulsion systems are often enabled by novel designs using advanced materials. Pitch-based carbon fiber materials have the potential to offer significant improvements in operating temperature, thermal conductivity, and mass. These properties combine to allow advances in operational efficiency and high temperature feasibility. An effort at the NASA Marshall Space Flight Center to show that woven high thermal conductivity carbon fiber mats can be used to replace standard metal and composite radiator fins to dissipate waste heat from NEP systems is ongoing. The goals of this effort are to demonstrate a proof of concept, to show that a significant improvement of specific power (power/mass) can be achieved, and to develop a thermal model with predictive capabilities making use of constrained input parameter space. A description of this effort is presented.
A rapid method for the sampling of atmospheric water vapour for isotopic analysis.
Peters, Leon I; Yakir, Dan
2010-01-01
Analysis of the stable isotopic composition of atmospheric moisture is widely applied in the environmental sciences. Traditional methods for obtaining isotopic compositional data from ambient moisture have required complicated sampling procedures, expensive and sophisticated distillation lines, hazardous consumables, and lengthy treatments prior to analysis. Newer laser-based techniques are expensive and usually not suitable for large-scale field campaigns, especially in cases where access to mains power is not feasible or high spatial coverage is required. Here we outline the construction and usage of a novel vapour-sampling system based on a battery-operated Stirling cycle cooler, which is simple to operate, does not require any consumables, or post-collection distillation, and is light-weight and highly portable. We demonstrate the ability of this system to reproduce delta(18)O isotopic compositions of ambient water vapour, with samples taken simultaneously by a traditional cryogenic collection technique. Samples were collected over 1 h directly into autosampler vials and were analysed by mass spectrometry after pyrolysis of 1 microL aliquots to CO. This yielded an average error of < +/-0.5 per thousand, approximately equal to the signal-to-noise ratio of traditional approaches. This new system provides a rapid and reliable alternative to conventional cryogenic techniques, particularly in cases requiring high sample throughput or where access to distillation lines, slurry maintenance or mains power is not feasible. Copyright 2009 John Wiley & Sons, Ltd.
Structural integrity of power generating speed bumps made of concrete foam composite
NASA Astrophysics Data System (ADS)
Syam, B.; Muttaqin, M.; Hastrino, D.; Sebayang, A.; Basuki, W. S.; Sabri, M.; Abda, S.
2018-02-01
In this paper concrete foam composite speed bumps were designed to generate electrical power by utilizing the movements of commuting vehicles on highways, streets, parking gates, and drive-thru station of fast food restaurants. The speed bumps were subjected to loadings generated by vehicles pass over the power generating mechanical system. In this paper, we mainly focus our discussion on the structural integrity of the speed bumps and discuss the electrical power generating speed bumps in another paper. One aspect of structural integrity is its ability to support designed loads without breaking and includes the study of past structural failures in order to prevent failures in future designs. The concrete foam composites were used for the speed bumps; the reinforcement materials are selected from empty fruit bunch of oil palm. In this study, the speed bump materials and structure were subjected to various tests to obtain its physical and mechanical properties. To analyze the structure stability of the speed bumps some models were produced and tested in our speed bump test station. We also conduct a FEM-based computer simulation to analyze stress responses of the speed bump structures. It was found that speed bump type 1 significantly reduced the radial voltage. In addition, the speed bump is equipped with a steel casing is also suitable for use as a component component in generating electrical energy.
Modular, Semantics-Based Composition of Biosimulation Models
ERIC Educational Resources Information Center
Neal, Maxwell Lewis
2010-01-01
Biosimulation models are valuable, versatile tools used for hypothesis generation and testing, codification of biological theory, education, and patient-specific modeling. Driven by recent advances in computational power and the accumulation of systems-level experimental data, modelers today are creating models with an unprecedented level of…
An OFDM System Using Polyphase Filter and DFT Architecture for Very High Data Rate Applications
NASA Technical Reports Server (NTRS)
Kifle, Muli; Andro, Monty; Vanderaar, Mark J.
2001-01-01
This paper presents a conceptual architectural design of a four-channel Orthogonal Frequency Division Multiplexing (OFDM) system with an aggregate information throughput of 622 megabits per second (Mbps). Primary emphasis is placed on the generation and detection of the composite waveform using polyphase filter and Discrete Fourier Transform (DFT) approaches to digitally stack and bandlimit the individual carriers. The four-channel approach enables the implementation of a system that can be both power and bandwidth efficient, yet enough parallelism exists to meet higher data rate goals. It also enables a DC power efficient transmitter that is suitable for on-board satellite systems, and a moderately complex receiver that is suitable for low-cost ground terminals. The major advantage of the system as compared to a single channel system is lower complexity and DC power consumption. This is because the highest sample rate is half that of the single channel system and synchronization can occur at most, depending on the synchronization technique, a quarter of the rate of a single channel system. The major disadvantage is the increased peak-to-average power ratio over the single channel system. Simulation results in a form of bit-error-rate (BER) curves are presented in this paper.
A review on biomass classification and composition, cofiring issues and pretreatment methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaya Shankar Tumuluru; Shahab Sokhansanj; Christopher T. Wright
Presently around the globe there is a significant interest in using biomass for power generation as power generation from coal continues to raise environmental concerns. Biomass alone can be used for generation of power which can bring lot of environmental benefits. However the constraints of using biomass alone can include high investments costs for biomass feed systems and also uncertainty in the security of the feedstock supply due to seasonal variations and in most of the countries biomass is dispersed and the infrastructure for biomass supply is not well established. Alternatively cofiring biomass along with coal offer advantages like (a)more » reducing the issues related to biomass quality and buffers the system when there is insufficient feedstock quantity and (b) costs of adapting the existing coal power plants will be lower than building new systems dedicated only to biomass. However with the above said advantages there exists some technical constrains including low heating and energy density values, low bulk density, lower grindability index, higher moisture and ash content to successfully cofire biomass with coal. In order to successfully cofire biomass with coal, biomass feedstock specifications need to be established to direct pretreatment options that may include increasing the energy density, bulk density, stability during storage and grindability. Impacts on particle transport systems, flame stability, pollutant formation and boiler tube fouling/corrosion must also be minimized by setting feedstock specifications including composition and blend ratios if necessary. Some of these limitations can be overcome by using pretreatment methods. This paper discusses the impact of feedstock pretreatment methods like sizing, baling, pelletizing, briquetting, washing/leaching, torrefaction, torrefaction and pelletization and steam explosion in attainment of optimum feedstock characteristics to successfully cofire biomass with coal.« less
Composite casting/bonding construction of an air-cooled, high temperature radial turbine wheel
NASA Technical Reports Server (NTRS)
Hammer, A. N.; Aigret, G.; Rodgers, C.; Metcalfe, A. G.
1983-01-01
A composite casting/bonding technique has been developed for the fabrication of a unique air-cooled, high temperature radial inflow turbine wheel design applicable to auxilliary power units with small rotor diameters and blade entry heights. The 'split blade' manufacturing procedure employed is an alternative to complex internal ceramic coring. Attention is given to both aerothermodynamic and structural design, of which the latter made advantageous use of the exploration of alternative cooling passage configurations through CAD/CAM system software modification.
Recent Advances in Power Conversion and Heat Rejection Technology for Fission Surface Power
NASA Technical Reports Server (NTRS)
Mason, Lee
2010-01-01
Under the Exploration Technology Development Program, the National Aeronautics and Space Administration (NASA) and the Department of Energy (DOE) are jointly developing Fission Surface Power (FSP) technology for possible use in human missions to the Moon and Mars. A preliminary reference concept was generated to guide FSP technology development. The concept consists of a liquid-metal-cooled reactor, Stirling power conversion, and water heat rejection, with Brayton power conversion as a backup option. The FSP project has begun risk reduction activities on some key components with the eventual goal of conducting an end-to-end, non-nuclear, integrated system test. Several power conversion and heat rejection hardware prototypes have been built and tested. These include multi-kilowatt Stirling and Brayton power conversion units, titanium-water heat pipes, and composite radiator panels.
A Mars airplane. [for Mars environment surveys
NASA Technical Reports Server (NTRS)
Clarke, V. C.; Kerem, A.; Lewis, R.
1979-01-01
An airplane specifically designed for Mars flight is described, emphasizing its conceivable role as an aerial surveyor for visual imaging, gamma-ray and IR reflectance spectroscopy, studies of atmospheric composition and dynamics, and gravity-field, magnetic-field, and electromagnetic sounding. Possible imaging systems and surveying tasks are considered, along with a plausible mission scenario for a fleet of 12 airplanes, which would be taken to Mars in squadrons of four by three Shuttle/IUS Twin Stage/spacecraft carriers. A basic configuration closely resembling that of a competition glider is examined, and four types of airplane are discussed: hydrazine-powered cruisers and landers and electrically powered cruisers and landers. Attention is given to navigation, guidance, and control avionics, vehicle weight, the use of composite materials for the wing, and flight testing on earth.
Rapid induction bonding of composites, plastics, and metals
NASA Technical Reports Server (NTRS)
Buckley, John D.; Fox, Robert L.
1991-01-01
The Toroid Bonding Gun is and induction heating device. It is a self contained, portable, low powered induction welding system developed for bonding or joining plastic, ceramic, or metallic parts. Structures can be bonded in a factory or in a the field. This type of equipment allows for applying heat directly to the bond lines and/or to the adhesives without heating the entire structure, supports, and fixtures of a bonding assembly. The induction heating gun originally developed for use in the fabrication of space Gangs of bonders are now used to rapidly join composite sheet and structural components. Other NASA-developed applications of this bonding technique include the joining of thermoplastic composites, thermosetting composites, metals, and combinations of these materials.
2011-11-21
Std Z39-18 Sol-Gel CCTO /P(VDF-HFP) Composites with High Energy Density During the previous reporting period we found that CCTO (CaCu3Ti4O12...composites containing CCTO synthesized by the standard solid-state route. At the optimal 20 vol% CCTO loading, our CCTO -P(VDF-HFP) composite has εr ~82 at...Ceramics such as BaTiO3 or CaCu3Ti4O12 ( CCTO ) have high dielectric permittivities, but they suffer from very low breakdown field strength and thus low
Hüsers, Jens; Hübner, Ursula; Esdar, Moritz; Ammenwerth, Elske; Hackl, Werner O; Naumann, Laura; Liebe, Jan David
2017-02-01
Multinational health IT benchmarks foster cross-country learning and have been employed at various levels, e.g. OECD and Nordic countries. A bi-national benchmark study conducted in 2007 revealed a significantly higher adoption of health IT in Austria compared to Germany, two countries with comparable healthcare systems. We now investigated whether these differences still persisted. We further studied whether these differences were associated with hospital intrinsic factors, i.e. the innovative power of the organisation and hospital demographics. We thus performed a survey to measure the "perceived IT availability" and the "innovative power of the hospital" of 464 German and 70 Austrian hospitals. The survey was based on a questionnaire with 52 items and was given to the directors of nursing in 2013/2014. Our findings confirmed a significantly greater IT availability in Austria than in Germany. This was visible in the aggregated IT adoption composite score "IT function" as well as in the IT adoption for the individual functions "nursing documentation" (OR = 5.98), "intensive care unit (ICU) documentation" (OR = 2.49), "medication administration documentation" (OR = 2.48), "electronic archive" (OR = 2.27) and "medication" (OR = 2.16). "Innovative power" was the strongest factor to explain the variance of the composite score "IT function". It was effective in hospitals of both countries but significantly more effective in Austria than in Germany. "Hospital size" and "hospital system affiliation" were also significantly associated with the composite score "IT function", but they did not differ between the countries. These findings can be partly associated with the national characteristics. Indicators point to a more favourable financial situation in Austrian hospitals; we thus argue that Austrian hospitals may possess a larger degree of financial freedom to be innovative and to act accordingly. This study is the first to empirically demonstrate the effect of "innovative power" in hospitals on health IT adoption in a bi-national health IT benchmark. We recommend directly including the financial situation into future regression models. On a political level, measures to stimulate the "innovative power" of hospitals should be considered to increase the digitalisation of healthcare.
NASA Astrophysics Data System (ADS)
Xiao, Wei; Xia, Hui; Fuh, Jerry Y. H.; Lu, Li
2010-05-01
CNT/MnO2 (birnessite-type) composite films have been successfully deposited on Ni-foil substrate via electrophoretic deposition (EPD). The unique EPD CNT/MnO2 composite film electrode shows enhanced electrical conductivity, good contact between composite films and the substrate and open porous structure, which makes the EPD composite films a promising electrode for high-power supercapacitors and lithium ion batteries.
Electrical swing adsorption gas storage and delivery system
Judkins, Roddie R.; Burchell, Timothy D.
1999-01-01
Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided.
Measurement of Rubidium Number Density Under Optically Thick Conditions
2010-11-15
for efficient, high-power laser systems . While these alkali metals offer great promise, there are several issues which need to be resolved. Two such...circulator. The pressure and composition of the diluent within the heat pipe could also be adjusted using the attached gas handling system . The gas...handling system consisted of a vacuum pump, 10 Torr and 1000 Torr baratrons, various valves and a line going to a regulated gas cylinder. The second
Energy Systems Integration Partnerships: NREL + Cogent Energy Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berdahl, Sonja E
2017-08-09
NREL is collaborating with Cogent Energy Systems (Cogent) to introduce small-scale waste-to-energy technology in microgrids.The focus of the project is to test and demonstrate the feasibility, reliability, and usefulness of integrating electricity generated using a simulated syngas composition matching the syngas stream to be produced by a HelioStorm-based WTE gasifier to power a microgrid as a means of addressing and complementing the intermittency of other sources of electricity.
Composite carbon foam electrode
Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.
1997-01-01
Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.
Water-Based Coating Simplifies Circuit Board Manufacturing
NASA Technical Reports Server (NTRS)
2008-01-01
The Structures and Materials Division at Glenn Research Center is devoted to developing advanced, high-temperature materials and processes for future aerospace propulsion and power generation systems. The Polymers Branch falls under this division, and it is involved in the development of high-performance materials, including polymers for high-temperature polymer matrix composites; nanocomposites for both high- and low-temperature applications; durable aerogels; purification and functionalization of carbon nanotubes and their use in composites; computational modeling of materials and biological systems and processes; and developing polymer-derived molecular sensors. Essentially, this branch creates high-performance materials to reduce the weight and boost performance of components for space missions and aircraft engine components. Under the leadership of chemical engineer, Dr. Michael Meador, the Polymers Branch boasts world-class laboratories, composite manufacturing facilities, testing stations, and some of the best scientists in the field.
Monitoring Composite Material Pressure Vessels with a Fiber-Optic/Microelectronic Sensor System
NASA Technical Reports Server (NTRS)
Klimcak, C.; Jaduszliwer, B.
1995-01-01
We discuss the concept of an integrated, fiber-optic/microelectronic distributed sensor system that can monitor composite material pressure vessels for Air Force space systems to provide assessments of the overall health and integrity of the vessel throughout its entire operating history from birth to end of life. The fiber optic component would include either a semiconductor light emitting diode or diode laser and a multiplexed fiber optic sensing network incorporating Bragg grating sensors capable of detecting internal temperature and strain. The microelectronic components include a power source, a pulsed laser driver, time domain data acquisition hardware, a microprocessor, a data storage device, and a communication interface. The sensing system would be incorporated within the composite during its manufacture. The microelectronic data acquisition and logging system would record the environmental conditions to which the vessel has been subjected to during its storage and transit, e.g., the history of thermal excursions, pressure loading data, the occurrence of mechanical impacts, the presence of changing internal strain due to aging, delamination, material decomposition, etc. Data would be maintained din non-volatile memory for subsequent readout through a microcomputer interface.
NASA Astrophysics Data System (ADS)
Chao, Zhiqiang; Mao, Feiyue; Liu, Xiangbo; Li, Huaying; Han, Shousong
2017-01-01
In view of the large power of armored vehicle cooling system, the demand for high fan speed control and energy saving, this paper expounds the basic composition and principle of hydraulic-driven fan system and establishes the mathematical model of the system. Through the simulation analysis of different parameters, such as displacement of motor and working volume of fan system, the influences of performance parameters on the dynamic characteristic of hydraulic-driven fan system are obtained, which can provide theoretical guidance for system optimization design.
Liu, Chongxin; Liu, Hang
2017-01-01
This paper presents a continuous composite control scheme to achieve fixed-time stabilization for nonlinear systems with mismatched disturbances. The composite controller is constructed in two steps: First, uniformly finite time exact disturbance observers are proposed to estimate and compensate the disturbances. Then, based on adding a power integrator technique and fixed-time stability theory, continuous fixed-time stable state feedback controller and Lyapunov functions are constructed to achieve global fixed-time system stabilization. The proposed control method extends the existing fixed-time stable control results to high order nonlinear systems with mismatched disturbances and achieves global fixed-time system stabilization. Besides, the proposed control scheme improves the disturbance rejection performance and achieves performance recovery of nominal system. Simulation results are provided to show the effectiveness, the superiority and the applicability of the proposed control scheme. PMID:28406966
Operating health analysis of electric power systems
NASA Astrophysics Data System (ADS)
Fotuhi-Firuzabad, Mahmud
The required level of operating reserve to be maintained by an electric power system can be determined using both deterministic and probabilistic techniques. Despite the obvious disadvantages of deterministic approaches there is still considerable reluctance to apply probabilistic techniques due to the difficulty of interpreting a single numerical risk index and the lack of sufficient information provided by a single index. A practical way to overcome difficulties is to embed deterministic considerations in the probabilistic indices in order to monitor the system well-being. The system well-being can be designated as healthy, marginal and at risk. The concept of system well-being is examined and extended in this thesis to cover the overall area of operating reserve assessment. Operating reserve evaluation involves the two distinctly different aspects of unit commitment and the dispatch of the committed units. Unit commitment health analysis involves the determination of which unit should be committed to satisfy the operating criteria. The concepts developed for unit commitment health, margin and risk are extended in this thesis to evaluate the response well-being of a generating system. A procedure is presented to determine the optimum dispatch of the committed units to satisfy the response criteria. The impact on the response wellbeing being of variations in the margin time, required regulating margin and load forecast uncertainty are illustrated. The effects on the response well-being of rapid start units, interruptible loads and postponable outages are also illustrated. System well-being is, in general, greatly improved by interconnection with other power systems. The well-being concepts are extended to evaluate the spinning reserve requirements in interconnected systems. The interconnected system unit commitment problem is decomposed into two subproblems in which unit scheduling is performed in each isolated system followed by interconnected system evaluation. A procedure is illustrated to determine the well-being indices of the overall interconnected system. Under normal operating conditions, the system may also be able to carry a limited amount of interruptible load on top of its firm load without violating the operating criterion. An energy based approach is presented to determine the optimum interruptible load carrying capability in both the isolated and interconnected systems. Composite system spinning reserve assessment and composite system well-being are also examined in this research work. The impacts on the composite well-being of operating reserve considerations such as stand-by units, interruptible loads and the physical locations of these resources are illustrated. It is expected that the well-being framework and the concepts developed in this research work will prove extremely useful in the new competitive utility environment.
Solar Energy Education. Renewable energy: a background text. [Includes glossary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-01-01
Some of the most common forms of renewable energy are presented in this textbook for students. The topics include solar energy, wind power hydroelectric power, biomass ocean thermal energy, and tidal and geothermal energy. The main emphasis of the text is on the sun and the solar energy that it yields. Discussions on the sun's composition and the relationship between the earth, sun and atmosphere are provided. Insolation, active and passive solar systems, and solar collectors are the subtopics included under solar energy. (BCS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1979-01-01
The feasibility analysis and evaluation of the Piqua, Ohio District Heating and Cooling Demonstration program is being conducted by the Piqua Municipal Power Co., the Piqua Law Dept., the Public Works Dept., a firm of economic analysts, and the Georgia Tech Engineering Dept. This volume contains information on the organization and composition of the demonstration team; characterization of the Piqua community; and the technical, environmental, institutional; financial, and economic assessments of the project. (LCL)
Synthesis and characterization of PVK/AgNPs nanocomposites prepared by laser ablation.
Abd El-Kader, F H; Hakeem, N A; Elashmawi, I S; Menazea, A A
2015-03-05
Nanocomposites of Poly (n-vinylcarbazole) PVK/Ag nanoparticles were prepared by laser ablation of a silver plate in aqueous solution of chlorobenzene. The influences of laser parameters such as; time of irradiation, source power and wavelength (photon energy) on structural, morphological and optical properties have been investigated using X-ray diffraction (XRD), Transmission electron microscopy (TEM), Ultraviolet-visible (UV-Vis) and Photoluminescence (PL). A correlation between the investigated properties has been discussed. XRD, TEM and PL indicated that the complexation between AgNPs and PVK in the composite system is possible. Only the reflection peak at 2θ=38° of AgNPs appeared in the composite nanoparticles while the other reflection peaks were destroyed. The nanoparticles shape and size distribution were evaluated from TEM images. TEM analysis revealed a lower average particle size at long laser irradiation time 40min and short laser wavelength 532nm together with high laser power 570mW. From UV-Visible spectra the values of absorption coefficient, absorption edge and energy tail were calculated. The reduction of band tail value with increasing the laser ablation parameters confirms the decrease of the disorder in such composite system. The PL and UV-Vis. spectra confirm that nanocomposite samples showed quantum confinement effect. Copyright © 2014 Elsevier B.V. All rights reserved.
Large field-induced-strain at high temperature in ternary ferroelectric crystals
Wang, Yaojin; Chen, Lijun; Yuan, Guoliang; Luo, Haosu; Li, Jiefang; Viehland, D.
2016-01-01
The new generation of ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric single crystals have potential applications in high power devices due to their surperior operational stability relative to the binary system. In this work, a reversible, large electric field induced strain of over 0.9% at room temperature, and in particular over 0.6% above 380 K was obtained. The polarization rotation path and the phase transition sequence of different compositions in these ternary systems have been determined with increasing electric field applied along [001] direction based on x-ray diffraction data. Thereafter, composition dependence of field-temperature phase diagrams were constructed, which provide compositional and thermal prospectus for the electromechanical properties. It was found the structural origin of the large stain, especially at higher temperature is the lattice parameters modulated by dual independent variables in composition of these ternary solid solution crystals. PMID:27734908
Two-Phase Thermal Switching System for a Small, Extended Duration Lunar Science Platform
NASA Technical Reports Server (NTRS)
Bugby, D.; Farmer, J.; OConnor, B.; Wirzburger, M.; Abel, E.; Stouffer, C.
2010-01-01
Issue: extended duration lunar science platforms, using solar/battery or radioisotope power, require thermal switching systems that: a) Provide efficient cooling during the 15-earth-day 390 K lunar day; b) Consume minimal power during the 15-earth-day 100 K lunar night. Objective: carry out an analytical study of thermal switching systems that can meet the thermal requirements of: a) International Lunar Network (ILN) anchor node mission - primary focus; b) Other missions such as polar crater landers. ILN Anchor Nodes: network of geophysical science platforms to better understand the interior structure/composition of the moon: a) Rationale: no data since Apollo seismic stations ceased operation in 1977; b) Anchor Nodes: small, low-power, long-life (6-yr) landers with seismographic and a few other science instruments (see next chart); c) WEB: warm electronics box houses ILN anchor node electronics/batteries. Technology Need: thermal switching system that will keep the WEB cool during the lunar day and warm during the lunar night.
High-Capacity, High-Voltage Composite Oxide Cathode Materials
NASA Technical Reports Server (NTRS)
Hagh, Nader M.
2015-01-01
This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.
An Integrated Global Atmospheric Composition Observing System: Progress and Impediments
NASA Astrophysics Data System (ADS)
Keating, T. J.
2016-12-01
In 2003-2005, a vision of an integrated global observing system for atmospheric composition and air quality emerged through several international forums (IGACO, 2004; GEO, 2005). In the decade since, the potential benefits of such a system for improving our understanding and mitigation of health and climate impacts of air pollution have become clearer and the needs more urgent. Some progress has been made towards the goal: technology has developed, capabilities have been demonstrated, and lessons have been learned. In Europe, the Copernicus Atmospheric Monitoring Service has blazed a trail for other regions to follow. Powerful new components of the emerging global system (e.g. a constellation of geostationary instruments) are expected to come on-line in the near term. But there are important gaps in the emerging system that are likely to keep us from achieving for some time the full benefits that were envisioned more than a decade ago. This presentation will explore the components and benefits of an integrated global observing system for atmospheric composition and air quality, some of the gaps and obstacles that exist in our current capabilities and institutions, and efforts that may be needed to achieve the envisioned system.
Semiconductor Eutectic Solar Cell.
1986-12-01
growth of the eutectics was conducted in a three-zone furnace ( SATEC Systems, Inc.). Figure 4 is the temperature-regulation circuit. The main power...34Electromagnetic Properties of Eutectic Composites (A Critical Review)", Met. Trans. 2, 1513 (1971). 6. B. Paul and H. Weiss, "Anisotropic InSb-NiSb Es an
ERIC Educational Resources Information Center
LaGrandeur, Kevin
Computer mediated communication (CMC) tends to erase power structures because such communication somehow undermines or escapes discursive limits. Online discussions seem to promote rhetorical experimentation on the part of the participants. Finding a way to explain disparities between electronic discussion and oral discussion has proven difficult.…
Efficient TEA CO II-laser-based coating removal system
NASA Astrophysics Data System (ADS)
Prinsloo, F. J.; van Heerden, S. P.; Ronander, E.; Botha, L. R.
2007-05-01
A high power 1kW pulsed transversely excited atmospheric CO II laser that has been developed for the paint stripping of missiles was used to test paint stripping on several metallic and composite aircraft panels to determine the rate at which this laser could remove paint from aircraft.
Measurement of solubility and water sorption of dental nanocomposites light cured by argon laser.
Mirsasaani, Seyed Shahabeddin; Ghomi, Farhad; Hemati, Mehran; Tavasoli, Tina
2013-03-01
Different parameters used for photoactivation process and also composition provide changes in the properties of dental composites. In the present work the effect of different power density of argon laser and filler loading on solubility (SL) and water sorption (WS) of light-cure dental nanocomposites was studied. The resin of nanocomposites was prepared by mixing bisphenol A glycol dimethacrylate (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) with a mass ratio of 65/35. 20 wt.% and 25 wt.% of nanosilica fillers with a primary particle size of 10 nm were added to the resin. Camphorquinone (CQ) and DMAEMA were added as photoinitiator system. The nanocomposites were cured by applying the laser beam at the wavelength of 472 nm and power densities of 260 and 340 mW/cm(2) for 40 sec. Solubility and water sorption were then measured according to ISO 4049, which in our case, the maximums were 2.2% and 4.3% at 260 mW/cm(2) and 20% filler, respectively. The minimum solubility (1.2%) and water sorption (3.8%) were achieved for the composite containing 25% filler cured at 340 mW/cm(2). The results confirmed that higher power density and filler loading decreased solubility of unreacted monomers and water sorption and improved physico-mechanical properties of nanocomposites.
Composites in energy generation and storage systems - An overview
NASA Astrophysics Data System (ADS)
Fulmer, R. W.
Applications of glass-fiber reinforced composites (GER) in renewable and high-efficiency energy systems which are being developed to replace interim, long-term unacceptable energy sources such as foreign oil are reviewed. GFR are noted to have design flexibility, high strength, and low cost, as well as featuring a choice of fiber orientation and type of reinforcement. Blades, hub covers, nacelles, and towers for large and small WECS are being fabricated and tested and are displaying satisfactory strength, resistance to corrosion and catastrophic failure, impact tolerance, and light weight. Promising results have also been shown in the use of GFR as flywheel material for kinetic energy storage in conjunction with solar and wind electric systems, in electric cars, and as load levellers. Other applications are for heliostats, geothermal power plant pipes, dam-atoll tidal wave energy systems, and intake pipes for OTECs.
Electrical swing adsorption gas storage and delivery system
Judkins, R.R.; Burchell, T.D.
1999-06-15
Systems and methods for electrical swing natural gas adsorption are described. An apparatus includes a pressure vessel; an electrically conductive gas adsorptive material located within the pressure vessel; and an electric power supply electrically connected to said adsorptive material. The adsorptive material can be a carbon fiber composite molecular sieve (CFCMS). The systems and methods provide advantages in that both a high energy density and a high ratio of delivered to stored gas are provided. 5 figs.
NASA Technical Reports Server (NTRS)
Misra, Ajay K.
1988-01-01
Eutectic compositions and congruently melting intermediate compounds in binary and ternary fluoride salt systems were characterized for potential use as latent heat of fusion phase change materials to store thermal energy in the temperature range 1000-1400 K. The melting points and eutectic compositions for many systems with published phase diagrams were experimentally verified and new eutectic compositions having melting points between 1000 and 1400 K were identified. Heats of fusion of several binary and ternary eutectics and congruently melting compounds were experimentally measured by differential scanning calorimetry. For a few systems in which heats of mixing in the melts have been measured, heats of fusion of the eutectics were calculated from thermodynamic considerations and good agreement was obtained between the measured and calculated values. Several combinations of salts with high heats of fusion per unit mass (greater than 0.7 kJ/g) have been identified for possible use as phase change materials in advanced solar dynamic space power applications.
Bakal, Jeffrey A; Westerhout, Cynthia M; Armstrong, Paul W
2015-12-01
Composite endpoints are commonly used in cardiovascular clinical trials. When using a composite endpoint a subject is considered to have an event when the first component endpoint has occurred. The use of composite endpoints offers the ability to incorporate several clinically important endpoint events thereby augmenting the event rate and increasing statistical power for a given sample size. One assumption of the composite is that all component events are of equal clinical importance. This assumption is rarely achieved given the diversity of component endpoints included. One means of adjusting for this diversity is to adjust the outcomes using severity weights determined a priori. The use of a weighted endpoint also allows for the incorporation of multiple endpoints per patient. Although weighting the outcomes lowers the effective number of events, it offers additional information that reduces the variance of the estimate. We created a series of simulation studies to examine the effect on power as the individual components of a typical composite were changed. In one study, we noted that the weighted composite was able to offer discriminative power when the component outcomes were altered, while the traditional method was not. In the other study, we noted that the weighted composite offered a similar level of power to the traditional composite when the change was driven by the more severe endpoints. © The Author(s) 2011.
Composition, Philosophy, and Rhetoric: The "Problem of Power."
ERIC Educational Resources Information Center
Sebberson, David
1993-01-01
Remarks on moments in Louise Wetherbee Phelps' book "Composition as a Human Science" where the absence of power presents a problematic for composition. Presents Jurgen Habermas for and against Phelps, noting the gestures of both authors against scientism while drawing on several of Habermas' basic concepts. Proposes rereading Aristotle's…
New strategies for SHM based on a multichannel wireless AE node
NASA Astrophysics Data System (ADS)
Godinez-Azcuaga, Valery; Ley, Obdulia
2014-03-01
This paper discusses the development of an Acoustic Emission (AE) wireless node and its application for SHM (Structural Health Monitoring). The instrument development was planned for applications monitoring steel and concrete bridges components. The final product, now commercially available, is a sensor node which includes multiple sensing elements, on board signal processing and analysis capabilities, signal conditioning electronics, power management circuits, wireless data transmission element and energy harvesting unit. The sensing elements are capable of functioning in both passive and active modes, while the multiple parametric inputs are available for connecting various sensor types to measure external characteristics affecting the performance of the structure under monitoring. The output of all these sensors are combined and analyzed at the node in order to minimize the data transmission rate, which consumes significant amount of power. Power management circuits are used to reduce the data collection intervals through selective data acquisition strategies and minimize the sensor node power consumption. This instrument, known as the 1284, is an excellent platform to deploy SHM in the original bridge applications, but initial prototypes has shown significant potential in monitoring composite wind turbine blades and composites mockups of Unmanned Autonomous Vehicles (UAV) components; currently we are working to extend the use of this system to fields such as coal flow, power transformer, and off-shore platform monitoring.
Combinatorial Strategies for the Development of Bulk Metallic Glasses
NASA Astrophysics Data System (ADS)
Ding, Shiyan
The systematic identification of multi-component alloys out of the vast composition space is still a daunting task, especially in the development of bulk metallic glasses that are typically based on three or more elements. In order to address this challenge, combinatorial approaches have been proposed. However, previous attempts have not successfully coupled the synthesis of combinatorial libraries with high-throughput characterization methods. The goal of my dissertation is to develop efficient high-throughput characterization methods, optimized to identify glass formers systematically. Here, two innovative approaches have been invented. One is to measure the nucleation temperature in parallel for up-to 800 compositions. The composition with the lowest nucleation temperature has a reasonable agreement with the best-known glass forming composition. In addition, the thermoplastic formability of a metallic glass forming system is determined through blow molding a compositional library. Our results reveal that the composition with the largest thermoplastic deformation correlates well with the best-known formability composition. I have demonstrated both methods as powerful tools to develop new bulk metallic glasses.
Materials Research Capabilities
NASA Technical Reports Server (NTRS)
Stofan, Andrew J.
1986-01-01
Lewis Research Center, in partnership with U.S. industry and academia, has long been a major force in developing advanced aerospace propulsion and power systems. One key aspect that made many of these systems possible has been the availability of high-performance, reliable, and long-life materials. To assure a continuing flow of new materials and processing concepts, basic understanding to guide such innovation, and technological support for development of major NASA systems, Lewis has supported a strong in-house materials research activity. Our researchers have discovered new alloys, polymers, metallic composites, ceramics, coatings, processing techniques, etc., which are now also in use by U.S. industry. This brochure highlights selected past accomplishments of our materials research and technology staff. It also provides many examples of the facilities available with which we can conduct materials research. The nation is now beginning to consider integrating technology for high-performance supersonic/hypersonic aircraft, nuclear space power systems, a space station, and new research areas such as materials processing in space. As we proceed, I am confident that our materials research staff will continue to provide important contributions which will help our nation maintain a strong technology position in these areas of growing world competition. Lewis Research Center, in partnership with U.S. industry and academia, has long been a major force in developing advanced aerospace propulsion and power systems. One key aspect that made many of these systems possible has been the availability of high-performance, reliable, and long-life materials. To assure a continuing flow of new materials and processing concepts, basic understanding to guide such innovation, and technological support for development of major NASA systems, Lewis has supported a strong in-house materials research activity. Our researchers have discovered new alloys, polymers, metallic composites, ceramics, coatings, processing techniques, etc., which are now also in use by U.S. industry. This brochure highlights selected past accomplishments of our materials research and technology staff. It also provides many examples of the facilities available with which we can conduct materials research. The nation is now beginning to consider integrating technology for high-performance supersonic/hypersonic aircraft, nuclear space power systems, a space station, and new research areas such as materials processing in space.
Manufacturing and testing of a magnetically suspended composite flywheel energy storage system
NASA Technical Reports Server (NTRS)
Wells, Stephen; Pang, Da-Chen
1994-01-01
This paper presents the work performed to develop a multiring composite material flywheel and improvements of a magnetically suspended energy storage system. The flywheel is constructed of filament would graphite/epoxy and is interference assembled for better stress distribution to obtain higher speeds. The stationary stack in the center of the disk supports the flywheel with two magnetic bearings and provides power transfer to the flywheel with a motor/generator. The system operates under a 10(exp -4) torr environment and has been demonstrated to 20,000 rpm with a total stored energy of 15.9 Wh. When this flywheel cycles between its design speeds (45,000 to 90,000 rpm), it will deliver 242 Wh and have a usable specific energy density of 42.6 Wh/kg.
Molten Salt Power Tower Cost Model for the System Advisor Model (SAM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turchi, C. S.; Heath, G. A.
2013-02-01
This report describes a component-based cost model developed for molten-salt power tower solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), using data from several prior studies, including a contracted analysis from WorleyParsons Group, which is included herein as an Appendix. The WorleyParsons' analysis also estimated material composition and mass for the plant to facilitate a life cycle analysis of the molten salt power tower technology. Details of the life cycle assessment have been published elsewhere. The cost model provides a reference plant that interfaces with NREL's System Advisor Model or SAM. The referencemore » plant assumes a nominal 100-MWe (net) power tower running with a nitrate salt heat transfer fluid (HTF). Thermal energy storage is provided by direct storage of the HTF in a two-tank system. The design assumes dry-cooling. The model includes a spreadsheet that interfaces with SAM via the Excel Exchange option in SAM. The spreadsheet allows users to estimate the costs of different-size plants and to take into account changes in commodity prices. This report and the accompanying Excel spreadsheet can be downloaded at https://sam.nrel.gov/cost.« less
NASA Astrophysics Data System (ADS)
Scherrer, Barbara; Evans, Anna; Santis-Alvarez, Alejandro J.; Jiang, Bo; Martynczuk, Julia; Galinski, Henning; Nabavi, Majid; Prestat, Michel; Tölke, René; Bieberle-Hütter, Anja; Poulikakos, Dimos; Muralt, Paul; Niedermann, Philippe; Dommann, Alex; Maeder, Thomas; Heeb, Peter; Straessle, Valentin; Muller, Claude; Gauckler, Ludwig J.
2014-07-01
Low temperature micro-solid oxide fuel cell (micro-SOFC) systems are an attractive alternative power source for small-size portable electronic devices due to their high energy efficiency and density. Here, we report on a thermally self-sustainable reformer-micro-SOFC assembly. The device consists of a micro-reformer bonded to a silicon chip containing 30 micro-SOFC membranes and a functional glass carrier with gas channels and screen-printed heaters for start-up. Thermal independence of the device from the externally powered heater is achieved by exothermic reforming reactions above 470 °C. The reforming reaction and the fuel gas flow rate of the n-butane/air gas mixture controls the operation temperature and gas composition on the micro-SOFC membrane. In the temperature range between 505 °C and 570 °C, the gas composition after the micro-reformer consists of 12 vol.% to 28 vol.% H2. An open-circuit voltage of 1.0 V and maximum power density of 47 mW cm-2 at 565 °C is achieved with the on-chip produced hydrogen at the micro-SOFC membranes.
Evaluating the Thermal Damage Resistance of Reduced Graphene Oxide/Carbon Nanotube Hybrid Coatings
NASA Astrophysics Data System (ADS)
David, Lamuel; Feldman, Ari; Mansfield, Elisabeth; Lehman, John; Singh, Gurpreet; National Institute of Standards and Technology Collaboration
2014-03-01
Carbon nanotubes and graphene are known to exhibit some exceptional thermal (K ~ 2000 to 4400 W.m-1K-1 at 300K) and optical properties. Here, we demonstrate preparation and testing of multiwalled carbon nanotubes and chemically modified graphene-composite spray coatings for use on thermal detectors for high-power lasers. The synthesized nanocomposite material was tested by preparing spray coatings on aluminum test coupons used as a representation of the thermal detector's surface. These coatings were then exposed to increasing laser powers and extended exposure times to quantify their damage threshold and optical absorbance. The graphene/carbon nanotube (prepared at varying mass% of graphene in CNTs) coatings demonstrated significantly higher damage threshold values at 2.5 kW laser power (10.6 μm wavelength) than carbon paint or MWCNTs alone. Electron microscopy and Raman spectroscopy of irradiated specimens showed that the composite coating endured high laser-power densities (up to 2 kW.cm-2) without significant visual damage. This research is based on work supported by the National Science Foundation (Chemical, Bioengineering, Environmental, and Transport Systems Division), under grant no. 1335862 to G. Singh.
Capacitor with a composite carbon foam electrode
Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.
1999-01-01
Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid partides being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.
Method for fabricating composite carbon foam
Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.
2001-01-01
Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.
Capacitor with a composite carbon foam electrode
Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.
1999-04-27
Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.
Composite carbon foam electrode
Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.
1997-05-06
Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.
NASA Technical Reports Server (NTRS)
Thesken, John C.; Bowman, Cheryl L.; Arnold, Steven M.
2003-01-01
Successful spaceflight operations require onboard power management systems that reliably achieve mission objectives for a minimal launch weight. Because of their high specific energies and potential for reduced maintenance and logistics, composite flywheels are an attractive alternative to electrochemical batteries. The Rotor Durability Team, which comprises members from the Ohio Aerospace Institute (OAI) and the NASA Glenn Research Center, completed a program of elevated temperature testing at Glenn' s Life Prediction Branch's Fatigue Laboratory. The experiments provided unique design data essential to the safety and durability of flywheel energy storage systems for the International Space Station and other manned spaceflight applications. Analysis of the experimental data (ref. 1) demonstrated that the compressive stress relaxation of composite flywheel rotor material is significantly greater than the commonly available tensile stress relaxation data. Durability analysis of compression preloaded flywheel rotors is required for accurate safe-life predictions for use in the International Space Station.
Design, fabrication, and evaluation of on-chip micro-supercapacitors
NASA Astrophysics Data System (ADS)
Beidaghi, Majid; Chen, Wei; Wang, Chunlei
2011-06-01
Development of miniaturized electronic systems has stimulated the demand for miniaturized power sources that can be integrated into such systems. Among the different micro power sources micro electrochemical energy storage and conversion devices are particularly attractive because of their high efficiency and relatively high energy density. Electrochemical micro-capacitors or micro-supercapacitors offer higher power density compared to micro-batteries and micro-fuel cells. In this paper, development of on-chip micro-supercapacitors based on interdigitated C-MEMS electrode microarrays is introduced. C-MEMS electrodes are employed both as electrode material for electric double layer capacitor (EDLC) or as three dimensional (3D) current collectors of EDLC or pseudo-capacitive materials. Recent advancements in fabrication methods of C-MEMS based micro-supercapacitors are discussed and electrochemical properties of C-MEMS electrodes and it composites are reviewed.
Microstructural analysis of W-SiCf/SiC composite
NASA Astrophysics Data System (ADS)
Yoon, Hanki; Oh, Jeongseok; Kim, Gonho; Kim, Hyunsu; Takahashi, Heishichiro; Kohyama, Akira
2015-03-01
Continuous silicon carbide fiber-reinforced silicon carbide (SiCf/SiC) composites are promising structure candidates for future fusion power systems such as gas coolant fast channels, extreme high temperature reactor and fusion reactors, because of their intrinsic properties such as excellent mechanical properties, high thermal conductivity, good thermal-shock resistance as well as excellent physical and chemical stability in various environments under elevated temperature conditions. In this study, bonding of tungsten and SiCf/SiC was produced by hot-press method. Microstructure analyses were performed using SEM and TEM.
Research on Retro-reflecting Modulation in Space Optical Communication System
NASA Astrophysics Data System (ADS)
Zhu, Yifeng; Wang, Guannan
2018-01-01
Retro-reflecting modulation space optical communication is a new type of free space optical communication technology. Unlike traditional free space optical communication system, it applys asymmetric optical systems to reduce the size, weight and power consumption of the system and can effectively solve the limits of traditional free space optical communication system application, so it can achieve the information transmission. This paper introduces the composition and working principle of retro-reflecting modulation optical communication system, analyzes the link budget of this system, reviews the types of optical system and optical modulator, summarizes this technology future research direction and application prospects.
Schroeder, Jenna N.
2013-08-31
This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.
Thermomechanical Property Data Base Developed for Ceramic Fibers
NASA Technical Reports Server (NTRS)
1996-01-01
A key to the successful application of metal and ceramic composite materials in advanced propulsion and power systems is the judicious selection of continuous-length fiber reinforcement. Appropriate fibers can provide these composites with the required thermomechanical performance. To aid in this selection, researchers at the NASA Lewis Research Center, using in-house state-of-the-art test facilities, developed an extensive data base of the deformation and fracture properties of commercial and developmental ceramic fibers at elevated temperatures. Lewis' experimental focus was primarily on fiber compositions based on silicon carbide or alumina because of their oxidation resistance, low density, and high modulus. Test approaches typically included tensile and flexural measurements on single fibers or on multifilament tow fibers in controlled environments of air or argon at temperatures from 800 to 1400 C. Some fiber specimens were pretreated at composite fabrication temperatures to simulate in situ composite conditions, whereas others were precoated with potential interphase and matrix materials.
High speed reaction wheels for satellite attitude control and energy storage
NASA Technical Reports Server (NTRS)
Studer, P.; Rodriguez, E.
1985-01-01
The combination of spacecraft attitude control and energy storage (ACES) functions in common hardware, to synergistically maintain three-axis attitude control while supplying electrical power during earth orbital eclipses, allows the generation of control torques by high rotating speed wheels that react against the spacecraft structure via a high efficiency bidirectional energy conversion motor/generator. An ACES system encompasses a minimum of four wheels, controlling power and the three torque vectors. Attention is given to the realization of such a system with composite flywheel rotors that yield high energy density, magnetic suspension technology yielding low losses at high rotational speeds, and an ironless armature permanent magnet motor/generator yielding high energy conversion efficiency.
Numerical and experimental study of bistable plates for morphing structures
NASA Astrophysics Data System (ADS)
Nicassio, F.; Scarselli, G.; Avanzini, G.; Del Core, G.
2017-04-01
This study is concerned with the activation energy threshold of bistable composite plates in order to tailor a bistable system for specific aeronautical applications. The aim is to explore potential configurations of the bistable plates and their dynamic behavior for designing novel morphing structure suitable for aerodynamic surfaces and, as a possible further application, for power harvesters. Bistable laminates have two stable mechanical shapes that can withstand aerodynamic loads without additional constraint forces or locking mechanisms. This kind of structures, when properly loaded, snap-through from one stable configuration to another, causing large strains that can also be used for power harvesting scopes. The transition between the stable states of the composite laminate can be triggered, in principle, simply by aerodynamic loads (pilot, disturbance or passive inputs) without the need of servo-activated control systems. Both numerical simulations based on Finite Element models and experimental testing based on different activating forcing spectra are used to validate this concept. The results show that dynamic activation of bistable plates depend on different parameters that need to be carefully managed for their use as aircraft passive wing flaps.
NASA Astrophysics Data System (ADS)
Onoda, Masashige; Sato, Takuma
2017-12-01
The crystal structures and electronic properties of β'CuxV2O5 are explored through measurements of X-ray four-circle diffraction, electrical resistivity, thermoelectric power, thermal conductivity, magnetization, and electron paramagnetic resonance. For various compositions with 0.243 ≤ x ≤ 0.587, the crystal structures are redetermined through the anharmonic approach of the copper displacement factors, where the anharmonicity is reduced with increasing Cu concentration. The electron transport for x ≤ 0.45 is nonmetallic due to polaron hopping and the random potential of Cu ions, while for x = 0.60, a correlated Fermi-liquid state appears with a Wilson ratio of 1.3 and a Kadowaki-Woods ratio close to the universal value for heavy-fermion systems. At around x = 0.50, the polaronic bandwidth may broaden so that the Hubbard subbands caused by the electron correlation will overlap. The nonmetallic composition in the proximity of the nonmetal-metal crossover shows a dimensionless thermoelectric power factor of 10-2 at 300 K, partly due to the anharmonic copper oscillation.
