Science.gov

Sample records for composite resin cement

  1. Clinical Evaluation of Indirect Composite Resin Restorations Cemented with Different Resin Cements.

    PubMed

    Marcondes, Maurem; Souza, Niélli; Manfroi, Fernanda Borguetti; Burnett, Luiz Henrique; Spohr, Ana Maria

    2016-01-01

    To clinically evaluate the performance of indirect composite resin restorations cemented with conventional and self-adhesive resin cements over a 12-month period. Ten patients fulfilled all the inclusion criteria. Twenty-four composite resin restorations were performed using an indirect technique and cemented with a resin cement (RelyX ARC) or a self-adhesive resin cement (RelyX U100). Two independent evaluators analyzed the restorations using modified USPHS criteria after periods of two weeks and 6 and 12 months. Statistical significance between the cements at each timepoint was evaluated with the Wilcoxon test and between timepoints with the Mann-Whitney test, both at a significance level of 5%. Fisher's exact test was used to assess the occurrence of absolute failures. No statistically significant differences were found between the groups at the same timepoint nor between groups at different timepoints. The only significant difference was found for color match for both groups after 12 months. After 12 months, indirect composite resin restorations cemented with self-adhesive resin cement performed similarly to those cemented with conventional resin cement.

  2. Color difference of composite resins after cementation with different shades of resin luting cement.

    PubMed

    Cengiz, Esra; Kurtulmus-Yilmaz, Sevcan; Karakaya, Izgen; Aktore, Huseyin

    2017-07-26

    The purpose of this study was to evaluate the color difference of nanohybrid and ormocer-based composite resins with different thicknesses when 4 different shades of resin luting cement were used. 56 disc specimens of each composite resin (Aelite aesthetic enamel, Ceram-X mono) with 0.5 and 1 mm thicknesses were fabricated. Baseline color measurements were performed using a clinical spectrophotometer. The specimens of each thicknesses of each resin were randomly divided into 4 groups according to the shades of resin luting cement (white/A1, yellow/universal/A3, transparent and white opaque) (n = 7). Mixed resin cement was applied onto the resin specimens using a Teflon mold in 0.1 mm thickness. Color measurements of cemented composite resin specimens were repeated and color difference (∆E) between baseline and after cementation measurements was calculated. ANOVA and Tukey's test were used for statistical analysis. The opaque shade had significantly increased ∆E values as compared to the other shades (p < 0.05). For all shades except white opaque in both thicknesses, ∆E values of aelite aesthetic enamel were higher as compared to Ceram-X mono. There is no significant difference between 2 thicknesses for both resins in terms of ∆E values. The shade of resin cement and the type of the resin affected the final color; however, the thickness of composite resin had no influence on the final color of restoration. Selecting the shade of resin luting cement before cementation of indirect composite laminate restoration is important to achieve final color match.

  3. Micro-tensile bond testing of resin cements to dentin and an indirect resin composite.

    PubMed

    Mak, Yiu-Fai; Lai, Shirley C N; Cheung, Gary S P; Chan, Alex W K; Tay, Franklin R; Pashley, David H

    2002-12-01

    Micro-tensile bond strength (microTBS) evaluation and fractographic analysis were used to compare four resin cement systems (AC: All-Bond 2/Choice; RX: Single Bond/RelyX ARC; SB: Super-Bond C & B; and PF: Panavia F) in indirect composite/dentin adhesive joints. Flat dentin surfaces were created on extracted human third molars. The resin cements were used according to the manufacturers' instructions for bonding silanized composite overlays to deep coronal dentin. 0.9x0.9 composite-dentin beams prepared from the luted specimens were stressed to failure in tension. Dentin sides of all fractured specimens were examined by scanning electron microscopy (SEM) to examine the failure modes. In group PF, morphologic features that could not be resolved at the SEM level were further validated by transmission electron microscopy (TEM) examination of the SEM specimens. Statistical analyses revealed significant difference (p<0.05) among microTBS and failure modes in the resin cement groups. The two groups (AC and RX) with highest microTBS failed predominantly along the composite overlay/cement interface. Cohesive failure in resin cement was primarily observed in group SB that exhibited intermediate microTBS values. In group PF with the lowest microTBS, failure occurred mostly along the dentin surface. Globular resin agglomerates seen by SEM on PF-treated dentin were distinguished from silica fillers by TEM. The bond between the processed composite and the luting resin cement was the weak link in indirect composite restorations cemented with AC or RX. Super-Bond C&B exhibited intermediate tensile strength and Panavia F is less reliable when used in conjunction with a self-etching primer for bonding indirect restorations to dentin.

  4. Do resin cements influence the cuspal deflection of teeth restored with composite resin inlays?

    PubMed

    da Rosa, Helen C V; Marcondes, Maurem L; de Souza, Niélli C; Weber, João B B; Spohr, Ana M

    2015-04-01

    The aim of this study was to evaluate the influence of different resin cements on the cuspal deflection of endodontically treated teeth restored with composite resin inlays. Sixty upper premolars were randomly divided into five groups (n=12): 1 - sound teeth; 2 - cavity; 3 - Rely X ARC; 4 - RelyX Unicem; 5 - SeT. The teeth from groups 2, 3, 4 and 5 received a MOD preparation and endodontic treatment. Impressions were made with vinyl polysiloxane and poured using type IV die stone in groups 3, 4 and 5. Inlays with composite resin were built over each cast and luted with the resin cements. A 200 N load was applied on the occlusal surface, and cuspal deflection was measured using a micrometer. After 24 h, cuspal deflection was measured again using a 300 N load. The Student t-test showed that there was no statistically significant difference between the 200 N and 300 N occlusal loads only for the sound teeth group (p = 0.389) and the RelyX ARC group (p = 0.188). ANOVA and Tukey'test showed that the sound teeth had the lowest mean cuspal deflection, differing statistically from the other groups (p<0.05). The highest cuspal deflections were obtained in the SeT group and the cavity group, with no statistical difference between them. Intermediate values were obtained in RelyX ARC group and RelyX Unicem group, which differed statistically. The self-adhesive resin cements RelyX Unicem and SeT showed less capacity to maintain the stiffness of the tooth/restoration complex than the conventional resin cement RelyX ARC.

  5. Bond strength of self-adhesive resin cements to composite submitted to different surface pretreatments

    PubMed Central

    dos Santos, Victor Hugo; Griza, Sandro; de Moraes, Rafael Ratto

    2014-01-01

    Objectives Extensively destroyed teeth are commonly restored with composite resin before cavity preparation for indirect restorations. The longevity of the restoration can be related to the proper bonding of the resin cement to the composite. This study aimed to evaluate the microshear bond strength of two self-adhesive resin cements to composite resin. Materials and Methods Composite discs were subject to one of six different surface pretreatments: none (control), 35% phosphoric acid etching for 30 seconds (PA), application of silane (silane), PA + silane, PA + adhesive, or PA + silane + adhesive (n = 6). A silicone mold containing a cylindrical orifice (1 mm2 diameter) was placed over the composite resin. RelyX Unicem (3M ESPE) or BisCem (Bisco Inc.) self-adhesive resin cement was inserted into the orifices and light-cured. Self-adhesive cement cylinders were submitted to shear loading. Data were analyzed by two-way ANOVA and Tukey's test (p < 0.05). Results Independent of the cement used, the PA + Silane + Adhesive group showed higher microshear bond strength than those of the PA and PA + Silane groups. There was no difference among the other treatments. Unicem presented higher bond strength than BisCem for all experimental conditions. Conclusions Pretreatments of the composite resin surface might have an effect on the bond strength of self-adhesive resin cements to this substrate. PMID:24516824

  6. Bond strength of self-adhesive resin cements to composite submitted to different surface pretreatments.

    PubMed

    Dos Santos, Victor Hugo; Griza, Sandro; de Moraes, Rafael Ratto; Faria-E-Silva, André Luis

    2014-02-01

    Extensively destroyed teeth are commonly restored with composite resin before cavity preparation for indirect restorations. The longevity of the restoration can be related to the proper bonding of the resin cement to the composite. This study aimed to evaluate the microshear bond strength of two self-adhesive resin cements to composite resin. COMPOSITE DISCS WERE SUBJECT TO ONE OF SIX DIFFERENT SURFACE PRETREATMENTS: none (control), 35% phosphoric acid etching for 30 seconds (PA), application of silane (silane), PA + silane, PA + adhesive, or PA + silane + adhesive (n = 6). A silicone mold containing a cylindrical orifice (1 mm(2) diameter) was placed over the composite resin. RelyX Unicem (3M ESPE) or BisCem (Bisco Inc.) self-adhesive resin cement was inserted into the orifices and light-cured. Self-adhesive cement cylinders were submitted to shear loading. Data were analyzed by two-way ANOVA and Tukey's test (p < 0.05). Independent of the cement used, the PA + Silane + Adhesive group showed higher microshear bond strength than those of the PA and PA + Silane groups. There was no difference among the other treatments. Unicem presented higher bond strength than BisCem for all experimental conditions. Pretreatments of the composite resin surface might have an effect on the bond strength of self-adhesive resin cements to this substrate.

  7. Comparison of the Solubility of Conventional Luting Cements with that of the Polyacid Modified Composite Luting Cement and Resin-modified Glass lonomer Cement.

    PubMed

    Karkera, Reshma; Raj, A P Nirmal; Isaac, Lijo; Mustafa, Mohammed; Reddy, R Naveen; Thomas, Mathew

    2016-12-01

    This study was planned to find the solubility of the conventional luting cements in comparison with that of the polyacid-modified composite luting cement and recently introduced resin-modified glass ionomer cement (RMGIC) with exposure to water at early stages of mixing. An in vitro study of the solubility of the following five commercially available luting cements, viz., glass ionomer cement (GIC) (Fuji I, GC), zinc phosphate (Elite 100, GC), polyacid-modified resin cement (PMCR) (Principle, Dentsply), polycarboxylate cement (PC) (Poly - F, Dentsply), RMGIC (Vitremer, 3M), was conducted. For each of these groups of cements, three resin holders were prepared containing two circular cavities of 5 mm diameter and 2 mm depth. All the cements to be studied were mixed in 30 seconds and then placed in the prepared cavities in the resin cement holder for 30 seconds. From all of the observed luting cements, PMCR cement had shown the lowest mean loss of substance at all immersion times and RMGIC showed the highest mean loss of substanceat all immersion times in water from 2 to 8 minutes. The solubility of cements decreased by 38% for GIC, 33% for ZnPO4, 50% for PMCR, 29% for PC, and 17% for RMGIC. The PMCR cement (Principle-Dentsply) had shown lowest solubility to water at the given time intervals of immersion. This was followed by PC, zinc phosphate, and GIC to various time intervals of immersion.

  8. Bond strength of self-adhesive resin cements to different treated indirect composites.

    PubMed

    Fuentes, M Victoria; Ceballos, Laura; González-López, Santiago

    2013-04-01

    The objective of this study was to determine microtensile bond strength (μTBS) to dentin of three self-adhesive and a total-etch resin cements used for luting different treated indirect composites. Composite overlays (Filtek Z250) were prepared. Their intaglio surfaces were ground with 600-grit SiC papers and randomly assigned to three different surface treatments: no treatment, silane application (RelyX Ceramic Primer), and silane agent followed by a bonding agent (Adper Scotchbond 1 XT). The composite overlays were luted to flat dentin surfaces of extracted human third molars using the following self-adhesive resin cements: RelyX Unicem, Maxcem Elite and G-Cem, and a total-etch resin cement, RelyX ARC. The bonded assemblies were stored in water (24 h, 37 °C) and subsequently prepared for μTBS testing. Beams of approximately 1 mm(2) were tested in tension at 1 mm/min in a universal tester (Instron 3345). Data were analyzed by two-way ANOVA and Student-Newman-Keuls tests (α = 0.05). A significant influence of the resin cement used was detected. Composite surface treatment and the interaction between the resin cement applied and surface treatment did not affect μTBS. Surface treatment of indirect resin composite did not improve the μTBS results of dentin/composite overlay complex. Self-adhesive resin cements tested obtained lower μTBS than the total-etch resin cement RelyX ARC. Specimens luted with Maxcem Elite exhibited the highest percentage of pretesting failures. Surface treatment of indirect resin composite with silane or silane followed by a bonding agent did not affect bond strength to dentin.

  9. Resin cement to indirect composite resin bonding: effect of various surface treatments.

    PubMed

    Kirmali, Omer; Barutcugil, Cagatay; Harorli, Osman; Kapdan, Alper; Er, Kursat

    2015-01-01

    Debonding at the composite-adhesive interface is a major problem for indirect composite restorations. The aim of this study was to evaluate the bond strength (BS) of an indirect composite resin after various surface treatments (air-abrasion with Al2O3, phosphoric acid-etchig and different applications of NdYAG laser irradiations). Fifty composite disks were subjected to secondary curing to complete polymerization and randomly divided into five experimental groups (n = 10) including Group 1, untreated (control); Group 2, phosphoric acid-etched; Group 3, air-abrasion with Al2 O3 ; Group 4, Nd:YAG laser irradiated with non-contact and Group 5, Nd:YAG laser irradiated with contact. They were then bonded to resin cement and shear BS was determined in a universal testing device at a crosshead speed of 1 mm/min. One way analysis of variance (ANOVA) and Tukey post-hoc tests were used to analyze the BS values. The highest BS value was observed in Group 4 and followed by Group 3. Tukey test showed that there was no statistical difference between Group1, 2 and 5. Furthermore, differences in BSs between Group 4 and the other groups except Group 3 were significant (p < 0.05) and also there were significant differences in BSs between Group 3 to 1 and Group 3 to 2 (p < 0.05). This study reveals that air-abrasion with Al2 O3 and Nd:YAG laser irradiation with non-contact provided a significant increase in BS between indirect composite and resin cement. © Wiley Periodicals, Inc.

  10. Effect of indirect composite treatment microtensile bond strength of self-adhesive resin cements.

    PubMed

    Fuentes, María-Victoria; Escribano, Nuria; Baracco, Bruno; Romero, Martin; Ceballos, Laura

    2016-02-01

    No specific indications about the pre-treatment of indirect composite restorations is provided by the manufacturers of most self-adhesive resin cements. The potential effect of silane treatment to the bond strength of the complete tooth/indirect restoration complex is not available.The aim of this study was to determine the contribution of different surface treatments on microtensile bond strength of composite overlays to dentin using several self-adhesive resin cements and a total-etch one. Composite overlays were fabricated and bonding surfaces were airborne-particle abraded and randomly assigned to two different surface treatments: no treatment or silane application (RelyX Ceramic Primer) followed by an adhesive (Adper Scotchbond 1 XT). Composite overlays were luted to flat dentin surfaces using the following self-adhesive resin cements: RelyX Unicem, G-Cem, Speedcem, Maxcem Elite or Smartcem2, and the total-etch resin cement RelyX ARC. After 24 h, bonded specimens were cut into sticks 1 mm thick and stressed in tension until failure. Two-way ANOVA and SNK tests were applied at α=0.05. Bond strength values were significantly influenced by the resin cement used (p<0.001). However, composite surface treatment and the interaction between the resin cement applied and surface treatment did not significantly affect dentin bond strength (p>0.05). All self-adhesive resin cements showed lower bond strength values than the total-etch RelyX ARC. Among self-adhesive resin cements, RelyX Unicem and G-Cem attained statistically higher bond strength values. Smartcem2 and Maxcem Elite exhibited 80-90% of pre-test failures. The silane and adhesive application after indirect resin composite sandblasting did not improve the bond strength of dentin-composite overlay complex. Selection of the resin cement seems to be a more relevant factor when bonding indirect composites to dentin than its surface treatment. Bond strength, self-adhesive cement, silane, dentin, indirect composite.

  11. Effect of indirect composite treatment microtensile bond strength of self-adhesive resin cements

    PubMed Central

    Escribano, Nuria; Baracco, Bruno; Romero, Martin; Ceballos, Laura

    2016-01-01

    Background No specific indications about the pre-treatment of indirect composite restorations is provided by the manufacturers of most self-adhesive resin cements. The potential effect of silane treatment to the bond strength of the complete tooth/indirect restoration complex is not available.The aim of this study was to determine the contribution of different surface treatments on microtensile bond strength of composite overlays to dentin using several self-adhesive resin cements and a total-etch one. Material and Methods Composite overlays were fabricated and bonding surfaces were airborne-particle abraded and randomly assigned to two different surface treatments: no treatment or silane application (RelyX Ceramic Primer) followed by an adhesive (Adper Scotchbond 1 XT). Composite overlays were luted to flat dentin surfaces using the following self-adhesive resin cements: RelyX Unicem, G-Cem, Speedcem, Maxcem Elite or Smartcem2, and the total-etch resin cement RelyX ARC. After 24 h, bonded specimens were cut into sticks 1 mm thick and stressed in tension until failure. Two-way ANOVA and SNK tests were applied at α=0.05. Results Bond strength values were significantly influenced by the resin cement used (p<0.001). However, composite surface treatment and the interaction between the resin cement applied and surface treatment did not significantly affect dentin bond strength (p>0.05). All self-adhesive resin cements showed lower bond strength values than the total-etch RelyX ARC. Among self-adhesive resin cements, RelyX Unicem and G-Cem attained statistically higher bond strength values. Smartcem2 and Maxcem Elite exhibited 80-90% of pre-test failures. Conclusions The silane and adhesive application after indirect resin composite sandblasting did not improve the bond strength of dentin-composite overlay complex. Selection of the resin cement seems to be a more relevant factor when bonding indirect composites to dentin than its surface treatment. Key words

  12. Surface hardness properties of resin-modified glass ionomer cements and polyacid-modified composite resins.

    PubMed

    Bayindir, Yusuf Ziya; Yildiz, Mehmet

    2004-11-15

    In this study the top and bottom surface hardness of two polyacid-modified composite resins (PMCRs), one resin-modified glass ionomer cement (RMGIC), and one composite resin were evaluated. The affect of water storage on their hardness was also investigated. The study was conducted using four different groups, each having five specimens obtained from fiberglass die molds with a diameter of 5 mm and a height of 2 mm. Measurements were made on the top and bottom surface of each specimen and recorded after 24 hours and again at 60 days. All tested materials showed different hardness values, and the values of top surfaces of the specimens were found to be higher than the bottom surface in all test groups. There was no statistical difference in the Vickers hardness (HV) values when the test specimens were kept in water storage. In conclusion Hytac displayed microhardness values higher than Vitremer and Dyract. We found the order of HV values to be Surfil > Hytac > Dyract > Vitremer, respectively. Vitremer presented the lowest microhardness level and Surfil the highest.

  13. Porcelain inlays cemented with composite resin cement: an in vivo investigation of pulpal reaction one year following cementation.

    PubMed

    Vigolo, Paolo; Graiff, Lorenzo; Mutinelli, Sabrina; Fonzi, Fulvio

    2007-01-01

    This in vivo study was designed to verify the presence of pulpal inflammation on teeth after 1 year of function from cementation of porcelain inlays. Thirty-two vital, healthy, caries-free and previously untreated maxillary and mandibular first premolars in eight patients needing extraction for orthodontic reasons were included in this study. For each patient three first premolars were randomly chosen and treated with porcelain MOD inlays. One first premolar served as the control group with no restorations. The porcelain inlays were cemented with dental adhesive and composite resin cement without pulpal protection. The same dentist, following standardized preparation, impression, and cementation techniques, accomplished all clinical phases. The teeth were extracted 1 year later. The condition of the pulp tissues of the 24 teeth with porcelain inlays was compared with the pulpal tissues of the eight teeth of the control group. The data relating to the number of inflammatory cells were evaluated by one-way analysis of variance to assess quantitative differences between the group of teeth with porcelain inlays and the group without porcelain inlays (p < 0.05). Means and standard deviations were calculated for each group. The microscopic analysis revealed the absence of pulpal inflammation of the teeth with porcelain inlays when compared with the teeth of the control group. The analysis of variance revealed no statistical differences between the two groups compared. Within the limitations of this study, the cementation of porcelain inlays with dental adhesive and composite cement on healthy premolars did not result in any inflammatory reaction of the pulpal tissues 1 year after placement.

  14. Bonding between CAD/CAM resin and resin composite cements dependent on bonding agents: three different in vitro test methods.

    PubMed

    Gilbert, Simona; Keul, Christine; Roos, Malgorzata; Edelhoff, Daniel; Stawarczyk, Bogna

    2016-03-01

    The aim of this study was to assess the bonding properties between CAD/CAM resin and three resin composite cements combined with different bonding agents using three test methods. Four hundred twenty CAD/CAM resin substrates were fabricated and divided into three test methods (shear bond strength (SBS, n = 180), tensile bond strength (TBS, n = 180) and work of adhesion (WA, n = 60)), further into four pretreatment methods (VP connect (VP), visio.link (VL), Clearfil Ceramic Primer (CP) and no pretreatment (CG)) and three cements (RelyX ARC, Variolink II and Clearfil SA Cement). Each subgroup contained 15 specimens. SBS and TBS were measured after 24 h H2O/37 °C + 5000 thermal-cycles (5/55 °C) and failure types were assessed. WA was determined for pretreated CAD/CAM resin and non-polymerized resin composite cements. Data were analysed with Mann-Whitney U, Kruskal-Wallis H, Chi(2) and Spearman's Rho tests. Within SBS and TBS tests, CGs and groups pretreated with CP (regardless of resin composite cements), and VP pretreated with Clearfil SA Cement showed no bond. However, CG combined with RelyX ARC showed a TBS of 5.6 ± 1.3 MPa. In general, highest bond strength was observed for groups treated with VL. CG and groups pretreated using VL showed lower WA than the groups treated with VP or CP. Measured TBS values were higher than SBS ones. In general, SBS and TBS showed similar trends for the ranges of the values for the groups. WA results were not comparable with SBS/TBS results and admitted, therefore, no conclusions on it. For a clinical use of XHIP-CAD/CAM resin, the bond surface should be additionally pretreated with visio.link as bonding agent.

  15. A medicated polycarboxylate cement to prevent complications in composite resin therapy

    SciTech Connect

    Okamoto, Y.; Shintani, H.; Yamaki, M. )

    1990-01-01

    Preparative treatment is the preferred method to protect the dentin and pulp from complications in composite resin therapy. This study investigated the in vivo effects of the polycarboxylate cement containing zinc fluoride and tannic acid in composite resin restorations. Scanning electron micrographs established that the composite resin failed to contact the axial wall. The gaps varied from 10 to 60 microns. However, this polycarboxylate cement was shown to provide excellent adaptation to dentin when used as a base and its chemical adhesion allowed it to make close contact with the unetched dentin. The newly developed electron probe x-ray microanalyzer revealed that the in vivo penetration of fluoride and zinc occurred through the dentinal tubules. When this polycarboxylate cement was used, the orifices of dentinal tubules were partially occluded, possibly with the smear layer fixed by tannic acid. In addition, by releasing the components, this polycarboxylate cement adds acid resistance to dentin and increases the resistance of dentin collagen to proteolytic enzymes. As such this polycarboxylate cement offers advantages as a base to composite resin therapy.

  16. [Influence of primers ' chemical composition on shear bond strength of resin cement to zirconia ceramic].

    PubMed

    Łagodzińska, Paulina; Bociong, Kinga; Dejak, Beata

    2014-01-01

    Resin cements establish a strong durable bond between zirconia ceramic and hard tissues of teeth. It is essential to use primers with proper chemical composition before cementation. The aim of this study was to assess the influence of primer's chemical composition on the shear bond strength of zirconia ceramic to resin cements. 132 zirconia specimens were randomly assigned to four groups. There were four resin systems used. They included resin cement and respective primer, dedicated to zirconia: Clearfil Ceramic Primer/Panavia F2.0, Monobond Plus/Multilink Automix, AZ - Primer/ResiCem, Z - Prime Plus/Duo-Link. In each group the protocol of cementation was as follows: application of primer to the zirconia surface and application of the respective resin cement in cylindric mold (dimensions: 3.0 mm height and 3.0 mm diameter). Then, the shear bond strength was evaluated and the failure type was assessed in lupes (×2.5 magnification), also random specimens under SEM. The Wilcoxon test was used to analyze the data, the level of significance was α = 0.05. Finally, the known chemical composition of each primer was analysed in reference to probable chemical bonds, which may occure between primers and zirconia. The mean shear bond strength between resin cements and zirconia was the highest for Z-Prime Plus/Duo-Link (8.24 ± 3,21 MPa) and lowest for Clearfil Ceramic Primer/Panavia F 2.0 (4.60 ± 2.21 MPa). The analysis revealed significant difference between all groups, except pair Clearfil Ceramic Primer/Panavia F 2.0 and AZ-Primer/ResiCem. The failure type in groups of Clearfil Ceramic Primer/Panavia F 2.0 and AZ-Primer/ResiCem was mainly adhesive, in groups Monobond Plus/ /Multilink Automix and Z-Prime Plus/Duo-Link mainly mixed. The chemical composition of primers affects different bond mechanisms between resin cements and zirconia. The highest shear bond strength of resin cement to zirconia can be obtained for the primer composed of 10-Methacryloyloxydecyl dihydrogen

  17. Evaluation of the flexural strength of dual-cure composite resin cements.

    PubMed

    Duymus, Zeynep Yesil; Yanikoğlu, Nuran Dinckal; Alkurt, Murat

    2013-07-01

    The aim of this study was to evaluate of flexural strength of some adhesive resin cements. Three dual-cure composite resin cements (Nexus 3; Variolink II, Panavia F) were prepared. The manufacturer's mixing directions for the cements were followed. Adhesive resin cement was mixed, placed in the rectangular portion of the mold. Fifteen specimens were prepared for each cements. The cements were light-activated with light lamp for 40 s on both and top and bottom surfaces. The each cement specimens were divided into three groups according to time of storage and stored in distilled water for 24 h, 15, and 30 days. Total 45 specimens were stored at 37°C (98.6 0F) in distilled water for 24 h, 15, and 30 days prior to tests. The flexural strength was tested wıth a universal testing machine at a crosshead speed of 0.5 mm/min (0.02 in.) The maximum load was recorded as MPa. The results were analyzed by Analysis of Variance and Duncan test. The Panavia F resin cements content Bisphenol A was showed the highest flexural strength (80.80 MPa) (11.71 ksi) for 24 h. The lowest flexural strength was observed in Nexus 3 (51.00 MPa) (7.39 ksi). It was found significant interaction of material and time (p < 0.05). The types of cement and time of storage was statistically significant on the flexural strengths (p < 0.001). Copyright © 2013 Wiley Periodicals, Inc.

  18. Flexural strength of glass fibre-reinforced posts bonded to dual-cure composite resin cements.

    PubMed

    Davis, Peter; Melo, Luciana S D; Foxton, Richard M; Sherriff, Martyn; Pilecki, Peter; Mannocci, Francesco; Watson, Timothy F

    2010-04-01

    The aims of this study were to evaluate the flexural strength of two different types of glass fibre-reinforced posts bonded to dual-cure composite resin cements. Forty glass methacrylate-based fibre posts (GC Fiber Post) and 20 glass fibre inter-polymerizing network posts (everStick POST) were divided into three groups. Group 1 contained 20 GC posts that were bonded to a dual-cure composite cement (UnifilCore). Group 2 contained 20 Stick Tech posts that had adhesive applied (Scotchbond Multipurpose resin) and were bonded to a dual-cure composite resin cement (RelyX Unicem). Group 3 contained 20 GC posts that were pretreated with a silane-coupling agent before being treated with resin and composite, as in group 1. A 4-point bend test was carried out to failure on all of the groups. Failure modes were determined using scanning electron microscopy. Pretreatment of the post surface with the silane-coupling agent did not increase the flexural strength. The flexural strength of the Stick Tech post was significantly lower than the flexural strength of the GC post. The mode of failure for the GC Posts was adhesive, whereas the Stick Tech posts failed cohesively. Different flexural strengths and failure modes were observed among the two fibre post-resin systems.

  19. Effects of mechanical properties of adhesive resin cements on stress distribution in fiber-reinforced composite adhesive fixed partial dentures.

    PubMed

    Yokoyama, Daiichiro; Shinya, Akikazu; Gomi, Harunori; Vallittu, Pekka K; Shinya, Akiyoshi

    2012-01-01

    Using finite element analysis (FEA), this study investigated the effects of the mechanical properties of adhesive resin cements on stress distributions in fiber-reinforced resin composite (FRC) adhesive fixed partial dentures (AFPDs). Two adhesive resin cements were compared: Super-Bond C&B and Panavia Fluoro Cement. The AFPD consisted of a pontic to replace a maxillary right lateral incisor and retainers on a maxillary central incisor and canine. FRC framework was made of isotropic, continuous, unidirectional E-glass fibers. Maximum principal stresses were calculated using finite element method (FEM). Test results revealed that differences in the mechanical properties of adhesive resin cements led to different stress distributions at the cement interfaces between AFPD and abutment teeth. Clinical implication of these findings suggested that the safety and longevity of an AFPD depended on choosing an adhesive resin cement with the appropriate mechanical properties.

  20. Microhardness of dual-polymerizing resin cements and foundation composite resins for luting fiber-reinforced posts.

    PubMed

    Yoshida, Keiichi; Meng, Xiangfeng

    2014-06-01

    The optimal luting material for fiber-reinforced posts to ensure the longevity of foundation restorations remains undetermined. The purpose of this study was to evaluate the suitability of 3 dual-polymerizing resin cements and 2 dual-polymerizing foundation composite resins for luting fiber-reinforced posts by assessing their Knoop hardness number. Five specimens of dual-polymerizing resin cements (SA Cement Automix, G-Cem LincAce, and Panavia F2.0) and 5 specimens of dual-polymerizing foundation composite resins (Clearfil DC Core Plus and Unifil Core EM) were polymerized from the top by irradiation for 40 seconds. Knoop hardness numbers were measured at depths of 0.5, 2.0, 4.0, 6.0, 8.0, and 10.0 mm at 0.5 hours and 7 days after irradiation. Data were statistically analyzed by repeated measures ANOVA, 1-way ANOVA, and the Tukey compromise post hoc test (α=.05). At both times after irradiation, the 5 resins materials showed the highest Knoop hardness numbers at the 0.5-mm depth. At 7 days after irradiation, the Knoop hardness numbers of the resin materials did not differ significantly between the 8.0-mm and 10.0-mm depths (P>.05). For all materials, the Knoop hardness numbers at 7 days after irradiation were significantly higher than those at 0.5 hours after irradiation at all depths (P<.05). At 7 days after irradiation, the Knoop hardness numbers of the 5 resin materials were found to decrease in the following order: DC Core Plus, Unifil Core EM, Panavia F2.0, SA Cement Automix, and G-Cem LincAce (P<.05). The Knoop hardness number depends on the depth of the cavity, the length of time after irradiation, and the material brand. Although the Knoop hardness numbers of the 2 dual-polymerizing foundation composite resins were higher than those of the 3 dual-polymerizing resin cements, notable differences were seen among the 5 materials at all depths and at both times after irradiation. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry

  1. Hardening of dual-cure resin cements and a resin composite restorative cured with QTH and LED curing units.

    PubMed

    Santos, Gildo Coelho; El-Mowafy, Omar; Rubo, Jose Henrique; Santos, Maria Jacinta Moreas Coelho

    2004-05-01

    The aim of this study was to determine the effects of light intensity and type of light unit (quartztungsten-halogen [QTH] or light-emitting diode [LED]) on the hardening of various resin cements and a resin composite restorative. Disk specimens were prepared from 4 dual-cured resin cements (Variolink II, Calibra, Nexus 2 and RelyX ARC). Two QTH light-curing units (Visilux 2, at 550 mW/cm2, and Optilux 501, at 1,360 mW/cm2) and a LED unit (Elipar FreeLight, at 320 mW/cm2) were used for curing. Specimens were light-cured or dual-cured for 10, 30 or 40 seconds with 1 of the 3 light units (curing applied to upper surface only) and were tested 24 hours after curing. Additional cement specimens were self-cured and tested at 15, 30 and 60 minutes and at 24 hours. Testing consisted of measurement of Knoop hardness number (KHN) for each specimen. Six KHN values were obtained for the upper surface only of the various cement specimens in each test group. Disk specimens 2.5 mm thick were also prepared from a resin composite restorative (XRV Herculite). These were light-cured as above, and KHN measurements were obtained for both the upper and the lower surfaces. Mean KHNs were determined, and data were analyzed with analysis of variance. The groups were significantly different (p < 0.05). High-intensity light curing resulted in the highest KHN values for all materials with any of the 3 light-curing times. For the cements, LED light curing (with both dual-curing and light-curing modes) resulted in hardness values similar to those achieved with conventional QTH light curing, although there were some exceptions. However, both LED and conventional QTH light curing resulted in inferior hardening of lower surfaces of the XRV Herculite specimens at the 3 curing times. For all cements except Nexus 2, self-curing resulted in significantly lower hardness values than dual curing. The self-curing mechanism of Variolink II cement needed a longer time to activate than those of the other

  2. Adhesion of indirect MOD resin composite inlays luted with self-adhesive and self-etching resin cements.

    PubMed

    Inukai, T; Abe, T; Ito, Y; Pilecki, P; Wilson, R F; Watson, T F; Foxton, R M

    2012-01-01

    This study investigated the effect of loading on the bond strength to dentin and microleakage of MOD indirect composite restorations bonded with self-adhesive and self-etching resin cements with or without acid etching of the proximal enamel margins. Class II MOD cavities were prepared in 48 molar teeth into dentin and divided into three groups of 16 teeth. Impressions were taken and indirect composite inlays fabricated (Estenia C & B). The enamel margins of the proximal boxes of half the specimens were phosphoric acid etched, and the inlays were cemented with one of three cements (Panavia F 2.0, SA Cement, or Rely X Unicem). After luting, eight teeth in each cement group were mechanically loaded at 2.5 cycles/s for 250,000 cycles. Unloaded teeth acted as controls. Teeth were stored in Rhodamine B solution for 24 hours, sectioned buccolingually at the proximal boxes to examine microleakage using confocal microscopy, and further sectioned for μTBS testing of the resin-dentin interface. Analysis of variance was performed to assess the effect of loading and acid etching on microleakage and bond strength. Acid etching had no effect on microleakage. No significant difference in the dentin bond strengths between the three cements existed after loading. Panavia F 2.0 exhibited a significant reduction in bond strength. With regard to microleakage at the proximal boxes, loading had no effect on dye penetration at the cavity floor. However, at the axial walls, loading had a significant deleterious effect on Panavia F 2.0. No difference in microleakage existed between the three cements at both sites before and after loading. In conclusion, the two tested self-adhesive cements exhibited similar bond strengths before and after loading to the self-etching resin cement. Loading reduced dentin bond strengths and increased microleakage at the resin-dentin interface. However, acid etching of the enamel margins had no significant effect on microleakage in the approximal regions of

  3. Clinical evaluation of resin composite and resin-modified glass ionomer cement in non-carious cervical lesions.

    PubMed

    Adeleke; Oginni, Ao

    2012-10-01

    The clinical performance of various tooth-coloured materials used to restore Non-Carious Cervical Lesions (NCCLs) has been evaluated. However, most of these evaluations were in western societies where soft diets requiring little mastication were common. The present study sets out to evaluate resin composite and RMGIC in the restoration of NCCLs among a Nigerian subpopulation group with fibrous diet requiring more rigorous mastication. The study included all adult patients that presented at the Dental Hospital, Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Nigeria with non-carious cervical lesions over a period of six months. The teeth with non-carious cervical lesions in each patient were allocated into treatment with either resin composite or resin-modified glass ionomer cement by simple random sampling using ballots. The depth of the NCCLs was measured using a graduated flat ash periodontal probe. All the treatment was done by the first author according to the manufacturer's instructions. Patients were recalled and evaluated at 48- hours, 3- months, 6- months and 12- months using the USPHS criteria. Data analysis was done using SPSS version 15. The level of significance was put at 0.05. At the end of 12 months, 143 resin composite and 144 RMGIC restorations were evaluated, out of which 37 resin composite and 13 RMGIC restorations were dislodged, giving a retention rate of 74.1% and 91.0% respectively. The difference was statistically significant (p<0.05). For marginal discolouration, marginal adaptation, abrasion wear resistance, post operative sensitivity, and secondary caries, there were no statistically significant differences in the performance of resin composite and RMGIC. There was more retention failure of both resin composite and RMGIC restorations in NCCLs in mandibular teeth than in maxillary teeth. The differences were statistically significant (p<0.05). RMGIC demonstrated a higher retention rate in the restoration of non

  4. Correlation between flexural and indirect tensile strength of resin composite cements.

    PubMed

    Cassina, Gianluca; Fischer, Jens; Rohr, Nadja

    2016-11-04

    To evaluate a potential correlation between flexural strength and indirect tensile strength in assessing the mechanical strength of resin composite cements. Flexural strength (n = 5) and indirect tensile strength (n = 5) of 7 resin composite cements (RelyX Unicem 2 Automix [RXU], Panavia SA [PSA], Clearfil SA [CSA], Panavia F2.0 [PF2], Multilink Implant [MLI], DuoCem [DCM], Panavia 21 [P21]) were determined. Specimens were either auto-polymerized or dual-cured (except P21) and stored in water at 37 °C for 1 day prior to measurement. Flexural and indirect tensile strength of 4 cements (RXU, PSA, PF2, MLI) was additionally measured directly after curing and after 96 h water storage at 37 °C. Except for PF2, dual-cured specimens achieved higher flexural strength than auto-polymerized specimens. In the indirect tensile strength test differences in auto-polymerized and dual-cured specimens were only detected for RXU and DCM. A general non-linear correlation was found between flexural and indirect tensile strength values. However, strength values of auto-polymerized and dual-cured specimens did not generally correlate. Flexural strength and indirect tensile strength of resin composite cements are correlated. At high strength values the indirect tensile test is less sensitive than the flexural test. The results suggest that the indirect tensile test may only be recommended as a screening test especially for low or medium strength resin composite cements.

  5. Inorganic composition and filler particles morphology of conventional and self-adhesive resin cements by SEM/EDX.

    PubMed

    Aguiar, Thaiane Rodrigues; Di Francescantonio, Marina; Bedran-Russo, Ana Karina; Giannini, Marcelo

    2012-10-01

    The purpose of this study was to characterize the inorganic components and morphology of filler particles of conventional and self-adhesive, dual-curing, resin luting cements. The main components were identified by energy dispersive X-ray spectroscopy microanalysis (EDX), and filler particles were morphologically analyzed by scanning electron microscopy (SEM). Four resin cements were used in this study: two conventional resin cements (RelyX ARC/3M ESPE and Clearfil Esthetic Cement/Kuraray Medical) and two self-adhesive resin cements (RelyX Unicem/3M ESPE and Clearfil SA Luting/Kuraray Medical). The materials (n = 5) were manipulated according to manufacturers' instructions, immersed in organic solvents to eliminate the organic phase and observed under SEM/EDX. Although EDX measurements showed high amount of silicon for all cements, differences in elemental composition of materials tested were identified. RelyX ARC showed spherical and irregular particles, whereas other cements presented only irregular filler shape. In general, self-adhesive cements contained higher filler size than conventional resin luting cements. The differences in inorganic components and filler particles were observed between categories of luting material and among them. All resin cements contain silicon, however, other components varied among them.

  6. Effect of resin cements and aging on cuspal deflection and fracture resistance of teeth restored with composite resin inlays.

    PubMed

    Salaverry, Aurélio; Borges, Gilberto Antonio; Mota, Eduardo Gonçalves; Burnett Júnior, Luiz Henrique; Spohr, Ana Maria

    2013-12-01

    To evaluate the influence of resin cements and aging on cuspal deflection, fracture resistance, and mode of failure of endodontically treated teeth restored with composite resin inlays. Seventy-two maxillary premolars were divided into 6 groups: 1: sound teeth as control (C); 2: preparations without restoration (WR); 3: inlays luted with RelyX ARC (ARC); 4: inlays luted with RelyX Unicem (RLXU); 5: inlays luted with Maxcem Elite (MCE); 6: inlays luted with SeT (ST). Groups 2 to 6 received mesio-occlusal-distal preparations and endodontic treatment. Stone casts were made for groups 3 to 6. Composite resin inlays were built over each cast and luted with the resin cements. A 200-N load was applied on the occlusal aspect and the cuspal deflection was measured using a micrometer before and after 500,000 cycles of fatigue loading (200 N; 500,000 cycles). The specimens were then submitted to an axial load until failure. The median cuspal deflection (µm) and median fracture resistance (N) were calculated and statistically analyzed using Kruskal-Wallis and Mann-Whitney tests (p < 0.01). Values followed by the same letter represent no statistically significant difference. Cuspal deflection before cyclic loading: C = 3 µma; ARC = 4 µmab; RLXU= 5 µmab; MCE = 21 µmb; ST = 51 µmbc; WR = 69 µmc. Cuspal deflection after cyclic loading: ARC = 6 µma; RLXU = 19 µmab; MCE = 33 µmb; ST = 62 µmb. Fracture resistance in N: C = 1902a; ARC = 980b; RLXU = 670c; MCE = 533c; ST = 601c; WR = 526c. According to the Wilcoxon test, there was no statistical difference between the cuspal deflection before and after cyclic loading only for ARC (p = 0.015). There was a predominance of recovery fractures for the restored groups. Composite resin inlays luted with RelyX ARC maintained cuspal deflection stability and showed higher fracture resistance of the teeth than did inlays luted with the other cements tested.

  7. Comparison of microleakage of three acid-base luting cements versus one resin-bonded cement for Class V direct composite inlays.

    PubMed

    Piemjai, Morakot; Miyasaka, Kumiko; Iwasaki, Yasuhiko; Nakabayashi, Nobuo

    2002-12-01

    Demineralized dentin beneath set cement may adversely affect microleakage under fixed restorations. Microleakage of direct composite inlays cemented with acid-base cements and a methyl methacrylate resin cement were evaluated to determine their effect on the integrity of the underlying hybridized dentin. Sixty Class V box preparations (3 mm x 3 mm x 1.5 mm) were precisely prepared in previously frozen bovine teeth with one margin in enamel and another margin in dentin. Direct composite inlays (EPIC-TMPT) for each preparation were divided into 4 groups of 15 specimens each and cemented with 3 acid-base cements (control group): Elite, Ketac-Cem, Hy-Bond Carbo-Cem, and 1 adhesive resin cement: C&B Metabond. All specimens were stored in distilled water for 24 hours at 37 degrees C before immersion in 0.5% basic fuchsin for 24 hours. The dye penetration was measured on the sectioned specimens at the tooth-cement interface of enamel and cementum margins and recorded with graded criteria under light microscopy (Olympus Vanox-T) at original magnification x 50, 100, and 200. A Kruskal-Wallis and the Mann-Whitney test at P<.05 were used to analyze leakage score. All cementum margins of the 3 acid-base cements tested demonstrated significantly higher leakage scores than cementum margins for inlays cemented with the resin cement tested(P<.01). No leakage along the tooth-cement interface was found for inlays retained with the adhesive resin cement. Within the limitations of this study, the 3 acid-base cements tested exhibited greater microleakage at the cementum margins than did the adhesive resin cement that was tested.

  8. Bond strength of selected composite resin-cements to zirconium-oxide ceramic

    PubMed Central

    Fons-Font, Antonio; Amigó-Borrás, Vicente; Granell-Ruiz, María; Busquets-Mataix, David; Panadero, Rubén A.; Solá-Ruiz, Maria F.

    2013-01-01

    Objectives: The aim of this study was to evaluate bond strengths of zirconium-oxide (zirconia) ceramic and a selection of different composite resin cements. Study Design: 130 Lava TM cylinders were fabricated. The cylinders were sandblasted with 80 µm aluminium oxide or silica coated with CoJet Sand. Silane, and bonding agent and/or Clearfil Ceramic Primer were applied. One hundred thirty composite cement cylinders, comprising two dual-polymerizing (Variolink II and Panavia F) and two autopolymerizing (Rely X and Multilink) resins were bonded to the ceramic samples. A shear test was conducted, followed by an optical microscopy study to identify the location and type of failure, an electron microscopy study (SEM and TEM) and statistical analysis using the Kruskal-Wallis test for more than two independent samples and Mann-Whitney for two independent samples. Given the large number of combinations, Bonferroni correction was applied (α=0.001). Results: Dual-polymerizing cements provided better adhesion values (11.7 MPa) than the autopolymerizing (7.47 MPa) (p-value M-W<0.001). The worst techniques were Lava TM + sandblasting + Silane + Rely X; Lava TM + sandblasting + Silane + Multilink and Lava TM + CoJet + silane + Multilink. Adhesive failure (separation of cement and ceramic) was produced at a lesser force than cohesive failure (fracture of cement) (p-value M-W<0.001). Electron microscopy confirmed that the surface treatments modified the zirconium-oxide ceramic, creating a more rough and retentive surface, thus providing an improved micromechanical interlocking between the cement and the ceramic. Key words:Shear bond strength, silica coating, surface treatment, zirconia ceramics, phosphate monomer. PMID:22926485

  9. Tensile bond strength of indirect composites luted with three new self-adhesive resin cements to dentin

    PubMed Central

    TÜRKMEN, Cafer; DURKAN, Meral; CİMİLLİ, Hale; ÖKSÜZ, Mustafa

    2011-01-01

    Objective The aims of this study were to evaluate the tensile bond strengths between indirect composites and dentin of 3 recently developed self-adhesive resin cements and to determine mode of failure by SEM. Material and Methods Exposed dentin surfaces of 70 mandibular third molars were used. Teeth were randomly divided into 7 groups: Group 1 (control group): direct composite resin restoration (Alert) with etch-and-rinse adhesive system (Bond 1 primer/adhesive), Group 2: indirect composite restoration (Estenia) luted with a resin cement (Cement-It) combined with the same etch-and-rinse adhesive, Group 3: direct composite resin restoration with self-etch adhesive system (Nano-Bond), Group 4: indirect composite restoration luted with the resin cement combined with the same self-etch adhesive, Groups 5-7: indirect composite restoration luted with self-adhesive resin cements (RelyX Unicem, Maxcem, and Embrace WetBond, respectively) onto the non-pretreated dentin surfaces. Tensile bond strengths of groups were tested with a universal testing machine at a constant speed of 1 mm/min using a 50 kgf load cell. Results were statistically analyzed by the Student's t-test. The failure modes of all groups were also evaluated. Results The indirect composite restorations luted with the self-adhesive resin cements (groups 5-7) showed better results compared to the other groups (p<0.05). Group 4 showed the weakest bond strength (p>0.05). The surfaces of all debonded specimens showed evidence of both adhesive and cohesive failure. Conclusion The new universal self-adhesive resins may be considered an alternative for luting indirect composite restorations onto non-pretreated dentin surfaces. PMID:21710095

  10. Direct Tensile Strength and Characteristics of Dentin Restored with All-Ceramic, Resin-Composite, and Cast Metal Prostheses Cemented with Resin Adhesives.

    PubMed

    Piemjai, Morakot; Nakabayashi, Nobuo

    2015-01-01

    A dentin-cement-prosthesis complex restored with either all-porcelain, cured resin-composite, or cast base metal alloy and cemented with either of the different resin cements was trimmed into a mini-dumbbell shape for tensile testing. The fractured surfaces and characterization of the dentin-cement interface of bonded specimens were investigated using a Scanning Electron Microscope. A significantly higher tensile strength of all-porcelain (12.5 ± 2.2 MPa) than that of cast metal (9.2 ± 3.5 MPa) restorations was revealed with cohesive failure in the cement and failure at the prosthesis-cement interface in Super-Bond C&B group. No significant difference in tensile strength was found among the types of restorations using the other three cements with adhesive failure on the dentin side and cohesive failure in the cured resin. SEM micrographs demonstrated the consistent hybridized dentin in Super-Bond C&B specimens that could resist degradation when immersed in hydrochloric acid followed by NaOCl solutions whereas a detached and degraded interfacial layer was found for the other cements. The results suggest that when complete hybridization of resin into dentin occurs tensile strength at the dentin-cement is higher than at the cement-prosthesis interfaces. The impermeable hybridized dentin can protect the underlying dentin and pulp from acid demineralization, even if detachment of the prosthesis has occurred.

  11. Direct Tensile Strength and Characteristics of Dentin Restored with All-Ceramic, Resin-Composite, and Cast Metal Prostheses Cemented with Resin Adhesives

    PubMed Central

    Piemjai, Morakot; Nakabayashi, Nobuo

    2015-01-01

    A dentin-cement-prosthesis complex restored with either all-porcelain, cured resin-composite, or cast base metal alloy and cemented with either of the different resin cements was trimmed into a mini-dumbbell shape for tensile testing. The fractured surfaces and characterization of the dentin-cement interface of bonded specimens were investigated using a Scanning Electron Microscope. A significantly higher tensile strength of all-porcelain (12.5 ± 2.2 MPa) than that of cast metal (9.2 ± 3.5 MPa) restorations was revealed with cohesive failure in the cement and failure at the prosthesis-cement interface in Super-Bond C&B group. No significant difference in tensile strength was found among the types of restorations using the other three cements with adhesive failure on the dentin side and cohesive failure in the cured resin. SEM micrographs demonstrated the consistent hybridized dentin in Super-Bond C&B specimens that could resist degradation when immersed in hydrochloric acid followed by NaOCl solutions whereas a detached and degraded interfacial layer was found for the other cements. The results suggest that when complete hybridization of resin into dentin occurs tensile strength at the dentin-cement is higher than at the cement-prosthesis interfaces. The impermeable hybridized dentin can protect the underlying dentin and pulp from acid demineralization, even if detachment of the prosthesis has occurred. PMID:26539520

  12. Effects of etching and adhesive applications on the bond strength between composite resin and glass-ionomer cements

    PubMed Central

    PAMIR, Tijen; ŞEN, Bilge Hakan; EVCIN, Özgür

    2012-01-01

    Objective This study determined the effects of various surface treatment modalities on the bond strength of composite resins to glass-ionomer cements. Material and Methods Conventional (KetacTM Molar Quick ApplicapTM) or resin-modified (PhotacTM Fil Quick AplicapTM) glass-ionomer cements were prepared. Two-step etch-rinse & bond adhesive (AdperTM Single Bond 2) or single-step self-etching adhesive (AdperTM PromptTM L-PopTM) was applied to the set cements. In the etch-rinse & bond group, the sample surfaces were pre-treated as follows: (1) no etching, (2) 15 s of etching with 35% phosphoric acid, (3) 30 s of etching, and (4) 60 s of etching. Following the placement of the composite resin (FiltekTM Z250), the bond strength was measured in a universal testing machine and the data obtained were analyzed with the two-way analysis of variance (ANOVA) followed by the Tukey's HSD post hoc analysis (p=0.05). Then, the fractured surfaces were examined by scanning electron microscopy. Results The bond strength of the composite resin to the conventional glass-ionomer cement was significantly lower than that to the resin-modified glass-ionomer cement (p<0.001). No significant differences were determined between the self-etching and etch-rinse & bond adhesives at any etching time (p>0.05). However, a greater bond strength was obtained with 30 s of phosphoric acid application. Conclusions The resin-modified glass-ionomer cement improved the bond strength of the composite resin to the glass-ionomer cement. Both etch-rinse & bond and self-etching adhesives may be used effectively in the lamination of glass-ionomer cements. However, an etching time of at least 30 s appears to be optimal. PMID:23329245

  13. Stress distributions in adhesively cemented ceramic and resin-composite Class II inlay restorations: a 3D-FEA study.

    PubMed

    Ausiello, Pietro; Rengo, Sandro; Davidson, Carel L; Watts, David C

    2004-11-01

    The purpose of this study was to investigate the effect of differences in the resin-cement elastic modulus on stress-transmission to ceramic or resin-based composite inlay-restored Class II MOD cavities during vertical occlusal loading. Three finite-element (FE) models of Class II MOD cavity restorations in an upper premolar were produced. Model A represented a glass-ceramic inlay in combination with an adhesive and a high Young's modulus resin-cement. Model B represented the same glass-ceramic inlay in combination with the same adhesive and a low Young's modulus resin-cement. Model C represented a heat-cured resin-composite inlay in combination with the same adhesive and the same low Young's modulus resin cement. Occlusal vertical loading of 400 N was simulated on the FE models of the restored teeth. Ansys FE software was used to compute the local von Mises stresses for each of the models and to compare the observed maximum intensities and distributions. Experimental validation of the FE models was conducted. Complex biomechanical behavior of the restored teeth became apparent, arising from the effects of the axial and lateral components of the constant occlusal vertical loading. In the ceramic-inlay models, the greatest von Mises stress was observed on the lateral walls, vestibular and lingual, of the cavity. Indirect resin-composite inlays performed better in terms of stress dissipation. Glass-ceramic inlays transferred stresses to the dental walls and, depending on its rigidity, to the resin-cement and the adhesive layers. For high cement layer modulus values, the ceramic restorations were not able to redistribute the stresses properly into the cavity. However, stress-redistribution did occur with the resin-composite inlays. Application of low modulus luting and restorative materials do partially absorb deformations under loading and limit the stress intensity, transmitted to the remaining tooth structures.

  14. A comparison of the survival of fibre posts cemented with two different composite resin systems.

    PubMed

    Mehta, S B; Millar, B J

    2008-12-13

    To evaluate the outcomes of a fibre post cemented with two different luting agents. A single type of tooth coloured fibre post (Fibre-White Parapost, Coltene Whaledent) was used along with two different types of luting cement. A total of 129 teeth were treated in this retrospective audit: 79 treated were luted with Calibra Aesthetic Dental Resin Cement (Dentsply) and 50 with Panavia F 2.0 (Kuraray). All teeth were treated by the same operator and had a minimum ferrule of 2 mm and a ParaCore (Coltene Whaledent) composite core placed over the post. Where Calibra Aesthetic Dental Resin Cement was used, all the restorations were undertaken between June 2002 and October 2003 and were reviewed for a period of 38 to 54 months. Where Panavia had been used, all restorations were placed between February 2004 and December 2005 and reviewed for a period of 28 to 50 months. The results for the Calibra cemented posts were: 64 returned for recall and of these 23 were classed as failed. The causes were: root fracture (2), decementation (3), fracture at post-core interface (6), endodontic failure (8) and marginal caries (4). The results for the Panavia cemented posts were: 44 returned for recall and 9 were classed as failed; the causes of failure were fracture at post-core interface (6), endodontic failure (1) and marginal caries (2). For posts cemented with Calibra, a success rate of 64.1% was determined over a period of 38 to 54 months. The use of Panavia resulted in fewer post failures with a reported success rate of 79.5% over an evaluation period of 28 to 50 months. Mechanical failures by means of fractures occurring anywhere along the length of the post-core complex were the major cause of lack of success. Significantly higher failure rates were observed to occur in partially dentate patients, in those with parafunctional habits and also amongst anterior teeth. While the majority of the mechanical failures were amenable to repair, the latter mode of failure appears to be a

  15. 18-year survival of posterior composite resin restorations with and without glass ionomer cement as base.

    PubMed

    van de Sande, Françoise H; Rodolpho, Paulo A Da Rosa; Basso, Gabriela R; Patias, Rômulo; da Rosa, Quéren F; Demarco, Flávio F; Opdam, Niek J; Cenci, Maximiliano S

    2015-06-01

    Advantages and disadvantages of using intermediate layers underneath resin-composite restorations have been presented under different perspectives. Yet, few long-term clinical studies evaluated the effect of glass-ionomer bases on restoration survival. The present study investigated the influence of glass-ionomer-cement base in survival of posterior composite restorations, compared to restorations without base. Original datasets of one dental practice were used to retrieve data retrospectively. The presence or absence of an intermediate layer of glass-ionomer-cement was the main factor under analysis, considering survival, annual failure rate and types of failure as outcomes. Other investigated factors were: patient gender, jaw, tooth, number of restored surfaces and composite. Statistical analysis was performed using Fisher's exact test, Kaplan-Meier method and multivariate Cox-regression. In total 632 restorations in 97 patients were investigated. Annual failure rates percentages up to 18-years were 1.9% and 2.1% for restorations with and without base, respectively. In restorations with glass-ionomer-cement base, fracture was the predominant reason for failure, corresponding to 57.8% of total failures. Failure type distribution was different (p=0.007) comparing restorations with and without base, but no effect in the overall survival of restorations was found (p=0.313). The presence of a glass-ionomer-cement base did not affect the survival of resin-composite restorations in the investigated sample. Acceptable annual failure rates after 18-years can be achieved with both techniques, leading to the perspective that an intermediate layer, placed during an interim treatment, may be maintained without clinical detriment, but no improvement in survival should be expected based on such measure. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Effect of ultrasonic versus manual cementation on the fracture strength of resin composite laminates.

    PubMed

    Ozcan, M; Mese, A

    2009-01-01

    This study evaluated the effect of conventional versus ultrasonic cementation techniques on the fracture strength of resin composite laminates. In addition, the failure modes were assessed. Window-type preparations 1 mm above the cemento-enamel junction were made on intact human maxillary central incisors (N=60) of similar size with a depth cutting bur. All the prepared teeth were randomly assigned to six experimental groups (10/per group). Using a highly filled polymeric material (Estenia), laminates were produced and finished. The standard thickness of laminates in original tooth form was achieved using the impression molds made prior to tooth preparation. A three-step bonding procedure and dual polymerized resin composite cement (Panavia F 2.0) was employed. The cementation surfaces of the laminates were conditioned (CoJet-Sand, 30 microm SiO2) and silanized (ESPE-Sil). Laminates in Groups 1, 2, 3, 4 and 5 were cemented by five different operators under finger pressure and Group 6 was cemented ultrasonically (Amdent). After excess removal, the laminates were light polymerized. The specimens were stored in water at 37 degrees C for one month prior to the fracture test (universal testing machine, 1 mm/minute). Failure types were classified as: a) Cohesive failure within the composite laminate (Type A), b) Adhesive failure between the tooth and laminate (Type B) and c) Chipping of the laminate with enamel exposure (Type C). No significant difference was found among the mean fracture strength values of the laminates in all the experimental groups (ANOVA, p=0.251). The mean fracture strength values in descending order were: 513 +/- 197, 439 +/- 125, 423 +/- 163, 411 +/- 126, 390 +/- 94, 352 +/- 117 N for Groups 2, 5, 4, 3, 1 and 6, respectively. The majority of failure types was Type A (30/60). While Type B failure was not observed in Group 6 (0/10), Group 1 presented a more frequent incidence of this failure (6/10). The two cementation techniques did not effect the

  17. Effects of cyclic stressing on attachment bond strength using glass ionomer cement and composite resin.

    PubMed

    Moseley, H C; Horrocks, E N; Pearson, G J; Davies, E H

    1995-02-01

    Bonded orthodontic brackets were subjected to cyclic loading in order to simulate the effect of occlusal forces. The subsequent effect on bond strength was determined. Stainless steel, mesh-based brackets were bonded to extracted teeth with either composite resin or glass ionomer cement. A jig was designed to subject each bracket to a preselected loading level and the 24-hour shear/peel bond strength of both stressed and unstressed brackets was subsequently measured. Cyclic loading brought about a comparative decrease in bond strength when using both types of material. The potential implications of selecting these different types of bonding material for clinical use are discussed.

  18. Curing time effect on the fraction of {sup 137}Cs from cement-ion exchange resins-bentonite clay composition

    SciTech Connect

    Plecas, Ilija; Dimovic, Slavko

    2007-07-01

    To assess the safety of disposal of radioactive waste material in cement, curing conditions and time of leaching radionuclides {sup 137}Cs have been studied. Leaching tests in cement-ion exchange resins-bentonite matrix, were carried out in accordance with a method recommended by IAEA. Curing conditions and curing time prior to commencing the leaching test are critically important in leach studies since the extent of hydration of the cement materials determines how much hydration product develops and whether it is available to block the pore network, thereby reducing leaching. Incremental leaching rates R{sub n}(cm/d) of {sup 137}Cs from cement ion exchange resins-bentonite matrix after 180 days were measured. The results presented in this paper are examples of results obtained in a 20-year concrete testing project which will influence the design of the engineer trenches system for future central Serbian radioactive waste storing center. (authors)

  19. Effects of oxalate desensitizer with different resin cement-retained indirect composite inlays on fracture resistance of teeth.

    PubMed

    Shafiei, Fereshteh; Alavi, Ali Asghar; Karimi, Fatemeh; Ansarifard, Elham

    2013-06-01

    This study investigated whether the tubular occluding effect of oxalate desensitizer (OX) during adhesive cementation (three resin cements) influenced fracture resistance of teeth restored with adhesive inlays. Ninety intact maxillary premolars were randomly divided into 9 groups of 10 each. The two control groups were Gr 1, intact teeth and Gr 2, mesio-occlusodistal preparation only. In six experimental groups, the composite inlays were cemented with ED Primer II/Panavia F 2.0, Excite DSC/Variolink II, and One-Step Plus/Duolink according to manufacturers' instructions (Groups 3, 5, and 7, respectively) or with OX during cementation (Groups 4, 6, and 8, respectively). In Group 9, inlays were cemented with a resin cement without adhesive system. After thermocycling, fracture strength was tested. The data were analyzed using two-way and one-way ANOVA and LSD post hoc tests (α = 0.05). Fracture resistance of the six groups were significantly affected by OX (p = 0.002) but not by the resin cement type (p > 0.05). The interaction of the two factors was statistically significant (p = 0.052). A statistically significant difference between all groups was found (p < 0.001). The mean fracture resistances (N) were: Gr1 = 1168 ± 157,(a) Gr2 = 360 ± 110,(d) Gr3 = 1026 ± 188,(b) Gr4 = 887 ± 143,(c) Gr5 = 1007 ± 132,(b) Gr6 = 810 ± 164,(c) Gr7 = 1033 ± 218,(a) Gr8 = 955 ± 147,(ab) Gr9 = 780 ± 86(c) (groups with the same superscript letter indicate statistical similarity). Combining an OX with three resin cements had a significant negative effect on the fracture resistance of premolars restored with composite inlay cemented with Panavia F2.0 and Variolink II, but it had no significant effect when cemented with Duolink. © 2012 by the American College of Prosthodontists.

  20. Shear bond strength of a self-etched resin cement to an indirect composite: effect of different surface treatments.

    PubMed

    Harorli, O T; Barutcugil, C; Kirmali, O; Kapdan, A

    2015-01-01

    The aim of this study was to compare the shear bond strength of resin cement (Rely X-U200) bonded to differently conditioned indirect composite samples. Sixty-six composite resin specimens (5 mm in diameter and 3 mm in thickness) were prepared with an indirect composite resin (Grandia) and randomly divided into six groups. Surfaces of the samples were treated with one of the following treatments; %37 phosphoric acid etching, sandblasting, 1,5 W, 2 W and 3 W erbium, chromium: Yttrium-scandium-gallium-garnet laser application. An untreated group was used as a control. In each group surface of the sample was analyzed with scanning electron microscopy. The remaining samples (n = 60) were built up with a self-adhesive resin cement (Rely X-U200) 3 mm in diameter and 2 mm height. After 24 h water storage at 37°C, the prepared specimens were submitted to shear bond strength test. One-way analysis of variance was used to analyze the bond strength values of different groups. Highest shear bond strength values were observed in sandblasting group however there were not statistical difference among the tested surface treatment methods. In Shear bond strength of resin, cement was independent of the surface conditioning methods applied on tested indirect resin composite.

  1. Temporary zinc oxide-eugenol cement: eugenol quantity in dentin and bond strength of resin composite.

    PubMed

    Koch, Tamara; Peutzfeldt, Anne; Malinovskii, Vladimir; Flury, Simon; Häner, Robert; Lussi, Adrian

    2013-08-01

    Uptake of eugenol from eugenol-containing temporary materials may reduce the adhesion of subsequent resin-based restorations. This study investigated the effect of duration of exposure to zinc oxide-eugenol (ZOE) cement on the quantity of eugenol retained in dentin and on the microtensile bond strength (μTBS) of the resin composite. The ZOE cement (IRM Caps) was applied onto the dentin of human molars (21 per group) for 1, 7, or 28 d. One half of each molar was used to determine the quantity of eugenol (by spectrofluorimetry) and the other half was used for μTBS testing. The ZOE-exposed dentin was treated with either OptiBond FL using phosphoric acid (H₃PO₄) or with Gluma Classic using ethylenediaminetetraacetic acid (EDTA) conditioning. One group without conditioning (for eugenol quantity) and two groups not exposed to ZOE (for eugenol quantity and μTBS testing) served as controls. The quantity of eugenol ranged between 0.33 and 2.9 nmol mg⁻¹ of dentin (median values). No effect of the duration of exposure to ZOE was found. Conditioning with H₃PO₄ or EDTA significantly reduced the quantity of eugenol in dentin. Nevertheless, for OptiBond FL, exposure to ZOE significantly decreased the μTBS, regardless of the duration of exposure. For Gluma Classic, the μTBS decreased after exposure to ZOE for 7 and 28 d. OptiBond FL yielded a significantly higher μTBS than did Gluma Classic. Thus, ZOE should be avoided in cavities later to be restored with resin-based materials.

  2. Colour matching of composite resin cements with their corresponding try-in pastes.

    PubMed

    Kampouropoulos, D; Gaintantzopoulou, M; Papazoglou, E; Kakaboura, A

    2014-06-01

    Two shades of four resin cements (Calibra, Clearfil Esthetic, Insure, Variolink II), in light- and dual-curing modes, were tested for colour matching with their corresponding try-in pastes, immediately after photopolymerization and after 24-hour dry and dark storage. Colour measurements were performed for 0.8 mm-thick specimens through a 0.8mm-thick ceramic plate. For each resin cement, colour differences (deltaE) were calculated between the two curing modes, and between the corresponding try-in paste, at baseline and after 24h. deltaE>0 values were detected between all resin cements and their try-in pastes, which were brand/shade/curing mode depended. The try-in pastes of the Variolink II system demonstrated the best colour matching (deltaE<2). Try-in pastes of Calibra and Insure, at both curing modes, did not match at an acceptable value, the shade of their corresponding resin cements (deltaE>3.3). Calibra presented the highest colour differences. deltaE values of the Clearfil Esthetic system immediately after photo-activation ranged between 2 and 3 units. A ceramic restoration may fail aesthetically as a result of not acceptable colour match (deltaE>3.3) between the shade of certain resin cements and their relevant try-in pastes.

  3. Fluoride release and uptake from glass ionomer cements and composite resins.

    PubMed

    Weidlich, P; Miranda, L A; Maltz, M; Samuel, S M

    2000-01-01

    The aim of this investigation was to evaluate fluoride release and uptake from 4 glass ionomer cements (GICs)--Vitremer (VIT), Fuji II LC (FII LC), Fuji IX (FIX), Chelon Fill (CHE)--and 2 composite resins (CRs)--Heliomolar (H) and Zeta-100 (Z-100). Eight discs (8 mm x 2 mm) were made of each material and were stored in plastic vials containing artificial saliva at 37 degrees C. In group 1 (N = 3), the specimens were immersed in artificial saliva which was changed daily for 25 days. In group 2 (N = 5), besides receiving the same treatment as group 1, the specimens were immersed, after 24 hours, in a fluoride solution (1% NaF) for 1 min before daily saliva change. An ion-specific electrode (9609 BN-Orion) connected to an ion analyzer (SA-720 Procyon) was used to determine the amount of fluoride released at days 1, 2, 5, 10, 15, 20 and 25. Data were analyzed using two way ANOVA and Friedman's test. GICs released more fluoride during the first day and after this period the mean fluoride released decreased. Composite resin H released fluoride during the first day only and Z-100 did not release fluoride. In terms of NaF treatment, CRs did not show fluoride uptake, whereas the GICs showed fluoride uptake (VIT = FII LC = CHE > FIX).

  4. Push-out bond strengths of fiber-reinforced composite posts with various resin cements according to the root level

    PubMed Central

    Chang, Hoon-Sang; Noh, Young-Sin; Lee, Yoon; Min, Kyung-San

    2013-01-01

    PURPOSE The aim of this study was to determine whether the push-out bond strengths between the radicular dentin and fiber reinforced-composite (FRC) posts with various resin cements decreased or not, according to the coronal, middle or apical level of the root. MATERIALS AND METHODS FRC posts were cemented with one of five resin cement groups (RelyX Unicem: Uni, Contax with activator & LuxaCore-Dual: LuA, Contax & LuxaCore-Dual: Lu, Panavia F 2.0: PA, Super-Bond C&B: SB) into extracted human mandibular premolars. The roots were sliced into discs at the coronal, middle and apical levels. Push-out bond strength tests were performed with a universal testing machine at a crosshead speed of 0.5 mm/min, and the failure aspect was analyzed. RESULTS There were no significant differences (P>.05) in the bond strengths of the different resin cements at the coronal level, but there were significant differences in the bond strengths at the middle and apical levels (P<.05). Only the Uni and LuA cements did not show any significant decrease in their bond strengths at all the root levels (P>.05); all other groups had a significant decrease in bond strength at the middle or apical level (P<.05). The failure aspect was dominantly cohesive at the coronal level of all resin cements (P<.05), whereas it was dominantly adhesive at the apical level. CONCLUSION All resin cement groups showed decreases in bond strengths at the middle or apical level except LuA and Uni. PMID:24049569

  5. Effect of different surface treatments on microtensile bond strength of two resin cements to aged simulated composite core materials.

    PubMed

    Esmaeili, Behnaz; Alaghehmand, Homayoon; Shakerian, Mohadese

    2015-01-01

    Roughening of the aged composite resin core (CRC) surface seems essential for durable adhesion. The aim of this study was to investigate the influence of various surface treatments and different resin cements on microtensile bond strength (µ TBS) between two aged core build-up composites (CBCs) and feldspathic ceramic. A total of 16 composite blocks made of two CBCs, Core.it and Build-it were randomly assigned to four surface treatment groups after water storage and thermocycling (2 weeks and 500 cycles). Experimental groups included surface roughening with air abrasion (AA), hydrofluoric acid, pumice, and laser and then were bonded to computer-aided design/computer-aided manufacturing feldspathic ceramic blocks using two resin cements, Panavia F2 (PF), and Duo-link (DL). The µ TBS was tested, and the fracture mode was assessed. The data were analyzed with multiple analysis of variance to estimate the contribution of different surface treatments, resin cements, and two aged CRCs on µ TBS. Statistical significance level was set at α < 0.05. Surface treatment and cement type significantly affected bond strength (P < 0.001) but the type of CRC did not (P = 0.468). Between roughening methods, the highest and the lowest values of µ TBS were sequentially obtained in AA and Er.YAG laser groups. The highest bond strength was in AA group cemented with PF (31.83 MPa). The most common failure mode was cohesive fracture in the cement. Different surface treatments had different effects on µ TBS of aged CRCs to feldspathic ceramics. PF was significantly better than DL.

  6. Effect of silane type and air-drying temperature on bonding fiber post to composite core and resin cement.

    PubMed

    de Rosatto, Camila Maria Peres; Roscoe, Marina Guimarães; Novais, Veridiana Resende; Menezes, Murilo de Sousa; Soares, Carlos José

    2014-01-01

    This study evaluated the influence of silane type and temperature of silane application on push-out bond strength between fiberglass posts with composite resin core and resin cement. One hundred and sixty fiberglass posts (Exacto, Angelus) had the surface treated with hydrogen peroxide 24%. Posts were divided in 8 groups according to two study factors: air-drying temperature after silane application (room temperature and 60 ºC) and silane type: three pre-hydrolyzed--Silano (Angelus), Prosil (FGM), RelyX Ceramic Primer (3M ESPE) and one two-component silane--Silane Coupling Agent (Dentsply). The posts (n=10) for testing the bond strength between post and composite core were centered on a cylindrical plastic matrix and composite resin (Filtek Z250 XT, 3M ESPE) that was incrementally inserted and photoactivated. Eighty bovine incisor roots (n=10) were prepared for testing the bond strength between post and resin cement (RelyX U100, 3M ESPE) and received the fiberglass posts. Push-out test was used to measure the bond strength. Data were analyzed by two-way ANOVA followed by Tukey's test (α=0.05). ANOVA revealed that temperature and silane had no influence on bond strength between composite core and post. However, for bond strength between post and resin cement, the temperature increase resulted in a better performance for Silane Coupling Agent, Silano and RelyX Ceramic Primer. At room temperature Silane Coupling Agent showed the lowest bond strength. Effect of the warm air-drying is dependent on the silane composition. In conclusion, the use of silane is influenced by wettability of resinous materials and pre-hydrolyzed silanes are more stable compared with the two-bottle silane.

  7. Indirect resin composite restorations bonded to dentin using self-adhesive resin cements applied with an electric current-assisted method.

    PubMed

    Gotti, Valeria Bisinoto; Feitosa, Victor Pinheiro; Sauro, Salvatore; Correr-Sobrinho, Lourenço; Correr, Americo Bortolazzo

    2014-10-01

    To evaluate the effects of an electric current-assisted application on the bond strength and interfacial morphology of self-adhesive resin cements bonded to dentin. Indirect resin composite build-ups were luted to prepared dentin surfaces using two self-adhesive resin cements (RelyX Unicem and BisCem) and an ElectroBond device under 0, 20, or 40 μA electrical current. All specimens were submitted to microtensile bond strength test and to interfacial SEM analysis. The electric current-assisted application induced no change (P > 0.05) on the overall bond strength, although RelyX Unicem showed significantly higher bond strength (P < 0.05) than BisCem. Similarly, no differences were observed in terms of interfacial integrity when using the electrical current applicator.

  8. Effect of different adhesives combined with two resin composite cements on shear bond strength to polymeric CAD/CAM materials.

    PubMed

    Bähr, Nora; Keul, Christine; Edelhoff, Daniel; Eichberger, Marlis; Roos, Malgorzata; Gernet, Wolfgang; Stawarczyk, Bogna

    2013-01-01

    This study tested the impact of different adhesives and resin composite cements on shear bond strength (SBS) to polymethyl methacrylate (PMMA)- and composite-based CAD/CAM materials. SBS specimens were fabricated and divided into five main groups (n=30/group) subject to conditioning: 1. Monobond Plus/Heliobond (MH), 2. Visio.link (VL), 3. Ambarino P60 (AM), 4. exp. VP connect (VP), and 5. no conditioning-control group (CG). All cemented specimens using a. Clearfil SA Cement and b. Variolink II were stored in distilled water for 24 h at 37 °C. Additionally, one half of the specimens were thermocycled for 5,000 cycles (5 °C/55 °C, dwell time 20 s). SBS was measured; data were analyzed using descriptive statistics, four- and one-way ANOVA, unpaired two-sample t-test and Chi(2)-test. CAD/CAM materials without additional adhesives showed no bond to resin composite cements. Highest SBS showed VL with Variolink II on composite-based material, before and after thermocycling.

