Hornewer, Nancy J.
2014-01-01
Recent studies have documented the presence of trace elements, organic compounds including polycyclic aromatic hydrocarbons, and radionuclides in sediment from the Colorado River delta and from sediment in some side canyons in Lake Powell, Utah and Arizona. The fate of many of these contaminants is of significant concern to the resource managers of the National Park Service Glen Canyon National Recreation Area because of potential health impacts to humans and aquatic and terrestrial species. In 2010, the U.S. Geological Survey began a sediment-core sampling and analysis program in the San Juan River and Escalante River deltas in Lake Powell, Utah, to help the National Park Service further document the presence or absence of contaminants in deltaic sediment. Three sediment cores were collected from the San Juan River delta in August 2010 and three sediment cores and an additional replicate core were collected from the Escalante River delta in September 2011. Sediment from the cores was subsampled and composited for analysis of major and trace elements. Fifty-five major and trace elements were analyzed in 116 subsamples and 7 composited samples for the San Juan River delta cores, and in 75 subsamples and 9 composited samples for the Escalante River delta cores. Six composited sediment samples from the San Juan River delta cores and eight from the Escalante River delta cores also were analyzed for 55 low-level organochlorine pesticides and polychlorinated biphenyls, 61 polycyclic aromatic hydrocarbon compounds, gross alpha and gross beta radionuclides, and sediment-particle size. Additionally, water samples were collected from the sediment-water interface overlying each of the three cores collected from the San Juan River and Escalante River deltas. Each water sample was analyzed for 57 major and trace elements. Most of the major and trace elements analyzed were detected at concentrations greater than reporting levels for the sediment-core subsamples and composited samples. Low-level organochlorine pesticides and polychlorinated biphenyls were not detected in any of the samples. Only one polycyclic aromatic hydrocarbon compound was detected at a concentration greater than the reporting level for one San Juan composited sample. Gross alpha and gross beta radionuclides were detected at concentrations greater than reporting levels for all samples. Most of the major and trace elements analyzed were detected at concentrations greater than reporting levels for water samples.
Canfield, Timothy J.; Dwyer, F. James; Fairchild, James F.; Haverland, Pamela S.; Ingersoll, Christopher G.; Kemble, Nile E.; Mount, David R.; La Point, Thomas W.; Burton, G. Allen; Swift, M. C.
1996-01-01
Sediments in many Great Lakes harbors and tributary rivers are contaminated. As part of the USEPA's Assessment and Remediation of Contaminated Sediment (ARCS) program, a number of studies were conducted to determine the nature and extent of sediment contamination in Great Lakes Areas of Concern (AOC). This paper describes the composition of benthic invertebrate communities in contaminated sediments and is one in a series of papers describing studies conducted to evaluate sediment toxicity from three AOC's (Buffalo River, NY; Indiana Harbor, IN; Saginaw River, MI), as part of the ARCS Program. Oligochaeta (worms) and Chironomidae (midge) comprised over 90% of the benthic invertebrate numbers in samples collected from depositional areas. Worms and midge consisted of taxa identified as primarily contaminant tolerant organisms. Structural deformities of mouthparts in midge larvae were pronounced in many of the samples. Good concurrence was evident between measures of laboratory toxicity, sediment contaminant concentration, and benthic invertebrate community composition in extremely contaminated samples. However, in moderately contaminated samples, less concordance was observed between the benthos community composition and either laboratory toxicity test results or sediment contaminant concentration. Laboratory sediment toxicity tests may better identify chemical contamination in sediments than many commonly used measures of benthic invertebrate community composition. Benthic measures may also reflect other factors such as habitat alteration. Evaluation of non-contaminant factors are needed to better interpret the response of benthic invertebrates to sediment contamination.
Compositional Data for Bengal Delta Sediment Collected from a Borehole at Rajoir, Bangladesh
Breit, George N.; Yount, James C.; Uddin, Md. Nehal; Muneem, Ad. Atual; Lowers, Heather; Berry, Cyrus J.; Whitney, John W.
2007-01-01
Processes active within sediment of the Bengal basin have attracted world concern because of the locally high content of arsenic dissolved in ground water drawn from that sediment. Sediment samples were collected from a borehole in the town of Rajoir, Rajoir upazila, Madaripur district, Bangladesh, to investigate the processes contributing to arsenic contamination. The samples were mineralogically and chemically analyzed to determine compositional variations related to the arsenic content of the sediment. Mineralogy of the sediment was determined using powder X-ray diffraction. Bulk chemical composition was measured by Combustion; Inductively Coupled Plasma Atomic Emission Spectroscopy; Energy Dispersive X-ray Fluorescence; and Hydride Generation Atomic Absorption Spectrophotometry. Sediment was treated with 0.5 N HCl and resulting solutions were analyzed, primarily to evaluate the abundance and oxidation state of acid-soluble iron. Acid-volatile sulfide, acid-soluble sulfate, and reducible sulfide were also measured on a few samples. Sediment sampled at Rajoir is typically unlithified, gray, micaceous, feldspathic arenaceous sand with a few silt and clay layers. Arsenic content of the sediment ranges from 0.6 to 21 ppm with a median of 1.2 ppm.
Time-integrated sampling of fluvial suspended sediment: a simple methodology for small catchments
NASA Astrophysics Data System (ADS)
Phillips, J. M.; Russell, M. A.; Walling, D. E.
2000-10-01
Fine-grained (<62·5 µm) suspended sediment transport is a key component of the geochemical flux in most fluvial systems. The highly episodic nature of suspended sediment transport imposes a significant constraint on the design of sampling strategies aimed at characterizing the biogeochemical properties of such sediment. A simple sediment sampler, utilizing ambient flow to induce sedimentation by settling, is described. The sampler can be deployed unattended in small streams to collect time-integrated suspended sediment samples. In laboratory tests involving chemically dispersed sediment, the sampler collected a maximum of 71% of the input sample mass. However, under natural conditions, the existence of composite particles or flocs can be expected to increase significantly the trapping efficiency. Field trials confirmed that the particle size composition and total carbon content of the sediment collected by the sampler were representative statistically of the ambient suspended sediment.
The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments
NASA Astrophysics Data System (ADS)
Yang, Shou Ye; Jung, Hoi Soo; Choi, Man Sik; Li, Cong Xian
2002-07-01
Thirty-four samples from the Changjiang and Huanghe were analyzed to characterize their rare earth element (REE) compositions. Although REE concentrations in the Changjiang sediments are higher than those of the Huanghe sediments, the former are less variable. Bulk samples and acid-leachable fractions have convex REE patterns and middle REE enrichments relative to upper continental crust, whereas flat patterns are present in the residual fractions. Source rock composition is the primary control on REE composition, and weathering processes play a minor role. Grain size exerts some influence on REE composition, as demonstrated by the higher REE contents of clay minerals in sediments from both rivers. Heavy minerals contribute about 10-20% of the total REE in the sediments. Apatite is rare in the river sediments, and contributes less than 2% of the REE content, but other heavy minerals such as sphene, allanite and zircon are important reservoirs of residual REE fractions. The Fe-Mn oxides phase accounts for about 14% of bulk REE content in the Changjiang sediments, which could be one of the more important factors controlling REE fractionation in the leachable fraction.
Breit, George N.; Tuttle, Michele L.W.; Cozzarelli, Isabelle M.; Berry, Cyrus J.; Christenson, Scott C.; Jaeschke, Jeanne B.
2008-01-01
Analytical results on sediment and associated ground water from the Canadian River alluvium collected subsequent to those described in Breit and others (2005) are presented in this report. The data presented herein were collected primarily to evaluate the iron and sulfur species within the sediment at well sites IC 36, IC 54, and IC South located at the USGS Norman Landfill study site. Cored sediment and water samples were collected during October 2004 and April 2005. The 52 sediment samples collected by coring were analyzed to determine grain size, the abundance of extractable iron species, and the abundance of sulfur forms and their isotopic compositions. Ground water was collected from cluster wells that sampled ground water from 11 to 15 screened intervals at each of the three sites. The depth range of the wells overlapped the interval of cored sediment. Concentrations of major ions, dissolved organic carbon (DOC), ammonium, and iron are reported with pH, specific conductance, and the isotopic composition of the water for the 75 water samples analyzed. Dissolved sulfate in selected water samples was analyzed to determine its sulfur and oxygen isotope composition.
Breit, George N.; Tuttle, Michele L.W.; Cozzarelli, Isabelle M.; Christenson, Scott C.; Jaeschke, Jeanne B.; Fey, David L.; Berry, Cyrus J.
2005-01-01
Results of physical and chemical analyses of sediment and water collected near a closed municipal landfill at Norman, Oklahoma are presented in this report. Sediment analyses are from 40 samples obtained by freeze-shoe coring at 5 sites, and 14 shallow (depth <1.3 m) sediment samples. The sediment was analyzed to determine grain size, the abundance of extractable iron species and the abundances and isotopic compositions of forms of sulfur. Water samples included pore water from the freeze-shoe core, ground water, and surface water. Pore water from 23 intervals of the core was collected and analyzed for major and trace dissolved species. Thirteen ground-water samples obtained from wells within a few meters of the freeze-shoe core sites and one from the landfill were analyzed for major and trace elements as well as the sulfur and oxygen isotope composition of dissolved sulfate. Samples of surface water were collected at 10 sites along the Canadian River from New Mexico to central Oklahoma. These river-water samples were analyzed for major elements, trace elements, and the isotopic composition of dissolved sulfate.
Breit, George N.; Yount, James C.; Uddin, Md. Nehal; Muneem, Ad. Atual; Lowers, Heather; Driscoll, Rhonda L.; Whitney, John W.
2006-01-01
Processes active within sediment of the Bengal delta have attracted world concern because of the locally high content of arsenic dissolved in ground water drawn from that sediment. Sediment samples were collected from two boreholes in Srirampur village, Kachua upazila, Chandphur district, Bangladesh, to investigate the processes contributing to arsenic contamination. The samples were mineralogically and chemically analyzed to determine compositional variations related to the arsenic content of the sediment. Mineralogy of the sediments was determined using powder X-ray diffraction. Bulk chemical composition was measured by Combustion, Inductively Coupled Plasma Atomic Emission Spectroscopy, Energy Dispersive X-ray Fluorescence, and Hydride Generation Atomic Absorption Spectrophotometry. Solutions produced by four chemical extractions-0.1 molar strontium chloride, 0.5 normal hydrochloric acid, titanium(III)-EDTA, and a solution of hydrogen peroxide and hydrochloric acid-were analyzed to evaluate the chemical reactivity of the sediment with an emphasis on arsenic residence. Acid-volatile sulfide, acid-soluble sulfate, and reducible sulfide were also measured. Sediment sampled at Srirampur is typically unlithified, gray, micaceous, feldspathic, arenaceous silt and sand. Arsenic content of the sediment ranges from <1 to 210 ppm, with the highest contents measured in sediment collected at a depth of 320 meters. Samples with high arsenic contents typically contain high concentrations of sulfur. The greatest amount of arsenic was extracted using the oxidative hydrogen peroxide and hydrochloric acid extraction solution. The extraction results are consistent with the apparent association of arsenic in sulfur in the bulk chemical analyses. Pyrite is typically the most abundant form of sulfur in the sediment and is dissolved by the oxidative extraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardiner, W.W.; Barrows, E.S.; Antrim, L.D
Buttermilk Channel was one of seven waterways that was sampled and evaluated for dredging and sediment disposal. Sediment samples were collected and analyses were conducted on sediment core samples. The evaluation of proposed dredged material from the channel included bulk sediment chemical analyses, chemical analyses of site water and elutriate, water column and benthic acute toxicity tests, and bioaccumulation studies. Individual sediment core samples were analyzed for grain size, moisture content, and total organic carbon. A composite sediment samples, representing the entire area proposed for dredging, was analyzed for bulk density, polynuclear aromatic hydrocarbons, and 1,4-dichlorobenzene. Site water and elutriatemore » were analyzed for metals, pesticides, and PCBs.« less
Geochemical budget of erosion in the Himalayan system
NASA Astrophysics Data System (ADS)
France-Lanord, C.; Lupker, M.; Lavé, J.
2011-12-01
Geochemistry of detrital sediment allow to constrain present and past processes of erosion and may be used to infer large scale budgets. The sediment flux exported by major rivers, corresponds to net physical erosion of a basin and, if combined with the river's dissolved flux, it allows in principle to quantify total erosion rates as well as the balance between chemical and physical erosion. This is nevertheless depending on our ability to quantify riverine fluxes, sediment composition and average source rock composition. Sediment composition results from weathering, attrition, mixing and sorting processes which determine their properties at a given location and time in the drainage basin. Particle sorting during transport exerts a first order control on bulk sediment composition as well as on trace and isotopic compositions. Repeated sampling of river sediments in the Ganga and Brahmaputra Rivers during the monsoon using depth sampling combined to river velocity profiling (ACDP) show the sensitivity of sediment composition to particle sorting effects that can be linked to hydrodynamic conditions. Applied to the Ganga in Bangladesh, and using a Rousean model, we estimate the average grain size and major element composition (Si, Al, Fe) of sediments exported by the Ganga (Lupker et al. 2011, JGR E.S. in press). This leads to a net sediment flux of ca. 380 million tons/yr which is comparable to fluxes reported from hydrological measurements. The average Al/Si ratio of the sediment is 0.23 which is well bellow values reported for the Upper Continental Crust (UCC≈0.27-0.29) and slightly above estimate of the Himalayan Silicate Crust (HSC) composition deduced from a Central Nepal geological sample collection. Deviations from UCC reflect the recycled nature of Himalayan formations having undergone several orogenic cycles and being enriched in quartz. The similarity with HSC suggest that either (1) there is no segregation due to floodplain sequestration, or (2) that the sequestration is limited, or (3) that we overestimate the Al/Si of the HSC. Hypothesis (1) is ruled out by average Siwalik composition or pebble compositions that are enriched in quartz. For hypothesis (3) there is no direct control on USC composition but the average composition of suspended sediments from Himalayan streams, where sediment sorting is limited by turbulence yields Al/Si ratio similar to that of HSC. Therefore, assuming reasonable values for both HSC and floodplain, we suggest that about 10% of the Himalayan erosion flux is presently sequestered in the floodplain. Chemical erosion is revealed by the evolution of sediment composition from the Himalaya to the delta showing a progressive depletion in mobile elements (Na, K, Ca) consistent with progressive weathering of alkaline silicate and carbonate. Quantifying the chemical erosion however requires a careful analysis of the data set, as source effects interfere with weathering proxies such as K/Si, Na/Si. These effects are related to mixing of Himalayan sediments with sediment from the Siwalik or southern tributaries. Quantification of the weathering requires to evaluate the difference between HSC and river sediment.Using detrital sediments to trace weathering and erosion however holds strong promises as, if well modelled, it will enable the use of widely available sedimentary records to address paleo-erosion and weathering studies.
Continental sedimentary processes decouple Nd and Hf isotopes
NASA Astrophysics Data System (ADS)
Garçon, Marion; Chauvel, Catherine; France-Lanord, Christian; Huyghe, Pascale; Lavé, Jérôme
2013-11-01
The neodymium and hafnium isotopic compositions of most crustal and mantle rocks correlate to form the "Terrestrial Array". However, it is now well established that whereas coarse detrital sediments follow this trend, fine-grained oceanic sediments have high Hf ratios relative to their Nd isotopic ratios. It remains uncertain whether this "decoupling" of the two isotopic systems only occurs in the oceanic environment or if it is induced by sedimentary processes in continental settings. In this study, the hafnium and neodymium isotopic compositions of sediments in large rivers is expressly used to constrain the behavior of the two isotopic systems during erosion and sediment transport from continent to ocean. We report major and trace element concentrations together with Nd and Hf isotopic compositions of bedloads, suspended loads and river banks from the Ganges River and its tributaries draining the Himalayan Range i.e. the Karnali, the Narayani, the Kosi and the Marsyandi Rivers. The sample set includes sediments sampled within the Himalayan Range in Nepal, at the Himalayan mountain front, and also downstream on the floodplain and at the outflow of the Ganges in Bangladesh. Results show that hydrodynamic sorting of minerals explains the entire Hf isotopic range, i.e. more than 10 εHf units, observed in the river sediments but does not affect the Nd isotopic composition. Bedloads and bank sediments have systematically lower εHf values than suspended loads sampled at the same location. Coarse-grained sediments lie below or on the Terrestrial Array in an εHf vs. εNd diagram. In contrast, fine-grained sediments, including most of the suspended loads, deviate from the Terrestrial Array toward higher εHf relative to their εNd, as is the case for oceanic terrigenous clays. The observed Nd-Hf decoupling is explained by mineralogical sorting processes that enrich bottom sediments in coarse and dense minerals, including unradiogenic zircons, while surface sediments are enriched in fine material with radiogenic Hf signatures. The data also show that Nd-Hf isotopic decoupling increases with sediment transport in the floodplain to reach its maximum at the river mouth. This implies that the Nd-Hf isotopic decoupling observed in worldwide oceanic clays and river sediments is likely to have the same origin. Finally, we estimated the Nd-Hf isotopic composition of the present-day mantle if oceanic sediments had never been subducted and conclude that the addition of oceanic sediments with their anomalous Nd-Hf isotopic compositions has slowly shifted the composition of the Earth's mantle towards more radiogenic Hf values through time.
NASA Astrophysics Data System (ADS)
Nishimura, Mitsugu; Baker, Earl W.
1987-06-01
Five recent sediment samples from a variety of North American continental shelves were analyzed for fatty acids (FAs) in the solvent-extractable (SOLEX) lipids as well as four types of non-solvent extractable (NONEX) lipids. The NONEX lipids were operationally defined by the succession of extraction procedure required to recover them. The complete procedure included (i) very mild acid treatment, (ii) HF digestion and (iii) saponification of the sediment residue following exhaustive solvent extraction. The distribution pattern and various compositional parameters of SOLEX FAs in the five sediments were divided into three different groups, indicating the difference of biological sources and also diagenetic factors and processes among the three groups of samples. Nevertheless, the compositions of the corresponding NONEX FAs after acid treatment were surprisingly very similar. This was also true for the remaining NONEX FA groups in the five sediment samples. The findings implied that most of the NONEX FAs reported here are derived directly from living organisms. It is also concluded that a large part of NONEX FAs are much more resistant to biodegradation than we have thought, so that they can form the large percentage of total lipids with increasing depth of water and sediments.
Calcium Isotopic Compositions of Forearc Sediments from DSDP Site 144
NASA Astrophysics Data System (ADS)
Zhang, Z.; Zhu, H.; Nan, X.; Li, X.; Huang, F.
2016-12-01
It is important to investigate calcium isotopic compositions of reservoirs of the Earth for better application of Ca isotopes into studies of a variety of geochemical problems. Because Ca isotopic compositions for igneous rocks and carbonates are increasingly reported, this maybe bring new requirements on carefully understanding the isotopic compositions of subducted marine sediments. Marine sediments mainly contains carbonates and clays, controlling the compositions of slab-derived materials which are added to the mantle wedge. Obviously, it could have different elemental and calcium isotopic compositions with marine carbonate. Thus, it could also put biases on calcium isotopic signatures of basalts resulted from recycling oceanic carbonate into the mantle. Here, we report calcium isotopic compositions of 17 sediment samples from Deep Sea Drilling Project (DSDP) site 144 (09°27.23' N, 54°20.52' W) which is located about 400 km north of Surinam on the northern flank of the Demerara Rise with a water depth of 2957 meters. These samples have CaO contents ranging from 14.56 wt.% to 41.46 wt.% with an average of 29.61 ± 18.21 (2SD), δ44/40Ca ranges from 0.19 to 0.58 (relative to SRM915a) with an average of 0.40 ± 0.22 (2SD). These carbonate-rich sediments can be used to represent an endmember with high CaO content and low δ44/40Ca, which could modify chemical composition of the upper mantle and subduction zone lavas if they are recycled to the convective mantle during subduction. The positive linear correlation between CaO and δ44/40Ca in the sediments cannot be explained by a simple mixing between marine carbonate and clay. Instead, δ44/40Ca of these samples roughly increase from the Upper Cretaceous to the Early Oligocene, which might reflect the evolution of calcium isotopic compositions of seawater through time.
de Jong, Maarten F; Baptist, Martin J; Lindeboom, Han J; Hoekstra, Piet
2015-08-15
We studied short-term changes in macrozoobenthos in a 20m deep borrow pit. A boxcorer was used to sample macrobenthic infauna and a bottom sledge was used to sample macrobenthic epifauna. Sediment characteristics were determined from the boxcore samples, bed shear stress and near-bed salinity were estimated with a hydrodynamic model. Two years after the cessation of sand extraction, macrozoobenthic biomass increased fivefold in the deepest areas. Species composition changed significantly and white furrow shell (Abra alba) became abundant. Several sediment characteristics also changed significantly in the deepest parts. Macrozoobenthic species composition and biomass significantly correlated with time after cessation of sand extraction, sediment and hydrographical characteristics. Ecosystem-based landscaped sand bars were found to be effective in influencing sediment characteristics and macrozoobenthic assemblage. Significant changes in epifauna occurred in deepest parts in 2012 which coincided with the highest sedimentation rate. We recommend continuing monitoring to investigate medium and long-term impacts. Copyright © 2015 Elsevier Ltd. All rights reserved.
Lv, Baoyi; Cui, Yuxue; Tian, Wen; Feng, Daolun
2017-12-01
This study aims to reveal the composition and influencing factors of bacterial communities in ballast tank sediments. Nine samples were collected and their 16S rRNA gene sequences were analyzed by high-throughput sequencing. The analysis results showed the Shannon index in ballast tank sediments was in the range of 5.27-6.35, which was significantly higher than that in ballast water. Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi and Proteobacteria were the dominant phyla and accounted for approximately 80% of all 16S rRNA gene sequences of the samples. Besides, the high contents of sulfate reducing bacteria (SRB) and sulfur oxidizing bacteria were detected in sediments, indicating that the corrosion of metal caused by SRB might occur in ballast tank. In addition, the trace of human fecal bacteria and candidate pathogens were also detected in ballast tank sediments, and these undesirable microbes reduced the effect of ballast water exchange. Furthermore, C and N had significant effects on the bacterial community composition in ballast tank sediments. In conclusion, our findings suggest that the proper management and disposal of the ballast tank sediments should be considered in order to reduce the negative impact and ecological risks related to ballast water and sediments. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Vidischeva, Olesya; Akhmanov, Grigorii; Khlystov, Oleg; Giliazetdinova, Dina
2016-04-01
In July 2015 the research cruise in the waters of Lake Baikal was carried out onboard RV "G.Yu. Vereshchagin". The expedition was organized by Lomonosov Moscow State University and Limnological Institute of Russian Academy of Sciences. The main purpose of the expedition was to study the modern sedimentation and natural geological processes on the bottom of Lake Baikal. One of the tasks of the cruise was to conduct gas-geochemical survey of bottom sediments. The samples of hydrocarbon gases were collected during the cruise. Subsequent study of the composition and origin of the sampled gas was carried out in the laboratories of Moscow State University. 708 samples from 61 bottom sampling stations were studied. Analyzed samples are from seven different areas located in the southern and central depressions of the lake: (1) "Goloustnoe" seepage area; (2) Bolshoy mud volcano; (3) Elovskiy Area; (4) "Krasny Yar" Seep; (5) "St. Petersburg" Seep; (6) Khuray deep-water depositional system; and (7) Kukuy Griva (Ridge) area. The results of molecular composition analysis indicate that hydrocarbon gases in bottom sediments from almost all sampling stations are represented mostly by pure methane. Ethane was detected only in some places within "Krasny Yar", "Goloustnoe" and "St. Petersburg" seepage areas. The highest concentrations of methane were registered in the sediments from the "Krasny Yar" area - 14 457 μl/l (station TTR-BL15-146G) - and from the "St. Petersburg" area - 13 684 μl/l (station TTR-BL15-125G). The sediments with high concentrations of gases were sampled from active fluid discharge areas, which also can be well distinguished on the seismic profiles. Gas hydrates were obtained in the areas of "Krasny Yar", "Goloustnoe", and "St. Petersburg" seeps and in the area of the Bolshoy mud volcano. Isotopic composition δ13C(CH4) was studied for 100 samples of hydrocarbon gases collected in areas with high methane concentration in bottom sediments. The average value is -53‰. Overall bottom sediments of the Baikal Lake are very saturated in biogenic shallow methane. However, some evidences of thermogenic methane contribution can be recorded in the areas of focused fluid flows from deeper strata (e.g. mud volcanoes, seepage sites, etc.). Scrupulous examination of gas composition data results in understanding of scope of activity of individual structure and rough estimation of thermogenic gas flow input.
NASA Astrophysics Data System (ADS)
Gilhooly, W. P.; Macko, S. A.; Flemings, P. B.
2005-12-01
Pleistocene and Recent sediments within the Brazos-Trinity and Ursa Basins (northwestern Gulf of Mexico) were largely deposited by turbidity currents and have been deformed by a number of mass transport events. The geochemical composition of interstitial waters was determined in order to assess fluid flow within these sediments. Typical porewater sampling resolution, using advanced piston coring and the traditional Manheim squeezer technique, is approximately one sample every other core (20m) with the highest working resolution at one sample every 1.5m. In this study, Rhizon soil moisture samplers were used to attain high-resolution porewater profiles within sea floor surface sediments and for permeable sediments at depth. The small dimensions (2mm x 30mm) and pore-size (1μm) of the devices enable high-frequency placement within a core, specific targeting of the sequence of interest, and do not require sediment removal from the core, or filtering of extracted porewaters. Initial shipboard analyses derived from sediments at the Ursa Basin (Site 1322) indicate a linear decrease in salinity with depth at U1322 where the overpressure gradient is thought to be greatest. The less saline waters with depth lends evidence for potential mixing between deep-seated fluids and low salinity ones derived from the Blue Unit and seawater. Isotopic composition and concentrations of sulfur species (SO4 and H2S) dissolved in porewaters, as well as, ionic compositions (Cl, Na, K, Ca, Mg) and chemical composition of associated sediments (%C, %N, 13C, and 15N) are compared with chemical results obtained with squeezers.
Sedimentation in mountain streams: A review of methods of measurement
Hedrick, Lara B.; Anderson, James T.; Welsh, Stuart A.; Lin, Lian-Shin
2013-01-01
The goal of this review paper is to provide a list of methods and devices used to measure sediment accumulation in wadeable streams dominated by cobble and gravel substrate. Quantitative measures of stream sedimentation are useful to monitor and study anthropogenic impacts on stream biota, and stream sedimentation is measurable with multiple sampling methods. Evaluation of sedimentation can be made by measuring the concentration of suspended sediment, or turbidity, and by determining the amount of deposited sediment, or sedimentation on the streambed. Measurements of deposited sediments are more time consuming and labor intensive than measurements of suspended sediments. Traditional techniques for characterizing sediment composition in streams include core sampling, the shovel method, visual estimation along transects, and sediment traps. This paper provides a comprehensive review of methodology, devices that can be used, and techniques for processing and analyzing samples collected to aid researchers in choosing study design and equipment.
A SEDIMENT TOXICITY EVALUATION OF THREE LARGE RIVER SYSTEMS
Sediment toxicity samples were collected from selected sites on the Ohio River, Missouri River and upper Mississippi River as part of the 2004 and 2005 Environmental Monitoring and Assessment Program-Great Rivers Ecosystems Study (EMAP-GRE). Samples were collected by compositing...
NASA Astrophysics Data System (ADS)
Singleton, Adrian A.; Schmidt, Amanda H.; Bierman, Paul R.; Rood, Dylan H.; Neilson, Thomas B.; Greene, Emily Sophie; Bower, Jennifer A.; Perdrial, Nicolas
2017-01-01
Grain-size dependencies in fallout radionuclide activity have been attributed to either increase in specific surface area in finer grain sizes or differing mineralogical abundances in different grain sizes. Here, we consider a third possibility, that the concentration and composition of grain coatings, where fallout radionuclides reside, controls their activity in fluvial sediment. We evaluated these three possible explanations in two experiments: (1) we examined the effect of sediment grain size, mineralogy, and composition of the acid-extractable materials on the distribution of 7Be, 10Be, 137Cs, and unsupported 210Pb in detrital sediment samples collected from rivers in China and the United States, and (2) we periodically monitored 7Be, 137Cs, and 210Pb retention in samples of known composition exposed to natural fallout in Ohio, USA for 294 days. Acid-extractable materials (made up predominately of Fe, Mn, Al, and Ca from secondary minerals and grain coatings produced during pedogenesis) are positively related to the abundance of fallout radionuclides in our sediment samples. Grain-size dependency of fallout radionuclide concentrations was significant in detrital sediment samples, but not in samples exposed to fallout under controlled conditions. Mineralogy had a large effect on 7Be and 210Pb retention in samples exposed to fallout, suggesting that sieving sediments to a single grain size or using specific surface area-based correction terms may not completely control for preferential distribution of these nuclides. We conclude that time-dependent geochemical, pedogenic, and sedimentary processes together result in the observed differences in nuclide distribution between different grain sizes and substrate compositions. These findings likely explain variability of measured nuclide activities in river networks that exceeds the variability introduced by analytical techniques as well as spatial and temporal differences in erosion rates and processes. In short, we suggest that presence and amount of pedogenic grain coatings is more important than either specific surface area or surface charge in setting the distribution of fallout radionuclides.
Characteristics of hydrocarbons in sediment core samples from the northern Okinawa Trough.
Huang, Xin; Chen, Shuai; Zeng, Zhigang; Pu, Xiaoqiang; Hou, Qinghua
2017-02-15
Sediment core samples from the northern Okinawa Trough (OT) were analyzed to determine abundances and distributions of hydrocarbons by gas chromatography-mass spectrometer (GC-MS). The results show that the n-alkanes in this sediment core conform to a bimodal distribution, and exhibit an odd-to-even predominance of high molecular weights compared to an even-to-odd predominance in low molecular weight n-alkanes with maxima at C 16 and C 18 . The concentrations of bitumen, alkanes and polyaromatic hydrocarbons (PAHs) were higher in samples S10-07 than all others. Three maturity parameters as well as the ratios between parent phenanthrenes (Ps) and methylphenanthrenes (MPs) in samples S10-07 and S10-17 were higher. The distribution and composition of hydrocarbons in sample S10-07 suggest that one, or several, undetected hydrothermal fields may be present in the region of this sediment core. Results also suggest that volcanism may be the main reason for the observed distribution and composition of hydrocarbons in S10-17 sample. Copyright © 2016 Elsevier Ltd. All rights reserved.
Paulson, Anthony J.; Wagner, Richard J.; Sanzolone, Richard F.; Cox, Steven E.
2006-01-01
Twenty-eight composite and replicate sediment samples from 8 Lake Roosevelt sites were collected and analyzed for 10 alkali and alkaline earth elements, 2 non-metals, 20 metals, and 4 lanthanide and actinide elements. All elements were detected in all sediment samples except for silver (95 percent of the elements detected for 1,008 analyses), which was detected only in 4 samples. Sequential selective extraction procedures were performed on single composite samples from the eight sites. The percentage of detections for the 31 elements analyzed ranged from 76 percent for the first extraction fraction using a weak extractant to 93 percent for the four-acid dissolution of the sediments remaining after the third sequential selective extraction. Water samples in various degrees of contact with the sediment were analyzed for 10 alkali and alkaline earth elements, 5 non-metals, 25 metals, and 16 lanthanide and actinide elements. The filtered water samples included 10 samples from the reservoir water column at 8 sites, 32 samples of porewater, 55 samples from reservoir water overlying sediments in 8 cores from the site incubated in a field laboratory, and 24 water samples that were filtered after being tumbled with sediments from 8 sites. Overall, the concentrations of only 37 percent of the 6,776 analyses of the 121 water samples were greater than the reporting limit. Selenium, bismuth, chromium, niobium, silver, and zirconium were not detected in any water samples. The percentage of concentrations for the water samples that were above the reporting limit ranged from 14 percent for the lanthanide and actinide elements to 77 percent for the alkali and alkaline earth elements. Concentrations were greater than reporting limits in only 23 percent of the analyses of reservoir water and 29 percent of the analyses of reservoir water overlying incubation cores. In contrast, 47 and 48 percent of the concentrations of porewater and water samples tumbled with sediments, respectively, were greater than the reporting limit.
NASA Astrophysics Data System (ADS)
fortunato, elisabetta; mongelli, giovanni; paternoster, michele; sinisi, rosa
2016-04-01
The Pietra del Pertusillo fresh-water reservoir is an artificial lake located in the High Agri River Valley (Basilicata); its dam was completed in 1963 for producing hydroelectric energy and providing water for human use to Puglia and Basilicata southern Italian regions (approximately 2 million people). Pertusillo lake lies within a national park because of the presence of many special protected areas. This reservoir is a natural laboratory for assessing the sediment pollution from human activities, including: waste-water treatment plants, landfills, farms, treatment oil plant, plastics and other industrial activities. In addition, the Pertusillo reservoir is located in the area of the largest oil field of continental Europe. This anthropogenic pressure may thus represent an impact factor on the environmental equilibrium and consequently the knowledge and control on their quality represents a relevant environmental challenge. This study reports the preliminary results of a multidisciplinary (sedimentological, mineralogical, geochemical) PhD research focused on the analysis of the lacustrine sediments filling the Pietra del Pertusillo fresh-water reservoir. The lakes and its sediments represent the natural sink for nutrients and possible pollutants which tend to accumulate in relation to the nature and composition of the solid matrix but also the concentration and characteristics of the substances themselves. Moreover the deeper sediments, deposited under undisturbed condition, represent the "historical memory" of the ecosystem. Sub-aqueous lake sediments were investigated in May 2014, sampled using a small platform and a gravity corer (UWITEC, Austria) of 90 mm diameter which allowed to drill 19 cores up to 2 m long from the sediment/water interface. Successively cores were studied and described by using facies analysis techniques; a large number of core samples (147) were collected from the working half of each core, stored in HPDE containers, and frozen at -20°C for subsequent chemical and mineralogical analysis. Further, in order to assess the provenance effects on the composition of lake sediments, the bedrock (Meso-Cenozoic rocks and Quaternary fluvial-lacustrine deposits) and the stream sediments of the main "Pietra del Pertusillo" tributaries, close to the detrital supply entry points of Pietra del Pertusillo lake were also sampled. The mineralogical composition was obtained from randomly oriented powders by XRPD. Chemistry (major, minor, and trace elements) was performed on powdered samples by ICP-MS technique after a four acids digestion and lithium metaborate/tetraborate fusion to facilitate the destruction of possible resistate minerals. Preliminary data related to the stream sediments show that both major and minor elements (including heavy metals, barium and arsenic) have a minor variability and are close to the median values of the bedrock. The mineralogical composition of the analysed samples can explain the elemental relationships,thus excluding any anthropogenic input. The mineralogical composition of the lacustrine samples is made of quartz, carbonates, feldspars, muscovite/illite, chlorite, and interstratified clay minerals, and it is constant throughout the cores. Finally, as further step ot he research plan, we are processing 20 of all lake samples with the highest peaks of interstratified clay minerals, which likely represent the most reactive phases in our sediment-water system.
Röske, Kerstin; Sachse, René; Scheerer, Carola; Röske, Isolde
2012-02-01
Sediments contain a huge number and diversity of microorganisms that are important for the flux of material and are pivotal to all major biogeochemical cycles. Sediments of reservoirs are affected by a wide spectrum of allochthous and autochthonous influences providing versatile environments along the flow of water within the reservoir. Here we report on the microbial diversity in sediments of the mesotrophic drinking water reservoir Saidenbach, Germany, featuring a pronounced longitudinal gradient in sediment composition in the reservoir system. Three sampling sites were selected along the gradient, and the microbial communities in two sediment depths were characterized using catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) and a bar-coded pyrosequencing approach. Multivariate statistic was used to reveal relationships between sequence diversity and the environmental conditions. The microbial communities were tremendously diverse with a Shannon index of diversity (H') ranging from 6.7 to 7.1. 18,986 sequences could be classified into 37 phyla including candidate divisions, but the full extent of genetic diversity was not captured. While CARD-FISH gave an overview about the community composition, more detailed information was gained by pyrosequencing. Bacteria were more abundant than Archaea. The dominating phylum in all samples was Proteobacteria, especially Betaproteobacteria and Deltaproteobacteria. Furthermore, sequences of Bacteroidetes, Verrucomicrobia, Acidobacteria, Chlorobi, Nitrospira, Spirochaetes, Gammaproteobacteria, Alphaproteobacteria, Chloroflexi, and Gemmatimonadetes were found. The site ammonium concentration, water content and organic matter content revealed to be strongest environmental predictors explaining the observed significant differences in the community composition between sampling sites. Copyright © 2011 Elsevier GmbH. All rights reserved.
The Origin of EM1 Signatures in Basalts From Tristan da Cunha and Gough
NASA Astrophysics Data System (ADS)
Stracke, A.; Willbold, M.; Hemond, C.
2004-12-01
A long-standing hypothesis is that enriched mantle 1 (EM-1)-type ocean island basalt (OIB) sources contain pelagic sediments. Pelagic sediments range in composition from clays to calcareous or siliceous oozes and encompass a wide range of chemical compositions [1]. For geochemical purposes the use of the term pelagic sediments is often restricted to a special group of pelagic sediments with distinctive enrichment of Rare Earth Elements (REE). The geochemical composition of such REE-enriched pelagic sediments, however, is by no means representative of the geochemical composition of pelagic sediments in general. The extremely high REE/non-REE element ratios in REE-enriched pelagic sediments (e.g. high Lu/Hf, Sm/Hf, La/Nb, La/Th, Eu/Ti, and Gd/Ti ratios) translate into high 176Hf/177Hf ratios for given 143Nd/144Nd ratios with time. OIB sources containing this special variety of REE-enriched pelagic sediment should therefore plot above the oceanic basalt array and mixing arrays with these sources are expected to have a shallow slope in a Hf-Nd isotope diagram. Here we present new Hf-Nd isotope and trace element data for EM-1-type OIB from Tristan da Cunha and Gough in the South Atlantic Ocean. The samples from Tristan have a small range in Hf-Nd isotopic composition and plot within the oceanic basalt array in a Hf-Nd isotope diagram. Samples from Gough form a trend with a slope slightly steeper than that of the ocean basalt array in a Hf-Nd isotope diagram. OIB in general have a very restricted range in Gd/Ti and Sm/Hf ratios, and high La/Nb are associated with low Lu/Hf ratios. In detail, samples from Tristan and Gough have the lowest Lu/Hf and highest La/Nb ratios. Thus from the combined Hf-Nd isotope and trace element composition of basalts from Tristan and Gough involvement of this special variety of (REE-enriched) pelagic sediments can be excluded. Similar observations are made, and thus similar arguments hold, for other EM-1-type localities (Walvis ridge [2] and Pitcairn island [3]). Due to the considerable spread in geochemical composition of pelagic or any other group of sediments (e.g. marine sediments with a higher proportion of terrigenous components), it is difficult to attribute characteristic elemental or isotopic signatures to certain groups of sediment. Moreover, subducting sediments are complex mixtures of different types of sediment [1]. Thus it is difficult to find unique evidence either in favor of or against the involvement of sediments in general at Tristan and Gough, or any other individual OIB locality. Also, it appears highly unlikely that sub-arc processing has an equalizing effect on the composition of different subducting sediments [4]. Associating the similar isotopic characteristics of certain OIB groups and/or mantle-end-members (e.g. EM-1) to recycled sediments is therefore also problematic. [1] Plank, T. and C. H. Langmuir, Chem. Geol., 145, 325-394, 1998. [2] Salters, V. J. M. and X. Li, Geochim. Cosmochim. Acta, 68, A554, 2004. [3] Eisele, J., M. Sharma, J. G. Galer, J. Blichert-Toft, C. W. Devey and A. W. Hofmann, Earth Plan. Sci. Lett., 196, 197-212, 2002. [4] Johnson, M. C. and T. Plank, Geochem., Geophys., Geosys., 1, pp. 29, 1999.
Wang, Ji-Zhong; Bai, Ya-Shu; Wu, Yakton; Zhang, Shuo; Chen, Tian-Hu; Peng, Shu-Chuan; Xie, Yu-Wei; Zhang, Xiao-Wei
2016-06-01
Surface sediment-associated synthetic pyrethroid insecticides (SPs) are known to pose high risks to the benthic organisms in Chaohu Lake, a shallow lake of Eastern China. However, the pollution status of the lake's tributaries and estuaries is still unknown. The present study was conducted to investigate the occurrence, compositional distribution, and toxicity of 12 currently used SPs in the surface sediments from four important tributaries, as well as in the sediment cores at their estuaries, using GC-MS for quantification. All SPs selected were detectable, with cypermethrin, es/fenvalerate, and permethrin dominant in both surface and core sediments, suggesting that these compounds were extensively applied. Urban samples contained the highest summed concentrations of the 12 SPs analyzed (Σ12SP) in both surface and core sediments compared with rural samples, suggesting that urban areas near aquatic environments posed high risks for SPs. The mean concentration of Σ12SP in surface sediments of each river was generally higher than that found in core sediments from its corresponding estuary, perhaps implying recent increases in SP usage. Surface sediments were significantly dominated by cypermethrin and permethrin, whereas core sediments were dominated by permethrin and es/fenvalerate. The compositional distributions demonstrated a spatial variation for surface sediments because urban sediments generally contained greater percentages of permethrin and cypermethrin, but rural sediments had significant levels of es/fenvalerate and cypermethrin. In all sediment cores, the percentage of permethrin gradually increased, whereas es/fenvalerate tended to decrease, from the bottom sediments to the top, indicating that the former represented fresh input, whereas the latter represented historical residue. Most urban samples would be expected to be highly toxic to benthic organisms due to the residue of SPs based on a calculation of toxic units (TUs) using toxicity data of the amphipod Hyalella azteca. However, low TU values were found for the samples from rural areas. These results indicate that the bottom sediments were exposed to high risk largely by the residual SPs from urban areas. The summed TUs were mostly attributable to cypermethrin, followed by λ-cyhalothrin and es/fenvalerate. Despite permethrin contributing ∼28.7 % of the Σ12SP concentration, it only represented 6.34 % of the summed TUs. Therefore, our results suggest that high levels of urbanization can increase the accumulation of SPs in aquatic environments.
A comparison of solids collected in sediment traps and automated water samplers
Bartsch, L.A.; Rada, R.G.; Sullivan, J.F.
1996-01-01
Sediment traps are being used in some pollution monitoring programs in the USA to sample suspended solids for contaminant analyses. This monitoring approach assumes that the characteristics of solids obtained in sediment traps are the same as those collected in whole-water sampling devices. We tested this assumption in the upper Mississippi River, based on the inorganic particle-size distribution (determined with a laser particle- analyzer) and volatile matter content of solids (a surrogate for organic matter). Cylindrical sediment traps (aspect ratio 3) were attached to a rigid mooring device and deployed in a flowing side channel in Navigation Pool 7 of the upper Mississippi River. On each side of the mooring device, a trap was situated adjacent to a port of an autosampler that collected raw water samples hourly to form 2-d composite samples. Paired samples (one trap and one raw water, composite sample) were removed from each end of the mooring device at 2-d intervals during the 30-d study period and compared. The relative particle collection efficiency of paired samplers did not vary temporally. Particle-size distributions of inorganic solids from sediment traps and water samples were not significantly different. The volatile matter content of solids was lesser in sediment traps (mean, 9.5%) than in corresponding water samples (mean, 22.7%). This bias may have been partly due to under-collection of phytoplankton (mainly cyanobacteria), which were abundant in the water column during the study. The positioning of water samplers and sediment traps in the mooring device did not influence the particle-size distribution or total solids of samples. We observed a small difference in the amount of organic matter collected by water samplers situated at opposite ends of the mooring device.
Ibekwe, A Mark; Ma, Jincai; Murinda, Shelton E
2016-10-01
Microbial communities in terrestrial fresh water are diverse and dynamic in composition due to different environmental factors. The goal of this study was to undertake a comprehensive analysis of bacterial composition along different rivers and creeks and correlate these to land-use practices and pollutant sources. Here we used 454 pyrosequencing to determine the total bacterial community composition, and bacterial communities that are potentially of fecal origin, and of relevance to water quality assessment. The results were analyzed using UniFrac coupled with principal coordinate analysis (PCoA) to compare diversity, abundance, and community composition. Detrended correspondence analysis (DCA) and canonical correspondence analysis (CCA) were used to correlate bacterial composition in streams and creeks to different environmental parameters impacting bacterial communities in the sediment and surface water within the watershed. Bacteria were dominated by the phyla Proteobacteria, Bacteroidetes, Acidobacteria, and Actinobacteria, with Bacteroidetes significantly (P<0.001) higher in all water samples than sediment, where as Acidobacteria and Actinobacteria where significantly higher (P<0.05) in all the sediment samples than surface water. Overall results, using the β diversity measures, coupled with PCoA and DCA showed that bacterial composition in sediment and surface water was significantly different (P<0.001). Also, there were differences in bacterial community composition between agricultural runoff and urban runoff based on parsimony tests using 454 pyrosequencing data. Fecal indicator bacteria in surface water along different creeks and channels were significantly correlated with pH (P<0.01), NO2 (P<0.03), and NH4N (P<0.005); and in the sediment with NO3 (P<0.015). Our results suggest that microbial community compositions were influenced by several environmental factors, and pH, NO2, and NH4 were the major environmental factors driving FIB in surface water based on CCA analysis, while NO3 was the only factor in sediment. Published by Elsevier B.V.
Garrett, W.B.; van de Vanter, E.K.; Graf, J.B.
1993-01-01
The U.S. Geological Survey collected streamflow and sediment-transport data at 5 streamflow-gaging stations on the Colorado River between Glen Canyon Dam and Lake Mead as a part of an interagency environmental study. The data were collected for about 6 mo in 1983 and about 4 mo in 1985-86; data also were collected at 3 sites on tributary streams in 1983. The data were used for development of unsteady flow-routing and sediment-transport models, sand-load rating curves, and evaluation of channel changes. For the 1983 sampling period, 1,076 composite cross-section suspended-sediment samples were analyzed; 809 of these samples were collected on the main stem of the Colorado River and 267 samples were from the tributaries. Bed-material samples were obtained at 1,988 verticals; 161 samples of material in transport near the bed (bedload) were collected to define the location of sand, gravel, and bed rock in the channel cross section; and 664 discharge measurements were made. For the 1985-86 sampling period, 765 composite cross-section suspended-sediment samples and 887 individual vertical samples from cross sections were analyzed. Bed-material samples were obtained at 531 verticals, 159 samples of bedload were collected, and 218 discharge measurements were made. All data are presented in tabular form. Some types of data also are presented in graphs to better show trends or variations. (USGS)
Fish stomach contents in benthic macroinvertebrate assemblage assessments.
Tupinambás, T H; Pompeu, P S; Gandini, C V; Hughes, R M; Callisto, M
2015-01-01
The choice of sampling gears to assess benthic macroinvertebrate communities depends on environmental characteristics, study objectives, and cost effectiveness. Because of the high foraging capacity and diverse habitats and behaviors of benthophagous fishes, their stomach contents may offer a useful sampling tool in studies of benthic macroinvertebrates, especially in large, deep, fast rivers that are difficult to sample with traditional sediment sampling gear. Our objective was to compare the benthic macroinvertebrate communities sampled from sediments with those sampled from fish stomachs. We collected benthic macroinvertebrates and fish from three different habitat types (backwater, beach, riffle) in the wet season, drying season, and dry season along a single reach of the Grande River (Paraná River Basin, southeast Brazil). We sampled sediments through use of a Petersen dredge (total of 216 grabs) and used gill nets to sample fish (total of 36 samples). We analyzed the stomach contents of three commonly occurring benthophagous fish species (Eigenmannia virescens, Iheringichthys labrosus, Leporinus amblyrhynchus). Chironomids dominated in both sampling methods. Macroinvertebrate taxonomic composition and abundances from fish stomachs differed from those from sediment samples, but less so from riffles than from backwater and beach habitats. Macroinvertebrate taxa from E. virescens stomachs were more strongly correlated with sediment samples from all three habitats than were those from the other two species. The species accumulation curves and higher mean dispersion values, compared with with sediment samples suggest that E. virescens is more efficient than sediment samples and the other fish studied at collecting benthic taxa. We conclude that by analyzing the stomach contents of benthophagous fishes it is possible to assess important characteristics of benthic communities (dispersion, taxonomic composition and diversity). This is especially true for studies that only sample fish assemblages to evaluate aquatic ecosystem impacts. Therefore, this approach can be useful to amplify assessments of human impacts, and to incorporate additional bioindicators.
NASA Astrophysics Data System (ADS)
Zhou, Huiping; Chang, Weina; Zhang, Longjiang
2016-08-01
Fingerprinting techniques have been widely used as a reasonable and reliable means for investigating sediment sources, especially in relatively large catchments in which there are significant differences in surface materials. However, the discrimination power of fingerprint properties for small catchments, in which the surface materials are relatively homogeneous and human interference is marked, may be affected by fragmentary or confused source information. Using fingerprinting techniques can be difficult, and there is still a need for further studies to verify the effectiveness of such techniques in these small catchments. A composite fingerprinting approach was used in this study to investigate the main sources of sediment output, as well as their relative contributions, from a small catchment (30 km2) with high levels of farming and mining activities. The impact of the selection of different potential sediment sources on the derivation of composite fingerprints and its discrimination power were also investigated by comparing the results from different combinations of potential source types. The initial source types and several samples that could cause confusion were adjusted. These adjustments improved the discrimination power of the composite fingerprints. The results showed that the composite fingerprinting approach used in this study had a discriminatory efficiency of 89.2% for different sediment sources and that the model had a mean goodness of fit of 0.90. Cultivated lands were the main sediment source. The sediment contribution of the studied cultivated lands ranged from 39.9% to 87.8%, with a mean of 76.6%, for multiple deposited sediment samples. The mean contribution of woodlands was 21.7%. Overall, the sediment contribution from mining and road areas was relatively low. The selection of potential sources is an important factor in the application of fingerprinting techniques and warrants more attention in future studies, as is the case with other uncertainty factors.
Barber, L.B.; Writer, J.H.
1998-01-01
The 1500 km Upper Mississippi River (UMR) consists of 29 navigation pools and can be divided into the upper reach (pools 1-4), the middle reach (pools 5-13), and the lower reach (pools 14-26). Comparison of composite bed sediment samples collected from the downstream third of 24 pools before and after the 1993 UMR flood provides fieldscale data on the effect of the flood on sediment organic compound distributions. The sediments were analyzed for organic carbon, coprostanol, polynuclear aromatic hydrocarbons including pyrene, linear alkylbenzene-sulfonates, polychlorinated biphenyls (PCBs), and organochlorine pesticides. Most of the target compounds were detected in all of the sediment samples, although concentrations were generally <1 mg/kg. The highest concentrations typically occurred in the upper reach, an urbanized area on a relatively small river. Pool 4 (Lake Pepin) is an efficient sediment trap, and concentrations of the compounds below pool 4 were substantially lower than those in pools 2-4. Differences in concentrations before and after the 1993 flood also were greatest in the upper reach. In pools 1-4, concentrations of pyrene and PCBs decreased after the flood whereas coprostanol increased. These results suggest that bed sediments stored in the pools were diluted or buried by sediments with different organic compound compositions washed in from urban and agricultural portions of the watershed.The 1500 km Upper Mississippi River (UMR) consists of 29 navigation pools and can be divided into the upper reach (pools 1-4), the middle reach (pools 5-13), and the lower reach (pools 14-26). Comparison of composite bed sediment samples collected from the downstream third of 24 pools before and after the 1993 UMR flood provides field-scale data on the effect of the flood on sediment organic compound distributions. The sediments were analyzed for organic carbon, coprostanol, polynuclear aromatic hydrocarbons including pyrene, linear alkylbenzene-sulfonates, polychlorinated biphenyls (PCBs), and organochlorine pesticides. Most of the target compounds were detected in all of the sediment samples, although concentrations were generally <1 mg/kg. The highest concentrations typically occurred in the upper reach, an urbanized area on a relatively small river. Pool 4 (Lake Pepin) is an efficient sediment trap, and concentrations of the compounds below pool 4 were substantially lower than those in pools 2-4. Differences in concentrations before and after the 1993 flood also were greatest in the upper reach. In pools 1-4, concentrations of pyrene and PCBs decreased after the flood whereas coprostanol increased. These results suggest that bed sediments stored in the pools were diluted or buried by sediments with different organic compound compositions washed in from urban and agricultural portions of the watershed.
Composition and source of butyltins in sediments of Kaohsiung Harbor, Taiwan
NASA Astrophysics Data System (ADS)
Dong, Cheng-Di; Chen, Chih-Feng; Chen, Chiu-Wen
2015-04-01
Fifty-eight sediment samples were collected from the Kaohsiung Harbor (Taiwan) for analyses of monobutyltin (MBT), dibutyltin (DBT) and tributyltin (TBT), using gas chromatography/flame photometric detector (GC/FPD). The concentration of total butyltins (ΣBTs), sum of MBT, DBT, and TBT, varied from 3.9 to 158.5 ng Sn/g dw in sediment samples with TBT being the major component of the sediment samples, except for the vicinity of the Love River mouth where MBT was the most abundant BT compound (a proportion of over 57%). Based on the BTs concentration, distribution, composition and correlations, the sources of BTs found in harbor sediments are shipping activities, and TBT is the main pollutant; the estuary (i.e. Love River) has been the anthropogenic source of MBT from upstream inputs. Influences of TBT on aquatic organisms are evaluated using the toxicity guidelines proposed by the US EPA (US Environmental Protection Agency) and the ACCI (assessment class criterion for imposex) proposed by OSPAR (Oslo and Paris Commission). The evaluation shows that the TBT contained in the sediment at Kaohsiung Harbor is likely to have a negative influence at ACCI class C because gastropods present imposex and TBT levels are above ecotoxicological assessment criteria (EAC) limits.
Composition, structure and properties of sediment thermal springs of Kamchatka
NASA Astrophysics Data System (ADS)
Shanina, Violetta; Smolyakov, Pavel; Parfenov, Oleg
2016-04-01
The paper deals with the physical and mechanical properties sediment thermal fields Mutnovsky, Lower Koshelevo and Bannyh (Kamchatka). This multi-component soils, mineral and chemical composition of which depends on the formation factors (pH, temperature, salinity of water, composition and structure of the host volcanic rocks). Samples Lower Koshelevo sediment thermal sources differ in the following composition: smectite, kaolinite, kaolinite-smectite mixed-mineral. Samples of sediment thermal springs Mutnovsky volcano in accordance with the X-ray analysis has the following composition: volcanic glass, crystalline sulfur, plagioclase, smectite, illite-smectite mixed, illite, chlorite, quartz, cristobalite, pyrite, melanterite, kaolinite. Natural moisture content samples of sediment thermal springs from 45 to 121%, hygroscopic moisture content of 1.3 to 3.7%. A large amount of native sulfur (up to 92%) and the presence of amorphous material gives low values of density of solid particles (up to 2.1 g/cm3) samples Mutnovskii thermal field. The values of the density of solids sediment Koshelevo and Bannyh hot springs close to those of the main components of mineral densities (up to 2.6-3.0 g/cm3). The results of the particle size distribution and microaggregate analysis of sediment thermal springs Lower Koshelevo field shows that the predominance observed of particles with a diameter from 0.05 mm to 0.25 mm, the coefficient of soil heterogeneity heterogeneous. In the bottom sediments of the thermal springs of the volcano Mutnovsky poorly traced predominance of one faction. Most prevalent fraction with particle size 0.01 - 0.05 mm. When analyzing the content in the soil microaggregates their content is shifted towards particles with a diameter of 0.25 mm. The contents of a large number of large (1-10 mm), porous rock fragments, due to the deposition of pyroclastic material from the eruptions of the last century. Present in large amounts rounded crystals of native sulfur associated with the rise of mixed solutions, formed at the boundary of secondary boil through faults to the surface thermal boiler (Bortnikova et al., 2009). Calculated flow index and plasticity, shows the classification in accordance with GOST 25100-2011. From these figures it is clear that all the sediments are sandy loam and are in a fluid state. A clear relationship between temperature, pH and particle size distribution of sediment thermal springs can not be traced, great importance is the geological evolution of the volcanic activity, hydrogeological conditions and the time factor. Therefore, samples with a currently active Mutnovsky volcano - sandy loam, sediments of the thermal springs Koshelevo fields are often to loams. The bottom sediments of thermal springs from the territory of the Lower Koshelevo thermal field in a natural occurrence in a state of higher yield strength, so they are an unstable surface, which may cause landslides. The bottom sediments of thermal springs are low explored subject of engineering geology, it is important to examine their properties to simulate the conditions of formation and the development of dangerous processes.
Zuffa, G.G.; De Rosa, R.; Normark, W.R.
1997-01-01
Escanaba Trough, which forms the southernmost part of the axial valley of the actively spreading Gorda Ridge, is filled with several hundred meters of sediment of presumed late Quaternary age. Surficial sediment samples from gravity cores, deeper samples (as much as 390 m) from Site 35 of the Deep Sea Drilling Program (Leg 5), and the acoustic character of the sediment fill observed on seismic-reflection profiles indicate that much of the sediment fill is of turbidite origin. Gross composition and heavy- mineral analyses of sand samples show that two distinct petrofacies comprise the sediment fill. The lower part of the fill was derived primarily from the Klamath River source of northern California while the younger fill, including the surficial sand beds, are from the Columbia River drainage much farther north. The Escanaba Trough sediment provides an opportunity to evaluate concepts for paleogeographic and paleotectonic reconstructions that are based on facies analysis and compositional and textural data for the volcanic components because both intrabasinal and extrabasinal sources are present as well as coeval (neovolcanic) and non coeval (paleovolcanic) sourcre This study of a modern basin shows, that although the sediment sources could be identified, it was useful to have some knowledge of the sediment pathway(s), the effects of diagenesis, and the possible effects of sediment sorting as a result of long transport distances from the source area for some components. Application of these same techniques to ancient deposits without benefit of the additional parameters will face limitations.
NASA Astrophysics Data System (ADS)
Jonell, T. N.; Li, Y.; Blusztajn, J.; Giosan, L.; Clift, P. D.
2017-12-01
Rare earth element (REE) radioisotope systems, such as neodymium (Nd), have been traditionally used as powerful tracers of source provenance, chemical weathering intensity, and sedimentary processes over geologic timescales. More recently, the effects of physical fractionation (hydraulic sorting) of sediments during transport have called into question the utility of Nd isotopes as a provenance tool. Is source terrane Nd provenance resolvable if sediment transport strongly induces noise? Can grain-size sorting effects be quantified? This study works to address such questions by utilizing grain size analysis, trace element geochemistry, and Nd isotope geochemistry of bulk and grain-size fractions (<63μm, 63-125 μm, 125-250 μm) from the Indus delta of Pakistan. Here we evaluate how grain size effects drive Nd isotope variability and further resolve the total uncertainties associated with Nd isotope compositions of bulk sediments. Results from the Indus delta indicate bulk sediment ɛNd compositions are most similar to the <63 µm fraction as a result of strong mineralogical control on bulk compositions by silt- to clay-sized monazite and/or allanite. Replicate analyses determine that the best reproducibility (± 0.15 ɛNd points) is observed in the 125-250 µm fraction. The bulk and finest fractions display the worst reproducibility (±0.3 ɛNd points). Standard deviations (2σ) indicate that bulk sediment uncertainties are no more than ±1.0 ɛNd points. This argues that excursions of ≥1.0 ɛNd points in any bulk Indus delta sediments must in part reflect an external shift in provenance irrespective of sample composition, grain size, and grain size distribution. Sample standard deviations (2s) estimate that any terrigenous bulk sediment composition should vary no greater than ±1.1 ɛNd points if provenance remains constant. Findings from this study indicate that although there are grain-size dependent Nd isotope effects, they are minimal in the Indus delta such that resolvable provenance-driven trends can be identified in bulk sediment ɛNd compositions over the last 20 k.y., and that overall provenance trends remain consistent with previous findings.
Rendigs, Richard R.; Bothner, Michael H.
2004-01-01
This manual describes the operation and testing procedures for two models of a multi-port suspended sediment sampler that are moored in the coastal ocean and that collect samples on a programmable time schedule that can be interrupted to collect during a storm. The ability to sense and collect samples before, during, and after the height of a storm is a unique feature of these instruments because it provides samples during conditions when it is difficult or impossible to sample from a surface ship. The sensors used to trigger storm sampling are a transmissometer or a pressure sensor. The purpose of such samples is to assess composition and concentration of sediment resuspended from the seafloor during storms and subsequently transported within the coastal system. Both light transmission and the standard deviation of pressure from surface waves correlate with the passage of major storms. The instruments successfully identified the onset of storms and collected samples before, during, and after the storm maximum as programmed. The accuracy of determining suspended matter concentrations collected by the sediment sampler has not been fully evaluated. Preliminary laboratory tests using a suspension of muddy sediment collected in a near-bottom sediment trap yielded excellent results. However in laboratory tests with different sediment types, the suspended matter concentrations determined with these samplers became less accurate with increasing average grain size. Future calibration work is necessary and should be conducted in a facility that ideally has a water depth of at least 30 feet to prevent cavitation of the pump that draws sea water through the filters. The test facility should also have the capability for adding suspended matter of known composition and concentration to a fixed volume of seawater that is well mixed.
Pires, Ana C C; Cleary, Daniel F R; Almeida, Adelaide; Cunha, Angela; Dealtry, Simone; Mendonça-Hagler, Leda C S; Smalla, Kornelia; Gomes, Newton C M
2012-08-01
Mangroves are complex ecosystems that regulate nutrient and sediment fluxes to the open sea. The importance of bacteria and fungi in regulating nutrient cycles has led to an interest in their diversity and composition in mangroves. However, very few studies have assessed Archaea in mangroves, and virtually nothing is known about whether mangrove rhizospheres affect archaeal diversity and composition. Here, we studied the diversity and composition of Archaea in mangrove bulk sediment and the rhizospheres of two mangrove trees, Rhizophora mangle and Laguncularia racemosa, using denaturing gradient gel electrophoresis (DGGE) and pyrosequencing of archaeal 16S rRNA genes with a nested-amplification approach. DGGE profiles revealed significant structural differences between bulk sediment and rhizosphere samples, suggesting that roots of both mangrove species influence the sediment archaeal community. Nearly all of the detected sequences obtained with pyrosequencing were identified as Archaea, but most were unclassified at the level of phylum or below. Archaeal richness was, furthermore, the highest in the L. racemosa rhizosphere, intermediate in bulk sediment, and the lowest in the R. mangle rhizosphere. This study shows that rhizosphere microhabitats of R. mangle and L. racemosa, common plants in subtropical mangroves located in Rio de Janeiro, Brazil, hosted distinct archaeal assemblages.
Pires, Ana C. C.; Cleary, Daniel F. R.; Almeida, Adelaide; Cunha, Ângela; Dealtry, Simone; Mendonça-Hagler, Leda C. S.; Smalla, Kornelia
2012-01-01
Mangroves are complex ecosystems that regulate nutrient and sediment fluxes to the open sea. The importance of bacteria and fungi in regulating nutrient cycles has led to an interest in their diversity and composition in mangroves. However, very few studies have assessed Archaea in mangroves, and virtually nothing is known about whether mangrove rhizospheres affect archaeal diversity and composition. Here, we studied the diversity and composition of Archaea in mangrove bulk sediment and the rhizospheres of two mangrove trees, Rhizophora mangle and Laguncularia racemosa, using denaturing gradient gel electrophoresis (DGGE) and pyrosequencing of archaeal 16S rRNA genes with a nested-amplification approach. DGGE profiles revealed significant structural differences between bulk sediment and rhizosphere samples, suggesting that roots of both mangrove species influence the sediment archaeal community. Nearly all of the detected sequences obtained with pyrosequencing were identified as Archaea, but most were unclassified at the level of phylum or below. Archaeal richness was, furthermore, the highest in the L. racemosa rhizosphere, intermediate in bulk sediment, and the lowest in the R. mangle rhizosphere. This study shows that rhizosphere microhabitats of R. mangle and L. racemosa, common plants in subtropical mangroves located in Rio de Janeiro, Brazil, hosted distinct archaeal assemblages. PMID:22660713
Isotope effects resulting from biodegradation of MTBE
To conduct the microcosm biodegradation study, sediment samples were collected from sites offering high potential of MTBE biodegradation. Sites where sediment samples were collected for the MTBE microcosm c...
NASA Astrophysics Data System (ADS)
Cowie, Gregory L.; Hedges, John I.; Calvert, Stephen E.
1992-05-01
A sediment-trap sample, representing an annual average particle flux at 50 m in Saanich Inlet, British Columbia, was analyzed for its elemental, amino acid, neutral sugar, and lignin composition. Amino acid analyses also were performed on underlying sediments which were analyzed previously for organic carbon, nitrogen, neutral sugars, and lignin. The results uniformly indicate primarily marine organic matter sources for all samples, although relatively higher terrigenous contributions are evident in the sediments. The δ13C values of trap materials also point to primarily autochthonous particle fluxes. Comparison of annual average water-column fluxes to sediment accumulation rates indicates under-sampling of sinking particles due to lateral sediment inputs at depth. The anoxic benthic interface appears to be an important site of diagenesis, and selective removal is observed both at compound-class and molecular levels. Cinnamyl and syringyl phenols are selectively removed relative to vanillyl phenols and loss patterns of the monosaccharides, and to a lesser degree the amino acids, strongly indicate preferential preservation of diatom cell-wall materials. Low flux ratios displayed by the nonprotein amino acids are consistent with their diagenetic origin. Preferential loss of marine organic material is indicated by the calculated δ13C value and biochemical composition of the substrate. Concentrations of all measured organic constituents decreased with depth in the uniformly varved 0-14 cm sediment interval, and suggest in situ degradation. Relative reactivities of the biochemical classes indicate a change in diagenetic substrate from that utilized above and at the benthic interface. With the exception of the amino acids, however, diagenesis is generally less selective in the sediments. The amino acid utilization pattern differs from that observed across the benthic interface, and down-core changes in protein and nonprotein amino acid compositions clearly indicate in situ degradation. The sedimentary degraded fraction also appears to be predominantly marine, but lignin yields and sugar compositions suggest a relative increase in the utilization of vascular plant remains. Protein, polysaccharide, and lignin contributions to total organic carbon decrease from 37% in the sediment-trap sample to 22% at the bottom of the 0-14 cm sediment interval. These biochemicals represent over 40 and 50-60% of the degraded carbon and nitrogen, respectively, and thus are important nutrients for the benthic and water-column communities.
Contaminants evaluation of Marais des Cygnes National Wildlife Refuge in Kansas and Missouri, USA
NASA Astrophysics Data System (ADS)
Allen, George T.; Nash, Tom J.; Janes, David E.
1995-05-01
At the new Marais des Cygnes National Wildlife Refuge in Linn County, Kansas, and Bates County, Missouri, USA, we evaluated long-lived contaminants before acquisition of the land for the refuge. We sampled sediments at 16 locations and fish at seven locations. The samples were analyzed for metals and for chlorinated hydrocarbon compounds. Selected sediment samples also were analyzed for aliphatic hydrocarbons. Arsenic concentrations in sediment samples from six locations were elevated compared to US norms, but arsenic was not detected in any fish composite. Mercury concentrations in largemouth bass from two locations were comparable to the 85th percentile concentrations in nationwide fish collections. Most sediment concentrations of other metals were unlikely to have detrimental effects on biota. No chlorinated hydrocarbons were detected in any sediment sample. Chlordane compound concentrations in fish composites from two sites at the eastern end of the sampling area were 0.127 and 0.228 μg/g wet weight, respectively, which are high enough to cause concern. Most aliphatic hydrocarbons detected were found at low concentrations and probably were natural in origin. We concluded that there are no serious contaminants concerns within the project area, but past use of arsenical pesticides may mean a legacy of elevated soil arsenic levels in parts of the area and some use of banned pesticides such as chlordane and DDT likely is still occurring near the refuge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kayzar, Theresa M.; Villa, Adam C.; Lobaugh, Megan L.
The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. Furthermore, we alter the (234U)/(238U) composition of Red Rock Creek downstream of the Juniper Mine. As a result of mine-derived contamination, water (234U)/(238U) ratios are 67% lower than in water upstream of the mine (1.114–1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activitymore » ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041–1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (~70–80% of uranium in leachable fraction). Furthermore, contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment.« less
NASA Astrophysics Data System (ADS)
Chapman, K.; Parnell, R. A.; Smith, M. E.; Grams, P. E.; Mueller, E. R.
2015-12-01
The 1963 closure of Glen Canyon Dam drastically reduced the downstream sediment supply and altered daily flow regimes of the Colorado River through Grand Canyon, resulting in significant sandbar erosion downstream of the dam. Dam-release floods, known as High Flow Experiments (HFEs), have occurred six times since 1996 and are intended to rebuild Grand Canyon sandbars using tributary-supplied sediment. In Marble Canyon (first 100 km of Grand Canyon) the targeted tributary is the Paria River which supplies approximately 90% of the annual suspended sediment flux through Marble Canyon; the same input contributed less than 6% prior to the dam. Annual topographic surveys have established that HFEs are effective at rebuilding sandbars. However, the long-term viability of using HFEs for sandbar maintenance is dependent on a sustainable source of sediments comprising HFE deposits. Significant use of non-tributary, main-stem sediments (i.e. pre-dam sand stored in eddies or the channel bed) in HFE deposits would indicate reliance on a limited resource, and diminishing returns in the ability of HFEs to rebuild sandbars. In this study, we sampled vertically throughout 12 bars in Marble Canyon to document temporal and downstream changes in the proportion of sediment sourced from the Paria River during the 2013 and 2014 HFEs. Preliminary data suggest that heavy mineral compositions and concentrations of Ti, S, Cr and Rb, all of which are influenced by grainsize, could be sufficiently capable of differentiating Paria-derived and main-stem sediments when combined into a composite fingerprint (CF). A multivariate mixing model using these CFs quantitatively determines the contribution of Paria-derived sediment in each HFE deposit sample. Mixing model endmembers for non-Paria sand include pre-dam flood deposits in Glen and Marble Canyons, and Marble Canyon dredge samples. These results elucidate the role of contemporary versus legacy sediment in long-term sandbar maintenance.
Microbiome succession during ammonification in eelgrass bed sediments.
Ettinger, Cassandra L; Williams, Susan L; Abbott, Jessica M; Stachowicz, John J; Eisen, Jonathan A
2017-01-01
Eelgrass ( Zostera marina ) is a marine angiosperm and foundation species that plays an important ecological role in primary production, food web support, and elemental cycling in coastal ecosystems. As with other plants, the microbial communities living in, on, and near eelgrass are thought to be intimately connected to the ecology and biology of eelgrass. Here we characterized the microbial communities in eelgrass sediments throughout an experiment to quantify the rate of ammonification, the first step in early remineralization of organic matter, also known as diagenesis, from plots at a field site in Bodega Bay, CA. Sediment was collected from 72 plots from a 15 month long field experiment in which eelgrass genotypic richness and relatedness were manipulated. In the laboratory, we placed sediment samples ( n = 4 per plot) under a N 2 atmosphere, incubated them at in situ temperatures (15 °C) and sampled them initially and after 4, 7, 13, and 19 days to determine the ammonification rate. Comparative microbiome analysis using high throughput sequencing of 16S rRNA genes was performed on sediment samples taken initially and at seven, 13 and 19 days to characterize changes in the relative abundances of microbial taxa throughout ammonification. Within-sample diversity of the sediment microbial communities across all plots decreased after the initial timepoint using both richness based (observed number of OTUs, Chao1) and richness and evenness based diversity metrics (Shannon, Inverse Simpson). Additionally, microbial community composition changed across the different timepoints. Many of the observed changes in relative abundance of taxonomic groups between timepoints appeared driven by sulfur cycling with observed decreases in predicted sulfur reducers ( Desulfobacterales ) and corresponding increases in predicted sulfide oxidizers ( Thiotrichales ). None of these changes in composition or richness were associated with variation in ammonification rates. Our results showed that the microbiome of sediment from different plots followed similar successional patterns, which we infer to be due to changes related to sulfur metabolism. These large changes likely overwhelmed any potential changes in sediment microbiome related to ammonification rate. We found no relationship between eelgrass presence or genetic composition and the microbiome. This was likely due to our sampling of bulk sediments to measure ammonification rates rather than sampling microbes in sediment directly in contact with the plants and suggests that eelgrass influence on the sediment microbiome may be limited in spatial extent. More in-depth functional studies associated with eelgrass microbiome will be required in order to fully understand the implications of these microbial communities in broader host-plant and ecosystem functions (e.g., elemental cycling and eelgrass-microbe interactions).
Unruh, Daniel M.; Fey, David L.; Church, Stan E.
2000-01-01
IntroductionAs a part of the U.S. Geological Survey Abandoned Mine Lands Initiative, metal-mining related wastes in the Boulder River study area in northern Jefferson County, Montana, have been evaluated for their environmental effects. The study area includes a 24-km segment of the Boulder River in and around Basin, Montana and three principal tributaries to the Boulder River: Basin Creek, Cataract Creek, and High Ore Creek. Mine and prospect waste dumps and mill wastes are located throughout the drainage basins of these tributaries and in the Boulder River. Mine-waste material has been transported into and down streams, where it has mixed with and become incorporated into the streambed sediments. In some localities, mine waste material was placed directly in stream channels and was transported downstream forming fluvial tailings deposits along the stream banks. Water quality and aquatic habitat have been affected by trace-element-contaminated sediment that moves from mine wastes into and down streams during snowmelt and storm runoff events within the Boulder River watershed.Present-day trace element concentrations in the streambed sediments and fluvial tailings have been extensively studied. However, in order to accurately evaluate the impact of mining on the stream environments, it is also necessary to evaluate the pre-mining trace-element concentrations in the streambed sediments. Three types of samples have been collected for estimation of pre-mining concentrations: 1) streambed sediment samples from the Boulder River and its tributaries located upstream from historical mining activity, 2) stream terrace deposits located both upstream and downstream of the major tributaries along the Boulder River, and 3) cores through sediment in overbank deposits, in abandoned stream channels, or beneath fluvial tailings deposits. In this report, we present geochemical data for six stream-terrace samples and twelve sediment-core samples and lead isotopic data for six terrace and thirteen core samples. Sample localities are in table 1 and figures 1 and 2, and site and sample descriptions are in table 2.Geochemical data have been presented for cores through fluvial tailings on High Ore Creek, on upper Basin Creek, and on Jack Creek and Uncle Sam Gulch. Geochemical and lead isotopic data for modern streambed-sediment samples have been presented by Fey and others.Lead isotopic determinations in bed sediments have been shown to be an effective tool for evaluating the contributions from various sources to the metals in bed sediments. However, in order to make these calculations, the lead isotopic compositions of the contaminant sources must also be known. Consequently, we have determined the lead isotopic compositions of five streambed-sediment samples heavily contaminated with fluvial mine waste immediately downstream from large mines in the Boulder River watershed in order to determine the lead isotopic signatures of the contaminants. Summary geochemical data for the contaminants are presented here and geochemical data for the streambed-sediment samples are given by Fey and others.Downstream from the Katie mill site and Jib tailings, fluvial deposits of mill tailings are present on a 10-m by 50-m bar in the Boulder River below the confluence with Basin Creek. The source of these tailings is not known, but fluvial tailings are also present immediately downstream from the Katie mill site, which is immediately upstream from the confluence with Basin Creek. Nine cores of fluvial tailings from this bar were analyzed.Dendrochronology samples were taken at several stream terrace localities to provide age control on the stream terrace deposits. Trees growing on the surfaces of stream terraces provide a minimum age for the terrace deposits, although floods subsequent to the trees' growth could have deposited post-mining overbank deposits around the trees. Historical data were also used to provide estimates of minimum ages of cultural features and to bracket the age of events.
Sources of polychlorinated biphenyls to Devils Swamp Lake near Baton Rouge, Louisiana
Van Metre, Peter C.; Wilson, Jennifer T.; Kimball, Briant A.
2006-01-01
Devils Swamp Lake near Baton Rouge, Louisiana, created in 1973 by dredging in Devils Swamp along the Mississippi River, is contaminated with polychlorinated biphenyls (PCBs) from historical industrial discharges. This study involved the investigation of the occurrence, distribution, and sources of PCBs in the lake, including the possible historical contribution of PCBs from a hazardous-chemical disposal facility by way of a wastewater drainage ditch that was used from 1971 to 1993. Six bed sediment cores from the lake and three bed sediment grab samples from the drainage ditch were collected; 61 subsamples from selected intervals in five of the six cores and the three grab samples from the ditch were analyzed for PCBs using an immunoassay screening method. Sixteen of the core subsamples and one ditch sample were analyzed for organochlorine pesticides, PCBs, polycyclic aromatic hydrocarbons (PAHs) (15 samples), and major and trace elements. PCB congener profiles and a factor analysis of congener composition indicate that PCBs in sediment from the drainage ditch and in lake sediment deposited near the canal since the mid-1980s are similar, which indicates the disposal facility, by way of the wastewater drainage ditch, is the source of the PCBs. Sediment from several hundred meters down the lake to the west, near where Bayou Baton Rouge enters the lake, had a different PCB composition and in a sample deposited in the early 1980s, a much higher concentration, indicating a second source of PCBs in the watershed of Bayou Baton Rouge. Large differences in PAHs and metals between sediment near the ditch and sediment near Bayou Baton Rouge support this conclusion. The identity of the Bayou Baton Rouge source(s) cannot be established using available data. The short duration and relatively high concentrations of PCBs from the bayou source indicate either a spill or a flood-related release-there was a large flood on the Mississippi River in 1983. Older (deeper) samples from cores near the drainage ditch (dated as deposited before the mid-1980s) had PCB compositions that indicate a mixture of sources (Bayou Baton Rouge and the drainage ditch). Elevated PCB concentrations in sediment from the drainage ditch and cores from near the mouth of the ditch in recent (post-2000) samples indicate that some PCB inputs from the ditch might still be occurring.
NASA Astrophysics Data System (ADS)
Apolinarska, Karina; Pełechaty, Mariusz; Kossler, Annette; Pronin, Eugeniusz; Noskowiak, Daria
2017-04-01
Carbon (δ13C) and oxygen (δ18O) stable isotope analyses are among the standard methods applied in the studies of past environment, including climate. In lacustrine sediments, δ13C and δ18O values can be measured in fine carbonate fraction (carbonate mud), in charophyte encrustations, ostracod carapaces and mollusc shells. Application of the stable isotope record of each of the above-mentioned components of the lake sediment requires knowledge about possibilities and limitations of the method. The present research discusses the most important results of the studies carried out between 2011 and 2013, concentrated on the stable isotope composition of snail shells, primarily, the species commonly preserved in central European Quaternary lacustrine sediments. The stable isotope studies involved also, the zebra mussel (Dreissena polymorpha), one of the most invasive freshwater species in the world. The research involved shell isotope studies of both recent (Apolinarska, 2013; Apolinarska et al., 2016; Apolinarska and Pełechaty, in press) and fossil molluscs derived from the Holocene sediments (Apolinarska et al., 2015a, b). Shell δ13C values were species-specific and among the gastropods studied the same order of species from the most to the least 13C-depleted was observed at all sites sampled. Shell δ18O values were more uniform. The wide range of δ13C and δ18O values were observed in population and subpopulation, i.e. when live snails were sampled live from restricted area within the lake littoral zone. Carbon and oxygen stable isotope values of the mono-specific shells sampled from 1 cm thick sediment samples were highly variable. Those intra-specific differences (n=20) were as large as several permill. Such significant variability in δ13C and δ18O values indicates that stable isotope composition of single shells is unlikely to be representative of the sediment sample. In conclusion, samples of freshwater molluscs for stable isotope analyses should be monospecific and composed of at least several shells. The number of shells being dependent on the difference between the minimum and maximum values within the sediment layer. The research was funded by the Polish Ministry of Science and Higher Education, Iuventus Plus Program, grant No. IP2010 000670. Apolinarska, K., 2013. Stable isotope compositions of recent Dreissena polymorpha (Pallas) shells: paleoenvironmental implications. Journal of Paleolimnology 50, 353-364. Apolinarska, K., Pełechaty, M. & Kossler, A., 2015a. Within-sample variability of δ13C and δ18O values of freshwater gastropod shells and the optimum number of shells to measure per sediment layer in the Paddenluch palaeolacustrine sequence, Germany. Journal of Paleolimnology 54, 305-323. Apolinarska, K., Pełechaty, M. & Noskowiak, D., 2015b. Differences in stable isotope compositions of freshwater snails from surface sediments of two Polish shallow lakes. Limnologica 53, 95-105. Apolinarska, K., Pełechaty, M. & Pronin, E., 2016. Discrepancies between the stable isotope compositions of water, macrophyte carbonates and organics, and mollusc shells in the littoral zone of a charophyte-dominated lake (Lake Lednica, Poland). Hydrobiologia 768, 1-17. Apolinarska, K. & Pełechaty, M., Inter- and intra-specific variability in δ13C and δ18O values of freshwater gastropod shells from Lake Lednica, western Poland. DOI: 10.1515/agp-2016-0028
Andrews, John T.; Jennings, Anne E.; Coleman, George C.; Eberl, Dennis D.
2010-01-01
Quantitative X-Ray Diffraction (qXRD) analysis of the <2 mm sediment fraction from surface (sea floor) samples, and marine sediment cores that span the last 10-12 cal ka BP, are used to describe spatial and temporal variations in non-clay mineral compositions for an area between Kangerlussuaq Trough and Scoresby Sund (???67??-70??N), East Greenland. Bedrock consists primarily of an early Tertiary alkaline complex with high weight% of pyroxene and plagioclase. Farther inland and to the north, the bedrock is dominantly felsic with a high fraction of quartz and potassium feldspars. Principal Component (PC) analysis of the non-clay sediment compositions indicates the importance of quartz and pyroxene as compositional end members, with an abrupt shift from quartz and k-feldspar dominated sediments north of Scoresby Sund to sediments rich in pyroxene and plagioclase feldspars offshore from the early Tertiary basaltic outcrop. Coarse (<2 mm or <1 mm) ice-rafted sediments are largely absent from the trough sediments between ???8 and 5 cal ka BP, but then increase in the last 4 cal ka BP. Compositional unmixing of the sediments in Grivel Basin and Kangerlussuaq Trough indicate the dominance of local over long distance sediment sources, with pulses of sediment from tidewater glaciers in Kangerlussuaq and Nansen fjords reaching the inner shelf during the Neoglaciation. The change in IRD is more dramatic in the sediment grain-size proxies than in the quartz wt%. Forty to seventy percent of the variance in the quartz records from either side of Denmark Strait is explained by low frequency trends, but the data from the Grivel Basin, East Greenland, are distinctly different, with an approximate 2500 yr periodicity. ?? 2010 Elsevier Ltd.
Origin of dolomite in Miocene Monterey Shale and related formations in the Temblor Range, California
Friedman, I.; Murata, K.J.
1979-01-01
Dolomites in thick sections of Miocene Monterey Shale and related formations in the Temblor Range of California acquired their isotopic compositions as they formed at shallow depth in the original sediment rich in organic matter, and retained the composition against the vicissitudes of burial diagenesis. The oxygen isotopes of dolomites of successive beds record changes in temperature of bottom water while the carbon isotopes of the same samples indicate changes in the kind of microbial activity (sulfate reduction vs carbohydrate fermentation) that prevailed at shallow depths in the sediment. In an auxiliary study, two samples of dolomite from sediments of Cariaco Basin off Venezuela (DSDP site 147) were found to have ??5C13 of -14.1 and -9.8 per ml PDB, although they occur in a heavy-carbon zone containing bicarbonate as heavy as +8.4 per ml. These dolomites probably originated at shallow depth in the light-carbon zone of microbial sulfate reducers and were buried under later sediments down into the heavy-carbon zone of microbial fermenters of carbohydrates without losing their original light-carbon composition. ?? 1979.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayhew, H.L.; Karle, L.M.; Gruendell, B.D.
The US Army Corps of Engineers was authorized to dredge Richmond Harbor to accomodate large, deep-draft vessels. An ecological evaluation of the Harbor sediments was performed describing the physical characteristics, toxic substances, effects on aquatic organisms,and potential for bioaccumulation of chemical contaminants. The objective of this report is to compare the sediment chemistry, acute toxicity, and bioaccumulation results of the Richmond Harbor sediments to each of the reference areas; i.e., the Deep Off-Shelf Reference Area, the Bay Farm Borrow Area, and the Alcatraz Environs Reference Area. This report will enable the US Army Corps of Engineers to determine whether disposalmore » at a reference area is appropriate for all or part of the dredged material from Richmond Harbor. Chemical analyses were performed on 30 sediment samples; 28 of those samples were then combined to form 7 composites. The seven composites plus sediment from two additional stations received both chemical and biological evaluations.« less
Oerter, Erik J.; Perelet, Alexei; Pardyjak, Eric; ...
2016-10-20
Here, the fast and accurate measurement of H and O stable isotope compositions (δ 2H and δ 18O values) of soil and sediment pore water remains an impediment to scaling-up the application of these isotopes in soil and vadose hydrology. Here we describe a method and its calibration to measuring soil and sediment pore water δ 2H and δ 18O values using a water vapor-permeable probe coupled to an isotope ratio infrared spectroscopy analyzer.
NASA Astrophysics Data System (ADS)
Schmidt, Frauke; Koch, Boris P.; Witt, Matthias; Hinrichs, Kai-Uwe
2014-09-01
Dissolved organic matter (DOM) in marine sediments is a complex mixture of thousands of individual constituents that participate in biogeochemical reactions and serve as substrates for benthic microbes. Knowledge of the molecular composition of DOM is a prerequisite for a comprehensive understanding of the biogeochemical processes in sediments. In this study, interstitial water DOM was extracted with Rhizon samplers from a sediment core from the Black Sea and compared to the corresponding water-extractable organic matter fraction (<0.4 μm) obtained by Soxhlet extraction, which mobilizes labile particulate organic matter and DOM. After solid phase extraction (SPE) of DOM, samples were analyzed for the molecular composition by Fourier Transform Ion-Cyclotron Resonance Mass Spectrometry (FT-ICR MS) with electrospray ionization in negative ion mode. The average SPE extraction yield of the dissolved organic carbon (DOC) in interstitial water was 63%, whereas less than 30% of the DOC in Soxhlet-extracted organic matter was recovered. Nevertheless, Soxhlet extraction yielded up to 4.35% of the total sedimentary organic carbon, which is more than 30-times the organic carbon content of the interstitial water. While interstitial water DOM consisted primarily of carbon-, hydrogen- and oxygen-bearing compounds, Soxhlet extracts yielded more complex FT-ICR mass spectra with more peaks and higher abundances of nitrogen- and sulfur-bearing compounds. The molecular composition of both sample types was affected by the geochemical conditions in the sediment; elevated concentrations of HS- promoted the early diagenetic sulfurization of organic matter. The Soxhlet extracts from shallow sediment contained specific three- and four-nitrogen-bearing molecular formulas that were also detected in bacterial cell extracts and presumably represent proteinaceous molecules. These compounds decreased with increasing sediment depth while one- and two-nitrogen-bearing molecules increased, resulting in a higher similarity of both sample types in the deep sediment. In summary, Soxhlet extraction of sediments accessed a larger and more complex pool of organic matter than present in interstitial water DOM.
Gas and porewater composition of shallow sediments in the Tuaheni Basin, New Zealand
NASA Astrophysics Data System (ADS)
Rose, P. S.; Coffin, R. B.; Yoza, B.; Boyd, T. J.; Crutchley, G. J.; Mountjoy, J. J.; Pecher, I. A.
2015-12-01
Seismic profiles collected during previous investigations on the Hikurangi Margin, off the North Island, New Zealand showed bottom simulating reflectors (BSRs), which are generally indicative of the presence of free gas. Further, double BSRs clearly identified in the Tuaheni Basin were hypothesized to result from differences in gas composition and fluid migration. During a cruise on the RV Tangaroa in June 2015 (TAN 1508) additional seismic data were collected and used to identify piston coring targets. Coring locations were selected to sample around BSR pinch-outs and possible fluid migration pathways to determine gas composition and flux. Shallow sediments collected in June 2015 in the Tuaheni Basin had relatively low sediment headspace CH4 concentrations (
NASA Technical Reports Server (NTRS)
Shmalzer, Paul A.; Hensley, Melissa A.; Mota, Mario; Hall, Carlton R.; Dunlevy, Colleen A.
2000-01-01
This study documented background chemical composition of soils, groundwater, surface; water, and sediments of Kennedy Space Center. Two hundred soil samples were collected, 20 each in 10 soil classes. Fifty-one groundwater wells were installed in 4 subaquifers of the Surficial Aquifer and sampled; there were 24 shallow, 16 intermediate, and 11 deep wells. Forty surface water and sediment samples were collected in major watershed basins. All samples were away from sites of known contamination. Samples were analyzed for organochlorine pesticides, aroclors, chlorinated herbicides, polycyclic aromatic hydrocarbons (PAH), total metals, and other parameters. All aroclors (6) were below detection in all media. Some organochlorine pesticides were detected at very low frequencies in soil, sediment, and surface water. Chlorinated herbicides were detected at very low frequencies in soil and sediments. PAH occurred in low frequencies in soiL, shallow groundwater, surface water, and sediments. Concentrations of some metals differed among soil classes, with subaquifers and depths, and among watershed basins for surface water but not sediments. Most of the variation in metal concentrations was natural, but agriculture had increased Cr, Cu, Mn, and Zn.
Paul, Dhiraj; Kumbhare, Shreyas V.; Mhatre, Snehit S.; Chowdhury, Somak P.; Shetty, Sudarshan A.; Marathe, Nachiket P.; Bhute, Shrikant; Shouche, Yogesh S.