Chien, Chi-Sheng; Liu, Cheng-Wei; Kuo, Tsung-Yuan
2016-05-17
Hydroxyapatite (HA) is one of the most commonly used materials for the coating of bioceramic titanium (Ti) alloys. However, HA has poor mechanical properties and a low bonding strength. Accordingly, the present study replaces HA with a composite coating material consisting of fluorapatite (FA) and 20 wt % yttria (3 mol %) stabilized zirconia (ZrO₂, 3Y-TZP). The FA/ZrO₂ coatings are deposited on Ti6Al4V substrates using a Nd:YAG laser cladding system with laser powers and travel speeds of 400 W/200 mm/min, 800 W/400 mm/min, and 1200 W/600 mm/min, respectively. The experimental results show that a significant inter-diffusion of the alloying elements occurs between the coating layer (CL) and the transition layer (TL). Consequently, a strong metallurgical bond is formed between them. During the cladding process, the ZrO₂ is completely decomposed, while the FA is partially decomposed. As a result, the CLs of all the specimens consist mainly of FA, Ca₄(PO₄)₂O (TTCP), CaF₂, CaZrO₃, CaTiO₃ and monoclinic phase ZrO₂ (m-ZrO₂), together with a small amount of θ-Al₂O₃. As the laser power is increased, CaO, CaCO₃ and trace amounts of tetragonal phase ZrO₂ (t-ZrO₂) also appear. As the laser power increases from 400 to 800 W, the CL hardness also increases as a result of microstructural refinement and densification. However, at the highest laser power of 1200 W, the CL hardness reduces significantly due to the formation of large amounts of relatively soft CaO and CaCO₃ phase.
Zidan, Ragaiy; Teprovich, Joseph A.; Motyka, Theodore
2015-12-01
A system for the generation of hydrogen for use in portable power systems is set forth utilizing a two-step process that involves the thermal decomposition of AlH.sub.3 (10 wt % H.sub.2) followed by the hydrolysis of the activated aluminum (Al*) byproduct to release additional H.sub.2. Additionally, a process in which water is added directly without prior history to the AlH.sub.3:PA composite is also disclosed.
NASA Technical Reports Server (NTRS)
Mckay, G. A.; Weill, D. F.
1975-01-01
Solid/liquid distribution coefficients (weight basis) were experimentally determined for a number of trace elements for olivine, orthopyroxene, plagioclase and ilmenite. Values of distribution coefficients were measured at 1200 C and a f sub O2 of 10 to the -13.0 power for liquids similar in composition to the olivine-opx-plagioclase peritectic in the pseudoternary system (Fe,Mg)2SiO4-CaAl2Si2O8-SiO2. Values were also measured at 1140 C and a f sub O2 of 10 to the -12.8 power for liquids similar in composition to high-Ti mare basalts. Major and trace element partitioning and relevant phase equilibria were used to investigate possible parent-daughter relationships between a number of highland samples and highly evolved KREEP-rich materials. Out of about 80 highlands samples tested, 33 were found to be possible parents to the KREEP-rich materials. The average composition of these samples is very similar to that of the Low-K Fra Mauro basalt (LKFM). A model is proposed to explain the production of LKFM-type material and more evolved members of the KREEP suite.
Effects of mixing system and pilot fuel quality on diesel-biogas dual fuel engine performance.
Bedoya, Iván Darío; Arrieta, Andrés Amell; Cadavid, Francisco Javier
2009-12-01
This paper describes results obtained from CI engine performance running on dual fuel mode at fixed engine speed and four loads, varying the mixing system and pilot fuel quality, associated with fuel composition and cetane number. The experiments were carried out on a power generation diesel engine at 1500 m above sea level, with simulated biogas (60% CH(4)-40% CO(2)) as primary fuel, and diesel and palm oil biodiesel as pilot fuels. Dual fuel engine performance using a naturally aspirated mixing system and diesel as pilot fuel was compared with engine performance attained with a supercharged mixing system and biodiesel as pilot fuel. For all loads evaluated, was possible to achieve full diesel substitution using biogas and biodiesel as power sources. Using the supercharged mixing system combined with biodiesel as pilot fuel, thermal efficiency and substitution of pilot fuel were increased, whereas methane and carbon monoxide emissions were reduced.
DOE R&D Accomplishments Database
Cooper, R. H.; Martin, M. M.; Riggs, C. R.; Beatty, R. L.; Ohriner, E. K.; Escher, R. N.
1990-04-19
In October 1989, a US shuttle lifted off from Cape Kennedy carrying the spacecraft Galileo on its mission to Jupiter. In November 1990, a second spacecraft, Ulysses, will be launched from Cape Kennedy with a mission to study the polar regions of the sun. The prime source of power for both spacecraft is a series of radioisotope thermoelectric generators (RTGs), which use plutonium oxide (plutonia) as a heat source. Several of the key components in this power system are required to ensure the safety of both the public and the environment and were manufactured at Oak Ridge National Laboratory (ORNL) in the 1980 to 1983 period. For these two missions, Martin Marietta Energy Systems, Inc. (Energy Systems), will provide an iridium alloy component used to contain the plutonia heat source and a carbon composite material that serves as a thermal insulator. ORNL alone will continue to fabricate the carbon composite material. Because of the importance to DOE that Energy Systems deliver these high quality components on time, performance of an Operational Readiness Review (ORR) of these manufacturing activities is necessary. Energy Systems Policy GP 24 entitled "Operational Readiness Process" describes the formal and comprehensive process by which appropriate Energy Systems activities are to be reviewed to ensure their readiness. This Energy System policy is aimed at reducing the risks associated with mission success and requires a management approved "readiness plan" to be issued. This document is the readiness plan for the RTG materials production tasks.
NASA Astrophysics Data System (ADS)
Marek, W.; Śliwiński, K.
2016-09-01
The publication presents the results of tests to determine the impact of using waste fuels, alcohol, to power the engine, on the ecological parameters of the combustion engine. Alternatively fuelled with a mixture of iso- and n-butanol, indicated with "X" and "END, and gasoline and a mixture of fuel and alcohol. The object of the study was a four-stroke engine with spark ignition designed to work with a generator. Motor power was held by the modified system of pneumatic injection using hot exhaust gases developed by Prof. Stanislaw Jarnuszkiewicz, controlled by modern mechatronic systems. Tests were conducted at a constant speed for the intended use of the engine. The subject of the research was to determine the control parameters such as ignition timing, mixture composition and the degree of exhaust gas recirculation on the ecological parameters of the engine. Tests were carried out using partially quality power control. In summary we present the findings of this phase of the study.
A linear shift-invariant image preprocessing technique for multispectral scanner systems
NASA Technical Reports Server (NTRS)
Mcgillem, C. D.; Riemer, T. E.
1973-01-01
A linear shift-invariant image preprocessing technique is examined which requires no specific knowledge of any parameter of the original image and which is sufficiently general to allow the effective radius of the composite imaging system to be arbitrarily shaped and reduced, subject primarily to the noise power constraint. In addition, the size of the point-spread function of the preprocessing filter can be arbitrarily controlled, thus minimizing truncation errors.
Novel, compact, and simple ND:YVO4 laser with 12 W of CW optical output power and good beam quality
NASA Astrophysics Data System (ADS)
Zimer, H.; Langer, B.; Wittrock, U.; Heine, F.; Hildebrandt, U.; Seel, S.; Lange, R.
2017-11-01
We present first, promising experiments with a novel, compact and simple Nd:YVO4 slab laser with 12 W of 1.06 μm optical output power and a beam quality factor M2 2.5. The laser is made of a diffusion-bonded YVO4/Nd:YVO4 composite crystal that exhibits two unique features. First, it ensures a one-dimensional heat removal from the laser crystal, which leads to a temperature profile without detrimental influence on the laser beam. Thus, the induced thermo-optical aberrations to the laser field are low, allowing power scaling with good beam quality. Second, the composite crystal itself acts as a waveguide for the 809 nm pump-light that is supplied from a diode laser bar. Pump-light shaping optics, e.g. fast- or slow-axis collimators can be omitted, reducing the complexity of the system. Pump-light redundancy can be easily achieved. Eventually, the investigated slab laser might be suitable for distortion-free high gain amplification of weak optical signals.
Chen, Wanjun; He, Yongmin; Li, Xiaodong; Zhou, Jinyuan; Zhang, Zhenxing; Zhao, Changhui; Gong, Chengshi; Li, Shuankui; Pan, Xiaojun; Xie, Erqing
2013-12-07
Flexible and high performance supercapacitors are very critical in modern society. In order to develop the flexible supercapacitors with high power density, free-standing and flexible three-dimensional graphene/carbon nanotubes/MnO2 (3DG/CNTs/MnO2) composite electrodes with interconnected ternary 3D structures were fabricated, and the fast electron and ion transport channels were effectively constructed in the rationally designed electrodes. Consequently, the obtained 3DG/CNTs/MnO2 composite electrodes exhibit superior specific capacitance and rate capability compared to 3DG/MnO2 electrodes. Furthermore, the 3DG/CNTs/MnO2 based asymmetric supercapacitor demonstrates the maximum energy and power densities of 33.71 W h kg(-1) and up to 22,727.3 W kg(-1), respectively. Moreover, the asymmetric supercapacitor exhibits excellent cycling stability with 95.3% of the specific capacitance maintained after 1000 cycle tests. Our proposed synthesis strategy to construct the novel ternary 3D structured electrodes can be efficiently applied to other high performance energy storage/conversion systems.
NASA Astrophysics Data System (ADS)
Wang, Anqi; Zhou, Xi; Qian, Tao; Yu, Chenfei; Wu, Shishan; Shen, Jian
2015-08-01
Highly dispersed polypyrrole particles were decorated on reduced graphene oxide sheets using a facile in situ synthesis route. The prepared composite, which obtained a folded surface, shows remarkable performance as the electrode material of supercapacitors. The specific capacitance reaches 564.1 F g-1 at a current density of 1 A g-1 and maintains 86.4 % after 1000 charging-discharging cycles at a current density of 20 A g-1, which indicates a good cycling stability. Furthermore, the prepared supercapacitor demonstrates an ultrahigh energy density of 50.13 Wh kg-1 at power density of 0.40 kW kg-1, and remains of 45.33 Wh kg-1 even at high power density of 8.00 kW kg-1, which demonstrate that the hybrid supercapacitor can be a promising energy storage system for fast and efficient energy storage in the future.
NASA Astrophysics Data System (ADS)
Tian, Pengfei; Lyu, Jun; Huang, Rui; Zhang, Chaoliang
2017-12-01
Piezoelectric one- (1D) and three-dimensional (3D) hybrid micro/nanostructured materials have received intense research interest because of their ability in capturing trace amounts of energy and transforming it into electrical energy. In this work, a size-distributed graphene oxide (GO) was utilized for the concurrent growth of both the 1D nanowires and 3D micro/nanowire architectures of poly (vinylidene fluoride) (PVDF) with piezoelectricity. The in situ formation of the polymeric micro/nanostructures, with crystalline beta phase, was achieved by the high-pressure crystallization of a well dispersed GO/PVDF composite, fabricated by an environmentally friendly physical approach. Particularly, by controlling the crystallization conditions of the binary composite at high pressure, the melting point of the polymeric micro/nanowires, which further constructed the 3D micro/nanoarchitectures, was nearly 30°C higher than that of the original PVDF. The large scale simultaneous formation of the 1D and 3D micro/nanostructures was attributed to a size-dependent catalysis of the GOs in the pressure-treated composite system. The as-fabricated heat-resistant hybrid micro/nanoarchitectures, consisting of GOs and piezoelectric PVDF micro/nanowires, may permit niche applications in self-powered micro/nanodevices for energy scavenging from their working environments.
Heat cascading regenerative sorption heat pump
NASA Technical Reports Server (NTRS)
Jones, Jack A. (Inventor)
1995-01-01
A simple heat cascading regenerative sorption heat pump process with rejected or waste heat from a higher temperature chemisorption circuit (HTCC) powering a lower temperature physisorption circuit (LTPC) which provides a 30% total improvement over simple regenerative physisorption compression heat pumps when ammonia is both the chemisorbate and physisorbate, and a total improvement of 50% or more for LTPC having two pressure stages. The HTCC contains ammonia and a chemisorbent therefor contained in a plurality of canisters, a condenser-evaporator-radiator system, and a heater, operatively connected together. The LTPC contains ammonia and a physisorbent therefor contained in a plurality of compressors, a condenser-evaporator-radiator system, operatively connected together. A closed heat transfer circuit (CHTC) is provided which contains a flowing heat transfer liquid (FHTL) in thermal communication with each canister and each compressor for cascading heat from the HTCC to the LTPC. Heat is regenerated within the LTPC by transferring heat from one compressor to another. In one embodiment the regeneration is performed by another CHTC containing another FHTL in thermal communication with each compressor. In another embodiment the HTCC powers a lower temperature ammonia water absorption circuit (LTAWAC) which contains a generator-absorber system containing the absorbent, and a condenser-evaporator-radiator system, operatively connected together. The absorbent is water or an absorbent aqueous solution. A CHTC is provided which contains a FHTL in thermal communication with the generator for cascading heat from the HTCC to the LTAWAC. Heat is regenerated within the LTAWAC by transferring heat from the generator to the absorber. The chemical composition of the chemisorbent is different than the chemical composition of the physisorbent, and the absorbent. The chemical composition of the FHTL is different than the chemisorbent, the physisorbent, the absorbent, and ammonia.
Design and development of the Waukesha Custom Engine Control Air/Fuel Module
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moss, D.W.
1996-12-31
The Waukesha Custom Engine Control Air/Fuel Module (AFM) is designed to control the air-fuel ratio for all Waukesha carbureted, gaseous fueled, industrial engine. The AFM is programmed with a personal computer to run in one of four control modes: catalyst, best power, best economy, or lean-burn. One system can control naturally aspirated, turbocharged, in-line or vee engines. The basic system consists of an oxygen sensing system, intake manifold pressure transducer, electronic control module, actuator and exhaust thermocouple. The system permits correct operation of Waukesha engines in spite of changes in fuel pressure or temperature, engine load or speed, and fuelmore » composition. The system utilizes closed loop control and is centered about oxygen sensing technology. An innovative approach to applying oxygen sensors to industrial engines provides very good performance, greatly prolongs sensor life, and maintains sensor accuracy. Design considerations and operating results are given for application of the system to stationary, industrial engines operating on fuel gases of greatly varying composition.« less
Carbon-Carbon Composites as Recuperator Material for Direct Gas Brayton Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
RA Wolf
2006-07-19
Of the numerous energy conversion options available for a space nuclear power plant (SNPP), one that shows promise in attaining reliable operation and high efficiency is the direct gas Brayton (GB) system. In order to increase efficiency, the GB system incorporates a recuperator that accounts for nearly half the weight of the energy conversion system (ECS). Therefore, development of a recuperator that is lighter and provides better performance than current heat exchangers could prove to be advantageous. The feasibility of a carbon-carbon (C/C) composite recuperator core has been assessed and a mass savings of 60% and volume penalty of 20%more » were projected. The excellent thermal properties, high-temperature capabilities, and low density of carbon-carbon materials make them attractive in the GB system, but development issues such as material compatibility with other structural materials in the system, such as refractory metals and superalloys, permeability, corrosion, joining, and fabrication must be addressed.« less
Yue, Yang; Yang, Zhichun; Liu, Nishuang; Liu, Weijie; Zhang, Hui; Ma, Yanan; Yang, Congxing; Su, Jun; Li, Luying; Long, Fei; Zou, Zhengguang; Gao, Yihua
2016-12-27
Nowadays, the integrated systems on a plane substrate containing energy harvesting, energy storing, and working units are strongly desired with the fast development of wearable and portable devices. Here, a simple, low cost, and scalable strategy involving ink printing and electrochemical deposition is proposed to fabricate a flexible integrated system on a plane substrate containing an all-solid-state asymmetric microsupercapacitor (MSC), a photoconduct-type photodetector of perovskite nanowires (NWs), and a wireless charging coil. In the asymmetric MSCs, MnO 2 -PPy and V 2 O 5 -PANI composites are used as positive and negative electrodes, respectively. Typical values of energy density in the range of 15-20 mWh cm -3 at power densities of 0.3-2.5 W cm -3 with an operation potential window of 1.6 V are achieved. In the system, the wireless charging coil receives energy from a wireless power transmitter, which then can be stored in the MSC to drive the photoconductive detector of perovskite NWs in sequence. The designed integrated system exhibits a stable photocurrent response comparable with the detector driven by an external power source. This research provides an important routine to fabricate integrated systems.
Collection of low-grade waste heat for enhanced energy harvesting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dede, Ercan M., E-mail: eric.dede@tema.toyota.com; Schmalenberg, Paul; Wang, Chi-Ming
Enhanced energy harvesting through the collection of low-grade waste heat is experimentally demonstrated. A structural optimization technique is exploited in the design of a thermal-composite substrate to guide and gather the heat emanating from multiple sources to a predetermined location. A thermoelectric generator is then applied at the selected focusing region to convert the resulting low-grade waste heat to electrical power. The thermal characteristics of the device are experimentally verified by direct temperature measurements of the system and numerically validated via heat conduction simulations. Electrical performance under natural and forced convection is measured, and in both cases, the device withmore » optimized heat flow control plus energy harvesting demonstrates increased power generation when compared with a baseline waste heat recovery system. Electronics applications include energy scavenging for autonomously powered sensor networks or self-actuated devices.« less
Sulfidation of 310 stainless steel at sulfur potentials encountered in coal conversion systems
NASA Technical Reports Server (NTRS)
Rao, D. B.; Nelson, H. G.
1976-01-01
The sulfidation of SAE 310 stainless steel was carried out in gas mixtures of hydrogen and hydrogen sulfide over a range of sulfur potentials anticipated in advanced coal gasification processes. The kinetics, composition, and morphology of sulfide scale formation were studied at a fixed temperature of 1,065 K over a range of sulfur potentials from .00015 Nm to the -2nd power to 900 Nm to the -2nd power. At all sulfur potentials investigated, the sulfide scales were found to be multilayered. The relative thickness of the individual layers as well as the composition was found to depend on the sulfur potential. The reaction was found to obey the parabolic rate law after an initial transient period. Considerably longer transient periods were found to be due to unsteady state conditions resulting from compositional variations in the spinel layer. The sulfur pressure dependence on the parabolic rate constant was found to best fit the equation K sub p equals const. (P sub S2) to the 1/nth power, where n equals 3.7. The growth of the outer layers was found to be primarily due to the diffusion of metal ions, iron being the predominant species. The inner layer growth was due to the dissociation of the primary product at the alloy scale interface and depended on the activity of chromium.
NASA Astrophysics Data System (ADS)
Shen, Jyi-Lai; Wei, Shui-Ken; Lin, Chin-Yuan; Iong Li, Ssu; Huang, Chih-Chuan
2010-04-01
The configuration of a simple improved high efficiency automatic-power-controlled and gain-clamped EDFA (APC-GC-EDFA) for broadband passive optical networking systems (BPON) is presented here. In order to compensate the phase and amplitude variation due to the different distance between the optical line terminal (OLT) and optical network units (ONU), the APC-GC-EDFA need to be employed. A single 980 nm laser module is employed as the primary pump. To extend the bandwidth, all C-band ASE is recycled as the secondary pump to enhance the gain efficiency. An electrical feedback circuit is used as a multi-wavelength channel transmitter monitor for the automatic power control to improve the gain-flattened flatness for stable amplification. The experimental results prove that the EDFA system can provide flatter clamped gain in both C-band and L-band configurations. The gain flatness wavelength ranging from 1530 to 1610 nm is within 32.83 ± 0.64 dB, i.e. below 1.95 %. The gains are clamped at 33.85 ± 0.65 dB for the input signal power of -40 dBm to -10 dBm. The range of noise figure is between 6.37 and 6.56, which is slightly lower compared to that of unclamped amplifiers. This will be very useful for measuring the gain flatness of APC-GC-EDFA. Finally, we have also demonstrated the records of the overall simultaneous dynamics measurements for the new system stabilization. The carrier to noise ratio (CNR) is 49.5 to 50.8 dBc which is above the National Television System Committee (NTSC) standard of 43 dBc, and both composite second order (CSO) 69.2 to 71.5 dBc and composite triple beat (CTB) of 69.8 to 72.2 dBc are above 53 dBc. The recorded corresponding rise-time of 1.087 ms indicates that the system does not exhibit any overshoot of gain or ASE variation due to the signal at the beginning of the pulse.
Polycarbonate-Based Blends for Optical Non-linear Applications.
Stanculescu, F; Stanculescu, A
2016-12-01
This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.
Polycarbonate-Based Blends for Optical Non-linear Applications
NASA Astrophysics Data System (ADS)
Stanculescu, F.; Stanculescu, A.
2016-02-01
This paper presents some investigations on the optical and morphological properties of the polymer (matrix):monomer (inclusion) composite materials obtained from blends of bisphenol A polycarbonate and amidic monomers. For the preparation of the composite films, we have selected monomers characterised by a maleamic acid structure and synthesised them starting from maleic anhydride and aniline derivatives with -COOH, -NO2, -N(C2H5)2 functional groups attached to the benzene ring. The composite films have been deposited by spin coating using a mixture of two solutions, one containing the matrix and the other the inclusion, both components of the composite system being dissolved in the same solvent. The optical transmission and photoluminescence properties of the composite films have been investigated in correlation with the morphology of the films. The scanning electron microscopy and atomic force microscopy have revealed a non-uniform morphology characterised by the development of two distinct phases. We have also investigated the generation of some optical non-linear (ONL) phenomena in these composite systems. The composite films containing as inclusions monomers characterised by the presence of one -COOH or two -NO2 substituent groups to the aromatic nucleus have shown the most intense second-harmonic generation (SHG). The second-order optical non-linear coefficients have been evaluated for these films, and the effect of the laser power on the ONL behaviour of these materials has also been emphasised.
A membraneless biofuel cell powered by ethanol and alcoholic beverage.
Deng, Liu; Shang, Li; Wen, Dan; Zhai, Junfeng; Dong, Shaojun
2010-09-15
In this study, we reported on the construction of a stable single-chamber ethanol/O(2) biofuel cell harvesting energy from the ethanol and alcoholic beverage. We prepared a composite film which consisted of partially sulfonated (3-mercaptopropyl)-trimethoxysilane sol-gel (PSSG) and chitosan (CHI). The combination of ion-exchange capacity sol-gel and biopolymer chitosan not only provided the attached sites for mediator MDB and AuNPs to facilitate the electron transfer along the substrate reaction, but also gave the suitable microenvironment to retain the enzyme activity in long term. The ethanol bioanode was constructed with the film coimmobilized dehydrogenase (ADH), Meldola's blue (MDB) and gold nanoparticles (AuNPs). The MDB/AuNPs/PSSG-CHI-ADH composite modified electrode showed prominent electrocatalytic activity towards the oxidation of ethanol. The oxygen biocathode consisted of laccase and AuNPs immobilized on the PSSG-CHI composite membrane. The AuNPs/PSSG-CHI-laccase modified electrode catalyzed four-electron reduction of O(2) to water, without any mediator. The assembled single-chamber biofuel cell exhibited good stability and power output towards ethanol. The open-circuit voltage of this biofuel cell was 860 mV. The maximum power density of the biofuel cell was 1.56 mWcm(-2) at 550 mV. Most interestingly, this biofuel cell showed the similar performance when the alcoholic beverage acted as the fuel. When this biofuel cell ran with wine as the fuel, the maximum power output density was 3.21 mAcm(-2) and the maximum power density was 1.78 mWcm(-2) at 680 mV of the cell voltage. Our system exhibited stable and high power output in the multi-component substrate condition. This cell has great potential for the development and practical application of bioethanol fuel cell. Copyright 2010 Elsevier B.V. All rights reserved.
Modeling the Structure of Composite Supernova Remnants
NASA Astrophysics Data System (ADS)
Slane, Patrick
2015-09-01
The dynamical structure of a composite SNR, along with its broadband emission, provides crucial constraints on the ejecta mass and explosion energy, the properties of the pulsar that powers the associated wind nebula, and the ultimate fate of the particles that it injects. Of particular importance is the effect of asymmetries introduced through spatial variations in the ambient medium density and by rapid motion of the pulsar. Here we propose hydrodynamical and semi-analytical modeling of G21.5-0.9 and G292.0+1.8, SNRs for which deep Chandra observations have provided key input parameters for these models. We will derive ambient conditions and pulsar properties that lead to the observed morphology, broadband emission, and shock conditions in these important composite systems.
Zhao, Nannan; Angelidaki, Irini; Zhang, Yifeng
2017-02-01
Stack connection (i.e., in series or parallel) of microbial fuel cell (MFC) is an efficient way to boost the power output for practical application. However, there is little information available on short-term changes in stack connection and its effect on the electricity generation and microbial community. In this study, a self-stacked submersible microbial fuel cell (SSMFC) powered by glycerol was tested to elucidate this important issue. In series connection, the maximum voltage output reached to 1.15 V, while maximum current density was 5.73 mA in parallel. In both connections, the maximum power density increased with the initial glycerol concentration. However, the glycerol degradation was even faster in parallel connection. When the SSMFC was shifted from series to parallel connection, the reactor reached to a stable power output without any lag phase. Meanwhile, the anodic microbial community compositions were nearly stable. Comparatively, after changing parallel to series connection, there was a lag period for the system to get stable again and the microbial community compositions became greatly different. This study is the first attempt to elucidate the influence of short-term changes in connection on the performance of MFC stack, and could provide insight to the practical utilization of MFC. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of large scale integration of wind and solar energy in Japan
NASA Astrophysics Data System (ADS)
Esteban, Miguel; Zhang, Qi; Utama, Agya; Tezuka, Tetsuo; Ishihara, Keiichi
2010-05-01
A number of different energy scenarios exist for the development of renewable energy technologies in a variety of countries. Each of these scenarios produces different composition mixes depending on the assumptions on which they are based and the motivation of the authors. These studies are often based on annual data, which make general assumptions about the maximum and minimum output of a range of renewable technologies that are not considered to produce electricity at a predictable rate. These include solar power (which generally varies with the intensity of sunlight) and wind power (depending on the strength of the wind). To take into account the variability in the production of these technologies, many authors assume that the energy production sector cannot whole rely on these technologies, and that enough conventional production capacity (thermo, nuclear or hydro) must exist to cover the essential part of the electricity production. In the present work, the authors used the historical records of wind and solar radiation to estimate the minimum amount of electricity that could be produced by a given composition of renewable energies in the year 2100. The methodology used starts by inputting the geographical location and power rating of each of the power plants in the system. It assumes that PV installations will be located in roof-tops in cities (hence each of the major cities would act as a solar power plant) and that the location of wind farms closely resembles those of today. Wind farms, however, are assumed to use much greater units than those presently used, with each one having a rated power of 20MW. The method then used the historical meteorological data obtained from the Japan Meteorological Agency to compute the power production at each location sequentially for each of the 8760 hours in the year. The results show how although on adverse climate days in certain parts of the country the electricity generation from renewables is greatly reduced, when the results for the country as a whole are considered it is still substantial. The results are greatly dependant on the mix between the proposed renewables (solar and wind), and by comparing different distributions and mixes, the optimum composition for the target country can be established. The methodology proposed is able to obtain the optimum mix of solar and wind power for a given system, provided that adequate storage capacity exists to allow for excess capacity to be used at times of low electricity production (at the comparatively rare times when there is neither enough sun nor wind throughout the country). This highlights the challenges of large-scale integration of renewable technologies into the electricity grid, and the necessity to combine such a system with other renewables such as hydro or ocean energy to further even out the peaks and lows in the demand.
A liquid metal-based structurally embedded vascular antenna: I. Concept and multiphysical modeling
NASA Astrophysics Data System (ADS)
Hartl, D. J.; Frank, G. J.; Huff, G. H.; Baur, J. W.
2017-02-01
This work proposes a new concept for a reconfigurable structurally embedded vascular antenna (SEVA). The work builds on ongoing research of structurally embedded microvascular systems in laminated structures for thermal transport and self-healing and on studies of non-toxic liquid metals for reconfigurable electronics. In the example design, liquid metal-filled channels in a laminated composite act as radiating elements for a high-power planar zig-zag wire log periodic dipole antenna. Flow of liquid metal through the channels is used to limit the temperature of the composite in which the antenna is embedded. A multiphysics engineering model of the transmitting antenna is formulated that couples the electromagnetic, fluid, thermal, and mechanical responses. In part 1 of this two-part work, it is shown that the liquid metal antenna is highly reconfigurable in terms of its electromagnetic response and that dissipated thermal energy generated during high power operation can be offset by the action of circulating or cyclically replacing the liquid metal such that heat is continuously removed from the system. In fact, the SEVA can potentially outperform traditional copper-based antennas in high-power operational configurations. The coupled engineering model is implemented in an automated framework and a design of experiment study is performed to quantify first-order design trade-offs in this multifunctional structure. More rigorous design optimization is addressed in part 2.
[System of ns time-resolved spectroscopy diagnosis and radioprotection].
Yao, Wei-Bo; Guo, Jian-Ming; Zhang, Yong-min; Tang, Jun-Ping; Cheng, Liang; Xu, Qi-fuo
2014-06-01
Cathode plasma of high current electron beam diode is an important research on high power microwave and strong pulsed radio accelerator. It is a reliable method to study cathode plasma by diagnosing the cathode plasma parameters with non-contact spectroscopy measurement system. The present paper introduced the work principle, system composition and performance of the nanosecond (ns) time-resolved spectroscopy diagnosis system. Furthermore, it introduced the implementing method and the temporal relation of lower jitter synchronous trigger system. Simultaneously, the authors designed electromagnetic and radio shield room to protect the diagnosis system due to the high electromagnetic and high X-ray and γ-ray radiation, which seriously interferes with the system. Time-resolved spectroscopy experiment on brass (H62) cathode shows that, the element and matter composition of cathode plasma is clearly increase with the increase in the diode pulsed voltage and current magnitude. The spectroscopy diagnosis system could be of up to 10 ns time resolve capability. It's least is 2 ns. Synchronous trigger system's jitter is less than 4 ns. The spectroscopy diagnosis system will open a new way to study the cathode emission mechanism in depth.
A preliminary design for a satellite power system
NASA Technical Reports Server (NTRS)
Enriquez, Clara V.; Kokaly, Ray; Nandi, Saumya; Timmons, Mike; Garrard, Mark; Mercado, Rommel; Rogers, Brian; Ugaz, Victor
1991-01-01
Outlined here is a preliminary design for a Solar Power Satellite (SPS) system. The SPS will provide a clean, reliable source of energy for mass consumption. The system will use satellites in geostationary orbits around the Earth to capture the sun's energy. The intercepted sunlight will be converted to laser beam energy which can be transmitted to the Earth's surface. Ground systems on the Earth will convert the transmissions from space into electric power. The preliminary design for the SPS consists of one satellite in orbit around the Earth transmitting to one ground station. The SPs technology uses multi-layer solar cell technology arranged on a 20 sq km planar array to intercept sunlight and convert it to an electric voltage. Power conditioning devices then send the electricity to a laser, which transmits the power to the surface of the Earth. A ground station will convert the beam into electricity. Construction will take place in low Earth orbit and array sections, 20 in total, will be sailed on the solar wind out to the GEO location in 150 days. These individual transportation sections are referred to as solar sailing panels (SSAPs). The primary truss elements used to support the arrays are composed on composite tubular members in a pentahedral arrangement. Smart segments consisting of passive and active damping devices will increase the control of dynamic SPS modes.
Peaks, Cliffs and Valleys: The Peculiar Incentives of Teacher Pensions
ERIC Educational Resources Information Center
Costrell, Robert M.; Podgursky, Michael
2008-01-01
Pensions have long been an important part of compensation for teachers in public schools. However, the incentive structures of teacher pension systems are not widely understood, even though they can have powerful effects on the composition of the teaching force and on public finance. In their research, the authors have found that teacher pension…
Noncontact power/interrogation system for smart structures
NASA Astrophysics Data System (ADS)
Spillman, William B., Jr.; Durkee, S.
1994-05-01
The field of smart structures has been largely driven by the development of new high performance designed materials. Use of these materials has been generally limited due to the fact that they have not been in use long enough for statistical data bases to be developed on their failure modes. Real time health monitoring is therefore required for the benefits of structures using these materials to be realized. In this paper a non-contact method of powering and interrogating embedded electronic and opto-electronic systems is described. The technique utilizes inductive coupling between external and embedded coils etched on thin electronic circuit cards. The technique can be utilized to interrogate embedded sensors and to provide > 250 mW for embedded electronics. The system has been successfully demonstrated with a number of composite and plastic materials through material thicknesses up to 1 cm. An analytical description of the system is provided along with experimental results.
NASA Astrophysics Data System (ADS)
Kim, Taeil; Singh, Dileep; Zhao, Weihuan; Yua, Wenhua; France, David M.
2016-05-01
The latent heat thermal energy storage (LHTES) systems for concentrated solar power (CSP) plants with advanced power cycle require high temperature phase change materials (PCMs), Graphite foams with high thermal conductivity to enhance the poor thermal conductivity of PCMs. Brazing of the graphite foams to the structural metals of the LHTES system could be a method to assemble the system and a method to protect the structural metals from the molten salts. In the present study, the LHTES prototype capsules using MgCl2-graphite foam composites were assembled by brazing and welding, and tested to investigate the corrosion attack of the PCM salt on the BNi-4 braze. The microstructural analysis showed that the BNi-4 braze alloy can be used not only for the joining of structure alloy to graphite foams but also for the protecting of structure alloy from the corrosion by PCM.
Enhanced Boiling on Micro-Configured Composite Surfaces Under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Zhang, Nengli; Chai, An-Ti
1999-01-01
In order to accommodate the growing thermal management needs of future space platforms, several two-phase active thermal control systems (ATCSs) have evolved and were included in the designs of space stations. Compared to the pumped single-phase liquid loops used in the conventional Space Transportation System and Spacelab, ATCSs offer significant benefits that may be realized by adopting a two-phase fluid-loop system. Alternately, dynamic power systems (DPSs), based on the Rankine cycle, seem inevitably to be required to supply the electrical power requirements of expanding space activities. Boiling heat transfer is one of the key technologies for both ATCSs and DPSs. Nucleate boiling near critical heat flux (CHF) can transport very large thermal loads with much smaller device size and much lower pumping power. However, boiling performance deteriorates in a reduced gravity environment and operation in the CHF regime is precarious because any slight overload will cause the heat transfer to suddenly move to the film boiling regime, which in turn, will result in burnout of the heat transfer surfaces. New materials, such as micro-configured metal-graphite composites, can provide a solution for boiling enhancement. It has been shown experimentally that this type of material manifests outstanding boiling heat transfer performance and their CHF is also extended to higher values. Due to the high thermal conductivity of graphite fiber (up to 1,200 W/m-K in the fiber direction), the composite surfaces are non-isothermal during the boiling process. The composite surfaces are believed to have a much wider safe operating region (a more uniform boiling curve in the CHF regime) because non-isothermal surfaces have been found to be less sensitive to variations of wall superheat in the CHF regime. The thermocapillary forces formed by the temperature difference between the fiber tips and the metal matrix play a more important role than the buoyancy in the bubble detachment, for the bubble detachment manifests itself by a necking process which should not be weakened by reduced gravity. In addition, the composite surfaces introduce no extra pressure drop, no fouling and do not impose significant primary or maintenance costs. All of these suggest that this type of composite is an ideal material for the challenge of accounting for both reliability and economy of the relevant components applied in the ATCSs, the DPSs and other devices in future space missions. The aim of the proposed work is to experimentally investigate high nucleate pool boiling performance on a micro-configured metal-graphite composite surface and to determine the mechanisms of the nucleate boiling heat transfer both experimentally and theoretically. Freon-113 and water will be used as the test liquids to investigate wettability effects on boiling characteristics. The Cu-Gr and Al-Gr composites with various volume fractions of graphite fibers will be tested to obtain the heat transfer characteristic data in the nucleate boiling region and in the CHF regime. In the experiments, the bubble emission and coalescence processes will be recorded by a video camera with a magnifying borescope probe immersed in the working fluid. The temperature profile in the thermal boundary layer on the composite surfaces will be measured by a group of micro thermocouples consisting of four ultra fine micro thermocouples. This instrument was developed and successfully used to measure the temperature profile of evaporating liquid thin layers by the proposers in a study performed at the NASA/Lewis Research Center. A two tier model to explain the nucleate boiling process and the performance enhancement on the composite surfaces has been suggested by the authors. According to the model, the thicknesses of the microlayer and the macrolayer underneath the bubbles and mushrooms, can be estimated by the geometry of the composite surface. The experimental results will be compared to the predictions from the model, and in turn, to revise and improve it.
NASA Technical Reports Server (NTRS)
2012-01-01
Topics covered include: Instrument Suite for Vertical Characterization of the Ionosphere-Thermosphere System; Terahertz Radiation Heterodyne Detector Using Two-Dimensional Electron Gas in a GaN Heterostructure; Pattern Recognition Algorithm for High-Sensitivity Odorant Detection in Unknown Environments; Determining Performance Acceptability of Electrochemical Oxygen Sensors; Versatile Controller for Infrared Lamp and Heater Arrays; High-Speed Scanning Interferometer Using CMOS Image Sensor and FPGA Based on Multifrequency Phase-Tracking Detection; Ultra-Low-Power MEMS Selective Gas Sensors; Compact Receiver Front Ends for Submillimeter-Wave Applications; Dynamically Reconfigurable Systolic Array Accelerator; Blocking Losses With a Photon Counter; Motion-Capture-Enabled Software for Gestural Control of 3D Mod; Orbit Software Suite; CoNNeCT Baseband Processor Module Boot Code SoftWare (BCSW); Trajectory Software With Upper Atmosphere Model; ALSSAT Version 6.0; Employing a Grinding Technology to Assess the Microbial Density for Encapsulated Organisms; Demonstration of Minimally Machined Honeycomb Silicon Carbide Mirrors; Polyimide Aerogel Thin Films; Nanoengineered Thermal Materials Based on Carbon Nanotube Array Composites; Composite Laminate With Coefficient of Thermal Expansion Matching D263 Glass; Robust Tensioned Kevlar Suspension Design; Focal Plane Alignment Utilizing Optical CMM; Purifying, Separating, and Concentrating Cells From a Sample Low in Biomass; Virtual Ultrasound Guidance for Inexperienced Operators; Beat-to-Beat Blood Pressure Monitor; Non-Contact Conductivity Measurement for Automated Sample Processing Systems; An MSK Radar Waveform; Telescope Alignment From Sparsely Sampled Wavefront Measurements Over Pupil Subapertures; Method to Remove Particulate Matter from Dusty Gases at Low Pressures; Terahertz Quantum Cascade Laser With Efficient Coupling and Beam Profile; Measurement Via Optical Near-Nulling and Subaperture Stitching; 885-nm Pumped Ceramic Nd:YAG Master Oscillator Power Amplifier Laser System; Airborne Hyperspectral Imaging System; Heat Shield Employing Cured Thermal Protection Material Blocks Bonded in a Large-Cell Honeycomb Matrix; and Asymmetric Supercapacitor for Long-Duration Power Storage.
NASA Astrophysics Data System (ADS)
Saprykin, A. A.; Sharkeev, Yu P.; Ibragimov, E. A.; Babakova, E. V.; Dudikhin, D. V.
2016-07-01
Alloys based on the titanium-niobium system are widely used in implant production. It is conditional, first of all, on the low modulus of elasticity and bio-inert properties of an alloy. These alloys are especially important for tooth replacement and orthopedic surgery. At present alloys based on the titanium-niobium system are produced mainly using conventional metallurgical methods. The further subtractive manufacturing an end product results in a lot of wastes, increasing, therefore, its cost. The alternative of these processes is additive manufacturing. Selective laser melting is a technology, which makes it possible to synthesize products of metal powders and their blends. The point of this technology is laser melting a layer of a powdered material; then a sintered layer is coated with the next layer of powder etc. Complex products and working prototypes are made on the base of this technology. The authors of this paper address to the issue of applying selective laser melting in order to synthesize a binary alloy of a composite powder based on the titanium-niobium system. A set of 10x10 mm samples is made in various process conditions. The samples are made by an experimental selective laser synthesis machine «VARISKAF-100MB». The machine provides adjustment of the following process variables: laser emission power, scanning rate and pitch, temperature of powder pre-heating, thickness of the layer to be sprinkled, and diameter of laser spot focusing. All samples are made in the preliminary vacuumized shielding atmosphere of argon. The porosity and thickness of the sintered layer related to the laser emission power are shown at various scanning rates. It is revealed that scanning rate and laser emission power are adjustable process variables, having the greatest effect on forming the sintered layer.
Hysteresis and memory factor of the Kerr effect in blue phases
NASA Astrophysics Data System (ADS)
Nordendorf, Gaby; Lorenz, Alexander; Hoischen, Andreas; Schmidtke, Jürgen; Kitzerow, Heinz; Wilkes, David; Wittek, Michael
2013-11-01
The performance of a polymer-stabilized blue phase system based on a nematic host with large dielectric anisotropy and a chiral dopant with high helical twisting power is investigated and the influence of the reactive monomer composition on the electro-optic characteristics is studied. Field-induced birefringence with a Kerr coefficient greater than 1 nm V-2 can be achieved in a large temperature range from well below 20 °C to above 55 °C. The disturbing influences of electro-optic hysteresis and memory effects can be reduced by diligent choice of the composition and appropriate electric addressing.
Design of power electronics for TVC EMA systems
NASA Technical Reports Server (NTRS)
Nelms, R. Mark
1993-01-01
The Composite Development Division of the Propulsion Laboratory at Marshall Space Flight Center (MSFC) is currently developing a class of electromechanical actuators (EMA's) for use in space transportation applications such as thrust vector control (TVC) and propellant control valves (PCV). These high power servomechanisms will require rugged, reliable, and compact power electronic modules capable of modulating several hundred amperes of current at up to 270 volts. MSFC has selected the brushless dc motor for implementation in EMA's. This report presents the results of an investigation into the applicability of two new technologies, MOS-controlled thyristors (MCT's) and pulse density modulation (PDM), to the control of brushless dc motors in EMA systems. MCT's are new power semiconductor devices, which combine the high voltage and current capabilities of conventional thyristors and the low gate drive requirements of metal oxide semiconductor field effect transistors (MOSFET's). The commanded signals in a PDM system are synthesized using a series of sinusoidal pulses instead of a series of square pulses as in a pulse width modulation (PWM) system. A resonant dc link inverter is employed to generate the sinusoidal pulses in the PDM system. This inverter permits zero-voltage switching of all semiconductors which reduces switching losses and switching stresses. The objectives of this project are to develop and validate an analytical model of the MCT device when used in high power motor control applications and to design, fabricate, and test a prototype electronic circuit employing both MCT and PDM technology for controlling a brushless dc motor.
High-efficiency integrated piezoelectric energy harvesting systems
NASA Astrophysics Data System (ADS)
Hande, Abhiman; Shah, Pradeep
2010-04-01
This paper describes hierarchically architectured development of an energy harvesting (EH) system that consists of micro and/or macro-scale harvesters matched to multiple components of remote wireless sensor and communication nodes. The micro-scale harvesters consist of thin-film MEMS piezoelectric cantilever arrays and power generation modules in IC-like form to allow efficient EH from vibrations. The design uses new high conversion efficiency thin-film processes combined with novel cantilever structures tuned to multiple resonant frequencies as broadband arrays. The macro-scale harvesters are used to power the collector nodes that have higher power specifications. These bulk harvesters can be integrated with efficient adaptive power management circuits that match transducer impedance and maximize power harvested from multiple scavenging sources with very low intrinsic power consumption. Texas MicroPower, Inc. is developing process based on a composition that has the highest reported energy density as compared to other commercially available bulk PZT-based sensor/actuator ceramic materials and extending it to thin-film materials and miniature conversion transducer structures. The multiform factor harvesters can be deployed for several military and commercial applications such as underground unattended sensors, sensors in oil rigs, structural health monitoring, supply chain management, and battlefield applications such as sensors on soldier apparel, equipment, and wearable electronics.
Design definition of a mechanical capacitor
NASA Technical Reports Server (NTRS)
Michaelis, T. D.; Schlieban, E. W.; Scott, R. D.
1977-01-01
A design study and analyses of a 10 kW-hr, 15 kW mechanical capacitor system was studied. It was determined that magnetically supported wheels constructed of advanced composites have the potential for high energy density and high power density. Structural concepts are analyzed that yield the highest energy density of any structural design yet reported. Particular attention was paid to the problem of 'friction' caused by magnetic and I to the second power R losses in the suspension and motor-generator subsystems, and low design friction levels have been achieved. The potentially long shelf life of this system, and the absence of wearing parts, provide superior performance over conventional flywheels supported with mechanical bearings. Costs and economies of energy storage wheels were reviewed briefly.
NASA Astrophysics Data System (ADS)
Reis, S.; Silva, M. P.; Castro, N.; Correia, V.; Rocha, J. G.; Martins, P.; Lasheras, A.; Gutierrez, J.; Lanceros-Mendez, S.
2016-08-01
Harvesting magnetic energy from the environment is becoming increasingly attractive for being a renewable and inexhaustible power source, ubiquitous and accessible in remote locations. In particular, magnetic harvesting with polymer-based magnetoelectric (ME) materials meet the industry demands of being flexible, showing large area potential, lightweight and biocompatibility. In order to get the best energy harvesting process, the extraction circuit needs to be optimized in order to be useful for powering devices. This paper discusses the design and performance of five interface circuits, a full-wave bridge rectifier, two Cockcroft-Walton voltage multipliers (with 1 and 2 stages) and two Dickson voltage multipliers (with 2 and 3 stages), for the energy harvesting from a Fe61.6Co16.4Si10.8B11.2 (Metglas)/polyvinylidene fluoride/Metglas ME composite. Maximum power and power density values of 12 μW and 0.9 mW cm-3 were obtained, respectively, with the Dickson voltage multiplier with two stages, for a load resistance of 180 kΩ, at 7 Oe DC magnetic field and a 54.5 kHz resonance frequency. Such performance is useful for microdevice applications in hard-to-reach locations and for traditional devices such as electric windows, door locking, and tire pressure monitoring.
Smart grid as a service: a discussion on design issues.
Chao, Hung-Lin; Tsai, Chen-Chou; Hsiung, Pao-Ann; Chou, I-Hsin
2014-01-01
Smart grid allows the integration of distributed renewable energy resources into the conventional electricity distribution power grid such that the goals of reduction in power cost and in environment pollution can be met through an intelligent and efficient matching between power generators and power loads. Currently, this rapidly developing infrastructure is not as "smart" as it should be because of the lack of a flexible, scalable, and adaptive structure. As a solution, this work proposes smart grid as a service (SGaaS), which not only allows a smart grid to be composed out of basic services, but also allows power users to choose between different services based on their own requirements. The two important issues of service-level agreements and composition of services are also addressed in this work. Finally, we give the details of how SGaaS can be implemented using a FIPA-compliant JADE multiagent system.