  9. Shear Bond Strength of Calcium Enriched Mixture Cement and Mineral Trioxide Aggregate to Composite Resin with Two Different Adhesive Systems

    PubMed Central

    Savadi Oskoee, Siavash; Bahari, Mahmoud; Kimyai, Soodabeh; Motahhari, Paria; Eghbal, Mohammad Jafar; Asgary, Saeed

    2014-01-01

    Objective: Immediate restoration after vital pulp therapy is essential in order to create and maintain effective coronal seal. Purpose of Study: The aim of this study was to evaluate the shear bond strength of recently used pulp capping materials: white mineral trioxide aggregate (MTA), and calcium enriched mixture cement (CEM) to composite resin with the use of etch-and-rinse and self-etch adhesive systems and compare them with the bond strength of commonly used resin modified glass ionomer (RMGI) cement. Materials and Methods: Forty specimens from each test material were fabricated, measuring 4 mm in diameter and 2 mm in depth. The specimens of each material were divided into 2 groups of 20 specimens according to the adhesive system (Single Bond vs. Clearfil SE Bond) used for bonding of resin composite. The shear bond strength values were measured at a crosshead speed of 1.0 mm/min and fractured surfaces were examined. Data were analyzed using two-way ANOVA and a post hoc Tukey’s test (P<0.05). Results: Analysis of data showed a significantly higher bond strength for RMGI compared to MTA and CEM (P<0.001); however, no significant differences were observed in the bond strength values of MTA and CEM (P=0.9). Furthermore, there were no significant differences in relation to the type of the adhesive system irrespective of the type of the material used (P=0.95) All the failures were of cohesive type in RMGI, MTA and CEM. Conclusion: Bond strength of RMGI cement to composite resin was higher than that of MTA or CEM cement irrespective of the type of the adhesive system. PMID:25628696

  10. Microtensile bond strength between indirect composite resin inlays and dentin: effect of cementation strategy and mechanical aging.

    PubMed

    Prochnow, Emília Pithan; Amaral, Marina; Bergoli, César Dalmolin; Silva, Tatiana Bernardon; Saavedra, Guilherme; Valandro, Luiz Felipe

    2014-08-01

    To evaluate the microtensile bond strength of indirect resin composite inlays to dentin using two cementation strategies, before and after mechanical aging. Standardized inlay cavities (bucco-lingual width: 3 mm; depth: 4 mm) were prepared in 32 human premolars. The teeth were embedded in self-curing acrylic resin up to 3 mm from the cementoenamel junction, impressions were made using a polyvinyl siloxane material, master dies were obtained using type 4 stone, and inlay composite resin restorations were fabricated (Sinfony, 3M ESPE). The teeth were randomly allocated into 4 groups according to the cementation strategy (conventional [C] and simplified [S]) and aging (mechanical cycling [MC] and not aged): C[G1]: Adper SingleBond + RelyX ARC without aging; CMC[G2]: conventional cementation + mechanical cycling (106 cycles, 88 N, 4 Hz, ± 37°C); S[G3]: self-adhesive resin cement (RelyX U-100) without aging; SMC[G4] self-adhesive cementation + mechanical cycling. Intaglio surfaces of composite inlays were treated by tribochemical silica coating in G1 and G2, while G3 and G4 received no surface treatment. Non-aged specimens were stored in a moist environment at ca 37°C for the same period as MC (3 days). Non-trimmed beam specimens (bonding area = 1 mm²) were produced by serial cutting, and microtensile testing was performed (0.5 mm/min). Two-way ANOVA showed that the microtensile bond strength was affected only by cementation strategy (p < 0.0001). Tukey's test showed that groups G1 (35.1 ± 9.1) and G2 (32.7 ± 10.7) presented significantly higher bond strength values than G3 (8.7 ± 6.3) and G4 (5.2 ± 4.6). The use of a conventional adhesive technique and tribochemical silica coating resulted in higher μTBS than the one-step simplified cementation, even after mechanical cycling.

  11. Effect of surface treatments of laboratory-fabricated composites on the microtensile bond strength to a luting resin cement.

    PubMed

    Soares, Carlos José; Giannini, Marcelo; Oliveira, Marcelo Tavares de; Paulillo, Luis Alexandre Maffei Sartini; Martins, Luis Roberto Marcondes

    2004-03-01

    The purpose of this study was to evaluate the influence of different surface treatments on composite resin on the microtensile bond strength to a luting resin cement. Two laboratory composites for indirect restorations, Solidex and Targis, and a conventional composite, Filtek Z250, were tested. Forty-eight composite resin blocks (5.0 x 5.0 x 5.0mm) were incrementally manufactured, which were randomly divided into six groups, according to the surface treatments: 1- control, 600-grit SiC paper (C); 2- silane priming (SI); 3- sandblasting with 50 mm Al2O3 for 10s (SA); 4- etching with 10% hydrofluoric acid for 60 s (HF); 5- HF + SI; 6 - SA + SI. Composite blocks submitted to similar surface treatments were bonded together with the resin adhesive Single Bond and Rely X luting composite. A 500-g load was applied for 5 minutes and the samples were light-cured for 40s. The bonded blocks were serially sectioned into 3 slabs with 0.9mm of thickness perpendicularly to the bonded interface (n = 12). Slabs were trimmed to a dumbbell shape and tested in tension at 0.5mm/min. For all composites tested, the application of a silane primer after sandblasting provided the highest bond strength means.

  12. Comparison of shear bond strength of calcium-enriched mixture cement and mineral trioxide aggregate to composite resin.

    PubMed

    Oskoee, Siavash Savadi; Kimyai, Soodabeh; Bahari, Mahmoud; Motahari, Paria; Eghbal, Mohammad Jafar; Asgary, Saeed

    2011-11-01

    Adhesion of composite resin and pulp capping biomaterials remarkably influences treatment outcomes. This in vitro study aimed to compare the shear bond strength of composite resin to calcium enriched mixture (CEM) cement, mineral trioxide aggregate (MTA) and resin modified glass ionomer (RMGI) with or without acid etching. A total of 90 cylindrical acrylic blocks containing a central hole, measuring 4 mm diameter and 2 mm height were prepared. The blocks were randomly divided into three experimental groups based on being filled with CEM, MTA or RMGI. Samples in each group were then randomly divided into two subgroups, i.e. with or without phosphoric acid etching. Placing composite resin cylinders on the samples, shear bond strengths were measured using a universal testing machine. Failure modes of the samples were evaluated under a stereomicroscope. Data were analyzed using two-way ANOVA and Tukey tests. Shear bond strengths in the etched and nonetched samples were not significantly different (p = 0.60). There was a significant difference in shear bond strength values of the three experimental materials (p < 0.001) and RMGI showed the highest strength values (p < 0.001); no significant difference was observed between MTA and CEM (p = 0.51). The interaction of the type of material and surface etching was statistically significant (p < 0.001). All of the samples showed cohesive failure mode. Acid etching of MTA, CEM and RMGI do not improve the shear bond strength of these materials to composite resin. Besides, shear bond strength values of MTA and CEM to composite resin, are favorable due to their cohesive mode of failure. When MTA and CEM biomaterials are used in vital pulp therapy, it is advisable to cover these materials with RMGI. In addition, if it is not possible to use RMGI, the surface etching of MTA and CEM biomaterials is not necessary prior to composite restoration using total-etch adhesive resin.

  13. TRANSMISSION OF COMPOSITE POLYMERIZATION CONTRACTION FORCE THROUGH A FLOWABLE COMPOSITE AND A RESIN-MODIFIED GLASS IONOMER CEMENT

    PubMed Central

    Castañeda-Espinosa, Juan Carlos; Pereira, Rosana Aparecida; Cavalcanti, Ana Paula; Mondelli, Rafael Francisco Lia

    2007-01-01

    The purpose of this study was to evaluate the individual contraction force during polymerization of a composite resin (Z-250), a flowable composite (Filtek Flow, FF) and a resin-modified glass ionomer cement (Vitrebond, VB), and the transmission of Z-250 composite resin polymerization contraction force through different thicknesses of FF and VB. The experiment setup consisted of two identical parallel steel plates connected to a universal testing machine. One was fixed to a transversal base and the other to the equipment's cross head. The evaluated materials were inserted into a 1-mm space between the steel plates or between the inferior steel plate and a previously polymerized layer of an intermediate material (either FF or VB) adhered to the upper steel plate. The composite resin was light-cured with a halogen lamp with light intensity of 500 mW/cm2 for 60 s. A force/time graph was obtained for each sample for up to 120 s. Seven groups of 10 specimens each were evaluated: G1: Z-250; G2: FF; G3: VB; G4: Z-250 through a 0.5-mm layer of FF; G5: Z-250 through a 1-mm layer of FF; G6: Z-250 through a 0.5-mm of VB; G7: Z-250 through a 1-mm layer of VB. They were averaged and compared using one-way ANOVA and Tukey test at a = 0.05. The obtained contraction forces were: G1: 6.3N ± 0.2N; G2: 9.8 ± 0.2N; G3: 1.8 ± 0.2N; G4: 6.8N ± 0.2N; G5: 6.9N ± 0.3N; G6: 4.0N ± 0.4N and G7: 2.8N ± 0.4N. The use of VB as an intermediate layer promoted a significant decrease in polymerization contraction force values of the restorative system, regardless of material thickness. The use of FF as an intermediate layer promoted an increase in polymerization contraction force values with both material thicknesses. PMID:19089187

  14. Fluoride release from glass-ionomer cements, compomers and resin composites.

    PubMed

    Vermeersch, G; Leloup, G; Vreven, J

    2001-01-01

    The short and long-term fluoride release of 16 products (seven conventional glass-ionomers, five light-activated glass-ionomers, two polyacid-modified resin composites and two resin composites) commercialized as fluoride-releasing materials were measured. A potential link between the material type and its level of fluoride release was researched. The fluoride release was evaluated after different time intervals. Initial fluoride release from all materials was highest during the first 24 h and decreased sharply over the first week. Some groups of materials appeared to be significantly different after, respectively, 7 and 91 days. However, it was impossible to correlate the fluoride release of the materials by their type (conventional or resin-modified glass-ionomers, polyacid-modified resin composite and resin composite) except if we compared the products from the same manufacturer. The link between fluoride release and an acid-base reaction seems to be confirmed. The glass-ionomer composition (glass particles and polyacid's type, powder/liquid ratio) should have more influence on fluoride release than material type.

  15. A resin composite material containing an eugenol derivative for intracanal post cementation and core build-up restoration.

    PubMed

    Almaroof, A; Rojo, L; Mannocci, F; Deb, S

    2016-02-01

    To formulate and evaluate new dual cured resin composite based on the inclusion of eugenyl methacrylate monomer (EgMA) with Bis-GMA/TEGDMA resin systems for intracanal post cementation and core build-up restoration of endodontically treated teeth. EgMA was synthesized and incorporated at 5% (BTEg5) or 10% (BTEg10) into dual-cure formulations. Curing properties, viscosity, Tg, radiopacity, static and dynamic mechanical properties of the composites were determined and compared with Clearfil™DC Core-Plus, a commercial dual-cure, two-component composite. Statistical analysis of the data was performed with ANOVA and the Tukey's post-hoc test. The experimental composites were successfully prepared, which exhibited excellent curing depths of 4.9, 4.7 and 4.2 mm for BTEg0, BTEg5 and BTEg10 respectively, which were significantly higher than Clearfil™DC. However, the inclusion of EgMA initially led to a lower degree of cure, which increased when measured at 24 h with values comparable to formulations without EgMA, indicating post-curing. The inclusion of EgMA also lowered the polymerization exotherm thereby reducing the potential of thermal damage to host tissue. Both thermal and viscoelastic analyses confirmed the ability of the monomer to reduce the stiffness of the composites by forming a branched network. The compressive strength of BTEg5 was significantly higher than the control whilst flexural strength increased significantly from 95.9 to 114.8 MPa (BTEg5) and 121.9 MPa (BTEg10). Radiopacity of the composites was equivalent to ∼3 mm Al allowing efficient diagnosis. The incorporation of EgMA within polymerizable formulations provides a novel approach to prepare reinforced resin composite material for intracanal post cementation and core build-up and the potential to impart antibacterial properties of eugenol to endodontic restorations. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. Bond Strength of Resin Cements to Dentin Using New Universal Bonding Agents

    DTIC Science & Technology

    2015-06-30

    34Bond Strength of Resin Cements to Dentin Using New Universal Bonding Agents" Materials Repaired with Composite Resin " 7. Intended publication...incompatibilities with self-curing composite materials. Low bond strength between self-curing composite resins , such as resin cements and core materials...of self-cure composite materials or dual-cure materials that are not adequately light cured (Tay et al., 2003). Most resin cement systems that use

  17. Effect of storage and acid etching on the tensile bond strength of composite resins to glass ionomer cement.

    PubMed

    Mesquita, M F; Domitti, S S; Consani, S; de Goes, M F

    1999-01-01

    This in vitro study evaluates the effect of storage time and acid etching on the tensile bond strength of glass ionomer cement to composite resins. The bonded assemblies were stored at 100% relative humidity and 37 degrees C for 1 hour, 1 day, 1 week, 1 month and 3 months. The test specimen was loaded at tension to failure on an Otto Wolpert-Werke testing instrument with a crosshead speed of 6 mm/min. The results showed a significant statistical difference for etched Vidrion F when compared to etched Ketac Bond at all storage periods. The unetched samples were statistically similar at 3 months, with the highest values for Vidrion F.

  18. Impact of different adhesives on work of adhesion between CAD/CAM polymers and resin composite cements.

    PubMed

    Keul, Christine; Müller-Hahl, Manuel; Eichberger, Marlis; Liebermann, Anja; Roos, Malgorzata; Edelhoff, Daniel; Stawarczyk, Bogna

    2014-09-01

    To determine the impact of pre-treatment of adhesive systems on the work of adhesion (WA) between CAD/CAM polymers and resin composite cements and compare with conventional tests of previous studies. Surface parameters were measured by contact angle measurement (2700 measurements) and WA was calculated. Five CAD/CAM polymers were used for fabrication of specimens (n=75/subgroup): artBloc Temp (A), Telio CAD (B), Nano Composite CFI-C (C), exp. CAD/CAM nanohybrid composite (D), and LAVA Ultimate (E). Then, air-abraded specimens were pre-treated (n=15 per group): Ambarino P60 (I), Monobond Plus/Heliobond (II), visio.link (III), VP connect (IV), and no pre-treatment (V). Resin composite cement specimens (n=75) were smoothed out homogeneously on a glass plate (n=15/group): RelyX ARC (RXA), Variolink II (VAR), Panavia F2.0 (PAN), RelyX Unicem (RXU), and Clearfil SA Cement (CSA). Contact angles were determined with 3 drops of distilled water and diiodomethane each. Data were analyzed using Kruskal-Wallis-H test and Spearman-Rho correlation (p<0.05). CAD/CAM materials (B), (A), and (C) showed higher WA compared to (D) and (E). (II) and (IV) resulted in higher WA than (I), (III) and (V). VAR had the significantly lowest WA, followed by RXU, RXA, CSA and PAN. No correlation occurred between WA and TBS/SBS whereas polar component of surface free energy of CAD/CAM resin and spreading coefficient showed significant positive correlation with TBS/SBS. Determination of WA is not a proper method to draw conclusions about the bond between resin materials. Destructive test methods are not dispensable. The successful outcome of fixed dental restorations depends, among others, on the quality of bonding between the tooth and the restoration. Additional pre-treatment of the dental CAD/CAM resin restoration by bonding systems can be recommended for clinical use. Pre-treatment showed a significant impact on the surface properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Influence of Nd:YAG or Er:YAG laser surface treatment on microtensile bond strength of indirect resin composites to resin cement. Lasers surface treatment of indirect resin composites.

    PubMed

    Caneppele, T M F; de Souza, A C Oliveira; Batista, G R; Borges, A B; Torres, C R G

    2012-09-01

    This study evaluated the influence of the surface pretreatment of indirect resin composite (Signum, Admira Lab and Sinfony) on the microtensile bond strength of a resin cement. Sixty samples made of each brand were divided into 6 groups, according to surface treatment: (1) control; (2) controlled-air abrasion with Al2O3; (3) Er:YAG Laser 200 mJ, 10 Hz, for 10s; (4) Er: YAG Laser 300 mJ, 10 Hz, for 10 s; (5) Nd:YAG 80 mJ, S15Hz for 1 min; (6) Nd:YAG 120mJ, 15 Hz for 1 min. After treatments, all the groups received an application of 37% phosphoric acid and adhesive. The pair of blocks of the same brand were cemented to each other with dual resin cement. The blocks were sectioned to obtain resin-resin sticks (1 x1 mm) and analyzed by microtensile bond testing. The bond strength values were statistically different, irrespective of the surface treatment performed, with highest values for Sinfony (43.81 MPa) and lowest values for Signum (32.33 MPA). The groups treated with the Nd:YAG laser showed the lowest bond strength values and power did not interfere in the results, both for Nd:YAG laser and Er:YAG. Controlled-air abrasion with Al203 is an efficient surface treatment method and the use of the Nd:YAG and Er:YAG lasers reduced bond strength, irrespective of the intensity of energy used.

  20. Effect of fiber-premixed indirect resin composite substructure on fracture resistance of MOD composite inlays adhered with two different adhesive resin cements.

    PubMed

    Minami, Hiroyuki; Suzuki, Shiro; Murahara, Sadaaki; Saimi, Yasukazu; Minesaki, Yoshito; Tanaka, Takuo

    2009-09-01

    This study evaluated the effect of a fiber-premixed indirect resin composite (FMC) substructure on the fracture resistance of mesialocclusal-distal (MOD) indirect composite restorations adhered to extracted human upper premolars. The teeth received a standardized MOD cavity preparation, and indirect composite inlays were fabricated with or without using the FMC. Inlays were cemented into the cavity preparations using either Super-Bond C&B or Panavia F2.0. A total of 28 specimens, namely seven specimens for four groups, were thus fabricated. Failure load and failure energy were determined after thermocycling (4-60 degrees C for 5,000 cycles). In terms of failure load, no significant differences were found among the four groups. In terms of failure energy, FMC substructure exerted a significantly favorable effect on Super-Bond C&B-bonded group but a negative one on Panavia F2.0-bonded group. In conclusion, the failure energy of the group using FMC substructure and which was adhered using Super-Bond C&B was significantly higher than the other groups.

  1. Effect of time on tensile bond strength of resin cement bonded to dentine and low-viscosity composite.

    PubMed

    Duarte, Rosângela Marques; de Goes, Mario Fernando; Montes, Marcos Antonio Japiassú Resende

    2006-01-01

    The purpose of this study was to evaluate the tensile bond strength (TBS) of Panavia F resin cement (PF) applied on dentine pre-treated with ED Primer (ED) and Clearfil Liner Bond 2V (CLB) coated with a layer of low-viscosity composite Protect Liner F (PLF) at 10 min, 24 h and 12 months after curing. The labial surfaces of 60 bovine lower incisors were ground to obtain a flat dentine surface, allowing a demarcation of a 4.0 mm-diameter area with adhesive tape. The teeth were randomly divided in six groups; ED was applied in groups A I, A II and A III and CLB was applied, followed by PLF, in groups B I, B II and B III. A resin composite rod with a wire loop was luted directly to the prepared surface of each group with PF. The specimens of groups A I and B I were submitted to TBS test after 10 min. Groups A II and B II were submitted to TBS test after 24 h storage and groups A III and B III were submitted to TBS test after 12 months storage. Each specimen was inspected by SEM and classified according to the failure mode. Additionally, two representative specimens of each failure mode were sectioned for a composite/dentine interface SEM evaluation. No significant statistical differences were observed among the groups at 10 min and 24 h. Groups A III and B III presented the lowest TBS values (p<0.05) after 12 months storage. PF on resin-coated dentin (PLF) showed the highest TBS values and was statistically different to PF on dentine for all the groups. The fracture pattern was generally cohesive on the adhesive/hybrid layer for groups A I, A II and A III and cohesive on composite resin for B I, B II and B III. The use of a less hydrophilic self-etching system to pre-treat dentine, coating with a low-viscosity composite layer prior luting with resin cement, may provide a protection of the hybridised complex, allowing a dentine seal during the 12 months storage period.

  2. Self-adhesive resin cements - chemistry, properties and clinical considerations.

    PubMed

    Ferracane, J L; Stansbury, J W; Burke, F J T

    2011-04-01

    Self-adhesive resin cements were introduced to dentistry within the past decade but have gained rapidly in popularity with more than a dozen commercial brands now available. This review article explores their chemical composition and its effect on the setting reaction and adhesion to various substrates, their physical and biological properties that may help to predict their ultimate performance and their clinical performance to date and handling characteristics. The result of this review of self-adhesive resin cements would suggest that these materials may be expected to show similar clinical performance as other resin-based and non-resin based dental cements. © 2010 Blackwell Publishing Ltd.

  3. The effect of ceramic primer on shear bond strength of resin composite cement to zirconia: a function of water storage and thermal cycling.

    PubMed

    Keul, Christine; Liebermann, Anja; Roos, Malgorzata; Uhrenbacher, Julia; Stawarczyk, Bogna; Ing, Dipl

    2013-11-01

    The authors investigated the use of ceramic primers combined with self-adhesive resin composite cements on the shear bond strength (SBS) to zirconia and compared them with one conventional resin composite cement. The authors divided zirconia substrates (N = 550) into three groups: RelyX Unicem Aplicap self-adhesive universal resin composite cement (3M ESPE, St. Paul, Minn.) (group A) (n = 220); G-CEM Capsule self-adhesive resin composite cement (GC Europe, Leuven, Belgium) (group B) (n = 220); and Panavia 21 with Clearfil Porcelain Bond Activator and Clearfil SE Bond primer (n = 110) (Kuraray Dental, Tokyo) used as a standard comparison (SC). The authors examined the self-adhesive resin composite cements without (0) and with (1) the use of a ceramic primer. They measured SBS initially (37°C for three hours), after water storage (37°C for one, four, nine, 16 or 25 days) and after thermal cycling (5°C and 55°C for 1,500, 6,000, 13,500, 24,000 or 37,500 cycles). The authors analyzed data by using descriptive statistics, the Mann-Whitney test, the Kruskal-Wallis test and a χ(2) test. Application of a ceramic primer did not result in a negative impact on SBS. Specimens in the A1 group (that is, RelyX Unicem Aplicap with ceramic primer) exhibited significantly higher SBS before and after water storage and thermal cycling compared with specimens that were not treated with a primer. The self-adhesive resin composite cements combined with ceramic primer exhibited similar or higher SBS values compared with those in the SC group at each aging duration (that is, water storage and thermal cycling). With respect to G-CEM Capsule, the authors observed a significantly positive effect of the primer after nine and 16 days' water storage and after one and four days' thermal cycling. They observed predominantly adhesive failures. Ceramic primer in combination with self-adhesive resin composite cement demonstrated a positive effect on SBS to zirconia and should be used for

  4. Analytical method to estimate resin cement diffusion into dentin

    NASA Astrophysics Data System (ADS)

    de Oliveira Ferraz, Larissa Cristina; Ubaldini, Adriana Lemos Mori; de Oliveira, Bruna Medeiros Bertol; Neto, Antonio Medina; Sato, Fracielle; Baesso, Mauro Luciano; Pascotto, Renata Corrêa

    2016-05-01

    This study analyzed the diffusion of two resin luting agents (resin cements) into dentin, with the aim of presenting an analytical method for estimating the thickness of the diffusion zone. Class V cavities were prepared in the buccal and lingual surfaces of molars (n=9). Indirect composite inlays were luted into the cavities with either a self-adhesive or a self-etch resin cement. The teeth were sectioned bucco-lingually and the cement-dentin interface was analyzed by using micro-Raman spectroscopy (MRS) and scanning electron microscopy. Evolution of peak intensities of the Raman bands, collected from the functional groups corresponding to the resin monomer (C-O-C, 1113 cm-1) present in the cements, and the mineral content (P-O, 961 cm-1) in dentin were sigmoid shaped functions. A Boltzmann function (BF) was then fitted to the peaks encountered at 1113 cm-1 to estimate the resin cement diffusion into dentin. The BF identified a resin cement-dentin diffusion zone of 1.8±0.4 μm for the self-adhesive cement and 2.5±0.3 μm for the self-etch cement. This analysis allowed the authors to estimate the diffusion of the resin cements into the dentin. Fitting the MRS data to the BF contributed to and is relevant for future studies of the adhesive interface.

  5. Streptococcus mutans-induced secondary caries adjacent to glass ionomer cement, composite resin and amalgam restorations in vitro.

    PubMed

    Gama-Teixeira, Adriana; Simionato, Maria Regina Lorenzeti; Elian, Silvia Nagib; Sobral, Maria Angela Pita; Luz, Maria Aparecida Alves de Cerqueira

    2007-01-01

    The aim of this study was to define, in vitro, the potential to inhibit secondary caries of restorative materials currently used in dental practice. Standard cavities were prepared on the buccal and lingual surfaces of fifty extracted human third molars. The teeth were randomly divided into five groups, each one restored with one of the following materials: glass ionomer cement (GIC); amalgam; light-cured composite resin; ion-releasing composite; and light-cured, fluoride-containing composite resin. The teeth were thermocycled, sterilized with gamma irradiation, exposed to a cariogenic challenge using a bacterial system using Streptococcus mutans, and then prepared for microscopic observation. The following parameters were measured in each lesion formed: extension, depth, and caries inhibition area. The outer lesions developed showed an intact surface layer and had a rectangular shape. Wall lesions were not observed inside the cavities. After Analysis of Variance and Component of Variance Models Analysis, it was observed that the GIC group had the smallest lesions and the greatest number of caries inhibition areas. The lesions developed around Amalgam and Ariston pHc restorations had an intermediate size and the largest lesions were observed around Z-100 and Heliomolar restorations. It may be concluded that the restorative materials GIC, amalgam and ion-releasing composites may reduce secondary caries formation.

  6. Cementation of indirect restorations: an overview of resin cements.

    PubMed

    Stamatacos, Catherine; Simon, James F

    2013-01-01

    The process of ensuring proper retention, marginal seal, and durability of indirect restorations depends heavily on effective cementation. Careful consideration must be made when selecting an adhesive cement for a given application. This article provides information on resin cements that can guide clinicians in determining which type of cement is best suited to their clinical needs regarding cementation of indirect restorations. Emphasis is placed on successful cementation of all-ceramic restorations.

  7. Shear bond strength of a novel light cured calcium silicate based-cement to resin composite using different adhesive systems.

    PubMed

    Alzraikat, Hanan; Taha, Nessrin A; Qasrawi, Deema; Burrow, Michael F

    2016-12-01

    The shear bond strength (SBS) of TheraCal LC to resin composite was evaluated in comparison to Mineral trioxide aggregate (ProRoot MTA) and conventional glass ionomer cement (GIC) using two adhesive systems. A hole was prepared in 90 acrylic blocks (6 mm diameter, 2 mm deep) then filled with TheraCal LC, MTA or Fuji IX (n=30/group). Each group was bonded with either an etch and rinse or 1-step self-etch adhesive. Filtek Z250 composite was bonded to each capping material. Bond strength was tested in a universal testing machine, and data were analyzed using 2-way ANOVA and Duncan's Multiple range test (p<0.05). TheraCal LC displayed the highest SBS (p<0.001). MTA bonded with the 1-step self-etch adhesive showed the lowest SBS (p<0.001), while SBS of TheraCal LC and Fuji IX did not differ between either adhesive (p>0.05). TheraCal LC is the preferred choice in pulp capping procedures when using resin composite restorations.

  8. Colour stability and opacity of resin cements and flowable composites for ceramic veneer luting after accelerated ageing.

    PubMed

    Archegas, Lucí Regina Panka; Freire, Andrea; Vieira, Sergio; Caldas, Danilo Biazzetto de Menezes; Souza, Evelise Machado

    2011-11-01

    Colour changes of the luting material can become clinically visible affecting the aesthetic appearance of thin ceramic laminates. The aim of this in vitro study was to evaluate the colour stability and opacity of light- and dual-cured resin cements and flowable composites after accelerated ageing. The luting agents were bonded (0.2 mm thick) to ceramic disks (0.75 mm thick) built with the pressed-ceramic IPS Aesthetic Empress (n=7). Colour measurements were determined using a FTIR spectrophotometer before and after accelerated ageing in a weathering machine with a total energy of 150 kJ. Changes in colour (ΔE) and opacity (ΔO) were obtained using the CIE L*a*b* system. The results were submitted to one-way ANOVA, Tukey HSD test and Student's t test (α=5%). All the materials showed significant changes in colour and opacity. The ΔE of the materials ranged from 0.41 to 2.40. The highest colour changes were attributed to RelyX ARC and AllCem, whilst lower changes were found in Variolink Veneer, Tetric Flow and Filtek Z350 Flow. The opacity of the materials ranged from -0.01 to 1.16 and its variation was not significant only for Opallis Flow and RelyX ARC. The accelerated ageing led to colour changes in all the evaluated materials, although they were considered clinically acceptable (ΔE<3). Amongst the dual-cured resin cements, Variolink II demonstrated the highest colour stability. All the flowable composites showed proper colour stability for the luting of ceramic veneers. After ageing, an increase in opacity was observed for most of the materials. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. The effect of glass ionomer cement or composite resin bases on restoration of cuspal stiffness of endodontically treated premolars in vitro.

    PubMed

    Hofmann, N; Just, N; Haller, B; Hugo, B; Klaiber, B

    1998-06-01

    The purpose of the present study was to decide whether composite resin or conventional glass ionomer cement should be preferred as a base material in endodontically treated premolars. Twelve extracted human maxillary premolars were mounted in a universal testing machine at a 35 degrees angle. Cuspal stiffness was determined by applying a load of 75 N to the buccal cusp and recording the displacement of the cusp using inductive displacement transducers. In the same teeth, different cavity preparations and restorations were performed sequentially. Standard MOD cavities were enlarged to allow endodontic access. In addition, the cusps were undermined. Half of the teeth were restored to the level of the previous shallow cavities using conventional glass ionomer cement (Ketac Fil), in the rest of the teeth dentine bonding agent (Syntac) and composite resin (Tetric) were used instead. Finally, composite resin fillings (Tetric) were placed. All restorations were removed and the experiments were repeated twice. For each replication, the assignment of the base materials to the experimental groups was reversed, and ceramic inlays (Empress) were used as final restorations for the last replication. Improvement of cuspal stiffness achieved by conventional glass ionomer bases was very small, whereas composite resin bases increased cuspal stability by more than a factor of two. After placement of the final restorations, however, there was no longer a difference between teeth with different base materials. Nevertheless, composite resin bases might be preferred for two reasons. Firstly, deterioration of adhesive restorations will probably start at the cavosurface margins. The incidence of margin gaps, however, will not only compromise marginal seal but also the stabilizing effect of the restoration. In this situation, the resin base may still stabilize the tooth. Moreover, resin bases may reduce the risk of cusp fracture during the time between cavity preparation and the insertion

  10. Morphological characteristics of the interface between resin composite and glass-ionomer cement to thin-walled roots: a microscopic investigation.

    PubMed

    Ayad, Mohamed F; Bahannan, Salma A; Rosenstiel, Stephen F

    2010-04-01

    To identify how different treatments of the root dentin surface affect the microscopic appearance of the resin composite/glass-ionomer cement-to-dentin interface. The root canals of 70 extracted human single-rooted teeth were enlarged to reduce dentin wall thicknesses to 0.5 mm. The roots were randomly divided into seven test groups (n=10) according to the canal irrigant used: no irrigant (control), 5% hydrogen peroxide, 5% sodium hypochlorite, a combination of 5% hydrogen peroxide and sodium hypochlorite, 15% ethylenediaminetetraacetic acid (EDTA), 10% lactic acid, or 20% lactic acid. To simulate thin-walled roots, within each group, crowns were sectioned and the entire surface of each root canal space was enlarged with Profile instrument. Half of treated root canals (n=5) were filled with resin composite (PermaFlo) and the other half were filled with glass-ionomer cement (Fuji II LC). A light-transmitting plastic post (Luminex) was used to create space for a fiber-reinforced post and to ensure polymerization of the restorative material. Specimens were critical-point dried and freeze fractured for scanning electron microscope analysis. Three sites along the root were evaluated (cervical, middle, and apical). Scanning electron micrographs showed no differences in the morphology of the resin tags at the cervical, middle or apical levels with any of the irrigants or the restorative materials used. Also, no difference in surface topography was found within individual groups. A resin-dentin interdiffusion zone and resin tags developed after application of resin composite with lactic acid solutions and EDTA but not with the glass-ionomer cement.

  11. [Effects of three different surface treatments on bond strength between composite resin core and glass ionomer cement].

    PubMed

    Hu, Daoyong; Zhong, Tian; Zhu, Hongshui

    2013-02-01

    To compare shear bond strength (SBS) between composite resin core (CRC) disposed with three different surface treatments and glass ionomer cement (GIC), so that to provide theoretical basis for luting of crowns to CRC. According to three different surface treatments, thirty blocks of CRC were randomly and equally divided into three groups: Roughening with diamond grit bur(RDB), RDB plus etching with Gluma Etch 35 Gel (RDBE), RDB plus coating with Adper Single Bond2 adhensive (RDBA). All CRC were cemented with GIC. All specimens were preserved in 37 degrees C water for 24 h, then SBS tests for eight specimens in each group were performed using a universal testing machine at a constant crosshead speed of 0.5 mm x min(-1). The surface topography of one CRC of each group was observed using field emission scanning electron microscope (FE-SEM) at 100 amplification. The interface between CRC and GIC was observed using FE-SEM at 500 amplification. Then the nature of failure was also recorded using FE-SEM at 25 amplification and the data were analyzed with a Kruskal-Wallis H test. The surface topography of each group and the interface between CRC and GIC observed using FE-SEM were significantly different, but significant differences on the nature of failure between groups were not found (P > 0.10). SBS of each group was (4.28 +/- 0.18) MPa for RDB, (4.65 +/- 0.17) MPa for RDBE, (2.39 +/- 0.21) MPa for RDBA, respectively (P < 0.01). The SBS between CRC and GIC is affected by the surface treatments of CRC.

  12. Shear bond strength of Biodentine, ProRoot MTA, glass ionomer cement and composite resin on human dentine ex vivo.

    PubMed

    Kaup, Markus; Dammann, Christoph Heinrich; Schäfer, Edgar; Dammaschke, Till

    2015-04-19

    The aim of this study was to compare the shear bond strength of Biodentine, ProRoot MTA (MTA), glass ionomer cement (GIC) and composite resin (CR) on dentine. 120 extracted human third molars were embedded in cold-cured-resin and grinned down to the dentine. For each material 30 specimens were produced in standardised height and width and the materials were applied according to manufacturers´ instructions on the dentine samples. Only in the CR group a self-etching dentine-adhesive was used. In all other groups the dentine was not pre-treated. All specimens were stored at 37.5 °C and 100% humidity for 2d, 7d and 14d. With a testing device the shear bond strength was determined (separation of the specimens from the dentine surface). The statistical evaluation was performed using ANOVA and Tukey-test (p < 0.05). At all observation periods the CR showed the significant highest shear bond strength (p < 0.05). After 2d significant differences in the shear bond strength were detectable between all tested materials, whereby CR had the highest and MTA the lowest values (p < 0.05). After 7d and 14d the shear bond strengths of MTA and Biodentine increased significantly compared to the 2d investigation period (p < 0.05). Biodentine showed a significantly higher shear bond strength than MTA (p < 0.05), while the difference between Biodentine and GIC was not significant (p > 0.05). After 7d Biodentine showed comparable shear bond values than GIC, whereas the shear bond values for MTA were significantly lower even after 14d. The adhesion of Biodentine to dentine surface seams to be superior compared to that of MTA.

  13. Try-in Pastes Versus Resin Cements: A Color Comparison.

    PubMed

    Vaz, Edenize Cristina; Vaz, Maysa Magalhães; Rodrigues Gonçalves de Oliveira, Maria Beatriz; Takano, Alfa Emília; de Carvalho Cardoso, Paula; de Torres, Érica Miranda; Gonzaga Lopes, Lawrence

    2016-05-01

    This study aimed to compare the color of ceramic veneer restorations using different shades of try-in pastes and resin cement. Researchers found no differences between try-in pastes and resin cements after cementation.

  14. Effects of air abrasion with alumina or glass beads on surface characteristics of CAD/CAM composite materials and the bond strength of resin cements

    PubMed Central

    Nobuaki, ARAO; Keiichi, YOSHIDA; Takashi, SAWASE

    2015-01-01

    ABSTRACT Objective The study aimed to evaluate effects of air abrasion with alumina or glass beads on bond strengths of resin cements to CAD/CAM composite materials. Material and Methods CAD/CAM composite block materials [Cerasmart (CS) and Block HC (BHC)] were pretreated as follows: (a) no treatment (None), (b) application of a ceramic primer (CP), (c) alumina-blasting at 0.2 MPa (AB), (d) AB followed by CP (AB+CP), and (e) glass-beads blasting at 0.4 MPa (GBB) followed by CP (GBB+CP). The composite specimens were bonded to resin composite disks using resin cements [G-CEM Cerasmart (GCCS) and ResiCem (RC)]. The bond strengths after 24 h (TC 0) and after thermal cycling (TC 10,000 at 4–60°C) were measured by shear tests. Three-way ANOVA and the Tukey compromise post hoc tests were used to analyze statistically significant differences between groups (α=0.05). Results For both CAD/CAM composite materials, the None group exhibited a significant decrease in bond strength after TC 10,000 (p<0.05). AB showed significantly higher bond strength after TC 10,000 than the None group, while CP did not (p<0.05). GBB exhibited smaller surface defects than did AB; however, their surface roughnesses were not significantly different (p>0.05). The AB+CP group showed a significantly higher bond strength after TC 10,000 than did the AB group for RC (p<0.05), but not for GCCS. The GBB+CP group showed the highest bond strength for both thermal cyclings (p<0.05). Conclusions Air abrasion with glass beads was more effective in increasing bond durability between the resin cements and CAD/CAM composite materials than was using an alumina powder and a CP. PMID:26814465

  15. Effects of air abrasion with alumina or glass beads on surface characteristics of CAD/CAM composite materials and the bond strength of resin cements.

    PubMed

    Nobuaki, Arao; Keiichi, Yoshida; Takashi, Sawase

    2015-01-01

    The study aimed to evaluate effects of air abrasion with alumina or glass beads on bond strengths of resin cements to CAD/CAM composite materials. CAD/CAM composite block materials [Cerasmart (CS) and Block HC (BHC)] were pretreated as follows: (a) no treatment (None), (b) application of a ceramic primer (CP), (c) alumina-blasting at 0.2 MPa (AB), (d) AB followed by CP (AB+CP), and (e) glass-beads blasting at 0.4 MPa (GBB) followed by CP (GBB+CP). The composite specimens were bonded to resin composite disks using resin cements [G-CEM Cerasmart (GCCS) and ResiCem (RC)]. The bond strengths after 24 h (TC 0) and after thermal cycling (TC 10,000 at 4-60°C) were measured by shear tests. Three-way ANOVA and the Tukey compromise post hoc tests were used to analyze statistically significant differences between groups (α=0.05). For both CAD/CAM composite materials, the None group exhibited a significant decrease in bond strength after TC 10,000 (p<0.05). AB showed significantly higher bond strength after TC 10,000 than the None group, while CP did not (p<0.05). GBB exhibited smaller surface defects than did AB; however, their surface roughnesses were not significantly different (p>0.05). The AB+CP group showed a significantly higher bond strength after TC 10,000 than did the AB group for RC (p<0.05), but not for GCCS. The GBB+CP group showed the highest bond strength for both thermal cyclings (p<0.05). Air abrasion with glass beads was more effective in increasing bond durability between the resin cements and CAD/CAM composite materials than was using an alumina powder and a CP.

  16. Effect of Imaging Powders on the Bond Strength of Resin Cement

    DTIC Science & Technology

    2016-09-19

    composite , metal or ceramic restorations. Self-adhesive resin cements do not require a separate adhesive or etchant and appear to have a major benefit...compared to more traditional resin cements due to their simplicity of application. Relatively little information exists about the composition and...Strength of Resin Cement" is appropriately acknowledged and, beyond brief excerpts, is with the permission of the copyright owner. #lIZ Christopher R

  17. The evaluation of dual cement resins in orthodontic bonding.

    PubMed

    Smith, R T; Shivapuja, P K

    1993-05-01

    Dual-cement resins are composite resins that are both light activated and chemically cured. They can be cured completely with a visible light source or by the catalyst and base reaction of the material. With the control of setting time, dual cements appear to offer clinicians advantages in orthodontic bonding. The purposes of the present research are to compare various dual cements in regard to orthodontic bonding and to evaluate them in relation to currently used chemically cured and light-cured composite resins for bonding stainless steel mesh-backed orthodontic brackets. Seven currently available orthodontic bonding systems (three light cured and four chemically cured) and three dual cements were evaluated. Each of the 10 groups contained 15 noncarious mandibular incisors. Mandibular incisor brackets were bonded to the teeth in accordance with the manufacturer's recommendation. After bonding, the teeth were stored for 5 days in water at 37 degrees C. An Instron machine (Instron Corp., Canton, Mass.) was used to test samples. All samples were compared with Concise orthodontic bonding composite (3M, St. Paul, Minn.). The results of this investigation show that it is possible to bond solid, mesh-backed metal orthodontic brackets to teeth with a dual cement. The shear bond strengths of the dual cements, as tested in the laboratory, should be adequate to withstand normal orthodontic forces. Increased control of the setting time of the dual cements will allow the clinician more time to correctly position brackets and to remove excess resin before curing. In addition, the clinician can be assured of complete polymerization with the chemical properties of the dual cement resins.

  18. Microleakage in ceramic inlays luted with different resin cements.

    PubMed

    Mota, Cristiane Soares; Demarco, Flávio Fernando; Camacho, Guilherme Brião; Powers, John M

    2003-01-01

    The objective of this in vitro study was to evaluate the microleakage in ceramic inlays using different resin cements with margins in enamel and cementum/dentin interfaces. Standard Class II MOD inlay cavities were prepared in 32 noncarious human premolars. The cavities were randomly divided into 4 groups (n = 8): cavities were treated with Single Bond and incrementally filled with a composite resin (P60); Enforce group: feldspathic ceramic inlays were luted using Prime & Bond 2.1 and Enforce; RelyX group: inlays were cemented with Single Bond and RelyX ARC; Resin Cement group: ceramic inlays were bonded using Single Bond and Resin Cement. Ceramic inlays were previously treated with 10% hydrofluoric acid for 2 min, followed by silane application. After 7 days of storage in distilled water, teeth were submitted to thermocycling. After applying nail varnish, specimens were immersed in 2% aqueous solution of methylene blue for 8 h. After washing, teeth were cut into three sections through the restorations, and the leakage was assessed using a standardized score. Data were submitted to statistical analysis using nonparametric tests (Mann-Whitney and Kruskal-Wallis). Dye leakage at margins in enamel was statistically lower (p < 0.01) than at cementum/dentin interfaces. RelyX ARC performed better (p < 0.05) than resin cement (enamel) and composite restorations (cementum/dentin). No other statistical differences were observed. Both the material and the substrate interface influenced microleakage of the ceramic inlays.

  19. Fracture frequency and longevity of fractured resin composite, polyacid-modified resin composite, and resin-modified glass ionomer cement class IV restorations: an up to 14 years of follow-up.

    PubMed

    van Dijken, Jan W V; Pallesen, Ulla

    2010-04-01

    The aim of this study was to evaluate the fracture frequency and longevity of fractured class IV resin composite (RC), polyacid-modified resin composite (compomer; PMRC), and resin-modified glass ionomer cement (RMGIC) restorations in a longitudinal long-term follow-up. Eighty-five class IV RC (43: Pekafil), PMRC (24: Dyract (D), Hytac (H)), and RMGIC (18: Fuji II LC (F), Photac Fil (P)) restorations were placed in ongoing longitudinal follow-ups in 45 patients (mean age 54.5 years). The restorations were evaluated during 14 years by slightly modified USPHS criteria at yearly recalls especially for their fracture behavior. For all restorations, 36.5% were fractured, with a Kaplan-Meier (KM) estimate of 8.8 years (standard error (SE) 0.5, confidence interval (CI) 7.9-9.8). The number of fractures per material was 11 RC (25.6%; KM 9.9 years, CI 8.7-11.0), 13 PMRC (54.2%; D 66.6%; H 50.0%; KM 7.5 years, CI 5.8-9.2), and seven RMGIC (36.5%; F 22.2%, P 71.4%; KM 6.9 years, CI 7.9-9.8). Significant differences were seen between RC and PMRC (p = 0.043). A significant higher fracture rate was observed in teeth 12 + 22 compared to teeth 11 + 21. No significant differences were observed between male and female patients. Restorations in bruxing patients (45) showed 22 fractures (KM 8 years; CI 6.9-9.3) and in non-bruxing patients (39) nine fractures (KM 9.9 years, CI 8.7-11.1; p = 0.017). With regard to the longevity of the replaced failed restorations, for RC, the mean age was 4.5 years; for PMRC, 4.3 years; and for RMGIC, 3.3 years. It can be concluded that fracture was the main reason for failure of class IV restorations. An improved longevity was observed for class IV restorations compared to those presented in earlier studies. RC restorations showed the lowest failure frequency and the highest longevity.

  20. Effects of hydrogen peroxide pretreatment and heat activation of silane on the shear bond strength of fiber-reinforced composite posts to resin cement

    PubMed Central

    Shin, Tae-Bong; Lee, Joo-Hee; Ahn, Kang-Min; Kim, Tae-Hyung

    2016-01-01

    PURPOSE To evaluate the effects of hydrogen peroxide pretreatment and heat activation of silane on the shear bond strength of fiber-reinforced composite posts to resin cement. MATERIALS AND METHODS The specimens were prepared to evaluate the bond strength of epoxy resin-based fiber posts (D.T. Light-Post) to dual-curing resin cement (RelyX U200). The specimens were divided into four groups (n=18) according to different surface treatments: group 1, no treatment; group 2, silanization; group 3, silanization after hydrogen peroxide etching; group 4, silanization with warm drying at 80℃ after hydrogen peroxide etching. After storage of the specimens in distilled water at 37℃ for 24 hours, the shear bond strength (in MPa) between the fiber post and resin cement was measured using a universal testing machine. The fractured surface of the fiber post was examined using scanning electron microscopy. Data were analyzed using one-way ANOVA and post-hoc analysis with Tukey's HSD test (α=0.05). RESULTS Silanization of the fiber post (Group 2) significantly increased the bond strength in comparison with the non treated control (Group 1) (P<.05). Heat drying after silanization also significantly increased the bond strength (Group 3 and 4) (P<.05). However, no effect was determined for hydrogen peroxide etching before applying silane agent (Group 2 and 3) (P>.05). CONCLUSION Fiber post silanization and subsequent heat treatment (80℃) with warm air blower can be beneficial in clinical post cementation. However, hydrogen peroxide etching prior to silanization was not effective in this study. PMID:27141252

  1. Shear bond strength evaluation of resin composite bonded to three different liners: TheraCal LC, Biodentine, and resin-modified glass ionomer cement using universal adhesive: An in vitro study

    PubMed Central

    Deepa, Velagala L; Dhamaraju, Bhargavi; Bollu, Indira Priyadharsini; Balaji, Tandri S

    2016-01-01

    Aims: To compare and evaluate the bonding ability of resin composite (RC) to three different liners: TheraCal LC™ (TLC), a novel resin-modified (RM) calcium silicate cement, Biodentine™ (BD), and resin-modified glass ionomer cement (RMGIC) using an universal silane-containing adhesive and characterizing their failure modes. Materials and Methods: Thirty extracted intact human molars with occlusal cavity (6-mm diameter and 2-mm height) were mounted in acrylic blocks and divided into three groups of 10 samples each based on the liner used as Group A (TLC), Group B (BD), and Group C (RMGIC). Composite post of 3 mm diameter and 3 mm height was then bonded to each sample using universal adhesive. Shear bond strength (SBS) analysis was performed at a cross-head speed of 1 mm/min. Statistical Analysis Used: Statistical analysis was performed with one-way analysis of variance (ANOVA) and post hoc test using Statistical Package for the Social Sciences (SPSS) version 20. Results: No significant difference was observed between group A and group C (P = 0.573) while group B showed the least bond strength values with a highly significant difference (P = 0.000). The modes of failure were predominantly cohesive in Groups A and B (TLC and BD) while RMGIC showed mixed and adhesive failures. Conclusions: Hence, this present study concludes that the bond strength of composite resin to TLC and RMGIC was similar and significantly higher than that of BD following application of universal adhesive. PMID:27099425

  2. Resin cementation of zirconia ceramics with different bonding agents

    PubMed Central

    Tanış, Merve Çakırbay; Akay, Canan; Karakış, Duygu

    2015-01-01

    The aim of this study was to evaluate the effects of sandblasting and different chemical bonding agents on shear bond strength of zirconia and conventional resin cement. In this study, 35 zirconia specimens were treated as follows: Group I: control; Group II: sandblasting; Group III: sandblasting + Monobond S; Group IV: sandblasting + Monobond Plus; Group V: sandblasting + Z-Prime Plus. The specimens in each group were bonded with conventional composite resin cement Variolink II. After cementation, specimens were stored in distilled water (at 37 °C) for 24 h and shear test was performed. The highest shear bond strength values were observed in Groups IV and V. The lowest shear bond strength values were observed in Group I. Using 10-methacryloyloxy-decyl dihydrogenphosphate monomer-containing priming agents, e.g. Monobond Plus and Z-PRIME Plus, combined with sandblasting can be an effective method for resin bonding of zirconia restorations. PMID:26019653

  3. Resin cementation of zirconia ceramics with different bonding agents.

    PubMed

    Tanış, Merve Çakırbay; Akay, Canan; Karakış, Duygu

    2015-03-04

    The aim of this study was to evaluate the effects of sandblasting and different chemical bonding agents on shear bond strength of zirconia and conventional resin cement. In this study, 35 zirconia specimens were treated as follows: Group I: control; Group II: sandblasting; Group III: sandblasting + Monobond S; Group IV: sandblasting + Monobond Plus; Group V: sandblasting + Z-Prime Plus. The specimens in each group were bonded with conventional composite resin cement Variolink II. After cementation, specimens were stored in distilled water (at 37 °C) for 24 h and shear test was performed. The highest shear bond strength values were observed in Groups IV and V. The lowest shear bond strength values were observed in Group I. Using 10-methacryloyloxy-decyl dihydrogenphosphate monomer-containing priming agents, e.g. Monobond Plus and Z-PRIME Plus, combined with sandblasting can be an effective method for resin bonding of zirconia restorations.

  4. The influence of fatigue loading on the quality of the cement layer and retention strength of carbon fiber post-resin composite core restorations.

    PubMed

    Bolhuis, Peter; de Gee, Anton; Feilzer, Albert

    2005-01-01

    Clinical studies have shown that endodontically treated teeth restored with short posts or deficient ferrules show a high failure risk. This study. evaluated the influence of fatigue loading on the quality of the cement layer between prefabricated quartz coated carbon fiber posts with restricted length and the root canal wall in maxillary pre-molars. Two adhesive resin composite cements, chemical-cured Panavia 21 (Group 1) and dual-cured RelyX-ARC (Group 2), and one resin-modified glass-ionomer cement, chemical-cured RelyX (Group 3), delta were selected for this study. Post- and-core restorations were made on single-rooted human maxillary premolars from which the coronal sections were removed at the level of the proximal cemento-enamel junction (CEJ). Following endodontic treatment, a post-and-core restoration with 6-mm post length was prepared for each tooth. The posts were directly cemented into the root canal and, after applying an adhesive (Clearfil Photo Bond), they were built up with a core build-up composite (Clearfil Photo Core). For each group (n=8), half of the specimens were exposed to fatigue loading (10(6) load cycles) almost perpendicular to the axial axis (85 degrees), while the other half were used as the control. Three parallel, transverse root sections, 1.5-mm thick, were cut from each specimen at the apical, medial and coronal location. These sections were examined by Scanning Electron Microscopy (SEM) to evaluate the integrity of the cement layer, while the retention strength of the cemented post sections was determined with the push-out test. The multivariate results of MANOVA showed that the condition main effect (fatigue or control) was not significant (p=0.059); the two other main effects, type of cement and section location, were significant (p=0.001 and p=0.008). For both the push-out strength and SEM evaluation of the cement layer integrity, the results significantly improved from RelyX to RelyX-ARC to Panavia 21 and also from apical to

  5. Dynamic viscoelastic behavior of resin cements measured by torsional resonance.

    PubMed

    Papadogiannis, Y; Boyer, D B; Helvatjoglu-Antoniades, M; Lakes, R S; Kapetanios, C

    2003-09-01

    The purpose of the study was to measure the viscoelastic properties of four dental resin composite cements using a dynamic mechanical analysis technique. Dynamic torsional loading was conducted in the frequency range from 1 to 80 Hz. Cement specimens were tested after storage in 37 degrees C water for 24 h. One group was thermal cycled prior to testing. Measurements were taken at 21, 37, and 50 degrees C. Storage modulus, loss tangent and other viscoelastic parameters were determined from the amplitude/frequency curves. Storage moduli of the cements ranged from 2.9 to 4.1 GPa at 37 degrees C. Loss tangents ranged from 0.054 to 0.084. Storage moduli decreased in a regular way with increasing temperature, whereas, loss tangents increased. Thermal cycling caused small decreases in storage moduli. Resin cements with higher filler loading were found to have higher storage moduli and lower loss tangents. Since these properties have been associated with better clinical performance in the areas of retention and prevention of fracture of porcelain and resin restorations, the more highly filled cements may be recommended. Temperature variations influenced viscoelastic behavior of the cements. However, within the temperature range studied no sharp drop in modulus was seen, so the materials should function satisfactorily in the oral cavity.

  6. Review: Resin Composite Filling

    PubMed Central

    Chan, Keith H. S.; Mai, Yanjie; Kim, Harry; Tong, Keith C. T.; Ng, Desmond; Hsiao, Jimmy C. M.

    2010-01-01

    The leading cause of oral pain and tooth loss is from caries and their treatment include restoration using amalgam, resin, porcelain and gold, endodontic therapy and extraction. Resin composite restorations have grown popular over the last half a century because it can take shades more similar to enamel. Here, we discuss the history and use of resin, comparison between amalgam and resin, clinical procedures involved and finishing and polishing techniques for resin restoration. Although resin composite has aesthetic advantages over amalgam, one of the major disadvantage include polymerization shrinkage and future research is needed on reaction kinetics and viscoelastic behaviour to minimize shrinkage stress.

  7. Effect of sulfuric acid etching of polyetheretherketone on the shear bond strength to resin cements.

    PubMed

    Sproesser, Oliver; Schmidlin, Patrick R; Uhrenbacher, Julia; Roos, Malgorzata; Gernet, Wolfgang; Stawarczyk, Bogna

    2014-10-01

    To examine the influence of etching duration on the bond strength of PEEK substrate in combination with different resin composite cements. In total, 448 PEEK specimens were fabricated, etched with sulfuric acid for 5, 15, 30, 60, 90, 120, and 300 s and then luted with two conventional resin cements (RelyX ARC and Variolink II) and one self-adhesive resin cement (Clearfil SA Cement) (n = 18/subgroup). Non-etched specimens served as the control group. Specimens were stored in distilled water for 28 days at 37°C and shear bond strengths were measured. Data were analyzed nonparametrically using Kruskal-Wallis-H (p < 0.05). Non-etched PEEK demonstrated no bond strength to resin composite cements. The optimal etching duration varied with the type of resin composite: 60 s for RelyX ARC (15.3 ± 7.2 MPa), 90 s for Variolink II (15.2 ± 7.2 MPa), and 120 s for Clearfil SA Cement (6.4 ± 5.9 MPa). Regardless of etching duration, however, the self-etching resin composite cement showed significantly lower shear bond strength values when compared to groups luted with the conventional resin composites. Although sulfuric acid seems to be suitable and effective for PEEK surface pre-treatment, further investigations are required to examine the effect of other adhesive systems and cements.

  8. Effect of Resin Coating and Chlorhexidine on Microleakage of Two Resin Cements after Storage

    PubMed Central

    Shafie, F.; Doozandeh, M.; Alavi, A.

    2010-01-01

    Objective: Evaluating the effect of resin coating and chlorhexidine on microleakage of two resin cements after water storage. Materials and Methods: Standardized class V cavities were prepared on facial and lingual surfaces of one hundred twenty intact human molars with gingival margins placed 1 mm below the cemento-enamel junction. Indirect composite inlays were fabricated and the specimens were randomly assigned into 6 groups. In Groups 1 to 4, inlays were cemented with Panavia F2.0 cement. G1: according to the manufacturer’s instruction. G2: with light cured resin on the ED primer. G3: chlorhexidine application before priming. G4: with chlorhexidine application before priming and light cured resin on primer. G5: inlays were cemented with Nexus 2 resin cement. G6: chlorhexidine application after etching. Each group was divided into two subgroups based on the 24-hour and 6-month water storage time. After preparation for microleakage test, the teeth were sectioned and evaluated at both margins under a 20× stereomicroscope. Dye penetration was scored using 0–3 criteria. The data was analyzed using Kruskal-Wallis and complementary Dunn tests. Results: There was significantly less leakage in G2 and G4 than the Panavia F2.0 control group at gingival margins after 6 months (P<0.05). There was no significant differences in leakage between G1 and G3 at both margins after 24 hours and 6 months storage. After 6 months, G6 revealed significantly less leakage than G5 at gingival margins (P=0.033). In general, gingival margins showed more leakage than occlusal margins. Conclusion: Additionally, resin coating in self-etch (Panavia F2.0) and chlorhexidine application in etch-rinse (Nexus) resin cement reduced microleakage at gingival margins after storage. PMID:21998773

  9. Effect of resin-modified glass-ionomer cement lining and composite layering technique on the adhesive interface of lateral wall

    PubMed Central

    AZEVEDO, Larissa Marinho; CASAS-APAYCO, Leslie Carol; VILLAVICENCIO ESPINOZA, Carlos Andres; WANG, Linda; NAVARRO, Maria Fidela de Lima; ATTA, Maria Teresa

    2015-01-01

    Interface integrity can be maintained by setting the composite in a layering technique and using liners. Objective The aim of this in vitro study was to verify the effect of resin-modified glass-ionomer cement (RMGIC) lining and composite layering technique on the bond strength of the dentin/resin adhesive interface of lateral walls of occlusal restorations. Material and Methods Occlusal cavities were prepared in 52 extracted sound human molars, randomly assigned into 4 groups: Group 2H (control) – no lining + two horizontal layers; Group 4O: no lining + four oblique layers; Group V-2H: RMGIC lining (Vitrebond) + two horizontal layers; and Group V-4O: RMGIC lining (Vitrebond) + four oblique layers. Resin composite (Filtek Z250, 3M ESPE) was placed after application of an adhesive system (Adper™ Single Bond 2, 3M ESPE) dyed with a fluorescent reagent (Rhodamine B) to allow confocal microscopy analysis. The teeth were stored in deionized water at 37oC for 24 hours before being sectioned into 0.8 mm slices. One slice of each tooth was randomly selected for Confocal Laser Scanning Microscopy (CLSM) analysis. The other slices were sectioned into 0.8 mm x 0.8 mm sticks to microtensile bond strength test (MPa). Data were analyzed by two-way ANOVA and Fisher’s test. Results There was no statistical difference on bond strength among groups (p>0.05). CLSM analysis showed no significant statistical difference regarding the presence of gap at the interface dentin/resin among groups. Conclusions RMGIC lining and composite layering techniques showed no effect on the microtensile bond strength and gap formation at the adhesive interface of lateral walls of high C-factor occlusal restorations. PMID:26221927

  10. Clinical applications of preheated hybrid resin composite.

    PubMed

    Rickman, L J; Padipatvuthikul, P; Chee, B

    2011-07-22

    This clinical article describes and discusses the use of preheated nanohybrid resin composite for the placement of direct restorations and luting of porcelain laminate veneers. Two clinical cases are presented. Preheating hybrid composite decreases its viscosity and film thickness offering the clinician improved handling. Preheating also facilitates the use of nanohybrid composite as a veneer luting material with relatively low polymerisation shrinkage and coefficient of thermal expansion compared to currently available resin luting cements.

  11. Evaluation of shear bond strength of two resin-based composites and glass ionomer cement to pure tricalcium silicate-based cement (Biodentine®).

    PubMed

    Cantekin, Kenan; Avci, Serap

    2014-01-01

    Tricalcium silicate is the major constituent phase in mineral trioxide aggregate (MTA). It is thus postulated that pure tricalcium silicate can replace the Portland cement component of MTA. The aim of this study was to evaluate bond strength of methacrylate-based (MB) composites, silorane-based (SB) composites, and glass ionomer cement (GIC) to Biodentine® and mineral trioxide aggregate (MTA). Acrylic blocks (n=90, 2 mm high, 5 mm diameter central hole) were prepared. In 45 of the samples, the holes were fully filled with Biodentine® and in the other 45 samples, the holes were fully filled with MTA. The Biodentine® and the MTA samples were randomly divided into 3 subgroups of 15 specimens each: Group-1: MB composite; Group-2: SB composite; and Group-3: GIC. For the shear bond strength (SBS) test, each block was secured in a universal testing machine. The highest (17.7 ± 6.2 MPa) and the lowest (5.8 ± 3.2 MPa) bond strength values were recorded for the MB composite-Biodentine® and the GIC-MTA, respectively. Although the MB composite showed significantly higher bond strength to Biodentine (17.7 ± 6.2) than it did to MTA (8.9 ± 5.7) (p < 0.001), the SB composite (SB and MTA = 7.4 ± 3.3; SB and Biodentine® = 8.0 ± 3,6) and GIC (GIC and MTA = 5.8 ± 3.2; GIC and Biodentine = 6.7 ± 2.6) showed similar bond strength performance with MTA compared with Biodentine (p = 0.73 and p = 0.38, respectively). The new pure tricalcium-based pulp capping, repair, and endodontic material showed higher shear bond scores compared to MTA when used with the MB composite.

  12. Evaluation of shear bond strength of two resin-based composites and glass ionomer cement to pure tricalcium silicate-based cement (Biodentine®)

    PubMed Central

    CANTEKİN, Kenan; AVCİ, Serap

    2014-01-01

    Objectives Tricalcium silicate is the major constituent phase in mineral trioxide aggregate (MTA). It is thus postulated that pure tricalcium silicate can replace the Portland cement component of MTA. The aim of this study was to evaluate bond strength of methacrylate-based (MB) composites, silorane-based (SB) composites, and glass ionomer cement (GIC) to Biodentine® and mineral trioxide aggregate (MTA). Material and Methods Acrylic blocks (n=90, 2 mm high, 5 mm diameter central hole) were prepared. In 45 of the samples, the holes were fully filled with Biodentine® and in the other 45 samples, the holes were fully filled with MTA. The Biodentine® and the MTA samples were randomly divided into 3 subgroups of 15 specimens each: Group-1: MB composite; Group-2: SB composite; and Group-3: GIC. For the shear bond strength (SBS) test, each block was secured in a universal testing machine. Results The highest (17.7±6.2 MPa) and the lowest (5.8±3.2 MPa) bond strength values were recorded for the MB composite-Biodentine® and the GIC-MTA, respectively. Although the MB composite showed significantly higher bond strength to Biodentine (17.7±6.2) than it did to MTA (8.9±5.7) (p<0.001), the SB composite (SB and MTA=7.4±3.3; SB and Biodentine®=8.0±3,6) and GIC (GIC and MTA=5.8±3.2; GIC and Biodentine=6.7±2.6) showed similar bond strength performance with MTA compared with Biodentine (p=0.73 and p=0.38, respectively). Conclusions The new pure tricalcium-based pulp capping, repair, and endodontic material showed higher shear bond scores compared to MTA when used with the MB composite. PMID:25141202

  13. Tricalcium silicate cements with resins and alternative radiopacifiers.

    PubMed

    Camilleri, Josette

    2014-12-01

    The objectives of this study were the investigation of the setting mechanisms and characterization of radiopacified tricalcium silicate-based materials mixed with different liquid vehicles. Tricalcium silicate cement replaced with 20% of either zirconium oxide or barium zirconate radiopacifier was investigated. The cements were mixed with water, an epoxy resin, or a light-cured Bis-GMA-based resin. The setting mechanism and characterization of set materials after immersion in Hank's balanced salt solution (HBSS) for 28 days were investigated by scanning electron microscopy of polished specimens and x-ray diffraction analysis. The bioactivity and surface microstructure of cements immersed in HBSS or water were also assessed by similar techniques together with leaching in solution investigated by inductively coupled plasma emission spectroscopy. The formation of calcium hydroxide as a by-product of cement reaction was affected by the type of radiopacifier and also by the resin vehicle used. Barium zirconate enhanced the formation of calcium hydroxide as indicated by both scanning electron microscopy and x-ray diffraction analysis. The use of resins as vehicles reduced the formation of calcium hydroxide, with the Bis-GMA-based resin being mostly affected. Calcium hydroxide was deposited on the material surface regardless of the type of vehicle used. Formation of beta calcium phosphate was observed on materials containing barium zirconate radiopacifier immersed in HBSS. Inductively coupled plasma emission spectroscopy analysis showed high levels of calcium leached from materials by using water and light-curable resin as mixing vehicles. Barium was leached in solution, with the highest amount from the water-based mixtures. Zirconium leaching was negligible in materials containing zirconium oxide as radiopacifier, but leaching of zirconium was measurable in materials by using barium zirconate with tricalcium silicate. The resin type and composition of the radiopacifier

  14. Color agreement between nanofluorapatite ceramic discs associated with try-in pastes and with resin cements.

    PubMed

    Rigoni, Paulo; Amaral, Flávia Lucisano Botelho do; França, Fabiana Mantovani Gomes; Basting, Roberta Tarkany

    2012-01-01

    The aim of this study was to evaluate the in vitro color agreement between nanofluorapatite ceramic discs (e.max Ceram / Ivoclar Vivadent / A2) associated with try-in pastes and those bonded with resin cements (Vitique / DMG/ try-in shade A2½ and cement shade A2½, Variolink II / Ivoclar Vivadent / try-in shade A1 and cement shade A1, and Choice 2 / Bisco / try-in shade A2 and cement shade A2), and to evaluate the shade stability of the discs bonded with resin cements. The shades of composite resin discs (Lliss / FGM / A2) and nanofluorapatite ceramic discs with try-in pastes or cements were evaluated according to the Vita Classical shade guide by a digital spectrophotometer (Micro EspectroShade, MHT) immediately after placing the try-in pastes or resin cements between composite resin discs and ceramic discs. Other evaluations were performed at 2, 5, and 6 day intervals after cementation with the resin cements. All ceramic discs that received try-in pastes presented an A2 shade. There was no statistical difference in the shade of the ceramic specimens fixed with different cements at the different intervals, as evaluated by the Friedman test (p > 0.05). Two try-in pastes presented shade compatibility with those recommended by the manufacturers. There was no similarity of shades between the ceramic discs with try-in pastes and those with the respective resin cements. Shade stability was observed in ceramic discs with resin cements within the intervals evaluated.

  15. Effect of temporary cements on the microtensile bond strength of self-etching and self-adhesive resin cement.

    PubMed

    Carvalho, Edilausson Moreno; Carvalho, Ceci Nunes; Loguercio, Alessandro Dourado; Lima, Darlon Martins; Bauer, José

    2014-11-01

    The aim of this study was to evaluate the microtensile bond strength (µTBS) of self-etching and self-adhesive resin cement systems to dentin affected by the presence of remnants of either eugenol-containing or eugenol-free temporary cements. Thirty extracted teeth were obtained and a flat dentin surface was exposed on each tooth. Acrylic blocks were fabricated and cemented either with one of two temporary cements, one zinc oxide eugenol (ZOE) and one eugenol free (ZOE-free), or without cement (control). After cementation, specimens were stored in water at 37°C for 1 week. The restorations and remnants of temporary cements were removed and dentin surfaces were cleaned with pumice. Resin composite blocks were cemented to the bonded dentin surfaces with one of two resin cements, either self-etching (Panavia F 2.0) or self-adhesive (RelyX U-100). After 24 h, the specimens were sectioned to obtain beams for submission to µTBS. The fracture mode was evaluated under a stereoscopic loupe and a scanning electron microscope (SEM). Data from µTBS were submitted to two-way repeated-measure ANOVA and the Tukey test (alpha = 0.05). The cross-product interaction was statistically significant (p < 0.0003). The presence of temporary cements reduced the bond strength to Panavia self-etching resin cements only (p < 0.05). Fracture occurred predominantly at the dentin-adhesive interface. The presence of eugenol-containing temporary cements did not interfere in the bond strength to dentin of self-adhesive resin cements.

  16. The effect of CO2 laser irradiation plus fluoride dentifrice on the inhibition of secondary caries on root surfaces adjacent to glass ionomer cement or composite resin restorations

    NASA Astrophysics Data System (ADS)

    Rodrigues, S. R.; Moraes, M.; Hanashiro, F. S.; Youssef, M. N.; Brugnera Junior, A.; Nobre-dos-Santos, M.; de Souza-Zaroni, W. C.

    2016-02-01

    Although the cariostatic effects of CO2 laser on the root surface have been shown, there is scarce information regarding its effects on root secondary caries. The objective of this research was to investigate the effect of the association of CO2 laser and a fluoride dentifrice on the inhibition of secondary caries on root surfaces adjacent to composite-resin or glass-ionomer-cement restorations. Dental blocks of human roots were divided into two groups: composite resin (CR) or glass ionomer cement (GIC). Subsequently, the blocks were divided into four subgroups (n  =  10): C, non-fluoride dentifrice; FD, fluoride dentifrice; L, CO2 laser with an energy density of 6.0 J cm-2  +  non-fluoride dentifrice; and L  +  FD, CO2 laser  +  fluoride dentifrice. The blocks were subjected to pH cycling to simulate a high cariogenic challenge. Dental demineralization around the restorations was quantified by microhardness analysis. The results were subjected to analysis of variance (ANOVA) and the Tukey-Kramer test (p  ⩽  0.05). As for mineral loss, it can be observed that all the groups that were treated with a fluoride dentifrice and laser, used alone or not, were statistically similar and superior to the RC-C group. It was concluded that CO2 laser irradiation and a fluoride dentifrice used alone or combined with each other are efficient surface treatments for preventing secondary root caries, regardless of the restorative material used.

  17. Incombustible resin composition

    NASA Technical Reports Server (NTRS)

    Akima, T.

    1982-01-01

    Incombustible resin compositions composed of aromatic compounds were obtained through (1) combustion polymer material and (2) bisphenol A or halogenated bisphenol A and bisphenol A diglycidl ether or halogenated bisphenol A diglycidyl ether. The aromatic compound is an adduct of bifunctional phenols and bifunctional epoxy resins.

  18. Effect of proximal box elevation with resin composite on marginal quality of resin composite inlays in vitro.

    PubMed

    Roggendorf, Matthias J; Krämer, Norbert; Dippold, Christoph; Vosen, Vera E; Naumann, Michael; Jablonski-Momeni, Anahita; Frankenberger, Roland

    2012-12-01

    To evaluate marginal quality and resin-resin transition of lab made resin composite inlays in deep proximal cavities with and without 3 mm proximal box elevation (PBE) using resin composites before and after thermo-mechanical loading (TML). MOD cavities with one proximal box beneath the cementoenamel junction were prepared in 40 extracted human third molars. Proximal boxes ending in dentine were elevated 3 mm with different resin composites (G-Cem, Maxcem Elite as self-adhesive resin cements and Clearfil Majesty Posterior as restorative resin composite in one or three layers bonded with AdheSE), or left untreated. Clearfil Majesty Posterior inlays were luted with Syntac and Variolink II (n = 8). Marginal quality as well as the PBE-composite inlay interface was analyzed under an SEM using epoxy resin replicas before and after thermomechanical loading (100,000 × 50 N and 2500 thermocylces between +5 °C and +55 °C). Bonding resin composite inlays directly to dentine showed similar amounts of gap-free margins in dentine compared to PBE applied in three consecutive layers (p > 0.05). The groups with self-adhesive resin cements for PBE exhibited significantly more gaps in dentine (p < 0.05). With layered resin composite, PBE is effective in indirect resin composite bonding to deep proximal boxes. Self-adhesive resin cements are not suitable for this indication. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Fiber reinforced composite resin systems.

    PubMed

    Giordano, R

    2000-01-01

    The Targis/Vectris and Sculpture/FibreKor systems were devised to create a translucent maximally reinforced resin framework for fabrication of crowns, bridges, inlays, and onlays. These materials are esthetic, have translucency similar to castable glass-ceramics such as OPC and Empress, and have fits that are reported to be acceptable in clinical and laboratory trials. These restorations rely on proper bonding to the remaining tooth structure; therefore, careful attention to detail must be paid to this part of the procedure. Cementation procedures should involve silane treatment of the cleaned abraded internal restoration surface, application of bonding agent to the restoration as well as the etched/primed tooth, and finally use of a composite resin. Each manufacturer has a recommended system which has been tested for success with its resin system. These fiber reinforced resins are somewhat different than classical composites, so not all cementation systems will necessarily work with them. Polishing of the restoration can be accomplished using diamond or alumina impregnated rubber wheels followed by diamond paste. The glass fibers can pose a health risk. They are small enough to be inhaled and deposited in the lungs, resulting in a silicosis-type problem. Therefore, if fibers are exposed and ground on, it is extremely important to wear a mask. Also, the fibers can be a skin irritant, so gloves also should be worn. If the fibers become exposed intraorally, they can cause gingival inflammation and may attract plaque. The fibers should be covered with additional composite resin. If this cannot be accomplished, the restoration should be replaced. The bulk of these restorations are formed using a particulate filled resin, similar in structure to conventional composite resins. Therefore, concerns as to wear resistance, color stability, excessive expansion/contraction, and sensitivity remain until these materials are proven in long-term clinical trials. They do hold the

  20. Color stability of different composite resin materials.

    PubMed

    Falkensammer, Frank; Arnetzl, Gerwin Vincent; Wildburger, Angelika; Freudenthaler, Josef

    2013-06-01

    Data are needed to better predict the color stability of current composite resin materials. The purpose of this study was to evaluate the impact of different storage solutions on the color stability of different composite resin materials. Different restorative and adhesive composite resin specimens (dual-polymerizing self-adhesive resin cement, autopolymerizing resin-based composite resin, dual-polymerizing resin-based composite resin, nanohybrid composite resin, and microhybrid composite resin) were fabricated and stored in red wine, black tea, chlorhexidine, sodium fluoride, tea tree oil, or distilled water for 4 weeks at 37°C. Color parameters were measured with a colorimeter before and after storage. Total color differences and specific coordinate differences were expressed as ΔE, ΔL, Δa, and Δb. A 2-way and 1-way analysis of variance (ANOVA) with Bonferroni adjustment for multiple comparisons were applied for statistical calculations (α=.05). Red wine caused the most severe discoloration (ΔE >10), followed by black tea with perceptible (ΔE >2.6) to clinically unacceptable discoloration (ΔE >5.5). Colored mouth rinses discolored the materials to a lesser extent with clinically acceptable values. Dual-polymerizing resin adhesives showed a higher amount of discoloration. Current restorative and adhesive composite resin materials discolor over time under the influence of different storage solutions. The composition related to the polymerizing mode seemed to be a causative factor. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  1. Biocompatibility of composite resins

    PubMed Central

    Mousavinasab, Sayed Mostafa

    2011-01-01

    Dental materials that are used in dentistry should be harmless to oral tissues, so they should not contain any leachable toxic and diffusible substances that can cause some side effects. Reports about probable biologic hazards, in relation to dental resins, have increased interest to this topic in dentists. The present paper reviews the articles published about biocompatibility of resin-restorative materials specially resin composites and monomers which are mainly based on Bis-GMA and concerns about their degradation and substances which may be segregated into oral cavity. PMID:23372592

  2. Comparing the reinforcing effects of a resin modified glassionomer cement, Flowable compomer, and Flowable composite in the restoration of calcium hydroxide-treated immature roots in vitro.