2016-01-01
Lonar Lake is a hypersaline and hyperalkaline soda lake and the only meteorite impact crater in the world situated in basalt rocks. Although culture-dependent studies have been reported, a comprehensive understanding of microbial community composition and structure in Lonar Lake remains elusive. In the present study, microbial community structure associated with Lonar Lake sediment and water samples was investigated using high-throughput sequencing. Microbial diversity analysis revealed the existence of diverse, yet largely consistent communities. Proteobacteria (30%), Actinobacteria (24%), Firmicutes (11%), and Cyanobacteria (5%) predominated in the sequencing survey, whereas Bacteroidetes (1.12%), BD1-5 (0.5%), Nitrospirae (0.41%), and Verrucomicrobia (0.28%) were detected in relatively minor abundances in the Lonar Lake ecosystem. Within the Proteobacteria phylum, the Gammaproteobacteria represented the most abundantly detected class (21–47%) within sediment samples, but only a minor population in the water samples. Proteobacteria and Firmicutes were found at significantly higher abundance (p ≥ 0.05) in sediment samples, whereas members of Actinobacteria, Candidate division TM7 and Cyanobacteria (p ≥ 0.05) were significantly abundant in water samples. Compared to the microbial communities of other hypersaline soda lakes, those of Lonar Lake formed a distinct cluster, suggesting a different microbial community composition and structure. Here we report for the first time, the difference in composition of indigenous microbial communities between the sediment and water samples of Lonar Lake. An improved census of microbial community structure in this Lake ecosystem provides a foundation for exploring microbial biogeochemical cycling and microbial function in hypersaline lake environments. PMID:26834712
Mai, Bi-Xian; Fu, Jia-Mo; Sheng, Guo-Ying; Kang, Yue-Hui; Lin, Zheng; Zhang, Gan; Min, Yu-Shuan; Zeng, Eddy Y
2002-01-01
Spatial distribution of chlorinated hydrocarbons [chlorinated pesticides (CPs) and polychlorinated biphenyls (PCBs)] and polycyclic aromatic hydrocarbons (PAHs) was measured in riverine and estuarine sediment samples from Pearl River Delta, China, collected in 1997. Concentrations of CPs of the riverine sediment samples range from 12 to 158 ng/g, dry weight, while those of PCBs range from 11 to 486 ng/g. The CPs concentrations of the estuarine sediment samples are in the range 6-1658 ng/g, while concentrations of PCBs are in the range 10-339 ng/g. Total PAH concentration ranges from 1168 to 21,329 ng/g in the riverine sediment samples, whereas the PAH concentration ranges from 323 to 14,812 ng/g in the sediment samples of the Estuary. Sediment samples of the Zhujiang River and Macao harbor around the Estuary show the highest concentrations of CPs, PCBs, and PAHs. Possible factors affecting the distribution patterns are also discussed based on the usage history of the chemicals, hydrologic condition, and land erosion due to urbanization processes. The composition of PAHs is investigated and used to assess petrogenic, combustion and naturally derived PAHs of the sediment samples of the Pearl River Delta. In addition, the concentrations of a number of organic compounds of the Pearl River Delta samples indicate that sediments of the Zhujiang river and Macao harbor are most likely to pose biological impairment.
Transport of sludge-derived organic pollutants to deep-sea sediments at deep water dump site 106
Takada, H.; Farrington, J.W.; Bothner, Michael H.; Johnson, C.G.; Tripp, B.W.
1994-01-01
Linear alkylbenzenes (LABs), coprostanol and epi-coprostanol, were detected in sediment trap and bottom sediment samples at the Deep Water Dump Site 106 located 185 km off the coast of New Jersey, in water depths from 2400 to 2900 m. These findings clearly indicate that organic pollutants derived from dumped sludge are transported through the water column and have accumulated on the deep-sea floor. No significant difference in LABs isomeric composition was observed among sludge and samples, indicating little environmental biodegradation of these compounds. LABs and coprostanol have penetrated down to a depth of 6 cm in sediment, indicating the mixing of these compounds by biological and physical processes. Also, in artificially resuspended surface sediments, high concentrations of LABs and coprostanols were detected, implying that sewage-derived organic pollutants initially deposited on the deep-sea floor can be further dispersed by resuspension and transport processes. Small but significant amounts of coprostanol were detected in the sediment from a control site at which no LABs were detected. The coprostanol is probably derived from feces of marine mammals and sea birds and/or from microbial or geochemical transformations of cholesterol. Polcyclic aromatic hydrocarbons (PAHs) in sediment trap samples from the dump site were largely from the sewage sludge and had a mixed petroleum and pyrogenic composition. In contrast, PAHs in sediments in the dump site were mainly pyrogenic; contributed either from sewage sludge or from atmospheric transport to the overlying waters. & 1994 American Chemical Society.
Bacterial diversity and community composition from seasurface to subseafloor.
Walsh, Emily A; Kirkpatrick, John B; Rutherford, Scott D; Smith, David C; Sogin, Mitchell; D'Hondt, Steven
2016-04-01
We investigated compositional relationships between bacterial communities in the water column and those in deep-sea sediment at three environmentally distinct Pacific sites (two in the Equatorial Pacific and one in the North Pacific Gyre). Through pyrosequencing of the v4-v6 hypervariable regions of the 16S ribosomal RNA gene, we characterized 450,104 pyrotags representing 29,814 operational taxonomic units (OTUs, 97% similarity). Hierarchical clustering and non-metric multidimensional scaling partition the samples into four broad groups, regardless of geographic location: a photic-zone community, a subphotic community, a shallow sedimentary community and a subseafloor sedimentary community (⩾1.5 meters below seafloor). Abundance-weighted community compositions of water-column samples exhibit a similar trend with depth at all sites, with successive epipelagic, mesopelagic, bathypelagic and abyssopelagic communities. Taxonomic richness is generally highest in the water-column O2 minimum zone and lowest in the subseafloor sediment. OTUs represented by abundant tags in the subseafloor sediment are often present but represented by few tags in the water column, and represented by moderately abundant tags in the shallow sediment. In contrast, OTUs represented by abundant tags in the water are generally absent from the subseafloor sediment. These results are consistent with (i) dispersal of marine sedimentary bacteria via the ocean, and (ii) selection of the subseafloor sedimentary community from within the community present in shallow sediment.
Kayzar, Theresa M; Villa, Adam C; Lobaugh, Megan L; Gaffney, Amy M; Williams, Ross W
2014-10-01
The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. The ((234)U)/((238)U) composition of Red Rock Creek is altered downstream of the Juniper Mine. As a result of mine-derived contamination, water ((234)U)/((238)U) ratios are 67% lower than in water upstream of the mine (1.114-1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activity ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041-1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (∼70-80% of uranium in leachable fraction). Contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment. Published by Elsevier Ltd.
Kayzar, Theresa M.; Villa, Adam C.; Lobaugh, Megan L.; ...
2014-06-07
The uranium concentrations and isotopic compositions of waters, sediment leachates and sediments from Red Rock Creek in the Stanislaus National Forest of California were measured to investigate the transport of uranium from a point source (the Juniper Uranium Mine) to a natural surface stream environment. Furthermore, we alter the (234U)/(238U) composition of Red Rock Creek downstream of the Juniper Mine. As a result of mine-derived contamination, water (234U)/(238U) ratios are 67% lower than in water upstream of the mine (1.114–1.127 ± 0.009 in the contaminated waters versus 1.676 in the clean branch of the stream), and sediment samples have activitymore » ratios in equilibrium in the clean creek and out of equilibrium in the contaminated creek (1.041–1.102 ± 0.007). Uranium concentrations in water, sediment and sediment leachates are highest downstream of the mine, but decrease rapidly after mixing with the clean branch of the stream. Uranium content and compositions of the contaminated creek headwaters relative to the mine tailings of the Juniper Mine suggest that uranium has been weathered from the mine and deposited in the creek. The distribution of uranium between sediment surfaces (leachable fraction) and bulk sediment suggests that adsorption is a key element of transfer along the creek. In clean creek samples, uranium is concentrated in the sediment residues, whereas in the contaminated creek, uranium is concentrated on the sediment surfaces (~70–80% of uranium in leachable fraction). Furthermore, contamination only exceeds the EPA maximum contaminant level (MCL) for drinking water in the sample with the closest proximity to the mine. Isotopic characterization of the uranium in this system coupled with concentration measurements suggest that the current state of contamination in Red Rock Creek is best described by mixing between the clean creek and contaminated upper branch of Red Rock Creek rather than mixing directly with mine sediment.« less
A Comparative Study of Sediment Quality in Four Reservoirs.
1984-02-01
same time as the reservoir samples. Precision for interstitial water samples was initially measured using soil - solution samples. As interstitial...Variable Composite Sample hean, ma&L Replicates Deviation, ma L Deviation. Ammonium nitrogen Soil solution 0.07 12 0.01 14 DeGray composite 2.00 10 0.01...0.5 Nitrate nitrite Filtered wastewater 0.04 10 0.01 25 nitrogen Soluble reactive Soil solution 0.04 12 0.01 25 phosphorus DeGray composite 0.16 10 0.01
Evaluation of dredged material proposed for ocean disposal from Gravesend Bay Anchorage, New York
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrows, E.S.; Gruendell, B.D.
1996-09-01
The Gravesend Bay Anchorage was one of seven waterways that the US Army Corps of Engineers-New York District (USACE-NYD) requested the Battelle Marine Sciences Laboratory (MSL) to sample and evaluate for dredging and disposal in February 1994. Sediment samples were submitted for physical and chemical analyses to provide baseline sediment chemistry data on the Gravesend Bay Anchorage. Individual sediment core samples collected at the Gravesend Bay Anchorage were analyzed for grain size, moisture content, and total organic carbon (TOC). Two samples, one of composited sediment cores representing the southeast corner of the anchorage (COMP GR), and one sediment core representingmore » the northeast corner of the anchorage (Station GR-1 0), were analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAH), and 1,4-dichlorobenzene.« less
Deposition, Alteration, and Resuspension of Colorado River Delta Sediments, Lake Powell, Utah
NASA Astrophysics Data System (ADS)
Kramer, N. M.; Parnell, R.
2002-12-01
Current drought conditions in the southwest United States have resulted in lowering water levels in Lake Powell, Utah. Delta sediments forming at the Colorado River inflow for the past 39 years are becoming exposed and reworked as lake levels continue to fall to over 22 meters below full pool level. Fine sediments act as a sink for pollutants by adsorbing contaminants to their surfaces. Reworking these sediments may pose a risk to water quality in the lake. We examine whether burial and time have sufficiently altered fine sediments in the delta and affected materials adsorbed on their surfaces. Fifteen lake cores and six sediment traps were collected from the sediment delta forming at the Colorado River inflow in Lake Powell. This research characterizes fine sediment mineralogy, the composition of exchangeable materials, and organic matter content within delta sediments to determine the type and amount of alteration of these sediments with cycles of burial and resuspension. We hypothesize that as sediments are reworked, organic carbon is degraded and organic nitrogen is released forming ammonium in these reducing conditions. Sediment trap samples will be used to test this hypothesis. Trap samples will be compared to subsamples from sediment cores to determine the amount of alteration of fine sediments. All samples are analyzed for organic carbon, organic nitrogen, ammonium, cation exchange capacity, exchangeable cation composition, and clay mineralogy. Organic carbon and nitrogen are analyzed using a Leco CN analyzer. Ammonium is analyzed using a Lachet ion chromatograph. Clay mineralogy is characterized using a Siemens D500 powder X-ray diffractometer. Cation exchange capacity and exchangeable cations are measured using standard soil chemical techniques. Clay mineral analyses indicate significant spatial and temporal differences in fine sediment entering the Lake Powell delta which complicates the use of a simple deposition/alteration/resuspension model using a single starting material.
NASA Astrophysics Data System (ADS)
Kouhpeima, A.; Feiznia, S.; Ahmadi, H.; Hashemi, S. A.; Zareiee, A. R.
2010-09-01
The targeting of sediment management strategies is a key requirement in developing countries including Iran because of the limited resources available. These targeting is, however hampered by the lack of reliable information on catchment sediment sources. This paper reports the results of using a quantitative composite fingerprinting technique to estimate the relative importance of the primary potential sources within the Amrovan and Royan catchments in Semnan Province, Iran. Fifteen tracers were first selected for tracing and samples were analyzed in the laboratory for these parameters. Statistical methods were applied to the data including nonparametric Kruskal-Wallis test and Differentiation Function Analysis (DFA). For Amrovan catchment three parameters (N, Cr and Co) were found to be not significant in making the discrimination. The optimum fingerprint, comprising Oc, PH, Kaolinite and K was able to distinguish correctly 100% of the source material samples. For the Royan catchment, all of the 15 properties were able to distinguish between the six source types and the optimum fingerprint provided by stepwise DFA (Cholorite, XFD, N and C) correctly classifies 92.9% of the source material samples. The mean contributions from each sediment source obtained by multivariate mixing model varied at two catchments. For Amrovan catchment Upper Red formation is the main sediment sources as this sediment source approximately supplies 36% of the reservoir sediment whereas the dominant sediment source for the Royan catchment is from Karaj formation that supplies 33% of the reservoir sediments. Results indicate that the source fingerprinting approach appears to work well in the study catchments and to generate reliable results.
Gugliandolo, Concetta; Michaud, Luigi; Lo Giudice, Angelina; Lentini, Valeria; Rochera, Carlos; Camacho, Antonio; Maugeri, Teresa Luciana
2016-02-01
Byers Peninsula (Livingston Island, Antarctica), the largest seasonally ice-free region of the Maritime Antarctica, holds a large number of lakes, ponds, and streams. The prokaryotic structure and bacterial diversity in sediment samples collected during the 2008-2009 austral summer from five inland lakes, two coastal lakes, and an estuarine site were analyzed by Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD-FISH) and 16S rRNA 454 tag pyrosequencing techniques, respectively. Differently from inland lakes, which range around the oligotrophic status, coastal lakes are eutrophic environments, enriched by nutrient inputs from marine animals. Although the prokaryotic abundances (estimated as DAPI stained cells) in sediment samples were quite similar among inland and coastal lakes, Bacteria always far dominated over Archaea. Despite the phylogenetic analysis indicated that most of sequences were affiliated to a few taxonomic groups, mainly referred to Proteobacteria, Bacteroidetes, and Actinobacteria, their relative abundances greatly differed from each site. Differences in bacterial composition showed that lacustrine sediments were more phyla rich than the estuarine sediment. Proteobacterial classes in lacustrine samples were dominated by Betaproteobacteria (followed by Alphaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria), while in the estuarine sample, they were mainly related to Gammaproteobacteria (followed by Deltaproteobacteria, Epsilonproteobacteria, Alphaproteobacteria, and Betaproteobacteria). Higher number of sequences of Alphaproteobacteria, Cyanobacteria, Verrucomicrobia, and Planctomycetes were observed in sediments of inland lakes compared to those of coastal lakes, whereas Chloroflexi were relatively more abundant in the sediments of coastal eutrophic lakes. As demonstrated by the great number of dominant bacterial genera, bacterial diversity was higher in the sediments of inland lakes than that in coastal lakes. Ilumatobacter (Actinobacteria), Gp16 (Acidobacteria), and Gemmatimonas (Gemmatimonadetes) were recovered as dominant genera in both inland and coastal lakes, but not in the estuarine sample, indicating that they may be useful markers of Antarctic lakes. The proximity to the sea, the different lake depths and the external or internal origin of the nutrient sources shape the bacterial communities composition in lacustrine sediments of Byers Peninsula.
Continuous-flow centrifugation to collect suspended sediment for chemical analysis
Conn, Kathleen E.; Dinicola, Richard S.; Black, Robert W.; Cox, Stephen E.; Sheibley, Richard W.; Foreman, James R.; Senter, Craig A.; Peterson, Norman T.
2016-12-22
Recent advances in suspended-sediment monitoring tools and surrogate technologies have greatly improved the ability to quantify suspended-sediment concentrations and to estimate daily, seasonal, and annual suspended-sediment fluxes from rivers to coastal waters. However, little is known about the chemical composition of suspended sediment, and how it may vary spatially between water bodies and temporally within a single system owing to climate, seasonality, land use, and other natural and anthropogenic drivers. Many water-quality contaminants, such as organic and inorganic chemicals, nutrients, and pathogens, preferentially partition in sediment rather than water. Suspended sediment-bound chemical concentrations may be undetected during analysis of unfiltered water samples, owing to small water sample volumes and analytical limitations. Quantification of suspended sediment‑bound chemical concentrations is needed to improve estimates of total chemical concentrations, chemical fluxes, and exposure levels of aquatic organisms and humans in receiving environments. Despite these needs, few studies or monitoring programs measure the chemical composition of suspended sediment, largely owing to the difficulty in consistently obtaining samples of sufficient quality and quantity for laboratory analysis.A field protocol is described here utilizing continuous‑flow centrifugation for the collection of suspended sediment for chemical analysis. The centrifuge used for development of this method is small, lightweight, and portable for the field applications described in this protocol. Project scoping considerations, deployment of equipment and system layout options, and results from various field and laboratory quality control experiments are described. The testing confirmed the applicability of the protocol for the determination of many inorganic and organic chemicals sorbed on suspended sediment, including metals, pesticides, polycyclic aromatic hydrocarbons, and polychlorinated biphenyls. The particle-size distribution of the captured sediment changes to a more fine-grained sample during centrifugation, and the necessity to account for this change when extrapolating chemical concentrations on the centrifuged sediment sample to the environmental water system is discussed.The data produced using this method will help eliminate a data gap of suspended sediment-bound chemical concentrations, and will support management decisions, such as chemical source-control efforts or in-stream restoration activities. When coupled with streamflow and sediment flux data, it will improve estimates of riverine chemical fluxes, and will aid in assessing the importance and impacts of suspended sediment-bound chemicals to downstream freshwater and coastal marine ecosystems.
Microbiome succession during ammonification in eelgrass bed sediments
Ettinger, Cassandra L.; Williams, Susan L.; Abbott, Jessica M.; Stachowicz, John J.
2017-01-01
Background Eelgrass (Zostera marina) is a marine angiosperm and foundation species that plays an important ecological role in primary production, food web support, and elemental cycling in coastal ecosystems. As with other plants, the microbial communities living in, on, and near eelgrass are thought to be intimately connected to the ecology and biology of eelgrass. Here we characterized the microbial communities in eelgrass sediments throughout an experiment to quantify the rate of ammonification, the first step in early remineralization of organic matter, also known as diagenesis, from plots at a field site in Bodega Bay, CA. Methods Sediment was collected from 72 plots from a 15 month long field experiment in which eelgrass genotypic richness and relatedness were manipulated. In the laboratory, we placed sediment samples (n = 4 per plot) under a N2 atmosphere, incubated them at in situ temperatures (15 °C) and sampled them initially and after 4, 7, 13, and 19 days to determine the ammonification rate. Comparative microbiome analysis using high throughput sequencing of 16S rRNA genes was performed on sediment samples taken initially and at seven, 13 and 19 days to characterize changes in the relative abundances of microbial taxa throughout ammonification. Results Within-sample diversity of the sediment microbial communities across all plots decreased after the initial timepoint using both richness based (observed number of OTUs, Chao1) and richness and evenness based diversity metrics (Shannon, Inverse Simpson). Additionally, microbial community composition changed across the different timepoints. Many of the observed changes in relative abundance of taxonomic groups between timepoints appeared driven by sulfur cycling with observed decreases in predicted sulfur reducers (Desulfobacterales) and corresponding increases in predicted sulfide oxidizers (Thiotrichales). None of these changes in composition or richness were associated with variation in ammonification rates. Discussion Our results showed that the microbiome of sediment from different plots followed similar successional patterns, which we infer to be due to changes related to sulfur metabolism. These large changes likely overwhelmed any potential changes in sediment microbiome related to ammonification rate. We found no relationship between eelgrass presence or genetic composition and the microbiome. This was likely due to our sampling of bulk sediments to measure ammonification rates rather than sampling microbes in sediment directly in contact with the plants and suggests that eelgrass influence on the sediment microbiome may be limited in spatial extent. More in-depth functional studies associated with eelgrass microbiome will be required in order to fully understand the implications of these microbial communities in broader host-plant and ecosystem functions (e.g., elemental cycling and eelgrass-microbe interactions). PMID:28828269
Morton, J.L.; Holmes, M.L.; Koski, R.A.
1987-01-01
Seismic-reflection profiles over the sediment-filled Escanaba Trough at the southern Gorda Ridge reveal a series of volcanic centers that pierce the sediment. The volcanic edifices are 3 to 6 km in diameter and are spaced at 15 to 20 km intervals along the axis of the trough. Composition and form of sulfide samples obtained from the bank suggest significant interaction between hydrothermal fluids and sediment at depth, and deposition of sulfide within the sediment pile.-from Authors
Robinson, G.R.; Ayuso, R.A.
2004-01-01
Arsenical pesticides and herbicides, principally Pb arsenate, Ca arsenate, and Na arsenate with lesser use of other metal-As pesticides, were widely applied on apple, blueberry, and potato crops in New England during the first half of the twentieth century. Agricultural census data for this time period is used to define an agricultural index that identifies areas that are inferred to have used arsenical pesticides extensively. Factor analysis on metal concentrations in 1597 stream sediment samples collected throughout New England, grouped by agricultural-index categories, indicate a positive association of areas with stream sediment sample populations that contain higher As and Pb concentrations than samples from the region as a whole with sample site settings having high agricultural-index values. Population statistics for As and Pb concentrations and factor scores for an As-Pb factor all increase systematically and significantly with increasing agricultural-index intensity in the region, as tested by Kruskal-Wallis analysis. Lead isotope compositions for 16 stream sediments from a range of agricultural-index settings generally overlap the observed variation in rock sulfides and their weathering products; however, sediments collected from high agricultural-index settings have slightly more radiogenic Pb compositions, consistent with an industrial Pb contribution to these samples. Although weathering products from rocks are likely to be the dominant source of As and metals to most of the stream sediment samples collected in the region, the widespread use of arsenical pesticides and herbicides in New England during the early 1900-1960s appears to be a significant anthropogenic source of As and metals to many sediments in agricultural areas in the region and has raised background levels of As in some regions. Elevated concentrations of As in stream sediments are of concern for two reasons. Stream sediments with elevated As concentrations delineate areas with elevated background concentrations of As from both natural rock and anthropogenic sources that may contribute As to groundwater systems used for drinking water supplies. Conversion of agricultural land contaminated with arsenical pesticide residues to residential development may increase the likelihood that humans will be exposed to As. In addition, many stream sediment sites have As concentrations that exceed sediment quality guidelines established for freshwater ecosystems. Thirteen percent of the New England sediment sample sites exceed 9.79 mg/kg As, the threshold effects concentration (TEC), below which harmful effects are unlikely to be observed. Arsenic concentrations exceed 33 mg/kg, the probable effects concentration (PEC), above which harmful effects on sediment-dwelling organisms are expected to occur frequently, at 1.25% of the sediment sample sites. The sample sites that exceed the PEC value occur predominately in agricultural areas that used arsenical pesticides.
Zhao, Dayong; He, Xiaowei; Huang, Rui; Yan, Wenming; Yu, Zhongbo
2017-07-01
Ammonia oxidation is a crucial process in global nitrogen cycling, which is catalyzed by the ammonia oxidizers. Emergent plants play important roles in the freshwater ecosystem. Therefore, it is meaningful to investigate the effects of emergent macrophytes on the abundance and community composition of ammonia oxidizers. In the present study, two commonly found emergent macrophytes (Zizania caduciflora and Phragmitas communis) were obtained from freshwater lakes and the abundance and community composition of the ammonia-oxidizing prokaryotes in the rhizosphere sediments of these emergent macrophytes were investigated. The abundance of the bacterial amoA gene was higher in the rhizosphere sediments of the emergent macrophytes than those of bulk sediments. Significant positive correlation was found between the potential nitrification rates (PNRs) and the abundance of bacterial amoA gene, suggesting that ammonia-oxidizing bacteria (AOB) might play an important role in the nitrification process of the rhizosphere sediments of emergent macrophytes. The Nitrosotalea cluster is the dominant ammonia-oxidizing archaea (AOA) group in all the sediment samples. Analysis of AOB group showed that the N. europaeal cluster dominated the rhizosphere sediments of Z. caduciflora and the bulk sediments, whereas the Nitrosospira cluster was the dominant AOB group in the rhizosphere sediments of P. communis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tfaily, Malak M.; Chu, Rosalie K.; Toyoda, Jason
A vast number of organic compounds are present in soil organic matter (SOM) and play an important role in the terrestrial carbon cycle, facilitate interactions between organisms, and represent a sink for atmospheric CO2. The diversity of different SOM compounds and their molecular characteristics is a function of the organic source material and biogeochemical history. By understanding how SOM composition changes with sources and the processes by which it is biogeochemically altered in different terrestrial ecosystems, it may be possible to predict nutrient and carbon cycling, response to system perturbations, and impact of climate change will have on SOM composition.more » In this study, a sequential chemical extraction procedure was developed to reveal the diversity of organic matter (OM) in different ecosystems and was compared to the previously published protocol using parallel solvent extraction (PSE). We compared six extraction methods using three sample types, peat soil, spruce forest soil and river sediment, so as to select the best method for extracting a representative fraction of organic matter from soils and sediments from a wide range of ecosystems. We estimated the extraction yield of dissolved organic carbon (DOC) by total organic carbon analysis, and measured the composition of extracted OM using high resolution mass spectrometry. This study showed that OM composition depends primarily on soil and sediment characteristics. Two sequential extraction protocols, progressing from polar to non-polar solvents, were found to provide the highest number and diversity of organic compounds extracted from the soil and sediments. Water (H2O) is the first solvent used for both protocols followed by either co-extraction with methanol-chloroform (MeOH-CHCl3) mixture, or acetonitrile (ACN) and CHCl3 sequentially. The sequential extraction protocol developed in this study offers improved sensitivity, and requires less sample compared to the PSE workflow where a new sample is used for each solvent type. Furthermore, a comparison of SOM composition from the different sample types revealed that our sequential protocol allows for ecosystem comparisons based on the diversity of compounds present, which in turn could provide new insights about source and processing of organic compounds in different soil and sediment types.« less
Tfaily, Malak M; Chu, Rosalie K; Toyoda, Jason; Tolić, Nikola; Robinson, Errol W; Paša-Tolić, Ljiljana; Hess, Nancy J
2017-06-15
A vast number of organic compounds are present in soil organic matter (SOM) and play an important role in the terrestrial carbon cycle, facilitate interactions between organisms, and represent a sink for atmospheric CO 2 . The diversity of different SOM compounds and their molecular characteristics is a function of the organic source material and biogeochemical history. By understanding how SOM composition changes with sources and the processes by which it is biogeochemically altered in different terrestrial ecosystems, it may be possible to predict nutrient and carbon cycling, response to system perturbations, and impact of climate change will have on SOM composition. In this study, a sequential chemical extraction procedure was developed to reveal the diversity of organic matter (OM) in different ecosystems and was compared to the previously published protocol using parallel solvent extraction (PSE). We compared six extraction methods using three sample types, peat soil, spruce forest soil and river sediment, so as to select the best method for extracting a representative fraction of organic matter from soils and sediments from a wide range of ecosystems. We estimated the extraction yield of dissolved organic carbon (DOC) by total organic carbon analysis, and measured the composition of extracted OM using high resolution mass spectrometry. This study showed that OM composition depends primarily on soil and sediment characteristics. Two sequential extraction protocols, progressing from polar to non-polar solvents, were found to provide the highest number and diversity of organic compounds extracted from the soil and sediments. Water (H 2 O) is the first solvent used for both protocols followed by either co-extraction with methanol-chloroform (MeOH-CHCl 3 ) mixture, or acetonitrile (ACN) and CHCl 3 sequentially. The sequential extraction protocol developed in this study offers improved sensitivity, and requires less sample compared to the PSE workflow where a new sample is used for each solvent type. Furthermore, a comparison of SOM composition from the different sample types revealed that our sequential protocol allows for ecosystem comparisons based on the diversity of compounds present, which in turn could provide new insights about source and processing of organic compounds in different soil and sediment types. Copyright © 2017 Elsevier B.V. All rights reserved.
Ritson, P.I.; Bouse, R.M.; Flegal, A.R.; Luoma, S.N.
1999-01-01
Variations in stable lead isotopic composition (240Pb, 206Pb, 207Pb, 208Pb) in three sediment cores from the San Francisco Bay estuary document temporal changes in sources of lead during the past two centuries. Sediment, with lead from natural geologic sources, and relatively homogeneous lead isotopic compositions are overlain by sediments whose isotopic compositions indicate change in the sources of lead associated with anthropogenic modification of the estuary. The first perturbations of lead isotopic composition in the cores occur in the late 1800s concordant with the beginning of industrialization around the estuary. Large isotopic shifts, toward lower 206Pb/207Pb, occur after the turn of the century in both Richardson and San Pablo Bays. A similar relationship among lead isotopic compositions and lead concentrations in both Bays suggest contamination from the same source (a lead smelter). The uppermost sediments (post 1980) of all cores also have a relatively homogenous lead isotopic composition distinct from pre-anthropogenic and recent aerosol signatures. Lead isotopic compositions of leachates from fourteen surface sediments and five marsh samples from the estuary were also analyzed. These analyses suggest that the lead isotopic signature identified in the upper horizons of the cores is spatially homogeneous among recently deposited sediments throughout the estuary. Current aerosol lead isotopic compositions [Smith, D.R., Niemeyer, S., Flegal, A.R., 1992. Lead sources to California sea otters: industrial inputs circumvent natural lead biodepletion mechanisms. Environmental Research 57, 163-175] are distinct from the isotopic compositions of the surface sediments, suggesting that the major source of lead is cycling of historically contaminated sediments back through the water column. Both the upper core sediments and surface sediments apparently derive their lead predominantly from sources internal to the estuary. These results support the idea that geochemical cycling of lead between sediments and water accounts for persistently elevated lead concentrations in the water column despite 10-fold reduction of external source inputs to San Francisco Bay [Flegal, A.R., Rivera-Duarte, I., Ritson, P.I., Scelfo, G., Smith, G.J., Gordon, M., Sanudo-Wilhelmy, S.A., 1996. Metal contamination in San Francisco Waters: historic perturbations, contemporary concentrations, and future considerations in San Francisco Bay. In: Hollobaugh, J.T. (Ed.), The Ecosystem. AAAS, pp. 173-188].
NASA Astrophysics Data System (ADS)
Zhu, R.; Lin, Y.-S.; Lipp, J. S.; Meador, T. B.; Hinrichs, K.-U.
2014-01-01
Amino sugars are quantitatively significant constituents of soil and marine sediment, but their sources and turnover in environmental samples remain poorly understood. The stable carbon isotopic composition of amino sugars can provide information on the lifestyles of their source organisms and can be monitored during incubations with labeled substrates to estimate the turnover rates of microbial populations. However, until now, such investigation has been carried out only with soil samples, partly because of the much lower abundance of amino sugars in marine environments. We therefore optimized a procedure for compound-specific isotopic analysis of amino sugars in marine sediment employing gas chromatography-isotope ratio mass spectrometry. The whole procedure consisted of hydrolysis, neutralization, enrichment, and derivatization of amino sugars. Except for the derivatization step, the protocol introduced negligible isotopic fractionation, and the minimum requirement of amino sugar for isotopic analysis was 20 ng, i.e. equivalent to ~ 8 ng of amino sugar carbon. Our results obtained from δ13C analysis of amino sugars in selected marine sediment samples showed that muramic acid had isotopic imprints from indigenous bacterial activities, whereas glucosamine and galactosamine were mainly derived from organic detritus. The analysis of stable carbon isotopic compositions of amino sugars opens a promising window for the investigation of microbial metabolisms in marine sediments and the deep marine biosphere.
Neutral carbohydrate geochemistry of particulate material in the central equatorial Pacific
NASA Astrophysics Data System (ADS)
Hernes, Peter J.; Hedges, John I.; Peterson, Michael L.; Wakeham, Stuart G.; Lee, Cindy
Neutral carbohydrate compositions were determined for particulate samples from plankton net tows, shallow floating sediment traps, mid-depth and deep moored sediment traps, and sediment cores collected along a north-south transect in the central equatorial Pacific Ocean during the U.S. JGOFS EqPac program. Total neutral carbohydrate depth profiles and patterns along the transect follow essentially the same trends as bulk and organic carbon (OC) fluxes—attenuating with depth, high near the equator and decreasing poleward. OC-normalized total aldose (TCH 2,O) yields along the transect and with depth do not show any consitent patterns. Relative to a planktonic source, neutral carbohydrate compositions in sediment trap and sediment core samples reflect preferential loss of ribose and storage carbohydrates rich in glucose, and preferential preservation of structural carbohydrates rich in rhamnose, xylose, fucose, and mannose. There is also evidence for an intermediately labile component rich in galactose. It appears that compositional signatures of neutral carbohydrates in sediments are more dependent upon their planktonic source than on any particular diagenetic pathway. Relative to other types of organic matter, neutral carbohydrates are better preserved in calcareous oozes from 12°S to 5°N than in red clays at 9°N based on OC-normalized TCH 2O yields, due to either differing sources or sorption characteristics. Weight per cent glucose generally decreases with increased degradation of organic material in the central equatorial Pacific region. Based on weight per cent glucose, comparisons of samples between Survey I (El Niõn) and Survey II (non-El Niño) indicate that during Survey I, organic material in the epipelagic zone in the northern hemisphere may have undergone more degradation than organic material in the southern hemisphere.
Mackay, Alana K; Taylor, Mark P; Hudson-Edwards, Karen A
2011-07-01
This article presents the geochemical characteristics and physicochemical properties of water and sediment from twelve semi-permanent, dryland pools in the upper Leichhardt River catchment, north-west Queensland, Australia. The pools were examined to better understand the quality of sediments and temporary waters in a dryland system with a well-established metal contamination problem. Water and sediment sampling was conducted at the beginning of the hydroperiod in May and September 2007. Water samples were analyzed for major solute compositions (Ca, Na, K, Mg, Cl, SO(4), HCO(3)) and water-soluble (operationally defined as the <0.45 μm fraction) metals (Cd, Cu, Pb, Zn). Sediment samples were analyzed for total extractable and bioaccessible metals (As, Cd, Cu, Pb, Zn), elemental composition and grain morphology. At the time of sampling a number of pools contained water and sediment with elevated concentrations, compared to Australian regulatory guidelines, of Cu (maximum: water 28 μg L(-1); sediment 770 mg kg(-1)), Pb (maximum: water 3.4 μg L(-1); sediment 630 mg kg(-1)) and Zn (maximum: water 150 μg L(-1); sediment 780 mg kg(-1)). Concentrations of Cd and As in pools were relatively low and generally within Australian regulatory guideline values. Localized factors, such as the interaction of waters with anthropogenic contaminants from modern and historic mine wastes (i.e. residual smelter and slag materials), exert influence on the quality of pool waters. Although the pools of the upper Leichhardt River catchment are contaminated, they do not appear to be the primary repository of water and sediment associated metals when compared to materials in the remainder channel and floodplain. Nevertheless, a precautionary approach should be adopted to mitigating human exposure to contaminated environments, which might include the installation of appropriate warning signs by local health and environmental authorities.
Cole, Jessica K; Peacock, Joseph P; Dodsworth, Jeremy A; Williams, Amanda J; Thompson, Daniel B; Dong, Hailiang; Wu, Geng; Hedlund, Brian P
2013-01-01
Great Boiling Spring is a large, circumneutral, geothermal spring in the US Great Basin. Twelve samples were collected from water and four different sediment sites on four different dates. Microbial community composition and diversity were assessed by PCR amplification of a portion of the small subunit rRNA gene using a universal primer set followed by pyrosequencing of the V8 region. Analysis of 164 178 quality-filtered pyrotags clearly distinguished sediment and water microbial communities. Water communities were extremely uneven and dominated by the bacterium Thermocrinis. Sediment microbial communities grouped according to temperature and sampling location, with a strong, negative, linear relationship between temperature and richness at all taxonomic levels. Two sediment locations, Site A (87–80 °C) and Site B (79 °C), were predominantly composed of single phylotypes of the bacterial lineage GAL35 (p̂=36.1%), Aeropyrum (p̂=16.6%), the archaeal lineage pSL4 (p̂=15.9%), the archaeal lineage NAG1 (p̂=10.6%) and Thermocrinis (p̂=7.6%). The ammonia-oxidizing archaeon ‘Candidatus Nitrosocaldus' was relatively abundant in all sediment samples <82 °C (p̂=9.51%), delineating the upper temperature limit for chemolithotrophic ammonia oxidation in this spring. This study underscores the distinctness of water and sediment communities in GBS and the importance of temperature in driving microbial diversity, composition and, ultimately, the functioning of biogeochemical cycles. PMID:23235293
Sediment and organic carbon transport in Cap de Creus canyon, Gulf of Lions (France)
NASA Astrophysics Data System (ADS)
Tesi, T.; Puig, P.; Palanques, A.; Goni, M. A.; Miserocchi, S.; Langone, L.
2009-04-01
The off-shelf transport of particles in continental margins is responsible for much of the flux of organic matter (OM)and nutrients towards deep-sea ecosystems, playing a key role in the global oceanic biogeochemical cycles. Off-shelf sediment transport mechanism have been well described for many continental margins being triggered by a series of physical forcings such as tides, storms, internal waves, floods, earthquakes, as well as the combination of some of these processes, while topographic structures such as submarine canyons act as preferential sedimentary conduits toward deep ocean. However, the composition of the material supplied to the deep ocean during these events is still poorly understood since most studies have only investigated the magnitude of the down-slope fluxes or limited their analysis to the major bulk components. A special opportunity to characterize the biogeochemical composition of the off-shelf export in the Gulf of Lions (GoL) margin was provided during the winter 2004-2005, when an exceptional dense water cascading event occurred. Dense water overflowing off the shelf in the GoL has been recently recognized as one of the main process affecting particulate shelf-to-slope exchange in northwestern Mediterranean Sea. During the 2004-2005 cascading event, moored instruments were deployed at the Cap de Creus (CdC) canyon head to monitor the physical parameters and to characterize the temporal variability of the exported material. Post-cascading sediment cores were collected along the sediment dispersal system to trace the sediment transport pathway. In this study we developed a source tracing method using elemental compositions, alkaline CuO reaction products (lignin, cutin, lipids, hydroxy benzenes, proteins, lipids, and polysaccharides products), biogenic silica, carbon stable isotope composition, radiocarbon measurements, and grain size as a fingerprint for each sample. The aforementioned analyses were carried out on both sediment trap and sediment samples to obtain a homogeneous data matrix. The dynamic mixture of OM sources and shelf sediments was then analyzed using multivariate statistics. A quantitative mixing model was used to assess the relative contribution of allochthonous and autochthonous OM and to identify the relationship between sediment export from the shelf and down-slope particulate fluxes (sediment provenance).
Zhu, Daochen; Tanabe, Shoko-Hosoi; Yang, Chong; Zhang, Weimin; Sun, Jianzhong
2013-01-01
Background Subseafloor sediments accumulate large amounts of organic and inorganic materials that contain a highly diverse microbial ecosystem. The aim of this study was to survey the bacterial community of subseafloor sediments from the South China Sea. Methodology/Principal Findings Pyrosequencing of over 265,000 amplicons of the V3 hypervariable region of the 16S ribosomal RNA gene was performed on 16 sediment samples collected from multiple locations in the northern region of the South China Sea from depths ranging from 35 to 4000 m. A total of 9,726 operational taxonomic units (OTUs; between 695 and 2819 unique OTUs per sample) at 97% sequence similarity level were generated. In total, 40 bacterial phyla including 22 formally described phyla and 18 candidate phyla, with Proteobacteria, Firmicutes, Planctomycetes, Actinobacteria and Chloroflexi being most diverse, were identified. The most abundant phylotype, accounting for 42.6% of all sequences, belonged to Gammaproteobacteria, which possessed absolute predominance in the samples analyzed. Among the 18 candidate phyla, 12 were found for the first time in the South China Sea. Conclusions This study provided a novel insight into the composition of bacterial communities of the South China Sea subseafloor. Furthermore, abundances and community similarity analysis showed that the compositions of the bacterial communities are very similar at phylum level at different depths from 35-4000 m. PMID:24205246
Zhu, Daochen; Tanabe, Shoko-Hosoi; Yang, Chong; Zhang, Weimin; Sun, Jianzhong
2013-01-01
Subseafloor sediments accumulate large amounts of organic and inorganic materials that contain a highly diverse microbial ecosystem. The aim of this study was to survey the bacterial community of subseafloor sediments from the South China Sea. Pyrosequencing of over 265,000 amplicons of the V3 hypervariable region of the 16S ribosomal RNA gene was performed on 16 sediment samples collected from multiple locations in the northern region of the South China Sea from depths ranging from 35 to 4000 m. A total of 9,726 operational taxonomic units (OTUs; between 695 and 2819 unique OTUs per sample) at 97% sequence similarity level were generated. In total, 40 bacterial phyla including 22 formally described phyla and 18 candidate phyla, with Proteobacteria, Firmicutes, Planctomycetes, Actinobacteria and Chloroflexi being most diverse, were identified. The most abundant phylotype, accounting for 42.6% of all sequences, belonged to Gammaproteobacteria, which possessed absolute predominance in the samples analyzed. Among the 18 candidate phyla, 12 were found for the first time in the South China Sea. This study provided a novel insight into the composition of bacterial communities of the South China Sea subseafloor. Furthermore, abundances and community similarity analysis showed that the compositions of the bacterial communities are very similar at phylum level at different depths from 35-4000 m.
Repert, Deborah A.; Underwood, Jennifer C.; Smith, Richard L.; Song, Bongkeun
2014-01-01
Information on the contribution of nitrogen (N)-cycling processes in bed sediments to river nutrient fluxes in large northern latitude river systems is limited. This study examined the relationship between N-cycling processes in bed sediments and N speciation and loading in the Yukon River near its mouth at the Bering Sea. We conducted laboratory bioassays to measure N-cycling processes in sediment samples collected over distinct water cycle seasons. In conjunction, the microbial community composition in the bed sediments using genes involved in N-cycling (narG, napA, nosZ, and amoA) and 16S rRNA gene pyrosequences was examined. Temporal variation was observed in net N mineralization, nitrate uptake, and denitrification rate potentials and correlated strongly with sediment carbon (C) and extractable N content and microbial community composition rather than with river water nutrient concentrations. The C content of the bed sediment was notably impacted by the spring flood, ranging from 1.1% in the midst of an ice-jam to 0.1% immediately after ice-out, suggesting a buildup of organic material (OM) prior to scouring of the bed sediments during ice break up. The dominant members of the microbial community that explained differences in N-processing rates belonged to the genera Crenothrix,Flavobacterium, and the family of Comamonadaceae. Our results suggest that biogeochemical processing rates in the bed sediments appear to be more coupled to hydrology, nutrient availability in the sediments, and microbial community composition rather than river nutrient concentrations at Pilot Station.
Analytical approaches to the determination of phosphorus partitioning patterns in sediments.
Pardo, P; Rauret, G; López-Sánchez, J F
2003-04-01
Three methods for phosphorus fractionation in sediments based on chemical extractions have been applied to fourteen aquatic sediment samples of different origin and characteristics. Two of the methods used different approaches to obtain the inorganic fractions. The Hieltjes and Lijklema procedure (HL) uses strong acids or bases, whereas the Golterman procedure (G) uses chelating reagents. The third one, the Standards, Measurements and Testing (SMT) protocol, was proposed in the frame of the SMT Programme (European Commission) which aimed to provide harmonisation and the validation of such methodologies. This harmonised procedure was also used for the certification of the extractable phosphorus contents in a sediment certified reference material (CRM BCR 684). Principal component analysis (PCA) was used to group sediments according to their composition and the three extraction methods were applied to the samples including CRM BCR 684. The data obtained show that there is some correlation between the results from the three methods when considering the organic and the residual fractions together. The SMT and the HL methods are the most comparable, whereas the G method, using a different type of reagent, yields different distribution patterns depending on sample composition. In relation to the inorganic phosphorus, the three methods give similar information, although the distribution between non-apatite and apatite fractions can be different.
Adjusting stream-sediment geochemical maps in the Austrian Bohemian Massif by analysis of variance
Davis, J.C.; Hausberger, G.; Schermann, O.; Bohling, G.
1995-01-01
The Austrian portion of the Bohemian Massif is a Precambrian terrane composed mostly of highly metamorphosed rocks intruded by a series of granitoids that are petrographically similar. Rocks are exposed poorly and the subtle variations in rock type are difficult to map in the field. A detailed geochemical survey of stream sediments in this region has been conducted and included as part of the Geochemischer Atlas der Republik O??sterreich, and the variations in stream sediment composition may help refine the geological interpretation. In an earlier study, multivariate analysis of variance (MANOVA) was applied to the stream-sediment data in order to minimize unwanted sampling variation and emphasize relationships between stream sediments and rock types in sample catchment areas. The estimated coefficients were used successfully to correct for the sampling effects throughout most of the region, but also introduced an overcorrection in some areas that seems to result from consistent but subtle differences in composition of specific rock types. By expanding the model to include an additional factor reflecting the presence of a major tectonic unit, the Rohrbach block, the overcorrection is removed. This iterative process simultaneously refines both the geochemical map by removing extraneous variation and the geological map by suggesting a more detailed classification of rock types. ?? 1995 International Association for Mathematical Geology.
Natural abundances of carbon isotopes in acetate from a coastal marine sediment
NASA Technical Reports Server (NTRS)
Blair, N. E.; Martens, C. S.; Des Marais, D. J.
1987-01-01
Measurements of the natural abundances of carbon isotopes were made in acetate samples isolated from the anoxic marine sediment of Cape Lookout Bight, North Carolina. The typical value of the total acetate carbon isotope ratio (delta 13C) was -16.1 +/- 0.2 per mil. The methyl and carboxyl groups were determined to be -26.4 +/- 0.3 and -6.0 +/- 0.3 per mil, respectively, for one sample. The isotopic composition of the acetate is thought to have resulted from isotopic discriminations that occurred during the cycling of that molecule. Measurements of this type, which have not been made previously in the natural environment, may provide information about the dominant microbial pathways in anoxic sediments as well as the processes that influence the carbon isotopic composition of biogenic methane from many sources.
Testing a laser-induced breakdown spectroscopy technique on the Arctic sediments
NASA Astrophysics Data System (ADS)
Han, D.; Nam, S. I.
2017-12-01
Physical and geochemical investigations coupled with the Laser-induced Breakdown Spectroscopy (LIBS) were performed on three surface sediment cores (ARA03B/24BOX, ARA02B/01(A)MUC, ARA02B/02MUC and ARA02B/03(A)MUC) recovered from the western Arctic Ocean (Chukchi Sea) during IBRV ARON expeditions in 2012. The LIBS technique was applied to carry out elemental chemical analysis of the Arctic sediments and compared with that measured by ITRAX X-ray fuorescence (XRF) core scanning. LIBS and XRF have shown similar elemental composition within each sediment core. In this study, mineral composition (XRD), grain size distribution and organic carbon content as well as elemental composition (LIBS) were all considered to understand paleoenvironmental changes (ocean circulation, sea-ice drift, iceberg discharge, and etc.) recorded in the Arctic Holocene sediment. Quantitative LIBS analysis shows a gradually varying distribution of the elements along the sampled core and clear separation between the cores. The cores are geochemically characterized by elevated Mn profile. The gradient of mineral composition and grain sizes among the cores shows regional distribution and variation in sedimentary condition due to geological distance between East Siberian and North America. The present study reveals that a LIBS technique can be employed for in-situ sediment analyses for the Arctic Ocean. Furthermore, LIBS does not require costly equipment, trained operators, and complicated sample pre-treatment processes compared to Atomic absorption spectroscopy (AAS) and inductively coupled plasma emission spectroscopy (ICP), and also known to show relatively high levels of sensitivity, precision, and distinction than XRF analysis, scanning electron microscopy-energy dispersive spectrometry (SEM-EDS), and electron probe X-ray microanalysis (EPMA).
NASA Astrophysics Data System (ADS)
Hamdan, L. J.; Sikaroodi, M.; Coffin, R. B.; Gillevet, P. M.
2010-12-01
A culture-independent phylogenetic study of microbial communities in water samples and sediment cores recovered from the Beaufort Sea slope east of Point Barrow, Alaska was conducted. The goal of the work was to describe community composition in sediment and water samples and determine the influence of local environmental conditions on microbial populations. Archaeal and bacterial community composition was studied using length heterogeneity-polymerase chain reaction (LH-PCR) and multitag pyrosequencing (MTPS). Sediment samples were obtained from three piston cores on the slope (~1000m depth) arrayed along an east-west transect and one core from a depth of approximately 2000m. Discrete water samples were obtained using a CTD-rosette from three locations adjacent to piston core sites. Water sample were selected at three discrete depths within a vertically stratified (density) water column. The microbial community in near surface waters was distinct from the community observed in deeper stratified layers of the water column. Multidimensional scaling analysis (MDS) revealed that water samples from mid and deep stratified layers bore high similarity to communities in cores collected in close proximity. Overall, the highest diversity (bacteria and archaea) was observed in a core which had elevated methane concentration relative to other locations. Geochemical (e.g., bulk organic and inorganic carbon pools, nutrients, metabolites) and physical data (e.g. depth, water content) were used to reveal the abiotic factors structuring microbial communities. The analysis indicates that sediment water content (porosity) and inorganic carbon concentration are the most significant structuring elements on Beaufort shelf sedimentary microbial communities.
Qin, Ke; Struewing, Ian; Domingo, Jorge Santo; Lytle, Darren; Lu, Jingrang
2017-10-26
The occurrence and densities of opportunistic pathogens (OPs), the microbial community structure, and their associations with sediment elements from eight water storage tanks in Ohio, West Virginia, and Texas were investigated. The elemental composition of sediments was measured through X-ray fluorescence (XRF) spectra. The occurrence and densities of OPs and amoeba hosts (i.e., Legionella spp. and L . pneumophila , Mycobacterium spp., P. aeruginosa , V. vermiformis, Acanthamoeba spp.) were determined using genus- or species-specific qPCR assays. Microbial community analysis was performed using next generation sequencing on the Illumina Miseq platform. Mycobacterium spp. were most frequently detected in the sediments and water samples (88% and 88%), followed by Legionella spp. (50% and 50%), Acanthamoeba spp. (63% and 13%), V. vermiformis (50% and 25%), and P. aeruginosa (0 and 50%) by qPCR method. Comamonadaceae (22.8%), Sphingomonadaceae (10.3%), and Oxalobacteraceae (10.1%) were the most dominant families by sequencing method. Microbial communities in water samples were mostly separated with those in sediment samples, suggesting differences of communities between two matrices even in the same location. There were associations of OPs with microbial communities. Both OPs and microbial community structures were positively associated with some elements (Al and K) in sediments mainly from pipe material corrosions. Opportunistic pathogens presented in both water and sediments, and the latter could act as a reservoir of microbial contamination. There appears to be an association between potential opportunistic pathogens and microbial community structures. These microbial communities may be influenced by constituents within storage tank sediments. The results imply that compositions of microbial community and elements may influence and indicate microbial water quality and pipeline corrosion, and that these constituents may be important for optimal storage tank management within a distribution system.
Qin, Ke; Struewing, Ian; Domingo, Jorge Santo; Lytle, Darren
2017-01-01
The occurrence and densities of opportunistic pathogens (OPs), the microbial community structure, and their associations with sediment elements from eight water storage tanks in Ohio, West Virginia, and Texas were investigated. The elemental composition of sediments was measured through X-ray fluorescence (XRF) spectra. The occurrence and densities of OPs and amoeba hosts (i.e., Legionella spp. and L. pneumophila, Mycobacterium spp., P. aeruginosa, V. vermiformis, Acanthamoeba spp.) were determined using genus- or species-specific qPCR assays. Microbial community analysis was performed using next generation sequencing on the Illumina Miseq platform. Mycobacterium spp. were most frequently detected in the sediments and water samples (88% and 88%), followed by Legionella spp. (50% and 50%), Acanthamoeba spp. (63% and 13%), V. vermiformis (50% and 25%), and P. aeruginosa (0 and 50%) by qPCR method. Comamonadaceae (22.8%), Sphingomonadaceae (10.3%), and Oxalobacteraceae (10.1%) were the most dominant families by sequencing method. Microbial communities in water samples were mostly separated with those in sediment samples, suggesting differences of communities between two matrices even in the same location. There were associations of OPs with microbial communities. Both OPs and microbial community structures were positively associated with some elements (Al and K) in sediments mainly from pipe material corrosions. Opportunistic pathogens presented in both water and sediments, and the latter could act as a reservoir of microbial contamination. There appears to be an association between potential opportunistic pathogens and microbial community structures. These microbial communities may be influenced by constituents within storage tank sediments. The results imply that compositions of microbial community and elements may influence and indicate microbial water quality and pipeline corrosion, and that these constituents may be important for optimal storage tank management within a distribution system. PMID:29072631
Edlund, Anna; Jansson, Janet K
2006-10-01
Bacteria residing in sediments have key functions in the marine food web. However, it has been difficult to correlate the identity and activity of bacteria in sediments due to lack of appropriate methods beyond cultivation-based techniques. Our aim was to use a combination of molecular approaches, bromodeoxyuridine incorporation and immunocapture, terminal restriction fragment length polymorphism, and cloning and sequencing of 16S rRNA genes to assess the composition of growing bacteria in Baltic Sea sediments. The study site was a highly polluted area off the Swedish coast. The sediments were sampled in two consecutive years, before and after remediation, by dredging of the top sediments. Levels of polyaromatic hydrocarbons (PAHs), mercury, and polychlorinated biphenyls were dramatically reduced as a result of the cleanup project. The compositions of growing members of the communities were significantly different at the two sampling periods. In particular, members from the class Deltaproteobacteria and genus Spirochaeta were more dominant before dredging, but members of the classes Gammaproteobacteria and the Flavobacteria represented the most dominant growing populations after dredging. We also cultivated isolates from the polluted sediments that could transform the model PAH compound, phenanthrene. Some of these isolates were confirmed as dominant growing populations by the molecular methods as well. This suite of methods enabled us to link the identity and activity of the members of the sediment communities.
Counihan, Timothy D; Waite, Ian R; Nilsen, Elena B; Hardiman, Jill M; Elias, Edwin; Gelfenbaum, Guy; Zaugg, Steven D
2014-06-15
While previous studies have documented contaminants in fish, sediments, water, and wildlife, few specifics are known about the spatial distribution of contaminants in the Columbia River Estuary (CRE). Our study goal was to characterize sediment contaminant detections and concentrations in reaches of the CRE that were concurrently being sampled to assess contaminants in water, invertebrates, fish, and osprey (Pandion haliaetus) eggs. Our objectives were to develop a survey design based on sedimentation characteristics and then assess whether sediment grain size, total organic carbon (TOC), and contaminant concentrations and detections varied between areas with different sedimentation characteristics. We used a sediment transport model to predict sedimentation characteristics of three 16km river reaches in the CRE. We then compartmentalized the modeled change in bed mass after a two week simulation to define sampling strata with depositional, stable, or erosional conditions. We collected and analyzed bottom sediments to assess whether substrate composition, organic matter composition, and contaminant concentrations and detections varied among strata within and between the reaches. We observed differences in grain size fractions between strata within and between reaches. We found that the fine sediment fraction was positively correlated with TOC. Contaminant concentrations were statistically different between depositional vs. erosional strata for the industrial compounds, personal care products and polycyclic aromatic hydrocarbons class (Indus-PCP-PAH). We also observed significant differences between strata in the number of detections of Indus-PCP-PAH (depositional vs. erosional; stable vs. erosional) and for the flame retardants, polychlorinated biphenyls, and pesticides class (depositional vs. erosional, depositional vs. stable). When we estimated mean contaminant concentrations by reach, we observed higher contaminant concentrations in the furthest downstream reach with a decreasing trend in the two upstream reaches. Contaminant survey designs that account for sedimentation characteristics could increase the probability that sampling is allocated to areas likely to be contaminated. Published by Elsevier B.V.
Counihan, Timothy D.; Waite, Ian R.; Nilsen, Elena B.; Hardiman, Jill M.; Elias, Edwin; Gelfenbaum, Guy; Zaugg, Steven D.
2014-01-01
While previous studies have documented contaminants in fish, sediments, water, and wildlife, few specifics are known about the spatial distribution of contaminants in the Columbia River Estuary (CRE). Our study goal was to characterize sediment contaminant detections and concentrations in reaches of the CRE that were concurrently being sampled to assess contaminants in water, invertebrates, fish, and osprey (Pandion haliaetus) eggs. Our objectives were to develop a survey design based on sedimentation characteristics and then assess whether sediment grain size, total organic carbon (TOC), and contaminant concentrations and detections varied between areas with different sedimentation characteristics. We used a sediment transport model to predict sedimentation characteristics of three 16 km river reaches in the CRE. We then compartmentalized the modeled change in bed mass after a two week simulation to define sampling strata with depositional, stable, or erosional conditions. We collected and analyzed bottom sediments to assess whether substrate composition, organic matter composition, and contaminant concentrations and detections varied among strata within and between the reaches. We observed differences in grain size fractions between strata within and between reaches. We found that the fine sediment fraction was positively correlated with TOC. Contaminant concentrations were statistically different between depositional vs. erosional strata for the industrial compounds, personal care products and polycyclic aromatic hydrocarbons class (Indus–PCP–PAH). We also observed significant differences between strata in the number of detections of Indus–PCP–PAH (depositional vs. erosional; stable vs. erosional) and for the flame retardants, polychlorinated biphenyls, and pesticides class (depositional vs. erosional, depositional vs. stable). When we estimated mean contaminant concentrations by reach, we observed higher contaminant concentrations in the furthest downstream reach with a decreasing trend in the two upstream reaches. Contaminant survey designs that account for sedimentation characteristics could increase the probability that sampling is allocated to areas likely to be contaminated.
MAHLI at the Rocknest sand shadow: Science and science-enabling activities
NASA Astrophysics Data System (ADS)
Minitti, M. E.; Kah, L. C.; Yingst, R. A.; Edgett, K. S.; Anderson, R. C.; Beegle, L. W.; Carsten, J. L.; Deen, R. G.; Goetz, W.; Hardgrove, C.; Harker, D. E.; Herkenhoff, K. E.; Hurowitz, J. A.; Jandura, L.; Kennedy, M. R.; Kocurek, G.; Krezoski, G. M.; Kuhn, S. R.; Limonadi, D.; Lipkaman, L.; Madsen, M. B.; Olson, T. S.; Robinson, M. L.; Rowland, S. K.; Rubin, D. M.; Seybold, C.; Schieber, J.; Schmidt, M.; Sumner, D. Y.; Tompkins, V. V.; Van Beek, J. K.; Van Beek, T.
2013-11-01
Martian solar days 57-100, the Mars Science Laboratory Curiosity rover acquired and processed a solid (sediment) sample and analyzed its mineralogy and geochemistry with the Chemistry and Mineralogy and Sample Analysis at Mars instruments. An aeolian deposit—herein referred to as the Rocknest sand shadow—was inferred to represent a global average soil composition and selected for study to facilitate integration of analytical results with observations from earlier missions. During first-time activities, the Mars Hand Lens Imager (MAHLI) was used to support both science and engineering activities related to sample assessment, collection, and delivery. Here we report on MAHLI activities that directly supported sample analysis and provide MAHLI observations regarding the grain-scale characteristics of the Rocknest sand shadow. MAHLI imaging confirms that the Rocknest sand shadow is one of a family of bimodal aeolian accumulations on Mars—similar to the coarse-grained ripples interrogated by the Mars Exploration Rovers Spirit and Opportunity—in which a surface veneer of coarse-grained sediment stabilizes predominantly fine-grained sediment of the deposit interior. The similarity in grain size distribution of these geographically disparate deposits support the widespread occurrence of bimodal aeolian transport on Mars. We suggest that preservation of bimodal aeolian deposits may be characteristic of regions of active deflation, where winnowing of the fine-sediment fraction results in a relatively low sediment load and a preferential increase in the coarse-grained fraction of the sediment load. The compositional similarity of Martian aeolian deposits supports the potential for global redistribution of fine-grained components, combined with potential local contributions.
Cooper, K M; Barry, J
2017-09-29
In this study we produce a standardised dataset for benthic macrofauna and sediments through integration of data (33,198 samples) from 777 grab surveys. The resulting dataset is used to identify spatial and temporal patterns in faunal distribution around the UK, and the role of sediment composition and other explanatory variables in determining such patterns. We show how insight into natural variability afforded by the dataset can be used to improve the sustainability of activities which affect sediment composition, by identifying conditions which should remain favourable for faunal recolonisation. Other big data applications and uses of the dataset are discussed.
Evaluation of dredged material proposed for ocean disposal from Bronx River Project Area, New York
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruendell, B.D.; Gardiner, W.W.; Antrim, L.D.
1996-12-01
The objective of the Bronx River project was to evaluate proposed dredged material from the Bronx River project area in Bronx, New York, to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Bronx River was one of five waterways that the US Army Corps of Engineers-New York District (USAGE-NYD) requested the Battelle Marine Sciences Laboratory (MSL) to sample and to evaluate for dredging and disposal. Sediment samples were submitted for physical and chemical analyses, chemical analyses of dredging site water and elutriate, benthic and water-column acute toxicity tests, and bioaccumulation studies. Fifteen individual sediment core samplesmore » collected from the Bronx River project area were analyzed for grain size, moisture content, and total organic carbon (TOC). One composite sediment sample, representing the entire reach of the area proposed for dredging, was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAH), and 1,4- dichlorobenzene. Dredging site water and elutriate water, which was prepared from the suspended-particulate phase (SPP) of the Bronx River sediment composite, were analyzed for metals, pesticides, and PCBS.« less
Lead isotopic compositions of common arsenical pesticides used in New England
Ayuso, Robert; Foley, Nora; Robinson, Gilpin; Wandless, Gregory; Dillingham, Jeremy
2004-01-01
The three most important arsenical pesticides and herbicides that were extensively used on apple, blueberry, and potato crops in New England from mid-1800s to recent times are lead arsenate, calcium arsenate, and sodium arsenate. Lead arsenate was probably the most heavily used of the arsenical pesticides until it was banned in 1988. Other metal-arsenic pesticides were also used but in lesser amounts. A recent report identified areas in New England where arsenical pesticides were used extensively (Robinson and Ayuso, 2004). On the basis of factor analysis of metal concentrations in stream sediment samples, a positive correlation with pesticide use was shown in regions having stream sediment sample populations that contained concentrations of high arsenic and lead. Lead isotope compositions of stream sediments from areas with heavy use of the pesticides could not be entirely explained by lead originating from rock sulfides and their weathering products. An industrial lead contribution (mostly from atmospheric deposition of lead) was suggested in general to explain the lead isotopic distributions of the stream sediments that could not be accounted for by the natural lead in the environment. We concluded that when agricultural land previously contaminated with arsenical pesticides is urbanized, pesticide residues in the soils and stream sediments could be released into the groundwater. No lead isotopic data characterizing the compositions of pesticides were available for comparison. We have determined the lead isotopic compositions of commonly used pesticides in New England, such as lead arsenate, sodium metaarsenite, and calcium arsenate, in order to assist in future isotopic comparisons and to better establish anthropogenic sources of Pb and As. New data are also presented for copper acetoarsenite (or Paris green), methyl arsonic acid and methane arsonic acid, as well as for arsanilic acid, all of which are used as feed additives to promote swine and poultry growth. The new data characterize these anthropogenic sources. The data show that the arsenical pesticides have similar compositions: 208Pb/207Pb = 2.3839-2.4721, 206Pb/207Pb = 1.1035-1.2010, and 206Pb/204Pb = 17.070-18.759 and, more importantly, that the pesticides overlap the composition of the stream sediments that represent the areas with the most extensive agricultural use. Copper acetoarsenite (Paris green), arsenic oxide, methyl arsonic acid, methane arsonic acid, and arsanilic acid were also analyzed and have lead isotope compositions that range widely. An important source of arsenic and metals to most of the stream sediment samples in New England appears to be weathering products from rocks and industrial lead, but the extensive use of arsenical pesticides and herbicides up to about the 1960s can also be a significant anthropogenic source in agricultural regions.
NASA Astrophysics Data System (ADS)
Leon Zayas, R. I.; Bartlett, D.; Biddle, J.
2016-12-01
Exploration of the deep ocean has expanded our understanding of oceanic ecosystems including continental margins and mid-ocean ridges, but little is known about the deepest sites on Earth, oceanic trenches. In this study, sediment and water samples were collected from the Tonga Trench at 9100m below sea level. These include four water column samples at depths of 400m, 3000m, 5000m and 9100m, and sediment samples at 0, 1, and 2 meter below the seafloor (mbsf). DNA was extracted and sequencing was performed for the recovery of metagenomic data for all samples. The analysis of the sediment samples from Tonga Trench has provided a new perspective of life in the deep ocean. The data for microbial community composition and metabolic profiles at the surface sediments, 0 mbsf, suggest that the microbes are present and taxonomically similar to the water column microbes, and perform an array of aerobic as well as anaerobic metabolisms, including degradation of organic carbon, oxidative phosphorylation, fermentation, nitrate reduction and sulfur oxidation among others. On the other hand, at 1 and 2 mbsf, the microbial community has diminished richness and diversity when compared to 0 mbsf and is potentially environmentally degraded due to the lack of quality data recoverable. Tonga Trench water column metagenomes are compared to other deep and hadal environments to better understand how different geographical locations, water masses and depth affect microbial community composition, distribution and metabolic potential. To our knowledge, this is the deepest metagenome analyzed to date (9100m), presenting an unprecedented look at one of the deepest environments on our planet.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sale, D.M.; Gibeaut, J.C.; Short, J.W.
Following the Exxon Valdez oil spill, sediment traps were deployed in nearshore subtidal areas of Prince William Sound, Alaska (PWS) to monitor particulate chemistry and mineralogy. Complemented by benthic sediment chemistry and core sample stratigraphy at the study sites, results were compared to historical trends and data from other Exxon Valdez studies. These results clearly indicate the transport of oil-laden sediments from oiled shorelines to adjacent subtidal sediments. The composition of hydrocarbons adsorbed to settling particulates at sites adjacent to oiled shorelines matched the PAH pattern of weathered Exxon Valdez crude oil.
Yu, Dan-Ting; Han, Li-Li; Zhang, Li-Mei; He, Ji-Zheng
2018-02-01
A substantial gap remains in our understanding of the abundance, diversity, and ecology of viruses in soil although some advances have been achieved in recent years. In this study, four soil samples according to the salinity gradient from shore to inland in East China have been characterized. Results showed that spherical virus particles represented the largest viral component in all of the four samples. The viromes had remarkably different taxonomic compositions, and most of the sequences were derived from single-stranded DNA viruses, especially from families Microviridae and Circoviridae. Compared with viromes from other aquatic and sediment samples, the community compositions of our four soil viromes resembled each other, meanwhile coastal sample virome closely congregated with sediment and hypersaline viromes, and high salinity paddy soil sample virome was similar with surface sediment virome. Phylogenetic analysis of functional genes showed that four viromes have high diversity of the subfamily Gokushovirinae in family Microviridae and most of Circoviridae replicase protein sequences grouped within the CRESS-DNA viruses. This work provided an initial outline of the viral communities in marine-terrestrial ecotone and will improve our understanding of the ecological functions of soil viruses.
NASA Astrophysics Data System (ADS)
Kuehn, Rebecca; Stipp, Michael; Leiss, Bernd
2017-04-01
During sedimentation and burial at continental margins, clay-rich sediments develop crystallographic preferred orientations (textures) depending on the ongoing compaction as well as size distribution and shape fabrics of the grains. Such textures can control the deformational properties of these sediments and hence the strain distribution in active continental margins and also the frictional behavior along and around the plate boundary. Strain-hardening and discontinuous deformation may lead to earthquake nucleation at or below the updip limit of the seismogenic zone. We want to investigate the active continental margin offshore Costa Rica where the oceanic Cocos plate is subducted below the Caribbean plate at a rate of approximately 9 cm per year. The Costa Rica trench is well-known for shallow seismogenesis and tsunami generation. As it is an erosive continental margin, both the incoming sediments from the Nazca plate as well as the slope sediments of the continental margin can be important for earthquake nucleation and faulting causing sea-floor breakage. To investigate texture and composition of the sediments and hence their deformational properties we collected samples from varying depth of 7 different drilling locations across the trench retrieved during IODP expeditions 334 and 344 as part of the Costa Rica Seismogenesis Project (CRISP). Texture analysis was carried out by means of synchrotron diffraction, as only this method is suitable for water-bearing samples. As knowledge on the sediment composition is required as input parameter for the texture data analysis, additional X-ray powder diffraction analysis on the sample material has been carried out. Samples for texture measurements were prepared from the original drill cores using an internally developed cutter which allows to produce cylindrical samples with a diameter of about 1.5 cm. The samples are oriented with respect to the drill core axis. Synchrotron texture measurements were conducted at the ESRF (European Synchrotron Radiation Facility) in Grenoble and the DESY (German Electron Synchrotron) in Hamburg. Samples were measured in transmission mode perpendicular to their cylinder axis with a beam diameter of 500 µm. Measurements were taken from 0 to 175° in 5° steps resulting in 36 images from a 2D image plate detector. Measurement time was in a range from 1 to 3 seconds. Due to the different, low symmetric mineral phases a large number of mostly overlapping reflections results. Such data can only be analyzed by the Rietveld method, in our case implemented in the software package MAUD (Materials Analysis Using Diffraction). Preliminary results show distinct textures depending on the composition and the origin of the samples, i.e. on drilling location and depth, which may be critical for strain localization and faulting of these samples. The results are also important for the analysis of experimentally deformed samples from the same drill cores which showed structurally weak and structurally strong deformation behavior during triaxial compression.
Evaluation of dredged material proposed for ocean disposal from Hudson River, New York
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardiner, W.W.; Barrows, E.S.; Antrim, L.D.
1996-09-01
The Hudson River (Federal Project No. 41) was one of seven waterways that the U.S. Army Corps of Engineers-New York District (USACE-NYD) requested the Battelle Marine Sciences Laboratory (MSL) to sample and evaluate for dredging and disposal in March 1994. Sediment samples were collected from the Hudson River. Tests and analyses were conducted on Hudson River sediment core samples. The evaluation of proposed dredged material from the Hudson River included bulk sediment chemical analyses, chemical analyses of site water and elutriate, water-column and benthic acute toxicity tests, and bioaccumulation studies. Individual sediment core samples collected from Hudson River were analyzedmore » for grain size, moisture content, and total organic carbon (TOC). A composite sediment sample, representing the entire area proposed for dredging, was analyzed for bulk density, specific gravity, metals, chlorinated pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAH), and 1,4-dichlorobenzene. Site water and elutriate water, prepared from the suspended-particulate phase (SPP) of Hudson River sediment, were analyzed for metals, pesticides, and PCBS. Water-column or SPP toxicity tests were performed with three species. Benthic acute toxicity tests were performed. Bioaccumulation tests were also conducted.« less
Hawthorne, Steven B; Poppendieck, Dustin G; Grabanski, Carol B; Loehr, Raymond C
2002-11-15
Soil and sediment samples from oil gas (OG) and coal gas (CG) manufactured gas plant (MGP) sites were selected to represent a range of PAH concentrations (150-40,000 mg/kg) and sample matrix compositions. Samples varied from vegetated soils to lampblack soot and had carbon contents from 3 to 87 wt %. SFE desorption (120 min) and water/XAD2 desorption (120 days) curves were determined and fit with a simple two-site model to determine the rapid-released fraction (F) for PAHs ranging from naphthalene to benzo[ghi]perylene. F values varied greatly among the samples, from ca. 10% to >90% for the two- and three-ring PAHs and from <1% to ca. 50% for the five- and six-ring PAHs. Release rates did not correlate with sample matrix characteristics including PAH concentrations, elemental composition (C, H, N, S), or "hard" and "softs" organic carbon, indicating that PAH release cannot easily be estimated on the basis of sample matrix composition. Fvalues for CG site samples obtained with SFE and water desorption agreed well (linear correlation coefficient, r2 = 0.87, slope = 0.93), but SFE yielded higher F values for the OG samples. These behaviors were attributed to the stronger ability of carbon dioxide than water to desorb PAHs from the highly aromatic (hard) carbon of the OG matrixes, while carbon dioxide and water showed similar abilities to desorb PAHs from the more polar (soft) carbon of the CG samples. The combined SFE and water desorption approaches should improve the understanding of PAH sequestration and release from contaminated soils and sediments and provide the basis for subsequent studies using the same samples to compare PAH release with PAH availability to earthworms.
Evaluation of dredged material proposed for ocean disposal from Shark River Project area
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antrim, L.D.; Gardiner, W.W.; Barrows, E.S.
1996-09-01
The objective of the Shark River Project was to evaluate proposed dredged material to determine its suitability for unconfined ocean disposal at the Mud Dump Site. Tests and analyses were conducted on the Shark River sediments. The evaluation of proposed dredged material consisted of bulk sediment chemical and physical analysis, chemical analyses of dredging site water and elutriate, water-column and benthic acute toxicity tests, and bioaccumulation tests. Individual sediment core samples collected from the Shark River were analyzed for grain size, moisture content, and total organic carbon (TOC). One sediment composite was analyzed for bulk density, specific gravity, metals, chlorinatedmore » pesticides, polychlorinated biphenyl (PCB) congeners, polynuclear aromatic hydrocarbons (PAHs), and 1,4- dichlorobenzene. Dredging site water and elutriate, prepared from suspended-particulate phase (SPP) of the Shark River sediment composite, were analyzed for metals, pesticides, and PCBs. Benthic acute toxicity tests and bioaccumulation tests were performed.« less
Predominant floodplain over mountain weathering of Himalayan sediments (Ganga basin)
NASA Astrophysics Data System (ADS)
Lupker, Maarten; France-Lanord, Christian; Galy, Valier; Lavé, Jérôme; Gaillardet, Jérôme; Gajurel, Ananta Prasad; Guilmette, Caroline; Rahman, Mustafizur; Singh, Sunil Kumar; Sinha, Rajiv
2012-05-01
We present an extensive river sediment dataset covering the Ganga basin from the Himalayan front downstream to the Ganga mainstream in Bangladesh. These sediments were mainly collected over several monsoon seasons and include depth profiles of suspended particles in the river water column. Mineral sorting is the first order control on the chemical composition of river sediments. Taking into account this variability we show that sediments become significantly depleted in mobile elements during their transit through the floodplain. By comparing sediments sampled at the Himalayan front with sediments from the Ganga mainstream in Bangladesh it is possible to budget weathering in the floodplain. Assuming a steady state weathering regime in the floodplain, the weathering of Himalayan sediments in the Gangetic floodplain releases ca. (189 ± 92) × 109 and (69 ± 22) × 109 mol/yr of carbonate bound Ca and Mg to the dissolved load, respectively. Silicate weathering releases (53 ± 18) × 109 and (42 ± 13) × 109 mol/yr of Na and K while the release of silicate Mg and Ca is substantially lower, between ca. 0 and 20 × 109 mol/yr. Additionally, we show that sediment hydration, [H2O+], is a sensitive tracer of silicate weathering that can be used in continental detrital environments, such as the Ganga basin. Both [H2O+] content and the D/H isotopic composition of sediments increases during floodplain transfer in response to mineral hydrolysis and neoformations associated to weathering reactions. By comparing the chemical composition of river sediments across the floodplain with the composition of the eroded Himalayan source rocks, we suggest that the floodplain is the dominant location of silicate weathering for Na, K and [H2O+]. Overall this work emphasizes the role of the Gangetic floodplain in weathering Himalayan sediments. It also demonstrates how detrital sediments can be used as weathering tracers if mineralogical and chemical sorting effects are properly taken into account.
Edlund, Anna; Jansson, Janet K.
2006-01-01
Bacteria residing in sediments have key functions in the marine food web. However, it has been difficult to correlate the identity and activity of bacteria in sediments due to lack of appropriate methods beyond cultivation-based techniques. Our aim was to use a combination of molecular approaches, bromodeoxyuridine incorporation and immunocapture, terminal restriction fragment length polymorphism, and cloning and sequencing of 16S rRNA genes to assess the composition of growing bacteria in Baltic Sea sediments. The study site was a highly polluted area off the Swedish coast. The sediments were sampled in two consecutive years, before and after remediation, by dredging of the top sediments. Levels of polyaromatic hydrocarbons (PAHs), mercury, and polychlorinated biphenyls were dramatically reduced as a result of the cleanup project. The compositions of growing members of the communities were significantly different at the two sampling periods. In particular, members from the class Deltaproteobacteria and genus Spirochaeta were more dominant before dredging, but members of the classes Gammaproteobacteria and the Flavobacteria represented the most dominant growing populations after dredging. We also cultivated isolates from the polluted sediments that could transform the model PAH compound, phenanthrene. Some of these isolates were confirmed as dominant growing populations by the molecular methods as well. This suite of methods enabled us to link the identity and activity of the members of the sediment communities. PMID:16950911
Yergeau, Etienne; Maynard, Christine; Sanschagrin, Sylvie; Champagne, Julie; Juck, David; Lee, Kenneth
2015-01-01
Several studies have assessed the effects of the released oil on microbes, either during or immediately after the Deepwater Horizon accident. However, little is known about the potential longer-term persistent effects on microbial communities and their functions. In this study, one water column station near the wellhead (3.78 km southwest of the wellhead), one water column reference station outside the affected area (37.77 km southeast of the wellhead), and deep-sea sediments near the wellhead (3.66 km southeast of the wellhead) were sampled 1 year after the capping of the well. In order to analyze microbial community composition, function, and activity, we used metagenomics, metatranscriptomics, and mineralization assays. Mineralization of hexadecane was significantly higher at the wellhead station at a depth of ∼1,200 m than at the reference station. Community composition based on taxonomical or functional data showed that the samples taken at a depth of ∼1,200 m were significantly more dissimilar between the stations than at other depths (surface, 100 m, 750 m, and >1,500 m). Both Bacteria and Archaea showed reduced activity at depths of ∼1,200 m when the wellhead station was compared to the reference station, and their activity was significantly higher in surficial sediments than in 10-cm sediments. Surficial sediments also harbored significantly different active genera than did 5- and 10-cm sediments. For the remaining microbial parameters assessed, no significant differences could be observed between the wellhead and reference stations and between surface and 5- to 10-cm-deep sediments. PMID:26092461
Liu, Songlin; Jiang, Zhijian; Zhang, Jingping; Wu, Yunchao; Lian, Zhonglian; Huang, Xiaoping
2016-09-15
To assess the effect of nutrient enrichment on the source and composition of sediment organic carbon (SOC) beneath Thalassia hemprichii and Enhalus acoroides in tropical seagrass beds, Xincun Bay, South China Sea, intertidal sediment, primary producers, and seawater samples were collected. No significant differences on sediment δ(13)C, SOC, and microbial biomass carbon (MBC) were observed between T. hemprichii and E. acoroides. SOC was mainly of autochthonous origin, while the contribution of seagrass to SOC was less than that of suspended particulate organic matter, macroalgae and epiphytes. High nutrient concentrations contributed substantially to SOC of seagrass, macroalgae, and epiphytes. The SOC, MBC, and MBC/SOC ratio in the nearest transect to fish farming were the highest. This suggested a more labile composition of SOC and shorter turnover times in higher nutrient regions. Therefore, the research indicates that nutrient enrichment could enhance plant-derived contributions to SOC and microbial use efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Woulds, Clare; Middelburg, Jack J.; Cowie, Greg L.
2012-01-01
Of the factors which control the quantity and composition of organic matter (OM) buried in marine sediments, the links between infaunal ingestion and gut passage and sediment geochemistry have received relatively little attention. This study aimed to use feeding experiments and novel isotope tracing techniques to quantify amino acid net accumulation and loss during polychaete gut passage, and to link this to patterns of selective preservation and decay in sediments. Microcosms containing either Arenicolamarina or Hediste (formerly Nereis) diversicolor were constructed from defaunated sediment and filtered estuarine water, and maintained under natural temperature and light conditions. They were fed with 13C-labelled diatoms daily for 8 days, and animals were transferred into fresh, un-labelled sediment after ∼20 days. Samples of fauna, microcosm sediment and faecal matter were collected after 8, ∼20 and ∼40 days, and analysed for their bulk isotopic signatures and 13C-labelled amino acid compositions. Bulk isotopic data showed that, consistent with their feeding modes, Hediste assimilated added 13C more quickly, and attained a higher labelling level than Arenicola. Both species retained the added 13C in their biomass even after removal from the food. A principal component analysis of 13C-labelled amino acid mole percentages showed clear differences in composition between the algae, faunal tissues, and sediment plus faecal matter. Further, the two species of polychaete showed different compositions in their tissues. The amino acids phenylalanine, valine, leucine, iso-leucine, threonine and proline showed net accumulation in polychaete tissues. Serine, methionine, lysine, aspartic and glutamic acids and tyrosine were rapidly lost through metabolism, consistent with their presence in easily digestible cell components (as opposed to cell walls which offer physical protection). All sample types (polychaete tissues, sediments and faecal matter) were enriched in labelled glycine. Possible mechanisms for this enrichment include accumulation through inclusion in tissues with long residence times, preferential preservation (i.e. selection against) during metabolism, production from other labelled amino acids during varied metabolic processes, and accumulation in refractory by-products of secondary bacterial production. Overall, similarities were observed between amino-acid decay patterns in faunated microcosms, afaunal controls, and those previously reported in marine sediments. Thus, while polychaete gut passage did produce compound-selective accumulation and losses of certain amino acids in polychaete tissues and faecal matter, the impact of polychaete gut passage on sediment organic geochemistry was difficult to deconvolve from microbial decay. Despite processing large volumes of organic matter, polychaetes may not have distinctive influence on sediment compositions, possibly because metabolic processes concerning amino acids may be broadly similar across a wide range of organisms.
Blanchard, Robert A.; Wagner, Daniel M.; Evans, Dennis A.
2010-01-01
In February 2010, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, Memphis District, investigated the presence of inorganic elements and organic compounds in bed sediments of the lower Mississippi River. Selected sites were located in the navigation channel near river miles 737, 773, and 790 near Memphis, Tennessee. Bed-sediment samples were collected using a Shipek grab sampler mounted to a boom crane with a motorized winch. Samples then were processed and shipped to the U.S. Geological Survey Sediment Laboratory in Rolla, Missouri, the USGS National Water Quality Laboratory in Denver, Colorado, and to TestAmerica Laboratory, Inc. in West Sacramento, California. Samples were analyzed for grain size, inorganic elements (including mercury), and organic compounds. Chemical results were tabulated and listed with sediment-quality guidelines and presented with the physical property results. All of the bed material samples collected during this investigation yielded concentrations that were less than the Consensus-Based Probable Effect Concentration guidelines. The physical properties were tabulated and listed using a standard U.S. Geological Survey scale of sizes by class for sediment analysis. All of the samples collected during this investigation indicated a percent composition mostly comprised of sand, ranging from less than 0.125 millimeters to less than 2 millimeters.
Yan, Lijuan; Yu, Dan; Hui, Nan; Naanuri, Eve; Viggor, Signe; Gafarov, Arslan; Sokolov, Sergei L.; Heinaru, Ain; Romantschuk, Martin
2018-01-01
The Baltic Sea is vulnerable to environmental changes. With the increasing shipping activities, the risk of oil spills remains high. Archaea are widely distributed in many environments. However, the distribution and the response of archaeal communities to oil contamination have rarely been investigated in brackish habitats. Hence, we conducted a survey to investigate the distribution, diversity, composition, and species interactions of indigenous archaeal communities at oil-contaminated sites along the coast of the Gulf of Finland (GoF) using high-throughput sequencing. Surface water and littoral sediment samples were collected at presumably oil-contaminated (oil distribution facilities) and clean sites along the coastline of the GoF in the winter 2015 and the summer 2016. Another three samples of open sea surface water were taken as offshore references. Of Archaea, Euryarchaeota dominated in the surface water and the littoral sediment of the coast of the GoF, followed by Crenarchaeota (including Thaumarchaeota, Thermoprotei, and Korarchaeota based on the Greengenes database used). The unclassified sequences accounted for 5.62% of the total archaeal sequences. Our study revealed a strong dependence of the archaeal community composition on environmental variables (e.g., salinity, pH, oil concentration, TOM, electrical conductivity, and total DNA concentration) in both littoral sediment and coastal water in the GoF. The composition of archaeal communities was season and ecosystem dependent. Archaea was highly diverse in the three ecosystems (littoral sediment, coastal water, and open sea water). Littoral sediment harbored the highest diversity of archaea. Oil was often detected in the littoral sediment but rarely detected in water at those presumably contaminated sites. Although the composition of archaeal community in the littoral sediment was sensitive to low-input oil contamination, the unchanged putative functional profiles and increased interconnectivity of the archaeal core species network plausibly revealed resilience and the potential for oil degradation. Halobacteriaceae and putative cytochrome P450 pathways were significantly enriched in the oil-contaminated littoral sediment. The archaeal taxa formed highly interconnected and interactive networks, in which Halobacteriaceae, Thermococcus, and methanogens were the main components, implying a potential relevant trophic connection between hydrocarbon degradation, methanogenesis, sulfate reduction, and/or fermentative growth. PMID:29410652
NASA Astrophysics Data System (ADS)
Galy, V.; France-Lanord, C.; Galy, A.; Gaillardet, J.
2007-12-01
Tectonic and climatic factors are the key natural variables controlling the erosion through complex interactions. Nonetheless, over the last few hundred years, human activity also exerts a dominant control in response to extensive land use. The geochemical budget of erosion allows the balance between the different erosion processes to be quantified. The chemical composition of river sediment results from the chemical composition of the source rock modified by (1) weathering reactions occurring during erosion and (2) physical segregation during transport. If erosion is at steady state, the difference between the chemical composition of source rocks and that of river sediments must therefore be counterbalanced by the dissolved flux. However, climatic variations or anthropic impact can induce changes in the erosion distribution in a given basin resulting in non steady state erosion. Using a mass balance approach, the comparison of detailed geochemical data on river sediments with the current flux of dissolved elements allows the steady state hypothesis to be tested. In this study, we present a geochemical budget of weathering for the Ganga basin, one of the most densely populated basin in the world, based on detailed sampling of Himalayan rivers and of the Ganga in the delta. Sampling includes depth profile in the river, to assess the variability generated by transport processes. Himalayan river sediments are described by the dilution of an aluminous component (micas + clays + feldspars) by quartz. Ganga sediments on the other hand correspond to the mixing of bedload, similar to coarse Himalayan sediments, with an aluminous component highly depleted in alkaline elements. Compared with the dissolved flux, the depletion of alkaline elements in Ganga sediments shows that the alkaline weathering budget is imbalanced. This imbalance results from an overabundance of fine soil material in the Ganga sediment relative to other less weathered material directly derived from Himalaya. Based on the average composition of the suspended load and of floodplain soils, we estimate that 250x106 t/yr i.e. 5 t/ha/yr is eroded from soil surfaces of the Ganga floodplain. This enhanced soil erosion is likely triggered by intense deforestation and change in land use due to increasing human activity in the basin.
Mil-Homens, M; Vale, C; Raimundo, J; Pereira, P; Brito, P; Caetano, M
2014-07-15
Upper sediments (0-5 cm) were sampled in 94 sites of water bodies of the fifteen Portuguese estuaries characterized by distinct settings of climate, topography and lithology, and marked by diverse anthropogenic pressures. Confined areas recognized as highly anthropogenic impacted, as well as areas dominated by erosion or frequently dredged were not sampled. Grain size, organic carbon (Corg), Al and trace elements (As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn) were determined. Normalisation of trace element concentrations to Al and Corg, correlations between elements and Principal Component Analysis (PCA) allowed identifying elemental associations and the relevance of grain-size, lithology and anthropogenic inputs on sediment chemical composition. Whereas grain-size is the dominant effect for the majority of the studied estuaries, the southern estuaries Mira, Arade and Guadiana are dominated by specific lithologies of their river basins, and anthropogenic effects are identified in Ave, Leça, Tagus and Sado. This study emphasizes how baseline values of trace elements in sediments may vary within and among estuarine systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Najamuddin; Surahman
2017-10-01
Surface sediments were collected from seventeen stations in Jeneberang waters (riverine, estuarine, and marine). Lead (Pb) and zinc (Zn) concentrations were determined by atomic absorption spectrometry, and the speciation of metals was obtained by a sequential extraction procedure. Dispersion of Pb and Zn were found higher in the riverine and marine samples than the estuarine samples. Following speciation, the metals were found similar composition of fraction in the riverine and estuarine samples but any different in the marine samples. The results indicated that there is a change of dispersion pattern and speciation composition of metals due to the presence of the dam that lies at the boundary between the estuary and the river. The toxicity unit was indicated low toxicity level; pollution level was in weakly to moderately polluted while the aquatic environment risk attributed were no risky to light risk.