Smart Grid as a Service: A Discussion on Design Issues
Tsai, Chen-Chou; Chou, I-Hsin
2014-01-01
Smart grid allows the integration of distributed renewable energy resources into the conventional electricity distribution power grid such that the goals of reduction in power cost and in environment pollution can be met through an intelligent and efficient matching between power generators and power loads. Currently, this rapidly developing infrastructure is not as “smart” as it should be because of the lack of a flexible, scalable, and adaptive structure. As a solution, this work proposes smart grid as a service (SGaaS), which not only allows a smart grid to be composed out of basic services, but also allows power users to choose between different services based on their own requirements. The two important issues of service-level agreements and composition of services are also addressed in this work. Finally, we give the details of how SGaaS can be implemented using a FIPA-compliant JADE multiagent system. PMID:25243214
Heat Pipes and Heat Rejection Component Testing at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Sanzi, James L.; Jaworske, Donald A.
2012-01-01
Titanium-water heat pipes are being evaluated for use in the heat rejection system for space fission power systems. The heat rejection syst em currently comprises heat pipes with a graphite saddle and a composite fin. The heat input is a pumped water loop from the cooling of the power conversion system. The National Aeronautics and Space Administration has been life testing titanium-water heat pipes as well as eval uating several heat pipe radiator designs. The testing includes thermal modeling and verification of model, material compatibility, frozen startup of heat pipe radiators, and simulating low-gravity environments. Future thermal testing of titanium-water heat pipes includes low-g ravity testing of thermosyphons, radiation testing of heat pipes and fin materials, water pump performance testing, as well as Small Busine ss Innovation Research funded deliverable prototype radiator panels.
A sphere-scanning radiometer for rapid directional measurements of sky and ground radiance
NASA Astrophysics Data System (ADS)
Deering, D. W.; Leone, P.
1986-02-01
The development of the Portable Apparatus for Rapid Acquisition of Bidirectional Observations of the Land and Atmosphere (PARABOLA) and a transportable platform system is examined. The PARABOLA is a three channel rotating head radiometer which samples in 15 deg instantaneous field-of-view sectors using a sensor head, data recording unit, and an internal power pack. The composition and operation of the sensor scan, data, and power systems are described. The calibration and laboratory testing of the instrument is discussed. The field testing of a tripod-and-boom mount apparatus, a boom-equipped instrument van, and a hot-air balloon mount, in order to select the proper support device for the PARABOLA sensor head is analyzed. The design and functions of the Transportable Pickup Mount System, which is a lightweight, collapsible boom apparatus, are described.
Adaptive Optics System with Deformable Composite Mirror and High Speed, Ultra-Compact Electronics
NASA Astrophysics Data System (ADS)
Chen, Peter C.; Knowles, G. J.; Shea, B. G.
2006-06-01
We report development of a novel adaptive optics system for optical astronomy. Key components are very thin Deformable Mirrors (DM) made of fiber reinforced polymer resins, subminiature PMN-PT actuators, and low power, high bandwidth electronics drive system with compact packaging and minimal wiring. By using specific formulations of fibers, resins, and laminate construction, we are able to fabricate mirror face sheets that are thin (< 2mm), have smooth surfaces and excellent optical shape. The mirrors are not astigmatic and do not develop surface irregularities when cooled. The actuators are small footprint multilayer PMN-PT ceramic devices with large stroke (2- 20 microns), high linearity, low hysteresis, low power, and flat frequency response to >2 KHz. By utilizing QorTek’s proprietary synthetic impendence power supply technology, all the power, control, and signal extraction for many hundreds to 1000s of actuators and sensors can be implemented on a single matrix controller printed circuit board co-mounted with the DM. The matrix controller, in turn requires only a single serial bus interface, thereby obviating the need for massive wiring harnesses. The technology can be scaled up to multi-meter aperture DMs with >100K actuators.
NASA Technical Reports Server (NTRS)
Barnstable, Bob; Polte, Hans; Kepes, Paul; Walker, Kevin; Jacobs, Jeff; Williams, Stephen
1990-01-01
The Copernicus spacecraft, to be launched on May 4, 2009, is designed for scientific exploration of the planet Pluto. The main objectives of this exploration is to accurately determine the mass, density, and composition of the two bodies in the Pluto-Charon system. A further goal of the exploration is to obtain precise images of the system. The spacecraft will be designed for three axis stability control. It will use the latest technological advances to optimize the performance, reliability, and cost of the spacecraft. Due to the long duration of the mission, nominally 12.6 years, the spacecraft will be powered by a long lasting radioactive power source. Although this type of power may have some environmental drawbacks, currently it is the only available source that is suitable for this mission. The planned trajectory provides flybys of Jupiter and Saturn. These flybys provide an opportunity for scientific study of these planets in addition to Pluto. The information obtained on these flybys will supplement the data obtained by the Voyager and Galileo missions. The topics covered include: (1) scientific instrumentation; (2) mission management, planning, and costing; (3) power and propulsion system; (4) structural subsystem; (5) command, control, and communication; and (6) attitude and articulation control.
Time-varying causal network of the Korean financial system based on firm-specific risk premiums
NASA Astrophysics Data System (ADS)
Song, Jae Wook; Ko, Bonggyun; Cho, Poongjin; Chang, Woojin
2016-09-01
The aim of this paper is to investigate the Korean financial system based on time-varying causal network. We discover many stylized facts by utilizing the firm-specific risk premiums for measuring the causality direction from a firm to firm. At first, we discover that the interconnectedness of causal network is affected by the outbreak of financial events; the co-movement of firm-specific risk premium is strengthened after each positive event, and vice versa. Secondly, we find that the major sector of the Korean financial system is the Depositories, and the financial reform in June-2011 achieves its purpose by weakening the power of risk-spillovers of Broker-Dealers. Thirdly, we identify that the causal network is a small-world network with scale-free topology where the power-law exponents of out-Degree and negative event are more significant than those of in-Degree and positive event. Lastly, we discuss that the current aspects of causal network are closely related to the long-term future scenario of the KOSPI Composite index where the direction and stability are significantly affected by the power of risk-spillovers and the power-law exponents of degree distributions, respectively.
Compositional and enumerative designs for medical language representation.
Rassinoux, A. M.; Miller, R. A.; Baud, R. H.; Scherrer, J. R.
1997-01-01
Medical language is in essence highly compositional, allowing complex information to be expressed from more elementary pieces. Embedding the expressive power of medical language into formal systems of representation is recognized in the medical informatics community as a key step towards sharing such information among medical record, decision support, and information retrieval systems. Accordingly, such representation requires managing both the expressiveness of the formalism and its computational tractability, while coping with the level of detail expected by clinical applications. These desiderata can be supported by enumerative as well as compositional approaches, as argued in this paper. These principles have been applied in recasting a frame-based system for general medical findings developed during the 1980s. The new system captures the precise meaning of a subset of over 1500 medical terms for general internal medicine identified from the Quick Medical Reference (QMR) lexicon. In order to evaluate the adequacy of this formal structure in reflecting the deep meaning of the QMR findings, a validation process was implemented. It consists of automatically rebuilding the semantic representation of the QMR findings by analyzing them through the RECIT natural language analyzer, whose semantic components have been adjusted to this frame-based model for the understanding task. PMID:9357700
Compositional and enumerative designs for medical language representation.
Rassinoux, A M; Miller, R A; Baud, R H; Scherrer, J R
1997-01-01
Medical language is in essence highly compositional, allowing complex information to be expressed from more elementary pieces. Embedding the expressive power of medical language into formal systems of representation is recognized in the medical informatics community as a key step towards sharing such information among medical record, decision support, and information retrieval systems. Accordingly, such representation requires managing both the expressiveness of the formalism and its computational tractability, while coping with the level of detail expected by clinical applications. These desiderata can be supported by enumerative as well as compositional approaches, as argued in this paper. These principles have been applied in recasting a frame-based system for general medical findings developed during the 1980s. The new system captures the precise meaning of a subset of over 1500 medical terms for general internal medicine identified from the Quick Medical Reference (QMR) lexicon. In order to evaluate the adequacy of this formal structure in reflecting the deep meaning of the QMR findings, a validation process was implemented. It consists of automatically rebuilding the semantic representation of the QMR findings by analyzing them through the RECIT natural language analyzer, whose semantic components have been adjusted to this frame-based model for the understanding task.
NASA Astrophysics Data System (ADS)
Chandler, K.; Ferguson, S.; Graver, T.; Csipkes, A.; Mendez, A.
2008-03-01
We report in this paper on the design and development of a novel on-line structural health monitoring and fire detection system based on an array of optical fiber Bragg grating (FBG) sensors and interrogation system installed on a new, precommercial compact aircraft. A combined total of 17 FBG sensors - strain, temperature and high-temperature - were installed at critical locations in an around the wings, fuselage and engine compartment of a prototype, Comp Air CA 12 all-composite, ten-passenger personal airplane powered by a 1,650 hp turbine engine. The sensors are interrogated online and in real time by a swept laser FBG interrogator (Micron Optics sm125-700) mounted on board the plane. Sensors readings are then combined with the plane's avionics system and displayed on the pilot's aviation control panel. This system represents the first of its kind in commercial, small frame, airplanes and a first for optical fiber sensors.
An 802.11 n wireless local area network transmission scheme for wireless telemedicine applications.
Lin, C F; Hung, S I; Chiang, I H
2010-10-01
In this paper, an 802.11 n transmission scheme is proposed for wireless telemedicine applications. IEEE 802.11n standards, a power assignment strategy, space-time block coding (STBC), and an object composition Petri net (OCPN) model are adopted. With the proposed wireless system, G.729 audio bit streams, Joint Photographic Experts Group 2000 (JPEG 2000) clinical images, and Moving Picture Experts Group 4 (MPEG-4) video bit streams achieve a transmission bit error rate (BER) of 10-7, 10-4, and 103 simultaneously. The proposed system meets the requirements prescribed for wireless telemedicine applications. An essential feature of this proposed transmission scheme is that clinical information that requires a high quality of service (QoS) is transmitted at a high power transmission rate with significant error protection. For maximizing resource utilization and minimizing the total transmission power, STBC and adaptive modulation techniques are used in the proposed 802.11 n wireless telemedicine system. Further, low power, direct mapping (DM), low-error protection scheme, and high-level modulation are adopted for messages that can tolerate a high BER. With the proposed transmission scheme, the required reliability of communication can be achieved. Our simulation results have shown that the proposed 802.11 n transmission scheme can be used for developing effective wireless telemedicine systems.
NASA Astrophysics Data System (ADS)
Dolotovskii, I. V.; Dolotovskaya, N. V.; Larin, E. A.
2018-05-01
The article presents the architecture and content of a specialized analytical system for monitoring operational conditions, planning of consumption and generation of energy resources, long-term planning of production activities and development of a strategy for the development of the energy complex of gas processing enterprises. A compositional model of structured data on the equipment of the main systems of the power complex is proposed. The correctness of the use of software modules and the database of the analytical system is confirmed by comparing the results of measurements on the equipment of the electric power system and simulation at the operating gas processing plant. A high accuracy in the planning of consumption of fuel and energy resources has been achieved (the error does not exceed 1%). Information and program modules of the analytical system allow us to develop a strategy for improving the energy complex in the face of changing technological topology and partial uncertainty of economic factors.
Laminar composite structures for high power actuators
NASA Astrophysics Data System (ADS)
Hobosyan, M. A.; Martinez, P. M.; Zakhidov, A. A.; Haines, C. S.; Baughman, R. H.; Martirosyan, K. S.
2017-05-01
Twisted laminar composite structures for high power and large-stroke actuators based on coiled Multi Wall Carbon Nanotube (MWNT) composite yarns were crafted by integrating high-density Nanoenergetic Gas Generators (NGGs) into carbon nanotube sheets. The linear actuation force, resulting from the pneumatic force caused by expanding gases confined within the pores of laminar structures and twisted carbon nanotube yarns, can be further amplified by increasing NGG loading and yarns twist density, as well as selecting NGG compositions with high energy density and large-volume gas generation. Moreover, the actuation force and power can be tuned by the surrounding environment, such as to increase the actuation by combustion in ambient air. A single 300-μm-diameter integrated MWNT/NGG coiled yarn produced 0.7 MPa stress and a contractile specific work power of up to 4.7 kW/kg, while combustion front propagated along the yarn at a velocity up to 10 m/s. Such powerful yarn actuators can also be operated in a vacuum, enabling their potential use for deploying heavy loads in outer space, such as to unfold solar panels and solar sails.
NASA Technical Reports Server (NTRS)
1990-01-01
Spang & Company's new configuration of converter transformer cores is a composite of gapped and ungapped cores assembled together in concentric relationship. The net effect of the composite design is to combine the protection from saturation offered by the gapped core with the lower magnetizing requirement of the ungapped core. The uncut core functions under normal operating conditions and the cut core takes over during abnormal operation to prevent power surges and their potentially destructive effect on transistors. Principal customers are aerospace and defense manufacturers. Cores also have applicability in commercial products where precise power regulation is required, as in the power supplies for large mainframe computers.
NASA Astrophysics Data System (ADS)
Silva, Marco Aurelio Pinto
Low power portable electronic devices and wireless sensors networks, for application in implantable biomedical sensors and monitoring for agricultural, environmental, building, military and industrial processes are typically powered by batteries, which have a finite supply of energy. The combination of an energy harvesting system with a rechargeable battery is the best way to self-power devices for their entirely lifetime. These harvesters collect energy (in the order of muW to mW) from ambient sources (thermal, mechanical or electromagnetic, among others). Among them, energy harvesting from electromagnetic signals is one of the most challenging and interesting harvesting systems and has been poorly addressed. Magnetoelectric (ME) composite materials are an innovative tool that can convert such electromagnetic singnals into an electrical voltage and can be also be used as novel sensors and actuators. The main objective of this work is to optimize ME laminated composites for sensor, actuators and energy harvesting devices. It is also an objective to find new applications for this ME effect. From the different composite structures, laminated ME composites, comprising bonded piezoelectric and magnetostrictive layers, are the ones with the highest ME response, thus being the most studied materials for their implementation into technological applications. With high ME coupling, easy fabrication, large scale production ability, low-temperature processing into a variety of forms and, in some cases, biocompatibility, polymer based ME materials emerged as an original approach. In this work Vitrovac and Metglas were used as magnetostrictive materials due to their high magnetostriction at low fields, and .poly(vinylidene fluoride) was used as the polymeric piezoelectric material, due to his high piezoelectric constant compared to other polymers. Thus, the effect of the bonding layer type and piezoelectric layer thickness is reported. Vitrovac/poly(vinylidene fluoride) magnetoelectric laminate were produced and experimental results show that the ME response increases with increasing piezoelectric thickness, the highest ME response of 53 V˙cm-1˙Oe-1 being obtained for an 110 mum thick piezoelectric bonded with M- Bond epoxy. The behavior of the ME laminates with increasing temperatures up to 90 °C shows a decrease larger than 80% in the ME response. A finite element method (FEM) was used to evaluate the experimental results. The obtained results show the critical role of the bonding layer and piezoelectric layer thickness in the ME performance of laminate composites From the ME measurements it was concluded that tri-layered composites structures (Vitrovac/poly(vinylidene fluoride)/Vitrovac ), show a high ME response (75 V cm-1 Oe-1) and that the ME voltage coefficient decreases with increasing longitudinal size aspect ratio and increases with the lowest transversal aspect ratio between piezoelectric and magnetostrictive layers. Relevant parameters such as sensibility, accuracy, linearity, hysteresis and resolution have been vaguely or never discussed in polymer-based ME composites. This work reports on those parameters on a Metglas/poly(vinylidene fluoride)/Metglas magnetoelectric laminate, the polymer-based composite with the highest ME response. The sensibility and resolution determined for the DC (30 mV.Oe-1 and 8 muOe) and AC magnetic field sensor (992 mV.Oe-1 and 0.3 muOe) are favorably comparable with the most recent and sensitive polymer-based ME sensors. The design and performance of five interface circuits, a full-wave bridge rectifier, two Cockcroft-Walton voltage multipliers (with 1 and 2 stages) and two Dickson voltage multipliers (with 2 and 3 stages), for the energy harvesting from a Metglas/PVDF/Metglas ME composite were discussed. Maximum power and power density values of 12 muW and 0.9 mW.cm-3 were obtained with the two stages Dickson voltage multiplier. Finally, it is successfully demonstrated that nanoparticle's magnetostriction can be accurately determined based on the magnetoelectric effect measured on polymer composite materials. This represents a novel, simple and versatile method for the determination of particle's magnetostriction at the nano scale and in their dispersed state. Thus, the developed polymer based magnetoelectric laminate composites showed suitable characteristics for applications in sensors and energy harvesting devices.
NASA Technical Reports Server (NTRS)
Muraki, Y.
1985-01-01
Based on the air shower data, the chemical composition of the primary cosmic rays in the energy range 10 to the 15th power - 10 to the 17th power eV was obtained. The method is based on a well known N sub e-N sub mu and N sub e-N sub gamma. The simulation is calibrated by the CERN SPS pp collider results.
NASA Astrophysics Data System (ADS)
Petrosyan, V. G.; Yeghoyan, E. A.; Grigoryan, A. D.; Petrosyan, A. P.; Movsisyan, M. R.
2018-02-01
One of the main objectives of severe accident management at a nuclear power plant is to protect the integrity of the containment, for which the most serious threat is possible ignition of the generated hydrogen. There should be a monitoring system providing information support of NPP personnel, ensuring data on the current state of a containment gaseous environment and trends in its composition changes. Monitoring systems' requisite characteristics definition issues are considered by the example of a particular power unit. Major characteristics important for proper information support are discussed. Some features of progression of severe accident scenarios at considered power unit are described and a possible influence of the hydrogen concentration monitoring system performance on the information support reliability in a severe accident is analyzed. The analysis results show that the following technical characteristics of the combustible gas monitoring systems are important for the proper information support of NPP personnel in the event of a severe accident at a nuclear power plant: measured parameters, measuring ranges and errors, update rate, minimum detectable concentration of combustible gas, monitoring reference points, environmental qualification parameters of the system components. For NPP power units with WWER-440/270 (230) type reactors, which have a relatively small containment volume, the update period for measurement results is a critical characteristic of the containment combustible gas monitoring system, and the choice of monitoring reference points should be focused not so much on the definition of places of possible hydrogen pockets but rather on the definition of places of a possible combustible mixture formation. It may be necessary for the above-mentioned power units to include in the emergency operating procedures measures aimed at a timely heat removal reduction from the containment environment if there are signs of a severe accident phase approaching to prevent a combustible mixture formation in the containment.
'NASA Invention of the Year' Controls Noise and Vibration
NASA Technical Reports Server (NTRS)
2007-01-01
Developed at NASA's Langley Research Center, the Macro-Fiber Composite (MFC) is designed to control vibration, noise, and deflections in composite structural beams and panels. Smart Material Corporation specializes in the development of piezocomposite components, and licensed the MFC technology from Langley in 2002. To date, Smart Material Corporation has sold MFCs to over 120 customers, including such industry giants as Volkswagen, Toyota, Honda, BMW, General Electric, and the tennis company, HEAD. The company estimates that its customers have filed at least 100 patents for their various unique uses of the technology. In addition, the company's product portfolio has grown to include piezoceramic fibers and fiber composites, piezoceramic actuators and sensors, and test equipment for these products. It also offers a compact, lightweight power system for MFC testing and validation. Consumer applications already on the market include piezoelectric systems as part of audio speakers, phonograph cartridges and microphones, and recreational products requiring vibration control, such as skis, snowboards, baseball bats, hockey sticks, and tennis racquets.
NASA Astrophysics Data System (ADS)
kumar, K. Selva; Rajendran, S.; Prabhu, M. Ramesh
2017-10-01
The present work describes the sulfonated Titania directly blended with Poly (Vinylidene fluoride-co-hexafluoropropylene) as a host polymer by solvent casting technique for PEM fuel cell application. Characterization studies such as FT-IR, SEM, EDX, AFM, Proton conductivity, contact angle measurement, IEC, TG, water uptake, tensile strength were performed by for synthesized proton conducting polymer electrolytes. The maximum proton conductivity value was found to be 3.6 × 10-3S/cm for 25 wt% sulfonated Titania based system at 80 °C. The temperature dependent proton conductivity of the polymer electrolyte follows an Arrhenius relationship. Surface morphology of the composite membranes was investigated by tapping mode. Thermal stability of the system was studied by TG analysis. The fabricated composite membranes with high proton conductivity, good water uptake and IEC parameters exhibited a maximum fuel cell power density of 85 Mw/cm2for PEM fuel cell application.
Simulations of Atmospheric Plasma Arcs
NASA Astrophysics Data System (ADS)
Pearcy, Jacob; Chopra, Nirbhav; Jaworski, Michael
2017-10-01
We present the results of computer simulation of cylindrical plasma arcs with characteristics similar to those predicted to be relevant in magnetohydrodynamic (MHD) power conversion systems. These arcs, with core temperatures on the order of 1 eV, place stringent limitations on the lifetime of conventional electrodes used in such systems, suggesting that a detailed analysis of arc characteristics will be crucial in designing more robust electrode systems. Simulations utilize results from NASA's Chemical Equilibrium with Applications (CEA) program to solve the Elenbaas-Heller equation in a variety of plasma compositions, including approximations of coal-burning plasmas as well as pure gas discharges. The effect of carbon dioxide injection on arc characteristics, emulating discharges from molten carbonate salt electrodes, is also analyzed. Results include radial temperature profiles, composition maps, and current-voltage (IV) characteristics of these arcs. Work supported by DOE contract DE-AC02-09CH11466.
Integrated technology wing design study
NASA Technical Reports Server (NTRS)
Hays, A. P.; Beck, W. E.; Morita, W. H.; Penrose, B. J.; Skarshaug, R. E.; Wainfan, B. S.
1984-01-01
The technology development costs and associated benefits in applying advanced technology associated with the design of a new wing for a new or derivative trijet with a capacity for 350 passengers and maximum range of 8519 km, entering service in 1990 were studied. The areas of technology are: (1) airfoil technology; (2) planform parameters; (3) high lift; (4) pitch active control system; (5) all electric systems; (6) E to 3rd power propulsion; (7) airframe/propulsion integration; (8) graphite/epoxy composites; (9) advanced aluminum alloys; (10) titanium alloys; and (11) silicon carbide/aluminum composites. These technologies were applied to the reference aircraft configuration. Payoffs were determined for block fuel reductions and net value of technology. These technologies are ranked for the ratio of net value of technology (NVT) to technology development costs.
Mediator- and co-catalyst-free direct Z-scheme composites of Bi2WO6-Cu3P for solar-water splitting.
Rauf, Ali; Ma, Ming; Kim, Sungsoon; Sher Shah, Md Selim Arif; Chung, Chan-Hwa; Park, Jong Hyeok; Yoo, Pil J
2018-02-08
Exploring new single, active photocatalysts for solar-water splitting is highly desirable to expedite current research on solar-chemical energy conversion. In particular, Z-scheme-based composites (ZBCs) have attracted extensive attention due to their unique charge transfer pathway, broader redox range, and stronger redox power compared to conventional heterostructures. In the present report, we have for the first time explored Cu 3 P, a new, single photocatalyst for solar-water splitting applications. Moreover, a novel ZBC system composed of Bi 2 WO 6 -Cu 3 P was designed employing a simple method of ball-milling complexation. The synthesized materials were examined and further investigated through various microscopic, spectroscopic, and surface area characterization methods, which have confirmed the successful hybridization between Bi 2 WO 6 and Cu 3 P and the formation of a ZBC system that shows the ideal position of energy levels for solar-water splitting. Notably, the ZBC composed of Bi 2 WO 6 -Cu 3 P is a mediator- and co-catalyst-free photocatalyst system. The improved photocatalytic efficiency obtained with this system compared to other ZBC systems assisted by mediators and co-catalysts establishes the critical importance of interfacial solid-solid contact and the well-balanced position of energy levels for solar-water splitting. The promising solar-water splitting under optimum composition conditions highlighted the relationship between effective charge separation and composition.
Boiling on Microconfigured Composite Surfaces Enhanced
NASA Technical Reports Server (NTRS)
Chao, David F.
2000-01-01
Boiling heat transfer is one of the key technologies for the two-phase active thermal-control system used on space platforms, as well as for the dynamic power systems aboard the International Space Station. Because it is an effective heat transfer mode, boiling is integral to many space applications, such as heat exchangers and other cooling devices. Nucleate boiling near the critical heat flux (CHF) can transport very large thermal loads with a much smaller device and much lower pumping power than for single-phase heat exchangers. However, boiling performance sharply deteriorates in a reduced-gravity environment, and operation in the CHF regime is somewhat perilous because of the risk of burnout to the device surface. New materials called microconfigured metal-graphite composites can enhance boiling. The photomicrograph shows the microconfiguration (x3000) of the copper-graphite (Cu-Gr) surface as viewed by scanning electronic microscope. The graphite fiber tips appear as plateaus with rugged surfaces embedded in the copper matrix. It has been experimentally demonstrated that this type of material manifests excellent boiling heat transfer performance characteristics and an increased CHF. Nonisothermal surfaces were less sensitive to variations of wall superheat in the CHF regime. Because of the great difference in conductivity between the copper base and the graphite fiber, the composite surfaces have a nonisothermal surface characteristic and, therefore, will have a much larger "safe" operating region in the CHF regime. In addition, the thermocapillary forces induced by the temperature differences between the fiber tips and the metal matrix play an important role in bubble detachment, and may not be adversely affected in a reduced-gravity environment. All these factors indicate that microconfigured composites may improve the reliability and economy (dominant factors in all space applications) of various thermal components found on spacecraft during future missions.
In vitro pulp chamber temperature rise from irradiation and exotherm of flowable composites.
Baroudi, Kusai; Silikas, Nick; Watts, David C
2009-01-01
The aim of this study was to investigate the pulpal temperature rise induced during the polymerization of flowable and non-flowable composites using light-emitting diode (LED) and halogen (quartz-tungsten-halogen) light-curing units (LCUs). Five flowable and three non-flowable composites were examined. Pulpal temperature changes were recorded over 10 min in a sample primary tooth by a thermocouple. A conventional quartz-tungsten-halogen source and two LEDs, one of which was programmable, were used for light curing the resin composites. Three repetitions per material were made for each LCU. There was a wide range of temperature rises among the materials (P < 0.05). Temperature rises ranged between 1.3 degrees C for Filtek Supreme irradiated by low-power LED and 4.5 degrees C for Grandio Flow irradiated by high-power LED. The highest temperature rises were observed with both the LED high-power and soft-start LCUs. The time to reach the exothermic peak varied significantly between the materials (P < 0.05). Pulpal temperature rise is related to both the radiant energy output from LCUs and the polymerization exotherm of resin composites. A greater potential risk for heat-induced pulp damage might be associated with high-power LED sources. Flowable composites exhibited higher temperature rises than non-flowable materials, because of higher resin contents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfister, A.; Goossen, C.; Coogler, K.
2012-07-01
Both the International Atomic Energy Agency (IAEA) and the U.S. Nuclear Regulatory Commission (NRC) require existing and new nuclear power plants to conduct plant assessments to demonstrate the unit's ability to withstand external hazards. The events that occurred at the Fukushima-Dai-ichi nuclear power station demonstrated the importance of designing a nuclear power plant with the ability to protect the plant against extreme external hazards. The innovative design of the AP1000{sup R} nuclear power plant provides unparalleled protection against catastrophic external events which can lead to extensive infrastructure damage and place the plant in an extended abnormal situation. The AP1000 plantmore » is an 1100-MWe pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance and safety. The plant's compact safety related footprint and protection provided by its robust nuclear island structures prevent significant damage to systems, structures, and components required to safely shutdown the plant and maintain core and spent fuel pool cooling and containment integrity following extreme external events. The AP1000 nuclear power plant has been extensively analyzed and reviewed to demonstrate that it's nuclear island design and plant layout provide protection against both design basis and extreme beyond design basis external hazards such as extreme seismic events, external flooding that exceeds the maximum probable flood limit, and malicious aircraft impact. The AP1000 nuclear power plant uses fail safe passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems (such as AC power, component cooling water, service water, compressed air or HVAC). The plant has been designed to protect systems, structures, and components critical to placing the reactor in a safe shutdown condition within the steel containment vessel which is further surrounded by a substantial 'steel concrete' composite shield building. The containment vessel is not affected by external flooding, and the shield building design provides hazard protection beyond that provided by a comparable reinforced concrete structure. The intent of this paper is to demonstrate the robustness of the AP1000 design against extreme events. The paper will focus on the plants ability to withstand extreme external events such as beyond design basis flooding, seismic events, and malicious aircraft impact. The paper will highlight the robustness of the AP1000 nuclear island design including the protection provided by the unique AP1000 composite shield building. (authors)« less
Composite Spectral Energy Distributions and Infrared-Optical Colors of Type 1 and Type 2 Quasars
NASA Astrophysics Data System (ADS)
Hickox, Ryan C.; Myers, Adam D.; Greene, Jenny E.; Hainline, Kevin N.; Zakamska, Nadia L.; DiPompeo, Michael A.
2017-11-01
We present observed mid-infrared and optical colors and composite spectral energy distributions (SEDs) of type 1 (broad-line) and 2 (narrow-line) quasars selected from Sloan Digital Sky Survey (SDSS) spectroscopy. A significant fraction of powerful quasars are obscured by dust and are difficult to detect in optical photometric or spectroscopic surveys. However, these may be more easily identified on the basis of mid-infrared (MIR) colors and SEDs. Using samples of SDSS type 1 and 2 matched in redshift and [O III] luminosity, we produce composite rest-frame 0.2-15 μm SEDs based on SDSS, UKIDSS, and Wide-field Infrared Survey Explorer photometry and perform model fits using simple galaxy and quasar SED templates. The SEDs of type 1 and 2 quasars are remarkably similar, with the differences explained primarily by the extinction of the quasar component in the type 2 systems. For both types of quasar, the flux of the active galactic nucleus (AGN) relative to the host galaxy increases with AGN luminosity ({L}[{{O}{{III}}]}) and redder observed MIR color, but we find only weak dependencies of the composite SEDs on mechanical jet power as determined through radio luminosity. We conclude that luminous quasars can be effectively selected using simple MIR color criteria similar to those identified previously ({{W}}1{--}{{W}}2> 0.7; Vega), although these criteria miss many heavily obscured objects. Obscured quasars can be further identified based on optical-IR colors (for example, (u{--}{{W}}3 [{AB}])> 1.4({{W}}1{--}{{W}}2 [{Vega}])+3.2). These results illustrate the power of large statistical studies of obscured quasars selected on the basis of MIR and optical photometry.
High power x-ray welding of metal-matrix composites
Rosenberg, Richard A.; Goeppner, George A.; Noonan, John R.; Farrell, William J.; Ma, Qing
1999-01-01
A method for joining metal-matrix composites (MMCs) by using high power x-rays as a volumetric heat source is provided. The method involves directing an x-ray to the weld line between two adjacent MMCs materials to create an irradiated region or melt zone. The x-rays have a power density greater than about 10.sup.4 watts/cm.sup.2 and provide the volumetric heat required to join the MMC materials. Importantly, the reinforcing material of the metal-matrix composites remains uniformly distributed in the melt zone, and the strength of the MMCs are not diminished. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys.
Singh, Arvinder; Chandra, Amreesh
2015-10-23
Amongst the materials being investigated for supercapacitor electrodes, carbon based materials are most investigated. However, pure carbon materials suffer from inherent physical processes which limit the maximum specific energy and power that can be achieved in an energy storage device. Therefore, use of carbon-based composites with suitable nano-materials is attaining prominence. The synergistic effect between the pseudocapacitive nanomaterials (high specific energy) and carbon (high specific power) is expected to deliver the desired improvements. We report the fabrication of high capacitance asymmetric supercapacitor based on electrodes of composites of SnO2 and V2O5 with multiwall carbon nanotubes and neutral 0.5 M Li2SO4 aqueous electrolyte. The advantages of the fabricated asymmetric supercapacitors are compared with the results published in the literature. The widened operating voltage window is due to the higher over-potential of electrolyte decomposition and a large difference in the work functions of the used metal oxides. The charge balanced device returns the specific capacitance of ~198 F g(-1) with corresponding specific energy of ~89 Wh kg(-1) at 1 A g(-1). The proposed composite systems have shown great potential in fabricating high performance supercapacitors.
NASA Astrophysics Data System (ADS)
Bose, Esa; Taran, S.; Karmakar, S.; Chaudhuri, B. K.; Pal, S.; Sun, C. P.; Yang, H. D.
2007-07-01
A ferromagnetic/ferroelectric composite system, viz. (100- x)La 0.7Ca 0.3 MnO 3 [LCMO]/( x) BaTiO 3 [BTO] (with x=0.0%, 1.0%, 5.0%, 7.5%, 10.0% and 15.0%, in wt%) has been synthesized and the temperature-dependent DC magnetization M( T), resistivity ρ( T), magnetoresistance (MR), and thermoelectric power S( T) have been studied. Both metal-insulator transition temperature ( TMI) and the corresponding Curie temperature ( TC) decrease whereas peak resistivity at TMI increases as x is enhanced from 0.0% to 10.0%. For x>10.0%, this trend of variation is reversed. A maximum three-fold increase of magnetoresistance (MR) is observed (for sample with x=10.0%) due to the addition of ferroelectric (non-magnetic) perovskite BTO (compared to the mother compound LCMO). Interestingly, thermoelectric power S( T) shows a pronounced depression (dip) near the magnetic transition region for the composite samples. The above results have been analyzed considering strain induced by the LCMO/BTO grain boundary layer (BL).
Wheel configurations for combined energy storage and attitude control systems
NASA Technical Reports Server (NTRS)
Oglevie, R. E.
1985-01-01
Integrated power and attitude control system (IPACS) studies performed over a decade ago established the feasibility of simultaneously storing electrical energy in wheels and utilizing the resulting momentum for spacecraft attitude control. It was shown that such a system possessed many advantages over other contemporary energy storage and attitude control systems in many applications. More recent technology advances in composite rotors, magnetic bearings, and power control electronics have triggered new optimism regarding the feasibility and merits of such a system. This paper presents the results of a recent study whose focus was to define an advanced IPACS and to evaluate its merits for the Space Station application. Emphasis is given to the selection of the wheel configuration to perform the combined functions. A component design concept is developed to establish the system performance capability. A system-level trade study, including life-cycle costing, is performed to define the merits of the system relative to two other candidate systems. It is concluded that an advanced IPACS concept is not only feasible but offers substantial savings in mass and life-cycle cost.
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay
2007-01-01
Ceramic integration technology has been recognized as an enabling technology for the implementation of advanced ceramic systems in a number of high-temperature applications in aerospace, power generation, nuclear, chemical, and electronic industries. Various ceramic integration technologies (joining, brazing, attachments, repair, etc.) play a role in fabrication and manufacturing of large and complex shaped parts of various functionalities. However, the development of robust and reliable integrated systems with optimum performance requires the understanding of many thermochemical and thermomechanical factors, particularly for high temperature applications. In this presentation, various challenges and opportunities in design, fabrication, and testing of integrated similar (ceramic-ceramic) and dissimilar (ceramic-metal) material systems will be discussed. Experimental results for bonding and integration of SiC based LDI fuel injector, high conductivity C/C composite based heat rejection system, solid oxide fuel cells system, ultra high temperature ceramics for leading edges, and ceramic composites for thermostructural applications will be presented. Potential opportunities and need for the development of innovative design philosophies, approaches, and integrated system testing under simulated application conditions will also be discussed.
1990-10-01
phase systems such as tungsten; plastic flow of a minor low -temperature phase in a two phase non-interacting system such as tungsten- copper ; and...consolidation heat treatment. The de- the wetting of graphite by copper or during consolidation by this tech- tailed phase transformation evolution other...The driving potential for this solid state phase transformation is the free surface energy associated with the total powder particle surface area in the
Feasibility study of a 270V dc flat cable aircraft electrical power distributed system
NASA Astrophysics Data System (ADS)
Musga, M. J.; Rinehart, R. J.
1982-01-01
This report documents the efforts of a one man-year feasibility study to evaluate the usage of flat conductors in place of conventional round wires for a 270 volt direct current aircraft power distribution system. This study consisted of designing electrically equivalent power distribution harnesses in flat conductor configurations for a currently operational military aircraft. Harness designs were established for installation in aircraft airframes which are: (1) All metal, or (2) All composite, or (3) a mixture of both. Flat cables have greater surface areas for heat transfer allowing higher current densities and therefore lighter weight conductors, than with round wires. Flat cables are less susceptible to electromagnetic effects. However, these positive factors are partially offset by installation and maintenance difficulties. This study concludes that the extent of these difficulties can be adequately limited with appropriate modification to present installation and maintenance practices. A comparative analysis of the flat and the round conductor power distribution harnesses was made for weight, cost, maintenance and reliability. The knowledge gained from the design and comparative analysis phases was used to generate design criteria for flat power cable harnesses and to identify and prioritize flat cable harness components and associated production tooling which require development.
Advanced Aerospace Materials by Design
NASA Technical Reports Server (NTRS)
Srivastava, Deepak; Djomehri, Jahed; Wei, Chen-Yu
2004-01-01
The advances in the emerging field of nanophase thermal and structural composite materials; materials with embedded sensors and actuators for morphing structures; light-weight composite materials for energy and power storage; and large surface area materials for in-situ resource generation and waste recycling, are expected to :revolutionize the capabilities of virtually every system comprising of future robotic and :human moon and mars exploration missions. A high-performance multiscale simulation platform, including the computational capabilities and resources of Columbia - the new supercomputer, is being developed to discover, validate, and prototype next generation (of such advanced materials. This exhibit will describe the porting and scaling of multiscale 'physics based core computer simulation codes for discovering and designing carbon nanotube-polymer composite materials for light-weight load bearing structural and 'thermal protection applications.
Lau, Genevieve P S; Décoppet, Jean-David; Moehl, Thomas; Zakeeruddin, Shaik M; Grätzel, Michael; Dyson, Paul J
2015-12-16
Novel ionic liquid-sulfolane composite electrolytes based on the 1,2,3-triazolium family of ionic liquids were developed for dye-sensitized solar cells. The best performing device exhibited a short-circuit current density of 13.4 mA cm(-2), an open-circuit voltage of 713 mV and a fill factor of 0.65, corresponding to an overall power conversion efficiency (PCE) of 6.3%. In addition, these devices are highly stable, retaining more than 95% of the initial device PCE after 1000 hours of light- and heat-stress. These composite electrolytes show great promise for industrial application as they allow for a 14.5% improvement in PCE, compared to the solvent-free eutectic ionic liquid electrolyte system, without compromising device stability.
Electrical and magnetic properties of 0-3 Ba(Fe1/2Nb1/2)O3/PVDF composites
NASA Astrophysics Data System (ADS)
Ranjan, Hars; Mahto, Uttam K.; Chandra, K. P.; Kulkarni, A. R.; Prasad, A.; Prasad, K.
Lead-free Ba(Fe1/2Nb1/2)O3/PVDF 0-3 composites were fabricated using melt-mixing technique. X-ray diffraction, scanning electron microscopy, dielectric, impedance, ac conductivity, magnetic force microscopy (MFM) and vibrating sample magnetometer studies were undertaken to characterize the samples. Average crystallite size of the Ba(Fe1/2Nb1/2)O3 powder, estimated using Williamson-Hall approach, was found to be ˜42nm. The filler particles of ˜0.5-1μm were found to disperse in the polymer matrix of all the composites. Filler concentration-dependent values of real and imaginary parts of complex permittivity showed increasing trend and were seen to follow Bruggeman and Furukawa equations. The data for ac conductivity exhibited negative temperature coefficient of resistance character of the test materials and were found to obey Jonscher’s power law. The correlated barrier hopping model was found to explain satisfactorily the mechanism of charge transport occurring in the system. MFM confirmed the presence of magnetic phases in the composites. Typical magnetization versus applied field curves indicated the possibility of magnetoelectric coupling in the system. Hence, the present composites have shown themselves as potential multi-functional candidate materials for use in high density data storage applications.
NASA Astrophysics Data System (ADS)
Wu, Shijia; He, Weihua; Yang, Wulin; Ye, Yaoli; Huang, Xia; Logan, Bruce E.
2017-07-01
Microbial fuel cells (MFCs) need to have a compact architecture, but power generation using low strength domestic wastewater is unstable for closely-spaced electrode designs using thin anodes (flat mesh or small diameter graphite fiber brushes) due to oxygen crossover from the cathode. A composite anode configuration was developed to improve performance, by joining the mesh and brushes together, with the mesh used to block oxygen crossover to the brushes, and the brushes used to stabilize mesh potentials. In small, fed-batch MFCs (28 mL), the composite anode produced 20% higher power densities than MFCs using only brushes, and 150% power densities compared to carbon mesh anodes. In continuous flow tests at short hydraulic retention times (HRTs, 2 or 4 h) using larger MFCs (100 mL), composite anodes had stable performance, while brush anode MFCs exhibited power overshoot in polarization tests. Both configurations exhibited power overshoot at a longer HRT of 8 h due to lower effluent CODs. The use of composite anodes reduced biomass growth on the cathode (1.9 ± 0.2 mg) compared to only brushes (3.1 ± 0.3 mg), and increased coulombic efficiencies, demonstrating that they successfully reduced oxygen contamination of the anode and the bio-fouling of cathode.
Oberholzer, T G; Makofane, M E; du Preez, I C; George, R
2012-06-01
Pulpal temperature changes induced by modern high powered light emitting diodes (LEDs) are of concern when used to cure composite resins. This study showed an increase in pulp chamber temperature with an increase in power density for all light cure units (LCU) when used to bulk cure composite resin. Amongst the three LEDs tested, the Elipar Freelight-2 recorded the highest temperature changes. Bulk curing recorded a significantly larger rise in pulp chamber temperature change than incrementally cured resin for all light types except for the Smartligh PS. Both the high powered LED and the conventional curing units can generate heat. Though this temperature rise may not be sufficient to cause irreversible pulpal damage, it would be safer to incrementally cure resins.
Remote laser evaporative molecular absorption spectroscopy
NASA Astrophysics Data System (ADS)
Hughes, Gary B.; Lubin, Philip; Cohen, Alexander; Madajian, Jonathan; Kulkarni, Neeraj; Zhang, Qicheng; Griswold, Janelle; Brashears, Travis
2016-09-01
We describe a novel method for probing bulk molecular and atomic composition of solid targets from a distant vantage. A laser is used to melt and vaporize a spot on the target. With sufficient flux, the spot temperature rises rapidly, and evaporation of surface materials occurs. The melted spot creates a high-temperature blackbody source, and ejected material creates a plume of surface materials in front of the spot. Molecular and atomic absorption occurs as the blackbody radiation passes through the ejected plume. Bulk molecular and atomic composition of the surface material is investigated by using a spectrometer to view the heated spot through the ejected plume. The proposed method is distinct from current stand-off approaches to composition analysis, such as Laser-Induced Breakdown Spectroscopy (LIBS), which atomizes and ionizes target material and observes emission spectra to determine bulk atomic composition. Initial simulations of absorption profiles with laser heating show great promise for Remote Laser-Evaporative Molecular Absorption (R-LEMA) spectroscopy. The method is well-suited for exploration of cold solar system targets—asteroids, comets, planets, moons—such as from a spacecraft orbiting the target. Spatial composition maps could be created by scanning the surface. Applying the beam to a single spot continuously produces a borehole or trench, and shallow subsurface composition profiling is possible. This paper describes system concepts for implementing the proposed method to probe the bulk molecular composition of an asteroid from an orbiting spacecraft, including laser array, photovoltaic power, heating and ablation, plume characteristics, absorption, spectrometry and data management.
Cryomagmatism in the outer solar system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kargel, J.S.
1990-01-01
Assemblages of cryovolcanic, tectonic, and impact structures form varied landscapes quite alien in their collective expression. Many variables can affect the cryovolcanic style of a satellite but none more so than cryolava composition. The compositional variable is examined in considerable detail. Existing knowledge of phase equilibria and physical properties of cosmochemically relevant unary, binary, and multi-component chemical systems are summarized. Where published knowledge was found lacking, measurements of the physical chemistry of volatile mixtures are presented. Cryovolcanic landscapes are briefly toured, and knowledge of the physical chemistry of volatile mixtures is applied to problems of cryovolcanological interest. Aqueous cryolavas maymore » range in composition from salt-water brines to cryogenic ammonia-water-rich multi-components solutions possibly involving methanol, ammonium sulfide, alkali chlorides, and many other potential components. Cryomagmatic distillation can greatly accentuate the importance of trace and minor constituents of icy satellites. The viscosities, densities, and other physical properties of these liquids vary considerably and depend sensitively on their exact compositions. These properties affect everything from cryovolcanic eruptive styles and landforms, to the way cryovolcanic crusts respond to tectonic stress. It is believed that the compositional variable is directly or indirectly implicated in a wide varity of geomorphic aspects of contrast among the icy satellites. Thus, even though as yet any specific morphology can be attributed to a specific composition, there appears to be a powerful link between composition of the ices originally accreted by a satellite and its subsequent interior evolution and exterior geomorphic appearance.« less
Fiber Bragg Grating Sensor System for Monitoring Smart Composite Aerospace Structures
NASA Technical Reports Server (NTRS)
Moslehi, Behzad; Black, Richard J.; Gowayed, Yasser
2012-01-01
Lightweight, electromagnetic interference (EMI) immune, fiber-optic, sensor- based structural health monitoring (SHM) will play an increasing role in aerospace structures ranging from aircraft wings to jet engine vanes. Fiber Bragg Grating (FBG) sensors for SHM include advanced signal processing, system and damage identification, and location and quantification algorithms. Potentially, the solution could be developed into an autonomous onboard system to inspect and perform non-destructive evaluation and SHM. A novel method has been developed to massively multiplex FBG sensors, supported by a parallel processing interrogator, which enables high sampling rates combined with highly distributed sensing (up to 96 sensors per system). The interrogation system comprises several subsystems. A broadband optical source subsystem (BOSS) and routing and interface module (RIM) send light from the interrogation system to a composite embedded FBG sensor matrix, which returns measurand-dependent wavelengths back to the interrogation system for measurement with subpicometer resolution. In particular, the returned wavelengths are channeled by the RIM to a photonic signal processing subsystem based on powerful optical chips, then passed through an optoelectronic interface to an analog post-detection electronics subsystem, digital post-detection electronics subsystem, and finally via a data interface to a computer. A range of composite structures has been fabricated with FBGs embedded. Stress tensile, bending, and dynamic strain tests were performed. The experimental work proved that the FBG sensors have a good level of accuracy in measuring the static response of the tested composite coupons (down to submicrostrain levels), the capability to detect and monitor dynamic loads, and the ability to detect defects in composites by a variety of methods including monitoring the decay time under different dynamic loading conditions. In addition to quasi-static and dynamic load monitoring, the system can capture acoustic emission events that can be a prelude to structural failure, as well as piezoactuator-induced ultrasonic Lamb-waves-based techniques as a basis for damage detection.
NASA Astrophysics Data System (ADS)
Fleming, Rex J.
2003-09-01
The challenge of obtaining an adequate environmental support system to help mitigate the effects of various terrorist generated plumes is articulated and a fiscally responsible solution is presented. A substantially improved national system of upper air data observing systems serves as a powerful information source prior to a terrorist event. A mobile tactical observing system for measuring the environment and for measuring the composition and intensity of the plume is implemented immediately following an event. Only proven and tested technologies are used. Program costs, benefits for the fight against terrorism, and multiple benefits to other aspects of the economy are summarized.