    PubMed

    Prathibha, Rani S

    2011-01-01

    One hundred and sixty human permanent central incisors were enlarged to a 120 file size after crown removal procedure to simulate immature teeth. The root canals were filled with calcium hydroxide and stored for 15 days (phase I), 30 days (phase II), 90 days (phase III), and 180 days (Phase IV). At the end of these selected time periods, calcium hydroxide was cleaned off the root canals of forty teeth that were randomly selected and obturated with gutta-percha points in the apical 2 mm of the root canals with a sealer. The specimens were further equally divided into four groups. Unrestored Group I served as control and the root canals of teeth in the other three group specimens were reinforced with resin modified glassionomer cement (RMGIC) (Group II), Flowable Compomer (Group III), and Flowable Composite (Group IV), respectively, using a translucent curing post. All specimens were subjected to compressive force using an Instron Testing machine, until fracture occurred. All the materials evaluated substantially reinforced the root specimens compared to the control. At the end of 180 days, Flowable composites showed maximum reinforcement compared to the other groups; however, no significant differences were found between the reinforcement capabilities of Flowable Compomer and RMGIC.

  3. Hardening of a dual-cure resin cement using QTH and LED curing units.

    PubMed

    Santos, Maria Jacinta Moraes Coelho; Passos, Sheila Pestana; da Encarnação, Monalisa Olga Lessa; Santos, Gildo Coelho; Bottino, Marco Antonio

    2010-01-01

    This study evaluated the surface hardness of a resin cement (RelyX ARC) photoactivated through indirect composite resin (Cristobal) disks of different thicknesses using either a light-emitting diode (LED) or quartz tungsten halogen (QTH) light source. Eighteen resin cement specimens were prepared and divided into 6 groups according to the type of curing unit and the thickness of resin disks interposed between the cement surface and light source. Three indentations (50 g for 15 s) were performed on the top and bottom surface of each specimen and a mean Vickers hardness number (VHN) was calculated for each specimen. The data were analyzed using two-way ANOVA and Tukey-Kramer test was used for post-hoc pairwise comparisons. Increased indirect resin disk thickness resulted in decreased mean VHN values. Mean VHN values for the top surfaces of the resin cement specimens ranged from 23.2 to 46.1 (QTH) and 32.3 to 41.7 (LED). The LED curing light source produced higher hardness values compared to the QTH light source for 2- and 3-mm-thick indirect resin disks. The differences were clinically, but not statistically significant. Increased indirect resin disk thickness also resulted in decreased mean VHN values for the bottom surfaces of the resin cement: 5.8 to 19.1 (QTH) and 7.5 to 32.0 (LED). For the bottom surfaces, a statistically significant interaction was also found between the type of curing light source and the indirect resin disk thickness. Mean surface hardness values of resin cement specimens decreased with the increase of indirect resin disk thickness. The LED curing light source generally produced higher surface hardness values.

  4. Hardening of a dual-cure resin cement using QTH and LED curing units

    PubMed Central

    SANTOS, Maria Jacinta Moraes Coelho; PASSOS, Sheila Pestana; da ENCARNAÇÃO, Monalisa Olga Lessa; SANTOS, Gildo Coelho; BOTTINO, Marco Antonio

    2010-01-01

    Objective This study evaluated the surface hardness of a resin cement (RelyX ARC) photoactivated through indirect composite resin (Cristobal) disks of different thicknesses using either a light-emitting diode (LED) or quartz tungsten halogen (QTH) light source. Material and Methods Eighteen resin cement specimens were prepared and divided into 6 groups according to the type of curing unit and the thickness of resin disks interposed between the cement surface and light source. Three indentations (50 g for 15 s) were performed on the top and bottom surface of each specimen and a mean Vickers hardness number (VHN) was calculated for each specimen. The data were analyzed using two-way ANOVA and Tukey-Kramer test was used for post-hoc pairwise comparisons. Results Increased indirect resin disk thickness resulted in decreased mean VHN values. Mean VHN values for the top surfaces of the resin cement specimens ranged from 23.2 to 46.1 (QTH) and 32.3 to 41.7 (LED). The LED curing light source produced higher hardness values compared to the QTH light source for 2- and 3-mm-thick indirect resin disks. The differences were clinically, but not statistically significant. Increased indirect resin disk thickness also resulted in decreased mean VHN values for the bottom surfaces of the resin cement: 5.8 to 19.1 (QTH) and 7.5 to 32.0 (LED). For the bottom surfaces, a statistically significant interaction was also found between the type of curing light source and the indirect resin disk thickness. Conclusions Mean surface hardness values of resin cement specimens decreased with the increase of indirect resin disk thickness. The LED curing light source generally produced higher surface hardness values. PMID:20485920

  5. Dentin bonding agents and resin cements--current status.

    PubMed

    Woolsey, G; O'Mahony, A; Hansen, P A

    2000-01-01

    Contemporary restorative dentistry is a rapidly evolving science which challenges the progressive clinician with a plethora of "new and improved" products. Sound product choices should be couched in the prudent consideration of well conducted in vitro and in vivo product research. This review shall list the most recent product developments in dentin bonding agents (fifth generation agents), resin-containing dental cements and the newest generation of dental cements i.e., resin-ionomer dental cements.

  6. Retention of gold alloy crowns cemented with traditional and resin cements.

    PubMed

    Pinzón, Lilliam M; Frey, Gary N; Winkler, Mark M; Tate, William H; Burgess, John O; Powers, John M

    2009-01-01

    The aim of this study was to measure in vitro retention of cast gold crowns cemented with traditional and resin cements. Forty-eight human molars were prepared on a lathe to produce complete crown preparations with a consistent taper and split into six groups, eight crowns in each group. Crowns were cast in a high-gold alloy and then cemented. After 24 hours, the retention force (N) was recorded and mean values were analyzed by one-way analysis of variance and the Fisher post-hoc least significant difference (PLSD) multiple comparisons test (a = .05). Failure sites were examined under 3100 magnification and recorded. Mean values (SD) for each group in increasing order of retention force were: Harvard Cement: 43 N (27), TempoCem: 59 N (16), PermaCem Dual: 130 N (42), RelyX Luting Cement: 279 N (26), Contax and PermaCem Dual: 286 N (38), and TempoCem with Contax and PermaCem Dual: 340 N (14). The Fisher PLSD interval (P = .05) for comparing cements was 29 N. Zinc-phosphate cement and provisional resin cements had the lowest retention forces. Resin cement with a bonding agent and the hybrid-ionomer cement had similar retention forces. Resin cement with a bonding agent applied after use of a provisional resin cement had a significantly higher retention force than the other cements tested.

  7. Orthodontic bracket bonding with a plasma-arc light and resin-reinforced glass ionomer cement.

    PubMed

    Ishikawa, H; Komori, A; Kojima, I; Ando, F

    2001-07-01

    Developments in light-curing technology have led to the introduction of a plasma-arc light-curing unit that delivers high-intensity output for faster curing. The purposes of this study were to determine the shear bond strengths of light-cured resin-reinforced glass ionomer cement cured with a plasma-arc light-curing unit and to evaluate the durability of the resultant bond strength with thermal cycling. Comparisons were made between light-cured resin-reinforced glass ionomer cement and light-cured composite resin. Two light-curing units were used in this study: a plasma-arc light-curing unit and a conventional light-curing unit. The mean shear bond strengths of light-cured resin-reinforced glass ionomer cement with the plasma-arc and the conventional light-curing units were 20.3 MPa and 26.0 MPa, respectively. An analysis of variance showed no statistically significant differences between the plasma-arc and the conventional light-curing units. Light-cured resin-reinforced glass ionomer cement and light-cured composite resin demonstrated similar bond strengths and exhibited no statistical differences. There was no statistical difference in bond strength between the teeth that were thermal cycled and those that were not. Failure sites for the brackets bonded with light-cured resin-reinforced glass ionomer cement appeared to be predominantly at the bracket-adhesive interface. The SDs of light-cured composite resin were high for both light-curing units. Whereas the coefficients of variation for light-cured resin-reinforced glass ionomer cement ranged from 20% to 30%, those of light-cured composite resin ranged from 40% to 60%. The bond strength of light-cured resin-reinforced glass ionomer cement cured with either a conventional light-curing unit or a plasma-arc light-curing unit surpassed the clinically required threshold. The plasma-arc light-curing unit may be an advantageous alternative to the conventional light-curing unit for orthodontic bracket bonding with both

  8. Effect of a CO2 Laser on the Inhibition of Root Surface Caries Adjacent to Restorations of Glass Ionomer Cement or Composite Resin: An In Vitro Study

    PubMed Central

    Daniel, L. C.; Araújo, F. C.; Zancopé, B. R.; Hanashiro, F. S.; Nobre-dos-Santos, M.; Youssef, M. N.; Souza-Zaroni, W. C.

    2015-01-01

    This study investigated the effect of CO2 laser irradiation on the inhibition of secondary caries on root surfaces adjacent to glass ionomer cement (GIC) or composite resin (CR) restorations. 40 dental blocks were divided into 4 groups: G1 (negative control): cavity preparation + adhesive restoration with CR; G2: (positive control) cavity preparation + GIC restoration; G3: equal to group 1 + CO2 laser with 6 J/cm2; G4: equal to group 2 + CO2 laser. The blocks were submitted to thermal and pH cycling. Dental demineralization around restorations was quantified using microhardness analyses and Light-Induced Fluorescence (QLF). The groups showed no significant differences in mineral loss at depths between 20 μm and 40 μm. At 60 μm, G2 and G3 ≠ G1, but G4 = G1, G2 and G3. At 80 μm, G4 ≠ G1, and at 100 μm, G4 = G2 = G1. At 140 and 220 μm, G2, G3, and G4 = G1. The averages obtained using QFL in groups 1, 2, 3, and 4 were 0.637, 0.162, 0.095, and 0.048, respectively. QLF and microhardness analyses showed that CO2 laser irradiation reduced mineral loss around the CR restorations but that it did not increase the anticariogenic effect of GIC restorations. PMID:26347900

  9. Effects of different surface treatments on bond strength between resin cements and zirconia ceramics.

    PubMed

    Erdem, A; Akar, G C; Erdem, A; Kose, T

    2014-01-01

    This study compares the bond strength of resin cement and yttrium-stabilized tetragonal zirconia polycrystalline (Y-TZP) ceramic with different surface conditioning methods. Two hundred presintered Y-TZP ceramic specimens were prepared, sintered (4 × 4 × 4 mm), and randomly assigned to four equal groups as control (C, no conditioning); airborne particle abraded (APA, air abrasion with 11 μm Al2O3); tribochemical silica coating/silane coupling system (TSC, Rocatec, air abrasion with 110 μm Al2O3, 30 μm silica-coated Al2O3 and silane); and laser (L, Er:YAG laser irradiation treated at a power setting of 200 mJ). After specimen preparation, composite resin cylinders were prepared and cemented with resin cements (Clearfil Esthetic, Panavia F 2.0, Rely X-U100, Super Bond C&B, and Multilink Automix) on the ceramic surfaces and kept in an incubator at 37°C for 60 days. All specimens were tested for shear bond strength with a universal testing machine, and fractured surfaces were evaluated by environmental scanning electron microscopy. Statistical analysis was performed using Kruskal-Wallis and Mann-Whitney U-tests (α=0.05). The bond strengths for C and L groups were not significantly different according to adhesive resin cement. APA and TSC resulted in increased bond strength for Panavia F 2.0 and Rely X-U100 resin cements. Additionally, TSC presented higher bond strength with Multilink Automix. Adhesive fracture between the ceramic and resin cement was the most common failure. Complete cohesive fracture at the ceramic or composite cylinders was not observed. Regardless of the adhesive resin cement used, laser treatment did not improve resin bond strength.

  10. A Twofold Comparison between Dual Cure Resin Modified Cement and Glass Ionomer Cement for Orthodontic Band Cementation

    PubMed Central

    Attar, Hanaa El; Elhiny, Omnia; Salem, Ghada; Abdelrahman, Ahmed; Attia, Mazen

    2016-01-01

    AIM: To test the solubility of dual cure resin modified resin cement in a food simulating solution and the shear bond strength compared to conventional Glass ionomer cement. MATERIALS AND METHOD: The materials tested were self-adhesive dual cure resin modified cement and Glass Ionomer (GIC). Twenty Teflon moulds were divided into two groups of tens. The first group was injected and packed with the modified resin cement, the second group was packed with GIC. To test the solubility, each mould was weighed before and after being placed in an analytical reagent for 30 days. The solubility was measured as the difference between the initial and final drying mass. To measure the Shear bond strength, 20 freshly extracted wisdom teeth were equally divided into two groups and embedded in self-cure acrylic resin. Four mm sections of stainless steel bands were cemented to the exposed buccal surfaces of teeth under a constant load of 500 g. Shear bond strength was measured using a computer controlled materials testing machine and the load required to deband the samples was recorded in Newtons. RESULTS: GIC showed significantly higher mean weight loss and an insignificant lower Shear bond strength, compared to dual cure resin Cement. CONCLUSION: It was found that dual cure resin modified cement was less soluble than glass ionomer cement and of comparable bond strength rendering it more useful clinically for orthodontic band cementation. PMID:28028417

  11. Effect of silane treatment and different resin compositions on biological properties of bioactive bone cement containing apatite-wollastonite glass ceramic powder.

    PubMed

    Mousa, W F; Kobayashi, M; Kitamura, Y; Zeineldin, I A; Nakamura, T

    1999-12-05

    In methylmethacrylate (MMA)-based cements containing bioactive particles, polymethylmetacrylate (PMMA) is known to suppress the bioactivity of Bioglass(R) and apatite-wollastonite glass ceramic (AW-GC). Little is known about the effect of different silane treatment methods on the bioactivity of AW-GC. MMA-based cement plates containing dry silanated AW-GC particles and PMMA particles of different molecular weights (12,000-900,000) were immersed in simulated body fluid (SBF). Cements containing PMMA particles of high molecular weight formed an apatite layer on the surface after 24 h. Using PMMA particles with a molecular weight of 60,000 and AW-GC particles silanated with different methods (dry method vs. slurry method), cement plates were made and immersed in SBF. Only cement plates containing dry silanated AW-GC particles showed apatite formation in SBF after 3 days. In vivo implantation in rat tibias of MMA-based cement containing dry silanated AW-GC particles and PMMA particles (molecular weight 900,000) demonstrated an affinity index of 32.1 +/- 15.8% after 8 weeks of implantation compared to 89.4 +/- 10.7% achieved by bisphenol-A-glycidyl methacrylate based cement containing the same bioactive powder. By using a dry method of silane treatment and high molecular weight PMMA particles, the bioactivity of cement based on MMA monomer was achieved; but further effort is needed to improve the mechanical properties of the composite. Copyright 1999 John Wiley & Sons, Inc.

  12. Simplified cementation of lithium disilicate crowns: Retention with various adhesive resin cement combinations.

    PubMed

    Johnson, Glen H; Lepe, Xavier; Patterson, Amanda; Schäfer, Oliver

    2017-09-27

    A composite resin cement and matching self-etch adhesive was developed to simplify the dependable retention of lithium disilicate crowns. The efficacy of this new system is unknown. The purpose of this in vitro study was to determine whether lithium disilicate crowns cemented with a new composite resin and adhesive system and 2 other popular systems provide clinically acceptable crown retention after long-term aging with monthly thermocycling. Extracted human molars were prepared with a flat occlusal surface, 20-degree convergence, and 4 mm axial length. The axio-occlusal line angle was slightly rounded. The preparation surface area was determined by optical scanning and the analysis of the standard tessellation language (STL) files. The specimens were distributed into 3 cement groups (n=12) to obtain equal mean surface areas. Lithium disilicate crowns (IPS e.max Press) were fabricated for each preparation, etched with 9.5% hydrofluoric acid for 15 seconds, and cleaned. Cement systems were RelyX Ultimate with Scotch Bond Universal (3M Dental Products); Monobond S, Multilink Automix with Multilink Primer A and B (Ivoclar Vivadent AG); and NX3 Nexus with OptiBond XTR (Kerr Corp). Each adhesive provided self-etching of the dentin. Before cementation, the prepared specimens were stored in 35°C water. A force of 196 N was used to cement the crowns, and the specimens were polymerized in a 35°C oven at 100% humidity. After 24 hours of storage at 100% humidity, the cemented crowns were thermocycled (5°C to 55°C) for 5000 cycles each month for 6 months. The crowns were removed axially at 0.5 mm/min. The removal force was recorded and the dislodgement stress calculated using the preparation surface area. The type of cement failure was recorded, and the data were analyzed by 1-way ANOVA and the chi-square test (α=.05) after the equality of variances had been assessed with the Levene test. The Levene test was nonsignificant (P=.936). The ANOVA revealed the mean removal

  13. Adhesion of different resin cements to enamel and dentin.

    PubMed

    Naumova, Ella A; Ernst, Saskia; Schaper, Katharina; Arnold, Wolfgang H; Piwowarczyk, Andree

    2016-01-01

    The purpose of this in vitro study was to compare the shear bond strength (SBS) of five different resin cements to human enamel and dentin under different storage conditions. Five resin cements and their dedicated systems were tested. Teeth were embedded, ground flat to expose enamel or dentin and polished with sandpaper. Adhesive systems were applied according to the manufacturers'instructions. V2A steel cylinders with were silicated, coated, and cemented onto the teeth. Specimens were stored at three different conditions and subsequently thermocycled. SBS was measured. Significant differences were observed between the tested resin cements depending on the tooth surface. Different storage conditions influenced the bond strength, independent of the tooth surface, in all test cements. The bond strength of all experimental materials to enamel is higher than that to dentin surfaces. Furthermore, the adhesiveness decreases after wetness (hydro-) and hydrothermal stress, regardless of the tooth surface.

  14. Cement waste-form development for ion-exchange resins at the Rocky Flats Plant

    SciTech Connect

    Veazey, G.W.; Ames, R.L.

    1997-03-01

    This report describes the development of a cement waste form to stabilize ion-exchange resins at Rocky Flats Environmental Technology Site (RFETS). These resins have an elevated potential for ignition due to inadequate wetness and contact with nitrates. The work focused on the preparation and performance evaluation of several Portland cement/resin formulations. The performance standards were chosen to address Waste Isolation Pilot Plant and Environmental Protection Agency Resource Conservation and Recovery Act requirements, compatibility with Rocky Flats equipment, and throughput efficiency. The work was performed with surrogate gel-type Dowex cation- and anion-exchange resins chosen to be representative of the resin inventory at RFETS. Work was initiated with nonactinide resins to establish formulation ranges that would meet performance standards. Results were then verified and refined with actinide-containing resins. The final recommended formulation that passed all performance standards was determined to be a cement/water/resin (C/W/R) wt % ratio of 63/27/10 at a pH of 9 to 12. The recommendations include the acceptable compositional ranges for each component of the C/W/R ratio. Also included in this report are a recommended procedure, an equipment list, and observations/suggestions for implementation at RFETS. In addition, information is included that explains why denitration of the resin is unnecessary for stabilizing its ignitability potential.

  15. Foamed well cementing compositions and methods

    SciTech Connect

    Bour, D.L.; Childs, J.D.

    1992-07-28

    This patent describes a method of cementing a well penetrating a salt containing subterranean formation. It comprises: forming a foamed cement composition; placing the foamed cement composition in contact with the salt containing formation; and permitting the foamed cement composition to set in contact with the salt containing formation to form a hardened mass of cement.

  16. Effect of resin cement, aging process and root level on the bond strength of the resin-fiber posts

    NASA Astrophysics Data System (ADS)

    Almuhim, Khalid Salman

    Background. Little is known about the long-term clinical bonding effectiveness of the Fiber-reinforced composite (FRC) posts cemented with self-etch adhesive systems. Bond stability and longevity of the cemented post are adversely affected by physical and chemical factors over time, such as expansion and contraction stresses caused by thermal changes and occlusal load. This clinical condition can be simulated in vitro by thermocyclic loading; and bonding effectiveness can be evaluated by applying the micropush out test. Therefore, more in vitro studies are needed to evaluate the bond strength of the fiber posts cemented with different resin cement systems after simulating the artificial aging induced by thermocycling. The aim of this study was to compare the microtensile bond strength of two different resin cement systems (total etch, and self-etch resin cement system) used for cementation of fiber reinforced composite posts in three different aging periods using thermocycling. Methods. Following IRB approval, sixty freshly extracted bicuspid single rooted natural teeth were endodontically treated, and the post-spaces were prepared to receive a fiber-post cemented with either a total etch resin cement (Rely-X Ultimate) or with a self-etch resin cement (Rely-X Unicem). No thermocycling, 20,000 and 40,000 cycles was used to age the specimens. Teeth were randomly allocated into six different groups: G1 - Control: Rely-X Ultimate cement with no thermocycling. G2: Rely-X Ultimate cement with 20,000 thermocycling. G3: Rely-X Ultimate cement with 40,000 thermocycling. G4: Rely-X Unicem cement. G5: Rely-X Unicem cement. G6: Rely-X Unicem cement. Microtensile bond strength determined using a micropush out test on a universal testing machine (MTS). Additionally, the failure mode of each specimen was observed under a stereomicroscope (Olympus) at 40x magnification. Finally, one representative sample was randomly selected from each of the five failure modes for scanning

  17. Indirect resin composites

    PubMed Central

    Nandini, Suresh

    2010-01-01

    Aesthetic dentistry continues to evolve through innovations in bonding agents, restorative materials, and conservative preparation techniques. The use of direct composite restoration in posterior teeth is limited to relatively small cavities due to polymerization stresses. Indirect composites offer an esthetic alternative to ceramics for posterior teeth. This review article focuses on the material aspect of the newer generation of composites. This review was based on a PubMed database search which we limited to peer-reviewed articles in English that were published between 1990 and 2010 in dental journals. The key words used were ‘indirect resin composites,’ composite inlays,’ and ‘fiber-reinforced composites.’ PMID:21217945

  18. Bond degradation behavior of self-adhesive cement and conventional resin cements bonded to silanized ceramic.

    PubMed

    Liu, Qing; Meng, Xiangfeng; Yoshida, Keiichi; Luo, Xiaoping

    2011-03-01

    Self-adhesive resin cement with the characteristics of glass ionomer cement is more susceptible to water than conventional resin cements. It is unknown if there is a higher risk of bond degradation at the interface with silanized ceramic in an oral environment. The purpose of this study was to evaluate the bond degradation behavior of self-adhesive cement under simulated oral conditions, by comparing it with the behavior of 3 conventional resin cements. Three conventional resin cements, Linkamx HV (LMHV), Clearfil Esthetic Cement (CEC), and SuperBond (SB), were bonded to silanized ceramic (ProCAD) with the manufacturer's recommended silane coupler (GC Ceramic Primer (GCCP), Clearfil Ceramic Primer (CCP), and Porcelain Liner M (PLM), respectively), while a self-adhesive cement (G-CEM) was bonded with each of the 3 silane couplers. Maximum water sorption and solubility of the resin cements were measured according to the ISO 4049 standard during 6 weeks of water storage. The microshear bond strength of each silane/cement group (n=10 per thermal cycling subgroup) was tested after 0, 10,000, and 30,000 thermal cycles (TC), and bond failure types were counted. One- and two-way ANOVAs and the Tukey multiple comparisons test (α=.05) were used to evaluate the bond strength data. G-CEM had significantly higher water sorption (P<.001) and solubility than conventional resin cements. Statistical analysis showed that the bond strength of all silane/cement groups was reduced significantly by thermal cycling (P=.01 for CCP/G-CEM, P=.003 for GCCP/LMHV, P<.001 for other groups). The bond strength of G-CEM with the 3 silane couplers was significantly degraded from TC 0 to 10,000 (P<.001 for GCCP/G-CEM and PLM/G-CEM, P=.01 for CCP/G-CEM); however, the bond strength appeared to stabilize with no significant degradation from TC 10,000 to 30,000. This behavior was different from that of conventional resin cements, which demonstrated bond degradation throughout TC 0-30,000. After TC 30

  19. Bonding of resin core materials to lithium disilicate ceramics: the effect of resin cement film thickness.

    PubMed

    Cekic-Nagas, Isil; Canay, Senay; Sahin, Erdal

    2010-01-01

    The aim of this study was to investigate the effect of different resin cement film thicknesses on the shear bond strength of resin core materials to lithium disilicate ceramics. Forty IPS Empress 2 ceramic disks were bonded to the core materials (Bis-core and Smile) with resin cement film thicknesses of 50 or 100 μm. Shear bond strength was measured using a universal testing machine. Data were analyzed using two-way analysis of variance and independent t tests. The core material used and resin cement film thickness had a significant effect on shear bond strength values (P < .001). Greater resin cement film thickness resulted in decreased bond strength of the core materials to lithium disilicate ceramics.

  20. Comparative Evaluation of Bond Strength of Dual-Cured Resin Cements: An In-Vitro Study

    PubMed Central

    Kumari, R Veena; Poluri, Ramya Krishna; Nagaraj, Hema; Siddaruju, Kishore

    2015-01-01

    Background: To compare the microtensile bond strength of resin cements to enamel and dentin and to determine the type of bond failure using stereomicroscope. Materials and Methods: In this in-vitro study 40 teeth were embedded in acrylic resin and divided into two main groups i.e., Group A for enamel and Group B for dentin. Each group is again subdivided into four subgroups, which are as follows; Subgroup 1 for Calibra resin cement, Subgroup 2 for Paracem, Subgroup 3 for Variolink II and Subgroup 4 for Rely X ARC. These resin cements were applied on enamel and dentin according to manufacturer’s instructions followed by incremental build-up of composite resin on the top of resin cements. Each tooth was sectioned perpendicular to the resin-substrate interface with a slow speed diamond saw under water cooling yielding sections of approximately 1 mm2. On an average, three sections from each tooth were used for testing. The beams obtained after sectioning were stressed to failure under tension in a custom made stainless steel forceps held in a universal testing machine (Lloyd) at a crosshead speed of 1.0 mm/min. Results were analyzed using two-way analysis of variance, independent t-test, and Tukey’s HSD post-hoc test. Results: Cements bonded to enamel substrates showed higher mean bond strength compared to dentin, which is statistically significant. Rely X ARC showed highest mean bond strength to both the substrates. Conclusion: There was a significant difference between the bond strength to enamel and dentin and, Rely X ARC resin cement showed higher bond strength compared with the other groups. PMID:26225104

  1. Statistical failure analysis of adhesive resin cement bonded dental ceramics

    PubMed Central

    Wang, Yaou; Katsube, Noriko; Seghi, Robert R; Rokhlin, Stanislav I.

    2007-01-01

    The goal of this work is to quantitatively examine the effect of adhesive resin cement on the probability of crack initiation from the internal surface of ceramic dental restorations. The possible crack bridging mechanism and residual stress effect of the resin cement on the ceramic surface are examined. Based on the fracture-mechanics-based failure probability model, we predict the failure probability of glass-ceramic disks bonded to simulated dentin subjected to indentation loads. The theoretical predictions match experimental data suggesting that both resin bridging and shrinkage plays an important role and need to be considered for accurate prognostics to occur. PMID:18670583

  2. In vitro shear bond strength of two self-adhesive resin cements to zirconia.

    PubMed

    Qeblawi, Dana M; Campillo-Funollet, Marc; Muñoz, Carlos A

    2015-02-01

    Although the use of anatomic-contour zirconia restorations has expanded in the recent past, disagreement still exists as to reliable cementation techniques and materials. The purpose of this in vitro study was to compare the immediate and artificially aged shear bond strength of 2 commercially available self-adhesive resin cements to zirconia: one with silica coating and silanation as a zirconia surface treatment and the other contained a phosphate monomer, which eliminated the need for a separate primer. Sixty composite resin rods (2.5 mm in diameter and 3 mm in length) were fabricated from a nano-optimized composite resin by using a polypropylene mold, then light polymerized with a light-emitting diode. zirconia plates (10×10×4mm) were sectioned from an yttrium-stabilized zirconia puck, sintered, and then mounted in autopolymerizing acrylic resin custom tray material. Composite resin rods were cemented to the zirconia plates with 2 different cements. The surface treatment of zirconia followed the manufacturers' instructions for each cement. The specimens were tested for shear bond strength at 3 aging conditions: immediate, after 24 hours of moist storage, and after 30 days of moist storage with 10000 thermocycles. Specimens were loaded to failure in a universal testing machine, and the data were analyzed with 2-way ANOVA (α=.05). Weibull parameters (modulus and characteristic strength) also were calculated for each group. Two-way ANOVA revealed that only the aging condition significantly affected the bond strength to zirconia. The cement and the interaction of the cement and aging did not significantly affect the shear bond strength to zirconia. The highest bond strength for both cements was achieved at 24 hours, whereas the lowest bond strength values were recorded in the immediate groups. No significant differences in bond strength to zirconia were observed between a cement with a silane priming step and an methacryloxydecyl dihydrogen phosphate

  3. Center for Cement Composite Materials

    DTIC Science & Technology

    1990-01-31

    displacement plots. I I 21 Table 6. Polymers used in the study of organoceramics. U I Polymer Abbreviation Structure II all Poly ( vinyl alcohol ) PVA...using commercial Portland cements and a poly ( vinyl U aclohol)/acetate copolymer. Laminations in the cured composites limited flexural strengths to...cement and partially hydrolysed 3 polyvinyl alcohol was investigated as a function of relative humidity. Unmodified and crosslinked compositions were

  4. Surface Hardness of Resin Cement Polymerized under Different Ceramic Materials.

    PubMed

    Kesrak, Pimmada; Leevailoj, Chalermpol

    2012-01-01

    Objectives. To evaluate the surface hardness of two light-cured resin cements polymerized under different ceramic discs. Methods. 40 experimental groups of 2 light-cured resin cement specimens (Variolink Veneer and NX3) were prepared and polymerized under 5 different ceramic discs (IPS e.max Press HT, LT, MO, HO, and Cercon) of 4 thicknesses (0.5, 1.0, 1.5, and 2.0 mm), Those directly activated of both resin cements were used as control. After light activation and 37°C storage in an incubator, Knoop hardness measurements were obtained at the bottom. The data were analyzed with three-way ANOVA, t-test, and one-way ANOVA. Results. The KHN of NX3 was of significantly higher than that of Variolink Veneer (P < 0.05). The KHN of resin cement polymerized under different ceramic types and thicknesses was significant difference (P < 0.05). Conclusion. Resin cements polymerized under different ceramic materials and thicknesses showed statistically significant differences in KHN.

  5. Evaluation of TEGDMA leaching from four resin cements by HPLC

    PubMed Central

    Altintas, Subutay Han; Usumez, Aslihan

    2012-01-01

    Objective The aim of this study was to evaluate the elution of TEGDMA from dual cured resin cements, used for bonding of ceramic restoration by high performance liquid chromatography (HPLC). Methods: Forty freshly extracted caries and restoration free molar teeth used in this study. Standardized Class I preparations were prepared in all teeth. Ceramic inlays were cemented with one of the dual cured resin cements (Variolink II, Rely X ARC, Rely X Unicem and Resilute). After cementation, specimens were stored in 75% ethanol solution. HPLC was used to analyze the amounts of TEGDMA in different time intervals. Two-way ANOVA and Tukey HSD tests were used to evaluate the results (P<.05). Results: The amount of TEGDMA eluted from Resilute was the highest and the amount of TEG-DMA eluted from Rely X Unicem was the lowest (P<.05). The total amount of monomers was the highest after 21 days (P<.05). Conclusion: In the case of resin cements, elution of TEGDMA was the highest in Resilute and lowest in Rely X Unicem. The amount of TEGDMA eluted from resin cements was influenced by the time. PMID:22904653

  6. Color stability of adhesive resin cements after immersion in coffee.

    PubMed

    Shiozawa, Maho; Takahashi, Hidekazu; Asakawa, Yuya; Iwasaki, Naohiko

    2015-03-01

    Marginal discoloration of luting cement may affect the appearance of esthetic restorations. This study evaluated the color stability of current adhesive resin cements after immersion in coffee. Four dual-cured resin cements (Clearfil SA cement Automix Universal, Maxcem Elite Clear, Maxcem Elite Yellow, and RelyX Unicem2 Automix A2) and two chemical-cured resin cements (Super-Bond C&B Clear and Super-Bond C&B Esthetic) were examined. The CIE L*a*b* of 2.0-mm-thick disc-shaped specimens was measured using a spectrophotometer on a white background (n = 6). The color differences (∆E) after 1-day and 1-week immersion in 37 °C water or coffee were analyzed by two-way ANOVA by selecting immersion solution and product as main factors, followed by Tukey's HSD test (α = 0.05). Water sorption and solubility were also evaluated. The two-way ANOVA of the ∆Es suggested that the two main factors and their interaction were significant. The ∆Es after coffee immersion were significantly greater than those after water immersion, except for Super-Bond C&B Esthetic. The ∆Es after water immersion were not significantly different among the products; those of Maxcem Elite Clear and Maxcem Elite Yellow after coffee immersion were significantly greater than the others. The water sorption and solubility significantly correlated with the ∆Es. The ∆Es of the adhesive resin cements examined after 1-week coffee immersion were significantly different among the products. The product showing greater water sorption and solubility displayed greater color change. Adhesive resin cements should be carefully selected when the marginal appearance of the ceramic restoration is important.

  7. Dental Cements for Luting and Bonding Restorations: Self-Adhesive Resin Cements.

    PubMed

    Manso, Adriana P; Carvalho, Ricardo M

    2017-10-01

    Self-adhesive resin cements combine easy application of conventional luting materials with improved mechanical properties and bonding capability of resin cements. The presence of functional acidic monomers, dual cure setting mechanism, and fillers capable of neutralizing the initial low pH of the cement are essential elements of the material and should be understood when selecting the ideal luting material for each clinical situation. This article addresses the most relevant aspects of self-adhesive resin cements and their potential impact on clinical performance. Although few clinical studies are available to establish solid clinical evidence, the information presented provides clinical guidance in the dynamic environment of material development. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Dental repair material: a resin-modified glass-ionomer bioactive ionic resin-based composite.

    PubMed

    Croll, Theodore P; Berg, Joel H; Donly, Kevin J

    2015-01-01

    This report documents treatment and repair of three carious teeth that were restored with a new dental repair material that features the characteristics of both resin-modified glass-ionomer restorative cement (RMGI) and resin-based composite (RBC). The restorative products presented are reported by the manufacturer to be the first bioactive dental materials with an ionic resin matrix, a shock-absorbing resin component, and bioactive fillers that mimic the physical and chemical properties of natural teeth. The restorative material and base/liner, which feature three hardening mechanisms, could prove to be a notable advancement in the adhesive dentistry restorative materials continuum.

  9. Seating load parameters impact on dental ceramic reinforcement conferred by cementation with resin-cements.

    PubMed

    Addison, Owen; Sodhi, Amandeep; Fleming, Garry J P

    2010-09-01

    Cementation of all-ceramic restorations with resin-cements has been demonstrated to reduce the incidence of fracture in service. The aim was to investigate the influence of loading force and loading duration applied during cementation on the reinforcement conferred by a resin-cement on a leucite reinforced glass-ceramic. 210 glass-ceramic discs (12 mm diameter, 0.8 mm thickness) were allocated to seven groups (n=30). The bi-axial flexure strength (BFS) was determined for 'as-fired' specimens (group A), following HF-acid etching (group B) and following etching and centrally loading on a semi-compliant substrate with 30 N for 300 s (group C). Further etched specimens were coated with Rely-X Unicem resin-cement under cementation loading of 5 or 30 N, for 60 or 300 s (groups D-F) prior to BFS determination using multilayered analytical solutions. BFS data was compared using factorial or one-way analyses of variance and the Weibull analysis. HF-acid etching of the 'as-fired' surface resulted in a significant reduction in mean BFS (P<0.001) whereas resin-cementation subsequently conferred significant strengthening (P<0.001) ranging from 24 to 38% and dependent on the loading parameters employed. A factorial significance (P=0.004) of seating load (5 or 30 N) and significant factorial interaction (P<0.001) of seating load and load duration (60 or 300 s) on the mean BFS were identified. The magnitude of resin-reinforcement conferred was sensitive to the loading parameters investigated although the mechanisms underlying the variation appear complex. Similar patterns of variability can be expected clinically impacting on the clinical longevity of resin-cemented glass-ceramic restorations. Copyright 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  10. Comparison of shear bond strength of resin reinforced chemical cure glass ionomer, conventional chemical cure glass ionomer and chemical cure composite resin in direct bonding systems: an in vitro study.

    PubMed

    Rao, Kolasani Srinivasa; Reddy, T Praveen Kumar; Yugandhar, Garlapati; Kumar, B Sunil; Reddy, S N Chandrasekhar; Babu, Devatha Ashok

    2013-01-01

    The acid pretreatment and use of composite resins as the bonding medium has disadvantages like scratching and loss of surface enamel, decalcification, etc. To overcome disadvantages of composite resins, glass ionomers and its modifications are being used for bonding. The study was conducted to evaluate the efficiency of resin reinforced glass ionomer as a direct bonding system with conventional glass ionomer cement and composite resin. The study showed that shear bond strength of composite resin has the higher value than both resin reinforced glass ionomer and conventional glass ionomer cement in both 1 and 24 hours duration and it increased from 1 to 24 hours in all groups. The shear bond strength of resin reinforced glass ionomer cement was higher than the conventional glass ionomer cement in both 1 and 24 hours duration. Conditioning with polyacrylic acid improved the bond strength of resin reinforced glass ionomer cement significantly but not statistically significant in the case of conventional glass ionomer cement.

  11. Bonding of self-adhesive resin cements to enamel using different surface treatments: bond strength and etching pattern evaluations.

    PubMed

    Lin, Jie; Shinya, Akikazu; Gomi, Harunori; Shinya, Akiyoshi

    2010-08-01

    This study evaluated the shear bond strengths and etching patterns of seven self-adhesive resin cements to human enamel specimens which were subjected to one of the following surface treatments: (1) Polishing with #600 polishing paper; (2) Phosphoric acid; (3) G-Bond one-step adhesive; or (4) Phosphoric acid and G-Bond. After surface treatment, the human incisor specimens were bonded to a resin composite using a self-adhesive resin cement [Maxcem (MA), RelyX Unicem (UN), Breeze (BR), BisCem (BI), seT (SE), Clearfil SA Luting (CL)] or a conventional resin cement [ResiCem (RE)]. Representative morphology formed with self-adhesive resin cements showed areas of etched enamel intermingled with areas of featureless enamel. In conclusion, etching efficacy influenced the bonding effectiveness of self-adhesive resin cements to unground enamel, and that a combined use of phosphoric acid and G-Bond for pretreatment of human enamel surfaces improved the bond strength of self-adhesive resin cements.

  12. Biodeterioration of the Cement Composites

    NASA Astrophysics Data System (ADS)

    Luptáková, Alena; Eštoková, Adriana; Mačingová, Eva; Kovalčíková, Martina; Jenčárová, Jana

    2016-10-01

    The destruction of natural and synthetic materials is the spontaneous and irreversible process of the elements cycling in nature. It can by accelerated or decelerated by physical, chemical and biological influences. Biological influences are represented by the influence of the vegetation and microorganisms (MO). The destruction of cement composites by different MO through the diverse mechanisms is entitled as the concrete biodeterioration. Several sulphur compounds and species of MO are involved in this complex process. Heterotrophic and chemolithotrophic bacteria together with fungi have all been found in samples of corroding cement composites. The MO involved in the process metabolise the presented sulphur compounds (hydrogen sulphide, elemental sulphur etc.) to sulphuric acid reacting with concrete. When sulphuric acid reacts with a concrete matrix, the first step involves a reaction between the acid and the calcium hydroxide forming calcium sulphate. This is subsequently hydrated to form gypsum, the appearance of which on the surface of concrete pipes takes the form of a white, mushy substance which has no cohesive properties. In the continuing attack, the gypsum would react with the calcium aluminate hydrate to form ettringite, an expansive product. The use supplementary cementing composite materials have been reported to improve the resistance of concrete to biodeterioration. The aim of this work was the study of the cement composites biodeterioration by the bacteria Acidithiobacillus thiooxidans. Experimental works were focused on the comparison of special cement composites and its resistance affected by the activities of used sulphur-oxidising

  13. Effects of a peripheral enamel margin on the long-term bond strength and nanoleakage of composite/dentin interfaces produced by self-adhesive and conventional resin cements.

    PubMed

    Kasaz, Alline C; Pena, Carlos E; de Alexandre, Rodrigo S; Viotti, Ronaldo G; Santana, Veronica B; Arrais, Cesar A G; Giannini, Marcelo; Reis, Andre F

    2012-06-01

    This study evaluated the effects of peripheral enamel margins on the long-term bond strength (µTBS) and nanoleakage in resin/dentin interfaces produced by self-adhesive and conventional resin cements. Five self-adhesive [RelyX-Unicem (UN), RelyX-U100 (UC), GCem (GC), Maxcem (MC), Set (SET)] and 2 conventional resin cements [RelyX-ARC(RX), Panavia F(PF)] were used. An additional group included the use of a two-step self-etching adhesive (SE Bond) with Panavia F (PS). One hundred ninety-two molars were assigned to 8 groups according to luting material. Five-mm-thick composite disks were cemented and assigned to 3 subgroups according to water-exposure condition (n = 6): 24-h peripheral exposure (24h-PE-enamel margins), or 1 year of peripheral (1 yr-PE) or direct exposure (1 yr-DE-dentin margin). Restored teeth were sectioned into beams and tested in tension at 1 mm/min. Data were analyzed by two-way ANOVA and Tukey's test. Two additional specimens in each group were prepared for nanoleakage evaluation. Nanoleakage patterns were observed under SEM/TEM. Except for RX, no significant reduction in µTBS was observed between 24h-PE and 1 yr-PE. 1 yr-DE reduced µTBS for RX, PF, GC, MC, and SET. No significant reduction in µTBS was observed for PS, UC, and UN after 1 year. After 1 yr-DE, RX and PS presented the highest µTBS, and SET and MC the lowest. Nanoleakage was reduced when there was a peripheral enamel margin. SET and MC presented more silver deposition than other groups. The presence of a peripheral enamel margin reduced the degradation rate in resin/dentin interfaces for most materials. The µTBS values produced by the multi-step luting agents RX and PS were significantly higher than those observed for self-adhesive cement.

  14. Effect of different surface treatments on shear bond strength of zirconia to three resin cements

    NASA Astrophysics Data System (ADS)

    Dadjoo, Nisa

    Statement of problem: There are no standard guidelines for material selection to obtain acceptable bonding to high-strength zirconium oxide ceramic. Studies suggest resin cements in combination with MDP-containing primer is a reasonable choice, however, the other cements cannot be rejected and need further investigation. Objective: The purpose of this in vitro study was the evaluation of the shear bond strength of three composite resin cements to zirconia ceramic after using different surface conditioning methods. Materials and methods: One hundred and twenty sintered Y-TZP ceramic (IPS e.max ZirCAD) squares (8 x 8 x 4 mm) were embedded in acrylic molds, then divided into three groups (n=40) based on the type of cement used. Within each group, the specimens were divided into four subgroups (n=10) and treated as follows: (1) Air abrasion with 50microm aluminum oxide (Al2O 3) particles (ALO); (2) Air abrasion + Scotchbond Universal adhesive (SBU); (3) Air abrasion + Monobond Plus (MBP); (4) Air abrasion + Z-Prime Plus (ZPP). Composite cylinders were used as carriers to bond to conditioned ceramic using (1) RelyX Ultimate adhesive resin cement (RX); (2) Panavia SA self-adhesive resin cement (PSA); (3) Calibra esthetic cement (CAL). The bonded specimens were submerged in distilled water and subjected to 24-hour incubation period at 37°C. All specimens were stressed in shear at a constant crosshead speed of 0.5 mm/min until failure. Statistical analysis was performed by ANOVA. The bond strength values (MPa), means and standard deviations were calculated and data were analyzed using analysis of variance with Fisher's PLSD multiple comparison test at the 0.05 level of significance. The nature of failure was recorded. Results: The two-way ANOVA showed Panavia SA to have the highest strength at 44.3 +/- 16.9 MPa (p<0.05). The combination of Scotchbond Universal surface treatment with Panavia SA cement showed statistically higher bond strength (p=0.0054). The highest bond

  15. Silver nanoparticles in resin luting cements: Antibacterial and physiochemical properties

    PubMed Central

    Moreira, Francine-Couto-Lima; Alves, Denise-Ramos-Silveira; Estrela, Cyntia-Rodrigues-Araújo; Estrela, Carlos; Carrião, Marcus-Santos; Bakuzis, Andris-Figueiroa; Lopes, Lawrence-Gonzaga

    2016-01-01

    Background Silver has a long history of use in medicine as an antimicrobial and anti-inflammatory agent. Silver nanoparticles (NAg) offer the possibility to control the formation oral biofilms through the use of nanoparticles with biocidal, anti-adhesive, and delivery abilities. This study aims to evaluate the antibacterial effect of resin luting cements with and without NAg, and their influence on color, sorption and solubility. Material and Methods NAg were incorporated to two dual-cured resin cements (RelyX ARC (RA) color A1 and RelyX U200 (RU) color A2) in two concentrations (0.05% and 0.07%, in weight), obtaining six experimental groups. Disc specimens (1x6mm) were obtained to verify the antibacterial effect against Streptococcus mutans in BHI broth after immersion for 1min, 5min, 1h, 6h, and 24h (n=3), through optical density readings. Specimens were evaluated for color changes after addition of NAg with a spectrophotometer (n=10). Sorption and solubility tests were also performed, considering storage in water or 75% ethanol for 28 days (n=5), according to ISO 4049:2010. Data were subjected to statistical analysis with ANOVA and Tukey (p=0.05). Results The optical density of the culture broths indicated bacterial growth, with and without NAg. NAg produced significant color change on the resin cements, especially in RA. Solubility values were very low for all groups, while sorption values raised with NAg. The cements with NAg did not show antibacterial activity against S. mutans. They also showed perceptible color change and higher sorption than the materials without NAg. Conclusions The resin luting cements with NAg addition did not show antibacterial activity against SS. mutans. They also showed perceptible color change and higher sorption than the materials without NAg. Key words:Silver, resin cements, products with antimicrobial action, solubility, color perception tests. PMID:27703610

  16. Microhardness of different resin cement shades inside the root canal.

    PubMed

    Vignolo, Valeria; Fuentes, Maria-Victoria; Garrido, Miguel-Angel; Rodríguez, Jesús; Ceballos, Laura

    2012-09-01

    To compare microhardness along the root canal post space of two resin cements in different shades and a dual-cure resin core material. Root canals of 21 bovine incisors were prepared for post space. Translucent posts (X∘Post, Dentsply DeTrey) were luted using one the following resin luting agent: Calibra (Dentsply DeTrey) in Translucent, Medium and Opaque shades, RelyX Unicem (3M ESPE) in Translucent, A2 and A3 shades and the dual-cure resin core material Core∘X flow. All materials were applied according to manufacturers' instructions and were all photopolymerized (Bluephase LED unit, Ivoclar Vivadent, 40s). After 24 hours, roots were transversally cut into 9 slices 1 mm thick from the coronal to apical extremes, three corresponding to each root third. Then, VHNs were recorded (100gf, 30 s) on the resin luting materials along the adhesive interface in all sections. Data were analyzed by two-way ANOVA and SNK tests (α=0.05). A significant influence on microhardness of resin luting material in their respective shades (p<0.0001), root third (p<0.0001) and interactions between them was detected (p<0.0001). RelyX Unicem cement showed the highest microhardness values and Calibra the lowest, regardless of the shade selected. All resin luting materials tested exhibited a significantly higher microhardness in the cervical third. Microhardness of resin luting agents tested inside the canal is dependent on material brand and resin cement shade seems to be a less relevant factor. Microhardness decreased along the root canal, regardless of the shade selected.

  17. Monkey pulpal response to adhesively luted indirect resin composite inlays.

    PubMed

    Inokoshi, S; Shimada, Y; Fujitani, M; Otsuki, M; Shono, T; Onoe, N; Morigami, M; Takatsu, T

    1995-01-01

    Monkey pulpal responses to resin-bonded indirect resin composite inlays were histopathologically evaluated by placing them in either etched-enamel, total-etched, or adhesive-resin-lined cavities. Initial pulpal responses caused by re-exposure of the cut dentin surfaces and luting procedure subsided if a tight marginal seal was secured by final cementation of the inlay. The adhesive resin coating of freshly cut dentinal walls/floors seems to provide a new technique to protect the dentin and pulp in indirect restorations requiring temporary sealing.

  18. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.; Jones, R. J.; Vaughan, R. W.

    1972-01-01

    High temperature resin matrices suitable for use in advanced graphite fiber composites for jet engine applications were evaluated. A series of planned, sequential screening experiments with resin systems in composite form were performed to reduce the number of candidates to a single A-type polyimide resin that repetitively produced void-free, high strength and modulus composites acceptable for use in the 550 F range for 1000 hours. An optimized processing procedure was established for this system. Extensive mechanical property studies characterized this single system, at room temperature, 500 F, 550 F and 600 F, for various exposure times.

  19. Effect of High-Irradiance Light-Curing on Micromechanical Properties of Resin Cements

    PubMed Central

    Peutzfeldt, Anne; Lussi, Adrian

    2016-01-01

    This study investigated the influence of light-curing at high irradiances on micromechanical properties of resin cements. Three dual-curing resin cements and a light-curing flowable resin composite were light-cured with an LED curing unit in Standard mode (SM), High Power mode (HPM), or Xtra Power mode (XPM). Maximum irradiances were determined using a MARC PS radiometer, and exposure duration was varied to obtain two or three levels of radiant exposure (SM: 13.2 and 27.2 J/cm2; HPM: 15.0 and 30.4 J/cm2; XPM: 9.5, 19.3, and 29.7 J/cm2) (n = 17). Vickers hardness (HV) and indentation modulus (EIT) were measured at 15 min and 1 week. Data were analyzed with nonparametric ANOVA, Wilcoxon-Mann-Whitney tests, and Spearman correlation analyses (α = 0.05). Irradiation protocol, resin-based material, and storage time and all interactions influenced HV and EIT significantly (p ≤ 0.0001). Statistically significant correlations between radiant exposure and HV or EIT were found, indicating that high-irradiance light-curing has no detrimental effect on the polymerization of resin-based materials (p ≤ 0.0021). However, one resin cement was sensitive to the combination of irradiance and exposure duration, with high-irradiance light-curing resulting in a 20% drop in micromechanical properties. The results highlight the importance of manufacturers issuing specific recommendations for the light-curing procedure of each resin cement. PMID:28044129

  20. Effect of High-Irradiance Light-Curing on Micromechanical Properties of Resin Cements.

    PubMed

    Peutzfeldt, Anne; Lussi, Adrian; Flury, Simon

    2016-01-01

    This study investigated the influence of light-curing at high irradiances on micromechanical properties of resin cements. Three dual-curing resin cements and a light-curing flowable resin composite were light-cured with an LED curing unit in Standard mode (SM), High Power mode (HPM), or Xtra Power mode (XPM). Maximum irradiances were determined using a MARC PS radiometer, and exposure duration was varied to obtain two or three levels of radiant exposure (SM: 13.2 and 27.2 J/cm(2); HPM: 15.0 and 30.4 J/cm(2); XPM: 9.5, 19.3, and 29.7 J/cm(2)) (n = 17). Vickers hardness (HV ) and indentation modulus (EIT) were measured at 15 min and 1 week. Data were analyzed with nonparametric ANOVA, Wilcoxon-Mann-Whitney tests, and Spearman correlation analyses (α = 0.05). Irradiation protocol, resin-based material, and storage time and all interactions influenced HV and EIT significantly (p ≤ 0.0001). Statistically significant correlations between radiant exposure and HV or EIT were found, indicating that high-irradiance light-curing has no detrimental effect on the polymerization of resin-based materials (p ≤ 0.0021). However, one resin cement was sensitive to the combination of irradiance and exposure duration, with high-irradiance light-curing resulting in a 20% drop in micromechanical properties. The results highlight the importance of manufacturers issuing specific recommendations for the light-curing procedure of each resin cement.

  1. Shear bond strength of self-adhesive resins compared to resin cements with etch and rinse adhesives to enamel and dentin in vitro.

    PubMed

    Lührs, A-K; Guhr, S; Günay, H; Geurtsen, W

    2010-04-01

    Self-adhesive resin cements should ease the placement of dental restorations. The purpose of this study was to evaluate their shear bond strength to enamel and dentin. Sixty molars were randomly assigned to 12 test groups (each n = 10), and the approximal surfaces were ground flat to get an enamel and dentin surface with a diameter of at least 4 mm. Ceramic specimens were bonded to the surfaces with either Variolink/Syntac Classic (VSC), Panavia F2.0 (PAF), RelyX Unicem (RLX), Maxcem Elite (MCE), iCem (IC), or an experimental self-adhesive resin cement (EXP). The shear bond strength (crosshead speed: 1 mm/min) was measured after 24-h storage in NaCl (37 degrees C). The fracture modes were determined with a stereomicroscope (magnification, 8-50-fold). VSC had the highest shear bond strength within the enamel groups (42.9 +/- 9 MPa) and IC the lowest (10.5 +/- 4.2 MPa, p < 0.001). The highest dentin shear bond strength was determined for VSC (39.2 +/- 8.9 MPa, p < 0.001) and the lowest for EXP (7.8 +/- 3.9 MPa, p < 0.001). Self-adhesive resin cements fractured mainly between resin and enamel or dentin. The shear bond strength of self-adhesive resin cements was inferior compared to conventional composite resin cements.

  2. The efficiency of different light sources to polymerize resin cement beneath porcelain laminate veneers.

    PubMed

    Usumez, A; Ozturk, A N; Usumez, S; Ozturk, B

    2004-02-01

    Plasma arc light units for curing resin composites have been introduced with the claim of relatively short curing times. The purpose of this study was to evaluate the efficiency of two different light sources to polymerize dual curing resin cement beneath porcelain laminate veneers. Twenty extracted healthy human maxillary centrals were used. Teeth were sectioned 2 mm below the cemento-enamel junction and crown parts were embedded into self-cure acrylic resin, labial surface facing up. Cavity preparation was carried out on labial surfaces. These teeth were divided into two groups of 10 each. The resin cement/veneer combination was exposed to two different photo polymerization units. A conventional halogen light (Hilux 350, Express Dental Products) and a plasma arc light (Power PAC, ADT) were used to polymerize resin cement. Ten specimens were polymerized conventionally (40 s) and the other specimens by plasma arc curing (PAC) (6 s). Two samples from each tooth measuring 1.2 x 1.2 x 5 mm were prepared. These sections were subjected to microshear testing and failure values were recorded. Statistically significant differences were found between the bond strength of veneers exposed to conventional light and PAC unit (P < 0.001). Samples polymerized with halogen light showed better bond strength. The results of this study suggest that the curing efficiency of PAC through ceramic was lower compared with conventional polymerization for the exposure durations tested in this study.

  3. Tensile Strength of Resin Cements Used with Base Metals in a Simulating Passive Cementation Technique for Implant-Supported Prostheses.

    PubMed

    Falcão, Hilmo Barreto Leite; Ribeiro, Ricardo Faria; Souza, Raphael Freitas de; Macedo, Ana Paula; Almeida, Rossana Pereira de

    2016-01-01

    The aim of this study was to analyze the tensile strength of two different resin cements used in passive cementation technique for implant-supported prosthesis. Ninety-six plastic cylinders were waxed in standardized forms, cast in commercially pure titanium, nickel-chromium and nickel-chromium-titanium alloys. Specimens were cemented on titanium cylinders using self-adhesive resin cement or conventional dual-cured resin cement. Specimens were divided in 12 groups (n=8) in accordance to metal, cement and ageing process. Specimens were immersed in distilled water at 37 °C for 24 h and half of them was thermocycled for 5,000 cycles. Specimens were submitted to bond strength test in a universal test machine EMIC-DL2000 at 5 mm/min speed. Statistical analysis evidenced higher tensile strength for self-adhesive resin cement than conventional dual-cured resin cement, whatever the used metal. Self-adhesive resin cement presented higher tensile strength compared to conventional dual-cured resin cement. In conclusion, metal type and ageing process did not influence the tensile strength results.

  4. Polymerization shrinkage kinetics of dimethacrylate resin-cements.

    PubMed

    Spinell, Thomas; Schedle, Andreas; Watts, David C

    2009-08-01

    To determine polymerization shrinkage-strain (S(Y)) and shrinkage-stress (S(Z)) of six resin-cements and to compare their performance with the aid of degree of conversion (DC) data. Variolink 2 (VL2), Multilink Automix (MA), Multilink Sprint (MS, all Ivoclar-Vivadent), Nexus 2 (NX2), Maxcem (MX, both Kerr) and RelyX Unicem (RX, 3M-Espe) were investigated. MS, MX and RX were self-adhesive; others require a bonding-agent. All measurements were conducted at 23 degrees C for 60min (n=5), except 80min for RX, with materials self-cured only (sc) and dual-cured (dc); NX2 and VL2 were additionally light-cured only (lc). S(Y) was measured by the bonded-disk method [Watts DC, Cash AJ. Determination of polymerization shrinkage kinetics in visible-light-cured materials: methods development. Dent Mater 1991;7(4):281-7; Watts DC, Marouf AS. Optimal specimen geometry in bonded-disk shrinkage-strain measurements on light-cured biomaterials. Dent Mater 2000;16(6):447-51]; S(Z) by the Bioman instrument [Watts DC, Satterthwaite JD. Axial shrinkage-stress depends upon both C-factor and composite mass. Dent Mater 2008;24(1):1-8 [Epub October 24, 2007]; Watts DC, Marouf AS, Al-Hindi AM. Photo-polymerization shrinkage-stress kinetics in resin-composites: methods development. Dent Mater 2003;19(1):1-11]. Light-cure was achieved by QTH at 500mW/cm(2). The respective DCs were measured under the same conditions by FTIR-ATR spectroscopy. Data were analyzed by One-Way ANOVA plus Bonferroni test, and by t-test, at p<0.05. DC by self-curing was less than the DC by dual-curing, for all cements. Shrinkage-strain ranged from 1.77 to 5.29% and shrinkage-stress from 3.36 to 10.37MPa. NX2 and VL2 were not significantly different, when light-cured only. Except for RX, sc and dc shrinkage-strain varied maximally by 0.4%. MX showed the highest S(Y), RX the lowest. When sc, RX initially expanded by <0.5% (t approximately 5min). For most materials, S(Y) correlated with their filler loading. The highest

  5. Feasibility of ossicular chain reconstruction with resin cement.

    PubMed

    Ribeiro, Fernando de Andrade Quintanilha; Tamaoki, Yumi; Cabral, Gabriel Wynne

    Disjunction of ossicular chain is a common finding in middle ear chronic disease. In addition to ossicular interposition, various materials have been used for reconstruction, such as ceramic prostheses, polyethylene, and titanium. Because of the high cost of the available options, the authors propose to reconstruct the ossicular chain with resin cement, a material typically used in dental reconstruction and fixation. Two anatomical parts of the temporal bones were used, creating a disjunction of the ossicular chain between the incus and staples and then reconstructing with resin cement. These reconstructions were repeated four times by three different surgeons to ensure the feasibility of the method. A total of 12 reconstructions were carried out, four per surgeon. After applying the cement, it could be verified by touch that the space was filled properly by the used material. Proper articulation with motion transfer to the entire ossicular chain was also observed. Resin cement is a suitable material in the reconstruction of ossicular chain injury, and it is inexpensive and technically simple. Copyright © 2016 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.

  6. Bond strength of adhesive resin cement with different adhesive systems

    PubMed Central

    Lorenzoni e Silva, Fabrizio; Pamato, Saulo; Kuga, Milton-Carlos; Só, Marcus-Vinicius-Reis

    2017-01-01

    Background To assess the immediate bond strength of a dual-cure adhesive resin cement to the hybridized dentin with different bonding systems. Material and Methods Fifty-six healthy human molars were randomly divided into 7 groups (n=8). After 3 longitudinal sections, the central cuts were included in PVC matrix and were submitted to dentin hybridization according to the groups: G1 - etch & rinse system with 3-step (Apder™ Scotchbond™ Multi-Purpose, 3M ESPE), G2 - etch & rinse system with 3-step (Optibond™ FL, Kerr), G3 - etch & rinse system with 3-step (All-Bond 3®, Bisco), G4 - etch & rinse simplified system (Adper™ Single Bond 2, 3M ESPE), G5 - self-etching system with one step (Bond Force, Tokuyama), G6 - universal system in moist dentin (Single Bond Universal, 3M ESPE), G7 - universal system in dry dentin (Single Bond Universal, 3M ESPE). Then all groups received the cementing of a self-adhesive resin cement cylinder (Duo-link, Bisco) made from a polypropylene matrix. In the evaluation of bond strength, the samples were subjected to the microshear test and evaluated according to the fracture pattern by optical microscopy. Results The Kruskal-Wallis test suggests a statistically significant difference between groups (p=0,039), and Tukey for multiple comparisons, indicating a statistically significant difference between G3 and G4 (p<0.05). It was verified high prevalence of adhesive failures, followed by mixed failure and cohesive in dentin. Conclusions The technique and the system used to dentin hybridization are able to affect the immediate bond strength of resin cement dual adhesive. Key words:Adhesion, adhesive resin cement, adhesive systems, microshear. PMID:28149471

  7. Effects of coronal substrates and water storage on the microhardness of a resin cement used for luting ceramic crowns

    PubMed Central

    de MENDONÇA, Luana Menezes; PEGORARO, Luiz Fernando; LANZA, Marcos Daniel Septímio; PEGORARO, Thiago Amadei; de CARVALHO, Ricardo Marins

    2014-01-01

    Composite resin and metallic posts are the materials most employed for reconstruction of teeth presenting partial or total destruction of crowns. Resin-based cements have been widely used for cementation of ceramic crowns. The success of cementation depends on the achievement of adequate cement curing. Objectives To evaluate the microhardness of Variolink® II (Ivoclar Vivadent, Schaan, Liechtenstein), used for cementing ceramic crowns onto three different coronal substrate preparations (dentin, metal, and composite resin), after 7 days and 3 months of water storage. The evaluation was performed along the cement line in the cervical, medium and occlusal thirds on the buccal and lingual aspects, and on the occlusal surface. Material and Methods Thirty molars were distributed in three groups (N=10) according to the type of coronal substrate: Group D- the prepared surfaces were kept in dentin; Groups M (metal) and R (resin)- the crowns were sectioned at the level of the cementoenamel junction and restored with metallic cast posts or resin build-up cores, respectively. The crowns were fabricated in ceramic IPS e.max® Press (Ivoclar Vivadent, Schaan, Liechtenstein) and luted with Variolink II. After 7 days of water storage, 5 specimens of each group were sectioned in buccolingual direction for microhardness measurements. The other specimens (N=5) were kept stored in deionized water at 37ºC for three months, followed by sectioning and microhardness measurements. Results Data were first analyzed by three-way ANOVA that did not reveal significant differences between thirds and occlusal surface (p=0.231). Two-way ANOVA showed significant effect of substrates (p<0.001) and the Tukey test revealed that microhardness was significantly lower when crowns were cemented on resin cores and tested after 7 days of water storage (p=0.007). Conclusion The type of material employed for coronal reconstruction of preparations for prosthetic purposes may influence the cement properties

  8. Effect of ceramic surface treatment on tensile bond strength to a resin cement.

    PubMed

    Della Bona, Alvaro; Anusavice, Kenneth J; Hood, James A A

    2002-01-01

    The objective of this study was to test the following hypotheses: (1) hydrofluoric acid (HF)-treated ceramic surfaces produce the highest tensile bond strength to resin cements, independent of the ceramic microstructure and composition; and (2) the tensile bond strength test is appropriate for analysis of interfacial adhesion for ceramic-bonded-to-resin systems. Ceramic specimens were polished with 1-micron alumina abrasive and divided into four groups of 10 specimens for each of seven ceramic types. One of the following surface treatments was applied: (1) 10% ammonium bifluoride (ABF) for 1 minute; (2) 9.6% HF for 2 minutes; (3) 4% acidulated phosphate fluoride (APF) for 2 minutes; and (4) a silane coupling agent. The surface-treated areas were coated with an adhesive resin and bonded to a resin cement. Specimens were loaded to failure in tension using a testing machine. Tensile bond strength data were statistically analyzed, and fracture surfaces were examined to determine the mode of failure. Silane-treated surfaces showed statistically higher mean tensile bond strength values than surfaces treated with any etchant (HF, ABF, APF). HF produced statistically higher mean tensile bond strengths than ABF and APF. All failures occurred in the adhesion zone. The tensile bond strength test is adequate for analysis of the adhesive zone of resin-ceramic systems. The chemical adhesion produced by silane promoted higher mean bond strength values than the micromechanical retention produced by any etchant for the resin-ceramic systems used in this study.

  9. The effect of resin cement type and cleaning method on the shear bond strength of resin cements for recementing restorations.

    PubMed

    Koodaryan, Roodabeh; Hafezeqoran, Ali; Khakpour Maleki, Amin

    2017-04-01

    This laboratory study assessed the effect of different dentin cleaning procedures on shear bond strength of resin cements for recementing prosthesis. 4 × 4 flat surface was prepared on the labial surface of 52 maxillary central incisors. Metal frames (4 × 4 × 1.5 mm) were cast with nickel-chromium alloy. All specimens were randomly divided into 2 groups to be cemented with either Panavia F2.0 (P) or RelyX Ultimate (U) cement. The initial shear bond strength was recorded by Universal Testing Machine at a crosshead speed of 0.5 mm/min. Debonded specimens were randomly allocated into 2 subgroups (n = 13) according to the dentin cleaning procedures for recementation. The residual cement on bonded dentin surfaces was eliminated with either pumice slurry (p) or tungsten carbide bur (c). The restorations were rebonded with the same cement and were subjected to shear test. Data failed the normality test (P < .05), thus were analyzed with Mann Whitney U-test, Wilcoxon signed rank test, and two-way ANOVA after logarithmic transformation (α = .05). The initial shear bond strength of group P was significantly higher than group U (P = .001). Pc and Uc groups presented higher bond strength after recementation compared to the initial bond strength. However, it was significant only in Pc group (P = .034). The specimens recemented with Panavia F2.0 provided higher bond strength than RelyX Ultimate cement. Moreover, a tungsten carbide bur was a more efficient method in removing the residual resin cement and increased the bond strength of Panavia F2.0 cement after recementation.

  10. The effect of resin cement type and cleaning method on the shear bond strength of resin cements for recementing restorations

    PubMed Central

    Koodaryan, Roodabeh; Khakpour Maleki, Amin

    2017-01-01

    PURPOSE This laboratory study assessed the effect of different dentin cleaning procedures on shear bond strength of resin cements for recementing prosthesis. MATERIALS AND METHODS 4 × 4 flat surface was prepared on the labial surface of 52 maxillary central incisors. Metal frames (4 × 4 × 1.5 mm) were cast with nickel-chromium alloy. All specimens were randomly divided into 2 groups to be cemented with either Panavia F2.0 (P) or RelyX Ultimate (U) cement. The initial shear bond strength was recorded by Universal Testing Machine at a crosshead speed of 0.5 mm/min. Debonded specimens were randomly allocated into 2 subgroups (n = 13) according to the dentin cleaning procedures for recementation. The residual cement on bonded dentin surfaces was eliminated with either pumice slurry (p) or tungsten carbide bur (c). The restorations were rebonded with the same cement and were subjected to shear test. Data failed the normality test (P < .05), thus were analyzed with Mann Whitney U-test, Wilcoxon signed rank test, and two-way ANOVA after logarithmic transformation (α = .05). RESULTS The initial shear bond strength of group P was significantly higher than group U (P = .001). Pc and Uc groups presented higher bond strength after recementation compared to the initial bond strength. However, it was significant only in Pc group (P = .034). CONCLUSION The specimens recemented with Panavia F2.0 provided higher bond strength than RelyX Ultimate cement. Moreover, a tungsten carbide bur was a more efficient method in removing the residual resin cement and increased the bond strength of Panavia F2.0 cement after recementation. PMID:28435620

  11. Influence of a polymerizable eugenol derivative on the antibacterial activity and wettability of a resin composite for intracanal post cementation and core build-up restoration.

    PubMed

    Almaroof, A; Niazi, S A; Rojo, L; Mannocci, F; Deb, S

    2016-07-01

    Eugenol has been used in dentistry due to its ability to inhibit the growth of a range of microorganisms, including facultative anaerobes commonly isolated from infected root canals. The aim of this study was to evaluate the antibacterial activity of the experimental composites containing eugenyl methacrylate monomer (EgMA), a polymeric derivative of eugenol, against a range of oral bacteria, commonly associated with failure of coronal and endodontic restorations. In vitro composite behavior and wettability were also studied in conjunction with their antibacterial activity. EgMA monomer (5 and 10% by weight) was added into BisGMA/TEGDMA resin based formulations with filler mixtures of hydroxyapatite (HA) and zirconium oxide ZrO2. The antibacterial activity of the experimental composites against Enterococcus faecalis, Streptococcus mutans and Propionibacterium acnes were evaluated by direct contact test and compared with composite formulation without inclusion of EgMA. To clarify the antibacterial mode of action, agar diffusion test (ADT) was also performed. Water sorption, solubility, diffusion coefficient, contact angle and surface free energy as complementary clinically relevant properties were determined. Water sorption and wettability studies showed reduction of water uptake and surface free energy values with increasing content of EgMA monomer, resulting in significant increase in the hydrophobicity of the composites. No inhibition zones were detected in any of the composites tested against the three bacteria employed as expected, due to the absence of any leachable antibacterial agent. The covalently anchored EgMA monomer with the composite surface exhibited an effective bacteriostatic activity by reducing the number of CFUs of the three species of bacteria tested with no significant dependence on the concentration of EgMA at 5 and 10% by weight. The surface antibacterial activity R of the experimental composites were different against the three tested

  12. Influence of ultrasound application on inlays luting with self-adhesive resin cements.

    PubMed

    Cantoro, Amerigo; Goracci, Cecilia; Coniglio, Ivanovic; Magni, Elisa; Polimeni, Antonella; Ferrari, Marco

    2011-10-01

    The study was aimed at assessing the influence of the cement manipulation and ultrasounds application on the bonding potential of self-adhesive resin cements to dentin by microtensile bond strength testing and microscopic observations of the interface. Fifty-six standardized mesio-occlusal class II cavities were prepared in extracted third molars. Class II inlays were made using the nano-hybrid resin composite Gradia Forte (GC Corp, Tokyo, Japan), following the manufacturer's instruction. The sample was randomly divided into two groups (n = 28) according to the luting technique. Half of the specimens were luted under a static seating pressure (P), while the other ones were cemented under vibration (V). The inlays were luted using the following self-adhesive resin cements: G-Cem (G, GC Corp., Tokyo, Japan) Automix (GA) and Capsule (GC); RelyX Unicem (RU, 3 M ESPE, Seefeld, Germany) Clicker (RUC) and Aplicap (RUA). Microtensile sticks and specimens for scanning electron microscope (SEM) observations were obtained from the luted teeth. The interfacial strengths measured for the cements under static pressure or ultrasonic vibration were [median (interquartile range)]: GC/V 4 (2.3-7.9); GC/P 6.8 (4.1-10.1); GA/V 3 (1.9-6.7); GA/P 1.9 (0-5.1); RUC/V 6.6 (4.6-9.8); RUC/P 4.1 (1.8-6.4); RUA/V 6.2 (2.4-10.4); RUA/P 3.4 (0-5.4). The cement formulation influenced dentin bond strength of G. RU bond strength was affected by the luting technique. SEM analysis revealed a homogeneous structure and reduced porosities for both cements as a result of ultrasonic vibration. RU benefited from the application of ultrasounds, while GC achieved higher bond strengths than GA.

  13. Effect of Coloring-by-Dipping on Microtensile Bond Strength of Zirconia to Resin Cement.

    PubMed

    Mahshid, Minoo; Berijani, Naeem; Sadr, Seyed Jalil; Tabatabaian, Farhad; Homayoon, Sepide Sorour

    2015-06-01

    Studies on the effect of coloring procedures on the bond strength of zirconia to resin cement are lacking in the literature. This study evaluated the effect of dipping of zirconia ceramic in different liquid color shades on the microtensile bond strength (MTBS) of zirconia ceramic to resin cement. This in vitro study was conducted on 100 microbar specimens divided into five groups of B2, C1, D4, A3 and control (not colored). To prepare the microbars, 20 white zirconia ceramic blocks, measuring 5×11×11 mm, were dipped in A3, B2, C1 or D4 liquid color shades for 10 seconds (five blocks for each color shade) and five blocks were not colored as controls. All the zirconia blocks were sintered in a sintering furnace. Composite blocks of similar dimensions were fabricated and bonded to zirconia ceramic blocks using Panavia F 2.0 resin cement. Zirconia-cement-composite blocks were sectioned into microbars measuring 1×1×10 mm. The MTBS of microbars was measured by a testing machine. Data were analyzed using one-way ANOVA and Tukey's test. All tests were carried out at 0.05 level of significance. Statistically significant differences were found among the groups in MTBS (P<0.001). The D4 group had the highest MTBS value (39.16 ± 6.52 MPa). Dipping affected the MTBS of zirconia ceramic to Panavia F 2.0 resin cement; however, a similar pattern of change was not seen due to the different liquid color shades.