NASA Astrophysics Data System (ADS)
Palazón, Leticia; Gaspar, Leticia; Latorre, Borja; Blake, Will; Navas, Ana
2014-05-01
Spanish Pyrenean reservoirs are under pressure from high sediment yields in contributing catchments. Sediment fingerprinting approaches offer potential to quantify the contribution of different sediment sources, evaluate catchment erosion dynamics and develop management plans to tackle the reservoir siltation problems. The drainage basin of the Barasona reservoir (1509 km2), located in the Central Spanish Pyrenees, is an alpine-prealpine agroforest basin supplying sediments to the reservoir at an annual rate of around 350 t km-2 with implications for reservoir longevity. The climate is mountain type, wet and cold, with both Atlantic and Mediterranean influences. Steep slopes and the presence of deep and narrow gorges favour rapid runoff and large floods. The ability of geochemical fingerprint properties to discriminate between the sediment sources was investigated by conducting the nonparametric Kruskal-Wallis H-test and a stepwise discriminant function analysis (minimization of Wilk's lambda). This standard procedure selects potential fingerprinting properties as optimum composite fingerprint to characterize and discriminate between sediment sources to the reservoir. Then the contribution of each potential sediment source was assessed by applying a Monte Carlo mixing model to obtain source proportions for the Barasona reservoir sediment samples. The Monte Carlo mixing model was written in C programming language and designed to deliver a user-defined number possible solutions. A Combinatorial Principals method was used to identify the most probable solution with associated uncertainty based on source variability. The unique solution for each sample was characterized by the mean value and the standard deviation of the generated solutions and the lower goodness of fit value applied. This method is argued to guarantee a similar set of representative solutions in all unmixing cases based on likelihood of occurrence. Soil samples for the different potential sediment sources of the drainage basin were compared with samples from the reservoir using a range of different fingerprinting properties (i.e. mass activities of environmental radionuclides, elemental composition and magnetic susceptibility) analyzed in the < 63 μm sediment fraction. In this case, the 100 best results from 106 generated iterations were selected obtaining a goodness of fit higher than 0.76. The preliminary results using this new data processing methodology for samples collected in the reservoir allowed us to identify cultivated fields and badlands as main potential sources of sediments to the reservoir. These findings support the appropriate use of the fingerprinting methodology in a Spanish Pyrenees basin, which will enable us to better understand the basin sediment production of the Barasona reservoir.
The characteristics of gas hydrates occurring in natural environment
NASA Astrophysics Data System (ADS)
Lu, H.; Moudrakovski, I.; Udachin, K.; Enright, G.; Ratcliffe, C.; Ripmeester, J.
2009-12-01
In the past few years, extensive analyses have been carried out for characterizing the natural gas hydrate samples from Cascadia, offshore Vancouver Island; Mallik, Mackenzie Delta; Mount Elbert, Alaska North Slope; Nankai Trough, offshore Japan; Japan Sea and offshore India. With the results obtained, it is possible to give a general picture of the characteristics of gas hydrates occurring in natural environment. Gas hydrate can occur in sediments of various types, from sands to clay, although it is preferentially enriched in sediments of certain types, for example coarse sands and fine volcanic ash. Most of the gas hydrates in sediments are invisible, occurring in the pores of the sediments, while some hydrates are visible, appearing as massive, nodular, planar, vein-like forms and occurring around the seafloor, in the fractures related to fault systems, or any other large spaces available in sediments. Although methane is the main component of most of the natural gas hydrates, C2 to C7 hydrocarbons have been recognized in hydrates, sometimes even in significant amounts. Shallow marine gas hydrates have been found generally to contain minor amounts of hydrogen sulfide. Gas hydrate samples with complex gas compositions have been found to have heterogeneous distributions in composition, which might reflect changes in the composition of the available gas in the surrounding environment. Depending on the gas compositions, the structure type of a natural gas hydrate can be structure I, II or H. For structure I methane hydrate, the large cages are almost fully occupied by methane molecules, while the small cages are only partly occupied. Methane hydrates occurring in different environments have been identified with almost the same crystallographic parameters.
NASA Astrophysics Data System (ADS)
Luecke, Andreas; Wissel, Holger; Mayr*, Christoph; Oehlerich, Markus; Ohlendorf, Christian; Zolitschka, Bernd; Pasado Science Team
2010-05-01
The ICDP project PASADO aims to develop a detailed paleoclimatic record for the southern part of the South American continent from sediments of Laguna Potrok Aike (51°58'S, 70°23'W), situated in the Patagonian steppe east of the Andean cordillera and north of the Street of Magellan. The precursor project SALSA recovered the Holocene and Late Glacial sediment infill of Laguna Potrok Aike and developed the environmental history of the semi-arid Patagonian steppe by a consequent interdisciplinary multi-proxy approach (e.g. Haberzettl et al., 2007). From September to November 2008 the ICDP deep drilling took place and successfully recovered in total 510 m of sediments from two sites resulting in a composite depth of 106 m for the selected main study Site 2. A preliminary age model places the record within the last 50.000 years. During the drilling campaign, the core catcher content of each drilled core run (3 m) was taken as separate sample to be shared and distributed between involved laboratories long before the main sampling party. A total of 70 core catcher samples describe the sediments of Site 2 and will form the base for more detailed investigations on the palaeoclimatic history of Patagonia. We here report on the organic carbon and nitrogen isotope composition of bulk sediment and plant debris of the core catcher samples. Similar investigations were performed for Holocene and Late Glacial sediments of Laguna Potrok Aike revealing insights into the organic matter dynamics of the lake and its catchment as well as into climatically induced hydrological variations with related lake level fluctuations (Mayr et al., 2009). The carbon and nitrogen content of the core catcher fine sediment fraction (<200 µm) is low to very low (around 1 % and 0.1 %, respectively) and requires particular attention in isotope analysis. The carbon isotope composition shows comparably little variation around a value of -26.0 per mil. The positive values of the Holocene and the Late Glacial (up to 22.0 per mil) are only sporadically reached down core. Compared to this, separated moss debris is remarkably 13C depleted with a minimum at 31.5 per mil. The nitrogen isotope ratios of glacial Laguna Potrok Aike sediments are lower (2.5 per mil) than those of the younger part of the record. The core catcher samples indicate several oscillations between 0.5 and 3.5 per mil. Data suggest a correlation between nitrogen isotopes and C/N ratios, but no linear relation between carbon isotopes and carbon content and an only weak relationship between carbon and nitrogen isotopes. Increasing nitrogen isotope values from 8000 cm downwards could probably be related to changed environmental conditions of Marine Isotope Stage 3 (MIS 3) compared to Marine Isotope Stage 2 (MIS 2). This will be further evaluated with higher resolution from the composite profile including a detailed study of discrete plant debris layers. References Haberzettl, T. et al. (2007). Lateglacial and Holocene wet-dry cycles in southern Patagonia: chronology, sedimentology and geochemistry of a lacustrine record from Laguna Potrok Aike, Argentina. The Holocene, 17: 297-310. Mayr, C. et al. (2009). Isotopic and geochemical fingerprints of environmental changes during the last 16,000 years on lacustrine organic matter from Laguna Potrok Aike (southern Patagonia, Argentina). Journal of Paleolimnology, 42: 81-102.
Lorenson, T.D.; Collett, T.S.
2000-01-01
Gas hydrate samples were recovered from four sites (Sites 994, 995, 996, and 997) along the crest of the Blake Ridge during Ocean Drilling Program (ODP) Leg 164. At Site 996, an area of active gas venting, pockmarks, and chemosynthetic communities, vein-like gas hydrate was recovered from less than 1 meter below seafloor (mbsf) and intermittently through the maximum cored depth of 63 mbsf. In contrast, massive gas hydrate, probably fault filling and/or stratigraphically controlled, was recovered from depths of 260 mbsf at Site 994, and from 331 mbsf at Site 997. Downhole-logging data, along with geochemical and core temperature profiles, indicate that gas hydrate at Sites 994, 995, and 997 occurs from about 180 to 450 mbsf and is dispersed in sediment as 5- to 30-m-thick zones of up to about 15% bulk volume gas hydrate. Selected gas hydrate samples were placed in a sealed chamber and allowed to dissociate. Evolved gas to water volumetric ratios measured on seven samples from Site 996 ranged from 20 to 143 mL gas/mL water to 154 mL gas/mL water in one sample from Site 994, and to 139 mL gas/mL water in one sample from Site 997, which can be compared to the theoretical maximum gas to water ratio of 216. These ratios are minimum gas/water ratios for gas hydrate because of partial dissociation during core recovery and potential contamination with pore waters. Nonetheless, the maximum measured volumetric ratio indicates that at least 71% of the cages in this gas hydrate were filled with gas molecules. When corrections for pore-water contamination are made, these volumetric ratios range from 29 to 204, suggesting that cages in some natural gas hydrate are nearly filled. Methane comprises the bulk of the evolved gas from all sites (98.4%-99.9% methane and 0%-1.5% CO2). Site 996 hydrate contained little CO2 (0%-0.56%). Ethane concentrations differed significantly from Site 996, where they ranged from 720 to 1010 parts per million by volume (ppmv), to Sites 994 and 997, which contained much less ethane (up to 86 ppmv). Up to 19 ppmv propane and other higher homologues were noted; however, these gases are likely contaminants derived from sediment in some hydrate samples. CO2 concentrations are less in gas hydrate than in the surrounding sediment, likely an artifact of core depressurization, which released CO2 derived from dissolved organic carbon (DIC) into sediment. The isotopic composition of methane from gas hydrate ranges from ??13C of -62.5??? to -70.7??? and ??D of -175??? to -200??? and is identical to the isotopic composition of methane from surrounding sediment. Methane of this isotopic composition is mainly microbial in origin and likely produced by bacterial reduction of bicarbonate. The hydrocarbon gases here are likely the products of early microbial diagenesis. The isotopic composition of CO2 from gas hydrate ranges from ??13C of -5.7 to -6.9, about 15??? lighter than CO2 derived from nearby sediment.
Box, Stephen E.; Wallis, John C.; Briggs, Paul H.; Brown, Zoe Ann
2005-01-01
This report presents the results of one aspect of an integrated watershed-characterization study that was undertaken to assess the impacts of historical mining and milling of silver-lead-zinc ores on water and sediment composition and on aquatic biota in streams draining the northern part of the Coeur d?Alene Mining District in northern Idaho. We present the results of chemical analyses of 62 samples of streambed sediment, 19 samples of suspended sediment, 23 samples of streambank soil, and 29 samples of mine- and mill-related artificial- fill material collected from the drainages of Prichard, Eagle, and Beaver Creeks, all tributaries to the North Fork of the Coeur d?Alene River. All samples were sieved into three grain-size fractions (<0.063, 0.063?0.25, and 0.25?1.0 mm) and analyzed for 40 elements after four-acid digestion by inductively coupled plasma atomic-emission spectrometry and for mercury by continuous- flow cold-vapor atomic-absorption spectrometry in the U.S. Geological Survey laboratory in Denver, Colo. Historical mining of silver-lead-zinc ores in the headwater reaches of the Prichard Creek, Eagle Creek, and Beaver Creek drainages has resulted in enrichments of lead, zinc, mercury, arsenic, cadmium, silver, copper, cobalt, and, to a lesser extent, iron and manganese in streambed sediment. Using samples collected from the relatively unimpacted West Fork of Eagle Creek as representative of background compositions, streambed sediment in the vicinity of the mines and millsites has Pb and Zn contents of 20 to 100 times background values, decreasing to 2 to 5 times background values at the mouth of the each stream, 15 to 20 km downstream. Lesser enrichments (<10 times background values) of mercury and arsenic also are generally associated with, and decrease downstream from, historical silver-lead-zinc mining in the drainages. However, enrichments of arsenic and, to a lesser extent, mercury also are areally associated with the lode gold deposits along Prichard Creek near Murray, which were not studied here. Metal contents in samples of unfractionated suspended sediment collected during a high-flow event in April 2000 are generally similar to, but slightly higher than, those in the fine (<0.063- mm grain size) fraction of streambed sediment from the same sampling site. Although metal enrichment in streambed sediment typically begins adjacent to the mine portals and their associated mine-waste rock dumps, volumetrically larger inputs of metal-enriched materials were contributed by the ore-concentration millsites and their associated, more finely ground, more metal rich mill-tailings impoundments.
Yu, Tiantian; Li, Meng; Niu, Mingyang; Fan, Xibei; Liang, Wenyue; Wang, Fengping
2018-01-01
In marine sediments, microorganisms are known to play important roles in nitrogen cycling; however, the composition and quantity of microbes taking part in each process of nitrogen cycling are currently unclear. In this study, two different types of marine sediment samples (shallow bay and deep-sea sediments) in the South China Sea (SCS) were selected to investigate the microbial community involved in nitrogen cycling. The abundance and composition of prokaryotes and seven key functional genes involved in five processes of the nitrogen cycle [nitrogen fixation, nitrification, denitrification, dissimilatory nitrate reduction to ammonium (DNRA), and anaerobic ammonia oxidation (anammox)] were presented. The results showed that a higher abundance of denitrifiers was detected in shallow bay sediments, while a higher abundance of microbes involved in ammonia oxidation, anammox, and DNRA was found in the deep-sea sediments. Moreover, phylogenetic differentiation of bacterial amoA, nirS, nosZ, and nrfA sequences between the two types of sediments was also presented, suggesting environmental selection of microbes with the same geochemical functions but varying physiological properties.
NASA Astrophysics Data System (ADS)
Marsaglia, K. M.; Parra, J. G.; Dawson, S.
2006-12-01
Successions of gravity-flow deposits in deep-marine fan systems have the potential to record the evolution of their fluvial source region as well as specific tectonic, climatic, eustatic and anthropogenic events. Deciphering these signals involves the description and quantification of key sediment attributes such as fan volume, the rate of sediment accumulation, the frequency of depositional events, sediment texture, and sediment composition. Sediment composition/provenance provides insight into the nature of the fluvial source, including drainage basin geology and drainage development. For example, Marsaglia et al. (1995) demonstrated a connection between source river lengthening owing to eustatic change and sand composition in Quaternary turbidite successions of the Santa Barbara Basin at Ocean Drilling Program (ODP) Site 893. In contrast, longer-term compositional trends recognized in the Mesozoic to Cenozoic rift-to-drift successions cored by various ODP legs on the North Atlantic margins are more likely associated with continental margin drainage development and fluvial system evolution (Marsaglia et al., in press). These two connections between sink and source were made possible by well-documented petrologic data sets for both modern onshore fluvial systems and older offshore deep-marine successions, but in each case different workers collected the onshore and offshore data sets. In the Waipaoa River Sedimentary System of North Island, New Zealand we have taken a different, more holistic approach, with a limited and linked group of researchers and sample data base covering the complete system. The study area is an active forearc margin characterized by uplifted and deformed sedimentary successions and periodic input of arc-derived ash. Recently, the modern onshore system has been thoroughly documented via studies of the petrology of outcropping Mesozoic to Cenozoic units, fluvial terrace deposits, and modern fluvial sediments (e.g., James et al., in press). Now we are building on that data set and moving from source-to-sink to trace sandy sediment through the system out onto the shelf and slope where it has been encountered in shallow cores. Lessons learned onshore, such as a distinct compositional dependence on grain size and the relationships of bedrock geology to certain sand grain types, also apply to these offshore core samples. Many of the sandy intervals are largely composed of reworked tephra from Taupo eruptions, whereas quartz and feldspar dominate finer sand samples. Lithic-dominated sands are less common and coarser grained. Isolated greywacke gravel clasts indicate that at some point coarse sediment "leaked" into the basin from the south. The volumetric importance of this extrabasinal input can be assessed by looking at the types and proportions of lithic fragments within the finer sand fraction.
Demopoulos, Amanda W.J.; Bourque, Jill R.; Frometa, Janessy
2014-01-01
Scleractinian corals create three-dimensional reefs that provide sheltered refuges, facilitate sediment accumulation, and enhance colonization of encrusting fauna. While heterogeneous coral habitats can harbor high levels of biodiversity, their effect on the community composition within nearby sediments remains unclear, particularly in the deep sea. Sediment macrofauna from deep-sea coral habitats (Lophelia pertusa) and non-coral, background sediments were examined at three sites in the northern Gulf of Mexico (VK826, VK906, MC751, 350–500 m depth) to determine whether macrofaunal abundance, diversity, and community composition near corals differed from background soft-sediments. Macrofaunal densities ranged from 26 to 125 individuals 32 cm−2 and were significantly greater near coral versus background sediments only at VK826. Of the 86 benthic invertebrate taxa identified, 16 were exclusive to near-coral habitats, while 14 were found only in background sediments. Diversity (Fisher’s α) and evenness were significantly higher within near-coral sediments only at MC751 while taxon richness was similar among all habitats. Community composition was significantly different both between near-coral and background sediments and among the three primary sites. Polychaetes numerically dominated all samples, accounting for up to 70% of the total individuals near coral, whereas peracarid crustaceans were proportionally more abundant in background sediments (18%) than in those near coral (10%). The reef effect differed among sites, with community patterns potentially influenced by the size of reef habitat. Taxon turnover occurred with distance from the reef, suggesting that reef extent may represent an important factor in structuring sediment communities near L. pertusa. Polychaete communities in both habitats differed from other Gulf of Mexico (GOM) soft sediments based on data from previous studies, and we hypothesize that local environmental conditions found near L. pertusa may influence the macrofaunal community structure beyond the edges of the reef. This study represents the first assessment of L. pertusa-associated sediment communities in the GOM and provides baseline data that can help define the role of transition zones, from deep reefs to soft sediments, in shaping macrofaunal community structure and maintaining biodiversity; this information can help guide future conservation and management activities.
Tropical Aquatic Archaea Show Environment-Specific Community Composition
Silveira, Cynthia B.; Cardoso, Alexander M.; Coutinho, Felipe H.; Lima, Joyce L.; Pinto, Leonardo H.; Albano, Rodolpho M.; Clementino, Maysa M.; Martins, Orlando B.; Vieira, Ricardo P.
2013-01-01
The Archaea domain is ubiquitously distributed and extremely diverse, however, environmental factors that shape archaeal community structure are not well known. Aquatic environments, including the water column and sediments harbor many new uncultured archaeal species from which metabolic and ecological roles remain elusive. Some environments are especially neglected in terms of archaeal diversity, as is the case of pristine tropical areas. Here we investigate the archaeal composition in marine and freshwater systems from Ilha Grande, a South Atlantic tropical environment. All sampled habitats showed high archaeal diversity. No OTUs were shared between freshwater, marine and mangrove sediment samples, yet these environments are interconnected and geographically close, indicating environment-specific community structuring. Group II Euryarchaeota was the main clade in marine samples, while the new putative phylum Thaumarchaeota and LDS/RCV Euryarchaeota dominated freshwaters. Group III Euryarchaeota , a rare clade, was also retrieved in reasonable abundance in marine samples. The archaeal community from mangrove sediments was composed mainly by members of mesophilic Crenarchaeota and by a distinct clade forming a sister-group to Crenarchaeota and Thaumarchaeota. Our results show strong environment-specific community structuring in tropical aquatic Archaea, as previously seen for Bacteria. PMID:24086729
In Situ Mo Isotope Fractionation in the Water Columns of Euxinic Basins
NASA Astrophysics Data System (ADS)
Neubert, N.; Nägler, T. F.; Böttcher, M. E.
2007-12-01
The present study investigates for the first time the overall process of molybdenum (Mo) scavenging in modern euxinic systems using Mo concentration and stable isotope measurements. We analyzed samples from three different sites: The Black Sea, the largest permanently euxinic basin, and two anoxic basins of the Baltic Sea, the Gotland Deep and the Landsort Deep which have maximum water depths of 247 m and 459 m, respectively. Water column profiles, as well as surface sediment samples, were recovered from different water depths. Mo is a redox-sensitive trace metal which is soluble as the molybdate oxyanion in oxic seawater with a residence time of about 800 ka. The isotope signature of Mo is a relatively new proxy used to reconstruct the paleo-redox conditions of the Earth's atmosphere and the oceanic system. The Mo isotope composition in seawater is homogeneous (Siebert et al. 2003). Scavenging of Mo under euxinic conditions is related to the amount of free sulfide in the water column. Near total removal of Mo from the water column is reached at aquatic sulfide concentration of c. 11 μM (Erickson and Helz 2000). In the Black Sea this corresponds to a water depth of about 400 m. Sediment samples of the Black Sea from more then 400 m water depth show seawater isotopic composition, in line with the assumption of bulk Mo removal. However, shallower sediments deposited under lower aquatic sulfide concentrations show significant Mo isotope fractionation. The Baltic Sea oceanographic conditions, including temporary bottom water oxygenation due to sporadic North Sea water inflows, are more complex than in the Black Sea. The aquatic sulfide concentration in the water column is less than 5 μM in the two anoxic troughs. As expected from this lower sulfidity, the surface sediments show Mo fractionation similar to the oxic to slightly euxinic sediments of the Black Sea. Our new results on the Mo isotopic composition in euxinic water columns clearly indicate in situ fractionation of Mo isotopes. All euxinic water samples from the three settings are shifted towards heavier Mo isotope signatures, thus complementing the lighter values in the surface sediments (Nagler et al. 2005).
Baker, R.J.; Baehr, A.L.; Lahvis, M.A.
2000-01-01
An open microcosm method for quantifying microbial respiration and estimating biodegradation rates of hydrocarbons in gasoline-contaminated sediment samples has been developed and validated. Stainless-steel bioreactors are filled with soil or sediment samples, and the vapor-phase composition (concentrations of oxygen (O2), nitrogen (N2), carbon dioxide (CO2), and selected hydrocarbons) is monitored over time. Replacement gas is added as the vapor sample is taken, and selection of the replacement gas composition facilitates real-time decision-making regarding environmental conditions within the bioreactor. This capability allows for maintenance of field conditions over time, which is not possible in closed microcosms. Reaction rates of CO2 and O2 are calculated from the vapor-phase composition time series. Rates of hydrocarbon biodegradation are either measured directly from the hydrocarbon mass balance, or estimated from CO2 and O2 reaction rates and assumed reaction stoichiometries. Open microcosm experiments using sediments spiked with toluene and p-xylene were conducted to validate the stoichiometric assumptions. Respiration rates calculated from O2 consumption and from CO2 production provide estimates of toluene and p- xylene degradation rates within about ??50% of measured values when complete mineralization stoichiometry is assumed. Measured values ranged from 851.1 to 965.1 g m-3 year-1 for toluene, and 407.2-942.3 g m-3 year-1 for p- xylene. Contaminated sediment samples from a gasoline-spill site were used in a second set of microcosm experiments. Here, reaction rates of O2 and CO2 were measured and used to estimate hydrocarbon respiration rates. Total hydrocarbon reaction rates ranged from 49.0 g m-3 year-1 in uncontaminated (background) to 1040.4 g m-3 year-1 for highly contaminated sediment, based on CO2 production data. These rate estimates were similar to those obtained independently from in situ CO2 vertical gradient and flux determinations at the field site. In these experiments, aerobic conditions were maintained in the microcosms by using air as the replacement gas, thus preserving the ambient aerobic environment of the subsurface near the capillary zone. This would not be possible with closed microcosms.
Setmire, J.G.; Wolfe, J.C.; Stroud, R.K.
1990-01-01
Water, bottom sediment, and biota were sampled during 1986 and 1987 in the Salton Sea area to determine concentrations of trace elements and pesticides as part of the Department of Interior Irrigation Drainage Program. The sampling sites (12 water, 15 bottom sediment, and 5 biota) were located in the Coachella and Imperial Valleys. The focus of sampling was to determine the current or potential threat to the wildlife of the Salton National Wildlife Refuge from irrigation projects sponsored or operated by the Department of the Interior. Results of the investigation indicate that selenium is the major element of concern. Elevated concentrations of selenium in water were restricted to tile-drain effluent. The maximum selenium concentration of 300 microg/L was detected in a tile-drain sample, and the minimum concentration of 1 microg/L was detected in a composite sample of Salton Sea water. The median selenium concentration was 19 microg/L. In contrast to the water, the highest bottom-sediment selenium concentration of 3.3 mg/kg was in a composite sample from the Salton Sea. The selenium detected in samples of waterfowl and fish also are of concern, but, to date, no studies have been done in the Salton Sea area to determine if selenium has caused adverse biological effects. Concentrations of boron and manganese were elevated in tile-drain samples throughout the Imperial Valley. Boron concentrations in migratory waterfowl were at levels that could cause reproduction impairment. Elevated concentrations of chromium, nickel, and zinc were detected in the Whitewater River , but they were not associated with irrigation drainage. Organochlorine pesticide residues were detected in bottom sediment throughout the study area at levels approaching those measured more than 10 years ago. More detailed studies would be needed to determine if these residues are affecting the waterfowl. (USGS)
NASA Astrophysics Data System (ADS)
Schmidt, Frauke; Koch, Boris P.; Goldhammer, Tobias; Elvert, Marcus; Witt, Matthias; Lin, Yu-Shih; Wendt, Jenny; Zabel, Matthias; Heuer, Verena B.; Hinrichs, Kai-Uwe
2017-06-01
Dissolved organic matter (DOM) in marine sediment pore waters derives largely from decomposition of particulate organic matter and its composition is influenced by various biogeochemical and oceanographic processes in yet undetermined ways. Here, we determine the molecular inventory of pore water DOM in marine sediments of contrasting depositional regimes with ultrahigh-resolution mass spectrometry and complementary bulk chemical analyses in order to elucidate the factors that shape DOM composition. Our sample sets from the Mediterranean, Marmara and Black Seas covered different sediment depths, ages and a range of marine environments with different (i) organic matter sources, (ii) balances of organic matter production and preservation, and (iii) geochemical conditions in sediment and water column including anoxic, sulfidic and hypersaline conditions. Pore water DOM had a higher molecular formula richness than overlying water with up to 11,295 vs. 2114 different molecular formulas in the mass range of 299-600 Da and covered a broader range of element ratios (H/C = 0.35-2.19, O/C = 0.03-1.19 vs. H/C = 0.56-2.13, O/C = 0.15-1.14). Formula richness was independent of concentrations of DOC and TOC. Near-surface pore water DOM was more similar to water column DOM than to deep pore water DOM from the same core with respect to formula richness and the molecular composition, suggesting exchange at the sediment-water interface. The DOM composition in the deeper sediments was controlled by organic matter source, selective decomposition of specific DOM fractions and early diagenetic molecule transformations. Compounds in pelagic sediment pore waters were predominantly highly unsaturated and N-bearing formulas, whereas oxygen-rich CHO-formulas and aromatic compounds were more abundant in pore water DOM from terrigenous sediments. The increase of S-bearing molecular formulas in the water column and pore waters of the Black Sea and the Mediterranean Discovery Basin was consistent with elevated HS- concentrations reflecting the incorporation of sulfur into biomolecules during early diagenesis. Sulfurization resulted in an increased average molecular mass of DOM and higher formula richness (up to 5899 formulas per sample). In sediments from the methanogenic zone in the Black Sea, the DOM pool was distinctly more reduced than overlying sediments from the sulfate-reducing zone. Bottom and pore water DOM from the Discovery Basin contained the highest abundances of aliphatic compounds in the entire dataset; a large fraction of abundant N-bearing formulas possibly represented peptide and nucleotide formulas suggesting preservation of these molecules in the life inhibiting environment of the Discovery Basin. Our unique data set provides the basis for a comprehensive understanding of the molecular signatures in pore water DOM and the turnover of sedimentary organic matter in marine sediments.
Lang-Halter, Evi; Schober, Steffen; Scherer, Siegfried
2016-09-01
During a 1-year longitudinal study, water, sediment and water plants from two creeks and one pond were sampled monthly and analyzed for the presence of Listeria species. A total of 90 % of 30 sediment samples, 84 % of 31 water plant samples and 67 % of 36 water samples were tested positive. Generally, most probable number counts ranged between 1 and 40 g-1, only occasionally >110 cfu g-1 were detected. Species differentiation based on FT-IR spectroscopy and multiplex PCR of a total of 1220 isolates revealed L. innocua (46 %), L. seeligeri (27 %), L. monocytogenes (25 %) and L. ivanovii (2 %). Titers and species compositions were similar during all seasons. While the species distributions in sediments and associated Ranunculus fluitans plants appeared to be similar in both creeks, RAPD typing did not provide conclusive evidence that the populations of these environments were connected. It is concluded that (i) the fresh-water sediments and water plants are year-round populated by Listeria, (ii) no clear preference for growth in habitats as different as sediments and water plants was found and (iii) the RAPD-based intraspecific biodiversity is high compared to the low population density.
Stoliker, Deborah L.; Kent, Douglas B.; Zachara, John M.
2011-01-01
Uranium adsorption-desorption on sediment samples collected from the Hanford 300-Area, Richland, WA varied extensively over a range of field-relevant chemical conditions, complicating assessment of possible differences in equilibrium adsorption properties. Adsorption equilibrium was achieved in 500-1000 h although dissolved uranium concentrations increased over thousands of hours owing to changes in aqueous chemical composition driven by sediment-water reactions. A nonelectrostatic surface complexation reaction, >SOH + UO22+ + 2CO32- = >SOUO2(CO3HCO3)2-, provided the best fit to experimental data for each sediment sample resulting in a range of conditional equilibrium constants (logKc) from 21.49 to 21.76. Potential differences in uranium adsorption properties could be assessed in plots based on the generalized mass-action expressions yielding linear trends displaced vertically by differences in logKc values. Using this approach, logKc values for seven sediment samples were not significantly different. However, a significant difference in adsorption properties between one sediment sample and the fines (Kc uncertainty were improved by capturing all data points within experimental errors. The mass-action expression plots demonstrate that applying models outside the range of conditions used in model calibration greatly increases potential errors.
NASA Astrophysics Data System (ADS)
Lee, Y. I.; Lim, H. S.; Choi, T.
2017-12-01
We studied the provenance of beach sediments of the Baton and Weaver peninsulas of King George Island, the South Shetland Islands of West Antarctica. The studied beach sand sediments of the both peninsulas are predominantly composed of volcanic-rock fragment, followed by altered grain and plutonic rock fragment in that order. In rock fragments, the volcanic rock fragments are about four times more than the plutonic rock fragments. The median quartz-feldspar-rock fragment (Q-F-R) ratios of the beach sands of the Weaver and Barton peninsulas are Q3.4-F5.5-R99.1 and Q0.5-F2.7-R96.8, respectively. These beach sands may have been originated from basaltic andesite-andesite distributed in the ice-free areas of the Barton and Weaver peninsulas and granodiorite of the Barton Peninsula. According to the geochemistry of the beach sand sediments of the two peninsulas, most of the sand samples are interpreted as originating from intermediate rocks that have experienced little chemical weathering. Taking together the modal composition and geochemical composition of the beach sand samples, the tectonic setting of the source area is interpreted as a magmatic arc setting. This interpretation is consistent with geology of the ice-free areas of the Barton and Weaver peninsulas and the tectonic setting of King George Island. However, the sand samples of the Barton Peninsula southern beach and the Weaver Peninsula beach were not derived from basement rocks currently exposed in the ice-free areas of the corresponding peninsula, but were formerly glaciomarine sediments derived from erosion of ice-covered subglacial basement rocks and transported to the submerged glacier grounding line prior to deglaciation. Sand sediments derived from wave erosion of basement rocks of paleoshoreline might have been mixed with these glaciomarine sediments. King George Island became uplifted due to deglaciation 6,000 years ago. The studied beach sediments might have been reworked after the uplift of the King George Island to the present level. Accordingly, the studied beach sand sediments of the Barton and Weaver peninsulas are interpreted to be a palimpsest deposit comprising a mixture of originally glaciomarine sediments accumulated in the shallow fjord post the Last Glacial Maximum and some detritus supplied to the beaches since deglaciation.
High Levels of Sediment Contamination Have Little Influence on Estuarine Beach Fish Communities
McKinley, Andrew C.; Dafforn, Katherine A.; Taylor, Matthew D.; Johnston, Emma L.
2011-01-01
While contaminants are predicted to have measurable impacts on fish assemblages, studies have rarely assessed this potential in the context of natural variability in physico-chemical conditions within and between estuaries. We investigated links between the distribution of sediment contamination (metals and PAHs), physico-chemical variables (pH, salinity, temperature, turbidity) and beach fish assemblages in estuarine environments. Fish communities were sampled using a beach seine within the inner and outer zones of six estuaries that were either heavily modified or relatively unmodified by urbanization and industrial activity. All sampling was replicated over two years with two periods sampled each year. Shannon diversity, biomass and abundance were all significantly higher in the inner zone of estuaries while fish were larger on average in the outer zone. Strong differences in community composition were also detected between the inner and outer zones. Few differences were detected between fish assemblages in heavily modified versus relatively unmodified estuaries despite high concentrations of sediment contaminants in the inner zones of modified estuaries that exceeded recognized sediment quality guidelines. Trends in species distributions, community composition, abundance, Shannon diversity, and average fish weight were strongly correlated to physico-chemical variables and showed a weaker relationship to sediment metal contamination. Sediment PAH concentrations were not significantly related to the fish assemblage. These findings suggest that variation in some physico-chemical factors (salinity, temperature, pH) or variables that co-vary with these factors (e.g., wave activity or grain size) have a much greater influence on this fish assemblage than anthropogenic stressors such as contamination. PMID:22039470
Carbon isotope dynamics in the water column and surface sediments of marginal seas
NASA Astrophysics Data System (ADS)
Lipka, Marko; Liu, Bo; Schmiedinger, Iris; Böttcher, Michael E.
2017-04-01
The microbial mineralization of organic matter in marine sediments leads to the accumulation of dissolved inorganic carbon (DIC) and other metabolites into the interstitial waters. Pore water profiles sensitively reflect the zones of dominant biogeochemical processes, net trans-formation rates, and diffusive and advective transport of dissolved species across the sediment-water interface. They are controlled by different factors like sedimentology, bottom water currents and redox conditions, microbial activity, and the availability of electron acceptors/donors. The biogeochemical processes create steep gradients in DIC and its carbon isotope composition. One boundary condition for transport processes in the sediment is defined by the composition of the water column, which is under impact by physical mixing processes (e.g., salinity gradient; sediment-water exchange), biological activity and carbon dioxide exchange at the water-atmosphere interface. We present here the results of detailed biogeochemical investigations of vertical water column and pore water profiles from two brackish marginal seas: the Baltic Sea and the Black Sea. The water column on a transect between the North Sea and the southern Baltic Sea as well within the Black Sea were investigated on three cruises with RV MS Merian (MSM33, MSM50, MSM51). In addition, biogeochemical processes and associated element fluxes across the sediment-water interface were studied in key regions of Baltic Sea and Black Sea using pore water and sediment samples retrieved from sediment cores that were collected with a multi-coring device. Water samples were analyzed for metals, nutrients, and metabolites concentrations as well as stable carbon isotope composition of DIC to allow a modeling of steady-state transformation, volumetric transformation rates and element fluxes. The isotope composition of the dissolved inorganic carbon system shows a gradient between the North and the Baltic Sea, following the salinity during winter time. Element fluxes across the sediment-water interface depend on bottom water redox conditions, sedimentology and organic contents. Advective fluxes induced by sedimentation events, macro zoobenthos and wave action can affect the top sections of the sediment, thereby modifying shallow concentration gradients. By means of non-steady state modelling of pore water profiles we were able to identify the impact of mixing processes and sedimentation events in the oxic part of the Baltic Sea. In the Black Sea, on the other hand, anaerobic processes control the dynamics in DI13C under permanent euxinic conditions. A Keeling plot analysis was performed on pore waters to identify the δ13C of DIC released upon oxidation of DOC or methane. The carbon isotope composition of DIC is found to be a highly sensitive tool for understanding carbon cycling in the water column and sediments. Acknowledgements: The study is supported by BMBF during FONA-SECOS project, DFG (cruises MSM33, MSM50 and MSM51) and Leibniz IOW.
Rapp, J.B.
1991-01-01
Q-mode factor analysis was used to quantitate the distribution of the major aliphatic hydrocarbon (n-alkanes, pristane, phytane) systems in sediments from a variety of marine environments. The compositions of the pure end members of the systems were obtained from factor scores and the distribution of the systems within each sample was obtained from factor loadings. All the data, from the diverse environments sampled (estuarine (San Francisco Bay), fresh-water (San Francisco Peninsula), polar-marine (Antarctica) and geothermal-marine (Gorda Ridge) sediments), were reduced to three major systems: a terrestrial system (mostly high molecular weight aliphatics with odd-numbered-carbon predominance), a mature system (mostly low molecular weight aliphatics without predominance) and a system containing mostly high molecular weight aliphatics with even-numbered-carbon predominance. With this statistical approach, it is possible to assign the percentage contribution from various sources to the observed distribution of aliphatic hydrocarbons in each sediment sample. ?? 1991.
Hassenrück, Christiane; Fink, Artur; Lichtschlag, Anna; Tegetmeyer, Halina E; de Beer, Dirk; Ramette, Alban
2016-05-01
To understand how ocean acidification (OA) influences sediment microbial communities, naturally CO2-rich sites are increasingly being used as OA analogues. However, the characterization of these naturally CO2-rich sites is often limited to OA-related variables, neglecting additional environmental variables that may confound OA effects. Here, we used an extensive array of sediment and bottom water parameters to evaluate pH effects on sediment microbial communities at hydrothermal CO2 seeps in Papua New Guinea. The geochemical composition of the sediment pore water showed variations in the hydrothermal signature at seep sites with comparable pH, allowing the identification of sites that may better represent future OA scenarios. At these sites, we detected a 60% shift in the microbial community composition compared with reference sites, mostly related to increases in Chloroflexi sequences. pH was among the factors significantly, yet not mainly, explaining changes in microbial community composition. pH variation may therefore often not be the primary cause of microbial changes when sampling is done along complex environmental gradients. Thus, we recommend an ecosystem approach when assessing OA effects on sediment microbial communities under natural conditions. This will enable a more reliable quantification of OA effects via a reduction of potential confounding effects. © FEMS 2016.
Natural gas geochemistry of sediments drilled on the 2005 Gulf of Mexico JIP cruise
Lorenson, T.D.; Claypool, G.E.; Dougherty, J.A.
2008-01-01
In April and May 2005, cores were acquired and sub-sampled for gases in lease blocks Atwater Valley 13 and 14 and Keathley Canyon 151 during deep subseafloor drilling conducted as part of the JIP study of gas hydrates in the northern Gulf of Mexico. Sample types included sediment headspace gas, free gas derived from sediment gas exsolution, and gas exsolution from controlled degassing of pressurized cores. The gases measured both onboard and in shore-based labs were nitrogen, oxygen, hydrogen sulfide, carbon dioxide, and the hydrocarbons methane through hexane. The presence of seafloor mounds, seismic anomalies, a shallow sulfate-methane interface, and similar gas compositions and isotopic compositions near the seafloor and at depth suggest an upward flux of methane at both sites. Sediment gases at the Atwater Valley sites, where seafloor mounds and adjacent sediments were cored, strongly suggest a microbial source of methane, with very little thermogenic gas input. Sediment gas from all cores contained from about 96 to 99.9% methane, with the balance composed primarily of carbon dioxide. Methane to ethane ratios were greater than 1000, and often over 10,000. Gases from cores at Keathley Canyon were similar to those at Atwater Valley, however, deeper cores from Keathley Canyon contained more ethane, propane, and butane suggesting mixing with minor concentrations thermogenic gas. The isotopic composition of methane, ethane, and carbon dioxide were measured, and ??13C values range from -84.3 to -71.5???, -65.2 to -46.8???, and -23.5 to -3.0???, respectively, all consistent with microbial gas sources, early diagenesis of organic matter and perhaps biodegradation of petroleum. The presence of deep microbial gas at these sites here and elsewhere highlights a potentially significant, predominantly microbial gas source in the northern Gulf of Mexico.
Yergeau, Etienne; Maynard, Christine; Sanschagrin, Sylvie; Champagne, Julie; Juck, David; Lee, Kenneth; Greer, Charles W
2015-09-01
Several studies have assessed the effects of the released oil on microbes, either during or immediately after the Deepwater Horizon accident. However, little is known about the potential longer-term persistent effects on microbial communities and their functions. In this study, one water column station near the wellhead (3.78 km southwest of the wellhead), one water column reference station outside the affected area (37.77 km southeast of the wellhead), and deep-sea sediments near the wellhead (3.66 km southeast of the wellhead) were sampled 1 year after the capping of the well. In order to analyze microbial community composition, function, and activity, we used metagenomics, metatranscriptomics, and mineralization assays. Mineralization of hexadecane was significantly higher at the wellhead station at a depth of ∼1,200 m than at the reference station. Community composition based on taxonomical or functional data showed that the samples taken at a depth of ∼1,200 m were significantly more dissimilar between the stations than at other depths (surface, 100 m, 750 m, and >1,500 m). Both Bacteria and Archaea showed reduced activity at depths of ∼1,200 m when the wellhead station was compared to the reference station, and their activity was significantly higher in surficial sediments than in 10-cm sediments. Surficial sediments also harbored significantly different active genera than did 5- and 10-cm sediments. For the remaining microbial parameters assessed, no significant differences could be observed between the wellhead and reference stations and between surface and 5- to 10-cm-deep sediments. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Scudder Eikenberry, Barbara C.; Burns, Daniel J.; Olds, Hayley T.; Bell, Amanda H.; Mapel, Kassidy T.
2016-06-15
Benthos (benthic invertebrates) and plankton (zooplankton and phytoplankton) communities were sampled in 2014 at 10 Wisconsin rivers and harbors, including 4 sites in Great Lakes Areas of Concern and 6 less degraded comparison sites with similar physical and chemical characteristics, including climate, latitude, geology, and land use. Previous U.S. Geological Survey sampling was completed in 2012, but because of ongoing sediment remediation at three of the Areas of Concern (AOCs) and unusually hot and dry conditions in many areas during 2012, additional sampling was added in 2014. Comparable sampling methods were used in 2012 and 2014. Benthos were collected by using Hester-Dendy artificial substrate samplers and composite Ponar grab samples of bottom sediment; zooplankton were collected by using tows from depth to the surface with a 63-micrometer mesh plankton net; phytoplankton were collected by using whole water samples composited from set depth intervals. This report describes the study areas and field sampling methods for 2014, and it presents data on taxonomic identification and abundance of benthos and plankton that can serve as a basis for evaluation of related Beneficial Use Impairments (BUIs) at the AOCs. Physical and chemical data were sampled concurrently (specific conductance, temperature, pH, dissolved oxygen, chlorophyll a, total and volatile suspended solids in water samples; particle size and volatile-on-ignition of sediment in benthic grab samples). The results of field quality assurance-quality control are also presented.
Bergamaschi, B.A.; Tsamakis, E.; Keil, R.G.; Eglinton, T.I.; Montlucon, D.B.; Hedges, J.I.
1997-01-01
A C-rich sediment sample from the Peru Margin was sorted into nine hydrodynamically-determined grain size fractions to explore the effect of grain size distribution and sediment surface area on organic matter content and composition. The neutral monomeric carbohydrate composition, lignin oxidation product yields, total organic carbon, and total nitrogen contents were determined independently for each size fraction, in addition to sediment surface area and abundance of biogenic opal. The percent organic carbon and percent total nitrogen were strongly related to surface area in these sediments. In turn, the distribution of surface area closely followed mass distribution among the textural size classes, suggesting hydrodynamic controls on grain size also control organic carbon content. Nevertheless, organic compositional distinctions were observed between textural size classes. Total neutral carbohydrate yields in the Peru Margin sediments were found to closely parallel trends in total organic carbon, increasing in abundance among grain size fractions in proportion to sediment surface area. Coincident with the increases in absolute abundance, rhamnose and mannose increased as a fraction of the total carbohydrate yield in concert with surface area, indicating these monomers were preferentially represented in carbohydrates associated with surfaces. Lignin oxidation product yields varied with surface area when normalized to organic carbon, suggesting that the terrestrially-derived component may be diluted by sorption of marine derived material. Lignin-based parameters suggest a separate source for terrestrially derived material associated with sand-size material as opposed to that associated with silts and clays. Copyright ?? 1997 Elsevier Science Ltd.
NASA Astrophysics Data System (ADS)
Bergamaschi, Brian A.; Tsamakis, Elizabeth; Keil, Richard G.; Eglinton, Timothy I.; Montluçon, Daniel B.; Hedges, John I.
1997-03-01
A C-rich sediment sample from the Peru Margin was sorted into nine hydrodynamically-determined grain size fractions to explore the effect of grain size distribution and sediment surface area on organic matter content and composition. The neutral monomeric carbohydrate composition, lignin oxidation product yields, total organic carbon, and total nitrogen contents were determined independently for each size fraction, in addition to sediment surface area and abundance of biogenic opal. The percent organic carbon and percent total nitrogen were strongly related to surface area in these sediments. In turn, the distribution of surface area closely followed mass distribution among the textural size classes, suggesting hydrodynamic controls on grain size also control organic carbon content. Nevertheless, organic compositional distinctions were observed between textural size classes. Total neutral carbohydrate yields in the Peru Margin sediments were found to closely parallel trends in total organic carbon, increasing in abundance among grain size fractions in proportion to sediment surface area. Coincident with the increases in absolute abundance, rhamnose and mannose increased as a fraction of the total carbohydrate yield in concert with surface area, indicating these monomers were preferentially represented in carbohydrates associated with surfaces. Lignin oxidation product yields varied with surface area when normalized to organic carbon, suggesting that the terrestrially-derived component may be diluted by sorption of marine derived material. Lignin-based parameters suggest a separate source for terrestrially derived material associated with sand-size material as opposed to that associated with silts and clays.
NASA Astrophysics Data System (ADS)
Wu, Yue-Hong; Liao, Li; Wang, Chun-Sheng; Ma, Wei-Lin; Meng, Fan-Xu; Wu, Min; Xu, Xue-Wei
2013-09-01
Deep-sea polymetallic nodules, rich in metals such as Fe, Mn, and Ni, are potential resources for future exploitation. Early culturing and microscopy studies suggest that polymetallic nodules are at least partially biogenic. To understand the microbial communities in this environment, we compared microbial community composition and diversity inside nodules and in the surrounding sediments. Three sampling sites in the Pacific Ocean containing polymetallic nodules were used for culture-independent investigations of microbial diversity. A total of 1013 near full-length bacterial 16S rRNA gene sequences and 640 archaeal 16S rRNA gene sequences with ~650 bp from nodules and the surrounding sediments were analyzed. Bacteria showed higher diversity than archaea. Interestingly, sediments contained more diverse bacterial communities than nodules, while the opposite was detected for archaea. Bacterial communities tend to be mostly unique to sediments or nodules, with only 13.3% of sequences shared. The most abundant bacterial groups detected only in nodules were Pseudoalteromonas and Alteromonas, which were predicted to play a role in building matrix outside cells to induce or control mineralization. However, archaeal communities were mostly shared between sediments and nodules, including the most abundant OTU containing 290 sequences from marine group I Thaumarchaeota. PcoA analysis indicated that microhabitat (i.e., nodule or sediment) seemed to be a major factor influencing microbial community composition, rather than sampling locations or distances between locations.
Sediment phosphate composition in relation to emergent macrophytes in the Doñana Marshes (SW Spain)
Reina, M.; Espinar, J.L.; Serrano, L.
2006-01-01
We have studied the effect of the presence of emergent macrophytes on the sediment phosphate composition of a eutrophic shallow marsh on the NE margin of Doñana (SW Spain). Top sediment and water samples were collected from both the open-water and the vegetated sites at three areas covered by different plant species: Scirpus maritimus, Juncus subulatus and Phragmites australis. The concentration of organic matter was significantly higher in the top sediment of sites covered by vegetation than in their adjacent open-water sites at the three vegetation areas. The P-fractional composition showed that the sediment was dominated by the inorganic P-fractions in all cases, reaching the highest concentration in the Ca-bound P-fraction (281–372 μg g−1 d.w.). The sum of all P-fractions was significantly higher in the top sediment of the sites covered by J. subulatus and S. maritimus than in their adjacent open-water sites, and so were the org-P fraction extracted by hot NaOH and the concentration of phytate within this fraction. Deposition of plant material on the top sediment of areas vegetated by J. subulatus and S. maritimus explains these differences. The P-fractional composition of the seeds from J. subulatus showed that they contained a large proportion of organic P-fractions, particularly of the fraction extracted by hot NaOH (1868 μg g−1 d.w., 85% of which was phytate). The presence of emergent macrophytes, therefore, influenced the distribution of P-fractions in the sediment depending on plant species. The P-bioavailability of shallow aquatic systems must be fully understood if wetlands are to be protected from further eutrophication.
NASA Astrophysics Data System (ADS)
Stevenson, Ross; Poirier, André; Véron, Alain; Carignan, Jean; Hillaire-Marcel, Claude
2015-09-01
New geochemical and isotopic (Sr, Nd, Pb) data are presented for a composite sedimentary record encompassing the past 50 Ma of history of sedimentation on the Lomonosov Ridge in the Arctic Ocean. The sampled sediments encompass the transition of the Arctic basin from an enclosed anoxic basin to an open and ventilated oxidized ocean basin. The transition from anoxic basin to open ventilated ocean is accompanied by at least three geochemical and isotopic shifts and an increase in elements (e.g., K/Al) controlled by detrital minerals highlighting significant changes in sediment types and sources. The isotopic compositions of the sediments prior to ventilation are more variable but indicate a predominance of older crustal contributions consistent with sources from the Canadian Shield. Following ventilation, the isotopic compositions are more stable and indicate an increased contribution from younger material consistent with Eurasian and Pan-African crustal sources. The waxing and waning of these sources in conjunction with the passage of water through Fram Strait underlines the importance of the exchange of water mass between the Arctic and North Atlantic Oceans.
NASA Astrophysics Data System (ADS)
Tolu, Julie; Rydberg, Johan; Meyer-Jacob, Carsten; Gerber, Lorenz; Bindler, Richard
2017-04-01
The composition of sediment organic matter (OM) exerts a strong control on biogeochemical processes in lakes, such as those involved in the fate of carbon, nutrients and trace metals. While between-lake spatial variability of OM quality is increasingly investigated, we explored in this study how the molecular composition of sediment OM varies spatially within a single lake and related this variability to physical parameters and elemental geochemistry. Surface sediment samples (0-10 cm) from 42 locations in Härsvatten - a small boreal forest lake with a complex basin morphometry - were analyzed for OM molecular composition using pyrolysis gas chromatography mass spectrometry for the contents of 23 major and trace elements and biogenic silica. We identified 162 organic compounds belonging to different biochemical classes of OM (e.g., carbohydrates, lignin and lipids). Close relationships were found between the spatial patterns of sediment OM molecular composition and elemental geochemistry. Differences in the source types of OM (i.e., terrestrial, aquatic plant and algal) were linked to the individual basin morphometries and chemical status of the lake. The variability in OM molecular composition was further driven by the degradation status of these different source pools, which appeared to be related to sedimentary physicochemical parameters (e.g., redox conditions) and to the molecular structure of the organic compounds. Given the high spatial variation in OM molecular composition within Härsvatten and its close relationship with elemental geochemistry, the potential for large spatial variability across lakes should be considered when studying biogeochemical processes involved in the cycling of carbon, nutrients and trace elements or when assessing lake budgets.
NASA Astrophysics Data System (ADS)
Armstrong-Altrin, John S.; Machain-Castillo, María Luisa; Rosales-Hoz, Leticia; Carranza-Edwards, Arturo; Sanchez-Cabeza, Joan-Albert; Ruíz-Fernández, Ana Carolina
2015-03-01
The aim of this work is to constrain the provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico (~1089-1785 m water depth). To achieve this, 10 piston sediment cores (~5-5.5 m long) were studied for mineralogy, major, trace and rare earth element geochemistry. Samples were analyzed at three core sections, i.e. upper (0-1 cm), middle (30-31 cm) and lower (~300-391 cm). The textural study reveals that the core sediments are characterized by silt and clay fractions. Radiocarbon dating of sediments for the cores at different levels indicated a maximum of ~28,000 year BP. Sediments were classified as shale. The chemical index of alteration (CIA) values for the upper, middle, and lower sections revealed moderate weathering in the source region. The index of chemical maturity (ICV) and SiO2/Al2O3 ratio indicated low compositional maturity for the core sediments. A statistically significant correlation observed between total rare earth elements (∑REE) versus Al2O3 and Zr indicated that REE are mainly housed in detrital minerals. The North American Shale Composite (NASC) normalized REE patterns, trace element concentrations such as Cr, Ni and V, and the comparison of REE concentrations in sediments and source rocks indicated that the study area received sediments from rocks intermediate between felsic and mafic composition. The enrichment factor (EF) results indicated that the Cd and Zn contents of the upper section sediments were influenced by an anthropogenic source. The trace element ratios and authigenic U content of the core sediments indicated the existence of an oxic depositional environment.
Marti, Elisabet; Jofre, Juan; Balcazar, Jose Luis
2013-01-01
Antibiotic resistance represents a global health problem, requiring better understanding of the ecology of antibiotic resistance genes (ARGs), their selection and their spread in the environment. Antibiotics are constantly released to the environment through wastewater treatment plant (WWTP) effluents. We investigated, therefore, the effect of these discharges on the prevalence of ARGs and bacterial community composition in biofilm and sediment samples of a receiving river. We used culture-independent approaches such as quantitative PCR to determine the prevalence of eleven ARGs and 16S rRNA gene-based pyrosequencing to examine the composition of bacterial communities. Concentration of antibiotics in WWTP influent and effluent were also determined. ARGs such as qnrS, bla TEM, bla CTX-M, bla SHV, erm(B), sul(I), sul(II), tet(O) and tet(W) were detected in all biofilm and sediment samples analyzed. Moreover, we observed a significant increase in the relative abundance of ARGs in biofilm samples collected downstream of the WWTP discharge. We also found significant differences with respect to community structure and composition between upstream and downstream samples. Therefore, our results indicate that WWTP discharges may contribute to the spread of ARGs into the environment and may also impact on the bacterial communities of the receiving river. PMID:24205347
Pulley, S; Collins, A L
2018-09-01
The mitigation of diffuse sediment pollution requires reliable provenance information so that measures can be targeted. Sediment source fingerprinting represents one approach for supporting these needs, but recent methodological developments have resulted in an increasing complexity of data processing methods rendering the approach less accessible to non-specialists. A comprehensive new software programme (SIFT; SedIment Fingerprinting Tool) has therefore been developed which guides the user through critical data analysis decisions and automates all calculations. Multiple source group configurations and composite fingerprints are identified and tested using multiple methods of uncertainty analysis. This aims to explore the sediment provenance information provided by the tracers more comprehensively than a single model, and allows for model configurations with high uncertainties to be rejected. This paper provides an overview of its application to an agricultural catchment in the UK to determine if the approach used can provide a reduction in uncertainty and increase in precision. Five source group classifications were used; three formed using a k-means cluster analysis containing 2, 3 and 4 clusters, and two a-priori groups based upon catchment geology. Three different composite fingerprints were used for each classification and bi-plots, range tests, tracer variability ratios and virtual mixtures tested the reliability of each model configuration. Some model configurations performed poorly when apportioning the composition of virtual mixtures, and different model configurations could produce different sediment provenance results despite using composite fingerprints able to discriminate robustly between the source groups. Despite this uncertainty, dominant sediment sources were identified, and those in close proximity to each sediment sampling location were found to be of greatest importance. This new software, by integrating recent methodological developments in tracer data processing, guides users through key steps. Critically, by applying multiple model configurations and uncertainty assessment, it delivers more robust solutions for informing catchment management of the sediment problem than many previously used approaches. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Speciation of strontium in particulates and sediments from the Mississippi River mixing zone
NASA Astrophysics Data System (ADS)
Xu, Yingfeng; Marcantonio, Franco
2004-06-01
Sequential extractions were performed on small amounts of particulate and sediment samples (6 to10 mg) from the Mississippi River mixing zone. The leachates were analyzed for Sr concentration and 87Sr/ 86Sr isotope ratio. Mn and Fe contents were also measured as their oxyhydroxides are potential carrier phases for Sr. The largest fraction of Sr in the solid phase (particulates and sediments) was found to be present in the residual, refractory fraction (>70% of total). By comparison with the corresponding sediment, particulates appear to have higher concentrations of nonresidual, labile Sr (30% vs. 15%). Carbonate components seem to play an important role as carriers for labile Sr in particulates and sediments. Changes in the composition and content of the solid phase may significantly modify both the 87Sr/ 86Sr isotope ratio of the total labile fractions and that of the bulk components. However, such modifications, under normal conditions, exert little measurable influence on the Sr isotope composition of the dissolved phase.
Pan, Xiaohui; Tang, Jianhui; Chen, Yingjun; Li, Jun; Zhang, Gan
2011-12-01
PCN congeners were analyzed in marine and riverine sediments of the Laizhou Bay area, North China. Concentrations of PCNs ranged from 0.12 to 5.1 ng g(-)(1) dry weight (dw) with a mean value of 1.1 ng g(-)(1) dw. The levels of PCNs varied largely, with industrial group approximately ten folds higher than those of the rural in riverine sediment. A strong impact by direct discharge from local factories was suggested. Similar compositional profiles were found within groups. High resemblance of compositional profiles between industrial samples and Halowax 1014 was observed. It was indicated that PCNs in riverine sediments were mainly from release of industrial usage, with additional contributions from industrial thermal process at certain sites. In marine sediments, it was suggested that PCNs along the coast of Laizhou Bay were mainly controlled by riverine input. While in the central bay, PCN distributions were possibly impacted by combined multiple factors. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Overton, E. B.; Meyer, B.; Miles, S.; Olson, G.; Adhikari, P. L.
2016-02-01
It has been well established that the composition of oil, when spilled into the marine environment, undergoes substantial changes caused by weathering. The general sequence of this compositional change begins with straight chain alkanes (the fastest to degrade), followed by low molecular weight branched and cyclic alkanes and, finally the aromatics. Most resistant to weathering are the higher molecular weight cyclic and branched alkanes (i.e., the "forensic biomarker compounds" such as the hopanes and steranes) and tri-aromatic ringed steroids. The composition of these biomarker compounds is particularly resistant to change because they are not affected by evaporative weathering, are not water soluble, and are not readily degraded by microbial and/or photo-oxidation. However, after extensive time in the environment, being subjected to numerous weathering factors, biomarker compositional patterns are beginning to exhibit significant changes. This presentation will describe the general weathering patterns of petroleum residues in sediment samples collected from marsh areas of coastal Louisiana over a five year period. Particular attention will focus on compositional changes that have been observed in the steranes and diasteranes compounds that traditionally have been considered the most resistant to compositional changes due to weathering.
Rehkamper, M.; Frank, M.; Hein, J.R.; Halliday, A.
2004-01-01
Cenozoic records of Tl isotope compositions recorded by ferromanganese (Fe-Mn) crusts have been obtained. Such records are of interest because recent growth surfaces of Fe-Mn crusts display a nearly constant Tl isotope fractionation relative to seawater. The time-series data are complemented by results for bulk samples and leachates of various marine sediments. Oxic pelagic sediments and anoxic marine deposits can be distinguished by their Tl isotope compositions. Both pelagic clays and biogenic oozes are typically characterized by ??205Tl greater than +2.5, whereas anoxic sediments have ??205Tl of less than -1.5 (??205Tl is the deviation of the 205Tl/203Tl isotope ratio of a sample from NIST SRM 997 Tl in parts per 104). Leaching experiments indicate that the high ??205Tl values of oxic sediments probably reflect authigenic Fe-Mn oxyhydroxides. Time-resolved Tl isotope compositions were obtained from six Fe-Mn crusts from the Atlantic, Indian, and Pacific oceans and a number of observations indicate that these records were not biased by diagenetic alteration. Over the last 25 Myr, the data do not show isotopic variations that significantly exceed the range of Tl isotope compositions observed for surface layers of Fe-Mn crusts distributed globally (??205 Tl=+12.8??1.2). This indicates that variations in deep-ocean temperature were not recorded by Tl isotopes. The results most likely reflect a constant Tl isotope composition for seawater. The growth layers of three Fe-Mn crusts that are older than 25 Ma show a systematic increase of ??205Tl with decreasing age, from about +6 at 60-50 Ma to about +12 at 25 Ma. These trends are thought to be due to variations in the Tl isotope composition of seawater, which requires that the oceans of the early Cenozoic either had smaller output fluxes or received larger input fluxes of Tl with low ??205Tl. Larger inputs of isotopically light Tl may have been supplied by benthic fluxes from reducing sediments, rivers, and/or volcanic emanations. Alternatively, the Tl isotope trends may reflect the increasing importance of Tl fluxes to altered ocean crust through time. ?? 2004 Elsevier B.V. All rights reserved.
Major, minor, trace and rare earth elements in sediments of the Bijagós archipelago, Guinea-Bissau.
Carvalho, Lina; Figueira, Paula; Monteiro, Rui; Reis, Ana Teresa; Almeida, Joana; Catry, Teresa; Lourenço, Pedro Miguel; Catry, Paulo; Barbosa, Castro; Catry, Inês; Pereira, Eduarda; Granadeiro, José Pedro; Vale, Carlos
2018-04-01
Sixty sediment samples from four sites in the Bijagós archipelago were characterized for fine fraction, loss on ignition, major, minor and trace elemental composition (Al, Fe, Ca, Mg, Ti, P, Zr, Mn, Cr, Sr, Ba, B, V, Li, Zn, Ni, Pb, As, Co, U, Cu, Cs and Cd), and the elements of the La-Lu series. Element concentrations were largely explained by the Al content and the proportion of fine fraction content, with the exception of Ca and Sr. Sediments showed enhanced Ti, U, Cr, As and Cd concentrations with respect to estimated upper crust values, most likely mirroring a regional signature. Rare earth elements were in deficit relatively to the North American Shale Composite (NASC), mainly in coarser material. No pronounced Ce-anomaly was observed, while Eu-anomalies were positive in most analyzed sediments. Copyright © 2017 Elsevier Ltd. All rights reserved.
An automated leaching method for the determination of opal in sediments and particulate matter
NASA Astrophysics Data System (ADS)
Müller, Peter J.; Schneider, Ralph
1993-03-01
An automated leaching method for the analysis of biogenic silica (opal) in sediments and particulate matter is described. The opaline material is extracted with 1 M NaOH at 85°C in a stainless steel vessel under constant stirring, and the increase in dissolved silica is continuously monitored. For this purpose, a minor portion of the leaching solution is cycled to an autoanalyzer and analyzed for dissolved silicon by molybdate-blue spectrophotometry. The resulting absorbance versus time plot is then evaluated according to the extrapolation procedure of DEMASTER (1981). The method has been tested on sponge spicules, radiolarian tests. Recent and Pliocene diatomaceous ooze samples, clay minerals and quartz, artificial sediment mixtures, and on various plankton, sediment trap and sediment samples. The results show that the relevant forms of biogenic opal in Quaternary sediments are quantitatively recovered. The time required for an analysis is dependent on the sample type, ranging from 10 to 20 min for plankton and sediment trap material and up to 40-60 min for Quaternary sediments. The silica co-extracted from silicate minerals is largely compensated for by the applied extrapolation technique. The remaining degree of uncertainty is on the order of 0.4 wt% SiO 2 or less, depending on the clay mineral composition and content.
NASA Astrophysics Data System (ADS)
Jung, Hoi-Soo; Lim, Dhongil; Choi, Jin-Yong; Yoo, Hae-Soo; Rho, Kyung-Chan; Lee, Hyun-Bok
2012-10-01
Rare earth elements (REEs) of bulk sediments and heavy mineral samples of core sediments from the South Sea shelf, Korea, were analyzed to determine the constraints on REE concentrations and distribution patterns as well as to investigate their potential applicability for discriminating sediment provenance. Bulk sediment REEs showed large variation in concentrations and distribution patterns primarily due to grain size and carbonate dilution effects, as well as due to an abundance of heavy minerals. In the fine sandy sediments (cores EZ02-15 and 19), in particular, heavy minerals (primarily monazite and titanite/sphene) largely influenced REE compositions. Upper continental crust-normalized REE patterns of these sand-dominated sediments are characterized by enriched light REEs (LREEs), because of inclusion of heavy minerals with very high concentrations in LREEs. Notably, such a strong LREE enrichment is also observed in Korean river sediments. So, a great care must be taken when using the REE concentrations and distribution patterns of sandy and coarse silty shelf sediments as a proxy for discriminating sediment provenance. In the fine-grained muddy sediments with low heavy mineral abundance, in contrast, REE fractionation ratios and their UCC-normalized patterns seem to be reliable proxies for assessing sediment provenance. The resultant sediment origin suggested a long lateral transportation of some fine-grained Chinese river sediments (probably the Changjiang River) to the South Sea of Korea across the shelf of the northern East China Sea.
Tripp, Richard B.; Curtin, Gary C.; Nokleberg, Warren J.; Huston, David L.; Hampton, James R.
1993-01-01
Exploratory geochemical sampling was done in 1979, 1980, and 1981. The collection of composite samples of stream sediment or glacial debris was emphasized the first 2 years; the last year was spent collecting mineralized stream pebbles, float, and outcrop samples. The stream-sediment and heavy- mineral-concentrate samples were collected at 795 sites on tributary streams having drainage basins ranging from 1 to 5 mi 2 in area. The glacial debris samples were collected at 116 sites on tributary glaciers also having drainage basins ranging from 1 to 5 mi2 in area. All of these samples were analyzed for 31 elements by six-step semiquantitative emission spectrography (Grimes and Marranzino, 1968). In addition, all samples were analyzed for zinc by an atomic absorption method (Ward and others, 1969). The spectrographic and chemical results are available in O'Leary and others (1982).
NASA Astrophysics Data System (ADS)
Mille, G.; Munoz, D.; Jacquot, F.; Rivet, L.; Bertrand, J.-C.
1998-11-01
The Ile Grande salt marshes (Brittany coast) were polluted by petroleum hydrocarbons after theAmoco Cadizgrounding in 1978. Thirteen years after the oil spill, sediments were analysed for residual hydrocarbons in order to monitor the aliphatic and aromatic hydrocarbon signatures and to assess both qualitatively and quantitatively the changes in composition of theAmoco Cadizoil. Six stations were selected in the Ile Grande salt marshes and sediments were sampled to a depth of 20 cm. For each sample, the hydrocarbon compositions were determined for alkanes, alkenes, aromatics and biomarkers (terpanes, steranes, diasteranes). Hydrocarbon levels drastically decreased between 1978 and 1991, but to different extents according to the initial degree of contamination. In 1991, hydrocarbon concentrations never exceeded 1·7 g kg-1sediment dry weight, and in most cases were less than 0·1 g kg-1sediment dry weight. Even though petroleum hydrocarbons are still present, natural hydrocarbons were also detected at several stations. Changes in some biomarker distributions were observed 13 years after the oil spill. Nevertheless, most of the biomarkers are very stable in the salt marsh environment and remain unaltered even after a 13-year period.
Winger, P.V.; Lasier, P.J.
1998-01-01
The Lower Mississippi River contributes significantly to the biodiversity and ecological stability of the alluvial valley. Agricultural, industrial and municipal developments have historically impacted environmental quality of the river. Toxicity of sediment and sediment pore water was used to assess the current effects of major cities on sediment quality along the Lower Mississippi River. Composite sediment samples were collected from four sites upriver and four sites downriver of five major cities: Cairo, IL; Memphis, TN; Vicksburg, MS; Baton Rouge, LA; and New Orleans, LA. Following EPA's standard methods for acute toxicity testing of freshwater solid-phase sediment, Hyalella azteca were exposed to the sediments for 10 d with two water renewals per day. Hyalella azteca were also exposed for 96 h to pore water extracted from the sediments. After the initial tests, the animals were exposed to ultraviolet light for 12 h. Sediments were analyzed for organics (organochlorine pesticides, PCBs, organophosphate insecticides, and PAHs) and metals (Cr, Cu, Pb, Mn, Ni, Zn). With the exception of upriver from Memphis, solid-phase sediments were not toxic to H. azteca. Pore water from sediments collected upriver of Memphis showed slight toxicity. Exposure of H. azteca to ultraviolet light did not increase the toxicity of the sediment or pore-water samples, indicating a lack of PAH toxicity. Chemical analyses did not reveal any contaminant levels of concern in the sediments. Based on toxicity testing and chemical analyses, quality of sediments collected from the Lower Mississippi was good, with the exception of sites sampled upriver of Memphis.
Soliman, Y S; Al Ansari, E M S; Wade, T L
2014-08-30
Surface sediments were collected from sixteen locations in order to assess levels and sources of polycyclic aromatic hydrocarbons (PAHs) in sediments of Qatar exclusive economic zone (EEZ). Samples were analyzed for 16 parent PAHs, 18 alkyl homologs and for dibenzothiophenes. Total PAHs concentration (∑PAHs) ranged from 2.6 ng g(-1) to 1025 ng g(-1). The highest PAHs concentrations were in sediments in and adjacent to harbors. Alkylated PAHs predominated most of the sampling locations reaching up to 80% in offshore locations. Parent PAHs and parent high molecular weight PAHs dominated location adjacent to industrial activities and urban areas. The origin of PAHs sources to the sediments was elucidated using ternary plot, indices, and molecular ratios of specific compounds such as (Ant/Phe+Ant), (Flt/Flt+Pyr). PAHs inputs to most coastal sites consisted of mixture of petroleum and combustion derived sources. However, inputs to the offshore sediments were mainly of petroleum origin. Copyright © 2014 Elsevier Ltd. All rights reserved.
Open ocean pelago-benthic coupling: cyanobacteria as tracers of sedimenting salp faeces
NASA Astrophysics Data System (ADS)
Pfannkuche, Olaf; Lochte, Karin
1993-04-01
Coupling between surface water plankton and abyssal benthos was investigated during a mass development of salps ( Salpa fusiformis) in the Northeast Atlantic. Cyanobacteria numbers and composition of photosynthetic pigments were determined in faeces of captured salps from surface waters, sediment trap material, detritus from plankton hauls, surface sediments from 4500-4800 m depth and Holothurian gut contents. Cyanobacteria were found in all samples containing salp faeces and also in the guts of deep-sea Holothuria. The ratio between zeaxanthin (typical of cyanobacteria) and sum of chlorophyll a pigments was higher in samples from the deep sea when compared to fresh salp faeces, indicating that this carotenoid persisted longer in the sedimenting material than total chlorophyll a pigments. The microscopic and chemical observations allowed us to trace sedimenting salp faeces from the epipelagial to the abyssal benthos, and demonstrated their role as a fast and direct link between both systems. Cyanobacteria may provide a simple tracer for sedimenting phytodetritus.
NASA Astrophysics Data System (ADS)
McKinley, C. C.; Scudder, R.; Thomas, D. J.
2016-12-01
The Neodymium Isotopic composition (Nd IC) of oxide coatings has been applied as a tracer of water mass composition and used to address fundamental questions about past ocean conditions. The leached authigenic oxide coating from marine sediment is widely assumed to reflect the dissolved trace metal composition of the bottom water interacting with sediment at the seafloor. However, recent studies have shown that readily reducible sediment components, in addition to trace metal fluxes from the pore water, are incorporated into the bottom water, influencing the trace metal composition of leached oxide coatings. This challenges the prevailing application of the authigenic oxide Nd IC as a proxy of seawater composition. Therefore, it is important to identify the component end-members that create sediments of different lithology and determine if, or how they might contribute to the Nd IC of oxide coatings. To investigate lithologic influence on the results of sequential leaching, we selected two sites with complete bulk sediment statistical characterization. Site U1370 in the South Pacific Gyre, is predominantly composed of Rhyolite ( 60%) and has a distinguishable ( 10%) Fe-Mn Oxyhydroxide component (Dunlea et al., 2015). Site 1149 near the Izu-Bonin-Arc is predominantly composed of dispersed ash ( 20-50%) and eolian dust from Asia ( 50-80%) (Scudder et al., 2014). We perform a two-step leaching procedure: a 14 mL of 0.02 M hydroxylamine hydrochloride (HH) in 20% acetic acid buffered to a pH 4 for one hour, targeting metals bound to Fe- and Mn- oxides fractions, and a second HH leach for 12 hours, designed to remove any remaining oxides from the residual component. We analyze all three resulting fractions for a large suite of major, trace and rare earth elements, a sub-set of the samples are also analyzed for Nd IC. We use multivariate statistical analyses of the resulting geochemical data to identify how each component of the sediment partitions across the sequential extractions. Here we present results comparing the two sites, and examine how the composition of the sediment impacts the resulting Nd IC.
NASA Technical Reports Server (NTRS)
Mittlefehldt, D. W.
2012-01-01
The capability of scientific instrumentation flown on planetary orbiters and landers has made great advances since the signature Viking mission of the seventies. At some point, however, the science return from orbital remote sensing, and even in situ measurements, becomes incremental, rather than revolutionary. This is primarily caused by the low spatial resolution of such measurements, even for landed instrumentation, the incomplete mineralogical record derived from such measurements, the inability to do the detailed textural, mineralogical and compositional characterization needed to demonstrate equilibrium or reaction paths, and the lack of chronological characterization. For the foreseeable future, flight instruments will suffer from this limitation. In order to make the next revolutionary breakthrough in understanding the early geological and climatological history of Mars, samples must be available for interrogation using the full panoply of laboratory-housed analytical instrumentation. Laboratory studies of samples allow for determination of parageneses of rocks through microscopic identification of mineral assemblages, evaluation of equilibrium through electron microbeam analyses of mineral compositions and structures, determination of formation temperatures through secondary ion or thermal ionization mass spectrometry (SIMS or TIMS) analyses of stable isotope compositions. Such details are poorly constrained by orbital data (e.g. phyllosilicate formation at Mawrth Vallis), and incompletely described by in situ measurements (e.g. genesis of Burns formation sediments at Meridiani Planum). Laboratory studies can determine formation, metamorphism and/or alteration ages of samples through SIMS or TIMS of radiogenic isotope systems; a capability well-beyond flight instrumentation. Ideally, sample return should be from a location first scouted by landers such that fairly mature hypotheses have been formulated that can be tested. However, samples from clastic sediments derived from an extensive region of Mars can provide important, detailed understanding of early martian geological and climatological history. Interrogating clastic "sediments" from the Earth, Moon and asteroids has allowed discovery of new crustal units, identification of now-vanished crust, and determination of the geological history of extensive, remote regions. Returned sample of martian fluvial and/or aeolian sediments, for example from Gale crater, could be "read like a book" in terrestrial laboratories to provide truly revolutionary new insights into early martian geological and climatological evolution.
Mubedi, Josué Ilunga; Devarajan, Naresh; Le Faucheur, Séverine; Mputu, John Kayembe; Atibu, Emmanuel K; Sivalingam, Periyasamy; Prabakar, Kandasamy; Mpiana, Pius T; Wildi, Walter; Poté, John
2013-10-01
Physicochemical and ecotoxicological analyses have been performed to assess the quality of sediments receiving untreated hospital effluents from Indian and Democratic Republic of Congo (DRC) hospitals. The sediments were collected monthly and characterized for grain size, organic matter, total organic carbon, total carbon, nitrogen, phosphorus, toxic metals and ecotoxicity. The results highlight the high concentration of toxic metals from the Indian hospital effluent receiving systems, especially for Cr, Cu, As, Zn and Hg. On the other hand, the metal concentrations in the sediment receiving system from DRC are low (e.g. maximum Hg and Zn concentration were 0.46 and 48.84 mg kg(-1) respectively). Ostracods exposed to sediment samples H2 (September month sample) and H3 (June and September month samples) were found dead after 6d of exposure whereas the higher mortality rate for Congo sediments was 23% but was accompanied with 33 ± 7% of growth inhibition. The results of this study show the variation of sediment composition on toxic metal levels as well as toxicity related to both, the type of hospitals and the sampling period. Additionally, hospital effluent disposal practices at the study sites can lead to the pollution of water resources and may generate risks for aquatic organisms and human health. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bollmann, J.; Brabec, B.
2001-12-01
Abundance and assemblage compositions of microplankton, together with their chemical and stable isotopic composition, have been among the most successful methods in paleoceanography. One of the most frequently applied techniques for reconstruction of paleo-temperature is a transfer function using the relative abundance of planktic foraminifera in sediment samples. Here we present evidence, suggesting that absolute sea surface temperature for a given location can be also calculated from the relative abundance of Gephyrocapsa morphotypes in sediment samples with an accuracy comparable to foraminifera transfer functions. By extrapolating this finding, paleo-enviromental interpretations can be obtained for the Late Pleistocene and discrepancies between the different currently used methods (e.g., foraminifer, alkenone and Ca/Mg derived temperature estimates) might be resolved. Eighty-one Holocene sediment samples were selected from the Pacific, Indian and Atlantic Oceans covering a temperature gradient from 13.4° C to 29.4° C, a salinity gradient from 32.21 to 37.34 and a productivity gradient of 0.045 to 0.492μ g chlorophyll/L. Standard multiple linear regression analyses were applied to this data set, linking the relative abundance of Gephyrocapsa morphotypes to mean sea surface temperature. The best model revealed an r2 of 0.8 with a standard residual error of 1.8° C for calculation of the mean sea surface temperature.
NASA Astrophysics Data System (ADS)
Uchida, M.; Eglinton, T. I.; Montlucon, D. B.; Pearson, A.; Hayes, J. M.
2008-12-01
Continental margin sediments represent a large sink of organic carbon derived from marine and terrestrial sources. Archaeal glycerol dibiphytanyl glycerol tetraether lipids (GDGTs) are derived from both marine and terrestrial sources and have been used both for reconstruction of paleo sea surface temperatures and as an index of terrestrial carbon input to the marine sediments. However, the sources and modes of supply as well as the preservation of GDGTs in marginal sediments are poorly understood. The distribution and deposition of GDGTs is further complicated by hydrodynamic processes. We have analyzed a suite of surface sediment samples collected along a transect from the mouth of the Columbia River, across the Washington Margin, to the Cascadia Basin in the northeast Pacific Ocean. Sediments were separated according to their grain size and hydrodynamic properties, and the organic matter characterized in terms of its bulk elemental, isotopic, and molecular properties. Here we present radiocarbon measurements on individual GDGTs, alkenones, and fatty acids from size-fractionated sediments from shelf and slope sediments, and discuss the results in the context of previous studies of the molecular abundances and isotopic compositions of sedimentary organic matter for in this region. Systematic variations in elemental, isotopic and molecular-level composition are observed across the different particle classes. Moreover, these variations are manifested in the isotopic composition of different molecular markers of both marine and terrestrial sources organic matter. Both marine-derived lipids, including alkenones and marine archaeal tetraethers, and soil microbe-derived tetraether lipids show strong distributional and isotopic variations among the size-fractionated sediments. These variations in terrestrial and marine biomarker properties inform on the sources, particle dynamics, and transport history of organic matter buried on river-influenced continental margins. The implications of these findings for the application of molecular markers as proxies of organic matter input, and on the interpretation of past marine and continental environmental conditions from sedimentary records will also be discussed.
Pohlon, Elisabeth; Ochoa Fandino, Adriana; Marxsen, Jürgen
2013-01-01
Droughts are among the most important disturbance events for stream ecosystems; they not only affect stream hydrology but also the stream biota. Although desiccation of streams is common in Mediterranean regions, phases of dryness in headwaters have been observed more often and for longer periods in extended temperate regions, including Central Europe, reflecting global climate change and enhanced water withdrawal. The effects of desiccation and rewetting on the bacterial community composition and extracellular enzyme activity, a key process in the carbon flow of streams and rivers, were investigated in a typical Central European stream, the Breitenbach (Hesse, Germany). Wet streambed sediment is an important habitat in streams. It was sampled and exposed in the laboratory to different drying scenarios (fast, intermediate, slow) for 13 weeks, followed by rewetting of the sediment from the fast drying scenario via a sediment core perfusion technique for 2 weeks. Bacterial community structure was analyzed using CARD-FISH and TGGE, and extracellular enzyme activity was assessed using fluorogenic model substrates. During desiccation the bacterial community composition shifted toward composition in soil, exhibiting increasing proportions of Actinobacteria and Alphaproteobacteria and decreasing proportions of Bacteroidetes and Betaproteobacteria. Simultaneously the activities of extracellular enzymes decreased, most pronounced with aminopeptidases and less pronounced with enzymes involved in the degradation of polymeric carbohydrates. After rewetting, the general ecosystem functioning, with respect to extracellular enzyme activity, recovered after 10 to 14 days. However, the bacterial community composition had not yet achieved its original composition as in unaffected sediments within this time. Thus, whether the bacterial community eventually recovers completely after these events remains unknown. Perhaps this community undergoes permanent changes, especially after harsh desiccation, followed by loss of the specialized functions of specific groups of bacteria. PMID:24386188
Ružičková, Silvia; Remeteiová, Dagmar; Mičková, Vladislava; Dirner, Vojtech
2018-02-21
In this work, the matrix characterization (mineralogy, total and local chemical composition, and total organic (TOC) and inorganic carbon (TIC) contents) of different types of sediments from mining- and metallurgy-influenced areas and the assessment of the impact of the matrix on the association of potentially hazardous metals with the mineral phases of these samples, which affect their mobility in the environment, are presented. For these purposes, sediment samples with different origins and from different locations in the environment were analyzed. Anthropogenic sediments from metal-rich post-flotation tailings (Lintich, Slovakia) represent waste from ore processing, natural river sediments from the Hornád River (Košice, Slovakia) represent areas influenced predominantly by the metallurgical industry, and lake sediments from a water reservoir Ružín (inflow from the Hornád and Hnilec Rivers, Slovakia) represent the impact of the metallurgical and/or mining industries. The total metal contents were determined by X-ray fluorescence (XRF) analysis, the local chemical and morphological microanalysis by scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), and the TOC and TIC contents by infrared (IR) spectrometry. The mobility/bioavailability of Cu, Pb, and Zn in/from sediments at the studied areas was assessed by ethylenediaminetetraacetic acid (EDTA) and acetic acid (AA) extraction and is discussed in the context of the matrix composition. The contents of selected potentially hazardous elements in the extracts were determined by the high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS).
Do Leached Authigenic Fractions Reflect the Neodymium Seawater Composition?
NASA Astrophysics Data System (ADS)
Pimbert, A.; Gourlan, A. T.; Chauvel, C.
2016-12-01
Leaching of marine sediment is often used to recover past Nd seawater composition and reconstruct past ocean circulation. It is assumed to reliably extract REE from the authigenic fraction of sediment [1]. However, while most studies assume that the recovered signal is that of past seawater, very few report complete isotopic and trace element data that clearly demonstrate it is the case. We present new ɛNd values and REE contents measured on leachates of sediments from two Cretaceous marine sections deposited at shallow water depth (Taghazoute in Morocco) and at greater depth in the Atlantic (DSDP Site 367). REE patterns of leachates vary according to lithology: bell-shaped patterns or positive Ce anomalies for organic-poor samples and seawater-like patterns (negative Ce anomaly, low Nd/Yb ratio) for black shales. ɛNd values also vary: between -5.6 and -9.6 at Taghazoute and between -10 and -8.1 at Site 367. Interestingly, ɛNd values correlate with Ce anomalies for Taghazoute black shales. Samples with the largest Ce negative anomalies have the highest ɛNd while samples with no Ce anomalies have much lower ɛNd. This suggests the presence in the leached material of detritus mixed up with the authigenic fraction for sediments deposited in shallow environment. This confirms the findings made by Huck et al. [2] for fish teeth in a similar environment. In such environment, recovering the pristine seawater signal requires (a) the acquisition of both Nd isotopes and trace element contents, and (b) selection of the only Nd isotopic compositions associated to clear seawater trace element characteristics. For sediments deposited in open-ocean setting (Site 367), no detrital contamination affects leached fractions. The REE patterns vary depending on the nature of authigenic fraction but ɛNd remains constant. Here, ɛNd values can be used to discuss oceanic reconstructions. [1] Martin et al. (2010), Chem. Geol, 269, 414-431. [2] Huck et al. (2016), G3, 17, 679-698.
NASA Astrophysics Data System (ADS)
Maioli, Otávio Luiz Gusso; de Oliveira, Cristiane Rossi; Dal Sasso, Marco Aurélio; Madureira, Luiz Augusto dos Santos; Azevedo, Débora de Almeida; de Aquino Neto, Francisco Radler
2012-12-01
The δ13C composition of individual n-alkanes (from C16 to C34) was measured from surface sediments of five Brazilian estuarine systems affected by different organic matter sources, such as harbor area, industries, urban centers and sugar cane crops, in order to determine the origins of the organic matter. The aliphatic hydrocarbon fraction was analyzed by gas chromatography-combustion-isotope ratio mass spectrometry (GC/C/IRMS). The levels of n-alkanes in the studied areas ranged from 0.34 to 18.14 μg kg-1, being relatively low in comparison to high polluted environments. The Carbon Preference Index (CPI) calculated in the C23-C34 range indicates that n-alkanes are mainly inherited from cuticular waxes of higher plants. The δ13C composition of all n-alkanes detected in the sediment samples ranged from -39.6 to -18.3‰ showing different sources for the studied estuarine systems. Through Principal Component Analysis (PCA) it was possible to verify the petrogenic influence in the n-alkane sources, especially in the Paraíba do Sul sediment samples. Differences up to 15‰ of the δ13C values between n-alkanes of odd and even carbon number (C26 and C27) also indicated mixture of petrogenic and biogenic sources in Paraíba do Sul River. High (less negative) δ13C n-alkane values of odd carbon number were obtained from two sampling sites located close to an ethanol plant, indicating residues discharge of sugar cane (C4 plant). Influence of C3 plants that are the main components of dense ombrophile forest was observed in the Itajaí-Açu sediments by the decrease of δ13C (about 10‰ compared to the Paraíba do Sul River δ13C).
NASA Astrophysics Data System (ADS)
Elliott, Emily A.; Monbureau, Elaine; Walters, Glenn W.; Elliott, Mark A.; McKee, Brent A.; Rodriguez, Antonio B.
2017-12-01
Identifying the source and abundance of sediment transported within tidal creeks is essential for studying the connectivity between coastal watersheds and estuaries. The fine-grained suspended sediment load (SSL) makes up a substantial portion of the total sediment load carried within an estuarine system and efficient sampling of the SSL is critical to our understanding of nutrient and contaminant transport, anthropogenic influence, and the effects of climate. Unfortunately, traditional methods of sampling the SSL, including instantaneous measurements and automatic samplers, can be labor intensive, expensive and often yield insufficient mass for comprehensive geochemical analysis. In estuaries this issue is even more pronounced due to bi-directional tidal flow. This study tests the efficacy of a time-integrated mass sediment sampler (TIMS) design, originally developed for uni-directional flow within the fluvial environment, modified in this work for implementation the tidal environment under bi-directional flow conditions. Our new TIMS design utilizes an 'L' shaped outflow tube to prevent backflow, and when deployed in mirrored pairs, each sampler collects sediment uniquely in one direction of tidal flow. Laboratory flume experiments using dye and particle image velocimetry (PIV) were used to characterize the flow within the sampler, specifically, to quantify the settling velocities and identify stagnation points. Further laboratory tests of sediment indicate that bidirectional TIMS capture up to 96% of incoming SSL across a range of flow velocities (0.3-0.6 m s-1). The modified TIMS design was tested in the field at two distinct sampling locations within the tidal zone. Single-time point suspended sediment samples were collected at high and low tide and compared to time-integrated suspended sediment samples collected by the bi-directional TIMS over the same four-day period. Particle-size composition from the bi-directional TIMS were representative of the array of single time point samples, but yielded greater mass, representative of flow and sediment-concentration conditions at the site throughout the deployment period. This work proves the efficacy of the modified bi-directional TIMS design, offering a novel tool for collection of suspended sediment in the tidally-dominated portion of the watershed.
Goodwin, S.D.; Schultz, B.I.; Parkhurst, D.L.; Simon, N.S.; Callendar, Edward
1984-01-01
The chemical composition of bottom sediments and their associated pore waters from the tidal Potomac River and Estuary was studied from May 1978 through June 1980. Pore waters were routinely analyzed for pH, Eh, alkalinity, and concentrations of sulfide, sulfate, phosphate, carbon, ammonium, silica, iron, manganese, chloride, sodium, potassium, calcium, and magnesium. Porosity, weight loss on ignition, and carbon, nitrogen, and phosphorus contents were determined for the solid sediments. The range of salinity and chemical composition encountered in the estuary frequently necessitated modifications of standard methods of analysis. Therefore, the methods used, their modifications, and their limitations are presented in some detail. The appendix lists the data obtained from six sampling periods. (USGS)
NASA Astrophysics Data System (ADS)
Sun, Shuwen; Schefuß, Enno; Mulitza, Stefan; Chiessi, Cristiano M.; Sawakuchi, André O.; Zabel, Matthias; Baker, Paul A.; Hefter, Jens; Mollenhauer, Gesine
2017-05-01
The Amazon River transports large amounts of terrestrial organic carbon (OCterr) from the Andean and Amazon neotropical forests to the Atlantic Ocean. In order to compare the biogeochemical characteristics of OCterr in the fluvial sediments from the Amazon drainage basin and in the adjacent marine sediments, we analysed riverbed sediments from the Amazon mainstream and its main tributaries as well as marine surface sediments from the Amazon shelf and fan for total organic carbon (TOC) content, organic carbon isotopic composition (δ13CTOC), and lignin phenol compositions. TOC and lignin content exhibit positive correlations with Al / Si ratios (indicative of the sediment grain size) implying that the grain size of sediment discharged by the Amazon River plays an important role in the preservation of TOC and leads to preferential preservation of lignin phenols in fine particles. Depleted δ13CTOC values (-26.1 to -29.9 ‰) in the main tributaries consistently correspond with the dominance of C3 vegetation. Ratios of syringyl to vanillyl (S / V) and cinnamyl to vanillyl (C / V) lignin phenols suggest that non-woody angiosperm tissues are the dominant source of lignin in the Amazon basin. Although the Amazon basin hosts a rich diversity of vascular plant types, distinct regional lignin compositions are not observed. In the marine sediments, the distribution of δ13CTOC and Λ8 (sum of eight lignin phenols in organic carbon (OC), expressed as mg/100 mg OC) values implies that OCterr discharged by the Amazon River is transported north-westward by the North Brazil Current and mostly deposited on the inner shelf. The lignin compositions in offshore sediments under the influence of the Amazon plume are consistent with the riverbed samples suggesting that processing of OCterr during offshore transport does not change the encoded source information. Therefore, the lignin compositions preserved in these offshore sediments can reliably reflect the vegetation in the Amazon River catchment. In sediments from the Amazon fan, low lignin content, relatively depleted δ13CTOC values and high (Ad / Al)V ratios indicating highly degraded lignin imply that a significant fraction of the deposited OCterr is derived from petrogenic (sourced from ancient rocks) sources.