Mohan, S Venkata; Chandrasekhar, K
2011-07-01
Solid phase microbial fuel cells (SMFC; graphite electrodes; open-air cathode) were designed to evaluate the potential of bioelectricity production by stabilizing composite canteen based food waste. The performance was evaluated with three variable electrode-membrane assemblies. Experimental data depicted feasibility of bioelectricity generation from solid state fermentation of food waste. Distance between the electrodes and presence of proton exchange membrane (PEM) showed significant influence on the power yields. SMFC-B (anode placed 5 cm from cathode-PEM) depicted good power output (463 mV; 170.81 mW/m(2)) followed by SMFC-C (anode placed 5 cm from cathode; without PEM; 398 mV; 53.41 mW/m(2)). SMFC-A (PEM sandwiched between electrodes) recorded lowest performance (258 mV; 41.8 mW/m(2)). Sodium carbonate amendment documented marked improvement in power yields due to improvement in the system buffering capacity. SMFCs operation also documented good substrate degradation (COD, 76%) along with bio-ethanol production. The operation of SMFC mimicked solid-sate fermentation which might lead to sustainable solid waste management practices. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tian, Liang
This study investigated the processing-structure-properties relationships in an Al/Ca composites using both experiments and modeling/simulation. A particular focus of the project was understanding how the strength and electrical conductivity of the composite are related to its microstructure in the hope that a conducting material with light weight, high strength, and high electrical conductivity can be developed to produce overhead high-voltage power transmission cables. The current power transmission cables (e.g., Aluminum Conductor Steel Reinforced (ACSR)) have acceptable performance for high-voltage AC transmission, but are less well suited for high-voltage DC transmission due to the poorly conducting core materials that support the cable weight. This Al/Ca composite was produced by powder metallurgy and severe plastic deformation by extrusion and swaging. The fine Ca metal powders have been produced by centrifugal atomization with rotating liquid oil quench bath, and a detailed study about the atomization process and powder characteristics has been conducted. The microstructure of Al/Ca composite was characterized by electron microscopy. Microstructure changes at elevated temperature were characterized by thermal analysis and indirect resistivity tests. The strength and electrical conductivity were measured by tensile tests and four-point probe resistivity tests. Predicting the strength and electrical conductivity of the composite was done by micro-mechanics-based analytical modeling. Microstructure evolution was studied by mesoscale-thermodynamics-based phase field modeling and a preliminary atomistic molecular dynamics simulation. The application prospects of this composite was studied by an economic analysis. This study suggests that the Al/Ca (20 vol. %) composite shows promise for use as overhead power transmission cables. Further studies are needed to measure the corrosion resistance, fatigue properties and energized field performance of this composite.
Micro-scale thermal imaging of advanced organic and polymeric materials
NASA Astrophysics Data System (ADS)
Morikawa, Junko
2012-10-01
Recent topics of micro-scale thermal imaging on advanced organic and polymeric materials are presented, the originally developed IR camera systems equipped with a real time direct impose-signal capturing device and a laser drive generating a modulated spot heating with a diode laser, controlled by the x-y positioning actuator, has been applied to measure the micro-scale thermal phenomena. The advanced organic and polymeric materials are now actively developed especially for the purpose of the effective heat dissipation in the new energy system, including, LED, Lithium battery, Solar cell, etc. The micro-scale thermal imaging in the heat dissipation process has become important in view of the effective power saving. In our system, the imposed temperature data are applied to the pixel emissivity corrections and visualizes the anisotropic thermal properties of the composite materials at the same time. The anisotropic thermal diffusion in the ultra-drawn high-thermal conductive metal-filler composite polymer film and the carbon-cloth for the battery systems are visualized.
Materials and structures technology insertion into spacecraft systems: Successes and challenges
NASA Astrophysics Data System (ADS)
Rawal, Suraj
2018-05-01
Over the last 30 years, significant advancements have led to the use of multifunctional materials and structures technologies in spacecraft systems. This includes the integration of adaptive structures, advanced composites, nanotechnology, and additive manufacturing technologies. Development of multifunctional structures has been directly influenced by the implementation of processes and tools for adaptive structures pioneered by Prof. Paolo Santini. Multifunctional materials and structures incorporating non-structural engineering functions such as thermal, electrical, radiation shielding, power, and sensors have been investigated. The result has been an integrated structure that offers reduced mass, packaging volume, and ease of integration for spacecraft systems. Current technology development efforts are being conducted to develop innovative multifunctional materials and structures designs incorporating advanced composites, nanotechnology, and additive manufacturing. However, these efforts offer significant challenges in the qualification and acceptance into spacecraft systems. This paper presents a brief overview of the technology development and successful insertion of advanced material technologies into spacecraft structures. Finally, opportunities and challenges to develop and mature next generation advanced materials and structures are presented.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. United Space Alliance workers begin packing pieces of Columbia debris for shipment to The Aerospace Corporation in El Segundo, Calif. The pieces have been released for loan to the non-governmental agency for testing and research. The Aerospace Corporation requested and will receive graphite/epoxy honeycomb skins from an Orbital Maneuvering System pod, Main Propulsion System Helium tanks, a Reaction Control System Helium tank and a Power Reactant Storage Distribution system tank. The company will use the parts to study re-entry effects on composite materials. NASA notified the Columbia crews families about the loan before releasing the items for study. Researchers believe the testing will show how materials are expected to respond to various heating and loads' environments. The findings will help calibrate tools and models used to predict hazards to people and property from reentering hardware. The Aerospace Corporation will have the debris for one year to perform analyses to estimate maximum temperatures during reentry based upon the geometry and mass of the recovered composite. Columbias debris is stored in the VAB.
NASA Astrophysics Data System (ADS)
Punia, R.; Kundu, R. S.; Dult, Meenakshi; Murugavel, S.; Kishore, N.
2012-10-01
The ac conductivity of bismuth zinc vanadate glasses with compositions 50V2O5. xBi2O3. (50-x) ZnO has been studied in the frequency range 10-1 Hz to 2 MHz and in temperature range 333.16 K to 533.16 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the compositions of bismuth zinc vanadate glass system. The dc conductivity (σdc), crossover frequency (ωH), and frequency exponent (s) have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating center (Hf) and enthalpy of migration (Hm) have also been estimated. It has been observed that mobility of charge carriers and ac conductivity in case of zinc vanadate glass system increases with increase in Bi2O3 content. In order to determine the conduction mechanism, the ac conductivity and its frequency exponent have been analyzed in the frame work of various theoretical models based on classical hopping over barriers and quantum mechanical tunneling. The ac conduction takes place via tunneling of overlapping large polarons in all the compositions of presently studied vanadate glasses. The fitting of experimental data of ac conductivity with overlapping large polarons tunneling model has also been done. The parameters; density of states at Fermi level (N(EF)), activation energy associated with charge transfer between the overlapping sites (WHO), inverse localization length (α) and polaron radius (rp) obtained from fitting of this model with experimental data are reasonable.
Correlation effects in nanoparticle composites: Percolation, packing and tunneling
NASA Astrophysics Data System (ADS)
Mukherjee, Rupam
Percolation is one of the most fundamental and far-reaching physical phenomena, with major implications in a vast variety of fields. The work described in this thesis aims to understand the role of percolation effects in various, seemingly unrelated phenomena, such as the dielectric permittivity of metal-insulator composites, tunneling percolation, and the relationship between percolation and filling factors. Specifically, we investigated 1) the very large enhancement of the dielectric permittivity of a composite metal -- insulator system, RuO2 - CaCu3Ti4O12 (CCTO) near the percolation threshold. For RuO2/CCTO composites, an increase in the real part of the dielectric permittivity (initially about 10 3-104 at 10 kHz) by approximately an order of magnitude is observed in the vicinity of the percolation threshold. 2) In the same system, apart from a classical percolation transition associated with the appearance of a continuous conductance path through RuO2 nanoparticles, at least two additional tunneling percolation transitions are detected. Such behavior is consistent with the recently emerged picture of a quantum conductivity staircase, which predicts several percolation tunneling thresholds in a system with a hierarchy of local tunneling conductance, due to various degrees of proximity of adjacent conducting particles distributed in an insulating matrix. 3) The filling factors of the composites of nanoparticles with different shapes have been studied as a function of volume fraction. Interestingly, like percolation, filling factors also obey critical power law behavior as a function of size ratio of constituent particles.
Development of a solid electrolyte carbon dioxide and water reduction system for oxygen recovery
NASA Technical Reports Server (NTRS)
Elikan, L.; Morris, J. P.; Wu, C. K.
1972-01-01
A 1/4-man solid electrolyte oxygen regeneration system, consisting of an electrolyzer, a carbon deposition reactor, and palladium membranes for separating hydrogen, was operated continuously in a 180-day test. Oxygen recovery from the carbon dioxide-water feed was 95%. One percent of the oxygen was lost to vacuum with the hydrogen off-gas. In a space cabin, the remaining 4% would have been recycled to the cabin and recovered. None of the electrolysis cells used in the 180-day test failed. Electrolysis power rose 20% during the test; the average power was 283.5 watts/man. Crew time was limited to 18 min/day of which 12 min/day was used for removing carbon. The success achieved in operating the system can be attributed to an extensive component development program, which is described. Stability of operation, ease of control, and flexibility in feed composition were demonstrated by the life test.
NASA Technical Reports Server (NTRS)
Littlefield, Alan C.; Melton, Gregory S.
2000-01-01
The X-33 Advanced Technology Demonstrator is an un-piloted, vertical take-off, horizontal landing spacecraft. The purpose of the X-33 program is to demonstrate technologies that will dramatically lower the cost of access to space. The rocket-powered X-33 will reach an altitude of up to 100 km and speeds between Mach 13 and 15. Fifteen flight tests are planned, beginning in 2000. Some of the key technologies demonstrated will be the linear aerospike engine, improved thermal protection systems, composite fuel tanks and reduced operational timelines. The X-33 vehicle umbilical connections provide monitoring, power, cooling, purge, and fueling capability during horizontal processing and vertical launch operations. Two "rise-off" umbilicals for the X-33 have been developed, tested, and installed. The X-33 umbilical systems mechanisms incorporate several unique design features to simplify horizontal operations and provide reliable disconnect during launch.
NASA Technical Reports Server (NTRS)
Littlefield, Alan C.; Melton, Gregory S.
1999-01-01
The X-33 Advanced Technology Demonstrator is an un-piloted, vertical take-off, horizontal landing spacecraft. The purpose of the X-33 program is to demonstrate technologies that will dramatically lower the cost of access to space. The rocket-powered X-33 will reach an altitude of up to 100 km and speeds between Mach 13 and 15. Fifteen flight tests are planned, beginning in 2000. Some of the key technologies demonstrated will be the linear aerospike engine, improved thermal protection systems, composite fuel tanks and reduced operational timelines. The X-33 vehicle umbilical connections provide monitoring, power, cooling, purge, and fueling capability during horizontal processing and vertical launch operations. Two "rise-ofF' umbilicals for the X-33 have been developed, tested, and installed. The X-33 umbilical systems mechanisms incorporate several unique design features to simplify horizontal operations and provide reliable disconnect during launch.
Effective conductivity of a periodic dilute composite with perfect contact and its series expansion
NASA Astrophysics Data System (ADS)
Pukhtaievych, Roman
2018-06-01
We study the asymptotic behavior of the effective thermal conductivity of a periodic two-phase dilute composite obtained by introducing into an infinite homogeneous matrix a periodic set of inclusions of a different material, each of them of size proportional to a positive parameter ɛ . We assume a perfect thermal contact at constituent interfaces, i.e., a continuity of the normal component of the heat flux and of the temperature. For ɛ small, we prove that the effective conductivity can be represented as a convergent power series in ɛ and we determine the coefficients in terms of the solutions of explicit systems of integral equations.
NASA Astrophysics Data System (ADS)
Mimura, Hitoshi; Yamagishi, Isao
In an action for the convergence of the Fukushima Daiichi Nuclear Power Plant accident, the completion of Step 2 was declared in last December, 2011. As for the circulating cooling system supporting the cold shutdown of nuclear reactor, the temporary treatment equipment operation maintains stability. On the other hand, the establishment of permanent equipments, safety storage, treatment and disposal for the secondary solid wastes are urgent subjects. This special issue deals with the development of highly functional composite adsorbents and the evaluation of selective adsorption properties. The technical issues for the stable treatment and disposal of solid wastes are further discussed.
Graphite fiber polyimide composites for spherical bearings to 340 C (650 F)
NASA Technical Reports Server (NTRS)
Sliney, H. E.; Johnson, R. L.
1972-01-01
Journal bearings with self-alining spherical elements of graphite-fiber-reinforced-polyimide composites were tested from 24 to 340 C (75 to 650 F) at unit loads up to 3.5 times 10 to the 7th power N/sq m (5000 psi). The journal oscillated in the cylindrical bore of the composite element + or - 15 deg at 1 hertz. Outer races and journals were metal hardened of Rockwell C-32 and finished to 10 to the minus 7th power m. A 45 wt. percent graphite-fiber composite gave low friction (0.08 to 0.13), low wear, and almost no plastic deformation under any of the test conditions. Composites with 15 and 25 wt. percent graphite fiber failed by plastic deformation at 315 C (600 F) and 3.5 times 10 to the 7th power N/sq m (5000 psi). A composite with 60 wt. percent graphite fiber failed by brittle fracture under the same conditions, but had very low friction coefficients (0.05 to 0.10) and may be a good bearing material at lighter loads.
NASA Astrophysics Data System (ADS)
Li, Yuanxun; Xie, Yunsong; Xie, Ru; Chen, Daming; Han, Likun; Su, Hua
2018-03-01
A glass-free ternary composite material system (CMS) manufactured employing the low temperature ( 890 ° C ) co-fired ceramic (LTCC) technique is reported. This ternary CMS consists of silver, NiCuZn ferrite, and Zn2SiO4 ceramic. The reported device fabricated from this ternary CMS is a power inductor with a nominal inductance of 1.0 μH. Three major highlights were achieved from the device and the material study. First, unlike most other LTCC methods, no glass is required to be added in either of the dielectric materials in order to co-fire the NiCuZn ferrite, Zn2SiO4 ceramic, and silver. Second, a successfully co-fired silver, NiCuZn, and Zn2SiO4 device can be achieved by optimizing the thermal shrinkage properties of both NiCuZn and Zn2SiO4, so that they have a very similar temperature shrinkage profile. We have also found that strong non-magnetic elemental diffusion occurs during the densification process, which further enhances the success rate of manufacturing co-fired devices. Last but not least, elemental mapping suggests that strong magnetic elemental diffusion between NiCuZn and Zn2SiO4 has been suppressed during the co-firing process. The investigation of electrical performance illustrates that while the ordinary binary CMS based power inductor can deal with 400 mA DC, the ternary CMS based power inductor is able to handle higher DC currents, 700 mA and 620 mA DC, according to both simulation and experiment demonstrations, respectively.
SU-D-BRC-04: Development of Proton Tissue Equivalent Materials for Calibration and Dosimetry Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olguin, E; Flampouri, S; Lipnharski, I
Purpose: To develop new proton tissue equivalent materials (PTEM), urethane and fiberglass based, for proton therapy calibration and dosimetry studies. Existing tissue equivalent plastics are applicable only for x-rays because they focus on matching mass attenuation coefficients. This study aims to create new plastics that match mass stopping powers for proton therapy applications instead. Methods: New PTEMs were constructed using urethane and fiberglass resin materials for soft, fat, bone, and lung tissue. The stoichiometric analysis method was first used to determine the elemental composition of each unknown constituent. New initial formulae were then developed for each of the 4 PTEMsmore » using the new elemental compositions and various additives. Samples of each plastic were then created and exposed to a well defined proton beam at the UF Health Proton Therapy Institute (UFHPTI) to validate its mass stopping power. Results: The stoichiometric analysis method revealed the elemental composition of the 3 components used in creating the PTEMs. These urethane and fiberglass based resins were combined with additives such as calcium carbonate, aluminum hydroxide, and phenolic micro spheres to achieve the desired mass stopping powers and densities. Validation at the UFHPTI revealed adjustments had to be made to the formulae, but the plastics eventually had the desired properties after a few iterations. The mass stopping power, density, and Hounsfield Unit of each of the 4 PTEMs were within acceptable tolerances. Conclusion: Four proton tissue equivalent plastics were developed: soft, fat, bone, and lung tissue. These plastics match each of the corresponding tissue’s mass stopping power, density, and Hounsfield Unit, meaning they are truly tissue equivalent for proton therapy applications. They can now be used to calibrate proton therapy treatment planning systems, improve range uncertainties, validate proton therapy Monte Carlo simulations, and assess in-field and out-of-field organ doses.« less
Chien, Chi-Sheng; Liu, Cheng-Wei; Kuo, Tsung-Yuan
2016-01-01
Hydroxyapatite (HA) is one of the most commonly used materials for the coating of bioceramic titanium (Ti) alloys. However, HA has poor mechanical properties and a low bonding strength. Accordingly, the present study replaces HA with a composite coating material consisting of fluorapatite (FA) and 20 wt % yttria (3 mol %) stabilized zirconia (ZrO2, 3Y-TZP). The FA/ZrO2 coatings are deposited on Ti6Al4V substrates using a Nd:YAG laser cladding system with laser powers and travel speeds of 400 W/200 mm/min, 800 W/400 mm/min, and 1200 W/600 mm/min, respectively. The experimental results show that a significant inter-diffusion of the alloying elements occurs between the coating layer (CL) and the transition layer (TL). Consequently, a strong metallurgical bond is formed between them. During the cladding process, the ZrO2 is completely decomposed, while the FA is partially decomposed. As a result, the CLs of all the specimens consist mainly of FA, Ca4(PO4)2O (TTCP), CaF2, CaZrO3, CaTiO3 and monoclinic phase ZrO2 (m-ZrO2), together with a small amount of θ-Al2O3. As the laser power is increased, CaO, CaCO3 and trace amounts of tetragonal phase ZrO2 (t-ZrO2) also appear. As the laser power increases from 400 to 800 W, the CL hardness also increases as a result of microstructural refinement and densification. However, at the highest laser power of 1200 W, the CL hardness reduces significantly due to the formation of large amounts of relatively soft CaO and CaCO3 phase. PMID:28773503
A multiscale forecasting method for power plant fleet management
NASA Astrophysics Data System (ADS)
Chen, Hongmei
In recent years the electric power industry has been challenged by a high level of uncertainty and volatility brought on by deregulation and globalization. A power producer must minimize the life cycle cost while meeting stringent safety and regulatory requirements and fulfilling customer demand for high reliability. Therefore, to achieve true system excellence, a more sophisticated system-level decision-making process with a more accurate forecasting support system to manage diverse and often widely dispersed generation units as a single, easily scaled and deployed fleet system in order to fully utilize the critical assets of a power producer has been created as a response. The process takes into account the time horizon for each of the major decision actions taken in a power plant and develops methods for information sharing between them. These decisions are highly interrelated and no optimal operation can be achieved without sharing information in the overall process. The process includes a forecasting system to provide information for planning for uncertainty. A new forecasting method is proposed, which utilizes a synergy of several modeling techniques properly combined at different time-scales of the forecasting objects. It can not only take advantages of the abundant historical data but also take into account the impact of pertinent driving forces from the external business environment to achieve more accurate forecasting results. Then block bootstrap is utilized to measure the bias in the estimate of the expected life cycle cost which will actually be needed to drive the business for a power plant in the long run. Finally, scenario analysis is used to provide a composite picture of future developments for decision making or strategic planning. The decision-making process is applied to a typical power producer chosen to represent challenging customer demand during high-demand periods. The process enhances system excellence by providing more accurate market information, evaluating the impact of external business environment, and considering cross-scale interactions between decision actions. Along with this process, system operation strategies, maintenance schedules, and capacity expansion plans that guide the operation of the power plant are optimally identified, and the total life cycle costs are estimated.
NASA Astrophysics Data System (ADS)
Liang, Yuan-Chang; Lee, Chia-Min
2016-10-01
ZnO-In2O3 (InO) composite thin films were grown by radio frequency cosputtering ZnO and InO ceramic targets in this study. The indium content of the composite films was varied from 1.7 at. % to 8.2 at. % by varying the InO sputtering power during cosputtering thin-film growth. X-ray diffraction and transmission electron microscopy analysis results show that the high indium content leads to the formation of a separated InO phase in the ZnO matrix. The surface crystallite size and roughness of the ZnO-InO composite films grown here increased with an increasing indium content. Furthermore, under the conditions of a higher indium content and InO sputtering power, the number of crystal defects in the composite films increased, and the optical absorbance edge of the composite films broadened. The photoactivity and ethanol gas sensing response of the ZnO-InO composite films increased as their indium content increased; this finding is highly correlated with the microstructural evolution of ZnO-InO composite films of various indium contents, which is achieved by varying the InO sputtering power during cosputtering.
Performance modeling of unmanned aerial vehicles with on-board energy harvesting
NASA Astrophysics Data System (ADS)
Anton, Steven R.; Inman, Daniel J.
2011-03-01
The concept of energy harvesting in unmanned aerial vehicles (UAVs) has received much attention in recent years. Solar powered flight of small aircraft dates back to the 1970s when the first fully solar flight of an unmanned aircraft took place. Currently, research has begun to investigate harvesting ambient vibration energy during the flight of UAVs. The authors have recently developed multifunctional piezoelectric self-charging structures in which piezoelectric devices are combined with thin-film lithium batteries and a substrate layer in order to simultaneously harvest energy, store energy, and carry structural load. When integrated into mass and volume critical applications, such as unmanned aircraft, multifunctional devices can provide great benefit over conventional harvesting systems. A critical aspect of integrating any energy harvesting system into a UAV, however, is the potential effect that the additional system has on the performance of the aircraft. Added mass and increased drag can significantly degrade the flight performance of an aircraft, therefore, it is important to ensure that the addition of an energy harvesting system does not adversely affect the efficiency of a host aircraft. In this work, a system level approach is taken to examine the effects of adding both solar and piezoelectric vibration harvesting to a UAV test platform. A formulation recently presented in the literature is applied to describe the changes to the flight endurance of a UAV based on the power available from added harvesters and the mass of the harvesters. Details of the derivation of the flight endurance model are reviewed and the formulation is applied to an EasyGlider remote control foam hobbyist airplane, which is selected as the test platform for this study. A theoretical study is performed in which the normalized change in flight endurance is calculated based on the addition of flexible thin-film solar panels to the upper surface of the wings, as well as the addition of flexible piezoelectric patches to the root of the wing spar. Experimental testing is also performed in which the wing spar of the EasyGlider aircraft is modified to include both Macro Fiber Composite and Piezoelectric Fiber Composite piezoelectric patches near the root of the wing and two thin-film solar panels are installed onto the upper wing surface to harvest vibration and solar energy during flight. Testing is performed in which the power output of the various harvesters is measured during flight. Results of the flight testing are used to update the model with accurate measures of the power available from the energy harvesting systems. Finally, the model is used to predict the potential benefits of adding multifunctional self-charging structures to the wing spar of the aircraft in order to harvest vibration energy during flight and provide a local power source for low-power sensors.
The Case for Distributed Engine Control in Turbo-Shaft Engine Systems
NASA Technical Reports Server (NTRS)
Culley, Dennis E.; Paluszewski, Paul J.; Storey, William; Smith, Bert J.
2009-01-01
The turbo-shaft engine is an important propulsion system used to power vehicles on land, sea, and in the air. As the power plant for many high performance helicopters, the characteristics of the engine and control are critical to proper vehicle operation as well as being the main determinant to overall vehicle performance. When applied to vertical flight, important distinctions exist in the turbo-shaft engine control system due to the high degree of dynamic coupling between the engine and airframe and the affect on vehicle handling characteristics. In this study, the impact of engine control system architecture is explored relative to engine performance, weight, reliability, safety, and overall cost. Comparison of the impact of architecture on these metrics is investigated as the control system is modified from a legacy centralized structure to a more distributed configuration. A composite strawman system which is typical of turbo-shaft engines in the 1000 to 2000 hp class is described and used for comparison. The overall benefits of these changes to control system architecture are assessed. The availability of supporting technologies to achieve this evolution is also discussed.
New Composite Thermoelectric Materials for Macro-size Applications
Dresselhaus, Mildred [MIT, Cambridge, Massachusetts, United States
2017-12-09
A review will be given of several important recent advances in both thermoelectrics research and industrial thermoelectric applications, which have attracted much attention, increasing incentives for developing advanced materials appropriate for large-scale applications of thermoelectric devices. One promising strategy is the development of materials with a dense packing of random nanostructures as a route for the sacle-up of thermoelectrics applications. The concepts involved in designing composite materials containing nanostructures for thermoelectric applications will be discussed in general terms. Specific application is made to the Bi{sub 2}Te{sub 3} nanocomposite system for use in power generation. Also emphasized are the scientific advantages of the nanocomposite approach for the simultaneous increase in the power factor and decrease of the thermal conductivity, along with the practical advantages of having bulk samples for property measurements and device applications. A straightforward path is identified for the scale-up of thermoelectric materials synthesis containing nanostructured constituents for use in thermoelectric applications. We end with some vision of where the field of thermoelectrics is now heading.
The extraction of negative carbon ions from a volume cusp ion source
NASA Astrophysics Data System (ADS)
Melanson, Stephane; Dehnel, Morgan; Potkins, Dave; McDonald, Hamish; Hollinger, Craig; Theroux, Joseph; Martin, Jeff; Stewart, Thomas; Jackle, Philip; Philpott, Chris; Jones, Tobin; Kalvas, Taneli; Tarvainen, Olli
2017-08-01
Acetylene and carbon dioxide gases are used in a filament-powered volume-cusp ion source to produce negative carbon ions for the purpose of carbon implantation for gettering applications. The beam was extracted to an energy of 25 keV and the composition was analyzed with a spectrometer system consisting of a 90° dipole magnet and a pair of slits. It is found that acetylene produces mostly C2- ions (up to 92 µA), while carbon dioxide produces mostly O- with only trace amounts of C-. Maximum C2- current was achieved with 400 W of arc power and, the beam current and composition were found to be highly dependent on the pressure in the source. The beam properties as a function of source settings are analyzed, and plasma properties are measured with a Langmuir probe. Finally, we describe testing of a new RF H- ion source, found to produce more than 6 mA of CW H- beam.
Joint Force Quarterly. Issue 69, 2nd Quarter 2013
2013-04-01
disrupt broad sectors of our economy. In many ways, the homeland is no longer the sanctu- ary it once was. These mutually reinforcing trends ensure...inter)dependence, and degree of differentiation. Transforming or reforming the national security sector would suggest changing the composition of...Transforming or reforming the national security sector as a system of power suggests altering the relative importance of its differ- ent
2007-03-01
63 Figure 45: Proposed energy harvesting and storage system which will be made of polymer solar cells and lithium polymer batteries [35...University of California, Berkeley used four piezoelectric actuators and fiber-reinforced composites in an attempt to achieve lift [9]. The device...Entomopter. The RCM powers the wing flapping motion while the exhaust gasses act as gas bearings between all movable surfaces. The exhaust gasses can
NASA Tech Briefs, September 2011
NASA Technical Reports Server (NTRS)
2011-01-01
Topics covered include: Fused Reality for Enhanced Flight Test Capabilities; Thermography to Inspect Insulation of Large Cryogenic Tanks; Crush Test Abuse Stand; Test Generator for MATLAB Simulations; Dynamic Monitoring of Cleanroom Fallout Using an Air Particle Counter; Enhancement to Non-Contacting Stress Measurement of Blade Vibration Frequency; Positively Verifying Mating of Previously Unverifiable Flight Connectors; Radiation-Tolerant Intelligent Memory Stack - RTIMS; Ultra-Low-Dropout Linear Regulator; Excitation of a Parallel Plate Waveguide by an Array of Rectangular Waveguides; FPGA for Power Control of MSL Avionics; UAVSAR Active Electronically Scanned Array; Lockout/Tagout (LOTO) Simulator; Silicon Carbide Mounts for Fabry-Perot Interferometers; Measuring the In-Process Figure, Final Prescription, and System Alignment of Large; Optics and Segmented Mirrors Using Lidar Metrology; Fiber-Reinforced Reactive Nano-Epoxy Composites; Polymerization Initiated at the Sidewalls of Carbon Nanotubes; Metal-Matrix/Hollow-Ceramic-Sphere Composites; Piezoelectrically Enhanced Photocathodes; Iridium-Doped Ruthenium Oxide Catalyst for Oxygen Evolution; Improved Mo-Re VPS Alloys for High-Temperature Uses; Data Service Provider Cost Estimation Tool; Hybrid Power Management-Based Vehicle Architecture; Force Limit System; Levitated Duct Fan (LDF) Aircraft Auxiliary Generator; Compact, Two-Sided Structural Cold Plate Configuration; AN Fitting Reconditioning Tool; Active Response Gravity Offload System; Method and Apparatus for Forming Nanodroplets; Rapid Detection of the Varicella Zoster Virus in Saliva; Improved Devices for Collecting Sweat for Chemical Analysis; Phase-Controlled Magnetic Mirror for Wavefront Correction; and Frame-Transfer Gating Raman Spectroscopy for Time-Resolved Multiscalar Combustion Diagnostics.
Progress in American Superconductor's HTS wire and optimization for fault current limiting systems
NASA Astrophysics Data System (ADS)
Malozemoff, Alexis P.
2016-11-01
American Superconductor has developed composite coated conductor tape-shaped wires using high temperature superconductor (HTS) on a flexible substrate with laminated metal stabilizer. Such wires enable many applications, each requiring specific optimization. For example, coils for HTS rotating machinery require increased current density J at 25-50 K. A collaboration with Argonne, Brookhaven and Los Alamos National Laboratories and several universities has increased J using an optimized combination of precipitates and ion irradiation defects in the HTS. Major commercial opportunities also exist to enhance electric power grid resiliency by linking substations with distribution-voltage HTS power cables [10]. Such links provide alternative power sources if one substation's transmission-voltage power is compromised. But they must also limit fault currents which would otherwise be increased by such distribution-level links. This can be done in an HTS cable, exploiting the superconductor-to-resistive transition when current exceeds the wires' critical J. A key insight is that such transitions are usually nonuniform; so the wire must be designed to prevent localized hot spots from damaging the wire or even generating gas bubbles in the cable causing dielectric breakdown. Analysis shows that local heating can be minimized by increasing the composite tape's total thickness, decreasing its total resistance in the normal state and decreasing its critical J. This conflicts with other desirable wire characteristics. Optimization of these conflicting requirements is discussed.
NASA Astrophysics Data System (ADS)
Ghosh, Sujoy Kumar; Sinha, Tridib Kumar; Mahanty, Biswajit; Jana, Santanu; Mandal, Dipankar
2016-11-01
An efficient, flexible and unvaryingly porous polymer composite membrane based nanogenerator (PPCNG) without any electrical poling treatment has been realised as wireless green energy source to power up smart electronic gadgets. Owing to self-polarized piezo- and ferro-electretic phenomenon of in situ platinum nanoparticles (Pt-NPs) doped porous poly(vinylidenefluoride-co-hexafluoropropylene)-membrane, a simple, inexpensive and scalable PPCNG fabrication is highlighted. The molecular orientations of the -CH2/-CF2 dipoles that cause self-polarization phenomenon has been realized by angular dependent near edge X-ray absorption fine structure spectroscopy. The square-like hysteresis loop with giant remnant polarization, Pr ˜ 68 μC/cm2 and exceptionally high piezoelectric charge coefficient, d33 ˜ - 836 pC/N promises a best suited ferro- and piezo-electretic membrane. The PPCNG exhibits a high electrical throughput such as, ranging from 2.7 V to 23 V of open-circuit voltage (Voc) and 2.9 μA to 24.7 μA of short-circuit current (Isc) under 0.5 MPa to 4.3 MPa of imparted stress amplitude by periodic human finger motion. The harvested mechanical and subsequent electrical energy by PPCNG is shown to transfer wirelessly via visible and infrared transmitter-receiver systems, where 17% and 49% of wireless power transfer efficiency, respectively, has been realized to power up several consumer electronics.
Esmaeili, Chakavak; Ghasemi, Mostafa; Heng, Lee Yook; Hassan, Sedky H A; Abdi, Mahnaz M; Daud, Wan Ramli Wan; Ilbeygi, Hamid; Ismail, Ahmad Fauzi
2014-12-19
A novel nano-bio composite polypyrrole (PPy)/kappa-carrageenan(KC) was fabricated and characterized for application as a cathode catalyst in a microbial fuel cell (MFC). High resolution SEM and TEM verified the bud-like shape and uniform distribution of the PPy in the KC matrix. X-ray diffraction (XRD) has approved the amorphous structure of the PPy/KC as well. The PPy/KC nano-bio composites were then studied as an electrode material, due to their oxygen reduction reaction (ORR) ability as the cathode catalyst in the MFC and the results were compared with platinum (Pt) as the most common cathode catalyst. The produced power density of the PPy/KC was 72.1 mW/m(2) while it was 46.8 mW/m(2) and 28.8 mW/m(2) for KC and PPy individually. The efficiency of the PPy/KC electrode system is slightly lower than a Pt electrode (79.9 mW/m(2)) but due to the high cost of Pt electrodes, the PPy/KC electrode system has potential to be an alternative electrode system for MFCs. Copyright © 2014 Elsevier Ltd. All rights reserved.
Influence of performance level on anaerobic power and body composition in elite male judoists.
Kim, Jongkyu; Cho, Hyun-Chul; Jung, Han-Sang; Yoon, Jong-Dae
2011-05-01
This study examined the relationship between 30-second anaerobic power and body composition by performance level in elite Judoists. During a 3-month period, 10 male Korean Judo national team athletes (NT), 26 male university varsity team athletes (VT), and 28 male junior varsity team athletes (JT) were assessed for 30-second anaerobic power and body composition at the Youngin University. Anaerobic power was measured using a 30-second Wingate test. Body composition was assessed via bioelectric impedance analysis in standardized conditions using BioSpace (Korean)-specific prediction formulas. All testing occurred at the beginning of the winter nonseason period but excluded a brief weight-loss period before the competition phase. Anaerobic power measures were significantly greater (p < 0.05) in NT and VT than in JT. Fat-free mass (FFM), muscle mass (MM), and total body water in JT were also greater than in VT and JT (p < 0.05). Muscle mass in VT was significantly lower than in NT (p < 0.05). Fat-free mass in NT was strongly correlated to mean and peak anaerobic power (r = 0.77, p = 0.009; r = 0.87, p < 0.001, respectively). Varsity team athletes also indicated a moderate association between FFM and peak and mean anaerobic power (r = 0.63, p < 0.001; r = 0.48, p = 0.013, respectively). However, relationship between FFM and anaerobic power was not statistically significantly correlated in JT (r = 0.14, p = 0.470; r = 0.23, p = 0.232, separately). In conclusion, our data indicated that anaerobic power is closely correlated with increase in FFM and MM and was different dependent among performance levels. Further research in the field is warranted to elucidate the Judo-specific relationship between FFM and performance.
NASA Astrophysics Data System (ADS)
Roche, M.
A solar thermal power plant using fused salt as the heat transfer fluid for steam power generation is analyzed for the feasibility of economic operation. The salt is also stored in a tank reservoir for maintaining the primary heat loop at temperatures high enough for the salts to remain liquid, and also to provide reserve power for the steam generator. Initial studies were with eutectic (hitec) salt comprising Na, KOH, and nitrites melting at 146 C, and further studies were performed employing draw salt, which has no nitrite, is more stable at high temperature, and melts at 225 C. The use of draw salt was found to allow a 5 percent reduction in storage capacity. Further examinations of the effects of the hitec salts on corrosion and composition degradation at high temperatures are indicated. The molten salt system is projected to offer an efficiency of 26 percent.
Lower power dc arcjet operations with hydrogen hydrogen/nitrogen propellant mixtures
NASA Technical Reports Server (NTRS)
Curran, F. M.; Nakanishi, S.
1986-01-01
The arcjet assembly from a flight model system was modified with a new thoriated tungsten nozzle insert and has been tested with hydrogen-nitrogen mixtures simulating the decomposition products of ammonia and hydrazine. Arcjet power consumption ranged from 0.7 to 1.15 kW depending on low rate, input current, and mixture composition. At a nominal 1 kW power level the ammonia mixtures thrust efficiency was about 0.31 at specific impulse values ranging between 460 and 500 sec. Hydrazine mixtures gave similar thrust efficiencies at the same power level with specific impulse values between 395 and 430 sec. Large, spontaneous voltage mode changes were not observed once the thruster had passed a period of instability immediately following start up. This period of instability, and the startup at low pressure, were seen as major causes of constrictor damage during the tests.
Schroeder, Jenna N.
2014-06-10
This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.
Bosch CO2 Reduction System Development
NASA Technical Reports Server (NTRS)
Holmes, R. F.; King, C. D.; Keller, E. E.
1975-01-01
Refinements in the design of a Bosch CO2 reduction unit for spacecraft O2 production are described. Sealing of the vacuum insulation jacket was simplified so that high vacuum and high insulation performance are easily maintained. The device includes a relatively simple concentric shell recuperative heat exchanger which operates at approximately 95% temperature effectiveness and helps lower power consumption. The influence of reactor temperature, pressure, and recycle gas composition on power consumption was investigated. In general, precise control is not required since power consumption is not very sensitive to moderate variations of these parameters near their optimum values. There are two process rate control modes which match flow rate to process demand. Catalyst conditioning, support, and packing pattern developments assure consistent starts, reduced energy consumption, and extended cartridge life. Operation levels for four or five men were maintained with overall power input values of 50 to 60 watts per man.
High-Performance SiC/SiC Ceramic Composite Systems Developed for 1315 C (2400 F) Engine Components
NASA Technical Reports Server (NTRS)
DiCarlo, James A.; Yun, Hee Mann; Morscher, Gregory N.; Bhatt, Ramakrishna T.
2004-01-01
As structural materials for hot-section components in advanced aerospace and land-based gas turbine engines, silicon carbide (SiC) ceramic matrix composites reinforced by high performance SiC fibers offer a variety of performance advantages over current bill-of-materials, such as nickel-based superalloys. These advantages are based on the SiC/SiC composites displaying higher temperature capability for a given structural load, lower density (approximately 30- to 50-percent metal density), and lower thermal expansion. These properties should, in turn, result in many important engine benefits, such as reduced component cooling air requirements, simpler component design, reduced support structure weight, improved fuel efficiency, reduced emissions, higher blade frequencies, reduced blade clearances, and higher thrust. Under the NASA Ultra-Efficient Engine Technology (UEET) Project, much progress has been made at the NASA Glenn Research Center in identifying and optimizing two highperformance SiC/SiC composite systems. The table compares typical properties of oxide/oxide panels and SiC/SiC panels formed by the random stacking of balanced 0 degrees/90 degrees fabric pieces reinforced by the indicated fiber types. The Glenn SiC/SiC systems A and B (shaded area of the table) were reinforced by the Sylramic-iBN SiC fiber, which was produced at Glenn by thermal treatment of the commercial Sylramic SiC fiber (Dow Corning, Midland, MI; ref. 2). The treatment process (1) removes boron from the Sylramic fiber, thereby improving fiber creep, rupture, and oxidation resistance and (2) allows the boron to react with nitrogen to form a thin in situ grown BN coating on the fiber surface, thereby providing an oxidation-resistant buffer layer between contacting fibers in the fabric and the final composite. The fabric stacks for all SiC/SiC panels were provided to GE Power Systems Composites for chemical vapor infiltration of Glenn designed BN fiber coatings and conventional SiC matrices. Composite panels with system B were heat treated at Glenn, and the pores that remained open were filled by silicon melt infiltration (MI). Panels with system A and the other SiC/SiC systems were not heat treated, and remaining open pores in these systems were filled with SiC slurry and silicon MI.
Heat Rejection Systems Utilizing Composites and Heat Pipes: Design and Performance Testing
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.; Beach, Duane E.; Sanzi, James L.
2007-01-01
Polymer matrix composites offer the promise of reducing the mass and increasing the performance of future heat rejection systems. With lifetimes for heat rejection systems reaching a decade or more in a micrometeoroid environment, use of multiple heat pipes for fault tolerant design is compelling. The combination of polymer matrix composites and heat pipes is of particular interest for heat rejection systems operating on the lunar surface. A technology development effort is under way to study the performance of two radiator demonstration units manufactured with different polymer matrix composite face sheet resin and bonding adhesives, along with different titanium-water heat pipe designs. Common to the two radiator demonstration units is the use of high thermal conductivity fibers in the face sheets and high thermal conductivity graphite saddles within a light weight aluminum honeycomb core. Testing of the radiator demonstration units included thermal vacuum exposure and thermal vacuum exposure with a simulated heat pipe failure. Steady state performance data were obtained at different operating temperatures to identify heat transfer and thermal resistance characteristics. Heat pipe failure was simulated by removing the input power from an individual heat pipe in order to identify the diminished performance characteristics of the entire panel after a micrometeoroid strike. Freeze-thaw performance was also of interest. This paper presents a summary of the two radiator demonstration units manufactured to support this technology development effort along with the thermal performance characteristics obtained to date. Future work will also be discussed.
System design analyses of a rotating advanced-technology space station for the year 2025
NASA Technical Reports Server (NTRS)
Queijo, M. J.; Butterfield, A. J.; Cuddihy, W. F.; Stone, R. W.; Wrobel, J. R.; Garn, P. A.; King, C. B.
1988-01-01
Studies of an advanced technology space station configured to implement subsystem technologies projected for availability in the time period 2000 to 2025 is documented. These studies have examined the practical synergies in operational performance available through subsystem technology selection and identified the needs for technology development. Further analyses are performed on power system alternates, momentum management and stabilization, electrothermal propulsion, composite materials and structures, launch vehicle alternates, and lunar and planetary missions. Concluding remarks are made regarding the advanced technology space station concept, its intersubsystem synergies, and its system operational subsystem advanced technology development needs.
Sorption J-T refrigeration utilizing manganese nitride chemisorption
NASA Technical Reports Server (NTRS)
Jones, Jack; Lund, Alan
1990-01-01
The equilibrium pressures and compositions have been measured for a system of finely powdered manganese nitride and nitrogen gas at 650, 700, 800, and 850 C for various nitrogen loadings. Pressures ranged from less than 0.02 MPa at 650 C to 6.38 MPa at 850 C. Analysis of the test results has shown that under certain conditions Mn(x)N(y) could potentially be used in a triple regenerative sorption compressor refrigeration system, but the potential power savings are small compared to the increased complexity and reliability problems associated with very high temperature (above 950 C) pressurized systems.
The philosophical core of King's conceptual system.
Whelton, B J
1999-04-01
Aristotelian understanding of being human is presented as the philosophical core of King's conceptual system. A summary of King's thought is organized according to contemporary influences. The article then turns to what Aristotle teaches about the composition of the world and what it means to be a human being. Wallace's life-powers model of the soul brings these insights into contemporary thought. Aristotelian philosophy completes King's account of the personal system by providing insight into what it is to be human. Parallels in the reasoning of transaction and Aristotelian deliberation are further evidence of classical influences within King's work.
Enrichment Zoning Options for the Small Nuclear Rocket Engine (SNRE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruce G. Schnitzler; Stanley K. Borowski
2010-07-01
Advancement of U.S. scientific, security, and economic interests through a robust space exploration program requires high performance propulsion systems to support a variety of robotic and crewed missions beyond low Earth orbit. In NASA’s recent Mars Design Reference Architecture (DRA) 5.0 study (NASA-SP-2009-566, July 2009), nuclear thermal propulsion (NTP) was again selected over chemical propulsion as the preferred in-space transportation system option because of its high thrust and high specific impulse (-900 s) capability, increased tolerance to payload mass growth and architecture changes, and lower total initial mass in low Earth orbit. An extensive nuclear thermal rocket technology development effortmore » was conducted from 1955-1973 under the Rover/NERVA Program. The Small Nuclear Rocket Engine (SNRE) was the last engine design studied by the Los Alamos National Laboratory during the program. At the time, this engine was a state-of-the-art design incorporating lessons learned from the very successful technology development program. Past activities at the NASA Glenn Research Center have included development of highly detailed MCNP Monte Carlo transport models of the SNRE and other small engine designs. Preliminary core configurations typically employ fuel elements with fixed fuel composition and fissile material enrichment. Uniform fuel loadings result in undesirable radial power and temperature profiles in the engines. Engine performance can be improved by some combination of propellant flow control at the fuel element level and by varying the fuel composition. Enrichment zoning at the fuel element level with lower enrichments in the higher power elements at the core center and on the core periphery is particularly effective. Power flattening by enrichment zoning typically results in more uniform propellant exit temperatures and improved engine performance. For the SNRE, element enrichment zoning provided very flat radial power profiles with 551 of the 564 fuel elements within 1% of the average element power. Results for this and alternate enrichment zoning options for the SNRE are compared.« less
Solar-powered oxygen delivery: proof of concept.
Turnbull, H; Conroy, A; Opoka, R O; Namasopo, S; Kain, K C; Hawkes, M
2016-05-01
A resource-limited paediatric hospital in Uganda. Pneumonia is a leading cause of child mortality worldwide. Access to life-saving oxygen therapy is limited in many areas. We designed and implemented a solar-powered oxygen delivery system for the treatment of paediatric pneumonia. Proof-of-concept pilot study. A solar-powered oxygen delivery system was designed and piloted in a cohort of children with hypoxaemic illness. The system consisted of 25 × 80 W photovoltaic solar panels (daily output 7.5 kWh [range 3.8-9.7kWh]), 8 × 220 Ah batteries and a 300 W oxygen concentrator (output up to 5 l/min oxygen at 88% [±2%] purity). A series of 28 patients with hypoxaemia were treated with solar-powered oxygen. Immediate improvement in peripheral blood oxygen saturation was documented (median change +12% [range 5-15%], P < 0.0001). Tachypnoea, tachycardia and composite illness severity score improved over the first 24 h of hospitalisation (P < 0.01 for all comparisons). The case fatality rate was 6/28 (21%). The median recovery times to sit, eat, wean oxygen and hospital discharge were respectively 7.5 h, 9.8 h, 44 h and 4 days. Solar energy can be used to concentrate oxygen from ambient air and oxygenate children with respiratory distress and hypoxaemia in a resource-limited setting.