  14. Effect of Coloring–by-Dipping on Microtensile Bond Strength of Zirconia to Resin Cement

    PubMed Central

    Mahshid, Minoo; Berijani, Naeem; Sadr, Seyed Jalil; Homayoon, Sepide Sorour

    2015-01-01

    Objectives: Studies on the effect of coloring procedures on the bond strength of zirconia to resin cement are lacking in the literature. This study evaluated the effect of dipping of zirconia ceramic in different liquid color shades on the microtensile bond strength (MTBS) of zirconia ceramic to resin cement. Materials and Methods: This in vitro study was conducted on 100 microbar specimens divided into five groups of B2, C1, D4, A3 and control (not colored). To prepare the microbars, 20 white zirconia ceramic blocks, measuring 5×11×11 mm, were dipped in A3, B2, C1 or D4 liquid color shades for 10 seconds (five blocks for each color shade) and five blocks were not colored as controls. All the zirconia blocks were sintered in a sintering furnace. Composite blocks of similar dimensions were fabricated and bonded to zirconia ceramic blocks using Panavia F 2.0 resin cement. Zirconia-cement-composite blocks were sectioned into microbars measuring 1×1×10 mm. The MTBS of microbars was measured by a testing machine. Data were analyzed using one-way ANOVA and Tukey’s test. All tests were carried out at 0.05 level of significance. Results: Statistically significant differences were found among the groups in MTBS (P<0.001). The D4 group had the highest MTBS value (39.16 ± 6.52 MPa). Conclusion: Dipping affected the MTBS of zirconia ceramic to Panavia F 2.0 resin cement; however, a similar pattern of change was not seen due to the different liquid color shades. PMID:26884775

  15. Bond strengths of lingual orthodontic brackets bonded with light-cured composite resins cured by transillumination.

    PubMed

    King, L; Smith, R T; Wendt, S L; Behrents, R G

    1987-04-01

    A method of curing light-cured composite resins by transillumination to cement acid-etched fixed partial dentures was adapted to bond solid mesh-backed lingual orthodontic brackets. Results of this investigation showed that the bond strengths of the orthodontic brackets bonded with light-cured composite resins were significantly less (P less than 0.05) than the bond strengths of the orthodontic brackets cemented with traditional adhesives and orthodontic composite resins. Notwithstanding, the bond strengths achieved with the transilluminated light-cured composite resins should be adequate to withstand the forces of mastication and orthodontic movements. There was no correlation of bond strengths of the brackets cemented with the transilluminated light-cured composite resins when compared to the faciolingual widths of the teeth.

  16. Self-adhesive resin cements: a literature review.

    PubMed

    Radovic, Ivana; Monticelli, Francesca; Goracci, Cecilia; Vulicevic, Zoran R; Ferrari, Marco

    2008-08-01

    To summarize research conducted on self-adhesive cements and provide information on their properties, based on the results of original scientific full-length papers from peer-reviewed journals listed in PubMed. The search was conducted using the term "self-adhesive cement OR (trade names of currently available products)". Only in vitro studies that investigated two commercially available self-adhesive cements have been published so far. The results were summarized into the following categories: adhesion to tooth substrates (enamel, dentin, root dentin), adhesion to restorative materials (endodontic posts, ceramics, titanium abutments), marginal adaptation, microleakage, mechanical properties, biocompatibility, chemical adhesion and fluoride release, and ratings in clinical use. The majority of available literature data is based on studies that investigated one of the self-adhesive cements that are currently available to clinicians. According to the in vitro results, self-adhesive cement adhesion to dentin and various restorative materials is satisfactory and comparable to other multistep resin cements, while adhesion to enamel appears to be a weak link in their bonding properties. Long-term clinical performance of these materials needs to be assessed prior to making a general recommendation for their use.

  17. The effect of plasma on shear bond strength between resin cement and colored zirconia.

    PubMed

    Park, Chan; Yoo, Seung-Hwan; Park, Sang-Won; Yun, Kwi-Dug; Ji, Min-Kyung; Shin, Jin-Ho; Lim, Hyun-Pil

    2017-04-01

    To investigate the effect of non-thermal atmospheric pressure plasma (NTAPP) treatment on shear bond strength (SBS) between resin cement and colored zirconia made with metal chlorides. 60 zirconia specimens were divided into 3 groups using coloring liquid. Each group was divided again into 2 sub-groups using plasma treatment; the experimental group was treated with plasma, and the control group was untreated. The sub-groups were: N (non-colored), C (0.1 wt% aqueous chromium chloride solution), M (0.1 wt% aqueous molybdenum chloride solution), NP (non-colored with plasma), CP (0.1 wt% aqueous chromium chloride solution with plasma), and MP (0.1 wt% aqueous molybdenum chloride solution with plasma). Composite resin cylinders were bonded to zirconia specimens with MDP-based resin cement, and SBS was measured using a universal testing machine. All data was analyzed statistically using a 2-way ANOVA test and a Tukey test. SBS significantly increased when specimens were treated with NTAPP regardless of coloring (P<.001). Colored zirconia containing molybdenum showed the highest value of SBS, regardless of NTAPP. The molybdenum group showed the highest SBS, whereas the chromium group showed the lowest. NTAPP may increase the SBS of colored zirconia and resin cement. The NTAPP effect on SBS is not influenced by the presence of zirconia coloring.

  18. The effect of plasma on shear bond strength between resin cement and colored zirconia

    PubMed Central

    2017-01-01

    PURPOSE To investigate the effect of non-thermal atmospheric pressure plasma (NTAPP) treatment on shear bond strength (SBS) between resin cement and colored zirconia made with metal chlorides. MATERIALS AND METHODS 60 zirconia specimens were divided into 3 groups using coloring liquid. Each group was divided again into 2 sub-groups using plasma treatment; the experimental group was treated with plasma, and the control group was untreated. The sub-groups were: N (non-colored), C (0.1 wt% aqueous chromium chloride solution), M (0.1 wt% aqueous molybdenum chloride solution), NP (non-colored with plasma), CP (0.1 wt% aqueous chromium chloride solution with plasma), and MP (0.1 wt% aqueous molybdenum chloride solution with plasma). Composite resin cylinders were bonded to zirconia specimens with MDP-based resin cement, and SBS was measured using a universal testing machine. All data was analyzed statistically using a 2-way ANOVA test and a Tukey test. RESULTS SBS significantly increased when specimens were treated with NTAPP regardless of coloring (P<.001). Colored zirconia containing molybdenum showed the highest value of SBS, regardless of NTAPP. The molybdenum group showed the highest SBS, whereas the chromium group showed the lowest. CONCLUSION NTAPP may increase the SBS of colored zirconia and resin cement. The NTAPP effect on SBS is not influenced by the presence of zirconia coloring. PMID:28435621

  19. Influence of Curing Light Attenuation Caused by Aesthetic Indirect Restorative Materials on Resin Cement Polymerization

    PubMed Central

    Pick, Bárbara; Gonzaga, Carla Castiglia; Junior, Washington Steagall; Kawano, Yoshio; Braga, Roberto Ruggiero; Cardoso, Paulo Eduardo Capel

    2010-01-01

    Objectives: To verify the effect of interposing different indirect restorative materials on degree of conversion (DC), hardness, and flexural strength of a dual-cure resin cement. Methods: Discs (2 mm-thick, n=5) of four indirect restorative materials were manufactured: a layered glass-ceramic (GC); a heat-pressed lithium disilicate-based glass-ceramic veneered with the layered glass-ceramic (LD); a micro-hybrid (MH); and a micro-filled (MF) indirect composite resin. The light transmittance of these materials was determined using a double-beam spectrophotometer with an integrating sphere. Bar-shaped specimens of a dual-cure resin cement (Nexus 2/SDS Kerr), with (dual-cure mode) and without the catalyst paste (light-cure mode), were photoactivated through the discs using either a quartz-tungsten-halogen (QTH) or a light-emitting diode (LED) unit. As a control, specimens were photoactivated without the interposed discs. Specimens were stored at 37ºC for 24h before being submitted to FT-Raman spectrometry (n=3), Knoop microhardness (n=6) and three-point bending (n=6) tests. Data were analyzed by ANOVA/Tukey’s test (α=0.05). Results: MH presented the highest transmittance. The DC was lower in light-cure mode than in dual-cure mode. All restorative materials reduced the cement microhardness in light-cure mode. GC and LD with QTH and GC with LED decreased the strength of the cement for both activation modes compared to the controls. Curing units did not affect DC or microhardness, except when the dual-cure cement was photoactivated through LD (LED>QTH). Flexural strength was higher with QTH compared to LED. Conclusions: Differences in transmittance among the restorative materials significantly influenced cement DC and flexural strength, regardless of the activation mode, as well as the microhardness of the resin cement tested in light-cure mode. Microhardness was not impaired by the interposed materials when the resin cement was used in dual-cure mode. PMID:20613921

  20. The effect of repeated bonding on the shear bond strength of different resin cements to enamel and dentin.

    PubMed

    Bulut, Ali Can; Atsü, Saadet Sağlam

    2017-02-01

    Cementation failures of restorations are frequently observed in clinical practice. The purpose of this study is to compare the effect of initial and repeated bonding on the bond strengths of different resin cements to enamel and dentin. Ninety human maxillary central incisors were bisected longitudinally. The 180 tooth halves were divided into 2 groups (n = 90) for enamel and dentin bonding. The enamel and dentin groups were further divided into 3 groups (n = 30) for different resin cement types. Composite resin (Filtek Ultimate) cylinders (3 × 3 mm) were prepared and luted to enamel and dentin using Variolink II (Group V), RelyX ARC (Group R), or Panavia F 2.0 (Group P) resin cement. After 24 hours, initial shear bond strengths of the resin cements to enamel and dentin were measured. Using new cylinders, the specimens were de-bonded and re-bonded twice to measure the first and the second bond strengths to enamel and dentin. Failure modes and bonding interfaces were examined. Data were statistically analyzed. Initial and repeated bond strengths to enamel were similar for all the groups. The first (15.3 ± 2.2 MPa) and second (10.4 ± 2.2 MPa) bond strengths to dentin were significantly higher in Group V (P<.0001). Second bond strengths of dentin groups were significantly lower than initial and first bond strengths to dentin (P<.0001). All resin cements have similar initial and repeated bond strengths to enamel. Variolink II has the highest first and second bond strength to dentin. Bond strength to dentin decreases after the first re-bonding for all resin cements.

  1. The effect of repeated bonding on the shear bond strength of different resin cements to enamel and dentin

    PubMed Central

    Atsü, Saadet Sağlam

    2017-01-01

    PURPOSE Cementation failures of restorations are frequently observed in clinical practice. The purpose of this study is to compare the effect of initial and repeated bonding on the bond strengths of different resin cements to enamel and dentin. MATERIALS AND METHODS Ninety human maxillary central incisors were bisected longitudinally. The 180 tooth halves were divided into 2 groups (n = 90) for enamel and dentin bonding. The enamel and dentin groups were further divided into 3 groups (n = 30) for different resin cement types. Composite resin (Filtek Ultimate) cylinders (3 × 3 mm) were prepared and luted to enamel and dentin using Variolink II (Group V), RelyX ARC (Group R), or Panavia F 2.0 (Group P) resin cement. After 24 hours, initial shear bond strengths of the resin cements to enamel and dentin were measured. Using new cylinders, the specimens were de-bonded and re-bonded twice to measure the first and the second bond strengths to enamel and dentin. Failure modes and bonding interfaces were examined. Data were statistically analyzed. RESULTS Initial and repeated bond strengths to enamel were similar for all the groups. The first (15.3 ± 2.2 MPa) and second (10.4 ± 2.2 MPa) bond strengths to dentin were significantly higher in Group V (P<.0001). Second bond strengths of dentin groups were significantly lower than initial and first bond strengths to dentin (P<.0001). CONCLUSION All resin cements have similar initial and repeated bond strengths to enamel. Variolink II has the highest first and second bond strength to dentin. Bond strength to dentin decreases after the first re-bonding for all resin cements. PMID:28243393

  2. DESENSITIZING BIOACTIVE AGENTS IMPROVES BOND STRENGTH OF INDIRECT RESIN-CEMENTED RESTORATIONS: PRELIMINARY RESULTS

    PubMed Central

    Pires-De-Souza, Fernanda de Carvalho Panzeri; de Marco, Fabíola Fiorezi; Casemiro, Luciana Assirati; Panzeri, Heitor

    2007-01-01

    Objective: The aim of this study was to assess the bond strength of indirect composite restorations cemented with a resin-based cement associated with etch-and-rinse and self-etching primer adhesive systems to dentin treated or not with a bioactive material. Materials and Method: Twenty bovine incisor crowns had the buccal enamel removed and the dentin ground flat. The teeth were assigned to 4 groups (n=5): Group I: acid etching + Prime & Bond NT (Dentsply); Group II: application of a bioactive glass (Biosilicato®)+ acid etching + Prime & Bond NT; Group III: One-up Bond F (J Morita); Group IV: Biosilicato® + One-up Bond F. Indirect composite resin (Artglass, Kulzer) cylinders (6x10mm) were fabricated and cemented to the teeth with a dualcure resin-based cement (Enforce, Dentsply). After cementation, the specimens were stored in artificial saliva at 37oC for 30 days and thereafter tested in tensile strength in a universal testing machine (EMIC) with 50 kgf load cell at a crosshead speed of 1 mm/min. Failure modes were assessed under scanning electron microscopy. Data were analyzed statistically by ANOVA and Tukey's test (95% level of confidence). Results: Groups I, II and III had statistically similar results (p>0.05). Group IV had statistically significant higher bond strength means (p<0.05) than the other groups. The analysis of the debonded surfaces showed a predominance of adhesive failure mode for Group III and mixed failure mode for the other groups. Conclusion: The use of desensitizing agent did not affect negatively the bonding of the indirect composite restorations to dentin, independently of the tested adhesive systems. PMID:19089114

  3. Cytotoxicity evaluation of five different dual-cured resin cements used for fiber posts cementation

    PubMed Central

    Dioguardi, M; Perrone, D; Troiano, G; Laino, L; Ardito, F; Lauritano, F; Cicciù, M; Muzio, L Lo

    2015-01-01

    Custom-cast posts and cores are usually used to treat endodontically treated teeth. However, several researches have underlined how these devices may be a much higher elastic modulus than the supporting dentine and the difference in the modulus could lead to stress concentrating in the cement lute, leading to failure. The role of the cement seems to play a fundamental role in order to transfer the strength during the chewing phases. Aim of this research is to record the rate of cytotoxicity of five different dual-cured resin cements used for fiber posts cementation. We tested the cytotoxicity of this five materials on MG63 osteoblast-like cells through two different methods: MTT ([3-4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide succinate) assay which tests for mitochondrial enzyme activity6 and xCELLigence® system. PMID:26309592

  4. Radiopacity of resin-modified glass-ionomer restorative cements.

    PubMed

    Sidhu, S K; Shah, P M; Chong, B S; Pitt Ford, T R

    1996-09-01

    This in vitro study compared the relative radiopacities of three commercially available resin-modified glass-ionomer cements (Vitremer, Fuji II LC, and Photac-Fil), an experimental resin-modified glass-ionomer (V-66), two conventional glass-ionomers (ChemFil and Fuji Cap II), and amalgam (as the control). Radiopacity was assessed densitometrically and expressed as equivalent thicknesses of aluminum. All the glass-ionomer cements were more radiopaque than enamel and dentin, with the exception of ChemFil and Photac-Fil. Apart from the control material, the experimental resin-modified glass-ionomer material, V-66, had the highest radiopacity of all the materials tested. Of the three resin-modified glass-ionomer materials tested, Fuji II LC was the most radiopaque and Photac-Fil the least. For the radiopacity of restorative glass-ionomer materials to exceed that of enamel, it should be greater than 1.5 mm of equivalent thickness of aluminum.

  5. Bond Strength of Resin Cements to Noble and Base Metal Alloys with Different Surface Treatments

    PubMed Central

    Raeisosadat, Farkhondeh; Ghavam, Maryam; Hasani Tabatabaei, Masoomeh; Arami, Sakineh; Sedaghati, Maedeh

    2014-01-01

    Objectives: The bond strength of resin cements to metal alloys depends on the type of the metal, conditioning methods and the adhesive resins used. The purpose of this study was to evaluate the bond strength of resin cements to base and noble metal alloys after sand blasting or application of silano-pen. Materials and Method: Cylinders of light cured Z 250 composite were cemented to “Degubond 4” (Au Pd) and “Verabond” (Ni Cr) alloys by either RelyX Unicem or Panavia F2, after sandblasting or treating the alloys with Silano-Pen. The shear bond strengths were evaluated. Data were analyzed by three-way ANOVA and t tests at a significance level of P<0.05. Results: When the alloys were treated by Silano-Pen, RelyX Unicem showed a higher bond strength for Degubond 4 (P=0.021) and Verabond (P< 0.001). No significant difference was observed in the bond strength of Panavia F2 to the alloys after either of surface treatments, Degubond 4 (P=0.291) and Verabond (P=0.899). Panavia F2 showed a higher bond strength to sandblasted Verabond compared to RelyX Unicem (P=0.003). The bond strength of RelyX Unicem was significantly higher to Silano-Pen treated Verabond (P=0.011). The bond strength of the cements to sandblasted Degubond 4 showed no significant difference (P=0.59). RelyX Unicem had a higher bond strength to Silano-Pen treated Degubond 4 (P=0.035). Conclusion: The bond strength of resin cements to Verabond alloy was significantly higher than Degubond 4. RelyX Unicem had a higher bond strength to Silano-Pen treated alloys. Surface treatments of the alloys did not affect the bond strength of Panavia F2. PMID:25628687

  6. Effect of dentin surface modification on the microtensile bond strength of self-adhesive resin cements.

    PubMed

    Broyles, Allison C; Pavan, Sabrina; Bedran-Russo, Ana Karina

    2013-01-01

    To explore the potential to modify human dentin surface as a means of improving the microtensile bond strength (μTBS) of resin cement to dentin. Sound human molars were collected, and their occlusal surfaces were ground flat to expose polished dentin. Indirect composite resin cylinders were cemented to the teeth with RelyX Unicem or G-Cem self-adhesive cements following dentin surface treatments: 6.5% grape-seed extract, 5% glutaraldehyde, or 25% polyacrylic acid and control (no pretreatment). After 24 hours, the teeth were sectioned into beams to produce a cross-sectional area of 1.0 mm(2). Specimens of each group (n = 25) were individually mounted on a jig and placed on a tensile testing machine. A tensile force was applied to failure at a 1 mm/min crosshead speed. The use of polyacrylic acid on dentin prior to cementation with RelyX Unicem resulted in a statistically significant increase in μTBS compared to the control group (p= 0.0282). Polyacrylic acid (p= 0.0016) or glutaraldehyde (p= 0.0043) resulted in a statistically significant increase in μTBS of G-Cem to dentin when compared to the control group. Treatment with grape-seed extract did not result in a statistically significant increase in μTBS for either cement (p > 0.05). Priming dentin surfaces prior to the use of self-adhesive resin cements may be a promising means of improving μTBS. In addition, it was concluded that the results of this study are material dependent as well as being dependent of the type of dentin primer. © 2012 by the American College of Prosthodontists.

  7. Influence of the Resin Cement Thickness on the Push-Out Bond Strength of Glass Fiber Posts.

    PubMed

    Marcos, Regina Maria Helen-Cot; Kinder, Gustavo Ross; Alfredo, Edson; Quaranta, Tarcisio; Correr, Gisele Maria; Cunha, Leonardo Fernandes da; Gonzaga, Carla Castiglia

    2016-01-01

    The objective of the present study was to evaluate the influence of resin cement thickness on the bond strength of prefabricated and customized glass fiber posts after storage in distilled water. Thirty human uniradicular roots were treated endodontically. The roots were divided into 3 groups: THIN (thin cement layer) - post space preparation with #0.5 drill and cementation of #0.5 post; THICK (thick cement layer) - post space preparation with #1 drill and cementation of #0.5 post; and CUSTOM (customized cement layer) - post space preparation with #1 drill and cementation of a customized post (#0.5 glass fiber posts customized with resin composite). All posts were luted with self-adhesive resin cement. The push-out test was carried out after storage for 24 h and 90 days in distilled water at 37 °C. The data were analyzed with three-way ANOVA and Tukey's test (a=0.05). Bond strengths were significantly higher for CUSTOM (9.37 MPa), than for THIN (7.85 MPa) and THICK (7.07 MPa), which were statistically similar. Considering the thirds, the bond strength varied in the sequence: apical (7.13 MPa) < middle (8.22 MPa) = coronal (8.94 MPa). Bond strength for 24 h storage was significantly higher (8.80 MPa) than for 90-day storage (7.40 MPa). It may be concluded that the thickness of resin cement influenced the bond strength of glass fiber posts. The customized posts presented higher bond strength. Storage in water for 90 days affected negatively the values of bond strength, especially for thick cement layers in the apical third.

  8. Effect of solution temperature on the mechanical properties of dual-cure resin cements

    PubMed Central

    Kang, En-Sook; Jeon, Yeong-Chan; Huh, Jung-Bo; Yun, Mi-Jung; Kwon, Yong-Hoon

    2013-01-01

    PURPOSE This study was to evaluate the effect of the solution temperature on the mechanical properties of dualcure resin cements. MATERIALS AND METHODS For the study, five dual-cure resin cements were chosen and light cured. To evaluate the effect of temperature on the specimens, the light-cured specimens were immersed in deionized water at three different temperatures (4, 37 and 60℃) for 7 days. The control specimens were aged in a 37℃ dry and dark chamber for 24 hours. The mechanical properties of the light-cured specimens were evaluated using the Vickers hardness test, three-point bending test, and compression test, respectively. Both flexural and compressive properties were evaluated using a universal testing machine. The data were analyzed using a two way ANOVA with Tukey test to perform multiple comparisons (α=0.05). RESULTS After immersion, the specimens showed significantly different microhardness, flexural, and compressive properties compared to the control case regardless of solution temperatures. Depending on the resin brand, the microhardness difference between the top and bottom surfaces ranged approximately 3.3-12.2%. Among the specimens, BisCem and Calibra showed the highest and lowest decrease of flexural strength, respectively. Also, Calibra and Multilink Automix showed the highest and lowest decrease of compressive strength, respectively compared to the control case. CONCLUSION The examined dual-cure resin cements had compatible flexural and compressive properties with most methacrylate-based composite resins and the underlying dentin regardless of solution temperature. However, the effect of the solution temperature on the mechanical properties was not consistent and depended more on the resin brand. PMID:23755338

  9. Immediate and delayed micro-tensile bond strength of different luting resin cements to different regional dentin.

    PubMed

    Ali, Abdelraheem Mohamed; Hamouda, Ibrahim Mohamed; Ghazy, Mohamed Hamed; Abo-Madina, Manal Mohamed

    2013-03-01

    We sought to evaluate immediate and delayed micro-tensile bond strength of Panavia F2.0 and Multilink Sprint resin cement to superficial, deep and cervical dentin. Thirty-six freshly extracted non-carious human molars were sectioned in the mesiodistal direction to expose three different dentin regions including superficial dentin (1 mm below the dentine-enamel junction), deep dentin (1 mm above the highest pulp horn) and cervical dentin (0.5 mm above the cemento-enamel junction and 0.5 mm below the dentine-enamel junction). Resin cements were applied on dentin surfaces and composite blocks were luted under constant seating pressure. Each group was divided into three subgroups according to time intervals. Specimens were sectioned to obtain sticks of 1 mm(2) in diameter and subjected to microtensile bond strength testing at a cross head speed of 1 mm/min. Both resin cements showed higher micro-tensile bond strength to superficial dentin than that to deep or cervical dentin (P < 0.001). Micro-tensile bond strengths of Panavia F2.0 were higher than those of Multilink Sprint at different dentin regions (P < 0.001). Immediate micro-tensile bond strengths were higher than those of delayed micro-tensile bond strengths for both resin cements (P < 0.001). It was concluded that resin cements with different chemical formulations and applications yield significantly different micro-tensile bond strengths to different dentin regions.

  10. Longevity of metal-ceramic crowns cemented with self-adhesive resin cement: a prospective clinical study

    PubMed

    Brondani, Lucas Pradebon; Pereira-Cenci, Tatiana; Wandsher, Vinicius Felipe; Pereira, Gabriel Kalil; Valandro, Luis Felipe; Bergoli, César Dalmolin

    2017-04-10

    Resin cements are often used for single crown cementation due to their physical properties. Self-adhesive resin cements gained widespread due to their simplified technique compared to regular resin cement. However, there is lacking clinical evidence about the long-term behavior of this material. The aim of this prospective clinical trial was to assess the survival rates of metal-ceramic crowns cemented with self-adhesive resin cement up to six years. One hundred and twenty-nine subjects received 152 metal-ceramic crowns. The cementation procedures were standardized and performed by previously trained operators. The crowns were assessed as to primary outcome (debonding) and FDI criteria. Statistical analysis was performed using Kaplan-Meier statistics and descriptive analysis. Three failures occurred (debonding), resulting in a 97.6% survival rate. FDI criteria assessment resulted in scores 1 and 2 (acceptable clinical evaluation) for all surviving crowns. The use of self-adhesive resin cement is a feasible alternative for metal-ceramic crowns cementation, achieving high and adequate survival rates.

  11. Simulated Wear of Self-Adhesive Resin Cements.

    PubMed

    Takamizawa, T; Barkmeier, W W; Latta, M A; Berry, T P; Tsujimoto, A; Miyazaki, M

    2016-01-01

    One of the primary areas of concern with luting agents is marginal gap erosion and attrition. The purpose of this laboratory study was to evaluate bulk and marginal slit (gap) generalized wear of self-adhesive resin cements. Three self-adhesive resin cements were used in this study: G-CEM LinkAce (LA), Maxcem Elite (ME), and RelyX Unicem2 Automix (RU). A custom stainless-steel fixture with a cavity 4.5 mm in diameter and 4 mm deep was used for simulated generalized (bulk) wear. For simulated marginal gap wear, a two-piece stainless-steel custom fixture was designed with a slit (gap) 300 μm wide and 3 mm in length. For both wear models, 20 specimens each for each of the three adhesive cements were made for both light-cure and chemical-cure techniques. The cured cements were polished with a series of carbide papers to a 4000-grit surface and subjected to 100,000 cycles using the slit (gap) wear model and 400,000 cycles for generalized (bulk) wear in a Leinfelder-Suzuki (Alabama machine) wear simulator (maximum load of 78.5 N). Flat-ended stainless-steel antagonists were used in a water slurry of poly(methylmethacrylate) beads for simulation of generalized contact-free area wear with both wear models. Before and after the wear challenges, the specimens were profiled with a Proscan 2100 noncontact profilometer, and wear (volume loss [VL] and mean facet depth [FD]) was determined using AnSur 3D software. Two-way analysis of variance (ANOVA) and Tukey post hoc tests were used for data analysis for the two wear models. Scanning electron microscopy (SEM) was used to examine polished surfaces of the resin cements and the worn surfaces after the wear challenges. The two-way ANOVA of VL using the generalized (bulk) wear model showed a significant effect among the three resin cement materials for the factor of resin cement (p<0.001) and the interaction of the cement and cure method (p<0.001), but not for the cure method (p=0.465). The two-way ANOVA for FD also found a

  12. Bonding of glass ceramic and indirect composite to non-aged and aged resin composite.

    PubMed

    Gresnigt, Marco; Özcan, Mutlu; Muis, Maarten; Kalk, Warner

    2012-02-01

    Since adhesion of the restorative materials to pre-polymerized or aged resin composites presents a challenge to the clinicians, existing restorations are often removed and remade prior to cementation of fixed dental prostheses (FDPs). This study evaluated bond strength of non-aged and aged resin composite to an indirect resin composite and pressed glass ceramic using two resin cements. Disk-shaped specimens (diameter: 3.5, thickness: 3 mm) (N = 160) produced from a microhybrid resin composite (Quadrant Anterior Shine) were randomly divided into eight groups. While half of the specimens were kept dry at 37°C for 24 h, the other half was aged by means of thermocycling (6000 times, 5°C to 55°C). The non-aged and aged resin composites were bonded to a highly filled indirect composite (Estenia) and a pressed glass ceramic (IPS Empress II) using either a photopolymerizing (Variolink Veneer) or a dual-polymerizing (Panavia F2.0) resin cement. While cementation surfaces of both the direct and indirect composite materials were silica coated (30 µm SiO2, CoJet-Sand) and silanized (ESPE-Sil), ceramic surfaces were conditioned with hydrofluoric acid (20 s), neutralized, and silanized prior to cementation. All specimens were cemented under a load of 750 g. Shear force was applied to the adhesive interface in a universal testing machine (1 mm/min). Failure types of the specimens were identified after debonding. Significant effects of aging (p < 0.05), restorative material (p < 0.05), and cement type (p < 0.05) were observed on the bond strength (3-way ANOVA). Interaction terms were also significant (p < 0.05) (Tukey's test). After aging, in terms of bond strength, indirect composite and pressed glass ceramic in combination with both cements showed no significant difference (p > 0.05). Both indirect composite (24.3 ± 5.1 MPa) and glass ceramic in combination with Variolink (22 ± 9 MPa) showed the highest results on non-aged composites, but were not significantly different

  13. Comparison of bond stability between dual-cure resin cements and pretreated glass-infiltrated alumina ceramics.

    PubMed

    Oyagüe, Raquel C; Osorio, Raquel; da Silveira, Bruno Lopes; Toledano, Manuel

    2011-07-01

    To evaluate the bond stability of resin cements used for luting alumina-based all-ceramic dental restorations. Although different pretreatments may be applied on alumina to improve bond strengths, any previous study investigated the bond stability of resin-based cements luted to laser-irradiated alumina. 64 sintered, glass-infiltrated alumina blocks were sandblasted and randomly assigned to the following subgroups: 1. no additional treatment (NT); 2. Rocatec (Roc); 3. Nd:YAG laser (L); and 4. Nd:YAG laser plus Rocatec (LRoc). Composite samples were bonded to conditioned ceramics using two different resin based cements: a self-etching adhesive cement-Panavia F (PF) and a self-adhesive resin cement-RelyX Unicem (RXU). After 24 h, bonded specimens were cut into microtensile sticks (1 ± 0.1 mm(2)). One-half of the beams were loaded in tension until failure. The remaining one-half was immersed in 10%-NaOCl aqueous solution (NaOCl(aq)) for 12 h before testing. ANOVA and Student-Newman-Keuls tests were run (P < 0.05). Failure mode was recorded. Ceramic topography was SEM-analyzed. After 24 h, L-sticks achieved the highest MTBS despite the cement type, whereas NT-samples recorded the lowest values. After NaOCl(aq) immersion bond strengths decreased except for RXU luted to NT-alumina. PF luted to L- and LRoc-samples, and RXU luted to L-sticks attained the highest bond strength. Nd:YAG laser irradiation improved bond strength between alumina ceramics and resin cements (PF or RXU). Chemical challenging impaired adhesion, mainly through resin matrixes and silane coupling degradation. Laser-treated specimens remained with the highest bond strength.

  14. The Comparison of Sorption and Solubility Behavior of Four Different Resin Luting Cements in Different Storage Media

    PubMed Central

    Giti, Rashin; Vojdani, Mahroo; Abduo, Jaafar; Bagheri, Rafat

    2016-01-01

    Statement of the Problem Structural integrity and dimensional stability are the key factors that determine the clinical success and durability of luting cements in the oral cavity. Sorption and solubility of self-adhesive resin luting cements in food-simulating solutions has not been studied sufficiently. Purpose This study aimed to compare the sorption and solubility of 2 conventional and 2 self-adhesive resin-based luting cements immersed in four different storage media. Materials and Method A total of 32 disc-shaped specimens were prepared from each of four resin luting cements; seT (SDI), Panavia F (Kuraray), Clearfil SA Cement (Kuraray), and Choice 2 (Bisco). Eight specimens of each material were immersed in all tested solutions including n-heptane 97%, distilled water, apple juice, or Listerine mouth wash. Sorption and solubility were measured by weighing the specimens before and after immersion and desiccation. Data were analyzed by SPSS version 18, using two-way ANOVA and Tukey’s HSD test with p≤ 0.05 set as the level of significance. Results There was a statistically significant interaction between the materials and solutions. The effect of media on the sorption and solubility was material-dependent. While seT showed the highest values of the sorption in almost all solutions, Choice 2 showed the least values of sorption and solubility. Immersion in apple juice caused more sorption than other solutions (p≤ 0.05). Conclusion The sorption and solubility behavior of the studied cements were significantly affected by their composition and the storage media. The more hydrophobic materials with higher filler content like Choice 2 resin cement showed the least sorption and solubility. Due to their lower sorption and solubility, these types of resin-based luting cements are recommended to be used clinically. PMID:27284553

  15. Retentive properties of threaded split-shaft posts with titanium-reinforced composite cement.

    PubMed

    Cohen, B I; Condos, S; Musikant, B L; Deutsch, A S

    1992-12-01

    The retention of posts in tooth roots is vital to the success of the restoration. This study compared the retention of posts of various sizes and diameters cemented with a titanium-reinforced composite cement with that of posts previously reported cemented with zinc phosphate cement. Four groups made up of 10 samples each were used and retention values were compared using a universal testing machine. Two-way analysis of variance and the Newman-Keuls multiple range comparison test were performed. Larger diameter posts cemented with titanium cement had better retention than similar posts cemented with zinc phosphate cement. The statistical increase in retention for the larger size posts is probably the result of the deeper channels (threads) in the dentin and the higher cohesive strength for the titanium-reinforced composite resin.

  16. Relined fiberglass post: an ex vivo study of the resin cement thickness and dentin-resin interface.

    PubMed

    Souza, Niélli Caetano de; Marcondes, Maurem Leitão; Breda, Ricardo Vaz; Weber, João Batista Blessmann; Mota, Eduardo Gonçalves; Spohr, Ana Maria

    2016-08-18

    The aim of this study was to evaluate the thickness of resin cements in the root thirds when using conventional fiberglass posts (CP) and relined fiberglass posts (RP) in weakened roots and to evaluate the morphological characteristics of the dentin-resin interface. Forty human maxillary anterior teeth had the crown sectioned below the cemento-enamel junction. The canals were endodontically treated and weakened with diamond burs. Teeth were divided into four groups (n = 10): Group 1 - CP + RelyX ARC; Group 2 - CP + RelyX U200; Group 3 - RP + RelyX ARC; and Group 4 - RP + RelyX U200. Prior to luting, 0.1% Fluorescein and 0.1% Rhodamine B dyes were added to an adhesive and resin cement, respectively. Slices were obtained from the apical, middle, and cervical thirds of the root. Confocal laser scanning microscopy images were recorded in four areas (buccal, lingual, mesial, distal) of each third. In each area, four equidistant measures of the resin cement were made and the mean value was calculated. The interface morphology was observed. The data were submitted to three-way ANOVA and Tukey's test (α = 0.05). The interaction between fiberglass posts, resin cement, and root thirds was significant (p < 0.0001). The resin cement thicknesses were significantly lower for RP in comparison with CP, except in the apical third. There was no significant difference between the resin cements for RP. There was formation of resin cement tags and adhesive tags along the root for RP. RP favored the formation of thin and uniform resin cement films and resin tags in weakened roots.

  17. Resin impregnation process for producing a resin-fiber composite

    NASA Technical Reports Server (NTRS)

    Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)

    1994-01-01

    Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.

  18. Effect of veneering materials and curing methods on resin cement knoop hardness.

    PubMed

    Tango, Rubens Nisie; Sinhoreti, Mário Alexandre Coelho; Correr, Américo Bortolazzo; Correr-Sobrinho, Lourenço; Consani, Rafael Leonardo Xediek

    2007-01-01

    This study evaluated the Knoop hardness of Enforce resin cement activated by the either chemical/physical or physical mode, and light cured directly and through ceramic (HeraCeram) or composite resin (Artglass). Light curing were performed with either conventional halogen light (QTH; XL2500) for 40 s or xenon plasma arc (PAC; Apollo 95E) for 3 s. Bovine incisors had their buccal surfaces flattened and hybridized. On these surfaces a mold was seated and filled with cement. A 1.5-mm-thick disc of the veneering material was seated over this set for light curing. After storage (24 h/37 masculineC), specimens (n=10) were sectioned for hardness (KHN) measurements in a micro-hardness tester (50 gf load/ 15 s). Data were submitted to ANOVA and Tukey's test (alpha=0.05). It was observed that the dual cure mode yielded higher hardness compared to the physical mode alone, except for direct light curing with the QTH unit and through Artglass. Higher hardness was observed with QTH compared to PAC, except for Artglass/dual groups, in which similar hardness means were obtained. Low KHN means were obtained with PAC for both Artglass and HeraCeram. It may be concluded that the hardness of resin cements may be influenced by the presence of an indirect restorative material and the type of light-curing unit.

  19. Filler content and gap width after luting of ceramic inlays, using the ultrasonic insertion technique and composite resin cements. An in vitro study.

    PubMed

    Sjögren, G; Hedlund, S O

    1997-12-01

    The effect of ultrasonic insertion on the filler content and the gap width for two brands of composite resin luting agents, intended for luting with the ultrasonic insertion technique, were studied after MOD ceramic inlays (Cerec) had been placed. In addition, the internal and marginal gap widths were determined after MOD ceramic inlays (Celay) bad been luted on extracted premolars with this technique. No statistically significant differences (P > 0.05) were observed for either brand between the filler content obtained from the internal surfaces, from the excess luting agent, or from the luting agent as delivered. There were no statistically significant differences (P > 0.05) between the final internal and marginal gap widths when the two brands of luting agent were compared with each other. Except for the final occlusal and internal gap widths obtained for the inlays luted with the Sono-Cem luting agent, no statistically significant differences (P > 0.05) were observed between the gap widths at the different locations determined. Thus, the ultrasonic insertion technique used did not significantly influence the filler ratio of the hybrid luting agents studied. Judged by the findings in this study, the properties of luting agents seem to greatly influence the final marginal and internal gap widths.

  20. Effect of pulpal pressure on the microtensile bond strength of luting resin cements to human dentin.

    PubMed

    Hiraishi, N; Yiu, C K Y; King, N M; Tay, F R

    2009-01-01

    The objectives of this study were to examine the effect of pulpal pressure on the microtensile bond strength (mTBS) of luting resin cements to human dentin and the permeability of dentin surfaces pre-treated with an adhesive and a self-etching primer. Cylindrical composite blocks were luted with resin cements (RelyX ARC, 3M ESPE: ARC; Panavia F, Kuraray Medical Inc.: PF; RelyX Unicem, 3M ESPE: UN) in the absence or presence of simulated pulpal pressure. The application of Adper Single Bond 2 (3M ESPE) and ED primer 2.0 (Kuraray) was performed under 0 cm H(2)O. After each resin cement was applied, the pulpal pressure group was subjected to 20 cm H(2)O of hydrostatic pressure for 10 min during the initial setting period. Testing for mTBS was performed on 0.9 mm x 0.9 mm sectioned beams after 24h water-storage. Scanning electron microscopy was performed to investigate the fractured surfaces after mTBS testing and additional dentin surfaces that were treated by an etchant, ED primer 2.0 and UN. Fluid permeability was measured on dentin surfaces that were applied with Adper Single Bond 2 and ED primer 2.0. Application of pulpal pressure reduced mTBS significantly in groups ARC and PF. Porous bonding interfaces due to water permeability through the cured adhesive were observed on fractured surfaces. Dentin surfaces that were applied with the adhesive and the primer were more permeable than smear layer-covered dentin. The mTBS of UN was significantly lower than ARC and PF regardless of the absence/presence of pulpal pressure. Fluid permeation during the initial setting period deteriorated the bonding quality of resin cements.

  1. Self-adhesive resin cement versus zinc phosphate luting material: a prospective clinical trial begun 2003.

    PubMed

    Behr, Michael; Rosentritt, Martin; Wimmer, Jutta; Lang, Reinhold; Kolbeck, Carola; Bürgers, Ralf; Handel, Gerhard

    2009-05-01

    The literature demonstrates that conventional luting of metal-based restorations using zinc phosphate cements is clinically successful over 20 years. This study compared the clinical outcomes of metal-based fixed partial dentures luted conventionally with zinc phosphate and self-adhesive resin cement. Forty-nine patients (mean age 54+/-13 years) received 49 metal-based fixed partial dentures randomly luted using zinc phosphate (Richter & Hoffmann, Berlin, Germany) or self-adhesive resin cement (RelyX Unicem Aplicap, 3M ESPE, Germany) at the University Medical Center Regensburg. The core build-up material was highly viscous glass ionomer; the finishing line was in dentin. The study included 42 posterior, 5 anterior crowns and two onlays. Forty-seven restorations were made of precious alloys, 2 of non-precious alloys. The restorations were clinically examined every year. The clinical performance was checked for plaque (0-5; PI, Quigley-Hein), bleeding (0-4; PBI; Mühlemann) and attachment scores. The examination included pulp vitality and percussion tests. Means of scores, standard deviation, cumulative survival and complication rates were calculated using life tables. The mean observation time was 3.16+/-0.6 years (min: 2.0; max: 4.5 years). During that time no restoration was lost, no recementation became necessary. One endodontic treatment was performed in the self-adhesive composite group after 2.9 years. At study end bleeding (1.44 RelyX Unicem vs. 1.25 zinc phosphate) and plaque (1.64 RelyX Unicem vs. 1.0 zinc phosphate) scores showed no statistically significant difference. The self-adhesive resin cement performed clinically as well and can be used as easily as zinc phosphate cement to retain metal-based restorations over a 38-month observation period.

  2. Effects of barriers on chemical and biological properties of two dual resin cements.

    PubMed

    Nocca, Giuseppina; Iori, Andrea; Rossini, Carlo; Martorana, Giuseppe E; Ciasca, Gabriele; Arcovito, Alessandro; Cordaro, Massimo; Lupi, Alessandro; Marigo, Luca

    2015-06-01

    The aim of this study was to investigate the degree of conversion, monomer release, and cytotoxicity of two dual-cure resin cements (Cement-One and SmartCem2), light-cured across two indirect restorative materials in an attempt to simulate in vitro the clinical conditions. The results obtained show that the degree of conversion was influenced by both barriers, but the effect of the composite material was greater than that of the ceramic one. The amount of monomers released from the polymerized materials in the absence of barriers was significantly lower than that released in the presence of either the ceramic or the composite barrier. However, a higher amount of monomers was released in the presence of the ceramic barrier. All materials, in all the experimental conditions employed, induced slight cytotoxicity (5-10%) on human pulp cells. Our examinations showed that the two resin cements had similar chemical and biological properties. The decreased degree of conversion of the dual-curing self-adhesive composite showed that the light-curing component of these materials has an important role in the polymerization process. In clinical practice, it is therefore important to pay attention to the thickness of the material used for the reconstruction. © 2015 Eur J Oral Sci.

  3. Surface roughness and wear of resin cements after toothbrush abrasion.

    PubMed

    Ishikiriama, Sérgio Kiyoshi; Ordoñéz-Aguilera, Juan Fernando; Maenosono, Rafael Massunari; Volú, Fernanda Lessa Amaral; Mondelli, Rafael Francisco Lia

    2015-01-01

    Increased surface roughness and wear of resin cements may cause failure of indirect restorations. The aim of this study was to evaluate quantitatively the surface roughness change and the vertical wear of four resin cements subjected to mechanical toothbrushing abrasion. Ten rectangular specimens (15 × 5 × 4 mm) were fabricated according to manufacturer instructions for each group (n = 10): Nexus 3, Kerr (NX3); RelyX ARC, 3M ESPE (ARC); RelyX U100, 3M ESPE (U100); and Variolink II, Ivoclar/Vivadent (VL2). Initial roughness (Ra, µm) was obtained through 5 readings with a roughness meter. Specimens were then subjected to toothbrushing abrasion (100,000 cycles), and further evaluation was conducted for final roughness. Vertical wear (µm) was quantified by 3 readings of the real profile between control and brushed surfaces. Data were subjected to analysis of variance, followed by Tukey's test (p < 0.05). The Pearson correlation test was performed between the surface roughness change and wear (p < 0.05). The mean values of initial/final roughness (Ra, µm)/wear (µm) were as follows: NX3 (0.078/0.127/23.175); ARC (0.086/0.246/20.263); U100 (0.296/0.589/16.952); and VL2 (0.313/0.512/22.876). Toothbrushing abrasion increased surface roughness and wear of all resin cements tested, although no correlation was found between those variables. Vertical wear was similar among groups; however, it was considered high and may lead to gap formation in indirect restorations.

  4. Effect of home-use fluoride gels on resin-modified glass-ionomer cements.

    PubMed

    El-Badrawy, W A; McComb, D

    1998-01-01

    Acidic fluoride gels have been found to significantly damage conventional glass-ionomer cements. In this study the effect to acidulated phosphate fluoride (APF) and neutral fluoride gels on the recently introduced resin-modified glass ionomers and a polyacid-modified composite resin (Variglass) was studied using scanning electron microscopy (SEM). Five materials were examined: Photac-Fil, Fuji II LC, Vitremer, Variglass, and Ketac-Fil (control). Groups of five specimens of each material were treated for 24 hours with one of the following: 1) distilled water, 2) neutral fluoride gel, 3) APF gel. Surface micro-structure of treated specimens was examined using SEM, and microphotographs were evaluated using a three-point scale. APF was found to have a deleterious effect on all examined materials, while minimal effects resulted from the neutral fluoride gel compared to the control group. Although showing greater resistance to the APF gel than conventional glass-ionomer cements, resin-modified glass-ionomer materials revealed characteristic immersion and erosion behavior, substantiating their differentiation from a hybrid material containing a preponderance of resin.

  5. Resin-modified glass ionomer cements: fluoride release and uptake.

    PubMed

    Forsten, L

    1995-08-01

    The aim was to study the short- and long-term fluoride release from resin-modified glass ionomer cements (GIC). The aim was also to determine the effect of fluoride treatment of 9-month-old specimens, consistency of the mix, and pH of the environment on the fluoride release. GIC test specimens were continually exposed to running water, and the fluoride release was measured periodically by storing the specimens in 5 ml deionized water for 1 week and measuring the fluoride content of the solution. After 24 h, 1 month, 9 months, and 11 months in running water four of the six resin-modified GICs released as much as or more fluoride than the auto-curing GIC tested for comparison. Fluoride treatment after 9 months also increased the fluoride release of these four brands, as was the case with the conventional GIC. At 24 h and 1 month two of the resin-modified GICs released smaller amounts of fluoride than the other materials, and the fluoride treatment used on those had no or only a minimal effect. Thin consistency of a mix resulted in higher fluoride release for one resin-modified material than a thick mix. Low pH increased the fluoride release for all materials.

  6. Effect of Surface Treatment with Carbon Dioxide (CO2) Laser on Bond Strength between Cement Resin and Zirconia

    PubMed Central

    Kasraei, Shahin; Atefat, Mohammad; Beheshti, Maryam; Safavi, Nassimeh; Mojtahedi, Maryam; Rezaei-Soufi, Loghman

    2014-01-01

    Introduction: Since it is not possible to form an adequate micromechanical bond between resin cement and zirconia ceramics using common surface treatment techniques, laser pretreatment has been suggested for zirconia ceramic surfaces. The aim of this study was to evaluate the effect of Carbon Dioxide (CO2) Laser treatment on shear bond strength (SBS) of resin cement to zirconia ceramic. Methods: In this in vitro study thirty discs of zirconia with a diameter of 6 mm and a thickness of 2 mm were randomly divided into two groups of 15. In the test group the zirconia disc surfaces were irradiated by CO2 laser with an output power of 3 W and energy density of 265.39 j/cm2. Composite resin discs were fabricated by plastic molds, measuring 3 mm in diameter and 2 mm in thickness and were cemented on zirconia disk surfaces with Panavia F2.0 resin cement (Kuraray Co. Ltd, Osaka, Japan). Shear bond strength was measured by a universal testing machine at a crosshead speed of 0.5 mm/min. The fracture type was assessed under a stereomicroscope at ×40. Surface morphologies of two specimens of the test group were evaluated under SEM before and after laser pretreatment. Data was analyzed by paired t-test (p value < 0.05). Results: The mean SBS values of the laser and control groups were 12.12 ± 3.02 and 5.97 ± 1.14 MPa, respectively. Surface treatment with CO2 laser significantly increased SBS between resin cement and zirconia ceramic (p value = 0.001). Conclusion: Under the limitations of this study, surface treatment with CO2 laser increased the SBS between resin cement and the zirconia ceramic. PMID:25653809

  7. Bond strength of resin cement to CO2 and Er:YAG laser-treated zirconia ceramic

    PubMed Central

    Kasraei, Shahin; Heidari, Bijan; Vafaee, Fariborz

    2014-01-01

    Objectives It is difficult to achieve adhesion between resin cement and zirconia ceramics using routine surface preparation methods. The aim of this study was to evaluate the effects of CO2 and Er:YAG laser treatment on the bond strength of resin cement to zirconia ceramics. Materials and Methods In this in-vitro study 45 zirconia disks (6 mm in diameter and 2 mm in thickness) were assigned to 3 groups (n = 15). In control group (CNT) no laser treatment was used. In groups COL and EYL, CO2 and Er:YAG lasers were used for pretreatment of zirconia surface, respectively. Composite resin disks were cemented on zirconia disk using dual-curing resin cement. Shear bond strength tests were performed at a crosshead speed of 0.5 mm/min after 24 hr distilled water storage. Data were analyzed by one-way ANOVA and post hoc Tukey's HSD tests. Results The means and standard deviations of shear bond strength values in the EYL, COL and CNT groups were 8.65 ± 1.75, 12.12 ± 3.02, and 5.97 ± 1.14 MPa, respectively. Data showed that application of CO2 and Er:YAG lasers resulted in a significant higher shear bond strength of resin cement to zirconia ceramics (p < 0.0001). The highest bond strength was recorded in the COL group (p < 0.0001). In the CNT group all the failures were adhesive. However, in the laser groups, 80% of the failures were of the adhesive type. Conclusions Pretreatment of zirconia ceramic via CO2 and Er:YAG laser improves the bond strength of resin cement to zirconia ceramic, with higher bond strength values in the CO2 laser treated samples. PMID:25383349

  8. Interfacial ultramorphology evaluation of resin luting cements to dentin: a correlative scanning electron microscopy and transmission electron microscopy analysis.

    PubMed

    Aguiar, Thaiane Rodrigues; Vermelho, Paulo Moreira; André, Carolina Bosso; Giannini, Marcelo

    2013-12-01

    The objective of this study was to analyze the dentin-resin cements interfacial ultramorphologies using two different methods: scanning (SEM) and transmission electron microscopy (TEM). Four commercial products were evaluated: two conventional cementing system (RelyX ARC/Adper™ Scotchbond™ Multi-Purpose Plus, 3M ESPE and Clearfil Esthetic Cement/DC Bond, Kuraray) and two self-adhesive resin cements (RelyX Unicem, 3M ESPE and Clearfil SA Cement, Kuraray). Prepolymerized resin disks (Sinfony, 3M ESPE) were cemented on oclusal dentin surfaces of 24 third human molars, simulating the indirect restorations. After 24 h, teeth were sectioned into 0.9-mm thick slabs and processed for microscopy analyses (SEM or TEM/ n = 3). Qualitative characterization of dentin-resin cement interface was performed. Hybrid layer formation with long and dense resin tags was observed only for RelyX ARC cementing system. Clearfil Esthetic Cement/DC Bond system revealed few and short resin tags formation, whereas no hybridization and resin tags were detected for self-adhesive resin cements. Some interfacial regions exhibited that the self-adhesive resin cements were not bonded to dentin, presenting bubbles or voids at the interfaces. In conclusion, TEM and SEM bonding interface analyses showed ultramorphological variations among resin cements, which are directly related to dental bonding strategies used for each resin cement tested.

  9. Do conventional glass ionomer cements release more fluoride than resin-modified glass ionomer cements?

    PubMed Central

    Cabral, Maria Fernanda Costa; Martinho, Roberto Luiz de Menezes; Guedes-Neto, Manoel Valcácio; Rebelo, Maria Augusta Bessa; Pontes, Danielson Guedes

    2015-01-01

    Objectives The aim of this study was to evaluate the fluoride release of conventional glass ionomer cements (GICs) and resin-modified GICs. Materials and Methods The cements were grouped as follows: G1 (Vidrion R, SS White), G2 (Vitro Fil, DFL), G3 (Vitro Molar, DFL), G4 (Bioglass R, Biodinâmica), and G5 (Ketac Fil, 3M ESPE), as conventional GICs, and G6 (Vitremer, 3M ESPE), G7 (Vitro Fil LC, DFL), and G8 (Resiglass, Biodinâmica) as resin-modified GICs. Six specimens (8.60 mm in diameter; 1.65 mm in thickness) of each material were prepared using a stainless steel mold. The specimens were immersed in a demineralizing solution (pH 4.3) for 6 hr and a remineralizing solution (pH 7.0) for 18 hr a day. The fluoride ions were measured for 15 days. Analysis of variance (ANOVA) and Tukey's test with 5% significance were applied. Results The highest amounts of fluoride release were found during the first 24 hr for all cements, decreasing abruptly on day 2, and reaching gradually decreasing levels on day 7. Based on these results, the decreasing scale of fluoride release was as follows: G2 > G3 > G8 = G4 = G7 > G6 = G1 > G5 (p < 0.05). Conclusions There were wide variations among the materials in terms of the cumulative amount of fluoride ion released, and the amount of fluoride release could not be attributed to the category of cement, that is, conventional GICs or resin-modified GICs. PMID:26295024

  10. Influence of Curing Units and Indirect Restorative Materials on the Hardness of Two Dual-curing Resin Cements Evaluated by the Nanoindentation Test.

    PubMed

    Kuguimiya, Rosiane Noqueira; Rode, Kátia Martins; Carneiro, Paula Mendes Acatauassú; Aranha, Ana Cecilia Corrêa; Turbino, Miriam Lacalle

    2015-06-01

    To evaluate the hardness of a dual-curing self-adhesive resin cement (RelyX U200) and a conventional dual-curing resin cement (RelyX ARC) cured with different light curing units of different wavelengths (Elipar Freelight 2 LED [430 to 480 nm, conventional], Bluephase LED [380 to 515 nm, polywave], AccuCure 3000 Laser [488 nm]) by means of the nanoindentation test. Bovine incisors were cleaned and then sectioned at the cementoenamel junction to remove the crown. After embedding in acrylic, dentin surfaces of the specimens were exposed and ground flat to standardize the surfaces. To simulate clinically placing indirect restorations, ceramic (IPS e.maxPress/Ivoclar Vivadent) or indirect composite resin (SR Adoro/Ivoclar Vivadent) slabs were cemented on dentin surfaces. The specimens were sectioned longitudinally at low speed under constant irrigation and then polished. In the positive control group, the cement was light cured without the interposition of indirect restorative material; in the negative control group, after the indirect restorative material was cemented, no light curing was performed, allowing only chemical polymerization of the cement. All specimens were stored in distilled water at 37°C for 7 days. Nanoindentadion hardness of the cement layer was measured under a 100-mN load. Data were statistically analyzed using ANOVA and Tukey's test (p < 0.05). Although the self-adhesive cement is technically simple, conventional cement showed the best polymerization performance. The polywave LED technology did not differ significantly from other light-curing units. The hardness of the resin cements evaluated was negatively influenced by the interposition of an indirect restorative material; only the LEDs were able to maintain the same degree of cement polymerization when an indirect restorative material was used. The photoactivation step is required during the cementation of indirect restorations to ensure adequate polymerization of dual-curing resin cements.

  11. Effect of artificial saliva and pH on shear bond strength of resin cements to zirconia-based ceramic.

    PubMed

    Geramipanah, F; Majidpour, M; Sadighpour, L; Fard, M J Kharazi

    2013-03-01

    The aim of the present study was to evaluate the effect of media with different pH on shear and strength of resin cements to zirconia-based ceramics. Sixty rectangularly shaped specimens made of a zirconia based ceramic (Cercon, Dentsply) were prepared, air-blasted with 110 microm aluminum oxide particles (Al203) and randomly assigned into three groups (n = 30). A universal resin composite (Filtek Z250, 3M/ESPE) was bonded to each specimen using one of the following three cements: Calibra (Dentsply), Panavia F2 (kurary) and Unicem (3M/ESPE). Specimens were thermal cycled and stored in one of the following three media for two weeks: water at pH = 7, saliva at pH = 7 and saliva at pH = 3.5. The mean shear bond strength of each group was analyzed using the Kruskal-Wallis test (alpha = 0.05). The modes of failure were recorded using a streomicroscope. All specimens in the Calibra groups showed premature debonding. No significant difference was found between the two other cements or different media. The failure modes in the two latter cements were predominantly adhesive. Despite the adverse effect of acidic media on the properties of restorative materials, the media did not significantly influence the bond strength of MDP-containing resin cement and a self-adhesive cement to a zirconia- based ceramic.

  12. Influence of ultrasound, with and without water spray cooling, on removal of posts cemented with resin or zinc phosphate cements.

    PubMed

    Garrido, Angela Delfina Bittencourt; Fonseca, Tabajara Sabbag; Alfredo, Edson; Silva-Sousa, Yara Teresinha Corrêa; Sousa-Neto, Manoel D

    2004-03-01

    The efficacy of ultrasound, with and without water spray, was evaluated in vitro on the amount of force necessary to dislodge posts cemented with resin or zinc phosphate. Forty-two samples were divided into six groups: groups 1, 2, and 3, posts cemented with zinc phosphate; groups 4, 5, and 6, posts cemented with resin (Panavia F); groups 1 and 4 (controls), no ultrasound; groups 2 and 5, ultrasound without water spray; and groups 3 and 6, ultrasound with water spray. The Instron testing machine was used. Ultrasound without water spray significantly reduced (71%) the force necessary to displace posts cemented with Panavia F (p < 0.01); however, this value was similar to the efficacy of ultrasound with water spray for posts cemented with zinc phosphate (reduction of 75%). We conclude that cooling with ultrasound interferes with the force necessary for post removal, depending on the type of cement used.

  13. Effect of thickness of indirect restoration and distance from the light-curing unit tip on the hardness of a dual-cured resin cement.

    PubMed

    de Paula, Andréia Bolzan; Tango, Rubens Nisie; Sinhoreti, Mário Alexandre Coelho; Alves, Marcelo Corrêa; Puppin-Rontani, Regina M

    2010-01-01

    This study evaluated the Knoop hardness and polymerization depth of a dual-cured resin cement, light-activated at different distances through different thicknesses of composite resin. One bovine incisor was embedded in resin and its buccal surface was flattened. Dentin was covered with PVC film where a mold (0.8-mm-thick and 5 mm diameter) was filled with cement and covered with another PVC film. Light curing (40 s) was carried out through resin discs (2, 3, 4 or 5 mm) with a halogen light positioned 0, 1, 2 or 3 mm from the resin surface. After storage, specimens were sectioned for hardness measurements (top, center, and bottom). Data were subjected to split-plot ANOVA and Tukey's test (alpha=0.05). The increase in resin disc thickness decreased cement hardness. The increase in the distance of the light-curing tip decreased hardness at the top region. Specimens showed the lowest hardness values at the bottom, and the highest at the center. Resin cement hardness was influenced by the thickness of the indirect restoration and by the distance between the light-curing unit tip and the resin cement surface.

  14. Wear rates of resin composites.

    PubMed

    Barkmeier, W W; Erickson, R I; Latta, M A; Wilwerding, T M

    2013-01-01

    SUMMARY A laboratory study was conducted to examine the wear of resin composite materials using a generalized wear simulation model. Ten specimens each of five resin composites (Esthet•X [EX], Filtek Supreme Plus [SP], Filtek Z250 [Z2], Tetric EvoCeram [EC], and Z100 Restorative [Z1]) were subjected to wear challenges of 100,000, 400,000, 800,000, and 1,200,000 cycles. The materials were placed in cylinder-shaped stainless-steel fixtures, and wear was generated using a flat stainless-steel antagonist in a slurry of polymethylmethacrylate beads. Wear (mean facet depth [μm] and volume loss [mm(3)]) was determined using a noncontact profilometer (Proscan 2000) with Proscan and ProForm software. Statistical analysis of the laboratory data using analysis of variance and Tukey's post hoc test showed a significant difference (p<0.05) for mean wear facet depth and volume loss for both the number of cycles and resin composite material. Linear regression analysis was used to develop predictive wear rates and volume loss rates. Linear wear was demonstrated with correlation coefficients (R(2)) ranging from 0.914 to 0.995. Mean wear values (mean facet depth [μm]) and standard deviations (SD) for 1200K cycles were as follows: Z1 13.9 (2.0), Z2 26.7 (2.7), SP 30.1 (4.1), EC 31.8 (2.3), and EX 67.5 (8.2). Volume loss (mm(3)) and SDs for 1200K cycles were as follows: Z1 0.248 (0.036), Z2 0.477 (0.044), SP 0.541 (0.072), EC 0.584 (0.037), and EX 1.162 (0.139). The wear rate (μm) and volume loss rate (mm(3)) per 100,000 cycles for the five resin composites were as follows: wear rate Z1 0.58, EC 1.27, Z2 1.49, SP 1.62, and EX 4.35, and volume loss rate Z1 0.009, EC 0.024, Z2 0.028, SP 0.029, and EX 0.075. The generalized wear model appears to be an excellent method for measuring relative wear of resin composite materials.

  15. Cement composition and sulfate attack

    SciTech Connect

    Shanahan, Natalya; Zayed, Abla . E-mail: zayed@eng.usf.edu

    2007-04-15

    Four cements were used to address the effect of tricalcium silicate content of cement on external sulfate attack in sodium sulfate solution. The selected cements had similar fineness and Bogue-calculated tricalcium aluminate content but variable tricalcium silicates. Durability was assessed using linear expansion and compressive strength. Phases associated with deterioration were examined using scanning electron microscopy and X-ray diffraction. Mineralogical phase content of the as-received cements was studied by X-ray diffraction using two methods: internal standard and Rietveld analysis. The results indicate that phase content of cements determined by X-ray mineralogical analysis correlates better with the mortar performance in sulfate environment than Bogue content. Additionally, it was found that in cements containing triclacium aluminate only in the cubic form, the observed deterioration is affected by tricalcium silicate content. Morphological similarities between hydration products of high tricalcium aluminate and high tricalcium silicate cements exposed to sodium sulfate environment were also observed.

  16. Shear bond strength of resin cement to an acid etched and a laser irradiated ceramic surface

    PubMed Central

    Motro, Pelin Fatma Karagoz; Yurdaguven, Haktan

    2013-01-01

    PURPOSE To evaluate the effects of hydrofluoric acid etching and Er,Cr:YSGG laser irradiation on the shear bond strength of resin cement to lithium disilicate ceramic. MATERIALS AND METHODS Fifty-five ceramic blocks (5 mm × 5 mm × 2 mm) were fabricated and embedded in acrylic resin. Their surfaces were finished with 1000-grit silicon carbide paper. The blocks were assigned to five groups: 1) 9.5% hydrofluoric-acid etching for 60 s; 2-4), 1.5-, 2.5-, and 6-W Er,Cr:YSGG laser applications for 60 seconds, respectively; and 5) no treatment (control). One specimen from each group was examined using scanning electron microscopy. Ceramic primer (Rely X ceramic primer) and adhesive (Adper Single Bond) were applied to the ceramic surfaces, followed by resin cement to bond the composite cylinders, and light curing. Bonded specimens were stored in distilled water at 37℃ for 24 hours. Shear bond strengths were determined by a universal testing machine at 1 mm/min crosshead speed. Data were analyzed using Kruskal-Wallis and Mann-Whitney U-tests (α=0.05). RESULTS Adhesion was significantly stronger in Group 2 (3.88 ± 1.94 MPa) and Group 3 (3.65 ± 1.87 MPa) than in Control group (1.95 ± 1.06 MPa), in which bonding values were lowest (P<.01). No significant difference was observed between Group 4 (3.59 ± 1.19 MPa) and Control group. Shear bond strength was highest in Group 1 (8.42 ± 1.86 MPa; P<.01). CONCLUSION Er,Cr:YSGG laser irradiation at 1.5 and 2.5 W increased shear bond strengths between ceramic and resin cement compared with untreated ceramic surfaces. Irradiation at 6 W may not be an efficient ceramic surface treatment technique. PMID:23755333

  17. The postoperative sensitivity of fixed partial dentures cemented with self-adhesive resin cements: a clinical study.

    PubMed

    Saad, Diaa El-Din; Atta, Osama; El-Mowafy, Omar

    2010-12-01

    The authors investigated the postcementation sensitivity associated with self-adhesive resin cements used with fixed partial dentures (FPDs). The authors recruited 20 patients who needed posterior porcelain-fused-to-metal FPDs and divided them randomly into three groups. They prepared 50 abutments, then cemented FPDs with one of two self-adhesive resin cements (Breeze Self-Adhesive Resin Cement, Pentron Clinical Technologies, Wallingford, Conn., and RelyX Unicem Self-Adhesive Universal Resin Cement, 3M ESPE, Seefeld, Germany) or an etch-and-rinse resin cement (RelyX ARC Adhesive Resin Cement, 3M ESPE, St. Paul, Minn.). The authors measured participants' tooth sensitivity to cold water, air blast and biting at 24 hours and at two, six and 12 weeks after FPD cementation by using a continuous visual analog scale (VAS). Data were analyzed statistically by means of the Mann-Whitney test. For cold tests, the highest VAS scores occurred 24 hours after cementation. The mean VAS scores associated with RelyX ARC were significantly higher than those associated with Breeze and RelyX Unicem (P < .001) at all test intervals. The mean cold-test VAS scores associated with Breeze and RelyX Unicem were not significantly different (P > .05). With all cements, sensitivity to cold decreased significantly after two to six weeks; however, with RelyX ARC, VAS scores stayed above the 30 percent level even after 12 weeks. The biting sensitivity associated with RelyX ARC was significantly higher than that associated with Breeze and RelyX Unicem (P < .001), and it remained above the 20 percent level even after 12 weeks. Those with Breeze-cemented FPDs had no sensitivity to biting, whereas those with RelyX Unicem-cemented FPDs had a mean biting sensitivity value of less than 5 percent at two weeks only. and Breeze and RelyX Unicem were associated with significantly lower postoperative tooth sensitivity values than was RelyX ARC. With Breeze and RelyX Unicem, postoperative tooth sensitivity

  18. Fatigue Resistance of CAD/CAM Resin Composite Molar Crowns

    PubMed Central

    Shembish, Fatma A.; Tong, Hui; Kaizer, Marina; Janal, Malvin N.; Thompson, Van P.; Opdam, Niek J.; Zhang, Yu

    2016-01-01

    Objective To demonstrate the fatigue behavior of CAD/CAM resin composite molar crowns using a mouth-motion step-stress fatigue test. Monolithic leucite-reinforced glass-ceramic crowns were used as a reference. Methods Fully anatomically shaped monolithic resin composite molar crowns (Lava Ultimate, n = 24) and leucite reinforced glass-ceramic crowns (IPS Empress CAD, n = 24) were fabricated using CAD/CAM systems. Crowns were cemented on aged dentin-like resin composite tooth replicas (Filtek Z100) with resin-based cements (RelyX Ultimate for Lava Ultimate or Multilink Automix for IPS Empress). Three step-stress profiles (aggressive, moderate and mild) were employed for the accelerated sliding-contact mouth-motion fatigue test. Twenty one crowns from each group were randomly distributed among these three profiles (1:2:4). Failure was designated as chip-off or bulk fracture. Optical and electronic microscopes were used to examine the occlusal surface and subsurface damages, as well as the material microstructures. Results The resin composite crowns showed only minor occlusal damage during mouth-motion step-stress fatigue loading up to 1700 N. Cross-sectional views revealed contact-induced cone cracks in all specimens, and flexural radial cracks in 2 crowns. Both cone and radial cracks were relatively small compared to the crown thickness. Extending these cracks to the threshold for catastrophic failure would require much higher indentation loads or more loading cycles. In contrast, all of the glass-ceramic crowns fractured, starting at loads of approximately 450 N. Significance Monolithic CAD/CAM resin composite crowns endure, with only superficial damage, fatigue loads 3 – 4 times higher than those causing catastrophic failure in glass-ceramic CAD crowns. PMID:26777092

  19. Fatigue resistance of CAD/CAM resin composite molar crowns.

    PubMed

    Shembish, Fatma A; Tong, Hui; Kaizer, Marina; Janal, Malvin N; Thompson, Van P; Opdam, Niek J; Zhang, Yu

    2016-04-01

    To demonstrate the fatigue behavior of CAD/CAM resin composite molar crowns using a mouth-motion step-stress fatigue test. Monolithic leucite-reinforced glass-ceramic crowns were used as a reference. Fully anatomically shaped monolithic resin composite molar crowns (Lava Ultimate, n=24) and leucite reinforced glass-ceramic crowns (IPS Empress CAD, n=24) were fabricated using CAD/CAM systems. Crowns were cemented on aged dentin-like resin composite tooth replicas (Filtek Z100) with resin-based cements (RelyX Ultimate for Lava Ultimate or Multilink Automix for IPS Empress). Three step-stress profiles (aggressive, moderate and mild) were employed for the accelerated sliding-contact mouth-motion fatigue test. Twenty one crowns from each group were randomly distributed among these three profiles (1:2:4). Failure was designated as chip-off or bulk fracture. Optical and electron microscopes were used to examine the occlusal surface and subsurface damages, as well as the material microstructures. The resin composite crowns showed only minor occlusal damage during mouth-motion step-stress fatigue loading up to 1700N. Cross-sectional views revealed contact-induced cone cracks in all specimens, and flexural radial cracks in 2 crowns. Both cone and radial cracks were relatively small compared to the crown thickness. Extending these cracks to the threshold for catastrophic failure would require much higher indentation loads or more loading cycles. In contrast, all of the glass-ceramic crowns fractured, starting at loads of approximately 450N. Monolithic CAD/CAM resin composite crowns endure, with only superficial damage, fatigue loads 3-4 times higher than those causing catastrophic failure in glass-ceramic CAD crowns. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  20. In vitro study of 24-hour and 30-day shear bond strengths of three resin-glass ionomer cements used to bond orthodontic brackets.

    PubMed

    Lippitz, S J; Staley, R N; Jakobsen, J R

    1998-06-01

    Interest in using composite resin-glass ionomer hybrid cements as orthodontic bracket adhesives has grown because of their potential for fluoride release. The purpose of this pilot study was to compare shear bond strengths of three resin-glass ionomer cements (Advance, Fuji Duet, Fuji Ortho LC) used as bracket adhesives with a composite resin 24 hours and 30 days after bonding. The amount of adhesive remaining on the debonded enamel surface was scored for each adhesive. Mesh-backed stainless-steel brackets were bonded to 100 extracted human premolars, which were stored in artificial saliva at 37 degrees C until being tested to failure in a testing machine. The hybrid cements, with one exception, had bond strengths similar to those of the composite resin at 24 hours and 30 days. Fuji Ortho LC had significantly lower bond strengths (ANOVA p < or = 0.05) than the other adhesives at 24 hours and 30 days when it was bonded to unetched, water-moistened enamel. Adhesive-remnant scores were similar for all cements, except for cement Fuji Ortho LC when it was bonded to unetched enamel. The resin-glass ionomer cements we tested appear to have bond strengths suitable for routine use as orthodontic bracket-bonding adhesives.

  1. Micromorphology of resin/dentin interfaces using 4th and 5th generation dual-curing adhesive/cement systems: a confocal laser scanning microscope analysis.

    PubMed

    Arrais, Cesar A G; Miyake, Katsuia; Rueggeberg, Frederick A; Pashley, David H; Giannini, Marcelo

    2009-02-01

    This study evaluated the differential composition of resin/dentin interfaces of indirect restorations created by the application of 4th and 5th generation dual-curing luting systems (bonding agents/resin cements), when each material was either light cured or allowed to self-cure. Occlusal flat dentin surfaces of 60 human third molars were assigned into 12 groups (n = 5) according to curing mode and dual-curing cementing system: 4th generation All Bond2 (AB2)/Duolink (Bisco) and 5th generation (B1) Bond1/Lute-it (Pentron). Fluorescein-labeled dextran (FDx) was mixed with the bonding agents, while rhodamine-labeled dextran (RhDx) was incorporated into resin cements and Pre-Bond resin from AB2. Resin cements were applied to 2-mm-thick, precured resin composite disks (Z250, 3M ESPE), which were fixed to dentin surfaces containing adhesive resin in either cured (light cured; LC) or uncured (self-cured; SC) states. The restored teeth were light activated (XL3000, 3M ESPE) according to the manufacturers' instructions (LRC) or allowed to self-cure (SRC), were stored for 24 h, and then vertically, serially sectioned into l-mm-thick slabs, which were analyzed using confocal laser scanning microscopy. Fluorescent additives indicated where individual components of the bonding/cement systems were located. Additional specimens were prepared and analyzed using a conventional scanning electron microscope. AB2/LC and B1/LC exhibited nonuniform primer/adhesive layer thickness. AB2/SC showed adhesive resin penetration within the primed dentin, and resin cement penetration at the entrance of the dentin tubules. B1/SC/LRC demonstrated resin cement penetration within the hybrid layer and into the dentin tubules. More resin cement penetration was observed in B1/SC/SRC groups than in its LRC equivalent. The morphological features and component interactions among materials at resin/dentin interfaces are related to the activation modes of the primer/adhesive layer and of the resin cement

  2. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.

    1974-01-01

    Techniques were developed that provided thermo-oxidatively stable A-type polyimide/graphite fiber composites using the approach of in situ polymerization of monomeric reactants directly on reinforcing fibers, rather than employing separately prepared prepolymer varnish. This was accomplished by simply mixing methylene dianiline and two ester-acids and applying this solution to the fibers for subsequent molding. Five different formulated molecular weight resins were examined, and an optimized die molding procedure established for the 1500 formulated molecular weight system. Extensive ultrasonic inspection of composites was successfully utilized as a technique for monitoring laminate quality. Composite mechanical property studies were conducted with this polyimide resin at room temperature and after various time exposures in a thermo-oxidative environment at 561 K (550 F), 589 K (600 F) and 617 K (650 F). It was determined that such composites have a long term life in the temperature range of 561 K to 589 K. The final phase involved the fabrication and evaluation of a series of demonstration airfoil specimens.

  3. Influence of matrix metalloproteinase synthetic inhibitors on dentin microtensile bond strength of resin cements.

    PubMed

    Stape, T H S; Menezes, M S; Barreto, B C F; Aguiar, F H B; Martins, L R; Quagliatto, P S

    2012-01-01

    This study evaluated the effect of dentin pretreatment with 2% chlorhexidine (CHX) or 24% ethylenediamine tetra-acetic acid gel (EDTA) on the dentin microtensile bond strength (μTBS) of resin cements. Composite blocks were luted to superficial noncarious human dentin (n=10) using two resin cements (RelyX ARC [ARC] and RelyX U100 [U100]) and three dentin pretreatments (without pretreatment-control, CHX, and EDTA). CHX was applied for 60 seconds on the acid-etched dentin in the ARC/CHX group, and for the same time on smear layer-covered dentin in the U100/CHX group. EDTA was applied for 45 seconds on smear-covered dentin in the U100/EDTA group, and it replaced phosphoric acid conditioning in the ARC/EDTA group for 60 seconds. After storage in water for 24 hours, specimens were prepared for microtensile bond strength testing. The results were submitted to two-way analysis of variance (ANOVA) followed by Tukey test. ARC produced significantly higher μTBS (p<0.05) compared to the U100, except when EDTA was used. For ARC, no pretreatment and CHX produced higher μTBS than EDTA. For U100, EDTA produced higher μTBS; no statistical difference occurred between CHX pretreatment and when no pretreatment was performed. While CHX did not affect immediate dentin bond strength of both cements, EDTA improved bond strength of U100, but it reduced dentin bond strength of ARC.