Seasonal Variations in Water Chemistry and Sediment Composition in Three Minnesota Lakes
NASA Astrophysics Data System (ADS)
Lascu, I.; Ito, E.; Banerjee, S.
2006-12-01
Variations in water chemistry, isotopic composition of dissolved inorganic carbon, sediment geochemistry and mineral magnetism were monitored for several months in three Minnesota lakes. Lake McCarrons, Deming Lake and Steel Lake are all small (<1 km2), deep (>16 m), stratified lakes that contain varved sediments for some time intervals or throughout. Deming Lake and Steel Lake are situated in north-central Minnesota, about 40 km apart, while Lake McCarrons is located in the heart of the Twin Cities and is heavily used for recreational purposes. The lakes have different mixing regimes (Steel is dimictic, Deming is meromictic and McCarrons is oligomictic) but all have well defined epilimnia and hypolimnia during the ice-free season. Water samples were collected bi-weekly from the epilimnia, upper and lower hypolimnia, while sediments were collected monthly from sediment traps placed in shallow and deep parts of the lakes. All lakes are moderately alkaline (80-280 ppm HCO3-) carbonate-producing systems, although calcite is being dissolved in the slightly acidic hypolimnetic waters of Deming Lake. The magnetic parameters reveal different distributions of the magnetic components in the three lakes, but all exhibit a general increase in the concentration of bacterial magnetosomes towards the end of summer. Differences in elemental concentrations, cation and anion profiles, and chemical behavior as the season progressed are also obvious among the three lakes. For the two lakes situated in the same climatic regime, this implies additional controls (besides climate) on water and sediment composition, such as local hydrology, substrate composition and biogeochemical in-lake processes.
An Investigation into Heavy Metal Contamination and Mobilization in the Lower Rouge River, Michigan
NASA Astrophysics Data System (ADS)
Shihadeh, M.; Forrester, J.; Napieralski, J. A.
2010-12-01
Similar to many densely populated watersheds in the Great Lakes Basin, the Rouge River in Michigan drains a heavily urbanized watershed, which, over time, has accumulated a substantial amount of contamination due to decades of manufacturing and refining industries. Statistically significant levels of heavy metals have been found in the bed sediment of the Rouge; however, little is known about the mobilization of these contaminated bed sediments. The goal of this study was to ascertain the extent to which these potentially contaminated sediments are mobilized and transported downstream. Suspended sediment samples were collected at four sites along the lower Rouge River using composite depth integrated sediment samples three times per week, resulting in a total of twenty samples from each site. Turbidity was measured simultaneously using a YSI datalogger at all sampling locations. Sediment was also extracted from floodplain soil pits and silted vegetation, as well as river bed sediment cores along stream channel cross-sections. Heavy metal concentrations (As, Cd, Cr, Cu, Fe, Pb, Hg, Ni, Se, Zn) were analyzed using ICP-MS and compared against both background characteristics for Michigan soils and EPA Hazardous Criteria Limits. As expected, a positive correlation exists between turbidity and heavy metal concentrations. Even in the sampling sites furthest upstream, heavy metal concentrations exceeded background soil characteristics, with a few also exceeding hazardous criteria limits. The heavy metal concentrations found in the Lower Rouge affirm the elevated pollution classification of the river, depict the overall influence of industrialization on stream health, and verify that contaminated sediments are being deposited in aquatic and floodplain environments during variable flow or high discharge events. Results from this study emphasize the need to remediate bed sediments in the Rouge and suggest that there may be significant bioaccumulation potential for organisms inhabiting the floodplain corridor.
Kumar, Amit; Ng, Daphne H P; Wu, Yichao; Cao, Bin
2018-05-28
Re-naturalized quarry lakes are important ecosystems, which support complex communities of flora and fauna. Microorganisms associated with sediment and water form the lowest trophic level in these ecosystems and drive biogeochemical cycles. A direct comparison of microbial taxa in water and sediment microbial communities is lacking, which limits our understanding of the dominant functions that are carried out by the water and sediment microbial communities in quarry lakes. In this study, using the 16S rDNA amplicon sequencing approach, we compared microbial communities in the water and sediment in two re-naturalized quarry lakes in Singapore and elucidated putative functions of the sediment and water microbial communities in driving major biogeochemical processes. The richness and diversity of microbial communities in sediments of the quarry lakes were higher than those in the water. The composition of the microbial communities in the sediments from the two quarries was highly similar to one another, while those in the water differed greatly. Although the microbial communities of the sediment and water samples shared some common members, a large number of microbial taxa (at the phylum and genus levels) were prevalent either in sediment or water alone. Our results provide valuable insights into the prevalent biogeochemical processes carried out by water and sediment microbial communities in tropical granite quarry lakes, highlighting distinct microbial processes in water and sediment that contribute to the natural purification of the resident water.
Characterization of stormwater runoff from bridge decks in eastern Massachusetts, 2014–16
Smith, Kirk P.; Sorenson, Jason R.; Granato, Gregory E.
2018-05-02
The quality of stormwater runoff from bridge decks (hereafter referred to as “bridge-deck runoff”) was characterized in a field study from August 2014 through August 2016 in which concentrations of suspended sediment (SS) and total nutrients were monitored. These new data were collected to supplement existing highway-runoff data collected in Massachusetts which were deficient in bridge-deck runoff concentration data. Monitoring stations were installed at three bridges maintained by the Massachusetts Department of Transportation in eastern Massachusetts (State Route 2A in the city of Boston, Interstate 90 in the town of Weston, and State Route 20 near Quinsigamond Village in the city of Worcester). The bridges had annual average daily traffic volumes from 21,200 to 124,000 vehicles per day; the land use surrounding the monitoring stations was 25 to 67 percent impervious.Automatic-monitoring techniques were used to collect more than 160 flow-proportional composite samples of bridge-deck runoff. Samples were analyzed for concentrations of SS, loss on ignition of suspended solids (LOI), particulate carbon (PC), total phosphorus (TP), total dissolved nitrogen (DN), and particulate nitrogen (PN). The distribution of particle size of SS also was determined for composite samples. Samples of bridge-deck runoff were collected year round during rain, mixed precipitation, and snowmelt runoff and with different dry antecedent periods throughout the 2-year sampling period.At the three bridge-deck-monitoring stations, median concentrations of SS in composite samples of bridge-deck runoff ranged from 1,490 to 2,020 milligrams per liter (mg/L); however, the range of SS in individual composites was vast at 44 to 142,000 mg/L. Median concentrations of SS were similar in composite samples collected from the State Route 2A and Interstate 90 bridge (2,010 and 2,020 mg/L, respectively), and lowest at the State Route 20 bridge (1,490 mg/L). Concentrations of coarse sediment (greater than 0.25 millimeters in diameter) dominated the SS matrix by more than an order of magnitude. Concentrations of LOI and PC in composite samples ranged from 15 to 1,740 mg/L and 6.68 to 1,360 mg/L, respectively, and generally represented less than 10 and 3 percent of the median mass of SS, respectively. Concentrations of TP in composite samples ranged from 0.09 to 7.02 mg/L; median concentrations of TP ranged from 0.505 to 0.69 mg/L and were highest on the bridge on State Route 2A in Boston. Concentrations of total nitrogen (TN) (sum DN and PN) in composite samples were variable (0.36 to 29 mg/L). Median DN (0.64 to 0.90 mg/L) concentrations generally represented about 40 percent of the TN concentration at each bridge and were similar to annual volume-weighted mean concentrations of nitrogen in precipitation in Massachusetts.Nonparametric statistical methods were used to test for differences between sample constituent concentrations among the three bridges. These results indicated that there are no statistically significant differences for concentrations of SS, LOI, PC, and TP among the three bridges (one-way analysis of variance test on rank-transformed data, 95-percent confidence level). Test results for concentrations of TN in composite samples indicated that concentrations of TN collected on State Route 20 near Quinsigamond Village were significantly higher than those concentrations collected on State Route 2A in Boston and Interstate 90 near Weston. Median concentrations of TN were about 93 and 55 percent lower at State Route 2A and at Interstate 90, respectively, compared to the median concentrations of TN at State Route 20.Samples of sediment were collected from five fixed locations on each bridge on three occasions during dry weather to calculate semiquantitative distributions of sediment yields on the bridge surface relative to the monitoring location. Mean yields of bridge-deck sediment during this study for State Route 2A in Boston, Interstate 90 near Weston, and State Route 20 near Quinsigamond Village were 1,500, 250, and 5,700 pounds per curb-mile, respectively. Sediment yields at each sampling location varied widely (26 to 25,000 pounds per curb-mile) but were similar to yields reported elsewhere in Massachusetts and the United States. Yields calculated for each sampling location indicated that the sediment was not evenly distributed across each bridge in this study for plausible reasons such as bridge slope, vehicular tracking, and bridge deterioration.Bridge-deck sediment quality was largely affected by the distribution of sediment particle size. Concentrations of TP in the fine sediment-size fraction (less than 0.0625 millimeter in diameter) of samples of bridge-deck sediment were about 6 times greater than in the coarse size fraction. Concentrations for many total-recoverable metals were 2 to 17 times greater in the fine size fraction compared to concentrations in the coarse size fraction (greater than or equal to 0.25 millimeter in diameter), and concentrations of total-recoverable copper and lead in the fine size fraction were 2 to 65 times higher compared to concentrations in the intermediate (greater than or equal to 0.0625 to 0.25 millimeter in diameter) or the coarse size fraction. However, the proportion of sediment particles less than 0.0625 millimeter in diameter in composite samples of bridge-deck runoff was small (median values range from 4 to 8 percent at each bridge) compared to the larger sediment particle-size mass. As a result, more than 50 percent of the sediment-associated TP, aluminum, chromium, manganese, and nickel was estimated to be associated with the coarse size fraction of the SS load. In contrast, about 95 percent of the estimated sediment-associated copper concentration was associated with the fine size fraction of the SS load.Version 1.0.2 of the Stochastic Empirical Loading and Dilution Model was used to simulate long-term (29–30-year) concentrations and annual yields of SS, TP, and TN in bridge-deck runoff and in discharges from a hypothetical stormwater treatment best-management practice structure. Three methods (traditional statistics, robust statistics, and L-moments) were used to calculate statistics for stochastic simulations because the high variability in measured concentration values during the field study resulted in extreme simulated concentrations. Statistics of each dataset, including the average, standard deviation, and skew of the common (base 10) logarithms, for each of the three bridges, and for a lumped dataset, were calculated and used for simulations; statistics representing the median of statistics calculated for the three bridges also were used for simulations. These median statistics were selected for the interpretive simulations so that the simulations could be used to estimate concentrations and yields from other, unmonitored bridges in Massachusetts. Comparisons of the standard and robust statistics indicated that simulation results with either method would be similar, which indicated that the large variability in simulated results was not caused by a few outliers. Comparison to statistics calculated by the L-moments methods indicated that L-moments do not produce extreme concentrations; however, they also do not produce results that represent the bulk of concentration data.The runoff-quality risk analysis indicated that bridge-deck runoff would exceed discharge standards commonly used for large, advanced wastewater treatment plants, but that commonly used stormwater best-management practices may reduce the percentage of exceedances by one-half. Results of simulations indicated that long-term average yields of TN, TP, and SS may be about 21.4, 6.44, and 40,600 pounds per acre per year, respectively. These yields are about 1.3, 3.4, and 16 times simulated ultra-urban highway yields in Massachusetts; however, simulations indicated that use of a best-management practice structure to treat bridge-deck runoff may reduce discharge yields to about 10, 2.8, and 4,300, pounds per acre per year, respectively.
Innovations in Sampling Pore Fluids From Deep-Sea Hydrate Sites
NASA Astrophysics Data System (ADS)
Lapham, L. L.; Chanton, J. P.; Martens, C. S.; Schaefer, H.; Chapman, N. R.; Pohlman, J. W.
2003-12-01
We have developed a sea-floor probe capable of collecting and returning undecompressed pore water samples at in situ pressures for determination of dissolved gas concentrations and isotopic values in deep-sea sediments. In the summer of 2003, we tested this instrument in sediments containing gas hydrates off Vancouver Island, Cascadia Margin from ROPOS (a remotely operated vehicle) and in the Gulf of Mexico from Johnson-Sea-Link I (a manned submersible). Sediment push cores were collected alongside the probe to compare methane concentrations and stable carbon isotope compositions in decompressed samples vs. in situ samples obtained by probe. When sufficient gas was available, ethane and propane concentrations and isotopes were also compared. Preliminary data show maximum concentrations of dissolved methane to be 5mM at the Cascadia Margin Fish Boat site (850m water depth) and 12mM in the Gulf of Mexico Bush Hill hydrate site (550m water depth). Methane concentrations were, on average, five times as high in probe samples as in the cores. Carbon isotopic values show a thermogenic input and oxidative effects approaching the sediment-water interface at both sites. This novel data set will provide information that is critical to the understanding of the in situ processes and environmental conditions controlling gas hydrate occurrences in sediments.
Identification of Marbon in the Indiana Harbor and Ship Canal.
Guo, Jiehong; Venier, Marta; Romanak, Kevin; Westenbroek, Stephen; Hites, Ronald A
2016-12-20
Marbon is isomeric with Dechlorane Plus (DP). Both are produced by the Diels-Alder condensation of hexachlorocyclopentadiene with cyclic dienes, and both have elemental compositions of C 18 H 12 Cl 12 . Dechlorane Plus is commonly found in the environment throughout the world, but Marbon has, so far, only been detected at low levels in one sediment core collected near the mouth of the Niagara River in Lake Ontario. Here we report on the concentrations of Marbon and anti-DP in 59 water samples from five Lake Michigan tributaries [the Grand, Kalamazoo, St. Joseph, and Lower Fox Rivers, and the Indiana Harbor and Ship Canal (IHSC)], 10 surface sediment samples from the IHSC, and 2 surface sediment samples from the Chicago Sanitary and Ship Canal. Three Marbon diastereomers were detected in the water and sediment samples from the IHSC, which is far from the location of its previous detection in Lake Ontario. The sum of the concentrations of the three Marbons was greater in the water from the IHSC (N = 11, median =150 pg/L) compared to those in water from the other four tributaries (N = 11-13, medians =0.9-2.0 pg/L). Marbon concentrations in sediment samples from the IHSC were up to 450 ng/g dry weight. Anti-DP was also measured for comparison. Its concentrations were not significantly different among the water samples, but its sediment concentrations in the IHSC were significantly correlated with those of Marbon. The source of Marbon contamination in the IHSC is not clear.
Bern, Carleton R.; Shah, Anjana K.; Benzel, William M.; Lowers, Heather A.
2016-01-01
Rare earth element (REE) resources are currently of great interest because of their importance as raw materials for high-technology manufacturing. The REE-phosphates monazite (light REE enriched) and xenotime (heavy REE enriched) resist weathering and can accumulate in placer deposits as part of the heavy mineral assemblage. The Atlantic and Gulf coastal plains of the southeastern United States are known to host heavy mineral deposits with economic concentrations of zircon, ilmenite and rutile. This study provides a perspective on the distribution and composition of REE phosphate minerals in the region. The elemental chemistry and mineralogy of sands and associated heavy-mineral assemblages from new and archived sediment samples across the coastal plains are examined, along with phase-specific compositions of monazite, xenotime and zircon. Both monazite and xenotime are present across the coastal plains. The phase-specific compositions allow monazite content to be estimated using La as a geochemical proxy. Similarly, both Y and Yb are geochemical proxies for xenotime, but their additional presence in zircon and monazite require a correction to prevent overestimation of xenotime content. Applying this correction, maps of monazite and xenotime content across the coastal plains were generated using sample coverage from the National Geochemical Database (NGS) and National Uranium Resource Evaluation (NURE). The NGS and NURE approach of sampling stream sediments in small watersheds links samples to nearby lithologies. The results show an approximately 40 km-wide band of primarily Cretaceous, marine sediments bordering the Piedmont province from North Carolina to Alabama in which monazite and xenotime content are relatively high (up to 4.4 wt. % in < 150 μm bulk sediment). Strong correlations between concentrations of the two phases were found, with estimated monazite:xenotime ratios ranging approximately 6:1 to 12:1 depending upon the dataset analyzed. From a resource perspective, xenotime correlation with monazite indicates a heavy REE potential in coastal plain placers, and exploration may be warranted within the identified coastal plain band along the boundary of the Piedmont region.
Nicastro, Andrea; Bishop, Melanie J.
2013-01-01
Among the impacts of coastal settlements to estuaries, nutrient pollution is often singled out as a leading cause of modification to the ecological communities of soft sediments. Through sampling of 48 sites, distributed among 16 estuaries of New South Wales, Australia, we tested the hypotheses that (1) anthropogenic nutrient loads would be a better predictor of macrofaunal communities than estuarine geomorphology or local sediment characteristics; and (2) local environmental context, as determined largely by sediment characteristics, would modify the relationship between nutrient loading and community composition. Contrary to the hypothesis, multivariate multiple regression analyses revealed that sediment grain size was the best predictor of macrofaunal assemblage composition. When samples were stratified according to median grain size, relationships between faunal communities and nitrogen loading and latitude emerged, but only among estuaries with sandier sediments. In these estuaries, capitellid and nereid polychaetes and chironomid larvae were the taxa that showed the strongest correlations with nutrient loading. Overall, this study failed to provide evidence of a differential relationship between diffuse nutrient enrichment and benthic macrofauna across a gradient of 7° of latitude and 4°C temperature. Nevertheless, as human population growth continues to place increasing pressure on southeast Australian estuaries, manipulative field studies examining when and where nutrient loading will lead to significant changes in estuarine community structure are needed. PMID:23799037
Hladik, Michelle; Orlando, James L.; Kuivila, Kathryn
2009-01-01
Loss of pyrethroid insecticides onto surfaces during sample collection can confound the interpretation of analytical and toxicity test results. Sample collection devices, container materials, and water matrix composition have a significant influence on the association of pyrethroids to container walls, which can be as high as 50 percent. Any sample collection method involving transfer through multiple containers or pieces of equipment increases the potential for pyrethroid loss. This loose 'surface-association' with container walls can be reversed through agitation. When sampling water matrices with pumps or autosamplers, no pyrethroids were lost as long as the water was moving continuously through the system. When collecting water matrices in containers, the material with the least amount of pyrethroid sorption is as follows: glass less than (<) plastic less than (<) Teflon. Additionally, pyrethroids were easier to re-suspend from the glass container walls. Since the amount of surface-association is proportional to the ratio of volume-to-contact-area of the sample, taking larger-volume field samples (greater than 3 liters) reduced pyrethroid losses to less than 10 percent. The amount of surface-association cannot be predicted easily because of the dependence on water matrix composition; samples with higher dissolved organic carbon or suspended-sediment concentrations were observed to have lower percent loss. Sediment samples were not affected by glass-container sorption (the only containers tested). Standardized sample-collection protocols are critical to yield accurate pyrethroid concentrations for assessment of potential effects, and have been summarized in an accompanying standard operating procedure.
Geochemical evidence for the provenance of aeolian deposits in the Qaidam Basin, Tibetan Plateau
NASA Astrophysics Data System (ADS)
Du, Shisong; Wu, Yongqiu; Tan, Lihua
2018-06-01
The main purpose of this study is to analyse the material source of different grain-size components of dune sand in the Qaidam Basin. We determined the trace and rare earth element (REE) compositions and Sr-Nd isotopic compositions of the coarse (75-500 μm) and fine (<75 μm) fractions of surface sediment samples. The comparison of the immobile trace element and REE compositions, Sr-Nd isotopic compositions and multidimensional scaling (MDS) results of the dune sands with those of different types of sediments in potential source areas revealed the following information. (1) The fine- and coarse-grained fractions of dune sands in the Qaidam Basin exhibit distinctly different elemental concentrations, elemental patterns and characteristic parameters of REE. Moreover, Sr-Nd isotopic differences also exist between different grain-size fractions of aeolian sand, which means that different grain-size fractions of these dune sands have different source areas. (2) The geochemical characteristics of the coarse particles of dune sand exhibit obvious regional heterogeneity and generally record a local origin derived from local fluvial sediments and alluvial/proluvial sediments. The coarse- and fine-grained dune sand in the southern Qaidam Basin mainly came from Kunlun Mountains, whereas the coarse- and fine-grained dune sand in the northeastern Qaidam Basin mainly came from Qilian Mountains. (3) The fine-grained fractions of sediments throughout the entire Qaidam Basin may have been affected by the input of foreign materials from the Tarim Basin.
NASA Astrophysics Data System (ADS)
Pasqual, Catalina; Goñi, Miguel A.; Tesi, Tommaso; Sanchez-Vidal, Anna; Calafat, Antoni; Canals, Miquel
2013-11-01
Previous projects in the Gulf of Lion have investigated the path of terrigenous material in the Rhone deltaic system, the continental shelf and the nearby canyon heads. This study focuses on the slope region of the Gulf of Lion to further describe particulate exchanges with ocean’s interior through submarine canyons and atmospheric inputs. Nine sediment traps were deployed from the heads to the mouths of Lacaze-Duthiers and Cap de Creus submarine canyons and on the southern open slope from October 2005 to October 2006. Sediment trap samples were analyzed by CuO oxidation to investigate spatial and temporal variability in the yields and compositional characteristics of terrigenous biomarkers such as lignin-derived phenols and cutin acids. Sediment trap data show that the Dense Shelf Water Cascading event that took place in the months of winter 2006 (January, February and March) had a profound impact on particle fluxes in both canyons. This event was responsible for the majority of lignin phenol (55.4%) and cutin acid (42.8%) inputs to submarine canyons, with lignin compositions similar to those measured along the mid- and outer-continental shelf, which is consistent with the resuspension and lateral transfer of unconsolidated shelf sediment to the canyons. The highest lithogenic-normalized lignin derived phenols contents in sediment trap samples were found during late spring and summer at all stations (i.e., 193.46 μg VP g-1 lithogenic at deep slope station), when river flow, wave energy and total particle fluxes were relatively low. During this period, lignin compositions were characterized by elevated cinnamyl to vanillyl phenol ratios (>3) at almost all stations, high p-coumaric to ferulic acid ratios (>3) and high yields of cutin acids relative to vanillyl phenols (>1), all trends that are consistent with high pollen inputs. Our results suggest marked differences in the sources and transport processes responsible for terrigenous material export along submarine canyons, mainly consisting of fluvial and shelf sediments during winter and atmospheric dust inputs during spring and summer.
NASA Astrophysics Data System (ADS)
Janssen, S.; Johnson, M. W.; Barkay, T.; Blum, J. D.; Reinfelder, J. R.
2014-12-01
Tracking monomethylmercury (MeHg) from its source in soils and sediments through various environmental compartments and transformations is critical to understanding its accumulation in aquatic and terrestrial food webs. Advances in the field of mercury (Hg) stable isotopes have allowed for the tracking of discrete Hg sources and the examination of photochemical and bacterial transformations. Despite analytical advances, measuring the Hg stable isotopic signature of MeHg in environmental samples or laboratory experiments remains challenging due to difficulties in the quantitative separation of MeHg from complex matrices with high concentrations of inorganic Hg. To address these challenges, we have developed a MeHg isolation method for sediments and bacterial cultures which involves separation by gas chromatography. The MeHg eluting from the GC is passed through a pyrolysis column and purged onto a gold amalgam trap which is then desorbed into a final oxidizing solution. A MeHg reference standard carried through our separation process retained its isotopic composition within 0.02 ‰ for δ202Hg, and for native estuarine sediments, MeHg recoveries were 80% to 100%. For sediment samples from the Hackensack and Passaic Rivers (New Jersey, USA), δ202Hg values for MeHg varied from -1.2 to +0.58 ‰ (relative to SRM 3133) and for individual samples were significantly different from that of total Hg (-0.38 ± 0.06 ‰). No mass independent fractionation was observed in MeHg or total Hg from these sediments. Pure cultures of Geobacter sulfurreducens, grown under fermentative conditions showed preferential enrichment of lighter isotopes (lower δ202Hg) during Hg methylation. The Hg stable isotope signatures of MeHg in sediments and laboratory methylation experiments will be discussed in the context of the formation and degradation of MeHg in the environment and the bioaccumulation of MeHg in estuarine food webs.
Fine-grained suspended sediment source identification for the Kharaa River basin, northern Mongolia
NASA Astrophysics Data System (ADS)
Rode, Michael; Theuring, Philipp; Collins, Adrian L.
2015-04-01
Fine sediment inputs into river systems can be a major source of nutrients and heavy metals and have a strong impact on the water quality and ecosystem functions of rivers and lakes, including those in semiarid regions. However, little is known to date about the spatial distribution of sediment sources in most large scale river basins in Central Asia. Accordingly, a sediment source fingerprinting technique was used to assess the spatial sources of fine-grained (<10 microns) sediment in the 15 000 km2 Kharaa River basin in northern Mongolia. Five field sampling campaigns in late summer 2009, and spring and late summer in both 2010 and 2011, were conducted directly after high water flows, to collect an overall total of 900 sediment samples. The work used a statistical approach for sediment source discrimination with geochemical composite fingerprints based on a new Genetic Algorithm (GA)-driven Discriminant Function Analysis, the Kruskal-Wallis H-test and Principal Component Analysis. The composite fingerprints were subsequently used for numerical mass balance modelling with uncertainty analysis. The contributions of the individual sub-catchment spatial sediment sources varied from 6.4% (the headwater sub-catchment of Sugnugur Gol) to 36.2% (the Kharaa II sub-catchment in the middle reaches of the study basin) with the pattern generally showing higher contributions from the sub-catchments in the middle, rather than the upstream, portions of the study area. The importance of riverbank erosion was shown to increase from upstream to midstream tributaries. The source tracing procedure provides results in reasonable accordance with previous findings in the study region and demonstrates the general applicability and associated uncertainties of an approach for fine-grained sediment source investigation in large scale semi-arid catchments. The combined application of source fingerprinting and catchment modelling approaches can be used to assess whether tracing estimates are credible and in combination such approaches provide a basis for making sediment source apportionment more compelling to catchment stakeholders and managers.
Carkovic, Athena B; Pastén, Pablo A; Bonilla, Carlos A
2015-04-15
Water erosion is a leading cause of soil degradation and a major nonpoint source pollution problem. Many efforts have been undertaken to estimate the amount and size distribution of the sediment leaving the field. Multi-size class water erosion models subdivide eroded soil into different sizes and estimate the aggregate's composition based on empirical equations derived from agricultural soils. The objective of this study was to evaluate these equations on soil samples collected from natural landscapes (uncultivated) and fire-affected soils. Chemical, physical, and soil fractions and aggregate composition analyses were performed on samples collected in the Chilean Patagonia and later compared with the equations' estimates. The results showed that the empirical equations were not suitable for predicting the sediment fractions. Fine particles, including primary clay, primary silt, and small aggregates (<53 μm) were over-estimated, and large aggregates (>53 μm) and primary sand were under-estimated. The uncultivated and fire-affected soils showed a reduced fraction of fine particles in the sediment, as clay and silt were mostly in the form of large aggregates. Thus, a new set of equations was developed for these soils, where small aggregates were defined as particles with sizes between 53 μm and 250 μm and large aggregates as particles>250 μm. With r(2) values between 0.47 and 0.98, the new equations provided better estimates for primary sand and large aggregates. The aggregate's composition was also well predicted, especially the silt and clay fractions in the large aggregates from uncultivated soils (r(2)=0.63 and 0.83, respectively) and the fractions of silt in the small aggregates (r(2)=0.84) and clay in the large aggregates (r(2)=0.78) from fire-affected soils. Overall, these new equations proved to be better predictors for the sediment and aggregate's composition in uncultivated and fire-affected soils, and they reduce the error when estimating soil loss in natural landscapes. Copyright © 2015 Elsevier B.V. All rights reserved.
Wang, Kai; Zou, Li; Lu, Xinxin; Mou, Xiaozhen
2018-08-15
Marginal sea sediments receive organic substrates of different origins, but whether and to what extent sediment microbial communities are reflective of the different sources of organic substrates remain unclear. To address these questions, sediment samples were collected in two connected China marginal seas, i.e., Bohai Sea and Yellow Sea, and their two major tributaries (Yellow River and Liao River). Sediment bacterial community composition (BCC) was examined using 16S rRNA gene pyrosequencing. In addition, physicochemical variables that describe environmental conditions and sediment features were measured. Our results revealed that BCCs changed with salinity and organic carbon (OC) content. Members of Gaiellaceae and Comamonadaceae showed a rapid decrease as salinity and phytoplankton-derived OC increased, while Piscirickettsiaceae and Desulfobulbaceae exhibited an opposite distribution pattern. Differences of riverine vs. marginal sea sediment BCCs could be mostly explained by salinity. However, within the marginal seas, sediment BCC variations were mainly explained by OC-related variables, including terrestrial-derived fatty acids (Terr_FA), phytoplankton-derived polyunsaturated fatty acids (Phyto_PUFA), stable carbon isotopes (δ 13 C), and carbon to nitrogen ratio (C/N). In addition to environmental variables, network analysis suggested that interactions among individual bacterial taxa might be important in shaping sediment BCCs in the studied areas. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rufino, Marta M.; Baptista, Paulo; Pereira, Fábio; Gaspar, Miguel B.
2018-01-01
In the current work we propose a new method to sample surface sediment during bivalve fishing surveys. Fishing institutes all around the word carry out regular surveys with the aim of monitoring the stocks of commercial species. These surveys comprise often more than one hundred of sampling stations and cover large geographical areas. Although superficial sediment grain sizes are among the main drivers of benthic communities and provide crucial information for studies on coastal dynamics, overall there is a strong lack of this type of data, possibly, because traditional surface sediment sampling methods use grabs, that require considerable time and effort to be carried out on regular basis or on large areas. In face of these aspects, we developed an easy and un-expensive method to sample superficial sediments, during bivalve fisheries monitoring surveys, without increasing survey time or human resources. The method was successfully evaluated and validated during a typical bivalve survey carried out on the Northwest coast of Portugal, confirming that it had any interference with the survey objectives. Furthermore, the method was validated by collecting samples using a traditional Van Veen grabs (traditional method), which showed a similar grain size composition to the ones collected by the new method, on the same localities. We recommend that the procedure is implemented on regular bivalve fishing surveys, together with an image analysis system to analyse the collected samples. The new method will provide substantial quantity of data on surface sediment in coastal areas, using a non-expensive and efficient manner, with a high potential application in different fields of research.
NASA Astrophysics Data System (ADS)
García-Alonso, J.; Lercari, D.; Araujo, B. F.; Almeida, M. G.; Rezende, C. E.
2017-03-01
Estuarine transitional waters constitute regions affected by or at risk of anthropogenic impact due to urbanization and industrial development. The elemental composition of the intertidal biofilm sediment is an excellent marker for the detection of any impact, and may exert a bottom-up influence by natural concatenation to higher organization levels (e.g. molecules, cells, organisms, communities). The distribution pattern of elemental composition (total and bioavailable fraction) along the estuary axes was analyzed, disentangling potential shifts produced by human activities. We predict that most abundant elements in the Rio de la Plata estuary are the natural earth-crust components and that these will not show any evident gradient along the estuarine axis. Elements involved in human related processes will shape concentration gradients from the most probable source (i.e. cities) indicating estuarine pollution. The research strategy involved the sampling of intertidal biofilm along the entire estuary and the registration of environmental variables and the total and bioavailable elemental composition. Sampling sites represent pristine, agricultural, and urbanized areas along a 428-km-long coastline comprising the inner, middle and outer Río de la Plata estuarine zones and a coastal fringe of oceanic beaches of Uruguay (South America). Biofilm sediment samples were collected in Autumn 2011 and digested for total and extractable (bioavailable) elements quantification measured by ICP-OES. Mercury (Hg) sediments were digested with aqua regia and quantified by cold vapor atomic absorption (CVAAS). The most abundant elements measured were Al, Fe, and Ca in all sampling. Anthropogenic marker elements such as Hg, Cr, Pb, Zn, and Cu were found, even at potentially toxic levels, at urban beaches at the city of Montevideo. The ordination of samples highlights the distinctive characteristics of urban beaches, placed in a particular location along the first principal component. This position is mainly driven by human impact marker metals and C/N ratios. The results highlight the value of bioavailable elemental composition analyses of benthic biofilm as a tool for detecting shifts in estuarine systems.
NASA Technical Reports Server (NTRS)
Smith, R. J.; Horgan, B.; Rampe, E.; Dehouck, E.; Morris, R. V.
2017-01-01
X-ray diffraction (XRD) amorphous phases have been found as major components (approx.15-60 wt%) of all rock and soil samples measured by the CheMin XRD instrument in Gale Crater, Mars. The nature of these phases is not well understood and could be any combination of primary (e.g., glass) and secondary (e.g., allophane) phases. Amorphous phases form in abundance during surface weathering on Earth. Yet, these materials are poorly characterized, and it is not certain how properties like composition and structure change with formation environment. The presence of poorly crystalline phases can be inferred from XRD patterns by the appearance of a low angle rise (< or approx.10deg 2(theta)) or broad peaks in the background at low to moderate 2(theta) angles (amorphous humps). CheMin mineral abundances combined with bulk chemical composition measurements from the Alpha Particle X-ray Spectrometer (APXS) have been used to estimate the abundance and composition of the XRD amorphous materials in soil and rock samples on Mars. Here we apply a similar approach to a diverse suite of terrestrial samples - modern soils, glacial sediments, and paleosols - in order to determine how formation environment, climate, and diagenesis affect the abundance and composition of X-ray amorphous phases.
Ettinger, Cassandra L.; Voerman, Sofie E.; Lang, Jenna M.; Stachowicz, John J.
2017-01-01
Background Zostera marina (also known as eelgrass) is a foundation species in coastal and marine ecosystems worldwide and is a model for studies of seagrasses (a paraphyletic group in the order Alismatales) that include all the known fully submerged marine angiosperms. In recent years, there has been a growing appreciation of the potential importance of the microbial communities (i.e., microbiomes) associated with various plant species. Here we report a study of variation in Z. marina microbiomes from a field site in Bodega Bay, CA. Methods We characterized and then compared the microbial communities of root, leaf and sediment samples (using 16S ribosomal RNA gene PCR and sequencing) and associated environmental parameters from the inside, edge and outside of a single subtidal Z. marina patch. Multiple comparative approaches were used to examine associations between microbiome features (e.g., diversity, taxonomic composition) and environmental parameters and to compare sample types and sites. Results Microbial communities differed significantly between sample types (root, leaf and sediment) and in sediments from different sites (inside, edge, outside). Carbon:Nitrogen ratio and eelgrass density were both significantly correlated to sediment community composition. Enrichment of certain taxonomic groups in each sample type was detected and analyzed in regard to possible functional implications (especially regarding sulfur metabolism). Discussion Our results are mostly consistent with prior work on seagrass associated microbiomes with a few differences and additional findings. From a functional point of view, the most significant finding is that many of the taxa that differ significantly between sample types and sites are closely related to ones commonly associated with various aspects of sulfur and nitrogen metabolism. Though not a traditional model organism, we believe that Z. marina can become a model for studies of marine plant-microbiome interactions. PMID:28462046
Reynolds, Richard L.; Rosenbaum, Joseph G.; Thompson, Robert S.
2008-01-01
We describe here results of magnetic susceptibility (MS) measurements and magnetic mineralogy of sediments sampled in three cores from the south basin of Great Salt Lake. The cores were obtained in 1996 with a Kullenburg-type piston corer at sites in close proximity: core 96-4 at 41 deg 01.00' N, 112 deg 28.00' W and cores 96-5 and 96-6 at 41 deg 00.09' N, 112 deg 23.05' W. Cores 96-5 (2.16 m long) and -6 combine to make a composite 11.31-m sediment record. Sediments in core 96-4 (5.54 m long) correspond to the approximate depth interval of 3.9-9.6 m in the composite core of 96-5 and -6 based on similarities in the MS records as described below. The central goal of the research was to provide a sediment record of paleoenvironmental change in the northeastern Basin and Range Province over the past 40,000 years. Specific targets included a sedimentologic record of lake-level change combined with a pollen record of climatic change.
NASA Astrophysics Data System (ADS)
Hasberg, Ascelina; Melles, Martin; Morlock, Marina; Vogel, Hendrik; Russel, James M.; Bijaksana, Satria
2016-04-01
In summer 2015, a drilling operation funded by the International Continental Scientific Drilling Program (ICDP) was conducted at Lake Towuti (2.75°S, 121.5°E), the largest tectonically formed lake (surface area: 561 km²) of the Republic Indonesia. The Towuti Drilling Project (TDP) recovered more than 1000 meters of sediment core from three sites. At all three sites replicate cores down to 133, 154, and 174 m below lake floor have penetrated the entire lake sediment record, which is expected to comprise the past ca. 650.000 years continuously. Lake Towutís sediment record thus can provide unique information for instance concerning the climatic and environmental history in the Indo-Pacific-Warm-Pool (IPWP) and concerning the evolutionary biology in SE Asia. For a better understanding of the palaeoenvironmental proxies to be analyzed on the drill cores, the modern processes of sediment formation in the lake and in its catchment - under known environmental conditions - were investigated on a set of 84 lake sediment surface samples. Sampling was conducted by grab sampler (UWITEC Corp., Austria) in a grid of 1 to 4 km resolution that covers the entire lake. The samples were analyzed for inorganic geochemical composition (XRF powder scans and ICP-MS), magnetic susceptibility (Kappabridge), grain-size distribution (laser scanner), biogenic components (smear-slide analyses), biogenic silica contents (leaching), and carbonate, total organic carbon (TOC), nitrogen (TN), and sulfur (TS) concentrations (elemental analyzer). The sediments close to the lake shores and in front of the major river inlets are characterized by mean grain sizes coarser than average and high magnetic susceptibilities presented by high ratios of Cr, Ni, Co, and Zr. This reflects higher energies due to wave action and fluvial sediment supply, as well as the occurrence of magnetic minerals particularly in the sand and gravel fractions of the sediments. In regions of deeper waters and more distal to the shore the grain size and magnetic susceptibility decrease, but the organic carbon vs. total sulfur (C/S) ratio and the redox-sensitive elements such as U, Cd, Mo, and V increase. This suggests that sulfur accumulation in lake Towuti is controlled by autochthoneous pyrite formation, in dependence on differences in redox conditions, rather than gypsum accumulation. Highest silicon (Si) concentrations appear in front of the four major inlets of Lake Towuti, however, a distinct maximum also occurs close to the southeastern shore, where larger river inlets are missing. Hence, the silicon distribution is partly controlled by fluvial input and partly by biogenic silica deposition; the latter is confirmed by high concentrations of pelagic and benthic diatoms as well as sponge spiculae in smear slides from the sediments at the southeastern shore. Hence, the data thus far obtained on the surface sediments of lake Towuti show a strong influence of fluvial sediment supply and water-depth dependent redox conditions on the sediment composition. No indication, in contrast, was found for a significant influence of lake currents on the distribution of the sediments supplied by riverine input.
Estimation of sediment sources using selected chemical tracers in the Perry lake basin, Kansas, USA
Juracek, K.E.; Ziegler, A.C.
2009-01-01
The ability to achieve meaningful decreases in sediment loads to reservoirs requires a determination of the relative importance of sediment sources within the contributing basins. In an investigation of sources of fine-grained sediment (clay and silt) within the Perry Lake Basin in northeast Kansas, representative samples of channel-bank sources, surface-soil sources (cropland and grassland), and reservoir bottom sediment were collected, chemically analyzed, and compared. The samples were sieved to isolate the <63 ?? m fraction and analyzed for selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 25 trace elements, and the radionuclide cesium-137 (137Cs). On the basis of substantial and consistent compositional differences among the source types, total nitrogen (TN), total phosphorus (TP), total organic carbon (TOC), and 137Cs were selected for use in the estimation of sediment sources. To further account for differences in particle-size composition between the sources and the reservoir bottom sediment, constituent ratio and clay-normalization techniques were used. Computed ratios included TOC to TN, TOC to TP, and TN to TP. Constituent concentrations (TN, TP, TOC) and activities (137Cs) were normalized by dividing by the percentage of clay. Thus, the sediment-source estimations involved the use of seven sediment-source indicators. Within the Perry Lake Basin, the consensus of the seven indicators was that both channel-bank and surface-soil sources were important in the Atchison County Lake and Banner Creek Reservoir subbasins, whereas channel-bank sources were dominant in the Mission Lake subbasin. On the sole basis of 137Cs activity, surface-soil sources contributed the most fine-grained sediment to Atchison County Lake, and channel-bank sources contributed the most fine-grained sediment to Banner Creek Reservoir and Mission Lake. Both the seven-indicator consensus and 137Cs indicated that channel-bank sources were dominant for Perry Lake and that channel-bank sources increased in importance with distance downstream in the basin. ?? 2009 International Research and Training Centre on Erosion and Sedimentation and the World Association for Sedimentation and Erosion Research.
Influence of composite particle formation on the performance and economics of grit removal.
Judd, S J; Khraisheh, M; Al-Jaml, K L; Jarman, D M; Jahfer, T
2017-01-01
Grit is routinely removed at the headworks of municipal wastewater treatment works to limit its onerous impact on downstream processes. Grit separation technologies are normally based on sedimentation of a homogeneous material (usually sand). However, in practice inorganic grit particles are likely to be combined with organic matter, such as fats oils and grease (FOG), producing a composite particle whose settling properties vary with the inorganic/organic content. A study of the impact of particle composition on its sedimentation has been conducted encompassing theoretical description (for particle settling in transitional flow), practical measurement and economic analysis. Practical measurement included sedimentation tests of homogeneous and composite particles along with characterisation of accumulated granular material sampled from actual municipal wastewater treatment works. The economic assessment was based on data from full-scale installations in the UK and US pertaining to remedial measures undertaken as a result of grit impacts, primarily accumulation in vessels and channels and damage of mechanical equipment through abrasion. Practical tests revealed coating of the sand grains with a FOG analogue (candlewax) to generate composite particles containing 45% wax by weight. The coated particles were then 30% less dense, 22% larger and 14% less settleable, on average, than the uncoated particles. Samples of accumulated grit taken from anaerobic digesters and aeration lanes from a full-scale plant indicated a FOG content (43%) similar to that of the waxed particles in the bench-scale tests, thus leading to a similar grain retardation of 14% assuming the FOG to be entirely associated with the grit. An assessment of the impact of the consequential breakthrough of grit particles due to buoyancy generated by composite particle formation indicated a $1.1 increase in operating costs per megalitre (ML) wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jochum, Lara M.; Chen, Xihan; Lever, Mark A.; Loy, Alexander; Jørgensen, Bo Barker; Schramm, Andreas
2017-01-01
ABSTRACT Most sulfate-reducing microorganisms (SRMs) present in subsurface marine sediments belong to uncultured groups only distantly related to known SRMs, and it remains unclear how changing geochemical zones and sediment depth influence their community structure. We mapped the community composition and abundance of SRMs by amplicon sequencing and quantifying the dsrB gene, which encodes dissimilatory sulfite reductase subunit beta, in sediment samples covering different vertical geochemical zones ranging from the surface sediment to the deep sulfate-depleted subsurface at four locations in Aarhus Bay, Denmark. SRMs were present in all geochemical zones, including sulfate-depleted methanogenic sediment. The biggest shift in SRM community composition and abundance occurred across the transition from bioturbated surface sediments to nonbioturbated sediments below, where redox fluctuations and the input of fresh organic matter due to macrofaunal activity are absent. SRM abundance correlated with sulfate reduction rates determined for the same sediments. Sulfate availability showed a weaker correlation with SRM abundances and no significant correlation with the composition of the SRM community. The overall SRM species diversity decreased with depth, yet we identified a subset of highly abundant community members that persists across all vertical geochemical zones of all stations. We conclude that subsurface SRM communities assemble by the persistence of members of the surface community and that the transition from the bioturbated surface sediment to the unmixed sediment below is a main site of assembly of the subsurface SRM community. IMPORTANCE Sulfate-reducing microorganisms (SRMs) are key players in the marine carbon and sulfur cycles, especially in coastal sediments, yet little is understood about the environmental factors controlling their depth distribution. Our results suggest that macrofaunal activity is a key driver of SRM abundance and community structure in marine sediments and that a small subset of SRM species of high relative abundance in the subsurface SRM community persists from the sulfate-rich surface sediment to sulfate-depleted methanogenic subsurface sediment. More generally, we conclude that SRM communities inhabiting the subsurface seabed assemble by the selective survival of members of the surface community. PMID:28939599
Formation of siliceous sediments in brandy after diatomite filtration.
Gómez, J; Gil, M L A; de la Rosa-Fox, N; Alguacil, M
2015-03-01
Brandy is quite a stable spirit but sometimes light sediment appears. This sediment was separated and analysed by IR and SEM-EDX. It was revealed that the sediment is composed mostly of silica and residual organic matter. Silica was present as an amorphous phase and as microparticles. In an attempt to reproduce the formation of the sediment, a diatomite extract was prepared with an ethanol/water mixture (36% vol.) and a calcined diatomite similar to that used in brandy filtration. This extract was added to unfiltered brandy in different amounts. After 1 month, the Si concentration decreased in all samples and sediments with similar compositions and features to those found in the unstable brandy appeared. The amounts of sediment obtained were directly related to the decrease in Si concentration in solution. Consequently, it can be concluded that siliceous sediment in brandy originates from Si released during diatomite filtration. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hampton, M.A.; Fletcher, C. H.; Barry, J.H.; Lemmo, S.J.; ,
2000-01-01
The Halekulani Sand Channel and the Makua Shelf off the south shore of Oahu contain at least 1.3 million m3 of sediment that is a possible resource for nourishing degraded sections of Waikiki Beach. A sidescan sonar survey indicates continuous sediment cover within the channel and on the shelf, and samples from the top and bottom of vibracores from the channel and shelf contain from 29% to 77% of grains between 0 to 2.5 phi (1 to 0.177 mm), the size range of four samples from Waikiki Beach. Compositional analyses indicate high variability, but the vibracore samples normally have relatively high Halimeda content compared to beach sand samples. Laboratory tests show a positive correlation of abrasion with Halimeda content, suggesting that the offshore sediment would abrade more than beach sediment under nearshore wave action. The common gray color of the offshore sediment can be aesthetically undesirable for sand on popular tourist beaches such as Waikiki; however, visual observation of native beach sand indicates that a significant component of gray color is endemic to many Hawaiian beaches. The gray color was removed in the laboratory by soaking in heated hydrogen peroxide. The geological properties of the offshore sediment indicate potential as a resource for beach nourishment, but industrial treatment might be necessary to remove excess fine and coarse grains, and possibly the gray color. Further, the abrasion potential might have to be considered in calculating beach sand losses over time.
2011-01-01
Uranium adsorption–desorption on sediment samples collected from the Hanford 300-Area, Richland, WA varied extensively over a range of field-relevant chemical conditions, complicating assessment of possible differences in equilibrium adsorption properties. Adsorption equilibrium was achieved in 500–1000 h although dissolved uranium concentrations increased over thousands of hours owing to changes in aqueous chemical composition driven by sediment-water reactions. A nonelectrostatic surface complexation reaction, >SOH + UO22+ + 2CO32- = >SOUO2(CO3HCO3)2–, provided the best fit to experimental data for each sediment sample resulting in a range of conditional equilibrium constants (logKc) from 21.49 to 21.76. Potential differences in uranium adsorption properties could be assessed in plots based on the generalized mass-action expressions yielding linear trends displaced vertically by differences in logKc values. Using this approach, logKc values for seven sediment samples were not significantly different. However, a significant difference in adsorption properties between one sediment sample and the fines (<0.063 mm) of another could be demonstrated despite the fines requiring a different reaction stoichiometry. Estimates of logKc uncertainty were improved by capturing all data points within experimental errors. The mass-action expression plots demonstrate that applying models outside the range of conditions used in model calibration greatly increases potential errors. PMID:21923109
Stoliker, Deborah L; Kent, Douglas B; Zachara, John M
2011-10-15
Uranium adsorption-desorption on sediment samples collected from the Hanford 300-Area, Richland, WA varied extensively over a range of field-relevant chemical conditions, complicating assessment of possible differences in equilibrium adsorption properties. Adsorption equilibrium was achieved in 500-1000 h although dissolved uranium concentrations increased over thousands of hours owing to changes in aqueous chemical composition driven by sediment-water reactions. A nonelectrostatic surface complexation reaction, >SOH + UO₂²⁺ + 2CO₃²⁻ = >SOUO₂(CO₃HCO₃)²⁻, provided the best fit to experimental data for each sediment sample resulting in a range of conditional equilibrium constants (logK(c)) from 21.49 to 21.76. Potential differences in uranium adsorption properties could be assessed in plots based on the generalized mass-action expressions yielding linear trends displaced vertically by differences in logK(c) values. Using this approach, logK(c) values for seven sediment samples were not significantly different. However, a significant difference in adsorption properties between one sediment sample and the fines (< 0.063 mm) of another could be demonstrated despite the fines requiring a different reaction stoichiometry. Estimates of logK(c) uncertainty were improved by capturing all data points within experimental errors. The mass-action expression plots demonstrate that applying models outside the range of conditions used in model calibration greatly increases potential errors.
The microbiome of Brazilian mangrove sediments as revealed by metagenomics.
Andreote, Fernando Dini; Jiménez, Diego Javier; Chaves, Diego; Dias, Armando Cavalcante Franco; Luvizotto, Danice Mazzer; Dini-Andreote, Francisco; Fasanella, Cristiane Cipola; Lopez, Maryeimy Varon; Baena, Sandra; Taketani, Rodrigo Gouvêa; de Melo, Itamar Soares
2012-01-01
Here we embark in a deep metagenomic survey that revealed the taxonomic and potential metabolic pathways aspects of mangrove sediment microbiology. The extraction of DNA from sediment samples and the direct application of pyrosequencing resulted in approximately 215 Mb of data from four distinct mangrove areas (BrMgv01 to 04) in Brazil. The taxonomic approaches applied revealed the dominance of Deltaproteobacteria and Gammaproteobacteria in the samples. Paired statistical analysis showed higher proportions of specific taxonomic groups in each dataset. The metabolic reconstruction indicated the possible occurrence of processes modulated by the prevailing conditions found in mangrove sediments. In terms of carbon cycling, the sequences indicated the prevalence of genes involved in the metabolism of methane, formaldehyde, and carbon dioxide. With respect to the nitrogen cycle, evidence for sequences associated with dissimilatory reduction of nitrate, nitrogen immobilization, and denitrification was detected. Sequences related to the production of adenylsulfate, sulfite, and H(2)S were relevant to the sulphur cycle. These data indicate that the microbial core involved in methane, nitrogen, and sulphur metabolism consists mainly of Burkholderiaceae, Planctomycetaceae, Rhodobacteraceae, and Desulfobacteraceae. Comparison of our data to datasets from soil and sea samples resulted in the allotment of the mangrove sediments between those samples. The results of this study add valuable data about the composition of microbial communities in mangroves and also shed light on possible transformations promoted by microbial organisms in mangrove sediments.
The Microbiome of Brazilian Mangrove Sediments as Revealed by Metagenomics
Andreote, Fernando Dini; Jiménez, Diego Javier; Chaves, Diego; Dias, Armando Cavalcante Franco; Luvizotto, Danice Mazzer; Dini-Andreote, Francisco; Fasanella, Cristiane Cipola; Lopez, Maryeimy Varon; Baena, Sandra; Taketani, Rodrigo Gouvêa; de Melo, Itamar Soares
2012-01-01
Here we embark in a deep metagenomic survey that revealed the taxonomic and potential metabolic pathways aspects of mangrove sediment microbiology. The extraction of DNA from sediment samples and the direct application of pyrosequencing resulted in approximately 215 Mb of data from four distinct mangrove areas (BrMgv01 to 04) in Brazil. The taxonomic approaches applied revealed the dominance of Deltaproteobacteria and Gammaproteobacteria in the samples. Paired statistical analysis showed higher proportions of specific taxonomic groups in each dataset. The metabolic reconstruction indicated the possible occurrence of processes modulated by the prevailing conditions found in mangrove sediments. In terms of carbon cycling, the sequences indicated the prevalence of genes involved in the metabolism of methane, formaldehyde, and carbon dioxide. With respect to the nitrogen cycle, evidence for sequences associated with dissimilatory reduction of nitrate, nitrogen immobilization, and denitrification was detected. Sequences related to the production of adenylsulfate, sulfite, and H2S were relevant to the sulphur cycle. These data indicate that the microbial core involved in methane, nitrogen, and sulphur metabolism consists mainly of Burkholderiaceae, Planctomycetaceae, Rhodobacteraceae, and Desulfobacteraceae. Comparison of our data to datasets from soil and sea samples resulted in the allotment of the mangrove sediments between those samples. The results of this study add valuable data about the composition of microbial communities in mangroves and also shed light on possible transformations promoted by microbial organisms in mangrove sediments. PMID:22737213
Poore, Richard Z.; Spear, Jessica W.; Tedesco, Kathy A.
2013-01-01
Sediment-trap samples from the northern Gulf of Mexico reveal that Globorotalia truncatulinoides, Neogloboquadrina dutertrei, Pulleniatina spp. (includes P. obliquiloculata and P. finalis), and the Globorotalia menardii group (includes Gt. menardii, Gt. tumida, and Gt. ungulata) generally occur in cold months. Globigerinoides ruber (white and pink varieties) and Globigennoides sacculifer occur throughout the year. The seasonal occurrence of individual taxa of planktic foraminifers in the Gulf of Mexico have important differences with the seasonal occurrence of the same taxa observed in a 6-year sediment-trap dataset from the western Sargasso Sea. Thus information on the ecologic preferences of individual taxa determined in one region cannot necessarily be applied directly to another area. In the northern Gulf of Mexico 90% of the total flux of Globorotalia truncatulinoides tests to sediments occurs in January and February. Mg/Ca and d18Ο measurements indicate that nonencrusted forms of Gt. truncatulinoides calcify in the upper-surface-mixed zone. Thus, analyses of nonencrusted Gt. truncatulinoides in sediments of the northern Gulf of Mexico have potential for monitoring past conditions in the winter-surface-mixed layer. The relatively low overall abundance of Globigerinoides ruber (white) in sediment-trap samples is anomalous because Gs. ruber (white) is one of the most abundant foraminifers in>150 µm census data from northern Gulf of Mexico Holocene sediment core samples. Globigerinoides ruber (pink) is a relatively persistent and common component of the sediment-trap samples. Thus Gs. ruber (pink) has potential as a proxy for mean annual sea-surface temperature in the Gulf of Mexico
NASA Astrophysics Data System (ADS)
Tiecher, Tales; Caner, Laurent; Gomes Minella, Jean Paolo; Henrique Ciotti, Lucas; Antônio Bender, Marcos; dos Santos Rheinheimer, Danilo
2014-05-01
Conventional fingerprinting methods based on geochemical composition still require a time-consuming and critical preliminary sample preparation. Thus, fingerprinting characteristics that can be measured in a rapid and cheap way requiring a minimal sample preparation, such as spectroscopy methods, should be used. The present study aimed to evaluate the sediment sources contribution in a rural catchment by using conventional method based on geochemical composition and on an alternative method based on near-infrared spectroscopy. This study was carried out in a rural catchment with an area of 1,19 km2 located in southern Brazil. The sediment sources evaluated were crop fields (n=20), unpaved roads (n=10) and stream channels (n=10). Thirty suspended sediment samples were collected from eight significant storm runoff events between 2009 and 2011. Sources and sediment samples were dried at 50oC and sieved at 63 µm. The total concentration of Ag, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, Sr, Ti, Tl, V and Zn were estimated by ICP-OES after microwave assisted digestion with concentrated HNO3 and HCl. Total organic carbon (TOC) was estimated by wet oxidation with K2Cr2O7 and H2SO4. The near-infrared spectra scan range was 4000 to 10000 cm-1 at a resolution of 2 cm-1, with 100 co added scans per spectrum. The steps used in the conventional method were: i) tracer selection based on Kruskal-Wallis test, ii) selection of the best set of tracers using discriminant analyses and finally iii) the use of a mixed linear model to calculate the sediment sources contribution. The steps used in the alternative method were i) principal component analyses to reduce the number of variables, ii) discriminant analyses to determine the tracer potential of the near-infrared spectroscopy, and finally iii) the use of past least square based on 48 mixtures of the sediment sources in various weight proportions to calculate the sediment sources contribution. Both conventional and alternative methods were capable to discriminate 100% of the sediment sources. Conventional fingerprinting method provided a sediment sources contribution of 33±19% by crop fields, 25±13% by unpaved roads and 42±19% by stream channels. The contribution of sediment sources obtained by alternative fingerprinting method using near-infrared spectroscopy was 71±22% of crop fields, 21±12% of unpaved roads and 14±19% of stream channels. No correlation was observed between source contribution assessed by the two methods. Notwithstanding, the average contribution of the unpaved roads was similar by both methods. The highest difference in the average contribution of crop fields and stream channels estimated by the two methods was due to similar organic matter content of these two sediment sources which hampers their discrimination by assessing the near-infrared spectra, where much of the bands are highly correlated with the TOC levels. Efforts should be taken to try to combine both the geochemical composition and near-infrared spectroscopy information on a single estimative of the sediment sources contribution.
Sediment characteristic on hydropower plant Bakaru, South Sulawesi
NASA Astrophysics Data System (ADS)
Firman, Yunus, A. M. Shiddiq; Yunus, M. Yusuf
2017-01-01
This research is aimed to determine the distributed sediment composition and its size particle impact on flow profile in the pipe. The sediment sample is collected from Hydropower Plant's dam located at Bakaru Sulawesi Selatan. The sample is dried in the oven then steered up using a screen with 0.25; 0.5; and 0.75 mm. Sediment identification is measured using Fourier Transform Infrared Spectrophotometer (FTIR) and X-Ray Fluorescence Spectrophotometer (XRF). The assessment of flow type in the pipe with five flow rate variation for every single sediment diameter is assessed in Fluid Measurement Laboratory under Mechanical Engineering Department, State Polytechnic of Ujung Pandang. As a result of steered up processed, it is obtained that the sediment distribution with diameter of ø = 0.25 mm is 55.80%; for ø = 0.5 mm is 7.91%; and ø = 0.75 mm is 36.29%. From FTIR test, it is obtained the spectra with wave number of 466.77; 536.14; 644.22; 694.37; 788.89; 912.33; 1006.77; 1031.92; and 105.21 cm-1. From XRF assessment, it can be obtained that composition of SiO2 is 53.64%, Al2O3 is 22.93%, Fe2O3 is 9.24%, MgO is 4.0%, K2O is 3.84%, Na2O is 2.4%, CaO is 1.71%, and TiO2 is 1.06%. From the flow profile assessment, it obtains Reynolds number is lesser than 500 for these three particle diameters variation. It can be concluded that sediment characteristic consists of fine sand about 55.80% and coarse sand about 44.20%, where SiO2 dominates it by about 53.64% where flow in the pipe shown the laminar type.
NASA Astrophysics Data System (ADS)
Qiu, Yao-Wen; Zhang, Gan; Liu, Guo-Qing; Guo, Ling-Li; Li, Xiang-Dong; Wai, Onyx
2009-06-01
The levels of 15 polycyclic aromatic hydrocarbons (PAHs) were determined in seawater, suspended particulate matter (SPM), surface sediment and core sediment samples of Deep Bay, South China. The average concentrations Σ 15PAHs were 69.4 ± 24.7 ng l -1 in seawater, 429.1 ± 231.8 ng g -1 in SPM, and 353.8 ± 128.1 ng g -1 dry weight in surface sediment, respectively. Higher PAH concentrations were observed in SPM than in surface sediment. Temporal trend of PAH concentrations in core sediment generally increased from 1948 to 2004, with higher concentrations in top than in sub-surface, implying a stronger recent input of PAHs owing to the rapid economic development in Shenzhen. Compared with historical data, the PAH levels in surface sediment has increased, and this was further confirmed by the increasing trend of PAHs in the core sediment. Phenanthrene, fluoranthene and pyrene dominated in the PAH composition pattern profiles in the Bay. Compositional pattern analysis suggested that PAHs in the Deep Bay were derived from both pyrogenic and petrogenic sources, and diesel oil leakage, river runoff and air deposition may serve as important pathways for PAHs input to the Bay. Significant positive correlations between partition coefficient in surface sediment to that in water ( KOC) of PAH and their octanol/water partition coefficients ( KOW) were observed, suggesting that KOC of PAHs in sediment/water of Deep Bay may be predicted by the corresponding KOW.
Murray, R.W.; Buchholtz ten Brink, Marilyn R.; Gerlach, David C.; Russ III, G. Price; Jones, David L.
1992-01-01
Chert and associated host sediments from Monterey Formation and Deep Sea Drilling Project (DSDP) sequences were analyzed in order to assess chemical behavior during diagenesis of biogenic sediments. The primary compositional contrast between chert and host sediment is a greater absolute SiO2 concentration in chert, often with final SiO2 ≥ 98 wt%. This contrast in SiO2 (and SiAl">SiAl) potentially reflects precursor sediment heterogeneity, diagenetic chemical fractionation, or both. SiO2 concentrations and SiAl">SiAl ratios in chert are far greater than in modern siliceous oozes, however and often exceed values in acid-cleaned diatom tests. Compositional contrasts between chert and host sediment are also orders-of-magnitude greater than between multiple samples of the host sediment. Calculations based on the initial composition of adjacent host, observed porosity reductions from host to chert and a postulated influx of pure SiO2, construct a chert composition which is essentially identical to observed SiO2 values in chert. Thus, precursor heterogeneity does not seem to be the dominant factor influencing the current chert composition for the key elements of interest. In order to assess the extent of chemical fractionation during diagenesis, we approximate the precursor composition by analyzing host sediments adjacent to the chert.The SiO2 concentration contrast seems caused by biogenic SiO2 dissolution and transport from the local adjacent host sediment and subsequent SiO2reprecipitation in the chert. Along with SiO2, other elements are often added (with respect to Al) to Monterey and DSDP chert during silicification, although absolute concentrations decrease. The two Monterey quartz chert nodules investigated, in contrast to the opal-CT and quartz chert lenses, formed primarily by extreme removal of carbonate and phosphate, thereby increasing relative SiO2 concentrations. DSDP chert formed by both carbonate/phosphate dissolution and SiO2 addition from the host. Manganese is fractionated during chert formation, resulting in MnOAl2O3">MnOAl2O3 ratios that no longer record the depositional signal of the precursor sediment.REE data indicate only subtle diagenetic fractionation across the rare earth series. CeCe∗">CeCe* values do not change significantly during diagenesis of either Monterey or DSDP chert. EuEu∗">EuEu* decreases slightly during formation of DSDP chert. LanYbn">LanYbn is affected only minimally as well. During formation of one Monterey opal-CT chert lens, REEAl">REEAl ratios show subtle distribution changes at Gd and to a lesser extent near Nd and Ho. REE compositional contrasts between diagenetic states of siliceous sediment and chert are of a vastly smaller scale than has been noted between different depositional environments of marine sediment, indicating that the paleoenvironmental REE signature is not obscured by diagenetic overprinting.
NASA Astrophysics Data System (ADS)
Takahashi, Y.; Hata, T.; Nishida, H.
2017-12-01
In normal coring of deep marine sediments, the sampled cores are exposed to the pressure of the atmosphere, which results in dissociation of gas-hydrates and might change microbial diversity. In this study, we analyzed microbial composition in methane hydrate-bearing sediment core sampled and preserved by Hybrid-PCS (Pressure Coring System). We sliced core into three layers; (i) outside layer, which were most affected by drilling fluids, (ii) middle layer, and (iii) inner layer, which were expected to be most preserved as the original state. From each layer, we directly extracted DNA, and amplified V3-V4 region of 16S rRNA gene. We determined at least 5000 of nucleotide sequences of the partial 16S rDNA from each layer by Miseq (Illumina). In the all layers, facultative anaerobes, which can grow with or without oxygen because they can metabolize energy aerobically or anaerobically, were detected as majority. However, the genera which are often detected anaerobic environment is abundant in the inner layer compared to the outside layer, indicating that condition of drilling and preservation affect the microbial composition in the deep marine sediment core. This study was conducted as a part of the activity of the Research Consortium for Methane Hydrate Resources in Japan [MH21 consortium], and supported by JOGMEC (Japan Oil, Gas and Metals National Corporation). The sample was provided by AIST (National Institute of Advanced Industrial Science and Technology).
Microgravity processing of particulate reinforced metal matrix composites
NASA Technical Reports Server (NTRS)
Morel, Donald E.; Stefanescu, Doru M.; Curreri, Peter A.
1989-01-01
The elimination of such gravity-related effects as buoyancy-driven sedimentation can yield more homogeneous microstructures in composite materials whose individual constituents have widely differing densities. A comparison of composite samples consisting of particulate ceramics in a nickel aluminide matrix solidified under gravity levels ranging from 0.01 to 1.8 G indicates that the G force normal to the growth direction plays a fundamental role in determining the distribution of the reinforcement in the matrix. Composites with extremely uniform microstructures can be produced by these methods.
Ghandour, I M; Basaham, A S; Basaham, S; Al-Washmi, H A; Al-Washmi, A; Masuda, H
2014-03-01
The present study investigated the natural and anthropogenic processes that control the composition of the bottom sediments of Sharm Obhur, Red Sea. Mineralogical analysis using XRD indicated that the sediments consist of carbonate and non-carbonate minerals. Elemental interrelationships allowed differentiating two groups of elements of different sources and origin. Elements that are in the same group are positively correlated, while they correlate negatively with elements of the other group. The first group includes silicon, Al, Fe, Mn, Mg, vanadium (V), chromium (Cr), Co, Ni, Cu, and Zn, whereas the other group includes Ca, Sr, and CaCO3. The highest concentration levels of the first group and the highest content of non-carbonate minerals were obtained from the sediments near the head of the sharm (zone A), whereas the sediments near the mouth of the sharm (zone B) yielded high concentrations of second group and carbonate minerals. Metal enrichment and contamination factors and pollution load index were calculated. The values of these indices differentiate two groups of metals: lithogenic and non-lithogenic. Except for lead (Pb) at one sampling site, metals in zone A sediments are of lithogenic source, supplied to the sharm either naturally by aeolian transportation and through Wadi Al-Kuraa'a during rare but major floods or by human activities such as dumping and shore protection. Non-lithogenic Cr, Pb, V, and Mn were documented from some sampling sites in zone B, and their occurrences are related to waste disposal and fossil fuel combustion.
Solodukhin, V; Аidarkhanov, A; Lukashenko, S; Gluchshenko, V; Poznyak, V; Lyahova, O
2015-06-01
The results of the field and laboratory studies of radiation and environmental state at the specific area of Irtysh River adjacent to the Semipalatinsk Test Site are provided. It was found that the radiation situation in this area is normal: equivalent dose of γ-radiation = (0.11-0.13) µSv h(-1). Determination of radionuclide composition of soil, bottom sediment and water samples was performed by the methods of instrumental γ-spectrometry, radiochemical analysis and the liquid scintillation β-spectrometry. It was found that concentrations of the studied natural and artificial radionuclides in these objects are very low; no contamination with radionuclides was detected in this segment of Irtysh River. The article provides the results of elemental composition determination for samples of soil and bottom sediment (by X-ray fluorescence method) and water samples (by inductively coupled plasma mass spectrometry method). It is shown that the content of some elements (Li, Be, B, V, Cu, Sr, Mo) in the water of Irtysh River increases downstream. The additional studies are required to explain this peculiarity. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Powell, R. D.; Scherer, R. P.; Griffiths, I.; Taylor, L.; Winans, J.; Mankoff, K. D.
2011-12-01
A remotely operated vehicle (ROV) has been custom-designed and built by DOER Marine to meet scientific requirements for exploring subglacial water cavities. This sub-ice rover (SIR) will explore and quantitatively document the grounding zone areas of the Ross Ice Shelf cavity using a 3km-long umbilical tether by deployment through an 800m-long ice borehole in a torpedo shape, which is also its default mode if operational failure occurs. Once in the ocean cavity it transforms via a diamond-shaped geometry into a rectangular form when all of its instruments come alive in its flight mode. Instrumentation includes 4 cameras (one forward-looking HD), a vertical scanning sonar (long-range imaging for spatial orientation and navigation), Doppler current meter (determine water current velocities), multi-beam sonar (image and swath map bottom topography), sub-bottom profiler (profile sub-sea-floor sediment for geological history), CTD (determine salinity, temperature and depth), DO meter (determine dissolved oxygen content in water), transmissometer (determine suspended particulate concentrations in water), laser particle-size analyzer (determine sizes of particles in water), triple laser-beams (determine size and volume of objects), thermistor probe (measure in situ temperatures of ice and sediment), shear vane probe (determine in situ strength of sediment), manipulator arm (deploy instrumentation packages, collect samples), shallow ice corer (collect ice samples and glacial debris), water sampler (determine sea water/freshwater composition, calibrate real-time sensors, sample microbes), shallow sediment corer (sample sea floor, in-ice and subglacial sediment for stratigraphy, facies, particle size, composition, structure, fabric, microbes). A sophisticated array of data handling, storing and displaying will allow real-time observations and environmental assessments to be made. This robotic submarine and other instruments will be tested in Lake Tahoe in September, 2011 and results will be presented on its trials and geological and biological findings down to the deepest depths of the lake. Other instruments include a 5m-ling percussion corer for sampling deeper sediments, an ice-tethered profiler with CTD and ACDP, and in situ oceanographic mooring designed to fit down a narrow (30cm-diameter) ice borehole that include interchangeable packages of ACDPs, CTDs, transmissometers, laser particle-size analyzer, DO meter, automated multi-port water sampler, water column nutrient analyzer, sediment porewater chemistry analyzer, down-looking color camera (see figure), and altimeter.
Bukin, Sergei V.; Pavlova, Olga N.; Manakov, Andrei Y.; Kostyreva, Elena A.; Chernitsyna, Svetlana M.; Mamaeva, Elena V.; Pogodaeva, Tatyana V.; Zemskaya, Tamara I.
2016-01-01
The ability to compare the composition and metabolic potential of microbial communities inhabiting the subsurface sediment in geographically distinct locations is one of the keys to understanding the evolution and function of the subsurface biosphere. Prospective areas for study of the subsurface biosphere are the sites of hydrocarbon discharges on the bottom of the Lake Baikal rift, where ascending fluxes of gas-saturated fluids and oil from deep layers of bottom sediments seep into near-surface sediment. The samples of surface sediments collected in the area of the Posolskaya Bank methane seep were cultured for 17 months under thermobaric conditions (80°C, 5 MPa) with the addition of complementary organic substrate, and a different composition for the gas phase. After incubation, the presence of intact cells of microorganisms, organic matter transformation and the formation of oil biomarkers was confirmed in the samples, with the addition of Baikal diatom alga Synedra acus detritus, and gas mixture CH4:H2:CO2. Taxonomic assignment of the 16S rRNA sequence data indicates that the predominant sequences in the enrichment were Sphingomonas (55.3%), Solirubrobacter (27.5%) and Arthrobacter (16.6%). At the same time, in heat-killed sediment and in sediment without any additional substrates, which were cultivated in a CH4 atmosphere, no geochemical changes were detected, nor the presence of intact cells and 16S rRNA sequences of Bacteria and Archaea. This data may suggest that the decomposition of organic matter under culturing conditions could be performed by microorganisms from low-temperature sediment layers. One possible explanation of this phenomenon is migration of the representatives of the deep thermophilic community through fault zones in the near surface sediment layers, together with gas-bearing fluids. PMID:27242716
Bukin, Sergei V; Pavlova, Olga N; Manakov, Andrei Y; Kostyreva, Elena A; Chernitsyna, Svetlana M; Mamaeva, Elena V; Pogodaeva, Tatyana V; Zemskaya, Tamara I
2016-01-01
The ability to compare the composition and metabolic potential of microbial communities inhabiting the subsurface sediment in geographically distinct locations is one of the keys to understanding the evolution and function of the subsurface biosphere. Prospective areas for study of the subsurface biosphere are the sites of hydrocarbon discharges on the bottom of the Lake Baikal rift, where ascending fluxes of gas-saturated fluids and oil from deep layers of bottom sediments seep into near-surface sediment. The samples of surface sediments collected in the area of the Posolskaya Bank methane seep were cultured for 17 months under thermobaric conditions (80°C, 5 MPa) with the addition of complementary organic substrate, and a different composition for the gas phase. After incubation, the presence of intact cells of microorganisms, organic matter transformation and the formation of oil biomarkers was confirmed in the samples, with the addition of Baikal diatom alga Synedra acus detritus, and gas mixture CH4:H2:CO2. Taxonomic assignment of the 16S rRNA sequence data indicates that the predominant sequences in the enrichment were Sphingomonas (55.3%), Solirubrobacter (27.5%) and Arthrobacter (16.6%). At the same time, in heat-killed sediment and in sediment without any additional substrates, which were cultivated in a CH4 atmosphere, no geochemical changes were detected, nor the presence of intact cells and 16S rRNA sequences of Bacteria and Archaea. This data may suggest that the decomposition of organic matter under culturing conditions could be performed by microorganisms from low-temperature sediment layers. One possible explanation of this phenomenon is migration of the representatives of the deep thermophilic community through fault zones in the near surface sediment layers, together with gas-bearing fluids.
Ferrer, I.; Heine, C.E.; Thurman, E.M.
2004-01-01
Diphenhydramine (Benadryl) is a popular over-the-counter antihistaminic medication used for the treatment of allergies. After consumption, excretion, and subsequent discharge from wastewater treatment plants, it is possible that diphenhydramine will be found in environmental sediments due to its hydrophobicity (log P = 3.27). This work describes a methodology for the first unequivocal determination of diphenhydramine bound to environmental sediments. The drug is removed from the sediments by accelerated solvent extraction and then analyzed by liquid chromatography with a time-of-flight mass spectrometer and an ion trap mass spectrometer. This combination of techniques provided unequivocal identification and confirmation of diphenhydramine in two sediment samples. The accurate mass measurements of the protonated molecules were m/z 256.1703 and 256.1696 compared to the calculated mass of m/z 256.1701, resulting in errors of 0.8 and 2.3 ppm. This mass accuracy was sufficient to verify the elemental composition of diphenhydramine in each sample. Furthermore, accurate mass measurements of the primary fragment ion were obtained. This work is the first application of time-of-flight mass spectrometry for the identification of diphenhydramine and shows the accumulation of an over-the-counter medication in aquatic sediments at five different locations.
Long, Yan; Liu, Changbao; Lin, Hengliang; Li, Ningning; Guo, Qingwei; Xie, Shuguang
2017-06-01
In the present study, we investigated the spatial change of sediment nitrite-dependent anaerobic methane-oxidizing (n-damo) organisms in the mesotrophic freshwater Gaozhou Reservoir (6 different sampling locations and 2 sediment depths (0-5 cm, 5-10 cm)), one of the largest drinking water reservoirs in China. The abundance of sediment n-damo bacteria was quantified using quantitative polymerase chain reaction assay, while the richness, diversity, and composition of n-damo pmoA gene sequences were characterized using clone library analysis. Vertical and horizontal changes in sediment n-damo bacterial abundance occurred in Gaozhou Reservoir, with 1.37 × 10 5 to 8.24 × 10 5 n-damo 16S rRNA gene copies per gram of dry sediment. Considerable horizontal and vertical variations of n-damo pmoA gene diversity (Shannon index = 0.32-2.50) and composition also occurred in this reservoir. Various types of sediment n-damo pmoA genes existed in Gaozhou Reservoir. A small proportion of n-damo pmoA gene sequences (19.1%) were related to those recovered from "Candidatus Methylomirabilis oxyfera". Our results suggested that sediment n-damo pmoA gene diversity might be regulated by nitrite, while n-damo pmoA gene richness might be governed by multiple environmental factors, including total organic carbon, total phosphorus, nitrite, and total nitrogen.
NASA Technical Reports Server (NTRS)
Franz, H. B.; Mahaffy, P. R.; Stern, J.; Archer, P., Jr.; Conrad, P.; Eigenbrode, J.; Freissinet, C.; Glavin, D.; Grotzinger, J. P.; Jones, J.;
2015-01-01
In October 2014, the Mars Science Laboratory (MSL) "Curiosity" rover drilled into the sediment at the base of Mount Sharp in a location namsed Cionfidence Hills (CH). CH marked the fifth sample pocessed by the Sample Analysis at Mars (SAM) instrument suite since Curiosity arrived in Gale Crater, with previous analyses performed at Rocknest (RN), John Klein (JK), Cumberland (CB), and Windjana (WJ). Evolved gas analysis (EGA) of all samples has indicated H2O as well as O-, C- and S-bearing phases in the samples, often at abundances that would be below the detection limit of the CheMin instrument. By examining the temperatures at which gases are evolved from samples, SAM EGA data can help provide clues to the mineralogy of volatile-bearing phases when their identities are unclear to CheMin. SAM may also detect gases evolved from amorphous material in solid samples, which is not suitable for analysis by CheMin. Finally, the isotopic composition of these gases may suggest possible formation scenarios and relationships between phases. We will discuss C isotope ratios of CO2 evolved from the CH sample as measured with SAM's quadrupole mass spectrometer (QMS) and draw comparisons to samples previously analyzed by SAM.
[Study of blood sedimentation by photo-thermal radiometry with random excitation].
Antoniow, J S; Marx, J; Egee, M; Droulle, C; Potron, G
1994-01-01
The erythrocyte sedimentation rate is a complex phenomena involving a large number of parameters. The rate of sedimentation is highly dependent on the haematocrit, the internal viscosity of the red cells and the viscosity of the suspending medium and its composition. The experimental conditions also have a non-negligible effect (geometry and nature of the test tube, temperature, foreign substances in the medium...). In order to respond to the need for more precise and more rapid methods of analyzing the erythrocyte sedimentation rate, we developed new physical methods allowing a real time evaluation of the phenomena involved. Several of these new photothermal methods have already been applied for non-destructive evaluation of thin or layered material (such as composite material or glued structures) both in laboratory situations and in the industry. When a material is placed in a modulated laser beam, the incident rays absorbed heat the sample. The heat then diffuses throughout the material and the surface temperature of the sample increases locally with a periodicity. The surface thus emits a modulated flow of infrared radiation. The amplitude and phase shift of the photothermal signal generated is characteristically dependent of the optic and thermal properties of the material for a given modulation frequency. The early photothermal modelling based on a two-layer model and a physico-mathematical theory of red cell sedimentation proposed by S. Oka made it possible to simulate the phenomena as they occur over time. We hypothesize that the temperature gradients created within the sample are too small to create a convection current and that the all heat transfer occurs by conduction.(ABSTRACT TRUNCATED AT 250 WORDS)
Polychlorinated biphenyls in coastal tropical ecosystems: Distribution, fate and risk assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodoo, D.K.; Essumang, D.K., E-mail: kofiessumang@yahoo.com; Jonathan, J.W.A.
2012-10-15
Polychlorinated biphenyls (PCBs) though banned still find use in most developing countries including Ghana. PCB congener residues in sediments in the coastal regions of Ghana were determined. Sediment samples (n=80) were collected between June 2008 and March 2009, extracted by the continuous soxhlet extraction using (1:1) hexane-acetone mixture for 24 h and analyzed with a CP 3800 gas chromatogram equipped with {sup 65}Ni electron capture detector (GC-ECD) and a mixed PCBs standard of the ICES 7 as marker, after clean-up. Validation of the efficiency and precision of the extraction and analytical methods were done by extracting samples spiked with 2more » ppm ICES PCB standard and a certified reference material 1941b for marine sediments from NIST, USA, and analyzed alongside the samples. Total PCBs detected in sediments during the dry and wet seasons were, respectively, 127 and 112 {mu}g/kg dry weight (dw), with a mean concentration of 120 {mu}g/kg (dw). The composition of PCB homologues in the sediments were dominated by tri-, penta- and tetra-PCBs. There was no correlation between organic carbon (OC) of the sediments and total PCBs content. Risk assessments conducted on the levels indicated that PCB levels in sediments along the coastal region of Ghana poses no significant health risk to humans.« less
NASA Astrophysics Data System (ADS)
Rugi, Francesco; Becagli, Silvia; Ghedini, Costanza; Severi, Mirko; Traversi, Rita; Udisti, Roberto; Monien, Donata; Kuhn, Gerhard; Giorgetti, Giovanna; Talarico, Franco
2010-05-01
An integrated system Inductively Coupled Plasma - Sector Field Mass Spectrometry (ICP-SFMS) and Inductively Coupled Plasma - Atomic Emission Spectrophotometry (ICP - AES) has been applied to quantify 39 major and trace elements (including Rare Earths Elements -REE) in Antarctic glaciomarine sediments collected in the framework of ANDRILL. This project aims to study the role of the Antarctic Continent within the global climatic system, by the recovery and analysis of two deep sediment cores (AND-1B, MIS and AND-2A, SMS), drilled close to the margin of the Ross Ice Shelf. The main goals of ANDRILL were to obtain a stratigraphic record that documents key steps in Antarctica's Cenozoic climatic and glacial history, and in the tectonic evolution of the Transantarctic Mountains and the West Antarctic rift System. In particular, the study of the geochemical composition of sediments along the two ANDRILL cores can provide information about the possible source of terrigenous material deposited over the drilling site (Harwood et al., 2006). Preliminary results with a spatial resolution of about 1 m for the geochemical composition of the interval 24.66- 85.24 m of depth of marine sediments from AND-1B core covering about the last 1 Ma, are here shown. The concentration ratio of each measured element with respect to Al concentration, used as terrigenous reference, was calculated in order to remove the possible effect on elemental concentrations of differences in average sediment grain-size along the core and possible dilution effects and point out specified metal enrichments. The presented data and depth profiles (e.g. Fe/Al, Mn/Al, Co/Al, Cr/Al, Eu/Al and Europium anomaly) relative to sediments deposited during the last Ma at the MIS site, show an evident discontinuity from samples collected above and below 58.4 m of depth, corresponding to about 0.45 Ma BP, following the latest AND-1B dating model (85.24 m of depth corresponding to about 0.988 Ma; the chronological datum of the sediments is developed from 40Ar/39Ar ages volcanic deposits, Naish et al. 2009). This difference of geochemical composition suggests different rock sources for the material deposited before and after about 0.45 Ma BP. In particular the geochemical composition of the upper sediments is similar to the one of McMurdo Volcanic Group (MVG) whereas the lower sediments are close to the compositions of samples collected in the Transantarctic Mountain (TAM). Such a different composition could be linked to the climatic discontinuity known as Mid-Brunhes Event (MBE), dated 430 Kyr BP, which marks the boundary between two different global climatic conditions, with the youngest part characterized by a larger temperature gap between short and warm interglacials and long and cold glacials, with respect to the oldest part. Bibliography: Harwood, D. et al. (2006), Deep drilling with the ANDRILL program in Antarctica, Sci. Drill., 3, 43-45. Naish T. et al. (2009), Obliquity-paced Pliocene West Antarctic ice sheet oscillations, Nature, 458, 322-328.
Diversity and distribution of catechol 2, 3-dioxygenase genes in surface sediments of the Bohai Sea.
He, Peiqing; Li, Li; Liu, Jihua; Bai, Yazhi; Fang, Xisheng
2016-05-01
Catechol 2, 3-dioxygenase (C23O) is the key enzyme for aerobic aromatic degradation. Based on clone libraries and quantitative real-time polymerase chain reaction, we characterized diversity and distribution patterns of C23O genes in surface sediments of the Bohai Sea. The results showed that sediments of the Bohai Sea were dominated by genes related to C23O subfamily I.2.A. The samples from wastewater discharge area (DG) and aquaculture farm (KL) showed distinct composition of C23O genes when compared to the samples from Bohai Bay (BH), and total organic carbon was a crucial determinant accounted for the composition variation. C6BH12-38 and C2BH2-35 displayed the highest gene copies and highest ratios to the 16S rRNA genes in KL, and they might prefer biologically labile aromatic hydrocarbons via aquaculture inputs. Meanwhile, C7BH3-48 showed the highest gene copies and highest ratios to the 16S rRNA genes in DG, and this could be selective effect of organic loadings from wastewater discharge. An evident increase in C6BH12-38 and C7BH3-48 gene copies and reduction in diversity of C23O genes in DG and KL indicated composition perturbations of C23O genes and potential loss in functional redundancy. We suggest that ecological habitat and trophic specificity could shape the distribution of C23O genes in the Bohai Sea sediments. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Alkemade, R.; Van Rijswijk, P.
Large amounts of seaweed are deposited along the coast of Admiralty Bay, King George Island, Antarctica. The stranded seaweed partly decomposes on the beach and supports populations of meiofauna species, mostly nematodes. The factors determining the number of nematodes found in the seaweed packages were studied. Seaweed/sediment samples were collected from different locations, along the coast near Arctowski station, covering gradients of salinity, elevation and proximity of Penguin rookeries. On the same locations decomposition rate was determined by means of permeable containers with seaweed material. Models, including the relations between location, seaweed and sediment characteristics, number of nematodes and decomposition rates, were postulated and verified using path analysis. The most plausible and significant models are presented. The number of nematodes was directly correlated with the height of the location, the carbon-to-nitrogen ratio, and the salinity of the sample. Nematode numbers were apparently indirectly dependent on sediment composition and water content. We hypothesize that the different influences of melt water and tidal water, which affect both salinity and water content of the deposits, are important phenomena underlying these results. Analysis of the relation between decomposition rate and abiotic, location-related characteristics showed that decomposition rate was dependent on the water content of the stranded seaweed and sediment composition. Decomposition rates were high on locations where water content of the deposits was high. There the running water from melt water run-off or from the surf probably increased weight losses of seaweed.
Experimental study of subaqueous, clay-rich, gravity flows
NASA Astrophysics Data System (ADS)
Marr, J.; Pratson, L.
2003-04-01
Recent laboratory experiments suggest a broad spectrum of flow and depositional behavior for compositionally varied subaqueous gravity flows. Dilute turbidity currents and cohesive debris flows are the end members of the spectrum. In this study we used geometrically scaled laboratory experiments to examine the flow dynamics and deposits associated with slurries of varying sediment composition. Slurries were composed of a mixture of tap water, kaolinite clay, 45 micron silt and 120 micron sand and were introduced into a 0.2m wide submerged channel. Slurry sediment concentrations ranged from 1-30% by volume. In all slurries, sediment was added in a ratio of 8:1:1 by volume of clay, silt, sand. A total volume of one cubic meter of slurry was used for each experiment and was introduced through a constant head tank allowing examination of sustained and steady gravity flow events lasting up to 5 minutes in duration. The dynamics of the flows (turbulence, hydroplaning, laminar shearing, etc.) were examined through the use of digital video cameras, dye injection tracking, high frequency sonar and visual observation. Vertical suspended sediment concentration and vertical grain size distributions were measured for each run from samples collected from siphon rakes. Deposit thicknesses and grain size distributions were measured from sediment samples taken from flow deposits. Rheological measurements and Atterberg limits of the slurries were made in an effort to link flow and depositional characteristics to bulk properties of the slurry mixture. The experiments show a clear linkage between the initial compositions of the slurries, their rheological properties, flow dynamics and deposits. Slurries with clay concentrations below 10% by volume appeared to be very turbulent. The silt and sand deposited during these events were transported along the bed as ripples. Flows between 10-20% sediment by volume appeared to be hybrid flows having both turbulent and non-turbulent elements. The surfaces of these deposits were flat and featureless. Slurries with sediment concentrations between 25-30% were clearly debris flows. They had distinguishable laminar flow and the deposit surfaces had both compression features and tension cracks.
Effect of salinity on metal mobility in Sečovlje salina sediment (northern Adriatic, Slovenia)
NASA Astrophysics Data System (ADS)
Kovač, N.; Ramšak, T.; Glavaš, N.; Dolenec, M.; Rogan Šmuc, N.
2016-12-01
Saline sediment (saline healing mud or "fango") from the Sečovlje Salina (northern Adriatic, Slovenia) is traditionally used in the coastal health resorts as a virgin material for medical treatment, wellness and relax purposes. Therapeutic qualities of the healing mud depend on its mineralogical composition and physical, mineralogical, geochemical and biological properties. Their microbial and potentially toxic elements contamination are the most important features affecting user safety. However, the degree of metal toxicity (and its regulation) for natural healing mud is still under discussion. Therefore, the influence of the overlying water salinity on the mobility of heavy metals (and some other geochemical characteristic) was studied for saline sediments of the Sečovlje Salina. Experiments takes place in tanks under defined conditions i.e. at day (21 °C): night (16 °C) cycle for three months. Sediment was covered with water of different salinities (36, 155, 323 g NaCl L-1 and distillate water) and mixed/stirred every week during the experimental period. At the same time, the evaporated water was replaced with distilled water. The mud samples were analyzed, at the beginning and at the end of experiment, for mineral (XRD), elemental composition (ICP-MS) and organic content (% TOC, % TN). Geochemical analysis of the aqueous phase (content of cations and anions) have also been carried out in an accredited Canadian laboratory Actlabs (Activation Laboratories, Canada). Salinity and maturation of sediment does not significantly affect its mineral composition. The samples taken at the end of the experiment have higher percent of water but lower organic carbon concentration. Concentrations of investigated elements are comparable to that in surface sediments from Central Adriatic Sea. In the water phase, concentrations of most elements (As, Ba, Cu, Mo, Mn, Ni, Sr, Sb) rise from the beginning to the end of the experiment, whereas the metal (potentially toxic elements) decreasing trend in mud was observed at that time. These data contribute to the knowledge of natural healing muds and that of diagenetic processes on metals in hypersaline sediments.
NASA Astrophysics Data System (ADS)
Huck, Claire E.; van de Flierdt, Tina; Jiménez-Espejo, Francisco J.; Bohaty, Steven M.; Röhl, Ursula; Hammond, Samantha J.