Chernysheva, Maria; Mou, Chengbo; Arif, Raz; AlAraimi, Mohammed; Rümmeli, Mark; Turitsyn, Sergei; Rozhin, Aleksey
2016-01-01
We have proposed and demonstrated a Q-switched Thulium doped fibre laser (TDFL) with a ‘Yin-Yang’ all-fibre cavity scheme based on a combination of nonlinear optical loop mirror (NOLM) and nonlinear amplified loop mirror (NALM). Unidirectional lasing operation has been achieved without any intracavity isolator. By using a carbon nanotube polymer composite based saturable absorber (SA), we demonstrated the laser output power of ~197 mW and pulse energy of 1.7 μJ. To the best of our knowledge, this is the highest output power from a nanotube polymer composite SA based Q-switched Thulium doped fibre laser. PMID:27063511
Wu, Fengluan; Jin, Long; Zheng, Xiaotong; Yan, Bingyun; Tang, Pandeng; Yang, Huikai; Deng, Weili; Yang, Weiqing
2017-11-08
Electrical stimulation in biology and gene expression has attracted considerable attention in recent years. However, it is inconvenient that the electric stimulation needs to be supplied an implanted power-transported wire connecting the external power supply. Here, we fabricated a self-powered composite nanofiber (CNF) and developed an electric generating system to realize electrical stimulation based on the electromagnetic induction effect under an external rotating magnetic field. The self-powered CNFs generating an electric signal consist of modified MWNTs (m-MWNTs) coated Fe 3 O 4 /PCL fibers. Moreover, the output current of the nanocomposites can be increased due to the presence of the magnetic nanoparticles during an external magnetic field is applied. In this paper, these CNFs were employed to replace a bullfrog's sciatic nerve and to realize the effective functional electrical stimulation. The cytotoxicity assays and animal tests of the nanocomposites were also used to evaluate the biocompatibility and tissue integration. These results demonstrated that this self-powered CNF not only plays a role as power source but also can act as an external power supply under an external rotating magnetic field for noninvasive the replacement of injured nerve.
Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes
NASA Astrophysics Data System (ADS)
Cheng, Yingwen; Zhang, Hongbo; Lu, Songtao; Varanasi, Chakrapani V.; Liu, Jie
2013-01-01
Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of the original capacitance retained when the scan rate was increased from 2 mV s-1 to 500 mV s-1. Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg-1) under high power density (7.8 kW kg-1) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required.Supercapacitors with both high energy and high power densities are critical for many practical applications. In this paper, we discuss the design and demonstrate the fabrication of flexible asymmetric supercapacitors based on nanocomposite electrodes of MnO2, activated carbon, carbon nanotubes and graphene. The combined unique properties of each of these components enable highly flexible and mechanically strong films that can serve as electrodes directly without using any current collectors or binders. Using these flexible electrodes and a roll-up approach, asymmetric supercapacitors with 2 V working voltage were successfully fabricated. The fabricated device showed excellent rate capability, with 78% of the original capacitance retained when the scan rate was increased from 2 mV s-1 to 500 mV s-1. Owing to the unique composite structure, these supercapacitors were able to deliver high energy density (24 W h kg-1) under high power density (7.8 kW kg-1) conditions. These features could enable supercapacitor based energy storage systems to be very attractive for a variety of critical applications, such as the power sources in hybrid electric vehicles and the back-up powers for wind and solar energy, where both high energy density and high power density are required. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33136e
Cold-end Subsystem Testing for the Fission Power System Technology Demonstration Unit
NASA Technical Reports Server (NTRS)
Briggs, Maxwell; Gibson, Marc; Ellis, David; Sanzi, James
2013-01-01
The Fission Power System (FPS) Technology Demonstration Unit (TDU) consists of a pumped sodium-potassium (NaK) loop that provides heat to a Stirling Power Conversion Unit (PCU), which converts some of that heat into electricity and rejects the waste heat to a pumped water loop. Each of the TDU subsystems is being tested independently prior to full system testing at the NASA Glenn Research Center. The pumped NaK loop is being tested at NASA Marshall Space Flight Center; the Stirling PCU and electrical controller are being tested by Sunpower Inc.; and the pumped water loop is being tested at Glenn. This paper describes cold-end subsystem setup and testing at Glenn. The TDU cold end has been assembled in Vacuum Facility 6 (VF 6) at Glenn, the same chamber that will be used for TDU testing. Cold-end testing in VF 6 will demonstrate functionality; validated cold-end fill, drain, and emergency backup systems; and generated pump performance and system pressure drop data used to validate models. In addition, a low-cost proof-of concept radiator has been built and tested at Glenn, validating the design and demonstrating the feasibility of using low-cost metal radiators as an alternative to high-cost composite radiators in an end-to-end TDU test.
Cold-End Subsystem Testing for the Fission Power System Technology Demonstration Unit
NASA Technical Reports Server (NTRS)
Briggs, Mazwell; Gibson, Marc; Ellis, David; Sanzi, James
2013-01-01
The Fission Power System (FPS) Technology Demonstration Unit (TDU) consists of a pumped sodiumpotassium (NaK) loop that provides heat to a Stirling Power Conversion Unit (PCU), which converts some of that heat into electricity and rejects the waste heat to a pumped water loop. Each of the TDU subsystems is being tested independently prior to full system testing at the NASA Glenn Research Center. The pumped NaK loop is being tested at NASA Marshall Space Flight Center; the Stirling PCU and electrical controller are being tested by Sunpower Inc.; and the pumped water loop is being tested at Glenn. This paper describes cold-end subsystem setup and testing at Glenn. The TDU cold end has been assembled in Vacuum Facility 6 (VF 6) at Glenn, the same chamber that will be used for TDU testing. Cold-end testing in VF 6 will demonstrate functionality; validated coldend fill, drain, and emergency backup systems; and generated pump performance and system pressure drop data used to validate models. In addition, a low-cost proof-of concept radiator has been built and tested at Glenn, validating the design and demonstrating the feasibility of using low-cost metal radiators as an alternative to highcost composite radiators in an end-to-end TDU test.
NASA Astrophysics Data System (ADS)
von Bergmann, Hubertus; Morkel, Francois; Stehmann, Timo
2015-02-01
Laser Ultrasonic Testing (UT) is an important technique for the non-destructive inspection of composite parts in the aerospace industry. In laser UT a high power, short pulse probe laser is scanned across the material surface, generating ultrasound waves which can be detected by a second low power laser system and are used to draw a defect map of the part. We report on the design and testing of a transversely excited atmospheric pressure (TEA) CO2 laser system specifically optimised for laser UT. The laser is excited by a novel solid-state switched pulsing system and utilises either spark or corona preionisation. It provides short output pulses of less than 100 ns at repetition rates of up to 1 kHz, optimised for efficient ultrasonic wave generation. The system has been designed for highly reliable operation under industrial conditions and a long term test with total pulse counts in excess of 5 billion laser pulses is reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turchi, Craig; Kurup, Parthiv; Akar, Sertac
This study lists material composition data for two concentrating solar power (CSP) plant designs: a molten-salt power tower and a hypothetical parabolic trough plant, both of which employ a molten salt for the heat transfer fluid (HTF) and thermal storage media. The two designs have equivalent generating and thermal energy storage capacities. The material content of the saltHTF trough plant was approximately 25% lower than a comparably sized conventional oil-HTF parabolic trough plant. The significant reduction in oil, salt, metal, and insulation mass by switching to a salt-HTF design is expected to reduce the capital cost and LCOE for themore » parabolic trough system.« less
Fiber laser cleaning of metal mirror surfaces for optical diagnostic systems of the ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuznetsov, A. P., E-mail: APKuznetsov@mephi.ru; Alexandrova, A. S.; Buzhinsky, O. I.
2015-12-15
The results of experimental studies into efficiency of removal of films with a complex composition from metal mirrors by pulsed fiber laser irradiation are presented. It is shown that the initial reflectivity of optical elements can be restored by the selection of modes of irradiation impacting the surface with the sputtered film. Effective cleaning is performed by radiation with a power density lower than 10{sup 7} W/cm{sup 2}. The removal of contaminations at such a relatively low power density occurs in a solid phase, owing to which the thermal effect on the mirror is insignificant.
Flight Testing of Hybrid Powered Vehicles
NASA Technical Reports Server (NTRS)
Story, George; Arves, Joe
2006-01-01
Hybrid Rocket powered vehicles have had a limited number of flights. Most recently in 2004, Scaled Composites had a successful orbital trajectory that put a private vehicle twice to over 62 miles high, the edge of space to win the X-Prize. This endeavor man rates a hybrid system. Hybrids have also been used in a number of one time launch attempts - SET-1, HYSR, HPDP. Hybrids have also been developed for use and flown in target drones. This chapter discusses various flight-test programs that have been conducted, hybrid vehicles that are in development, other hybrid vehicles that have been proposed and some strap-on applications have also been examined.
Effect of a multi-layer infection control barrier on the micro-hardness of a composite resin
HWANG, In-Nam; HONG, Sung-Ok; LEE, Bin-Na; HWANG, Yun-Chan; OH, Won-Mann; CHANG, Hoon-Sang
2012-01-01
Objective The aim of this study was to evaluate the effect of multiple layers of an infection control barrier on the micro-hardness of a composite resin. Material and Methods One, two, four, and eight layers of an infection control barrier were used to cover the light guides of a high-power light emitting diode (LED) light curing unit (LCU) and a low-power halogen LCU. The composite specimens were photopolymerized with the LCUs and the barriers, and the micro-hardness of the upper and lower surfaces was measured (n=10). The hardness ratio was calculated by dividing the bottom surface hardness of the experimental groups by the irradiated surface hardness of the control groups. The data was analyzed by two-way ANOVA and Tukey's HSD test. Results The micro-hardness of the composite specimens photopolymerized with the LED LCU decreased significantly in the four- and eight-layer groups of the upper surface and in the two-, four-, and eight-layer groups of the lower surface. The hardness ratio of the composite specimens was <80% in the eight-layer group. The micro-hardness of the composite specimens photopolymerized with the halogen LCU decreased significantly in the eight-layer group of the upper surface and in the two-, four-, and eight-layer groups of the lower surface. However, the hardness ratios of all the composite specimens photopolymerized with barriers were <80%. Conclusions The two-layer infection control barrier could be used on high-power LCUs without decreasing the surface hardness of the composite resin. However, when using an infection control barrier on the low-power LCUs, attention should be paid so as not to sacrifice the polymerization efficiency. PMID:23138746
Magnet Design and Analysis of a 40 Tesla Long Pulse System Energized by a Battery Bank
NASA Astrophysics Data System (ADS)
Lv, Y. L.; Peng, T.; Wang, G. B.; Ding, T. H.; Han, X. T.; Pan, Y.; Li, L.
2013-03-01
A 40 tesla long pulse magnet and a battery bank as the power supply have been designed. This is now under construction at the Wuhan National High Magnetic Field Center. The 22 mm bore magnet will generate smooth pulses with duration 1 s and rise time 0.5 s. The battery bank consists of 945 12V/200 Ah lead-acid battery cells. The magnet and battery bank were optimized by codes developed in-house and by ANSYS. The coil was made from soft copper with internal reinforcement by fiber-epoxy composite; it is divided into two sections connected in series. The inner section consists of helix coils with each layer reinforced by Zylon composite. The outer section will be wound from copper sheet and externally reinforced by carbon fiber composite.
NASA Astrophysics Data System (ADS)
Metcalfe, Craig; Lay-Grindler, Elisa; Kesler, Olivera
2014-02-01
Nickel and yttria-stabilized zirconia (YSZ) anodes were fabricated by solution precursor plasma spraying (SPPS) and incorporated into metal-supported solid oxide fuel cells (SOFC). A power density of 0.45 W cm-2 at 0.7 V and a peak power density of 0.52 W cm-2 at 750 °C in humidified H2 was obtained, which are the first performance results reported for an SOFC having an anode fabricated by SPPS. The effects of solution composition, plasma gas composition, and stand-off distance on the composition of the deposited Ni-YSZ coatings by SPPS were evaluated. It was found that the addition of citric acid to the aqueous solution delayed re-solidification of NiO particles, improving the deposition efficiency and coating adhesion. The composition of the deposited coatings was found to vary with torch power. Increasing torch power led to coatings with decreasing Ni content, as a result of Ni vaporizing in-flight at stand-off distances less than 60 mm from the torch nozzle exit.
Electric service reliability cost/worth assessment in a developing country
NASA Astrophysics Data System (ADS)
Pandey, Mohan Kumar
Considerable work has been done in developed countries to optimize the reliability of electric power systems on the basis of reliability cost versus reliability worth. This has yet to be considered in most developing countries, where development plans are still based on traditional deterministic measures. The difficulty with these criteria is that they cannot be used to evaluate the economic impacts of changing reliability levels on the utility and the customers, and therefore cannot lead to an optimum expansion plan for the system. The critical issue today faced by most developing countries is that the demand for electric power is high and growth in supply is constrained by technical, environmental, and most importantly by financial impediments. Many power projects are being canceled or postponed due to a lack of resources. The investment burden associated with the electric power sector has already led some developing countries into serious debt problems. This thesis focuses on power sector issues facing by developing countries and illustrates how a basic reliability cost/worth approach can be used in a developing country to determine appropriate planning criteria and justify future power projects by application to the Nepal Integrated Electric Power System (NPS). A reliability cost/worth based system evaluation framework is proposed in this thesis. Customer surveys conducted throughout Nepal using in-person interviews with approximately 2000 sample customers are presented. The survey results indicate that the interruption cost is dependent on both customer and interruption characteristics, and it varies from one location or region to another. Assessments at both the generation and composite system levels have been performed using the customer cost data and the developed NPS reliability database. The results clearly indicate the implications of service reliability to the electricity consumers of Nepal, and show that the reliability cost/worth evaluation is both possible and practical in a developing country. The average customer interruption costs of Rs 35/kWh at Hierarchical Level I and Rs 26/kWh at Hierarchical Level II evaluated in this research work led to an optimum reserve margin of 7.5%, which is considerably lower than the traditional reserve margin of 15% used in the NPS. A similar conclusion may result in other developing countries facing difficulties in power system expansion planning using the traditional approach. A new framework for system planning is therefore recommended for developing countries which would permit an objective review of the traditional system planning approach, and the evaluation of future power projects using a new approach based on fundamental principles of power system reliability and economics.
A high temperature testing system for ceramic composites
NASA Technical Reports Server (NTRS)
Hemann, John
1994-01-01
Ceramic composites are presently being developed for high temperature use in heat engine and space power system applications. The operating temperature range is expected to be 1090 to 1650 C (2000 F to 3000 F). Very little material data is available at these temperatures and, therefore, it is desirable to thoroughly characterize the basic unidirectional fiber reinforced ceramic composite. This includes testing mainly for mechanical material properties at high temperatures. The proper conduct of such characterization tests requires the development of a tensile testing system includes unique gripping, heating, and strain measuring devices which require special considerations. The system also requires an optimized specimen shape. The purpose of this paper is to review various techniques for measuring displacements or strains, preferably at elevated temperatures. Due to current equipment limitations it is assumed that the specimen is to be tested at a temperature of 1430 C (2600F) in an oxidizing atmosphere. For the most part, previous high temperature material characterization tests, such as flexure and tensile tests, have been performed in inert atmospheres. Due to the harsh environment in which the ceramic specimen is to be tested, many conventional strain measuring techniques can not be applied. Initially a brief description of the more commonly used mechanical strain measuring techniques is given. Major advantages and disadvantages with their application to high temperature tensile testing of ceramic composites are discussed. Next, a general overview is given for various optical techniques. Advantages and disadvantages which are common to these techniques are noted. The optical methods for measuring strain or displacement are categorized into two sections. These include real-time techniques. Finally, an optical technique which offers optimum performance with the high temperature tensile testing of ceramic composites is recommended.
Shear bond strength of composite bonded with three adhesives to Er,Cr:YSGG laser-prepared enamel.
Türkmen, Cafer; Sazak-Oveçoğlu, Hesna; Günday, Mahir; Güngör, Gülşad; Durkan, Meral; Oksüz, Mustafa
2010-06-01
To assess in vitro the shear bond strength of a nanohybrid composite resin bonded with three adhesive systems to enamel surfaces prepared with acid and Er,Cr:YSGG laser etching. Sixty extracted caries- and restoration-free human maxillary central incisors were used. The teeth were sectioned 2 mm below the cementoenamel junction. The crowns were embedded in autopolymerizing acrylic resin with the labial surfaces facing up. The labial surfaces were prepared with 0.5-mm reduction to receive composite veneers. Thirty specimens were etched with Er,Cr:YSGG laser. This group was also divided into three subgroups, and the following three bonding systems were then applied on the laser groups and the other three unlased groups: (1) 37% phosphoric acid etch + Bond 1 primer/adhesive (Pentron); (2) Nano-bond self-etch primer (Pentron) + Nano-bond adhesive (Pentron); and (3) all-in-one adhesive-single dose (Futurabond NR, Voco). All of the groups were restored with a nanohybrid composite resin (Smile, Pentron). Shear bond strength was measured with a Zwick universal test device with a knife-edge loading head. The data were analyzed with two-factor ANOVA. There were no significant differences in shear bond strength between self-etch primer + adhesive and all-in-one adhesive systems for nonetched and laser-etched enamel groups (P > .05). However, bond strength values for the laser-etched + Bond 1 primer/adhesive group (48.00 +/- 13.86 MPa) were significantly higher than the 37% phosphoric acid + Bond 1 primer/adhesive group (38.95 +/- 20.07 MPa) (P < .05). The Er,Cr:YSGG laser-powered hydrokinetic system etched the enamel surface more effectively than 37% phosphoric acid for subsequent attachment of composite material.
NASA Technical Reports Server (NTRS)
Wang, Chuantong; Dudley, Kenneth L.; Szatkowski, George N.
2012-01-01
Composite materials are increasingly used in modern aircraft for reducing weight, improving fuel efficiency, and enhancing the overall design, performance, and manufacturability of airborne vehicles. Materials such as fiberglass reinforced composites (FRC) and carbon-fiber-reinforced polymers (CFRP) are being used to great advantage in airframes, wings, engine nacelles, turbine blades, fairings, fuselage and empennage structures, control surfaces and coverings. However, the potential damage from the direct and indirect effects of lightning strikes is of increased concern to aircraft designers and operators. When a lightning strike occurs, the points of attachment and detachment on the aircraft surface must be found by visual inspection, and then assessed for damage by maintenance personnel to ensure continued safe flight operations. In this paper, a new method and system for aircraft in-situ damage detection and diagnosis are presented. The method and system are based on open circuit (SansEC) sensor technology developed at NASA Langley Research Center. SansEC (Sans Electric Connection) sensor technology is a new technical framework for designing, powering, and interrogating sensors to detect damage in composite materials. Damage in composite material is generally associated with a localized change in material permittivity and/or conductivity. These changes are sensed using SansEC. Unique electrical signatures are used for damage detection and diagnosis. NASA LaRC has both experimentally and theoretically demonstrated that SansEC sensors can be effectively used for in-situ composite damage detection.
Li, Ming; Pan, Yuzhen; Huang, Liping; Zhang, Yong; Yang, Jinhui
2017-03-01
A self-driven microbial fuel cell (MFC) - microbial electrolysis cell (MEC) system, where electricity generated from MFCs is in situ utilized for powering MECs, has been previously reported for recovering Cr(VI), Cu(II) and Cd(II) with individual metals fed in different units of the system in batch operation. Here it was advanced with treating synthetic mixed metals' solution at appropriately adjusting composites in fed-batch and continuous flow operations for complete separation of Cr(VI), Cu(II) and Cd(II) from each other. Under an optimal condition of hydraulic residence time of 4 h, matching of two serially connected MFCs with one MEC, and fed with a composite of either 5 mg L -1 Cr(VI), 1 mg L -1 Cu(II) and 5 mg L -1 Cd(II), or 1 mg L -1 Cr(VI), 5 mg L -1 Cu(II) and 5 mg L -1 Cd(II), the self-driven MFC-MEC system can completely and sequentially recover Cu(II), Cr(VI) and Cd(II) from mixed metals. This study provides a true sustainable and zero-energy-consumed approach of using bioelectrochemical systems for completely recovering and separating Cr(VI), Cu(II) and Cd(II) from each other or from wastes or contaminated sites.
Optimizing piezoelectric receivers for acoustic power transfer applications
NASA Astrophysics Data System (ADS)
Gorostiaga, M.; Wapler, M. C.; Wallrabe, U.
2018-07-01
In this paper, we aim to optimize piezoelectric plate receivers for acoustic power transfer applications by analyzing the influence of the losses and of the acoustic boundary conditions. We derive the analytic expressions of the efficiency of the receiver with the optimal electric loads attached, and analyze the maximum efficiency value and its frequency with different loss and acoustic boundary conditions. To validate the analytical expressions that we have derived, we perform experiments in water with composite transducers of different filling fractions, and see that a lower acoustic impedance mismatch can compensate the influence of large dielectric and acoustic losses to achieve a good performance. Finally, we briefly compare the advantages and drawbacks of composite transducers and pure PZT (lead zirconate titanate) plates as acoustic power receivers, and conclude that 1–3 composites can achieve similar efficiency values in low power applications due to their adjustable acoustic impedance.
Fabrication and Properties of Composite Artificial Muscles Based on Nylon and a Shape Memory Alloy
NASA Astrophysics Data System (ADS)
Yin, Haibin; Zhou, Jia; Li, Junfeng; Joseph, Vincent S.
2018-05-01
This paper focuses on the design, fabrication and investigation of the mechanical properties of new artificial muscles formed by twisting and annealing. The artificial muscles designed by twisting nylon have become a popular topic in the field of smart materials due to their high mechanical performance with a large deformation and power density. However, the complexity of the heating and cooling system required to control the nylon muscle is a disadvantage, so we have proposed a composite artificial muscle for providing a direct electricity-driven actuation by integrating nylon and a shape memory alloy (SMA). In this paper, the design and fabrication process of these composite artificial muscles are introduced before their mechanical properties, which include the deformation, stiffness, load and response, are investigated. The results show that these composite artificial muscles that integrate nylon and a SMA provide better mechanical properties and yield up to a 44.1% deformation and 3.43 N driving forces. The good performance and direct electro-thermal actuation make these composite muscles ideal for driving robots in a method similar to human muscles.
Surface Tension Mediated Conversion of Light to Work
Okawa, David; Pastine, Stefan J.; Zettl, Alex; Fréchet, Jean M. J.
2009-01-01
As energy demands increase, new, more direct, energy collection and utilization processes must be explored. We present a system that intrinsically combines the absorption of sunlight with the production of useful work in the form of locomotion of objects on liquids. Focused sunlight is locally absorbed by a nanostructured composite, creating a thermal surface tension gradient and, subsequently, motion. Controlled linear motion and rotational motion are demonstrated. The system is scale independent, with remotely powered and controlled motion shown for objects in the milligram to tens of grams range. PMID:20560635
Material Problems for High-Temperature, High-Power Space Energy-Conversion Systems.
1984-05-01
M. Takahashi, S. Nanamaku, and M. Kimura , "The growth of ferroelectric single crystal Sr 2 Mb2 0 7 by means of F.Z. technique," J. of Crystal Growth...Holsbeke, "Preparation and characterization of high purity vanadium by EBFZM," J. of Less Common Metals, Vol. 39, 7-16 (1975). 18. S. Takai and H. Kimura ... uranium system from room temperature to 900 0C. The composition of maximum hardness increased from 40 atomic percent (a/o) zirconium at room ’ 69
A Titan Explorer Mission Utilizing Solar Electric Propulsion and Chemical Propulsion Systems
NASA Technical Reports Server (NTRS)
Cupples, Michael; Coverstone, Vicki
2003-01-01
Mission and Systems analyses were performed for a Titan Explorer Mission scenario utilizing medium class launch vehicles, solar electric propulsion system (SEPS) for primary interplanetary propulsion, and chemical propulsion for capture at Titan. An examination of a range of system factors was performed to determine their affect on the payload delivery capability to Titan. The effect of varying the launch vehicle, solar array power, associated number of SEPS thrusters, chemical propellant combinations, tank liner thickness, and tank composite overwrap stress factor was investigated. This paper provides a parametric survey of the aforementioned set of system factors, delineating their affect on Titan payload delivery, as well as discussing aspects of planetary capture methodology.
A broadband study of the emission from the composite supernova remnant MSH 11-62
Slane, Patrick; Hughes, John P.; Temim, Tea; ...
2012-03-30
MSH 11-62 (G291.0-0.1) is a composite supernova remnant for which radio and X-ray observations have identified the remnant shell as well as its central pulsar wind nebula. Our observations suggest a relatively young system expanding into a low-density region. We present a study of MSH 11-62 using observations with the Chandra, XMM -Newton, and Fermi observatories, along with radio observations from the Australia Telescope Compact Array. We also identify a compact X-ray source that appears to be the putative pulsar that powers the nebula, and show that the X-ray spectrum of the nebula bears the signature of synchrotron losses asmore » particles diffuse into the outer nebula. Using data from the Fermi Large Area Telescope, we identify γ-ray emission originating from MSH 11-62. Furthermore, with density constraints from the new X-ray measurements of the remnant, we model the evolution of the composite system in order to constrain the properties of the underlying pulsar and the origin of the γ-ray emission.« less
A Broadband Study of the Emission from the Composite Supernova Remnant MSH 11-62
NASA Technical Reports Server (NTRS)
Slane, Patrick; Hughes, John P.; Temim, Tea; Rousseau, Romain; Castro, Daniel; Foight, Dillon; Gaensler, B. M.; Funk, Stefan; Lemoine-Goumard, Marianne; Gelfand, Joseph D.;
2012-01-01
MSH 11-62 (G29U)-Q.1) is a composite supernova remnant for which radio and X-ray observations have identified the remnant shell as well as its central pulsar wind nebula. The observations suggest a relatively young system expanding into a low-density region. Here, we present a study of MSH ll-62 using observations with the Chandra, XMM-Newton, and Fermi observatories, along with radio observations from the Australia Telescope Compact Array. We identify a compact X-ray source that appears to be the putative pulsar that powers the nebula, and show that the X-ray spectrum of the nebula bears the signature of synchrotron losses as particles diffuse into the outer nebula. Using data from the Fermi Large Area Telescope, we identify gamma-ray emission originating from MSH 11-62. With density constraints from the new X-ray measurements of the remnant, we model the evolution of the composite system in order to constrain the properties of the underlying pulsar and the origin of the gamma-ray emission.
Electrochemical supercapacitors from conducting polyaniline-graphene platforms.
Ashok Kumar, Nanjundan; Baek, Jong-Beom
2014-06-18
Energy storage devices such as electrochemical supercapacitors, with high power and energy densities are required to address the colossal energy requirements against the backdrop of global warming and the looming energy crisis. Nanocarbon, particularly two-dimensional graphene and graphene-based conducting polymer composites are promising electrode materials for such energy storage devices. Owing to their environmental stability, the low cost of polymers with high electroactivity and pseudocapacitance, such composite hybrids are expected to have wide implications in next generation clean and efficient energy systems. In this feature article, an overview of current research and important advances over the past four years on the development of conducting polyaniline (PANI)-graphene based composite electrodes for electrochemical supercapacitors are highlighted. Particular emphasis is made on the design, fabrication and assembly of nanostructured electrode architectures comprising PANI and graphene along with metal oxides/hydroxides and carbon nanotubes. Comments on the challenges and perspectives towards rational design and synthesis of graphene-based conducting polymer composites for energy storage are discussed.
A Process Algebraic Approach to Software Architecture Design
NASA Astrophysics Data System (ADS)
Aldini, Alessandro; Bernardo, Marco; Corradini, Flavio
Process algebra is a formal tool for the specification and the verification of concurrent and distributed systems. It supports compositional modeling through a set of operators able to express concepts like sequential composition, alternative composition, and parallel composition of action-based descriptions. It also supports mathematical reasoning via a two-level semantics, which formalizes the behavior of a description by means of an abstract machine obtained from the application of structural operational rules and then introduces behavioral equivalences able to relate descriptions that are syntactically different. In this chapter, we present the typical behavioral operators and operational semantic rules for a process calculus in which no notion of time, probability, or priority is associated with actions. Then, we discuss the three most studied approaches to the definition of behavioral equivalences - bisimulation, testing, and trace - and we illustrate their congruence properties, sound and complete axiomatizations, modal logic characterizations, and verification algorithms. Finally, we show how these behavioral equivalences and some of their variants are related to each other on the basis of their discriminating power.
The effects of atomic oxygen on the thermal emittance of high temperature radiator surfaces
NASA Technical Reports Server (NTRS)
Rutledge, Sharon K.; Hotes, Deborah L.; Paulsen, Phillip E.
1989-01-01
Radiator surfaces on high temperature space power systems such as SP-100 space nuclear power system must maintain a high emittance level in order to reject waste heat effectively. One of the primary materials under consideration for the radiators is carbon-carbon composite. Since carbon is susceptible to attack by atomic oxygen in the low earth orbital environment, it is important to determine the durability of carbon composites in this environment as well as the effect atomic oxygen has on the thermal emittance of the surface if it is to be considered for use as a radiator. Results indicate that the thermal emittance of carbon-carbon composite (as low as 0.42) can be enhanced by exposure to a directed beam of atomic oxygen to levels above 0.85 at 800 K. This emittance enhancement is due to a change in the surface morphology as a result of oxidation. High aspect ratio cones are formed on the surface which allow more efficient trapping of incident radiation. Erosion of the surface due to oxidation is similar to that for carbon, so that at altitudes less than approximately 600 km, thickness loss of the radiator could be significant (as much as 0.1 cm/year). A protective coating or oxidation barrier forming additive may be needed to prevent atomic oxygen attack after the initial high emittance surface is formed. Textured surfaces can be formed in ground based facilities or possibly in space if emittance is not sensitive to the orientation of the atomic oxygen arrival that forms the texture.
SiC formation for a solar cell passivation layer using an RF magnetron co-sputtering system
2012-01-01
In this paper, we describe a method of amorphous silicon carbide film formation for a solar cell passivation layer. The film was deposited on p-type silicon (100) and glass substrates by an RF magnetron co-sputtering system using a Si target and a C target at a room-temperature condition. Several different SiC [Si1-xCx] film compositions were achieved by controlling the Si target power with a fixed C target power at 150 W. Then, structural, optical, and electrical properties of the Si1-xCx films were studied. The structural properties were investigated by transmission electron microscopy and secondary ion mass spectrometry. The optical properties were achieved by UV-visible spectroscopy and ellipsometry. The performance of Si1-xCx passivation was explored by carrier lifetime measurement. PMID:22221730
Usage monitoring of electrical devices in a smart home.
Rahimi, Saba; Chan, Adrian D C; Goubran, Rafik A
2011-01-01
Profiling the usage of electrical devices within a smart home can be used as a method for determining an occupant's activities of daily living. A nonintrusive load monitoring system monitors the electrical consumption at a single electrical source (e.g., main electric utility service entry) and the operating schedules of individual devices are determined by disaggregating the composite electrical consumption waveforms. An electrical device's load signature plays a key role in nonintrusive load monitoring systems. A load signature is the unique electrical behaviour of an individual device when it is in operation. This paper proposes a feature-based model, using the real power and reactive power as features for describing the load signatures of individual devices. Experimental results for single device recognition for 7 devices show that the proposed approach can achieve 100% classification accuracy with discriminant analysis using Mahalanobis distances.
Singh, Arvinder; Chandra, Amreesh
2015-01-01
Amongst the materials being investigated for supercapacitor electrodes, carbon based materials are most investigated. However, pure carbon materials suffer from inherent physical processes which limit the maximum specific energy and power that can be achieved in an energy storage device. Therefore, use of carbon-based composites with suitable nano-materials is attaining prominence. The synergistic effect between the pseudocapacitive nanomaterials (high specific energy) and carbon (high specific power) is expected to deliver the desired improvements. We report the fabrication of high capacitance asymmetric supercapacitor based on electrodes of composites of SnO2 and V2O5 with multiwall carbon nanotubes and neutral 0.5 M Li2SO4 aqueous electrolyte. The advantages of the fabricated asymmetric supercapacitors are compared with the results published in the literature. The widened operating voltage window is due to the higher over-potential of electrolyte decomposition and a large difference in the work functions of the used metal oxides. The charge balanced device returns the specific capacitance of ~198 F g−1 with corresponding specific energy of ~89 Wh kg−1 at 1 A g−1. The proposed composite systems have shown great potential in fabricating high performance supercapacitors. PMID:26494197
NASA Astrophysics Data System (ADS)
Singh, Arvinder; Chandra, Amreesh
2015-10-01
Amongst the materials being investigated for supercapacitor electrodes, carbon based materials are most investigated. However, pure carbon materials suffer from inherent physical processes which limit the maximum specific energy and power that can be achieved in an energy storage device. Therefore, use of carbon-based composites with suitable nano-materials is attaining prominence. The synergistic effect between the pseudocapacitive nanomaterials (high specific energy) and carbon (high specific power) is expected to deliver the desired improvements. We report the fabrication of high capacitance asymmetric supercapacitor based on electrodes of composites of SnO2 and V2O5 with multiwall carbon nanotubes and neutral 0.5 M Li2SO4 aqueous electrolyte. The advantages of the fabricated asymmetric supercapacitors are compared with the results published in the literature. The widened operating voltage window is due to the higher over-potential of electrolyte decomposition and a large difference in the work functions of the used metal oxides. The charge balanced device returns the specific capacitance of ~198 F g-1 with corresponding specific energy of ~89 Wh kg-1 at 1 A g-1. The proposed composite systems have shown great potential in fabricating high performance supercapacitors.
Assessment of all-solid-state lithium-ion batteries
NASA Astrophysics Data System (ADS)
Braun, P.; Uhlmann, C.; Weiss, M.; Weber, A.; Ivers-Tiffée, E.
2018-07-01
All-solid-state lithium-ion batteries (ASSBs) are considered as next generation energy storage systems. A model might be very useful, which describes all contributions to the internal cell resistance, enables an optimization of the cell design, and calculates the performance of an open choice of cell architectures. A newly developed one-dimensional model for ASSBs is presented, based on a design concept which employs the use of composite electrodes. The internal cell resistance is calculated by linking two-phase transmission line models representing the composite electrodes with an ohmic resistance representing the solid electrolyte (separator). Thereby, electrical parameters, i.e. ionic and electronic conductivity, electrochemical parameters, i.e. charge-transfer resistance at interfaces and lithium solid-state diffusion, and microstructure parameters, i.e. electrode thickness, particle size, interface area, phase composition and tortuosity, are considered as the most important material and design parameters. Subsequently, discharge curves are simulated, and energy- and power-density characteristics of all-solid-state cell architectures are calculated. These model calculations are discussed and compared with experimental data from literature for a high power LiCoO2-Li10GeP2S12/Li10GeP2S12/Li4Ti5O12-Li10GeP2S12 cell.
Modeling of a rotary motor driven by an anisotropic piezoelectric composite laminate.
Zhu, M L; Lee, S R; Zhang, T Y; Tong, P
2000-01-01
This paper proposes an analytical model of a rotary motor driven by an anisotropic piezoelectric composite laminate. The driving element of the motor is a three-layer laminated plate. A piezoelectric layer is sandwiched between two anti-symmetric composite laminae. Because of the material anisotropy and the anti-symmetric configuration, torsional vibration can be induced through the inplane strain actuated by the piezoelectric layer. The advantages of the motor are its magnetic field immunity, simple structure, easy maintenance, low cost, and good low-speed performance. In this paper, the motor is considered to be a coupled dynamic system. The analytical model includes the longitudinal and torsional vibrations of the laminate and the rotating motion of the rotor under action of contact forces. The analytical model can predict the overall characteristics of the motor, including the modal frequency and the response of motion of the laminate, the rotating speed of the rotor, the input power, the output power, and the efficiency of the motor. The effects of the initial compressive force, the applied voltage, the moment of rotor inertia, and the frictional coefficient of the contact interface on the characteristics of the motor are simulated and discussed. A selection of the numerical results from the analytical model is confirmed by experimental data.
New pressure control method of mixed gas in a combined cycle power plant of a steel mill
NASA Astrophysics Data System (ADS)
Xie, Yudong; Wang, Yong
2017-08-01
The enterprise production concept is changing with the development of society. A steel mill requires a combined-cycle power plant, which consists of both a gas turbine and steam turbine. It can recycle energy from the gases that are emitted from coke ovens and blast furnaces during steel production. This plant can decrease the overall energy consumption of the steel mill and reduce pollution to our living environment. To develop a combined-cycle power plant, the pressure in the mixed-gas transmission system must be controlled in the range of 2.30-2.40 MPa. The particularity of the combined-cycle power plant poses a challenge to conventional controllers. In this paper, a composite control method based on the Smith predictor and cascade control was proposed for the pressure control of the mixed gases. This method has a concise structure and can be easily implemented in actual industrial fields. The experiment has been conducted to validate the proposed control method. The experiment illustrates that the proposed method can suppress various disturbances in the gas transmission control system and sustain the pressure of the gas at the desired level, which helps to avoid abnormal shutdowns in the combined-cycle power plant.
NASA Astrophysics Data System (ADS)
Kim, Minkook; Lee, Dai Gil
2016-05-01
Polymer electrolyte membrane fuel cells (PEMFC) exhibit a wide power range, low operating temperature, high energy density and long life time. These advantages favor PEMFC for applications such as vehicle power sources, portable power, and backup power applications. With the push towards the commercialization of PEMFC, especially for portable power applications, the overall balance of plants (BOPs) of the systems should be minimized. To reduce the mass and complexity of the systems, air-breathing PEMFC stack design with open cathode channel configuration is being developed. However, the open cathode channel configuration incurs hydrogen leakage problem. In this study, the bonding strength of a silicon adhesive between the Nafion membrane and the carbon fiber/epoxy composite bipolar plate was measured. Then, an anode bipolar plate/membrane assembly unit which was bonded with the silicone adhesive was developed to solve the hydrogen leakage problem. The reliability of the anode bipolar plate/membrane assembly unit was estimated under the internal pressure of hydrogen by the FE analysis. Additionally, the gas sealability of the developed air breathing PEMFC unit cell was experimentally measured. Finally, unit cell performance of the developed anode bipolar plate/membrane assembly unit was tested and verified under operating conditions without humidity and temperature control.
Advances in Materials and System Technology for Portable Fuel Cells
NASA Technical Reports Server (NTRS)
Narayanan, Sekharipuram R.
2007-01-01
This viewgraph presentation describes the materials and systems engineering used for portable fuel cells. The contents include: 1) Portable Power; 2) Technology Solution; 3) Portable Hydrogen Systems; 4) Direct Methanol Fuel Cell; 5) Direct Methanol Fuel Cell System Concept; 6) Overview of DMFC R&D at JPL; 7) 300-Watt Portable Fuel Cell for Army Applications; 8) DMFC units from Smart Fuel Cell Inc, Germany; 9) DMFC Status and Prospects; 10) Challenges; 11) Rapid Screening of Well-Controlled Catalyst Compositions; 12) Screening of Ni-Zr-Pt-Ru alloys; 13) Issues with New Membranes; 14) Membranes With Reduced Methanol Crossover; 15) Stacks; 16) Hybrid DMFC System; 17) Small Compact Systems; 18) Durability; and 19) Stack and System Parameters for Various Applications.
NASA Astrophysics Data System (ADS)
Delorme, Rolland
The generation of electrical energy in Quebec, estimated to 200 TWh, comes from hydroelectric generating stations for 96 % which are at the heart of provincial ecological and economic challenges. An important amount of research has been devoted to improving the hydrodynamic profile of hydraulic turbines to maximize their energy efficiency. However, few studies have focused on the draft tube in hydroelectric power plants, which is the duct where water flows out after crossing the turbine. Recent calculations performed by Alstom Power & Transport Canada Inc. revealed that the shape modulation of the draft tube could increase the hydroelectric generating station performance. The goal of this research was to assess the feasibility of this shape modification in existing draft tubes with inflatable composite membranes. The study consisted first of building an experimental setup to test the inflation of at membranes made up of a fiberglass-reinforced rubber composite. The inflated membranes were digitized with an optical equipment enabling 3D representations of their deflections. The second part of the study aimed at building finite element models reproducing the same experiments and enabling the design of more complicated membranes. The study confirmed the technical feasibility of designing and manufacturing such a membrane for the targeted application. However the large-scale roll-out will require to manufacture 3D membranes with the proper anchoring system. Keywords: reinforced rubber composite, reinforced elastomer composite, textile reinforcement, finite element modeling, mechanical behavior.
18 CFR 154.112 - Exception to form and composition of tariff.
Code of Federal Regulations, 2010 CFR
2010-04-01
... exchange of natural gas. The special rate schedule must contain a title page showing the parties to the... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Exception to form and composition of tariff. 154.112 Section 154.112 Conservation of Power and Water Resources FEDERAL ENERGY...
Analysis of fabric materials cut using ultraviolet laser ablation
NASA Astrophysics Data System (ADS)
Tsai, Hsin-Yi; Yang, Chih-Chung; Hsiao, Wen-Tse; Huang, Kuo-Cheng; Andrew Yeh, J.
2016-04-01
Laser ablation technology has widely been applied in the clothing industry in recent years. However, the laser mechanism would affect the quality of fabric contours and its components. Hence, this study examined carbonization and oxidation conditions and contour variation in nonwoven, cotton, and composite leather fabrics cut by using an ultraviolet laser at a wavelength of 355 nm. Processing parameters such as laser power, pulse frequency, scanning speed, and number of pulses per spot were adjusted to investigate component variation of the materials and to determine suitable cutting parameters for the fabrics. The experimental results showed that the weights of the component changed substantially by pulse frequency but slightly by laser power, so pulse frequency of 100 kHz and laser power of 14 W were the approximate parameters for three fabrics for the smaller carbonization and a sufficient energy for rapidly cutting, which the pulse duration of laser system was fixed at 300 μs and laser irradiance was 0.98 J/mm2 simultaneously. In addition, the etiolate phenomenon of nonwoven was reduced, and the component weight of cotton and composite leather was closed to the value of knife-cut fabric as the scanning speed increased. The approximate scanning speed for nonwoven and composite leather was 200 mm/s, and one for cotton was 150 mm/s, respectively. The sharper and firmer edge is obtained by laser ablation mechanism in comparison with traditional knife cutting. Experimental results can serve as the reference for laser cutting in the clothing industry, for rapidly providing smoother patterns with lower carbonization and oxidation edge in the fashion industry.
Multi-source energy harvester to power sensing hardware on rotating structures
NASA Astrophysics Data System (ADS)
Schlichting, Alexander; Ouellette, Scott; Carlson, Clinton; Farinholt, Kevin M.; Park, Gyuhae; Farrar, Charles R.
2010-04-01
The U.S. Department of Energy (DOE) proposes to meet 20% of the nation's energy needs through wind power by the year 2030. To accomplish this goal, the industry will need to produce larger (>100m diameter) turbines to increase efficiency and maximize energy production. It will be imperative to instrument the large composite structures with onboard sensing to provide structural health monitoring capabilities to understand the global response and integrity of these systems as they age. A critical component in the deployment of such a system will be a robust power source that can operate for the lifespan of the wind turbine. In this paper we consider the use of discrete, localized power sources that derive energy from the ambient (solar, thermal) or operational (kinetic) environment. This approach will rely on a multi-source configuration that scavenges energy from photovoltaic and piezoelectric transducers. Each harvester is first characterized individually in the laboratory and then they are combined through a multi-source power conditioner that is designed to combine the output of each harvester in series to power a small wireless sensor node that has active-sensing capabilities. The advantages/disadvantages of each approach are discussed, along with the proposed design for a field ready energy harvester that will be deployed on a small-scale 19.8m diameter wind turbine.
NASA Tech Briefs, December 2008
NASA Technical Reports Server (NTRS)
2008-01-01
Topics covered include: Crew Activity Analyzer; Distributing Data to Hand-Held Devices in a Wireless Network; Reducing Surface Clutter in Cloud Profiling Radar Data; MODIS Atmospheric Data Handler; Multibeam Altimeter Navigation Update Using Faceted Shape Model; Spaceborne Hybrid-FPGA System for Processing FTIR Data; FPGA Coprocessor for Accelerated Classification of Images; SiC JFET Transistor Circuit Model for Extreme Temperature Range; TDR Using Autocorrelation and Varying-Duration Pulses; Update on Development of SiC Multi-Chip Power Modules; Radio Ranging System for Guidance of Approaching Spacecraft; Electromagnetically Clean Solar Arrays; Improved Short-Circuit Protection for Power Cells in Series; Electromagnetically Clean Solar Arrays; Logic Gates Made of N-Channel JFETs and Epitaxial Resistors; Improved Short-Circuit Protection for Power Cells in Series; Communication Limits Due to Photon-Detector Jitter; System for Removing Pollutants from Incinerator Exhaust; Sealing and External Sterilization of a Sample Container; Converting EOS Data from HDF-EOS to netCDF; HDF-EOS 2 and HDF-EOS 5 Compatibility Library; HDF-EOS Web Server; HDF-EOS 5 Validator; XML DTD and Schemas for HDF-EOS; Converting from XML to HDF-EOS; Simulating Attitudes and Trajectories of Multiple Spacecraft; Specialized Color Function for Display of Signed Data; Delivering Alert Messages to Members of a Work Force; Delivering Images for Mars Rover Science Planning; Oxide Fiber Cathode Materials for Rechargeable Lithium Cells; Electrocatalytic Reduction of Carbon Dioxide to Methane; Heterogeneous Superconducting Low-Noise Sensing Coils; Progress toward Making Epoxy/Carbon-Nanotube Composites; Predicting Properties of Unidirectional-Nanofiber Composites; Deployable Crew Quarters; Nonventing, Regenerable, Lightweight Heat Absorber; Miniature High-Force, Long-Stroke SMA Linear Actuators; "Bootstrap" Configuration for Multistage Pulse-Tube Coolers; Reducing Liquid Loss during Ullage Venting in Microgravity; Ka-Band Transponder for Deep-Space Radio Science; Replication of Space-Shuttle Computers in FPGAs and ASICs; Demisable Reaction-Wheel Assembly; Spatial and Temporal Low-Dimensional Models for Fluid Flow; Advanced Land Imager Assessment System; Range Imaging without Moving Parts.
Aerostructural optimization of a morphing wing for airborne wind energy applications
NASA Astrophysics Data System (ADS)
Fasel, U.; Keidel, D.; Molinari, G.; Ermanni, P.
2017-09-01
Airborne wind energy (AWE) vehicles maximize energy production by constantly operating at extreme wing loading, permitted by high flight speeds. Additionally, the wide range of wind speeds and the presence of flow inhomogeneities and gusts create a complex and demanding flight environment for AWE systems. Adaptation to different flow conditions is normally achieved by conventional wing control surfaces and, in case of ground generator-based systems, by varying the reel-out speed. These control degrees of freedom enable to remain within the operational envelope, but cause significant penalties in terms of energy output. A significantly greater adaptability is offered by shape-morphing wings, which have the potential to achieve optimal performance at different flight conditions by tailoring their airfoil shape and lift distribution at different levels along the wingspan. Hence, the application of compliant structures for AWE wings is very promising. Furthermore, active gust load alleviation can be achieved through morphing, which leads to a lower weight and an expanded flight envelope, thus increasing the power production of the AWE system. This work presents a procedure to concurrently optimize the aerodynamic shape, compliant structure, and composite layup of a morphing wing for AWE applications. The morphing concept is based on distributed compliance ribs, actuated by electromechanical linear actuators, guiding the deformation of the flexible—yet load-carrying—composite skin. The goal of the aerostructural optimization is formulated as a high-level requirement, namely to maximize the average annual power production per wing area of an AWE system by tailoring the shape of the wing, and to extend the flight envelope of the wing by actively alleviating gust loads. The results of the concurrent multidisciplinary optimization show a 50.7% increase of extracted power with respect to a sequentially optimized design, highlighting the benefits of morphing and the potential of the proposed approach.