  4. Microleakage of Class II composite resin restorations with self-adhesive composite resin liners.

    PubMed

    Doozandeh, Maryam; Shafiei, Fereshteh; Mohammadi, Fatemeh

    2017-01-01

    This study investigated the microleakage of Class II composite restorations with composite resin liners. Standardized box cavities were prepared on the mesial and distal surfaces of 84 extracted intact human molars. Proximal margins were located in enamel (occlusal) and 1.0 mm apical to the cementoenamel junction (gingival). The teeth were randomly divided into 6 groups (n = 28 cavities) and restored with Filtek Z350 nanohybrid composite resin (FZ). The test groups were lined with a conventional flowable composite resin, Premise Flowable (PF), or 1 of 2 self-adhesive composites (SACs): Vertise Flow (VF) or Clearfil SA luting cement (CSA) with or without their respective self-etching adhesives: Optibond All-in-One (OB) or Clearfil SE Bond (CSE). The adhesive/lining procedure was performed as follows: OB/FZ (control), OB/PF/FZ, VF/FZ, OB/VF/FZ, CSA/FZ, or CSE/CSA/FZ. Microleakage was evaluated at the occlusal and gingival margins using a dye penetration technique and quantitative assessment. Kruskal-Wallis and Mann-Whitney U tests were used to analyze the data at the significance level of α = 0.05. None of the restorative techniques was capable of preventing microleakage completely. The greatest amount of microleakage was detected in the VF/FZ and CSA/FZ groups at both margins (P < 0.02). Among the groups placed with a bonding agent, OB/VF/FZ showed significantly greater values of microleakage at the occlusal margins than did OB/FZ, OB/PF/FZ, and CSE/CSA/FZ (P < 0.05). At the gingival margins, the OB/PF/FZ group exhibited the least leakage compared with the OB/VF/FZ and CSE/CSA/FZ groups (P < 0.001). The results indicated that the additional application of bonding agents improved the marginal sealing of SACs in Class II composite restorations.

  5. Bonding efficacy of new self-etching, self-adhesive dual-curing resin cements to dental enamel.

    PubMed

    Benetti, Paula; Fernandes, Virgílio Vilas; Torres, Carlos Rocha; Pagani, Clovis

    2011-06-01

    This study evaluated the efficacy of the union between two new self-etching self-adhesive resin cements and enamel using the microtensile bond strength test. Buccal enamel of 80 bovine teeth was submitted to finishing and polishing with metallographic paper to a refinement of #600, in order to obtain a 5-mm2 flat area. Blocks (2 x 4 x 4 mm) of laboratory composite resin were cemented to enamel according to different protocols: (1) untreated enamel + RelyX Unicem cement (RX group); (2) untreated enamel + Bifix SE cement (BF group); (3) enamel acid etching and application of resin adhesive Single Bond + RelyX Unicem (RXA group); (4) enamel acid etching and application of resin adhesive Solobond M + Bifix SE (BFA group). After 7 days of storage in distillated water at 37°C, the blocks were sectioned for obtaining microbar specimens with an adhesive area of 1 mm2 (n = 120). Specimens were submitted to the microtensile bond strength test at a crosshead speed of 0.5 mm/min. The results (in MPa) were analyzed statistically by ANOVA and Tukey's test. Enamel pre-treatment with phosphoric acid and resin adhesive (27.9 and 30.3 for RXA and BFA groups) significantly improved (p ≤ 0.05) the adhesion of both cements to enamel compared to the union achieved with as-polished enamel (9.9 and 6.0 for RX and BF). Enamel pre-treatment with acid etching and the application of resin adhesive significantly improved the bond efficacy of both luting agents compared to the union achieved with as-polished enamel.

  6. Micro-shear bond strength of different resin cements to ceramic/glass-polymer CAD-CAM block materials.

    PubMed

    Cekic-Nagas, Isil; Ergun, Gulfem; Egilmez, Ferhan; Vallittu, Pekka Kalevi; Lassila, Lippo Veli Juhana

    2016-10-01

    The aim of this study was to evaluate the effects of hydrofluoric acid treatment on bond strength of resin cements to three different types of ceramic/glass containing CAD-CAM block composite materials. CAD-CAM block materials of polymer infiltrated (Vita Enamic), resin nanoceramic (Lava Ultimate) and nanoceramic (Cerasmart) with a thickness of 1.5mm were randomly divided into two groups according to the surface treatment performed. In Group 1, specimens were wet-ground with silicon carbide abrasive papers up to no. 1000. In Group 2, 9.6% hydrofluoric acid gel was applied to ceramics. Three different resin cements (RelyX, Variolink Esthetic and G-CEM LinkAce) were applied to the tubes in 1.2-mm thick increments and light-cured for 40s using LED light curing unit. Half of the specimens (n=10) were submitted to thermal cycling (5000 cycles, 5-55°C). The strength measurements were accomplished with a universal testing machine (Lloyd Instruments) at a cross-head speed of 0.5mm/min until the failure occurs. Failure modes were examined using a stereomicroscope and scanning electron microscope. The data were analyzed with multivariate analysis of variance (MANOVA) and Tukey's post hoc tests (α=0.05). There were significant differences between ceramics and resin cements (p<0.001). However, hydrofluoric acid gel treatment had no effect on bond strength values (p=0.073). In addition, thermal cycling significantly decreased bond strength values of resin cements to ceramics (p<0.001). Use of appropriate resin cement systems with different ceramic/glass-polymer materials might promote the bonding capacity of these systems. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  7. Micro-shear bond strength of different resin cements to ceramic/glass-polymer CAD-CAM block materials.

    PubMed

    Cekic-Nagas, Isil; Ergun, Gulfem; Egilmez, Ferhan; Vallittu, Pekka Kalevi; Lassila, Lippo Veli Juhana

    2016-03-10

    The aim of this study was to evaluate the effects of hydrofluoric acid treatment on bond strength of resin cements to three different types of ceramic/glass containing CAD-CAM block composite materials. CAD-CAM block materials of polymer infiltrated (Vita Enamic), resin nanoceramic (Lava Ultimate) and nanoceramic (Cerasmart) with a thickness of 1.5mm were randomly divided into two groups according to the surface treatment performed. In Group 1, specimens were wet-ground with silicon carbide abrasive papers up to no. 1000. In Group 2, 9.6% hydrofluoric acid gel was applied to ceramics. Three different resin cements (RelyX, Variolink Esthetic and G-CEM LinkAce) were applied to the tubes in 1.2-mm thick increments and light-cured for 40s using LED light curing unit. Half of the specimens (n=10) were submitted to thermal cycling (5000 cycles, 5-55°C). The strength measurements were accomplished with a universal testing machine (Lloyd Instruments) at a cross-head speed of 0.5mm/min until the failure occurs. Failure modes were examined using a stereomicroscope and scanning electron microscope. The data were analyzed with multivariate analysis of variance (MANOVA) and Tukey's post hoc tests (α=0.05). There were significant differences between ceramics and resin cements (p<0.001). However, hydrofluoric acid gel treatment had no effect on bond strength values (p=0.073). In addition, thermal cycling significantly decreased bond strength values of resin cements to ceramics (p<0.001). Use of appropriate resin cement systems with different ceramic/glass-polymer materials might promote the bonding capacity of these systems. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  8. Indirect aesthetic adhesive restoration with fibre-reinforced composite resin.

    PubMed

    Corona, S A M; Garcia, P P N S; Palma-Dibb, R G; Chimello, D T

    2004-10-01

    This paper describes the restoration of an endodontically treated upper first molar with a fibre-reinforced onlay indirect composite resin restoration. The clinical and radiographic examination confirmed that the tooth had suffered considerable loss of structure. Therefore, an indirect restoration was indicated. First, a core was built with resin-modified glass ionomer cement, followed by onlay preparation, mechanical/chemical gingival retraction and impression with addition-cured silicone. After the laboratory phase, the onlay was tried in, followed by adhesive bonding and occlusal adjustment. It can be concluded that fibre-reinforced aesthetic indirect composite resin restoration represented, in the present clinical case, an aesthetic and conservative treatment option. However, the use of fibres should be more extensively studied to verify the real improvement in physical and mechanical properties.

  9. Influence of cement thickness on resin-zirconia microtensile bond strength

    PubMed Central

    Lee, Tae-Hoon; Ahn, Jin-Soo; Shim, June-Sung; Han, Chong-Hyun

    2011-01-01

    PURPOSE The aim of this study was to evaluate the influence of resin cement thickness on the microtensile bond strength between zirconium-oxide ceramic and resin cement. MATERIALS AND METHODS Thirty-two freshly extracted molars were transversely sectioned at the deep dentin level and bonded to air-abraded zirconium oxide ceramic disks. The specimens were divided into 8 groups based on the experimental conditions (cement type: Rely X UniCem or Panavia F 2.0, cement thickness: 40 or 160 µm, storage: thermocycled or not). They were cut into microbeams and stored in 37℃ distilled water for 24 h. Microbeams of non-thermocycled specimens were submitted to a microtensile test, whereas those of thermocycled groups were thermally cycled for 18,000 times immediately before the microtensile test. Three-way ANOVA and Sheffe's post hoc tests were used for statistical analysis (α=95%). RESULTS All failures occurred at the resin-zirconia interface. Thermocycled groups showed lower microtensile bond strength than non-thermocycled groups (P<.001). Differences in cement thickness did not influence the resin-zirconia microtensile bond strength given the same resin cement or storage conditions (P>.05). The number of adhesive failures increased after thermocycling in all experimental conditions. No cohesive failure was observed in any experimental group. CONCLUSION When resin cements of adhesive monomers are applied over air-abraded zirconia restorations, the degree of fit does not influence the resin-zirconia microtensile bond strength. PMID:22053241

  10. Effect of dentin pretreatment and curing mode on the microtensile bond strength of self-adhesive resin cements

    PubMed Central

    Youm, Seung-Hyun; Jung, Kyoung-Hwa; Son, Sung-Ae; Kwon, Yong-Hoon

    2015-01-01

    PURPOSE The aim was to evaluate the effect of curing mode and different dentin surface pretreatment on microtensile bond strength (µTBS) of self-adhesive resin cements. MATERIALS AND METHODS Thirty-six extracted human permanent molars were sectioned horizontally exposing flat dentin surface. The teeth were divided into 12 groups (3 teeth/group) according to the dentin surface pretreatment methods (control, 18% EDTA, 10% Polyacrylic acid) and curing mode (self-curing vs. light-curing) of cement. After pretreatment, composite resin blocks were cemented with the following: (a) G-CEM LinkAce; (b) RelyX U200, followed by either self-curing or light-curing. After storage, the teeth were sectioned and µTBS test was performed using a microtensile testing machine. The data was statistically analyzed using one-way ANOVA, Student T-test and Scheffe's post-hoc test at P<.05 level. RESULTS For G-CEM LinkAce cement groups, polyacrylic acid pretreatment showed the highest µTBS in the self-cured group. In the light-cured group, no significant improvements were observed according to the dentin surface pretreatment. There were no significant differences between curing modes. Both dentin surface pretreatment methods helped to increase the µTBS of RelyX U200 resin cement significantly and degree of pretreatment effect was similar. No significant differences were found regarding curing modes except control groups. In the comparisons of two self-adhesive resin cements, all groups within the same pretreatment and curing mode were significantly different excluding self-cured control groups. CONCLUSION Selecting RelyX U200 used in this study and application of dentin surface pretreatment with EDTA and polyacrylic acid might be recommended to enhance the bond strength of cement to dentin. PMID:26330979

  11. Effect of dentin pretreatment and curing mode on the microtensile bond strength of self-adhesive resin cements.

    PubMed

    Youm, Seung-Hyun; Jung, Kyoung-Hwa; Son, Sung-Ae; Kwon, Yong-Hoon; Park, Jeong-Kil

    2015-08-01

    The aim was to evaluate the effect of curing mode and different dentin surface pretreatment on microtensile bond strength (µTBS) of self-adhesive resin cements. Thirty-six extracted human permanent molars were sectioned horizontally exposing flat dentin surface. The teeth were divided into 12 groups (3 teeth/group) according to the dentin surface pretreatment methods (control, 18% EDTA, 10% Polyacrylic acid) and curing mode (self-curing vs. light-curing) of cement. After pretreatment, composite resin blocks were cemented with the following: (a) G-CEM LinkAce; (b) RelyX U200, followed by either self-curing or light-curing. After storage, the teeth were sectioned and µTBS test was performed using a microtensile testing machine. The data was statistically analyzed using one-way ANOVA, Student T-test and Scheffe's post-hoc test at P<.05 level. For G-CEM LinkAce cement groups, polyacrylic acid pretreatment showed the highest µTBS in the self-cured group. In the light-cured group, no significant improvements were observed according to the dentin surface pretreatment. There were no significant differences between curing modes. Both dentin surface pretreatment methods helped to increase the µTBS of RelyX U200 resin cement significantly and degree of pretreatment effect was similar. No significant differences were found regarding curing modes except control groups. In the comparisons of two self-adhesive resin cements, all groups within the same pretreatment and curing mode were significantly different excluding self-cured control groups. Selecting RelyX U200 used in this study and application of dentin surface pretreatment with EDTA and polyacrylic acid might be recommended to enhance the bond strength of cement to dentin.

  12. The influence of polymerization shrinkage of resin cements on bonding to metal.

    PubMed

    Verzijden, C W; Feilzer, A J; Creugers, N H; Davidson, C L

    1992-02-01

    During the setting of a resin composite cement (RCC) used as an adhesive between a resin-bonded bridge and tooth structure, the adhesion may be disrupted by the development of shrinkage stress. The aim of this study was to investigate the influence of the shrinkage stress of three different RCCs on their adhesive and cohesive qualities when bonded to metal surfaces in a rigid set-up. Two opposing parallel NiCr discs (Wiron 77) were mounted in a tensilometer at a mutual distance of 200 microns and cemented with Panavia Ex, Clearfil F2, or Microfill Pontic C. The alloy surfaces were treated by either electrolytic etching, sand-blasting, silane-coating, or tin-plating. During setting, the discs were kept at their original mutual distance to simulate the extreme clinical situation of "complete" rigidity, where the casting and the tooth cannot move toward each other. The developing shrinkage stress was recorded continuously. During setting, the adhesive strength of the RCCs to silane-coated surfaces was always higher than their early cohesive strength. Electrolytically-etched surfaces as well as sand-blasted surfaces showed, in almost all cases, adhesive failure. The tin-plated samples showed mainly adhesive failure at the metal/resin interface. The highest bond strength values were found for silane-coated surfaces in combination with Clearfil F2.

  13. The Influence of Sonic and Ultrasonic Vibration on the Shear Bond Strength of a Selected Resin Luting Cement.

    PubMed

    Marchan, Shivaughn M; White, Daniel; Smith, William; Dhuru, Virendra

    2015-03-01

    This study determined the effect of sonic and ultrasonic instrumentation on the shear bond strengths of Panavia 21, a popular cement for the luting of resin-bonded restorations. 84 Ni-Cr cylinders were cemented to randomly selected resin composite substrates using Panavia 21 following the manufacturer's instructions. The Ni-Cr-composite specimens were divided into 7 groups of 12 specimens each based upon the procedure used for removing the excess cement. For Group 1 (Co) specimens the excess cement was removed with microbrushes immediately after cementation. Groups 2 through 7 were based on the use of vibrating instrument and the time period after which the excess material was removed. These included the cement, Panavia 21, three vibrating instruments, Sonic with a universal tip (So), Piezoelectric ultrasonic with a USPIS tip (Pu), Magnetorestrive ultrasonic with a FS1-100 tip (Mu) and two different time periods, soon after cementation (9m) and one hour after cementation (1h). Once excess cement REMOVAL WAS COMPLETED, THE SPECIMENS WERE SUBJECTED TO SHEAR TESTING. Mean Shear Bond strengths ranged from 16.03 MPa (Co) to 19.91 MPa (So 1h). Statistical analysis demonstrated that interaction of the main effects were significant (F = 4.27, p = 0.042). Post-hoc analysis demonstrated that the effect of timing was significant in all the instrumented groups. The majority of the tested specimens failed cohesively compared to mainly adhesive failures for the control group. The effect of type of instrumentation immediately following polymerization setting had no effect on the shear bond strengths however a delay of 1 hour for all types of instrumentation had a beneficial effect of improving observed shear bond strengths.

  14. Resin/graphite fiber composites

    NASA Technical Reports Server (NTRS)

    Cavano, P. J.

    1974-01-01

    Processing techniques were developed for the fabrication of both polyphenylquinoxaline and polyimide composites by the in situ polymerization of monomeric reactants directly on the graphite reinforcing fibers, rather than using previously prepared prepolymer varnishes. Void-free polyphenylquinoxaline composites were fabricated and evaluated for room and elevated flexure and shear properties. The technology of the polyimide system was advanced to the point where the material is ready for commercial exploitation. A reproducible processing cycle free of operator judgment factors was developed for fabrication of void-free composites exhibiting excellent mechanical properties and a long time isothermal life in the range of 288 C to 316 C. The effects of monomer reactant stoichiometry and process modification on resin flow were investigated. Demonstration of the utility and quality of this polyimide system was provided through the successful fabrication and evaluation of four complex high tip speed fan blades.

  15. Resistance to bond degradation between dual-cure resin cements and pre-treated sintered CAD-CAM dental ceramics

    PubMed Central

    Osorio, Raquel; Monticelli, Francesca; Osorio, Estrella; Toledano, Manuel

    2012-01-01

    Objective: To evaluate the bond stability of resin cements when luted to glass-reinforced alumina and zirconia CAD/CAM dental ceramics. Study design: Eighteen glass-infiltrated alumina and eighteen densely sintered zirconia blocks were randomly conditioned as follows: Group 1: No treatment; Group 2: Sandblasting (125 µm Al2O3-particles); and Group 3: Silica-coating (50 µm silica-modified Al2O3-particles). Composite samples were randomly bonded to the pre-treated ceramic surfaces using different resin cements: Subgroup 1: Clearfil Esthetic Cement (CEC); Subgroup 2: RelyX Unicem (RXU); and Subgroup 3: Calibra (CAL). After 24 h, bonded specimens were cut into 1 ± 0.1 mm2 sticks. One-half of the beams were tested for microtensile bond strength (MTBS). The remaining one-half was immersed in 10 % NaOCl aqueous solution (NaOClaq) for 5 h before testing. The fracture pattern and morphology of the debonded surfaces were assessed with a field emission gun scanning electron microscope (FEG-SEM). A multiple ANOVA was conducted to analyze the contributions of ceramic composition, surface treatment, resin cement type, and chemical challenging to MTBS. The Tukey test was run for multiple comparisons (p < 0.05). Results: After 24 h, CEC luted to pre-treated zirconia achieved the highest MTBS. Using RXU, alumina and zirconia registered comparable MTBS. CAL failed prematurely, except when luted to sandblasted zirconia. After NaOClaq storage, CEC significantly lowered MTBS when luted to zirconia or alumina. RXU decreased MTBS only when bonded to silica-coated alumina. CAL recorded 100 % of pre-testing failures. Micromorphological alterations were evident after NaOClaq immersion. Conclusions: Resin-ceramic interfacial longevity depended on cement selection rather than on surface pre-treatments. The MDP-containing and the self-adhesive resin cements were both suitable for luting CAD/CAM ceramics. Despite both cements being prone to degradation, RXU luted to zirconia or untreated or

  16. [Bonding of resin cement to bleached dental enamel].

    PubMed

    Wakami, Masanobu; Masuda, Mikiko; Kato, Hitomi; Tabei, Naoko; Watanabe, Tsukasa; Muramori, Juri; Saikawa, Takahiro; Aida, Masahiro; Nishiyama, Norihiro

    2008-07-01

    The effects of bleaching times, types of etching agent and storage period of bleached bovine tooth on the shear bond strength of resin cement to the enamel were examined. Bovine teeth were repeatedly bleached 0, 1, 3, and 5 times then stored in 37 degrees C water for 1 week. The effect of bleaching number of the bovine tooth on the bond strength of resin cement to the enamel was investigated using 40% phosphoric acid (EG) etching technique. Next, the effects of types of etching agent and of storage period of bleached bovine tooth with three times in 37 degrees C water on the bond strength were studied using 10% citric acid-3% ferric chloride (10-3) or 10% citric acid (10-0) solution. The bleaching of bovine tooth allowed for a dramatic decrease in the bond strength from 18.3 MPa to 9.8 MPa (1 time), and 3.9 MPa (3 times), even though the bovine enamel was etched by EG. However, when 10-3 or 10-0 solution was applied to the three times bleached enamel, bond strengths were 13.9 and 10.0 MPa, respectively. Furthermore, prolonging of the storage period of the three times bleached bovine tooth in water to 2 months resulted in a increase in the bond strength from 3.9 to 10.1 MPa, even if bovine enamel was etched by EG, and close to that obtained from the 10-3 etching. To obtain the expected bond strength to bleached enamel, it is better to wait for 2 months for a restoration and use the 10-3 etching.

  17. Microtensile bond strength of indirect resin composite to resin-coated dentin: interaction between diamond bur roughness and coating material.

    PubMed

    Kameyama, Atsushi; Oishi, Takumi; Sugawara, Toyotarou; Hirai, Yoshito

    2009-02-01

    This aim of this study was to determine the effect of type of bur and resin-coating material on microtensile bond strength (microTBS) of indirect composite to dentin. Dentin surfaces were first ground with two types of diamond bur and resin-coated using UniFil Bond (UB) or Adper Single Bond (SB), and then bonded to a resin composite disc for indirect restoration with adhesive resin cement. After storage for 24 hr in distilled water at 37 degrees C, microTBS was measured (crosshead speed 1 mm/min). When UB was applied to dentin prepared using the regular-grit diamond bur, microTBS was significantly lower than that in dentin prepared using the superfine-grit bur. In contrast, no significant difference was found between regular-grit and superfine-grit bur with SB. However, more than half of the superfine-grit specimens failed before microTBS testing. These results indicate that selection of bur type is important in improving the bond strength of adhesive resin cement between indirect resin composite and resin-coated dentin.

  18. Microtensile bond strength of glass fiber posts cemented with self-adhesive and self-etching resin cements.

    PubMed

    Zaitter, Suellen; Sousa-Neto, Manoel D; Roperto, Renato C; Silva-Sousa, Yara T; El-Mowafy, Omar

    2011-02-01

    To evaluate the bond strength of glass fiber posts to intraradicular dentin when cemented with self-etching and self-adhesive resin cements. Forty-eight single-rooted human teeth were decoronated, endodontically treated, post-space prepared and divided into 8 groups (n = 6). The glass fiber posts used were: Exacto (EA) (Angelus) and everStick (ES) (StichTeck), which were cemented with two self-adhesive resin cements: BisCem (BIS) (Bisco) and Rely-X Unicem (UNI) (3M/ESPE), and two self-etching resin cements: Esthetic Cementing System NAC100 (NAC) (Kuraray) and Panavia-F (PAN) (Kuraray). Specimens were thermocycled between 5°C and 55 °C for 1000 cycles and stored in water at 37°C for 1 month. Four 1-mm-thick (in cross section) rods were obtained from the cervical region of the roots. Specimens were then subjected to microtensile testing in a special machine (BISCO; Schaumburg, IL, USA) or a crosshead speed of 0.5 mm/min. Microtensile bond strength (μTBS) data were analyzed with two-way ANOVA and Tukey's tests. Means (and SD) of μTBS (MPa) were: EA/PAN: 10.3 (4.1), EA/NAC: 14 (5.1) EA/BIS: 16.4 (4.8), EA/UNI: 19.8 (5.1), ES/PAN: 25.9 (6.1), ES/NAC: 29.1 (7), ES/BIS: 28.9 (6), ES/UNI: 30.5 (6.6). ANOVA indicated significant differences among the groups (p < 0.001). Mean μTBS values obtained with ES post were significantly higher than those obtained with EA (p < 0.001). For EA, Tukey's test indicated that higher μTBS means were obtained with the self-adhesive resin cements (BIS and UNI), which were statistically significantly different (p < 0.05) from values obtained with the self-etching resin cements (PAN and NAC). Different cements had no significant effects on the bond strength values of ES post (p > 0.05). μTBS values obtained with ES post were significantly higher than those obtained with EA post irrespective of the resin cement used. everStick posts resulted in the highest mean μTBS values with all cements. Self-adhesive cements performed well in terms

  19. In vitro Evaluation of Stainless Steel Crowns cemented with Resin-modified Glass Ionomer and Two New Self-adhesive Resin Cements

    PubMed Central

    Shashibhushan, KK; Poornima, P; Reddy, VV Subba

    2016-01-01

    Aims To assess and compare the retentive strength of two dual-polymerized self-adhesive resin cements (RelyX U200, 3M ESPE & SmartCem2, Dentsply Caulk) and a resin-modified glass ionomer cement (RMGIC; RelyX Luting 2, 3M ESPE) on stainless steel crown (SSC). Materials and methods Thirty extracted teeth were mounted on cold cured acrylic resin blocks exposing the crown till the cemento-enamel junction. Pretrimmed, precontoured SSC was selected for a particular tooth. Standardized tooth preparation for SSC was performed by single operator. The crowns were then luted with either RelyX U200 or SmartCem2 or RelyX Luting 2 cement. Retentive strength was tested using Instron universal testing machine. The retentive strength values were recorded and calculated by the formula: Load/Area. Statistical analysis One-way analysis of variance was used for multiple comparisons followed by post hoc Tukey’s test for groupwise comparisons. Unpaired t-test was used for intergroup comparisons. Results RelyX U200 showed significantly higher retentive strength than rest of the two cements (p < 0.001). No significant difference was found between the retentive strength of SmartCem2 and RelyX Luting 2 (p > 0.05). Conclusion The retentive strength of dual-polymerized self-adhesive resin cements was better than RMGIC, and RelyX U200 significantly improved crown retention when compared with SmartCem2 and RelyX Luting 2. How to cite this article Pathak S, Shashibhushan KK, Poornima P, Reddy VVS. In vitro Evaluation of Stainless Steel Crowns cemented with Resin-modified Glass Ionomer and Two New Self-adhesive Resin Cements. Int J Clin Pediatr Dent 2016;9(3):197-200. PMID:27843249

  20. Influence of different light sources on microtensile bond strength and gap formation of resin cement under porcelain inlay restorations.

    PubMed

    Ozturk, A N; Usumez, A

    2004-09-01

    Clinical success with ceramic inlays/onlays has been assisted by the ability to develop a reliable bond of composite resin to dental tissues. The purpose of this study was to test the efficiency of two different light sources on microtensile bond strength and the gap formation of resin cement under class II porcelain inlay restorations. Standardized mesio-occlusal cavities were prepared in 30 freshly extracted, intact human premolar teeth. Then impressions were made and ceramic inlays were fabricated. In the cementation process, the resin cement/inlay combinations were exposed to two different photopolymerization units. The polymerizations through 15 specimens were performed with a conventional halogen light source for 60 s, and the other specimens were cured by a plasma arc light for 9 s. After the cementation process, two 1.2 x 1.2 mm wide 'I' shape sections per tooth were produced with a sectioning machine and sections were subjected to microtensile testing after 24 h or 1 week. Gap formation of specimens cured by different photopolymerization units were evaluated with scanning electron microscopy (SEM). Statistically significant differences were found between the microtensile bond strength of inlays exposed to conventional light and plasma arc curing unit (P < 0.001). Plasma arc curing units make it possible to polymerize composite in much shorter times than conventional curing unit. However, the samples polymerized with conventional halogen light produced better microtensile bond strength than the plasma arc unit.

  1. The effect of root canal sealers and timing of cementation on the microlekage of the parapost luted with resin cement

    PubMed Central

    Al Kahtani, Ahmed M.

    2010-01-01

    Objectives The objectives of the study were to study the effect of root canal sealers either eugenol or non-eugenol and timing of cementation on microleakage of the parapost luted with resin cement. Materials and methods Seventy extracted human, single-rooted teeth were instrumented using a crown-down technique. All teeth were instrumented up to a size 50 .04 taper ProFile followed by the use of Gates Glidden drills from size 2 up to 5. Following instrumentation, the teeth were randomly divided into four experimental groups of fifteen teeth each, based on type of root canal sealer (eugenol or non-eugenol sealer) and timing of post cementation (immediate or delayed). The remaining ten teeth were divided into two control groups with five teeth per group. All teeth were tested for microleakage using a fluid filtration method. Results The microleakage of the paraposts luted with resin cement increased over time, irrespective of sealer type or timing of post cementation. Immediate post cementation following obturation with AH26 (non-eugenol sealer) produced the least microleakage at all three time periods at 24 h, 2 months and 3 months. Conclusions The microleakage paraposts luted with resin cement was not influenced by either sealer type or timing of post placement. All experimental groups demonstrated a significant increase in microleakage over time as well as the presence of voids at the resin–dentin interface. PMID:24109165

  2. Foam, Foam-resin composite and method of making a foam-resin composite

    NASA Technical Reports Server (NTRS)

    Cranston, John A. (Inventor); MacArthur, Doug E. (Inventor)

    1995-01-01

    This invention relates to a foam, a foam-resin composite and a method of making foam-resin composites. The foam set forth in this invention comprises a urethane modified polyisocyanurate derived from an aromatic amino polyol and a polyether polyol. In addition to the polyisocyanurate foam, the composite of this invention further contains a resin layer, wherein the resin may be epoxy, bismaleimide, or phenolic resin. Such resins generally require cure or post-cure temperatures of at least 350.degree. F.

  3. Study of deformation of resin cements used in fixing of root posts through fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Pulido, C. A.; Franco, A. P. G. O.; Karam, L. Z.; Kalinowski, H. J.; Gomes, O. M. M.

    2014-05-01

    The aim of the study was to evaluate the polymerization shrinkage "in situ" in resin cements inside the root canal during the fixation of glass fiber posts. For cementation teeth were randomly divided into 2 groups according to the resin cement used: Group1 - resin cement dual Relyx ARC (3M/ESPE), and Group 2 - resin cement dual Relyx U200 (3M/ESPE). Before inserting the resin cement into the root canal, two Bragg grating sensors were recorded and pasted in the region without contact with the canal, one at the apical and other at the coronal thirds of the post. The sensors measured the deformation of the resin cements in coronal and apical root thirds to obtain the values in micro-strain (μɛ).

  4. Effect of CO2 and Nd:YAG Lasers on Shear Bond Strength of Resin Cement to Zirconia Ceramic

    PubMed Central

    Kasraei, Shahin; Yarmohamadi, Ebrahim; Shabani, Amanj

    2015-01-01

    Objectives: Because of poor bond between resin cement and zirconia ceramics, laser surface treatments have been suggested to improve adhesion. The present study evaluated the effect of CO2 and Nd:YAG lasers on the shear bond strength (SBS) of resin cement to zirconia ceramic. Materials and Methods: Ninety zirconia disks (6×2 mm) were randomly divided into six groups of 15. In the control group, no surface treatment was used. In the test groups, laser surface treatment was accomplished using CO2 and Nd:YAG lasers, respectively (groups two and three). Composite resin disks (3×2 mm) were fabricated and cemented to zirconia disks with self-etch resin cement and stored in distilled water for 24 hours. In the test groups four-six, the samples were prepared as in groups one-three and then thermocycled and stored in distilled water for six months. The SBS tests were performed (strain rate of 0.5 mm/min). The fracture modes were observed via stereomicroscopy. Data were analyzed with one and two-way ANOVA, independent t and Tukey’s tests. Results: The SBS values of Nd:YAG group (18.95±3.46MPa) was significantly higher than that of the CO2 group (14.00±1.96MPa), but lower than that of controls (23.35±3.12MPa). After thermocycling and six months of water storage, the SBS of the untreated group (1.80±1.23 MPa) was significantly lower than that of the laser groups. In groups stored for 24 hours, 60% of the failures were adhesive; however, after thermocycling and six months of water storage, 100% of failures were adhesive. Conclusion: Bonding durability of resin cement to zirconia improved with CO2 and Nd:YAG laser surface treatment of zirconia ceramic. PMID:27148380

  5. An assessment of fracture resistance of three composite resin core build-up materials on three prefabricated non-metallic posts, cemented in endodontically treated teeth: an in vitro study

    PubMed Central

    Pal, Bhupinder; Pujari, Prashant

    2015-01-01

    Endodontically treated teeth with excessive loss of tooth structure would require to be restored with post and core to enhance the strength and durability of the tooth and to achieve retention for the restoration. The non-metallic posts have a superior aesthetic quality. Various core build-up materials can be used to build-up cores on the posts placed in endodontically treated teeth. These materials would show variation in their bonding with the non-metallic posts thus affecting the strength and resistance to fracture of the remaining tooth structure. Aims. The aim of the study was to assess the fracture resistance of three composite resin core build-up materials on three prefabricated non-metallic posts, cemented in extracted endodontically treated teeth. Material and Methods. Forty-five freshly extracted maxillary central incisors of approximately of the same size and shape were selected for the study. They were divided randomly into 3 groups of 15 each, depending on the types of non-metallic posts used. Each group was further divided into 3 groups (A, B and C) of 5 samples each depending on three core build-up material used. Student’s unpaired ‘t’ test was also used to analyse and compare each group with the other groups individually, and decide whether their comparisons were statistically significant. Results. Luxacore showed the highest fracture resistance among the three core build-up materials with all the three posts systems. Ti-core had intermediate values of fracture resistance and Lumiglass had the least values of fracture resistance. PMID:25755926

  6. An assessment of fracture resistance of three composite resin core build-up materials on three prefabricated non-metallic posts, cemented in endodontically treated teeth: an in vitro study.

    PubMed

    Kumar, Lalit; Pal, Bhupinder; Pujari, Prashant

    2015-01-01

    Endodontically treated teeth with excessive loss of tooth structure would require to be restored with post and core to enhance the strength and durability of the tooth and to achieve retention for the restoration. The non-metallic posts have a superior aesthetic quality. Various core build-up materials can be used to build-up cores on the posts placed in endodontically treated teeth. These materials would show variation in their bonding with the non-metallic posts thus affecting the strength and resistance to fracture of the remaining tooth structure. Aims. The aim of the study was to assess the fracture resistance of three composite resin core build-up materials on three prefabricated non-metallic posts, cemented in extracted endodontically treated teeth. Material and Methods. Forty-five freshly extracted maxillary central incisors of approximately of the same size and shape were selected for the study. They were divided randomly into 3 groups of 15 each, depending on the types of non-metallic posts used. Each group was further divided into 3 groups (A, B and C) of 5 samples each depending on three core build-up material used. Student's unpaired 't' test was also used to analyse and compare each group with the other groups individually, and decide whether their comparisons were statistically significant. Results. Luxacore showed the highest fracture resistance among the three core build-up materials with all the three posts systems. Ti-core had intermediate values of fracture resistance and Lumiglass had the least values of fracture resistance.

  7. SEM analysis of microstructure of adhesive interface between resin cement and dentin treated with self-etching primer.

    PubMed

    Hirabayashi, Shigeru; Yoshida, Eiji; Hayakawa, Tohru

    2011-01-01

    The purpose of this study was to examine the microstructure of the adhesive interface between resin cement and dentin treated with a self-etching primer by SEM in order to clarify the adhesive efficiencies of four self-etch type resin cement systems, Bistite II (BII), Linkmax (LM), Panavia F2.0 (PF), and ResiCem (RC) to dentin. The fluidity and inorganic filler content of these cements were also determined to examine their influences on the adhesion. A hybrid layer with 0.5-1.5 µm thickness and many resin tags could be confirmed clearly at the interface between BII cement and dentin, but was not observed distinctly for the other resin cements. It was suggested that the hybrid layer and resin tags might contribute to the high adhesive efficiency for BII. As the fluidity of cement had been adjusted to be suitable for luting in all cements, it did not significantly influence the adhesive efficiency of cement.

  8. Bonding effectiveness of a self-adhesive resin-based luting cement to dentin after provisional cement contamination.

    PubMed

    Bagis, Bora; Bagis, Yildirim H; Hasanreisoğlu, Ufuk

    2011-12-01

    To evaluate the influence of provisional luting cements on the bonding performance of a resin-based self-adhesive luting cement to dentin vs that of currently used resin-based luting agents with different adhesion strategies. Forty-five prepared human molars were randomly and equally divided into three main groups according to the type of provisional luting cement applied: eugenol-containing provisional cement (Temp Bond, Kerr), eugenol-free provisional cement (Temp Bond NE, Kerr), and control where the provisionalization step was omitted. Each group was further subdivided into 3 groups based on the category of adhesive systems/ luting materials used: a two-step etch-and-rinse system (Single Bond/RelyX ARC; 3M ESPE) (RX), a two-step self-etching system (Clearfil Liner Bond 2V/ Panavia F; Kuraray) (PF), and a self-adhesive luting cement (Rely X Unicem; 3M ESPE) (RU). Finally, 9 groups of 5 teeth each were prepared for the microtensile test. Two-way analysis of variance (ANOVA) and post-hoc Bonferroni tests revealed that definitive luting cement, provisional luting cement, and the interactions of these two factors had significant influences on dentin bond strength. The highest bond strength was obtained for PF (32.05 MPa), followed by RX (26.57 MPa) and RU (16.56 MPa) for the controls. Contamination with either eugenol-containing or eugenol-free provisional cement significantly decreased the bonding effectiveness of RX (19.08 and 19.69 MPa, respectively) and PF (14.21 and 16.67 MPa respectively) to dentin (p < 0.05). RU showed comparable bond strength values before and after provisional cement (13.93 and 14.49 MPa, respectively) application (p > 0.05). Eugenol in provisional luting cement did not produce material-related alterations in the bonding performance of the resin luting cements tested (p > 0.05). Based on these results, the self-adhesive cement which was not influenced by the provisional cement application may be promising. However, long-term laboratory and

  9. High elastic modulus nanopowder reinforced resin composites for dental applications

    NASA Astrophysics Data System (ADS)

    Wang, Yijun

    2007-12-01

    Dental restorations account for more than $3 billion dollars a year on the market. Among them, all-ceramic dental crowns draw more and more attention and their popularity has risen because of their superior aesthetics and biocompatibility. However, their relatively high failure rate and labor-intensive fabrication procedure still limit their application. In this thesis, a new family of high elastic modulus nanopowder reinforced resin composites and their mechanical properties are studied. Materials with higher elastic modulus, such as alumina and diamond, are used to replace the routine filler material, silica, in dental resin composites to achieve the desired properties. This class of composites is developed to serve (1) as a high stiffness support to all-ceramic crowns and (2) as a means of joining independently fabricated crown core and veneer layers. Most of the work focuses on nano-sized Al2O3 (average particle size 47 nm) reinforcement in a polymeric matrix with 50:50 Bisphenol A glycidyl methacrylate (Bis-GMA): triethylene glycol dimethacrylate (TEGDMA) monomers. Surfactants, silanizing agents and primers are examined to obtain higher filler levels and enhance the bonding between filler and matrix. Silane agents work best. The elastic modulus of a 57.5 vol% alumina/resin composite is 31.5 GPa compared to current commercial resin composites with elastic modulus <15 GPa. Chemical additives can also effectively raise the hardness to as much as 1.34 GPa. Besides>alumina, diamond/resin composites are studied. An elastic modulus of about 45 GPa is obtained for a 57 vol% diamond/resin composite. Our results indicate that with a generally monodispersed nano-sized high modulus filler, relatively high elastic modulus resin-based composite cements are possible. Time-dependent behavior of our resin composites is also investigated. This is valuable for understanding the behavior of our material and possible fatigue testing in the future. Our results indicate that with

  10. Release and toxicity of dental resin composite.

    PubMed

    Gupta, Saurabh K; Saxena, Payal; Pant, Vandana A; Pant, Aditya B

    2012-09-01

    Dental resin composite that are tooth-colored materials have been considered as possible substitutes to mercury-containing silver amalgam filling. Despite the fact that dental resin composites have improved their physico-chemical properties, the concern for its intrinsic toxicity remains high. Some components of restorative composite resins are released in the oral environment initially during polymerization reaction and later due to degradation of the material. In vitro and in vivo studies have clearly identified that these components of restorative composite resins are toxic. But there is a large gap between the results published by research laboratories and clinical reports. The objective of this manuscript was to review the literature on release phenomenon as well as in vitro and in vivo toxicity of dental resin composite. Interpretation made from the recent data was also outlined.

  11. Release and toxicity of dental resin composite

    PubMed Central

    Gupta, Saurabh K.; Saxena, Payal; Pant, Vandana A.; Pant, Aditya B.

    2012-01-01

    Dental resin composite that are tooth-colored materials have been considered as possible substitutes to mercury-containing silver amalgam filling. Despite the fact that dental resin composites have improved their physico-chemical properties, the concern for its intrinsic toxicity remains high. Some components of restorative composite resins are released in the oral environment initially during polymerization reaction and later due to degradation of the material. In vitro and in vivo studies have clearly identified that these components of restorative composite resins are toxic. But there is a large gap between the results published by research laboratories and clinical reports. The objective of this manuscript was to review the literature on release phenomenon as well as in vitro and in vivo toxicity of dental resin composite. Interpretation made from the recent data was also outlined. PMID:23293458

  12. VOLUMETRIC POLYMERIZATION SHRINKAGE OF CONTEMPORARY COMPOSITE RESINS

    PubMed Central

    Nagem, Halim; Nagem, Haline Drumond; Francisconi, Paulo Afonso Silveira; Franco, Eduardo Batista; Mondelli, Rafael Francisco Lia; Coutinho, Kennedy Queiroz

    2007-01-01

    The polymerization shrinkage of composite resins may affect negatively the clinical outcome of the restoration. Extensive research has been carried out to develop new formulations of composite resins in order to provide good handling characteristics and some dimensional stability during polymerization. The purpose of this study was to analyze, in vitro, the magnitude of the volumetric polymerization shrinkage of 7 contemporary composite resins (Definite, Suprafill, SureFil, Filtek Z250, Fill Magic, Alert, and Solitaire) to determine whether there are differences among these materials. The tests were conducted with precision of 0.1 mg. The volumetric shrinkage was measured by hydrostatic weighing before and after polymerization and calculated by known mathematical equations. One-way ANOVA (á=0.05) was used to determine statistically significant differences in volumetric shrinkage among the tested composite resins. Suprafill (1.87±0.01) and Definite (1.89±0.01) shrank significantly less than the other composite resins. SureFil (2.01±0.06), Filtek Z250 (1.99±0.03), and Fill Magic (2.02±0.02) presented intermediate levels of polymerization shrinkage. Alert and Solitaire presented the highest degree of polymerization shrinkage. Knowing the polymerization shrinkage rates of the commercially available composite resins, the dentist would be able to choose between using composite resins with lower polymerization shrinkage rates or adopting technical or operational procedures to minimize the adverse effects deriving from resin contraction during light-activation. PMID:19089177

  13. Effect of proximal box elevation with resin composite on marginal quality of ceramic inlays in vitro.

    PubMed

    Frankenberger, Roland; Hehn, Julia; Hajtó, Jan; Krämer, Norbert; Naumann, Michael; Koch, Andreas; Roggendorf, Matthias J

    2013-01-01

    The objective of this study was to evaluate the marginal quality and resin-resin transition of milled CAD/CAM glass-ceramic inlays in deep proximal cavities with and without 3-mm proximal box elevation (PBE) using resin composites before and after thermomechanical loading. MOD cavities with one proximal box beneath the cementoenamel junction were prepared in 48 extracted human third molars. Proximal boxes ending in dentin were elevated for 3 mm with different resin composites (RelyX Unicem, G-Cem, and Maxcem Elite as self-adhesive resin cements and Clearfil Majesty Posterior as restorative resin composite in one or three layers bonded with AdheSE) or left untreated. IPS Empress CAD inlays were luted with Syntac and Variolink II (n = 8). Marginal quality as well as the PBE-ceramic interface were analyzed under an SEM using epoxy resin replicas before and after thermomechanical loading (100,000 × 50 N and 2,500 thermocycles between +5°C and +55°C). Bonding glass-ceramic directly to dentin showed the highest amounts of gap-free margins in dentin (92%, p < 0.05). Bonded resin composite applied in three layers achieved 84% gap-free margins in dentin; PBE with self-adhesive resin cements exhibited significantly more gaps in dentin (p < 0.05). With a meticulous layering technique and bonded resin composite, PBE may be an alternative to ceramic bonding to dentin. Self-adhesive resin cements seem not suitable for this indication. For deep proximal boxes ending in dentin, a PBE may be an alternative to conventional techniques.

  14. Correlation between clinical performance and degree of conversion of resin cements: a literature review.

    PubMed

    De Souza, Grace; Braga, Roberto Ruggiero; Cesar, Paulo Francisco; Lopes, Guilherme Carpena

    2015-01-01

    Resin-based cements have been frequently employed in clinical practice to lute indirect restorations. However, there are numerous factors that may compromise the clinical performance of those cements. The aim of this literature review is to present and discuss some of the clinical factors that may affect the performance of current resin-based luting systems. Resin cements may have three different curing mechanisms: chemical curing, photo curing or a combination of both. Chemically cured systems are recommended to be used under opaque or thick restorations, due to the reduced access of the light. Photo-cured cements are mainly indicated for translucent veneers, due to the possibility of light transmission through the restoration. Dual-cured are more versatile systems and, theoretically, can be used in either situation, since the presence of both curing mechanisms might guarantee a high degree of conversion (DC) under every condition. However, it has been demonstrated that clinical procedures and characteristics of the materials may have many different implications in the DC of currently available resin cements, affecting their mechanical properties, bond strength to the substrate and the esthetic results of the restoration. Factors such as curing mechanism, choice of adhesive system, indirect restorative material and light-curing device may affect the degree of conversion of the cement and, therefore, have an effect on the clinical performance of resin-based cements. Specific measures are to be taken to ensure a higher DC of the luting system to be used.

  15. Correlation between clinical performance and degree of conversion of resin cements: a literature review

    PubMed Central

    DE SOUZA, Grace; BRAGA, Roberto Ruggiero; CESAR, Paulo Francisco; LOPES, Guilherme Carpena

    2015-01-01

    Resin-based cements have been frequently employed in clinical practice to lute indirect restorations. However, there are numerous factors that may compromise the clinical performance of those cements. The aim of this literature review is to present and discuss some of the clinical factors that may affect the performance of current resin-based luting systems. Resin cements may have three different curing mechanisms: chemical curing, photo curing or a combination of both. Chemically cured systems are recommended to be used under opaque or thick restorations, due to the reduced access of the light. Photo-cured cements are mainly indicated for translucent veneers, due to the possibility of light transmission through the restoration. Dual-cured are more versatile systems and, theoretically, can be used in either situation, since the presence of both curing mechanisms might guarantee a high degree of conversion (DC) under every condition. However, it has been demonstrated that clinical procedures and characteristics of the materials may have many different implications in the DC of currently available resin cements, affecting their mechanical properties, bond strength to the substrate and the esthetic results of the restoration. Factors such as curing mechanism, choice of adhesive system, indirect restorative material and light-curing device may affect the degree of conversion of the cement and, therefore, have an effect on the clinical performance of resin-based cements. Specific measures are to be taken to ensure a higher DC of the luting system to be used. PMID:26398507

  16. Effect of sandblasting, silica coating, and laser treatment on the microtensile bond strength of a dental zirconia ceramic to resin cements.

    PubMed

    Mahmoodi, Nasrin; Hooshmand, Tabassom; Heidari, Solmaz; Khoshro, Kimia

    2016-02-01

    The purpose of this in vitro study was to evaluate the effect of laser irradiation as well as other surface treatment methods on the microtensile bond strength of a dental zirconia ceramic to the two types of resin cements. Zirconia ceramic blocks (ICE Zirkon) were sintered according to the manufacturer's instructions and duplicated in resin composites. The ceramic specimens were divided into four groups according to the following surface treatments: no surface treatment (control), sandblasting with alumina, silica coating plus silanization, and Nd:YAG laser irradiation. The specimens were divided equally and then bonded with Panavia F2.0 (self-etching resin cement) and Clearfil SA Luting (self-adhesive resin cement) to the composite blocks. The bonded ceramic-composite blocks were stored in distilled water at 37 °C for 72 h, cut to prepare bar-shaped specimens with a bonding area of approximately 1 mm(2), and thermocycled for 3000 cycles between 5 and 55 °C, and the microtensile bond strengths were measured using a universal testing machine. The data were analyzed by ANOVA and Tukey post hoc test. The results showed that the self-adhesive resin cement used in this study did not improve the microtensile bond strength when the zirconia surface was sandblasted by alumina. The use of the Nd:YAG laser did not enhance the bond strength between the zirconia and both types of resin cements. In addition, silica coating of the zirconia surfaces plus silane application significantly improved the bond strength regardless of the type of resin cement utilized.

  17. Sandblasting and tin-plating-surface treatments to improve bonding with resin cements.

    PubMed

    McCaughey, A D

    1993-05-01

    The superior cementation strengths of the adhesive resin cements can now be used in the dental surgery for posts, crowns and bridges and for intra-oral repairs to fractured porcelain fused to metal crowns or bridges, thanks to the availability of miniature sandblasters and portable tin-platers. The author describes the techniques involved.

  18. SEM and elemental analysis of composite resins

    SciTech Connect

    Hosoda, H.; Yamada, T.; Inokoshi, S. )

    1990-12-01

    Twenty-four chemically cured, 21 light-cured anterior, three light-cured anterior/posterior, and 18 light-cured posterior composite resins were examined using scanning electron microscopy, and the elemental composition of their filler particles was analyzed with an energy dispersive electron probe microanalyzer. According to the results obtained, the composite resins were divided into five groups (traditional, microfilled type, submicrofilled type, hybrid type, and semihybrid), with two additional hypothetical categories (microfilled and hybrid). Characteristics of each type were described with clinical indications for selective guidance of respective composite resins for clinical use.

  19. Color changes in resin cement polymerized with different curing lights under indirect restorations

    PubMed Central

    Bayindir, Funda; Ilday, Nurcan Ozakar; Bayindir, Yusuf Ziya; Karataş, Ozcan; Gurpinar, Aysel

    2016-01-01

    Aim: The aim of the study was to investigate the effects of different interface materials and curing units on color changes in a resin cement material. Materials and Methods: Three interface materials and different curing systems, quartz-tungsten-halogen and polywave and monowave light-emitting diode (LED) light curing units, were studied at two-time intervals. Polystyrene strip was used as a control group. All measurements were made on a white background for standard color measurement. According to the CIE L*a*b* color space, the baseline color values of each specimen were measured. Differences between the measurements were calculated as ΔE, ΔL, Δa, and Δb. Data were analyzed using analysis of variance (ANOVA) and Duncan's tests (α = 0.05) with SPSS 20.0 software (SPSS Inc., Chicago, IL, USA). ANOVA revealed significance for interface materials and curing units and time for ΔE (P < 0.05). Results: Interaction between polymerizing units, material and time was not significant (P > 0.05). Monowave LED exhibited significantly higher color changes than the other units ([P < 0.05] [ΔE 2.94 ± 0.44]). QTH promoted composite specimens significantly less color change ([P < 0.05] [ΔE 0.87 ± 0.41]). Conclusion: This study concluded that color of resin cement used in the adhesion of indirect restorations was affected by curing device light and indirect restoration material type. PMID:26957793

  20. Reinforcing of Cement Composites by Estabragh Fibres

    NASA Astrophysics Data System (ADS)

    Merati, A. A.

    2014-04-01

    The influence of Estabragh fibres has been studied to improve the performance characteristics of the reinforced cement composites. The concrete shrinkage was evaluated by counting the number of cracks and measuring the width of cracks on the surface of concrete specimens. Although, the Estabragh fibres lose their strength in an alkali environment of cement composites, but, the ability of Estabragh fibres to bridge on the micro cracks in the concrete matrix causes to decrease the width of the cracks on the surface of the concrete samples in comparison with the plain concrete. However, considering the mechanical properties of specimens such as bending strength and impact resistance, the specimens with 0.25 % of Estabragh fibre performed better in all respects compared to the physical and mechanical properties of reinforced cement composite of concrete. Consequently, by adding 0.25 % of Estabragh fibres to the cement composite of concrete, a remarkable improvement in physical and mechanical properties of fibre-containing cement composite is achieved.

  1. Chloride-free set accelerated cement compositions and methods

    SciTech Connect

    Fry, S.E.; Totten, P.L.; Childs, J.D.; Lindsey, D.W.

    1992-07-07

    This patent describes a method of cementing a conduit in a well bore penetrating a subterranean formation. It comprises introducing a cement composition into the space between the conduit and the walls of the well bore, the cement composition consisting essentially of hydraulic cement, water and a set tine accelerator.

  2. Resin selection criteria for tough composite structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Smith, G. T.

    1983-01-01

    Resin selection criteria are derived using a structured methodology consisting of an upward integrated mechanistic theory and its inverse (top-down structured theory). These criteria are expressed in a "criteria selection space" which are used to identify resin bulk properties for improved composite "toughness". The resin selection criteria correlate with a variety of experimental data including laminate strength, elevated temperature effects and impact resistance.

  3. Resin composite repair: Quantitative microleakage evaluation of resin-resin and resin-tooth interfaces with different surface treatments.

    PubMed

    Celik, Cigdem; Cehreli, Sevi Burcak; Arhun, Neslihan

    2015-01-01

    The aim was to evaluate the effect of different adhesive systems and surface treatments on the integrity of resin-resin and resin-tooth interfaces after partial removal of preexisting resin composites using quantitative image analysis for microleakage testing protocol. A total of 80 human molar teeth were restored with either of the resin composites (Filtek Z250/GrandioSO) occlusally. The teeth were thermocycled (1000×). Mesial and distal 1/3 parts of the restorations were removed out leaving only middle part. One side of the cavity was finished with course diamond bur and the other was air-abraded with 50 μm Al2O3. They were randomly divided into four groups (n = 10) to receive: Group 1: Adper Single Bond 2; Group 2: All Bond 3; Group 3: ClearfilSE; Group 4: BeautiBond, before being repaired with the same resin composite (Filtek Z250). The specimens were re-thermocycled (1000×), sealed with nail varnish, stained with 0.5% basic fuchsin, sectioned mesiodistally and photographed digitally. The extent of dye penetration was measured by image analysis software (ImageJ) for both bur-finished and air-abraded surfaces at resin-tooth and resin-resin interfaces. The data were analyzed statistically. BeautiBond exhibited the most microleakage at every site. Irrespective of adhesive and initial composite type, air-abrasion showed less microleakage except for BeautiBond. The type of initial repaired restorative material did not affect the microleakage. BeautiBond adhesive may not be preferred in resin composite repair in terms of microleakage prevention. Surface treatment with air-abrasion produced the lowest microleakage scores, independent of the adhesive systems and the pre-existing resin composite type. Pre-existing composite type does not affect the microleakage issue. All-in-one adhesive resin (BeautiBond) may not be preferred in resin composite repair in terms of microleakage prevention.

  4. Titanium dioxide nanotubes addition to self-adhesive resin cement: Effect on physical and biological properties.

    PubMed

    Ramos-Tonello, Carla M; Lisboa-Filho, Paulo N; Arruda, Larisa B; Tokuhara, Cintia K; Oliveira, Rodrigo C; Furuse, Adilson Y; Rubo, José H; Borges, Ana Flávia S

    2017-07-01

    This study has investigated the influence of Titanium dioxide nanotubes (TiO2-nt) addition to self-adhesive resin cement on the degree of conversion, water sorption, and water solubility, mechanical and biological properties. A commercially available auto-adhesive resin cement (RelyX U200™, 3M ESPE) was reinforced with varying amounts of nanotubes (0.3, 0.6, 0.9wt%) and evaluated at different curing modes (self- and dual cure). The DC in different times (3, 6, 9, 12 and 15min), water sorption (Ws) and solubility (Sl), 3-point flexural strength (σf), elastic modulus (E), Knoop microhardness (H) and viability of NIH/3T3 fibroblasts were performed to characterize the resin cement. Reinforced self-adhesive resin cement, regardless of concentration, increased the DC for the self- and dual-curing modes at all times studied. The concentration of the TiO2-nt and the curing mode did not influence the Ws and Sl. Regarding σf, concentrations of both 0.3 and 0.9wt% for self-curing mode resulted in data similar to that of dual-curing unreinforced cement. The E increased with the addition of 0.9wt% for self-cure mode and H increased with 0.6 and 0.9wt% for both curing modes. Cytotoxicity assays revealed that reinforced cements were biocompatible. TiO2-nt reinforced self-adhesive resin cement are promising materials for use in indirect dental restorations. Taken together, self-adhesive resin cement reinforced with TiO2-nt exhibited physicochemical and mechanical properties superior to those of unreinforced cements, without compromising their cellular viability. Copyright © 2017 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  5. Bond strength of self-adhesive resin cements to tooth structure

    PubMed Central

    Hattar, Susan; Hatamleh, Muhanad M.; Sawair, Faleh; Al-Rabab’ah, Mohammad

    2015-01-01

    Objectives The aim of this study was to evaluate the strength of the bond between newly introduced self-adhesive resin cements and tooth structures (i.e., enamel and dentin). Methods Three self-adhesive cements (SmartCem2, RelyX Unicem, seT SDI) were tested. Cylindrical-shaped cement specimens (diameter, 3 mm; height, 3 mm) were bonded to enamel and dentin. Test specimens were incubated at 37 °C for 24 h. The shear bond strength (SBS) was tested in a Zwick Roll testing machine. Results were analyzed by one-way ANOVA and t-test. Statistically significant differences were defined at the α = 0.05 level. Bond failures were categorized as adhesive, cohesive, or mixed. Results The SBS values ranged from 3.76 to 6.81 MPa for cements bonded to enamel and from 4.48 to 5.94 MPa for cements bonded to dentin (p > 0.05 between surfaces). There were no statistically significant differences between the SBS values to enamel versus dentin for any given cement type. All cements exhibited adhesive failure at the resin/tooth interface. Conclusions Regardless of their clinical simplicity, the self-adhesive resin cements examined in this study exhibit limited bond performance to tooth structures; therefore, these cements must be used with caution. PMID:26082572

  6. Microtensile Bond Strength Compared Between CAD/CAM Feldspathic and Resin Nano Ceramics

    DTIC Science & Technology

    2015-07-27

    acid or air abrasion before application of a layer of Nexus 3 resin cement. Z100 composite was then incrementally cured to the cement in 2 mm... composite resin (33). Resin cements are hydrophobic. Other adhesive cements that are hydrophilic, such as compomers, will swell and induce fractures (33...chemical cured (38). The active resin cements require a procedure similar to placing posterior direct composites . The tooth needs to be etched, and the

  7. Light transmission on dental resin composites.

    PubMed

    dos Santos, G B; Alto, R V Monte; Filho, H R Sampaio; da Silva, E M; Fellows, C E

    2008-05-01

    The purposes of this study was: (1) to examine the light transmittance characteristics of two light-cured resin composites, for different thickness, (2) to correlate the light transmittance through the resin composites and the filler contents, and (3) to determine the penetration depth of the light as a function of the wavelength. Two resin composites (Filtek Z250, shade A2 and Filtek Supreme XT, shade A2E) were used. Specimens of six different thicknesses (0.15, 0.25, 0.30, 0.36, 0.47 and 0.75 mm) were prepared (n=3). The transmittance at wavelengths from 400 to 800 nm was measured using a UV-visible spectrophotometer, before and after light polymerization. Significant differences were found in the wavelength dependence of transmittance between the two materials, and between the unpolymerized and polymerized stages of each resin composite. At lower wavelengths, the light transmittance of the Filtek Supreme XT resin composite was lower than the Filtek Z250. At the higher wavelengths, however, Filtek Supreme XT presented higher light transmittance. For both resin composites, the penetration depth was higher after polymerization. However, Filtek Supreme XT showed a higher gain in transmittance at the 0.15 mm thickness. The difference in light transmittance characteristics of the resin composites may affect their depth of polymerization.

  8. Bond strength of orthodontic light-cured resin-modified glass ionomer cement.

    PubMed

    Cheng, Hsiang Yu; Chen, Chien Hsiu; Li, Chuan Li; Tsai, Hung Huey; Chou, Ta Hsiung; Wang, Wei Nan

    2011-04-01

    The purpose of this study was to compare the bond strengths and debonded interfaces achieved with light-cured resin-modified glass ionomer cement (RMGIC) and conventional light-cured composite resin. In addition, the effects of acid etching and water contamination were examined. One hundred human premolars were randomly divided into five equal groups. The mini Dyna-lock upper premolar bracket was selected for testing. The first four groups were treated with light-cured RMGIC with or without 15 per cent phosphoric acid-etching treatment and with or without water contamination preceding bracket bonding. The control samples were treated with the conventional light-cured Transbond composite resin under acid etching and without water contamination. Subsequently, the brackets were debonded by tensile force using an Instron machine. The modified adhesive remnant index (ARI) scores were assigned to the bracket base of the debonded interfaces using a scanning electron microscope. The bond strength and modified ARI scores were determined and analysed statistically by one-way analysis of variance and chi-square test. Under all four conditions, the bond strength of the light-cure RMGIC was equal to or higher than that of the conventional composite resin. The highest bond strength was achieved when using RMGIC with acid etching but without water contamination. The modified ARI scores were 2 for Fuji Ortho LC and 3 for Transbond. No enamel detachment was found in any group. Fifteen per cent phosphoric acid etching without moistening the enamel of Fuji Ortho LC provided the more favourable bond strength. Enamel surfaces, with or without water contamination and with or without acid etching, had the same or a greater bond strength than Transbond.

  9. Effect of temporary filling materials on repair bond strengths of composite resins.

    PubMed

    Erdemir, Ali; Eldeniz, Ayce Unverdi; Belli, Sema

    2008-08-01

    Endodontic access cavities sometimes can be prepared through a permanent composite restoration. Between the appointments, temporary cements are used to seal access cavities and may have negative effect on bonding of further composite restoration. The purpose of this study was to compare shear bond strength of composite to composite which had been in contact with various temporary filling materials. Standard cavities were prepared on 160 acrylic resin blocks, obturated with composite resin (Clearfil AP-X, Kuraray, Japan) and randomly divided into eight groups (n = 20). Group 1 received no treatment. From group 2-8, composite surfaces were covered with the following cements temporarily: Zinc-oxide/calcium-sulphate (Cavit-G, ESPE, Germany), two different Zinc-Oxide-Eugenol materials (ZnOE, Cavex, Holland and IRM, Dentsply, USA), Zinc-phosphate cement (Adhesor, Spofa-Dental, Germany), Zinc-polycarboxylate cement (Adhesor-Carbofine, Spofa-Dental, Germany), Glass-Ionomer-Cement (Argion-Molar, Voco, Germany), or light curing temporary material (Clip, Voco, Germany). The cements were removed mechanically after 1 week storage in distilled water at 37 degrees C and composite surfaces were treated with a self-etch adhesive system (SE-Bond, Kuraray, Japan). Composite resin build-ups were created on composite surfaces. Shear bond strength values were measured using universal testing machine at crosshead speed of 1 mm/min. The data was calculated in MPa and statistically analyzed using one-way ANOVA and Tukey tests. Eugenol-containing cements significantly reduced shear bond strengths of composite to composite (p < 0.05), while the other temporary materials had no adverse effect on shear bond strength (p > 0.05). These findings suggested that temporary filling materials except eugenol-containing materials have no negative effect on composite repair bond strengths.

  10. Microshear Bond Strength of Resin Cements to Lithium Disilicate Substrates as a Function of Surface Preparation.

    PubMed

    Lise, D P; Perdigão, J; Van Ende, A; Zidan, O; Lopes, G C

    2015-01-01

    To investigate the effect of hydrofluoric acid (HF) etching, silane solution, and adhesive system application on the microshear bond strength (μSBS) of lithium disilicate glass-ceramic (LD) to three resin cements. Circular bonding areas were delimited on the lithium disilicate surfaces using a perforated adhesive tape. Specimens were assigned to 18 subgroups (n=12) according to surface treatment: NT = no treatment; HF = 4.8% HF for 20 seconds; silane solution: (1) no silane; (2) Monobond Plus, a silane/10-methacryloyloxydecyl dihydrogen phosphate solution for 60 seconds; (3) Monobond Plus+ExciTE F DSC, a dual-cure adhesive; and resin cement: (1) Variolink II, a bisphenol A diglycidyl ether dimethacrylate (bis-GMA)-based, hand-mixed, dual-cure resin cement; (2) Multilink Automix, a bis-GMA-based, auto-mixed, dual-cure resin cement; (3) RelyX Unicem 2, a self-adhesive, auto-mixed, dual-cure resin cement. Tygon tubes (Ø=0.8 mm) were used as cylinder matrices for resin cement application. After 24 hours of water storage, the specimens were submitted to the μSBS test. Mode of failure was evaluated under an optical microscope and classified as adhesive, mixed, cohesive in resin cement, or cohesive in ceramic. Data were statistically analyzed with three-way analysis of variance and Dunnett test (p<0.05). When means were pooled for the factor surface treatment, HF resulted in a significantly higher μSBS than did NT (p<0.0001). Regarding the use of a silane solution, the mean μSBS values obtained with Monobond Plus and Monobond Plus+ExciTE F DSC were not significantly different but were higher than those obtained with no silane (p<0.001). Considering the factor resin cement, Variolink II resulted in a significantly higher mean μSBS than did RelyX Unicem 2 (p<0.03). The mean μSBS for Multilink Automix was not significantly different from those of Variolink II and RelyX Unicem 2. According to Dunnett post hoc test (p<0.05), there was no significant difference in

  11. Bonding of resin composites to resin-modified glass ionomers.

    PubMed

    Fortin, D; Vargas, M A; Swift, E J

    1995-08-01

    To evaluate the bonding between resin composites and resin-modified glass ionomer restorative materials. Bar-shaped specimens of Fuji II LC, Photac-Fil, and Vitremer were fabricated in a mold. After application of unfilled resin, resin composite (either Silux Plus or Restorative Z100) was condensed into the mold against the glass ionomer substrate and was light-cured. These bonded specimens, as well as intact specimens of each material, were placed on a three-point bending apparatus and were loaded until failure using a Zwick testing machine. The transverse strength of each specimen was calculated. Mean transverse strengths of bonded specimens ranged from 50% to 78% of the transverse strength of the intact glass ionomer materials. The lowest transverse strength was 18.1 MPa, for Photac-Fil/Z100, and the highest was 29.6 MPa, for Fuji II LC/Silux. Statistical analysis indicated that the type of composite used had no significant effect on transverse strength. However, the type of resin-modified glass ionomer used was significant. Although there was much overlap between materials, bonded specimens made with Fuji II LC had the highest absolute strength, and those made with Photac-Fil had the lowest absolute strength. Bonded Vitremer specimens had the highest transverse strength relative to the cohesive strength of the material.

  12. Class II Resin Composites: Restorative Options.

    PubMed

    Patel, Minesh; Mehta, Shamir B; Banerji, Subir

    2015-10-01

    Tooth-coloured, resin composite restorations are amongst the most frequently prescribed forms of dental restoration to manage defects in posterior teeth. The attainment of a desirable outcome when placing posterior resin composite restorations requires the clinician to have a good understanding of the benefits (as well as the limitations) posed by this material, together with a sound knowledge of placement technique. Numerous protocols and materials have evolved to assist the dental operator with this type of demanding posterior restoration. With the use of case examples, four techniques available are reported here. CPD/Clinical Relevance: This article explores varying techniques for the restoration of Class II cavities using resin composite.

  13. Injectable polydimethylsiloxane-hydroxyapatite composite cement.

    PubMed

    Ignjatović, Nenad; Jovanović, Jelena; Suljovrujić, Edin; Uskoković, Dragan

    2003-01-01

    An injectable polydimethylsiloxane/hydroxyapatite (PDMS/HAp) composite cement was synthesised using linear PDMS and HAp (particles of about 100 nm in size) of different mass fractions. The effect of HAp mass fraction (5-60 mass%) on the hardness of PDMS/HAp composite cement was investigated. The hardness achieved is 25-49 degrees ShA. Differential scanning calorimetry (DSC) was used to study the cross-linking process and the influence of HAp on the temperature and duration of PDMS/HAp cross-linking. The microstructure of composite cement surfaces after 10 days in vivo tests was observed by scanning electron microscopy (SEM). The presence of well-adhered macrophages, fibroblasts and monocytes was found on the implant surface upon its extraction from the organism.

  14. Modification of resin modified glass ionomer cement by addition of bioactive glass nanoparticles.

    PubMed

    Valanezhad, Alireza; Odatsu, Tetsuro; Udoh, Koichi; Shiraishi, Takanobu; Sawase, Takashi; Watanabe, Ikuya

    2016-01-01

    In the present study, sol-gel derived nanoparticle calcium silicate bioactive glass was added to the resin-modified light cure glass-ionomer cement to assess the influence of additional bioactive glass nanoparticles on the mechanical and biological properties of resin-modified glass-ionomer cement. The fabricated bioactive glass nanoparticles added resin-modified glass-ionomer cements (GICs) were immersed in the phosphate buffer solution for 28 days to mimic real condition for the mechanical properties. Resin-modified GICs containing 3, 5 and 10 % bioactive glass nanoparticles improved the flexural strength compared to the resin-modified glass-ionomer cement and the samples containing 15 and 20 % bioactive glass nanoparticles before and after immersing in the phosphate buffer solution. Characterization of the samples successfully expressed the cause of the critical condition for mechanical properties. Cell study clarified that resin-modified glass-ionomer cement with high concentrations of bioactive glass nanoparticles has higher cell viability and better cell morphology compare to control groups. The results for mechanical properties and toxicity approved that the considering in selection of an optimum condition would have been a more satisfying conclusion for this study.

  15. Conditioning of root canals prior to dowel cementation with composite luting cement and two dentine adhesive systems.

    PubMed

    Liberman, R; Ben-Amar, A; Urstein, M; Gontar, G; Fitzig, S

    1989-11-01

    Two hundred and forty root canals of extracted single-rooted teeth were prepared to the same dimension, and Dentatus posts of equal size were cemented without screwing them into the dentine. Five cleansing solutions and two dentine adhesive systems were evaluated prior to post-cementation using chemical-cure composite resin. 'Pull-out' tests were then conducted in order to evaluate the bond strength of these intra-pulpal posts. The use of Conclude (composite luting cement) alone, with or without the cleansing solutions, resulted in significantly lower pull-out forces. Scotchbond Dental Adhesive gave significantly better results, regardless of the cleansing solution used. Gluma Dentine Adhesive significantly increased the pull-out forces only when used with its supplied cleanser or Tubulicid.

  16. Push-out bond strength of different translucent fiber posts cemented with self-adhesive resin cement

    PubMed Central

    Bazzo, João Fernando; Pedriali, Maria Beatriz Bergonse Pereira; Guiraldo, Ricardo Danil; Berger, Sandrine Bittencourt; Moura, Sandra Kiss; de de Carvalho, Rodrigo Varella

    2016-01-01

    Purpose: Evaluate the bond strength of different translucent fiber posts in the cervical, middle, and apical root thirds cemented with self-adhesive resin cement. Materials and Methods: Sixty single-rooted teeth were randomly divided into five groups according to the fiber post used: Reforpost (opaque [control]), exacto, white post, radix, and Macro-Lock Illusion X-RO. The roots were subjected to chemomechanical preparation and cemented with self-adhesive resin cement. The teeth were sectioned into slices of the different root thirds and tested for bond strength (push-out). Two-way analysis of variance and Bonferroni test were used to verify statistical differences between groups (P < 0.05). Results: No significant difference between the root thirds was detected (P > 0.05). However, the performance of the posts demonstrated a significant difference (P < 0.05). RDX had a lower performance in the apical third (P < 0.05). The other fiber posts had the same performance irrespective of the root third evaluated. The predominant failure pattern was adhesive between resin cement and root dentin. Conclusion: In general, the different translucent fiber posts showed the same performance. Yet, translucent fiber posts did not show superior bond strength compared with the opaque fiber post in any of the root thirds evaluated. PMID:27994324

  17. Relationship Between Simulated Gap Wear and Generalized Wear of Resin Luting Cements.

    PubMed

    Tsujimoto, A; Barkmeier, W W; Takamizawa, T; Latta, M A; Miayazaki, M

    The relationship between the simulated gap wear and generalized wear of resin luting cements was investigated. Five resin luting cements, G-Cem LinkForce (GL), Multilink Automix (MA), NX3 Nexus, Panavia V5 (PV), and RelyX Ultimate were evaluated and subsequently subjected to a wear challenge in a Leinfelder-Suzuki (Alabama) wear simulation device. Half of the specimens from each resin luting cement were photo-cured for 40 seconds and the other half were not photo-cured. The simulated gap and generalized wear were generated using a flat-ended stainless steel antagonist. Wear testing was performed in a water slurry of polymethyl methacrylate beads, and the simulated gap and generalized wear were determined using a noncontact profilometer (Proscan 2100) in conjunction with the Proscan and AnSur 3D software. A strong relationship was found between the gap wear and generalized wear simulation models. The simulated gap wear and generalized wear of the resin luting cements followed similar trends in terms of both volume loss and mean depth of wear facets with each curing method. Unlike the simulated gap wear and generalized wear of GL and PV, those of MA, NX, and RU were influenced by the curing method. The results of this study indicate that simulated gap wear of resin luting cements is very similar to simulated generalized wear. In most cases, dual curing appears to ensure greater wear resistance of resin luting cements than chemical curing alone. The wear resistance of some resin luting cements appears to be material dependent and is not influenced by the curing method.

  18. Effect of surface treatments of zirconia ceramics on the bond strength to resin cement.

    PubMed

    Cheung, Guy C; Botelho, Michael G; Matinlinna, Jukka P

    2014-02-01

    The purpose of this in vitro study was to evaluate the bond strength of a resin luting cement to zirconia surfaces that had received two novel surface pretreatment methods: etching of a pre-fired overglaze or paste liner on the zirconia substrate. Fully sintered zirconia disks were assigned to 6 groups according to the surface pretreatment: firing of 2 layers of paste liner which was then etched with hydrofluoric acid and treated with silane (Liner group); firing of 2 layers of overglaze which were then etched with hydrofluoric acid and treated with silane (glaze group); Rocatec treatment and silane application (Rocatec group); Rocatec treatment followed by ultrasonic cleaning and silanization (ultrasonic-Rocatec group); sandblasted with alumina (alumina group); as-sintered with no pretreatment (control group). Twenty composite resin cylinders were bonded to each group with Panavia F 2.0. Each group was further divided into 2 subgroups (n = 10) for 2 different storage conditions: 24 h water storage or 3 weeks water storage plus 6000 thermocycles between 5°C and 55°C. The shear bond strength was then determined. Statistical analyses with two-way ANOVA were conducted; the level of significance was set at p < 0.05. At 24 h, the shear bond strength values of all groups except the control showed no statistically significant difference. After artificial aging, the mean bond strength of all groups dropped, but the decrease in the glaze group was not statistically significant. The glaze group showed the highest shear bond strength. However, that was not statistically different from the liner or the Rocatec group without ultrasonic cleaning (p < 0.05). All the control specimens debonded spontaneously after aging. Ultrasonic cleaning after Rocatec treatment caused a reduction in shear bond strength, but the difference was not statistically significant. Both the fired paste liner and overglazed ceramic treated zirconia surfaces provided a strong and durable bond to resin

  19. High temperature expanding cement composition and use

    DOEpatents

    Nelson, Erik B.; Eilers, Louis H.