2016-03-01
Fossil fish teeth from pelagic open ocean settings are considered a robust archive for preserving the neodymium (Nd) isotopic composition of ancient seawater. However, using fossil fish teeth as an archive to reconstruct seawater Nd isotopic compositions in different sedimentary redox environments and in terrigenous-dominated, shallow marine settings is less proven. To address these uncertainties, fish tooth and sediment samples from a middle Eocene section deposited proximal to the East Antarctic margin at Integrated Ocean Drilling Program Site U1356 were analyzed for major and trace element geochemistry, and Nd isotopes. Major and trace element analyses of the sediments reveal changing redox conditions throughout deposition in a shallow marine environment. However, variations in the Nd isotopic composition and rare earth element (REE) patterns of the associated fish teeth do not correspond to redox changes in the sediments. REE patterns in fish teeth at Site U1356 carry a typical mid-REE-enriched signature. However, a consistently positive Ce anomaly marks a deviation from a pure authigenic origin of REEs to the fish tooth. Neodymium isotopic compositions of cleaned and uncleaned fish teeth fall between modern seawater and local sediments and hence could be authigenic in nature, but could also be influenced by sedimentary fluxes. We conclude that the fossil fish tooth Nd isotope proxy is not sensitive to moderate changes in pore water oxygenation. However, combined studies on sediments, pore waters, fish teeth, and seawater are needed to fully understand processes driving the reconstructed signature from shallow marine sections in proximity to continental sources.
Opsahl, Stephen P.; Crow, Cassi L.
2014-01-01
During collection of streambed-sediment samples, additional samples from a subset of three sites (the SAR Elmendorf, SAR 72, and SAR McFaddin sites) were processed by using a 63-µm sieve on one aliquot and a 2-mm sieve on a second aliquot for PAH and n-alkane analyses. The purpose of analyzing PAHs and n-alkanes on a sample containing sand, silt, and clay versus a sample containing only silt and clay was to provide data that could be used to determine if these organic constituents had a greater affinity for silt- and clay-sized particles relative to sand-sized particles. The greater concentrations of PAHs in the <63-μm size-fraction samples at all three of these sites are consistent with a greater percentage of binding sites associated with fine-grained (<63 μm) sediment versus coarse-grained (<2 mm) sediment. The larger difference in total PAHs between the <2-mm and <63-μm size-fraction samples at the SAR Elmendorf site might be related to the large percentage of sand in the <2-mm size-fraction sample which was absent in the <63-μm size-fraction sample. In contrast, the <2-mm size-fraction sample collected from the SAR McFaddin site contained very little sand and was similar in particle-size composition to the <63-μm size-fraction sample.
NASA Astrophysics Data System (ADS)
Zhao, Yifei; Zou, Xinqing; Gao, Jianhua; Wang, Chenglong; Li, Yali; Yao, Yulong; Zhao, Wancang; Xu, Min
2018-02-01
We examined the source-to-sink sediment transport processes from the Changjiang River to the estuarine coastal shelf area by analyzing the clay mineral assemblages in suspended sediment samples from the Changjiang River catchment and surface samples from the estuarine coastal shelf area following the impoundment of the Three Gorges Dam (TGD) in 2003. The results indicate that the clay mineral compositions throughout the study area are dominated by illite, with less abundant kaolinite and chlorite and scarce smectite. The clay minerals display distinct differences in the tributaries and exhibit obvious changes in the trunk stream compared with the periods before 2003, and the source of sediment has largely shifted to the mid- to lower reaches of the river after 2003. Spatially, the clay mineral assemblages in the estuarine area define two compositionally distinct provinces. Province I covers the mud area of the Changjiang River estuary and the Zhe-Min coastal region, where sediment is primarily supplied by the Changjiang River. Province II includes part of the Changjiang River estuary and the southeastern portion of the study area, where the sediment is composed of terrestrial material from the Changjiang River and re-suspended material from the Huanghe River carried by the Jiangsu coastal current. Moreover, the other smaller rivers in China (including the Oujiang and Minjiang rivers of mainland China and the rivers of West Taiwan) also contribut sediments to the estuarine and inner shelf areas. In general, the clay mineral assemblages in the Changjiang River estuarine area are have mainly been controlled by sediment supplied from upstream of the Changjiang River tributaries. However, since the completion of the TGD in 2003, the mid- to downstream tributaries have become the main source of sediments from the Changjiang catchment into the East China Sea. These analyses further demonstrate that the coastal currents and the decrease in the sediment load of the river have the greatest impacts on the distribution and transport of clay minerals assemblages in the sediments.
NASA Astrophysics Data System (ADS)
Mays, J.; Brenner, M.; Curtis, J. H.; Curtis, K.; Hodell, D. A.; Correa-Metrio, A.; Escobar, J.; Dutton, A. L.; Zimmerman, A. R.; Guilderson, T. P.
2013-12-01
Sediment core PI-6 from Lake Petén Itzá, Guatemala possesses an 85-ka record of climate from lowland Central America. Variations in sediment lithology suggest large, abrupt changes in precipitation during the last glacial and deglacial periods, and into the early Holocene. Study of cores from nearby Lake Quexil demonstrated the utility of using the carbon isotopic composition of leaf wax n-alkanes to infer changes in terrestrial vegetation (Huang et al. 2001). Forty-nine samples were taken from composite Petén Itzá core PI-6 to measure carbon isotopes of bulk organic carbon and long-chain n alkanes. Changes in δ13C values indicate shifts in the relative proportion of C3 to C4 biomass. The record shows largest δ13C variations are associated with Heinrich Events. Carbon isotope values in sediments deposited during the Last Glacial Maximum (LGM) indicate moderate precipitation and little rainfall fluctuation. The deglacial was a period of pronounced climate variability, e.g. the Bölling-Allerod and Younger Dryas. Arid times of the deglacial were inferred from samples with the greatest δ13C values in organic matter, reflecting the largest proportion of C4 plants. Such inferences are supported by stable isotope measurements on ostracod shells and analysis of pollen from the same sample depths in core PI-6. Carbon stable isotope measures on bulk organic carbon and n alkane compounds show similar trends throughout the record and the C:N ratio of Petén Itzá sediments indicates a predominantly allochthonous source for bulk organic matter. Hence, isotope measures on bulk organic carbon (δ13CTOC) in sediments from this lake are sufficient to infer climate-driven shifts in vegetation, making n-alkane extraction and isotope analysis superfluous.
Benthic and Plankton Foraminifers in Hydrothermally Active Zones of the Mid-Atlantic Ridge (MAR)
NASA Astrophysics Data System (ADS)
Khusid, T. A.; Os'kina, N. S.; Lukashina, N. P.; Gablina, I. F.; Libina, N. V.; Matul, A. G.
2018-01-01
Comparison of benthic foraminiferal assemblages from the core obtained within the Peterburgskoe ore field (Mid-Atlantic Ridge) and from the core taken five kilometers away from the ore field revealed evident differences in their composition, in the appearance of their shells, and also in the benthic-plankton species ratio. It was noted that the foraminiferal assemblage from the ore-bearing sediments of the Petersburg field was characterized by a higher relative content of benthic species and a large number of chemically altered and broken shells. The first occurrence of the species Osangularia umbonifera, which is able to exist in lowoxygen and CaCO3-undersaturated bottom waters at the boundary of biogenic sediments surrounding the ore field and in the ore-bearing sediments, was established. In the core section sampled beyond the ore field, the composition of foraminiferal assemblages differs insignificantly from typical oceanic ones.
Devarajan, Naresh; Laffite, Amandine; Ngelikoto, Patience; Elongo, Vicky; Prabakar, Kandasamy; Mubedi, Josué I; Piana, Pius T M; Wildi, Walter; Poté, John
2015-09-01
Hospital and urban effluents contain a variety of toxic and/or persistent substances in a wide range of concentrations, and most of these compounds belong to the group of emerging contaminants. The release of these substances into the aquatic ecosystem can lead to the pollution of water resources and may place aquatic organisms and human health at risk. Sediments receiving untreated and urban effluent waters from the city of Tiruchirappalli in the state of Tamil Nadu, India, are analyzed for potential environmental and human health risks. The sediment samples were collected from five hospital outlet pipes (HOP) and from the Cauvery River Basin (CRB) both of which receive untreated municipal effluent waters (Tiruchirappalli, Tamil Nadu, India). The samples were characterized for grain size, organic matter, toxic metals, and ecotoxicity. The results highlight the high concentration of toxic metals in HOP, reaching values (mg kg(-1)) of 1851 (Cr), 210 (Cu), 986 (Zn), 82 (Pb), and 17 (Hg). In contrast, the metal concentrations in sediments from CRB were lower than the values found in the HOP (except for Cu, Pb), with maximum values (mg kg(-1)) of 75 (Cr), 906 (Cu), 649 (Zn), 111 (Pb), and 0.99 (Hg). The metal concentrations in all sampling sites largely exceed the Sediment Quality Guidelines (SQGs) and the Probable Effect Concentration (PEC) for the Protection of Aquatic Life recommendation. The ecotoxicity test with ostracods exposed to the sediment samples presents a mortality rate ranging from 22 to 100 % (in sediments from HOP) and 18-87 % (in sediments from CRB). The results of this study show the variation of toxic metal levels as well as toxicity in sediment composition related to both the type of hospital and the sampling period. The method of elimination of hospital and urban effluents leads to the pollution of water resources and may place aquatic organisms and human health at risk.
Schultz, M.M.; Furlong, E.T.; Kolpin, D.W.; Werner, S.L.; Schoenfuss, H.L.; Barber, L.B.; Blazer, V.S.; Norris, D.O.; Vajda, A.M.
2010-01-01
Antidepressant pharmaceuticals are widely prescribed in the United States; release of municipal wastewater effluent is a primary route introducing them to aquatic environments, where little is known about their distribution and fate. Water, bed sediment, and brain tissue from native white suckers (Catostomus commersoni)were collected upstream and atpoints progressively downstream from outfalls discharging to two effluentimpacted streams, Boulder Creek (Colorado) and Fourmile Creek (Iowa). A liquid chromatography/tandem mass spectrometry method was used to quantify antidepressants, including fluoxetine, norfluoxetine (degradate), sertraline, norsertraline (degradate), paroxetine, Citalopram, fluvoxamine, duloxetine, venlafaxine, and bupropion in all three sample matrices. Antidepressants were not present above the limit of quantitation in water samples upstream from the effluent outfalls but were present at points downstream at ng/L concentrations, even at the farthest downstream sampling site 8.4 km downstream from the outfall. The antidepressants with the highest measured concentrations in both streams were venlafaxine, bupropion, and Citalopram and typically were observed at concentrations of at least an order of magnitude greater than the more commonly investigated antidepressants fluoxetine and sertraline. Concentrations of antidepressants in bed sediment were measured at ng/g levels; venlafaxine and fluoxetine were the predominant chemicals observed. Fluoxetine, sertraline, and their degradates were the principal antidepressants observed in fish brain tissue, typically at low ng/g concentrations. Aqualitatively different antidepressant profile was observed in brain tissue compared to streamwater samples. This study documents that wastewater effluent can be a point source of antidepressants to stream ecosystems and that the qualitative composition of antidepressants in brain tissue from exposed fish differs substantially from the compositions observed in streamwater and sediment, suggesting selective uptake. ?? 2010 American Chemical Society.
Goldstein, Harland L.; Reynolds, Richard L.; Reheis, Marith C.; Yount, James C.; Lamothe, Paul J.
2007-01-01
This report presents data and describes the methodology for magnetic, geochemical, and textural measurements of sediment and bedrock samples collected along a transect across the Southwestern United States (fig. 1). The results presented here support a study that examines compositional variations of mineral dust deposited during the past few centuries in isolated natural traps spanning a region from the Mojave Desert of southern California to the central Colorado Plateau (Goldstein and others, in press; fig. 1). In particular, the study addresses the spatial and temporal variations in dust composition in the context of landscape geochemistry over a large area of the southwestern United States.
NASA Astrophysics Data System (ADS)
Coelho, Francisco J. R. C.; Louvado, António; Domingues, Patrícia M.; Cleary, Daniel F. R.; Ferreira, Marina; Almeida, Adelaide; Cunha, Marina R.; Cunha, Ângela; Gomes, Newton C. M.
2016-10-01
The present study assesses the diversity and composition of sediment bacterial and microeukaryotic communities from deep-sea mud volcanoes (MVs) associated with strike-slip faults in the South-West Iberian Margin (SWIM). We used a 16S/18S rRNA gene based pyrosequencing approach to characterize and correlate the sediment bacterial and microeukaryotic communities from MVs with differing gas seep regimes and from an additional site with no apparent seeping activity. In general, our results showed significant compositional changes of bacterial and microeukaryotic communities in sampling sites with different seepage regimes. Sediment bacterial communities were enriched with Methylococcales (putative methanotrophs) but had lower abundances of Rhodospirillales, Nitrospirales and SAR202 in the more active MVs. Within microeukaryotic communities, members of the Lobosa (lobose amoebae) were enriched in more active MVs. We also showed a strong correlation between Methylococcales populations and lobose amoeba in active MVs. This study provides baseline information on the diversity and composition of bacterial and microeukaryotic communities in deep-sea MVs associated with strike-slip faults.
Coelho, Francisco J. R. C.; Louvado, António; Domingues, Patrícia M.; Cleary, Daniel F. R.; Ferreira, Marina; Almeida, Adelaide; Cunha, Marina R.; Cunha, Ângela; Gomes, Newton C. M.
2016-01-01
The present study assesses the diversity and composition of sediment bacterial and microeukaryotic communities from deep-sea mud volcanoes (MVs) associated with strike-slip faults in the South-West Iberian Margin (SWIM). We used a 16S/18S rRNA gene based pyrosequencing approach to characterize and correlate the sediment bacterial and microeukaryotic communities from MVs with differing gas seep regimes and from an additional site with no apparent seeping activity. In general, our results showed significant compositional changes of bacterial and microeukaryotic communities in sampling sites with different seepage regimes. Sediment bacterial communities were enriched with Methylococcales (putative methanotrophs) but had lower abundances of Rhodospirillales, Nitrospirales and SAR202 in the more active MVs. Within microeukaryotic communities, members of the Lobosa (lobose amoebae) were enriched in more active MVs. We also showed a strong correlation between Methylococcales populations and lobose amoeba in active MVs. This study provides baseline information on the diversity and composition of bacterial and microeukaryotic communities in deep-sea MVs associated with strike-slip faults. PMID:27762306
Coelho, Francisco J R C; Louvado, António; Domingues, Patrícia M; Cleary, Daniel F R; Ferreira, Marina; Almeida, Adelaide; Cunha, Marina R; Cunha, Ângela; Gomes, Newton C M
2016-10-20
The present study assesses the diversity and composition of sediment bacterial and microeukaryotic communities from deep-sea mud volcanoes (MVs) associated with strike-slip faults in the South-West Iberian Margin (SWIM). We used a 16S/18S rRNA gene based pyrosequencing approach to characterize and correlate the sediment bacterial and microeukaryotic communities from MVs with differing gas seep regimes and from an additional site with no apparent seeping activity. In general, our results showed significant compositional changes of bacterial and microeukaryotic communities in sampling sites with different seepage regimes. Sediment bacterial communities were enriched with Methylococcales (putative methanotrophs) but had lower abundances of Rhodospirillales, Nitrospirales and SAR202 in the more active MVs. Within microeukaryotic communities, members of the Lobosa (lobose amoebae) were enriched in more active MVs. We also showed a strong correlation between Methylococcales populations and lobose amoeba in active MVs. This study provides baseline information on the diversity and composition of bacterial and microeukaryotic communities in deep-sea MVs associated with strike-slip faults.
Understanding catchment scale sediment sources using geochemical tracers
NASA Astrophysics Data System (ADS)
Ferreira, Carla S. S.; Walsh, Rory P. D.; Shakesby, Richard A.; Steenhuis, Tammo S.; Ferreira, António J. D.; Coelho, Celeste O. A.
2013-04-01
It is well-established that urbanization leads to increased erosion (at least locally) as well as enhanced overland flow and streamflow peaks. Less is known about how the spatial distribution of erosion sources and scale of increases in erosion vary with the nature of urbanization in different climatic and socio-economic settings. This is important in order to prevent or reduce adverse impacts of erosion on downstream sedimentation, channel siltation and shifting, and river pollution. This paper adopts a sediment fingerprinting approach to assess the impact of partial urbanization and associated land-use change on sediment sources within a peri-urban catchment (6 km2), Ribeira dos Covões on the outskirts of the city of Coimbra in central Portugal. Urban land-use has increased from just 6% in 1958 to 30% in 2009. The urban pattern includes some well-defined urban residential centres, but also areas of discontinuous urban sprawl, including educational, health and small industrial facilities, numerous new roads and an enterprise park is under construction on the upper part of the catchment. The catchment has a wet Mediterranean climate and the lithology comprises sandstone in the west and limestone in the east. Soil depth is generally >40cm. The average slope angle is 8° (maximum 47°). Altitude ranges from 30m to 205m. A sediment fingerprinting approach was adopted to help establish the relative importance of sediment inputs from different urban areas. During September 2012 current bed-sediment samples (0-3 cm depth) were collected from 11 channel sites along the main stream and in different tributaries. At sites where bed-sediment was deeper, additional samples were taken at 3cm intervals to a maximum depth of around 42cm. In addition, overbank sediment samples (0-3cm depth) were collected at 11 locations around the catchment. All samples were oven-dried (at 38°C) and different particle size fractions (0.125-2mm, 0.063-0.125mm and <0.063mm) obtained, where the <0.063mm fraction was considered equivalent to the suspended sediment load during storm events. The elemental composition (33 elements) of each fraction was assessed using a Niton X-ray fluorescence analyzer. The results were used to identify distinctive composite signatures of each tributary catchment and their influence on the geochemistry of the catchment outlet bed-sediment was explored. An unmixing model was applied to estimate the relative contribution of each tributary to channel-stored sediment at the catchment outlet. Many of the chemical elements analysed, including Zr, Sr, Zn and Ti, showed significant differences between sandstone and limestone areas. The closeness of values at the catchment outlet to those of sandstone stream bed-sediment indicates that most of the current catchment erosion is derived from the sandstone area. This is supported by the higher measured discharges and suspended sediment concentrations in storm events from the latter. Eroded sediments from urban areas still under construction also showed distinctive characteristics. It is concluded that this methodology represents a potentially useful tool for river managers and policy-makers to detect and assess sediment sources in urbanized catchments.
Major, trace and REE geochemistry of recent sediments from lower Catumbela River (Angola)
NASA Astrophysics Data System (ADS)
Vinha, Manuela; Silva, M. G.; Cabral Pinto, Marina M. S.; Carvalho, Paula Cristina S.
2016-03-01
The mineralogy, texture, major, trace and rare earth elements, from recent sediment samples collected in the lower Catumbela River, were analysed in this study to characterize and discuss the factors controlling its geochemistry and provide data that can be used as tracers of Catumbela River inputs to the Angolan continental shelf. The sediments are mainly sands and silty-sands, but sandy-silt also occurs and the mineralogy is composed of quartz, feldspar, phyllosilicates, magnetite, ilmenite and also carbonates when the river crosses limestones and marls in the downstream sector. The hydraulic sorting originates magnetite-ilmenite and REE-enriched minerals placers. The mineralogy of the sediments is controlled by the source rocks and the degree of chemical weathering is lower than erosion. The texture is mainly controlled by location. There is enrichment in all the analysed trace elements in the fine grained, clay minerals and Fe-oxy-hydroxides rich sediments, compared to the coarse grained and quartz plus feldspar rich ones. The coarse grained sediments (without the placers) are impoverished in ΣREE when compared with UCC and NASC compositions, while the fine grained sediments have ΣREE contents similar to UCC and NASC. The placers have ΣREE contents up to 959.59 mg/kg. The source composition is the dominant factor controlling the REE geochemistry of the analysed sediments as there is no difference in the (La/Yb)N, (La/Sm)N and (Gd/Yb)N ratios in coarse and fine grained sediments. The sorting of magnetite, ilmenite, zircon, throrite, thorianite, rutile and titanite explain the HREE/LREE enriched patterns of the coarse grained sediments.
NASA Technical Reports Server (NTRS)
Merry, C. J.
1979-01-01
A water sampling program was accomplished at Lake Powell, Utah, during June 1975 for correlation to multispectral data obtained with a 500-channel airborne spectroradiometer. Field measurements were taken of percentage of light transmittance, surface temperature, pH and Secchi disk depth. Percentage of light transmittance was also measured in the laboratory for the water samples. Analyses of electron micrographs and suspended sediment concentration data for four water samples located at Hite Bridge, Mile 168, Mile 150 and Bullfrog Bay indicated differences in the composition and concentration of the particulate matter. Airborne spectroradiometer multispectral data were analyzed for the four sampling locations. The results showed that: (1) as the percentage of light transmittance of the water samples decreased, the reflected radiance increased; and (2) as the suspended sediment concentration (mg/l) increased, the reflected radiance increased in the 1-80 mg/l range. In conclusion, valuable qualitative information was obtained on surface turbidity for the Lake Powell water spectra. Also, the reflected radiance measured at a wavelength of 0.58 micron was directly correlated to the suspended sediment concentration.
Origin of particulate organic matter exported during storm events in a forested headwater catchment.
NASA Astrophysics Data System (ADS)
Jeanneau, Laurent; Rowland, Richard D.; Inamdar, Shreeram P.
2016-04-01
Particulate organic matter (POM) plays an important biogeochemical role towards ecology, ecotoxicology and carbon cycle. Moreover POM within the fluvial suspended sediment load during infrequent high flows can comprise a larger portion of long-term flux than dissolved species. It is well documented that storm events that constituted only 10-20% of the year contributed to >80% of POC exports. But the origin and composition of POM transferred during those hot moments remained unclear. In order to improve our knowledge on this topic we explore the variability in storm event-transported sediments' POM content and source down a continuum of catchment drainage locations. Wetland, upland and forest O horizons, litter, river banks and bed sediments were analyzed for their content in organic C, isotopic (13C) and molecular (thermochemiolysis-gas chromatography-mass spectrometry) fingerprints. The isotopic and molecular fingerprints recorded in suspended and deposited (differentiated into fine, medium and coarse particles) sediments sampled during different storm events down a continuum of catchment drainage locations (12 and 79 ha). This study highlights compositional differences between the catchment size (12 versus 79 ha), the particle size of deposited sediment (fine versus medium versus coarse) and the sampling time during a storm event (rising limb versus peak flow versus falling limb). Two sampling strategies were used. Suspended sediments sampled at a specific time during flood events allow evaluating changes along the hydrograph, while deposited sediments that integrate the entire event allow making comparisons with drainage scale. For deposited sediments, the proportion of OM coming from the endmembers wetland, litter and Forest O horizon decreases from the 12ha to the 79ha catchment, which exhibited a higher proportion of OM coming from stream bed sediment and river banks. For both catchments, from fine to coarse particles, the influence of stream bed sediments and river banks decreases while the influence of Forest O horizon increases. For suspended sediments, the evolution during storm events were opposite in the 12ha and the 79ha catchments. In the 12ha catchment, during the rising limb of the hydrograph, POM seems to be inherited from stream bed sediments and river banks, while from the rising limb to the peak flow, the influence of litter and/or wetland increases. This influence decreases during the falling limb. The opposite trend was observed in the 79ha catchment, with an increasing contribution of stream bed sediments to the OM exported during a storm event. What is the information to take away? First POM transferred in headwater catchments has multiple sources. Secondly, the combination of those sources is different along the size continuum of particles. Then, down a continuum of catchment drainage locations, the combination of sources changes both along the size continuum and during storm events. This information is critical for identifying the various drivers and mechanisms behind POM transport and for understanding the impacts of POM on aquatic metabolism and downstream water quality.
Grain size is a physical measurement commonly made in the analysis of many benthic systems. Grain size influences benthic community composition, can influence contaminant loading and can indicate the energy regime of a system. We have recently investigated the relationship betw...
Linking geology and microbiology: inactive pockmarks affect sediment microbial community structure.
Haverkamp, Thomas H A; Hammer, Øyvind; Jakobsen, Kjetill S
2014-01-01
Pockmarks are geological features that are found on the bottom of lakes and oceans all over the globe. Some are active, seeping oil or methane, while others are inactive. Active pockmarks are well studied since they harbor specialized microbial communities that proliferate on the seeping compounds. Such communities are not found in inactive pockmarks. Interestingly, inactive pockmarks are known to have different macrofaunal communities compared to the surrounding sediments. It is undetermined what the microbial composition of inactive pockmarks is and if it shows a similar pattern as the macrofauna. The Norwegian Oslofjord contains many inactive pockmarks and they are well suited to study the influence of these geological features on the microbial community in the sediment. Here we present a detailed analysis of the microbial communities found in three inactive pockmarks and two control samples at two core depth intervals. The communities were analyzed using high-throughput amplicon sequencing of the 16S rRNA V3 region. Microbial communities of surface pockmark sediments were indistinguishable from communities found in the surrounding seabed. In contrast, pockmark communities at 40 cm sediment depth had a significantly different community structure from normal sediments at the same depth. Statistical analysis of chemical variables indicated significant differences in the concentrations of total carbon and non-particulate organic carbon between 40 cm pockmarks and reference sample sediments. We discuss these results in comparison with the taxonomic classification of the OTUs identified in our samples. Our results indicate that microbial communities at the sediment surface are affected by the water column, while the deeper (40 cm) sediment communities are affected by local conditions within the sediment.
A primer on trace metal-sediment chemistry
Horowitz, Arthur J.
1985-01-01
In most aquatic systems, concentrations of trace metals in suspended sediment and the top few centimeters of bottom sediment are far greater than concentrations of trace metals dissolved in the water column. Consequently, the distribution, transport, and availability of these constituents can not be intelligently evaluated, nor can their environmental impact be determined or predicted solely through the sampling and analysis of dissolved phases. This Primer is designed to acquaint the reader with the basic principles that govern the concentration and distribution of trace metals associated with bottom and suspended sediments. The sampling and analysis of suspended and bottom sediments are very important for monitoring studies, not only because trace metal concentrations associated with them are orders of magnitude higher than in the dissolved phase, but also because of several other factors. Riverine transport of trace metals is dominated by sediment. In addition, bottom sediments serve as a source for suspended sediment and can provide a historical record of chemical conditions. This record will help establish area baseline metal levels against which existing conditions can be compared. Many physical and chemical factors affect a sediment's capacity to collect and concentrate trace metals. The physical factors include grain size, surface area, surface charge, cation exchange capacity, composition, and so forth. Increases in metal concentrations are strongly correlated with decreasing grain size and increasing surface area, surface charge, cation exchange capacity, and increasing concentrations of iron and manganese oxides, organic matter, and clay minerals. Chemical factors are equally important, especially for differentiating between samples having similar bulk chemistries and for inferring or predicting environmental availability. Chemical factors entail phase associations (with such sedimentary components as interstitial water, sulfides, carbonates, and organic matter) and ways in which the metals are entrained by the sediments (such as adsorption, complexation, and within mineral lattices).
NASA Astrophysics Data System (ADS)
Grippo, M. A.; Fleeger, J. W.; Rabalais, N. N.; Condrey, R.; Carman, K. R.
2010-03-01
Marine sediment may contain both settled phytoplankton and benthic microalgae (BMA). In river-dominated, shallow continental shelf systems, spatial, and temporal heterogeneity in sediment type and water-column characteristics (e.g., turbidity and primary productivity) may promote spatial variation in the relative contribution of these two sources to the sediment organic matter pool available to benthic consumers. Here we use photosynthetic pigment analysis and microscopic examination of sediment microalgae to investigate how the biomass, composition, and degradation state of sediment-associated microalgae vary along the Louisiana (USA) inner shelf, a region strongly influenced by the Mississippi River. Three sandy shoals and surrounding muddy sediments with depths ranging from 4 to 20 m were sampled in April, August, and October 2007. Pigment composition suggested that sediment microalgae were primarily diatoms at all locations. We found no significant differences in sediment chlorophyll a concentrations (8-77 mg m -2) at the shoal and off-shoal stations. Epipelic pennate diatoms (considered indicative of BMA) made up a significantly greater proportion of sediment diatoms at sandy (50-98%) compared to more silty off-shoal stations (16-56%). The percentage of centric diatoms (indicators of settled phytoplankton) in the sediment was highest in August. Sediment total pheopigment concentrations on sandy stations (<20 mg m -2) were significantly lower than concentrations at nearby muddy stations (>40 mg m -2), suggesting differences in sediment microalgal degradation state. These observations suggest that BMA predominate in shallow sandy sediments and that phytodetritus predominates at muddy stations. Our results also suggest that the relative proportion of phytodetritus in the benthos was highest where phytoplankton biomass in the overlying water was greatest, independent of sediment type. The high biomass of BMA found on shoals suggests that benthic primary production on sandy sediments represents a potentially significant local source of sediment microalgal carbon that may be utilized by benthic consumers in continental shelf food webs.
Including granulometric sediment coastal data composition into the Black Sea GIS
NASA Astrophysics Data System (ADS)
Zhuk, Elena; Khaliulin, Alexey; Krylenko, Marina; Krylenko, Viacheslav; Zodiatis, George; Nikolaidis, Marios; Nikolaidis, Andreas
2017-09-01
The module structure of the Black Sea GIS allows the increasing of its functionality, including new data types and defining new procedures accessing them, their visualization and integration with existing data by their conjoint processing and representation. The Black Sea GIS is released as free software; Mapserver is used as a mapping service; MySQL DBMS works with relational data. A new additional feature provided, is the ability of including coastal data obtained in SB SIO RAS. The data represent granulometric composition of the Anapa bay-bar sediments. The Anapa bay-bar is an accumulative sand form (about 50 km long) located on the northwest Russian Black Sea coast. The entire bay-bar and especially its southern part with sand beaches 50-200 m wide is intensively used in recreation. This work is based on the results of field studies of 2010-2014 in the southern part of the Anapa bay-bar researched by scientists of the Shirshov Institute of Oceanology RAS. Since the shore under consideration has no clearly pronounced reference points, "virtual" points located within 1 km distance from each other were selected. Transversal profiles cross these points. The granulometric composition was studied along with 45 profiles. The samples taken in every profile were from the most characteristic morphological parts of the beach. In this study we used shoreline zone samples. Twenty one granule fractions (mm) were separated in the laboratory. The module which processes coastal data allows to select coastal data based on territory/region and granulometric sediment composition. Also, it allows to visualize coastal maps with user-selected features combined with other GIS data.
Haselhorst, Derek S.; Moreno, J. Enrique; Punyasena, Surangi W.
2013-01-01
Tropical paleoecologists use a combination of mud-water interface and modern pollen rain samples (local samples of airborne pollen) to interpret compositional changes within fossil pollen records. Taxonomic similarities between the composition of modern assemblages and fossil samples are the basis of reconstructing paleoclimates and paleoenvironments. Surface sediment samples reflect a time-averaged accumulation of pollen spanning several years or more. Due to experimental constraints, modern pollen rain samples are generally collected over shorter timeframes (1–3 years) and are therefore less likely to capture the full range of natural variability in pollen rain composition and abundance. This potentially biases paleoenvironmental interpretations based on modern pollen rain transfer functions. To determine the degree to which short-term environmental change affects the composition of the aerial pollen flux of Neotropical forests, we sampled ten years of the seasonal pollen rain from Barro Colorado Island, Panama and compared it to climatic and environmental data over the same ten-year span. We establish that the pollen rain effectively captured the strong seasonality and stratification of pollen flow within the forest canopy and that individual taxa had variable sensitivity to seasonal and annual changes in environmental conditions, manifested as changes in pollen productivity. We conclude that modern pollen rain samples capture the reproductive response of moist tropical plants to short-term environmental change, but that consequently, pollen rain-based calibrations need to include longer sampling periods (≥7 years) to reflect the full range of natural variability in the pollen output of a forest and simulate the time-averaging present in sediment samples. Our results also demonstrate that over the long-term, pollen traps placed in the forest understory are representative samples of the pollen output of both canopy and understory vegetation. Aerial pollen traps, therefore, also represent an underutilized means of monitoring the pollen productivity and reproductive behavior of moist tropical forests. PMID:23320089
Haselhorst, Derek S; Moreno, J Enrique; Punyasena, Surangi W
2013-01-01
Tropical paleoecologists use a combination of mud-water interface and modern pollen rain samples (local samples of airborne pollen) to interpret compositional changes within fossil pollen records. Taxonomic similarities between the composition of modern assemblages and fossil samples are the basis of reconstructing paleoclimates and paleoenvironments. Surface sediment samples reflect a time-averaged accumulation of pollen spanning several years or more. Due to experimental constraints, modern pollen rain samples are generally collected over shorter timeframes (1-3 years) and are therefore less likely to capture the full range of natural variability in pollen rain composition and abundance. This potentially biases paleoenvironmental interpretations based on modern pollen rain transfer functions. To determine the degree to which short-term environmental change affects the composition of the aerial pollen flux of Neotropical forests, we sampled ten years of the seasonal pollen rain from Barro Colorado Island, Panama and compared it to climatic and environmental data over the same ten-year span. We establish that the pollen rain effectively captured the strong seasonality and stratification of pollen flow within the forest canopy and that individual taxa had variable sensitivity to seasonal and annual changes in environmental conditions, manifested as changes in pollen productivity. We conclude that modern pollen rain samples capture the reproductive response of moist tropical plants to short-term environmental change, but that consequently, pollen rain-based calibrations need to include longer sampling periods (≥7 years) to reflect the full range of natural variability in the pollen output of a forest and simulate the time-averaging present in sediment samples. Our results also demonstrate that over the long-term, pollen traps placed in the forest understory are representative samples of the pollen output of both canopy and understory vegetation. Aerial pollen traps, therefore, also represent an underutilized means of monitoring the pollen productivity and reproductive behavior of moist tropical forests.
The susceptibility of large river basins to orogenic and climatic drivers
NASA Astrophysics Data System (ADS)
Haedke, Hanna; Wittmann, Hella; von Blanckenburg, Friedhelm
2017-04-01
Large rivers are known to buffer pulses in sediment production driven by changes in climate as sediment is transported through lowlands. Our new dataset of in situ cosmogenic nuclide concentration and chemical composition of 62 sandy bedload samples from the world largest rivers integrates over 25% of Earth's terrestrial surface, distributed over a variety of climatic zones across all continents, and represents the millennial-scale denudation rate of the sediment's source area. We can show that these denudation rates do not respond to climatic forcing, but faithfully record orogenic forcing, when analyzed with respective variables representing orogeny (strain rate, relief, bouguer anomaly, free-air anomaly), and climate (runoff, temperature, precipitation) and basin properties (floodplain response time, drainage area). In contrast to this orogenic forcing of denudation rates, elemental bedload chemistry from the fine-grained portion of the same samples correlates with climate-related variables (precipitation, runoff) and floodplain response times. It is also well-known from previous compilations of river-gauged sediment loads that the short-term basin-integrated sediment export is also climatically controlled. The chemical composition of detrital sediment shows a climate control that can originate in the rivers source area, but this signal is likely overprinted during transfer through the lowlands because we also find correlation with floodplain response times. At the same time, cosmogenic nuclides robustly preserve the orogenic forcing of the source area denudation signal through of the floodplain buffer. Conversely, previous global compilations of cosmogenic nuclides in small river basins show the preservation of climate drivers in their analysis, but these are buffered in large lowland rivers. Hence, we can confirm the assumption that cosmogenic nuclides in large rivers are poorly susceptible to climate changes, but are at the same time highly suited to detect changes in orogenic forcing in their paleo sedimentary records.
Aeolian process of the dried-up riverbeds of the Hexi Corridor, China: a wind tunnel experiment.
Zhang, Caixia; Wang, Xunming; Dong, Zhibao; Hua, Ting
2017-08-01
Wind tunnel studies, which remain limited, are an important tool to understand the aeolian processes of dried-up riverbeds. The particle size, chemical composition, and the mineral contents of sediments arising from the dried river beds are poorly understood. Dried-up riverbeds cover a wide area in the Hexi Corridor, China, and comprise a complex synthesis of different land surfaces, including aeolian deposits, pavement surfaces, and Takyr crust. The results of the present wind tunnel experiment suggest that aeolian transport from the dried-up riverbeds of the Hexi Corridor ranges from 0 to 177.04 g/m 2 /min and that dry riverbeds could be one of the main sources of dust emissions in this region. As soon as the wind velocity reaches 16 m/s and assuming that there are abundant source materials available, aeolian transport intensity increases rapidly. The dried-up riverbed sediment and the associated aeolian transported material were composed mainly of fine and medium sands. However, the transported samples were coarser than the bed samples, because of the sorting effect of the aeolian processes on the sediment. The aeolian processes also led to regional elemental migration and mineral composition variations.
NASA Astrophysics Data System (ADS)
Zhang, Z.
2017-12-01
A total of 65 pore water samples were obtained from a sediment sequence in the Amami-Sankaku Basin during the IODP 351 Expedition, which consists of a 160 m thick section of terrestrial origin and underlying 1.3 km thick volcaniclastic section sampled at site U1438. Downcore variations of chemical compositions are characterized by increasing salinity/pH, increasing concentrations of Cl and Ca, and decreasing concentrations of Mg, K and Na, as well as decreasing d18O and dD. The rapid changes in those chemical components and isotopic composition occurred deeper than the lithology boundary between Unit III and Unit II, most likely as a result of substantial difference in extent of alteration above and below this boundary. The strong alterations of volcanicalstic minerals below the boundary not only result in diminishment of K, Mg, Si, and Mn, and an increase of Ca and Cl, but also depleted d18O in pore water. However, hydrogen fractionation factors between pore water and secondary minerals are less 1, and depleted dD values in pore water most likely reflect the signal of paleo-seawater. As a result, samples below the boundary are all plotted on the left side of the meteorite water line (MWL) on the dD vs. d18O plot. Above the boundary, they are placed to the right side of MWL due to substantially weakened alteration, reflecting an evolving trend in sediment setting from the predominance of alterated volcaniclasts to terrestrial pelagic sediments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O`Clair, C.E.; Short, J.W.; Rice, S.D.
Sediments were collected at ten locations in Prince William Sound in July 1993 to determine the geographical and bathymetric distribution of oil from the Exxon Valdez oil spill in the low intertidal zone and subtidal region. The authors sampled sediments at mean lower low water (0 m) and at five subtidal depths from 3 to 100 m. No Exxon Valdez oil was found in sediments at 0 m where the greatest mean intertidal concentration of total polynuclear aromatic hydrocarbons excluding perylene (54 ng/g) was observed at Moose Lips Bay. Subtidal sediments showed polynuclear aromatic hydrocarbon composition patterns similar to Exxonmore » Valdez oil at three sites, Herring Bay, Northwest Bay and Sleepy Bay. Contamination of sediments by Exxon Valdez oil reached a depth of 20 m at Northwest Bay and Sleepy Bay. In deep sediments (> or = 40 m) the authors found no evidence of weathered Exxon Valdez oil.« less
NASA Astrophysics Data System (ADS)
Vidovic, Jelena; Cosovic, Vlasta; Gallmetzer, Ivo; Haselmair, Alexandra; Zuschin, Martin
2015-04-01
The Late Holocene in the northern Adriatic is characterized by the eustatic peak of the sea-level rise, followed by the equilibrium between the regional tectonic subsidence and hydro-isostatic emergence and relatively stable sea level for a few thousand years. During this period the area experienced changes in sedimentation rate, food/oxygen availability in the benthic ecosystem and eutrophication with seasonal hypoxic and anoxic events. In order to reconstruct the marine paleoecology in the Brijuni Islands area during this period, a multidisciplinary study was carried out, including geochemical (TOC, trace metals, carbonate content), micropaleontological analyses (benthic foraminifera) and dating of sediments and mollusc shells. The principal aim of this study is to observe the effects of ecological shifts on foraminiferal assemblages during the Late Holocene. One core of 1.5 m length was taken at a sampling station south of Veli Brijuni Island, located within a marine protected area with no fishing/dredging pressure (Croatian national park). The core was sliced into smaller subsamples, and four sediment fractions of each subsample (63, 125, 250 and 500 µm) were analyzed for standard properties of the foraminiferal community (species richness, faunal composition, biodiversity indices), in comparison with relevant physical and geochemical properties of the sediment. The results concerning changes in foraminiferal species composition and abundance point to differences within the core: surface sediments are dominated by suspension feeders (Planorbulina mediterranensis, Lobatula lobatula, Cibicides variabilis, Cibicides refulgens), whereas deposit feeders (genera Textularia, Siphonaperta, Adelosina, Trioculina) appear in higher abundances at approximately 30 cm of the sediment depth and dominate down-core. Species richness in the first 30 cm is lower (10 to 34 species per sample) in comparison to the middle part of the core (39 to 53 species), and decreases again at 100 cm to 25 to 42 species per sample. Diversity indices follow the pattern of species richness and point to normal marine conditions. Similarity indices rise with core depth. The radiometric dating of the sediments together with carbon-calibrated amino acid- racemisation of mollusc shells from selected species will help to determine the timing of major ecological changes.
Processes affecting transport of uranium in a suboxic aquifer
Davis, J.A.; Curtis, G.P.; Wilkins, M.J.; Kohler, M.; Fox, P.; Naftz, D.L.; Lloyd, J.R.
2006-01-01
At the Naturita site in Colorado, USA, groundwaters were sampled and analyzed for chemical composition and by culture and culture-independent microbiological techniques. In addition, sediments were extracted with a dilute sodium carbonate solution to determine quantities of labile uranium within the sediments. Samples from the upgradient portion of the contaminated aquifer, where very little dissolved Fe(II) is found in the groundwater, have uranium content that is controlled by U(VI) adsorption and few metal-reducing bacteria are observed. In the extreme downgradient portion of the aquifer, where dissolved Fe(II) is observed, uranium content of the sediments includes significant quantities of reduced U(IV) and diverse populations of Fe(III)-reducing bacteria were present in the subsurface with the potential of reducing U(VI) to U(IV). ?? 2006 Elsevier Ltd. All rights reserved.
Insights into microbial communities involved in mercury methylation in the San Francisco Bay estuary
NASA Astrophysics Data System (ADS)
Machak, C.; Francis, C. A.
2013-12-01
San Francisco Bay (SFB) estuary is the largest estuary on the western coast of the United States, draining a watershed covering more than one third of the state of California. Mercury (Hg) contamination in SFB, as a result of gold and mercury mining in the Coast Range and Sierra Nevada region, has been observed for at least 150 years. Additional sources of Hg contamination to SFB come from active oil refineries, manufacturing, and wastewater treatment plants in the area. Concentrations of methylmercury in the sediment at the time of sample collection for the present study ranged from 0.011-3.88 μg/kg (dry weight). At some sites, the concentration exceeds wetland toxicity limits, posing a threat to the health of the ecosystem and potentially endangering humans that use the estuary for food and recreation. This study attempts to understand the factors that control the transformation of Hg to methylmercury by microorganisms in aquatic sediments, where the majority of Hg methylation is known to occur. Under anoxic conditions, some sulfate- and iron-reducing bacteria have the capacity to transform Hg into methylmercury. To better understand the microbial communities involved in Hg methylation, an extensive library of 16S rRNA sequences was generated (via Illumina sequencing) from sediment samples at 20 sites throughout the SFB estuary. In addition to genomic data, we have access to a massive database of geochemical measurements made by the SFB Regional Monitoring Program at the sampling locations. These measurements show that our sediment samples have varying methylmercury concentrations and span gradients in porewater sulfate and Fe(III), which are the two known alternative electron acceptors for mercury-methylating anaerobic bacteria. The sampling sites also span gradients in other geochemical factors known to influence microbial community composition (and potentially Hg mercury methylation), such as available organic carbon, pH, and salinity. We will present the results of our analysis of the effect of various physical and geochemical parameters on the microbial community composition and abundance of known Hg methylators throughout SFB sediments.
NASA Astrophysics Data System (ADS)
Kim, T. W.; Yarnell, S. M.; Yager, E.; Leidman, S. Z.
2015-12-01
Caspar Creek is a gravel-bedded stream located in the Jackson Demonstration State Forest in the coast range of California. The Caspar Creek Experimental Watershed has been actively monitored and studied by the Pacific Southwest Research Station and California Department of Forestry and Fire Protection for over five decades. Although total annual sediment yield has been monitored through time, sediment transport during individual storm events is less certain. At a study site on North Fork Caspar Creek, cross-section averaged sediment flux was collected throughout two storm events in December 2014 and February 2015 to determine if two commonly used sediment transport equations—Meyer-Peter-Müller and Wilcock—approximated observed bedload transport. Cross-section averaged bedload samples were collected approximately every hour during each storm event using a Helley-Smith bedload sampler. Five-minute composite samples were collected at five equally spaced locations along a cross-section and then sieved to half-phi sizes to determine the grain size distribution. The measured sediment flux values varied widely throughout the storm hydrographs and were consistently less than two orders of magnitude in value in comparison to the calculated values. Armored bed conditions, changing hydraulic conditions during each storm and variable sediment supply may have contributed to the observed differences.
Bacteria and Composite Particles in the Glacier-Fed Systems of British Columbia and Alberta, Canada
NASA Astrophysics Data System (ADS)
Barrett, D. C.; Hodder, K. R.
2014-12-01
In controlled environments, bacteria and suspended sediment particles are linked via the creation of a composite structure ("bacteria-sediment associations"; BSA), with associated effects on size, density and hydrodynamics. However, the presence of these particles, and their corresponding effect on sedimentary processes is not well documented in many environments. Here, we compile field data from 20 glacier-fed systems in British Columbia and Alberta, Canada, to illustrate: 1) the presence, and (quantity) of bacteria-sediment associations; 2) the presence of in-situ composite particles and their associated settling velocities; 3) the simulated impact of bacteria-sediment associations on settling velocity via controlled manipulation in the laboratory. In general, a significant portion of the fine suspended sediment typical of these systems was associated with bacteria and/or present in a composite-form -- not as primary, individual particles. Four key findings include: 1) Along a 80 kilometre river transect, up to 40% of bacteria were associated with sediment particles; 2) Manipulation of bacteria concentration in the laboratory has revealed a positive relationship between sediment settling velocity, creation of composite particles and bacteria concentration; 3) Composite particles dominated the suspended sediment load among all 20 systems, especially for larger particles; and 4) Measurements reveal these composite particles are settling at rates significantly below that predicted by Stokes Law. The formation of composite particles is especially important in lakes where laminated sediments are used for paleoenvironmental reconstruction (varved), as bacteria can modulate the rate at which some of this sediment reaches the lake floor. These results highlight the importance of bacteria in Earth surface processes and, more specifically, the sediment dynamics within glacier-fed systems.
Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments.
Mõtlep, Riho; Sild, Terje; Puura, Erik; Kirsimäe, Kalle
2010-12-15
Oil shale is a primary fuel in the Estonian energy sector. After combustion 45-48% of the oil shale is left over as ash, producing about 5-7 Mt of ash, which is deposited on ash plateaus annually almost without any reuse. This study focuses on oil shale ash plateau sediment mineralogy, its hydration and diagenetic transformations, a study that has not been addressed. Oil shale ash wastes are considered as the biggest pollution sources in Estonia and thus determining the composition and properties of oil shale ash sediment are important to assess its environmental implications and also its possible reusability. A study of fresh ash and drillcore samples from ash plateau sediment was conducted by X-ray diffractometry and scanning electron microscopy. The oil shale is highly calcareous, and the ash that remains after combustion is derived from the decomposition of carbonate minerals. It is rich in lime and anhydrite that are unstable phases under hydrous conditions. These processes and the diagenetic alteration of other phases determine the composition of the plateau sediment. Dominant phases in the ash are hydration and associated transformation products: calcite, ettringite, portlandite and hydrocalumite. The prevailing mineral phases (portlandite, ettringite) cause highly alkaline leachates, pH 12-13. Neutralization of these leachates under natural conditions, by rainwater leaching/neutralization and slow transformation (e.g. carbonation) of the aforementioned unstable phases into more stable forms, takes, at best, hundreds or even hundreds of thousands of years. Copyright © 2010 Elsevier B.V. All rights reserved.
Robinson, J E; Newell, R C; Seiderer, L J; Simpson, N M
2005-07-01
Dredging and associated screening at a dredge site in the southern North Sea (Area 408) is associated with areas of well-sorted fine sand that extend for up to 3 km to the south-east of the dredged area and overlay sediments with a more variable particle size composition. This well-sorted fine sand may reflect deposition and transport of material mobilised by the dredging and screening processes at the dredge site. Multivariate analysis of the benthic community structure suggests that marine aggregate dredging, at the level of intensity employed in the study area prior to sample collection, has had a limited impact on benthic community composition compared with that reported from studies elsewhere. This is ascribed to the likely rapid rates of recolonisation by the mobile opportunistic polychaetes and crustaceans that dominate the macrofauna of the sandy gravel deposits at this particular dredge site. Analysis of variance showed, however, that significant differences existed between the sample treatments in terms of species evenness (Pielou's J). Dredged samples were found to have the lowest mean species evenness (0.71) when compared to controls (0.77). The present study highlights the inherent difficulties in the application of general impact/recovery predictions to dredged sites with varying environmental characteristics.
Marinho, C C; Campos, E A; Guimarães, J R D; Esteves, F A
2012-08-01
The aim of this research was to evaluate the effect of sediment composition on methane (CH4) dynamics in sediments of different areas in the transition zone between a mangrove and the sea. This research was conducted in a mangrove at Coroa Grande, on the southern coast of Rio de Janeiro. Samples were collected at three stations: (1) region colonised by Rhizophora mangle L. on the edge of the mangrove, (2) region colonised by seagrasses and (3) infra-littoral region without vegetation. Samples were collected from the surface layer of the sediment to determine the concentrations of nutrients (C, N and P) and CH4 concentration and production. We observed that concentrations of CH4 and carbon (C) were significantly higher (p < 0.05) in station 1 than station 3. The molar ratios (C:N, C:P and N:P) suggest that the origin of the substrate is mainly autochthonous. Methanogenesis was initially low, possibly due to competition between methanogens and sulfate reducers, and increased significantly (p < 0.05) on the twenty-sixth day in the sediment of station 1, probably due to higher organic matter (OM) availability in this region. Results indicate that methanogenic activity observed herein is not regulated by the amount or quality of OM, but by other factors. The concentration of CH4 in the sea-land ecotone at Mangrove Coroa Grande is a function of available OM suggesting a possible inhibition of methanotrophy by intense oxygen consumption in the soil surface covered by detritus of Rhizophora mangle vegetation.
Holocene deposits in the Mangyshlak Peninsula, North Caspian Sea region
NASA Astrophysics Data System (ADS)
Bezrodnykh, Yu. P.; Deliya, S. V.; Romanyuk, B. F.; Fedorov, V. I.; Sorokin, V. M.; Luksha, V. L.
2014-07-01
Comprehensive analysis of the data of high-precision seismoacoustic profiling, drilling and sampling of deposits using seabed corers, biostratigraphic studies, and radiocarbon age data was performed for the first time for Mangyshlak sediments in several bottom sites of the North Caspian. It was found that the Mangyshlak sediments comprise numerous linearly stretched depressions of 5-10 m in depth (morphologically similar to modern substeppe ilmen areas in the Volga River delta), which are covered by the Novocaspian sedimentary cover, and river incisions (among them the largest Volga River valley). In addition, the Mangyshlak sediments comprise the deltaic alluvial fans of different sizes along the shelf zone of the North Caspian. Analysis of mollusks and biogenic remains indicates that accumulation of the Mangyshlak sediments occurred in freshwater and slightly salty water environments under various hydrodynamic and hydrochemical conditions. According to radiocarbon dating of organic matter, the Mangyshlak sediments formed during sea regression in the range of 10-8 ka (isotopic age) or 11.5-8.5 ka (calendar age). Several types of sediments are distinguished: clayey-carbonate sediments, enriched with organic matter up to the formation of sapropel and peat, accumulated at the lowest sea level; weakly calcareous silty-clayey silts, formed during the subsequent intense filling of paleodepressions with terrigenous material. The features of the mineral composition of sediments are as follows: polymineral composition of clayey material with a high proportion of hydromica and disordered mixed-layered formations, a high content of minerals of the epidote group, amphiboles, and other accessory minerals. All of this indicates a genetic relationship between the Mangyshlak sediments and the Volga terrigenous material.
V isotope composition in modern marine hydrothermal sediments
NASA Astrophysics Data System (ADS)
Wu, F.; Owens, J. D.; Nielsen, S.; German, C. R.; Rachel, M.
2017-12-01
Vanadium is multivalence transition metal with two isotopes (51V and 50V). Recent work has shown that large V isotope variations occur with oxygen variations in modern sediments (Wu et al., 2016 and 2017 Goldschmidt Abstracts), providing its potential as a promising proxy for determining low oxygen conditions. However, the development of V isotopes as a proxy to probe past redox conditions requires a comprehensive understanding of the modern oceanic isotopic mass balance. Therein, the scavenging of V from the hydrous iron oxides in hydrothermal fluid has been shown to be an important removal process from seawater (Rudnicki and Elderfield, 1993 GCA) but remains unquantified. In this study, we analyzed V isotopic compositions of metalliferous sediments around the active TAG hydrothermal mound from the mid-Atlantic Ridge (26° degrees North) and the Eastern Pacific Zonal Transect (GEOTRACES EPZT cruise GP16). The TAG sediments deposited as Fe oxyhydroxides from plume fall-out, and have δ51V values between -0.3 to 0‰. The good correlation between Fe and V for these metalliferous sediments indicate that the accumulation of V in these samples is directly related to the deposition of Fe oxyhydroxides, which also control their V isotope signature. The EPZT samples cover 8,000 km in the South Pacific Ocean with sedimentary areas that underlie the Peru upwelling region and the well-oxygenated deep South Pacific Ocean influenced by hydtorthermal plume material from southern East Pacific Rise (EPR). The sediments collected at the east of the EPR have δ51V values between -1.2 to -0.7‰, similar to previous δ51V of oxic sediments. In contrast, the sediments from the west of the EPR have δ51V values (-0.4 to 0‰) similar to hydrothermal sediments from the mid-Atlantic Ridge, indicating the long transportation (more than 4,000 km, Fitzsimmons et al., 2017 NG) of Fe and Mn from hydrothermal plume and their incorporation into sediments have a major impact on the cycle of V in the ocean. The fingerprint of δ51V between oxic sediments and hydrothermal flux are significantly different and should be easily discernible in the geologic record. Consequently, our results show that the removal of V from hydrothermal sediments has an important influence on the marine V cycle, which needs to be considered for future modern and paleoclimatic studies.
Gautier, D.L.
1986-01-01
Sulphur/carbon ratios in cores of selected Cretaceous marine shales average 0.67, a value greater than that observed in recent marine sediments and much higher than global values calculated for the Cretaceous. This may be ascribed to generally low levels of bioturbation and enhanced efficiency of sulphate reduction due to low oxygen levels in Cretaceous seaways. Isotopic compositions of pyrite sulphur vary systematically with level of oxygenation of the depositional environment and therefore with organic carbon abundance and type of organic matter. Samples with >4% organic carbon are extremely depleted in 34S (mean delta 34S -31per mille) and contain hydrogen-rich organic matter. Samples containing <1.5% organic carbon display relatively 'heavy' but wide-ranging delta 34S values (-34.6 to +16.8per mille) and contain hydrogen-poor organic matter. Samples with intermediate amounts of organic carbon have average delta 34S of -25.9per mille and contain both types of organic matter. Relations between the nature of these shales, and their sedimentation rate and depositional environment are discussed.-L.C.H.
PIXE study of Cuban quaternary paleoclimate geological samples and speleothems.
Montero, M E; Aspiazu, J; Pajón, J; Miranda, S; Moreno, E
2000-02-01
PIXE elemental analysis of sediments, speleothems, and other geological formations related to the karst of the Sierra de San Carlos is presented. The similarity of the elemental composition of the sediments studied, as well as the alluvial regime which created them, indicate their common origin at each location. The Sr/Ca concentration ratio of a stalactite indicates that the average atmospheric temperature 12,000 and 18,000 years B.P. was colder than that of 6000 years B.P.
Geochemistry of sediments in the Northern and Central Adriatic Sea
NASA Astrophysics Data System (ADS)
De Lazzari, A.; Rampazzo, G.; Pavoni, B.
2004-03-01
Major, minor and trace elements, loss of ignition, specific surface area, quantities of calcite and dolomite, qualitative mineralogical composition, grain-size distribution and organic micropollutants (PAH, PCB, DDT) were determined on surficial marine sediments sampled during the 1990 ASCOP (Adriatic Scientific Cooperative Program) cruise. Mineralogical composition and carbonate content of the samples were found to be comparable with data previously reported in the literature, whereas geochemical composition and distribution of major, minor and trace elements for samples in international waters and in the central basin have never been reported before. The large amount of information contained in the variables of different origin has been processed by means of a comprehensive approach which establishes the relations among the components through the mathematical-statistical calculation of principal components (factors). These account for the major part of data variance loosing only marginal parts of information and are independent from the units of measure. The sample descriptors concerning natural components and contamination load are discussed by means of a statistical model based on an R-mode Factor analysis calculating four significant factors which explain 86.8% of the total variance, and represent important relationships between grain size, mineralogy, geochemistry and organic micropollutants. A description and an interpretation of factor composition is discussed on the basis of pollution inputs, basin geology and hydrodynamics. The areal distribution of the factors showed that it is the fine grain-size fraction, with oxides and hydroxides of colloidal origin, which are the main means of transport and thus the principal link between chemical, physical and granulometric elements in the Adriatic.
Source and Fate of Sediments in the Bahia de Anasco, Puerto Rico
NASA Astrophysics Data System (ADS)
Webb, R. M.
2005-12-01
Sediments and wastewater mix in the insular marine waters of the Bah'{i}a de Añasco near Mayag{u}ez, Puerto Rico. Trace metal concentrations in fine sediments deposited in the bay were measured to assess potential impact of the ocean outfall on the biota and habitats that include coral reefs. A Q-mode factor analysis of elemental compositions identified three sediment sources and their relative proportions in 51 core and surficial samples collected from the bay and within the coral reefs: (1) sediments discharged by the R'{i}o Grande de Añasco; (2) calcareous skeletal remains; and (3) sediments discharged by the R'{i}o Guanajibo. The nickel and chromium derived from laterite deposits provide a unique fingerprint for sediments discharged from the R'{i}o Guanajibo. Naturally occurring concentrations of these elements exceed Probable Effect Limits (PEL's: 42 mg/kg for nickel and 160 mg/kg for chromium) in sediments deposited near the river mouth. The detection of mercury at 1 mg/kg in one sample from a core recovered near the wastewater outfall was the only indication of a possible outfall source in the data set. The temporal and spatial variations in source fractions proved useful in determining relative frequencies of historic floods and steady-state circulation patterns off the west coast of Puerto Rico.
Lee, In-Seok; Kang, Hee-Hyung; Kim, Un-Jung; Oh, Jeong-Eun
2015-05-01
Brominated flame retardants were analyzed in sediment samples from the Nakdong River basin, Korea. The total concentrations of the 27 polybrominated diphenyl ethers (PBDEs), including decabrominated diphenyl ether (BDE 209), analyzed were 0.55-300 ng g(-1) dry weight (dw), the BDE 209 concentrations were 0.39-190 ng g(-1) dw, the tetrabromobisphenol A (TBBPA) concentrations were 0.05-150 ng g(-1) dw, and the total hexabromocyclododecane (sum of α-, β-, γ-HBCDs) concentrations were 0.11-19 ng g(-1) dw. The PBDE and HBCD concentrations were comparable to or lower than the concentrations found in sediments from other countries, whereas the TBBPA concentrations were comparable to or higher than the concentrations found in other countries. The TBBPA concentrations were similar to or lower than the PBDE concentrations, even though more than twice as much TBBPA as total PBDEs is consumed in Korea, and this phenomenon was probably caused by TBBPA and PBDEs being used differently during the manufacture of products, and their different half-lives in sediment and affinities for the particle phase in aquatic environments. Sediment samples from several sampling sites close to facilities where expandable polystyrene, epoxy, and polycarbonate resins are manufactured and handled had relatively high TBBPA and HBCD concentrations. Temporal changes in the PBDE concentration strongly correlated with temporal variations in the geochemical compositions such as total organic carbon content and grain size value of the sediment. The PBDE and HBCD distribution profiles in the sediment samples indicated that commercial PBDE and HBCD products were released locally. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sediment source fingerprinting to quantify fine sediment sources in forested catchments, Chile.
NASA Astrophysics Data System (ADS)
Schuller, P.; Walling, D. E.; Iroume, A.; Castillo, A.; Quilodran, C.
2012-04-01
A study to improve the understanding of the primary sediment sources and transfer pathways in catchments disturbed following forest plantation harvesting is being undertaken in South-Central Chile. The study focuses on two sets of paired experimental catchments (treatment and control), located about 400 km apart, with similar soil type but contrasting mean annual rainfall: Nacimiento (1,200 mm year-1) and Los Ulmos (2,500 mm year-1). Sediment source fingerprinting techniques are being used to document the primary fine sediment sources. In each catchment, three potential sediment sources were defined: clearcut slopes (Z1), forest roads (Z2) and the stream channel (Z3). In each catchment, multiple representative composite samples of the different potential source materials were collected before harvest operations from the upper 1 cm layer in Z1, Z2, and from the channel bank and bed for Z3. A time-integrating trap sampler installed in the discharge monitoring station constructed at the outlet of each catchment has been used to collect samples of the suspended sediment and these have been supplemented by sediment collected from the weir pools. Total suspended sediment load is been quantified in the monitoring stations using discharge records and integrated water sampling. Caesium-137 (137Cs), excess lead-210 (210Pbex) and other sediment properties are being used as fingerprints. After air-drying, oven-drying at 40°C and disaggregation, both the source material samples and the sediment samples collected in the discharge monitoring stations were sieved through a 63-μm sieve and the <63-μm fractions were used for subsequent analyses. For radionuclide assay, the samples were sealed in Petri dishes and after 4 weeks the mass activity density (activity concentration) of 137Cs and 210Pbex was determined by gamma analysis, using an ORTEC extended range Ge detector of 53% relative efficiency. The 137Cs and 210Pbex activity and organic carbon (Corg) concentration associated with potential source materials and the target sediment show that the two radionuclides used in combination with the Corg property provide effective source fingerprints. Additional work using a mixing model taking account of particle size effects is required to establish the relative contributions of the three sources to the fine sediment loads of the study catchments. This research is supported by the Chilean Government through FONDECYT Project 1090574 and by the IAEA through CRP D1.20.11 (Contract CHI-15531 and Technical Contract 15478) and the RLA 05/051 Project.
Rate, Andrew W
2018-06-15
Urban environments are dynamic and highly heterogeneous, and multiple additions of potential contaminants are likely on timescales which are short relative to natural processes. The likely sources and location of soil or sediment contamination in urban environment should therefore be detectable using multielement geochemical composition combined with rigorously applied multivariate statistical techniques. Soil, wetland sediment, and street dust was sampled along intersecting transects in Robertson Park in metropolitan Perth, Western Australia. Samples were analysed for near-total concentrations of multiple elements (including Cd, Ce, Co, Cr, Cu, Fe, Gd, La, Mn, Nd, Ni, Pb, Y, and Zn), as well as pH, and electrical conductivity. Samples at some locations within Robertson Park had high concentrations of potentially toxic elements (Pb above Health Investigation Limits; As, Ba, Cu, Mn, Ni, Pb, V, and Zn above Ecological Investigation Limits). However, these concentrations carry low risk due to the main land use as recreational open space, the low proportion of samples exceeding guideline values, and a tendency for the highest concentrations to be located within the less accessible wetland basin. The different spatial distributions of different groups of contaminants was consistent with different inputs of contaminants related to changes in land use and technology over the history of the site. Multivariate statistical analyses reinforced the spatial information, with principal component analysis identifying geochemical associations of elements which were also spatially related. A multivariate linear discriminant model was able to discriminate samples into a-priori types, and could predict sample type with 84% accuracy based on multielement composition. The findings suggest substantial advantages of characterising a site using multielement and multivariate analyses, an approach which could benefit investigations of other sites of concern. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Song, Sheng; Feng, Xiuli; Li, Guogang; Liu, Xiao; Xiao, Xiao; Feng, Li
2018-06-01
Sedimentary sequence and sediment provenance are important factors when it comes to the studies on marine sedimentation. This paper studies grain size distribution, lithological characteristics, major and rare earth elemental compositions, micropaleontological features and 14C ages in order to examine sedimentary sequence and sediment provenance of the core BH6 drilled at the mouth of the Yellow River in Bohai Sea. According to the grain size and the micropaleontological compositions, 4 sedimentary units have been identified. Unit 1 (0-8.08 mbsf) is of the delta sedimentary facies, Unit 2 (8.08-12.08 mbsf) is of the neritic shelf facies, Unit 3 (12.08-23.85 mbsf) is of near-estuary beach-tidal facies, and Unit 4 (23.85 mbsf-) is of the continental lake facies. The deposits from Unit 1 to Unit 3 have been found to be marine strata formed after the Holocene transgression at about 10 ka BP, while Unit 4 is continental lacustrine deposit formed before 10 ka BP. The provenances of core BH6 sediments show properties of the continental crust and vary in different sedimentary periods. For Unit 4 sediments, the source regions are dispersed while the main provenance is not clear, although the parent rock characteristics of a few samples are similar to the Luanhe River sediments. For Unit 3, sediments at 21.1-23.85 mbsf have been mainly transported from the Liaohe River, while sediments above 21.1 mbsf are mainly from the Yellow River and partially from the Liaohe River. For Unit 2, the sediments have been mainly transported from the Yellow River, with a small amount from other rivers. For Unit 1, the provenance is mainly the Yellow River catchment. These results help in better understanding the evolution of the Yellow River Delta.
Composition of Sediment Inputs to the Hikurangi Subduction Margin: A Prelude to IODP Expedition 375
NASA Astrophysics Data System (ADS)
Underwood, M.
2017-12-01
Expedition 375 of the International Ocean Discovery Program is scheduled to begin drilling offshore New Zealand in March 2018. Two sites will be cored seaward of the Hikurangi subduction front (subduction inputs), plus one site at the toe of the accretionary prism, and one site in the forearc above a zone of well-documented slow-slip events. One of the challenges during planning for Expedition 375 has been the total absence of pre-existing compositional data from the region; that lack of basic information impacts such tasks as mixing and analysis of appropriate standards for X-ray diffraction, error analysis, computation of accurate normalization factors, and QA/QC. To help overcome those deficiencies, I analyzed a total of 152 samples from ODP Sites 1123 (Quaternary to Eocene), 1124 (Quaternary to Cretaceous), and 1125 (Quaternary to Miocene), plus piston/gravity-core samples from the repositories at Lamont-Doherty, Oregon State, and NIWA. The results reveal an unusually large range of compositions for the bulk sediments. The relative abundance of total clay minerals ranges from 3 to 64 wt%. Quartz ranges from 0 to 39 wt%. Feldspar ranges from 0 to 40 wt%, and calcite ranges from 0 to 93 wt%. Samples from the Hikurangi Plateau and Chatham Rise are carbonate-rich, with many bordering on almost-pure nannofossil chalk. Hemipelagic muds from the floor of Hikurangi Trough, Ruatoria slide, and the landward slope of the trench are fairly uniform, with averages of 36 wt% total clay minerals, 27 wt% quartz, 24 wt% feldspar, and 13 wt% calcite. Unlike many other subduction zones, this diversity of lithologies will save shipboard scientists from repetitive, mind-numbing descriptions and analyses, and shorebased experiments for frictional properties, permeability, and consolidation will need to pay close attention to the compositional attributes of the specimens. In addition, results from the four IODP boreholes can be interpreted within a broader, regional-scale framework of sediment provenance and dispersal.
Extreme isotopic variations in the upper mantle: evidence from Ronda
NASA Astrophysics Data System (ADS)
Reisberg, Laurie; Zindler, Alan
1986-12-01
The Ronda Ultramafic Complex in southern Spain represents a piece of the Earth's mantle which has been tectonically emplaced into the crust. Nd and Sr isotopic analyses are presented for leached, hand-picked Cr-diopside separates prepared from 15 rock and 18 river sediment samples from Ronda. These results demonstrate that within this small, contiguous body there exists the entire range of Nd isotopic compositions, and much of the range of Sr compositions, found in rocks derived from the sub-oceanic mantle. The sediment cpx samples show that the average isotopic composition of the massif becomes progressively less "depleted" moving from SW to NE along the long axis of the massif. The rock cpx samples document 143Nd/ 144Nd variations from 0.5129 to 0.5126 and 87Sr/ 86Sr variations from 0.7031 to 0.7039 within a uniform outcrop less than 10 m in extent. Thus, extreme isotopic fluctuations exist over a wide range of wavelengths. Sr and Nd isotopes are generally inversely correlated, forming a trend on a Nd-Sr diagram that sharply crosscuts that of the "mantle array". Many of the 143Nd/ 144Nd values, and all of the Sm/Nd values, from one section of the massif are lower than that SCV015SCV0 of the bulk earth, implying that this region existed, or was influenced by a component which existed, in a LREE-enriched environment for a significant period of time. Among the sediment cpxs there is a positive correlation between 143Nd/ 144Nd and 147Sm/ 144Nd. The rock cpx separates display considerably more scatter. A simple, single-stage differentiation event starting with a uniform mantle source cannot explain these results. At least one episode of mixing with a LREE-enriched component is required. If these results from Ronda are typical of the upper mantle, basalts with different isotopic compositions need not derive from spatially separated mantle sources.
Zhang, Shouliang; Kent, Douglas B.; Elbert, David C.; Shi, Zhi; Davis, James A.; Veblen, David R.
2011-01-01
Mineralogical studies of coatings on quartz grains and bulk sediments from an aquifer on Western Cape Cod, Massachusetts, USA were carried out using a variety of transmission electron microscopy (TEM) techniques. Previous studies demonstrated that coatings on quartz grains control the adsorption properties of these sediments. Samples for TEM characterization were made by a gentle mechanical grinding method and focused ion beam (FIB) milling. The former method can make abundant electron-transparent coating assemblages for comprehensive and quantitative X-ray analysis and the latter technique protects the coating texture from being destroyed. Characterization of the samples from both a pristine area and an area heavily impacted by wastewater discharge shows similar coating textures and chemical compositions. Major constituents of the coating include Al-substituted goethite and illite/chlorite clays. Goethite is aggregated into well-crystallized domains through oriented attachment resulting in increased porosity. Illite/chlorite clays with various chemical compositions were observed to be mixed with goethite aggregates and aligned sub-parallel to the associated quartz surface. The uniform spatial distribution of wastewater-derived phosphorus throughout the coating from the wastewater-contaminated site suggests that all of the coating constituents, including those adjacent to the quartz surface, are accessible to groundwater solutes. Both TEM characterization and chemical extraction results indicate there is a significantly greater amount of amorphous iron oxide in samples from wastewater discharge area compared to those from the pristine region, which might reflect the impact of redox cycling of iron under the wastewater-discharge area. Coating compositions are consistent with the moderate metal and oxy-metalloid adsorption capacities, low but significant cation exchange capacities, and control of iron(III) solubility by goethite observed in reactive transport experimental and modeling studies conducted at the site.
Prouty, Nancy G.; Mienis, Furu; Campbell, P.; Roark, E. Brendan; Davies, Andrew; Robertson, Craig M.; Duineveld, Gerard; Ross, Steve W.; Rhodes, M.; Demopoulos, Amanda W.J.
2017-01-01
Submarine canyons are often hotspots of biomass and productivity in the deep sea. However, the majority of deep-sea canyons remain poorly sampled. Using a multi-tracer approach, results from a detailed geochemical investigation from a year-long sediment trap deployment reveals details concerning the source, transport, and fate of particulate matter to the depositional zone (1318 m) of Baltimore Canyon on the US Mid-Atlantic Bight (MAB). Both organic biomarker composition (sterol and n-alkanes) and bulk characteristics (δ13C, Δ14C, Chl-a) suggest that on an annual basis particulate matter from marine and terrestrially-derived organic matter are equally important. However, elevated Chlorophyll-a and sterol concentrations during the spring sampling period highlight the seasonal influx of relatively fresh phytodetritus. In addition, the contemporaneous increase in the particle reactive elements cadmium (Cd) and molybdenum (Mo) in the spring suggest increased scavenging, aggregation, and sinking of biomass during seasonal blooms in response to enhanced surface production within the nutricline. While internal waves within the canyon resuspend sediment between 200 and 600 m, creating a nepheloid layer rich in lithogenic material, near-bed sediment remobilization in the canyon depositional zone is minimal. Instead, vertical transport and lateral transport across the continental margin are the dominant processes driving seasonal input of particulate matter. In turn, seasonal variability in deposited particulate organic matter may be linked to benthic faunal composition and ecosystem scale carbon cycling.
NASA Astrophysics Data System (ADS)
Shi, Z. H.
2014-12-01
There are strong ties between land use and sediment yield in watersheds. Many studies have used multivariate regression techniques to explore the response of sediment yield to land-use compositions and spatial configurations in watersheds. However, one issue with the use of conventional statistical methods to address relationships between land-use compositions and spatial configurations and sediment yield is multicollinearity. This paper examines the combined effects of land-use compositions and land-use spatial configurations of the watershed on the specific sediment yield of the Upper Du River watershed (8,973 km2) in China using the Soil and Water Assessment Tool (SWAT) and partial least-squares regression (PLSR). The land-use compositions and spatial configurations of the watershed were calculated at the sub-watershed scale. The sediment yields from sub-watershed were evaluated using SWAT model. The first-order factors were identified by calculating the variable importance for the projection (VIP). The results revealed that the land-use compositions exerted the largest effects on the specific sediment yield and explained 61.2% of the variation in the specific sediment yield. Land-use spatial configurations were also found to have a large effect on the specific sediment yield and explained 21.7% of the observed variation in the specific sediment yield. The following are the dominant first-order factors of the specific sediment yield at the sub-watershed scale: the areal percentages of agriculture and forest, patch density, value of the Shannon's diversity index, contagion. The VIP values suggested that the Shannon's diversity index and contagion are important factors for sediment delivery.
NASA Astrophysics Data System (ADS)
Li, Chuan-Shun; Shi, Xue-Fa; Kao, Shuh-Ji; Liu, Yan-Guang; Lyu, Hua-Hua; Zou, Jian-Jun; Liu, Sheng-Fa; Qiao, Shu-Qing
2013-06-01
Thirty-eight sediment samples from 15 primary rivers on Taiwan were retrieved to characterize the rare earth element (REE) signature of fluvial fine sediment sources. Compared to the three large rivers on the Chinese mainland, distinct differences were observed in the REE contents, upper continental crust normalized patterns and fractionation factors of the sediment samples. The average REE concentrations of the Taiwanese river sediments are higher than those of the Changjiang and Huanghe, but lower than the Zhujiang. Light rare earth elements (LREEs) are enriched relative to heavy rare earth elements (HREEs) with ratios from 7.48 to 13.03. We found that the variations in (La/Lu)UCC-(Gd/Lu)UCC and (La/Yb)UCC-(Gd/Yb)UCC are good proxies for tracing the source sediments of Taiwanese and Chinese rivers due to their distinguishable values. Our analyses indicate that the REE compositions of Taiwanese river sediments were primarily determined by the properties of the bedrock, and the intensity of chemical weathering in the drainage areas. The relatively high relief and heavy rainfall also have caused the REEs in the fluvial sediments from Taiwan to be transported to the estuaries down rivers from the mountains, and in turn delivered nearly coincidently to the adjacent seas by currents and waves. Our studies suggest that the REE patterns of the river sediments from Taiwan are distinguishable from those from the other sources of sediments transported into the adjacent seas, and therefore are useful proxies for tracing the provenances and dispersal patterns of sediments, as well as paleoenvironmental changes in the marginal seas.
An acoustic method for predicting relative strengths of cohesive sediment deposits
NASA Astrophysics Data System (ADS)
Reed, A. H.; Sanders, W. M.
2017-12-01
Cohesive sediment dynamics are fundamentally determined by sediment mineralogy, organic matter composition, ionic strength of water, and currents. These factors work to bind the cohesive sediments and to determine depositional rates. Once deposited the sediments exhibit a nonlinear response to stress and they develop increases in shear strength. Shear strength is critically important in resuspension, transport, creep, and failure predictions. Typically, shear strength is determined by point measurements, both indirectly from free-fall penetrometers or directly on cores with a shear vane. These values are then used to interpolate over larger areas. However, the remote determination of these properties would provide continuos coverage, yet it has proven difficult with sonar systems. Recently, findings from an acoustic study on cohesive sediments in a laboratory setting suggests that cohesive sediments may be differentiated using parametric acoustics; this method pulses two primary frequencies into the sediment and the resultant difference frequency is used to determine the degree of acoustic nonlinearity within the sediment. In this study, two marine clay species, kaolinite and montmorillonite, and two biopolymers, guar gum and xanthan gum were mixed to make nine different samples. The samples were evaluated in a parametric acoustic measurement tank. From the parametric acoustic measurements, the quadratic nonlinearity coefficient (beta) was determined. beta was correlated with the cation exchange capacity (CEC), an indicator of shear strength. The results indicate that increased acoustic nonlinearity correlates with increased CEC. From this work, laboratory measurements indicate that this correlation may be used evaluate geotechnical properties of cohesive sediments and may provide a means to predict sediment weakness in subaqueous environments.
Marron, Donna C.; Blanchard, Stephen F.
1995-01-01
Data on water velocity, temperature, specific con- ductance, pH, dissolved oxygen concentration, chlorophyll concentration, suspended sediment con- centration, fecal-coliform counts, and the percen- tage of suspended sediment finer than 62 micrometers ranged up to 21 percent; and cross-section coefficients of variation of the concentrations of suspended sediment, fecal coliform, and chlorophyll ranged from 7 to 115 percent. Midchannel measure- ments of temperature, specific conductance, and pH were within 5 percent of mean cross-sectional values of these properties at the eight sampling sites, most of which appear well mixed because of the effect of dams and reservoirs. Measurements of the concentration of dissolved oxygen at various cross- section locations and at variable sampling depths are required to obtain a representative value of this constituent at these sites. The large varia- bility of concentrations of chlorophyll and suspended sediment, and fecal-coliform counts at the eight sampling sites indicates that composite rather than midchannel or mean values of these constituents are likely to be most representative of the channel cross section.
Polychlorinated biphenyl pollution from shipbuilding in Nagasaki Bay, Japan.
Maruyama, K; Sahrul, M; Tanabe, S; Tatsukawa, R
1983-10-01
Polychlorinated biphenyl (PCB) pollution from shipbuilding in Nagasaki Bay, Japan, was discussed by determining PCB concentrations in sediment, in water, and in biological samples. PCBs were detected in all samples, in which much higher concentrations, more than 10 micrograms/g, were found in three sediment samples where located near the shipyard drains. In general, PCB concentrations in sediments and organisms tended to increase toward the inner part of this bay. PCB isomer and congener compositions in organisms as well as sediments were composed mainly of higher chlorinated biphenyls and almost similar to Kanechlor 500 and 600 products (chlorine content 54 and 60%, respectively) that have been used for ship paints. These results strongly suggest that the shipbuilding is primarily responsible for the PCB pollution in Nagasaki Bay. Bioaccumulation factors of PCBs were different among the organisms according to their trophic levels. This might be a result of the predominant PCB transfer through the food chain in organisms and the discharge of bioaccumulative PCBs as higher chlorinated biphenyls from shipyards. These observations imply that the PCB pollution from shipbuilding would continue for a long time due to the accumulative characteristics of PCBs used for ship paints and the further discharge by scraping the stale paints in shipyards.
NASA Astrophysics Data System (ADS)
Muraoka, M.; Ohtake, M.; Susuki, N.; Yamamoto, Y.; Suzuki, K.; Tsuji, T.
2014-12-01
This study presents the results of the measurements of the thermal constants of natural methane-hydrate-bearing sediments samples recovered from the Tokai-oki test wells (Nankai-Trough, Japan) in 2004. The thermal conductivity, thermal diffusivity, and specific heat of the samples were simultaneously determined using the hot-disk transient method. The thermal conductivity of natural hydrate-bearing sediments decreases slightly with increasing porosity. In addition, the thermal diffusivity of hydrate-bearing sediment decrease as porosity increases. We also used simple models to calculate the thermal conductivity and thermal diffusivity. The results of the distribution model (geometric-mean model) are relatively consistent with the measurement results. In addition, the measurement results are consistent with the thermal diffusivity, which is estimated by dividing the thermal conductivity obtained from the distribution model by the specific heat obtained from the arithmetic mean. In addition, we discuss the relation between the thermal conductivity and mineral composition of core samples in conference. Acknowledgments. This work was financially supported by MH21 Research Consortium for Methane Hydrate Resources in Japan on the National Methane Hydrate Exploitation Program planned by the Ministry of Economy, Trade and Industry.
Controls on the barium isotope compositions of marine sediments
NASA Astrophysics Data System (ADS)
Bridgestock, Luke; Hsieh, Yu-Te; Porcelli, Donald; Homoky, William B.; Bryan, Allison; Henderson, Gideon M.
2018-01-01
The accumulation of barium (Ba) in marine sediments is considered to be a robust proxy for export production, although this application can be limited by uncertainty in BaSO4 preservation and sediment mass accumulation rates. The Ba isotope compositions of marine sediments could potentially record insights into past changes in the marine Ba cycle, which should be insensitive to these limitations, enabling more robust interpretation of sedimentary Ba as a proxy. To investigate the controls on the Ba isotope compositions of marine sediments and their potential for paleo-oceanographic applications, we present the first Ba isotope compositions results for sediments, as well as overlying seawater depth profiles collected in the South Atlantic. Variations in Ba isotope compositions of the sediments predominantly reflect changes in the relative contributions of detrital and authigenic Ba sources, with open-ocean sediments constraining the isotope composition of authigenic Ba to be δ 138/134Ba ≈ + 0.1 ‰. This value is consistent with the average isotope composition inferred for sinking particulate Ba using simple mass balance models of Ba in the overlying water column and is hypothesized to reflect the removal of Ba from the upper water column with an associated isotopic fractionation of Δ diss-part 138/134Ba ≈ + 0.4 to +0.5. Perturbations to upper ocean Ba cycling, due to changes in export production and the supply of Ba via upwelling, should therefore be recorded by the isotope compositions of sedimentary authigenic Ba. Such insights will help to improve the reliable application of Ba accumulation rates in marine sediments as a proxy for past changes in export production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, Donald R.; Grosz, Andrew E.; Ilton, Eugene S.
2010-04-24
Magnetic and density separation methods have been applied to composite sediment sample from the Hanford formation from sediment recovered during drilling of an uncontaminated borehole located near the 200 West Area of the Hanford Site in southeastern Washington State. This paper describes the results of using those separation methods and from the characterization and initial reactivity measurements on a highly magnetic fraction isolated from that sediment. X-ray diffraction (XRD) analysis of the highly magnetic sediment fraction indicates that this material contains predominantly magnetite (Fe3O4). Particle morphology observed by scanning electron microscopy (SEM) and compositions determined energy dispersive spectroscopy (EDS) aremore » consistent with this identification. Analyses by X-ray photoelectron spectroscopy (XPS) indicates that there is a thin coating on the particles that are likely a type of aluminosilicate. This highly magnetic fraction of material is not reactive with indigo carmine, an organic redox probe molecule that was shown to readily react with synthetic magnetite. Because of the limited amounts of material readily available, initial tests have been conducted that demonstrate the ability to complete U(VI) sorption on individual particles (nominally ~100 µm in size) of the isolated sediment and to remove and mount these individual particles for analysis of the concentration and chemical state of the sorbed U species using small area XPS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, Donald R.; Grosz, Andrew E.; Ilton, Eugene S.
2010-08-01
Magnetic and density separation methods have been applied to composite sediment sample from the Hanford formation from sediment recovered during drilling of an uncontaminated borehole located near the 200 West Area of the Hanford Site in southeastern Washington State. This paper describes the results of using those separation methods and from the characterization and initial reactivity measurements on a highly magnetic fraction isolated from that sediment. X-ray diffraction (XRD) analysis of the highly magnetic sediment fraction indicates that this material contains predominantly magnetite (Fe3O4). Particle morphology observed by scanning electron microscopy (SEM) and compositions determined energy dispersive spectroscopy (EDS) aremore » consistent with this identification. Analyses by X-ray photoelectron spectroscopy (XPS) indicates that there is a thin coating on the particles that are likely a type of aluminosilicate. This highly magnetic fraction of material is not reactive with indigo carmine, an organic redox probe molecule that was shown to readily react with synthetic magnetite. Because of the limited amounts of material readily available, initial tests have been conducted that demonstrate the ability to complete U(VI) sorption on individual particles (nominally ~100 µm in size) of the isolated sediment and to remove and mount these individual particles for analysis of the concentration and chemical state of the sorbed U species using small area XPS.« less
NASA Astrophysics Data System (ADS)
Vogel, S. W.; Tulaczyk, S. M.; Carter, S.; Grunow, A.
2003-12-01
The West-Antarctic Ice Sheet (WAIS) is the second largest ice sheet in the world. Its dynamic is extensively studied due to the proposed threat of rapid disintegration and associated sea level rise (Mercer, 1971). Most of its ice drains through a few fast flowing (>100 m/yr) ice streams and outlet glaciers. Subglacial conditions in particular the distribution of basal water and the availability of subglacial sediment plays an important role for their location and extent. Subglacial geology in particular the distribution of sedimentary basin fill, providing material for a lubricating subglacial till layer, may pose a limit on the inland extent of the fast flowing ice stream. Subglacial volcanism and associated elevated geothermal heat fluxes may provide crucial subglacial melt water for ice stream lubrication. We have studied sediment from the base of the WAIS to elucidate questions about the existence of subglacial volcanism and to determine the provenance of the subglacial sediment. Within this study we measured clay mineralogy, sand petrography, magnetic and geochemical properties of subglacial and englacial sediment from different locations in the Ross Sea-catchment area of the WAIS. Our samples come from Whillans-, Kamb- and Bindschadler Ice Stream as well as from Siple Dome, Crary Ice Rise and Byrd Station. Most of our sediment samples represent samples of subglacial till, which in earlier studies have been characterized as reworked marine sediment of Cenozoic age. The englacial sediment samples come from basal ice. Our study so far has found no positive evidence for the existence of subglacial volcanism beneath the WAIS. The mineralogy as well as the REE-pattern of our samples correspond better with a crustal source for the sediment than Cenozoic basalts. The isotopic composition of our samples (Nd/Sm, Rb/Sr) show differences between individual ice streams locations as well as differences between different grain size fractions. TDM-ages range from ~900 Ma to 1800 Ma; ENd between -4 to -12 and 87Sr/86Sr ~0.715 to ~0.735. Our preliminary geochemical results so far point to rocks from outcrops in the upstream areas of the individual ice streams as provenance for their sediment (Horlick Mountains and Whitmore Mountains) with a possibly small East-Antarctic component.
Reaction paths and host phases of uranium isotopes (235U; 238U), Saanich Inlet
NASA Astrophysics Data System (ADS)
Amini, M.; Holmden, C. E.; Francois, R. H.
2009-12-01
In recent times, Uranium has become increasingly the focus of stable isotope fractionation studies. Variations in 238U/235U have been reported as a result of redox reactions [1,2] from the nuclear field shift effect [3], and a mass-dependent, microbially-mediated, kinetic isotope effect [4]. The 238U/235U variability caused by changes in environmental redox conditions leads to an increase in the 238U/235U ratios of the reduced U species sequestered into marine sediments. This points to U isotope variability as a new tool to study ancient ocean redox changes. However, the process by which reduced sediments become enriched in the heavy isotopes of U is not yet known, and hence the utility of 238U/235U as a redox tracer remains to be demonstrated. In order to further constrain sedimentary U enrichment and related isotope effect, we are investigating U isotopic compositions of water samples and fresh surface sediment grab samples over a range of redox conditions in the seasonally anoxic Saanich Inlet, on the east coast of Vancouver Island. U was sequentially extracted from sediments in order to characterize specific fractions for their isotopic composition. The measurements were carried out by MC-ICPMS using 233U/236U-double spike technique. The data are reported as δ238U relative to NBL 112a with a 238U/235U ratio of 137.88 (2sd). External precision is better than 0.10‰ (2sd). Fifteeen analyses of seawater yielded δ238U of -0.42±0.08‰ (2sd). The results for the water samples indicate a homogenous δ238U value throughout the Saanich Inlet water column that matches the global seawater signature. All of the water samples from above and below average -0.42±0.05‰ (2sd). In contrast, a plankton net sample yielded a distinctly different, (about 0.5‰ lighter) isotope value. Bacterial reduction experiments [4] have also shown isotope enrichment factors of about -0.3‰. In addition, metal isotope fractionation occurs during adsorption with the light isotope being preferentially adsorbed [5]. Whether plankton mediated chemical reduction or scavenging causes this fractionation will be further investigated by leaching experiments on sediment trap samples. By contrast, weak acidic leachates (at pH 6) of suboxic bottom sediments, tend towards higher δ238U values. For oxic sediments, U contents of this fraction were below detection limit. Stronger leaching at pH 3 removed most of the uranium from suboxic and oxic sediments. For oxic sediments, this fraction yields the seawater δ238U signature, while the U released from the suboxic sample is about 0.2‰ heavier. This matches the value for previously reported bulk analyses of suboxic sediments [1] implying that the reduced sedimentary U is released by this treatment,. Major and trace element analyses and XRD patterns will help relating this fraction to a specific mineral or reactive phase. [1] Weyer et al. (2007) GCA 72, 345-399. [2] Stirling et al. (2007) EPSL 264, 208-225. [3] Schauble (2007) GCA 71, 2170-2189. [4] Rademacher et al. (2006) Environ. Sci. Technol. 40,6943-6948. [5] Wasylenki (2009) GCA A1419.