Shaulsky, Evyatar; Boo, Chanhee; Lin, Shihong; Elimelech, Menachem
2015-05-05
We present a hybrid osmotic heat engine (OHE) system that uses draw solutions with an organic solvent for enhanced thermal separation efficiency. The hybrid OHE system produces sustainable energy by combining pressure-retarded osmosis (PRO) as a power generation stage and membrane distillation (MD) utilizing low-grade heat as a separation stage. While previous OHE systems employed aqueous electrolyte draw solutions, using methanol as a solvent is advantageous because methanol is highly volatile and has a lower heat capacity and enthalpy of vaporization than water. Hence, the thermal separation efficiency of a draw solution with methanol would be higher than that of an aqueous draw solution. In this study, we evaluated the performance of LiCl-methanol as a potential draw solution for a PRO-MD hybrid OHE system. The membrane transport properties as well as performance with LiCl-methanol draw solution were evaluated using thin-film composite (TFC) PRO membranes and compared to the results obtained with a LiCl-water draw solution. Experimental PRO methanol flux and maximum projected power density of 47.1 L m(-2) h(-1) and 72.1 W m(-2), respectively, were achieved with a 3 M LiCl-methanol draw solution. The overall efficiency of the hybrid OHE system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages under conditions with and without heat recovery. The modeling results demonstrate higher OHE energy efficiency with the LiCl-methanol draw solution compared to that with the LiCl-water draw solution under practical operating conditions (i.e., heat recovery<90%). We discuss the implications of the results for converting low-grade heat to power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaulsky, E; Boo, C; Lin, SH
We present a hybrid osmotic heat engine (OHE) system that uses draw solutions with an organic solvent for enhanced thermal separation efficiency. The hybrid OHE system produces sustainable energy by combining pressure-retarded osmosis (PRO) as a power generation stage and membrane distillation (MD) utilizing low-grade heat as a separation stage. While previous OHE systems employed aqueous electrolyte draw solutions, using methanol as a solvent is advantageous because methanol is highly volatile and has a lower heat capacity and enthalpy of vaporization than water. Hence, the thermal separation efficiency of a draw solution with methanol would be higher than that ofmore » an aqueous draw solution. In this study, we evaluated the performance of LiCl-methanol as a potential draw solution for a PRO-MD hybrid OHE system. The membrane transport properties as well as performance with LiCl methanol draw solution were evaluated using thin-film composite (TFC) PRO membranes and compared to the results obtained with a LiCl water draw solution. Experimental PRO methanol flux and maximum projected power density of 47.1 L m(-2) h(-1) and 72.1 W m(-2), respectively, were achieved with a 3 M LiCl-methanol draw solution. The overall efficiency of the hybrid OHE system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages under conditions with and without heat recovery. The modeling results demonstrate higher ORE energy efficiency with the LiCl methanol draw solution compared to that with the LiCl water draw solution under practical operating conditions (i.e., heat recovery <90%). We discuss the implications of the results for converting low-grade heat to power.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Straub, AP; Yip, NY; Elimelech, M
2014-01-01
Pressure-retarded osmosis (PRO) has the potential to generate sustainable energy from salinity gradients. PRO is typically considered for operation with river water and seawater, but a far greater energy of mixing can be harnessed from hypersaline solutions. This study investigates the power density that can be obtained in PRO from such concentrated solutions. Thin-film composite membranes with an embedded woven mesh were supported by tricot fabric feed spacers in a specially designed crossflow cell to maximize the operating pressure of the system, reaching a stable applied hydraulic pressure of 48 bar (700 psi) for more than 10 h. Operation atmore » this increased hydraulic pressure allowed unprecedented power densities, up to 60 W/m(2) with a 3 M (180 g/L) NaCl draw solution. Experimental power densities demonstrate reasonable agreement with power densities modeled using measured membrane properties, indicating high-pressure operation does not drastically alter membrane performance. Our findings exhibit the promise of the generation of power from high-pressure PRO with concentrated solutions.« less
Li, Liang; Liu, Na; Xu, Ziqi; Chen, Qi; Wang, Xindong; Zhou, Huanping
2017-09-26
Mixed anion/cation perovskites absorber has been recently implemented to construct highly efficient single junction solar cells and tandem devices. However, considerable efforts are still required to map the composition-property relationship of the mixed perovskites absorber, which is essential to facilitate device design. Here we report the intensive exploration of mixed-cation perovskites in their compositional space with the assistance of a rational mixture design (MD) methods. Different from the previous linear search of the cation ratios, it is found that by employing the MD methods, the ternary composition can be tuned simultaneously following simplex lattice designs or simplex-centroid designs, which enable significantly reduced experiment/sampling size to unveil the composition-property relationship for mixed perovskite materials and to boost the resultant device efficiency. We illustrated the composition-property relationship of the mixed perovskites in multidimension and achieved an optimized power conversion efficiency of 20.99% in the corresponding device. Moreover, the method is demonstrated to be feasible to help adjust the bandgap through rational materials design, which can be further extended to other materials systems, not limited in polycrystalline perovskites films for photovoltaic applications only.
Anker, Stefan D; Schroeder, Stefan; Atar, Dan; Bax, Jeroen J; Ceconi, Claudio; Cowie, Martin R; Crisp, Adam; Dominjon, Fabienne; Ford, Ian; Ghofrani, Hossein-Ardeschir; Gropper, Savion; Hindricks, Gerhard; Hlatky, Mark A; Holcomb, Richard; Honarpour, Narimon; Jukema, J Wouter; Kim, Albert M; Kunz, Michael; Lefkowitz, Martin; Le Floch, Chantal; Landmesser, Ulf; McDonagh, Theresa A; McMurray, John J; Merkely, Bela; Packer, Milton; Prasad, Krishna; Revkin, James; Rosano, Giuseppe M C; Somaratne, Ransi; Stough, Wendy Gattis; Voors, Adriaan A; Ruschitzka, Frank
2016-05-01
Composite endpoints are commonly used as the primary measure of efficacy in heart failure clinical trials to assess the overall treatment effect and to increase the efficiency of trials. Clinical trials still must enrol large numbers of patients to accrue a sufficient number of outcome events and have adequate power to draw conclusions about the efficacy and safety of new treatments for heart failure. Additionally, the societal and health system perspectives on heart failure have raised interest in ascertaining the effects of therapy on outcomes such as repeat hospitalization and the patient's burden of disease. Thus, novel methods for using composite endpoints in clinical trials (e.g. clinical status composite endpoints, recurrent event analyses) are being applied in current and planned trials. Endpoints that measure functional status or reflect the patient experience are important but used cautiously because heart failure treatments may improve function yet have adverse effects on mortality. This paper discusses the use of traditional and new composite endpoints, identifies qualities of robust composites, and outlines opportunities for future research. © 2016 The Authors. European Journal of Heart Failure © 2016 European Society of Cardiology.
Ultrasonic and radiographic evaluation of advanced aerospace materials: Ceramic composites
NASA Technical Reports Server (NTRS)
Generazio, Edward R.
1990-01-01
Two conventional nondestructive evaluation techniques were used to evaluate advanced ceramic composite materials. It was shown that neither ultrasonic C-scan nor radiographic imaging can individually provide sufficient data for an accurate nondestructive evaluation. Both ultrasonic C-scan and conventional radiographic imaging are required for preliminary evaluation of these complex systems. The material variations that were identified by these two techniques are porosity, delaminations, bond quality between laminae, fiber alignment, fiber registration, fiber parallelism, and processing density flaws. The degree of bonding between fiber and matrix cannot be determined by either of these methods. An alternative ultrasonic technique, angular power spectrum scanning (APSS) is recommended for quantification of this interfacial bond.
Solar Power System Evaluated for the Human Exploration of Mars
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.
2000-01-01
The electric power system is a crucial element of any mission for the human exploration of the Martian surface. The bulk of the power generated will be delivered to crew life support systems, extravehicular activity suits, robotic vehicles, and predeployed in situ resource utilization (ISRU) equipment. In one mission scenario, before the crew departs for Mars, the ISRU plant operates for 435 days producing liquefied methane and oxygen for ascent-stage propellants and water for crew life support. About 200 days after ISRU production is completed, the crew arrives for a 500-day surface stay. In this scenario, the power system must operate for a total of 1130 days (equivalent to 1100 Martian "sols"), providing 400 MW-hr of energy to the ISRU plant and up to 18 kW of daytime user power. A photovoltaic power-generation system with regenerative fuel cell (RFC) energy storage has been under study at the NASA Glenn Research Center at Lewis Field. The conceptual power system is dominated by the 4000- m2 class photovoltaic array that is deployed orthogonally as four tent structures, each approximately 5 m on a side and 100-m long. The structures are composed of composite members deployed by an articulating mast, an inflatable boom, or rover vehicles, and are subsequently anchored to the ground. Array panels consist of thin polymer membranes with thin-film solar cells. The array is divided into eight independent electrical sections with solar cell strings operating at 600 V. Energy storage is provided by regenerative fuel cells based on hydrogen-oxygen proton exchange membrane technology. Hydrogen and oxygen reactants are stored in gaseous form at 3000 psi, and the water produced is stored at 14.7 psi. The fuel cell operating temperature is maintained by a 40-m2 deployable pumped-fluid loop radiator that uses water as the working fluid. The power management and distribution (PMAD) architecture features eight independent, regulated 600-Vdc channels. Power management and distribution power cables use various gauges of copper conductors with ethylene tetrafluoroethylene insulation. To assess power system design options and sizing, we developed a dedicated Fortran code to predict detailed power system performance and estimate system mass. This code also modeled the requisite Mars surface environments: solar insolation, Sun angles, dust storms, dust deposition, and thermal and ultraviolet radiation. Using this code, trade studies were performed to assess performance and mass sensitivities to power system design parameters (photovoltaic array geometry and orientation) and mission parameters (landing date and landing site latitude, terrain slope, and dust storm activity). Mission analysis cases were also run. Power results are shown in this graph for an analysis case with a September 1, 2012, landing date; 18.95 North latitude landing site; two seasonal dusts storms; and tent arrays. To meet user load requirements and the ISRU energy requirement, an 8-metric ton (MT) power system and 4000-m2 photovoltaic array area were required for the assumed advanced CuInS2 thin-film solar cell technology. In this figure, the top curve is the average daytime photovoltaic array power, the middle curve is average daytime user load power, and the bottom curve is nighttime power. At mission day 1, daytime user power exceeds 120 kW before falling off to 80 kW at the end of the mission. Throughout the mission, nighttime user power is set to the nighttime power requirement. In this analysis, "nighttime" is defined as the 13- to 15-hr period when array power output is below the daytime power requirement. During dust storms, power system capability falls off dramatically so that by mission day 900, a daily energy balance cannot be maintained. Under these conditions, the ISRU plant is placed in standby mode, and the regenerative fuel cell energy storage is gradually discharged to meet user loads.
Nanotechnology: MEMS and NEMS and their applications to smart systems and devices
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.
2003-10-01
The microelectronics industry has seen explosive growth during the last thirty years. Extremely large markets for logic and memory devices have driven the development of new materials, and technologies for the fabrication of even more complex devices with features sizes now down at the sub micron and nanometer level. Recent interest has arisen in employing these materials, tools and technologies for the fabrication of miniature sensors and actuators and their integration with electronic circuits to produce smart devices and systems. This effort offers the promise of: (1) increasing the performance and manufacturability of both sensors and actuators by exploiting new batch fabrication processes developed including micro stereo lithographic and micro molding techniques; (2) developing novel classes of materials and mechanical structures not possible previously, such as diamond like carbon, silicon carbide and carbon nanotubes, micro-turbines and micro-engines; (3) development of technologies for the system level and wafer level integration of micro components at the nanometer precision, such as self-assembly techniques and robotic manipulation; (4) development of control and communication systems for MEMS devices, such as optical and RF wireless, and power delivery systems, etc. A novel composite structure can be tailored by functionalizing carbon nano tubes and chemically bonding them with the polymer matrix e.g. block or graft copolymer, or even cross-linked copolymer, to impart exceptional structural, electronic and surface properties. Bio- and Mechanical-MEMS devices derived from this hybrid composite provide a new avenue for future smart systems. The integration of NEMS (NanoElectroMechanical Systems), MEMS, IDTs (Interdigital Transducers) and required microelectronics and conformal antenna in the multifunctional smart materials and composites results in a smart system suitable for sending and control of a variety functions in automobile, aerospace, marine and civil strutures and food and medical industries. This unique combination of technologies also results in novel conformal sensors that can be remotely sensed by an antenna system with the advantage of no power requirements at the sensor site. This paper provides a brief review of MEMS and NEMS based smart systems for various applications mentioned above. Carbon Nano Tubes (CNT) with their unique structure, have already proven to be valuable in their application as tips for scanning probe microscopy, field emission devices, nanoelectronics, H2-storage, electromagnetic absorbers, ESD, EMI films and coatings and structural composites. For many of these applications, highly purified and functionalized CNT which are compatible with many host polymers are needed. A novel microwave CVD processing technique to meet these requirements has been developed at Penn State Center for the Engineering of Electronic and Acoustic Materials and Devices (CEEAMD). This method enables the production of highly purified carbon nano tubes with variable size (from 5 - 40 nm) at low cost (per gram) and high yield. Whereas, carbon nano tubes synthesized using the laser ablation or arc discharge evaporation method always include impurity due to catalyst or catalyst support. The Penn State research is based on the use of zeolites over other metal/metal oxides in the microwave field for a high production and uniformity of the product. An extended coventional purification method has been employed to purify our products in order to remove left over impurity. A novel composite structure can be tailored by functionalizing carbon nano tubes and chemically bonding them with the polymer matrix e.g. block or graft copolymer, or even cross-linked copolymer, to impart exceptional structural, electronic and surface properties. Bio- and Mechanical-MEMS devices derived from this hybrid composites will be presented.
MEMS- and NEMS-based smart devices and systems
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.
2001-11-01
The microelectronics industry has seen explosive growth during the last thirty years. Extremely large markets for logic and memory devices have driven the development of new materials, and technologies for the fabrication of even more complex devices with features sized now don at the sub micron and nanometer level. Recent interest has arisen in employing these materials, tools and technologies for the fabrication of miniature sensors and actuators and their integration with electronic circuits to produce smart devices and systems. This effort offers the promise of: 1) increasing the performance and manufacturability of both sensors and actuators by exploiting new batch fabrication processes developed including micro stereo lithographic an micro molding techniques; 2) developing novel classes of materials and mechanical structures not possible previously, such as diamond like carbon, silicon carbide and carbon nanotubes, micro-turbines and micro-engines; 3) development of technologies for the system level and wafer level integration of micro components at the nanometer precision, such as self-assembly techniques and robotic manipulation; 4) development of control and communication systems for MEMS devices, such as optical and RF wireless, and power delivery systems, etc. A novel composite structure can be tailored by functionalizing carbon nano tubes and chemically bonding them with the polymer matrix e.g. block or graft copolymer, or even cross-linked copolymer, to impart exceptional structural, electronic and surface properties. Bio- and Mechanical-MEMS devices derived from this hybrid composite provide a new avenue for future smart systems. The integration of NEMS (NanoElectroMechanical Systems), MEMS, IDTs (Interdigital Transducers) and required microelectronics and conformal antenna in the multifunctional smart materials and composites results in a smart system suitable for sensing and control of a variety functions in automobile, aerospace, marine and civil structures and food and medical industries. This unique combination of technologies also results in novel conformal sensors that can be remotely sensed by an antenna system with the advantage of no power requirements at the sensor site. This paper provides a brief review of MEMS and NEMS based smart systems for various applications mentioned above. Carbon Nano Tubes (CNT) with their unique structure, have already proven to be valuable in their application as tips for scanning probe microscopy, field emission devices, nanoelectronics, H2-storage, electromagnetic absorbers, ESD, EMI films and coatings and structural composites. For many of these applications, highly purified and functionalized CNT which are compatible with many host polymers are needed. A novel microwave CVD processing technique to meet these requirements has been developed at Penn State Center for the engineering of Electronic and Acoustic Materials and Devices (CEEAMD). This method enables the production of highly purified carbon nano tubes with variable size (from 5-40 nm) at low cost (per gram) and high yield. Whereas, carbon nano tubes synthesized using the laser ablation or arc discharge evaporation method always include impurity due to catalyst or catalyst support. The Penn State research is based on the use of zeolites over other metal/metal oxides in the microwave field for a high production and uniformity of the product. An extended conventional purification method has been employed to purify our products in order to remove left over impurity. A novel composite structure can be tailored by functionalizing carbon nano tubes and chemically bonding them with the polymer matrix e.g. block or graft copolymer, or even cross- linked copolymer, to impart exceptional structural, electronic and surface properties. Bio- and Mechanical-MEMS devices derived from this hybrid composites will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nurten Vardar; Zehra Yumurtaci
The major gaseous emissions (e.g. sulfur dioxide, nitrogen oxides, carbon dioxide, and carbon monoxide), some various organic emissions (e.g. benzene, toluene and xylenes) and some trace metals (e.g. arsenic, cobalt, chromium, manganese and nickel) generated from lignite-fired power plants in Turkey are estimated. The estimations are made separately for each one of the thirteen plants that produced electricity in 2007, because the lignite-fired thermal plants in Turkey are installed near the regions where the lignite is mined, and characteristics and composition of lignite used in each power plant are quite different from a region to another. Emission factors methodology ismore » used for the estimations. The emission factors obtained from well-known literature are then modified depending on local moisture content of lignite. Emission rates and specific emissions (per MWh) of the pollutants from the plants without electrostatic precipitators and flue-gas desulfurization systems are found to be higher than emissions from the plants having electrostatic precipitators and flue -gas desulfurization systems. Finally a projection for the future emissions due to lignite-based power plants is given. Predicted demand for the increasing generation capacity based on the lignite-fired thermal power plant, from 2008 to 2017 is around 30%. 39 refs., 13 figs., 10 tabs.« less
Quantitative relations between risk, return and firm size
NASA Astrophysics Data System (ADS)
Podobnik, B.; Horvatic, D.; Petersen, A. M.; Stanley, H. E.
2009-03-01
We analyze —for a large set of stocks comprising four financial indices— the annual logarithmic growth rate R and the firm size, quantified by the market capitalization MC. For the Nasdaq Composite and the New York Stock Exchange Composite we find that the probability density functions of growth rates are Laplace ones in the broad central region, where the standard deviation σ(R), as a measure of risk, decreases with the MC as a power law σ(R)~(MC)- β. For both the Nasdaq Composite and the S&P 500, we find that the average growth rate langRrang decreases faster than σ(R) with MC, implying that the return-to-risk ratio langRrang/σ(R) also decreases with MC. For the S&P 500, langRrang and langRrang/σ(R) also follow power laws. For a 20-year time horizon, for the Nasdaq Composite we find that σ(R) vs. MC exhibits a functional form called a volatility smile, while for the NYSE Composite, we find power law stability between σ(r) and MC.
Liu, Ran; Duay, Jonathon; Lane, Timothy; Bok Lee, Sang
2010-05-07
We report the synthesis of composite RuO(2)/poly(3,4-ethylenedioxythiophene) (PEDOT) nanotubes with high specific capacitance and fast charging/discharging capability as well as their potential application as electrode materials for a high-energy and high-power supercapacitor. RuO(2)/PEDOT nanotubes were synthesized in a porous alumina membrane by a step-wise electrochemical deposition method, and their structures were characterized using electron microscopy. Cyclic voltammetry was used to qualitatively characterize the capacitive properties of the composite RuO(2)/PEDOT nanotubes. Their specific capacitance, energy density and power density were evaluated by galvanostatic charge/discharge cycles at various current densities. The pseudocapacitance behavior of these composite nanotubes originates from ion diffusion during the simultaneous and parallel redox processes of RuO(2) and PEDOT. We show that the energy density (specific capacitance) of PEDOT nanotubes can be remarkably enhanced by electrodepositing RuO(2) into their porous walls and onto their rough internal surfaces. The flexible PEDOT prevents the RuO(2) from breaking and detaching from the current collector while the rigid RuO(2) keeps the PEDOT nanotubes from collapsing and aggregating. The composite RuO(2)/PEDOT nanotube can reach a high power density of 20 kW kg(-1) while maintaining 80% energy density (28 Wh kg(-1)) of its maximum value. This high power capability is attributed to the fast charge/discharge of nanotubular structures: hollow nanotubes allow counter-ions to readily penetrate into the composite material and access their internal surfaces, while a thin wall provides a short diffusion distance to facilitate ion transport. The high energy density originates from the RuO(2), which can store high electrical/electrochemical energy intrinsically. The high specific capacitance (1217 F g(-1)) which is contributed by the RuO(2) in the composite RuO(2)/PEDOT nanotube is realized because of the high specific surface area of the nanotubular structures. Such PEDOT/RuO(2) composite nanotube materials are an ideal candidate for the development of high-energy and high-power supercapacitors.
Centrifugal partition chromatography a first dimension for biomass fast pyrolysis oil analysis.
Le Masle, Agnès; Santin, Sandra; Marlot, Léa; Chahen, Ludovic; Charon, Nadège
2018-10-31
Biomass fast pyrolysis oils contain molecules having a large variety of chemical functions and a wide range of molecular weights (from several tens to several thousand grams per mole). The good knowledge of their complex composition is essential for optimizing the conversion of bio-oils to biofuels, thereby requiring powerful separation techniques. In this work, we investigate the interest of centrifugal partition chromatography (CPC) as a first dimension for the analysis of a bio-oil. A CPC method is proposed to separate oxygen containing compounds according to their partition coefficients in the solvent system. This approach is a powerful and easy-to-use technique that enables fractionation of a bio-oil at a semi-preparative scale, without any sample loss related to adsorption on the stationary phase. Collected fractions are then injected in liquid chromatography as a second dimension of separation. Contour plot representations of the CPC × LC separation are established to discuss the potential of this approach. These representations can be used as a veritable fingerprint in the comparison of different samples or samples at different steps of a conversion process but also as a powerful tool to identify new compounds and describe the entire composition of the bio-oil. Copyright © 2018 Elsevier B.V. All rights reserved.
Zang, Xining; Shen, Caiwei; Kao, Emmeline; Warren, Roseanne; Zhang, Ruopeng; Teh, Kwok Siong; Zhong, Junwen; Wei, Minsong; Li, Buxuan; Chu, Yao; Sanghadasa, Mohan; Schwartzberg, Adam; Lin, Liwei
2018-02-01
While electrochemical supercapacitors often show high power density and long operation lifetimes, they are plagued by limited energy density. Pseudocapacitive materials, in contrast, operate by fast surface redox reactions and are shown to enhance energy storage of supercapacitors. Furthermore, several reported systems exhibit high capacitance but restricted electrochemical voltage windows, usually no more than 1 V in aqueous electrolytes. Here, it is demonstrated that vertically aligned carbon nanotubes (VACNTs) with uniformly coated, pseudocapacitive titanium disulfide (TiS 2 ) composite electrodes can extend the stable working range to over 3 V to achieve a high capacitance of 195 F g -1 in an Li-rich electrolyte. A symmetric cell demonstrates an energy density of 60.9 Wh kg -1 -the highest among symmetric pseudocapacitors using metal oxides, conducting polymers, 2D transition metal carbides (MXene), and other transition metal dichalcogenides. Nanostructures prepared by an atomic layer deposition/sulfurization process facilitate ion transportation and surface reactions to result in a high power density of 1250 W kg -1 with stable operation over 10 000 cycles. A flexible solid-state supercapacitor prepared by transferring the TiS 2 -VACNT composite film onto Kapton tape is demonstrated to power a 2.2 V light emitting diode (LED) for 1 min. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Development of new photopolymerizable dental sealants.
Davidenko, N; Cohen, M E; Diaz, J M; Sastre, R
1998-01-01
This paper describes the results obtained in the optimization of the composition of dental sealants in relation to the nature and proportions of monomer mixtures and photoinitiating system employed. The quantification and variation of certain parameters which determine the quality of a dental sealant (such as viscosity and penetrating power, residual double bonds, solubility and absorption, volume shrinkage and certain specific mechanical properties) have resulted in the development of new formulations. The composition which has achieved the best results of all the above properties was that corresponding to the monomer mixture bis-GMA/tri(ethylene glycol) dimethacrylate (TEGDMA) 40/60 wt%, and the photoinitiating system camphorquinone (CQ) with co-initiators N,N,3,5-tetramethyaniline (TMA) or N,N-dimethyl-p-toluidine (DMPT) in the ratio 1:1. The final properties and characteristics of the obtained formulations are superior to those of commercial dental sealants currently in use.
NASA Astrophysics Data System (ADS)
Criado, Javier; Padilla, Nicolás; Iribarne, Luis; Asensio, Jose-Andrés
Due to the globalization of the information and knowledge society on the Internet, modern Web-based Information Systems (WIS) must be flexible and prepared to be easily accessible and manageable in real-time. In recent times it has received a special interest the globalization of information through a common vocabulary (i.e., ontologies), and the standardized way in which information is retrieved on the Web (i.e., powerful search engines, and intelligent software agents). These same principles of globalization and standardization should also be valid for the user interfaces of the WIS, but they are built on traditional development paradigms. In this paper we present an approach to reduce the gap of globalization/standardization in the generation of WIS user interfaces by using a real-time "bottom-up" composition perspective with COTS-interface components (type interface widgets) and trading services.
Chemically Defined Medium and Caenorhabditis elegans: A Powerful Approach
NASA Technical Reports Server (NTRS)
Szewczyk, N. J.; Kozak, E.; Conley, C. A.
2003-01-01
C. elegans has been established as a powerful genetic system. Growth in a chemically defined medium (C. elegans Maintenance Medium (CeMM)) now allows standardization and systematic manipulation of the nutrients that animals receive. Liquid cultivation allows automated culturing and experimentation and should be of me in large-scale growth and screening of animals. Here we present our initial results from developing culture systems with CeMM. We find that CeMM is versatile and culturing is simple. CeMM can be used in a solid or liquid state, it can be stored unused for at least a year, unattended actively growing cultures may be maintained longer than with standard techniques, and standard C. elegans protocols work well with animals grown in defined medium. We also find that there are caveats of using defined medium. Animals in defined medium grow more slowly than on standard medium, appear to display adaptation to the defined medium, and display altered growth rates as they change defined medium composition. As was suggested with the introduction of C. elegans as a potential genetic system, use of defined medium with C. elegans should prove a powerful tool.
Metal oxide-carbon composites for energy conversion and storage
NASA Astrophysics Data System (ADS)
Perera, Sanjaya Dulip
The exponential growth of the population and the associated energy demand requires the development of new materials for sustainable energy conversion and storage. Expanding the use of renewable energy sources to generate electricity is still not sufficient enough to fulfill the current energy demand. Electricity generation by wind and solar is the most promising alternative energy resources for coal and oil. The first part of the dissertation addresses an alternative method for preparing TiO2 nanotube based photoanodes for DSSCs. This would involve smaller diameter TiO2 nanotubes (˜10 nm), instead of nanoparticles or electrochemically grown larger nanotubes. Moreover, TiO2 nanotube-graphene based photocatalysts were developed to treat model pollutants. In the second part of this dissertation, the development of electrical energy storage systems, which provide high storage capacity and power output using low cost materials are discussed. Among different types of energy storage systems, batteries are the most convenient method to store electrical energy. However, the low power performance of batteries limits the application in different types of electrical energy storage. The development of electrical energy storage systems, which provide high storage capacity and power output using low cost materials are discussed.
Implementation Challenges for Ceramic Matrix Composites in High Temperature Applications
NASA Technical Reports Server (NTRS)
Singh, Mrityunjay
2004-01-01
Ceramic matrix composites are leading candidate materials for a number of applications in aeronautics, space, energy, electronics, nuclear, and transportation industries. In the aeronautics and space exploration systems, these materials are being considered for applications in hot sections of jet engines such as the combustor liner, nozzle components, nose cones, leading edges of reentry vehicles and space propulsion components. Applications in the energy and environmental industries include radiant heater tubes, heat exchangers, heat recuperators, gas and diesel particulate filters (DPFs), and components for land based turbines for power generation. These materials are also being considered for use in the first wall and blanket components of fusion reactors. There are a number of critical issues and challenges related to successful implementation of composite materials. Fabrication of net and complex shape components with high density and tailorable matrix properties is quite expensive, and even then various desirable properties are not achievable. In this presentation, microstructure and thermomechanical properties of composites fabricated by two techniques (chemical vapor infiltration and melt infiltration), will be presented. In addition, critical need for robust joining and assembly technologies in successful implementation of these systems will be discussed. Other implementation issues will be discussed along with advantages and benefits of using these materials for various components in high temperature applications.
Cl 2-based dry etching of the AlGaInN system in inductively coupled plasmas
NASA Astrophysics Data System (ADS)
Cho, Hyun; Vartuli, C. B.; Abernathy, C. R.; Donovan, S. M.; Pearton, S. J.; Shul, R. J.; Han, J.
1998-12-01
Cl 2-Based inductively coupled plasmas with low additional d.c. self-biases (-100 V) produce convenient etch rates (500-1500 Å·min -1) for GaN, AlN, InN, InAlN and InGaN. A systematic study of the effects of additive gas (Ar, N 2, H 2), discharge composition and ICP source power and chuck power on etch rate and surface morphology has been performed. The general trends are to go through a maximum in etch rate with percent Cl 2 in the discharge for all three mixtures and to have an increase (decrease) in etch rate with source power (pressure). Since the etching is strongly ion-assisted, anisotropic pattern transfer is readily achieved. Maximum etch selectivities of approximately 6 for InN over the other nitrides were obtained.
NASA Technical Reports Server (NTRS)
Rai, Man Mohan (Inventor); Madavan, Nateri K. (Inventor)
2003-01-01
A method and system for design optimization that incorporates the advantages of both traditional response surface methodology (RSM) and neural networks is disclosed. The present invention employs a unique strategy called parameter-based partitioning of the given design space. In the design procedure, a sequence of composite response surfaces based on both neural networks and polynomial fits is used to traverse the design space to identify an optimal solution. The composite response surface has both the power of neural networks and the economy of low-order polynomials (in terms of the number of simulations needed and the network training requirements). The present invention handles design problems with many more parameters than would be possible using neural networks alone and permits a designer to rapidly perform a variety of trade-off studies before arriving at the final design.
Photocatalytic degradation of organic dyes using composite nanofibers under UV irradiation
NASA Astrophysics Data System (ADS)
Salama, Ahmed; Mohamed, Alaa; Aboamera, Nada M.; Osman, T. A.; Khattab, A.
2018-02-01
In this work, photocatalytic degradation of organic dyes such as methylene blue (MB) and indigo carmine (IC) have been studied by composite nanofibers systems containing cellulose acetate (CA), multiwall carbon nanotubes (CNT) and TiO2 nanoparticles under UV light. The amino factionalized TiO2-NH2 NPs cross-linked to the CA/CNT composite nanofibers works as a semiconductor catalyst. The morphology and crystallinity were characterized by scanning electron microscopy, transmission electron microscopy (TEM), X-ray diffraction, and Fourier transform infrared spectroscopy. It was also seen that many factors affected the photodegradation rate, mainly the pH of the solution and the dye concentration, temperature, etc. The study demonstrated that IC degrades at a higher rate than MB. The maximum photodegradation rate of both organic dyes was achieved at a pH 2. In comparison to other studies, this work achieved high photodegradation rate in lower time and using less power intensity.
Small Spacecraft Active Thermal Control: Micro-Vascular Composites Enable Small Satellite Cooling
NASA Technical Reports Server (NTRS)
Ghosh, Alexander
2016-01-01
The Small Spacecraft Integrated Power System with Active Thermal Control project endeavors to achieve active thermal control for small spacecraft in a practical and lightweight structure by circulating a coolant through embedded micro-vascular channels in deployable composite panels. Typically, small spacecraft rely on small body mounted passive radiators to discard heat. This limits cooling capacity and leads to the necessity to design for limited mission operations. These restrictions severely limit the ability of the system to dissipate large amounts of heat from radios, propulsion systems, etc. An actively pumped cooling system combined with a large deployable radiator brings two key advantages over the state of the art for small spacecraft: capacity and flexibility. The use of a large deployable radiator increases the surface area of the spacecraft and allows the radiation surface to be pointed in a direction allowing the most cooling, drastically increasing cooling capacity. With active coolant circulation, throttling of the coolant flow can enable high heat transfer rates during periods of increased heat load, or isolate the radiator during periods of low heat dissipation.
2004-05-25
KENNEDY SPACE CENTER, FLA. - United Space Alliance technician J.C. Harrison steers while NASA’s Scott Thurston guides a piece of Columbia debris through a gate in the Vehicle Assembly Building, where the debris is stored. This piece is one of eight being released to The Aerospace Corporation in El Segundo, Calif., for testing and research. Thurston is the Columbia debris coordinator. The Aerospace Corporation requested and will receive graphite/epoxy honeycomb skins from an Orbital Maneuvering System pod, Main Propulsion System Helium tanks, a Reaction Control System Helium tank and a Power Reactant Storage Distribution system tank. The company will use the parts to study re-entry effects on composite materials. NASA notified the Columbia crew’s families about the loan before releasing the items for study. Researchers believe the testing will show how materials are expected to respond to various heating and loads' environments. The findings will help calibrate tools and models used to predict hazards to people and property from reentering hardware. The Aerospace Corporation will have the debris for one year to perform analyses to estimate maximum temperatures during reentry based upon the geometry and mass of the recovered composite.
2004-05-25
KENNEDY SPACE CENTER, FLA. - United Space Alliance workers J.C. Harrison (left) and Amy Mangiacapra (right) pack up pieces of Columbia debris for shipment to The Aerospace Corporation in El Segundo, Calif. The pieces have been released for loan to the non-governmental agency for testing and research. The Aerospace Corporation requested and will receive graphite/epoxy honeycomb skins from an Orbital Maneuvering System pod, Main Propulsion System Helium tanks, a Reaction Control System Helium tank and a Power Reactant Storage Distribution system tank. The company will use the parts to study re-entry effects on composite materials. NASA notified the Columbia crew’s families about the loan before releasing the items for study. Researchers believe the testing will show how materials are expected to respond to various heating and loads' environments. The findings will help calibrate tools and models used to predict hazards to people and property from reentering hardware. The Aerospace Corporation will have the debris for one year to perform analyses to estimate maximum temperatures during reentry based upon the geometry and mass of the recovered composite. Columbia’s debris is stored in the VAB.
2004-05-25
KENNEDY SPACE CENTER, FLA. - United Space Alliance workers begin packing pieces of Columbia debris for shipment to The Aerospace Corporation in El Segundo, Calif. The pieces have been released for loan to the non-governmental agency for testing and research. The Aerospace Corporation requested and will receive graphite/epoxy honeycomb skins from an Orbital Maneuvering System pod, Main Propulsion System Helium tanks, a Reaction Control System Helium tank and a Power Reactant Storage Distribution system tank. The company will use the parts to study re-entry effects on composite materials. NASA notified the Columbia crew’s families about the loan before releasing the items for study. Researchers believe the testing will show how materials are expected to respond to various heating and loads' environments. The findings will help calibrate tools and models used to predict hazards to people and property from reentering hardware. The Aerospace Corporation will have the debris for one year to perform analyses to estimate maximum temperatures during reentry based upon the geometry and mass of the recovered composite. Columbia’s debris is stored in the VAB.
2004-05-25
KENNEDY SPACE CENTER, FLA. - United Space Alliance workers J.C. Harrison (left) and Amy Mangiacapra pack pieces of Columbia debris for transfer to the shipping facility for travel to The Aerospace Corporation in El Segundo, Calif. The pieces have been released for loan to the non-governmental agency for testing and research. The Aerospace Corporation requested and will receive graphite/epoxy honeycomb skins from an Orbital Maneuvering System pod, Main Propulsion System Helium tanks, a Reaction Control System Helium tank and a Power Reactant Storage Distribution system tank. The company will use the parts to study re-entry effects on composite materials. NASA notified the Columbia crew’s families about the loan before releasing the items for study. Researchers believe the testing will show how materials are expected to respond to various heating and loads' environments. The findings will help calibrate tools and models used to predict hazards to people and property from reentering hardware. The Aerospace Corporation will have the debris for one year to perform analyses to estimate maximum temperatures during reentry based upon the geometry and mass of the recovered composite. Columbia’s debris is stored in the VAB.
NASA Astrophysics Data System (ADS)
Silva, P. C. G.; Porto-Neto, S. T.; Lizarelli, R. F. Z.; Bagnato, V. S.
2008-03-01
We have investigated if a new LEDs system has enough efficient energy to promote efficient shear and tensile bonding strength resistance under standardized tests. LEDs 470 ± 10 nm can be used to photocure composite during bracket fixation. Advantages considering resistance to tensile and shear bonding strength when these systems were used are necessary to justify their clinical use. Forty eight human extracted premolars teeth and two light sources were selected, one halogen lamp and a LEDs system. Brackets for premolar were bonded through composite resin. Samples were submitted to standardized tests. A comparison between used sources under shear bonding strength test, obtained similar results; however, tensile bonding test showed distinct results: a statistical difference at a level of 1% between exposure times (40 and 60 seconds) and even to an interaction between light source and exposure time. The best result was obtained with halogen lamp use by 60 seconds, even during re-bonding; however LEDs system can be used for bonding and re-bonding brackets if power density could be increased.
2004-05-25
KENNEDY SPACE CENTER, FLA. - After being wrapped and secured on pallets, pieces of Columbia debris are loaded onto a truck to transport them to the shipping facility for travel to The Aerospace Corporation in El Segundo, Calif. The pieces have been released for loan to the non-governmental agency for testing and research. The Aerospace Corporation requested and will receive graphite/epoxy honeycomb skins from an Orbital Maneuvering System pod, Main Propulsion System Helium tanks, a Reaction Control System Helium tank and a Power Reactant Storage Distribution system tank. The company will use the parts to study re-entry effects on composite materials. NASA notified the Columbia crew’s families about the loan before releasing the items for study. Researchers believe the testing will show how materials are expected to respond to various heating and loads' environments. The findings will help calibrate tools and models used to predict hazards to people and property from reentering hardware. The Aerospace Corporation will have the debris for one year to perform analyses to estimate maximum temperatures during reentry based upon the geometry and mass of the recovered composite. Columbia’s debris is stored in the VAB.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. United Space Alliance workers J.C. Harrison (left) and Amy Mangiacapra (right) pack up pieces of Columbia debris for shipment to The Aerospace Corporation in El Segundo, Calif. The pieces have been released for loan to the non-governmental agency for testing and research. The Aerospace Corporation requested and will receive graphite/epoxy honeycomb skins from an Orbital Maneuvering System pod, Main Propulsion System Helium tanks, a Reaction Control System Helium tank and a Power Reactant Storage Distribution system tank. The company will use the parts to study re-entry effects on composite materials. NASA notified the Columbia crews families about the loan before releasing the items for study. Researchers believe the testing will show how materials are expected to respond to various heating and loads' environments. The findings will help calibrate tools and models used to predict hazards to people and property from reentering hardware. The Aerospace Corporation will have the debris for one year to perform analyses to estimate maximum temperatures during reentry based upon the geometry and mass of the recovered composite. Columbias debris is stored in the VAB.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. United Space Alliance workers J.C. Harrison (far left) and Amy Mangiacapra guide a wrapped piece of Columbia debris through the Vehicle Assembly Building, where it is stored. Alongside is NASAs Scott Thurston, who is the Columbia debris coordinator. This piece is one of eight being released to The Aerospace Corporation in El Segundo, Calif., for testing and research. The Aerospace Corporation requested and will receive graphite/epoxy honeycomb skins from an Orbital Maneuvering System pod, Main Propulsion System Helium tanks, a Reaction Control System Helium tank and a Power Reactant Storage Distribution system tank. The company will use the parts to study re-entry effects on composite materials. NASA notified the Columbia crews families about the loan before releasing the items for study. Researchers believe the testing will show how materials are expected to respond to various heating and loads' environments. The findings will help calibrate tools and models used to predict hazards to people and property from reentering hardware. The Aerospace Corporation will have the debris for one year to perform analyses to estimate maximum temperatures during reentry based upon the geometry and mass of the recovered composite.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. United Space Alliance workers J.C. Harrison (left) and Amy Mangiacapra pack pieces of Columbia debris for transfer to the shipping facility for travel to The Aerospace Corporation in El Segundo, Calif. The pieces have been released for loan to the non-governmental agency for testing and research. The Aerospace Corporation requested and will receive graphite/epoxy honeycomb skins from an Orbital Maneuvering System pod, Main Propulsion System Helium tanks, a Reaction Control System Helium tank and a Power Reactant Storage Distribution system tank. The company will use the parts to study re-entry effects on composite materials. NASA notified the Columbia crews families about the loan before releasing the items for study. Researchers believe the testing will show how materials are expected to respond to various heating and loads' environments. The findings will help calibrate tools and models used to predict hazards to people and property from reentering hardware. The Aerospace Corporation will have the debris for one year to perform analyses to estimate maximum temperatures during reentry based upon the geometry and mass of the recovered composite. Columbias debris is stored in the VAB.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. United Space Alliance technician J.C. Harrison steers while NASAs Scott Thurston guides a piece of Columbia debris through a gate in the Vehicle Assembly Building, where the debris is stored. This piece is one of eight being released to The Aerospace Corporation in El Segundo, Calif., for testing and research. Thurston is the Columbia debris coordinator. The Aerospace Corporation requested and will receive graphite/epoxy honeycomb skins from an Orbital Maneuvering System pod, Main Propulsion System Helium tanks, a Reaction Control System Helium tank and a Power Reactant Storage Distribution system tank. The company will use the parts to study re-entry effects on composite materials. NASA notified the Columbia crews families about the loan before releasing the items for study. Researchers believe the testing will show how materials are expected to respond to various heating and loads' environments. The findings will help calibrate tools and models used to predict hazards to people and property from reentering hardware. The Aerospace Corporation will have the debris for one year to perform analyses to estimate maximum temperatures during reentry based upon the geometry and mass of the recovered composite.
Nano-composite insert in 1D waveguides for control of elastic power flow
NASA Astrophysics Data System (ADS)
Vignesh, P. S.; Mitra, Mira; Gopalakrishnan, S.
2007-01-01
In this paper, carbon nanotube embedded polymer composite/nano-composites are used to regulate power flow from its source to other parts of the structure. This is done by inserting nano-composite strips in the waveguides which are modelled here as isotropic Euler-Bernoulli beams with axial, transverse and rotational degrees of freedom. The power flow is due to wave propagation resulting from a high frequency broadband impulse load. The underlying concept is that the high stiffness of the insert reduces the wave transmission between different parts of the structures. The simulations are done using a wavelet based spectral finite element (WSFE) technique which is specially tailored for such high frequency wave propagation analysis. Numerical experiments are performed to illustrate the use of inserts in maintaining the power flow in a certain region of the structure below a given threshold value which may be specified depending on various applications. The effects of parameters such as the volume fraction of carbon nanotube (CNT) in the polymer, and the length and position of the inserts are also studied. These studies help in defining the optimal volume fraction of CNT and length of the insert for a specified structural configuration.
High-temperature catalyst for catalytic combustion and decomposition
NASA Technical Reports Server (NTRS)
Mays, Jeffrey A. (Inventor); Lohner, Kevin A. (Inventor); Sevener, Kathleen M. (Inventor); Jensen, Jeff J. (Inventor)
2005-01-01
A robust, high temperature mixed metal oxide catalyst for propellant composition, including high concentration hydrogen peroxide, and catalytic combustion, including methane air mixtures. The uses include target, space, and on-orbit propulsion systems and low-emission terrestrial power and gas generation. The catalyst system requires no special preheat apparatus or special sequencing to meet start-up requirements, enabling a fast overall response time. Start-up transients of less than 1 second have been demonstrated with catalyst bed and propellant temperatures as low as 50 degrees Fahrenheit. The catalyst system has consistently demonstrated high decomposition effeciency, extremely low decomposition roughness, and long operating life on multiple test particles.
NASA Astrophysics Data System (ADS)
Dua, Puneit
Increased demand for larger bandwidth and longer inter-amplifiers distances translates to higher power budgets for fiber optic communication systems in order to overcome large splitting losses and achieve acceptable signal-to-noise ratios. Due to their unique design ytterbium sensitized erbium doped, double clad fiber amplifiers; offer significant increase in the output powers that can be obtained. In this thesis we investigate, a one-stage, high power erbium and ytterbium co-doped double clad fiber amplifier (DCFA) with output power of 1.4W, designed and built in our lab. Experimental demonstration and numerical simulation techniques have been used to systematically study the applications of such an amplifier and the effects of incorporating it in various fiber optic communication systems. Amplitude modulated subcarrier multiplexed (AM-SCM) CATV distribution experiment has been performed to verify the feasibility of using this amplifier in an analog/digital communication system. The applications of the amplifier as a Fabry-Perot and ring fiber laser with an all-fiber cavity, a broadband supercontinuum source and for generation of high power, short pulses at 5GHz have been experimentally demonstrated. A variety of observable nonlinear effects occur due to the high intensity of the optical powers confined in micron-sized cores of the fibers, this thesis explores in detail some of these effects caused by using the high power Er/Yb double clad fiber amplifier. A fiber optic based analog/digital CATV system experiences composite second order (CSO) distortion due to the interaction between the gain tilt---the variation of gain with wavelength, of the doped fiber amplifier and the wavelength chirp of the directly modulated semiconductor laser. Gain tilt of the Er/Yb co-doped fiber amplifier has been experimentally measured and its contribution to the CSO of the system calculated. Theoretical analysis of a wavelength division multiplexed system with closely spaced channels has been carried out to show that crosstalk can occur due to the four-wave mixing products generated inside the high power Er/Yb DCFA. A model for parametric amplification due to four-wave mixing has been developed and used to analyze its application for short pulse generation and high speed optical time division multiplexing.
Preparation of multilayered nanocrystalline thin films with composition-modulated interfaces
NASA Astrophysics Data System (ADS)
Biro, D.; Barna, P. B.; Székely, L.; Geszti, O.; Hattori, T.; Devenyi, A.