    1982-01-01

    A hydratable cement composition useful for preparing a pectolite-containing expanding cement at temperatures above about 150.degree. C. comprising a water soluble sodium salt of a weak acid, a 0.1 molar aqueous solution of which salt has a pH of between about 7.5 and about 11.5, a calcium source, and a silicon source, where the atomic ratio of sodium to calcium to silicon ranges from about 0.3:0.6:1 to about 0.03:1:1; aqueous slurries prepared therefrom and the use of such slurries for plugging subterranean cavities at a temperature of at least about 150.degree. C. The invention composition is useful for preparing a pectolite-containing expansive cement having about 0.2 to about 2 percent expansion, by volume, when cured at at least 150.degree. C.

  20. Durability of pulp fiber-cement composites

    NASA Astrophysics Data System (ADS)

    Mohr, Benjamin J.

    Wood pulp fibers are a unique reinforcing material as they are non-hazardous, renewable, and readily available at relatively low cost compared to other commercially available fibers. Today, pulp fiber-cement composites can be found in products such as extruded non-pressure pipes and non-structural building materials, mainly thin-sheet products. Although natural fibers have been used historically to reinforce various building materials, little scientific effort has been devoted to the examination of natural fibers to reinforce engineering materials until recently. The need for this type of fundamental research has been emphasized by widespread awareness of moisture-related failures of some engineered materials; these failures have led to the filing of national- and state-level class action lawsuits against several manufacturers. Thus, if pulp fiber-cement composites are to be used for exterior structural applications, the effects of cyclical wet/dry (rain/heat) exposure on performance must be known. Pulp fiber-cement composites have been tested in flexure to examine the progression of strength and toughness degradation. Based on scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), energy dispersive spectroscopy (EDS), a three-part model describing the mechanisms of progressive degradation has been proposed: (1) initial fiber-cement/fiber interlayer debonding, (2) reprecipitation of crystalline and amorphous ettringite within the void space at the former fiber-cement interface, and (3) fiber embrittlement due to reprecipitation of calcium hydroxide filling the spaces within the fiber cell wall structure. Finally, as a means to mitigate kraft pulp fiber-cement composite degradation, the effects of partial portland cement replacement with various supplementary cementitious materials (SCMs) has been investigated for their effect on mitigating kraft pulp fiber-cement composite mechanical property degradation (i.e., strength and toughness

  1. Effect of airborne-particle abrasion on dentin with experimental niobophosphate bioactive glass on the microtensile bond strength of resin cements.

    PubMed

    Carvalho, Edilausson Moreno; Lima, Darlon Martins; Carvalho, Ceci Nunes; Loguercio, Alessandro Dourado; Martinelli, José Roberto; Bauer, José

    2015-04-01

    The objective of this study was to evaluate the microtensile bond strength (μTBS) of two resin cements bonded to dentin pre-treated with experimental niobophosphate bioactive glass (NBG). The experimental bioactive glass was prepared by mixing different amounts of NbO5; (NH4)2HP4; CaO; Na2CO3. The particle size distribution and composition of the bioactive glass powder were determined. Twenty flat dentin surfaces from sound extracted human molars were polished with 600-grit SiC paper and air-abraded using experimental bioactive glass niobium powder. The bonding procedures were accomplished by the application of two resin cements: self-etching Panavia F or self-adhesive RelyX U-100. The resin-bonded specimens were cut and the μTBS test was performed after 24h. The failure mode was determined with a stereomicroscope at 40× magnification. The results were statistically analyzed by two-way ANOVA and Tukey tests (α=0.05). The two-way ANOVA did not detect interactions between factors, but only a difference between the self-etching and self-adhesive cement (p=0.001). The self-etching resin cement Panavia F obtained a higher μTBS than the self-adhesive cement Relyx U-100. The predominant failure mode of the cements was adhesive/mixed between the resin cement and dentin. A new bioactive glass containing niobium did not interfere with the immediate bonding performance of self-etching and self-adhesive cements. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  2. An evaluation of commercial and experimental resin-modified glass-ionomer cements

    NASA Astrophysics Data System (ADS)

    Kanchanavasita, Widchaya

    Glass-ionomer cement (GIG) has become widely accepted as a restorative material due to its bonding ability and sustained release of fluoride. The cement is, however, sensitive to moisture imbalance and lacks toughness. Recently, resin-modified glass-ionomer cements (RMGIC) have been introduced. These materials contain monomeric species, such as 2-hydroxyethyl methacrylate (HEMA) in addition to the components of the conventional glass-ionomer cements. Disadvantages of RMGICs include a relatively high contraction and exotherm on polymerisation. HEMA is known to be cytotoxic, leading to problems of biocompatibility, and polyHEMA swells on exposure to water, leading to dimensional instability of the cements. Addressing these problems is important in the development of the RMGICs. Using alternative monomers to replace or reduce the amount of HEMA used in the current RMGIC formulations would be appropriate. This study was divided into two parts. Initially certain properties such as water sorption, micro-hardness, flexural strength and polymerisation exotherm of commercially available RMGICs were evaluated. Long-term storage of RMGICs in aqueous solutions resulted in their high water uptakes and solubilities and large volumetric expansions. However, the surface hardness and strengths of the restorative grade RMGICs were not affected on storage in distilled water. When the materials were immersed in artificial saliva, significantly higher water uptake were obtained; the equilibrium water uptake were not reached after 20 months. As a consequence, plastic behaviour and reduced surface hardness were observed. The RMGICs also produced high exotherm during polymerisation. The second part of the study investigated the use of an experimental resin as an alternative to HEMA. The experimental resin has the advantage of low toxicity to the pulp and relatively low polymerisation shrinkage. This study compared the polymerisations of the resin and HEMA, and of mixtures of these two

  3. Comparison of Microleakage and Thickness of Resin Cement in Ceramic Inlays with Various Temperatures

    PubMed Central

    Alaghemand, Homayoun; Abolghasemzadeh, Faezeh; Pakdel, Farzaneh; Judi Chelan, Reza

    2014-01-01

    Background and aims. Microleakage is still one of the major problems of composite-based restorations.This study compared the microleakage and thickness of resin cement in ceramic inlays with various temperatures. Materials and methods. Class V cavities were prepared on the buccal and lingual aspects of thirty human molars with occlusal margins in enamel and gingival margins in dentin (3 mm wide, 5 mm long and 2 mm deep). Laboratory-made inlays (LMI) were used for buccal cavities, and CAD/CAM inlays (CMI) were used for lingual cavities. All the cavities were divided into six groups (n=10): 1) LMI at -5°C; 2) LMI at 50°C; 3) LMI at room temperature (25°C); 4) CMI at -5°C; 5) CMI at 50°C; 6) CMI at room temperature (25°C). Inlays were bonded to cavities in a pulp pressure- and temperature-simulating device. After thermocycling and dye penetration, the teeth were divided into two mesiodistal halves. Amount of dye penetration and film thickness were measured under a stereomicroscope and analyzed with Kruskal-Wallis, Wilcoxon and Spearman's correlation tests ( = 0.05). Results. There were no statistically significant differences in leakage between different inlay temperatures (P > 0.05). The mean cement thickness in laboratory-made inlays (gingival margin, 83.7 ± 11 and occlusal margin, 84.7 ± 19) was greater than that in CAD/CAM inlays (gingival margin, 69 ± 16 and occlusal margin, 84.7 ± 16). No correlation was found be-tween cement thickness and microleakage either in enamel or dentin for any of the ceramic systems. Conclusion. Differences in inlay temperature had no effect on microleakage. CAD/CAM inlays had lower cement thickness than laboratory-made inlays, but this was not related to their microleakage. PMID:25024839

  4. Effect of surface treatment of prefabricated posts on bonding of resin cement.

    PubMed

    Sahafi, Alireza; Peutzfeld, Anne; Asmussen, Erik; Gotfredsen, Klaus

    2004-01-01

    This in vitro study evaluated the effect of various surface treatments of prefabricated posts of titanium alloy (ParaPost XH), glass fiber (ParaPost Fiber White) and zirconia (Cerapost) on the bonding of two resin cements: ParaPost Cement and Panavia F by a diametral tensile strength (DTS) test. The posts received surface treatments in three categories: 1) roughening by sandblasting and hydrofluoric acid etching; 2) application of primer by coating with Alloy Primer, Metalprimer II and Silane and 3) a combination treatment in the form of roughening (sandblasting or etching) supplemented by the application of a primer or in the form of the Cojet system. After surface treatment, the post was embedded in a cylinder of resin cement (diameter = 4.0 mm, height = 4.0 mm). The surface-treated post was centered in the resin cement-filled mold with the aid of fixation apparatus. Fifteen minutes from the start of mixing the resin cement, the specimen was freed from the mold and stored in water at 37 degrees C for seven days. Following water storage, the specimen was wet-ground to a final length of approximately 3 mm. The DTS of specimens was determined in a Universal Testing Machine. The bonding of resin cement to titanium alloy posts was increased by several surface treatments of the post. However, coating with primers as sole treatment had no effect on bonding. With the DTS method applied, none of the surface treatments had an effect on the bonding to glass fiber posts. The bonding of both resin cements to zirconia posts was improved by Cojet treatment, while sandblasting, followed by silane application, improved bonding of Panavia F.

  5. Shear bond strength of two resin cements to human root dentin using three dentin bonding agents.

    PubMed

    Gogos, C; Stavrianos, C; Kolokouris, I; Economides, N; Papadoyannis, I

    2007-01-01

    This study compared the bond strength of two resin cements to human root dentin when used with three bonding agents. The materials used were Rely X ARC and Perma Cem, two one-bottle bonding agents (Single Bond, Bond-1) and one self-etching bonding agent (Clearfil SE Bond). The dentin was obtained from single rooted human teeth, and the specimens were treated with either 15% EDTA or 37% phosphoric acid to remove the smear layer, except in groups where the self-etching bonding agent was used. The resin cements were placed on dentin surfaces with the use of bonding agents. Shear bond strength (SBS) was tested using a single plane shear test assembly. The dentin specimens were divided into 10 groups. Eight groups were pre-treated with EDTA or phosphoric acid to remove the smear layer, followed by a bonding agent (Bond-1 or Single Bond) and resin cement (Rely X or Perma Cem). In the two remaining groups, the smear layer was left intact, and the two resins cements were used in combination with the self-etching bonding agent (Clearfil SE Bond). No statistically significant differences were observed among the eight groups treated with one-bottle bonding agents. The mean bond strengths of the two groups treated with the self-etching bonding agent did not differ significantly from each other but were both significantly greater than the bond strengths of all the other groups. The results of this study also showed that EDTA can be used as an alternative to phosphoric acid in bonding procedures for resin cements. However, the bond strengths of resin cements, in combination with a self-etching bonding agent, were significantly greater than those of the same cements when used with one-bottle bonding agents.

  6. Cement Paste Matrix Composite Materials Center.

    DTIC Science & Technology

    1987-10-01

    not being fully funded. The projects are: The Effect of Chemical Doping and Phase Transformations on Microstructural Development of Dicalcium Silicate...Ceramics Alumina phosphate cements S. Granick* MSE -Ceramics Polymer-solid interfaces J. Homeny* MSE+-Ceramics Fracture of composites R. J. Kirkpatrick

  7. Solidification of radioactive waste resins using cement mixed with organic material

    SciTech Connect

    Laili, Zalina; Yasir, Muhamad Samudi; Wahab, Mohd Abdul

    2015-04-29

    Solidification of radioactive waste resins using cement mixed with organic material i.e. biochar is described in this paper. Different percentage of biochar (0%, 5%, 8%, 11%, 14% and 18%) was investigated in this study. The characteristics such as compressive strength and leaching behavior were examined in order to evaluate the performance of solidified radioactive waste resins. The results showed that the amount of biochar affect the compressive strength of the solidified resins. Based on the data obtained for the leaching experiments performed, only one formulation showed the leached of Cs-134 from the solidified radioactive waste resins.

  8. Aspects of bonding between resin luting cements and glass ceramic materials.

    PubMed

    Tian, Tian; Tsoi, James Kit-Hon; Matinlinna, Jukka P; Burrow, Michael F

    2014-07-01

    The bonding interface of glass ceramics and resin luting cements plays an important role in the long-term durability of ceramic restorations. The purpose of this systematic review is to discuss the various factors involved with the bond between glass ceramics and resin luting cements. An electronic Pubmed, Medline and Embase search was conducted to obtain laboratory studies on resin-ceramic bonding published in English and Chinese between 1972 and 2012. Eighty-three articles were included in this review. Various factors that have a possible impact on the bond between glass ceramics and resin cements were discussed, including ceramic type, ceramic crystal structure, resin luting cements, light curing, surface treatments, and laboratory test methodology. Resin-ceramic bonding has been improved substantially in the past few years. Hydrofluoric acid (HF) etching followed by silanizaiton has become the most widely accepted surface treatment for glass ceramics. However, further studies need to be undertaken to improve surface preparations without HF because of its toxicity. Laboratory test methods are also required to better simulate the actual oral environment for more clinically compatible testing. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Effect of surface treatments on the bond strength between resin cement and differently sintered zirconium-oxide ceramics.

    PubMed

    Yenisey, Murat; Dede, Doğu Ömür; Rona, Nergiz

    2016-01-01

    This study investigated the effects of surface treatments on bond strength between resin cement and differently sintered zirconium-oxide ceramics. 220 zirconium-oxide ceramic (Ceramill ZI) specimens were prepared, sintered in two different period (Short=Ss, Long=Ls) and divided into ten treatment groups as: GC, no treatment; GSil, silanized (ESPE-Sil); GSilPen, silane flame treatment (Silano-Pen); GSb, sandblasted; GSbSil, sandblasted+silanized; GSbCoSil, sandblasted+silica coated (CoJet)+silanized; GSbRoSil, sandblasted+silica coated (Rocatech-Plus)+silanized; GSbDSil, sandblasted+diamond particle abraded (Micron MDA)+silanized; GSbSilPen, sandblasted+silane flame treatment+silanized; GSbLSil, sandblasted+Er:Yag (Asclepion-MCL30) laser treated+silanized. The composite resin (Filtek Z-250) cylinders were cemented to the treated ceramic surfaces with a resin cement (Panavia F2.0). Shear bond strength test was performed after specimens were stored in water for 24h and thermo-cycled for 6000 cycles (5-55 °C). Data were statistically analyzed with two-way analysis of variance (ANOVA) and Tamhane's multiple comparison test (α=0.05). According to the ANOVA, sintering time, surface treatments and their interaction were statistically significant (p<0.05). The highest bond strengths were obtained in GSbCoSil (Ss=13.36/Ls=11.19MPa) and lowest values were obtained in GC (Ss=4.70/Ls=4.62 MPa) for both sinter groups. Sintering time may be effective on the bond strength and 30 μm silica coating (Cojet) with silane coupling application technique increased the bond strength between resin cement and differently sintered zirconium-oxide ceramics. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  10. Bond strength of a resin cement to high-alumina and zirconia-reinforced ceramics: the effect of surface conditioning.

    PubMed

    Valandro, Luiz Felipe; Ozcan, Mutlu; Bottino, Marco Cícero; Bottino, Marco Antonio; Scotti, Roberto; Bona, Alvaro Della

    2006-06-01

    The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (In-Ceram Zirconia) ceramics. Ten blocks (5 x 6 x 8 mm) of In-Ceram Alumina (AL), In-Ceram Zirconia (ZR), and Procera (PR) ceramics were fabricated according to each manufacturer's instructions and duplicated in composite. The specimens were assigned to one of the two following treatment conditions: (1) airborne particle abrasion with 110-microm Al2O3 particles + silanization, (2) silica coating with 30 microm SiOx particles (CoJet, 3M ESPE) + silanization. Each ceramic block was duplicated in composite resin (W3D-Master, Wilcos, Petrópolis, RJ, Brazil) using a mold made out of silicon impression material. Composite resin layers were incrementally condensed into the mold to fill up the mold and each layer was light polymerized for 40 s. The composite blocks were bonded to the surface-conditioned ceramic blocks using a resin cement system (Panavia F, Kuraray, Okayama, Japan). One composite resin block was fabricated for each ceramic block. The ceramic-composite was stored at 37 degrees C in distilled water for 7 days prior to bond tests. The blocks were cut under water cooling to produce bar specimens (n = 30) with a bonding area of approximately 0.6 mm2. The bond strength tests were performed in a universal testing machine (crosshead speed: 1 mm/min). Bond strength values were statistically analyzed using two-way ANOVA and Tukey's test (< or = 0.05). Silica coating with silanization increased the bond strength significantly for all three high-strength ceramics (18.5 to 31.2 MPa) compared to that of airborne particle abrasion with 110-microm Al2O3 (12.7-17.3 MPa) (ANOVA, p < 0.05). PR exhibited the lowest bond strengths after both Al2O3 and silica coating (12.7 and 18.5 MPa, respectively

  11. Temperature rise during polymerization of different cavity liners and composite resins

    PubMed Central

    Karatas, Ozcan; Turel, Verda; Bayindir, Yusuf Ziya

    2015-01-01

    Objective: The purpose of this study was to evaluate the thermal insulating properties of different light curing cavity liners and composite resins during light emitting diode (LED) curing. Materials and Methods: Sixty-four dentin discs, 1 mm thick and 8 mm in diameter, were prepared. Specimens were divided into four groups. Calcium hydroxide (Ca[OH]2), resin-modified glass ionomer cement, flowable composite and adhesive systems were applied to dentin discs according to the manufacturers’ instructions. The rise in temperature during polymerization with a LED curing unit (LCU) was measured using a K-type thermocouple connected to a data logger. Subsequently, all specimens were randomly divided into one of two groups. A silorane-based composite resin and a methacrylate-based composite resin were applied to the specimens. Temperature rise during polymerization of composite resins with LCU were then measured again. Data were analyzed using one-way ANOVA and post hoc Tukey analyses. Results: There were significant differences in temperature rise among the liners, adhesives, and composite resins (P < 0.05). Silorane-based composite resin exhibited significantly greater temperature rises than methacrylate-based resin (P < 0.05). The smallest temperature rises were observed in Ca(OH)2 specimens. Conclusion: Thermal insulating properties of different restorative materials are important factors in pulp health. Bonding agents alone are not sufficient to protect pulp from thermal stimuli throughout curing. PMID:26751112

  12. [Evaluation of the esthetic effect of resin cements on the final color of ceramic veneer restorations].

    PubMed

    Chen, Xiaodong; Zhang, Shaopu; Xing, Wenzhong; Zhan, Kangru; Wang, Yining

    2015-02-01

    To evaluate the influence of various shades of resin cements on the final color of an improved lithium-disilicate pressed glass ceramic veneers and analyze the agreement of resin cements and corresponding try-in pastes. Forty-eight artificial maxillary central incisor teeth were sequenced according to the measured color parameters and divided at random into 8 groups (n = 6). These artificial teeth were prepared following veneer preparation protocol. An improved lithium- disilicate pressed glass ceramic materials (IPS e.max Press, Ivoclar Vivadent) were selected as the veneer material. The shape and curvature of each veneer wax pattern were duplicated with the same impression to guarantee the similarity. The ceramic veneer specimens were delivered on the artificial teeth using the corresponding try-in pastes of 8 shades (Variolink Veneer, shades of LV-3, LV-2, MV, HV+2, HV+3; and 3M RelyXTM Veneer, shades of WO, TR, A3) and bonded with the resin cements. A clinical spectrophotometer was used to measure the color parameters of the ceramic veneers before the try-in, during the try-in procedure, and after cementation. ΔE values and C*ab values were calculated. The result of one-way ANOVA indicated that the color changes of ceramic veneer cementation with resin cements were statistically significantly different in the shades of resin cements (P < 0.001). The ΔE values of ceramic veneer after cementation ranged from 0.93 to 6.79. The color changes of ceramic veneer specimens using the shades of LV-3, HV+3, WO were 3.31, 4.90 and 6.79, respectively (ΔE>3.3). The ΔE values of the ceramic veneer specimens between the resin cements and corresponding try-in pastes were from 0.72 to 1.79 (except the shade of HV+3). The LV-3, HV+3, WO shades were able to change the final color of a ceramic veneer. The color of resin cements and corresponding try-in pastes achieved high agreement (except the shade of HV+3).

  13. The effect of sodium hypochlorite and resin cement systems on push-out bond strength of cemented fiber posts

    PubMed Central

    Alkhudhairy, Fahad I.; Bin-Shuwaish, Mohammed S.

    2016-01-01

    Objective: This study investigated the effect of different endodontic irrigant solutions and resin cement systems on the bond strength of cemented fiber posts. Methods: Sixty human single-rooted anterior teeth were sectioned transversely at 2 mm incisal to the cemento-enamel junction (CEJ). The roots were treated endodontically, and teeth were distributed into six groups: group A, includes 5.25%NaOCl irrigant with MultiCore Flow Core Build-Up material; group B, includes 5.25%NaOCl irrigant with RelyX-Unicem Self-Adhesive Universal Resin Cement; group C, includes 2.5% NaOCl irrigant with MultiCore Flow; group D, includes 2.5%NaOCl irrigant with RelyX-Unicem; group E, includes NaCl, irrigant with MultiCore Flow; and group F, includes NaCl irrigant with RelyX-Unicem. Universal tapered fiber posts (No. 3 RelyX Fiber Post) were cemented, and roots were sectioned into cervical and apical segments. Samples were then subjected to a push-out bond strength test and failure modes were examined. Results: The mean push-out bond strength for group D showed the highest mean value (20.07 MPa), while the lowest value was found in group A. There was a significant difference between groups with regard to the irrigants used (p<0.001), however, no significant difference was found between groups with regard to resin systems (p>0.05). The total mean push-out bond strength of the cervical segments was found to be significantly higher than the apical segments (p<0.001). Conclusion: The irrigant solution have a clear influence on the push-out bond strength of the fiber posts regardless of the cement used. Both adhesive resin systems showed similar bonding strength. PMID:27648037

  14. Correlation between Microleakage and Absolute Marginal Discrepancy in Zirconia Crowns Cemented with Four Resin Luting Cements: An In Vitro Study

    PubMed Central

    Francisco, Martínez-Rus; Guillermo, Pradíes

    2016-01-01

    Objectives. To evaluate microleakage and absolute marginal discrepancy (AMD) and to assess correlation between AMD and microleakage with four resin luting cements. Material and Methods. 20 extracted human third molars were prepared for full-coverage crowns. 20 zirconia copings were made (LAVA, 3M ESPE) and cemented. Specimens were randomly allocated for each used type of cement into 4 groups, RelyX® (Rx), Multilink® (Mk), PANAVIA 2.1® (P), and Maxcem® (Mx) and immersed in 10% safranin for 72 hours. 20x magnification lenses were used to observe microleakage areas (μm2) and images software was used to measure AMD areas (μm). Discrepancy and microleakage between the cements were compared with one-way ANOVA test with confidence interval of 95%. Results. Rx Group showed microleakage has lowest value and AMD has highest value. P Group showed microleakage has the highest value and Mk Group presented AMD has lowest value. There were no significative differences between the cements. There were no linear correlations between microleakage and AMD; however a complex regression statistical model obtained allowed formulating an association between both variables (microleakage = AMD0,896). Conclusions. No significative differences were found among 4 types of cements. No linear correlations between AMD and microleakage were found. Clinical Significance. AMD is not easily related to microleakage. Characteristics of cements are fundamental to decreasing of microleakage values. PMID:27721830

  15. Correlation between Microleakage and Absolute Marginal Discrepancy in Zirconia Crowns Cemented with Four Resin Luting Cements: An In Vitro Study.

    PubMed

    Cristian, Abad-Coronel; Jeanette, Li; Francisco, Martínez-Rus; Guillermo, Pradíes

    2016-01-01

    Objectives. To evaluate microleakage and absolute marginal discrepancy (AMD) and to assess correlation between AMD and microleakage with four resin luting cements. Material and Methods. 20 extracted human third molars were prepared for full-coverage crowns. 20 zirconia copings were made (LAVA, 3M ESPE) and cemented. Specimens were randomly allocated for each used type of cement into 4 groups, RelyX® (Rx), Multilink® (Mk), PANAVIA 2.1® (P), and Maxcem® (Mx) and immersed in 10% safranin for 72 hours. 20x magnification lenses were used to observe microleakage areas (μm(2)) and images software was used to measure AMD areas (μm). Discrepancy and microleakage between the cements were compared with one-way ANOVA test with confidence interval of 95%. Results. Rx Group showed microleakage has lowest value and AMD has highest value. P Group showed microleakage has the highest value and Mk Group presented AMD has lowest value. There were no significative differences between the cements. There were no linear correlations between microleakage and AMD; however a complex regression statistical model obtained allowed formulating an association between both variables (microleakage = AMD(0,896)). Conclusions. No significative differences were found among 4 types of cements. No linear correlations between AMD and microleakage were found. Clinical Significance. AMD is not easily related to microleakage. Characteristics of cements are fundamental to decreasing of microleakage values.

  16. Shear bond strength of computer-aided design and computer-aided manufacturing feldspathic and nano resin ceramics blocks cemented with three different generations of resin cement

    PubMed Central

    Ab-Ghani, Zuryati; Jaafar, Wahyuni; Foo, Siew Fon; Ariffin, Zaihan; Mohamad, Dasmawati

    2015-01-01

    Aim: To evaluate the shear bond strength between the dentin substrate and computer-aided design and computer-aided manufacturing feldspathic ceramic and nano resin ceramics blocks cemented with resin cement. Materials and Methods: Sixty cuboidal blocks (5 mm × 5 mm × 5 mm) were fabricated in equal numbers from feldspathic ceramic CEREC® Blocs PC and nano resin ceramic Lava™ Ultimate, and randomly divided into six groups (n = 10). Each block was cemented to the dentin of 60 extracted human premolar using Variolink® II/Syntac Classic (multi-steps etch-and-rinse adhesive bonding), NX3 Nexus® (two-steps etch-and-rinse adhesive bonding) and RelyX™ U200 self-adhesive cement. All specimens were thermocycled, and shear bond strength testing was done using the universal testing machine at a crosshead speed of 1.0 mm/min. Data were analyzed using one-way ANOVA. Results: Combination of CEREC® Blocs PC and Variolink® II showed the highest mean shear bond strength (8.71 Mpa), while the lowest of 2.06 Mpa were observed in Lava™ Ultimate and RelyX™ U200. There was no significant difference in the mean shear bond strength between different blocks. Conclusion: Variolink® II cement using multi-steps etch-and-rinse adhesive bonding provided a higher shear bond strength than the self-adhesive cement RelyX U200. The shear bond strength was not affected by the type of blocks used. PMID:26430296

  17. BOND STRENGTH DURABILITY OF SELF-ETCHING ADHESIVES AND RESIN CEMENTS TO DENTIN

    PubMed Central

    Chaves, Carolina de Andrade Lima; de Melo, Renata Marques; Passos, Sheila Pestana; Camargo, Fernanda Pelógia; Bottino, Marco Antonio; Balducci, Ivan

    2009-01-01

    Objectives: To evaluate the microtensile bond strength (μTBS) of one- (Xeno III, Dentsply) and two-step (Tyrian-One Step Plus, Bisco) self-etching adhesive systems bonded to dentin and cemented to chemically cured (C&B Metabond) or light-cured paste of a dual-cure resin cement (Variolink II, Ivoclar) within a short (24 h) and long period of evaluation (90 days). Material and Methods: Forty recently extracted human molars had their roots removed and their occlusal dentin exposed and ground wet with 600-grit SiC paper. After application of one of the adhesives, the resin cement was applied to the bonded surface and a composite resin block was incrementally built up to a height of 5 mm (n=10). The restored teeth were stored in distilled water at 37°C for 7 days. The teeth were then cut along two axes (x and y), producing beam-shaped specimens with 0.8 mm2 cross-sectional area, which were subjected to μTBS testing at a crosshead speed of 0.05 mm/min and stressed to failure after 24 h or 90 days of storage in water. The μTBS data in MPa were subjected to three-way analysis of variance and Tukey's test (α= 0.05). Results: The interaction effect for all three factors was statistically significant (three-way ANOVA, p<0.001). All eight experimental means (MPa) were compared by the Tukey's test (p<0.05) and the following results were obtained: Tyrian-One Step Plus/C&B/24 h (22.4±7.3); Tyrian-One Step Plus/Variolink II/24 h (39.4±11.6); Xeno III/C&B/24 h (40.3±12.9); Xeno III/Variolink II/24 h (25.8±10.5); Tyrian-One Step Plus/C&B/90 d (22.1±12.8) Tyrian-One Step Plus/VariolinkII/90 d (24.2±14.2); Xeno III/C&B/90 d (27.0±13.5); Xeno III/Variolink II/ 90 d (33.0±8.9). Conclusions: Xeno III/Variolink II was the luting agent/adhesive combination that provided the most promising bond strength after 90 days of storage in water. PMID:19466243

  18. Significant shear bond strength improvements of a resin-modified glass ionomer cement with a resin coating.

    PubMed

    Stallings, Michael T; Stoeckel, Daniel C; Rawson, Kenneth G; Welch, Dan B

    2017-01-01

    Previous evidence has suggested that resin-modified glass ionomer cements (RMGICs) may be sensitive to temperature and moisture changes for the first 24 hours after photopolymerization. To test the hypothesis that a resin coating placed over the surface of an RMGIC restoration would decrease the susceptibility to moisture and temperature conditions, 44 RMGIC samples were prepared in inverted-cone recesses drilled in epoxy resin plates. After abrasion of all samples with 800-grit silicon carbide paper to simulate a diamond bur finish on the surface, a coat of highly filled resin was applied to the experimental group (n = 22) and cured according to the manufacturer's instructions. The plates were thermocycled 500 times between 5°C and 55°C and then maintained at 37°C with 95% humidity. The thermocycled samples were bonded to a second epoxy resin plate filled with RMGIC and subjected to shear bond strength testing. The resin-coated group had a significantly greater mean shear bond strength than the control group (P < 0.05). The resin coating also appeared to affect the mode of failure by significantly increasing the number of mixed failures (P < 0.05). The results suggest that a resin coating protects RMGIC from moisture- and temperature-induced damage and increases shear bond strength.

  19. Post cementation sensitivity evaluation of glass Ionomer, zinc phosphate and resin modified glass Ionomer luting cements under class II inlays: An in vivo comparative study

    PubMed Central

    Chandrasekhar, V

    2010-01-01

    Objective: This study aims to compare the patient-perceived post-cementation sensitivity of class II metal restorations preoperatively, immediately after cementation, one week after cementation and one month after cementation with (1) Glass Ionomer luting cement (2) Zinc Phosphate cement and (3) Resin-modified Glass Ionomer luting cement. Materials and Methods: A total of 60 patients, irrespective of sex, in the age group of 15-50 years were selected and the teeth were randomly divided into three groups of 20 each. Twenty inlay cast restorations were cemented with three different luting cements. The criteria adapted to measure tooth sensitivity in the present study were objective examination for sensitivity. (1) Cold water test (2) Compressed air test and (3) Biting pressure test. Results: The patients with restorations cemented with Resin-modified Glass ionomer demonstrated the least postoperative sensitivity when compared with Glass Ionomer and zinc phosphate cement at all different intervals of time evaluated by different tests. Conclusion: The patients with restorations cemented with resin-modified Glass ionomer demonstrated the least postoperative sensitivity. PMID:20582215

  20. Bond Strength of Self-adhesive Resin Cement to Different Root Perforation Materials.

    PubMed

    Lemos Martins Sicuro, Stephanie; Gabardo, Marilisa Carneiro Leão; Castiglia Gonzaga, Carla; Dias Morais, Nathaly; Baratto-Filho, Flares; Correr Nolasco, Gisele Maria; Leonardi, Denise Piotto

    2016-12-01

    Different materials have been used for intervening in root perforations. These materials are often in contact with resin cements used for cementation of intraradicular retainers. The aim of this study was to evaluate the bond strength of self-adhesive resin cement to different materials used to treat root perforations (mineral trioxide aggregate [MTA], Portland cement [PORT], and glass ionomer cement [GIC]). Four discs (10 × 1 mm) of each material (the MTA, PORT, and GIC groups) were embedded into polyvinyl chloride tubes using acrylic resin, ground, and polished until a flat surface was exposed. Afterward, 4 silicone molds were used to prepare self-adhesive resin cement cylinders (0.7 × 1 mm) on each disc surface (N = 16). The specimens were stored in deionized water at 37°C for 24 hours and subjected to a microshear test. Then, the failure modes were examined. Data were submitted to statistical analysis (α = 0.05). The MTA and GIC groups showed significantly higher microshear bond strength values (3.36 ± 1.56 and 2.90 ± 1.49 MPa, respectively) than the PORT group (1.39 ± 0.77 MPa) (P < .05). Only adhesive failure modes were observed. When PORT was used as a root perforation material, GIC should be used as a base over it to improve shear bond strength with self-adhesive resin cement. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Fluorinated Alkyl Ether Epoxy Resin Compositions and Applications Thereof

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J. (Inventor); Connell, John W. (Inventor); Smith, Joseph G. (Inventor); Siochi, Emilie J. (Inventor); Gardner, John M. (Inventor); Palmieri, Frank M. (Inventor)

    2017-01-01

    Epoxy resin compositions prepared using amino terminated fluoro alkyl ethers. The epoxy resin compositions exhibit low surface adhesion properties making them useful as coatings, paints, moldings, adhesives, and fiber reinforced composites.

  2. Evaluation of polymerization shrinkage of resin cements through in vitro and in situ experiments

    NASA Astrophysics Data System (ADS)

    Franco, A. P. G. O.; Karam, L. Z.; Pulido, C. A.; Gomes, O. M. M.; Kalinowski, H. J.

    2014-08-01

    The aim of this study was to evaluate the behavior of two types of resin cements , conventional dual and dual self adhesive, through in vitro and in situ experiments. For the in vitro assay were selected two resin cements that were handled and dispensed over a mylar strip supported by a glass plate. The Bragg grating sensors were positioned and another portion of cement. was placed, covered by another mylar strip. For the in situ experiment 16 single-rooted teeth were selected who were divided into 2 groups: group 1 - conventional dual resin cement Relyx ARC and group 2 - dual self adhesive resin cement Relyx U200 ( 3M/ESPE ). The teeth were treated and prepared to receive the intracanal posts. Two Bragg grating sensors were recorded and introduced into the root canal at different apical and coronal positions. The results showed that the in vitro experiment presented similar values of polymerization shrinkage that the in situ experiment made in cervical position; whereas Relyx ARC resulted lower values compared to Relyx U200; and cervical position showed higher shrinkage than the apical.

  3. PMR Resin Compositions For High Temperatures

    NASA Technical Reports Server (NTRS)

    Vannucci, Raymond D.

    1989-01-01

    Report describes experiments to identify polymer matrix resins suitable for making graphite-fiber laminates used at 700 degree F (371 degree C) in such applications as aircraft engines to achieve higher thrust-to-weight ratios. Two particular high-molecular-weight formulations of PMR (polymerization of monomer reactants) resins most promising. PMR compositions of higher FMW exhibit enhanced thermo-oxidative stability. Formation of high-quality laminates with these compositions requires use of curing pressures higher than those suitable for compositions of lower FMW.

  4. Mechanical properties of resin-based cements with different dispensing and mixing methods.

    PubMed

    Sulaiman, Taiseer A; Abdulmajeed, Awab A; Altitinchi, Ali; Ahmed, Sumitha N; Donovan, Terence E

    2017-09-27

    Resin-based cements are frequently used in clinical practice. To reduce time and technique sensitivity, manufacturers have introduced the same brand of cement with different dispensing methods. The effect of this change on properties of the cement is unknown. The purpose of this in vitro study was to evaluate the mechanical properties of resin-based cements with different dispensing systems. Specimens of resin-based cements (n=14) PANAVIA SA Cement Plus Handmix, PANAVIA SA Cement Plus Automix, RelyX Unicem Handmix, RelyX Unicem 2 Automix, G-CEM Capsule Automix, G-CEM LinkAce Automix, Variolink II Handmix, and Variolink Esthetic Automix were prepared for each mechanical test. They were examined after thermocycling (n=7/subgroup) for 20000 cycles as to fracture toughness (FT) (ISO standard 6872; single-edge V-notched beam method), compressive strength (CS) (ISO 9917-1), and diametral tensile strength (DTS). The specimens were mounted and loaded at a crosshead rate of 1 mm/min (0.5 mm/min for FT) with a universal testing machine until failure occurred. The 2-and 1-way ANOVA followed by the Tukey HSD post hoc test were used to analyze data for statistical significance (α=05). Thermocycling had a significant effect in reducing the FT property of all resin-based cements except RelyX Unicem 2 and G-CEM LinkAce (P<.05). Variolink II and G-CEM LinkAce showed better FT properties than their automixed counterparts (P<.05). The overall CS of all automixed resin-based cements was better than that of their hand-mixed counterpart, except for Variolink II. PANAVIA SA Automixed and G-CEM LinkAce had higher DTS than their hand-mixed counterparts (P<.05). Changing the dispensing method alters the mechanical properties of resin-based cements. The clinical significance of these results is yet to be determined. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  5. Resin composite repair: Quantitative microleakage evaluation of resin-resin and resin-tooth interfaces with different surface treatments

    PubMed Central

    Celik, Cigdem; Cehreli, Sevi Burcak; Arhun, Neslihan

    2015-01-01

    Objective: The aim was to evaluate the effect of different adhesive systems and surface treatments on the integrity of resin-resin and resin-tooth interfaces after partial removal of preexisting resin composites using quantitative image analysis for microleakage testing protocol. Materials and Methods: A total of 80 human molar teeth were restored with either of the resin composites (Filtek Z250/GrandioSO) occlusally. The teeth were thermocycled (1000×). Mesial and distal 1/3 parts of the restorations were removed out leaving only middle part. One side of the cavity was finished with course diamond bur and the other was air-abraded with 50 μm Al2O3. They were randomly divided into four groups (n = 10) to receive: Group 1: Adper Single Bond 2; Group 2: All Bond 3; Group 3: ClearfilSE; Group 4: BeautiBond, before being repaired with the same resin composite (Filtek Z250). The specimens were re-thermocycled (1000×), sealed with nail varnish, stained with 0.5% basic fuchsin, sectioned mesiodistally and photographed digitally. The extent of dye penetration was measured by image analysis software (ImageJ) for both bur-finished and air-abraded surfaces at resin-tooth and resin-resin interfaces. The data were analyzed statistically. Results: BeautiBond exhibited the most microleakage at every site. Irrespective of adhesive and initial composite type, air-abrasion showed less microleakage except for BeautiBond. The type of initial repaired restorative material did not affect the microleakage. BeautiBond adhesive may not be preferred in resin composite repair in terms of microleakage prevention. Conclusions: Surface treatment with air-abrasion produced the lowest microleakage scores, independent of the adhesive systems and the pre-existing resin composite type. Pre-existing composite type does not affect the microleakage issue. All-in-one adhesive resin (BeautiBond) may not be preferred in resin composite repair in terms of microleakage prevention. PMID:25713491

  6. Effects of enamel deproteinization on bracket bonding with conventional and resin-modified glass ionomer cements.

    PubMed

    Pereira, Tatiana Bahia Junqueira; Jansen, Wellington Corrêa; Pithon, Matheus Melo; Souki, Bernardo Quiroga; Tanaka, Orlando Motohiro; Oliveira, Dauro Douglas

    2013-08-01

    The objective of this study was to test the effects of enamel deproteinization on bracket bonding with conventional and resin-modified glass ionomer cement (RMGIC). One hundred premolars, extracted for orthodontic reasons, were divided into five groups (n = 20). Group 1 (control): enamel was etched with 35 per cent phosphoric acid, a thin layer of adhesive was applied, and the brackets were bonded with Transbond XT. Group 2: enamel was etched with 10 per cent polyacrylic acid and the brackets were bonded with conventional glass ionomer cement (GIC). Group 3: enamel was treated with 5.25 per cent NaOCl, etched with 10 per cent polyacrylic acid, and the brackets were bonded with conventional GIC. Group 4: enamel was etched with 10 per cent polyacrylic acid and the brackets were bonded with RMGIC. Group 5: enamel was treated with 5.25 per cent NaOCl, etched with 10 per cent polyacrylic acid, and the brackets were bonded with RMGIC. The teeth were stored in distilled water for 24 hours before they were submitted to shear testing. The results demonstrated that bond strength values of group 1 (17.08 ± 6.39 MPa) were significantly higher in comparison with the other groups. Groups 2 (3.43 ± 1.94 MPa) and 3 (3.92 ± 1.57 MPa) presented values below the average recommended in the literature. With regard to adhesive remnant index, the groups in which the enamel was treated with NaOCl showed a behaviour similar to that of the resin composite. It is conclude with enamel treatment with NaOCl increased bonding strength of brackets bonded with GIC and RMGIC, but increased bond strength was not statistically significant when compared to the untreated groups.

  7. Solidification of ion exchange resins saturated with Na+ ions: Comparison of matrices based on Portland and blast furnace slag cement

    NASA Astrophysics Data System (ADS)

    Lafond, E.; Cau dit Coumes, C.; Gauffinet, S.; Chartier, D.; Stefan, L.; Le Bescop, P.

    2017-01-01

    This work is devoted to the conditioning of ion exchange resins used to decontaminate radioactive effluents. Calcium silicate cements may have a good potential to encapsulate spent resins. However, certain combinations of cement and resins produce a strong expansion of the final product, possibly leading to its full disintegration. The focus is placed on the understanding of the behaviour of cationic resins in the Na+ form in Portland or blast furnace slag (CEM III/C) cement pastes. During hydration of the Portland cement paste, the pore solution exhibits a decrease in its osmotic pressure, which causes a transient expansion of small magnitude of the resins. At 20 °C, this expansion takes place just after setting in a poorly consolidated material and is sufficient to induce cracks. In the CEM III/C paste, swelling of the resins also occurs, but before the end of setting, and induces limited stress in the matrix which is still plastic.

  8. Effect of resin cement system and root region on the push-out bond strength of a translucent fiber post.

    PubMed

    Calixto, L R; Bandéca, M C; Clavijo, V; Andrade, M F; Vaz, L Geraldo; Campos, E A

    2012-01-01

    This study evaluated the bond strength of luting systems for bonding glass fiber posts to root canal dentin. The hypothesis tested was that there are no differences in bond strength of glass fiber posts luted with different cement systems. Forty bovine incisors were randomly assigned to five different resin cement groups (n=8). After endodontic treatment and crown removal, translucent glass fiber posts were bonded into the root canal using five different luting protocols (self-cured cement and etch-and-rinse adhesive system; dual-cured cement and etch-and-rinse adhesive system; self-cured cement and self-etch adhesive system; dual-cured cement and self-etch adhesive system; and dual-cured self-adhesive cement). Push-out bond strength was evaluated at three different radicular levels: cervical, middle, and apical. The interface between resinous cement and the post was observed using a stereoscopic microscope. Analysis of variance showed a statistically significant difference among the cements (p<0.05) and the root canal thirds (p<0.05). The self-adhesive resinous cement had lower values of retention. The resin cements used with etch-and-rinse and self-etch adhesive systems seem to be adequate for glass fiber post cementation.

  9. Tensile bond strength of resin luting cement to a porcelain-fusing noble alloy.

    PubMed

    Stoknorm, R; Isidor, F; Ravnholt, G

    1996-01-01

    This study evaluated the tensile bond strength of resin composites to a noble alloy for ceramic bonding after various surface treatments. The flat end of bars cast in the alloy were used as test specimens. Eighteen clinically relevant combinations of luting agent, airborne particle abrasion, and surface treatment were applied. After surface treatment, two bars were bonded together. Resin cement, either dual-polymerizing (Twinlook) or chemically polymerizing (Panavia EX, Panavia 21, or RBBC), was used as a luting agent. The specimens were subjected to 1,000 thermal cycles between 15 degrees C and 60 degrees C before tensile bond strength testing. The highest median bond strengths were obtained using the Silicoater MD method/Twinlook (20.6 to 26.1 MPa) or with tin-plating/ Panavia EX (24.0 MPa), but more low values were recorded among the latter specimens. Tin-plating/Panavia 21 gave median tensile bond strengths (18.1 MPa) similar to tin-plating/Panavia EX. The Silicoater MD method resulted in similar bond strengths with or without the addition of a layer of Opaquer. The traditional Silicoater method (8.0 to 12.4 MPa) gave significantly lower median tensile bond strength values, and the lost sugar crystals method resulted in a tensile bond strength of 15.4 MPa.

  10. Influence of Pre-Sintered Zirconia Surface Conditioning on Shear Bond Strength to Resin Cement

    PubMed Central

    Sawada, Tomofumi; Spintzyk, Sebastian; Schille, Christine; Zöldföldi, Judit; Paterakis, Angelos; Schweizer, Ernst; Stephan, Ingrid; Rupp, Frank; Geis-Gerstorfer, Jürgen

    2016-01-01

    This study analyzed the shear bond strength (SBS) of resin composite on zirconia surface to which a specific conditioner was applied before sintering. After sintering of either conditioner-coated or uncoated specimens, both groups were divided into three subgroups by their respective surface modifications (n = 10 per group): no further treatment; etched with hydrofluoric acid; and sandblasted with 50 µm Al2O3 particles. Surfaces were characterized by measuring different surface roughness parameters (e.g., Ra and Rmax) and water contact angles. Half of the specimens underwent thermocycling (10,000 cycles, 5–55 °C) after self-adhesive resin cement build-up. The SBSs were measured using a universal testing machine, and the failure modes were analyzed by microscopy. Data were analyzed by nonparametric and parametric tests followed by post-hoc comparisons (α = 0.05). Conditioner-coated specimens increased both surface roughness and hydrophilicity (p < 0.01). In the non-thermocycled condition, sandblasted surfaces showed higher SBSs than other modifications, irrespective of conditioner application (p < 0.05). Adhesive fractures were commonly observed in the specimens. Thermocycling favored debonding and decreased SBSs. However, conditioner-coated specimens upon sandblasting showed the highest SBS (p < 0.05) and mixed fractures were partially observed. The combination of conditioner application before sintering and sandblasting after sintering showed the highest shear bond strength and indicated improvements concerning the failure mode. PMID:28773641

  11. Curing units' ability to cure restorative composites and dual-cured composite cements under composite overlay.

    PubMed

    Park, Sung-Ho; Kim, Su-Sun; Cho, Yong-Sik; Lee, Chang-Kyu; Noh, Byng-Duk

    2004-01-01

    This study compared the efficacy of using conventional low-power density QTH (LQTH) units, high-power density QTH (HQTH) units, argon (Ar) laser and Plasma arc curing (PAC) units for curing dual-cured resin cements and restorative resin composites under a pre-cured resin composite overlay. The microhardness of the two types of restorative resins (Z100 and Tetric Ceram) and a dual-cured resin cement (Variolink II) were measured after they were light cured for 60 seconds in a 2 mm Teflon mold. The recorded microhardness was determined to be the optimum microhard-ness (OM). Either one of the two types of restorative resins (Z100, Tetric Ceram) or the dual cured resin cement (Variolink II) were placed under a 1.5-mm thick and 8 mm diameter pre-cured Targis (Vivadent/Ivoclar AG, Schaan, Liechtenstein) overlay. The specimens that were prepared for each material were divided into four groups depending upon the curing units used (HQTH, PAC, Laser or LQTH) and were further subdi-vided into subgroups according to light curing time. The curing times used were 30, 60, 90 and 120 seconds for HQTH; 12, 24, 36 and 48 seconds for the PAC unit; 15, 30, 45 and 60 for the Laser and 60, 120 or 180 seconds for the LQTH unit. Fifteen specimens were assigned to each sub- group. The microhardness of the upper and and lower composite surfaces under the Targis overlay were measured using an Optidur Vickers hardness-measuring instrument (Göttfert Feinwerktechnik GmbH, Buchen, Germany). In each material, for each group, a three-way ANOVA with Tukey was used at the 0.05 level of significance to compare the microhardnesses of the upper and lower composite surfaces and the previously measured OM of the material. From the OM of each material, 80% OM was calculated and the time required for the microhardness of the upper and lower surface of the specimen to reach 100% and 80% of OM was determined. In Z100 and Tetric Ceram, when the composites were light cured for 120 seconds using the HQTH lamp

  12. Push-out bond strength of fiber posts luted with unfilled resin cement.

    PubMed

    Carvalho, Carlos A; Monticelli, Francesca; Cantoro, Amerigo; Breschi, Lorenzo; Ferrari, Marco

    2009-02-01

    The study evaluates the behavior of different adhesive systems and resin cements in fiber post placement, with the intent to clarify the possible role of unfilled resin as a luting material for fiber posts. Two luting agents (Dual-Link and Unfilled Resin) for cementing fiber posts into root canals were applied either with All-Bond 2 or One-Step Plus, or without an adhesive system, and challenged with the push-out test. Slices of roots restored with posts were loaded until post segment extrusion in the apical-coronal direction. Failure modes were analyzed under SEM. Push-out strength was significantly influenced by the luting agent (p < 0.05), but not by the bonding strategy (p > 0.05). The best results were obtained in combination with Unfilled Resin with One-Step Plus. Dual-Link groups failed mainly cohesively within the cement, while Unfilled Resin demonstrated more adhesive fracture at the post interface. The results of this study support the hypothesis that adhesive unfilled resin application is essential for achieving high bond strength to radicular dentin.

  13. Early hardness and shear bond strength of dual-cure resin cement light cured through resin overlays with different dentin-layer thicknesses.

    PubMed

    Chang, H-S; Kim, J-W

    2014-01-01

    The purpose of this study was to investigate whether dentin-layer thickness of resin overlays could affect the early hardness and shear bond strength of dual-cure resin cement (DCRC, RelyX ARC) after light curing with light curing units (LCUs) of various power densities: Optilux 360 (360), Elipar Freelight 2 (FL2), and Elipar S10 (S10). Resin overlays were fabricated using an indirect composite resin (Sinfony) with a dentin layer, an enamel layer, and a translucent layer of 0.5 mm thickness each (0.5-0.5-0.5) or of 0.2 mm, 0.5 mm, and 0.8 mm thickness (0.2-0.5-0.8), respectively. The DCRC was light cured for 40 seconds through the overlays, and surface hardness and shear bond strength to bovine dentin were tested 10 minutes after the start of light curing. Surface hardness was higher when the DCRC was light cured through the 0.2-0.5-0.8 combination than when the DCRC was light cured through the 0.5-0.5-0.5 combination with all LCUs. The ratio of upper surface hardness of DCRC light cured through resin overlays relative to the upper surface hardness of DCRC light cured directly was more than 90% only when the DCRC was light cured with S10 through the 0.2-0.5-0.8 combination. The shear bond strength value was higher when the DCRC was light cured with S10 through the 0.2-0.5-0.8 combination than when light cured with S10 through the 0.5-0.5-0.5 combination. This study indicates that reducing the dentin-layer thickness while increasing the translucent-layer thickness of resin inlays can increase the photopolymerization of DCRC, thereby increasing the early bond strength of resin inlays to dentin.

  14. Bonding All-Ceramic Restorations with Two Resins Cement Techniques: A Clinical Report of Three-Year Follow-Up

    PubMed Central

    Anchieta, Rodolfo Bruniera; Rocha, Eduardo Passos; de Almeida, Erika Oliveira; Junior, Amilcar Chagas Freitas; Martini, Ana Paula

    2011-01-01

    Ceramics have been widely used for esthetic and functional improvements. The resin cement is the material of choice for bonding ceramics to dental substrate and it can also dictate the final esthetic appearance and strength of the restoration. The correct use of the wide spectrum of resin luting agents available depends on the dental tooth substrate. This article presents three-year clinical results of a 41 years old female patient B.H.C complaining about her unattractive smile. Two all-ceramic crowns and two laminates veneers were placed in the maxillary incisors and cemented with a self-adhesive resin luting cement and conventional resin luting cement, respectively. After a three-year follow-up, the restorations and cement/teeth interface were clinically perfect with no chipping, fractures or discoloration. Proper use of different resin luting cements shows clinical appropriate behavior after a three-year follow-up. Self-adhesive resin luting cement may be used for cementing all-ceramic crowns with high predictability of success, mainly if there is a large dentin surface available for bonding and no enamel at the finish line. Otherwise, conventional resin luting agent should be used for achieving an adequate bonding strength to enamel. PMID:21912505

  15. Bonding all-ceramic restorations with two resins cement techniques: a clinical report of three-year follow-up.

    PubMed

    Anchieta, Rodolfo Bruniera; Rocha, Eduardo Passos; de Almeida, Erika Oliveira; Junior, Amilcar Chagas Freitas; Martini, Ana Paula

    2011-08-01

    Ceramics have been widely used for esthetic and functional improvements. The resin cement is the material of choice for bonding ceramics to dental substrate and it can also dictate the final esthetic appearance and strength of the restoration. The correct use of the wide spectrum of resin luting agents available depends on the dental tooth substrate. This article presents three-year clinical results of a 41 years old female patient B.H.C complaining about her unattractive smile. Two all-ceramic crowns and two laminates veneers were placed in the maxillary incisors and cemented with a self-adhesive resin luting cement and conventional resin luting cement, respectively. After a three-year follow-up, the restorations and cement/teeth interface were clinically perfect with no chipping, fractures or discoloration. Proper use of different resin luting cements shows clinical appropriate behavior after a three-year follow-up. Self-adhesive resin luting cement may be used for cementing all-ceramic crowns with high predictability of success, mainly if there is a large dentin surface available for bonding and no enamel at the finish line. Otherwise, conventional resin luting agent should be used for achieving an adequate bonding strength to enamel.

  16. Adhesive Cementation of Indirect Composite Inlays and Onlays: A Literature Review.

    PubMed

    D'Arcangelo, Camillo; Vanini, Lorenzo; Casinelli, Matteo; Frascaria, Massimo; De Angelis, Francesco; Vadini, Mirco; D'Amario, Maurizio

    2015-09-01

    The authors conducted a literature review focused on materials and techniques used in adhesive cementation for indirect composite resin restorations. It was based on English language sources and involved a search of online databases in Medline, EMBASE, Cochrane Library, Web of Science, Google Scholar, and Scopus using related topic keywords in different combinations; it was supplemented by a traditional search of peer-reviewed journals and cross-referenced with the articles accessed. The purpose of most research on adhesive systems has been to learn more about increased bond strength and simplified application methods. Adherent surface treatments before cementation are necessary to obtain high survival and success rates of indirect composite resin. Each step of the clinical and laboratory procedures can have an impact on longevity and the esthetic results of indirect restorations. Cementation seems to be the most critical step, and its long-term success relies on adherence to the clinical protocols. The authors concluded that in terms of survival rate and esthetic long-term outcomes, indirect composite resin techniques have proven to be clinically acceptable. However, the correct management of adhesive cementation protocols requires knowledge of adhesive principles and adherence to the clinical protocol in order to obtain durable bonding between tooth structure and restorative materials.

  17. Bond strength of resin cement to zirconia ceramic with different surface treatments.

    PubMed

    Usumez, Aslıhan; Hamdemirci, Nermin; Koroglu, Bilge Yuksel; Simsek, Irfan; Parlar, Ozge; Sari, Tugrul

    2013-01-01

    Zirconia-based ceramics offer strong restorations in dentistry, but the adhesive bond strength of resin cements to such ceramics is not optimal. This study evaluated the influence of surface treatments on the bond strength of resin cement to yttrium-stabilized tetragonal zirconia (Y-TZP) ceramic. Seventy-five plates of Y-TZP ceramic were randomly assigned to five groups (n = 15) according to the surface treatments [airborne particle abrasion, neodymium-doped yttrium aluminum garnet (Nd:YAG) laser irradiation (Fidelis Plus 3, Fotona; 2 W, 200 mJ, 10 Hz, with two different pulse durations 180 or 320 μs), glaze applied, and then 9.5 % hydrofluoric acid gel conditioned, control]. One specimen from each group was randomly selected, and specimens were evaluated with x-ray diffraction and SEM analysis. The resin cement (Clearfil Esthetic Cement, Kuraray) was adhered onto the zirconia surfaces with its corresponding adhesive components. Shear bond strength of each sample was measured using a universal testing machine at a crosshead speed of 1 mm/min. Bond strengths were analyzed through one-way ANOVA/Tukey tests. Surface treatments significantly modified the topography of the Y-TZP ceramic. The Nd:YAG laser-irradiated specimens resulted in both increased surface roughness and bond strength of the resin cement. The highest surface roughness and bond strength values were achieved with short pulse duration. Nd:YAG laser irradiation increased both surface roughness of Y-TZP surfaces and bond strength of resin cement to the zirconia surface.

  18. Effect of Different Thicknesses of Pressable Ceramic Veneers on Polymerization of Light-cured and Dual-cured Resin Cements

    PubMed Central

    Cho, Seok-Hwan; Lopez, Arnaldo; Berzins, David W.; Prasad, Soni; Ahn, Kwang Woo

    2015-01-01

    Aim This study evaluated the effects of ceramic veneer thicknesses on the polymerization of two different resin cements. Materials and Methods A total of 80 ceramic veneer discs were fabricated by using a pressable ceramic material (e.max Press; Ivoclar Vivadent) from a Low Translucency (LT) ingot (A1 shade). These discs were divided into light-cured (LC; NX3 Nexus LC; Kerr) and dual-cured (DC; NX3 Nexus DC; Kerr) and each group was further divided into 4 subgroups, based on ceramic disc thickness (0.3 mm, 0.6 mm, 0.9 mm, and 1.2 mm). The values of Vickers microhardness (MH) and degree of conversion (DOC) were obtained for each specimen after a 24-hour storage period. Association between ceramic thickness, resin cement type, and light intensity readings (mW/cm2) with respect to microhardness and degree of conversion was statistically evaluated by using ANOVA. Results For the DOC values, there was no significant difference observed among the LC resin cement subgroups, except in the 1.2 mm subgroup; only the DOC value (14.0 ± 7.4%) of 1.2 mm DC resin cement had significantly difference from that value (28.9 ± 7.5%) of 1.2 mm LC resin cement (P<.05). For the MH values between LC and DC resin cement groups, there was statistically significant difference (P<.05); overall, the MH values of LC resin cement groups demonstrated higher values than DC resin cement groups. On the other hands, among the DC resin cement subgroups, the MH values of 1.2 mm DC subgroup was significantly lower than the 0.3 mm and 0.6 mm subgroups (P<.05). However, among the LC subgroups, there was no statistically significant difference among them (P >.05). Conclusion The degree of conversion and hardness of the resin cement was unaffected with veneering thicknesses between 0.3 and 0.9 mm. However, the DC resin cement group resulted in a significantly lower DOC and MH values for the 1.2 mm subgroup. Clinical Significance While clinically adequate polymerization of LC resin cement can be achieved

  19. Advances in the history of composite resins.

    PubMed

    Minguez, Nieves; Ellacuria, Joseba; Soler, José Ignacio; Triana, Rodrigo; Ibaseta, Guillermo

    2003-11-01

    The use of composite resins as direct restoration material in posterior teeth has demonstrated a great increase, due to esthetic requirements and the controversy regarding the mercury content in silver amalgams. In this article, we have reviewed the composition modifications which have occurred in materials based on resins since their introduction over a half a century ago which have enabled great improvements in their physical and mechanical properties. Likewise, we have highlighted current lines of research, centered on finding the ideal material for replacing silver amalgam as a direct filling material.

  20. Influence of alloy microstructure on the microshear bond strength of basic alloys to a resin luting cement.

    PubMed

    Bauer, José; Costa, José Ferreira; Carvalho, Ceci Nunes; Souza, Douglas Nesadal de; Loguercio, Alessandro Dourado; Grande, Rosa Helena Miranda

    2012-01-01

    The aim of this study was to evaluate the influence of microstructure and composition of basic alloys on their microshear bond strength (µSBS) to resin luting cement. The alloys used were: Supreme Cast-V (SC), Tilite Star (TS), Wiron 99 (W9), VeraBond II (VBII), VeraBond (VB), Remanium (RM) and IPS d.SIGN 30 (IPS). Five wax patterns (13 mm in diameter and 4mm height) were invested, and cast in a centrifugal casting machine for each basic alloy. The specimens were embedded in resin, polished with a SiC paper and sandblasted. After cleaning the metal surfaces, six tygon tubes (0.5 mm height and 0.75 mm in diameter) were placed on each alloy surface, the resin cement (Panavia F) was inserted, and the excess was removed before light-curing. After storage (24 h/37°C), the specimens were subjected to µSBS testing (0.5 mm/min). The data were subjected to a one-way repeated measures analysis of variance and Turkey's test (α=0.05). After polishing, their microstructures were revealed with specific conditioners. The highest µSBS (mean/standard deviation in MPa) were observed in the alloys with dendritic structure, eutectic formation or precipitation: VB (30.6/1.7), TS (29.8/0.9), SC (30.6/1.7), with the exception of IPS (31.1/0.9) which showed high µSBS but no eutectic formation. The W9 (28.1/1.5), VBII (25.9/2.0) and RM (25.9/0.9) showed the lowest µSBS and no eutectic formation. It seems that alloys with eutectic formation provide the highest µSBS values when bonded to a light-cured resin luting cement.

  1. Effect of exposure time on the polymerization of resin cement through ceramic.

    PubMed

    AlShaafi, Maan M; AlQahtani, Mohammed Q; Price, Richard B

    2014-04-01

    This study measured the effects of using three different exposure times to cure one resin cement through two types of ceramic. One light-curing resin cement (Variolink II, Ivoclar Vivadent) was exposed for 20 s, 40 s, or 60 s with a BluePhase G2 light (Ivoclar Vivadent) on the high power setting through 1.0 mm of either ZirPress (ZR) or Empress Esthetic (EST) ceramic (Ivoclar Vivadent). The degree of conversion (DC) of the resin was measured 100 s after light exposure. The Knoop microhardness (KHN) was measured 5 min after light exposure and again after 24 h. The DC and KHN results were analyzed with ANOVA followed by Scheffe's post-hoc multiple comparison tests at α = 0.05. Increasing exposure time had a significant effect on the KHN and DC values for the resins exposed through both ceramics. As exposure times increased, the influence of the ceramic was reduced; however, the microhardness values were greater for the cement exposed through EST ceramic. When the exposure time was increased from 20 s to 40 s, microhardness values for the resin increased by 39.6% through the EST ceramic. When exposed for 60 s, there were no differences between the 100-s DC values or 5-min KHN values using either ceramic (p > 0.05). There was an excellent correlation between the DC at 100 s and the microhardness values measured at 5 min. Resin polymerization was greater through EST than ZR ceramic. At least 40 s to 60 s from the Blue- Phase G2 on high power mode is required to cure this resin cement through 1.0 mm of ceramic.

  2. Microtensile bond strength of composite resin to glass-infiltrated alumina composite conditioned with Er,Cr:YSGG laser.

    PubMed

    Eduardo, Carlos de Paula; Bello-Silva, Marina Stella; Moretto, Simone Gonçalves; Cesar, Paulo Francisco; de Freitas, Patricia Moreira

    2012-01-01

    Tribochemical silica-coating is the recommended conditioning method for improving glass-infiltrated alumina composite adhesion to resin cement. High-intensity lasers have been considered as an alternative for this purpose. This study evaluated the morphological effects of Er,Cr:YSGG laser irradiation on aluminous ceramic, and verified the microtensile bond strength of composite resin to ceramic following silica coating or laser irradiation. In-Ceram Alumina ceramic blocks were polished, submitted to airborne particle abrasion (110 μm Al(2)O(3)), and conditioned with: (CG) tribochemical silica coating (110 μm SiO(2)) + silanization (control group); (L1-L10) Er,Cr:YSGG laser (2.78 μm, 20 Hz, 0.5 to 5.0 W) + silanization. Composite resin blocks were cemented to the ceramic blocks with resin cement. These sets were stored in 37°C distilled water (24 h), embedded in acrylic resin, and sectioned to produce bar specimens that were submitted to microtensile testing. Bond strength values (MPa) were statistically analyzed (α ≤0.05), and failure modes were determined. Additional ceramic blocks were conditioned for qualitative analysis of the topography under SEM. There were no significant differences among silicatization and laser treatments (p > 0.05). Microtensile bond strength ranged from 19.2 to 27.9 MPa, and coefficients of variation ranged from 30 to 55%. Mixed failure of adhesive interface was predominant in all groups (75-96%). No chromatic alteration, cracks or melting were observed after laser irradiation with all parameters tested. Surface conditioning of glass-infiltrated alumina composite with Er,Cr:YSGG laser should be considered an innovative alternative for promoting adhesion of ceramics to resin cement, since it resulted in similar bond strength values compared to the tribochemical treatment.

  3. Microhardness of resin cements in the intraradicular environment: effects of water storage and softening treament.

    PubMed

    Pedreira, Ana Paula R V; Pegoraro, Luiz Fernando; de Góes, Mario Fernando; Pegoraro, Thiago Amadei; Carvalho, Ricardo Marins

    2009-07-01

    To analyze the microhardness of four dual-cure resin cements used for cementing fiber-reinforced posts under the following conditions: after 7 days of storage in water, after additional 24h of immersion in 75% ethanol, and after 3 months of storage in water. Hardness measurements were taken at the cervical, middle and apical thirds along the cement line. Root canals of 40 bovine incisors were prepared for post space. Fibrekor glass fiber-reinforced posts (Jeneric/Pentron) of 1mm in diameter were cemented using Panavia F 2.0 (Kuraray), Variolink (Ivoclar-Vivadent), Rely X Unicem (3M ESPE) or Duolink (Bisco) (N=10). After 7 days of water storage at 37 degrees C, half the sample (N=5) was longitudinally sectioned and the initial microhardness measured along the cement line from cervical to apex. These same samples were further immersed in 75% ethanol for 24h and reassessed. The remaining half (N=5) was kept unsectioned in deionized water at 37 degrees C for 3 months, followed by sectioning and measuring. Data were analyzed by a series of two-way ANOVA and Tukey tests at alpha=5%. Statistically significant differences were identified among the cements, thirds and conditions. Significant interactions were also observed between cements and thirds and between cements and conditions. Panavia F exhibited significantly higher initial microhardness than the other three cements, which showed no statistical difference among themselves. Variolink and Duolink showed significantly higher microhardness values in the cervical third, without significant difference among the thirds for the other cements. Immersion in ethanol significantly reduced the hardness values for all cements, regardless of the thirds. Storage in water for 3 months had no influence on the hardness of most of the cements, with the exception of Unicem that showed a significant increase in the hardness values after this period. Results showed heterogeneity in the microhardness of the cements inside the canal. All

  4. UV irradiation improves the bond strength of resin cement to fiber posts.

    PubMed

    Zhong, Bo; Zhang, Yong; Zhou, Jianfeng; Chen, Li; Li, Deli; Tan, Jianguo

    2011-01-01

    The purpose is to evaluate the effect of UV irradiation on the bond strength between epoxy-based glass fiber posts and resin cement. Twelve epoxy-based glass fiber posts were randomly divided into three groups. Group 1 (Cont.): No surface treatment. Group 2 (Low-UV): UV irradiation was conducted from a distance of 10 cm for 10 min. Group 3 (High-UV): UV irradiation was conducted from a distance of 1 cm for 3 min. A resin cement (CLEARFIL SA LUTING) was used for the post cementation to form resin slabs which contained fiber posts in the center. Microtensile bond strengths were tested and the mean bond strengths (MPa) were 18.81 for Cont. group, 23.65 for Low-UV group, 34.75 for High-UV group. UV irradiation had a significant effect on the bond strength (p<0.05). UV irradiation demonstrates its capability to improve the bond strength between epoxy-based glass fiber posts and resin cement.

  5. Effect of Self-adhesive Resin Cement and Tribochemical Treatment on Bond Strength to Zirconia

    PubMed Central

    Lin, Jie; Shinya, Akikazu; Gomi, Harunori; Shinya, Akiyoshi

    2010-01-01

    Aim To evaluate the interactive effects of different self-adhesive resin cements and tribochemical treatment on bond strength to zirconia. Methodology The following self-adhesive resin cements for bonding two zirconia blocks were evaluated: Maxcem (MA), Smartcem (SM), Rely X Unicem Aplicap (UN), Breeze (BR), Biscem (BI), Set (SE), and Clearfil SA luting (CL). The specimens were grouped according to conditioning as follows: Group 1, polishing with 600 grit polishing paper; Group 2, silica coating with 110 µm Al2O3 particles which modified with silica; and, Group 3, tribochemical treatment - silica coating + silanization. Specimens were stored in distilled water at 37°C for 24 hours before testing shear bond strength. Results Silica coating and tribochemical treatment significantly increased the bond strength of the MA, UN, BR, BI, SE and CL to zirconia compared to #600 polishing. For both #600 polished and silica coating treatments, MDP-containing self-adhesive resin cement CL had the highest bond strengths to zirconia. Conclusion Applying silica coating and tribochemical treatment improved the bond strength of self-adhesive resin cement to zirconia, especially for CL. PMID:20690416

  6. Novel fabrication method for zirconia restorations: bonding strength of machinable ceramic to zirconia with resin cements.

    PubMed

    Kuriyama, Soichi; Terui, Yuichi; Higuchi, Daisuke; Goto, Daisuke; Hotta, Yasuhiro; Manabe, Atsufumi; Miyazaki, Takashi

    2011-01-01

    A novel method was developed to fabricate all-ceramic restorations which comprised CAD/CAM-fabricated machinable ceramic bonded to CAD/CAM-fabricated zirconia framework using resin cement. The feasibility of this fabrication method was assessed in this study by investigating the bonding strength of a machinable ceramic to zirconia. A machinable ceramic was bonded to a zirconia plate using three kinds of resin cements: ResiCem (RE), Panavia (PA), and Multilink (ML). Conventional porcelain-fused-to-zirconia specimens were also prepared to serve as control. Shear bond strength test (SBT) and Schwickerath crack initiation test (SCT) were carried out. SBT revealed that PA (40.42 MPa) yielded a significantly higher bonding strength than RE (28.01 MPa) and ML (18.89 MPa). SCT revealed that the bonding strengths of test groups using resin cement were significantly higher than those of Control. Notably, the bonding strengths of RE and ML were above 25 MPa even after 10,000 times of thermal cycling -adequately meeting the ISO 9693 standard for metal-ceramic restorations. These results affirmed the feasibility of the novel fabrication method, in that a CAD/CAM-fabricated machinable ceramic is bonded to a CAD/CAM-fabricated zirconia framework using a resin cement.

  7. Radiopacity of different resin-based and conventional luting cements compared to human and bovine teeth.

    PubMed

    Pekkan, Gürel; Ozcan, Mutlu

    2012-02-03

    This study evaluated the radiopacity of different resin-based luting materials and compared the results to human and bovine dental hard tissues. Disc specimens (N=130, n=10 per group) (diameter: 6 mm, thickness: 1 mm) were prepared from 10 resin-based and 3 conventional luting cements. Human canine dentin (n=10), bovine enamel (n=10), bovine dentin (n=10) and Aluminium (Al) step wedge were used as references. The optical density values of each material were measured from radiographic images using a transmission densitometer. Al step wedge thickness and optical density values were plotted and equivalent Al thickness values were determined for radiopacity measurements of each material. The radiopacity values of conventional cements and two resin luting materials (Rely X Unicem and Variolink II), were significantly higher than that of bovine enamel that could be preferred for restorations cemented on enamel. Since all examined resin-based luting materials showed radiopacity values equivalent to or greater than that of human and bovine dentin, they could be considered suitable for the restorations cemented on dentin.

  8. [H(2)O(2) treatment improves the bond strength between glass fiber posts and resin cement].

    PubMed

    Zhang, Yong; Zhong, Bo; Tan, Jian guo; Zhou, Jian feng; Chen, Li

    2011-02-18

    To evaluate the effect of etching with H2O2 on the bond strength between epoxy-based glass fiber posts and resin cement. Sixteen epoxy-based glass fiber posts were randomly divided into 4 groups (4 posts in each group) for different surface treatments. Group 1, no surface treatment (Control group); Group 2, treated with silane coupling agent for 60 s; Group 3, immersed in 10% H2O2 for 10 min then treated with silane coupling agent for 60 s; Group 4, immersed in 30% H2O2 for 10 min then treated with silane coupling agent for 60 s. Resin cement was used for the post cementation to form resin slabs which were then sectioned and trimmed into dumbbell shape to obtain microtensile specimens. Microtensile bond strengths were tested and the failure modes were examined with a stereomicroscope. Statistical analysis of microtensile bond strengths was performed with Kruskal-Wallis test. The microtensile bond strengths (standard deviation) were 18.81 (4.04) MPa for Group 1, 26.70 (9.63) MPa for Group 2, 39.07 (6.47) MPa for Group 3, 46.05 (5.97) MPa for Group 4. Etching with H2O2 followed by silanization could significantly improve the bond strength between epoxy-based glass fiber posts and resin cement.

  9. Effect of pre-cure temperature on the bonding potential of self-etch and self-adhesive resin cements.

    PubMed

    Cantoro, Amerigo; Goracci, Cecilia; Papacchini, Federica; Mazzitelli, Claudia; Fadda, Giovanni Maria; Ferrari, Marco

    2008-05-01

    To assess whether the pre-cure temperature of resin cements significantly influenced the bonding potential to dentin. Forty extracted molars were randomly divided into 8 groups (n=5): Groups (1-4) RelyX Unicem (RU, 3 M ESPE) and Groups (5-8) Panavia F 2.0 (PF, Kuraray Co.), at pre-cure temperatures of 4, 24, 37, and 60 degrees C, respectively. Cements were used in dual-cure mode for luting composite overlays (Paradigm MZ100, 3 M ESPE) to dentin. Microtensile bond strength testing and scanning electron microscope (SEM) observations of cement-dentin interfaces were performed. Group 4 had to be eliminated as RU at 60 degrees C underwent such an accelerated curing that was already set at the time of dispensing. The bond strengths (MPa) measured at refrigerator, room, and intraoral temperature were, respectively: RU 5.4+/-1.7, 11.4+/-6.1, 10.6+/-4.2; PF 7.4+/-3.7, 13.9+/-6.2, 12+/-5.2. The statistical analysis revealed that both luting agents developed a significantly weaker adhesion when used at refrigerator temperature (p<0.05). No statistically significant differences in bond strength were recorded when either cement was used at 24 or 37 degrees C (p>0.05). Pre-heating of PF to 60 degrees C resulted in a significant increase in bond strength (20.7+/-9.4 MPa; p<0.05). SEM observations disclosed an enhanced potential of PF to form a hybrid layer as the temperature increased over 4 degrees C. RU exhibited a less porous and more homogeneous layer at intraoral than at refrigerated temperature. It is advisable to let refrigerator-stored resin cements warm up to at least room temperature prior to clinical use. Pre-heating to 60 degrees C enhances the bonding potential of PF.