Ecological drivers and habitat associations of estuarine bivalves
Tunberg, Björn G.; Johnston, Cora A.; Barshis, Daniel J.
2015-01-01
Community composition of the infaunal bivalve fauna of the St. Lucie Estuary and southern Indian River Lagoon, eastern Florida was sampled quarterly for 10 years as part of a long-term benthic monitoring program. A total of 38,514 bivalves of 137 taxa were collected and identified. We utilized this data, along with sediment samples and environmental measurements gathered concurrently, to assess the community composition, distribution, and ecological drivers of the infaunal bivalves of this estuary system. Salinity had the strongest influence on bivalve assemblage across the 15 sites, superseding the influences of sediment type, water turbidity, temperature and other environmental parameters. The greatest diversity was found in higher salinity euhaline sites, while the greatest abundance of individual bivalves was found in medium salinity mixohaline sites, the lowest diversity and abundances were found in the low salinity oligohaline sites, demonstrating a strong positive association between salinity and diversity/abundance. Water management decisions for the estuary should incorporate understanding of the role of salinity on bivalve diversity, abundance, and ecosystem function. PMID:26587338
Ecological drivers and habitat associations of estuarine bivalves.
McKeon, C Seabird; Tunberg, Björn G; Johnston, Cora A; Barshis, Daniel J
2015-01-01
Community composition of the infaunal bivalve fauna of the St. Lucie Estuary and southern Indian River Lagoon, eastern Florida was sampled quarterly for 10 years as part of a long-term benthic monitoring program. A total of 38,514 bivalves of 137 taxa were collected and identified. We utilized this data, along with sediment samples and environmental measurements gathered concurrently, to assess the community composition, distribution, and ecological drivers of the infaunal bivalves of this estuary system. Salinity had the strongest influence on bivalve assemblage across the 15 sites, superseding the influences of sediment type, water turbidity, temperature and other environmental parameters. The greatest diversity was found in higher salinity euhaline sites, while the greatest abundance of individual bivalves was found in medium salinity mixohaline sites, the lowest diversity and abundances were found in the low salinity oligohaline sites, demonstrating a strong positive association between salinity and diversity/abundance. Water management decisions for the estuary should incorporate understanding of the role of salinity on bivalve diversity, abundance, and ecosystem function.
Fan, Limin; Barry, Kamira; Hu, Gengdong; Meng, Shunlong; Song, Chao; Qiu, Liping; Zheng, Yao; Wu, Wei; Qu, Jianhong; Chen, Jiazhang; Xu, Pao
2017-01-01
Bacterial community compositions in the surface sediment of tilapia ponds and their responses to pond characteristics or seasonal variations were investigated. For that, three ponds with different stocking densities were selected to collect the samples. And the method of Illumina high-throughput sequencing was used to amplify the bacterial 16S rRNA genes. A total of 662, 876 valid reads and 5649 operational taxonomic units were obtained. Further analysis showed that the dominant phyla in all three ponds were Proteobacteria, Bacteroidetes, Chloroflexi, and Acidobacteria. The phyla Planctomycetes, Firmicutes, Chlorobi, and Spirochaetae were also relatively abundant. Among the eight phyla, the abundances of only Proteobacteria, Bacteroidetes, Firmicutes, and Spirochaetae were affected by seasonal variations, while seven of these (with the exception of Acidobacteria) were affected by pond differences. A comprehensive analysis of the richness and diversity of the bacterial 16S rRNA gene, and of the similarity in bacterial community composition in sediment also showed that the communities in tilapia pond sediment were shaped more by pond differences than by seasonal variations. Linear discriminant analysis further indicated that the influences of pond characteristics on sediment bacterial communities might be related to feed coefficients and stocking densities of genetically improved farmed tilapia (GIFT).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeng, E.Y.; Vista, C.L.
1997-02-01
Samples collected in January and June 1994 from the Point Loma Wastewater Treatment Plant (PLWTP) effluent, Tijuana River runoff, and microlayer, sediment trap, and surface sediment at several locations adjacent to the PLWTP outfall, mouth of the Tijuana River, and San Diego Bay were analyzed in an attempt to identify and assess the sources of hydrocarbon inputs into the coastal marine environment off San Diego. Several compositional indices of polycyclic aromatic hydrocarbons (PAHs), for example, alkyl homologue distributions, parent compound distributions, and other individual PAH ratios, were used to identify the sources of PAHs. Partially due to the decline ofmore » PAH emission from the PLWTP outfall, PAHs found in the sea surface microlayer, sediments, and water column particulates near the PLWTP outfall were predominantly derived from nonpoint sources. The sea microlayer near the mouth of the Tijuana River appeared to accumulate enhanced amounts of PAHs and total organic carbon and total nitrogen, probably discharged from the river, although they were in extremely low abundance in the sediments at the same location. Surprisingly, PAHs detected in the microlayer and sediments in San Diego Bay were mainly derived from combustion sources rather than oil spills, despite the heavy shipping activities in the area.« less
Shamsudduha, M; Uddin, A; Saunders, J A; Lee, M-K
2008-07-29
This study focuses on the Quaternary stratigraphy, sediment composition, mineralogy, and geochemistry of arsenic (As)-contaminated alluvial aquifers in the Ganges-Brahmaputra floodplain in the central Bangladesh. Arsenic concentrations in 85 tubewells in Manikganj area, 70 km northwest of Dhaka City, range from 0.25 microg/L to 191 microg/L with a mean concentration of 33 microg/L. Groundwater is mainly Ca-HCO(3) type with high concentrations of dissolved As, Fe, and Mn, but low level of SO(4). The uppermost aquifer occurs between 10 m and 80 m below the surface that has a mean arsenic concentration of 35 microg/L. Deeper aquifer (>100 m depth) has a mean arsenic concentration of 18 microg/L. Sediments in the upper aquifer are mostly gray to dark-gray, whereas sediments in the deep aquifer are mostly yellowing-gray to brown. Quartz, feldspar, mica, hornblende, garnet, kyanite, tourmaline, magnetite, ilmenite are the major minerals in sediments from both aquifers. Biotite and potassium feldspar are dominant in shallow aquifer, although plagioclase feldspar and garnet are abundant in deep aquifer sediments. Sediment composition suggests a mixed provenance with sediment supplies from both orogenic belts and cratons. High arsenic concentrations in sediments are found within the upper 50 m in drilled core samples. Statistical analysis shows that As, Fe, Mn, Ca, and P are strongly correlated in sediments. Concentrations of Cd, Cu, Ni, Zn, and Bi also show strong correlations with arsenic in the Manikganj sediment cores. Authigenic goethite concretions, possibly formed by bacteria, are found in the shallow sediments, which contain arsenic of a concentration as high as 8.8 mg/kg. High arsenic concentrations in aquifers are associated with fine-grained sediments that were derived mostly from the recycled orogens and relatively rapidly deposited mainly by meandering channels during the Early to Middle Holocene rising sea-level conditions.
Moody, J.A.; Meade, R.H.
1994-01-01
The efficacy of the method is evaluated by comparing the particle size distributions of sediment collected by the discharge-weighted pumping method with the particle size distributions of sediment collected by depth integration and separated by gravitational settling. The pumping method was found to undersample the suspended sand sized particles (>63 ??m) but to collect a representative sample of the suspended silt and clay sized particles (<63??m). The success of the discharge-weighted pumping method depends on how homogeneously the silt and clay sized particles (<63 ??m) are distributed in the vertical direction in the river. The degree of homogeneity depends on the composition and degree of aggregation of the suspended sediment particles. -from Authors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruendell, B.D.; Barrows, E.S.; Borde, A.B.
1997-01-01
The objective of the bioassay reevaluation of the Hackensack River Federal Project was to reperform toxicity testing on proposed dredged material with current ammonia reduction protocols. Hackensack River was one of four waterways sampled and evaluated for dredging and disposal in April 1993. Sediment samples were re-collected from the Hackensack River Project area in August 1995. Tests and analyses were conducted according to the manual developed by the USACE and the U.S. Environmental Protection Agency (EPA), Evaluation of Dredged Material Proposed for Ocean Disposal (Testing Manual), commonly referred to as the {open_quotes}Green Book,{close_quotes} and the regional manual developed by themore » USACE-NYD and EPA Region II, Guidance for Performing Tests on Dredged Material to be Disposed of in Ocean Waters. The reevaluation of proposed dredged material from the Hackensack River project area consisted of benthic acute toxicity tests. Thirty-three individual sediment core samples were collected from the Hackensack River project area. Three composite sediments, representing each reach of the area proposed for dredging, were used in benthic acute toxicity testing. Benthic acute toxicity tests were performed with the amphipod Ampelisca abdita and the mysid Mysidopsis bahia. The amphipod and mysid benthic toxicity test procedures followed EPA guidance for reduction of total ammonia concentrations in test systems prior to test initiation. Statistically significant acute toxicity was found in all three Hackensack River composites in the static renewal tests with A. abdita, but not in the static tests with M. bahia. Statistically significant acute toxicity and a greater than 20% increase in mortality over the reference sediment was found in the static renewal tests with A. abdita. Statistically significant mortality 10% over reference sediment was observed in the M. bahia static tests. 5 refs., 2 figs., 2 tabs.« less
Evaluation of dredged material proposed for ocean disposal from Arthur Kill Project Area, New York
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruendell, B.D.; Barrows, E.S.; Borde, A.B.
1997-01-01
The objective of the bioassay reevaluation of Arthur Kill Federal Project was to reperform toxicity testing on proposed dredged material following current ammonia reduction protocols. Arthur Kill was one of four waterways sampled and evaluated for dredging and disposal in April 1993. Sediment samples were recollected from the Arthur Kill Project areas in August 1995. Tests and analyses were conducted according to the manual developed by the USACE and the U.S. Environmental Protection Agency (EPA), Evaluation of Dredged Material Proposed for Ocean Disposal (Testing Manual), commonly referred to as the {open_quotes}Green Book,{close_quotes} and the regional manual developed by the USACE-NYDmore » and EPA Region II, Guidance for Performing Tests on Dredged Material to be Disposed of in Ocean Waters. The reevaluation of proposed dredged material from the Arthur Kill project areas consisted of benthic acute toxicity tests. Thirty-three individual sediment core samples were collected from the Arthur Kill project area. Three composite sediments, representing each reach of the area proposed for dredging, was used in benthic acute toxicity testing. Benthic acute toxicity tests were performed with the amphipod Ampelisca abdita and the mysid Mysidopsis bahia. The amphipod and mysid benthic toxicity test procedures followed EPA guidance for reduction of total ammonia concentrations in test systems prior to test initiation. Statistically significant acute toxicity was found in all Arthur Kill composites in the static renewal tests with A. abdita, but not in the static tests with M. bahia. Statistically significant acute toxicity and a greater than 20% increase in mortality over the reference sediment was found in the static renewal tests with A. abdita. M. bahia did not show statistically significant acute toxicity or a greater than 10% increase in mortality over reference sediment in static tests. 5 refs., 2 figs., 2 tabs.« less
Geochemical Fingerprinting of the World Trade Center Attack in New York Harbor Sediments
NASA Astrophysics Data System (ADS)
Brabander, D. J.; Oktay, S.; Smith, J.; Kada, J.; Bullen, T.; Olsen, C.
2002-12-01
By comparing the textural, chemical, and isotopic composition of World Trade Center (WTC) ash samples (collected near Ground Zero one week after the terrorist attack) with sediment samples from cores taken on October 12, 2001 in known deposition areas in New York Harbor (NYH), we characterized a unique suite of geochemical-textural tracers that allow us to both identify and quantify the input of WTC derived material to adjacent areas in the Hudson River estuary. Scanning electron microscopy coupled with energy dispersive spectroscopy revealed two chemically distinct (Si-rich and Ca-rich) rod-like features (40-200 æm in length) in both ash and sediment samples. The Si-rich rods are consistent with a fiberglass parent material while the Ca-rich rods originate from gypsum. An 87Sr/86Sr ratio for the ash material of 0.7088 (n=2) coupled with Ca/Sr (wt. ratio) ranging from 260-300 suggest that the ash material analyzed is approximately 70% gypsum. As a function of depth within the sediment core, correlations exist between the measured activities of 7Be (a naturally occurring short-lived radionuclide), elemental weight-percent ratios of Ca/Sr, and the isotopic ratios of 87Sr/86Sr ratios. . These combined isotopic approaches allow us to constrain the timing (via 7Be), and the composition and amount (via 87Sr/86Sr and Ca/Sr) of WTC material input into the NYH sediments. These down-core isotope-ratio profiles can be described by a mixing line between background NYH 87Sr/86Sr ratios (>0.724) and the WTC derived ash material. The geochemical-textural tracers associated with the WTC terrorist attack may provide a potential tool for assessing the fate and transport of WTC material in the Lower Hudson River and aid in assessing the environmental and human health impacts of the WTC catastrophe.
NASA Technical Reports Server (NTRS)
Sutter, B.; McAdam, A. C.; Rampe, E. B.; Ming, D. W.; Mahaffy, P. R.; Navarro-Gonzalez, R.; Stern, J. C.; Eigenbrode, J. L.; Archer, P. D.
2016-01-01
The Sample Analysis at Mars (SAM) instrument aboard the Mars Science Laboratory rover has analyzed 10 samples from Gale Crater. All SAM evolved gas analyses have yielded a multitude of volatiles (e.g, H2O, SO2, H2S, CO2, CO, NO, O2, HC1). The objectives of this work are to 1) Characterize the evolved H2O, SO2, CO2, and O2 gas traces of sediments analyzed by SAM through sol 1178, 2) Constrain sediment mineralogy/composition based on SAM evolved gas analysis (SAM-EGA), and 3) Discuss the implications of these results releative to understanding the geochemical history of Gale Crater.
NASA Astrophysics Data System (ADS)
Cibic, Tamara; Blasutto, Oriana; Falconi, Claus; Fonda Umani, Serena
2007-10-01
Monthly sampling was carried out during a 2-year study (2003-2004) in order to analyse benthic microalgal composition, abundance (ABU) and biomass (BIOM). Temperature and photosynthetically available radiation (PAR) at the bottom were recorded during sampling. In the overlying water nitrite (NO 2-), nitrate (NO 3-), ammonium (NH 4+), phosphate (PO 43-) and silicate (SiO 3-) were analysed. The sediment consisted of 8.2% sand, 18.3% clay and 73.5% silt. BIOM showed its maximum in August 2004, while the minimum was recorded in October 2003. The microphytobenthic community was mainly composed of diatoms. Among all the 103 Bacillariophyceae taxa identified in the sediment, we distinguished 67 benthic, 8 epiphytic and 8 planktonic species. Among diatoms Nitzschia and Navicula were the most abundant genera (30.8 and 26.2%, respectively). The linear regression between total diatom ABU and PAR was statistically significant ( r = 0.66, p < 0.001). A seasonal pattern of monthly samplings was highlighted both from cluster analysis and principal component analysis (PCA). The latter revealed two diatom assemblages: a winter assemblage and a spring-summer one. The genera Diploneis and Pinnularia showed an inverse relation against temperature. Considering the nutrient ratios the development of microphytobenthos (MPB) appeared to be potentially co-limited by Si and P almost throughout the study period. A clear inverse relation between NO 2-, NO 3- and BIOM was emphasised by the moving average and the PCA. The inverse relation among nutrients and light availability suggested that the photosynthetic activity of benthic diatoms in spring and summer may be one of the processes controlling sediment-water nutrient fluxes.
Aguayo, P; González, C; Barra, R; Becerra, J; Martínez, M
2014-03-01
Pristine cold oligotrophic lakes show unique physical and chemical characteristics with permanent fluctuation in temperature and carbon source availability. Incorporation of organic toxic matters to these ecosystems could alter the bacterial community composition. Our goal was to assess the effects of simazine (Sz) and 2,4 dichlorophenoxyacetic acid (2,4-D) upon the metabolic and genetic diversity of the bacterial community in sediment samples from a pristine cold oligotrophic lake. Sediment samples were collected in winter and summer season, and microcosms were prepared using a ration 1:10 (sediments:water). The microcosms were supplemented with 0.1 mM 2,4-D or 0.5 mM Sz and incubated for 20 days at 10 °C. Metabolic diversity was evaluated by using the Biolog Ecoplate™ system and genetic diversity by 16S rDNA amplification followed by denaturing gradient gel electrophoresis analysis. Total bacterial counts and live/dead ratio were determined by epifluorescence microscopy. The control microcosms showed no significant differences (P > 0.05) in both metabolic and genetic diversity between summer and winter samples. On the other hand, the addition of 2,4-D or Sz to microcosms induces statistical significant differences (P < 0.05) in metabolic and genetic diversity showing the prevalence of Actinobacteria group which are usually not detected in the sediments of these non-contaminated lacustrine systems. The obtained results suggest that contaminations of cold pristine lakes with organic toxic compounds of anthropic origin alter their homeostasis by inhibiting specific susceptible bacterial groups. The concomitant increase of usually low representative bacterial groups modifies the bacterial composition commonly found in this pristine lake.
NASA Astrophysics Data System (ADS)
Uthicke, S.; McGuire, K.
2007-03-01
Bacterial communities in eight 16S rDNA clone libraries from calcareous sediments were investigated to provide an assessment of the bacterial diversity on sediments of the Great Barrier Reef (GBR) and to investigate differences due to decreased water quality. Sample effort was spread across two locations on each of four coral reefs, with two reefs located nearshore and two reefs on the outer shelf to allow robust statistical comparison of nearshore reefs (subjected to enhanced runoff) and outer shelf reefs (pristine conditions). Out of 221 non-chimeric sequences, 189 (85.5%) were unique and only one sequence occurred in more than one library. Rarefaction analyses and coverage calculations indicated that only a small fraction of the diversity was sampled. Cluster analyses and comparison to published sequences indicated that sequences retrieved belonged to the α, γ and δ subdivision of the Proteobacteria (6.8, 29.4 and 13.6% of the total, respectively), Cytophaga-Flavobacteria-Bacteroidetes (CFB) group (20.4%), Cyanobacteria (5.4%), Planctomycetaceae (7.7%), Verrucomicrobiaceae (6.8%), Acidobacteriaceae (2.7%). Analysis of Similarity (ANOSIM, based on grouping all retrieved sequences into 9 phylogenetic groups) indicated that subtle differences do exist in the community composition between nearshore and outer shelf reefs. Similarity percentage analysis (SIMPER) indicated that Acidobacteriaceae and Cyanobacteriaceae were the main contributors to the dissimilarity. A significant difference between bacteria on nearshore and outer shelf reefs also existed on the molecular level ( FST = 0.008, p = 0.007 for all samples, 0.006, p = 0.022 when repeated sequences within libraries were removed). Thus, bacterial communities on carbonate sediments investigated were highly diverse and differences in community composition may provide important leads for the search for indicator species or communities for water quality differences.
NASA Astrophysics Data System (ADS)
Bongiorni, Lucia; Ravara, Ascensão; Parretti, Paola; Santos, Ricardo S.; Rodrigues, Clara F.; Amaro, Teresa; Cunha, Marina R.
2013-12-01
In recent years increasing knowledge has been accumulated on seamounts ecology; however their sedimentary environments and associated biological communities remain largely understudied. In this study we investigated quantity and biochemical composition of organic matter and macrofaunal diversity in sediments of the Condor Seamount (NE Atlantic, Azores). In order to test the effect of the seamount on organic matter distribution, sediment samples were collected in 6 areas: the summit, the northern and southern flanks and bases, and in an external far field site. Macrofauna abundance and diversity were investigated on the summit, the southern flank and in the far field site. The organic matter distribution reflected the complex hydrodynamic conditions occurring on the Condor. Concentrations of organic matter compounds were generally lower on the whole seamount than in the far field site and on the seamount summit compared to flanks and bases. A clear difference was also evident between the northern and southern slopes of the Condor, suggesting a role of the seamount in conditioning sedimentation processes and distribution of food resources for benthic consumers. Macrofauna assemblages changed significantly among the three sampling sites. High abundance and dominance, accompanied by low biodiversity, characterized the macrofauna community on the Condor summit, while low dominance and high biodiversity were observed at the flank. Our results, although limited to five samples on the seamount and two off the seamount, do not necessarily support the paradigm that seamounts are more biodiverse than the surrounding seafloor. However, the abundance (and biomass), functional diversity and taxonomical distinctiveness of the macrofaunal assemblages from the Condor Seamount suggest that seamounts habitats may play a relevant role in adding to the regional biodiversity.
Large sulfur isotope fractionations in Martian sediments at Gale crater
NASA Astrophysics Data System (ADS)
Franz, H. B.; McAdam, A. C.; Ming, D. W.; Freissinet, C.; Mahaffy, P. R.; Eldridge, D. L.; Fischer, W. W.; Grotzinger, J. P.; House, C. H.; Hurowitz, J. A.; McLennan, S. M.; Schwenzer, S. P.; Vaniman, D. T.; Archer, P. D., Jr.; Atreya, S. K.; Conrad, P. G.; Dottin, J. W., III; Eigenbrode, J. L.; Farley, K. A.; Glavin, D. P.; Johnson, S. S.; Knudson, C. A.; Morris, R. V.; Navarro-González, R.; Pavlov, A. A.; Plummer, R.; Rampe, E. B.; Stern, J. C.; Steele, A.; Summons, R. E.; Sutter, B.
2017-09-01
Variability in the sulfur isotopic composition in sediments can reflect atmospheric, geologic and biological processes. Evidence for ancient fluvio-lacustrine environments at Gale crater on Mars and a lack of efficient crustal recycling mechanisms on the planet suggests a surface environment that was once warm enough to allow the presence of liquid water, at least for discrete periods of time, and implies a greenhouse effect that may have been influenced by sulfur-bearing volcanic gases. Here we report in situ analyses of the sulfur isotopic compositions of SO2 volatilized from ten sediment samples acquired by NASA’s Curiosity rover along a 13 km traverse of Gale crater. We find large variations in sulfur isotopic composition that exceed those measured for Martian meteorites and show both depletion and enrichment in 34S. Measured values of δ34S range from -47 +/- 14‰ to 28 +/- 7‰, similar to the range typical of terrestrial environments. Although limited geochronological constraints on the stratigraphy traversed by Curiosity are available, we propose that the observed sulfur isotopic signatures at Gale crater can be explained by equilibrium fractionation between sulfate and sulfide in an impact-driven hydrothermal system and atmospheric processing of sulfur-bearing gases during transient warm periods.
Banfield, J.F.; Jones, B.F.; Veblen, D.R.
1991-01-01
This paper compares the mineralogy and chemistry of clay minerals in sediments from various depths and positions in Abert Lake and surrounding playa with those of the weathered materials entering the lake in order to reveal the nature and extent of post-depositional mineralogical modification. Analytical electron microscope (AEM) data from individual clay particles reveal that each sample is comprised of a highly inhomogeneous smectite assemblage. The thin clay flakes (commonly less than 10 nm wide) display a complete range in octahedral sheet compositions from nearly dioctahedral to nearly trioctahedral. The very abundant Mg-rich lake smectites with an estimated composition K0.29(Al0.23-Mg2.16Fe0.30)Si3.80Al0.20O10(OH)2 are not formed by weathering. This confirms the importance of diagenetic Mg uptake. Lattice-fringe imaging failed to reveal distinct brucite-like or vermiculite-like layers, suggesting that interstratifications of this type are rare or absent. Siliceous coatings on clay particles (identified by silica excess in smectite analyses) seem to favor topotactic overgrowth of stevensite rather than addition of brucite-like layers to the dioctahedral nuclei. The growth of K-stevensite dilutes the Al content of the crystal, and thus the increasing diagenetic modification reduces rather than supplements its illite component. Smectite compositions within individual samples were highly variable, yet source-related characteristics such as the abundance of Fe-rich smectite were apparent. Little evidence for systematic K or Mg enrichment with depth was identified in samples from depths of down to 16 feet below the sediment-water interface. The most magnesian assemblages are associated both with weathering sources of Mg-rich smectite and playa environments subjected to repeated wetting and drying cycles. Thus, the observations suggest that clay compositions primarily reflect changes in lake levels, brine composition, and source characteristics, rather than time and depth/compaction effects. Other diagenetic reactions in the sediment include recrystallization of Na-rich silica gel and diatom fragments. Abundant, submicron-sized, untwinned, euhedral crystals of K-feldspar are interpreted to be authigenic in origin. ?? 1991.
The stereoisomeric composition of phytanyl chains in lipids of Dead Sea sediments
NASA Technical Reports Server (NTRS)
Anderson, R.; Kates, M.; Baedecker, M. J.; Kaplan, I. R.; Ackman, R. G.
1977-01-01
Lipid extracts from five recent Dead Sea sediments were analyzed for isoprenoid compounds and the following were isolated: free and phospholipid-bound di-O-phytanylglycerol, free phytanol and free and esterified phytanic acid. The phytanyl groups of the diether and the free phytanol were oxidized to the corresponding phytanic acid; the stereoisomeric composition of the derived phytanic acids as well as of the ester-bound phytanic acid was determined by open-tubular gas-liquid chromatography of the corresponding methyl esters on butanediolsuccinate polyester. Only the 3R, 7R, 11R-isomer of phytanic acid was detected in each of the phytanate samples, indicating that these phytanyl chains in the Dead Sea sediments are most likely derived from extremely halophilic bacteria rather than from phytol of chlorophyll origin. These findings also provide further evidence that the mixtures of RRR and SRR-phytanic acids previously isolated from organic-rich shales were most likely derived from the phytyl chain in chlorophyll.
Zhang, Shengyin; Li, Shuanglin; Dong, Heping; Zhao, Qingfang; Lu, Xinchuan; Shi, Ji'an
2014-11-15
By analyzing the composition of n-alkane and macroelements in the surface sediments of the central South Yellow Sea of China, we evaluated the influencing factors on the distribution of organic matter. The analysis indicates that the distribution of total organic carbon (TOC) was low in the west and high in the east, and TOC was more related to Al2O3 content than medium diameter (MD). The composition of n-alkanes indicated the organic matter was mainly derived from terrestrial higher plants. Contributions from herbaceous plants and woody plants were comparable. The comprehensive analysis of the parameters of macroelements and n-alkanes showed the terrestrial organic matter in the central South Yellow Sea was mainly from the input of the modern Yellow River and old Yellow River. However, some samples exhibited evident input characteristics from petroleum sources, which changed the original n-alkanes of organic matter in sediments. Copyright © 2014 Elsevier Ltd. All rights reserved.
The stereoisomeric composition of phytanyl chains in lipids of Dead Sea sediments
Anderson, R.; Kates, M.; Baedecker, M.J.; Kaplan, I.R.; Ackman, R.G.
1977-01-01
Lipid extracts from five recent Dead Sea sediments were analyzed for isoprenoid compounds and the following were isolated: free and phospholipid-bound di-O-phytanylglycerol, free phytanol and free and esterifled phytanic acid. The phytanyl groups of the diether and the free phytanol were oxidized to the corresponding phytanic acid; the stereoisomeric composition of the derived phytanic acids as well as of the ester-bound phytanic acid was determined by open-tubular gas-liquid chromatography of the corresponding methyl esters on butanediolsuccinate polyester. Only the 3R,7R,11R-isomer of phytanic acid was detected in each of the phytanate samples, indicating that these phytanyl chains in the Dead Sea sediments are most likely derived from extremely halophilic bacteria rather than from phytol of chlorophyll origin. These findings also provide further evidence that the mixtures of RRR and SRR-phytanic acids previously isolated from organic-rich shales were most likely derived from the phytyl chain in chlorophyll. ?? 1977.
NASA Astrophysics Data System (ADS)
Pedro, Sílvia; Canastreiro, Vera; Caçador, Isabel; Pereira, Eduarda; Duarte, Armando C.; Raposo de Almeida, Pedro
2008-11-01
The stomach contents of thin-lipped grey mullets Liza ramado were analysed in terms of granulometric composition and compared to the sediment of potential feeding areas in the Tagus estuary. Total organic matter (TOM) content and heavy metal content were determined in the surface sediment of three areas and eight trace elements were quantified: Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn. The three sampled areas did not differ in TOM; and the heavy metal content was below Effects Range-Low level for most elements. The mean observed concentrations were present in the following sequence: Zn > Pb > Cr > Cu ≈ Ni > Co > Cd > Hg. Stomach contents granulometric composition provided information about the feeding selectivity of the mullets. Sediment fractions with particle size between 20 and 50 μm are preferred, independently of the fishes' length. Smaller standard length (SL) fishes have a higher positive selection of fine grained sediments than those with a larger SL. Finer fractions usually have higher concentration of heavy metals, which makes younger specimens of the thin-lipped grey mullet potentially more exposed to heavy metal load in the estuary. Metal concentration was not independent from the sampling point, presenting higher values near the margins and the estuary tidal drainage system. This means that during the first period of each tidal cycle, the mullets will feed first on the most contaminated areas, as a consequence of their movement following the rising tide to feed on previously exposed areas.
NASA Astrophysics Data System (ADS)
Sharani, Jeanny; Hidayat, Jafron W.; Putro, Sapto P.
2018-05-01
Macrobenthic community play important role in sedimentary habitats as a part of food chain. Their structure may be influenced by environmental characteristic spatially and temporally. The purpose of this study is to access the correlation between macrobenthic structure (biotic) and water-sediment characteristics (abiotic) adjacent aquaculture areas at Tembelas Island, Indonesia. Water and sediments samples were taken twice, where the first and second sampling time were taken in June and October 2016, respectively. Samples were taken in the area of fish farming at coastal area of policulture/IMTA (as Location I), site of 1 km away from fish farming area as a reference site (as Location II), and monoculture sites (as Location III), with three stations for each location. Data of abiotic parameters included the composition of sediment substrate and DO, pH, salinity, temperature, and. Sediment samples were taken using Ekman grab. The organisms were 1 mm -size sieved and fixed using 10% formalin for further analysis, i.e. sorting, preserving, enumerating, identifying, and grouping. The relationship between biotics (macrobentos) and abiotics (physical-chemical factors) was assessed using a non-parametric multivariate procedure (BIOENV). This study found 61 species consisting of 46 families and 5 classes of macrobenthos. The most common classes were member of Mollusca and Polychaeta. Total nitrogen, silt, and clay were the abiotic factors most influencing macrobenthic structure (BIO-ENV; r = 0.46; R2 = 21.16%).
Stern, Laura A.; Lorenson, T.D.
2014-01-01
We report on grain-scale characteristics and gas analyses of gas-hydrate-bearing samples retrieved by NGHP Expedition 01 as part of a large-scale effort to study gas hydrate occurrences off the eastern-Indian Peninsula and along the Andaman convergent margin. Using cryogenic scanning electron microscopy, X-ray spectroscopy, and gas chromatography, we investigated gas hydrate grain morphology and distribution within sediments, gas hydrate composition, and methane isotopic composition of samples from Krishna–Godavari (KG) basin and Andaman back-arc basin borehole sites from depths ranging 26 to 525 mbsf. Gas hydrate in KG-basin samples commonly occurs as nodules or coarse veins with typical hydrate grain size of 30–80 μm, as small pods or thin veins 50 to several hundred microns in width, or disseminated in sediment. Nodules contain abundant and commonly isolated macropores, in some places suggesting the original presence of a free gas phase. Gas hydrate also occurs as faceted crystals lining the interiors of cavities. While these vug-like structures constitute a relatively minor mode of gas hydrate occurrence, they were observed in near-seafloor KG-basin samples as well as in those of deeper origin (>100 mbsf) and may be original formation features. Other samples exhibit gas hydrate grains rimmed by NaCl-bearing material, presumably produced by salt exclusion during original hydrate formation. Well-preserved microfossil and other biogenic detritus are also found within several samples, most abundantly in Andaman core material where gas hydrate fills microfossil crevices. The range of gas hydrate modes of occurrence observed in the full suite of samples suggests a range of formation processes were involved, as influenced by local in situconditions. The hydrate-forming gas is predominantly methane with trace quantities of higher molecular weight hydrocarbons of primarily microbial origin. The composition indicates the gas hydrate is Structure I.
Phylogenetic analysis of Archaea in the deep-sea sediments of west Pacific Warm Pool.
Wang, Peng; Xiao, Xiang; Wang, Fengping
2005-06-01
Archaea are known to play important roles in carbon cycling in marine sediments. The main compositions of archaeal community in five deep-sea sediment samples collected from west Pacific Warm Pool area (WP-0, WP-1, WP-2, WP-3, WP-4), and in five sediment layers (1 cm-, 3 cm-, 6 cm-, 10 cm-, 12 cm- layer) of the 12 cm sediment core of WP-0 were checked and compared by denaturing gradient gel electrophoresis and 16 S rRNA gene sequencing. It was revealed that all the deep-sea sediment samples checked contained members of non-thermophilic marine group I crenarchaeota as the predominant archaeal group. To further detect groups of archaea possibly relating with C1 metabolism, PCR amplification was carried out using primers targeting methane-oxidizing archaea. Although no methane-oxidizing archaea was detected, a group of novel archaea (named as WPA) was instead identified from all these five WP samples by clone analysis. They could be placed in the euryarchaeota kingdom, separated into two distinct groups, the main group was peripherally related with methanogens, the other group related with Thermoplasma. The vertical distributions of WPA, archaea and bacteria along the WP-0 sediment column were determined by quantitative-PCR. It was found that bacteria dominated at all depths, the numbers of bacteria were 10-10(4) times more than those of archaea. The proportion of archaea versus bacteria had a depth related increasing tendency, it was lowest at the first layer (0.01%), reached highest at the 12 cm- layer (10%). WPA only constituted a small proportion of the archaeal community (0.05% to 5%) of west Pacific Warm Pool sediment.
Sediment studies associated with drilling activity on a tropical shallow shelf.
Souza, Claudete R; Vital, Helenice; Melo, Germano; Souza, Cleuneide R; da Silva Nogueira, Mary Lucia; Tabosa, Werner Farkatt
2015-02-01
Environmental monitoring studies were developed in an area located on the outer shelf in the Potiguar Basin, Brazilian equatorial margin. This tropical shelf represents a modern, highly dynamic mixed carbonate-siliciclastic system. Field sampling was carried out during 3 cruises surrounding a shallow-water exploratory well to compare sediment properties of the seafloor, including grain size, texture, mineral composition, carbonate content, and organic matter, prior to drilling with samples obtained 3 and 12 months after drilling. The sample grid used had 16 stations located along 4 radials from 50 m the well up to a distance of 500 m. Sediments were analyzed in the first 0-2 cm and 0-10 cm layers. The results show that sedimentary cover around the well is dominated by bioclastic sediments, poor to very poorly sorted. Only minor sedimentological variations occurred in the area affected by drilling operations. The most noticeable effects were observed during the second cruise, in terms of a change in grain size distribution associated to a slight increase in siliciclastic content. This impact occurred in the most surficial sediment (0-2 cm), in the radials closest to the well (50 m), and could suggest the effects of drilling. However, in the third cruise, 1 year after drilling, the sediments return to show the same characteristics as in the first cruise. These results show no significant sedimentological variations due to drilling activity and indicate that ocean dynamics in this area was high enough to recover the environment original characteristics.
Shelton, Larry R.; Capel, Paul D.
1994-01-01
A major component of the U.S. Geological Survey's National Water-Quality Assessment program is to assess the occurrence and distribution of trace elements and organic contaminants in streams. The first phase of the strategy for the assessment is to analyze samples of bed sediments from depositional zones. Fine-grained particles deposited in these zones are natural accumulators of trace elements and hydrophobic organic compounds. For the information to be comparable among studies in many different parts of the Nation, strategies for selecting stream sites and depositional zones are critical. Fine-grained surficial sediments are obtained from several depositional zones within a stream reach and composited to yield a sample representing average conditions. Sample collection and processing must be done consistently and by procedures specifically designed to separate the fine material into fractions that yield uncontaminated samples for trace-level analytes in the laboratory. Special coring samplers and other instruments made of Teflon are used for collection. Samples are processed through a 2.0-millimeter stainless-steel mesh sieve for organic contaminate analysis and a 63-micrometer nylon-cloth sieve for trace-element analysis. Quality assurance is maintained by strict collection and processing procedures, duplicate samplings, and a rigid cleaning procedure.
Jack Dymond's "Fingerprints" on Sediment Chemistry, Biogeochemical Fluxes, and my Career
NASA Astrophysics Data System (ADS)
Leinen, M.
2004-12-01
I first met Jack Dymond as a graduate student at Oregon State University. He wasn't my thesis advisor. He wasn't even on my committee. But his ever so gentle counsel and his low key advice did much to shape my career, as a student, as a scientist, and later as an administrator of science. At the time, Jack was wading through the analysis of a very large number of surface sediment samples from the Nazca Plate as part of an IDOE project. The number and density of sampling was extraordinary for the time and his work showed that the geochemistry of the sediments could be deconvolved to understand the contributions of sediment sources over the entire plate. I had been planning to analyze DSDP samples from the equatorial Pacific to understand the history of siliceous sedimentation in that region and I began to talk with Jack about how I could use geochemical signatures to estimate the non-biogenic fraction of the sediment. When Jack's Nazca Plate paper came out, Debra Stakes and I decided to analyze all of my sample residues for the same elements that Jack had studied. In the only piece of bad advice that he ever gave me, Jack told me that it was a waste of time because there wouldn't be high enough concentrations of transition metals in the calcareous and siliceous sediments to measure. We insisted and Jack, in typical fashion, agreed to pay for reagents and give us instrument time without charge anyway. The larger than expected concentrations, and the even more surprising match between the accumulation rates of some the metals and the accumulation rates of biogenic sediment were the subject of many discussions, all of which ended in the need for more information on the composition, fluxes and transformations of biogenic sediment in the water column and in recent sediments. This, of course, became another of Jack's specialties: his designs for sediment traps were important contributions to the evolution of this important sampling device. His studies of fluxes in a wide variety of environments - from hydrothermal vent fields to Crater Lake --were critical to the development of modern biogeochemical cycling experiments and thinking. And this, of course, was only one of the fields in which he made major contributions.
NASA Astrophysics Data System (ADS)
Atashgahi, Siavash; Aydin, Rozelin; Dimitrov, Mauricio R.; Sipkema, Detmer; Hamonts, Kelly; Lahti, Leo; Maphosa, Farai; Kruse, Thomas; Saccenti, Edoardo; Springael, Dirk; Dejonghe, Winnie; Smidt, Hauke
2015-11-01
The impact of the installation of a technologically advanced wastewater treatment plant (WWTP) on the benthic microbial community of a vinyl chloride (VC) impacted eutrophic river was examined two years before, and three and four years after installation of the WWTP. Reduced dissolved organic carbon and increased dissolved oxygen concentrations in surface water and reduced total organic carbon and total nitrogen content in the sediment were recorded in the post-WWTP samples. Pyrosequencing of bacterial 16S rRNA gene fragments in sediment cores showed reduced relative abundance of heterotrophs and fermenters such as Chloroflexi and Firmicutes in more oxic and nutrient poor post-WWTP sediments. Similarly, quantitative PCR analysis showed 1-3 orders of magnitude reduction in phylogenetic and functional genes of sulphate reducers, denitrifiers, ammonium oxidizers, methanogens and VC-respiring Dehalococcoides mccartyi. In contrast, members of Proteobacteria adapted to nutrient-poor conditions were enriched in post-WWTP samples. This transition in the trophic state of the hyporheic sediments reduced but did not abolish the VC respiration potential in the post-WWTP sediments as an important hyporheic sediment function. Our results highlight effective nutrient load reduction and parallel microbial ecological state restoration of a human-stressed urban river as a result of installation of a WWTP.
Utilization of waste of coal-mining enterprise in production of building materials
NASA Astrophysics Data System (ADS)
Chugunov, A. D.; Filatova, E. G.; Yakovleva, A. A.
2018-03-01
Wastes of coal producers often include substances allowing treating such wastes as valuable feeds for metallurgy, chemical and construction processes. This study concerned elemental and phase composition of samples obtained by calcination of bottom sediments of the coal producer spoil bank. The research has shown that the samples contain significant amounts of carbon, iron, silicon, aluminum and other valuable components.
Tu, Y T; Ou, J H; Tsang, D C W; Dong, C D; Chen, C W; Kao, C M
2018-03-01
The Love River and Ho-Jin River, two major urban rivers in Kaohsiung City, Taiwan, are moderately to heavily polluted because different types of improperly treated wastewaters are discharged into the rivers. In this study, sediment and river water samples were collected from two rivers to investigate the river water quality and accumulation of polycyclic aromatic hydrocarbons (PAHs) in sediments. The spatial distribution, composition, and source appointment of PAHs of the sediments were examined. The impacts of PAHs on ecological system were assessed using toxic equivalence quotient (TEQ) of potentially carcinogenic PAHs (TEQ carc ) and sediment quality guidelines. The average PAHs concentrations ranged from 2161 ng/g in Love River sediment to 160 ng/g in Ho-Jin River sediment. This could be due to the fact that Love River Basin had much higher population density and pyrolytic activities. High-ring PAHs (4-6 rings) contributed to 59-90% of the total PAHs concentrations. Benzo(a)pyrene (BaP) had the highest toxic equivalence quotient (up to 188 ng TEQ/g). Moreover, the downstream sediments contained higher TEQ of total TPHs than midstream and upstream sediment samples. The PAHs were adsorbed onto the fine particles with high organic content. Results from diagnostic ratio analyses indicate that the PAHs in two urban river sediments might originate from oil/coal combustion, traffic-related emissions, and waste combustion (pyrogenic activities). Future pollution prevention and management should target the various industries, incinerators, and transportation emission in this region to reduce the PAHs pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chand, Shyam; Minshull, Tim A.; Priest, Jeff A.; Best, Angus I.; Clayton, Christopher R. I.; Waite, William F.
2006-08-01
The presence of gas hydrate in marine sediments alters their physical properties. In some circumstances, gas hydrate may cement sediment grains together and dramatically increase the seismic P- and S-wave velocities of the composite medium. Hydrate may also form a load-bearing structure within the sediment microstructure, but with different seismic wave attenuation characteristics, changing the attenuation behaviour of the composite. Here we introduce an inversion algorithm based on effective medium modelling to infer hydrate saturations from velocity and attenuation measurements on hydrate-bearing sediments. The velocity increase is modelled as extra binding developed by gas hydrate that strengthens the sediment microstructure. The attenuation increase is modelled through a difference in fluid flow properties caused by different permeabilities in the sediment and hydrate microstructures. We relate velocity and attenuation increases in hydrate-bearing sediments to their hydrate content, using an effective medium inversion algorithm based on the self-consistent approximation (SCA), differential effective medium (DEM) theory, and Biot and squirt flow mechanisms of fluid flow. The inversion algorithm is able to convert observations in compressional and shear wave velocities and attenuations to hydrate saturation in the sediment pore space. We applied our algorithm to a data set from the Mallik 2L-38 well, Mackenzie delta, Canada, and to data from laboratory measurements on gas-rich and water-saturated sand samples. Predictions using our algorithm match the borehole data and water-saturated laboratory data if the proportion of hydrate contributing to the load-bearing structure increases with hydrate saturation. The predictions match the gas-rich laboratory data if that proportion decreases with hydrate saturation. We attribute this difference to differences in hydrate formation mechanisms between the two environments.
Chand, S.; Minshull, T.A.; Priest, J.A.; Best, A.I.; Clayton, C.R.I.; Waite, W.F.
2006-01-01
The presence of gas hydrate in marine sediments alters their physical properties. In some circumstances, gas hydrate may cement sediment grains together and dramatically increase the seismic P- and S-wave velocities of the composite medium. Hydrate may also form a load-bearing structure within the sediment microstructure, but with different seismic wave attenuation characteristics, changing the attenuation behaviour of the composite. Here we introduce an inversion algorithm based on effective medium modelling to infer hydrate saturations from velocity and attenuation measurements on hydrate-bearing sediments. The velocity increase is modelled as extra binding developed by gas hydrate that strengthens the sediment microstructure. The attenuation increase is modelled through a difference in fluid flow properties caused by different permeabilities in the sediment and hydrate microstructures. We relate velocity and attenuation increases in hydrate-bearing sediments to their hydrate content, using an effective medium inversion algorithm based on the self-consistent approximation (SCA), differential effective medium (DEM) theory, and Biot and squirt flow mechanisms of fluid flow. The inversion algorithm is able to convert observations in compressional and shear wave velocities and attenuations to hydrate saturation in the sediment pore space. We applied our algorithm to a data set from the Mallik 2L–38 well, Mackenzie delta, Canada, and to data from laboratory measurements on gas-rich and water-saturated sand samples. Predictions using our algorithm match the borehole data and water-saturated laboratory data if the proportion of hydrate contributing to the load-bearing structure increases with hydrate saturation. The predictions match the gas-rich laboratory data if that proportion decreases with hydrate saturation. We attribute this difference to differences in hydrate formation mechanisms between the two environments.
Fungi from Admiralty Bay (King George Island, Antarctica) Soils and Marine Sediments.
Wentzel, Lia Costa Pinto; Inforsato, Fábio José; Montoya, Quimi Vidaurre; Rossin, Bruna Gomes; Nascimento, Nadia Regina; Rodrigues, André; Sette, Lara Durães
2018-06-19
Extreme environments such as the Antarctic can lead to the discovery of new microbial taxa, as well as to new microbial-derived natural products. Considering that little is known yet about the diversity and the genetic resources present in these habitats, the main objective of this study was to evaluate the fungal communities from extreme environments collected at Aldmiralty Bay (Antarctica). A total of 891 and 226 isolates was obtained from soil and marine sediment samples, respectively. The most abundant isolates from soil samples were representatives of the genera Leucosporidium, Pseudogymnoascus, and a non-identified Ascomycota NIA6. Metschnikowia sp. was the most abundant taxon from marine samples, followed by isolates from the genera Penicillium and Pseudogymnoascus. Many of the genera were exclusive in marine sediment or terrestrial samples. However, representatives of eight genera were found in both types of samples. Data from non-metric multidimensional scaling showed that each sampling site is unique in their physical-chemical composition and fungal community. Biotechnological potential in relation to enzymatic production at low/moderate temperatures was also investigated. Ligninolytic enzymes were produced by few isolates from root-associated soil. Among the fungi isolated from marine sediments, 16 yeasts and nine fungi showed lipase activity and three yeasts and six filamentous fungi protease activity. The present study permitted increasing our knowledge on the diversity of fungi that inhabit the Antarctic, finding genera that have never been reported in this environment before and discovering putative new species of fungi.
Sterols of a contemporary lacustrine sediment. [in English postglacial lake
NASA Technical Reports Server (NTRS)
Gaskell, S. J.; Eglinton, G.
1976-01-01
Results are reported for detailed sterol analyses of several depths (corresponding to between zero and about 150 yr in age) in a contemporary lacustrine sediment from a freshwater lake of postglacial origin in England. Delta 5-, delta 22-, and delta 5,22-sterols are identified along with 5 alpha- and 5 beta-stanols as well as a C26 stanol with a C7 side chain. Solvent extraction yields carbon number distributions for the 5 alpha- and 5 beta-stanol sediment constituents that parallel the corresponding delta 5-sterol distributions. The amounts of 5 alpha-stanols are found to exceed those of 5 beta-stanols in the sediment, and variations in the ratio of 5 alpha- to 5 beta-stanol between sediment samples from similar depths are shown to suggest an inhomogeneity of the sediment. It is found that the sterol composition of sediment cores varies markedly with depth, reflecting both the effects of a sterol hydrogenation process and a changing input to the sediment. It is concluded that C29 sterols, of probable higher-plant origin, predominate at lower sediment depths while C27 sterols, possibly derived from autochthonous sources, are more abundant in the surface sediment.
Relationship of sediment discharge to streamflow
Colby, B.R.
1956-01-01
The relationship between rate of sediment discharge and rate of water discharge at a cross section of a stream is frequently expressed by an average curve. This curve is the sediment rating curve. It has been widely used in the computation of average sediment discharge from water discharge for periods when sediment samples were not collected. This report discusses primarily the applications of sediment rating curves for periods during which at least occasional sediment samples were collected. Because sediment rating curves are of many kinds, the selection of the correct kind for each use is important. Each curve should be carefully prepared. In particular, the correct dependent variable must be used or the slope of the sediment rating curve may be incorrect for computing sediment discharges. Sediment rating curves and their applications were studied for the following gaging stations: 1. Niobrara River near Cody, Nebr. 2. Colorado River near Grand Canyon, Ariz. 3. Rio Grande at San Martial, N. Mex. 4. Rio Puerto near Bernardo, N. Mex. 5. White River near Kadoka, S. Dak. 6. Sandusky River near Fremont, Ohio Except for the Sandusky River and the Rio Puerco, which transport mostly fine sediment, one instantaneous sediment rating curve was prepared for the discharge of suspended sands, at each station, and another for the discharge of sediment finer than 0.082 millimeter. Each curve was studied separately, and by trial-end-error multiple correlation some of the factors that cause scatter from the sediment rating curves were determined. Average velocity at the cross section, Water temperature, and erratic fluctuations in concentration seemed to be the three major factors that caused departures from the sediment rating curves for suspended sands. The concentration of suspended sands varied with about the 2.8 power of the mean velocity for the four sediment, rating curves for suspended sands. The effect of water temperature was not so consistent as that of velocity and theoretically should vary considerably with differences in the size composition of the suspended sands. Scatter from the sediment rating curves for sediments finer than 0.082 millimeter seemed to be caused by changes in supply of these sediments. Some of the scatter could be explained by seasonal variations, by a pattern of change in concentration of fine sediment following a rise, or by source of the runoff as indicated by the measured relative flows of certain tributaries. Daily or instantaneous sediment rating curves adjusted for factors that account for some of the scatter from an average curve often can be used to compute approximate daily, monthly, and annual sediment discharges. Accuracy of the computed sediment discharges should be better than average for streams that transport mostly sands rather than fine sediments and for some ephemeral or intermittent streams, such as Rio Puerco, in semiarid regions. Accuracy of computed sediment discharges can be much improved for many streams by shifting the sediment rating curve on the basis of 2 or 4 measurements of sediment discharge per month. Of 26 annual sediment discharges that were computed by shifting sediment rating curves to either 2 or 4 measured sediment discharges per month, 18 were within I0 percent of the annual-sediment discharges that were computed on the basis of a daily sampling program. Monthly and daily sediment discharges computed from daily or instantaneous sediment rating curves, either shifted or unshifted, were less accurate than similarly computed annual sediment discharges. Even so, the difference in cost between occasional sediment samples and daily samples is so great that the added accuracy from daily sampling may not Justify the added cost. Monthly and annual sediment-rating curves can be applied simply, with adjustments if required, to compute monthly and annual sediment discharges with reasonably good accuracy for gaging stations like the Rio Puerco near Bernardo,
Several approaches are available for evaluating adverse effects in near coastal ecosystems. These range from performing toxicity tests with individual organisms on water column and sediment samples to conducting macrofaunal compositional analyses on pelagic and benthic communiti...
Trace elements in lake sediments measured by the PIXE technique
NASA Astrophysics Data System (ADS)
Gatti, Luciana V.; Mozeto, Antônio A.; Artaxo, Paulo
1999-04-01
Lakes are ecosystems where there is a great potential of metal accumulation in sediments due to their depositional characteristics. Total concentration of trace elements was measured on a 50 cm long sediment core from the Infernão Lake, that is an oxbow lake of the Moji-Guaçu River basin, in the state of São Paulo, Brazil. Dating of the core shows up to 180 yrs old sediment layers. The use of the PIXE technique for elemental analysis avoids the traditional acid digestion procedure common in other techniques. The multielemental characteristic of PIXE allows a simultaneous determination of about 20 elements in the sediment samples, such as, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Rb, Sr, Zr, Ba, and Pb. Average values for the elemental composition were found to be similar to the bulk crustal composition. The lake flooding pattern strongly influences the time series of the elemental profiles. Factor analysis of the elemental variability shows five factors. Two of the factors represent the mineralogical matrix, and others represent the organic component, a factor with lead, and another loaded with chromium. The mineralogical component consists of elements such as, Fe, Al, V, Ti, Mn, Ni, K, Zr, Sr, Cu and Zn. The variability of Si is explained by two distinct factors, because it is influenced by two different sources, aluminum-silicates and quartz, and the effect of inundation are different for each other. The organic matter is strongly associated with calcium, and also bounded with S, Zn, Cu and P. Lead and chromium appears as separated factors, although it is not clear the evidences for their anthropogenic origin. The techniques developed for sample preparation and PIXE analysis was proven as advantageous and provided very good reproducibility and accuracy.
Process recognition in multi-element soil and stream-sediment geochemical data
Grunsky, E.C.; Drew, L.J.; Sutphin, D.M.
2009-01-01
Stream-sediment and soil geochemical data from the Upper and Lower Coastal Plains of South Carolina (USA) were studied to determine relationships between soils and stream sediments. From multi-element associations, characteristic compositions were determined for both media. Primary associations of elements reflect mineralogy, including heavy minerals, carbonates and clays, and the effects of groundwater. The effects of groundwater on element concentrations are more evident in soils than stream sediments. A "winnowing index" was created using ratios of Th to Al that revealed differing erosional and depositional environments. Both soils and stream sediments from the Upper and Lower Coastal Plains show derivation from similar materials and subsequent similar multi-element relationships, but have some distinct differences. In the Lower Coastal Plain, soils have high values of elements concentrated in heavy minerals (Ce, Y, Th) that grade into high values of elements concentrated into finer-grain-size, lower-density materials, primarily comprised of carbonates and feldspar minerals (Mg, Ca, Na, K, Al). These gradational trends in mineralogy and geochemistry are inferred to reflect reworking of materials during marine transgressions and regressions. Upper Coastal Plain stream-sediment geochemistry shows a higher winnowing index relative to soil geochemistry. A comparison of the 4 media (Upper Coastal Plain soils and stream sediments and Lower Coastal Plain soils and stream sediments) shows that Upper Coastal Plain stream sediments have a higher winnowing index and a higher concentration of elements contained within heavy minerals, whereas Lower Coastal Plain stream sediments show a strong correlation between elements typically contained within clays. It is not possible to calculate a functional relationship between stream sediment-soil compositions for all elements due to the complex history of weathering, deposition, reworking and re-deposition. However, depending on the spatial separation of the stream-sediment and soil samples, some elements are more highly correlated than others. Crown Copyright ?? 2009.
Kim, Dahae; Kim, Jung-Hyun; Kim, Min-Seob; Ra, Kongtae; Shin, Kyung-Hoon
2018-05-04
We investigate historical environmental changes in an artificial lake, Lake Shihwa in South Korea, based on bulk (TOC, TN, C/N ratio, δ 13 C TOC , and δ 15 N TN ) and molecular (concentrations and δ 13 C of n-alkanes) parameters, by analyzing riverbank sediments (n = 12), lake surface sediments (n = 9), and lake core sediments (n = 108). Although the bulk organic parameters showed similar characteristics for all lake surface sediment samples, the distribution pattern and δ 13 C of n-alkanes revealed distinct differences between 2009 samples and 2012/2016 samples. This change of sedimentary organic matter characteristics can be attributed to operation of the tidal power plant that began in 2011, which improved lake water circulation and thus changed the lake sedimentary environment from anoxic to more oxic conditions. The vertical profiles of bulk and molecular lake sediment core records collected in 2009, especially at the site closest to the dike, showed a drastic shift around 1987, indicating that stronger anoxic sedimentary conditions prevailed after 1987. This is linked to sea dike construction in 1987, which prohibited sea-lake water exchange and thus deteriorated water quality in Lake Shihwa. We conclude that Lake Shihwa has experienced severe environmental changes due to human activities. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sloto, Ronald A.; Gellis, Allen C.; Galeone, Daniel G.
2012-01-01
Laurel Hill Creek is a watershed of 125 square miles located mostly in Somerset County, Pennsylvania, with small areas extending into Fayette and Westmoreland Counties. The upper part of the watershed is on the Pennsylvania Department of Environmental Protection 303(d) list of impaired streams because of siltation, nutrients, and low dissolved oxygen concentrations. The objectives of this study were to (1) estimate the annual sediment load, (2) estimate the annual nitrogen load, and (3) identify the major sources of fine-grained sediment using the sediment-fingerprinting approach. This study by the U.S. Geological Survey (USGS) was done in cooperation with the Somerset County Conservation District. Discharge, suspended-sediment, and nutrient data were collected at two streamflow-gaging stations—Laurel Hill Creek near Bakersville, Pa., (station 03079600) and Laurel Hill Creek at Ursina, Pa., (station 03080000)—and one ungaged stream site, Laurel Hill Creek below Laurel Hill Creek Lake at Trent (station 03079655). Concentrations of nutrients generally were low. Concentrations of ammonia were less than 0.2 milligrams per liter (mg/L), and concentrations of phosphorus were less than 0.3 mg/L. Most concentrations of phosphorus were less than the detection limit of 0.02 mg/L. Most water samples had concentrations of nitrate plus nitrite less than 1.0 mg/L. At the Bakersville station, concentrations of total nitrogen ranged from 0.63 to 1.3 mg/L in base-flow samples and from 0.57 to 1.5 mg/L in storm composite samples. Median concentrations were 0.88 mg/L in base-flow samples and 1.2 mg/L in storm composite samples. At the Ursina station, concentrations of total nitrogen ranged from 0.25 to 0.92 mg/L in base-flow samples; the median concentration was 0.57 mg/L. The estimated total nitrogen load at the Bakersville station was 262 pounds (lb) for 11 months of the 2010 water year (November 2009 to September 2010) and 266 lb for the 2011 water year. Most of the total nitrogen loading was from stormflows. The stormflow load accounted for 76.6 percent of the total load for the 2010 water year and 80.6 percent of the total load for the 2011 water year. The estimated monthly total nitrogen loads were higher during the winter and spring (December through May) than during the summer (June through August). For the Bakersville station, the estimated suspended-sediment load (SSL) was 17,700 tons for 11 months of the 2010 water year (November 2009 to September 2010). The storm beginning January 24, 2010, provided 34.4 percent of the annual SSL, and the storm beginning March 10, 2010, provided 31.9 percent of the annual SSL. Together, these two winter storms provided 66 percent of the annual SSL for the 2010 water year. For the 2011 water year, the estimated annual SSL was 13,500 tons. For the 2011 water year, the SSLs were more evenly divided among storms than for the 2010 water year. Seven of 37 storms with the highest SSLs provided a total of 65.7 percent of the annual SSL for the 2011 water year; each storm provided from 4.6 to 12.3 percent of the annual SSL. The highest cumulative SSL for the 2010 and 2011 water years generally occurred during the late winter. Stormflows with the highest peak discharges generally carried the highest SSL. The sediment-fingerprinting approach was used to quantify sources of fine-grained suspended sediment in the watershed draining to the Laurel Hill Creek near Bakersville streamflow-gaging station. Sediment source samples were collected from five source types: 20 from cropland, 9 from pasture, 18 from forested areas, 20 from unpaved roads, and 23 from streambanks. At the Bakersville station, 10 suspended-sediment samples were collected during 6 storms for sediment-source analysis. Thirty-five tracers from elemental analysis and 4 tracers from stable isotope analysis were used to fingerprint the source of sediment for the 10 storm samples. Statistical analysis determined that cropland and pasture could not be discriminated by the set of tracers and were combined into one source group—agriculture. Stepwise discriminant function analysis determined that 11 tracers best described the 4 sources. An "unmixing" model applied to the 11 tracers showed that agricultural land (cropland and pasture) was the major source of sediment, contributing an average of 53 percent of the sediment for the 10 storm samples. Streambanks, unpaved roads, and forest contributions for the 10 storm samples averaged 30, 17, and 0 percent, respectively. Agriculture was the major contributor of sediment during the highest sampled stormflows. The highest stormflows also produced the highest total nitrogen and suspended-sediment loads.
Kerfahi, Dorsaf; Hall-Spencer, Jason M; Tripathi, Binu M; Milazzo, Marco; Lee, Junghoon; Adams, Jonathan M
2014-05-01
The effects of increasing atmospheric CO(2) on ocean ecosystems are a major environmental concern, as rapid shoaling of the carbonate saturation horizon is exposing vast areas of marine sediments to corrosive waters worldwide. Natural CO(2) gradients off Vulcano, Italy, have revealed profound ecosystem changes along rocky shore habitats as carbonate saturation levels decrease, but no investigations have yet been made of the sedimentary habitat. Here, we sampled the upper 2 cm of volcanic sand in three zones, ambient (median pCO(2) 419 μatm, minimum Ω(arag) 3.77), moderately CO(2)-enriched (median pCO(2) 592 μatm, minimum Ω(arag) 2.96), and highly CO(2)-enriched (median pCO(2) 1611 μatm, minimum Ω(arag) 0.35). We tested the hypothesis that increasing levels of seawater pCO(2) would cause significant shifts in sediment bacterial community composition, as shown recently in epilithic biofilms at the study site. In this study, 454 pyrosequencing of the V1 to V3 region of the 16S rRNA gene revealed a shift in community composition with increasing pCO(2). The relative abundances of most of the dominant genera were unaffected by the pCO(2) gradient, although there were significant differences for some 5 % of the genera present (viz. Georgenia, Lutibacter, Photobacterium, Acinetobacter, and Paenibacillus), and Shannon Diversity was greatest in sediments subject to long-term acidification (>100 years). Overall, this supports the view that globally increased ocean pCO(2) will be associated with changes in sediment bacterial community composition but that most of these organisms are resilient. However, further work is required to assess whether these results apply to other types of coastal sediments and whether the changes in relative abundance of bacterial taxa that we observed can significantly alter the biogeochemical functions of marine sediments.
Pulley, Simon; Foster, Ian; Collins, Adrian L
2017-06-01
The objective classification of sediment source groups is at present an under-investigated aspect of source tracing studies, which has the potential to statistically improve discrimination between sediment sources and reduce uncertainty. This paper investigates this potential using three different source group classification schemes. The first classification scheme was simple surface and subsurface groupings (Scheme 1). The tracer signatures were then used in a two-step cluster analysis to identify the sediment source groupings naturally defined by the tracer signatures (Scheme 2). The cluster source groups were then modified by splitting each one into a surface and subsurface component to suit catchment management goals (Scheme 3). The schemes were tested using artificial mixtures of sediment source samples. Controlled corruptions were made to some of the mixtures to mimic the potential causes of tracer non-conservatism present when using tracers in natural fluvial environments. It was determined how accurately the known proportions of sediment sources in the mixtures were identified after unmixing modelling using the three classification schemes. The cluster analysis derived source groups (2) significantly increased tracer variability ratios (inter-/intra-source group variability) (up to 2122%, median 194%) compared to the surface and subsurface groupings (1). As a result, the composition of the artificial mixtures was identified an average of 9.8% more accurately on the 0-100% contribution scale. It was found that the cluster groups could be reclassified into a surface and subsurface component (3) with no significant increase in composite uncertainty (a 0.1% increase over Scheme 2). The far smaller effects of simulated tracer non-conservatism for the cluster analysis based schemes (2 and 3) was primarily attributed to the increased inter-group variability producing a far larger sediment source signal that the non-conservatism noise (1). Modified cluster analysis based classification methods have the potential to reduce composite uncertainty significantly in future source tracing studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ling, Juan; Lin, Xiancheng; Zhang, Yanying; Zhou, Weiguo; Yang, Qingsong; Lin, Liyun; Zeng, Siquan; Zhang, Ying; Wang, Cong; Ahmad, Manzoor; Long, Lijuan; Dong, Junde
2018-01-01
Seagrasses in coral reef ecosystems play important ecological roles by enhancing coral reef resilience under ocean acidification. However, seagrass primary productivity is typically constrained by limited nitrogen availability. Ammonia oxidation is an important process conducted by ammonia-oxidizing archaea (AOA) and bacteria (AOB), yet little information is available concerning the community structure and potential activity of seagrass AOA and AOB. Therefore, this study investigated the variations in the abundance, diversity and transcriptional activity of AOA and AOB at the DNA and transcript level from four sample types: the leaf, root, rhizosphere sediment and bulk sediment of seagrass Thalassia hemprichii in three coral reef ecosystems. DNA and complementary DNA (cDNA) were used to prepare clone libraries and DNA and cDNA quantitative PCR ( q PCR) assays, targeting the ammonia monooxygenase-subunit ( amo A) genes as biomarkers. Our results indicated that the closest relatives of the obtained archaeal and bacterial amo A gene sequences recovered from DNA and cDNA libraries mainly originated from the marine environment. Moreover, all the obtained AOB sequences belong to the Nitrosomonadales cluster. Nearly all the AOA communities exhibited higher diversity than the AOB communities at the DNA level, but the q PCR data demonstrated that the abundances of AOB communities were higher than that of AOA communities based on both DNA and RNA transcripts. Collectively, most of the samples shared greater community composition similarity with samples from the same location rather than sample type. Furthermore, the abundance of archaeal amo A gene in rhizosphere sediments showed significant relationships with the ammonium concentration of sediments and the nitrogen content of plant tissue (leaf and root) at the DNA level ( P < 0.05). Conversely, no such relationships were found for the AOB communities. This work provides new insight into the nitrogen cycle, particularly nitrification of seagrass meadows in coral reef ecosystems.
Basalt Weathering in a Cold and Icy Climate: Three Sisters, Oregon as an Analog for Early Mars
NASA Technical Reports Server (NTRS)
Rampe, E. B.; Horgan, B.; Smith, R. J.; Scudder, N. A.; Rutledge, A. M.; Bamber, E.; Morris, R. V.
2017-01-01
There is abundant evidence for liquid water on early Mars, but the debate remains whether early Mars was warm and wet or cold and icy with punctuated periods of melting. To further investigate the hypothesis of a cold and icy early Mars, we collected rocks and sediments from the Collier and Diller glacial valleys in the Three Sisters volcanic complex in Oregon. We analyzed rocks and sediments with X-ray diffraction (XRD), scanning and transmission electron microscopies with energy dispersive spectroscopy (SEM, TEM, EDS), and visible, short-wave infrared (VSWIR) and thermal-IR (TIR) spectroscopies to characterize chemical weathering and sediment transport through the valleys. Here, we focus on the composition and mineralogy of the weathering products and how they compare to those identified on the martian surface. Phyllosilicates (smectite), zeolites, and poorly crystalline phases were discovered in pro- and supra-glacial sediments, whereas Si-rich regelation films were found on hand samples and boulders in the proglacial valleys. Most phyllosilicates and zeolites are likely detrital, originating from hydrothermally altered units on North Sister. TEM-EDS analyses of the <2 um size fraction of glacial flour samples demonstrate a variety of poorly crystalline (i.e., no long-range crystallographic order) phases: iron oxides, devitrified volcanic glass, and Fe-Si-Al phases. The CheMin XRD on the Curiosity rover in Gale crater has identified significant amounts of X-ray amorphous materials in all samples measured to date. The amorphous component is likely a combination of silicates, iron oxides, and sulfates. Although we have not yet observed amorphous sulfate in the samples from Three Sisters, the variety of poorly crystalline weathering products found at this site is consistent with the variable composition of the X-ray amorphous component identified by CheMin. We suggest that these amorphous phases on Mars could have formed in a similarly cold and icy environment.
NASA Astrophysics Data System (ADS)
Goto, Shusaku; Yamano, Makoto; Morita, Sumito; Kanamatsu, Toshiya; Hachikubo, Akihiro; Kataoka, Satsuki; Tanahashi, Manabu; Matsumoto, Ryo
2017-12-01
Physical properties (bulk density and porosity) and thermal properties (thermal conductivity, heat capacity, specific heat, and thermal diffusivity) of sediment are crucial parameters for basin modeling. We measured these physical and thermal properties for mud-dominant sediment recovered from the Joetsu Basin, in the eastern margin of the Japan Sea. To determine thermal conductivity, heat capacity, and thermal diffusivity, the dual-needle probe method was applied. Grain density and grain thermal properties for the mud-dominant sediment were estimated from the measured physical and thermal properties by applying existing models of physical and thermal properties of sediment. We suggest that the grain density, grain thermal conductivity, and grain thermal diffusivity depend on the sediment mineral composition. Conversely, the grain heat capacity and grain specific heat showed hardly any dependency on the mineral composition. We propose empirical formulae for the relationships between: thermal diffusivity and thermal conductivity, and heat capacity and thermal conductivity for the sediment in the Joetsu Basin. These relationships are different from those for mud-dominant sediment in the eastern flank of the Juan de Fuca Ridge presented in previous work, suggesting a difference in mineral composition, probably mainly in the amount of quartz, between the sediments in that area and the Joetsu Basin. Similar studies in several areas of sediments with various mineral compositions would enhance knowledge of the influence of mineral composition.
ANALOG: a program for estimating paleoclimate parameters using the method of modern analogs
Schweitzer, Peter N.
1994-01-01
Beginning in the 1970s with CLIMAP, paleoclimatologists have been trying to derive quantitative estimates of climatic parameters from the sedimentary record. In general the procedure is to observe the modern distribution of some component of surface sediment that depends on climate, find an empirical relationship between climate and the character of sediments, then extrapolate past climate by studying older sediments in the same way. Initially the empirical relationship between climate and components of the sediment was determined using a multiple regression technique (Imbrie and Kipp, 1971). In these studies sea-floor sediments were examined to determine the percentage of various species of planktonic foraminifera present in them. Supposing that the distribution of foraminiferal assemblages depended strongly on the extremes of annual sea-surface temperature (SST), the foraminiferal assemblages (refined through use of varimax factor analysis) were regressed against the average SST during the coolest and warmest months of the year. The result was a set of transfer functions, equations that could be used to estimate cool and warm SST from the faunal composition of a sediment sample. Assuming that the ecological preference of the species had remained constant throughout the last several hundred thousand years, these transfer functions could be used to estimate SSTs during much of the late Pleistocene. Hutson (1980) and Overpeck, Webb, and Prentice (1985) proposed an alternative approach to estimating paleoclimatic parameters. Their 'method of modern analogs' revolved not around the existence of a few climatically-sensitive faunal assemblages but rather on the expectation that similar climatic regimes should foster similar faunal and floral assemblages. From a large pool of modern samples, those few are selected whose faunal compositions are most similar to a given fossil sample. Paleoclimate estimates are derived using the climatic character of only the most similar modern samples, the modern analogs of the fossil sample. This report describes how to use the program ANALOG to carry out the method of modern analogs. It is assumed that the user has faunal census estimates of one or more fossil samples, and one or more sets of faunal data from modern samples. Furthermore, the user must understand the taxonomic categories represented in the data sets, and be able to recognize taxa that are or may be considered equivalent in the analysis. ANALOG provides the user with flexibility in input data format, output data content, and choice of distance measure, and allows the user to determine which taxa from each modern and fossil data file are compared. Most of the memory required by the program is allocated dynamically, so that, on systems that permit program segments to grow, the program consumes only as many system resources as are needed to accomplish its task.
Organochlorine compounds in the Gulf of Bothnia: sediment and benthic species.
Strandberg, B; Bandh, C; van Bavel, B; Bergqvist, P A; Broman, D; Ishaq, R; Näf, C; Rappe, C
2000-01-01
Surface sediment, amphipods (Monoporeia affinis), isopods (Saduria entomon) and fourhorn sculpins (Oncocottus quadricornis) were collected at two coastal stations in the Gulf of Bothnia, one in the Bothnian Bay and the other in the Bothnian Sea. The objective was to study the concentrations, composition profiles, bioaccumulation features and spatial differences of organochlorine compounds such as hexachlorocyclohexanes (HCHs), DDTs, hexachlorobenzene (HCBz), chlordanes (CHLs), dieldrin, Mirex and polychlorinated biphenyls (PCBs). All groups of compounds were found in every sample investigated, with the exception of Mirex that was not detected in the sediment samples. The concentrations for e.g. PCBs and CHLs ranged from 700 to 2400 and 70 to 400 ng/g lipid in the specimens. For the corresponding sediments the results were 9.0-9.3 ng/g dw for PCBs and 0.54-0.57 ng/g dw for CHLs, respectively. Bioaccumulation differences between the species with regard to both degree of and type of compound were observed. The highest accumulation potential was found for the cyclodiene compounds including CHLs and Mirex in isopod. Finally, there were only small concentration and bioaccumulation differences between the two stations.
Cell-Sediment Separation and Elemental Stoichiometries in Extreme Environments
NASA Astrophysics Data System (ADS)
Neveu, M.; Poret-peterson, A. T.; Lee, Z. M.; Anbar, A. D.; Elser, J. J.
2012-12-01
Better understanding of the coupling of major biogeochemical cycles requires knowledge of the cellular elemental composition of key microbes. This is difficult in benthic sediments and mats, because of the contributions of non-living components. We are particularly interested in microbial extremophiles, and therefore sought to determine and interpret bulk and cellular elemental ratios in complex field-collected sediment samples from diverse hot spring ecosystems of Yellowstone National Park (YNP). These samples covered a broad range of temperature, pH, and chemical composition. We also sought to extend stoichiometric analysis to a broader suite of elements, including metals (Fe, Ni, Cu, Zn, Mo, etc.) of biological importance (Sterner and Elser, 2002). To overcome the challenge of rigorously isolating communities from their complex mineral matrices (Havig et al., 2011), we adapted a cell-sediment separation procedure from Amalfitano and Fazi (2008). The method involves chemical (use of a detergent and a chelating agent) and physical methods (stirring, gentle sonication, and gradient centrifugation) to break the microbe-mineral bonds. C and N elemental and isotopic abundances were determined by elemental analysis - isotope ratio - mass spectrometry (EA-IR-MS), while P, Na, Mg, Al, K, Ca, V, Cr, Fe, Co, Ni, Cu, Zn, and Mo contents were determined by inductively coupled plasma - mass spectrometry (ICP-MS). We sought to assess the existence of an "Extended Redfield Ratio" (ERR) for these microbes; that is, to establish the multi-element stoichiometric envelope within which extremophilic microbes must operate. Elemental and isotopic mass balance analyses of cultured E. coli before and after separation showed that our procedure preserved cellular C, N, P, Fe, and trace metal contents: neither loss of these elements (e.g., by cell lysis) nor contamination by reagents were observed. On the other hand, cation-forming elements (Na, Mg, K, Ca), were not conserved. Cell counting by epifluorescence microscopy indicated a cell recovery yield between 6 and 40% in field-collected samples (95% for cultured E. coli). Aluminum, assumed to be non-biological in origin, was used to estimate the extent of mineral contamination of isolated cell communities. These results show that our method is successful at separating microbial cells from sediment collected in extreme environments and preserving them for analysis of a broad suite of elements. Photosynthetic sites yielded much more cell material than hotter, chemosynthetic sites (Cox et al., 2011). We are currently measuring cellular elemental abundances and ratios in samples from relatively low-temperature (25 to 65°C), photosynthetic areas, spanning a wide range of pH (2 to 9.5) and composition. These measurements will be compared to existing datasets on the bulk sediment stoichiometry of these ecosystems, and to previous observations of cellular elemental composition. References: Redfield, A.C. (1934) In Daniel, R.J. [Ed.], James Johnstone Memorial Volume, pp. 176-192, Univ. Press Liverpool. Sterner, R.W., Elser, J.J. (2002) Ecological Stoichiometry Princeton Univ. Press, 441p. Havig, J.R., et al. (2011) JGR 116, G01005. Amalfitano, S., Fazi, S. (2008) J. of Microbiol. Methods 75, 237-243. Cox, A., et al. (2011) Chem. Geol. 280, 344-351.
Speciation and isotopic composition of sulfur in sediments from Jellyfish Lake, Palau
Bates, A.L.; Spiker, E. C.; Orem, W.H.; Burnett, W.C.
1993-01-01
Jellyfish Lake, Palau, is a meromictic marine lake with high organic productivity, low reactive Fe content, and anoxic bottom waters. Sediment samples from Jellyfish Lake were examined for the distribution of sulfur species and their isotopic signatures in order to gain a better understanding of sedimentary sulfur incorporation in Fe-poor environments. Surface samples were taken along a transect from a near-shore site to the center of the lake, and include a sample below oxic water, a sample below the chemocline layer, and samples below anoxic waters. Three additional samples were taken from a core, 2 m long, collected near the lake center. Sulfur to organic carbon weight ratios in all samples were lower than the expected value of 0.36 for normal marine sediment, probably because the lake water is deficient in reactive Fe to form iron sulfides. Total sulfur contents in the surface sediments indicated no changes with distance from shore; however, the sulfur content of the surface sample at the chemocline layer may be slightly higher. Total sulfur content increased with depth in the core and is inversely related to organic carbon content. Organic sulfur is the major sulfur species in the samples, followed in descending order by sulfate, disulfides and monosulfides. Sulfate sulfur isotope ??34S-values are positive (from +20.56 to +12.04???), reflecting the marine source of sulfate in Jellyfish Lake. Disulfide and monosulfide ??34S-values are negative (from -25.07 to -7.60???), because of fractionation during bacterial reduction of sulfate. Monosulfide ??34S-values are somewhat higher than those of disulfides, and they are close to the ??34S-values of organic sulfur. These results indicate that most of the organic sulfur is formed by reaction of bacteriogenic monosulfides, or possibly monosulfide-derived polysulfides, with organic matter in the sediment. ?? 1993.
Stallard, R.F.; Koehnken, L.; Johnsson, M.J.
1991-01-01
The composition of river-borne material in the Orinoco River system is related primarily to erosion regime, which in turn is related to tectonic setting; especially notable is the contrast between material derived from tectonically active mountain belts and that from stable cratonic regions. For a particular morpho-tectonic region, the compositional suites of suspended sediment, bed material, overback deposits, and dissolved phases are fairly uniform are are typically distinct from whose of other regions. For each region, a consistent set of chemical weathering reactions can be formulated to explain the composition of dissolved and solid loads. In developing these formulations, erosion on slopes and storage of solids in soils and alluvial sediments are important considerations. Compositionally verymature sediment is derived from areas of thick soils where erosion is transport limited and from areas where sediments are stored for extended periods of time in alluvial deposits. Compositionally immature sediments are derived from tectonically active mountain belts where erosion is weathering limited. Weathering-limited erosion also is important in the elevated parts of the Guayana Shield within areas of sleep topography. Compared to the mountain belts, sediments derived from elevated parts of the Shield are more mature. A greater degree of chemical weathering seems to be needed to erode the rock types typical of the Shield. The major-element chemistry and mineral composition of sediment delivered by the Orinoco River to the ocean are controlled by rivers that have their headwaters in mountain belts and cross the Llanos, a region of alluvial plains within the foreland basin. The composition of sediments in rivers that drain the Shield seems to be established primarily at the site of soil formation, whereas for rivers that drain the mountain belts, additional weathering occurs during s episodes of storage on alluvial plains as sediments are transported across the Llanos to the main stem of the Orinoco. After mixing into the main stem, there seems to be little subsequent alteration of sediment. ?? 1991.
Diagenetic fate of organic contaminants on the Palos Verdes Shelf, California
Eganhouse, R.P.; Pontolillo, J.; Leiker, T.J.
2000-01-01
Municipal wastes discharged through deepwater submarine outfalls since 1937 have contaminated sediments of the Palos Verdes Shelf. A site approximately 6-8 km downcurrent from the outfall system was chosen for a study of the diagenetic fate of organic contaminants in the waste-impacted sediments. Concentrations of three classes of hydrophobic organic contaminants (DDT + metabolites, polychlorinated biphenyls (PCBs), and the long-chain alkylbenzenes) were determined in sediment cores collected at the study site in 1981 and 1992. Differences between the composition of effluent from the major source of DDT (Montrose Chemical) and that found in sediments suggests that parent DDT was transformed by hydrolytic dehydrochlorination during the earliest stages of diagenesis. As a result, p,p'-DDE is the dominant DDT metabolite found in shelf sediments, comprising 60-70% of ??DDT. The p,p-DDE/p,p'-DDMU concentration ratio decreases with increasing sub-bottom depth in sediment cores, indicating that reductive dechlorination of p,p'-DDE is occurring. Approximately 9-23% of the DDE inventory in the sediments may have been converted to DDMU since DDT discharges began ca. 1953. At most, this is less than half of the decline in p,p'-DDE inventory that has been observed at the study site for the period 1981-1995. Most of the observed decrease is attributable to remobilization by processes such as sediment mixing coupled to resuspension, contaminant desorption, and current advection. Existing field data suggest that the in situ rate of DDE transformation is 102-103 times slower than rates determined in recent laboratory microcosm experiments (Quensen, J.F., Mueller, S.A., Jain, M.K., Tiedje, J.M., 1998. Reductive dechlorination of DDE to DDMU in marine sediment microcosms. Science, 280, 722-724.). This explains why the DDT composition (i.e. o,p'-, p,p'-isomers of DDE, DDD, DDT) of sediments from this site have not changed significantly since at least 1972. Congener-specific PCB compositions in shelf sediments are highly uniform and show no evidence of diagenetic transformation. Apparently, the agents/factors responsible for reductive dechlorination of DDE are not also effecting alteration of the PCBs. Two types of long-chain alkylbenzenes were found in the contaminated sediments. Comparison of chain length and isomer distributions of the linear alkylbenzenes in wastewater effluent and surficial sediment samples indicate that these compounds undergo biodegradation during sedimentation. Further degradation of the linear alkylbenzenes occurs after burial despite relatively invariant isomer compositions. The branched alkylbenzenes are much more persistent than the linear alkylbenzenes, presumably due to extensive branching of the alkyl side chain. Based on these results, p,p'-DDE, PCBs, and selected branched alkylbenzenes are sufficiently persistent for use in molecular stratigraphy. The linear alkylbenzenes may also provide information on depositional processes. However, their application as quantitative molecular tracers should be approached with caution.
NASA Astrophysics Data System (ADS)
Haselmair, Alexandra; Gallmetzer, Ivo; Tomasovych, Adam; Stachowitsch, Michael; Zuschin, Martin
2015-04-01
The northern Adriatic Sea, with its densely populated shoreline, is among the most degraded marine ecosystems worldwide and therefore particularly suited to study ecosystem modification under human pressure. In particular, the period of the last 500 to 1500 years witnessed major anthropogenic impacts here. The present study reconstructs major ecological shifts over this timespan by identifying down-core changes in molluscan death assemblages that can serve as proxies for changing environmental conditions. Here, we focus on taxonomical down-core fluctuations and changes in abundance of key bivalve and gastropod taxa found at seven sampling stations spread throughout the northern Adriatic basin. At these stations, which were chosen in order to cover different sediment types, nutrient conditions and degrees of exploitation, several cores of 1.5 m length and diameters of 90 and 160 mm were taken and sliced into smaller subsamples of 2 and 5 cm, respectively. The samples were sieved through a 1 mm mesh size and all the shells found counted and identified to species level if possible. In total, 114 bivalve and 112 gastropod species were recorded. At the Po delta and Panzano bay stations, characterized by muddy sediments, Corbula gibba and Kurtiella bidentata were the dominant bivalve species, Nassarius pygmaeus and Turritella communis the most abundand gastropods. In the sandy mud from the Brijuni islands, the bivalves Timoclea ovata and Striarca lactea were very numerous, whereas at the Piran station, characterized by a similar sediment composition, Gouldia minima and Corbula gibba reached the highest numbers. Overall abundances of bivalve and gastropod species differed markedly between stations. In all cores, the incidence of individual species varied down-core. Opposite trends were recorded for Brijuni and Piran station: at Piran, the abundance peaked in the uppermost sediment layers while at the Brijuni islands the number of most gastropod and bivalve species increased with depth. The down-core changes in species abundance and dominance can be correlated with shifts in the environmental parameters such as sedimentation rates and sediment composition and may also indicate anthropogenic influence. The available data from a radiometric sediment dating performed for all the seven sampling stations help to specify the timing of these past ecological changes.
USDA-ARS?s Scientific Manuscript database
Sediment source fingerprinting provides a vital means for estimating sediment source contributions, which are needed not only for soil conservation planning but also for erosion model evaluation. A single optimum composite fingerprint has been widely used in the literature to estimate sediment prov...
Population changes of three major benthic taxa are discussed in relation to Dreissena spp. Lake Ontario was sampled pre-invasion (1972) and post-invasion (1994, 1997) for abundance of benthic organisms. In offshore sediments of Lake Ontario, neither species composition nor abunda...
Mahler, B.J.; Van Metre, P.C.; Wilson, J.T.; Guilfoyle, A.L.; Sunvison, M.W.
2006-01-01
Concentrations, loads, and yields of particle-associated (hydrophobic) contaminants (PACs) in urban runoff in creeks in Austin, Texas, were characterized using an innovative approach: large-volume suspended-sediment sampling. This approach isolates suspended sediment from the water column in quantities sufficient for direct chemical analysis of PACs. During 1999-2004, samples were collected after selected rain events from each of five stream sites and Barton Springs for a study by the U.S. Geological Survey, in cooperation with the City of Austin. Sediment isolated from composited samples was analyzed for major elements, metals, organochlorine compounds, and polycyclic aromatic hydrocarbons (PAHs). In addition, at the Shoal Creek and Boggy Creek sites, individual samples for some events were analyzed to investigate within-event variation in sediment chemistry. Organochlorine compounds detected in suspended sediment included chlordane, dieldrin, DDD, DDE, DDT, and polychlorinated biphenyls (PCBs). Concentrations of PACs varied widely both within and between sites, with higher concentrations at the more urban sites and multiple nondetections at the least-urban sites. Within-site variation for metals and PAHs was smaller than between-site variation, and concentrations and yields of these and the organochlorine compounds correlated positively to the percentage of urban land use in the watershed. Loads of most PACs tested correlated significantly with suspended-sediment loads. Concentrations of most PACs correlated strongly with three measures of urban land use. Variation in suspended-sediment chemistry during runoff events was investigated at the Shoal and Boggy Creek sites. Five of the eight metals analyzed, dieldrin, chlordane, PCBs, and PAHs were detected at the highest concentrations in the first sample collected at the Shoal Creek site, a first-flush effect, but not at the Boggy Creek site. Temporal patterns in concentrations of DDT and its breakdown products varied from one event to the next. In spite of the first-flush effect in concentrations at the Shoal Creek site, most of the contaminant load was transported at peak discharge, when suspended-sediment concentration and load are maximum.
Jaegler, Hugo; Pointurier, Fabien; Onda, Yuichi; Hubert, Amélie; Laceby, J Patrick; Cirella, Maëva; Evrard, Olivier
2018-05-04
The Fukushima Daiichi Nuclear Power Plant (FDNPP) accident resulted in a significant release of radionuclides that were deposited on soils in Northeastern Japan. Plutonium was detected at trace levels in soils and sediments collected around the FDNPP. However, little is known regarding the spatial-temporal variation of plutonium in sediment transiting rivers in the region. In this study, plutonium isotopic compositions were first measured in soils (n = 5) in order to investigate the initial plutonium deposition. Then, plutonium isotopic compositions were measured on flood sediment deposits (n = 12) collected after major typhoon events in 2011, 2013 and 2014. After a thorough radiochemical purification, isotopic ratios ( 240 Pu/ 239 Pu, 241 Pu/ 239 Pu and 242 Pu/ 239 Pu) were measured with a Multi-Collector Inductively Coupled Mass Spectrometer (MC ICP-MS), providing discrimination between plutonium derived from global fallout, from atmospheric nuclear weapon tests, and plutonium derived from the FDNPP accident. Results demonstrate that soils with the most Fukushima-derived plutonium were in the main radiocaesium plume and that there was a variable mixture of plutonium sources in the flood sediment samples. Plutonium concentrations and isotopic ratios generally decreased between 2011 and 2014, reflecting the progressive erosion and transport of contaminated sediment in this coastal river during flood events. Exceptions to this general trend were attributed to the occurrence of decontamination works or the remobilisation of contaminated material during typhoons. The different plutonium concentrations and isotopic ratios obtained on three aliquots of a single sample suggest that the Fukushima-derived plutonium was likely borne by discrete plutonium-containing particles. In the future, these particles should be isolated and further characterized in order to better understand the fate of this long-lived radionuclide in the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kinsman-Costello, L. E.; Dick, G.; Sheik, C.; Burton, G. A.; Sheldon, N. D.
2015-12-01
Submerged groundwater seeps in Lake Huron establish ecosystems with distinctive geochemical conditions. In the Middle Island Sinkhole (MIS), a 23-m deep seep, groundwater seepage establishes low O2 (< 4 mg L-1), high sulfate (6 mM) conditions, in which a purple cyanobacteria-dominated mat thrives. The mat is capable of anoxygenic photosynthesis, oxygenic photosynthesis, and chemosynthesis. Within the top 3 cm of the mat-water interface, hydrogen sulfide concentrations increase to 1-7 mM. Little is known about the structure and function of microbes within organic-rich, high-sulfide sediments beneath the mat. Using pore water and sediment geochemical characterization along with microbial community analysis, we elucidated relationships between microbial community structure and ecosystem function along vertical gradients. In sediment pore waters, biologically reactive solutes (SO42-, NH4+, PO43-, and CH4) displayed steep vertical gradients, reflecting biological and geochemical functioning. In contrast, more conservative ions (Ca+2, Mg+2, Na+, and Cl-), did not change significantly with depth in MIS sediments, indicating groundwater influence in the sediment profile. MIS sediments contained more organic matter than typical Lake Huron sediments, and were generally higher in nutrients, metals, and sulfur (acid volatile sulfide). Using the Illumina MiSeq platform we detected 14,127 unique operational taxonomic units across sediment and surface mat samples. Microbial community composition in the MIS was distinctly different from non-groundwater affected areas at similar depth nearby in Lake Huron (ANOSIM, R= 0.74, p=0.002). MIS sediment communities were more diverse that MIS surface mat communities and changed with depth into sediments. MIS sediment community composition was related to several geochemical variables, including organic matter and multiple indicators of phosphorus availability. Elucidating the structure and function of microbial consortia in MIS, a highly unique and environmentally vulnerable ecosystem, provides a rare opportunity to understand relationships between microbial species and their environment and may provide insights into the evolution of life under ancient low-oxygen, high-sulfur conditions.