2008-06-01
The properties of multilayer thin film structures depend on the morphology and structure of interfaces. A broad interface, in which the composition is varying, can enhance, e.g., the hardness of multilayer thin films. In the present experiments multilayers of TiAlN and CrN as well as TiAlN, CrN and MoS 2 were studied by using unbalanced magnetron sputter sources. The sputter sources were arranged side by side on an arc. This arrangement permits development of a transition zone between the layers, where the composition changes continuously. The multilayer system was deposited by one-fold oscillating movement of substrates in front of sputter sources. Thicknesses of layers could be changed both by oscillation frequency and by the power applied to sputter sources. Ti/Al: 50/50 at%, pure chromium and MoS 2 targets were used in the sputter sources. The depositions were performed in an Ar-N 2 mixture at 0.22 Pa working pressure. The sputtering power of the TiAl source was feed-back adjusted in fuzzy-logic mode in order to avoid fluctuation of the TiAl target sputter rate due to poisoning of the target surface. Structure characterization of films deposited on <1 0 0> Si wafers covered by thermally grown SiO 2 was performed by cross-sectional transmission electron microscopy. At first a 100 nm thick Cr base layer was deposited on the substrate to improve adhesion, which was followed by a CrN transition layer. The CrN transition layer was followed by a 100 nm thick TiAlN/CrN multilayer system. The TiAlN/CrN/MoS 2 multilayer system was deposited on the surface of this underlayer system. The underlayer systems Cr, CrN and TiAlN/CrN were crystalline with columnar structure according to the morphology of zone T of the structure zone models. The column boundaries contained segregated phases showing up in the under-focused TEM images. The surface of the underlayer system was wavy due to dome-shaped columns. The nanometer-scaled TiAlN/CrN/MoS 2 multilayer system followed this waviness. Crystallinity of the TiAlN and CrN layers in the multilayer system decreases with increasing thickness of the MoS 2 layer.
Organic coal-water fuel: Problems and advances (Review)
NASA Astrophysics Data System (ADS)
Glushkov, D. O.; Strizhak, P. A.; Chernetskii, M. Yu.
2016-10-01
The study results of ignition of organic coal-water fuel (OCWF) compositions were considered. The main problems associated with investigation of these processes were identified. Historical perspectives of the development of coal-water composite fuel technologies in Russia and worldwide are presented. The advantages of the OCWF use as a power-plant fuel in comparison with the common coal-water fuels (CWF) were emphasized. The factors (component ratio, grinding degree of solid (coal) component, limiting temperature of oxidizer, properties of liquid and solid components, procedure and time of suspension preparation, etc.) affecting inertia and stability of the ignition processes of suspensions based on the products of coaland oil processing (coals of various types and metamorphism degree, filter cakes, waste motor, transformer, and turbine oils, water-oil emulsions, fuel-oil, etc.) were analyzed. The promising directions for the development of modern notions on the OCWF ignition processes were determined. The main reasons limiting active application of the OCWF in power generation were identified. Characteristics of ignition and combustion of coal-water and organic coal-water slurry fuels were compared. The effect of water in the composite coal fuels on the energy characteristics of their ignition and combustion, as well as ecological features of these processes, were elucidated. The current problems associated with pulverization of composite coal fuels in power plants, as well as the effect of characteristics of the pulverization process on the combustion parameters of fuel, were considered. The problems hindering the development of models of ignition and combustion of OCWF were analyzed. It was established that the main one was the lack of reliable experimental data on the processes of heating, evaporation, ignition, and combustion of OCWF droplets. It was concluded that the use of high-speed video recording systems and low-inertia sensors of temperature and gas concentration could help in providing the lacking experimental information.
Wang, Shanyu; Salvador, James R.; Yang, Jiong; ...
2016-07-01
The filling fraction limit (FFL) of skutterudites, that is, the complex balance of formation enthalpies among different species, is an intricate but crucial parameter for achieving high thermoelectric performance. In this work, we synthesized a series of Yb xCo 4Sb 12 samples with x=0.2–0.6 and systemically studied the FFL of Yb, which is still debated even though this system has been extensively investigated for decades. Our combined experimental efforts of X-ray diffraction, microstructural and quantitative compositional analyses clearly reveal a Yb FFL of ~0.29 in CoSb 3, which is consistent with previous theoretical calculations. For the excess Yb in samplesmore » with x>0.35 mainly form metallic YbSb 2 precipitates, the Fermi level increases significantly and thus increases the electrical conductivity and decreasing the Seebeck coefficient. Our result is further corroborated by the numerical calculations based on the Bergman’s composite theory, which accurately reproduces the transport properties of the x>0.35 samples based on nominal Yb 0.35Co 4Sb 12 and YbSb 2 composites. A maximum ZT of 1.5 at 850 K is achieved for Yb 0.3Co 4Sb 12, which is the highest value for a single-element-filled CoSb 3. The high ZT originates from the high-power factor (in excess of 50 μW cm -K -2) and low lattice thermal conductivity (well below 1.0 W m -K -1). More importantly, the large average ZTs, for example, ~1.05 for 300–850 K and ~1.27 for 500–850 K, are comparable to the best values for n-type skutterudites. The high thermoelectric and thermomechanical performances and the relatively low air and moisture sensitivities of Yb make Yb-filled CoSb 3, a promising candidate for large-scale power generation applications.« less
NASA Astrophysics Data System (ADS)
Sun, Ye; Li, Zhi; Wang, Jian; Zhang, Dan; Gao, Yang; Zhang, He
2018-02-01
According to the installed capacity, coal type and the kinds of environmental protection facilities of coal-fired power plants in Jilin Province in China, five typical coal-fired units were chosen. PM2.5 from final stack outlet of five typical units was gain by Dekati PM2.5(Finland). The characteristics of PM2.5 composition in flue gases discharged into the air from selected coal-fueled power plants are analyzed in this paper.
Indentation law for composite laminates
NASA Technical Reports Server (NTRS)
Yang, S. H.
1981-01-01
Static indentation tests are described for glass/epoxy and graphite/epoxy composite laminates with steel balls as the indentor. Beam specimens clamped at various spans were used for the tests. Loading, unloading, and reloading data were obtained and fitted into power laws. Results show that: (1) contact behavior is not appreciably affected by the span; (2) loading and reloading curves seem to follow the 1.5 power law; and (3) unloading curves are described quite well by a 2.5 power law. In addition, values were determined for the critical indentation, alpha sub cr which can be used to predict permanent indentations in unloading. Since alpha sub cr only depends on composite material properties, only the loading and an unloading curve are needed to establish the complete loading-unloading-reloading behavior.
Cobb, Corie L.; Solberg, Scott E.
2017-04-29
3-dimensional (3D) electrode architectures have been explored as a means to decouple power and energy trade-offs in thick battery electrodes. Limited work has been published which systematically examines the impact of these architectures at the pouch cell level. This paper conducts an analysis on the potential capacity gains that can be realized with thick co-extruded electrodes in a pouch cell. Moreover, our findings show that despite lower active material composition for each cathode layer, the effective gain in thickness and active material loading enables pouch cell capacity gains greater than 10% with a Lithium Nickel Manganese Cobalt Oxide (NMC) materialsmore » system.« less
Analysis of advanced optical glass and systems
NASA Technical Reports Server (NTRS)
Johnson, R. Barry; Feng, Chen
1991-01-01
Optical lens systems performance utilizing optical materials comprising reluctant glass forming compositions was studied. Such special glasses are being explored by NASA/Marshall Space Flight Center (MSFC) researchers utilizing techniques such as containerless processing in space on the MSFC Acoustic Levitation Furnace and on the High Temperature Acoustic Levitation Furnace in the conceptual design phase for the United States Microgravity Laboratory (USML) series of shuttle flights. The application of high refractive index and low dispersive power glasses in optical lens design was investigated. The potential benefits and the impacts to the optical lens design performance were evaluated. The results of the studies revealed that the use of these extraordinary glasses can result in significant optical performance improvements. Recommendations of proposed optical properties for potential new glasses were also made. Applications of these new glasses are discussed, including the impact of high refractive index and low dispersive power, improvements of the system performance by using glasses which are located outside of traditional glass map, and considerations in establishing glass properties beyond conventional glass map limits.
Thermopower and magnetocaloric properties in NdSrMnO/CrO3 composites
NASA Astrophysics Data System (ADS)
Ahmed, A. M.; Mohamed, H. F.; Paixão, J. A.; Mohamed, Sara A.
2018-06-01
The thermoelectric power (TEP) and magnetocaloric effect (MCE) for (Nd0.6Sr0.4MnO3)1-x/(CrO3)x composites have been measured. The TEP measurements show a negative sign value of the Seebeck coefficient (S), in microvolts. TEP data construe in the low range of temperature by the magnon and phonon drag model, whereas at high temperature by small polaron conduction mechanism. Magnetic measurements exhibit that all composites show a paramagnetic-ferromagnetic transition with decreasing temperature. The Arrott plots of composites reveal the occurrence of a second order phase transition. The maximum value of magnetic entropy change (ΔS) is 2.37 J kg-1 K-1, achieved fore the composite with x = 0.015. Moreover, the maximum value of relative cooling power (RCP) is 122.1 J kg-1, achieved for the composite with x = 0.020. These composites may be appropriate for magnetic application near room temperature.
Flywheels Upgraded for Systems Research
NASA Technical Reports Server (NTRS)
Jansen, Ralph H.
2003-01-01
With the advent of high-strength composite materials and microelectronics, flywheels are becoming attractive as a means of storing electrical energy. In addition to the high energy density that flywheels provide, other advantages over conventional electrochemical batteries include long life, high reliability, high efficiency, greater operational flexibility, and higher depths of discharge. High pulse energy is another capability that flywheels can provide. These attributes are favorable for satellites as well as terrestrial energy storage applications. In addition to energy storage for satellites, the several flywheels operating concurrently can provide attitude control, thus combine two functions into one system. This translates into significant weight savings. The NASA Glenn Research Center is involved in the development of this technology for space and terrestrial applications. Glenn is well suited for this research because of its world-class expertise in power electronics design, rotor dynamics, composite material research, magnetic bearings, and motor design and control. Several Glenn organizations are working together on this program. The Structural Mechanics and Dynamics Branch is providing magnetic bearing, controls, and mechanical engineering skills. It is working with the Electrical Systems Development Branch, which has expertise in motors and generators, controls, and avionics systems. Facility support is being provided by the Space Electronic Test Engineering Branch, and the program is being managed by the Space Flight Project Branch. NASA is funding an Aerospace Flywheel Technology Development Program to design, fabricate, and test the Attitude Control/Energy Storage Experiment (ACESE). Two flywheels will be integrated onto a single power bus and run simultaneously to demonstrate a combined energy storage and 1-degree-of-freedom momentum control system. An algorithm that independently regulates direct-current bus voltage and net torque output will be experimentally demonstrated.
Liu, Libin; Yu, You; Yan, Casey; Li, Kan; Zheng, Zijian
2015-06-11
One-dimensional flexible supercapacitor yarns are of considerable interest for future wearable electronics. The bottleneck in this field is how to develop devices of high energy and power density, by using economically viable materials and scalable fabrication technologies. Here we report a hierarchical graphene-metallic textile composite electrode concept to address this challenge. The hierarchical composite electrodes consist of low-cost graphene sheets immobilized on the surface of Ni-coated cotton yarns, which are fabricated by highly scalable electroless deposition of Ni and electrochemical deposition of graphene on commercial cotton yarns. Remarkably, the volumetric energy density and power density of the all solid-state supercapacitor yarn made of one pair of these composite electrodes are 6.1 mWh cm(-3) and 1,400 mW cm(-3), respectively. In addition, this SC yarn is lightweight, highly flexible, strong, durable in life cycle and bending fatigue tests, and integratable into various wearable electronic devices.
Liu, Libin; Yu, You; Yan, Casey; Li, Kan; Zheng, Zijian
2015-01-01
One-dimensional flexible supercapacitor yarns are of considerable interest for future wearable electronics. The bottleneck in this field is how to develop devices of high energy and power density, by using economically viable materials and scalable fabrication technologies. Here we report a hierarchical graphene–metallic textile composite electrode concept to address this challenge. The hierarchical composite electrodes consist of low-cost graphene sheets immobilized on the surface of Ni-coated cotton yarns, which are fabricated by highly scalable electroless deposition of Ni and electrochemical deposition of graphene on commercial cotton yarns. Remarkably, the volumetric energy density and power density of the all solid-state supercapacitor yarn made of one pair of these composite electrodes are 6.1 mWh cm−3 and 1,400 mW cm−3, respectively. In addition, this SC yarn is lightweight, highly flexible, strong, durable in life cycle and bending fatigue tests, and integratable into various wearable electronic devices. PMID:26068809
NASA Astrophysics Data System (ADS)
Azmi, A. I.; Syahmi, A. Z.; Naquib, M.; Lih, T. C.; Mansor, A. F.; Khalil, A. N. M.
2017-10-01
This article presents an approach to evaluate the effects of different machining conditions on the specific cutting energy of carbon fibre reinforced polymer composites (CFRP). Although research works in the machinability of CFRP composites have been very substantial, the present literature rarely discussed the topic of energy consumption and the specific cutting energy. A series of turning experiments were carried out on two different CFRP composites in order to determine the power and specific energy constants and eventually evaluate their effects due to the changes in machining conditions. A good agreement between the power and material removal rate using a simple linear relationship. Further analyses revealed that a power law function is best to describe the effect of feed rate on the changes in the specific cutting energy. At lower feed rate, the specific cutting energy increases exponentially due to the nature of finishing operation, whereas at higher feed rate, the changes in specific cutting energy is minimal due to the nature of roughing operation.
Design Guide: Designing and Building High Voltage Power Supplies. Volume 2
1988-08-01
and edges. * Isolation system: * One layer ol’ Tedlar: or type 120 glass fabric with a compatible resin : or finish. 199 5.4.2 Composite Joints...plastics Cellulose esters Asphalt Cork Chloride flux Epoxy resins Copper (bare) Masonite Fiber board Melamine resins Greases Nylon Polyvinyl chloride resins ...cycloaliphatic epoxy to a level inferior to the porcelain. In one application having a glass -cloth epoxy- based laminate coated with cycloaliphatic epoxy the
Casting Molding of PDCPD Material for Purpose of Car’s Power Steering Body
NASA Astrophysics Data System (ADS)
Grabowski, L.; Baier, A.; Sobek, M.
2018-01-01
The growing industry of polymer and composite materials is facing new challenges posed by the automotive industry. In this industry, traditional materials such as steel and aluminum are widely replaced with plastic materials, including polymers. In the past, such behavior concerned design and interior elements, but more and more often plastics are used in the case of load-bearing elements, i.e. those that require high strength and durability nowadays. This kind of materials are also often used in safety systems or driver assistance systems. Therefore, the aim of the activities described in this article are to carry out an innovative process of injection of cold polymeric material, PDCPD (Polidicyclopentadiene), polymerizing with the use of Metathesis reaction, which in 2005 was awarded the Nobel Prize. This injection applies to the worm gear components of the system, supports the power steering system of the passenger car. Also the process of selecting the appropriate parameters to carry out this process, guaranteeing the best quality of the obtained elements is necessary. The aim of the activities was to achieve a fully useful power steering support system, using a polymer body, which is replacing the aluminum. These activities were aimed at reducing the costs and weight of the final product. The injection process and the way to achieve the finished product were carried out in an innovative way, never used in industry before.
A Portable Ultrasound System for Non-Invasive Ultrasonic Neuro-Stimulation.
Qiu, Weibao; Zhou, Juan; Chen, Yan; Su, Min; Li, Guofeng; Zhao, Huixia; Gu, Xianyi; Meng, De; Wang, Congzhi; Xiao, Yang; Lam, Kwok Ho; Dai, Jiyan; Zheng, Hairong
2017-12-01
Fundamental insights into the function of the neural circuits often follows from the advances in methodologies and tools for neuroscience. Electrode- and optical- based stimulation methods have been used widely for neuro-modulation with high resolution. However, they are suffering from inherent invasive surgical procedure. Ultrasound has been proved as a promising technology for neuro-stimulation in a non-invasive manner. However, no portable ultrasound system has been developed particularly for neuro-stimulation. The utilities used currently are assembled by traditional functional generator, power amplifier, and general transducer, therefore, resulting in lack of flexibility. This paper presents a portable system to achieve ultrasonic neuro-stimulation to satisfy various studies. The system incorporated a high voltage waveform generator and a matching circuit that were optimized for neuro-stimulation. A new switching mode power amplifier was designed and fabricated. The noise generated by the power amplifier was reduced (about 30 dB), and the size and weight were smaller in contrast with commercial equipment. In addition, a miniaturized ultrasound transducer was fabricated using Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 (PMN-PT) 1-3 composite single crystal for the improved ultrasonic performance. The spatial peak temporal average pressure was higher than 250 kPa in the range of 0.5-5 MHz. In vitro and in vivo studies were conducted to show the performance of the system.
Stretchable piezoelectric nanocomposite generator
NASA Astrophysics Data System (ADS)
Park, Kwi-Il; Jeong, Chang Kyu; Kim, Na Kyung; Lee, Keon Jae
2016-06-01
Piezoelectric energy conversion that generate electric energy from ambient mechanical and vibrational movements is promising energy harvesting technology because it can use more accessible energy resources than other renewable natural energy. In particular, flexible and stretchable piezoelectric energy harvesters which can harvest the tiny biomechanical motions inside human body into electricity properly facilitate not only the self-powered energy system for flexible and wearable electronics but also sensitive piezoelectric sensors for motion detectors and in vivo diagnosis kits. Since the piezoelectric ZnO nanowires (NWs)-based energy harvesters (nanogenerators) were proposed in 2006, many researchers have attempted the nanogenerator by using the various fabrication process such as nanowire growth, electrospinning, and transfer techniques with piezoelectric materials including polyvinylidene fluoride (PVDF) polymer and perovskite ceramics. In 2012, the composite-based nanogenerators were developed using simple, low-cost, and scalable methods to overcome the significant issues with previously-reported energy harvester, such as insufficient output performance and size limitation. This review paper provides a brief overview of flexible and stretchable piezoelectric nanocomposite generator for realizing the self-powered energy system with development history, power performance, and applications.
Soft, thin skin-mounted power management systems and their use in wireless thermography
NASA Astrophysics Data System (ADS)
Lee, Jung Woo; Xu, Renxiao; Lee, Seungmin; Jang, Kyung-In; Yang, Yichen; Banks, Anthony; Yu, Ki Jun; Kim, Jeonghyun; Xu, Sheng; Ma, Siyi; Jang, Sung Woo; Won, Phillip; Li, Yuhang; Kim, Bong Hoon; Choe, Jo Young; Huh, Soojeong; Kwon, Yong Ho; Huang, Yonggang; Paik, Ungyu; Rogers, John A.
2016-05-01
Power supply represents a critical challenge in the development of body-integrated electronic technologies. Although recent research establishes an impressive variety of options in energy storage (batteries and supercapacitors) and generation (triboelectric, piezoelectric, thermoelectric, and photovoltaic devices), the modest electrical performance and/or the absence of soft, biocompatible mechanical properties limit their practical use. The results presented here form the basis of soft, skin-compatible means for efficient photovoltaic generation and high-capacity storage of electrical power using dual-junction, compound semiconductor solar cells and chip-scale, rechargeable lithium-ion batteries, respectively. Miniaturized components, deformable interconnects, optimized array layouts, and dual-composition elastomer substrates, superstrates, and encapsulation layers represent key features. Systematic studies of the materials and mechanics identify optimized designs, including unusual configurations that exploit a folded, multilayer construct to improve the functional density without adversely affecting the soft, stretchable characteristics. System-level examples exploit such technologies in fully wireless sensors for precision skin thermography, with capabilities in continuous data logging and local processing, validated through demonstrations on volunteer subjects in various realistic scenarios.
Soft, thin skin-mounted power management systems and their use in wireless thermography.
Lee, Jung Woo; Xu, Renxiao; Lee, Seungmin; Jang, Kyung-In; Yang, Yichen; Banks, Anthony; Yu, Ki Jun; Kim, Jeonghyun; Xu, Sheng; Ma, Siyi; Jang, Sung Woo; Won, Phillip; Li, Yuhang; Kim, Bong Hoon; Choe, Jo Young; Huh, Soojeong; Kwon, Yong Ho; Huang, Yonggang; Paik, Ungyu; Rogers, John A
2016-05-31
Power supply represents a critical challenge in the development of body-integrated electronic technologies. Although recent research establishes an impressive variety of options in energy storage (batteries and supercapacitors) and generation (triboelectric, piezoelectric, thermoelectric, and photovoltaic devices), the modest electrical performance and/or the absence of soft, biocompatible mechanical properties limit their practical use. The results presented here form the basis of soft, skin-compatible means for efficient photovoltaic generation and high-capacity storage of electrical power using dual-junction, compound semiconductor solar cells and chip-scale, rechargeable lithium-ion batteries, respectively. Miniaturized components, deformable interconnects, optimized array layouts, and dual-composition elastomer substrates, superstrates, and encapsulation layers represent key features. Systematic studies of the materials and mechanics identify optimized designs, including unusual configurations that exploit a folded, multilayer construct to improve the functional density without adversely affecting the soft, stretchable characteristics. System-level examples exploit such technologies in fully wireless sensors for precision skin thermography, with capabilities in continuous data logging and local processing, validated through demonstrations on volunteer subjects in various realistic scenarios.
Soft, thin skin-mounted power management systems and their use in wireless thermography
Lee, Jung Woo; Xu, Renxiao; Lee, Seungmin; Jang, Kyung-In; Yang, Yichen; Banks, Anthony; Yu, Ki Jun; Kim, Jeonghyun; Xu, Sheng; Ma, Siyi; Jang, Sung Woo; Won, Phillip; Li, Yuhang; Kim, Bong Hoon; Choe, Jo Young; Huh, Soojeong; Kwon, Yong Ho; Huang, Yonggang; Paik, Ungyu; Rogers, John A.
2016-01-01
Power supply represents a critical challenge in the development of body-integrated electronic technologies. Although recent research establishes an impressive variety of options in energy storage (batteries and supercapacitors) and generation (triboelectric, piezoelectric, thermoelectric, and photovoltaic devices), the modest electrical performance and/or the absence of soft, biocompatible mechanical properties limit their practical use. The results presented here form the basis of soft, skin-compatible means for efficient photovoltaic generation and high-capacity storage of electrical power using dual-junction, compound semiconductor solar cells and chip-scale, rechargeable lithium-ion batteries, respectively. Miniaturized components, deformable interconnects, optimized array layouts, and dual-composition elastomer substrates, superstrates, and encapsulation layers represent key features. Systematic studies of the materials and mechanics identify optimized designs, including unusual configurations that exploit a folded, multilayer construct to improve the functional density without adversely affecting the soft, stretchable characteristics. System-level examples exploit such technologies in fully wireless sensors for precision skin thermography, with capabilities in continuous data logging and local processing, validated through demonstrations on volunteer subjects in various realistic scenarios. PMID:27185907
Lead-acid batteries in solar photovoltaic power systems for marine aids to navigation. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trenchard, S.E.
1981-10-01
Since 1974, the U.S. Coast Guard has been testing lead-acid batteries in solar photovoltaic-powered systems for aids to navigation. Three types of lead-acid batteries, distinguished by the composition of their grid material, have been tested: lead-antimony grid, lead-calcium grid, and pure-lead grid. This report contains a comparison of the charging characteristics and the charge-discharge cycling behavior of each grid type. All types were remarkably similar qualitatively in their daily as well as annual cycling behavior but the significance of the quantitative differences offer distinctive tradeoffs. This report presents models for water usage, depth-of-discharge, and post-cycle capacity for various levels ofmore » voltage regulation. Based on the post-cycle capacity tests, the effect of grid strength, grid thickness, and operating conditions on life expectancy are presented. A final discussion presents the results of a field deployment of solar photovoltaic-powered aids to navigation in the Miami, Florida area. Potential solutions to the battery terminal corrosion and bird guano problems observed are discussed.« less
NASA Astrophysics Data System (ADS)
Sabbah, Rami; Kizilel, R.; Selman, J. R.; Al-Hallaj, S.
The effectiveness of passive cooling by phase change materials (PCM) is compared with that of active (forced air) cooling. Numerical simulations were performed at different discharge rates, operating temperatures and ambient temperatures of a compact Li-ion battery pack suitable for plug-in hybrid electric vehicle (PHEV) propulsion. The results were also compared with experimental results. The PCM cooling mode uses a micro-composite graphite-PCM matrix surrounding the array of cells, while the active cooling mode uses air blown through the gaps between the cells in the same array. The results show that at stressful conditions, i.e. at high discharge rates and at high operating or ambient temperatures (for example 40-45 °C), air-cooling is not a proper thermal management system to keep the temperature of the cell in the desirable operating range without expending significant fan power. On the other hand, the passive cooling system is able to meet the operating range requirements under these same stressful conditions without the need for additional fan power.
NASA Astrophysics Data System (ADS)
Lemehov, S. E.; Sobolev, V. P.; Verwerft, M.
2011-09-01
The European Facility for Industrial Transmutation (EFIT) of the minor actinides (MA), from LWR spent fuel is being developed in the integrated project EUROTRANS within the 6th Framework Program of EURATOM. Two composite uranium-free fuel systems, containing a large fraction of MA, are proposed as the main candidates: a CERCER with magnesia matrix hosting (Pu,MA)O 2-x particles, and a CERMET with metallic molybdenum matrix. The long-term thermal and mechanical behaviour of the fuel under the expected EFIT operating conditions is one of the critical issues in the core design. To make a reliable prediction of long-term thermo-mechanical behaviour of the hottest fuel rods in the lead-cooled version of EFIT with thermal power of 400 MW, different fuel performance codes have been used. This study describes the main results of modelling the thermo-mechanical behaviour of the hottest CERCER fuel rods with the fuel performance code MACROS which indicate that the CERCER fuel residence time can safely reach at least 4-5 effective full power years.
Neutron star Interior Composition Explorer (NICER)
2017-12-08
A NICER team member measures the focused optical power of each X-ray concentrator in a clean tent at NASA’s Goddard Space Flight Center. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
Fourier transform spectroscopy for future planetary missions
NASA Astrophysics Data System (ADS)
Brasunas, John; Kolasinski, John; Kostiuk, Ted; Hewagama, Tilak
2017-01-01
Thermal-emission infrared spectroscopy is a powerful tool for exploring the composition, temperature structure, and dynamics of planetary atmospheres; and the temperature of solid surfaces. A host of Fourier transform spectrometers (FTS) such as Mariner IRIS, Voyager IRIS, and Cassini CIRS from NASA Goddard have made and continue to make important new discoveries throughout the solar system. Future FTS instruments will have to be more sensitive (when we concentrate on the colder, outer reaches of the solar system), and less massive and less power-hungry as we cope with decreasing resource allotments for future planetary science instruments. With this in mind, we have developed CIRS-lite, a smaller version of the CIRS FTS for future planetary missions. We discuss the roadmap for making CIRS-lite a viable candidate for future planetary missions, including the recent increased emphasis on ocean worlds (Europa, Encelatus, Titan) and also on smaller payloads such as CubeSats and SmallSats.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-02-01
This appendix is a compilation of work done to predict overall cycle performance from gasifier to generator terminals. A spreadsheet has been generated for each case to show flows within a cycle. The spreadsheet shows gaseous or solid composition of flow, temperature of flow, quantity of flow, and heat heat content of flow. Prediction of steam and gas turbine performance was obtained by the computer program GTPro. Outputs of all runs for each combined cycle reviewed has been added to this appendix. A process schematic displaying all flows predicted through GTPro and the spreadsheet is also added to this appendix.more » The numbered bubbles on the schematic correspond to columns on the top headings of the spreadsheet.« less
NASA Technical Reports Server (NTRS)
Whitten, R. C.; Borucki, W. J.; Park, C.; Pfister, L.; Woodward, H. T.; Turco, R. P.; Capone, L. A.; Riegel, C. A.; Kropp, T.
1982-01-01
Numerical models were developed to calculate the total deposition of watervapor, hydrogen, CO2, CO, SO2, and NO in the middle atmosphere from operation of heavy lift launch vehicles (HLLV) used to build a satellite solar power system (SPS). The effects of the contaminants were examined for their effects on the upper atmosphere. One- and two-dimensional models were formulated for the photochemistry of the upper atmosphere and for rocket plumes and reentry. An SPS scenario of 400 launches per year for 10 yr was considered. The build-up of the contaminants in the atmosphere was projected to have no significant effects, even at the launch latitude. Neither would there by any dangerous ozone depletion. It was found that H, OH, and HO2 species would double in the thermosphere. No measurable changes in climate were foreseen.
Aluminum-Alloy-Matrix/Alumina-Reinforcement Composites
NASA Technical Reports Server (NTRS)
Kashalikar, Uday; Rozenoyer, Boris
2004-01-01
Isotropic composites of aluminum-alloy matrices reinforced with particulate alumina have been developed as lightweight, high-specific-strength, less-expensive alternatives to nickel-base and ferrous superalloys. These composites feature a specific gravity of about 3.45 grams per cubic centimeter and specific strengths of about 200 MPa/(grams per cubic centimeter). The room-temperature tensile strength is 100 ksi (689 MPa) and stiffness is 30 Msi (206 GPa). At 500 F (260 C), these composites have shown 80 percent retention in strength and 95 percent retention in stiffness. These materials also have excellent fatigue tolerance and tribological properties. They can be fabricated in net (or nearly net) sizes and shapes to make housings, pistons, valves, and ducts in turbomachinery, and to make structural components of such diverse systems as diesel engines, automotive brake systems, and power-generation, mining, and oil-drilling equipment. Separately, incorporation of these metal matrix composites within aluminum gravity castings for localized reinforcement has been demonstrated. A composite part of this type can be fabricated in a pressure infiltration casting process. The process begins with the placement of a mold with alumina particulate preform of net or nearly net size and shape in a crucible in a vacuum furnace. A charge of the alloy is placed in the crucible with the preform. The interior of the furnace is evacuated, then the furnace heaters are turned on to heat the alloy above its liquidus temperature. Next, the interior of the furnace is filled with argon gas at a pressure about 900 psi (approximately equal to 6.2 MPa) to force the molten alloy to infiltrate the preform. Once infiltrated, the entire contents of the crucible can be allowed to cool in place, and the composite part recovered from the mold.
The primary cosmic ray mass composition at energies above 10(14) eV
NASA Technical Reports Server (NTRS)
Gawin, J.; Wdowczyk, J.; Kempa, J.
1985-01-01
It is shown in this paper that the experimental data on extensive air showers at the energy interval 10 to the 15th power - 10 to the 17th power eV seems to be described best if it is assumed that the Galactic cosmic rays are described by some sort of a two component picture. The first component is of a mixed composition similar to that at lower energies and the second is dominated by protons. Overall spectrum starts to be enriched in protons at energies about 10 to the 15th power eV bu the effective mass of the primaries remains constant up to energies around 10 to the 16th power eV. That results from the fact that composition gradually changes from multi-component to mixture of protons and heavies. That picture receives also some sort of support from recent observations of relatively high number of nergetic protons in JACEE and Concorde experiments.
Models of fragmentation with composite power laws
NASA Astrophysics Data System (ADS)
Tavassoli, Z.; Rodgers, G. J.
1999-06-01
Some models for binary fragmentation are introduced in which a time dependent transition size produces two regions of fragment sizes above and below the transition size. In the first model we assume a fixed rate of fragmentation for the largest fragment and two different rates of fragmentation in the two regions of sizes above and below the transition size. The model is solved exactly in the long time limit to reveal stable time-invariant solutions for the fragment size and mass distributions. These solutions exhibit composite power law behaviours; power laws with two different exponents for fragments in smaller and larger regions. A special case of the model with no fragmentation in the smaller size region is also examined. Another model is also introduced which have three regions of fragment sizes with different rates of fragmentation. The similarities between the stable distributions in our models and composite power law distributions from experimental work on shock fragmentation of long thin glass rods and thick clay plates are discussed.
The high velocity impact loading on symmetrical and woven hybrid composite laminates
NASA Astrophysics Data System (ADS)
Jin, Martin; Richardson, Mel; Zhang, Zhong Yi
2007-07-01
Space structures use fibre composite materials, due to their lightweight. This paper examines the impact response of symmetrical and hybrid composite laminates. Special attention is given to the stacking sequences used. The experimental study of structures has always provided a major contribution to our understanding. Even with the formidable growth in the use and capacity of computing power the need for experimental measurement is as compelling as ever. The design of hybrid composite structures is complicated by the number of design variables and the interaction of the constituents is the composite system. Since it is desirable to experimentally test the design and it is not practical to test a full scale model, the structural/material similitude concept is used to create a small scale model with a similar structural response. In the current study, experimental investigations were carried out to determine the response of four different combinations of hybrid laminates to low-velocity impact loading using an instrumented impact testing machine. Hybrid laminates were fabricated with twill weave carbon fabric and plain weave S2-glass fabric using vacuum assisted resin molding process with SC-15 epoxy resin system. Response of carbon/epoxy and glass/epoxy laminates was also investigated to compare with that of hybrid samples. Square laminates of size 100 mm and nominal thickness of 3 mm were subjected to low-velocity impact loading at four energy levels of 10, 20, 30 and 40 J. Results of the study indicate that there is considerable improvement in the load carrying capability of hybrid composites as compared to carbon/epoxy laminates with slight reduction in stiffness.
An Evaluation of Fracture Toughness of Vinyl Ester Composites Cured under Microwave Conditions
NASA Astrophysics Data System (ADS)
Ku, H.; Chan, W. L.; Trada, M.; Baddeley, D.
2007-12-01
The shrinkage of vinyl ester particulate composites has been reduced by curing the resins under microwave conditions. The reduction in the shrinkage of the resins by microwaves will enable the manufacture of large vinyl ester composite items possible (H.S. Ku, G. Van Erp, J.A.R. Ball, and S. Ayers, Shrinkage Reduction of Thermoset Fibre Composites during Hardening using Microwaves Irradiation for Curing, Proceedings, Second World Engineering Congress, Kuching, Malaysia, 2002a, 22-25 July, p 177-182; H.S. Ku, Risks Involved in Curing Vinyl Ester Resins Using Microwaves Irradiation. J. Mater. Synth. Proces. 2002b, 10(2), p 97-106; S.H. Ku, Curing Vinyl Ester Particle Reinforced Composites Using Microwaves. J. Comp. Mater., (2003a), 37(22), p 2027-2042; S.H. Ku and E. Siores, Shrinkage Reduction of Thermoset Matrix Particle Reinforced Composites During Hardening Using Microwaves Irradiation, Trans. Hong Kong Inst. Eng., 2004, 11(3), p 29-34). In tensile tests, the yield strengths of samples cured under microwave conditions obtained are within 5% of those obtained by ambient curing; it is also found that with 180 W microwave power, the tensile strengths obtained for all duration of exposure to microwaves are also within the 5% of those obtained by ambient curing. While, with 360 W microwave power, the tensile strengths obtained for all duration of exposure to microwaves are 5% higher than those obtained by ambient curing. Whereas, with 540 W microwave power, the tensile strengths obtained for most samples are 5% below those obtained by ambient curing (H. Ku, V.C. Puttgunta, and M. Trada, Young’s Modulus of Vinyl Ester Composites Cured by Microwave Irradiation: Preliminary Results, J. Electromagnet. Waves Appl., 2007, 20(14), p. 1911-1924). This project, using 33% by weight fly ash reinforced vinyl ester composite [VE/FLYSH (33%)], is to further investigate the difference in fracture toughness between microwave cured vinyl ester particulate composites and those cured under ambient conditions. Higher power microwaves, 540 and 720 W with shorter duration of exposure are used to cure the composites. Short-bar method of fracture toughness measurement was used to perform the tests. Plastic (PVC) re-usable molds were designed and manufactured for producing the test samples. The results show that the fracture toughness of specimens cured by microwave conditions are generally higher than those cured under ambient conditions, provided the power level and duration of microwave irradiation are properly and optimally selected.
NASA Technical Reports Server (NTRS)
Briggs, Maxwell H.; Gibson, Marc A.; Sanzi, James
2017-01-01
The Kilopower project aims to develop and demonstrate scalable fission-based power technology for systems capable of delivering 110 kW of electric power with a specific power ranging from 2.5 - 6.5 Wkg. This technology could enable high power science missions or could be used to provide surface power for manned missions to the Moon or Mars. NASA has partnered with the Department of Energys National Nuclear Security Administration, Los Alamos National Labs, and Y-12 National Security Complex to develop and test a prototypic reactor and power system using existing facilities and infrastructure. This technology demonstration, referred to as the Kilowatt Reactor Using Stirling TechnologY (KRUSTY), will undergo nuclear ground testing in the summer of 2017 at the Nevada Test Site. The 1 kWe variation of the Kilopower system was chosen for the KRUSTY demonstration. The concept for the 1 kWe flight system consist of a 4 kWt highly enriched Uranium-Molybdenum reactor operating at 800 degrees Celsius coupled to sodium heat pipes. The heat pipes deliver heat to the hot ends of eight 125 W Stirling convertors producing a net electrical output of 1 kW. Waste heat is rejected using titanium-water heat pipes coupled to carbon composite radiator panels. The KRUSTY test, based on this design, uses a prototypic highly enriched uranium-molybdenum core coupled to prototypic sodium heat pipes. The heat pipes transfer heat to two Advanced Stirling Convertors (ASC-E2s) and six thermal simulators, which simulate the thermal draw of full scale power conversion units. Thermal simulators and Stirling engines are gas cooled. The most recent project milestone was the completion of non-nuclear system level testing using an electrically heated depleted uranium (non-fissioning) reactor core simulator. System level testing at the Glenn Research Center (GRC) has validated performance predictions and has demonstrated system level operation and control in a test configuration that replicates the one to be used at the Device Assembly Facility (DAF) at the Nevada National Security Site. Fabrication, assembly, and testing of the depleted uranium core has allowed for higher fidelity system level testing at GRC, and has validated the fabrication methods to be used on the highly enriched uranium core that will supply heat for the DAF KRUSTY demonstration.
NASA Astrophysics Data System (ADS)
Hung, Yue
Bipolar plate and membrane electrode assembly (MEA) are the two most repeated components of a proton exchange membrane (PEM) fuel cell stack. Bipolar plates comprise more than 60% of the weight and account for 30% of the total cost of a fuel cell stack. The bipolar plates perform as current conductors between cells, provide conduits for reactant gases, facilitate water and thermal management through the cell, and constitute the backbone of a power stack. In addition, bipolar plates must have excellent corrosion resistance to withstand the highly corrosive environment inside the fuel cell, and they must maintain low interfacial contact resistance throughout the operation to achieve optimum power density output. Currently, commercial bipolar plates are made of graphite composites because of their relatively low interfacial contact resistance (ICR) and high corrosion resistance. However, graphite composite's manufacturability, permeability, and durability for shock and vibration are unfavorable in comparison to metals. Therefore, metals have been considered as a replacement material for graphite composite bipolar plates. Since bipolar plates must possess the combined advantages of both metals and graphite composites in the fuel cell technology, various methods and techniques are being developed to combat metallic corrosion and eliminate the passive layer formed on the metal surface that causes unacceptable power reduction and possible fouling of the catalyst and the electrolyte. The main objective of this study was to explore the possibility of producing efficient, cost-effective and durable metallic bipolar plates that were capable of functioning in the highly corrosive fuel cell environment. Bulk materials such as Poco graphite, graphite composite, SS310, SS316, incoloy 800, titanium carbide and zirconium carbide were investigated as potential bipolar plate materials. In this work, different alloys and compositions of chromium carbide coatings on aluminum and SS316 substrates were also tested for suitability in performing as PEM fuel cell bipolar plates. Interfacial contact resistance and accelerated corrosion resistance tests were carried out for various bulk materials and chromium carbide coatings. Results of the study showed that chromium carbide protective coatings had relatively low interfacial contact resistance and moderate corrosion resistance in comparison to other metals. Single fuel cells with 6.45cm2 and 50cm2 active areas were fabricated and tested for performance and lifetime durability using chromium carbide coated aluminum bipolar plates and graphite composite bipolar plates as a control reference. Polarization curves and power curves were recorded from these single cells under various load conditions. The results showed that coated aluminum bipolar plates had an advantage of anchoring the terminals directly into the plates resulting in higher power density of the fuel cell. This was due to the elimination of additional ICR to the power stack caused by the need for extra terminal plates. However, this study also revealed that direct terminal anchoring was efficient and useable only with metallic bipolar plates but was inapplicable to graphite composite plates due to the poor mechanical strength and brittleness of the graphite composite material. In addition, the 1000 hour lifetime testing of coated aluminum single cells conducted at 70°C cell temperature under cyclic loading condition showed minimal power degradation (<5%) due to metal corrosion. Surface characterization was also conducted on the bipolar plates and MEAs to identify possible chemical change to their surfaces during the fuel cell operation and the electrochemical reaction. The single cell performance evaluation was complemented by an extended study on the fuel cell stack level. For the latter, a ten-cell graphite composite stack with a 40 cm2 active area was fabricated and evaluated for the effect of humidity and operating temperature on the stack performance. Graphite plates were selected for this study to eliminate any possible metal corrosion. A finite element analysis (FEA) model of a bipolar plate was developed to evaluate the effect of air cooling system design parameters and different bipolar plate materials on maintaining the PEM power stack at a safe operating temperature of 80°C or less. In the final stage of this work, a three-cell metallic stack with a 50 cm2 active area and coated aluminum bipolar plates was fabricated based on the positive results that were obtained from earlier studies. The three-cell stack was successfully operated and tested for 750 hours at different temperatures and power densities. This laboratory testing coupled with characterization studies showed that small amounts of aluminum oxide were observed on the coating surface due to localized imperfections in the coating and a lack of protection in the uncoated areas, such as internal manifolds and mounting plates. However, the scanning electron microscopy (SEM) and the energy dispersive x-ray spectroscopy (EDX) showed that coating thickness, chemistry, and surface morphology remained consistent after 750 hours of operation.
Immobile Robots: AI in the New Millennium
NASA Technical Reports Server (NTRS)
Williams, Brian C.; Nayak, P. Pandurang
1996-01-01
A new generation of sensor rich, massively distributed, autonomous systems are being developed that have the potential for profound social, environmental, and economic change. These include networked building energy systems, autonomous space probes, chemical plant control systems, satellite constellations for remote ecosystem monitoring, power grids, biosphere-like life support systems, and reconfigurable traffic systems, to highlight but a few. To achieve high performance, these immobile robots (or immobots) will need to develop sophisticated regulatory and immune systems that accurately and robustly control their complex internal functions. To accomplish this, immobots will exploit a vast nervous system of sensors to model themselves and their environment on a grand scale. They will use these models to dramatically reconfigure themselves in order to survive decades of autonomous operations. Achieving these large scale modeling and configuration tasks will require a tight coupling between the higher level coordination function provided by symbolic reasoning, and the lower level autonomic processes of adaptive estimation and control. To be economically viable they will need to be programmable purely through high level compositional models. Self modeling and self configuration, coordinating autonomic functions through symbolic reasoning, and compositional, model-based programming are the three key elements of a model-based autonomous systems architecture that is taking us into the New Millennium.
Flexible piezoelectric energy harvesting from jaw movements
NASA Astrophysics Data System (ADS)
Delnavaz, Aidin; Voix, Jérémie
2014-10-01
Piezoelectric fiber composites (PFC) represent an interesting subset of smart materials that can function as sensor, actuator and energy converter. Despite their excellent potential for energy harvesting, very few PFC mechanisms have been developed to capture the human body power and convert it into an electric current to power wearable electronic devices. This paper provides a proof of concept for a head-mounted device with a PFC chin strap capable of harvesting energy from jaw movements. An electromechanical model based on the bond graph method is developed to predict the power output of the energy harvesting system. The optimum resistance value of the load and the best stretch ratio in the strap are also determined. A prototype was developed and tested and its performances were compared to the analytical model predictions. The proposed piezoelectric strap mechanism can be added to all types of head-mounted devices to power small-scale electronic devices such as hearing aids, electronic hearing protectors and communication earpieces.
NASA Astrophysics Data System (ADS)
Alabdulkarem, Abdullah
Liquefied natural gas (LNG) plants are energy intensive. As a result, the power plants operating these LNG plants emit high amounts of CO2 . To mitigate global warming that is caused by the increase in atmospheric CO2, CO2 capture and sequestration (CCS) using amine absorption is proposed. However, the major challenge of implementing this CCS system is the associated power requirement, increasing power consumption by about 15--25%. Therefore, the main scope of this work is to tackle this challenge by minimizing CCS power consumption as well as that of the entire LNG plant though system integration and rigorous optimization. The power consumption of the LNG plant was reduced through improving the process of liquefaction itself. In this work, a genetic algorithm (GA) was used to optimize a propane pre-cooled mixed-refrigerant (C3-MR) LNG plant modeled using HYSYS software. An optimization platform coupling Matlab with HYSYS was developed. New refrigerant mixtures were found, with savings in power consumption as high as 13%. LNG plants optimization with variable natural gas feed compositions was addressed and the solution was proposed through applying robust optimization techniques, resulting in a robust refrigerant which can liquefy a range of natural gas feeds. The second approach for reducing the power consumption is through process integration and waste heat utilization in the integrated CCS system. Four waste heat sources and six potential uses were uncovered and evaluated using HYSYS software. The developed models were verified against experimental data from the literature with good agreement. Net available power enhancement in one of the proposed CCS configuration is 16% more than the conventional CCS configuration. To reduce the CO2 pressurization power into a well for enhanced oil recovery (EOR) applications, five CO2 pressurization methods were explored. New CO2 liquefaction cycles were developed and modeled using HYSYS software. One of the developed liquefaction cycles using NH3 as a refrigerant resulted in 5% less power consumption than the conventional multi-stage compression cycle. Finally, a new concept of providing the CO2 regeneration heat is proposed. The proposed concept is using a heat pump to provide the regeneration heat as well as process heat and CO2 liquefaction heat. Seven configurations of heat pumps integrated with CCS were developed. One of the heat pumps consumes 24% less power than the conventional system or 59% less total equivalent power demand than the conventional system with steam extraction and CO2 compression.
Fabrication and characterization of compositionally-graded shape memory alloy films
NASA Astrophysics Data System (ADS)
Cole, Daniel Paul
2009-12-01
The miniaturization of engineering devices has created interest in new actuation methods capable of high power and high frequency responses. Shape memory alloy (SMA) thin films have exhibited one of the highest power densities of any material used in these actuation schemes. However, they currently require complex thermomechanical training in order to be actuated, which becomes more difficult as devices approach the microscale. Previous studies have indicated that SMA films with compositional gradients have the added feature of an intrinsic two-way shape memory effect (SME). In this work, a new method for processing and characterizing compositionally-graded transformable thin films is presented. Graded NiTi SMA films were processed using magnetron sputtering. Single and multilayer graded films were deposited onto bulk NiTi substrates and single crystal silicon substrates, respectively. Annealing the films naturally produced a compositional gradient across the film-substrate or film-film interface through diffusion modification. The films were directly characterized using a combination of atomic force microscopy (AFM), x-ray diffraction and Auger electron spectroscopy. The compositional gradient was indirectly characterized by measuring the variation in mechanical properties as a function of depth using nanoindentation. The similarity of the indentation response on graded films of varying thickness was used to estimate the width of the graded interface. The nanoindentation response was predicted using an analysis that accounted for the transformation effects occurring under the tip during loading and the variation of elastic modulus resulting from the compositional gradient. The recovery mechanisms of the graded films are compared with homogeneous films using a new nanoscale technique. An AFM integrated with a heating and cooling stage was used to observe the recovery of inelastic deformation caused through nanoindentation. The graded films exhibited a two-way SME with a reduced hysteresis, while the homogeneous films exhibited the classical one-way SME. The fabrication and characterization techniques developed in this work have the potential to be applied to general graded and multi-layer film systems.