  10. Micro-shear bond strength of resin cement to dentin after application of desensitizing toothpastes.

    PubMed

    Bavbek, Andac Barkin; Goktas, Baris; Cekic-Nagas, Isil; Egilmez, Ferhan; Ergun, Gulfem; Eskitascioglu, Gurcan

    2013-01-01

    The aim of the study was to evaluate the effect of three desensitizing toothpastes on bonding of resin cements to dentin. The occlusal surfaces of 72 maxillary third molars were ground to obtain flat dentin surfaces and then divided into three groups according to three desensitizing toothpastes used: Sensodyne Rapid Relief (GlaxoSmithKline, SmithKline Beecham Ltd., Slough, UK), Signal Sensitive Expert (Unilever Sanayi ve Ticaret Türk A.Ş., Ümraniye, İstanbul, Turkey) and Colgate Sensitive Pro-Relief (Colgate Palmolive, New York, NY). Following bonding of the resin cement (Clearfil™ SA Cement, Kuraray Co, Osaka, Japan) to dentin, the specimens were light cured for 40 s with a LED (Elipar S10, 3M Espe, St. Paul, MN). The strength measurements were accomplished with a micro-shear testing machine (Bisco, Schaumburg, IL) at a cross-head speed of 0.5 mm/min until the failure occurs. Failure modes were examined using a stereomicroscope and scanning electron microscope. The data were analyzed with one-way analysis of variance (ANOVA) and Tukey HSD test (α = 0.05). ANOVA revealed that the application of desensitizing toothpastes had significant effects on bond strength of the resin cement tested to dentin (p < 0.05). Mixed failures were observed in all of the groups. The use of a desensitizing toothpaste before cementation might alter the bond strength of adhesively luted restorations.

  11. In vitro comparative bond strength of contemporary self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion.

    PubMed

    Blatz, Markus B; Phark, Jin-Ho; Ozer, Fusun; Mante, Francis K; Saleh, Najeed; Bergler, Michael; Sadan, Avishai

    2010-04-01

    This study compared shear bond strengths of six self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion. One hundred twenty zirconia samples were air-abraded (group SB; n = 60) or left untreated (group NO). Composite cylinders were bonded to the zirconia samples with either BisCem (BC), Maxcem (MC), G-Cem (GC), RelyX Unicem Clicker (RUC), RelyX Unicem Applicator (RUA), or Clearfil SA Cement (CSA). Shear bond strength was tested after thermocycling, and data were analyzed with analysis of variance and Holm-Sidak pairwise comparisons. Without abrasion, RUA (8.0 MPa), GC (7.9 MPa), and CSA (7.6 MPa) revealed significantly higher bond strengths than the other cements. Air-particle abrasion increased bond strengths for all test cements (p < 0.001). GC (22.4 MPa) and CSA (18.4 MPa) revealed the highest bond strengths in group SB. Bond strengths of self-adhesive resin cements to zirconia were increased by air-particle abrasion. Cements containing adhesive monomers (MDP/4-META) were superior to other compositions.

  12. The effect of transmitted Er:YAG laser energy through a dental ceramic on different types of resin cements.

    PubMed

    Tak, Onjen; Sari, Tugrul; Arslan Malkoç, Meral; Altintas, Subutayhan; Usumez, Aslihan; Gutknecht, Norbert

    2015-07-06

    The laser debonding procedure of adhesively luted all-ceramic restorations is based on the ablation of resin cement due to the transmitted laser energy through the ceramic. The purpose of this study was to determine the effect of Er:YAG laser irradiation transmitted through a dental ceramic on five different resin cements. Five different resin cements were evaluated in this study: G-Cem LinkAce, Multilink Automix, Variolink II, Panavia F, and Rely X Unicem U100. Disc shaped resin cement specimens (n = 10) were fabricated for each group. A ceramic disc was placed between the resin cement discs and the tip of the handpiece of Er:YAG laser device. The resin cement discs were irradiated through the ceramic and the volume of the resin cement discs were measured using a micro-CT system before and after Er:YAG laser irradiation. The volume loss of the resin cement discs was calculated and analyzed with one-way ANOVA and Tukey-HSD tests. The highest volume loss was determined in G-Cem (1.1 ± 0.6 mm(3) ) and Multilink (1.3 ± 0.1 mm(3) ) (P < 0.05) groups, and the lowest volume loss was determined in Rely X (0.3 ± 0.07 mm(3) ), Variolink (0.4 ± 0.2 mm(3) ), and Panavia (0.6 ± 0.2 mm(3) ) groups (P < 0.05). All resin cements were affected by the laser irradiation resulting in the volume loss of the cement; however, there are significant differences among different resin cements. All the resin cements tested in this study were effected by the Er:YAG laser irradiation and there were significant differences among the resin cements with regard to ablation volume. Lasers Surg. Med. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  13. Hydroxyapatite/PMMA composites as bone cements.

    PubMed

    Chu, K T; Oshida, Y; Hancock, E B; Kowolik, M J; Barco, T; Zunt, S L

    2004-01-01

    Currently PMMA is the polymer most commonly used as a bone cement for the fixation of total hip prostheses. Ideally, a bone cement material should be easy to handle, biologically compatible, nonsupporting of oral microbial growth, available in the particulate and molded forms, easy to obtain, nonallergenic, adaptable to a broad range of dental and medical applications, in possession of high compressive strength, and effective in guided tissue regenerative procedures. One of the problems associated with the conventional types of bone cement used is their unsatisfactory mechanical and exothermic reaction properties. The purpose of this in vitro study was to investigate and compare the mechanical properties (three-point bending strength, energy-to-break, and modulus of elasticity) and physical properties (setting time, water sorption, and exothermic heat) of HA/PMMA (HA group) and bovine-bone originated HA/PMMA (BB group) composites. Composites samples were fabricated by admixing method. It was found that the addition of HA and BB particles increased the water sorption. Generally 10 v/o 20 v/o HA and 0 v/o to 10 v/o BB ratio combinations had significant beneficial effects on the mechanical properties. The heat generated during polymerization was influenced by the different admixtures. More than 40 v/o HA and 40 v/o BB should be mixed into PMMA to reduce the peak temperature. Overall evaluation indicated that the BB group had better properties than the HA group.

  14. Cementation of residue ion exchange resins at Rocky Flats

    SciTech Connect

    Dustin, D.F.; Beckman, T.D.; Madore, C.M.

    1998-03-03

    Ion exchange resins have been used to purify nitric acid solutions of plutonium at Rocky Flats since the 1950s. Spent ion exchange resins were retained for eventual recovery of residual plutonium, typically by incineration followed by the aqueous extraction of plutonium from the resultant ash. The elimination of incineration as a recovery process in the late 1980s and the absence of a suitable alternative process for plutonium recovery from resins led to a situation where spent ion exchange resins were simply placed into temporary storage. This report describes the method that Rocky Flats is currently using to stabilize residue ion exchange resins. The objective of the resin stabilization program is: (1) to ensure their safety during interim storage at the site, and (2) to prepare them for ultimate shipment to the Waste Isolation Pilot Plant (WIPP) in New Mexico. Included in the discussion is a description of the safety concerns associated with ion exchange resins, alternatives considered for their stabilization, the selection of the preferred treatment method, the means of implementing the preferred option, and the progress to date.

  15. Effects of Different Surface Treatment Methods and MDP Monomer on Resin Cementation of Zirconia Ceramics an In Vitro Study

    PubMed Central

    Tanış, Merve Çakırbay; Akçaboy, Cihan

    2015-01-01

    Introduction: Resin cements are generally preferred for cementation of zirconia ceramics. Resin bonding of zirconia ceramics cannot be done with the same methods of traditional ceramics because zirconia is a silica-free material. In recent years, many methods have been reported in the literature to provide the resin bonding of zirconia ceramics. The purpose of this in vitro study is to evaluate effects of different surface treatments and 10-metacryloxydecyl dihydrogen phosphate (MDP) monomer on shear bond strength between zirconia and resin cement. Methods: 120 zirconia specimens were treated as follows: Group I: sandblasting, group II: sandblasting + tribochemical silica coating + silane, group III: sandblasting + Nd:YAG (neodymium: yttrium-aluminum-garnet) laser. One specimen from each group was evaluated under scanning electron microscope (SEM). Specimens in each group were bonded either with conventional resin cement Variolink II or with a MDP containing resin cement Panavia F2.0. Subgroups of bonded specimens were stored in distilled water (37°C) for 24 hours or 14 days. Following water storage shear bond strength test was performed at a crosshead speed of 1 mm/min in a universal test machine. Then statistical analyses were performed. Results: Highest shear bond strength values were observed in group II. No significant difference between group I and III was found when Panavia F2.0 resin cement was used. When Variolink II resin cement was used group III showed significantly higher bond strength than group I. In group I, Panavia F2.0 resin cement showed statistically higher shear bond strength than Variolink II resin cement. In group II no significant difference was found between resin cements. No significant difference was found between specimens stored in 37°C distilled water for 24 hours and 14 days. In group I surface irregularities with sharp edges and grooves were observed. In group II less roughened surface was observed with silica particles. In group

  16. Effects of curing mode of resin cements on the bond strength of a titanium post: An intraradicular study.

    PubMed

    Reza, Fazal; Lim, Siau Peng

    2012-04-01

    To compare push-out bond strength between self-cured and dual-cured resin cement using a titanium post. Dual-cured resin cements have been found to be less polymerized in the absence of light; thus the bond strength of cements would be compromised due to the absence of light with a metallic post. Ten extracted teeth were prepared for cement titanium PARAPOST, of five specimens each, with Panavia F [dual-cured (PF)] and Rely×Luting 2 [self-cured resin-modified glass ionomer luting cement (RL)]; the push-out bond strength (PBS) at three different levels of the sectioned roots was measured. The failure modes were observed and the significance of the differences in bond strength of the two types of cement at each level and at different levels of the same type was analyzed with non-parametric tests. The push-out bond strength of the RL group was greater at all the three levels; with significant differences at the coronal and middle levels (P<0.05). No significant differences in PBS at different levels of the same group were observed. Cement material around the post was obvious in the PF group. The failure mode was mostly adhesive between the post and resin cement in the RL group. Bond strength was greater with self-cured, resin-modified glass ionomer luting cement, using titanium post.

  17. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel

    PubMed Central

    Sekhri, Sahil; Garg, Sandeep

    2016-01-01

    Introduction In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. Aim The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. Materials and Methods On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Results Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non–significant (p > 0.05). Conclusion Surface treatment of enamel increases the bond strength of self adhesive resin cement. PMID:26894165

  18. Luting glass ceramic restorations using a self-adhesive resin cement under different dentin conditions.

    PubMed

    Guarda, Guilherme B; Gonçalves, Luciano S; Correr, Américo B; Moraes, Rafael R; Sinhoreti, Mário A C; Correr-Sobrinho, Lourenço

    2010-01-01

    The aim of this study was to investigate the bond strength of ceramic restorations luted using a self-adhesive resin cement (RelyX Unicem, 3M ESPE) under different dentin conditions. In the experimental groups, ceramic restorations were luted to bovine incisors with RelyX Unicem under the following conditions: [Dry dentin]: surface was dried using air stream for 15 s; [Moist dentin]: excess dentin moisture was removed with absorbent paper; [Bonding agent]: Clearfil SE Bond (Kuraray) self-etching adhesive system was previously applied to dentin. In the Control group, cementation was done using an etch-and-rinse adhesive (Excite DSC) and Variolink II resin cement (Ivoclar Vivadent). Photoactivation of the resin cements was performed with UltraLume LED 5 unit (Ultradent). The restorations (n=5 per group) were sectioned into beams and microtensile testing was carried out. Data were subjected to ANOVA and Tukey's test (p<0.05). Failure modes were classified under Scanning Electron Microscopic (SEM) (x120 magnification). The bond strength was dependent on the moisture status of the dentin. Bond strength in the "dry dentin group" was significantly lower than that of all other groups, which showed similar results. A predominance of mixed failures was detected for the control group, while a predominance of adhesive failures was observed for the "bonding agent" and "dry dentin" groups. The "moist dentin" group presented predominantly cohesive failures within the luting material. The previous application of a self-etching adhesive showed no significant effect. Only excess dentin moisture should be removed for the cementation of ceramic restorations with self-adhesive resin cements.

  19. Microleakage of inlay ceramic systems luted with self-adhesive resin cements.

    PubMed

    Uludag, Bulent; Yucedag, Elif; Sahin, Volkan

    2014-12-01

    To evaluate the microleakage of Cerec 3, IPS e.max Press, and Turkom-Cera inlays cemented with three self-adhesive resin cements. Ninety standardized class III MOD cavities were prepared in intact human mandibular third molars. Ceramic inlays were fabricated according to the manufacturer's instructions and were cemented using three self-adhesive resin cements (RelyX Unicem, Smartcem 2, and SpeedCEM). The specimens were stored in distilled water at 37°C for 24 h and subjected to 1000 thermocycles in water between 5°C and 55°C with a dwell time of 30 s. Subsequently, the specimens were subjected to 100,000 cycles of mechanical loading of 50 N at 1.6 Hz in 37°C water. The specimens were immersed in 0.5% basic fuchsine for 24 h and were sectioned using a low-speed diamond blade. The percentage of dye leakage at the tooth/restoration interface was measured and compared by Kruskal-Wallis tests with Bonferonni correction and Mann-Whitney U-tests at a significance level of p<0.05. Microleakage at the RelyX Unicem interface was lower than that with Smartcem 2 and SpeedCEM resin cements (p<0.05). Microleakage of the Turkom-Cera system was higher than Cerec 3 and IPS e.max Press ceramic inlays (p<0.05). Regardless of the ceramic system and self-adhesive resin cement used, dentin margins were associated with higher microleakage than enamel margins.

  20. Leach studies on cement-solidified ion exchange resins from decontamination processes at operating nuclear power stations

    SciTech Connect

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.; Morcos, N.

    1992-08-01

    The effects of varying pH and leachant compositions on the physical stability and leachability of radionuclides and chelating agents were determined for cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small scale waste-form specimens were collected during waste solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station. The collected specimens were leach tested, and their compressive strength was measured in accordance with the Nuclear Regulatory Commission`s ``Technical Position on Waste Form`` (Revision 1), from the Low-Level Waste Management Branch. Leachates from these studies were analyzed for radionuclides, selected transition metals, and chelating agents to assess the leachability of these waste form constituents. Leachants used for the study were deionized water, simulated seawater, and groundwater compositions similar to those found at Barnwell, South Carolina and Hanford, Washington. Results of this study indicate that initial leachant pH does not affect leachate pH or releases from cement-solidified decontamination ion-exchange resin waste forms. However, differences in leachant composition and the presence of chelating agents may affect the releases of radionuclides and chelating agents. In addition, results from this study indicate that the cumulative releases of radionuclides and chelating agents observed for forms that disintegrated were similar to those for forms that maintained their general physical integrity.

  1. Leach studies on cement-solidified ion exchange resins from decontamination processes at operating nuclear power stations

    SciTech Connect

    McIsaac, C.V.; Akers, D.W.; McConnell, J.W.; Morcos, N.

    1992-01-01

    The effects of varying pH and leachant compositions on the physical stability and leachability of radionuclides and chelating agents were determined for cement-solidified decontamination ion-exchange resin wastes collected from two operating commercial light water reactors. Small scale waste-form specimens were collected during waste solidifications performed at the Brunswick Steam Electric Plant Unit 1 and at the James A. FitzPatrick Nuclear Power Station. The collected specimens were leach tested, and their compressive strength was measured in accordance with the Nuclear Regulatory Commission's Technical Position on Waste Form'' (Revision 1), from the Low-Level Waste Management Branch. Leachates from these studies were analyzed for radionuclides, selected transition metals, and chelating agents to assess the leachability of these waste form constituents. Leachants used for the study were deionized water, simulated seawater, and groundwater compositions similar to those found at Barnwell, South Carolina and Hanford, Washington. Results of this study indicate that initial leachant pH does not affect leachate pH or releases from cement-solidified decontamination ion-exchange resin waste forms. However, differences in leachant composition and the presence of chelating agents may affect the releases of radionuclides and chelating agents. In addition, results from this study indicate that the cumulative releases of radionuclides and chelating agents observed for forms that disintegrated were similar to those for forms that maintained their general physical integrity.

  2. Fiber reinforced thermoplastic resin matrix composites

    NASA Technical Reports Server (NTRS)

    Jones, Robert J. (Inventor); Chang, Glenn E. C. (Inventor)

    1989-01-01

    Polyimide polymer composites having a combination of enhanced thermal and mechanical properties even when subjected to service temperatures as high as 700.degree. F. are described. They comprise (a) from 10 to 50 parts by weight of a thermoplastic polyimide resin prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and (b) from 90 to 50 parts by weight of continuous reinforcing fibers, the total of (a) and (b) being 100 parts by weight. Composites based on polyimide resin formed from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and pyromellitic dianhydride and continuous carbon fibers retained at least about 50% of their room temperature shear strength after exposure to 700.degree. F. for a period of 16 hours in flowing air. Preferably, the thermoplastic polyimide resin is formed in situ in the composite material by thermal imidization of a corresponding amide-acid polymer prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. It is also preferred to initially size the continuous reinforcing fibers with up to about one percent by weight of an amide-acid polymer prepared from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane. In this way imidization at a suitable elevated temperature results in the in-situ formation of a substantially homogeneous thermoplastic matrix of the polyimide resin tightly and intimately bonded to the continuous fibers. The resultant composites tend to have optimum thermo-mechanical properties.

  3. Composite fabrication via resin transfer molding technology

    SciTech Connect

    Jamison, G.M.; Domeier, L.A.

    1996-04-01

    The IMPReS (Integrated Modeling and Processing of Resin-based Structures) Program was funded in FY95 to consolidate, evaluate and enhance Sandia`s capabilities in the design and fabrication of composite structures. A key driver of this and related programs was the need for more agile product development processes and for model based design and fabrication tools across all of Sandia`s material technologies. A team of polymer, composite and modeling personnel was assembled to benchmark Sandia`s existing expertise in this area relative to industrial and academic programs and to initiate the tasks required to meet Sandia`s future needs. RTM (Resin Transfer Molding) was selected as the focus composite fabrication technology due to its versatility and growing use in industry. Modeling efforts focused on the prediction of composite mechanical properties and failure/damage mechanisms and also on the uncured resin flow processes typical of RTM. Appropriate molds and test composites were fabricated and model validation studies begun. This report summarizes and archives the modeling and fabrication studies carried out under IMPReS and evaluates the status of composite technology within Sandia. It should provide a complete and convenient baseline for future composite technology efforts within Sandia.

  4. Influence of surface treatments and resin cement selection on bonding to densely-sintered zirconium-oxide ceramic.

    PubMed

    de Oyagüe, Raquel Castillo; Monticelli, Francesca; Toledano, Manuel; Osorio, Estrella; Ferrari, Marco; Osorio, Raquel

    2009-02-01

    To evaluate the effect of surface conditioning on the microtensile bond strength of zirconium-oxide ceramic to dual-cured resin cements. Eighteen cylinder-shaped zirconium-oxide ceramic blocks (Cercon Zirconia, Dentsply) were treated as follows: (1) Sandblasting with 125 microm aluminum-oxide (Al(2)O(3)) particles; (2) tribochemical silica coating using 50 microm Al(2)O(3) particles modified by silica; (3) no treatment. Each ceramic cylinder was duplicated in composite resin (Tetric Evo Ceram, Ivoclar-Vivadent) using a silicon mold. Composite cylinders were bonded to conditioned ceramics using: (1) Calibra (Densply Caulk); (2) Clearfil Esthetic Cement (Kuraray); (3) Rely x Unicem (3M ESPE). After 24h bonded specimens were cut into microtensile sticks that were loaded in tension until failure. Data were analyzed using two-way ANOVA and Student-Newman-Keuls test for multiple comparisons (p<0.05). Failure mode was recorded and the interfacial morphology of debonded specimens was observed using a scanning electron microscope (SEM). Surface topography and ceramic average surface roughness were analyzed under an atomic force microscope (AFM). Significant changes in zirconia surface roughness occurred after sandblasting (p<0.001). Bond strength of Clearfil cement to zirconia was significantly higher than that of Rely x Unicem and Calibra, regardless of the surface treatment (p<0.001). When using Calibra, premature failures occurred in non-treated and silica coated zirconia surfaces. The phosphate monomer-containing luting system (Clearfil Esthetic Cement) is recommended to bond zirconia ceramics and surface treatments are not necessary.

  5. Factors affecting on bond strength of glass fiber post cemented with different resin cements to root canal

    NASA Astrophysics Data System (ADS)

    Clavijo, V. R. G.; Bandéca, M. C.; Calixto, L. R.; Nadalin, M. R.; Saade, E. G.; Oliveira-Junior, O. B.; Andrade, M. F.

    2009-09-01

    Luting materials provides the retention of endodontic post. However, the failures of endodontic posts predominantly occurred are the losses of retention. Thus, the alternating use to remove the smear layer, open the dentine tubules, and/or etch the inter-tubular dentine can be provided by EDTA. This study was performed to evaluate effect of EDTA on bond strength of glass fiber post cemented with different resin cements to root canal. Fifty bovine incisors were selected and the crowns were removed to obtain a remaining 14-mm-height root. The roots were randomly distributed into five groups: GI: RelyX™ ARC/LED; GII: RelyX™ U100/LED; GIII EDTA/RelyX™ U100/LED; GIV: Multilink™; and GV: EDTA/Multlink™. After endodontic treatment, the post space was prepared with the drills designated for the quartz-coated-carbon-fiber post Aestheti-Post®. Before application of resin cements, root canals were irrigated with 17% EDTA (GIII and GV) during 1 min, rinsed with distilled water and dried using paper points. The light-cured materials were light-activated with UltraLume LED 5 (Ultradent, South Jordan, Utah) with power density of 1315 mW/cm2. Specimens were perpendicularly sectioned into approximately 1 mm thick sections and the stubs were performed on Universal Testing Machine. The analysis of variance (ANOVA) and Tukey’s post-hoc tests showed significant statistical different between RelyX™ ARC (GI) and RelyX™ U100 independent of the pre-treatment (GII to GIII) ( P < 0.05). The Multlink™ showed between RelyX™ ARC and RelyX™ U100 (GI to GIII; GII to GV) ( P < 0.05). The ANOVA showed significant statistical similar ( P > 0.05) to all resin cements between the Cervical to Apical regions (GI to GV). The use of 17% EDTA showed no difference significant between the resin cements evaluated (GII to GIII; GIV to GV). Within the limitations of the current study, it can be concluded that the use of EDTA did not provide efficiency on bond strength. The RelyX™ ARC

  6. Processable polyimide adhesive and matrix composite resin

    NASA Technical Reports Server (NTRS)

    Pratt, J. Richard (Inventor); St.clair, Terry L. (Inventor); Progar, Donald J. (Inventor)

    1990-01-01

    A high temperature polyimide composition prepared by reacting 4,4'-isophthaloyldiphthalic anhydride with metaphenylenediamine is employed to prepare matrix resins, adhesives, films, coatings, moldings, and laminates, especially those showing enhanced flow with retention of mechanical and adhesive properties. It can be used in the aerospace industry, for example, in joining metals to metals or metals to composite structures. One area of application is in the manufacture of lighter and stronger aircraft and spacecraft structures.

  7. Ceramic whisker reinforcement of dental resin composites.

    PubMed

    Xu, H H; Martin, T A; Antonucci, J M; Eichmiller, F C

    1999-02-01

    Resin composites currently available are not suitable for use as large stress-bearing posterior restorations involving cusps due to their tendencies toward excessive fracture and wear. The glass fillers in composites provide only limited reinforcement because of the brittleness and low strength of glass. The aim of the present study was to reinforce dental resins with ceramic single-crystalline whiskers of elongated shapes that possess extremely high strength. A novel method was developed that consisted of fusing silicate glass particles onto the surfaces of individual whiskers for a two-fold benefit: (1) to facilitate silanization regardless of whisker composition; and (2) to enhance whisker retention in the matrix by providing rougher whisker surfaces. Silicon nitride whiskers, with an average diameter of 0.4 microm and length of 5 microm, were coated by the fusion of silica particles 0.04 microm in size to the whisker surface at temperatures ranging from 650 degrees C to 1000 degrees C. The coated whiskers were silanized and manually blended with resins by spatulation. Flexural, fracture toughness, and indentation tests were carried out for evaluation of the properties of the whisker-reinforced composites in comparison with conventional composites. A two-fold increase in strength and toughness was achieved in the whisker-reinforced composite, together with a substantially enhanced resistance to contact damage and microcracking. The highest flexural strength (195+/-8 MPa) and fracture toughness (2.1+/-0.3 MPa x m(1/2)) occurred in a composite reinforced with a whisker-silica mixture at whisker:silica mass ratio of 2:1 fused at 800 degrees C. To conclude, the strength, toughness, and contact damage resistance of dental resin composites can be substantially improved by reinforcement with fillers of ceramic whiskers fused with silica glass particles.

  8. Microleakage of ceramic inlays luted with different resin cements and dentin adhesives.

    PubMed

    Uludag, Bulent; Ozturk, Ozge; Ozturk, A Nilgun

    2009-10-01

    Despite recent advances in adhesive dentistry, resin cement/dentin adhesive combinations are not able to prevent microleakage in ceramic inlays. Marginal quality of tooth-colored restorations in large Class II cavities is satisfactory in enamel margins, but microleakage in dentin margins remains a concern. The purpose of this study was to evaluate the microleakage of all-ceramic inlays luted with 2 dual-polymerizing resin cements or 1 autopolymerizing resin cement in combination with different dentin adhesives. One hundred and twenty extracted human mandibular third molars were used in this study. Teeth were prepared to receive Class II MOD inlays with enamel gingival margins on 1 proximal surface and dentin gingival margins on the other surface. One hundred and twenty prepared teeth were divided into 3 groups of 40; 1 group for each resin cement: RelyX ARC, Variolink II, or Panavia 21. Each of the 3 groups were further divided into 4 dentin adhesive groups; Single Bond, ExciTE DSC, ED Primer, or Admira Bond. Each of the resin cements were used in combination with the 4 dentin adhesives, and IPS Empress ceramic inlays were placed with 12 different cement/adhesive combinations. After 1000 thermal cycles in a 5 degrees -55 degrees C water bath with a dwell time of 30 seconds, all specimens were subjected to cyclic axial mechanical loading. Then the restored teeth were stored in 0.5% basic fuchsin solution for 24 hours. The extent of dye penetration along the margins was measured with a stereomicroscope at x40 magnification. The data were evaluated statistically using repeated-measures ANOVA and Duncan tests (alpha=.05). Microleakage at dentin margins was greater than that at enamel margins (P<.05) for all groups. Variolink II and RelyX ARC resin cements showed significantly lower microleakage results than Panavia 21 with all dentin adhesives in enamel margins. For dentin margins, Variolink II/Admira Bond combination showed the lowest microleakage value in dentin (P

  9. Resin transfer molding of textile composites

    NASA Technical Reports Server (NTRS)

    Falcone, Anthony; Dursch, Harry; Nelson, Karl; Avery, William

    1993-01-01

    The design and manufacture of textile composite panels, tubes, and angle sections that were provided to NASA for testing and evaluation are documented. The textile preform designs and requirements were established by NASA in collaboration with Boeing and several vendors of textile reinforcements. The following four types of preform architectures were used: stitched uniweave, 2D-braids, 3D-braids, and interlock weaves. The preforms consisted primarily of Hercules AS4 carbon fiber; Shell RSL-1895 resin was introduced using a resin transfer molding process. All the finished parts were inspected using ultrasonics.

  10. The effect of a "resin coating" on the interfacial adaptation of composite inlays.

    PubMed

    Jayasooriya, Primali R; Pereira, Patricia N R; Nikaido, Toru; Burrow, Michael F; Tagami, Junji

    2003-01-01

    The relatively low bond strengths of resin cements to dentin may result in poor interfacial adaptation of composite inlays. This study determined whether the interfacial adaptation of composite inlays could be improved by applying an adhesive system and a low viscosity microfilled resin to the prepared cavity walls before making an impression. Ten MOD cavities were prepared on extracted human premolars with gingival margins located above and below the cemento-enamel junction. A "resin coat" consisting of a self-etching primer system (Clearfil SE Bond) and a low viscosity microfilled resin (Protect Liner F) was applied to the cavities of half of the prepared teeth, while the remaining teeth served as non-coated control specimens. All the teeth were restored with composite inlays (Estenia) fabricated by the indirect method and cemented with a dual-cured resin cement (Panavia F). After finishing the margins with superfine burs, the bonded inlays were thermocycled between 4 degrees C and 55 degrees C for 400 cycles. Specimens were sectioned with a diamond saw and the tooth-restoration interfaces were observed with a confocal laser scanning microscope. The data were analyzed with two-way ANOVA and Fisher's PLSD test (p < 0.05). The percentage length of gap formation at the dentin-restoration interface of the "resin coated" teeth (7.1 +/- 3.5) was significantly less than that of the non-coated teeth (85.7 +/- 6.7) (p < 0.05). The concept of coating the prepared cavity with an adhesive system and a low viscosity microfilled resin resulted in observing fewer gaps at the internal dentin-restoration interface compared with the non-coated specimens.

  11. Adhesion of conventional and simplified resin-based luting cements to superficial and deep dentin.

    PubMed

    Özcan, Mutlu; Mese, Ayse

    2012-08-01

    This study evaluated the bond strengths of conventional (chemically and dual-polymerized) and simplified resin-based luting cements with their corresponding adhesives to superficial dentin (SD) and deep dentin (DD). Recently extracted third molars (N = 70, n = 10 per group) were obtained and prepared for testing procedures. After using their corresponding etchants, primers, and/or adhesive systems, the conventional and simplified cements (Variolink II [group A, conventional], Bifix QM [group B, conventional], Panavia F2.0 [group C, conventional], Multilink Automix [group D, simplified], Superbond C&B [group E, conventional], Clearfil Esthetic Cement [group F, simplified], Ketac-Fil [group G, conventional]) were adhered incrementally onto the dentin surfaces using polyethylene molds (inner diameter 3.5 mm, height 5 mm) and polymerized accordingly. Resin-modified glass-ionomer cement (RMGIC) acted as the control material. Shear bond strengths (1 mm/min) were determined after 500 times of thermocycling. Kruskal-Wallis and Mann-Whitney tests were used to analyze the data (α = 0.05). Bond strength (MPa) results were significantly affected by the cement types and their corresponding adhesive systems (p ≤ 0.05). The shear bond strengths (MPa ± SD) for groups A-G were 14.6 ± 3.8, 18.9 ± 3.9, 5.5 ± 4.5, 3.1 ± 3.6, 1.1 ± 2.5, 15.5 ± 2.6, 7 ± 4.3 and 7.1 ± 5.8, 15.1 ± 7.8, 8.4 ± 7.3, 7.5 ± 7.3, 4.9 ± 5.1, 12.5 ± 2.1, 6 ± 2.6 for SD and DD, respectively. The level of dentin depth did not decrease the bond strength significantly (p > 0.05) for all cements, except for Variolink II (p < 0.05). On the SD, bond strength of resin cements with "etch-and-rinse" adhesive systems (Variolink II, Bifix QM, Super-Bond C&B) showed similar results being higher than those of the simplified ones. Simplified cements and RMGIC as control material showed inferior adhesion to superficial and deep dentin compared to conventional resin cements tested.

  12. Crack Formation in Cement-Based Composites

    NASA Astrophysics Data System (ADS)

    Sprince, A.; Pakrastinsh, L.; Vatin, N.

    2016-04-01

    The cracking properties in cement-based composites widely influences mechanical behavior of construction structures. The challenge of present investigation is to evaluate the crack propagation near the crack tip. During experiments the tension strength and crack mouth opening displacement of several types of concrete compositions was determined. For each composition the Compact Tension (CT) specimens were prepared with dimensions 150×150×12 mm. Specimens were subjected to a tensile load. Deformations and crack mouth opening displacement were measured with extensometers. Cracks initiation and propagation were analyzed using a digital image analysis technique. The formation and propagation of the tensile cracks was traced on the surface of the specimens using a high resolution digital camera with 60 mm focal length. Images were captured during testing with a time interval of one second. The obtained experimental curve shows the stages of crack development.

  13. The effect of amine-free initiator system and the polymerization type on color stability of resin cements.

    PubMed

    Ural, Çağrı; Duran, İbrahim; Tatar, Numan; Öztürk, Özgür; Kaya, İsmail; Kavut, İdris

    2016-01-01

    We investigated the short-term (4 weeks) color stability of light-cure and dual-cure resin cements. Sixty disk-shaped test specimens of adhesive resin cement (10 × 1 mm) were prepared. One feldspathic porcelain test specimen (12 × 14 × 0.8 mm) was prepared from a prefabricated ceramic block. The feldspathic sample was placed on the resin cement disk and all the measurements were performed without cementation. Specific color coordinate differences (ΔL, Δa, and Δb), and the total color differences (ΔE) were calculated after immersion in distilled water for different periods. Data were compared using one-way analysis of variance (ANOVA) (α = 0.05). The test results revealed that different chemical structures and curing modes affected the ΔE values (P < 0.05). The highest ΔE values were obtained for RelyX Unicem dual-cure cement (2.14 ± 0.40), and the lowest for NX3 light-cure cement (0.78 ± 0.34). Third generation adhesive resin cement free of tertiary amines and benzoyl peroxide showed relatively slight color change in both test groups (light-cure and dual-cure resin cement). (J Oral Sci 58, 157-161, 2016).

  14. The effect of polishing systems on microleakage of tooth coloured restoratives: Part 1. Conventional and resin-modified glass-ionomer cements.

    PubMed

    Yap, A U; Tan, S; Teh, T Y

    2000-02-01

    The purpose of this in vitro study was to investigate the effect of polishing systems on the microleakage of conventional and resin-modified glass-ionomer cements. Class V cavities were prepared at the cemento-enamel junction of 80 freshly extracted posterior teeth. The prepared teeth were randomly divided into two groups and restored with conventional or resin-modified glass-ionomer cements. The restored teeth were stored in distilled water at 37 degrees C for 1 week after removal of excess restorative with diamond finishing burs. The restored teeth were then divided into four groups of 10 and finished and polished using the following systems: Two Striper MFS; Sof-Lex XT; Enhance Composite Finishing and Polishing System; Shofu Composite Finishing Kit. The finished restorations were subjected to dye penetration testing. Results showed that the microleakage at dentin margins of conventional glass-ionomer cements and enamel margins of resin-modified glass-ionomer cements are significantly affected by the different polishing systems.

  15. Short-term clinical evaluation of a resin-modified glass-ionomer luting cement.

    PubMed

    Yoneda, Sumie; Morigami, Makoto; Sugizaki, Jumpei; Yamada, Toshimoto

    2005-01-01

    Resin-reinforced glass-ionomer cements were developed by adding resin components to conventional glass-ionomer cement. This improved physical properties and bonding characteristics. FujiCEM is the first paste-paste-type resin-modified glass-ionomer luting cement that enables consistent mixture. The purpose of this study was to evaluate the short-term clinical performance of FujiCEM, which was used for final cementation of indirect restorations, such as inlays, crowns, and fixed partial dentures. A total of 290 restorations (165 crowns, 71 inlays, 15 onlays, 36 fixed partial dentures, 3 implant superstructures) were placed in 268 patients (137 males, 131 females) with a mean age of 54.4+/-13.0 years. Restorations were luted with FujiCEM mixed for 10 seconds after the teeth surfaces were treated with a conditioner containing 10% citric acid and 2% ferric chloride for 20 seconds, washed, and dried with gentle air flow. Out of the investigated 337 teeth, 99 (29%) teeth were vital, and 238 (71%) were nonvital. These restorations were followed up for a period of 21 months. All the restorations were evaluated for postoperative sensitivity, secondary caries, gingival condition, and pocket depth. No clinical failures (eg, dislodgment, secondary caries, irritation of soft tissue, and postoperative sensitivity) were observed. FujiCEM had promising clinical performance with inlays, crowns, onlays, fixed partial dentures, and implant superstructures at 21 months after service.

  16. Leaching properties of Cs-134 from spent ion exchange resins solidified in cement-biochar matrix

    NASA Astrophysics Data System (ADS)

    Laili, Zalina; Yasir, Muhamad Samudi; Yusof, Mohd Abd Wahab

    2016-11-01

    The leaching properties of Cs-134 from spent ion exchange resins solidified in cement-biochar matrix were investigated. The leaching test was conducted according to ANSI/ANS 16.1 method. The leachants used in this experiment were rainwater, groundwater and seawater. After each leach period, the activity of Cs-134 was measured using gamma spectrometry. Based on all the experimental data, the cumulative leach fraction and leachability index were calculated. The compressive strength test of the cement-biochar-spent resins matrices after 90 days of leaching test were also measured. The result showed that the release of Cs-134 from the cement-biochar-spent resins matrices in rainwater, groundwater and seawater were found lower than their control specimen (without biochar). The leachability indices of Cs-134 were found acceptable (i.e. 6) for solidified radioactive waste. It was also observed that the compressive strengths were increased after the leaching test. Thus, this study has shown that the presence of biochar in cement matrix may play a role in retained the Cs-134 in the waste form.

  17. Comparison of the push-out strength of two fiber post systems dependent on different types of resin cements.

    PubMed

    Dimitrouli, Maria; Geurtsen, Werner; Lührs, Anne-Katrin

    2012-06-01

    The purpose of this study was to compare the push-out strength of glass fiber posts dependent on the resin cement. One hundred human teeth were divided into five groups (n = 20). Two glass fiber post systems (DT Light SL (DTSL) and RelyX Fiber Post (RF)) were used. DTSL posts were cemented with one "etch & rinse" system (ER) or one of three self-adhesive resin cements (SA). The RF posts were cemented with RelyX Unicem. Afterwards, half of the specimens were thermocycled (TC; 5°C/55°C, 5,000 cycles). All specimens were cut into disks (thickness, 2 mm). The push-out test was performed (crosshead speed, 1 mm/min), fracture types were determined (×25 and ×40 magnification), and statistical analysis was performed (one-way analysis of variance (ANOVA), Scheffe test, p < 0.05). One-way ANOVA showed a significant influence of the resin cement on the push-out strength of the glass fiber posts before thermocycling (p < 0.001). After TC, no significant differences were detected. Microscopic evaluation showed mainly adhesive failures between post and cement for ER or mixed fractures for SA. The bond strength of adhesively cemented glass fiber posts is not dependent on the type of resin cement after TC. The use of SA can lead to bond strength values comparable to ER. Self-adhesive resin cements could be used just as well as resin cements with "etch & rinse" adhesive systems for the cementation of glass fiber posts.

  18. The optical effect of composite luting cement on all ceramic crowns.

    PubMed

    Chang, John; Da Silva, John D; Sakai, Maiko; Kristiansen, Joshua; Ishikawa-Nagai, Shigemi

    2009-12-01

    To investigate the optical properties of resin-based composite cements and assess their effects on the color of all ceramic crowns. Optical properties of three cements (Variolink II, Esthetic, Nexus II) were analyzed using disk samples (100 microm and 1.0 mm diameter) based on CIELAB color coordinates L*a*b*C* and opacity index. Empress (Ivoclar) and Katana (Noritake) crowns were filled with four different shades of die material (IPS die material ST3, ST5, ST9 and Tetric Evo Ceram Bleach XL). The shade of the crowns was measured with each of three shades of composite cement (Chroma, Bleach and Opaque, Esthetic cement). ST3 and glycerin served as the control. Color differences were calculated in incisal, body and cervical regions. In the cervical and body regions, the color change caused by the bleach abutment could not be altered by using different colored cements for the Empress and Katana crowns. In the cervical region, the color changes effected by the dark brown abutment could be reversed with the bleach luting cement; in the body region this was true only for the Empress crown. Neither different abutment colors nor different luting cement shades resulted in perceptible color changes in the incisal regions. Mean DeltaE* values in the three areas (incisal, body, cervical) were significantly different (p-value<0.01); in the cervical and body regions Empress mean DeltaE* was significantly larger (p<0.01). The composite cements evaluated in this study created perceptible color differences with particular combinations of die material, cement and ceramic crown.

  19. Does hybridized dentin affect bond strength of self-adhesive resin cement?

    PubMed Central

    do Valle, Accácio-Lins; de Andrade, Gustavo-Henrique-Barbosa; Vidotti, Hugo-Alberto; Só, Marcus-Vinícius-Reis; Pereira, Jefferson-Ricardo

    2016-01-01

    Background Evaluate the influence of different hybridization bonding techniques of a self-adhesive resin cement. Material and Methods 30 human health molars were divided into six groups (n=10). The specimens received three longitudinal sections, allowing insertion of central cuts in PVC matrices. Each group received a different dentin pretreatment according to the manufacturer’s recommendations, except the control group (G1), as follows. G2 - a 3-step total-etch adhesive system (Optibond™ FL, Kerr); G3 - a 3-step total-etch adhesive system (Adper™ Scotchbond™ Multi-Purpose, 3M ESPE); G4 - a 2-step total-etch adhesive system (Adper™ Single Bond 2, 3M ESPE); G5 - a single-step self-etching system (Bond Force, Tokuyama); and G6 - universal bonding system (Single Bond Universal, 3M ESPE). Then, cylinders made of self-adhesive resin cement with polypropylene matrix was cemented in all groups (RelyX U200, 3M ESPE). Bond strength was assessed by submitting the specimens to micro-shear test and was characterized according to the fracture pattern observed through optical microscopy. Results The results were submitted to the Kruskal-Wallis test, which indicated a statistically significant difference between the groups (p=0.04), and Tukey’s multiple comparisons, which indicated a statistically significant difference between G1 and G3 (p<0.05). The microscopic analysis revealed a high prevalence of adhesive failures, followed by mixed fractures, and cohesive failures in the dentin. Conclusions The use of a previous dentin hybridization protocol is able to increase adhesive bonding resistance of self-adhesive resin cement, especially when used Adper™ Scotchbond™ Multi-Purpose system. Key words:Bonding, self-adhesive resin cement, adhesive systems, microshear. PMID:27703609

  20. Effects of post surface conditioning before silanization on bond strength between fiber post and resin cement

    PubMed Central

    Ranjbarian, Parisa

    2013-01-01

    PURPOSE Post surface conditioning is necessary to expose the glass fibers to enable bonding between fiber post and resin cement. The purpose of the present study was to evaluate the effect of different surface conditioning on tensile bond strength (TBS) of a glass fiber reinforced post to resin cement. MATERIALS AND METHODS In this in vitro study, 40 extracted single canal central incisors were endodontically treated and post spaces were prepared. The teeth were divided into four groups according to the methods of post surface treatment (n=10): 1) Silanization after etching with 20% H2O2, 2) Silanization after airborne-particle abrasion, 3) Silanization, and 4) No conditioning (Control). Adhesive resin cement (Panavia F 2.0) was used for cementation of the fiber posts to the root canal dentin. Three slices of 3 mm thick were obtained from each root. A universal testing machine was used with a cross-head speed of 1 mm/minute for performing the push-out tests. Two-way ANOVA and Tukey post hoc tests were used for analyzing data (α=0.05). RESULTS It is revealed that different surface treatments and root dentin regions had significant effects on TBS, but the interaction between surface treatments and root canal regions had no significant effect on TBS. There was significant difference among H2O2 + Silane Group and other three groups. CONCLUSION There were significant differences among the mean TBS values of different surface treatments. Application of hydrogen peroxide before silanization increased the bond strength between resin cements and fiber posts. The mean TBS mean values was significantly greater in the coronal region of root canal than the middle and apical thirds. PMID:23755337

  1. Diffusion of HEMA from resin cements through different dentin thicknesses in vitro.

    PubMed

    Tak, Onjen; Usumez, Aslihan

    2015-10-01

    To evaluate the in vitro diffusion of 2-hydroxyethyl methacrylate (HEMA) from the resin cements through different thicknesses of dentin using high-performance liquid chromatography (HPLC) at two time intervals. 60 freshly extracted caries- and restoration-free human third molar teeth were used in this study. Standardized box-shaped Class I inlay cavities (6 mm long, 3 mm wide and 2 mm deep) were prepared in all teeth with a high-speed handpiece mounted on a standard cavity machine. The remaining dentin thickness (RDT) between the pulpal wall of the cavity and the roof of the pulp chamber was measured at multiple points for each tooth so that two main groups of 30 teeth each were prepared with an RDT range 0.5-1.9 and 2.0-3.5 mm, respectively. Each of these main groups was divided into three subgroups (n = 10), according to the resin cements tested (RelyX ARC, Panavia F 2.0, Multilink Automix). Lithium disilicate-based ceramic inlays (IPS Empress 2) were manufactured to restore the prepared cavities. A polypropylene chamber containing 1 ml distilled water was attached to the cemento-enamel junction of each tooth. Then, ceramic inlays were cemented with resin cements according to the manufacturers' instructions. Water elutes were analyzed by HPLC at 4.32 minutes and 24 hours. HEMA diffusion amounts were analyzed using three-way ANOVA and Tukey's HSD tests (P < 0.05). HEMA was detected in the pulp chamber elutes of all the teeth. The amounts of released HEMA did not significantly differ between time periods. The diffused HEMA amounts were significantly different between the RDT of 0.5-1.9 and 2.0-3.5 mm (P < 0.05) and between resin cements tested (P < 0.05). Decreasing RDT substantially increased the amount of HEMA that diffused through the dentin to the pulp space.

  2. Effects of Immediate Dentin Sealing and Pulpal Pressure on Resin Cement Bond Strength and Nanoleakage.

    PubMed

    Santana, V B; de Alexandre, R S; Rodrigues, J A; Ely, C; Reis, A F

    2016-01-01

    The object of this study was to evaluate the simulated pulpal pressure (SPP) and immediate dentin sealing technique (IDS) effects on the microtensile bond strength (μTBS) and nanoleakage of interfaces produced by different luting agents. Two self-adhesive luting agents (RelyX Unicem [UC] and Clearfil SA Luting [SA]) and two conventional luting agents (Rely X ARC [RX] and Panavia F [PF]) were evaluated. Eighty human molars were divided in four groups according to luting agents. Each group was subdivided according to SPP (with or without) and dentin sealing (immediate or delayed) using Clearfil SE Bond (n=5). After IDS was performed, specimens were stored in water for seven days before luting procedures. Composite blocks were luted according to the manufacturers' instructions. One half of the specimens were subjected to 15 cm H2O of hydrostatic pressure for 24 hours before cementation procedures and continued for 24 hours afterward. Then, restored teeth were sectioned into beams and tested in tension. Two additional teeth per group were prepared for nanoleakage evaluation with scanning electron microscopy. Bond strength data were statistically analyzed by three-way analysis of variance and Tukey test. μTBS of RX decreased when it was subjected to SPP without IDS. However, in the same conditions, μTBS of UC increased. The IDS prevented negative influence of SPP on μTBS of RX and PF; however, a decrease in μTBS of SA and UC was observed. Except for RX, IDS increased μTBS for all resin cements. Independent of SPP, the IDS technique obtained higher μTBS for PF, SA, and UC and did not influence RX μTBS.

  3. Film Thickness and Flow Properties of Resin-Based Cements at Different Temperatures

    PubMed Central

    Bagheri, R

    2013-01-01

    Statement of Problem: For a luting agent to allow complete seating of prosthetic restorations, it must obtain an appropriate flow rate maintaining a minimum film thickness. The performance of recently introduced luting agents in this regard has not been evaluated. Purpose: To measure and compare the film thickness and flow properties of seven resin-containing luting cements at different temperatures (37°C, 25°C and10°C). Material and Methods: Specimens were prepared from five resin luting cements; seT (SDI), Panavia F (Kuraray), Varioloink II (Ivoclar), Maxcem (Kerr), Nexus2 (Kerr) and two resin-modified glass-ionomer luting cements (RM-GICs); GC Fuji Plus (GC Corporation), and RelyX Luting 2 (3 M/ESPE). The film thickness and flow rate of each cement (n=15) was determined using the test described in ISO at three different temperatures. Results: There was a linear correlation between film thickness and flow rate for most of the materials. Cooling increased fluidity of almost all materials while the effect of temperature on film thickness was material dependent. At 37°C, all products revealed a film thickness of less than 25µm except for GC Fuji Plus. At 25°C, all cements produced a film thickness of less than 27 µm except for seT. At 10°C, apart from seT and Rely X Luting 2, the remaining cements showed a film thickness smaller than 20 µm. Conclusion: Cooling increased fluidity of almost all materials, however. the film thickness did not exceed 35 µm in either condition, in spite of the lowest film thickness being demonstrated at the lowest temperature. PMID:24724120

  4. Evaluation of shear bond strength between dual cure resin cement and zirconia ceramic after thermocycling treatment

    PubMed Central

    Lee, Jung-Jin; Kang, Cheol-Kyun; Oh, Ju-Won

    2015-01-01

    PURPOSE This study was performed to evaluate shear bond strength (SBS) between three dual-cured resin cements and silica coated zirconia, before and after thermocycling treatment. MATERIALS AND METHODS Sixty specimens were cut in 15 × 2.75 mm discs using zirconia. After air blasting of 50 µm alumina, samples were prepared by tribochemical silica coating with Rocatec™ plus. The specimens were divided into three groups according to the dual-cure resin cement used: (1) Calibra silane+Calibra®, (2) Monobond S+Multilink® N and (3) ESPN sil+RelyX™ Unicem Clicker. After the resin cement was bonded to the zirconia using a Teflon mold, photopolymerization was carried out. Only 10 specimens in each group were thermocycled 6,000 times. Depending on thermocycling treatment, each group was divided into two subgroups (n=10) and SBS was measured by applying force at the speed of 1 mm/min using a universal testing machine. To find out the differences in SBS according to the types of cements and thermocycling using the SPSS, two-way ANOVA was conducted and post-hoc analysis was performed by Turkey's test. RESULTS In non-thermal aged groups, SBS of Multilink group (M1) was higher than that of Calibra (C1) and Unicem (U1) group (P<.05). Moreover, even after thermocycling treatment, SBS of Multilink group (M2) was higher than the other groups (C2 and U2). All three cements showed lower SBS after the thermocycling than before the treatments. But Multilink and Unicem had a significant difference (P<.05). CONCLUSION In this experiment, Multilink showed the highest SBS before and after thermocycling. Also, bond strengths of all three cements decreased after thermocycling. PMID:25722830

  5. Water sorption and water solubility of self-etching and self-adhesive resin cements.

    PubMed

    Petropoulou, Aikaterini; Vrochari, Areti D; Hellwig, Elmar; Stampf, Susanne; Polydorou, Olga

    2015-11-01

    The long-term success of indirect restorations depends on the clinical behavior of luting cements. In the oral environment, properties such as water sorption and solubility negatively affect the cements' clinical performance over time, jeopardizing the restoration's longevity. The purpose of this in vitro study was to compare the water sorption and solubility characteristics of self-etching, self-adhesive, and conventional resin cements. One conventional (Calibra), 1 self-etching (Panavia F), and 2 self-adhesive (Clearfil SA, G-Cem Automix) dual-polymerized resin cements were used. Fourteen disks of each material were prepared. Water sorption and solubility were calculated according to International Organization for Standards (ISO) specification 4049:2009. According to the water sorption test, all materials were found to interact with water. No statistically significant differences were found between the water sorption of Panavia F and Clearfil SA (P=.911). These cements exhibited higher water sorption values than the other materials (P<.05), whereas Calibra exhibited the lowest values (P<.05). Statistically significant differences were found among all materials regarding their water solubility (P<.05). Panavia F and Clearfil SA were found to have higher solubility values than the other materials. G-Cem Automix and Calibra exhibited negative solubility. However, all water sorption and solubility values were below the threshold values proposed by the ISO standard. Within the limitations of the present in vitro study, the interaction of resin cements with water is not type-related (conventional, self-etching, or self-adhesive). Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  6. Influence of different drying methods on microtensile bond strength of self-adhesive resin cements to dentin.

    PubMed

    Kim, Young Kyung; Min, Bong Ki; Son, Jun Sik; Kim, Kyo-Han; Kwon, Tae-Yub

    2014-11-01

    This study investigated the effect of different drying methods of dentin surface on the bonding efficacy of self-adhesive resin cements (SRCs). Three SRCs (RelyX U200, RU; Maxcem Elite, ME; and BisCem, BC) and one resin-modified glass ionomer cement (RelyX Luting 2, RL) were used. The characteristics of the materials were evaluated using thermogravimetric analysis and surface roughness and contact angle measurements. Human dentin surfaces were finished with 600-grit silicon carbide paper and assigned to three groups according to these drying methods: ethanol dehydration, drying by waiting for 10 s after blot-drying and blot-drying. The four cements were used for luting composite overlays to the dried dentin. After 24 h storage at 37°C and 100% relative humidity, stick-shaped specimens with a cross-sectional area of 0.8 mm(2) were prepared and stressed to failure in tension at a crosshead speed of 0.5 mm/min (n = 27). Failure modes of fractured specimens were assessed by optical and scanning electron microscopy. RL was the most hydrophilic, followed by BC and ME and then RU. All the luting cements luted to ethanol-dehydrated dentin showed zero bond strengths. For the three SRCs, drying by waiting produced higher microtensile bond strengths than blot-drying. RU showed the best bonding performance in the above two dentin conditions. RL showed significantly higher bond strength in blot-drying condition than in drying-by-waiting (p < 0.001). This study suggests that dentin surface moisture has a crucial effect on the bond strength of SRCs.

  7. Influence of glass particle size of resin cements on bonding to glass ceramic: SEM and bond strength evaluation.

    PubMed

    Valentini, Fernanda; Moraes, Rafael R; Pereira-Cenci, Tatiana; Boscato, Noéli

    2014-05-01

    This study investigated the effect of the filler particle size (micron or submicron) of experimental resin cements on the microtensile bond strength to a glass-ceramic pretreated with hydrofluoric acid (HFA) etching or alumina airborne-particle abrasion (AA). Cements were obtained from a Bis-GMA/TEGDMA mixture filled with 60 mass% micron-sized (1 ± 0.2 µm) or submicron-sized (180 ± 30 µm) Ba-Si-Al glass particles. Ceramic blocks (PM9; VITA) were treated with 10% HFA for 60 s or AA for 15 s. Silane and adhesive were applied. Ceramic blocks were bonded to resin composite blocks (Z250; 3M ESPE) using one of the cements. Bonded specimens were sectioned into beams (n = 20/group) and subjected to microtensile bond strength tests. Data were analyzed using ANOVA and Student-Newman-Keuls' tests (5%). Failure modes were classified under magnification. Morphologies of the treated ceramic surfaces and bonded interfaces were evaluated by scanning electron microscopy. The HFA-submicron group had lower bond strengths than the other groups. All AA-submicron specimens debonded prematurely. Mixed failures were predominant for HFA groups, whereas interfacial failures predominated for AA groups. SEM revealed a honeycomb-like aspect in the HFA-treated ceramic, whereas the AA-treated groups showed an irregular retentive pattern. Continuity of cement infiltration along the bonded interface was more uniform for HFA-treated compared to AA-treated specimens. Cracks toward the bulk of the ceramic were observed in AA-treated specimens. Particle size significantly influenced the ceramic bond strength, whereas surface treatment had a minor effect.

  8. Effect of curing mode on the hardness of dual-cured composite resin core build-up materials.

    PubMed

    Arrais, César Augusto Galvão; Kasaz, Aline de Cerqueira; Albino, Luís Gustavo Barrote; Rodrigues, José Augusto; Reis, Andre Figueiredo

    2010-01-01

    This study evaluated the Knoop Hardness (KHN) values of two dual-cured composite resin core build-up materials and one resin cement exposed to different curing conditions. Two dual-cured core build-up composite resins (LuxaCore-Dual, DMG; and FluoroCore2, Dentsply Caulk), and one dual-cured resin cement (Rely X ARC, 3M ESPE) were used in the present study. The composite materials were placed into a cylindrical matrix (2 mm in height and 3 mm in diameter), and the specimens thus produced were either light-activated for 40 s (Optilux 501, Demetron Kerr) or were allowed to self-cure for 10 min in the dark (n = 5). All specimens were then stored in humidity at 37 degrees C for 24 h in the dark and were subjected to KHN analysis. The results were submitted to 2-way ANOVA and Tukey's post-hoc test at a pre-set alpha of 5%. All the light-activated groups exhibited higher KHN values than the self-cured ones (p = 0.00001), regardless of product. Among the self-cured groups, both composite resin core build-up materials showed higher KHN values than the dual-cured resin cement (p = 0.00001). LuxaCore-Dual exhibited higher KHN values than FluoroCore2 (p = 0.00001) when they were allowed to self-cure, while no significant differences in KHN values were observed among the light-activated products. The results suggest that dual-cured composite resin core build-up materials may be more reliable than dual-cured resin cements when curing light is not available.

  9. A Comparative Evaluation of the Effect of Resin based Sealers on Retention of Crown Cemented with Three Types of Cement – An In Vitro Study

    PubMed Central

    Sharma, Sumeet; Patel, J.R.; Sethuraman, Rajesh; Singh, Sarbjeet; Wazir, Nikhil Dev; Singh, Harvinder

    2014-01-01

    Aim: In an effort to control postoperative sensitivity, dentin sealers are being applied following crown preparations, with little knowledge of how crown retention might be affected. A previous study demonstrated no adverse effect when using a gluteraldehyde-based sealer, and existing studies have shown conflicting results for resin-based products. This study determined the retention of the casting cemented with three types of cement, with and without use of resin sealers and it determined the mode of failure. Materials and Methods: Extracted human molars (n=60) were prepared with a flat occlusal, 20-degree taper, and 4-mm axial length. The axial surface area of each preparation was determined and specimens were distributed equally among groups (n=10). A single-bottle adhesive system (one step single bottle adhesive system) was used to seal dentin, following tooth preparation. Sealers were not used on the control specimens. The test castings were prepared by using Ni-Cr alloy for each specimen and they were cemented with a seating force of 20 Kg by using either Zinc Phosphate (Harvard Cement), Glass Ionomer (GC luting and lining cement,GC America Inc.) and modified-resin cement (RelyXTMLuting2). Specimens were thermocycled for one month and were then removed along the path of insertion by using a Universal Testing Machine at 0.5 mm/min. A single-factor ANOVA was used with a p value of .05. The nature of failure was recorded and the data was analyzed by using Chi-square test. Results: Mean dislodgement stress for Zinc phosphate (Group A) was 24.55±1.0 KgF and that for zinc phosphate with sealer (Group D) was 14.65±0.8 KgF. For glass ionomer (Group B) without sealer, the mean value was 32.0±1.0 KgF and mean value for glass ionomer with sealer (Group E) was 37.90±1.0 KgF. The mean value for modified resin cement (Group C) was 44.3±1.0KgF and that for modified resins with sealer (Group F) was 57.2±1.2 KgF. The tooth failed before casting dislodgement in 8 to 10

  10. The influence of a packable resin composite, conventional resin composite and amalgam on molar cuspal stiffness.

    PubMed

    Molinaro, J D; Diefenderfer, K E; Strother, J M

    2002-01-01

    Packable resin composites may offer improved properties and clinical performance over conventional resin composites or dental amalgam. This in vitro study examined the cuspal stiffness of molars restored with a packable resin composite, a conventional posterior microfilled resin composite and amalgam. Forty-eight intact caries-free human third molars were distributed into four treatment groups (n=12) so that the mean cross-sectional areas of all groups were equal. Standardized MOD cavity preparations were made and specimens restored using one of four restorative materials: (1) a spherical particle amalgam (Tytin); (2) Tytin amalgam with a dentin adhesive liner (OptiBond Solo); (3) a conventional microfilled posterior resin composite (Heliomolar); (4) a packable posterior resin composite (Prodigy Posterior). Cuspal stiffness was measured using a Bionix 200 biomaterials testing machine (MTS). Specimens were loaded vertically to 300 N at a crosshead speed of 1.0 mm/minute. Stiffness was measured at 10 intervals: (1) prior to cavity preparation (intact); (2) following cavity preparation, but before restoration; (3) seven days after restoration; then (4) 1, 2, 3, 4, 5, 6 and 12 months after restoration. All specimens were stored at 37 degrees C in deionized water throughout the study and thermocycled (5 degrees/55 degrees C; 2000 cycles) monthly for 12 months. Repeated Measures ANOVA revealed significant differences among treatment groups over time (p<0.0001). Cavity preparation reduced cuspal stiffness by more than 60%. At 12 months, the cuspal stiffness of restored teeth was, on average, 58% that of intact specimens. Neither the packable nor the conventional resin composite increased cuspal stiffness over that of amalgam.

  11. Fluoride release from aged resin composites containing fluoridated glass filler.

    PubMed

    Itota, Toshiyuki; Al-Naimi, Omar T; Carrick, Thomas E; Yoshiyama, Masahiro; McCabe, John F

    2005-11-01

    The aim of this study was to evaluate the fluoride release from aged resin composites containing different types of fluoridated glass filler into both deionized distilled water and lactic acid solution. Three resin composites, UniFil S (containing fluoro-alumino-silicate glass filler), Reactmer (containing pre-reacted glass-ionomer filler) and Beautifil (containing both types of fillers) were used. A conventional glass-ionomer cement, Ketac-Fil, was used as a control. Five disk specimens of each material were prepared and aged in water for 10 weeks. After aging, specimens were immersed in deionized distilled water for a further 6 days and then in aqueous lactic acid (pH 4.0) for 2 days. This process was repeated twice more and the specimens were subsequently immersed in water for a further 12 days. Fluoride release was measured every 2 days throughout the post-aging period. The amount of fluoride release for aged UniFil S and Beautifil markedly increased in acid solution compared with water storage. The difference was not so great for aged Reactmer and Ketac-Fil. UniFil S and Beautifil gave significantly greater fluoride release in water following immersion in acid solution (p<0.05, two-way ANOVA and Scheffe's test), but Reactmer and Ketac-Fil showed no such increase in fluoride release after acid immersion. These results suggested that the nature of the fluoridated glass filler within a resin composite and the way in which the material interacts with an acidic environment affected the amount of fluoride released.

  12. Effect of etch-and-rinse and self-etching adhesive systems on hardness uniformity of resin cements after glass fiber post cementation

    PubMed Central

    Grande da Cruz, Fernanda Zander; Grande, Christiana Zander; Roderjan, Douglas Augusto; Galvão Arrais, César Augusto; Bührer Samra, Adriana Postiglione; Calixto, Abraham Lincoln

    2012-01-01

    Objective To evaluate the effects of etch-and-rinse and self-etching adhesive systems on Vickers hardness (VHN) uniformity of dual-cured resin cements after fiber post cementation. Methods: Fifty glass fiber posts were cemented into bovine roots using the following cementing systems: Prime&Bond 2.1 Dual Cure and Enforce with light-activation (PBDC-LCEN); Prime&Bond 2.1 and Enforce with light-activation (PB-CLEN); Prime&Bond 2.1 Dual Cure and Enforce without light exposure (PBDC-SCEN); ED Primer and Panavia 21 (ED-SCPN); and Clearfil SE Bond and Panavia 21 (CF-SCPN). The roots were stored in distilled water for 72 h and transversely sectioned into thirds (coronal, medium, and apical). The VHN values of the resin cement layers were measured close to the post and to the dentin wall on the transversely sectioned flat surfaces. The results were analyzed by three-way repeated measures analysis of variance (ANOVA) and Tukey’s post-hoc test (pre-set alpha of 5%). Results: Most resin cements presented higher VHN values near the post than near the dentin wall. The ED-SCPN group showed the highest VHN values regardless of the root third, while the self-cured group PBDC-SCEN exhibited the lowest values. The resin cements from the light-activated groups PBDC-LCEN and PB-LCEN showed lower VHN values at the apical third than at the coronal third. The VHN values were not influenced by the root third in self-cured groups PBDC-SCEN, ED-SCPN, and ED-SCPN. Conclusion: Depending on the product, bonding agents might promote changes in hardness uniformity of resin cements after post cementation. PMID:22904652

  13. Nanomechanical properties of dental resin-composites.

    PubMed

    El-Safty, S; Akhtar, R; Silikas, N; Watts, D C

    2012-12-01

    To determine by nanoindentation the hardness and elastic modulus of resin-composites, including a series with systematically varied filler loading, plus other representative materials that fall into the categories of flowable, bulk-fill and conventional nano-hybrid types. Ten dental resin-composites: three flowable, three bulk-fill and four conventional were investigated using nanoindentation. Disc specimens (15mm×2mm) were prepared from each material using a metallic mold. Specimens were irradiated in the mold at top and bottom surfaces in multiple overlapping points (40s each) with light curing unit at 650mW/cm(2). Specimens were then mounted in 3cm diameter phenolic ring forms and embedded in a self-curing polystyrene resin. After grinding and polishing, specimens were stored in distilled water at 37°C for 7 days. Specimens were investigated using an Agilent Technologies XP nanoindenter equipped with a Berkovich diamond tip (100nm radius). Each specimen was loaded at one loading rate and three different unloading rates (at room temperature) with thirty indentations, per unloading rate. The maximum load applied by the nanoindenter to examine the specimens was 10mN. Dependent on the type of the resin-composite material, the mean values ranged from 0.73GPa to 1.60GPa for nanohardness and from 14.44GPa to 24.07GPa for elastic modulus. There was a significant positive non-linear correlation between elastic modulus and nanohardness (r(2)=0.88). Nonlinear regression revealed a significant positive correlation (r(2)=0.62) between elastic moduli and filler loading and a non-significant correlation (r(2)=0.50) between nanohardness and filler loading of the studied materials. Varying the unloading rates showed no consistent effect on the elastic modulus and nanohardness of the studied materials. For a specific resin matrix, both elastic moduli and nanohardness correlated positively with filler loading. For the resin-composites investigated, the group-average elastic

  14. Degree of conversion and bond strength of resin-cements to feldspathic ceramic using different curing modes

    PubMed Central

    NOVAIS, Veridiana Resende; RAPOSO, Luís Henrique Araújo; de MIRANDA, Rafael Resende; LOPES, Camila de Carvalho Almança; SIMAMOTO, Paulo Cézar; SOARES, Carlos José

    2017-01-01

    Abstract Resin cements have led to great advances in dental ceramic restoration techniques because of their ability to bond to both dental structures and restorative materials. Objective The aim of this study was to assess the performance of resin cements when different curing modes are used, by evaluating the degree of conversion and bond strength to a ceramic substrate. Material and Methods Three resin cements were evaluated, two dual-cured (Variolink II and RelyX ARC) and one light-cured (Variolink Veneer). The dual-cured resin cements were tested by using the dual activation mode (base and catalyst) and light-activation mode (base paste only). For degree of conversion (DC) (n=5), a 1.0 mm thick feldspathic ceramic disc was placed over the resin cement specimens and the set was light activated with a QTH unit. After 24 h storage, the DC was measured with Fourier transform infrared spectroscopy (FTIR). For microshear bond strength testing, five feldspathic ceramic discs were submitted to surface treatment, and three cylindrical resin cement specimens were bonded to each ceramic surface according to the experimental groups. After 24 h, microshear bond testing was performed at 0.5 mm/min crosshead speed until the failure. Data were submitted to one-way ANOVA followed by Tukey test (p<0.05). Scanning electron microscopy (SEM) was used for classifying the failure modes. Results Higher DC and bond strength values were shown by the resin cements cured by using the dual activation mode. The Variolink II group presented higher DC and bond strength values when using light-activation only when compared with the Variolink Veneer group. Conclusion The base paste of dual-cured resin cements in light-activation mode can be used for bonding translucent ceramic restorations of up to or less than 1.0 mm thick. PMID:28198977

  15. Effect of Curing Mode on Shear Bond Strength of Self-Adhesive Cement to Composite Blocks

    PubMed Central

    Kim, Jin-Young; Cho, Ga-Young; Roh, Byoung-Duck; Shin, Yooseok

    2016-01-01

    To overcome the disadvantages of computer-aided design/computer-aided manufacturing (CAD/CAM) processed indirect restorations using glass-ceramics and other ceramics, resin nano ceramic, which has high strength and wear resistance with improved polish retention and optical properties, was introduced. The purpose of this study was to evaluate the shear bond strength and fracture pattern of indirect CAD/CAM composite blocks cemented with two self-etch adhesive cements with different curing modes. Sand-blasted CAD/CAM composite blocks were cemented using conventional resin cement, Rely X Ultimate Clicker (RXC, 3M ESPE, St. Paul, MN, USA) with Single Bond Universal (SB, 3M ESPE, St. Paul, MN, USA) for the control group or two self-adhesive resin cements: Rely X U200 (RXU, 3M ESPE, St. Paul, MN, USA) and G-CEM Cerasmart (GC, GC corporation, Tokyo, Japan). RXU and GC groups included different curing modes (light-curing (L) and auto-curing (A)). Shear bond strength (SBS) analyses were performed on all the specimens. The RXC group revealed the highest SBS and the GC A group revealed the lowest SBS. According to Tukey’s post hoc test, the RXC group showed a significant difference compared to the GC A group (p < 0.05). For the curing mode, RXU A and RXU L did not show any significant difference between groups and GC A and GC L did not show any significant difference either. Most of the groups except RXC and RXU L revealed adhesive failure patterns predominantly. The RXC group showed a predominant cohesive failure pattern in their CAD/CAM composite, LavaTM Ultimate (LU, 3M ESPE, St. Paul, MN, USA). Within the limitations of this study, no significant difference was found regarding curing modes but more mixed fracture patterns were showed when using the light-curing mode than when using the self-curing mode. PMID:28773334

  16. Recycling of ladle slag in cement composites: Environmental impacts.

    PubMed

    Serjun, Vesna Zalar; Mladenovič, Ana; Mirtič, Breda; Meden, Anton; Ščančar, Janez; Milačič, Radmila

    2015-09-01

    In the present work compact and ground cement composites in which 30% of cement by mass was replaced by ladle slag were investigated for their chemical and physico-mechanical properties. To evaluate long-term environmental impacts, leachability test based on diffusion, which combined both, diffusion and dissolution of contaminants, was performed in water and saline water. Total element concentrations and Cr(VI) were determined in leachates over a time period of 180days. At the end of the experiment, the mineralogical composition and the physico-mechanical stability of cement composites was also assessed. The results revealed that Cr(III) and Cr(VI) were immobilized by the hydration products formed in the cement composites with the addition of ladle slag. Cr(VI) content originating from the cement was also appreciably reduced by Fe(II) from minerals present in the added ladle slag, which thus had significant positive environmental effects. Among metals, only Mo and Ba were leached in elevated concentrations, but solely in ground cement composites with the addition of ladle slag. Lower V concentrations were observed in leachates of ground than compact composite. It was demonstrated that the presence of ladle slag in cement composites can even contribute to improved mortar resistance. The investigated ladle slag can be successfully implemented in cement composites as supplementary cementitious material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Bond durability of self-adhesive composite cements to dentine.

    PubMed

    Suyama, Yuji; de Munck, Jan; Cardoso, Marcio Vivan; Yamada, Toshimoto; Van Meerbeek, Bart

    2013-10-01

    Clinically, the most easy-to-use composite cements are the so-called self-adhesive composite cements (SAC's). Hardly any data is however today available on the long-term bonding effectiveness of such luting composites. The purpose of this study was to evaluate the bond durability of different composite cements used to lute feldspathic ceramic blocks onto dentine. Four SAC's (Clearfil SA Cement, Kuraray; G-CEM, GC; SmartCem2, Dentsply; Unicem 3M ESPE), one 'self-etch' (Clearfil Esthetic Cement, Kuraray) and one 'etch-and-rinse' (Variolink ll, Ivoclar-Vivadent) multi-step composite cement were used to lute feldspathic ceramic blocks (Vita Mark II, Vita) onto dentine surfaces. Teeth were distributed randomly in 24 experimental groups according to two different surface-preparation techniques ('SMEAR-COVERED' versus 'SMEAR-FREE') and storage conditions ('IMMEDIATE' versus 'AGED'). Failure patterns were evaluated with a stereomicroscope, and afterwards imaged using Feg-SEM. Two additional specimens were processed for cement-dentine interfacial analysis using TEM. A linear mixed effects statistical model revealed significant differences for the variables 'composite cement', 'surface preparation' and 'ageing'. All self-adhesive composite cements, except Unicem (3M ESPE), did bond less favourably to fractured dentine. TEM revealed an ultra-structurally different interaction of the composite cements with 'SMEAR-COVERED' and 'SMEAR-FREE' dentine. All SAC's suffered most when luted to 'SMEAR-FREE' (fractured) dentine, fortunately of no clinical relevance and most likely due to enhanced water sorption through the open tubules. When luted to 'SMEAR-COVERED' dentine, all SACs appeared equally effective and durable as the 'etch-and-rinse' and 'self-etch' multi-step composite cements. Solely the SAC SmartCem2 (Dentsply) appeared clearly less favourable and consistent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Cytotoxicity of a calcium aluminate cement in comparison with other dental cements and resin-based materials.

    PubMed

    Franz, Alexander; Konradsson, Katarina; König, Franz; Van Dijken, Jan W V; Schedle, Andreas

    2006-02-01

    The objective of this study was to compare the cytotoxic effects of a calcium aluminate cement with several currently used direct restorative materials. Specimens of three composites (QuiXfil, Tetric Ceram, Filtek Supreme), one zinc phosphate cement (Harvard Cement), one glass ionomer cement (Ketac Molar), and one calcium aluminate cement (DoxaDent), were used fresh or after 7-days' preincubation in cell culture medium at 37 degrees C, pH 7.2. PVC strips for ISO 10993-5 cytotoxicity test were used as positive control and glass specimens as negative control. L-929 fibroblasts (5-ml aliquots, containing 3 x 10(4) cells/ml), cultivated in DMEM with 10% FCS, 1% glutamine, and 1% penicillin/streptomycin at 37 degrees C/5% CO2 and trypsinized, were exposed to the specimens for 72 h. The cells were harvested, centrifuged, and resuspended in 500 microl DMEM and then counted in 500 microl DMEM for 30 s with a flow cytometer at 488 nm. The analysis of variance comparing the six materials showed different influences on L-929 fibroblast cytotoxicity (p <0.0001). The cytotoxicity of all specimens diminished with increasing preincubation time (p <0.0001). Fresh DoxaDent exhibited the lowest cytotoxicity, followed by QuiXfil. Ketac Molar showed the highest cytotoxicity. After 7 days of preincubation, Harvard Cement and Filtek Supreme demonstrated more cytotoxicity than the other materials (p <0.005).