1999-10-22
soils, baghouse ash, and cyclone ash) were collected every 30 minutes. Composite samples of both water and oil were also collected from each run every 30...Pthalate) > 99.99 %. EmissionslByProducts: Typical flue gas compositions (COZ. N2, H20. etc.) with trace pollutants within permit levels. Description...and polysilicates react in alkali conditions to form “gcopolymers”. In general, the “ geopolymers ” physically stabilize tbe contaminants, heavy metals
Ciceri, E; Recchia, S; Dossi, C; Yang, L; Sturgeon, R E
2008-01-15
The development and validation of a method for the determination of mercury in sediments using a sector field inductively coupled plasma mass spectrometer (SF-ICP-MS) for detection is described. The utilization of isotope dilution (ID) calibration is shown to solve analytical problems related to matrix composition. Mass bias is corrected using an internal mass bias correction technique, validated against the traditional standard bracketing method. The overall analytical protocol is validated against NRCC PACS-2 marine sediment CRM. The estimated limit of detection is 12ng/g. The proposed procedure was applied to the analysis of a real sediment core sampled to a depth of 160m in Lake Como, where Hg concentrations ranged from 66 to 750ng/g.
Yeast diversity associated to sediments and water from two Colombian artificial lakes
Silva-Bedoya, L.M.; Ramírez-Castrillón, M.; Osorio-Cadavid, E.
2014-01-01
In Colombia, knowledge of the yeast and yeast-like fungi community is limited because most studies have focused on species with clinical importance. Sediments and water represent important habitats for the study of yeast diversity, especially for yeast species with industrial, biotechnological, and bioremediation potential. The main purpose of this study was to identify and compare the diversity of yeast species associated with sediment and water samples from two artificial lakes in Universidad del Valle (Cali-Colombia). Yeast samplings were performed from fifteen sediment samples and ten water samples. Grouping of similar isolates was initially based on colony and cell morphology, which was then complemented by micro/mini satellite primed PCR banding pattern analysis by using GTG5 as single primer. A representative isolate for each group established was chosen for D1/D2 domain sequencing and identification. In general, the following yeast species were identified: Candida albicans, Candida diversa, Candida glabrata, Candida pseudolambica, Cryptococcus podzolicus, Cryptococcus rajasthanensis, Cryptococcus laurentii, Williopsis saturnus, Hanseniaspora thailandica, Hanseniaspora uvarum, Rhodotorula mucilaginosa, Saccharomyces cerevisiae, Torulaspora delbrueckii, Torulaspora pretoriensis, Tricosporon jirovecii, Trichosporon laibachii and Yarrowia lypolitica. Two possible new species were also found, belonging to the Issatchenkia sp. and Bullera sp. genera. In conclusion, the lakes at the Universidad del Valle campus have significant differences in yeast diversity and species composition between them. PMID:24948924
NASA Astrophysics Data System (ADS)
Relic, Dubravka; Sakan, Sanja; Andjelkovic, Ivan; Djordjevic, Dragana
2017-04-01
Within this study the investigation of pollution state of metal and metalloids contamination in soils and sediments samples of the petrochemical and nearby residential area is present. The pseudo-total concentrations of Ba, Cd, Co, Cu, Cr, Mn, Ni, Pb, V, Zn, As, Hg, and Se were monitored with ICP/OES. The pollution indices applied in this work, such as the enrichment factor, the pollution load index, the total enrichment factor, and the ecological risk index showed that some of the soil and sediment samples were highly polluted by Hg, Ba, Pb, Cd, Cr Cu and Zn. The highest pollution indices were calculated for Hg in samples from the petrochemical area: chloralkali plant, electrolysis factory, mercury disposal area, and in samples from the waste channel. The pollution indices of the samples from the residential area indicated that this area is not polluted by investigated elements. Besides the pollution indices, the metal and metalloids concentrations were used in the equations for calculating the health risk criteria. We calculate no carcinogenic and carcinogenic risks for the composite worker and residential people by usage adequate equations. In analyzed samples, the no carcinogenic risks were lower than 1. The highest values of carcinogenic risk were obtained in sediment samples from the waste channel within the petrochemical industry and the metal that mostly contributes to the highest carcinogenic risk is Cr. Correlation analysis of pollution indices and carcinogenic risks calculated from the residential area samples showed good correlations while this is not the case for an industrial area.
NASA Astrophysics Data System (ADS)
van Hardenbroek, Maarten; Rinta, Päivi; Wooller, Matthew J.; Schilder, Jos; Stötter, Tabea; Heiri, Oliver
2018-06-01
The stable isotopic composition of chitinous remains of Cladocera (water fleas) and freshwater Bryozoa (moss animals) preserved in lake sediment records can provide supporting insights into past environmental and ecosystem changes in lakes. Here we explore whether analyses of these remains isolated from lake flotsam can provide information on the driving variables affecting the isotopic composition of these remains. We collected flotsam in 53 lakes and found enough material in 33 lakes to measure the stable carbon and nitrogen isotope ratios (expressed as δ13C and δ15N values, respectively) of resting stages. These values were compared with lake characteristics, water chemistry measurements, and the isotopic composition of sedimentary organic matter (SOM) in the lakes. Mean δ13C values of cladoceran ephippia and SOM were correlated and both were also negatively correlated with deep water methane concentrations and indicators of lake stratification. This supports the findings of previous studies that methane-derived carbon can provide a significant proportion of carbon entering planktonic food webs. Mean δ15N values of bryozoan statoblasts and SOM were correlated, suggesting that both reflect the δ15N values of phytoplankton. Our results provide information on how environmental variables in lakes can influence the δ13C and δ15N values in resting stages, but flotsam samples can also potentially be used to assess seasonal stable isotope variability of resting stages. Both types of information are important to improve palaeoenvironmental interpretations of stable isotope records based on these remains in lake sediments.
Li, Wei; Wang, Mengmeng; Pan, Haoqin; Burgaud, Gaëtan; Liang, Shengkang; Guo, Jiajia; Luo, Tian; Li, Zhaoxia; Zhang, Shoumei; Cai, Lei
2018-01-01
How ocean currents shape fungal transport, dispersal and more broadly fungal biogeography remains poorly understood. The East China Sea (ECS) is a complex and dynamic habitat with different water masses blending microbial communities. The internal transcribed spacer 2 region of fungal rDNA was analysed in water and sediment samples directly collected from the coastal (CWM), Kuroshio (KSWM), Taiwan warm (TWM) and the shelf mixed water mass (MWM), coupled with hydrographic properties measurements, to determine how ocean currents impact the fungal community composition. Almost 9k fungal operational taxonomic units (OTUs) spanning six phyla, 25 known classes, 102 orders and 694 genera were obtained. The typical terrestrial and freshwater fungal genus, Byssochlamys, was dominant in the CWM, while increasing abundance of a specific OTU affiliated with Aspergillus was revealed from coastal to open ocean water masses (TWM and KSWM). Compared with water samples, sediment harboured an increased diversity with distinct fungal communities. The proximity of the Yangtze and Qiantang estuaries homogenizes the surface water and sediment communities. A significant influence of ocean currents on community structure was found, which is believed to reduce proportionally the variation explained by environmental parameters at the scale of the total water masses. Dissolved oxygen and depth were identified as the major parameters structuring the fungal community. Our results indicate that passive fungal dispersal driven by ocean currents and river run-off, in conjunction with the distinct hydrographic conditions of individual water masses, shapes the fungal community composition and distribution pattern in the ECS. © 2017 John Wiley & Sons Ltd.
Mendes, Lucas William; Taketani, Rodrigo Gouvêa; Navarrete, Acácio Aparecido; Tsai, Siu Mui
2012-06-01
This study focused on the structure and composition of archaeal communities in sediments of tropical mangroves in order to obtain sufficient insight into two Brazilian sites from different locations (one pristine and another located in an urban area) and at different depth levels from the surface. Terminal restriction fragment length polymorphism (T-RFLP) of PCR-amplified 16S rRNA gene fragments was used to scan the archaeal community structure, and 16S rRNA gene clone libraries were used to determine the community composition. Redundancy analysis of T-RFLP patterns revealed differences in archaeal community structure according to location, depth and soil attributes. Parameters such as pH, organic matter, potassium and magnesium presented significant correlation with general community structure. Furthermore, phylogenetic analysis revealed a community composition distributed differently according to depth where, in shallow samples, 74.3% of sequences were affiliated with Euryarchaeota and 25.7% were shared between Crenarchaeota and Thaumarchaeota, while for the deeper samples, 24.3% of the sequences were affiliated with Euryarchaeota and 75.7% with Crenarchaeota and Thaumarchaeota. Archaeal diversity measurements based on 16S rRNA gene clone libraries decreased with increasing depth and there was a greater difference between depths (<18% of sequences shared) than sites (>25% of sequences shared). Taken together, our findings indicate that mangrove ecosystems support a diverse archaeal community; it might possibly be involved in nutrient cycles and are affected by sediment properties, depth and distinct locations. Copyright © 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Mineralogy and geochemistry of Eocene Helete formation , Adiyaman, Turkey
NASA Astrophysics Data System (ADS)
Choi, J.; Lee, I.; Yildirim, E.
2013-12-01
Helete formation is located at Adiyaman, Turkey which is in the Alpine-Himalayan orogeny belt. Helete formation is represented by andesitic, basaltic and gabbroic rocks cut by localized felsic intrusions and overlain by open-marine Nummulitic carbonate sediments. Electron microprobe analyses were conducted for 15 rocks samples of Helete formation. These rock samples are named as basalt, andesite, gabbro, diorite, dacite, and granite. Basalt and andesite samples are composed of clinopyroxene(augite), plagioclase(Ab98-96), carbonate, and hyaline. Gabbro samples have wide range of plagioclase composition from anorthite to albite(Ab92-16), and other minerals like clinopyroxene(augite) and amphibole(hornblende and actinolite). Diabase samples consist of epidote group minerals and sphene with plagioclase(Ab80), pyroxene and hornblende. Dacite samples are composed of dolomite and quartz. Granite samples are composed of quartz, chlorite, and plagioclase which range from albite to oligoclase in composition (Ab98-89).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prahl, F.G.; Sparrow, M.A.; Eversmeyer, B.
Elemental and stable carbon isotopic compositions and biomarker concentrations were determined in sediments from the Columbia River basin and the Washington margin in order to evaluate geochemical approaches for quantifying terrestrial organic matter in marine sediments. The biomarkers include: an homologous series of long-chain n-alkanes derived from the surface waxes of higher plants; phenolic and hydroxyalkanoic compounds produced by CuO oxidation of two major vascular plant biopolymers, lignin and cutin. All marine sediments, including samples collected from the most remote sites in Cascadia Basin, showed organic geochemical evidence for the presence of terrestrial organic carbon. Using endmember values for themore » various biomarkers determined empirically by two independent means, the authors estimate that the terrestrial contribution to the Washington margin is [approximately] 60% for shelf sediments, [approximately] 30% for slope sediments, and decreases further to [le] 15% in basin sediments. Results from the same geochemical measurements made with depth in gravity core 6705-7 from Cascadia Seachannel suggest that this approach to assess terrestrial organic carbon contributions to contemporary deposits on the Washington margin can be applied to the study of sediments depositing in this region since the last glacial period.« less
Predictive isotopic biogeochemistry: hydrocarbons from anoxic marine basins
NASA Technical Reports Server (NTRS)
Freeman, K. H.; Wakeham, S. G.; Hayes, J. M.
1994-01-01
Carbon isotopic compositions were determined for individual hydrocarbons in water column and sediment samples from the Cariaco Trench and Black Sea. In order to identify hydrocarbons derived from phytoplankton, the isotopic compositions expected for biomass of autotrophic organisms living in surface waters of both localities were calculated based on the concentrations of CO2(aq) and the isotopic compositions of dissolved inorganic carbon. These calculated values are compared to measured delta values for particulate organic carbon and for individual hydrocarbon compounds. Specifically, we find that lycopane is probably derived from phytoplankton and that diploptene is derived from the lipids of chemoautotrophs living above the oxic/anoxic boundary. Three acyclic isoprenoids that have been considered markers for methanogens, pentamethyleicosane and two hydrogenated squalenes, have different delta values and apparently do not derive from a common source. Based on the concentration profiles and isotopic compositions, the C31 and C33 n-alkanes and n-alkenes have a similar source, and both may have a planktonic origin. If so, previously assigned terrestrial origins of organic matter in some Black Sea sediments may be erroneous.
NASA Technical Reports Server (NTRS)
Shaw, H. F.; Wasserburg, G. J.
1985-01-01
The possibility of establishing a record of variations in the isotopic composition of Nd in seawater over geologic time is explored. To construct such a record, a phase must be identified which incorporated Nd with the same isotopic composition as seawater at the time of its formation, preserves that composition, and which is relatively common in sediments. To evaluate the suitability of carbonates and phosphates, the Rb, Sr, Sm, and Nd concentrations and the Nd and Sr isotopic composition of a variety of modern and ancient marine calcite, aragonite, and apatite samples have been measured and the results are presented and discussed.
NASA Astrophysics Data System (ADS)
Liu, Shengfa; Shi, Xuefa; Yang, Gang; Khokiattiwong, Somkiat; Kornkanitnan, Narumol
2016-04-01
In this study, we analyze major and trace elements (SiO2, Al2O3, Fe2O3, CaO, K2O, MgO, Na2O, TiO2, P2O5, MnO, Cu, Pb, Ba, Sr, V, Zn, Co, Ni, Cr, and Zr) and grain size of 157 surface sediment samples from the western Gulf of Thailand (GoT). On the basis of the space distribution characteristics, the study area can be classified into three geochemical provinces. Province I covers the northern and northwestern coastal zones of the GoT, including the whole upper GoT and thus the sediments from the rivers in the area. It contains high contents of SiO2. Province II is located in the middle of the GoT and has similar geochemistry composition as the South China Sea (SCS). It contains sediments that are characterized by higher contents of Na2O, TiO2, Ba, Cr, V, Zn, Zr, and Ni. Province Ш is located in the lower GoT, close to Malaysia. Major and trace elements in this area showed complex distribution patterns, which may be due to terrestrial materials from Malay rivers combining with some sediments from the SCS in this province. The results also indicate that grain size is the controlling factor in elemental contents, and that the hydrodynamic environment and mineral composition of the sediments play an important role in the distribution of these elements. The anthropogenic impact of heavy metal introduction (especially Cr, Zn, Cu, and Pb) can be seen in surface sediments from the nearshore region of Chantaburi province and north of Samui Island.
NASA Astrophysics Data System (ADS)
Aalto, Sanni L.; Saarenheimo, Jatta; Karvinen, Anu; Rissanen, Antti J.; Ropponen, Janne; Juntunen, Janne; Tiirola, Marja
2016-04-01
European commission has obliged Baltic states to reduce nitrate load, which requires high investments on the nitrate removal processes and may increase emissions of greenhouse gases, e.g. N2O, in the waste water treatment plants. We used ecosystem-scale experimental approach to test a novel sediment filtration method for economical waste water N removal in Lake Keurusselkä, Finland between 2014 and 2015. By spatially optimizing the waste water discharge, the contact area and time of nitrified waste water with the reducing microbes of the sediment was increased. This was expected to enhance microbial-driven N transformation and to alter microbial community composition. We utilized 15N isotope pairing technique to follow changes in the actual and potential denitrification rates, nitrous oxide formation and dissimilatory nitrate reduction to ammonium (DNRA) in the lake sediments receiving nitrate-rich waste water input and in the control site. In addition, we investigated the connections between observed process rates and microbial community composition and functioning by using next generation sequencing and quantitative PCR. Furthermore, we estimated the effect of sediment filtration method on waste water contact time with sediment using the 3D hydrodynamic model. We sampled one year before the full-scale experiment and observed strong seasonal patterns in the process rates, which reflects the seasonal variation in the temperature-related mixing patterns of the waste water within the lake. During the experiment, we found that spatial optimization enhanced both actual and potential denitrification rates of the sediment. Furthermore, it did not significantly promote N2O emissions, or N retention through DNRA. Overall, our results indicate that sediment filtration can be utilized as a supplemental or even alternative method for the waste water N removal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moncur, Michael C.; Paktunc, Dogan; Jean Birks, S.
Arsenic (As) concentrations as high as 179 μg/L have been observed in shallow groundwater in the Alberta’s Southern Oil Sand Regions. The geology of this area of Alberta includes a thick cover (up to 200 m) of unconsolidated glacial deposits, with a number of regional interglacial sand and gravel aquifers, underlain by marine shale. Arsenic concentrations observed in 216 unconsolidated sediment samples ranged from 1 and 17 ppm. A survey of over 800 water wells sampled for As in the area found that 50% of the wells contained As concentrations exceeding drinking water guidelines of 10 μg/L. Higher As concentrationsmore » in groundwater were associated with reducing conditions. Measurements of As speciation from 175 groundwater samples indicate that As(III) was the dominant species in 74% of the wells. Speciation model calculations showed that the majority of groundwater samples were undersaturated with respect to ferrihydrite, suggesting that reductive dissolution of Fe-oxyhydroxides may be the source of some As in groundwater. Detailed mineralogical characterization of sediment samples collected from two formations revealed the presence of fresh framboidal pyrite in the deeper unoxidized sediments. Electron microprobe analysis employing wavelength dispersive spectrometry indicated that the framboidal pyrite had variable As content with an average As concentration of 530 ppm, reaching up to 1840 ppm. In contrast, the oxidized sediments did not contain framboidal pyrite, but exhibited spheroidal Fe-oxyhydroxide grains with elevated As concentrations. The habit and composition suggest that these Fe-oxyhydroxide grains in the oxidized sediment were an alteration product of former framboidal pyrite grains. X-ray absorption near edge spectroscopy (XANES) indicated that the oxidized sediments are dominated by As(V) species having spectral features similar to those of goethite or ferrihydrite with adsorbed As, suggesting that Fe-oxyhydroxides are the dominant As carriers. XANES spectra collected on unoxidized sediment samples, in contrast, indicated the presence of a reduced As species (As(-I)) characteristic of arsenopyrite and arsenian pyrite. The results of the mineralogical analyses indicate that the oxidation of framboidal pyrite during weathering may be the source of As released to shallow aquifers in this region.« less
Impacts of Deepwater Horizon Oil on Marsh Sediment Biogeochemistry in Barataria Bay, LA, USA
NASA Astrophysics Data System (ADS)
Mills, C. T.; Windham-Myers, L.; Waldrop, M. P.; Krabbenhoft, D. P.; Marvin-DiPasquale, M. C.; Orem, W. H.; Piazza, S.; Haw, M.; McFarland, J.; Varonka, M. S.
2012-12-01
Oil from the Deepwater Horizon spill came ashore on many salt marsh islands in Barataria Bay, LA in summer 2010, coating plants and settling on the sediment surface. In coordination with a plant community study of affected marshes, we investigated impacts of oiling on marsh sediment microbial biogeochemistry. Sediment samples (upmost 2 cm) were collected along transects perpendicular and parallel to the shore at three oiled and three non-oiled sites in both July and Oct. 2011. Samples from both collections were analyzed for sediment characteristics, total and methylmercury, and microbial membrane phospholipid fatty acids (PLFAs) which are a proxy for viable microbial cell numbers. Sediment DNA collected in Oct. 2011 was analyzed for bacterial, fungal, and archaeal community composition and abundance as well as various enzyme activities. Select Oct. 2011 samples were assayed to determine the rates of terminal electron accepting processes (oxygen demand, denitrification, iron reduction, sulfate reduction, methanogenesis). All sites had similar sediment characteristics. Impacts on sediment biogeochemistry were greatest at marsh edges, and reduced microbial abundance appeared to be more important than changes in microbial community structure. In July 2011, the mean PLFA concentration in oiled marsh edge sediments (0.15±0.03 μmol g-1; 95% CI; n=9) was substantially lower than for non-oiled sites (0.33±0.08 μmol g-1; n=9). Mean PLFA concentrations for interior marsh samples were more similar for oiled (0.30±0.08 μmol g-1; n=8) and non-oiled (0.37±0.04 μmol g-1; n=9) sites. This PLFA pattern was also observed in Oct. 2011 samples, and other measures of microbial abundance and activity showed similar trends. Cellulase, phosphatase, and chitinase mean activities were nearly twice as great in non-oiled versus oiled edge sites. Lower microbial activity in oiled sites was also inferred by somewhat lower denitrification and sulfate reduction potentials. Conversely, both methanogenesis rates and concentrations of methanogen DNA were somewhat greater in oiled edge samples, suggesting an effect of oiling on terminal electron accepting processes. The mean methylmercury concentration was lower in oiled versus non-oiled edge sites, likely as a result of decreased sulfate-reducer activity. The reduced microbial activity in near-edge sediments of the oiled marsh is likely an indirect effect of reduced plant productivity which supports rhizosphere communities. Both mean above- and below-ground live biomass at oiled edge sites were less than half that at non-oiled edge sites. Some marsh edge samples from the oiled site contained relatively large amounts of oil and we are currently quantifying oil-derived hydrocarbons to understand impacts of the oil itself on sediment biogeochemistry.
Organic compound composition in soil and sediments collected in Jackson, Mississippi.
Gołębiowski, Marek; Stepnowski, Piotr; Hemmingway, Tometrick; Leszczyńska, Danuta
2016-01-01
The aim of our study was to identify organic pollutants found in soil and sediment samples collected within the Jackson, MS metropolitan area. The chemical characterization of the organic compound fractions in soil and sediment samples was carried out by separating the organic fraction using column chromatography (CC) and quantitatively analyzing the polycyclic aromatic hydrocarbons (PAHs), n-alkanes and other organic compounds using gas chromatography-electron impact mass spectrometry (GC-MS). Fifty-six compounds were identified and quantified in the soil samples and 33 compounds were identified and quantified in the sediment samples. The PAHs, n-alkanes and other organic compound profiles in the soil and sediment samples were compared. The percentage contents of the organic compounds in the soil samples were very diverse (from traces to 12.44 ± 1.47%). The compounds present in the highest concentrations were n-alkanes: n-C31 (12.44 ± 1.47%), n-C29 (11.64 ± 1.21%), and n-C33 (8.95 ± 1.08%). The components occurring in smaller quantities (from 1% to 5%) were 2 PAHs (fluoranthene 1.28 ± 0.25%, pyrene 1.16 ± 0.20%), 10 n-alkanes from n-C21 (1.25 ± 0.29%) to n-C32 (2.67 ± 0.52%) and 11 other compounds (e.g., 2-pentanol, 4-methyl (3.33 ± 0.44%), benzyl butyl phthalate (4.25 ± 0.59%), benzenedicarboxylic acid (1.14 ± 0.08%), ethane, 1,1-diethoxy (3.15 ± 0.41) and hexadecanoic acid (2.52 ± 0.34). The soil samples also contained 30 compounds present in concentrations <1% (e.g., anthracene (0.13 ± 0.04%), n-C20 (0.84 ± 0.21%) and acetic acid (0.12 ± 0.04%). The compounds present in the highest concentrations in the sediment samples were PAHs: pyrene (7.73 ± 1.15%) and fluoranthene (6.23 ± 1.07%) and n-alkanes: n-C31 (6.74 ± 1.21%), n-C29 (6.65 ± 0.98%) and n-C27 (6.13 ± 1.09%). The remaining organic compounds were present in smaller quantities (< 5%).
Polychlorinated biphenyl pollution from shipbuilding in Nagasaki Bay, Japan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maruyama, K.; Sahrul, M.; Tanabe, S.
1983-10-01
Polychlorinated biphenyl (PCB) pollution from shipbuilding in Nagasaki Bay, Japan, was determined by measurement of PCB concentrations in sediment, in water, and in biological samples. PCBs were detected in all samples; much higher concentrations, more than 10 micrograms/g, were found in three sediment samples located near the shipyard drains. In general, PCB concentrations in sediments and organisms tended to increase toward the inner part of the bay. PCB isomer and congener compositions in organisms as well as sediments were composed mainly of higher chlorinated biphenyls and were similar to Kanechlor 500 and 600 products (chlorine content 54 and 60%, respectively)more » that have been used for ship paints. These results strongly suggest that the shipbuilding is primarily responsible for the PCB pollution in Nagasaki Bay. Bioaccumulation factors of PCBs were different among the organisms according to their trophic levels. This might be a result of the predominant PCB transfer through the food chain in organisms and the discharge of bioaccumulative PCBs as higher chlorinated biphenyls from shipyards. The observations imply that PCB pollution from shipbuilding would continue for a long time due to the accumulative characteristics of PCBs used for ship paints and the further discharge by scraping the stale paints in shipyards.« less
Off shore wind farms change the benthic pelagic coupling in the Belgian Part of the North Sea
NASA Astrophysics Data System (ADS)
Vanaverbeke, Jan; Coates, Delphine; Braeckman, Ulrike; Soetaert, Karline; Moens, Tom
2016-04-01
Since Europe enforced renewable energy target figures upon its member states through the implementation of two main European Directives 11 2001/77/EC and 2009/28/EC, the development of offshore wind farms (OWF) has accelerated. Belgium installed OWFs on sandbanks, characterized by permeable sediments, low in organic matter content and a species-poor macrofaunal community with species occurring in low densities. A detailed monitoring campaign in the immediate vicinity of a wind turbine (1-200m), revealed a significant decrease in median grain size and permeability, coinciding with a 6-fold increase in organic matter content. The observed fining of the sediment is explained by an altered benthic-pelagic coupling in the area. The wind turbines are colonized by an abundant fouling community producing high amounts of detritus and faeces, a continuous additional source of organic matter. The changes in sediment composition, and the availability of additional organic matter resulted in drastic increase in macrofaunal densities (from 1390 ind m-2 to 18600 ind m-2), and a change from a species-poor community to a species-rich community dominated by the ecosystem engineer Lanice conchilega. Large densities of L. conchilega, as observed in our samples, are known to trap fine material from the water column, which can result in a further decrease of sediment permeability in the vicinity of the wind turbines. A preliminary experiment, where permeable sediments were subjected to artificial fining, showed a decreased penetration depth of advective water currents and a reduced trapping of diatoms by the sediment in finer sediments. Additionally, sediment community oxygen consumption rates, and efflux of NH4+ from the sediment, measured after a simulated phytoplankton bloom, decreased significantly when sediment permeability was reduced. We hypothesize that the combination of the altered macrofaunal community composition, together with the changes in the physical properties of the sediment matrix, will lead to a change in the biogeochemical properties of the sediment: highly reactive permeable sediments, poor in organic matter will shift towards sediment where organic matter will accumulate. Degradation of organic matter will then no longer be governed by physical processes, but mediated by biological processes (bioturbation, bio-irrigation).
Sun, Xueshi; Fan, Dejiang; Liu, Ming; Tian, Yuan; Pang, Yue; Liao, Huijie
2018-06-18
Sediment samples, including 40 surface samples and 12 sediment cores, were collected from 52 stations of the Yangtze River Estuary (YRE) in 2015 and 2016. The 95% linear prediction intervals (LPI) and principal components analysis (PCA), were conducted to evaluate the metal sources and grain-size effect (GSE). The in situ physico-chemical properties of pH, Eh, DO, salinity, temperature and turbidity were combined to elucidate the relationships between environmental factors and the fate of heavy metals in the river-estuary-shelf system. This study indicates a decreasing trend of metals in sediments from the estuary towards the adjacent shelf and the river channel and that Zn, Cu and Cr are mainly derived from natural processes throughout the catchment, whereas Pb appears to have anthropogenic inputs via atmospheric deposition. Furthermore, considering the best fit regression lines between the concentrations of Al and heavy metals as well as the deficiencies of the conventional C elements /C Al method, we introduce an approach (Al-SN: Al-scope normalization) that can eliminate the GSE on heavy metals and be applied to other estuaries. After Al-scope normalization, the relatively constant levels of Zn, Cu and Cr that remain in sediments from the river channel to the estuary and shelf confirmed that the variation of grain size in sediments almost entirely explained the distribution patterns of sediment toxicity in the YRE, while the enrichment of Pb in estuarine sediments could be attributed to its chemical species and physico-chemical properties. The results further suggest that the relationship between grain size and spatial behavior of sediment pollutants should be given priority over the contamination assessment and provenance discrimination in estuarine or similar environments with complex sediment compositions. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chu, Binh T T; Petrovich, Morgan L; Chaudhary, Adit; Wright, Dorothy; Murphy, Brian; Wells, George; Poretsky, Rachel
2018-03-01
Wastewater treatment plants (WWTPs) release treated effluent containing mobile genetic elements (MGEs), antibiotic resistance genes (ARGs), and microorganisms into the environment, yet little is known about their influence on nearby microbial communities and the retention of these factors in receiving water bodies. Our research aimed to characterize the genes and organisms from two different WWTPs that discharge into Lake Michigan, as well as from surrounding lake sediments to determine the dispersal and fate of these factors with respect to distance from the effluent outfall. Shotgun metagenomics coupled to distance-decay analyses showed a higher abundance of genes identical to those in WWTP effluent genes in sediments closer to outfall sites than in sediments farther away, indicating their possible WWTP origin. We also found genes attributed to organisms, such as those belonging to Helicobacteraceae , Legionellaceae , Moraxellaceae , and Neisseriaceae , in effluent from both WWTPs and decreasing in abundance in lake sediments with increased distance from WWTPs. Moreover, our results showed that the WWTPs likely influence the ARG composition in lake sediments close to the effluent discharge. Many of these ARGs were located on MGEs in both the effluent and sediment samples, indicating a relatively broad propensity for horizontal gene transfer (HGT). Our approach allowed us to specifically link genes to organisms and their genetic context, providing insight into WWTP impacts on natural microbial communities. Overall, our results suggest a substantial influence of wastewater effluent on gene content and microbial community structure in the sediments of receiving water bodies. IMPORTANCE Wastewater treatment plants (WWTPs) release their effluent into aquatic environments. Although treated, effluent retains many genes and microorganisms that have the potential to influence the receiving water in ways that are poorly understood. Here, we tracked the genetic footprint, including genes specific to antibiotic resistance and mobile genetic elements and their associated organisms, from WWTPs to lake sediments. Our work is novel in that we used metagenomic data sets to comprehensively evaluate total gene content and the genetic and taxonomic context of specific genes in environmental samples putatively impacted by WWTP inputs. Based on two different WWTPs with different treatment processes, our findings point to an influence of WWTPs on the presence, abundance, and composition of these factors in the environment. Copyright © 2018 Chu et al.
Chu, Binh T. T.; Petrovich, Morgan L.; Chaudhary, Adit; Wright, Dorothy; Murphy, Brian; Wells, George
2017-01-01
ABSTRACT Wastewater treatment plants (WWTPs) release treated effluent containing mobile genetic elements (MGEs), antibiotic resistance genes (ARGs), and microorganisms into the environment, yet little is known about their influence on nearby microbial communities and the retention of these factors in receiving water bodies. Our research aimed to characterize the genes and organisms from two different WWTPs that discharge into Lake Michigan, as well as from surrounding lake sediments to determine the dispersal and fate of these factors with respect to distance from the effluent outfall. Shotgun metagenomics coupled to distance-decay analyses showed a higher abundance of genes identical to those in WWTP effluent genes in sediments closer to outfall sites than in sediments farther away, indicating their possible WWTP origin. We also found genes attributed to organisms, such as those belonging to Helicobacteraceae, Legionellaceae, Moraxellaceae, and Neisseriaceae, in effluent from both WWTPs and decreasing in abundance in lake sediments with increased distance from WWTPs. Moreover, our results showed that the WWTPs likely influence the ARG composition in lake sediments close to the effluent discharge. Many of these ARGs were located on MGEs in both the effluent and sediment samples, indicating a relatively broad propensity for horizontal gene transfer (HGT). Our approach allowed us to specifically link genes to organisms and their genetic context, providing insight into WWTP impacts on natural microbial communities. Overall, our results suggest a substantial influence of wastewater effluent on gene content and microbial community structure in the sediments of receiving water bodies. IMPORTANCE Wastewater treatment plants (WWTPs) release their effluent into aquatic environments. Although treated, effluent retains many genes and microorganisms that have the potential to influence the receiving water in ways that are poorly understood. Here, we tracked the genetic footprint, including genes specific to antibiotic resistance and mobile genetic elements and their associated organisms, from WWTPs to lake sediments. Our work is novel in that we used metagenomic data sets to comprehensively evaluate total gene content and the genetic and taxonomic context of specific genes in environmental samples putatively impacted by WWTP inputs. Based on two different WWTPs with different treatment processes, our findings point to an influence of WWTPs on the presence, abundance, and composition of these factors in the environment. PMID:29269503
Naehr, T.H.; Eichhubl, P.; Orphan, V.J.; Hovland, M.; Paull, C.K.; Ussler, W.; Lorenson, T.D.; Greene, H. Gary
2007-01-01
Authigenic carbonates from five continental margin locations, the Eel River Basin, Monterey Bay, Santa Barbara Basin, the Sea of Okhotsk, and the North Sea, exhibit a wide range of mineralogical and stable isotopic compositions. These precipitates include aragonite, low- and high-Mg calcite, and dolomite. The carbon isotopic composition of carbonates varies widely, ranging from -60??? to +26???, indicating complex carbon sources that include 13C-depleted microbial and thermogenic methane and residual, 13C-enriched, bicarbonate. A similarly large variability of ??18O values (-5.5??? to +8.9???) demonstrates the geochemical complexity of these sites, with some samples pointing toward an 18O-enriched oxygen source possibly related to advection of 18O-enriched formation water or to the decomposition of gas hydrate. Samples depleted in 18O are consistent with formation deeper in the sediment or mixing of pore fluids with meteoric water during carbonate precipitation. A wide range of isotopic and mineralogical variation in authigenic carbonate composition within individual study areas but common trends across multiple geographic areas suggest that these parameters alone are not indicative for certain tectonic or geochemical settings. Rather, the observed variations probably reflect local controls on the flux of carbon and other reduced ions, such as faults, fluid conduits, the presence or absence of gas hydrate in the sediment, and the temporal evolution of the local carbon reservoir. Areas with seafloor carbonates that indicate formation at greater depth below the sediment-water interface must have undergone uplift and erosion in the past or are still being uplifted. Consequently, the occurrence of carbonate slabs on the seafloor in areas of active hydrocarbon seepage is commonly an indicator of exhumation following carbonate precipitation in the shallow subsurface. Therefore, careful petrographic and geochemical analyses are critical components necessary for the correct interpretation of processes related to hydrocarbon seepage in continental margin environments and elsewhere. ?? 2007 Elsevier Ltd. All rights reserved.
Hyun, S.P.; Fox, P.M.; Davis, J.A.; Campbell, K.M.; Hayes, K.F.; Long, P.E.
2009-01-01
A study of U(VI) adsorption by aquifer sediment samples from a former uranium mill tailings site at Rifle, Colorado, was conducted under oxic conditions as a function of pH, U(VI), Ca, and dissolved carbonate concentration. Batch adsorption experiments were performed using <2mm size sediment fractions, a sand-sized fraction, and artificial groundwater solutions prepared to simulate the field groundwater composition. To encompass the geochemical conditions of the alluvial aquifer at the site, the experimental conditions ranged from 6.8 ?? 10-8 to 10-5 M in [U(VI)]tot, 7.2 to 8.0 in pH, 3.0 ?? 10-3 to 6.0 ?? 10 -3 M in [Ca2+], and 0.05 to 2.6% in partial pressure of carbon dioxide. Surface area normalized U(VI) adsorption Kd values for the sand and <2 mm sediment fraction were similar, suggesting a similar reactive surface coating on both fractions. A two-site two-reaction, nonelectrostatic generalized composite surface complexation model was developed and successfully simulated the U(VI) adsorption data. The model successfully predicted U(VI) adsorption observed from a multilevel sampling well installed at the site. A comparison of the model with the one developed previously for a uranium mill tailings site at Naturita, Colorado, indicated that possible calcite nonequilibrium of dissolved calcium concentration should be evaluated. The modeling results also illustrate the importance of the range of data used in deriving the best fit model parameters. ?? 2009 American Chemical Society.
Bonn, Bernadine A.; Rounds, Stewart A.
2010-01-01
The potential sources of organic matter to bed sediment of the Tualatin River in northwestern Oregon were investigated by comparing the isotopic fractionation of carbon and nitrogen and the carbon/nitrogen ratios of potential sources and bed sediments. Samples of bed sediment, suspended sediment, and seston, as well as potential source materials, such as soil, plant litter, duckweed, and wastewater treatment facility effluent particulate were collected in 1998-2000. Based on the isotopic data, terrestrial plants and soils were determined to be the most likely sources of organic material to Tualatin River bed sediments. The delta 13C fractionation matched well, and although the delta 15N and carbon/nitrogen ratio of fresh plant litter did not match those of bed sediments, the changes expected with decomposition would result in a good match. The fact that the isotopic composition of decomposed terrestrial plant material closely resembled that of soils and bed sediments supports this conclusion. Phytoplankton probably was not a major source of organic matter to bed sediments. Compared to the values for bed sediments, the delta 13C values and carbon/nitrogen ratios of phytoplankton were too low and the delta 15N values were too high. Decomposition would only exacerbate these differences. Although phytoplankton cannot be considered a major source of organic material to bed sediment, a few bed sediment samples in the lower reach of the river showed a small influence from phytoplankton as evidenced by lower delta 13C values than in other bed sediment samples. Isotopic data and carbon/nitrogen ratios for bed sediments generally were similar throughout the basin, supporting the idea of a widespread source such as terrestrial material. The delta 15N was slightly lower in tributaries and in the upper reaches of the river. Higher rates of sediment oxygen demand have been measured in the tributaries in previous studies and coupled with the isotopic data may indicate the presence of more labile organic matter in these areas. Results from this study indicate that strategies to improve oxygen conditions in the Tualatin River are likely to be more successful if they target sources of soil, leaf litter, and other terrestrially derived organic materials to the river rather than the instream growth of algae.
Sources And Implications Of Hydrocarbon Gases From The Deep Beaufort Sea, Alaska
NASA Astrophysics Data System (ADS)
Lorenson, T. D.; Hart, P. E.; Pohlman, J.; Edwards, B. D.
2011-12-01
Sediment cores up to 5.7m long were recovered from a large seafloor mound, informally named the Canning Seafloor Mound (CSM), located 2,530 mbsl on the Alaskan Beaufort Sea slope north of Camden Bay, Alaska. The cores contained methane saturated sediment, gas hydrate, and cold seep fauna. The CSM overlies the crest of a buried anticline. The dome-like shape of the CSM indicates that it originated by the expansion and expulsion of deep-seated fluids migrating upwards along the plane of a sharply crested underlying anticline rather than structural uplift. The CSM is one of many mounds on the seaward margin of crustal compression that has resulted in a diapiric fold belt seaward of the fold and thrust belt of the Eastern Brooks Range. Rapid sedimentation rates coupled with and growth faulting and later compression has lead to overpressured sediments beneath the mounds. The cores were stored at 4°C for four months prior to sampling, yet the gas voids retained 10 to 26% methane by volume. High methane concentrations in the core effectively acted as a preservative by keeping the sediments under near-anaerobic conditions. The isotopic composition of the methane ranged from -59.2% to -50.4% with increasing depth while carbon dioxide ranged from -20.9 to -8.8% with depth. The molecular and isotopic composition of the gases indicates the predominant gas source is a mixed source of primary microbial methane, degraded thermogenic gas, and possibly secondary microbial methane. Oxidation of some methane likely occurred during core storage. Trace quantities of thermogenic gases, n-butane, n-pentane, and C6+ gases in the sediment are evidence for at least a partial thermogenic origin. Pore water composition (discussed in detail in a companion abstract by Pohlman et al.) reveals that pore water can be up to 80% fresher than seawater, which is more than can be supplied by gas hydrate dissociation and clay dewatering combined. The gas composition and pore water anomalies support the interpretation of a deep fluid source that likely is related to current oil and gas generation within the ~10 km deep basin with potential fluid connectivity to the continent.
Modern pollen deposition in Long Island Sound
Beuning, Kristina R.M.; Fransen, Lindsey; Nakityo, Berna; Mecray, Ellen L.; Buchholtz ten Brink, Marilyn R.
2000-01-01
Palynological analyses of 20 surface sediment samples collected from Long Island Sound show a pollen assemblage dominated by Carya, Betula, Pinus, Quercus, Tsuga, and Ambrosia, as is consistent with the regional vegetation. No trends in relative abundance of these pollen types occur either from west to east or associated with modern riverine inputs throughout the basin. Despite the large-scale, long-term removal of fine-grained sediment from winnowed portions of the eastern Sound, the composition of the pollen and spore component of the sedimentary matrix conforms to a basin-wide homogeneous signal. These results strongly support the use of select regional palynological boundaries as chronostratigraphic tools to provide a framework for interpretation of the late glacial and Holocene history of the Long Island Sound basin sediments.
NASA Astrophysics Data System (ADS)
Thompson, P. M.; Kempton, P. D.; Saunders, A. D.
2002-12-01
The 48 Ma Koko Guyot is the youngest Emperor Seamount drilled during ODP Leg 197. Leg 197 drilled 278 m into a sequence of 15 lava flows and hyaloclastites, with subordinate amounts of volcaniclastic sandstone and limestone. The sampled lava flows are mainly tholeiitic to transitional basalts and dolerites, with some intercalated alkalic basalts. Thus, the lavas sampled at Koko Guyot resemble the late shield stage of a modern-day Hawaiian volcano, being dominantly tholeiitic in character. The alkalic basalts generally display higher Zr and TiO2 for a given MgO compared to the tholeiites. The degree of scatter for most incompatible elements when plotted against MgO implies that the lavas do not define one liquid line of descent: several parent magma compositions must therefore be invoked. The lavas from Koko have Sr, Nd, Pb and Hf isotope compositions that are the most Hawaiian-like of the Emperor Seamounts that have been studied, displaying similar ɛ Nd to Mauna Kea. Our new data are consistent with the suggestion from trace elements that several different source compositions are required in the genesis of the Koko lavas. The involvement of at least two components is suspected from the apparently linear array in ɛ Hf-ɛ Nd space, which is also indicated by Pb and Sr isotope data. This linear array in ɛ Hf-ɛ Nd space defines a steeper slope than that of Recent Hawaiian magma types, which suggests a fundamental source difference between Koko and modern-day Hawaii. The shallower slope of Hawaiian volcanoes is thought to indicate the involvement of recycled pelagic sediment in the genesis of Hawaiian lavas (Blichert-Toft et al., 1999). Thus, preliminary data from the Koko Guyot suggest that the composition of the Hawaiian plume has changed in composition over time. The causes of this temporal variation are unknown, but may result from changes in the amount of pelagic sediment recycled from the deep plume source. Blichert-Toft, J., Frey, F.A. and Albarède, F., 1999. Hf isotope evidence for pelagic sediments in the source of Hawaiian basalts. Science, 285, 879-882.
NASA Astrophysics Data System (ADS)
King, Linda L.; Repeta, Daniel J.
1994-10-01
The distributions of pyropheophorbide- a steryl esters in one-year deployments of sediment traps at two locations in the Black Sea are described. In nearly all our trap samples, phorbin steryl esters (PSEs) contribute a significant portion of the total phorbin flux. The relative abundances of sterols esterified to pyropheophorbide- a varied throughout the year, and we suggest these changes result from the observed seasonal variation of phytoplankton species in the overlying water column. The distribution of free sterols in a one-year composite sediment trap sample closely approximates the distribution of sterols derived from the hydrolysis of sedimentary PSEs collected at an adjacent site. From these results, we suggest that the distribution of sedimentary PSE sterols provides a record of sterol deposition to the sediment-water interface. Esterification of sterols to pyropheophorbide- a apparently prevents the preferential removal of 4-desmethyl sterols relative to 4-methyl sterols, and the reduction of stenols to stanols during degradation. Analysis of PSEs in a gravity core covering the last 8-10 Kyr shows that the abundance and distribution of PSEs change with downcore variations in sedimentology. Detailed analysis of PSEs in sediments may, therefore, provide a means to evaluate paleooceanographic changes in phytoplankton community structure and sterol early diagenesis. The synthesis, NMR, CI-MS, and visible spectroscopic properties of four abundant PSEs found in the Black Sea are also described.
Sediment pollution in margins of the Lake Guaíba, Southern Brazil.
de Andrade, Leonardo Capeleto; Tiecher, Tales; de Oliveira, Jessica Souza; Andreazza, Robson; Inda, Alberto Vasconcellos; de Oliveira Camargo, Flávio Anastácio
2017-12-02
Sediments are formed by deposition of organic and inorganic particles on depth of water bodies, being an important role in aquatic ecosystems, including destination and potential source of essential nutrients and heavy metals, which may be toxic for living organisms. The Lake Guaíba supplies water for approximately two million people and it is located in the metropolitan region of Porto Alegre, Rio Grande do Sul State, Brazil. Thus, the aim of this study was to evaluate the sediment pollution in the margins of Lake Guaíba in the vicinity of Porto Alegre city. Surface sediment was sampled in 12 sites to assess the concentration of several elements (C, N, P, Fe, Al, Ca, Mg, Na, K, Mn, Ba, Zn, V, Pb, Cu, Cr, Ni, Cd, Mo, and Se) and the mineralogical composition. Sediment in margins of Lake Guaíba presented predominantly (> 95%) sandy fraction in all samples, but with significant differences between evaluated sites. Sediments in the margins of Lake Guaíba showed indications of punctual water pollution with Pb, Cu, Cr, Ni, TOC, TKN, and P, mainly derived from urban streams that flow into the lake. In order to solve these environmental liabilities, public actions should not focus only on Guaíba, but also in the streams that flow into the lake.
NASA Astrophysics Data System (ADS)
Yu, P. W.; Hubble, T.; Airey, D.; Gallagher, S. J.; Clarke, S. L.
2014-12-01
A voyage was conducted aboard the RV Southern Surveyor in early 2013 to investigate the east Australian continental margin. From the continental slope of the Wide Bay region offshore Fraser Island, Queensland, Australia, remote sensing data and sediment samples were collected. Bathymetric data reveals that the continental slope of the region presents a mature canyon system. Eight dredge samples were recovered from the walls of Wide Bay Canyon and the adjacent, relatively intact continental slope along the entire length of the slope, from the start of the shelf break to the toe, in water depths ranging from 1100-2500 m. For these samples, sediment composition, biostratigraphic age, and bulk mineralogy data are reported. These slope-forming sediments are primarily comprised of calcareous sandy-silts. Occasional terrestrial plant fossils and minerals can be found in a mostly marine-fossiliferous composition, suggesting minor but significant riverine and aeolian input. Biostratigraphic dates extracted from the foraminiferal contents of these samples indicate that the intra-canyon and slope material was deposited between Middle Miocene to Pliocene, implying that the incision of this section of the margin and formation of the erosional features took place no earlier than the Pliocene. In conjunction with bathymetric data of the local continental slope, the depositional origins of this section of the east Australian continental margin, and the timing of major morphological events such as slope failure and canyon incision can be interpreted. The Wide Bay Canyon system can serve as a representative case study of local canyon formation, allowing a better understanding of the past or ongoing processes that are shaping the margin and giving way to similar morphologies.
Frade, Pedro R; Roll, Katharina; Bergauer, Kristin; Herndl, Gerhard J
2016-01-01
Comparative studies on the distribution of archaeal versus bacterial communities associated with the surface mucus layer of corals have rarely taken place. It has therefore remained enigmatic whether mucus-associated archaeal and bacterial communities exhibit a similar specificity towards coral hosts and whether they vary in the same fashion over spatial gradients and between reef locations. We used microbial community profiling (terminal-restriction fragment length polymorphism, T-RFLP) and clone library sequencing of the 16S rRNA gene to compare the diversity and community structure of dominant archaeal and bacterial communities associating with the mucus of three common reef-building coral species (Porites astreoides, Siderastrea siderea and Orbicella annularis) over different spatial scales on a Caribbean fringing reef. Sampling locations included three reef sites, three reef patches within each site and two depths. Reference sediment samples and ambient water were also taken for each of the 18 sampling locations resulting in a total of 239 samples. While only 41% of the bacterial operational taxonomic units (OTUs) characterized by T-RFLP were shared between mucus and the ambient water or sediment, for archaeal OTUs this percentage was 2-fold higher (78%). About half of the mucus-associated OTUs (44% and 58% of bacterial and archaeal OTUs, respectively) were shared between the three coral species. Our multivariate statistical analysis (ANOSIM, PERMANOVA and CCA) showed that while the bacterial community composition was determined by habitat (mucus, sediment or seawater), host coral species, location and spatial distance, the archaeal community composition was solely determined by the habitat. This study highlights that mucus-associated archaeal and bacterial communities differ in their degree of community turnover over reefs and in their host-specificity.
Multi-Method Provenance Analysis of Namibian Desert Sand
NASA Astrophysics Data System (ADS)
Vermeesch, P.; Garzanti, E.
2014-12-01
Mineralogical, geochemical and geochronological provenance proxies each have their own strengths and weaknesses: a. Bulk geochemistry, framework petrography and heavy mineral compositions can differentiate between source areas characterised by different lithologies, but are sensitive to hydraulic sorting and chemical alteration. b. Detrital zircon U-Pb geochronology is insensitive to winnowing effects, but is 'blind' to lithologies devoid of zircon and cannot differentiate between first cycle and recycled sediments. c. Cosmogenic neon isotopes can be used to identify different generations of surface exposure while simultaneously tracking different magmatic sources. The challenge is then to combine these different proxies into a self consistent story, and do so in as objective a manner as possible. We here present a case study of Namibia's Namib Sand Sea and Skeleton Coast ergs, in which all the aforementioned methods have been combined using a three-way multidimensional scaling (aka INDividual Differences SCALing or INDSCAL) analysis: 1. Each of the datasets was represented by a 'dissimilarity matrix' of pairwise distances between samples. 2. The set of these matrices was fed into the INDSCAL algorithm, which produces two pieces of graphical output: the 'group configuration', which is a scatter plot or 'map' in which similar samples plot close together and dissimilar samples plot far apart, and the 'proxy weights', in which not the samples but the proxies are plotted according to the weight they attached to the 'group configuration' axes. The INDSCAL map of the Namibia dataset indicates that (a) long-shore drift of Orange River sediments dominates the coastal sediment compositions all along the Namibian coast until Angola, and (b) that light and heavy minerals tell complementary parts of the provenance story.
de Voogd, Nicole J; Cleary, Daniel F R; Polónia, Ana R M; Gomes, Newton C M
2015-04-01
In the present study, we assessed the composition of Bacteria in four biotopes namely sediment, seawater and two sponge species (Stylissa massa and Xestospongia testudinaria) at four different reef sites in a coral reef ecosystem in West Java, Indonesia. In addition to this, we used a predictive metagenomic approach to estimate to what extent nitrogen metabolic pathways differed among bacterial communities from different biotopes. We observed marked differences in bacterial composition of the most abundant bacterial phyla, classes and orders among sponge species, water and sediment. Proteobacteria were by far the most abundant phylum in terms of both sequences and Operational Taxonomic Units (OTUs). Predicted counts for genes associated with the nitrogen metabolism suggested that several genes involved in the nitrogen cycle were enriched in sponge samples, including nosZ, nifD, nirK, norB and nrfA genes. Our data show that a combined barcoded pyrosequencing and predictive metagenomic approach can provide novel insights into the potential ecological functions of the microbial communities. Not only is this approach useful for our understanding of the vast microbial diversity found in sponges but also to understand the potential response of microbial communities to environmental change. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Blount, Grady; Greeley, Ronald; Christensen, Phillip R.; Smith, Milton O.; Adams, John B.
1990-01-01
Mesoscale mapping of spatial variations in sand composition of the Gran Desierto (Sonora, Mexico) was carried out on multispectral Landsat TM images of this region, making it possible to examine the dynamic development of sand sheets and dunes. Compositions determined from remote imagery were found to agree well with samples from selected areas. The sand populations delineated were used to describe the sediment source areas, transport paths, and deposition sites. The image analysis revealed important compositional variations aver large areas that were not readily apparent in the field data.
Nery, José Reinaldo Cardoso; Bonotto, Daniel Marcos
2011-04-01
Activity profiles of excess (210)Pb determined in three sediment cores from Amazon River mouth, Macapá city, Brazil, provided the evaluation of sedimentation rates, contributing to a better knowledge of the hydrological conditions in the site that is the capital of Amapá State and is drained by the waters of the huge Amazon River. Chemical data were also determined in the sediments, allowing identify signatures coupled to anthropogenic inputs held in the past in Amapá State. Significant direct relationships between LOI (loss on ignition) and organic matter were found for all sediments profiles. Silica was found to be inversely related to organic matter in the three profiles; its decrease accompanied an increase on the specific surface of the sediments. This relationship was confirmed by a great number of inverse significant correlations among silica and oxides Na(2)O, K(2)O, CaO, MgO, Al(2)O(3), P(2)O(5), Fe(2)O(3) and MnO. It was possible to identify the role of organic matter on adsorption of several oxides in the core sediments profiles. Apparent sediment mass accumulation rates corresponding to values between 450 and 2510 mg cm(-2)yr(-1) were obtained, and are compatible with the results of others studies. The (210)Pb activities in one sampling point suggested the occurrence of anthropogenic inputs related to the initial period of the mining activities conducted in Serra do Navio, Amapá State, for the commercialization of Mn ores. This was reinforced by the abrupt fluctuations in chemical data obtained for the sediments and composition of the interstitial waters occurring there. The Atlantic hurricane activity also appeared to affect the sedimentation rates in the area, as two different values were recorded in each profile. Copyright © 2011 Elsevier Ltd. All rights reserved.
Terrestrial organic carbon contributions to sediments on the Washington margin
NASA Astrophysics Data System (ADS)
Prahl, F. G.; Ertel, J. R.; Goni, M. A.; Sparrow, M. A.; Eversmeyer, B.
1994-07-01
Elemental and stable carbon isotopic compositions and biomarker concentrations were determined in sediments from the Columbia River basin and the Washington margin in order to evaluate geochemical approaches for quantifying terrestrial organic matter in marine sediments. The biomarkers include: an homologous series of long-chain n-alkanes derived from the surface waxes of higher plants; phenolic and hydroxyalkanoic compounds produced by CuO oxidation of two major vascular plant biopolymers, lignin and cutin. All marine sediments, including samples collected from the most remote sites in Cascadia Basin, showed organic geochemical evidence for the presence of terrestrial organic carbon. Using endmember values for the various biomarkers determined empirically by two independent means, we estimate that the terrestrial contribution to the Washington margin is ~ 60% for shelf sediments, ~ 30% for slope sediments, and decreases further to ≤15% in basin sediments. Results from the same geochemical measurements made with depth in gravity core 6705-7 from Cascadia Seachannel suggest that our approach to assess terrestrial organic carbon contributions to contemporary deposits on the Washington margin can be applied to the study of sediments depositing in this region since the last glacial period.
Deng, Wen-Jing; Li, Na; Ying, Guang-Guo
2018-03-29
For the past fewer years, environment antibiotic residues have got more and more attention. The occurrence and distribution of eight common antibiotics, belonging to five classes, were determined in both water and sediment of eleven rivers of Hong Kong. The target antibiotics were found to be widely distributed. Sulfamethoxazole (n.d.-79.9 ng/L), sulfadimidine (n.d.-29.9 ng/L), and ofloxacin (n.d.-75.5 ng/L) were the dominant antibiotics in river water, with detection rates of 84.6, 76.9, and 69.2%, respectively. Tetracycline (n.d.-9.8 ng/g) was the dominant antibiotic in sediment, with a detection rate of 60%. The concentrations of all antibiotics in river water of Hong Kong were lower than which in various rivers of Europe, North America and Australia, as well as the Pearl River Basin of China. All sediment sites exhibited significant bacterial diversity. Gammaproteobacteria (0.08-12.7%) and Flavobacteria (0.14-14.1%) were the dominant bacterial classes in all sediments. The bacterial compositions varied between sites; areas polluted with high levels of antibiotics had rich and highly diverse bacterial communities. The environmental risk assessment determined that the antibiotics in 73.1% of the samples posed ecological risks to algae, and two samples posed low risks to invertebrates. Ofloxacin was the main contributor of risk to aquatic organisms, while the antibiotics in 11.5% of the samples posed resistance selection risks. The occurrence and distribution of eight common antibiotics, belonging to five classes, were widely distributed in Hong Kong. Sulfamethoxazole, sulfadimidine, and ofloxacin were the dominant antibiotics in river waters, Tetracycline was the dominant antibiotic in sediment. Areas polluted with high levels of antibiotics had rich and highly diverse bacterial communities. Antibiotics in 73.1% of the samples posed ecological risks, while the antibiotics in 11.5% of the samples posed resistance selection risks.
Colby, B.R.
1963-01-01
This paper presents a broad but undetailed picture of fluvial sediments in streams, reservoirs, and lakes and includes a discussion of the processes involved in the movement of sediment by flowing water. Sediment is fragmental material that originates from the chemical or physical disintegration of rocks. The disintegration products may have many different shapes and may range in size from large boulders to colloidal particles. In general, they retain about the same mineral composition as the parent rocks. Rock fragments become fluvial sediment when they are entrained in a stream of water. The entrainment may occur as sheet erosion from land surfaces, particularly for the fine particles, or as channel erosion after the surface runoff has accumulated in streams. Fluvial sediments move in streams as bedload (particles moving within a few particle diameters of the streambed) or as suspended sediment in the turbulent flow. The discharge of bedload varies with several factors, which may include particle size and a type of effective shear on the surface of the streambed. The discharge of suspended sediment depends partly on concentration of moving sediment near the streambed and hence on discharge of bedload. However, the concentration of fine sediment near the streambed varies widely, even for equal flows, and, therefore, the discharge of fine sediment normally cannot be computed theoretically. The discharge of suspended sediment also depends on velocity, turbulence, depth of flow, and fall velocity of the particles. In general, the coarse sediment transported by a stream moves intermittently and is discharged at a rate that depends on properties of the flow and of the sediment. If an ample supply of coarse sediment is available at the surface of the streambed, the discharge of the coarse sediment, such as sand, can be roughly computed from properties of the available sediment and of the flow. On the other hand, much of the fine sediment in a stream usually moves nearly continuously at about the velocity of the flow, and even low flows can transport large amounts of fine sediment. Hence, the discharge of fine sediments, being largely dependent on the availability of fine sediment upstream rather than on the properties of the sediment and of the flow at a cross section, can seldom be computed from properties, other than concentrations based directly on samples, that can be observed at the cross section. Sediment particles continually change their positions in the flow; some fall to the streambed, and others are removed from the bed. Sediment deposits form locally or over large areas if the volume rate at which particles settle to the bed exceeds the volume rate at which particles are removed from the bed. In general, large particles are deposited more readily than small particles, whether the point of deposition is behind a rock, on a flood plain, within a stream channel, or at the entrance to a reservoir, a lake, or the ocean. Most samplers used for sediment observations collect a water-sediment mixture from the water surface to within a few tenths of a foot of the streambed. They thus sample most of the suspended sediment, especially if the flow is deep or if the sediment is mostly fine; but they exclude the bedload and some of the suspended sediment in a layer near the streambed where the suspended-sediment concentrations are highest. Measured sediment discharges are usually based on concentrations that are averages of several individual sediment samples for a cross section. If enough average concentrations for a cross section have been determined, the measured sediment discharge can be computed by interpolating sediment concentrations between sampling times. If only occasional samples were collected, an average relation between sediment discharge and flow can be used with a flow-duration curve to compute roughly the average or the total sediment discharges for any periods of time for which the flow-duration c
Lee, Jessica A; Francis, Christopher A
2017-12-01
Denitrification is a dominant nitrogen loss process in the sediments of San Francisco Bay. In this study, we sought to understand the ecology of denitrifying bacteria by using next-generation sequencing (NGS) to survey the diversity of a denitrification functional gene, nirS (encoding cytchrome-cd 1 nitrite reductase), along the salinity gradient of San Francisco Bay over the course of a year. We compared our dataset to a library of nirS sequences obtained previously from the same samples by standard PCR cloning and Sanger sequencing, and showed that both methods similarly demonstrated geography, salinity and, to a lesser extent, nitrogen, to be strong determinants of community composition. Furthermore, the depth afforded by NGS enabled novel techniques for measuring the association between environment and community composition. We used Random Forests modelling to demonstrate that the site and salinity of a sample could be predicted from its nirS sequences, and to identify indicator taxa associated with those environmental characteristics. This work contributes significantly to our understanding of the distribution and dynamics of denitrifying communities in San Francisco Bay, and provides valuable tools for the further study of this key N-cycling guild in all estuarine systems. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Xi, Xiuping; Wang, Min; Chen, Yongshan; Yu, Shen; Hong, Youwei; Ma, Jun; Wu, Qian; Lin, Qiaoyin; Xu, Xiangrong
2015-06-15
Residual antibiotics from aquacultural farming may alter microbial community structure in aquatic environments in ways that may adversely or positively impact microbially-mediated ecological functions. This study investigated 26 ponds (26 composited samples) used to produce fish, razor clam and shrimp (farming and drying) and 2 channels (10 samples) in a saltwater aquacultural farm in southern China to characterize microbial community structure (represented by phospholipid fatty acids) in surface sediments (0-10 cm) with long-term exposure to residual antibiotics. 11 out of 14 widely-used antibiotics were quantifiable at μg kg(-1) levels in sediments but their concentrations did not statistically differ among ponds and channels, except norfloxacin in drying shrimp ponds and thiamphenicol in razor clam ponds. Concentrations of protozoan PLFAs were significantly increased in sediments from razor clam ponds while other microbial groups were similar among ponds and channels. Both canonical-correlation and stepwise-multiple-regression analyses on microbial community and residual antibiotics suggested that roxithromycin residuals were significantly related to shifts in microbial community structure in sediments. This study provided field evidence that multiple residual antibiotics at low environmental levels from aquacultural farming do not produce fundamental shifts in microbial community structure. Copyright © 2015 Elsevier B.V. All rights reserved.
Mustajärvi, Lukas; Eriksson-Wiklund, Ann-Kristin; Gorokhova, Elena; Jahnke, Annika; Sobek, Anna
2017-11-15
Environmental mixtures of chemicals consist of a countless number of compounds with unknown identity and quantity. Yet, chemical regulation is mainly built around the assessment of single chemicals. Existing frameworks for assessing the toxicity of mixtures require that both the chemical composition and quantity are known. Quantitative analyses of the chemical composition of environmental mixtures are however extremely challenging and resource-demanding. Bioassays may therefore serve as a useful approach for investigating the combined toxicity of environmental mixtures of chemicals in a cost-efficient and holistic manner. In this study, an unknown environmental mixture of bioavailable semi-hydrophobic to hydrophobic chemicals was sampled from a contaminated sediment in a coastal Baltic Sea area using silicone polydimethylsiloxane (PDMS) as an equilibrium passive sampler. The chemical mixture was transferred to a PDMS-based passive dosing system, and its applicability was demonstrated using green algae Tetraselmis suecica in a cell viability assay. The proportion of dead cells increased significantly with increasing exposure level and in a dose-response manner. At an ambient concentration, the proportion of dead cells in the population was nearly doubled compared to the control; however, the difference was non-significant due to high inter-replicate variability and a low number of replicates. The validation of the test system regarding equilibrium sampling, loading efficiency into the passive dosing polymer, stability of the mixture composition, and low algal mortality in control treatments demonstrates that combining equilibrium passive sampling and passive dosing is a promising tool for investigating the toxicity of bioavailable semi-hydrophobic and hydrophobic chemicals in complex environmental mixtures.
Feng, Yan; Wu, Chen-Chou; Bao, Lian-Jun; Shi, Lei; Song, Lin; Zeng, Eddy Y
2016-12-01
The fate of hydrophobic organic compounds in aquatic environment are largely determined by their exchange at sediment-water interface, which is highly dynamic and subject to rapidly evolving environmental conditions. In turn, environmental conditions may be governed by both physicochemical parameters and anthropogenic events. To examine the importance of various impact factors, passive sampling devices were deployed at the seafloor of Hailing Bay, an urbanized estuarine bay in Guangdong Province of South China to measure the sediment-water diffusion fluxes of several metabolites of dichlorodiphenyltrichloroethane (DDT), p,p'-DDE, p,p'-DDD and o,p'-DDD. The physicochemical properties of water (temperature, pH, salinity and dissolved oxygen) and surface sediment (sediment organic matter, physical composition, pH, water content, colony forming unit and catalase activity) were also measured. The results showed that the diffusion fluxes of o,p'-DDD, p,p'-DDD and p,p'-DDE at sites A1 and A2 near a fishing boat maintenance facility ranged from 0.42 to 4.73 ng m -2 d -1 (from sediment to overlying water), whereas those at offshore sites varied between -0.03 and -3.02 ng m -2 d -1 (from overlying water to sediment), implicating A1 and A2 as the sources of the target compounds. The distribution patterns of the diffusion fluxes of the target compounds were different from those of water and sediment parameters (water temperature, salinity, sediment texture, pH, colony forming unit and catalase activity) at six sampling sites. This finding suggested that none of these parameters were critical in dictating the sediment-water diffusion fluxes. Besides, decreases in the contents of kerogen and black carbon by 6.7% and 11% would enhance the diffusion fluxes of the target compounds by 11-14% and 12-23%, respectively, at site A1, indicating that kerogen and black carbon were the key factors in mediating the sediment-water diffusion fluxes of DDT-related compounds in field environments. Copyright © 2016 Elsevier Ltd. All rights reserved.
Linking stream and landscape trajectories in the southern Appalachians
Edward P. Gardiner; Andrew B. Sutherland; Rebecca J. Bixby; Mark C. Scott; Judy L. Meyer; Gene S. Helfman; E. Fred Benfield; Cathy M. Pringle; Paul V. Bolstad; David N. Wear
2009-01-01
A proactive sampling strategy was designed and implemented in 2000 to document changes in streams whose catchment land uses were predicted to change over the next two decades due to increased building density. Diatoms, macroinvertebrates, fishes, suspended sediment, dissolved solids, and bed composition were measured at two reference sites and six sites where a...
A photoautotrophic source for lycopane in marine water columns
NASA Technical Reports Server (NTRS)
Wakeham, Stuart G.; Freeman, Katherine H.; Pease, Tamara K.; Hayes, J. M.
1993-01-01
Suspended particulate matter and recent sediments from diverse oceanic sites have been investigated for their contents of lycopane. Lycopane was present in all samples, including both oxic and anoxic water column and sediments. The highest concentrations in the water column were found in surface waters of the central Pacific gyre (1.5 ng/L) and in the anoxic waters of the Cariaco Trench (1.1 ng/L) and the Black Sea (0.3 ng/L). Vertical concentration profiles suggest that lycopane is probably algal in origin. Moreover, biogeochemical conditions in anoxic zones apparently result in a secondary production of lycopane from an as yet unidentified precursor. Compound-specific carbon isotopic analyses have been carried out on lycopane from water column and sediment samples. Isotopic compositions of lycopane range between -23.6 and -32.9 percent and are consistent with a photoautotrophic origin. We postulate that some lycopane is produced in surface waters of the ocean, while additional lycopane is produced in anoxic zones by anaerobic microbial action on an algal precursor.
Karapanagioti, Hrissi K.; Kleineidam, Sybille; Sabatini, David A.; Grathwohl, Peter; Ligouis, Bertrand
2000-01-01
Sediment organic matter heterogeneity in sediments is shown to impact the sorption behavior of contaminants. We investigated the sorptive properties as well as the composition of organic matter in different subsamples (mainly grain size fractions) of the Canadian River Alluvium (CRA). Organic petrography was used as a new tool to describe and characterize the organic matter in the subsamples. The samples studied contained many different types of organic matter including bituminous coal particles. Differences in sorption behavior were explained based on these various types of organic matter. Subsamples containing predominately coaly, particulate organic matter showed the highest Koc, the highest nonlinearity of sorption isotherms and the slowest sorption kinetics. Soil subsamples with organic matter present as organic coatings around the quartz grains evidenced the lowest Koc, the most linear sorption isotherms and the fastest sorption kinetics, which was not limited by slow intraparticle diffusion. Due to the high sorption capacity of the coaly particles even when it is present as only a small fraction of the composite organic content (<3%) causes Koc values which are much higher than expected for soil organic matter (e.g. Koc − Kow relationships). The results show that the identification and quantification of the coaly particles within a sediment or soil sample is a prerequisite in order to understand or predict sorption behavior of organic pollutants.
Quang, Ngo Xuan; Chau, Nguyen Ngoc; Smol, Nic; Prozorova, Larisa; Vanreusel, Ann
2016-02-01
Nematode communities in eight Mekong estuaries were investigated during the dry season. The aim of the study was to identify the structure and the diversity of the communities in relation to the main environmental characteristics. In each estuary, three to four intertidal sampling stations were identified at regular distances from the mouth to up to 45 km land inward. The nematode communities showed a strong correlation with sediment composition and to a lesser degree with chlorophyll a concentrations. Multivariate analysis resulted in the identification of four types of communities. We identified two types of Desmodora communities in the sandy mouth stations and two types of Parodontophora communities in the silty sand stations. One of the silt associated communities showed a preference for higher chlorophyll a concentrations, resulting in higher densities and higher diversity, mainly of monhysterid species. Because of the strong association between community structure and sediment composition, nematodes are a meaningful tool for monitoring changes in their environment. In case their community deviates from what is expected based on sediment, it may serve as an early warning for disturbance.
Piazza, Rossano; Bellucci, Luca Giorgio; Giuliani, Silvia; Romano, Stefania; Frignani, Mauro; Pizzini, Sarah; Polo, Fabio Paolo; Vecchiato, Marco; Zambon, Stefano; El Moumni, Bouchta
2016-07-15
This paper presents the first results related to PBDE concentrations in sediments of the Nador Lagoon (N-E Morocco), an area endangered by different pollutant sources. Analyses were performed by HRGC-LRMS and confirmed by HRGC-HRMS on selected samples. Total surficial concentrations were 0.059-8.2ngg(-1). The maxima were found close to Nador City. Along the sedimentary records, the highest total concentrations (11 and 2.2ngg(-1)) were found at depths corresponding to times (1930s-1950s) when these chemicals were not yet produced. Dehydroxylation or demethoxylation of naturally occurring structural analogues of PBDEs under reducing conditions was suggested. BDE-47 dominated the congener compositions, while BDE-209, when present, could be detected only by HRGC-HRMS, proving that analytical degradation modified the original assemblage. Microbial anaerobic degradation could have changed congener compositions in sediments deposited from the 1970s to the 2000s. Current values are not harmful, but increasing trends call for constant monitoring. Copyright © 2016 Elsevier Ltd. All rights reserved.
Andrews, John T.; Eberl, D.D.
2011-01-01
To better understand the glacial history of the ice sheets surrounding Baffin Bay and to provide information on sediment pathways, samples from 82 seafloor grabs and core tops, and from seven box cores were subjected to quantitative X-ray diffraction weight percent (wt.%) analysis of the 2000 m) all show an abrupt drop in calcite wt.% (post-5 cal ka BP?) following a major peak in detrital carbonate (mainly dolomite). This dolomite-rich detrital carbonate (DC) event in JR175BC06 is possibly coeval with the Younger Dryas cold event. Four possible glacial-sourced end members were employed in a compositional unmixing algorithm to gain insight into down core changes in sediment provenance at the deep central basin. Estimates of the rates of sediment accumulation in the central basin are only in the range of 2 to 4 cm/cal ka, surprisingly low given the glaciated nature of the surrounding land.
Green, Jena M.; Thodal, Carl E.; Welborn, Toby L.
2008-01-01
Clarity of Lake Tahoe, California and Nevada has been decreasing due to inflows of sediment and nutrients associated with stormwater runoff. Detention basins are considered effective best management practices for mitigation of suspended sediment and nutrients associated with runoff, but effects of infiltrated stormwater on shallow ground water are not known. This report documents 2005-07 hydrogeologic conditions in a shallow aquifer and associated interactions between a stormwater-control system with nearby Lake Tahoe. Selected chemical qualities of stormwater, bottom sediment from a stormwater detention basin, ground water, and nearshore lake and interstitial water are characterized and coupled with results of a three-dimensional, finite-difference, mathematical model to evaluate responses of ground-water flow to stormwater-runoff accumulation in the stormwater-control system. The results of the ground-water flow model indicate mean ground-water discharge of 256 acre feet per year, contributing 27 pounds of phosphorus and 765 pounds of nitrogen to Lake Tahoe within the modeled area. Only 0.24 percent of this volume and nutrient load is attributed to stormwater infiltration from the detention basin. Settling of suspended nutrients and sediment, biological assimilation of dissolved nutrients, and sorption and detention of chemicals of potential concern in bottom sediment are the primary stormwater treatments achieved by the detention basins. Mean concentrations of unfiltered nitrogen and phosphorus in inflow stormwater samples compared to outflow samples show that 55 percent of nitrogen and 47 percent of phosphorus are trapped by the detention basin. Organic carbon, cadmium, copper, lead, mercury, nickel, phosphorus, and zinc in the uppermost 0.2 foot of bottom sediment from the detention basin were all at least twice as concentrated compared to sediment collected from 1.5 feet deeper. Similarly, concentrations of 28 polycyclic aromatic hydrocarbon compounds were all less than laboratory reporting limits in the deeper sediment sample, but 15 compounds were detected in the uppermost 0.2 foot of sediment. Published concentrations determined to affect benthic aquatic life also were exceeded for copper, zinc, benz[a]anthracene, phenanthrene, and pyrene in the shallow sediment sample. Isotopic composition of water (oxygen 18/16 and hydrogen 2/1 ratios) for samples of shallow ground water, lakewater, and interstitial water from Lake Tahoe indicate the lake was well mixed with a slight ground-water signature in samples collected near the lakebed. One interstitial sample from 0.8 foot beneath the lakebed was nearly all ground water and concentrations of nitrogen and phosphorus were comparable to concentrations in shallow ground-water samples. However, ammonium represented 65 percent of filtered nitrogen in this interstitial sample, but only 10 percent of the average nitrogen in ground-water samples. Nitrate was less than reporting limits in interstitial water, compared with mean nitrate concentration of 750 micrograms per liter in ground-water samples, indicating either active dissimilative nitrate reduction to ammonium by micro-organisms or hydrolysis of organic nitrogen to ammonium with concomitant nitrate reduction. The other interstitial sample falls along a mixing line between ground water and lake water and most of the nitrogen was organic nitrogen.
NASA Astrophysics Data System (ADS)
Höfler, Sarah; Pichler-Scheder, Christian; Gumpinger, Clemens
2017-04-01
In the current scientific discussion high loads of fine sediments are considered one of the most important causes of river ecosystem degradation worldwide. Especially in intensively used catchment areas changes in the sediment household must be regarded as a reason, which prevents the achievement of the objectives of the European Water Framework Directive (WFD). Therefore, the Upper Austrian Water Authorities have launched two comprehensive studies on the topic. The first one was a survey on the current siltation status of river courses in Upper Austria. The second study deals with two selected catchments in detail, in order to get a clear picture of the impacts of the fines on the aquatic fauna (trout eggs, benthic invertebrates), the chemical composition of these fractions, the crucial hydrogeological processes and to develop possible role models for measures both in the catchments and in the streams. At eight sites within the two catchments sediment and water samples were collected at two dates for detailed chemical analysis. On one date additionally the benthic invertebrate fauna was investigated on the microhabitat level. Thereby it was possible to enhance the understanding of the range of ecological impacts caused by silting-up in different hydro-morphological circumstances and with different fine sediment loads. The water samples as well as the sediment fraction samples <0.063 mm were examined for different metals, organochlorine pesticides, PAHs (Polycyclic Aromatic Hydrocarbons), PCBs (Polychlorinated biphenyls), BTEX (benzene, toluene, ethylbenzene, and xylenes), AOX (adsorbable organohalogens) and various nutrients. Additionally, the basic parameters dry residue, loss on ignition, TC (total carbon), TOC (total organic carbon) and nutrients were analysed. From the sediment eluates and the filtered water decomposition products of pesticides, remains of medical drugs, sweeteners, hormonally active substances and water-soluble elements were analysed. Furthermore, a GIS-based analysis was carried out for the two examined catchments. The model included data gained from a digital elevation model, land use data and digital soil classification maps. This led to findings concerning the main sources and processes, which are responsible for anthropogenically induced high fine sediment loads in the streams. According to these results a GIS-based risk assessment tool for all Upper Austrian watercourses is developed, which will be used as instrument for the planning and measure implementation of the water management authorities. Due to the necessity of highly integrative improvement measures covering whole catchments, fine sediments must be expected to be one of the most challenging future topics in aquatic ecology. Erosion, loss of soil, economical and social disadvantages due to that processes as well as ecological degradation of riverine systems and related flood risk issues, urgently have to be discussed and solved on a highly comprehensive basis.
Wilson, Timothy P.; Bonin, Jennifer L.
2007-01-01
A study was undertaken to determine the concentrations and loads of sediment and chemicals delivered to Newark and Raritan Bays by five major tributaries: the Raritan, Passaic, Rahway, Elizabeth, and Hackensack Rivers. This study was initiated by the State of New Jersey as Study I-C of the New Jersey Toxics Reduction Workplan for the New York-New Jersey Harbor, working under the NY-NJ Harbor Estuary Program (HEP) Contaminant Assessment and Reduction Program (CARP). The CARP is a comprehensive effort to evaluate the levels and sources of toxic contaminants to the tributaries and estuarine areas of the NY-NJ Harbor, including Newark and Raritan Bays. The Raritan and Passaic Rivers are large rivers (mean daily discharges of 1,189 and 1,132 cubic feet per second (ft3/s), respectively), that drain large, mixed rural/urban basins. The Elizabeth and Rahway Rivers are small rivers (mean daily discharges of 25.9 and 49.1 ft3/s, respectively) that drain small, highly urbanized and industrialized basins. The Hackensack River drains a small, mixed rural/urban basin, and its flow is highly controlled by an upstream reservoir (mean daily discharge of 90.4 ft3/s). These rivers flow into urbanized estuaries and ultimately, to the Atlantic Ocean. Each of these tributaries were sampled during two to four storm events, and twice each during low-flow discharge conditions. Samples were collected using automated equipment installed at stations adjacent to U.S. Geological Survey streamflow-gaging stations near the heads-of-tide of these rivers. Large-volume (greater than 50 liters of water and a target of 1 gram of sediment), flow-weighted composite samples were collected for chemical analysis using filtration to collect suspended particulates and exchange resin (XAD-2) to sequester dissolved contaminants. Composite whole-water samples were collected for dissolved polycyclic aromatic hydrocarbons (PAH) and for trace element analysis. Additional discrete grab samples were collected throughout each event for trace-element analysis, and multiple samples were collected for suspended sediment (SS), particulate carbon (POC), and dissolved organic carbon (DOC) analysis. The suspended sediment and exchange resin were analyzed for 114 polychlorinated biphenyls (PCBs, by US EPA method 1668A, modified), seven 2,3,7,8-substituted chlorinated dibenzo-p-dioxins (CDD) and 10 dibenzo-p-difurans (CDF) (by US EPA method 1613), 24 PAHs (by low-resolution isotope dilution/mass-spectral methods), 27 organo-chlorine pesticides (OCPs) (by high resolution isotope dilution/mass-spectral methods), and the trace elements mercury (Hg), methyl-mercury (MeHg), lead (Pb), and cadmium (Cd). Isotope dilution methods using gas chromatography and high-and low-resolution mass spectral (GC/MS) detection were used to accurately identify and quantify organic compounds in the sediment and water phases. Trace elements were measured using inductively coupled plasma-mass spectrometry and cold-vapor atomic fluorescence spectrometry methods. The loads of sediment, carbon, and chemicals were calculated for each storm and low-flow event sampled. Because only a few storm events were sampled, yearly loads of sediment were calculated from rating curves developed using historical SS and POC data. The average annual loads of sediment and carbon were calculated for the period 1975-2000, along with the loads for the selected water years being modeled as part of the New York New Jersey Harbor Estuary Program CARP. Comparison of loads calculated using the rating curve method to loads measured during the sampled storm events indicated that the rating curve method likely underpredicts annual loads. Average annual loads of suspended sediment in the tributaries were estimated to be 395,000 kilograms per year (kg/yr) in the Hackensack River, 417,000 kg/yr in the Elizabeth River, 882,000 kg/yr in the Rahway River, 22,700,000 kg/yr in the Passaic River, and 93,100,000 kg/yr in the Raritan River. Averag
Cvetković, Željko; Logar, Mihovil; Rosić, Aleksandra
2013-05-01
In this paper, particular attention was paid to the presence of aerosol solid particles, which occurred mainly as a result of exploitation and coal combustion in the thermal power plants of the Kolubara basin. Not all of the particles created by this type of anthropogenic pollution have an equal impact on human health, but it largely depends on their size and shape. The mineralogical composition and particle size distribution in the samples of aero sediments were defined. The samples were collected close to the power plant and open pit coal mine, in the winter and summer period during the year 2007. The sampling was performed by using precipitators placed in eight locations within the territory of the Lazarevac municipality. In order to characterize the sedimentary particles, several methods were applied: microscopy, SEM-EDX and X-ray powder diffraction. The concentration of aero sediments was also determined during the test period. Variety in the mineralogical composition and particle size depends on the position of the measuring sites, geology of the locations, the annual period of collecting as well as possible interactions. By applying the mentioned methods, the presence of inhalational and respiratory particles variously distributed in the winter and in the summer period was established. The most common minerals are quartz and feldspar. The presence of gypsum, clay minerals, calcite and dolomite as secondary minerals was determined, as well as the participation of organic and inorganic amorphic matter. The presence of quartz as a toxic mineral has a particular impact on human health.
Earthquake-driven erosion of organic carbon at the eastern margin of the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Li, G.; West, A. J.; Hara, E. K.; Hammond, D. E.; Hilton, R. G.
2016-12-01
Large earthquakes can trigger massive landsliding that erodes particulate organic carbon (POC) from vegetation, soil and bedrocks, potentially linking seismotectonics to the global carbon cycle. Recent work (Wang et al., 2016, Geology) has highlighted a dramatic increase in riverine export of biospheric POC following the 2008 Mw7.9 Wenchuan earthquake, in the steep Longmen Shan mountain range at the eastern margin of the Tibetan Plateau. However, a complete, source-to-sink picture of POC erosion after the earthquake is still missing. Here we track POC transfer across the Longmen Shan range from high mountains to the downstream Zipingpu reservoir where riverine-exported POC has been trapped. Building on the work of Wang et al. (2016), who measured the compositions and fluxes of riverine POC, this study is focused on constraining the source and fate of the eroded POC after the earthquake. We have sampled landslide deposits and river sediment, and we have cored the Zipingpu reservoir, following a source-to-sink sampling strategy. We measured POC compositions and grain size of the sediment samples, mapped landslide-mobilized POC using maps of landslide inventory and biomass, and tracked POC loading from landslides to the reservoir sediment to constrain the fate of eroded OC. Constraints on carbon sources, fluxes and fate provide the foundation for constructing a post-earthquake POC budget. This work highlights the role of earthquakes in the mobilization and burial of POC, providing new insight into mechanisms linking tectonics and the carbon cycle and building understanding needed to interpret past seismicity from sedimentary archives.
Enantiomeric composition of chiral polychlorinated biphenyl atropisomers in aquatic bed sediment
Wong, C.S.; Garrison, A.W.; Foreman, W.T.
2001-01-01
Enantiomeric ratios (ERs) for eight polychlorinated biphenyl (PCB) atropisomers were measured in aquatic sediment from selected sites throughout the United States by using chiral gas chromatography/mass spectrometry. Nonracemic ERs for PCBs 91, 95, 132, 136, 149, 174, and 176 were found in sediment cores from Lake Hartwell, SC, which confirmed previous inconclusive reports of reductive dechlorination of PCBs at these sites on the basis of achiral measurements. Nonracemic ERs for many of the atropisomers were also found in bed-sediment samples from the Hudson and Housatonic Rivers, thus indicating that some of the PCB biotransformation processes identified at these sites are enantioselective. Patterns in ERs among congeners were consistent with known reductive dechlorination patterns at both river sediment basins. The enantioselectivity of PCB 91 is reversed between the Hudson and Housatonic River sites, which implies that the two sites have different PCB biotransformation processes with different enantiomer preferences.Enantiomeric ratios (ERs) for eight polychlorinated biphenyl (PCB) atropisomers were measured in aquatic sediment from selected sites throughout the United States by using chiral gas chromatography/mass spectrometry. Nonracemic ERs for PCBs 91, 95, 132, 136, 149, 174, and 176 were found in sediment cores from Lake Hartwell, SC, which confirmed previous inconclusive reports of reductive dechlorination of PCBs at these sites on the basis of achiral measurements. Nonracemic ERs for many of the atropisomers were also found in bed-sediment samples from the Hudson and Housatonic Rivers, thus indicating that some of the PCB biotransformation processes identified at these sites are enantioselective. Patterns in ERs among congeners were consistent with known reductive dechlorination patterns at both river sediment basins. The enantioselectivity of PCB 91 is reversed between the Hudson and Housatonic River sites, which implies that the two sites have different PCB biotransformation processes with different enantiomer preferences.
Witt, Emitt C.; Adams, Craig; Wang, Jianmin; Shaver, David K.; Filali-Meknassi, Youssef
2007-01-01
Nearly 4 weeks after Hurricane Katrina passed through St. Bernard Parish, the U.S. Geological Survey's (USGS) Mid-Continent Geographic Science Center and the University of Missouri-Rolla's (UMR) Natural Hazard Mitigation Institute deployed a team of scientists to the region to collect perishable environmental and engineering data. The team collected 149 samples throughout the affected area to chemically characterize the Katrina depositional sediments. Preliminary results of this effort are presented here.
Pappa, F K; Tsabaris, C; Ioannidou, A; Patiris, D L; Kaberi, H; Pashalidis, I; Eleftheriou, G; Androulakaki, E G; Vlastou, R
2016-10-01
Marine sediment samples were collected from Ierissos Gulf, N Aegean Sea, close to the coastal mining facilities. Measurements of radionuclide and metal concentrations, mineral composition and grain size distribution were performed. The concentrations of (226)Ra, (235)U and trace metals showed enhanced values in the port of Stratoni compared with those obtained near to Ierissos port. The dose rates received by marine biota were also calculated by the ERICA Assessment Tool and the results indicated no significant radiological risk. Copyright © 2016 Elsevier Ltd. All rights reserved.
Commeau, R.F.; Paull, C.K.; Commeau, J.A.; Poppe, L.J.
1987-01-01
Pyrite is rapidly accumulating at the contact between the Cretaceous limestones of the Florida Platform and the hemipelagic sediments of the abyssal Gulf of Mexico. Sediments sampled with the submersible "Alvin" in 3266 m of water are associated with a dense community of organisms that depend on chemosynthetic primary production as a food source. Analysis of the chemistry, mineralogy, and textural composition of these sediments indicate that iron sulfide mineralization is occurring at the seafloor within an anoxic micro-habitat sustained by the advection of hydrogen sulfide-charged saline brines from the adjacent platform. The chemosynthetic bacteria that directly overlie the sediments oxidize hydrogen sulfide for energy and provide elemental sulfur that reacts with iron monosulfide to form some of the pyrite. The sediments are mixtures of pyrite (??? 30 wt.%), BaSr sulfates (??? 4 wt.%), clays, and locally derived biogenic carbonates and are progressively being cemented by iron sulfides. Oxidation of hydrogen sulfide produces locally acidic conditions that corrode the adjacent limestones. Potential sources of S, H2S, Fe, Ba, and Sr are discussed. ?? 1987.
NASA Astrophysics Data System (ADS)
Murray, R.; Lascu, I.; Plank, C.
2007-12-01
Deming Lake is a small (<1 square km), deep (about 17m), meromictic kettle lake situated near the prairie- forest boundary, in Itasca State Park, MN. Because of the lake's location and morphology, the accumulated sediments comprise a high-resolution record of limnological and ecological changes in response to Holocene climate variations. We used a shore perpendicular transect of three cores (located in littoral, mid-slope, and profundal settings) and ground penetrating radar (GPR) profiles to investigate Holocene lake-level variability at Deming. Cores were sampled continuously at a 1-2 cm resolution and sediment composition (in terms of percent organic matter, carbonate material, and minerogenic residue) was determined via loss on ignition (LOI). Isothermal remanent magnetization (IRM) and anhysteretic remanent magnetization (ARM) were used as proxies of magnetic mineral concentration and grain size. Four lithostratigraphic units were identified and correlated between cores based on these analyses. Changes in GPR facies corroborate the correlation between the two shallow cores. In order to inform our interpretation of down-core variations in magnetic properties and LOI values in terms of variations in lake depth, a suite of over 70 modern sediment samples were collected from the basin and analyzed. LOI compositional variability across the basin was high, with no clear trends related to depth or distance from shore. A sharp decrease in minerogenic content was observed at depths consistent with a predicted wave-base of 0.5 m, but aside from this trend it appears the steep slopes of much of the basin promote gravity driven slumping and mixing of sediments at depth. In the profundal sediments IRM values are routinely 5% higher than in the slope and littoral environments, while ARM/IRM ratios indicate an increase in magnetic grain size with water depth. We infer that an increase in coarse organic material in the shallow-water cores of Deming records a period of aridity (associated with a decrease lake-level less than 2m based on GPR profiles) and/or increased water clarity during the regionally expansive mid-Holocene dry period. We do not see clear evidence of late-Holocene lake level change of a significant magnitude (i.e. >1m). While remanence measurements (especially IRM) often correlate with the LOI residue, interference in the IRM resulting from the dissolution of magnetic minerals casts uncertainty into the reliability of our magnetic measurements as a signal of climate driven limnological change. Additional measurements must be performed before definite interpretations about the lake-level changes at Deming can be made. We suggest that future studies look more closely at the near-shore record (water depths <1m), as our results indicate shoreline migration in response to moisture balance fluctuations during the last 1000 years (as recorded at numerous sites in the great plains and upper Midwest) may have been subtle.