Analysis of Ion Composition Estimation Accuracy for Incoherent Scatter Radars
NASA Astrophysics Data System (ADS)
Martínez Ledesma, M.; Diaz, M. A.
2017-12-01
The Incoherent Scatter Radar (ISR) is one of the most powerful sounding methods developed to estimate the Ionosphere. This radar system determines the plasma parameters by sending powerful electromagnetic pulses to the Ionosphere and analyzing the received backscatter. This analysis provides information about parameters such as electron and ion temperatures, electron densities, ion composition, and ion drift velocities. Nevertheless in some cases the ISR analysis has ambiguities in the determination of the plasma characteristics. It is of particular relevance the ion composition and temperature ambiguity obtained between the F1 and the lower F2 layers. In this case very similar signals are obtained with different mixtures of molecular ions (NO2+ and O2+) and atomic oxygen ions (O+), and consequently it is not possible to completely discriminate between them. The most common solution to solve this problem is the use of empirical or theoretical models of the ionosphere in the fitting of ambiguous data. More recent works take use of parameters estimated from the Plasma Line band of the radar to reduce the number of parameters to determine. In this work we propose to determine the error estimation of the ion composition ambiguity when using Plasma Line electron density measurements. The sensibility of the ion composition estimation has been also calculated depending on the accuracy of the ionospheric model, showing that the correct estimation is highly dependent on the capacity of the model to approximate the real values. Monte Carlo simulations of data fitting at different signal to noise (SNR) ratios have been done to obtain valid and invalid estimation probability curves. This analysis provides a method to determine the probability of erroneous estimation for different signal fluctuations. Also it can be used as an empirical method to compare the efficiency of the different algorithms and methods on when solving the ion composition ambiguity.
Lee, Inkyu; Park, Jinwoo; Moon, Il
2017-12-01
This paper describes data of an integrated process, cryogenic energy storage system combined with liquefied natural gas (LNG) regasification process. The data in this paper is associated with the article entitled "Conceptual Design and Exergy Analysis of Combined Cryogenic Energy Storage and LNG Regasification Processes: Cold and Power Integration" (Lee et al., 2017) [1]. The data includes the sensitivity case study dataset of the air flow rate and the heat exchanging feasibility data by composite curves. The data is expected to be helpful to the cryogenic energy process development.
The principle of superposition and its application in ground-water hydraulics
Reilly, Thomas E.; Franke, O. Lehn; Bennett, Gordon D.
1987-01-01
The principle of superposition, a powerful mathematical technique for analyzing certain types of complex problems in many areas of science and technology, has important applications in ground-water hydraulics and modeling of ground-water systems. The principle of superposition states that problem solutions can be added together to obtain composite solutions. This principle applies to linear systems governed by linear differential equations. This report introduces the principle of superposition as it applies to ground-water hydrology and provides background information, discussion, illustrative problems with solutions, and problems to be solved by the reader.
Observing power blackouts from space - A disaster related study
NASA Astrophysics Data System (ADS)
Aubrecht, C.; Elvidge, C. D.; Ziskin, D.; Baugh, K. E.; Tuttle, B.; Erwin, E.; Kerle, N.
2009-04-01
In case of emergency disaster managers worldwide require immediate information on affected areas and estimations of the number of affected people. Natural disasters such as earthquakes, hurricanes, tornados, wind and ice storms often involve failures in the electrical power generation system and grid. Near real time identification of power blackouts gives a first impression of the area affected by the event (Elvidge et al. 2007), which can subsequently be linked to population estimations. Power blackouts disrupt societal activities and compound the difficulties associated with search and rescue, clean up, and the provision of food and other supplies following a disastrous event. Locations and spatial extents of power blackouts are key considerations in planning and execution of the primary disaster missions of emergency management organizations. To date only one satellite data source has been used successfully for the detection of power blackouts. Operated by NOAA's National Geophysical Data Center (NGDC) the U.S. Air Force Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) offers a unique capability to observe lights present at the Earth's surface at night. Including a pair of visible and thermal spectral bands and originally designed to detect moonlit clouds, this sensor enables mapping of lights from cities and towns, gas flares and offshore platforms, fires, and heavily lit fishing boats. The low light imaging of the OLS is accomplished using a photomultiplier tube (PMT) which intensifies the visible band signal at night. With 14 orbits collected per day and a 3.000 km swath width, each OLS is capable of collecting a complete set of images of the Earth every 24 hours. NGDC runs the long-term archive for OLS data with the digital version extending back to 1992. OLS data is received by NGDC in near real time (1-2 hours from acquisition) and subscription based services for the near real time data are provided for users all over the world. Elvidge et al. (1998) first demonstrated that under certain conditions a detection of power outages is possible using OLS data. A standard procedure for visual detection of power outages has been developed. The procedure is based on identifying locations where consistently observed lighting is missing or reduced following a disaster event. Visible and thermal spectral bands of the event-related OLS data are compared to a recent cloud-free composite of nighttime lights by producing a color (RGB) composite image. For the cloud-free nighttime lights composite serving as reference information both monthly and annual composites can be used, depending on the respective availability and suitability of OLS data. The RGB color composite uses the reference lights as red (R), the current visible band as green (G) and the current thermal band as blue (B). The thermal band is typically inverted to make clouds appear bright. As clouds are typically colder than the surface of the Earth, in the thermal band higher values are observed on cloud-free areas, which thus appear brighter in standard visualization modes. The resulting color composite is visually interpreted to identify power outages, which show up as red lights on a dark (cloud-free) background. Red color stands for high values in the reference data (red band of the RGB composite) compared to low values in the event data (green and blue bands of the RGB composite), thus showing the disaster-related absence or reduction of lighting. Heavy cloud cover also obscures lights, resulting in red lights on a blue background. Yellow color in the RGB composite indicates areas where the lights are on, i.e. both red and green band (reference composite and visible band of the event image) feature high values with no cloud cover present (low values in the blue band). Under ideal conditions the presented procedure detects individual cities and towns where power has been lost or has been reduced. Conditions reducing or eliminating the capability of detecting power blackouts in OLS data have been identified (e.g. sunlight, heavy cloud cover and bright moonlight). Furthermore, the change detection procedure only works when power blackouts happen or still persist at night at the time of an OLS overpass. In some cases (e.g. Hurricane Katrina) it has been possible to track the gradual recovery of power by repeating the procedure on nights following a disaster event. In this paper several examples of successful power blackout detection following natural disasters including hurricanes (e.g. Isabel 2003 and Wilma 2005 in the USA) and earthquakes (e.g. Gujarat Earthquake 2001 in India) will be presented, whereas overlaid hurricane paths and earthquake epicenters serve as landmarks and indicate locations around the potential highest impact. Disaster impact assessment and post-disaster research is strongly related to impacts on population, related infrastructure and activities (Kerle et al. 2005, Zhang and Kerle 2008). In particular in the case of emergency management and response humans are the main actors and first-pass assessment of affected population and locations of affected areas are essential. Space-based power blackout detection, as described above, has the potential to delineate the spatial extent of the disaster impact. Overlaying the respective OLS data with regional population data such as LandScan (Dobson et al. 2000) or Gridded Population of the World (CIESIN and CIAT 2005) allows estimating a potential number of affected people. Without a doubt such estimates comprise a considerable number of uncertainties. However, the capability of providing the information in near-real time as offered by using DMSP-OLS makes the presented approach very valuable for emergency and disaster managers worldwide. REFERENCES Center for International Earth Science Information Network CIESIN at Columbia University, and Centro Internacional de Agricultura Tropical CIAT (2005). Gridded Population of the World Version 3 (GPWv3). Palisades, NY: Socioeconomic Data and Applications Center (SEDAC), Columbia University. Available at http://sedac.ciesin.columbia.edu/gpw (last visited 01/08/2009). Dobson, J.E., E.A. Bright, P.R. Coleman, R.C. Durfee, and B.A. Worley (2000) LandScan: A Global Population Database for Estimating Populations at Risk. Photogrammetric Engineering & Remote Sensing 66(7), 849-857. Elvidge, C.D., K.E. Baugh, V.R. Hobson, E.A. Kihn, and H.W. Kroehl (1998) Detection of Fires and Power Outages Using DMSP-OLS Data. In: Lunetta, R.S., and Elvidge, C.D. (eds.) Remote Sensing Change Detection: Environmental Monitoring Methods and Applications. Ann Arbor Press, pp 123-135. Elvidge, C.D., C. Aubrecht, K. Baugh, B. Tuttle, and A.T. Howard (2007) Satellite detection of power outages following earthquakes and other events. 3rd International Geohazards Workshop. GEO & IGOS Geohazards. Proceedings. ESA/ESRIN, Frascati (Rome), Italy, November 6-9, 2007. Kerle, N., R. Stekelenburg, F. van den Heuvel, and B.G.H. Gorte (2005) Near - real time post - disaster damage assessment with airborne oblique video data. In: van Oosterom, P.J.M., Zlatanova, S., and Elfriede, M. (eds.) Geo-information for disaster management Gi4DM : Proceedings of the 1st International Symposium on Geo-Information for Disaster Management. Berlin: Springer, pp 337-353. Zhang, Y., and N. Kerle (2008) Satellite remote sensing for near-real time data collection. In: Zlatanova, S., Li, J. (eds.) Geospatial information technology for emergency response. Berlin: Springer, pp 75-102.
Countercurrent distribution of biological cells
NASA Technical Reports Server (NTRS)
Brooks, D. E.
1982-01-01
Detailed physiochemical studies of dextran/poly(ethylene glycol) (PEG) two phase systems were carried out to characterize and provide understanding of the properties of the systems which determine cell partition and the electrophoretic behavior of phase drops responsible for electric field driven phase separation. A detailed study of the electrostatic and electrokinetic potentials developed in these systems was carried out. The salt partition was examined both in phase systems and with pure polymer solutions via equilibrium dialysis and mechanism of sulfate, chloride and phosphate partition shown to be exclusion by PEG rather than binding by dextran. Salt partition was shown to have a strong effect on the polymer compositions of the phases as well, an effect which produces large changes in the interfacial tension between them. These effects were characterized and the interfacial tension shown to obey a power law with respect to its dependence on the length of the tie line describing the system composition on a phase diagram. The electrostatic potential differences measured via salt bridges were shown to obey thermodynamic predictions. The electrophoretic mobilities measured were utilized to provide a partial test of Levine's incomplete theory of phase drop electrophoresis. The data were consistent with Levine's expression over a limited range of the variables tested.
NASA Astrophysics Data System (ADS)
Płaczek, M.; Wróbel, A.; Buchacz, A.
2016-08-01
Paper presents an analysis of the possibility of application of piezoelectric foils - Macro Fiber Composite (MFC) in modernized freight wagons. It was verified if they can be successfully applied as sensors in developed system for structural health monitoring and in energy harvesting system. It is a part of a research project that aim is to develop a technology of freight wagons modernization. The goal of the project is to elongate the period between periodic repairs (by better corrosion protection) and improve conditions of exploitation of modernized wagons (easier unloading during winter conditions - no freezes of the charge to the freight wagon body shell). The additional aim is to develop system for structural health monitoring of the modernized body of the freight wagon as well as the system supporting management of a fleet of wagons using GPS system with power supply based on the energy recovered by MFC's from the wagon's vibrations during its exploitation. Results of laboratory tests as well as results of measurements on the real freight wagon during observed driving of the wagon are presented. At the same time measurements of the electric voltage generated by the MFC transducers excited by low frequencies harmonic excitation were verified.
NASA Astrophysics Data System (ADS)
Pu, Songyang; Wu, Ying-Hai; Jain, J. K.
2017-11-01
We achieve an explicit construction of the lowest Landau level (LLL) projected wave functions for composite fermions in the periodic (torus) geometry. To this end, we first demonstrate how the vortex attachment of the composite fermion (CF) theory can be accomplished in the torus geometry to produce the "unprojected" wave functions satisfying the correct (quasi)periodic boundary conditions. We then consider two methods for projecting these wave functions into the LLL. The direct projection produces valid wave functions but can be implemented only for very small systems. The more powerful and more useful projection method of Jain and Kamilla fails in the torus geometry because it does not preserve the periodic boundary conditions and thus takes us out of the original Hilbert space. We have succeeded in constructing a modified projection method that is consistent with both the periodic boundary conditions and the general structure of the CF theory. This method is valid for a large class of states of composite fermions, called "proper states," which includes the incompressible ground states at electron filling factors ν =n/2 p n +1 , their charged and neutral excitations, and also the quasidegenerate ground states at arbitrary filling factors of the form ν =ν/*2pν*+1 , where n and p are integers and ν* is the CF filling factor. Comparison with exact results known for small systems for the ground and excited states at filling factors ν =1 /3 , 2/5, and 3/7 demonstrates our LLL-projected wave functions to be extremely accurate representations of the actual Coulomb eigenstates. Our construction enables the study of large systems of composite fermions on the torus, thereby opening the possibility of investigating numerous interesting questions and phenomena.
Conduction mechanism in bismuth silicate glasses containing titanium
NASA Astrophysics Data System (ADS)
Dult, Meenakshi; Kundu, R. S.; Murugavel, S.; Punia, R.; Kishore, N.
2014-11-01
Bismuth silicate glasses mixed with different concentrations of titanium dioxide having compositions xTiO2-(60-x)Bi2O3-40SiO2 with x=0, 5, 10, 15 and 20 were prepared by the normal melt quench technique. The frequency dependence of the ac electrical conductivity of different compositions of titanium bismuth silicate glasses has been studied in the frequency range 10-1 Hz to 10 MHz and in the temperature range 623-703 K. The temperature and frequency dependent conductivity is found to obey Jonscher's universal power law for all the compositions of titanium bismuth silicate glass system. The dc conductivity (σdc), so called crossover frequency (ωH), and frequency exponent (s) have been estimated from the fitting of experimental data of ac conductivity with Jonscher's universal power law. Enthalpy to dissociate the cation from its original site next to a charge compensating center (Hf) and enthalpy of migration (Hm) have also been estimated. The conductivity data have been analyzed in terms of different theoretical models to determine the possible conduction mechanism. Analysis of the conductivity data and the frequency exponent shows that the correlated barrier hopping of electrons between Ti3+ and Ti4+ ions in the glasses is the most favorable mechanism for ac conduction. The temperature dependent dc conductivity has been analyzed in the framework of theoretical variable range hopping model (VRH) proposed by Mott which describe the hopping conduction in disordered semiconducting systems. The various polaron hopping parameters have also been deduced. Mott's VRH model is found to be in good agreement with experimental data and the values of inverse localization length of s-like wave function (α) obtained by this model with modifications suggested by Punia et al. are close to the ones reported for a number of oxide glasses.
NASA Technical Reports Server (NTRS)
2012-01-01
Topics covered include: Mars Science Laboratory Drill; Ultra-Compact Motor Controller; A Reversible Thermally Driven Pump for Use in a Sub-Kelvin Magnetic Refrigerator; Shape Memory Composite Hybrid Hinge; Binding Causes of Printed Wiring Assemblies with Card-Loks; Coring Sample Acquisition Tool; Joining and Assembly of Bulk Metallic Glass Composites Through Capacitive Discharge; 670-GHz Schottky Diode-Based Subharmonic Mixer with CPW Circuits and 70-GHz IF; Self-Nulling Lock-in Detection Electronics for Capacitance Probe Electrometer; Discontinuous Mode Power Supply; Optimal Dynamic Sub-Threshold Technique for Extreme Low Power Consumption for VLSI; Hardware for Accelerating N-Modular Redundant Systems for High-Reliability Computing; Blocking Filters with Enhanced Throughput for X-Ray Microcalorimetry; High-Thermal-Conductivity Fabrics; Imidazolium-Based Polymeric Materials as Alkaline Anion-Exchange Fuel Cell Membranes; Electrospun Nanofiber Coating of Fiber Materials: A Composite Toughening Approach; Experimental Modeling of Sterilization Effects for Atmospheric Entry Heating on Microorganisms; Saliva Preservative for Diagnostic Purposes; Hands-Free Transcranial Color Doppler Probe; Aerosol and Surface Parameter Retrievals for a Multi-Angle, Multiband Spectrometer LogScope; TraceContract; AIRS Maps from Space Processing Software; POSTMAN: Point of Sail Tacking for Maritime Autonomous Navigation; Space Operations Learning Center; OVERSMART Reporting Tool for Flow Computations Over Large Grid Systems; Large Eddy Simulation (LES) of Particle-Laden Temporal Mixing Layers; Projection of Stabilized Aerial Imagery Onto Digital Elevation Maps for Geo-Rectified and Jitter-Free Viewing; Iterative Transform Phase Diversity: An Image-Based Object and Wavefront Recovery; 3D Drop Size Distribution Extrapolation Algorithm Using a Single Disdrometer; Social Networking Adapted for Distributed Scientific Collaboration; General Methodology for Designing Spacecraft Trajectories; Hemispherical Field-of-View Above-Water Surface Imager for Submarines; and Quantum-Well Infrared Photodetector (QWIP) Focal Plane Assembly.
Optimization of biogas production using MEMS based near infrared inline-sensor
NASA Astrophysics Data System (ADS)
Saupe, Ray; Seider, Thomas; Stock, Volker; Kujawski, Olaf; Otto, Thomas; Gessner, Thomas
2013-03-01
Due to climate protection and increasing oil prices, renewable energy is becoming extremely important. Anaerobic digestion is a particular environmental and resource-saving way of heat and power production in biogas plants. These plants can be operated decentralized and independent of weather conditions and allow peak load operation. To maximize energy production, plants should be operated at a high efficiency. That means the entire installed power production capacity (e.g. CHP) and biogas production have to be used. However, current plant utilization in many areas is significantly lower, which is economically and environmentally inefficient, since the biochemical process responds to fluctuations in boundary conditions, e.g. mixing in the conditions and substrate composition. At present only a few easily accessible parameters such as fill level, flow rates and temperature are determined on-line. Monitoring of substrate composition occurs only sporadically with the help of laboratory methods. Direct acquisition of substrate composition combined with a smart control and regulation concept enables significant improvement in plant efficiency. This requires a compact, reliable and cost-efficient sensor. It is for this reason that a MEMS sensor system based on NIR spectroscopy has been developed. Requirements are high accuracy, which is the basic condition for exact chemometric evaluation of the sample as well as optimized MEMS design and packaging in order to work in poor environmental conditions. Another issue is sample presentation, which needs an exact adopted optical-mechanical system. In this paper, the development and application of a MEMS-based analyzer for biogas plants will be explained. The above mentioned problems and challenges will be discussed. Measurement results will be shown to demonstrate its performance.
A composite phase diagram of structure H hydrates using Schreinemakers' geometric approach
Mehta, A.P.; Makogon, T.Y.; Burruss, R.C.; Wendlandt, R.F.; Sloan, E.D.
1996-01-01
A composite phase diagram is presented for Structure H (sH) clathrate hydrates. In this work, we derived the reactions occurring among the various phases along each four-phase (Ice/Liquid water, liquid hydrocarbon, vapor, and hydrate) equilibrium line. A powerful method (though seldom used in chemical engineering) for multicomponent equilibria developed by Schreinemakers is applied to determine the relative location of all quadruple (four-phase) lines emanating from three quintuple (five-phase) points. Experimental evidence validating the approximate phase diagram is also provided. The use of Schreinemakers' rules for the development of the phase diagram is novel for hydrates, but these rules may be extended to resolve the phase space of other more complex systems commonly encountered in chemical engineering.
NASA Technical Reports Server (NTRS)
Lanzerotti, L. J.; Gold, R. E.; Anderson, K. A.; Armstrong, T. P.; Lin, R. P.; Krimigis, S. M.; Pick, M.; Roelof, E. C.; Sarris, E. T.; Simnett, G. M.
1983-01-01
The Heliosphere Instrument for Spectral, Composition, and Anisotropy at Low Energies (HI-SCALE) designed to measure interplanetary ions and electrons is described. Ions and electrons are detected by five separate solid-state detector telescopes oriented to give complete pitch angle coverage from the spinning spacecraft. Ion elemental abundances are determined by a telescope using a thin front detector element in a three-element telescope. Experiment operation is controlled by a microprocessor-based data system. Inflight calibration is provided by radioactive sources mounted on closable telescope covers. Ion and electron spectral information is determined using broad-energy-range rate channels, and a pulse-height analyzer for more detailed spectra. The instrument weighs 5.775 kg and uses 4.0 W power.
A Robust Damage-Reporting Strategy for Polymeric Materials Enabled by Aggregation-Induced Emission.
Robb, Maxwell J; Li, Wenle; Gergely, Ryan C R; Matthews, Christopher C; White, Scott R; Sottos, Nancy R; Moore, Jeffrey S
2016-09-28
Microscopic damage inevitably leads to failure in polymers and composite materials, but it is difficult to detect without the aid of specialized equipment. The ability to enhance the detection of small-scale damage prior to catastrophic material failure is important for improving the safety and reliability of critical engineering components, while simultaneously reducing life cycle costs associated with regular maintenance and inspection. Here, we demonstrate a simple, robust, and sensitive fluorescence-based approach for autonomous detection of damage in polymeric materials and composites enabled by aggregation-induced emission (AIE). This simple, yet powerful system relies on a single active component, and the general mechanism delivers outstanding performance in a wide variety of materials with diverse chemical and mechanical properties.
NASA Astrophysics Data System (ADS)
Karpiński, Marcin; Kmiecik, Ewa
2017-11-01
In Poland, electricity is still produced mainly in conventional power plants where fuel and water are materials necessary to generate the electricity. Even in modern power plants operating according to the principles of the sustainable development, this involves a high intake of water and considerable production of wastewater. This, in turn, necessi-tates the application of some technological solutions aimed at limiting the negative impact on the environment. The Jaworzno III Power Plant - Power Plant II is located in Jaworzno, Silesian Province, Poland. In order to minimise the negative impact on the surface water, the plant replenishes the cooling circuit with the mining water obtained from the closed-down Jan Kanty mine. The paper presents a stability assessment of the chemical composition of the treated mining water used to replenish the cooling circuit based on the data from 2007-2017.
Szöllősi, Attila; Hoschke, Ágoston; Rezessy-Szabó, Judit M; Bujna, Erika; Kun, Szilárd; Nguyen, Quang D
2017-05-01
A new bio-anode containing gel-entrapped bacteria in alginate/polyaniline/TiO 2 /graphite composites was constructed and electrically investigated. Alginate as dopant and template as well as entrapped gel was used for immobilization of microorganism cells. Increase of polyaniline concentration resulted an increase in the conductivity in gels. Addition of 0.01 and 0.02 g/mL polyaniline caused 6-fold and 10-fold higher conductivity, respectively. Furthermore, addition of 0.05 g/mL graphite powder caused 10-fold higher conductivity and 4-fold higher power density, respectively. The combination of polyaniline and graphite resulted 105-fold higher conductivity and 7-fold higher power-density output. Optimized concentrations of polyaniline and graphite powder were determined to be 0.02 g/mL and 0.05 g/mL, respectively. Modified hydrogel anode was successfully used in microbial fuel cell systems both in semi- and continuous operations modes. In semi-continuous mode, about 7.88 W/m 3 power density was obtained after 13 h of fermentation. The glucose consumption rate was calculated to be about 7 mg glucose/h/1.2·10 7 CFU immobilized cells. Similar power density was observed in the continuous operation mode of the microbial fuel cell, and it was operated stably for more than 7 days. Our results are very promising for development of an improved microbial fuel cell with new type of bio-anode that have higher power density and can operate for long term. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Yuan; Jin, Xiao-Jun; Dionysiou, Dionysios D.; Liu, Hong; Huang, Yu-Ming
2015-03-01
This work proposed a novel strategy for synthesizing highly efficient non-precious metal oxygen reduction reaction (ORR) electrocatalysts. Fe complexes were homogeneously deposited (HD) on graphene oxide through in situ hydrolysis of urea, followed by two-step pyrolysis under Ar and NH3 atmospheres, resulting in formation of Fe- and N-functionalized graphene (HD-FeN/G). The morphology, crystalline structure and elemental composition of HD-FeN/G were characterized. ORR activity was evaluated by using a rotary disk electrode (RDE) electrochemical system. HD improved the loading and distribution of the Fe-Nx composites on graphene. The ORR activity of the as-prepared HD-FeN/G in neutral medium was comparable to that of the state-of-the-art commercial Pt/C and significantly superior to a FeN/G counterpart produced via traditional approach. The ORR electron transfer number of HD-FeN/G was as high as 3.83 ± 0.08, which suggested that ORR catalysis proceeds through a four-electron pathway. HD-FeN/G was used as a cathodic electrocatalyst in microbial fuel cells (MFCs), and the resultant HD-FeN/G-MFC showed comparable voltage output and maximum power density to those of Pt/C-MFC. The HD-FeN/G-MFC achieved a maximum power density of 885 mW m-2, which was much higher than that of FeN/G-MFC (708 mW m-2). These findings demonstrate that HD-FeN/G produced through the novel synthesis strategy proposed in this work would be a good candidate as cathodic electrocatalyst in MFCs.
Composite coatings improve engines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Funatani, K.; Kurosawa, K.
1994-12-01
About 40% of the power loss in engine systems is attributed to the adverse effects of friction in reciprocating engine components. Over half of this power loss is caused by friction between pistons, piston rings, and cylinder bores. In addition, engine parts may be attacked by corrosive gasoline substitutes such as liquid propane gas and alcohol/gasoline mixtures. To solve both friction and corrosion problems, Nihon Parkerizing Co. has improved the nickel-phosphorus based ceramic composite (NCC) plating technology that was developed for cylinder bores and pistons by Suzuki Motor Co. in the mid 1970s. Iron and nickel-based composite plating technologies havemore » been investigated since the early 1970s, and a few have been used on small two-stroke motorcycle, outboard marine, snowmobile, and some luxury passenger car engine components. Both nickel- and iron-base plating processes are used on cylinders and pistons because they offer excellent wear and corrosion resistance. Nickel-base films have higher corrosion resistance than those based on iron, and are capable of withstanding the corrosive conditions characteristic of high methanol fuels. Unfortunately, they experience a decrease in hardness as operating temperatures increase. However, NCC coatings with phosphorus additions have high hardness even under severe operating conditions, and hardness increases upon exposure to elevated temperatures. In addition to high hardness and corrosion resistance, NCC coatings provide a low friction coefficient, which contributes to the reduction of friction losses between sliding components. When used in low-quality or alcohol fuels, the corrosion resistance of NCC coatings is far higher than that of Fe-P plating. Additionally, the coatings reduce wall and piston temperature, wear of ring groove and skirt, and carbon deposit formation, and they improve output power and torque. These advantages all contribute to the development of light and efficient engines with better fuel mileage.« less
NASA Technical Reports Server (NTRS)
1991-01-01
The solar power satellite (SPS) will provide a clean, reliable source of energy for large-scale consumption. The system will use satellites in geostationary orbits around the Earth to capture the Sun's energy. The intercepted sunlight will be converted to laser beam energy that can be transmitted to the Earth's surface. Ground systems on the Earth will convert the transmissions from space into electric power. The preliminary design for the SPS consists of one satellite in orbit around the Earth transmitting energy to a single ground station. The SPS design uses multilayer solar cell technology arranged on a 20 km squared planar array to intercept sunlight and convert it to an electric voltage. Power conditioning devices then send the electricity to a laser, which transmits the power to the surface of the Earth. A ground station will convert the beam into electricity. Typically, a single SPS will supply 5 GW of power to the ground station. Due to the large mass of the SPS, about 41 million kg, construction in space is needed in order to keep the structural mass low. The orbit configuration for this design is to operate a single satellite in geosynchronous orbit (GEO). The GEO allows the system to be positioned above a single receiving station and remain in sunlight 99 percent of the time. Construction will take place in low Earth orbit (LEO); array sections, 20 in total, will be sailed on solar wind out to the GEO location in 150 days. These individual transportation sections are referred to as solar sailing array panels (SSAP's). The primary truss elements used to support the array are composed of composite tubular members in a pentahedral arrangement. Smart segments consisting of passive and active damping devices will increase the control of dynamic SPS modes.
Novel composite piezoelectric material for energy harvesting applications
NASA Astrophysics Data System (ADS)
Janusas, Giedrius; Guobiene, Asta; Palevicius, Arvydas; Prosycevas, Igoris; Ponelyte, Sigita; Baltrusaitis, Valentinas; Sakalys, Rokas
2015-04-01
Past few decades were concentrated on researches related to effective energy harvesting applied in modern technologies, MEMS or MOEMS systems. There are many methods for harvesting energy as, for example, usage of electromagnetic devices, but most dramatic changes were noticed in the usage of piezoelectric materials in small scale devices. Major limitation faced was too small generated power by piezoelectric materials or high resonant frequencies of such smallscale harvesters. In this research, novel composite piezoelectric material was created by mixing PZT powder with 20% solution of polyvinyl butyral in benzyl alcohol. Obtained paste was screen printed on copper foil using 325 mesh stainless steel screen and dried for 30 min at 100 °C. Polyvinyl butyral ensures good adhesion and flexibility of a new material at the conditions that requires strong binding. Five types of a composite piezoelectric material with different concentrations of PZT (40%, 50%, 60%, 70% and 80 %) were produced. As the results showed, these harvesters were able to transform mechanical strain energy into electric potential and, v.v. In experimental setup, electromagnetic shaker was used to excite energy harvester that is fixed in the custom-built clamp, while generated electric potential were registered with USB oscilloscope PICO 3424. The designed devices generate up to 80 μV at 50 Hz excitation. This property can be applied to power microsystem devices or to use them in portable electronics and wireless sensors. However, the main advantage of the created composite piezoelectric material is possibility to apply it on any uniform or nonuniform vibrating surface and to transform low frequency vibrations into electricity.
Suuronen, Anna; Muñoz-Escobar, Christian; Lensu, Anssi; Kuitunen, Markku; Guajardo Celis, Natalia; Espinoza Astudillo, Pablo; Ferrú, Marcos; Taucare-Ríos, Andrés; Miranda, Marcelo; Kukkonen, Jussi V K
2017-10-01
The renewable energy sector is growing at a rapid pace in northern Chile and the solar energy potential is one of the best worldwide. Therefore, many types of solar power plant facilities are being built to take advantage of this renewable energy resource. Solar energy is considered a clean source of energy, but there are potential environmental effects of solar technology, such as landscape fragmentation, extinction of local biota, microclimate changes, among others. To be able to minimize environmental impacts of solar power plants, it is important to know what kind of environmental conditions solar power plants create. This study provides information about abiotic and biotic conditions in the vicinity of photovoltaic solar power plants. Herein, the influence of these power plants as drivers of new microclimate conditions and arthropods diversity composition in the Atacama Desert was evaluated. Microclimatic conditions between panel mounts was found to be more extreme than in the surrounding desert yet beneath the panels temperature is lower and relative humidity higher than outside the panel area. Arthropod species composition was altered in fixed-mount panel installations. In contrast, solar tracking technology showed less influence on microclimate and species composition between Sun and Shade in the power plant. Shady conditions provided a refuge for arthropod species in both installation types. For example, Dipterans were more abundant in the shade whereas Solifugaes were seldom present in the shade. The presented findings have relevance for the sustainable planning and construction of solar power plants.
NASA Astrophysics Data System (ADS)
Suuronen, Anna; Muñoz-Escobar, Christian; Lensu, Anssi; Kuitunen, Markku; Guajardo Celis, Natalia; Espinoza Astudillo, Pablo; Ferrú, Marcos; Taucare-Ríos, Andrés; Miranda, Marcelo; Kukkonen, Jussi V. K.
2017-10-01
The renewable energy sector is growing at a rapid pace in northern Chile and the solar energy potential is one of the best worldwide. Therefore, many types of solar power plant facilities are being built to take advantage of this renewable energy resource. Solar energy is considered a clean source of energy, but there are potential environmental effects of solar technology, such as landscape fragmentation, extinction of local biota, microclimate changes, among others. To be able to minimize environmental impacts of solar power plants, it is important to know what kind of environmental conditions solar power plants create. This study provides information about abiotic and biotic conditions in the vicinity of photovoltaic solar power plants. Herein, the influence of these power plants as drivers of new microclimate conditions and arthropods diversity composition in the Atacama Desert was evaluated. Microclimatic conditions between panel mounts was found to be more extreme than in the surrounding desert yet beneath the panels temperature is lower and relative humidity higher than outside the panel area. Arthropod species composition was altered in fixed-mount panel installations. In contrast, solar tracking technology showed less influence on microclimate and species composition between Sun and Shade in the power plant. Shady conditions provided a refuge for arthropod species in both installation types. For example, Dipterans were more abundant in the shade whereas Solifugaes were seldom present in the shade. The presented findings have relevance for the sustainable planning and construction of solar power plants.
Oto, Tatsuki; Yasuda, Genta; Tsubota, Keishi; Kurokawa, Hiroyasu; Miyazaki, Masashi; Platt, Jeffrey A
2009-01-01
This study examined the influence of power density on dentin bond strength and polymerization behavior of dual-cured direct core foundation resin systems. Two commercially available dual-cured direct core foundation resin systems, Clearfil DC Core Automix with Clearfil DC Bond and UniFil Core with Self-Etching Bond, were studied. Bovine mandibular incisors were mounted in autopolymerizing resin and the facial dentin surfaces were ground wet on 600-grit SiC paper. Dentin surfaces were treated according to manufacturer's recommendations. The resin pastes were condensed into the mold and cured with the power densities of 0 (no irradiation), 100, 200, 400 and 600 mW/cm2. Ten specimens per group were stored in 37 degrees C water for 24 hours, then shear tested at a crosshead speed of 1.0 mm/minute in a universal testing machine. An ultrasonic measurement device was used to measure the ultrasonic velocities through the core foundation resins. The power densities selected were 0 (no irradiation), 200, and 600 mW/cm2, and ultrasonic velocity was calculated. ANOVA and Tukey HSD tests were performed at a level of 0.05. The highest bond strengths were obtained when the resin pastes were cured with the highest power density for both core foundation systems (16.8 +/- 1.9 MPa for Clearfil DC Core Automix, 15.6 +/- 2.9 MPa for UniFil Core). When polymerized with the power densities under 200 mW/cm2, significantly lower bond strengths were observed compared to those obtained with the power density of 600 mW/cm2. As the core foundation resins hardened, the sonic velocities increased and this tendency differed among the power density of the curing unit. When the sonic velocities at three minutes after the start of measurements were compared, there were no significant differences among different irradiation modes for UniFil Core, while a significant decrease in sonic velocity was obtained when the resin paste was chemically polymerized compared with dual-polymerization for Clearfil DC Core Automix. The data suggests that the dentin bond strengths and polymerization behavior of the dual-cured, direct core foundation systems are still affected by the power density of the curing unit. With a careful choice of the core foundation systems and power density of the curing unit, the benefit of using resin composites to endodontically-treated teeth might be acceptable.
NASA Astrophysics Data System (ADS)
Lv, Zijian; Zhong, Qin; Bu, Yunfei
2018-05-01
Owing to the metalloid characteristic and superior electrical conductivity, the metal phosphides have received increasing interests in energy storage systems. Here, xrGO/Ni2P composites are successfully synthesized via an In-situ phosphorization process with GO/Ni-MOF as precursors. Compared to pure Ni2P, the xrGO/Ni2P composites appear enhanced electrochemical properties in terms of the specific capacitance and cycling performance as electrodes for supercapacitors. Especially, the 2rGO/Ni2P electrode shows a highest specific capacitance of 890 F g-1 at 1 A g-1 among the obtained composites. The enhancement can be attributed to the inherited structure from Ni-MOF and the well assembled of rGO and Ni2P through the In-situ conversion process. Moreover, when applied as positive electrode in a hybrid supercapacitor, an energy density of 35.9 W h kg-1 at a power density of 752 W kg-1 has been achieved. This work provides an In-situ conversion strategy for the synthesis of rGO/Ni2P composite which might be a promising electrode material for SCs.
NASA Astrophysics Data System (ADS)
Ramesh, S.; Govindaraju, N.; Suryanarayan, C. P.
2018-04-01
The study is the work on Aluminium Metal Matrix Composites (MMC’s), which have wider applications in automobile, aerospace and defense industries, hi-tech engineering and power transmission due to their lightweight, high strength and other unique properties. The Aluminium Matrix Composites (AMC’s) refer to a kind of light weight high performance Aluminium centric material system. AMC’s consist of a non-metallic reinforcement which when included into aluminium matrix offers an advantage over the base material. Reinforcements like SiC, B4C, Al2O3, TiC, TiB2, TiO2 are normally preferred to improve mechanical properties of such composites. Here Aluminium 6061 is preferred as matrix material, while silicon carbide (SiC) and Zirconium di-oxide (ZrO2) is selected as reinforcement compounds. Conventional Stir casting procedure is employed to fabricate the necessary composites compositions, which are I. Al:SiC::100:5 and II. Al:ZrO2:SiC::100:3:2. Experimental results depict that the composition II provides higher hardness of 53.6 RHN as opposed to 45.8 RHN of composition I. In tensile strength composition II demonstrates 96.43 N/mm2 as opposed to 67.229 N/mm2 tensile strength of composition II. The fatigue test indicate a expected number of life cycles to failure of 105 cycles for composition II and over 104 cycles for composition I, at stress ranges of 79.062 MPa and 150.651 MPa respectively.
Quasi one dimensional transport in individual electrospun composite nanofibers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avnon, A., E-mail: avnon@phys.fu-berlin.de; Datsyuk, V.; Trotsenko, S.
2014-01-15
We present results of transport measurements of individual suspended electrospun nanofibers Poly(methyl methacrylate)-multiwalled carbon nanotubes. The nanofiber is comprised of highly aligned consecutive multiwalled carbon nanotubes. We have confirmed that at the range temperature from room temperature down to ∼60 K, the conductance behaves as power-law of temperature with an exponent of α ∼ 2.9−10.2. The current also behaves as power law of voltage with an exponent of β ∼ 2.3−8.6. The power-law behavior is a footprint for one dimensional transport. The possible models of this confined system are discussed. Using the model of Luttinger liquid states in series, wemore » calculated the exponent for tunneling into the bulk of a single multiwalled carbon nanotube α{sub bulk} ∼ 0.06 which agrees with theoretical predictions.« less
Characterization of lubrication oil emissions from aircraft engines.
Yu, Zhenhong; Liscinsky, David S; Winstead, Edward L; True, Bruce S; Timko, Michael T; Bhargava, Anuj; Herndon, Scott C; Miake-Lye, Richard C; Anderson, Bruce E
2010-12-15
In this first ever study, particulate matter (PM) emitted from the lubrication system overboard breather vent for two different models of aircraft engines has been systematically characterized. Lubrication oil was confirmed as the predominant component of the emitted particulate matter based upon the characteristic mass spectrum of the pure oil. Total particulate mass and size distributions of the emitted oil are also investigated by several high-sensitivity aerosol characterization instruments. The emission index (EI) of lubrication oil at engine idle is in the range of 2-12 mg kg(-1) and increases with engine power. The chemical composition of the oil droplets is essentially independent of engine thrust, suggesting that engine oil does not undergo thermally driven chemical transformations during the ∼4 h test window. Volumetric mean diameter is around 250-350 nm for all engine power conditions with a slight power dependence.
Creep of Hi-Nicalon S Fiber Tows at Elevated Temperature in Air and in Steam
2013-03-01
materials”[28]. Materials have always been a limiting factor in the advancements of technology. The ever increasing demand for aerospace vehicles that are...matrix composites are designed to have load-carrying capacity at high temperatures in extreme environments. Ceramic matrix composites are prime...engines, gas turbines for electrical power/steam cogeneration , as well as nuclear power plant components. It is recognized that the structural
Gschwind, Yves J; Kressig, Reto W; Lacroix, Andre; Muehlbauer, Thomas; Pfenninger, Barbara; Granacher, Urs
2013-10-09
With increasing age neuromuscular deficits (e.g., sarcopenia) may result in impaired physical performance and an increased risk for falls. Prominent intrinsic fall-risk factors are age-related decreases in balance and strength / power performance as well as cognitive decline. Additional studies are needed to develop specifically tailored exercise programs for older adults that can easily be implemented into clinical practice. Thus, the objective of the present trial is to assess the effects of a fall prevention program that was developed by an interdisciplinary expert panel on measures of balance, strength / power, body composition, cognition, psychosocial well-being, and falls self-efficacy in healthy older adults. Additionally, the time-related effects of detraining are tested. Healthy old people (n = 54) between the age of 65 to 80 years will participate in this trial. The testing protocol comprises tests for the assessment of static / dynamic steady-state balance (i.e., Sharpened Romberg Test, instrumented gait analysis), proactive balance (i.e., Functional Reach Test; Timed Up and Go Test), reactive balance (i.e., perturbation test during bipedal stance; Push and Release Test), strength (i.e., hand grip strength test; Chair Stand Test), and power (i.e., Stair Climb Power Test; countermovement jump). Further, body composition will be analysed using a bioelectrical impedance analysis system. In addition, questionnaires for the assessment of psychosocial (i.e., World Health Organisation Quality of Life Assessment-Bref), cognitive (i.e., Mini Mental State Examination), and fall risk determinants (i.e., Fall Efficacy Scale - International) will be included in the study protocol. Participants will be randomized into two intervention groups or the control / waiting group. After baseline measures, participants in the intervention groups will conduct a 12-week balance and strength / power exercise intervention 3 times per week, with each training session lasting 30 min. (actual training time). One intervention group will complete an extensive supervised training program, while the other intervention group will complete a short version ('3 times 3') that is home-based and controlled by weekly phone calls. Post-tests will be conducted right after the intervention period. Additionally, detraining effects will be measured 12 weeks after program cessation. The control group / waiting group will not participate in any specific intervention during the experimental period, but will receive the extensive supervised program after the experimental period. It is expected that particularly the supervised combination of balance and strength / power training will improve performance in variables of balance, strength / power, body composition, cognitive function, psychosocial well-being, and falls self-efficacy of older adults. In addition, information regarding fall risk assessment, dose-response-relations, detraining effects, and supervision of training will be provided. Further, training-induced health-relevant changes, such as improved performance in activities of daily living, cognitive function, and quality of life, as well as a reduced risk for falls may help to lower costs in the health care system. Finally, practitioners, therapists, and instructors will be provided with a scientifically evaluated feasible, safe, and easy-to-administer exercise program for fall prevention.
Chernysheva, Maria; Araimi, Mohammed Al; Rance, Graham A; Weston, Nicola J; Shi, Baogui; Saied, Sayah; Sullivan, John L; Marsh, Nicholas; Rozhin, Aleksey
2018-05-10
Composites of single-walled carbon nanotubes (SWNTs) and water-soluble polymers (WSP) are the focus of significant worldwide research due to a number of applications in biotechnology and photonics, particularly for ultrashort pulse generation. Despite the unique possibility of constructing non-linear optical SWNT-WSP composites with controlled optical properties, their thermal degradation threshold and limit of operational power remain unexplored. In this study, we discover the nature of the SWNT-polyvinyl alcohol (PVA) film thermal degradation and evaluate the modification of the composite properties under continuous high-power ultrashort pulse laser operation. Using high-precision optical microscopy and micro-Raman spectroscopy, we have examined SWNT-PVA films before and after continuous laser radiation exposure (up to 40 hours) with a maximum optical fluence of 2.3 mJ·cm -2 . We demonstrate that high-intensity laser radiation results in measurable changes in the composition and morphology of the SWNT-PVA film due to efficient heat transfer from SWNTs to the polymer matrix. The saturable absorber modification does not affect the laser operational performance. We anticipate our work to be a starting point for more sophisticated research aimed at the enhancement of SWNT-PVA films fabrication for their operation as reliable saturable absorbers in high-power ultrafast lasers.
NASA Astrophysics Data System (ADS)
Layes, Vincent; Monje, Sascha; Corbella, Carles; Schulz-von der Gathen, Volker; von Keudell, Achim; de los Arcos, Teresa
2017-05-01
In-vacuum characterization of magnetron targets after High Power Impulse Magnetron Sputtering (HiPIMS) has been performed by X-ray photoelectron spectroscopy (XPS). Al-Cr composite targets (circular, 50 mm diameter) mounted in two different geometries were investigated: an Al target with a small Cr disk embedded at the racetrack position and a Cr target with a small Al disk embedded at the racetrack position. The HiPIMS discharge and the target surface composition were characterized in parallel for low, intermediate, and high power conditions, thus covering both the Ar-dominated and the metal-dominated HiPIMS regimes. The HiPIMS plasma was investigated using optical emission spectroscopy and fast imaging using a CCD camera; the spatially resolved XPS surface characterization was performed after in-vacuum transfer of the magnetron target to the XPS chamber. This parallel evaluation showed that (i) target redeposition of sputtered species was markedly more effective for Cr atoms than for Al atoms; (ii) oxidation at the target racetrack was observed even though the discharge ran in pure Ar gas without O2 admixture, the oxidation depended on the discharge power and target composition; and (iii) a bright emission spot fixed on top of the inserted Cr disk appeared for high power conditions.
NASA Technical Reports Server (NTRS)
2004-01-01
Topics include: Embedded Heaters for Joining or Separating Plastic Parts; Curing Composite Materials Using Lower-Energy Electron Beams; Aluminum-Alloy-Matrix/Alumina-Reinforcement Composites; Fibrous-Ceramic/Aerogel Composite Insulating Tiles; Urethane/Silicone Adhesives for Bonding Flexing Metal Parts; Scalable Architecture for Multihop Wireless ad Hoc Networks; Improved Thermoplastic/Iron-Particle Transformer Cores; Cooperative Lander-Surface/Aerial Microflyer Missions for Mars Exploration Dual-Frequency Airborne Scanning Rain Radar Antenna System Eight-Channel Continuous Timer Reduction of Phase Ambiguity in an Offset-QPSK Receiver Ambient-Light-Canceling Camera Using Subtraction of Frames Lightweight, Flexible, Thin, Integrated Solar-Power Packs Windows(Registered Trademark)-Based Software Models Cyclic Oxidation Behavior Software for Analyzing Sequences of Flow-Related Images Improved Ball-and-Socket Docking Mechanism Two-Stage Solenoid Ordered Nanostructures Made Using Chaperonin Polypeptides Low-Temperature Plasma Functionalization of Carbon Nanotubes Improved Cryostat for Cooling a Wide Panel Current Pulses Momentarily Enhance Thermoelectric Cooling Hand-Held Color Meters Based on Interference Filters Calculating Mass Diffusion in High-Pressure Binary Fluids Fresnel Lenses for Wide-Aperture Optical Receivers Increasing Accuracy in Computed Inviscid Boundary Conditions Higher-Order Finite Elements for Computing Thermal Radiation Radar for Monitoring Hurricanes from Geostationary Orbit Time-Transfer System for Two Orbiting Spacecraft
33 CFR 90.3 - Pushing vessel and vessel being pushed: Composite unit.
Code of Federal Regulations, 2010 CFR
2010-07-01
... pushed: Composite unit. 90.3 Section 90.3 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... vessel being pushed: Composite unit. Rule 24(b) of the Inland Rules states that when a pushing vessel and a vessel being pushed ahead are rigidly connected in a composite unit, they are regarded as a power...