  19. Standard tests for toughened resin composites, revised edition

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Several toughened resin systems are evaluated to achieve commonality for certain kinds of tests used to characterize toughened resin composites. Specifications for five tests were standardized; these test standards are described.

  20. Surface texture of resin-modified glass ionomer cements: effects of finishing/polishing time.

    PubMed

    Yap, A U J; Ong, S B; Yap, W Y; Tan, W S; Yeo, J C

    2002-01-01

    This study compared the surface texture of resin-modified glass ionomer cements after immediate and delayed finishing with different finishing/polishing systems. Class V preparations were made on the buccal and lingual/palatal surfaces of 64 freshly extracted teeth. The cavities on each tooth were restored with Fuji II LC (GC) and Photac-Fil Quick (3M-ESPE) according to manufacturers' instructions. Immediately after light-polymerization, gross finishing was done with 8-fluted tungsten carbide burs. The teeth were then randomly divided into four groups of 16 teeth. Half of the teeth in each group were finished immediately, while the remaining half were finished after one-week storage in distilled water at 37 degrees C. The following finishing/polishing systems were employed: (a) Robot Carbides; (b) Super-Snap system; (c) OneGloss and (d) CompoSite Polishers. The mean surface roughness (microm; n=8) in vertical (RaV) and horizontal (RaH) axis was measured using a profilometer. Data was subjected to ANOVA/Scheffe's tests and Independent Samples t-test at significance level 0.05. Ra values were generally lower in both vertical and horizontal axis with delayed finishing/polishing. Although significant differences in RaV and RaH values were observed among several systems with immediate finishing/polishing, only one (Fuji II LC: RaH - Super-Snap < Robot Carbides) was observed with delayed finishing.

  1. Influence of silane heat treatment on bond strength of resin cement to a feldspathic ceramic.

    PubMed

    de Carvalho, Rodrigo Furtado; Martins, Maria Elizabeth Marques Nogueira; de Queiroz, José Renato Cavalcanti; Leite, Fabíola Pessoa Pereira; Ozcan, Mutlu

    2011-01-01

    This study evaluated the influence of heat treatment (HT) of the silane on the microtensile bond strength of resin cement to a feldspathic ceramic. Ceramic (VITA VM7) and composite blocks (N=32) were divided into four groups (n=6 for bond test, n=2 for SEM) at random and subject to following sequence of conditioning: G1: HF 9.6%+Silane+Panavia F2.0, G2: HF 9.6%+Silane+HT+Panavia F2.0, G3: Silane+HT+Panavia F2.0, and G4: Silane+Panavia F2.0. HT was performed in an oven (100°C, 2 minutes). G1 (17.6±2.3 MPa) and G2 (19±3.2 MPa) showed significantly higher mean bond strength than those of G3 (9.1±2.8 MPa) and G4 (10.9±1.8 MPa). SEM analysis showed exclusively mixed failures. Silane HT did not increase the bond strength.

  2. Post-irradiation hardening of dual-cured and light-cured resin cements through machinable ceramics.

    PubMed

    Yoshida, Keiichi; Atsuta, Mitsuru

    2006-10-01

    To evaluate the surface hardness (Knoop Hardness Number) of the thin layer in three light-cured and dual-cured resin cements irradiated through or not through 2.0 mm thick machinable ceramics. A piece of adhesive polyethylene tape with a circular hole was positioned on the surface of the ceramic plate to control the cement layer (approximately 50 microm). The cement paste was placed on the ceramic surface within the circle. The ceramic plate with resin cement paste was placed on a clear micro cover glass over a zirconia ceramic block to obtain a flat surface, and the material was polymerized using a visible-light-curing unit. The surface hardness was recorded at a series of time intervals up to 5 days, starting from the end of a light-irradiation period. The hardness steadily increased with post-irradiation time and tended towards a maximum, usually reached after 1 or 2 days. In all cases, the increase in hardness was relatively rapid over the first 30 minutes and continued at a lower rate thereafter. The dual-cured resin cement for each material showed a significantly higher hardness value than the light-cured resin cement irradiated either through or not through ceramics at all post-irradiation times. The resin cements cured through ceramic for each material were significantly less hard compared with those cured not through ceramics at all post-irradiation times.

  3. [Curing mode of universal adhesives affects the bond strength of resin cements to dentin].

    PubMed

    Fu, Z R; Tian, F C; Zhang, L; Han, B; Wang, X Y

    2017-02-18

    To determine the effects of curing mode of one-step and two-step universal adhesives on the micro-tensile bond strength (μTBS) of different dual-cure resin cements to dentin. One-step universal adhesive Single Bond Universal (SBU), and two-step universal adhesive OptiBond Versa (VSA) were chosen as the subjects, one-step self-etching adhesive OptiBond All in One (AIO) and two-step self-etching adhesive Clearfil SE Bond (SEB) were control groups, and two dual-cure resin cements RelyX Ultimate (RLX) and Nexus 3 Universal (NX3) were used in this study. In this study, 80 extracted human molars were selected and the dentin surface was exposed using diamond saw. The teeth were divided into 16 groups according to the adhesives (AIO, SBU, SEB, VSA), cure modes of adhesives (light cure, non-light cure) and resin cements (RLX, NX3). The adhesives were applied on the dentin surface following the instruction and whether light cured or not, then the resin cements were applied on the adhesives with 1 mm thickness and light cured (650 mW/cm(2) for 20 s. A resin was built up (5 mm) on the cements and light cured layer by layer. After water storage for 24 h, the specimens were cut into resin-cement-dentin strips with a cross sectional area of 1 mm×1 mm and the μTBS was measured. Regarding one-step universal adhesive (SBU) light cured, the μTBS with RLX [(35.45±7.04) MPa] or NX3 [(26.84±10.39) MPa] were higher than SBU non-light cured with RLX [(17.93±8.93) MPa)] or NX3 [(10.07±5.89) MPa, P<0.001]. Compared with AIO, light-cured SBU combined with RLX presented higher μTBS than AIO group [(35.45±7.04) MPa vs. (24.86±8.42) MPa, P<0.05]. When SBU was not lighted, the μTBS was lower than AIO [(17.93±8.93) MPa vs. (22.28±7.57) MPa, P<0.05]. For two-step universal adhesive (VSA) and control adhesive (SEB), curing mode did not affect the μTBS when used with either RLX or NX3 (25.98-32.24 MPa, P>0.05). Curing mode of one-step universal adhesive may affect the μTBS between

  4. Surface preparations for metal frameworks of composite resin veneered prostheses made with an adhesive opaque resin.

    PubMed

    Matsumura, H; Kawahara, M; Tanaka, T; Atsuta, M

    1991-07-01

    Bond strengths of a laboratory developed light-cured composite resin to dental casting alloys were evaluated with a new adhesive opaque resin. The metal specimens were type III gold, nickel-chromium, and cobalt-chromium alloys, while the surface treatments for bonding were heating, Sn plating, and ion coating. The cast metal specimens were "particle blasted" with aluminum oxide and were surface treated. Adhesive 4-META/MMA-TBB opaque resin was applied and a light-cured composite resin was placed over the opaque layer. The prepared specimens were thermocycled in water and shear bond strengths were recorded. The light-cured composite resin was bonded strongly to heated or Sn-plated type III alloy with 4-META/MMA-TBB opaque resin. Copper ion coating in a sputter coater was effective for all three alloys, with only slightly diminished bond strengths. These methods were satisfactory for making composite resin veneered prostheses.

  5. New Resins for Dental Composites.

    PubMed

    Fugolin, A P P; Pfeifer, C S

    2017-09-01

    Restorative composites have evolved significantly since they were first introduced in the early 1960s, with most of the development concentrating on the filler technology. This has led to improved mechanical properties, notably wear resistance, and has expanded the use of composites to larger posterior restorations. On the organic matrix side, concerns over the polymerization stress and the potential damage to the bonded interface have dominated research in the past 20 y, with many "low-shrinkage" composites being launched commercially. The lack of clinical correlation between the use of these materials and improved restoration outcomes has shifted the focus more recently to improving materials' resistance to degradation in the oral environment, caused by aqueous solvents and salivary enzymes, as well as biofilm development. Antimicrobial and ester-free monomers have been developed in the recent past, and evidence is mounting for their potential benefit. This article reviews literature on the newest materials currently on the market and provides an outlook for the future developments needed to improve restoration longevity past the average 10 y.

  6. Effect of femtosecond laser beam angle on bond strength of zirconia-resin cement.

    PubMed

    Akpinar, Yusuf Z; Kepceoglu, Abdullah; Yavuz, Tevfik; Aslan, Muhammed A; Demirtag, Zulfikar; Kılıc, Hamdi S; Usumez, Aslihan

    2015-11-01

    Yttrium-stabilized tetragonal zirconia polycrystalline (Y-TZP) ceramic is widely used as an all-ceramic core material because of its enhanced mechanical and aesthetic properties. The bond strength of Y-TZP restorations affects long-term success; hence, surface treatment is required on ceramic boundaries. This study evaluated the effect of different laser beam angles on Y-TZP-resin cement shear bond strength (SBS). Forty plates of Y-TZP ceramics were randomly assigned to four groups (n = 10). A femtosecond amplifier laser pulse was applied on Y-TZP surface with different incidence angles (90°, 75°, 60°, 45°). The resin cement was adhered onto the zirconia surfaces. The SBS of each sample was measured using universal testing machine at crosshead speed of 1 mm/min. The SBS was analyzed through one-way analysis of variance (ANOVA)/Tukey tests. The results showed that the degree of laser beam angle affects the SBS of resin cement to Y-TZP. The laser beam was applied to a surface with a 45° angle which resulted in significantly higher SBS (18.2 ± 1.43 MPa) than other groups (at 90° angulation (10.79 ± 1.8 MPa), at 75° (13.48 ± 1.2 MPa) and at 60° (15.85 ± 0.81 MPa); p < 0.001). This study shows that decreasing of the angle between the ceramic surface and the laser beam increased the SBS between the resin cement and the ceramic material, as well as the orifice.

  7. Effects of Mechanical and Chemical Pretreatments of Zirconia or Fiber Posts on Resin Cement Bonding.

    PubMed

    Li, Rui; Zhou, Hui; Wei, Wei; Wang, Chen; Sun, Ying Chun; Gao, Ping

    2015-01-01

    The bonding strength between resin cement and posts is important for post and core restorations. An important method of improving the bonding strength is the use of various surface pretreatments of the post. In this study, the surfaces of zirconia (fiber) posts were treated by mechanical and/or chemical methods such as sandblasting and silanization. The bonding strength between the zirconia (fiber) post and the resin cement was measured by a push-out method after thermocycling based on the adhesion to Panavia F 2.0 resin cement. The zirconia and fiber posts exhibited different bonding strengths after sandblasting and/or silanization because of the different strengths and chemical structures. The zirconia post showed a high bonding strength of up to 17.1 MPa after a combined treatment of sandblasting and silanization because of the rough surface and covalent bonds at the interface. This effect was also enhanced by using 1,2-bis(trimethoxysilyl)ethane for the formation of a flexible layer at the interface. In contrast, a high bonding strength of 13.9 MPa was obtained for the fiber post treated by silane agents because the sandblasting treatment resulted in damage to the fiber post, as observed by scanning electron microscopy. The results indicated that the improvement in the bonding strength between the post and the resin cement could be controlled by different chemical and/or mechanical treatments. Enhanced bonding strength depended on covalent bonding and the surface roughness. A zirconia post with high bonding strength could potentially be used for the restoration of teeth in the future.

  8. Effects of Mechanical and Chemical Pretreatments of Zirconia or Fiber Posts on Resin Cement Bonding

    PubMed Central

    Li, Rui; Zhou, Hui; Wei, Wei; Wang, Chen; Sun, Ying Chun; Gao, Ping

    2015-01-01

    The bonding strength between resin cement and posts is important for post and core restorations. An important method of improving the bonding strength is the use of various surface pretreatments of the post. In this study, the surfaces of zirconia (fiber) posts were treated by mechanical and/or chemical methods such as sandblasting and silanization. The bonding strength between the zirconia (fiber) post and the resin cement was measured by a push-out method after thermocycling based on the adhesion to Panavia F 2.0 resin cement. The zirconia and fiber posts exhibited different bonding strengths after sandblasting and/or silanization because of the different strengths and chemical structures. The zirconia post showed a high bonding strength of up to 17.1 MPa after a combined treatment of sandblasting and silanization because of the rough surface and covalent bonds at the interface. This effect was also enhanced by using 1,2-bis(trimethoxysilyl)ethane for the formation of a flexible layer at the interface. In contrast, a high bonding strength of 13.9 MPa was obtained for the fiber post treated by silane agents because the sandblasting treatment resulted in damage to the fiber post, as observed by scanning electron microscopy. The results indicated that the improvement in the bonding strength between the post and the resin cement could be controlled by different chemical and/or mechanical treatments. Enhanced bonding strength depended on covalent bonding and the surface roughness. A zirconia post with high bonding strength could potentially be used for the restoration of teeth in the future. PMID:26066349

  9. Dental composite resins: measuring the polymerization shrinkage using optical fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Ottevaere, H.; Tabak, M.; Chah, K.; Mégret, P.; Thienpont, H.

    2012-04-01

    Polymerization shrinkage of dental composite materials is recognized as one of the main reasons for the development of marginal leakage between a tooth and filling material. As an alternative to conventional measurement methods, we propose optical fiber Bragg grating (FBG) based sensors to perform real-time strain and shrinkage measurements during the curing process of dental resin cements. We introduce a fully automated set-up to measure the Bragg wavelength shift of the FBG strain sensors and to accurately monitor the linear strain and shrinkage of dental resins during curing. Three different dental resin materials were studied in this work: matrix-filled BisGMA-based resins, glass ionomers and organic modified ceramics.

  10. Effect of metal conditioners on the adhesive bonding of resin cements to cast titanium.

    PubMed

    da Rocha, Sicknan Soares; Adabo, Gelson Luis; Spinola, Sandra Gouve; Fonseca, Renata Garcia; Ferreira, Anelise Rodolfo

    2007-09-01

    To assess the effect of metal conditioners on the bond strength between resin cements and cast titanium. Commercially pure titanium (99.56%) was cast using an arc casting machine. Surfaces were finished with 400-grit silicon carbide paper followed by air abrasion with 50-Microm aluminum oxide. A piece of double-coated tape with a 4-mm circular hole was then positioned on the metal surface to control the area of the bond. The prepared surfaces were then divided into 4 groups (n=10): G1, unprimed Panavia F; G2, Alloy Primer-Panavia F; G3, unprimed Bistite DC; G4, Metaltite-Bistite DC. Forty minutes after insertion of the resin cements, the specimens were detached from the mold and stored in water at 37 degrees C for 24 hours. Shear bond strength was performed in a testing machine (MTS 810) at a crosshead speed of 0.5 mm/min. Data were analyzed using ANOVA and Tukey's test with a .05 significance level. The fractured surfaces were observed through an optical microscope at 103 magnification. The G1 group demonstrated significantly higher shear bond strength (17.95 MPa) than the other groups. G3 (13.79 MPa) and G4 (12.98 MPa) showed similar mean values to each other and were statistically superior to G2 (9.31 MPa). Debonded surfaces generally presented adhesive failure between metal surfaces and resin cements. While the Metaltite conditioner did not influence the bond strength of the Bistite DC cement, the Alloy Primer conditioner significantly decreased the mean bond strength of the Panavia F cement.

  11. Cytotoxicity Comparison of Harvard Zinc Phosphate Cement Versus Panavia F2 and Rely X Plus Resin Cements on Rat L929-fibroblasts.

    PubMed

    Mahasti, Sahabi; Sattari, Mandana; Romoozi, Elham; Akbar-Zadeh Baghban, Alireza

    2011-01-01

    Resin cements, regardless of their biocompatibility, have been widely used in restorative dentistry during the recent years. These cements contain hydroxy ethyl methacrylate (HEMA) molecules which are claimed to penetrate into dentinal tubules and may affect dental pulp. Since tooth preparation for metal ceramic restorations involves a large surface of the tooth, cytotoxicity of these cements would be more important in fixed prosthodontic treatments. The purpose of this study was to compare the cytotoxicity of two resin cements (Panavia F2 and Rely X Plus) versus zinc phosphate cement (Harvard) using rat L929-fibroblasts in vitro. In this experimental study, ninety hollow glass cylinders (internal diameter 5-mm, height 2-mm) were made and divided into three groups. Each group was filled with one of three experimental cements; Harvard Zinc Phosphate cement, Panavia F2 resin cement and Rely X Plus resin cement. L929- Fibroblast were passaged and subsequently cultured in 6-well plates of 5×10(5) cells each. The culture medium was RPMI_ 1640. All samples were incubated in CO2. Using enzyme-linked immune-sorbent assay (ELISA) and (3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) (MTT) assay, the cytotoxicity of the cements was investigated at 1 hour, 24 hours and one week post exposure. Statistical analyses were performed via two-way ANOVA and honestly significant difference (HSD) Tukey tests. This study revealed significant differences between the three cements at the different time intervals. Harvard cement displayed the greatest cytotoxicity at all three intervals. After 1 hour Panavia F2 showed the next greatest cytotoxicity, but after 24-hours and oneweek intervals Rely X Plus showed the next greatest cytotoxicity. The results further showed that cytotoxicity decreased significantly in the Panavia F2 group with time (p<0.005), cytotoxicity increased significantly in the Rely X Plus group with time (p<0.001), and the Harvard cement group failed to

  12. Properties of magnetically attractive experimental resin composites.

    PubMed

    Hirano, S; Yasukawa, H; Nomoto, R; Moriyama, K; Hirasawa, T

    1996-12-01

    SUS444 stainless steel filled chemically cured resin composites that can attract magnet were fabricated. The filler was treated with various concentrations of silane. The experimental composite was easy to handle and showed a good shelf life. The maximal properties obtained are as follows; The attraction force to a magnetic attachment was 1/3-1/4 lower than the commercially available magnet-keeper system for dental magnetic attachment. Flexural strength and Knoop hardness of the composite were 76MPa (7.7 kgf/mm2) and 64 KHN. These values were lower than the commercially available chemically cured composite used as a reference. Eluted metal from the composite in 1% lactic acid solution for 7 days showed 0.7 mg/cm2, but in 0.9% NaCl solution for 7 days, it could not be detected.

  13. Surface roughness of orthodontic band cements with different compositions

    PubMed Central

    van de SANDE, Françoise Hélène; da SILVA, Adriana Fernandes; MICHELON, Douver; PIVA, Evandro; CENCI, Maximiliano Sérgio; DEMARCO, Flávio Fernando

    2011-01-01

    Objectives The present study evaluated comparatively the surface roughness of four orthodontic band cements after storage in various solutions. Material and Methods eight standardized cylinders were made from 4 materials: zinc phosphate cement (ZP), compomer (C), resin-modified glass ionomer cement (RMGIC) and resin cement (RC). Specimens were stored for 24 h in deionized water and immersed in saline (pH 7.0) or 0.1 M lactic acid solution (pH 4.0) for 15 days. Surface roughness readings were taken with a profilometer (Surfcorder SE1200) before and after the storage period. Data were analyzed by two-way ANOVA and Tukey's test (comparison among cements and storage solutions) or paired t-test (comparison before and after the storage period) at 5% significance level. Results The values for average surface roughness were statistically different (p<0.001) among cements at both baseline and after storage. The roughness values of cements in a decreasing order were ZP>RMGIC>C>R (p<0.001). After 15 days, immersion in lactic acid solution resulted in the highest surface roughness for all cements (p<0.05), except for the RC group (p>0.05). Compared to the current threshold (0.2 µm) related to biofilm accumulation, both RC and C remained below the threshold, even after acidic challenge by immersion in lactic acid solution. Conclusions Storage time and immersion in lactic acid solution increased the surface roughness of the majority of the tested cements. RC presented the smoothest surface and it was not influenced by storage conditions. PMID:21625737

  14. Glass Fiber Resin Composites and Components at Arctic Temperatures

    DTIC Science & Technology

    2015-06-01

    3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE GLASS FIBER RESIN COMPOSITES AND COMPONENTS AT ARCTIC TEMPERATURES 5...temperatures. This thesis focuses on the tensile properties of GFRC, resin , and glass fiber used in previous NPS-related composite research. The...conduct previous composite experiments at arctic temperatures. 14. SUBJECT TERMS Composite , glass fiber, resin 15. NUMBER OF PAGES 63

  15. [Hardness development of self-adhesive resin cement in simulated root canal].

    PubMed

    Ding, Hong; Lan, Weidong; Meng, Xiangfeng

    2012-06-01

    To compare the hardness development of dual-cured self-adhesive and universal resin cement in simulated root canal. The light-proof half-cylinder steel slot with one end open were syringed and filled respectively by self-adhesive A (RelyX Unicem), B (BisCem) and universal C (DUOLINK) resin cements, then the open end of slot was irradiated directly by a light unit for 20 s. Specimens were stored in a light-proof box for 0.5 h, Knoop microhardness was measured along the vertical surfaces of specimens from 1 mm to 10mm depth at 1 mm intervals. The same measurements were taken at 24 h and 120 h after irradiation. Data were analyzed by One-way ANOVA. Hardness of each group decreased with the increase of simulated canal depth (P<0.001), however hardness showed no significant change between 5 mm and more depth of group A, between 4 mm and more depth of group B and C. The increase of hardness for each group was more rapid within 0.5 h after irradiation, thereafter the hardness increased gradually to maximum at 24 h. At 120 h after irradiation, hardness of group C was greater than that of other two groups at more than 1 mm depth (P<0.001). Under dual-cured condition, hardness has significant difference between self-adhesive and universal resin cements, however their hardness development is similar.

  16. The effect of ultrafast fiber laser application on the bond strength of resin cement to titanium.

    PubMed

    Ates, Sabit Melih; Korkmaz, Fatih Mehmet; Caglar, Ipek Satıroglu; Duymus, Zeynep Yeşil; Turgut, Sedanur; Bagis, Elif Arslan

    2017-07-01

    The purpose of this study was to investigate the effect of ultrafast fiber laser treatment on the bond strength between titanium and resin cement. A total of 60 pure titanium discs (15 mm × 2 mm) were divided into six test groups (n = 10) according to the surface treatment used: group (1) control, machining; group (2) grinding with a diamond bur; group (3) ultrafast fiber laser application; group (4) resorbable blast media (RBM) application; group (5) electro-erosion with copper; and group (6) sandblasting. After surface treatments, resin cements were applied to the treated titanium surfaces. Shear bond strength testing of the samples was performed with a universal testing machine after storing in distilled water at 37 °C for 24 h. One-way ANOVA and Tukey's HSD post hoc test were used to analyse the data (P < 0.05). The highest bond strength values were observed in the laser application group, while the lowest values were observed in the grinding group. Sandblasting and laser application resulted in significantly higher bond strengths than control treatment (P < 0.05). Ultrafast fiber laser treatment and sandblasting may improve the bond strength between resin cement and titanium.

  17. Antibacterial properties of amalgam and composite resin materials used as cores under crowns.

    PubMed

    Al Ghadban, A; Al Shaarani, F

    2012-06-01

    The Aim of this Study was to compare the bacterial growth in the bulk of both amalgam and fluoridated composite resin materials used as cores under crowns at core's surface (in the superficial area of the bulk) and depth levels. With 24 lower premolars, 12 of them were restored with metal posts and amalgam cores (group 1). The rest were restored with glass Fiber-reinforced Composite (FRC) posts and fluoridated composite resin cores (group 2). All specimens were covered with aluminium crowns cemented with resin cement, and then they were soaked in natural saliva for three months. Excoriations abraded from the superficial and the depth areas of the core materials were cultured under aerobic conditions on blood agar plates. After incubation for 2 days, colonies formed on the plates were identified, and the CFU mg(-1) counts were recorded accordingly. Statistical analysis was performed using an independent sample T test. The mean values of CFU mg(-1) counts in group 2 excoriations (surface 39.75, and depth 9.75) were higher than the group 1 excoriations (surface 1.67, and depth 0.42). This study supports the use of amalgam for building up cores due to its antibacterial properties. Composite resin, however, enhanced sizable bacterial growth despite the presence of fluoride.

  18. Light transmittance of zirconia as a function of thickness and microhardness of resin cements under different thicknesses of zirconia

    PubMed Central

    Egilmez, Ferhan; Ergun, Gulfem; Kaya, Bekir M.

    2013-01-01

    Objective: The objective of this study was to compare microhardness of resin cements under different thicknesses of zirconia and the light transmittance of zirconia as a function of thickness. Study design: A total of 126 disc-shaped specimens (2 mm in height and 5 mm in diameter) were prepared from dual-cured resin cements (RelyX Unicem, Panavia F and Clearfil SA cement). Photoactivation was performed by using quartz tungsten halogen and light emitting diode light curing units under different thicknesses of zirconia. Then the specimens (n=7/per group) were stored in dry conditions in total dark at 37°C for 24 h. The Vicker’s hardness test was performed on the resin cement layer with a microhardness tester. Statistical significance was determined using multifactorial analysis of variance (ANOVA) (alpha=.05). Light transmittance of different thicknesses of zirconia (0.3, 0.5 and 0.8 mm) was measured using a hand-held radiometer (Demetron, Kerr). Data were analyzed using one-way ANOVA test (alpha=.05). Results: ANOVA revealed that resin cement and light curing unit had significant effects on microhardness (p < 0.001). Additionally, greater zirconia thickness resulted in lower transmittance. There was no correlation between the amount of light transmitted and microhardness of dual-cured resin cements (r = 0.073, p = 0.295). Conclusion: Although different zirconia thicknesses might result in insufficient light transmission, dual-cured resin cements under zirconia restorations could have adequate microhardness. Key words:Zirconia, microhardness, light transmittance, resin cement. PMID:23385497

  19. Silanising agents promote resin-composite repair.

    PubMed

    Staxrud, Frode; Dahl, Jon E

    2015-12-01

    The aim of this study was to investigate the effect of silane in the repair of old and new resin-composite restorations. Part 1: repair of old composite was performed on 60 resin-composite substrates that were 6 years old and were made of six different brands of composite. Three experiments were performed. In the first experiment, the substrates were ground flat and composite was fixed to the surface with bonding agent without silane (i.e. Clearfil Bond SE only, the control). Shear bond strength (SBS) was tested according to ISO/TS 11405 after thermocycling. In the second experiment, the same 60 substrates were ground again and treated with bis-silane a 2-part silane mixed shortly before application before applying bonding agent (Clearfil Bond SE plus silane) and repair composite before SBS testing. In the third experiment, the same substrates were ground again and a one-step bonding product containing silane (Scotchbond Universal bond containing silane) was used for the repair procedure before SBS testing. Part 2: to evaluate the repair of newly made composite restorations, 66 composite substrates were made and stored in water for 2 months. The specimens were divided into three groups and were tested using the same protocols as used to evaluate repair of old composite. Mean SBS (± standard deviation), in MPa, for repair of old composite was 6.2 ± 4.0 (Clearfil Bond SE only, control), 14.8 ± 7.8 (Clearfil Bond SE plus silane) and 15.3 ± 5.6 (Scotchbond Universal bond with silane), whereas for new composite mean SBS was 15.4 ± 8.6 (Clearfil Bond SE only, control), 23.4 ± 8.3 (Clearfil Bond SE with silane) and 23.7 ± 5.8 (Scotchbond Universal containing silane). A significant difference was observed between the control and the test groups with silanising agents, both in Part 1 (P < 0.001) and in Part 2 (P < 0.005). Silanising agents increase the bond strength of the resin composite repair. © 2015 FDI World Dental Federation.

  20. Performance Properties of Graphite Reinforced Composites with Advanced Resin Matrices

    NASA Technical Reports Server (NTRS)

    Kourtides, Demetrius A.

    1980-01-01

    This article looks at the effect of different resin matrices on thermal and mechanical properties of graphite composites, and relates the thermal and flammability properties to the anaerobic char yield of the resins. The processing parameters of graphite composites utilizing graphite fabric and epoxy or other advanced resins as matrices are presented. Thermoset resin matrices studied were: aminecured polyfunctional glycidyl aminetype epoxy (baseline), phenolicnovolac resin based on condensation of dihydroxymethyl-xylene and phenol cured with hexamine, two types of polydismaleimide resins, phenolic resin, and benzyl resin. The thermoplastic matrices studied were polyethersulfone and polyphenylenesulfone. Properties evaluated in the study included anaerobic char yield, limiting oxygen index, smoke evolution, moisture absorption, and mechanical properties at elevated temperatures including tensile, compressive, and short-beam shear strengths. Generally, it was determined that graphite composites with the highest char yield exhibited optimum fire-resistant properties.

  1. Microtensile bond strength of a newly developed resin cement to dentin.

    PubMed

    Kawano, Shimpei; Fu, Jiale; Saikaew, Pipop; Chowdhury, Afm Almas; Fukuzawa, Naoyuki; Kadowaki, Yoshitaka; Kakuda, Shinichi; Hoshika, Shuhei; Nakaoki, Yasuko; Ikeda, Takatsumi; Tanaka, Toru; Sano, Hidehiko

    2015-01-01

    The purpose of this study was to evaluate the microtensile bond strength (µTBS) of a newly developed resin cement, ECD-89 (ECD, Tokuyama Dental, Tokyo, Japan) to dentin and to observe the interfacial micromorphology by comparing with two commercial resin cements, Multilink Automix (MA, Ivoclar Vivadent AG, Schaan, Liechtenstein) and Panavia F2.0 (PF, Kuraray Noritake Dental, Tokyo, Japan). Flat dentin surfaces of human third molars were exposed using #600 SiC. After application of primer and cement to the dentin surface, each cement was applied and cured with light (light condition) or without light (dark condition). The teeth were sectioned to obtain beams (1 mm×1 mm) after 24 h of water storage. The mean bond strengths and SDs (MPa) were: ECD: 68.6±14.9, MA: 39.2±18.9, PF: 39.4±18.5 and ECD: 54.5±22.4, MA: 36.7±15.6, PF: 13.4±4.46 when cured in light and dark condition, respectively. In both conditions, ECD-89 showed statistically higher µTBS than the others.

  2. The Effect of Light Exposure on Water Sorption and Solubility of Self-Adhesive Resin Cements

    PubMed Central

    Aguiar, Thaiane Rodrigues; André, Carolina Bosso; Ambrosano, Gláucia Maria Boni; Giannini, Marcelo

    2014-01-01

    Purpose. To investigate the effect of light activation on the water sorption (WS) and solubility (SL) of resin cements after 24 h and 7 days. Methods. Disk-shaped specimens were prepared using five dual-polymerized cements (four self-adhesive [RelyX Unicem, MaxCem, SeT and G-Cem] and one conventional [Panavia F 2.0]) and divided according to the curing mode (direct light exposure or self-cure) and water immersion period (24 h or 7 days). Specimens were dry-stored and weighed daily until a constant mass was recorded (M1). Then, specimens were stored in water for either 24 h or 7 days and immediately weighed (M2). After desiccation, specimens were weighed again until a constant mass was achieved (M3). WS and SL were calculated and statistically analyzed by Kruskal-Wallis, Dunn and Mann-Whitney U tests (α = 0.05%). Results. There was a significant increase in WS for all products after one-week immersion in water. The highest water uptake was observed for autopolymerized groups. Extended water immersion significantly affected the SL for most of autopolymerized cements. Significant differences between products were observed in both tests. Conclusions. The curing mode and the water immersion period may affect the mechanical stability of the resin cements, and these differences appear to be product-dependent. PMID:27379329

  3. Evaluation of ISO 4049: water sorption and water solubility of resin cements.

    PubMed

    Müller, Johannes A; Rohr, Nadja; Fischer, Jens

    2017-04-01

    The aim of this study was to evaluate the water sorption and solubility test design of ISO 4049 for resin cements. Sorption and solubility of six dual-curing resin cements [RelyX Unicem 2 Automix (RUN), Multilink Speed CEM (MLS), Panavia SA Plus (PSA), RelyX Ultimate (RUL), Multilink Automix (MLA), and Panavia V5 (PV5)] were analyzed by storage in distilled water after dual-curing. In addition, sorption and solubility during thermal cycling were assessed with self-cured and dual-cured specimens. After water storage, all cements revealed sorption in the range of 30 μg mm(-3) except for PV5, for which sorption was markedly lower (mean ± SD = 20.8 ± 0.4 μg mm(-3) ). Solubility values were negative for RUN and RUL (-2.1 ± 0.08 μg mm(-3) and -1.9 ± 0.13 μg mm(-3) , respectively). All other cements attained positive values in the range of 0.4-0.8 μg mm(-3) . Thermal cycling effects were more pronounced. The assessment of water sorption according to ISO 4049 provides reliable results. Solubility results must be interpreted with care because absorbed water may distort the values.

  4. Swelling behavior of ion exchange resins incorporated in tri-calcium silicate cement matrix: I. Chemical analysis

    NASA Astrophysics Data System (ADS)

    Neji, M.; Bary, B.; Le Bescop, P.; Burlion, N.

    2015-12-01

    This paper presents the first part of a theoretical and experimental work aiming at modeling the chemo-mechanical behavior of composites made up of ion exchange resins (IER) solidified in a tri-calcium silicate cement paste (C3S). Because of ion exchange processes, the volume change of the IER may cause internal pressures leading to the degradation of the material. In this study, a predictive modeling is developed for describing the chemical behavior of such material. It is based on thermodynamic equilibria to determine the evolution of the ion exchange processes, and the potential precipitation of portlandite in the composite. In parallel, a phenomenological study has been set up to understand chemical phenomena related to the swelling mechanisms. The model created has been finally implemented in a finite elements software; the simulation of a laboratory test has been performed and the results compared to experimental data.

  5. Esthetic recovery of smile using composite resin and "biological posts" and crowns.

    PubMed

    Vieira-Andrade, Raquel Gonçalves; Ribondi, Juliano Rodrigues; Botelho, Adriana Maria; Fernandes, Anacélia Mendes; Tavano, Karine Taís Aguiar

    2012-01-01

    The recovery of teeth that have been extensively destroyed by dental caries can be achieved through direct and indirect restorative procedures. This paper presents a case of the esthetic and functional recovery of permanent maxillary incisors with extensive dental caries in an adolescent patient through the use of a composite resin and "biological posts and crowns". A case report was drafted to describe the direct restoration of central maxillary incisors using composite resin and endodontic treatment of the lateral maxillary incisors, the construction of dentinal posts, the adaptation and cementing of the posts to the root canals, preparation and molding of crown portions, model construction, the choice of extracted teeth and the making and cementing of "biological crowns". The use of a composite resin and the cementing of "biological posts and crowns" reestablish dental esthetics and function. Biological restorations maintain all the characteristics of natural teeth and have a significant psychosocial impact on the patient's quality of life. However it should be stressed that this technique was only indicated in the present case after the determination of a significant improvement in oral hygiene.

  6. Influence of post pattern and resin cement curing mode on the retention of glass fibre posts.

    PubMed

    Poskus, L T; Sgura, R; Paragó, F E M; Silva, E M; Guimarães, J G A

    2010-04-01

    To evaluate the influence of post design and roughness and cement system (dual- or self-cured) on the retention of glass fibre posts. Two tapered and smooth posts (Exacto Cônico No. 2 and White Post No. 1) and two parallel-sided and serrated posts (Fibrekor 1.25 mm and Reforpost No. 2) were adhesively luted with two different resin cements--a dual-cured (Rely-X ARC) and a self-cured (Cement Post)--in 40 single-rooted teeth. The teeth were divided into eight experimental groups (n = 5): PFD--Parallel-serrated-Fibrekor/dual-cured; PRD--Parallel-serrated-Reforpost/dual-cured; TED--Tapered-smooth-Exacto Cônico/dual-cured; TWD--Tapered-smooth-White Post/dual-cured; PFS--Parallel-serrated-Fibrekor/self-cured; PRS--Parallel-serrated-Reforpost/self-cured; TES--Tapered-smooth-Exacto Cônico/self-cured; TWS--Tapered-smooth-White Post/self-cured. The specimens were submitted to a pull-out test at a crosshead speed of 0.5 mm min(-1). Data were analysed using analysis of variance and Bonferroni's multiple comparison test (alpha = 0.05). Pull-out results (MPa) were: PFD = 8.13 (+/-1.71); PRD = 8.30 (+/-0.46); TED = 8.68 (+/-1.71); TWD = 9.35 (+/-1.99); PFS = 8.54 (+/-2.23); PRS = 7.09 (+/-1.96); TES = 8.27 (+/-3.92); TWS = 7.57 (+/-2.35). No statistical significant difference was detected for posts and cement factors and their interaction. The retention of glass fibre posts was not affected by post design or surface roughness nor by resin cement-curing mode. These results imply that the choice for serrated posts and self-cured cements is not related to an improvement in retention.

  7. Bonding effectiveness of self-adhesive and conventional-type adhesive resin cements to CAD/CAM resin blocks. Part 2: Effect of ultrasonic and acid cleaning.

    PubMed

    Kawaguchi, Asuka; Matsumoto, Mariko; Higashi, Mami; Miura, Jiro; Minamino, Takuya; Kabetani, Tomoshige; Takeshige, Fumio; Mine, Atsushi; Yatani, Hirofumi

    2016-01-01

    The present study assessed the effect of ultrasonic and acid cleaning on resin cement bonding to CAD/CAM resin blocks. One of two resin cements, PANAVIA V5 (PV5) or PANAVIA SA CEMENT HANDMIX (PSA), were bonded to one of 24 CAD/CAM blocks (KATANA AVENCIA BLOCK). Each cement group was divided into four subgroups: no cleaning (Ctl), ultrasonic cleaning (Uc), acid cleaning (Ac) and Uc+Ac. Micro-tensile bond strengths (µTBSs) were measured immediately and 1, 3, and 6 months after water storage. Block surfaces after each treatment were analyzed by scanning electron microscopy. Analysis of variance revealed a statistically significant effect for the parameters 'surface treatment' (p<0.001, F=40), 'resin cement' (p<0.001, F=696) and 'water aging' (p<0.001, F=71). The PV5 group exhibited higher µTBS values than the PSA group. Although cleaning after sandblasting was effective in removing residual alumina particles, it did not affect the long-term bonding durability with non-contaminated CAD/CAM resin blocks.

  8. [Effect of ceramic thickness and resin cement shades on final color of heat-pressed ceramic veneers].

    PubMed

    Ren, D F; Zhan, K R; Chen, X D; Xing, W Z

    2017-02-09

    Objective: To analyze the effect of ceramic materials thickness and resin cement shades on the final color of ceramic veneers in the discolored teeth, and to investigate the color agreement of try-in pastes to the corresponding resin cements. Methods: Sixty artificial maxillary central incisor teeth (C2 shade) were used to simulate the natural discolored teeth and prepared according to veneer tooth preparation protocol. Veneers of different thickness in the body region (0.50 and 0.75 mm) were fabricated using ceramic materials (LT A2 shade, IPS e.max Press). The ceramic veneer specimens were bonded to the artificial teeth using the 6 shades of resin cements (Variolink Veneer: shades of LV-3, LV-2, HV+3; RelyX™ Veneer: shades of TR, A3, WO) (n=5). A clinical spectrophotometer was used to measure the color parameters of ceramic veneers at the cervical, body and incisal regions. Color changes of veneers before and after cementation were calculated and registered as ΔE1, and the changes between try-in paste and the corresponding resin cements were registered as ΔE2. Results: Three-way ANOVA indicated that ΔE1 and ΔE2 values were significantly affected by the ceramic thickness, resin cement shades and measuring regions (P<0.05). The ΔE1 values of six shades ranged from 0.59-8.27. The ΔE1 values were more than 2.72 when the ceramic veneers were cemented with resin cements in shades of HV+3 and WO. The ΔE2 values of six shades ranged from 0.60-2.56. The shades of HV+3, WO and A3 resin cements were more than 1.60. Conclusions: Different thickness of ceramic materials, resin cement shades and measuring regions could affect the final color of ceramic veneers. The color differences of some resin cements and corresponding try-in pastes might be observed in clinical practice.

  9. Fluoride release and uptake by aged resin-modified glass ionomers and a polyacid-modified resin composite.

    PubMed

    Ylp, H K; Smales, R J

    1999-08-01

    Little has been reported of the relationship of fluoride release and weight loss, and the effects of use of different fluoride agents on restorations, for the new generation of glass ionomer cements. The objectives of this study were to compare fluoride release of fresh and aged specimens of a polyacid-modified resin composite (Dyract), and of three resin-modified glass ionomer cements (Fuji II LC, Photac-Fil, Vitremer); and to correlate fluoride release and weight loss of aged specimens after recharging with three different fluoride agents. All materials showed high initial fluoride release immediately after uptake when using the agents. However, the levels of fluoride release dropped rapidly soon afterwards. Although initial fluoride release was significantly different between Dyract and the three resin-modified glass ionomers, when different fluoride agents were used on aged specimens after recharging, no significant differences were found after the first few hours. Linear regression analyses also showed no correlation between cumulative fluoride release and weight loss. Possible beneficial oral health effects may only be expected by frequent exposure of these materials to fluoride agents.

  10. Radiographic appearance of commonly used cements in implant dentistry.

    PubMed

    Pette, Gregory A; Ganeles, Jeffrey; Norkin, Frederic J

    2013-01-01

    Cement-retained restorations allow for a conventional fixed partial denture approach to restoring dental implants. However, inadequate removal of excess cement at the time of cementation may introduce a severe complication: cement-induced peri-implantitis. Radiopaque cements are more easily detected on radiographs and should improve the recognition of extravasated cement at the time of insertion. The purpose of this study was to evaluate the radiopacity of commercially available cements in vitro. Eighteen different cements commonly used for luting restorations to implants were tested at both 0.5- and 1.0-mm thicknesses. The cements examined were zinc oxide eugenol, zinc oxide, zinc polycarboxylate, zinc phosphate, resin-reinforced glass ionomer, urethane resin, resin, and composite resin. Two samples of each cement thickness underwent standardized radiography next to an aluminum step wedge as a reference. The mean grayscale value of each of the nine 1-mm steps in the step wedge were used as reference values and compared to each of the cement samples. Temp Bond Clear (resin), IMProv (urethane resin), Premier Implant Cement (resin), and Temrex NE (resin) were not radiographically detectable at either sample thickness. Cements containing zinc were the most detectable upon radiographic analysis. There are significant differences in the radiopacity of many commonly used cements. Since cementinduced peri-implantitis can lead to late implant failure, cements that can be visualized radiographically may reduce the incidence of this problem.

  11. Effect of operator experience on the outcome of fiber post cementation with different resin cements.

    PubMed

    Gomes, G M; Gomes, O M M; Reis, A; Gomes, J C; Loguercio, A D; Calixto, A L

    2013-01-01

    To evaluate the influence of operator experience (dentist vs student) and cementation system (Adper Scotchbond Multi-Purpose [SBMP] + RelyX ARC [1]; Adper Single Bond 2 [SB] + RelyX ARC [2] and RelyX U100 [3]) on the push-out bond strength (BS) of fiber post to radicular dentin. The roots of 48 extracted human maxillary central incisors were prepared and divided into six groups (n=8), according to combination of the above factors. Glass fiber posts were cemented in accordance with the instructions of the manufacturer of each cementation system. After water storage at 37°C for one week, the roots were cross-sectioned into six 1-mm thick slices and the push-out test was performed (0.5 mm/min). Data were statistically analyzed by two-way analysis of variance and Tukey tests (α=0.05). The BS results obtained by dentist and student for each cementation system were compared using the Student t-test (α=0.05). Higher BS means were observed for the expert operators, irrespective of the cementation system used (p=0.006). RelyX U100 showed the highest bond strength, but it did not differ from SBMP + RelyX ARC. The Student t-test revealed that only RelyX U100 was not affected by the operator's experience. Within the limitations of this in vitro study, it can be concluded that the self-adhesive cement RelyX U100 showed the highest bond strength to the root canal in the student's group, and its performance was not affected by the operator's experience.

  12. Creep on a composite resin in water.

    PubMed

    Hirano, S; Hirasawa, T

    1989-06-01

    The compressive creep test of a composite resin (0-3.5 kg/mm2 stress levels) was conducted in water for 500 h. Linear regressions were obtained between the creep strains and the compressive stress levels at various hours. It is possible to predict the creep strain of the composite from the regression when it reaches water absorbed equilibrium after 500 h. The stress of the hygroscopic expansion was calculated from the linear regressions. The maximum stress due to the hygroscopic examination of the composite was 0.74 kg/mm2 at equilibrium of the water absorbed of the composite. The linear regressions at several compressive stress levels were obtained within 30-50 hr in the strain-log time diagrams.

  13. Three-dimensional finite element analysis of strength and adhesion of composite resin versus ceramic inlays in molars.

    PubMed

    Dejak, Beata; Mlotkowski, Andrzej

    2008-02-01

    Previous studies on strength of teeth reconstructed with ceramic or composite resin inlays have not resolved which restoration material provides the highest strength and marginal integrity. The purpose of this study was to compare strength of mandibular molars restored with composite resin inlays to those restored with ceramic inlays, according to the Mohr-Coulomb failure criterion, and to analyze contact stresses in cement-tooth adhesive interfaces of these inlays. The investigation used a 3-dimensional (3-D) finite element analysis with the use of contact elements. Seven 3-D models of first molars of the same shape and size were created: IT, intact tooth; UT, unrestored tooth with an MOD cavity preparation; CRIT, tooth restored with composite resin inlays (True Vitality) with an elastic modulus equal to 5.4 GPa; CRIH, tooth restored with composite resin inlays (Herculite XRV) (9.5 GPa); CRIC, tooth restored with composite resin inlays (Charisma) (14.5 GPa); CRIZ, tooth restored with composite resin inlays (Z100) (21 GPa); and CI, tooth restored with a ceramic (IPS Empress) inlay with an elastic modulus equal to 65 GPa. Each model was subjected to a force of 200 N directed to the occlusal surface. The stresses occurring in the tested inlays, composite resin cement layer, and tooth tissues were calculated. To evaluate the strength of materials, the Mohr-Coulomb failure criterion was used. Contact stresses in the cement-tissue adhesive interface were calculated and compared to tensile and shear bond strength of the luting cement to enamel and dentin. In the teeth restored with composite resin and ceramic inlays, the values of the Mohr-Coulomb failure criterion were lower than in the unrestored tooth with a preparation (UT), but still 2.5 times higher than in the intact tooth (IT). For the ceramic inlay (CI), the values of the Mohr-Coulomb failure criterion were nearly 3 times higher than in the composite resin inlays. For the luting agent for the ceramic inlay model

  14. Priming the tooth surface with chlorhexidine and antibacterial activity of resin cement

    PubMed Central

    Saini, Monika; Singh, Yashpal; Garg, Rishabh; Pandey, Anita

    2013-01-01

    AIM: To evaluate the effect of priming the tooth surface with 2% chlorhexidine gluconate on antibacterial activity of resin cement. METHODS: Ten patients in whom a single missing tooth was present on both the right and left side in the upper or lower arch were selected. Two fixed partial dentures (FPDs) in each patient on the right and left side were planned. Each FPD was assigned either to the control or test group. In the control group, FPD was luted with resin cement and in the test group, the tooth surface was primed with 2% chlorhexidine gluconate before luting with resin cement. Bacteriological samples were collected at base line level, as the patient came to the outpatient department before the start of any treatment, 5 wk prior to cementation of FPD and at 13 wk (8 wk after final cementation). Microbiological processing of all samples was done and the results were statistically analyzed. RESULTS: In the test group, a predominance of aerobic/facultative gram positive cocci rod was seen which indicates a healthy periodontal site, whereas in the control group, a predominance of anaerobic gram negative rods was present which indicates an unhealthy periodontal condition. This is evident by the fact that the anaerobic bacteria percentage in the control sample is 57% and 15% in the test sample after 13 wk, whereas the aerobic/facultative bacteria percentage is 43% in the control sample and 85% in the test sample after 13 wk. The percentage of gram negative bacteria in the control sample is 61% and in the test sample is 20% after 13 wk, whereas the percentage of gram positive bacteria in the control sample is 39% and in the test sample is 80% after 13 wk. The shift from anaerobic gram negative bacteria to aerobic gram positive bacteria is clearly seen from the control to test sample after 13 wk. CONCLUSION: The present study demonstrated that priming the tooth surface with 2% chlorhexidine gluconate may enhance antibacterial activity of the resin cement. PMID

  15. Testing rate and cementation seating load effects on resin-strengthening of a dental porcelain analogue.

    PubMed

    Hooi, Paul; Addison, Owen; Fleming, Garry J P

    2013-06-01

    To determine the resin-strengthening dependence of a soda-lime-glass analogue for dental porcelain as a function of biaxial flexure strength (BFS), test crosshead rate and cementation seating load. Disc-shaped soda-lime glass specimens were divided into twelve groups (n=24), alumina particle air abraded and hydrofluoric acid-etched. Specimens (Groups A-D) were stored in a desiccator prior to testing at crosshead rates of 0.01, 0.1, 1 and 10mm/min, respectively. The remaining specimens were silane treated, Rely-X Veneer resin-coated with a seating load of 5N (Groups E-H) and 30N (Groups I-L) prior to light irradiation at 480±20mW/cm(2), 24h dry storage and BFS testing at 0.01, 0.1, 1 and 10mm/min, respectively. A linear logarithmic regression curve was fit to the raw data to elucidate static fatigue effects of the soda-lime-glass. Analysis of group means was performed utilising a general linear model univariate analysis and post hoc all paired Tukey tests (P<0.05). The linear logarithmic regression curve demonstrated the static fatigue effects of the soda-lime-glass analogue. Rely-X Veneer resin-coating (Groups E-L) resulted in significant increases in the mean BFS data for all crosshead rates examined (all P<0.001). However, the pattern of rate dependence effects on resin-cementation deviated from the log relationship observed with the uncoated controls. This study further highlights that when slow crack growth is simulated during testing, valuable insights into the significant modification of a hereto well described phenomenon such as resin-strengthening mediated by the resin-ceramic hybrid layer is provided. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Conventional and microfilled composite resins. Part II. Chip fractures.

    PubMed

    Lambrechts, P; Ameye, C; Vanherle, G

    1982-11-01

    Dentists are accustomed to advantages and disadvantages in the materials at their disposal. This article was concerned with one disadvantage of microfilled composite resins, namely, chip fractures. Probably due to their higher coefficient of thermal expansion, higher water sorption, higher polymerization shrinkage, and lower tensile strengths, cohesive as well as adhesive chip fractures occur three to four times more often with microfilled composite resins than with conventional composite resins. Microfilled composite resins are indicated for esthetic purposes. They are contraindicated for Class IV and stress-bearing restorations. They are indicated for limited use in Class I restorations where esthetics is of primary importance. The technique of use must include acid-etching and intermediate bonding. The microfilled composite resins enjoy a smooth finish and high luster. This offers advantages in areas where smoothness is paramount. They may replace conventional composite resins for resurfacing existing restorations and veneering stained or mottled anterior teeth. They are indicated for treatment of cervical erosion.

  17. Failure stress criteria for composite resin.

    PubMed

    De Groot, R; Peters, M C; De Haan, Y M; Dop, G J; Plasschaert, A J

    1987-12-01

    In previous work (Peters and Poort, 1983), the stress distribution in axisymmetric models of restored teeth was analyzed by finite element analysis (FEA). To compare the tri-axial stress state at different sites, they calculated the Von Mises equivalent stress and used it as an indication for weak sites. However, the use of Von Mises' theory for material failure requires that the compressive and tensile strengths be equal, whereas for composite resin the compressive strength values are, on the average, eight times larger than the tensile strength values. The objective of this study was to investigate the applicability of a modified Von Mises and the Drücker-Prager criterion to describe mechanical failure of composite resin. In these criteria, the difference between compressive and tensile strength is accounted for. The stress criteria applied to an uni-axial tensile stress state are compared with those applied to a tri-axial tensile stress state. The uni-axial state is obtained in a Rectangular Bar (RB) specimen and the tri-axial state in a Single-edge Notched Bend (SENB) specimen with a chevron notch at midspan. Both types of specimens, made of light-cured composite, were fractured in a three-point bend test. The size of the specimens was limited to 16 mm x 2 mm x 2 mm (span, 12 mm). Load-deflection curves were recorded and used for linear elastic FEA. The results showed that the Drücker-Prager criterion is a more suitable criterion for describing failure of composite resins due to multi-axial stress states than are the Von Mises criterion and the modified Von Mises criterion.

  18. Shear bond strength of four resin cements used to lute ceramic core material to human dentin.

    PubMed

    Altintas, Subutayhan; Eldeniz, Ayçe Unverdi; Usumez, Aslihan

    2008-12-01

    This study evaluated the effect of four resin cements on the shear bond strength of a ceramic core material to dentin. One hundred twenty molar teeth were embedded in a self-curing acrylic resin. The occlusal third of the crowns were sectioned under water cooling. All specimens were randomly divided into four groups of 30 teeth each according to the resin cement used. One hundred twenty cylindrical-shaped, 2.7-mm wide, 3-mm high ceramic core materials were heat-pressed. The core cylinders were then luted with one of the four resin systems to dentin (Super-Bond C&B, Chemiace II, Variolink II, and Panavia F). Half of the specimens (n = 15) were tested after 24 hours; the other half (n = 15) were stored in distilled water at 37 degrees C for 1 day and then thermocycled 1000 times between 5 degrees C and 55 degrees C prior to testing. Shear bond strength of each specimen was measured using a universal testing machine at a crosshead speed of 1 mm/min. The bond strength values were calculated in MPa, and the results were statistically analyzed using a two-way analysis of variance (ANOVA) and Tukey HSD tests. The shear bond strength varied significantly depending on the resin cement used (p < 0.05). The differences in the bond strengths after thermocycling were not remarkable as compared with the corresponding prethermal cycling groups (p > 0.05). Significant interactions were present between resin cement and thermocycling (p < 0.05). After 24 hours, the specimens luted with Variolink II (5.3 +/- 2.2 MPa) showed the highest shear bond strength, whereas the specimens luted with Chemiace II (1.6 +/- 0.4 MPa) showed the lowest. After thermocycling, the bond strength values of specimens luted with Chemiace II (1.1 +/- 0.1 MPa) and Super-Bond C&B (1.7 +/- 0.4 MPa) decreased; however, this was not statistically significant (p > 0.05). The increase in the shear bond strength values in the Panavia F (4.5 +/- 0.7 MPa) and Variolink II (5.5 +/- 2.1 MPa) groups after thermocycling

  19. Assessment of Natural Radioactivity Levels of Cements and Cement Composites in the Slovak Republic

    PubMed Central

    Eštoková, Adriana; Palaščáková, Lenka

    2013-01-01

    The radionuclide activities of 226Ra, 232Th and 40K and radiological parameters (radium equivalent activity, gamma and alpha indices, the absorbed gamma dose rate and external and internal hazard indices) of cements and cement composites commonly used in the Slovak Republic have been studied in this paper. The cement samples of 8 types of cements from Slovak cement plants and five types of composites made from cement type CEM I were analyzed in the experiment. The radionuclide activities in the cements ranged from 8.58–19.1 Bq·kg−1, 9.78–26.3 Bq·kg−1 and 156.5–489.4 Bq·kg−1 for 226Ra, 232Th and 40K, respectively. The radiological parameters in cement samples were calculated as follows: mean radium equivalent activity Raeq = 67.87 Bq·kg−1, gamma index Iγ = 0.256, alpha index Iα = 0.067, the absorbed gamma dose rate D = 60.76 nGy·h−1, external hazard index Hex = 0.182 and internal hazard index Hin was 0.218. The radionuclide activity in composites ranged from 6.84–10.8 Bq·kg−1 for 226Ra, 13.1–20.5 Bq·kg−1 for 232Th and 250.4–494.4 Bq·kg−1 for 40K. The calculated radiological parameters of cements were lower than calculated radiological parameters of cement composites. PMID:24351739

  20. Conventional dual-cure versus self-adhesive resin cements in dentin bond integrity

    PubMed Central

    da SILVA, Renata Andreza Talaveira; COUTINHO, Margareth; CARDOZO, Pedro Igor; da SILVA, Larissa Alves; ZORZATTO, José Roberto

    2011-01-01

    During post preparation, the root canal is exposed to the oral cavity, and endodontic treatment may fail because of coronal leakage, bacterial infection and sealing inability of the luting cement. Objective this study quantified the interfacial continuity produced with conventional dual-cure and self-adhesive resin cements in the cervical (C), medium (M) and apical (A) thirds of the root. Material and methods Forty single-rooted human teeth were restored using Reforpost # 01 conical glass-fiber posts and different materials (N=10 per group): group AC=Adper™ ScotchBond™ Multi-purpose Plus + AllCem; group ARC=Adper™ ScotchBond™ Multi-purpose Plus + RelyX ARC; group U100=RelyX U100; and group MXC=Maxcem Elite. After being kept in 100% humidity at 37ºC for 72 hours, the samples were sectioned parallel to their longitudinal axis and positive epoxy resin replicas were made. The scanning electron micrographs of each third section of the teeth were combined using Image Analyst software and measured with AutoCAD-2002. We obtained percentage values of the interfacial continuity. Results Interfacial continuity was similar in the apical, medium and cervical thirds of the roots within the groups (Friedman test, p>0.05). Comparison of the different cements in a same root third showed that interfacial continuity was lower in MXC (C=45.5%; M=48.5%; A=47.3%) than in AC (C=85.9%, M=81.8% and A=76.0%), ARC (C=83.8%, M=82.4% and A=75.0%) and U100 (C=84.1%, M=82.4% and A=77.3%) (Kruskal-Wallis test, p<0.05). Conclusions Allcem, Rely X ARC and U100 provide the best cementation; cementation was similar among root portions; in practical terms, U100 is the best resin because it combines good cementation and easy application and none of the cements provides complete interfacial continuity. PMID:21710099

  1. The effect of curing light and chemical catalyst on the degree of conversion of two dual cured resin luting cements.

    PubMed

    Souza-Junior, Eduardo José; Prieto, Lúcia Trazzi; Soares, Giulliana Panfiglio; Dias, Carlos Tadeu dos Santos; Aguiar, Flávio Henrique Baggio; Paulillo, Luís Alexandre Maffei Sartini

    2012-01-01

    The aim of this study was to evaluate the influence of different curing lights and chemical catalysts on the degree of conversion of resin luting cements. A total of 60 disk-shaped specimens of RelyX ARC or Panavia F of diameter 5 mm and thickness 0.5 mm were prepared and the respective chemical catalyst (Scotchbond Multi-Purpose Plus or ED Primer) was added. The specimens were light-cured using different curing units (an argon ion laser, an LED or a quartz-tungsten-halogen light) through shade A2 composite disks of diameter 10 mm and thickness 2 mm. After 24 h of dry storage at 37°C, the degree of conversion of the resin luting cements was measured by Fourier-transformed infrared spectroscopy. For statistical analysis, ANOVA and the Tukey test were used, with p ≤ 0.05. Panavia F when used without catalyst and cured using the LED or the argon ion laser showed degree of conversion values significantly lower than RelyX ARC, with and without catalyst, and cured with any of the light sources. Therefore, the degree of conversion of Panavia F with ED Primer cured with the quartz-tungsten-halogen light was significantly different from that of RelyX ARC regardless of the use of the chemical catalyst and light curing source. In conclusion, RelyX ARC can be cured satisfactorily with the argon ion laser, LED or quartz-tungsten-halogen light with or without a chemical catalyst. To obtain a satisfactory degree of conversion, Panavia F luting cement should be used with ED Primer and cured with halogen light.

  2. High performance mixed bisimide resins and composites based thereon

    NASA Technical Reports Server (NTRS)

    Parker, J. A.; ations.

    1986-01-01

    Mixtures of bismaleimide/biscitraconirnide resins produces materials which have better handling, processing or mechanical and thermal properties, particularly in graphite composites, than materials made with the individual resins. The mechanical strength of cured graphite composites prepared from a 1:1 copolymer of such bisimide resins is excellent at both ambient and elevated temperatures. The copolymer mixture provides improved composites which are lighter than metals and replace metals in many aerospace applications.

  3. Well cementing method using acid removable low density well cement compositions

    SciTech Connect

    King, B.J.; Totten, P.L.

    1993-05-25

    A method of forming a cement plug or seal in a subterranean zone penetrated by a well bore which can subsequently be removed by dissolution in acid is described comprising: pumping a low density cement composition which sets into a hard substantially impermeable mass into said zone comprised of magnesium oxide, an aqueous magnesium chloride solution, calcium carbonate filler, a foaming agent, a foam stabilizer and a gas entrained in said slurry in an amount sufficient to obtain a desired slurry density; and allowing said cement composition to set in said zone.

  4. Influence of ceramic thickness and curing mode on the polymerization shrinkage kinetics of dual-cured resin cements.

    PubMed

    Lee, In Bog; An, Woong; Chang, Juhea; Um, Chung Moon

    2008-08-01

    The purpose of this study was to assess how ceramic disc thickness and curing mode (light or chemical) affects the polymerization shrinkage of dual-cured resin cements and to evaluate the effect of the ceramic discs on the curing speed of the cements during light exposure. Six commercial resin cements, RelyX ARC, Bistite II, Duolink, Panavia F, Variolink II and Choice were used. Filler weight contents were determined by the ash method. Four ceramic discs with thicknesses of 0.5, 1, 2 and 4mm, respectively, were made. The attenuation of light intensity due to the ceramic discs was measured using a radiometer. The polymerization shrinkage kinetics of the resin cements by chemical or light cure through the different ceramic discs was measured using a bonded-disc method. There were differences in filler content among brands of resin cement. The polymerization shrinkage without ceramic disc was 2.61-4.59% by chemical cure and 2.93-4.66% by light cure. The polymerization shrinkage of RelyX ARC and Panavia F by chemical cure was statistically lower than by light cure (p<0.05). Polymerization shrinkage and filler weight were inversely related (R=-0.965). Both the transmitted light intensity and polymerization shrinkage decreased with increasing thickness of ceramic discs (p<0.05). The time to reach the maximum shrinkage rate of the resin cements increased with increasing ceramic thickness. The cure speed by light cure was 15-322 times faster than by chemical cure. The polymerization shrinkage kinetics of dual-cured resin cements significantly differed between brands under various curing conditions. Clinicians should be aware of the setting characteristics of the cements, so they can choose the optimal materials for different clinical situations.

  5. Degree of conversion and bond strength of resin-cements to feldspathic ceramic using different curing modes.

    PubMed

    Novais, Veridiana Resende; Raposo, Luís Henrique Araújo; Miranda, Rafael Resende de; Lopes, Camila de Carvalho Almança; Simamoto, Paulo Cézar; Soares, Carlos José

    2017-01-01

    The aim of this study was to assess the performance of resin cements when different curing modes are used, by evaluating the degree of conversion and bond strength to a ceramic substrate. Three resin cements were evaluated, two dual-cured (Variolink II and RelyX ARC) and one light-cured (Variolink Veneer). The dual-cured resin cements were tested by using the dual activation mode (base and catalyst) and light-activation mode (base paste only). For degree of conversion (DC) (n=5), a 1.0 mm thick feldspathic ceramic disc was placed over the resin cement specimens and the set was light activated with a QTH unit. After 24 h storage, the DC was measured with Fourier transform infrared spectroscopy (FTIR). For microshear bond strength testing, five feldspathic ceramic discs were submitted to surface treatment, and three cylindrical resin cement specimens were bonded to each ceramic surface according to the experimental groups. After 24 h, microshear bond testing was performed at 0.5 mm/min crosshead speed until the failure. Data were submitted to one-way ANOVA followed by Tukey test (p<0.05). Scanning electron microscopy (SEM) was used for classifying the failure modes. Higher DC and bond strength values were shown by the resin cements cured by using the dual activation mode. The Variolink II group presented higher DC and bond strength values when using light-activation only when compared with the Variolink Veneer group. The base paste of dual-cured resin cements in light-activation mode can be used for bonding translucent ceramic restorations of up to or less than 1.0 mm thick.

  6. Comparative study of the radiopacity of resin cements used in aesthetic dentistry.

    PubMed

    Montes-Fariza, Raquel; Monterde-Hernández, Manuel; Cabanillas-Casabella, Cristina; Pallares-Sabater, Antonio

    2016-06-01

    The aim of this study was to compare the radiopacity of 6 modern resin cements with that of human enamel and dentine using the Digora digital radiography system, to verify whether they meet the requirements of ANSI/ADA specification no. 27/1993 and the ISO 4049/2000 standard and assess whether their radiopacity is influenced by the thickness of the cement employed. Three 3-thickness samples (0.5, 1 and 1.5 mm) were fabricated for each material. The individual cement samples were radiographed on the CCD sensor next to the aluminium wedge and the tooth samples. Five radiographs were made of each sample and therefore five readings of radiographic density were taken for each thickness of the materials. The radiopacity was measured in pixels using Digora 2.6 software. The calibration curve obtained from the mean values of each step of the wedge made it possible to obtain the equivalent in mm of aluminium for each mm of the luting material. With the exception of Variolink Veneer Medium Value 0, all the cements studied were more radiopaque than enamel and dentin (P<.05) and complied with the ISO and ANSI/ADA requirements (P<.001). The radiopacity of all the cements examined depended on their thickness: the thicker the material, the greater its radiopacity. All materials except Variolink Veneer Medium Value 0 yielded radiopacity values that complied with the recommendations of the ISO and ANSI/ADA. Variolink Veneer Medium Value 0 showed less radiopacity than enamel and dentin.

  7. Effect of adding ethylene glycol dimethacrylate to resin cements: durability against thermal stress of adhesion to titanium.

    PubMed

    Imai, Y; Ikeda, Y

    1997-06-01

    The present study was conducted to examine the effect of the addition of a dimethacrylate to resin cements on bond strength between titanium and resin after thermocycling. Titanium disks, polished and treated with a phosphate monomer, were bonded to acrylic rods using two types of experimental resin cements. The cements were composed of methyl methacrylate (MMA) containing a tributylborane initiator and 0-10 wt% of ethylene glycol dimethacrylate (EGDMA) and two types of polymer component of hard poly (MMA) or soft fluoropolymer (2-6F). The bonded specimens were subjected to a thermocycling test in water and then to tensile strength testing. The addition of 5% or more dimethacrylate monomer to the two MMA-based resin cements caused a drastic decrease in bond strength to the metal after the thermocycling test. The resin prepared with soft 2-6F as a polymer component was significantly more durable than the rigid type resin based on PMMA. However, even a 1% addition of ECDMA to the 2-6F resin resulted in a significant decrease in durability.

  8. Relined Fiberglass Post: Effect of Luting Length, Resin Cement, and Cyclic Loading on the Bond to Weakened Root Dentin.

    PubMed

    de Souza, N C; Marcondes, M L; da Silva, Dff; Borges, G A; Júnior, Lh Burnett; Spohr, A M

    This study evaluated the effects of luting length of the post, the resin cement, and cyclic loading on pull-out bond strength of fiberglass posts relined with composite resin in weakened roots. The canals of 80 bovine incisors were endodontically treated and weakened with diamond burs. The teeth were randomly divided into eight groups (n=10) according to the luting procedures of the relined fiberglass post (RFP): In groups 1, 2, 3, and 4, the RFPs were luted with RelyX ARC, and in groups 5, 6, 7, and 8 they were luted with RelyX U200. In groups 1, 3, 5, and 7, the RFPs were luted at a length of 5 mm, and in groups 2, 4, 6, and 8 they were luted at a length of 10 mm. Specimens from groups 3, 4, 7, and 8 were submitted to cyclic loading. Specimens were subjected to a pull-out bond strength test in a universal testing machine. The results (MPa) were analyzed by three-way analysis of variance and the Tukey post hoc test (α=0.05). Six human upper anterior teeth were used to analyze the bond interface by confocal laser scanning microscopy (CLSM). The pull-out bond strength of RFPs luted with RelyX U200 was statistically higher than that of RelyX ARC. Cyclic loading influenced the bond strength only for the luting length of 5 mm. CLSM analysis revealed the formation of resin cement tags for both materials. Luting length is an important factor in retaining RFPs in weakened roots when they are subjected to cyclic loading, and RelyX U200 resulted in greater bond strengths to the root canal in comparison with RelyX ARC.

  9. Bond Strength of Composite Resin to Pulp Capping Biomaterials after Application of Three Different Bonding Systems

    PubMed Central

    Jaberi-Ansari, Zahra; Mahdilou, Maryam; Ahmadyar, Maryam; Asgary, Saeed

    2013-01-01

    Background and aims. Bonding of composite resin filling materials to pulp protecting agents produces an adhesive joint which is important for the quality of filling as well as success of restoration. We aimed to assess the bond strength of composite resin to three pulp capping biomaterials: Pro Root mineral trioxide aggregate (PMTA), Root MTA (RMTA) and calcium enriched mixture (CEM) cement, using three bonding systems [a total-etch (Single Bond) and two self-etch systems (Protect bond and SE Bond)]. Materials and methods. Ninety acrylic molds, each containing a 6×2-mm hole, were divided into 3 groups and filled with PMTA, RMTA and CEM cements. The samples in each experimental group were then randomly divided into 3 sub-groups; Single Bond, Protect Bond and SE Bond bonding systems were applied to the tested materials. Cylindrical forms of composite resin (Z100, 2×2 mm) were placed onto the samples and cured. Shear bond strength values were measured for 9 subgroups using a universal testing machine. Data were analyzed using two-way ANOVA. Results. The average shear bond strengths of Z100 composite resin after application of Single Bond, Protect Bond and SE Bond systems were as follows; PMTA: 5.1±2.42, 4.56±1.96 and 4.52±1.7; RMTA: 4.71±1.77, 4.31±0.56 and 4.79±1.88; and CEM cement: 4.75±1.1, 4.54±1.59 and 4.64±1.78 MPa, respectively. The type of pulp capping material, bonding system and their interacting effects did not have a significant effect on the bond strengths of composite resin to pulp capping biomaterials. Conclusion. Within the limitations of this in vitrostudy, bond strength of composite resin to two types of MTA as well as CEM cement were similar following application of the total-etch or self-etch bonding systems. PMID:24082986

  10. Bond strength of composite resin to pulp capping biomaterials after application of three different bonding systems.

    PubMed

    Jaberi-Ansari, Zahra; Mahdilou, Maryam; Ahmadyar, Maryam; Asgary, Saeed

    2013-01-01

    Background and aims. Bonding of composite resin filling materials to pulp protecting agents produces an adhesive joint which is important for the quality of filling as well as success of restoration. We aimed to assess the bond strength of composite resin to three pulp capping biomaterials: Pro Root mineral trioxide aggregate (PMTA), Root MTA (RMTA) and calcium enriched mixture (CEM) cement, using three bonding systems [a total-etch (Single Bond) and two self-etch systems (Protect bond and SE Bond)]. Materials and methods. Ninety acrylic molds, each containing a 6×2-mm hole, were divided into 3 groups and filled with PMTA, RMTA and CEM cements. The samples in each experimental group were then randomly divided into 3 sub-groups; Single Bond, Protect Bond and SE Bond bonding systems were applied to the tested materials. Cylindrical forms of composite resin (Z100, 2×2 mm) were placed onto the samples and cured. Shear bond strength values were measured for 9 subgroups using a universal testing machine. Data were analyzed using two-way ANOVA. Results. The average shear bond strengths of Z100 composite resin after application of Single Bond, Protect Bond and SE Bond systems were as follows; PMTA: 5.1±2.42, 4.56±1.96 and 4.52±1.7; RMTA: 4.71±1.77, 4.31±0.56 and 4.79±1.88; and CEM cement: 4.75±1.1, 4.54±1.59 and 4.64±1.78 MPa, respectively. The type of pulp capping material, bonding system and their interacting effects did not have a significant effect on the bond strengths of composite resin to pulp capping biomaterials. Conclusion. Within the limitations of this in vitrostudy, bond strength of composite resin to two types of MTA as well as CEM cement were similar following application of the total-etch or self-etch bonding systems.

  11. Influence of Y-TZP ceramic treatment and different resin cements on bond strength to dentin.

    PubMed

    de Castro, Humberto L; Corazza, Pedro H; Paes-Júnior, Tarcísio de A; Della Bona, Alvaro

    2012-11-01

    Evaluating the bond strength (σ) of resin cement systems (RXA - RelyX ARC; RXU - RelyX U100; and PF - Panavia F) to dentin and yttria-stabilized zirconia-based ceramic (YZ - In-Ceram YZ) after different surface treatments and aging. Occlusal dentin of 54 human molars was exposed and conditioned following manufacturers' instructions. Fifty-four YZ blocks were sintered and divided into two groups according to surface treatment: PA - airborne particle abrasion, and SC - tribochemical silica coating. All treated YZ blocks were cemented to dentin using one of the cement systems (RXA, RXU, and PF) following manufacturers' recommendations, which includes specific silane agents. Teeth-cement-ceramic blocks were stored in 37°C distilled water for 24h before cutting into non-trimming bar-shaped specimens (adhesive area, A=1±0.1mm(2)). Specimens (n≥12) were assigned to one of the following conditions: N - no storage; W - stored in 37°C distilled water for 60days; and TC - thermal cycling (5-55°C; 10,000 cycles). All specimens were loaded in tension (F) to failure using a universal testing machine. The σ (F/A) was calculated and data were statistically analyzed using ANOVA and Tukey tests (α=0.05). Fracture surfaces were examined to determine the failure mode. RXA-SC and PF-PA specimens showed the greatest mean σ values after N (13.9 and 13.0MPa, respectively) and TC (12.9 and 14.8MPa, respectively). SC-treated showed greater mean σ values than PA-treated YZ specimens after W. Regardless of the cement used, W and TC did not significantly reduce the σ of SC-treated YZ resin bonded to dentin. Copyright © 2012. Published by Elsevier Ltd.

  12. Bonding self-adhesive resin cements to glass fibre posts: to silanate or not silanate?

    PubMed

    Oliveira, A S; Ramalho, E S; Ogliari, F A; Moraes, R R

    2011-08-01

    To evaluate the bond strength of self-adhesive resin cements (SARCs) to glass fibre posts with or without a silane coupling agent. The SARCs tested were: Maxcem Elite (MXE; Kerr), RelyX Unicem clicker (UNI; 3M ESPE), seT capsule (SET; SDI), and SmartCem 2 (SC2; Dentsply Caulk). The conventional cement RelyX ARC (ARC; 3M ESPE) was evaluated as a reference. Rectangular-shaped flat posts were obtained (Angelus). After silanizing or not the posts, resin cement cylinders were built on the post surfaces. The cylinders were tested in shear after 24 h. Bond strength data were submitted to two-way anova and Student-Newman-Keuls' test (5%). Failure modes were classified under magnification as adhesive failure, mixed failure involving the cement or mixed failure involving the post. For ARC, MXE and SET, the silanated groups had higher bond strengths. For SC2 the silane had no influence, while for UNI silanization decreased the bond strength. The conventional ARC had the lowest bond strength when the posts were not silanated; UNI showed the highest values. When the posts were silanated,