Compositions of modern dust and surface sediments in the Desert Southwest, United States
Reheis, M.C.; Budahn, J.R.; Lamothe, P.J.; Reynolds, R.L.
2009-01-01
Modern dusts across southwestern United States deserts are compositionally similar to dust-rich Av soil horizons (depths of 0-0.5 cm and 1-4 cm at 35 sites) for common crustal elements but distinctly different for some trace elements. Chemical compositions and magnetic properties of the soil samples are similar among sites relative to dust sources, geographic areas, and lithologic substrates. Exceptions are Li, U, and W, enriched in Owens Valley, California, and Mg and Sr, enriched in soils formed on calcareous fan gravel in southeast Nevada. The Av horizons are dominated by dust and reflect limited mixing with substrate sediments. Modern dust samples are also similar across the region, except that Owens Valley dusts are higher in Mg, Ba, and Li and dusts both there and at sites to the north on volcanic substrates are higher in Sb and W. Thus, dust and Av horizons consist of contributions from many different sources that are well mixed before deposition. Modern dusts contain significantly greater amounts of As, Cd, Cr, Cu, Ni, Pb, and Sb than do Av horizons, which record dust additions over hundreds to thousands of years. These results suggest that modern dust compositions are influenced by anthropogenic sources and emissions from Owens (dry) Lake after its artificial desiccation in 1926. Both modern dusts and Av horizons are enriched in As, Ba, Cu, Li, Sb, Th, U, and W relative to average crustal composition, which we interpret to indicate that the geologic sources of dust in the southwestern United States are geochemically distinctive.
Molluscan shell communities: a window into the ecological history of the northern Adriatic Sea
NASA Astrophysics Data System (ADS)
Gallmetzer, Ivo; Haselmair, Alexandra; Tomasovych, Adam; Stachowitsch, Michael; Zuschin, Martin
2015-04-01
The historical ecology approach used in the present study sheds light on the younger ecological history of the northern Adriatic Sea, targeting the period of the last 500 to 1500 years. We focus on down-core changes in molluscan death assemblages, where differences between community structures serve as a proxy for ecological shifts over time. The northern Adriatic Sea, with its densely populated shoreline, is among the most degraded marine ecosystems worldwide and is therefore particularly suited to study ecosystem modification under human pressure. Multiple cores of 1.5 m length and diameters of 90 and 160 mm were taken at seven sampling stations throughout the northern Adriatic Sea, covering different sediment types, nutrient conditions and degrees of exploitation. For the mollusc analyses, the cores were sliced into smaller subsamples and analysed for species composition, abundance, taxonomic similarity, evidence for ecological interactions (i.e., frequencies of drilling predation) and taphonomic condition of shells. Sediment analyses include granulometry and radiometric sediment dating using Pb 210. Sediment age analysis revealed one-order-of-magnitude differences in sedimentation rates between stations (34 mm/yr at the Po delta, Italy, 1.5 mm/yr at Brijuni islands, Croatia). In total, 114 bivalve and 112 gastropod species were recorded. Bivalve assemblages showed significant interregional differences that are strongly correlated with sedimentation rates and sediment composition. Down-core changes in molluscan communities are conspicuous in all cores, particularly in the uppermost core sections. This information, together with radiometric shell dating for selected species, helps to specify the timing of major ecological changes in the past and define pristine benthic communities as references for future conservation and management efforts.
Dincer Kırman, Zeynep; Sericano, José L; Wade, Terry L; Bianchi, Thomas S; Marcantonio, Franco; Kolker, Alexander S
2016-07-01
In 2010, an estimate 4.1 million barrels of oil were accidentally released into the Gulf of Mexico (GoM) during the Deepwater Horizon (DWH) Oil Spill. One and a half years after this incident, a set of subtidal and intertidal marsh sediment cores were collected from five stations in Barataria Bay, Louisiana, USA, and analyzed to determine the spatial and vertical distributions and source of hydrocarbon residues based on their chemical composition. An archived core, collected before the DWH oil spill from the same area, was also analyzed to assess the pre-spill hydrocarbon distribution in the area. Analyses of aliphatic hydrocarbons, polycyclic aromatic hydrocarbons (PAHs) and stable carbon isotope showed that the distribution of petroleum hydrocarbons in Barataria Bay was patchy and limited in areal extent. Significant TPH and ΣPAH concentrations (77,399 μg/g and 219,065 ng/g, respectively) were detected in the surface sediments of one core (i.e., core A) to a depth of 9 cm. Based on a sedimentation rate of 0.39 cm yr(-1), determined using (137)Cs, the presence of anthropogenic hydrocarbons in these sediment core deposited ca. 50 to 60 years ago. The historical background hydrocarbon concentrations increased significantly at the sediment surface and can be attributed to recent inputs. Although the oil present in the bay's sediments has undergone moderate weathering, biomarker analyses performed on core A samples likely indicated the presence of hydrocarbons from the DWH oil spill. The effects of oiling events on Barataria Bay and other marsh ecosystems in this region remain uncertain, as oil undergoes weathering changes over time. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lee, Jun H; Woo, Han J; Jeong, Kap S; Kang, Jeong W; Choi, Jae U; Jeong, Eun J; Park, Kap S; Lee, Dong H
2017-10-15
Our research team investigated the elemental composition and the presence of various toxic organic compounds, such as polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), in estuary surface sediments to trace the spatial distribution of the sources of pollution deposited in Nakdong River, Busan, South Korea. The spatial patterns of elemental composition and toxic organic compounds were determined from the measurements of total organic carbon (TOC), total nitrogen, total sulfur, PAHs, and PCBs. The sediments had TOC contents of between 0.02 and 1.80 wt% (avg. 0.34 wt%), depending on the amount of clay-sized particles. The concentrations of PAHs and PCBs (10.8-167.7 ng g -1 dry wt and 197.0-754.0 pg g -1 dry wt, respectively) in surface sediments revealed different spatial patterns for these compounds, suggesting that they partially originated from the combustion of fossil fuels and from the use of commercial PCB products at adjacent industrial complexes. Although these concentrations were far below the Sediment Quality Guideline (SQG) of the National Oceanic and Atmospheric Administration (NOAA), the sediments at one site contained PCBs at concentrations close to the response level (754.0 pg g -1 dry wt), and were dominated by low-molecular-weight PAHs. The PAHs and PCBs in Nakdong River Estuary sediments were likely to have originated from the combustion of fossil fuels and biomass at the adjacent industrial complexes. The primarily analyzed results determined that PAHs originated from the combustion of fossil fuels and biomass, and overall concentrations were related to the contributions of individual PAHs in most sediment samples. Based on the SQG of the NOAA, our results indicate that the anthropogenic activity should be considered on the future-sustainable management of this estuary system.
Lamoureux, E.M.; Brownawell, Bruce J.; Bothner, Michael H.
1996-01-01
Linear alkylbenzenes (LABs) are sensitive source-specific tracers of sewage inputs to the marine environment. Because they are highly particle reactive and nonspecifically sorbed to organic matter, LABs are potential tracers of the transport of both sludge-derived organic matter and other low solubility hydrophobic contaminants (e.g., PCBs and PAHs); sediment trap studies at the 106-Mile Site have shown LABs to be valuable in testing models of sludge deposition to the sea floor. In this study we report on the distributions of LABs, PCBs, PAHs, and Ag in surface sediments collected within a month of the complete cessation of dumping (July, 1992) in the vicinity of the dump site. Total LAB concentrations were lower than those measured by Takada and coworkers in samples from nearby sites collected in 1989. LABs from both studies appear to be significantly depleted (6 to 25-fold) in surface sediments relative to excess Ag (another sludge tracer) when compared to sewage sludge and sediment trap compositions. Comparison of LAB sediment inventories to model predictions of sludge particle fluxes supports the contention that LABs have been lost from the bed. The use of LABs to examine the short-or long-term fate of sludge derived materials in deep-sea sediments should be questioned. The causes of this LAB depletion are unclear at this point, and we discuss several hypotheses. The concentrations of total PCBs and PAHs are both correlated with sludge tracers, suggesting that there may be a measurable contribution of sludge-derived inputs on top of other nonpoint sources of these contaminant classes. This possibility is consistent with the composition of these contaminants determined in recent and historical analyses of sewage sludge.
The provenance of Taklamakan desert sand
NASA Astrophysics Data System (ADS)
Rittner, Martin; Vermeesch, Pieter; Carter, Andrew; Bird, Anna; Stevens, Thomas; Garzanti, Eduardo; Andò, Sergio; Vezzoli, Giovanni; Dutt, Ripul; Xu, Zhiwei; Lu, Huayu
2016-03-01
Sand migration in the vast Taklamakan desert within the Tarim Basin (Xinjiang Uyghur Autonomous region, PR China) is governed by two competing transport agents: wind and water, which work in diametrically opposed directions. Net aeolian transport is from northeast to south, while fluvial transport occurs from the south to the north and then west to east at the northern rim, due to a gradual northward slope of the underlying topography. We here present the first comprehensive provenance study of Taklamakan desert sand with the aim to characterise the interplay of these two transport mechanisms and their roles in the formation of the sand sea, and to consider the potential of the Tarim Basin as a contributing source to the Chinese Loess Plateau (CLP). Our dataset comprises 39 aeolian and fluvial samples, which were characterised by detrital-zircon U-Pb geochronology, heavy-mineral, and bulk-petrography analyses. Although the inter-sample differences of all three datasets are subtle, a multivariate statistical analysis using multidimensional scaling (MDS) clearly shows that Tarim desert sand is most similar in composition to rivers draining the Kunlun Shan (south) and the Pamirs (west), and is distinctly different from sediment sources in the Tian Shan (north). A small set of samples from the Junggar Basin (north of the Tian Shan) yields different detrital compositions and age spectra than anywhere in the Tarim Basin, indicating that aeolian sediment exchange between the two basins is minimal. Although river transport dominates delivery of sand into the Tarim Basin, wind remobilises and reworks the sediment in the central sand sea. Characteristic signatures of main rivers can be traced from entrance into the basin to the terminus of the Tarim River, and those crossing the desert from the south to north can seasonally bypass sediment through the sand sea. Smaller ephemeral rivers from the Kunlun Shan end in the desert and discharge their sediment there. Both river run-off and wind intensity are strongly seasonal, their respective transport strength and opposing directions maintain the Taklamakan in its position and topography.
Lu, Xiao-Ming; Chen, Chang; Zheng, Tian-Ling
2017-05-01
Pyrosequencing and metagenomic profiling were used to assess the phylogenetic and functional characteristics of microbial communities residing in sediments collected from the estuaries of Rivers Oujiang (OS) and Jiaojiang (JS) in the western region of the East China Sea. Another sediment sample was obtained from near the shore far from estuaries, used for contrast (CS). Characterization of estuary sediment bacterial communities showed that toxic chemicals potentially reduced the natural variability in microbial communities, while they increased the microbial metabolic enzymes and pathways. Polycyclic aromatic hydrocarbons (PAHs) and nitrobenzene were negatively correlated with the bacterial community variation. The dominant class in the sediments was Gammaproteobacteria. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) enzyme profiles, dominant enzymes were found in estuarine sediments, which increased greatly, such as 2-oxoglutarate synthase, acetolactate synthase, inorganic diphosphatase, and aconitate hydratase. In KEGG pathway profiles, most of the pathways were also dominated by specific metabolism in these sediments and showed a marked increase, for instance alanine, aspartate, and glutamate metabolism, carbon fixation pathways in prokaryotes, and aminoacyl-tRNA biosynthesis. The estuarine sediment bacterial diversity varied with the polluted river water inputs. In the estuary receiving river water from the more seriously polluted River Oujiang, the sediment bacterial community function was more severely affected.
Associations between dioxins/furans and dioxin-like PCBs in estuarine sediment and blue crab
Liebens, J.; Mohrherr, C.J.; Karouna-Renier, N. K.; Snyder, R.A.; Rao, K.R.
2011-01-01
The objective of the present study was to evaluate the relationships between the quantity, toxicity, and compositional profile of dioxin/furan compounds (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) in estuarine sediment and in the blue crab (Callinectes sapidus). Sediment and blue crab samples were collected in three small urban estuaries that are in relatively close proximity to each other. Results show that differences between PCDD/F and DL-PCB mass concentrations and total toxic equivalents (TEQ) toxicity in sediments of the three estuaries are reflected in those of the blue crab. TEQs are higher in the hepatopancreas of the crabs than in the sediment, but the concentration factor is inversely proportional to the TEQ in the sediments. Congener profiles in the crabs are systematically different from those in the sediments, and the difference is more pronounced for PCDD/Fs than for DL-PCBs, possibly due to differences in metabolization rates. Compared with sediment profiles, more lesser-chlorinated PCDD/Fs that have higher TEFs accumulate in crab hepatopancreas. This selective bioaccumulation of PCDD/Fs results in a TEQ augmentation in crab hepatopancreas compared with sediments. The bioaccumulation in the blue crab is also selective for PCDD/Fs over DL-PCBs. ?? 2011 Springer Science+Business Media B.V.
Su, Peng-Hao; Lv, Bao-Yi; Tomy, Gregg T; Xu, Jin-Xiang; Tian, Wen; Hou, Chun-Yan; Yin, Fang; Li, Yi-Fan; Feng, Dao-Lun
2017-02-01
The aim of this study was to investigate the levels of persistent organic pollutants (POPs) including polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in ship ballast sediments. The ballast sediment samples were collected from six merchant ships docked in 2015 in Jiangyin City, China. Ballast sediments represent a potential vector for the transport of POPs and invasive species between marine environments. An attempt was also made to determine the sources of these compounds in the ballast sediment. The results indicated ballast sediments generally contain greater amounts of BDE-209 and comparable amounts of PAHs, PBDEs (exclusive of BDE-209) and PCBs compared to those in marine surface sediments. Based on the sediment quality guidelines, PAHs and PCBs in ballast sediments were estimated to have median or high potential of posing ecological risks, respectively, to marine life if ballast sediments were disposed without specific treatment. POPs in ballast sediments were derived from multiple sources with atmospheric deposition being an important origin. Ship activities including diesel exhaust and illegal oil sewage discharge were considerable contributors of certain individual POPs to ballast sediments. Our study is important because it represents the first report on levels, health risk assessment and source apportionments of POPs in ballast sediments and is a first step in the implementation of specific ballast sediment management measures. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Heller, C.; Kuhn, T.
2016-12-01
Hydrothermal fluids can extract significant amounts of heat from oceanic lithosphere by lateral fluid flow through permeable basaltic crust of an age of up to 65 Ma. Fluid recharge and discharge occur at basement outcrops in between impermeable pelagic sediments. Recharge of oxic seawater causes upward oxygen diffusion into sediments overlying the permeable basalt in areas proximal to recharge sites. It is suggested that this oxygen have a strong impact on sediments and Mn nodules during fluid exposure time. The aim of this study is to investigate if and how fluid flow through oceanic crust influence the distribution and element budget of the Mn nodules. For that purpose, Mn nodules were examined which were collected during the research cruise SO240 in the equatorial NE Pacific at sites with and without faults in the upper basement and overlying sediments. Faults are thought to be preferred fluid pathways. Nodules were found on the sediment surface as well as in the sediment and consist of different nm- to µm-thick, dense and porous layers. The geochemical composition of bulk nodules and single nodule layers were determined by XRF, ICP-MS/OES and by high resolution analyses with EMPA and LA-ICP-MS. Dense layers have low Mn/Fe ratios (<4) and high concentrations of Co, Zr and REY, while porous layers are characterized by high Mn/Fe ratios (> 10) and high Ni+Cu and Li concentrations (Koschinsky et al., 2010; Kuhn et al., 2010). The different compositions depends on different formation processes of the layers. Dense layers are formed by element precipitation from oxygen rich seawater and/or pore water and are called hydrogenetic, while porous layers were formed by precipitation from almost oxygen-free (suboxic) pore water (Burns & Burns, 1978; Glasby, 2006) and are called diagenetic (Halbach et al., 1988). Preliminary results show that there are significant differences between the geochemical composition of nodules grown at sediment surface and those found within sediments. Compared to surface nodules, buried nodules are enriched in Co and W, but has lower concentration of Mo, Ba, Zn, Li. Distribution of Rare Earth Elements (REY) are also different. Especially, the element distribution in the bulk samples and the single layers of the buried nodules could be used to find a possible influence of circulating fluids on nodule formation.
Reis, Mariana P.; Ávila, Marcelo P.; Costa, Patrícia S.; Barbosa, Francisco A. R.; Laanbroek, Hendrikus J.; Chartone-Souza, Edmar; Nascimento, Andréa M. A.
2014-01-01
Among the neutrophilic iron-oxidizing bacteria (FeOB), Gallionella is one of the most abundant genera in freshwater environments. By applying qPCR and DGGE based on 16S rRNA gene-directed primers targeting Gallionellaceae, we delineated the composition and abundance of the Gallionellaceae-related FeOB community in streams differentially affected by metal mining, and explored the relationships between these community characteristics and environmental variables. The sampling design included streams historically impacted by mining activity and a non-impacted stream. The sediment and water samples harbored a distinct community represented by Gallionella, Sideroxydans, and Thiobacillus species. Sequences affiliated with Gallionella were exclusively observed in sediments impacted by mining activities, suggesting an adaptation of this genus to these environments. In contrast, Sideroxydans-related sequences were found in all sediments including the mining impacted locations. The highest and lowest relative frequencies of Gallionellaceae-related FeOB were associated with the lowest and highest concentrations of Fe, respectively. The data enclosed here clearly show distinct species-specific ecological niches, with Gallionella species dominating in sediments impacted by anthropogenic activities over Sideroxydans species. PMID:25505456
NASA Astrophysics Data System (ADS)
Barrett, Samuel; Tjallingii, Rik; Bloemsma, Menno; Brauer, Achim; Starnberger, Reinhard; Spötl, Christoph; Dulski, Peter
2015-04-01
The outcrop at Baumkirchen (Austria) encloses part of a unique sequence of laminated lacustrine sediments deposited during the last glacial cycle. A ~250m long composite sediment record recovered at this location now continuously covers the periods ~33 to ~45 ka BP (MIS 3) and ~59 to ~73 ka BP (MIS 4), which are separated by a hiatus. The well-laminated (mm-cm scale) and almost entirely clastic sediments reveal alternations of clayey silt and medium silt to very-fine sand layers. Although radiocarbon and optically stimulated luminescence (OSL) dating provide a robust chronology, accurate dating of the sediment laminations appears to be problematic due to very high sedimentation rates (3-8 cm/yr). X-ray fluorescence (XRF) core scanning provided a detailed ~150m long record of compositional changes of the sediments at Baumkirchen. Changes in the sediments are subtle and classification into different facies based on individual elements is therefore subjective. We applied a statistically robust clustering analysis to provide an objective compositional classification without prior knowledge, based on XRF measurements for 15 analysed elements (all those with an acceptable signal-noise ratio: Zr, Sr, Ca, Mn, Cu, Zn, Rb, Ni, Fe, K, Cr, V, Si, Ba, T). The clustering analysis indicates a distinct compositional change between sediments deposited below and above the stratigraphic hiatus, but also differentiates between individual different laminae. Preliminary results suggest variations in the sequence are largely controlled by the relative occurrence of different kinds of sediment represented by different clusters. Three clusters identify well-laminated sediments, visually similar in appearance, each dominated by an anti-correlation between Ca and one or more of the detrital elements K, Zr, Ti, Si and Fe. Two of these clusters occur throughout the entire sequence, one frequently and the other restricted to short sections, while the third occurs almost exclusively below the hiatus, indicating a geochemically distinct component that possibly represents a specific sediment source. In a similar manner, three other clusters identify event layers with different compositions of which two occur exclusively above the hiatus and one exclusively below. The variations in the occurrence of these clusters revealing distinct event layers suggest variations in dominant sediment source both above and below the hiatus and within the section above it. More detailed comparisons between compositional variations of the individual clusters obtained from biplots and microscopic observations on thin sections, grain-size analyses, and mineralogical analyses are needed to further differentiate between sediment sources and transport mechanisms.
NASA Astrophysics Data System (ADS)
Tait, Karen; Airs, Ruth L.; Widdicombe, Claire E.; Tarran, Glen A.; Jones, Mark R.; Widdicombe, Stephen
2015-09-01
The impact of the seasonal deposition of phytoplankton and phytodetritus on surface sediment bacterial abundance and community composition was investigated at the Western English Channel site L4. Sediment and water samples were collected from January to September in 2012, increasing in frequency during periods of high water column phytoplankton abundance. Compared to the past two decades, the spring bloom in 2012 was both unusually long in duration and contained higher than average biomass. Within spring months, the phytoplankton bloom was well mixed through the water column and showed accumulations near the sea bed, as evidenced by flow cytometry measurements of nanoeukaryotes, water column chlorophyll a and the appearance of pelagic phytoplankton at the sediment. Measurements of chlorophyll and chlorophyll degradation products indicated phytoplankton material was heavily degraded after it reached the sediment surface: the nature of the chlorophyll degradation products (predominantly pheophorbide, pyropheophorbide and hydroxychlorophyllone) was indicative of grazing activity. The abundance of bacterial 16S rRNA genes g-1 sediment (used as a proxy for bacterial biomass) increased markedly with the onset of the phytoplankton bloom, and correlated with measurements of chlorophyll at the surface sediment. Together, this suggests that bacteria may have responded to nutrients released via grazing activity. In depth sequencing of the 16S rRNA genes indicated that the composition of the bacterial community shifted rapidly through-out the prolonged spring bloom period. This was primarily due to an increase in the relative sequence abundance of Flavobacteria.
Mineralogical transformations controlling acid mine drainage chemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peretyazhko, Tetyana; Zachara, John M.; Boily, Jean F.
2009-05-30
The role of Fe(III) minerals in controlling acid mine drainage (AMD) chemistry was studied using samples from two AMD sites [Gum Boot (GB) and Fridays-2 (FR)] located in northern Pennsylvania. Chemical extractions, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) were used to identify and characterize Fe(III) phases. The mineralogical analysis revealed that schwertmannite and goethite were the principal Fe(III) phases in the sediments. Schwertmannite transformation occurred at the GB site where poorly-crystallized goethite rich in surface-bound sulfate was initially formed. In contrast, no schwertmannite transformation occurred at the FR site. The goethite in GBmore » sediments had spherical morphology due to preservation of schwertmannite structure by adsorbed sulfate. Results of chemical extractions showed that poorly-crystallized goethite was subject to further crystallization accompanied by sulfate desorption. Changes in sulfate speciation preceded its desorption, with a conversion of bidentate- to monodentate-bound sulfate surface complexes. Laboratory sediment incubation experiments were conducted to evaluate the effect of mineral transformation on water chemistry. Incubation experiments were carried out with schwertmannite-containing sediments and AMD waters with different pH and chemical composition. The pH decreased to 1.9-2.2 in all suspensions and the concentrations of dissolved Fe and S increased significantly. Regardless of differences in the initial water composition, pH, Fe and S were similar in suspensions of the same sediment. XRD measurements revealed that schwertmannite transformed into goethite in GB and FR sediments during laboratory incubation. The incubation experiment demonstrated that schwertmannite transformation controlled AMD water chemistry during “closed system” laboratory contact.« less
Microplastics in Taihu Lake, China.
Su, Lei; Xue, Yingang; Li, Lingyun; Yang, Dongqi; Kolandhasamy, Prabhu; Li, Daoji; Shi, Huahong
2016-09-01
In comparison with marine environments, the occurrence of microplastics in freshwater environments is less understood. In the present study, we investigated microplastic pollution levels during 2015 in Taihu Lake, the third largest Chinese lake located in one of the most developed areas of China. The abundance of microplastics reached 0.01 × 10(6)-6.8 × 10(6) items/km(2) in plankton net samples, 3.4-25.8 items/L in surface water, 11.0-234.6 items/kg dw in sediments and 0.2-12.5 items/g ww in Asian clams (Corbicula fluminea). The average abundance of microplastics was the highest in plankton net samples from the southeast area of the lake and in the sediments from the northwest area of the lake. The northwest area of the lake was the most heavily contaminated area of the lake, as indicated by chlorophyll-α and total phosphorus. The microplastics were dominated by fiber, 100-1000 μm in size and cellophane in composition. To our best knowledge, the microplastic levels measured in plankton net samples collected from Taihu Lake were the highest found in freshwater lakes worldwide. The ratio of the microplastics in clams to each sediment sample ranged from 38 to 3810 and was negatively correlated to the microplastic level in sediments. In brief, our results strongly suggest that high levels of microplastics occurred not only in water but also in organisms in Taihu Lake. Copyright © 2016 Elsevier Ltd. All rights reserved.
Quantifying trace element and isotope fluxes at the ocean-sediment boundary: a review.
Homoky, William B; Weber, Thomas; Berelson, William M; Conway, Tim M; Henderson, Gideon M; van Hulten, Marco; Jeandel, Catherine; Severmann, Silke; Tagliabue, Alessandro
2016-11-28
Quantifying fluxes of trace elements and their isotopes (TEIs) at the ocean's sediment-water boundary is a pre-eminent challenge to understand their role in the present, past and future ocean. There are multiple processes that drive the uptake and release of TEIs, and properties that determine their rates are unevenly distributed (e.g. sediment composition, redox conditions and (bio)physical dynamics). These factors complicate our efforts to find, measure and extrapolate TEI fluxes across ocean basins. GEOTRACES observations are unveiling the oceanic distributions of many TEIs for the first time. These data evidence the influence of the sediment-water boundary on many TEI cycles, and underline the fact that our knowledge of the source-sink fluxes that sustain oceanic distributions is largely missing. Present flux measurements provide low spatial coverage and only part of the empirical basis needed to predict TEI flux variations. Many of the advances and present challenges facing TEI flux measurements are linked to process studies that collect sediment cores, pore waters, sinking material or seawater in close contact with sediments. However, such sampling has not routinely been viable on GEOTRACES expeditions. In this article, we recommend approaches to address these issues: firstly, with an interrogation of emergent data using isotopic mass-balance and inverse modelling techniques; and secondly, by innovating pursuits of direct TEI flux measurements. We exemplify the value of GEOTRACES data with a new inverse model estimate of benthic Al flux in the North Atlantic Ocean. Furthermore, we review viable flux measurement techniques tailored to the sediment-water boundary. We propose that such activities are aimed at regions that intersect the GEOTRACES Science Plan on the basis of seven criteria that may influence TEI fluxes: sediment provenance, composition, organic carbon supply, redox conditions, sedimentation rate, bathymetry and the benthic nepheloid inventory.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2015 The Authors.
Quantifying trace element and isotope fluxes at the ocean-sediment boundary: a review
NASA Astrophysics Data System (ADS)
Homoky, William B.; Weber, Thomas; Berelson, William M.; Conway, Tim M.; Henderson, Gideon M.; van Hulten, Marco; Jeandel, Catherine; Severmann, Silke; Tagliabue, Alessandro
2016-11-01
Quantifying fluxes of trace elements and their isotopes (TEIs) at the ocean's sediment-water boundary is a pre-eminent challenge to understand their role in the present, past and future ocean. There are multiple processes that drive the uptake and release of TEIs, and properties that determine their rates are unevenly distributed (e.g. sediment composition, redox conditions and (bio)physical dynamics). These factors complicate our efforts to find, measure and extrapolate TEI fluxes across ocean basins. GEOTRACES observations are unveiling the oceanic distributions of many TEIs for the first time. These data evidence the influence of the sediment-water boundary on many TEI cycles, and underline the fact that our knowledge of the source-sink fluxes that sustain oceanic distributions is largely missing. Present flux measurements provide low spatial coverage and only part of the empirical basis needed to predict TEI flux variations. Many of the advances and present challenges facing TEI flux measurements are linked to process studies that collect sediment cores, pore waters, sinking material or seawater in close contact with sediments. However, such sampling has not routinely been viable on GEOTRACES expeditions. In this article, we recommend approaches to address these issues: firstly, with an interrogation of emergent data using isotopic mass-balance and inverse modelling techniques; and secondly, by innovating pursuits of direct TEI flux measurements. We exemplify the value of GEOTRACES data with a new inverse model estimate of benthic Al flux in the North Atlantic Ocean. Furthermore, we review viable flux measurement techniques tailored to the sediment-water boundary. We propose that such activities are aimed at regions that intersect the GEOTRACES Science Plan on the basis of seven criteria that may influence TEI fluxes: sediment provenance, composition, organic carbon supply, redox conditions, sedimentation rate, bathymetry and the benthic nepheloid inventory. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.
Stone, M; Collins, A L; Silins, U; Emelko, M B; Zhang, Y S
2014-03-01
There is increasing global concern regarding the impacts of large scale land disturbance by wildfire on a wide range of water and related ecological services. This study explores the impact of the 2003 Lost Creek wildfire in the Crowsnest River basin, Alberta, Canada on regional scale sediment sources using a tracing approach. A composite geochemical fingerprinting procedure was used to apportion the sediment efflux among three key spatial sediment sources: 1) unburned (reference) 2) burned and 3) burned sub-basins that were subsequently salvage logged. Spatial sediment sources were characterized by collecting time-integrated suspended sediment samples using passive devices during the entire ice free periods in 2009 and 2010. The tracing procedure combines the Kruskal-Wallis H-test, principal component analysis and genetic-algorithm driven discriminant function analysis for source discrimination. Source apportionment was based on a numerical mass balance model deployed within a Monte Carlo framework incorporating both local optimization and global (genetic algorithm) optimization. The mean relative frequency-weighted average median inputs from the three spatial source units were estimated to be 17% (inter-quartile uncertainty range 0-32%) from the reference areas, 45% (inter-quartile uncertainty range 25-65%) from the burned areas and 38% (inter-quartile uncertainty range 14-59%) from the burned-salvage logged areas. High sediment inputs from burned and the burned-salvage logged areas, representing spatial source units 2 and 3, reflect the lasting effects of forest canopy and forest floor organic matter disturbance during the 2003 wildfire including increased runoff and sediment availability related to high terrestrial erosion, streamside mass wasting and river bank collapse. The results demonstrate the impact of wildfire and incremental pressures associated with salvage logging on catchment spatial sediment sources in higher elevation Montane regions where forest growth and vegetation recovery are relatively slow. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hasberg, A. K.; Melles, M.; Wennrich, V.; Vogel, H.; Just, J.; Russell, J. M.; Bijaksana, S.; Morlock, M.; Opitz, S.
2017-12-01
More than 1000 m of sediment core were recovered in spring 2015 from three different drill sites in tropical Lake Towuti (2.5°S, 121°E), Indonesia, during the Towuti Drilling Project (TDP) of the International Continental Scientific Drilling Program (ICDP). Furthermore, a set of 84 lake surface sediment samples, distributed over the entire lake, was collected in order to better understand modern sedimentary processes. The surface samples were investigated for physical, chemical, mineralogical, and biological properties at the University of Cologne (UoC), Germany. On the sediment cores macro- and microscopical lithological descriptions, line-scan imaging, logging of physical properties (MSCL), and subsampling was conducted at the National Lacustrine Core Facility of the University of Minnesota, USA, in November 2015 and January 2016. Afterwards, the archive core halves and 672 subsamples of TDP Site 2 were shipped to the UoC for X-Ray Fluorescence (XRF) scanning and sedimentological, geochemical, and mineralogical analyses, respectively, supplemented by visible to near-infrared spectroscopy (VNIR) at Brown University, USA. The data from the surface samples evidence that allochthonous sedimentation in Lake Towuti today is dominated by fluvial supply from five distinguishable source areas: (i) the Mahalona River to the north, which drains lakes Mahalona and Matano, (ii) inlets around the village of Timampu to the northwest, (iii) the Loeha River to the east, (iv) the Lengke River to the south, and (v) the Lemo-Lemo River to the northeast of Lake Towuti. Of these, source areas (ii) and (iii) as well as (iv) and (v) have similar geochemical compositions, respectively. In addition, the lake sedimentation is significantly influenced by gravitational sediment supply from steep slopes as well as lake-internal gravitational and density-driven processes. The uppermost 41 m of sediment core 2A consist of pelagic sediments (totaling 11 m) and event layers from mass movement ( 30 m) that were formed during the past 50 cal kyr. In this period, the data reflect significant climatic and environmental changes, in particular in precipitation and lake level. These changes seem to be coupled to prominent paleoclimatic events.
A new approach of using multiple composite fingerprints to apportion sediment sources
USDA-ARS?s Scientific Manuscript database
Sediment source fingerprinting provides an essential means for estimating sediment source contributions, which are needed not only for soil conservation planning but also for erosion model evaluation and refinement. A single optimum composite fingerprint has been widely used in the literature to es...
Basalt-trachybasalt samples in Gale Crater, Mars
NASA Astrophysics Data System (ADS)
Edwards, Peter H.; Bridges, John C.; Wiens, Roger; Anderson, Ryan; Dyar, Darby; Fisk, Martin; Thompson, Lucy; Gasda, Patrick; Filiberto, Justin; Schwenzer, Susanne P.; Blaney, Diana; Hutchinson, Ian
2017-11-01
The ChemCam instrument on the Mars Science Laboratory (MSL) rover, Curiosity, observed numerous igneous float rocks and conglomerate clasts, reported previously. A new statistical analysis of single-laser-shot spectra of igneous targets observed by ChemCam shows a strong peak at 55 wt% SiO2 and 6 wt% total alkalis, with a minor secondary maximum at 47-51 wt% SiO2 and lower alkali content. The centers of these distributions, together with the rock textures, indicate that many of the ChemCam igneous targets are trachybasalts, Mg# = 27 but with a secondary concentration of basaltic material, with a focus of compositions around Mg# = 54. We suggest that all of these igneous rocks resulted from low-pressure, olivine-dominated fractionation of Adirondack (MER) class-type basalt compositions. This magmatism has subalkaline, tholeiitic affinities. The similarity of the basalt endmember to much of the Gale sediment compositions in the first 1000 sols of the MSL mission suggests that this type of Fe-rich, relatively low-Mg#, olivine tholeiite is the dominant constituent of the Gale catchment that is the source material for the fine-grained sediments in Gale. The similarity to many Gusev igneous compositions suggests that it is a major constituent of ancient Martian magmas, and distinct from the shergottite parental melts thought to be associated with Tharsis and the Northern Lowlands. The Gale Crater catchment sampled a mixture of this tholeiitic basalt along with alkaline igneous material, together giving some analogies to terrestrial intraplate magmatic provinces.
NASA Astrophysics Data System (ADS)
Tissot, François L. H.; Dauphas, Nicolas
2015-10-01
The 238U/235U isotopic composition of uranium in seawater can provide important insights into the modern U budget of the oceans. Using the double spike technique and a new data reduction method, we analyzed an array of seawater samples and 41 geostandards covering a broad range of geological settings relevant to low and high temperature geochemistry. Analyses of 18 seawater samples from geographically diverse sites from the Atlantic and Pacific oceans, Mediterranean Sea, Gulf of Mexico, Persian Gulf, and English Channel, together with literature data (n = 17), yield a δ238U value for modern seawater of -0.392 ± 0.005‰ relative to CRM-112a. Measurements of the uranium isotopic compositions of river water, lake water, evaporites, modern coral, shales, and various igneous rocks (n = 64), together with compilations of literature data (n = 380), allow us to estimate the uranium isotopic compositions of the various reservoirs involved in the modern oceanic uranium budget, as well as the fractionation factors associated with U incorporation into those reservoirs. Because the incorporation of U into anoxic/euxinic sediments is accompanied by large isotopic fractionation (ΔAnoxic/Euxinic-SW = +0.6‰), the size of the anoxic/euxinic sink strongly influences the δ238U value of seawater. Keeping all other fluxes constant, the flux of uranium in the anoxic/euxinic sink is constrained to be 7.0 ± 3.1 Mmol/yr (or 14 ± 3% of the total flux out of the ocean). This translates into an areal extent of anoxia into the modern ocean of 0.21 ± 0.09% of the total seafloor. This agrees with independent estimates and rules out a recent uranium budget estimate by Henderson and Anderson (2003). Using the mass fractions and isotopic compositions of various rock types in Earth's crust, we further calculate an average δ238U isotopic composition for the continental crust of -0.29 ± 0.03‰ corresponding to a 238U/235U isotopic ratio of 137.797 ± 0.005. We discuss the implications of the variability of the 238U/235U ratio on Pb-Pb and U-Pb ages and provide analytical formulas to calculate age corrections as a function of the age and isotopic composition of the sample. The crustal ratio may be used in calculation of Pb-Pb and U-Pb ages of continental crust rocks and minerals when the U isotopic composition is unknown. In cosmochemistry, the search for 247Cm (t1/2 = 15.6 Myr), an extinct short-lived radionuclide that decays into 235U, is important for understanding how r-process nuclides were synthesized in stars and learning about the astrophysical context of solar system formation (Chen and Wasserburg, 1981; Wasserburg et al., 1996; Nittler and Dauphas, 2006; Brennecka et al., 2010b; Tissot et al., 2015). In both terrestrial and extraterrestrial samples, variations in the 238U/235U ratio affect Pb-Pb ages (and depending on the analytical protocols, U-Pb ages). Therefore, samples dated by these techniques need to have their U isotopic compositions measured (Stirling et al., 2005, 2006; Weyer et al., 2008; Amelin et al., 2010; Brennecka et al., 2010b; Brennecka and Wadhwa, 2012; Connelly et al., 2012; Goldmann et al., 2015) or uncertainties on the U isotopic composition should be propagated into age calculations. In low temperature aqueous geochemistry, U isotopic fractionation between U4+ and U6+ (driven in part by nuclear field shift effects; Bigeleisen, 1996; Schauble, 2007; Abe et al., 2008), makes U isotopes potential tracers of paleoredox conditions (Montoya-Pino et al., 2010; Brennecka et al., 2011a; Kendall et al., 2013, 2015; Asael et al., 2013; Andersen et al., 2014; Dahl et al., 2014; Goto et al., 2014; Noordmann et al., 2015). The present paper aims at constraining some aspects of the global budget of uranium in the modern oceans using 238U/235U isotope variations, which involves characterizing the U isotopic composition of seawater and several reservoirs involved in the uranium oceanic budget. Uranium can exist in two oxidation states in terrestrial surface environments: U4+ is insoluble in seawater while U6+ is soluble (Langmuir, 1978). The contrasting behaviors of the two oxidation states of uranium explains why the disappearance of detrital uraninite after the Archean marks the rise of oxygen in Earth's atmosphere/hydrosphere (Ramdohr, 1958; Rasmussen and Buick, 1999; Frimmel, 2005). More recently, significant effort has focused on using U isotopes to constrain the past extents of anoxic/euxinic vs. oxic or suboxic sediments in modern and ancient oceans (Montoya-Pino et al., 2010; Brennecka et al., 2011a; Asael et al., 2013; Kendall et al., 2013, 2015; Andersen et al., 2014; Dahl et al., 2014; Goto et al., 2014; Noordmann et al., 2015). A virtue of this system is that it can potentially reflect the global redox state of Earth's oceans. At the same time, several difficulties have been encountered in applying U isotopes as paleo-redox indicators. For example, detrital contributions can blur the authigenic signal and have to be corrected for (Asael et al., 2013; Andersen et al., 2014; Noordmann et al., 2015), uranium isotopes can be affected by diagenesis and exchange with porewater (Romaniello et al., 2013; Andersen et al., 2014), and the exact isotopic fractionation factors relevant to various conditions of deposition are uncertain. While significant progress has already been made to address these difficulties (Asael et al., 2013; Romaniello et al., 2013; Andersen et al., 2014; Noordmann et al., 2015), this system and others are missing some of the groundwork studies on modern environments that are needed to gain trust in their applications to ancient sediments.In the modern ocean, water-soluble uranium behaves conservatively (i.e., U concentration correlates linearly to water salinity, Ku et al., 1977; Owens et al., 2011) and has a long residence time of ∼400 kyr (Ku et al., 1977). The ocean is therefore a large repository of uranium, exceeding the total inventory of land-based deposits (Lu, 2014). The riverine input (40-46 Mmol/yr) is balanced by several sinks; including suboxic sediments, anoxic/euxinic sediments, carbonates, altered oceanic crust, salt marshes and Fe-Mn nodules. Barnes and Cochran (1990), Morford and Emerson (1999), Dunk et al. (2002), and Henderson and Anderson (2003) each proposed estimates for the oceanic uranium budget that differ substantially in the fluxes that they use. Uranium isotopes are sensitive to ocean redox conditions because uranium removal in anoxic/euxinic sediments imparts large uranium isotopic fractionation, so that the areal extent of this sink influences greatly the U isotopic composition of seawater relative to the riverine input. In the present paper, we report double-spike uranium isotopic measurements of 18 seawater samples, 18 continental crust lithologies, 7 individual minerals, 6 oyster samples, 3 modern evaporites samples, 2 lake water samples, 1 large river water sample and 1 coral sample. These measurements are supplemented by compilations of literature data. With this large data set (n = 444), we are able to constrain the flux of uranium into anoxic/euxinic sediments, as well as the global extent of anoxia in the modern ocean (percent of seafloor covered by anoxic/euxinic sediments). Our findings compare well with independent estimates and rule out the most recent U budget of Henderson and Anderson (2003).As part of our effort, we also present a data reduction method for double-spike measurements that is both comprehensive in the way the errors are propagated and simple to implement.
Asian dust input in the western Philippine Sea: Evidence from radiogenic Sr and Nd isotopes
NASA Astrophysics Data System (ADS)
Jiang, Fuqing; Frank, Martin; Li, Tiegang; Chen, Tian-Yu; Xu, Zhaokai; Li, Anchun
2013-05-01
The radiogenic strontium (Sr) and neodymium (Nd) isotope compositions of the detrital fraction of surface and subsurface sediments have been determined to trace sediment provenance and contributions from Asian dust off the east coast of Luzon Islands in the western Philippine Sea. The Sr and Nd isotope compositions have been very homogenous near the east coast of the Luzon Islands during the latest Quaternary yielding relatively least radiogenic Sr (87Sr/86Sr = 0.70453 to 0.70491) and more radiogenic Nd isotope compositions (ɛNd(0) = +5.3 to +5.5). These isotope compositions are similar to Luzon rocks and show that these sediments were mainly derived from the Luzon Islands. In contrast, the Sr and Nd isotope compositions of sediments on the Benham Rise and in the Philippine Basin are markedly different in that they are characterized by overall more variable and more radiogenic Sr isotope compositions (87Sr/86Sr = 0.70452 to 0.70723) and less radiogenic Nd isotope compositions (ɛNd(0) = -5.3 to +2.4). The Sr isotope composition in the Huatung Basin is intermediate between those of the east coast of Luzon and Benham Rise, but shows the least radiogenic Nd isotope compositions. The data are consistent with a two end-member mixing relationship between Luzon volcanic rocks and eolian dust from the Asian continent, which is characterized by highly radiogenic Sr and unradiogenic Nd isotope compositions. The results show that Asian continental dust contributes about 10-50% of the detrital fraction of the sediments on Benham Rise in the western Philippine Sea, which offers the potentials to reconstruct the climatic evolution of eastern Asia from these sediments and compare this information to the records from the central and northern Pacific.
The Martian surface as imaged, sampled, and analyzed by the Viking landers
NASA Technical Reports Server (NTRS)
Arvidson, Raymond E.; Gooding, James L.; Moore, Henry J.
1989-01-01
Data collected by two Viking landers are analyzed. Attention is given to the characteristics of the surface inferred from Lander imaging and meteorology data, physical and magnetic properties experiments, and both inorganic and organic analyses of Martian samples. Viking Lander 1 touched down on Chryse Planitia on July 20, 1976 and continued to operate for 2252 sols, until November 20, 1982. Lander 2 touched down about 6500 km away from Lander 1, on Utopia Planitia on September 3, 1976. The chemical compositions of sediments at the two landing sites are similar, suggesting an aeolian origin. The compositions suggest an iron-rich rock an are matched by various clays and salts.
Pachiadaki, Maria G.; Rédou, Vanessa; Beaudoin, David J.; Burgaud, Gaëtan; Edgcomb, Virginia P.
2016-01-01
The deep sedimentary biosphere, extending 100s of meters below the seafloor harbors unexpected diversity of Bacteria, Archaea, and microbial eukaryotes. Far less is known about microbial eukaryotes in subsurface habitats, albeit several studies have indicated that fungi dominate microbial eukaryotic communities and fungal molecular signatures (of both yeasts and filamentous forms) have been detected in samples as deep as 1740 mbsf. Here, we compare and contrast fungal ribosomal RNA gene signatures and whole community metatranscriptomes present in sediment core samples from 6 and 95 mbsf from Peru Margin site 1229A and from samples from 12 and 345 mbsf from Canterbury Basin site U1352. The metatranscriptome analyses reveal higher relative expression of amino acid and peptide transporters in the less nutrient rich Canterbury Basin sediments compared to the nutrient rich Peru Margin, and higher expression of motility genes in the Peru Margin samples. Higher expression of genes associated with metals transporters and antibiotic resistance and production was detected in Canterbury Basin sediments. A poly-A focused metatranscriptome produced for the Canterbury Basin sample from 345 mbsf provides further evidence for active fungal communities in the subsurface in the form of fungal-associated transcripts for metabolic and cellular processes, cell and membrane functions, and catalytic activities. Fungal communities at comparable depths at the two geographically separated locations appear dominated by distinct taxa. Differences in taxonomic composition and expression of genes associated with particular metabolic activities may be a function of sediment organic content as well as oceanic province. Microscopic analysis of Canterbury Basin sediment samples from 4 and 403 mbsf produced visualizations of septate fungal filaments, branching fungi, conidiogenesis, and spores. These images provide another important line of evidence supporting the occurrence and activity of fungi in the deep subseafloor biosphere. PMID:27375571
Pachiadaki, Maria G; Rédou, Vanessa; Beaudoin, David J; Burgaud, Gaëtan; Edgcomb, Virginia P
2016-01-01
The deep sedimentary biosphere, extending 100s of meters below the seafloor harbors unexpected diversity of Bacteria, Archaea, and microbial eukaryotes. Far less is known about microbial eukaryotes in subsurface habitats, albeit several studies have indicated that fungi dominate microbial eukaryotic communities and fungal molecular signatures (of both yeasts and filamentous forms) have been detected in samples as deep as 1740 mbsf. Here, we compare and contrast fungal ribosomal RNA gene signatures and whole community metatranscriptomes present in sediment core samples from 6 and 95 mbsf from Peru Margin site 1229A and from samples from 12 and 345 mbsf from Canterbury Basin site U1352. The metatranscriptome analyses reveal higher relative expression of amino acid and peptide transporters in the less nutrient rich Canterbury Basin sediments compared to the nutrient rich Peru Margin, and higher expression of motility genes in the Peru Margin samples. Higher expression of genes associated with metals transporters and antibiotic resistance and production was detected in Canterbury Basin sediments. A poly-A focused metatranscriptome produced for the Canterbury Basin sample from 345 mbsf provides further evidence for active fungal communities in the subsurface in the form of fungal-associated transcripts for metabolic and cellular processes, cell and membrane functions, and catalytic activities. Fungal communities at comparable depths at the two geographically separated locations appear dominated by distinct taxa. Differences in taxonomic composition and expression of genes associated with particular metabolic activities may be a function of sediment organic content as well as oceanic province. Microscopic analysis of Canterbury Basin sediment samples from 4 and 403 mbsf produced visualizations of septate fungal filaments, branching fungi, conidiogenesis, and spores. These images provide another important line of evidence supporting the occurrence and activity of fungi in the deep subseafloor biosphere.
NASA Astrophysics Data System (ADS)
Wang, Z.; Baca, J.; He, Z.; Blunmenshine, S.
2010-12-01
The typical Mediterranean climate of California (wet winter and spring season followed by dry summer and fall season) makes it necessary to closely monitor the first few floods in early November or December when the accumulated surface matters in the past rainless months would be flushed into the streams causing water quality impairment and sediment mobilization. In order to evaluate the effects of the first floods, two storm water samplers were installed, one on the main stem of the Fresno River and the other on the Coarsegold tributary. The storm water sampler collects two different samples during a storm event. The “first flush” sample is collected at the beginning of a storm event and the “time weighted” composite sample is collected at selected intervals during the storm. Nutrient contents in all the water samples were measured to evaluate water quality status, and the fine particle size distributions of the suspended sediments in the flood water were measured using laser diffraction. Results show that: (1)The effects of the first floods are significant: it cleans the tributary (nutrient losing) streams while aggravating nutrient loadings in the main stem of the river; (2) The sediment flux in the upper areas of the watershed is generally low, however it increases ten folds during the flood in the lower part of the watershed, loading large amounts of sediments in the Hensley Lake; and (3) After the first floods, the river channel is typically deposited with increased amount of very fine (< 2 micros) and very coarse particles (>200 microns), causing significant substrate siltation thus affecting habitat quality for the stream biota. The hydrology of the first floods needs to be further studied for water quality assessment in the Mediterranean climate regions.
NASA Astrophysics Data System (ADS)
DeBlois, Elisabeth M.; Paine, Michael D.; Kilgour, Bruce W.; Tracy, Ellen; Crowley, Roger D.; Williams, Urban P.; Janes, G. Gregory
2014-12-01
This paper describes sediment composition at the Terra Nova offshore oil development. The Terra Nova Field is located on the Grand Banks approximately 350 km southeast of Newfoundland, Canada, at an approximate water depth of 100 m. Surface sediment samples (upper 3 cm) were collected for chemical and particle size analyses at the site pre-development (1997) and in 2000-2002, 2004, 2006, 2008 and 2010. Approximately 50 stations have been sampled in each program year, with stations extending from less than 1 km to a maximum of 20 km from source (drill centres) along five gradients, extending to the southeast, southwest, northeast, northwest and east of Terra Nova. Results show that Terra Nova sediments were contaminated with >C10-C21 hydrocarbons and barium-the two main constituents of synthetic-based drilling muds used at the site. Highest levels of contamination occurred within 1 to 2 km from source, consistent with predictions from drill cuttings dispersion modelling. The strength of distance gradients for >C10-C21 hydrocarbons and barium, and overall levels, generally increased as drilling progressed but decreased from 2006 to 2010, coincident with a reduction in drilling. As seen at other offshore oil development sites, metals other than barium, sulphur and sulphide levels were elevated and sediment fines content was higher in the immediate vicinity (less than 0.5 km) of drill centres in some sampling years; but there was no strong evidence of project-related alterations of these variables. Overall, sediment contamination at Terra Nova was spatially limited and only the two major constituents of synthetic-based drilling muds used at the site, >C10-C21 hydrocarbons and barium, showed clear evidence of project-related alternations.
Diffusion phenomenon at the interface of Cu-brass under a strong gravitational field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogata, Yudai; Tokuda, Makoto; Januszko, Kamila
2015-03-28
To investigate diffusion phenomenon at the interface between Cu and brass under a strong gravitational field generated by ultracentrifuge apparatus, we performed gravity experiments on samples prepared by electroplating with interfaces normal and parallel to the direction of gravity. For the parallel-mode sample, for which sedimentation cannot occur thorough the interface, the concentration change was significant within the lower gravity region; many pores were observed in this region. Many vacancies arising from crystal strain due to the strong gravitational field moved into the lower gravity region, and enhanced the atoms mobilities. For the two normal-mode samples, which have interface normalmore » to the direction of gravity, the composition gradient of the brass-on-Cu sample was steeper than that for Cu-on-brass. This showed that the atoms of denser Cu diffuse in the direction of gravity, whereas Zn atoms diffuse in the opposite direction by sedimentation. The interdiffusion coefficients became higher in the Cu-on-brass sample, and became lower in the brass-on-Cu sample. This rise may be related to the behavior of the vacancies.« less
Fractionation of 238U/235U by reduction during low temperature uranium mineralisation processes
NASA Astrophysics Data System (ADS)
Murphy, Melissa J.; Stirling, Claudine H.; Kaltenbach, Angela; Turner, Simon P.; Schaefer, Bruce F.
2014-02-01
Investigations of ‘stable’ uranium isotope fractionation during low temperature, redox transformations may provide new insights into the usefulness of the 238U/235U isotope system as a tracer of palaeoredox processes. Sandstone-hosted uranium deposits accumulate at an oxidation/reduction interface within an aquifer from the low temperature reduction of soluble U(VI) complexes in groundwaters, forming insoluble U(IV) minerals. This setting provides an ideal environment in which to investigate the effects of redox transformations on 238U/235U fractionation. Here we present the first coupled measurements of 238U/235U isotopic compositions and U concentrations for groundwaters and mineralised sediment samples from the same redox system in the vicinity of the high-grade Pepegoona sandstone-hosted uranium deposit, Australia. The mineralised sediment samples display extremely variable 238U/235U ratios (herein expressed as δUCRM145238, the per-mil deviation from the international NBL standard CRM145). The majority of mineralised sediment samples have δUCRM145238 values between -1.30±0.05 and 0.55±0.12‰, spanning a ca. 2‰ range. However, one sample has an unusually light isotopic composition of -4.13±0.05‰, which suggests a total range of U isotopic variability of up to ca. 5‰, the largest variation found thus far in a single natural redox system. The 238U/235U isotopic signature of the mineralised sediments becomes progressively heavier (enriched in 238U) along the groundwater flow path. The groundwaters show a greater than 2‰ variation in their 238U/235U ratios, ranging from δUCRM145238 values of -2.39±0.07 to -0.71±0.05‰. The majority of the groundwater data exhibit a clear systematic relationship between 238U/235U isotopic composition and U concentration; samples with the lowest U concentrations have the lowest 238U/235U ratios. The preferential incorporation of 238U during reduction of U(VI) to U(IV) and precipitation of uranium minerals leaves the groundwaters enriched in 235U, resulting in a progressive shift in 238U/235U towards lighter values in the aqueous phase as U is removed. These data can be modelled by a closed system Rayleigh fractionation model, with a fractionation factor (α, representing the 238U/235U composition of the groundwater relative to the solid uranium minerals) ranging from ∼0.9996 to 1.0000, with the majority of datapoints ranging from α values of 0.9998 to 0.9999. The sense and magnitude of the results of this study imply that 238U/235U fractionation is likely to be controlled by volume-dependent nuclear field shift effects during the reduction of U(VI) to U(IV) during mineralisation processes. These findings support the use of the 238U/235U isotopic system as a tracer to constrain the nature and timing of palaeoredox conditions.
NASA Astrophysics Data System (ADS)
Mallet, Clarisse; Agogué, Hélène; Bonnemoy, Frédérique; Guizien, Katell; Orvain, Francis; Dupuy, Christine
2014-09-01
Resuspended sediment can increase plankton biomass and the growth of bacteria, thus influencing the coastal planktonic microbial food web. But little is known about resuspension itself: is it a single massive change or a whole series of events and how does it affect the quantity and quality of resuspended prokaryotic cells? We simulated the sequential erosion of mud cores to better understand the fate and role of benthic prokaryotes resuspended in the water column. We analyzed the total, attached and free-living prokaryotic cells resuspended, their structure and the activities of their hydrolytic enzymes in terms of the biotic and abiotic factors that affect the composition of microphytobenthic biofilm. Free living prokaryotes were resuspended during the fluff layer erosion phase (for shear velocities below 5 cm · s- 1) regardless of the bed sediment composition. At the higher shear velocities, resuspended prokaryotes were attached to particulate matter. Free and attached cells are thus unevenly distributed, scattered throughout the organic matter (OM) in the uppermost mm of the sediment. Only 10-27% of the total cells initially resuspended were living and most of the Bacteria were Cyanobacteria and Gamma-proteobacteria; their numbers increased to over 30% in parallel with the hydrolytic enzyme activity at highest shear velocity. These conditions released prokaryotic cells having different functions that lie deep in the sediment; the most important of them are Archaea. Finally, composition of resuspended bacterial populations varied with resuspension intensity, and intense resuspension events boosted the microbial dynamics and enzyme activities in the bottom layers of sea water.
NASA Astrophysics Data System (ADS)
Ronowicz, Marta; Kukliński, Piotr; Włodarska-Kowalczuk, Maria
2018-05-01
Kelp forests are complex underwater habitats that support diverse assemblages of animals ranging from sessile filter feeding invertebrates to fishes and marine mammals. In this study, the diversity of invertebrate fauna associated with kelp holdfasts was surveyed in a high Arctic glacial fjord (76 N, Hornsund, Svalbard). The effects of algal host identity (three kelp species: Laminaria digitata, Saccharina latissima and Alaria esculenta), depth (5 and 10 m) and glacier-derived disturbance (three sites with varying levels of mineral sedimentation) on faunal species richness and composition were studied based on 239 collected algal holdfasts. The species pool was mostly made up by three taxa: colonial Bryozoa and Hydrozoa, and Polychaeta. While the all-taxa species richness did not differ between depths, algal hosts and sites, the patterns varied when the two colonial sessile filter-feeding taxa were analysed alone (Hydrozoa and Bryozoa). The Hydrozoa sample species richness and average taxonomic distinctness were the highest at undisturbed sites, whereas Bryozoa species richness was higher in sediment-impacted localities, indicating relative insensitivity of this phylum to the increased level of mineral suspension in the water column. The average taxonomic distinctness of Bryozoa did not vary between sites. The species composition of kelp-associated fauna varied between sites and depths for the whole community and the most dominant taxa (Bryozoa, Hydrozoa). The high load of inorganic suspension and sedimentation did not cause pauperization of kelp holdfast-associated fauna but instead triggered the changes in species composition and shifts between dominant taxonomic groups.
NASA Astrophysics Data System (ADS)
Kastner, Thomas P.; Goñi, Miguel A.
2003-04-01
Analyses of more than 60 sediment samples from the Amazon deep sea fan show remarkably constant terrigenous biomarkers (lignin phenols and cutin acids) and stable carbon isotopic compositions of organic matter (δ13COM) deposited from 10 to 70 ka. Sediments from the nine Amazon deep sea fan channel-levee systems investigated in this study yielded relatively narrow ranges for diagnostic parameters such as organic carbon (OC) normalized total lignin yields (Λ = 3.1 ± 1.1 mg/100 mg OC), syringyl:vanillyl phenol ratios (S/V = 0.84 ± 0.06), cinnamyl:vanillyl phenol ratios (C/V = 0.08 ± 0.02), isomeric abundances of cutin-derived dihydroxyhexadecanoic acid (f10,16-OH = 0.65 ± 0.02), and δ13COM (-27.6% ± 0.6 ‰). Our measurements support the hypothesis that the vegetation of the Amazon Basin did not change significantly during the late Pleistocene, even during the Last Glacial Maximum. Moreover, the compositions obtained from the Amazon deep sea fan are similar to those of modern Amazon River suspended sediments. Such results strongly indicate that the current tropical rainforest vegetation has been a permanent and dominant feature of the Amazon River watershed over the past 70 k.y. Specifically, we found no evidence for the development of large savannas that had been previously postulated as indicators of increased glacial aridity in Amazonia. Climate models need to be modified to account for the uninterrupted input of moisture to the tropical Amazon region over the late Pleistocene Holocene period.
Valorization of unauthorized sea disposal dredged sediments as a road foundation material.
Achour, Raouf; Abriak, Nor-Edine; Zentar, Rachid; Rivard, Patrice; Gregoire, Pascal
2014-08-01
The main objective of this study is to show the ability of fine dredged material (mainly silty material) to be used in road construction project. This paper is divided into three parts. In the first part, the physical, the mineralogical and the mechanical characteristics of the used fine dredged sediments, as well as their chemical composition and environmental impacts are presented. In the second part, the methodology developed to design the road made from dredged fine sediment is developed. The third part of the paper focuses on the presentation of the road construction and the interpretation of analyses made on cores drilled samples from the road and measurements of the deflection of the road. The environmental assessment, based on leaching tests, is also performed at different issues.
NASA Astrophysics Data System (ADS)
Shulga, Natalia; Lobys, Nikolay; Drozdova, Anastasia; Peresypkin, Valery
2014-05-01
The present study was carried out in Nha Trang Bay (Southern Vietnam, the South China Sea). The samples of water, suspended matter and bottom sediments were collected in summer 2010-2012 in section from the estuary of the Khai River to the marine part of the bay. The samples were analyzed in the stationary lab of IO RAS, Moscow, by TOC-V-CPH, GC/MS and pirolysis methods. We report here the novel data on sources, transformation and burial of OM coming from the Khai river waters. The investigation is focused on ontent and distribution of suspended matter (SM) in the estuary, dissolved organic carbon (DOC), particulated organic carbon (POC); molecular and group composition of hydrocarbons (n-alkanes, steranes, hopanes) and mercury content in water, SM and bottom sediments. It was found that concentration of POC and SM decrease in the Nha Trang Bay waters from estuary to the open part of the bay. However, major changes in the concentration of SM and POC belong to the zone of salinity gradient.DOC behavior is more stable throughout the study area. Organic-geochemical indicators estimation allowed recognition of genesis and transformation degree of organic matter in the study area. The estuary is characterized by mixed genesis of SM with a predominance of allochthonous organic matter whereas outlying parts of the Nha Trang bay are characterized by autochthonous OM. Composition of OM in sediments reflects regularities identified above, despite of the interannual and seasonal variability in the study area. The investigation reveals a predominance of terrestrial organic matter in the silt sediments of the estuary, transported by the Khai river. Distribution of OM in sediments of marine part of the bay is mosaic, with a predominance of planktonogenic, bacterial or terrestrial input at their complex combination. Local anthropogenic pollution as well as an impact of industrial city effluents are found in river- and seaport areas. According to obtained data sedimentation rate in Nha Trang bay area is 36-118 g/m^2/day in summer season. Sedimentary TOC (%) in samples varies in the range 0.50 - 1.95 in 2010, 0.22 - 1.84 in 2011 and 0.27 - 1.94 in 2012. This variations associated with differences in grain size distribution of sediments and intensity of anthropogenic influence. Mercury (Hg) concentration in the bottom sediments of aquatic systems varies from 2 to 108 ng/g of dry weight. Low concentration of the metal is typical for sediments, where OM is mainly represented by remains of aquatic organisms, while high concentration are common for river- and seaport areas with mainly terrestrial origin. Our study shows terrigenous organic matter is an important agent in the transfer of mercury from land to water ecosystems and Hg migrates in dissolved forms mainly. The reported study was supported by RFBR, research project No:14-05-31059-mol_a.
Mantle End-Members: The Trace Element Perspective
NASA Astrophysics Data System (ADS)
Willbold, M.; Stracke, A.; Hofmann, A. W.
2004-12-01
On the basis of their isotopic composition, ocean island basalts (OIB) have been classified into three to four end-members; HIMU with the most radiogenic Pb isotope ratios of OIB and Enriched Mantle 1 and 2 (EM1, EM2) with less radiogenic but variable Pb isotope and highly radiogenic Sr isotope signatures. It has also been argued that each of these isotopic families has common trace element characteristics that distinguish them from one another and so substantiated this classification. Here, we present new high-precision trace element data for samples from St. Helena, Tristan da Cunha and Gough in the Atlantic Ocean. The overall data-set is augmented by OIB data from the GEOROC database and includes data from all major isotopic families (HIMU: St. Helena, Mangaia, Tubuai, and Rururtu; EM1: Tristan da Cunha, Gough, Pitcairn; and EM2: Samoa, Marquesas, and Society). For each locality we use only islands defining the most extreme isotopic compositions. The entire data-set has been screened to exclude altered and highly differentiated samples. HIMU basalts have a very uniform trace element composition. Compared to HIMU-type basalts, EM-type basalts are enriched in Rb, Ba, and K, and depleted in U, Nb, and Ta, relative to La. Different EM-type OIBs from the same isotopic family (EM1 or EM2), have distinct trace element characteristics that can ultimately only be caused by different source compositions. For example, Ba/Th ratios in samples from both Tristan da Cunha (EM1) and Samoa (EM2) are similarly high (ca. 110) whereas Ba/Th ratios in samples from Pitcairn (EM1) and Society (EM2) samples are consistently lower (ca. 70). Thus on the basis of their trace element composition, EM-type OIB cannot be classified into EM1 and EM2 type basalts, nor can any other grouping be identified. The remarkably uniform isotopic and trace element composition of HIMU-type basalts suggests derivation from a single common source reservoir, most likely subduction-modified oceanic crust. Although there are some trace element characteristics common to all EM-type basalts, which distinguish them from HIMU-type basalts (e.g. uniformly high Th/U ratios of 4.7 ± 0.3, and enrichment in Cs-U), each suite of EM-type basalts has unique trace element signatures that distinguish them from any other suite of EM-type basalts. This is especially obvious when comparing the trace element composition of EM basalts from one isotopic family, for example EM1-type basalts from Tristan, Gough and Pitcairn. Consequently, the trace element systematics of EM-type basalts suggest that there are many different EM-type sources, whereas the isotopic composition of EM-type basalts suggest derivation from two broadly similar sources, i.e. EM1 and EM2. The large variability in subducting sediments with respect to both parent-daughter (e.g. Rb/Sr, Sm/Nd, U/Pb, Th/Pb,...) and other trace element ratios makes it unlikely that there are reproducible mixtures of sediments leading to two different isotopic evolution paths (EM1 and EM2) while preserving a range of incompatible element contents for each isotopic family, as would be required to reconcile the isotopic and trace element characteristics of EM-type basalts. Although this does not a priori argue against sediments as possible source components for OIB, it does argue against two distinct groups of sediments as EM1 and EM2 sources. Further characterization of sources with the same general origin (e.g. a certain type of crust or lithosphere) or identification of processes leading to reservoirs with similar parent-daughter ratio characteristics but different incompatible trace element contents could resolve the apparent conundrum.
Delaine, Maxence; Fernández, Leonardo D; Armynot du Châtelet, Eric; Recourt, Philippe; Potdevin, Jean-Luc; Mitchell, Edward A D; Bernard, Nadine
2016-09-01
Cryptotephra (particles <125μm) is a key record for monitoring past and current volcanic activity. However, its extraction from the host sediment and analysis is often long and difficult because of its small size. Finding a simple method to extract cryptotephra from environmental samples would therefore make its analysis much easier. We hypothesized that arcellinid testate amoebae may hold such a potential. These free-living shelled protists are among the earliest microorganisms to colonize volcanic tephra, and build their shell by agglutinating minerals from their environment. We analyzed by X-ray Spectrometry the mineral signature of tephra from the 2011 Puyehue-Cordon Caulle Volcanic Complex (Chile) eruption ash fallout and compared it to that of the shells of 51 individual testate amoebae (three individuals from each of 17 species) from 13 samples collected at different distances from the active vent. The mineral composition of particles within shells closely matched that of similar size class particles from their environment. The capacity of testate amoebae to randomly use mineral grains from their environment makes it possible to use their shells to assess the mineral composition of cryptotephra from soil, peat or sediment samples. Testate amoebae therefore represent the microbial world's version of Cinderella's helping pigeons. Copyright © 2016 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Briggs, Christian; Shjegstad, Sonia M.; Silva, Jeff A. K.; Edwards, Margo H.
2016-06-01
There is a strong need to understand the behavior of chemical warfare agent (CWA) at underwater discarded military munitions (DMM) sites to determine the potential threat to human health or the environment, yet few studies have been conducted at sites in excess of 250 m, the depth at which most U.S. chemical munitions were disposed. As part of the Hawai'i Undersea Military Munitions Assessment (HUMMA), sediments adjacent to chemical and conventional DMM at depths of 400-650 m were sampled using human occupied vehicles (HOVs) in order to quantify the distribution of CWA, energetics, and select metals. Sites in the same general area, with no munitions within 50 m in any direction were sampled as a control. Sulfur mustard (HD) and its degradation product 1,4-dithiane were detected at each CWA DMM site, as well as a single sample with the HD degradation product 1,4-thioxane. An energetic compound was detected in sediment to a limited extent at one CWA DMM site. Metals common in munitions casings (i.e., Fe, Cu, and Pb) showed similar trends at the regional and site-wide scales, likely reflecting changes in marine sediment deposition and composition. This study shows HD and its degradation products can persist in the deep-marine environment for decades following munitions disposal.
NASA Astrophysics Data System (ADS)
Zhu, R.; Lin, Y.-S.; Lipp, J. S.; Meador, T. B.; Hinrichs, K.-U.
2014-09-01
Amino sugars are quantitatively significant constituents of soil and marine sediment, but their sources and turnover in environmental samples remain poorly understood. The stable carbon isotopic composition of amino sugars can provide information on the lifestyles of their source organisms and can be monitored during incubations with labeled substrates to estimate the turnover rates of microbial populations. However, until now, such investigation has been carried out only with soil samples, partly because of the much lower abundance of amino sugars in marine environments. We therefore optimized a procedure for compound-specific isotopic analysis of amino sugars in marine sediment, employing gas chromatography-isotope ratio mass spectrometry. The whole procedure consisted of hydrolysis, neutralization, enrichment, and derivatization of amino sugars. Except for the derivatization step, the protocol introduced negligible isotopic fractionation, and the minimum requirement of amino sugar for isotopic analysis was 20 ng, i.e., equivalent to ~8 ng of amino sugar carbon. Compound-specific stable carbon isotopic analysis of amino sugars obtained from marine sediment extracts indicated that glucosamine and galactosamine were mainly derived from organic detritus, whereas muramic acid showed isotopic imprints from indigenous bacterial activities. The δ13C analysis of amino sugars provides a valuable addition to the biomarker-based characterization of microbial metabolism in the deep marine biosphere, which so far has been lipid oriented and biased towards the detection of archaeal signals.
Spawning bed sedimentation studies in northern California streams
James W. Burns
1970-01-01
Changes in the size composition of spawning bed materials in six coastal streams were monitored for 3 years to determine the effects of logging on the habitat of silver salmon (Oncorhynchus kisutch) and trout (Salmo gairdnerii gairdnerii and S. clarkii clarkii). Four test streams were sampled before, during and after logging. Two streams in unlogged watersheds and...
Foster, A.L.; Munk, L.; Koski, R.A.; Shanks, Wayne C.; Stillings, L.L.
2008-01-01
The relations among geochemical parameters and sediment microbial communities were examined at three shoreline sites in the Prince William Sound, Alaska, which display varying degrees of impact by acid-rock drainage (ARD) associated with historic mining of volcanogenic massive sulfide deposits. Microbial communities were examined using total fatty acid methyl esters (FAMEs), a class of compounds derived from lipids produced by eukaryotes and prokaryotes (bacteria and Archaea); standard extraction techniques detect FAMEs from both living (viable) and dead (non-viable) biomass, but do not detect Archaeal FAMEs. Biomass and diversity (as estimated by FAMEs) varied strongly as a function of position in the tidal zone, not by study site; subtidal muds, Fe oxyhydroxide undergoing biogenic reductive dissolution, and peat-rich intertidal sediment had the highest values. These estimates were lowest in acid-generating, intertidal zone sediment; if valid, the estimates suggest that only one or two bacterial species predominate in these communities, and/or that Archeal species are important members of the microbial community in this sediment. All samples were dominated by bacterial FAMEs (median value >90%). Samples with the highest absolute abundance of eukaryotic FAMEs were biogenic Fe oxyhydroxides from shallow freshwater pools (fungi) and subtidal muds (diatoms). Eukaryotic FAMEs were practically absent from low-pH, sulfide-rich intertidal zone sediments. The relative abundance of general microbial functional groups such as aerobes/anaerobes and gram(+)/gram(-) was not estimated due to severe inconsistency among the results obtained using several metrics reported in the literature. Principal component analyses (PCAs) were performed to investigate the relationship among samples as separate functions of water, sediment, and FAMEs data. PCAs based on water chemistry and FAMEs data resulted in similar relations among samples, whereas the PCA based on sediment chemistry produced a very different sample arrangement. Specifically, the sediment parameter PCA grouped samples with high bulk trace metal concentration regardless of whether the metals were incorporated into secondary precipitates or primary sulfides. The water chemistry PCA and FAMEs PCA appear to be less prone to this type of artifact. Signature lipids in sulfide-rich sediments could indicate the presence of acid-tolerant and/or acidophilic members of the genus Thiobacillus or they could indicate the presence of SO4-reducing bacteria. The microbial community documented in subtidal and offshore sediments is rich in SRB and/or facultative anaerobes of the Cytophaga-Flavobacterium group; both could reasonably be expected in PWS coastal environments. The results of this study provide evidence for substantial feedback between local (meter to centimeter-scale) geochemical variations, and sediment microbial community composition, and show that microbial community signatures in the intertidal zone are significantly altered at sites where ARD drainage is present relative to sites where it is not, even if the sediment geochemistry indicates net accumulation of ARD-generated trace metals in the intertidal zone. ?? 2007 Elsevier Ltd. All rights reserved.
Snyder, Richard A; Ederington-Hagy, Melissa; Hileman, Fredrick; Moss, Joseph A; Amick, Lauren; Carruth, Rebecca; Head, Marie; Marks, Joel; Tominack, Sarah; Jeffrey, Wade H
2014-12-15
The Florida Panhandle continental shelf environment was exposed to oil from the BP oil well failure in the Gulf of Mexico during 2010. Floating mats of oil were documented by satellite, but the distribution of dissolved components of the oil in this region was unknown. Shipek® grab samples of sediments were taken during repeated cruises between June 2010 and June 2012 to test for selected polycyclic aromatic hydrocarbons (PAHs) as indicators of this contamination. Sediments were collected as composite samples, extracted using standard techniques, and PAHs were quantified by GC/MS-SIM. PAHs in samples from the continental slope in May 2011 were highest near to the failed well site and were reduced in samples taken one year later. PAHs from continental shelf sediments during the spill (June 2010) ranged from 10 to 165 ng g(-1). Subsequent cruises yielded variable and reduced amounts of PAHs across the shelf. The data suggest that PAHs were distributed widely across the shelf, and their subsequent loss to background levels suggests these compounds were of oil spill origin. PAH half-life estimates by regression were 70-122 days for slope and 201 days for shelf stations. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Raquin, Aude; Moreira, Manuel Alexis; Guillon, Fabien
2008-09-01
An outstanding problem in understanding the origin of the gaseous phase, particularly the rare gas compositions in magmatic rocks, is the ubiquitous atmospheric component in bulk rock samples, and whether this atmospheric component is a late stage contamination of the sample, or a recycled component though sediments or altered oceanic crust. In the present study we address this problem by analyzing single vesicles from the "popping rock 2∏D43" sample from the Mid-Atlantic Ridge using a UV laser ablation system. We have determined both elemental and isotopic compositions of He, Ne and Ar in single vesicles as well as Kr and Xe abundances. All vesicles analyzed have an isotopic composition identical to the referred degassed mantle value estimated from this same sample, despite analyzing vesicles from a wide size distribution. The atmospheric component, which is always detected in bulk samples by crushing or heating, was not detected in the single vesicles. This implies that the recycling of atmospheric noble gases in the mantle cannot explain the air-like component of this sample. The addition of the atmospheric component must occur either during the eruption, or after sample recovery.
Multivariate statistical analysis of stream-sediment geochemistry in the Grazer Paläozoikum, Austria
Weber, L.; Davis, J.C.
1990-01-01
The Austrian reconnaissance study of stream-sediment composition — more than 30000 clay-fraction samples collected over an area of 40000 km2 — is summarized in an atlas of regional maps that show the distributions of 35 elements. These maps, rich in information, reveal complicated patterns of element abundance that are difficult to compare on more than a small number of maps at one time. In such a study, multivariate procedures such as simultaneous R-Q mode components analysis may be helpful. They can compress a large number of variables into a much smaller number of independent linear combinations. These composite variables may be mapped and relationships sought between them and geological properties. As an example, R-Q mode components analysis is applied here to the Grazer Paläozoikum, a tectonic unit northeast of the city of Graz, which is composed of diverse lithologies and contains many mineral deposits.
NASA Astrophysics Data System (ADS)
Mashimo, T.; Iguchi, Y.; Bagum, R.; Sano, T.; Sakata, O.; Ono, M.; Okayasu, S.
2008-02-01
Ultra-high gravitational field (Mega-gravity field) can promote sedimentation of atoms (diffusion) even in solids, and is expected to form a compositionally-graded structure and/or nonequilibrium phase in multi-component condensed matter. We had achieved sedimentation of substitutional solute atoms in miscible systems (Bi-Sb, In-Pb, etc.). In this study, a mega-gravity experiment at high temperature was performed on a thin-plate sample (0.7 mm in thickness) of the intermetallic compound Bi3Pb7. A visible four-layer structure was produced, which exhibited different microscopic structures. In the lowest-gravity region layer, Bi phase appeared. In the mid layers, a compositionally-graded structure was formed, with differences observed in the powder X-ray diffraction patterns. Such a multi-layer structure is expected to exhibit unique physical properties such as superconductivity.
NASA Astrophysics Data System (ADS)
Hollaus, Lisa-Maria; Khan, Samiullah; Schelker, Jakob; Ejarque, Elisabet; Battin, Tom; Kainz, Martin
2016-04-01
Lake sediments are used as sentinels of changes in organic matter composition and dynamics within lakes and their catchments. In an effort to investigate how past and recent hydrological extreme events have affected organic matter composition in lake sediments, we investigated the biogeochemical composition of sediment cores and settling particles, using sediment traps in the pre-alpine, oligotrophic Lake Lunz, Austria. We assessed annual sedimentation rates using 137Cs and 210Pb, time integrated loads of settling particles, analyze stable carbon (δ13C) and nitrogen (δ15N) isotopes to track changes of carbon sources and trophic compositions, respectively, and use source-specific fatty acids as indicators of allochthonous, bacterial, and algal-derived organic matter. Preliminary results indicate that settling particles of Lake Lunz (33 m depth) contain high algae-derived organic matter, as assessed by long-chain polyunsaturated fatty acids (LC-PUFA), indicating low degradation of such labile organic matter within the water column of this lake. However, LC-PUFA decreased rapidly in sediment cores below the sediment-water interface. Concentrations of phosphorous remained stable throughout the sediment cores (40 cm), suggesting that past changes in climatic forcing did not alter the load of this limiting nutrient in lakes. Ongoing work reveals dramatic biotic changes within the top layers of the sediment cores as evidenced by high numbers of small-bodied cladocerans (e.g., Bosmina) and large-bodied zooplankton (e.g., Daphnia) are only detected at lower sediment layers. Current research on these lake sediments is aimed at investigating how organic matter sources changed during the past century as a result of recorded weather changes.
Biomarkers in sedimentary sequences: Indicators to track sediment sources over decadal timescales
NASA Astrophysics Data System (ADS)
Chen, F. X.; Fang, N. F.; Wang, Y. X.; Tong, L. S.; Shi, Z. H.
2017-02-01
Long-term sedimentary sequence research can reveal how human activities and climate interact to affect catchment vegetation, flooding, soil erosion, and sediment sources. In this study, a biomarker sediment fingerprinting technique based on n-alkanes was used to identify long timescale (decadal) sediment sources in a small agricultural catchment. However, the highly saline carbonate environment and bacterial and algal activities elevated the levels of even-chain n-alkanes in the sediments, leading to an obvious even-over-odd predominance of short and middle components (C15-C26). Therefore, by analyzing three odd, long-chain n-alkanes (C27, C29 and C31) in 27 source samples from cropland, gully, and steep slope areas and one sediment sequence (one cultivated horizon and 47 flood couplets), a composite fingerprinting method and genetic algorithm optimization were applied to find the optimal source contributions to sediments. The biomarker fingerprinting results demonstrated that the primary sediment source is gullies, followed by cropland and steep slope areas. The average median source contributions associated with 47 flood couples collected from sediment core samples ranged from 0 ± 0.1% to 91.9 ± 0.4% with an average of 45.0% for gullies, 0 ± 0.4% to 95.6 ± 1.6% with an average of 38.2% for cropland, and 0 ± 2.1% to 60.7 ± 0.4% with an average of 16.8% for steep slopes. However, because farmers were highly motivated to manage the cropland after the 1980s, over half the sediments were derived from cropland in the 1980s. Biomarkers have significant advantages in the identification of sediments derived from different landscape units (e.g., gully and steep slope areas), and n-alkanes have considerable potential in high-resolution research of environmental change based on soil erosion in the hilly Loess Plateau region.
NASA Astrophysics Data System (ADS)
McDuffee, Kelsey E.; Eglinton, Timothy I.; Sessions, Alex L.; Sylva, Sean; Wagner, Thomas; Hayes, John M.
2004-10-01
Long-chain, odd-carbon-numbered C25 to C35 n-alkanes are characteristic components of epicuticular waxes produced by terrestrial higher plants. They are delivered to aquatic systems via eolian and fluvial transport and are preserved in underlying sediments. The isotopic compositions of these products can serve as records of past vegetation. We have developed a rapid method for stable carbon isotopic analyses of total plant-wax n-alkanes using a novel, moving-wire system coupled to an isotope-ratio mass spectrometer (MW-irMS). The n-alkane fractions are prepared from sediment samples by (1) saponification and extraction with organic solvents, (2) chromatographic separation using silica gel, (3) isolation of straight-chain carbon skeletons using a zeolite molecular sieve, and (4) oxidation and removal of unsaturated hydrocarbons with RuO4. Short-chain n-alkanes of nonvascular plant origin (
NASA Astrophysics Data System (ADS)
McDuffee, Kelsey E.; Eglinton, Timothy I.; Sessions, Alex L.; Sylva, Sean; Wagner, Thomas; Hayes, John M.
2004-10-01
Long-chain, odd-carbon-numbered C25 to C35n-alkanes are characteristic components of epicuticular waxes produced by terrestrial higher plants. They are delivered to aquatic systems via eolian and fluvial transport and are preserved in underlying sediments. The isotopic compositions of these products can serve as records of past vegetation. We have developed a rapid method for stable carbon isotopic analyses of total plant-wax n-alkanes using a novel, moving-wire system coupled to an isotope-ratio mass spectrometer (MW-irMS). The n-alkane fractions are prepared from sediment samples by (1) saponification and extraction with organic solvents, (2) chromatographic separation using silica gel, (3) isolation of straight-chain carbon skeletons using a zeolite molecular sieve, and (4) oxidation and removal of unsaturated hydrocarbons with RuO4. Short-chain n-alkanes of nonvascular plant origin (
NASA Astrophysics Data System (ADS)
Glok Galli, Melisa; Damons, Matthew E.; Siwawa, Sitembiso; Bocanegra, Emilia M.; Nel, Jacobus M.; Mazvimavi, Dominic; Martínez, Daniel E.
2017-01-01
The aim of this work is to characterize the isotope composition of water (2H and 18O) in order to establish the relationship between fractured and detritic aquifers in similar hydrological environments located at both sides of the Atlantic Ocean. The Mar del Plata zone, placed in the Argentine Buenos Aires province in South America, and the Rawsonville and Sandspruit river catchment areas, situated in the Western Cape province in South Africa were compared. Rainwater and groundwater samples from fractured and detritic aquifers were analyzed through laser spectroscopy. In both Argentina and South African study sites, stable isotopes data demonstrate an aquifers recharge source from rainfall. For the Mar del Plata region, two different groups of detritic aquifer's samples with distinct recharge processes can be identified due to the close relationship existing between the present hydrogeological environments, the aquifer's grain size sediments and the isotopes contents: one representing rapid infiltration in aquifer sediments of the creeks' palaeobeds and hills zones (sandy or silt sandy sediments) and the other with slow infiltration of evaporated water in plain zones with an aquitard behavior. In the last group, the evaporation process occurs previous infiltration or in the aquifer's non-saturated zone, because of the existence of very low topographic gradients and fine-grained sediments. The evaporation phenomenon is not evident in the Sandspruit river catchment site's detritic aquifer, because its sandy composition allows a faster infiltration rate than in the loess that compounds the Pampeano aquifer in the interfluves zones of the Argentinian study area.
The effect of heavy metal contamination on the bacterial community structure at Jiaozhou Bay, China.
Yao, Xie-Feng; Zhang, Jiu-Ming; Tian, Li; Guo, Jian-Hua
In this study, determination of heavy metal parameters and microbiological characterization of marine sediments obtained from two heavily polluted sites and one low-grade contaminated reference station at Jiaozhou Bay in China were carried out. The microbial communities found in the sampled marine sediments were studied using PCR-DGGE (denaturing gradient gel electrophoresis) fingerprinting profiles in combination with multivariate analysis. Clustering analysis of DGGE and matrix of heavy metals displayed similar occurrence patterns. On this basis, 17 samples were classified into two clusters depending on the presence or absence of the high level contamination. Moreover, the cluster of highly contaminated samples was further classified into two sub-groups based on the stations of their origin. These results showed that the composition of the bacterial community is strongly influenced by heavy metal variables present in the sediments found in the Jiaozhou Bay. This study also suggested that metagenomic techniques such as PCR-DGGE fingerprinting in combination with multivariate analysis is an efficient method to examine the effect of metal contamination on the bacterial community structure. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinza, M.R.; Mayhew, H.L.; Karle, L.M.
Richmond Harbor is on the eastern shoreline of central San Francisco Bay and its access channels and several of the shipping berths are no longer wide or deep enough to accommodate modem deeper-draft vessels. The Water Resources Development Act of 1986 (PL99-662) authorized the US Army Corps of Engineers (USACE), San Francisco District to deepen and widen the navigation channels in Richmond Harbor. Several options for disposal of the material from this dredging project are under consideration by USACE: disposal within San Francisco Bay, at open-ocean disposal sites, or at uplands disposal sites. Purpose of this study was to conductmore » comprehensive evaluations, including chemical, biological, and bioaccumulation testing of sediments in selected areas of Richmond Harbor. This information was required by the Environmental Protection Agency (EPA) and USACE. Battelle/Marine Sciences Laboratory collected 20 core samples, both 4-in. and 12-in., to a project depth of -40 ft mean lower low water (MLLW) (-38 ft MLLW plus 2 ft of overdepth) using a vibratory-hammer core. These 20 field samples were combined to form five test composites plus an older bay mud (OBM) composite that were analyzed for physical/chemical parameters, biological toxicity, and tissue chemistry. Solid-phase tests were conducted with the amphipod, Rhepoxynius abronius; the clam, Macoma nasuta; and the polychaete worm, Nephtys caecoides. Suspended-particulate-phase (SPP) tests were conducted with the sanddab, Citharichthys stigmaeus; the mysid, Holmesimysis costata; and the bivalve, Mytilus galloprovincialis. Bioaccumulation of contaminants was measured in tissues of Macoma nasuta and Nereis virens. Sediments from one ocean reference sediment, and two in-bay reference sediments, were tested concurrently. Results from analysis of the five test treatments were statistically compared with the reference sediment R-OS in the first five sections of this report.« less
NASA Astrophysics Data System (ADS)
Tesi, T.; Langone, L.; Ravaioli., M.; Giglio, F.; Capotondi, L.
2012-12-01
An instrumented mooring line with sediment traps, current meters and recorders of temperature and conductivity was deployed just south of the Antarctic Polar Front (63° 26‧ S, 178° 03‧E; water depth 4400 m) from January 9th 1999 to January 10th 2000. Sediment traps at 900 and 3700 m had a single large cup to collect particulate material throughout the 1-year study whereas time-series sediment traps were used to characterize the temporal variability at 1300 and 2400 m. Samples were characterized via several parameters including total mass flux, elemental composition (organic carbon, total nitrogen, biogenic silica, and calcium carbonate), concentration of metals (aluminum, iron, barium, and manganese), 210Pb activity, and foraminifera identification. High vertical fluxes of biogenic particles were observed in both summer 1999 and 2000 as a result of seasonal algal blooms associated with sea ice retreat and water column stratification. During autumn and winter, several high energy events occurred and resulted in advecting resuspended biogenic particles from flat-topped summits of the Pacific Antarctic Ridge. Whereas the distance between seabed and uppermost sediment traps was sufficient to avoid lateral advection processes, resuspension was significant in the lowermost sediment traps accounting for ~ 60 and ~ 90% of the material caught at 2400 and 3700 m, respectively. Although resuspended material showed an elemental composition relatively similar to vertical summer fluxes, samples collected during high energy events contained benthic foraminifera and exhibited significantly higher 210Pb activity indicating a longer residence time in the water column. In addition, during quiescent periods characterized by low mass fluxes, the content of lithogenic particles increased at the expense of phytodetritus indicating the influence of material advected through the benthic nepheloid layer. Organic matter content was particularly high during these periods and showed statistically significant linear correlations with metals suggesting adsorption of organic coatings onto the mineral surface of lithogenic particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, L.L.; Repeta, D.J.
1994-10-01
The distributions of pyropheophorbide-a steryl esters in one-year deployments of sediment traps at two locations in the Black Sea are described. In nearly all trap samples, phorbin steryl esters (PSEs) contribute a significant portion of the total phorbin flux. The relative abundances of sterols esterified to pyropheophorbide-a varied throughout the year, and the authors suggest these changes result from the observed seasonal variation of phytoplankton species in the overlying water column. The distribution of free sterols in a one-year composite sediment trap sample closely approximates the distribution of sterols derived from the hydrolysis of sedimentary PSEs collected at an adjacentmore » site. From these results, they suggest that the distribution of sedimentary PSE sterols provides a record of sterol deposition to the sediment-water interface. Esterification of sterols to pyropheophorbide-a apparently prevents the preferential removal of 4-desmethyl sterols relative to 4-methyl sterols, and the reduction of stenols to stanols during degradation. Analysis of PSEs in a gravity core covering the last 8-10 Kyr shows that the abundance and distribution of PSEs change with downcore variations in sedimentology. Detailed analysis of PSEs in sediments may, therefore, provide a means to evaluate paleooceanographic changes in phytoplankton community structure and sterol early diagenesis. The synthesis, NMR, CI-MS, and visible spectroscopic properties of four abundance PSEs found in the Black Sea are also described.« less
Sun, Ya-jun; Wang, Tie-yu; Peng, Xia-wei; Wang, Pei
2015-07-01
In order to reveal the relationship between Perfluoroalkyl substances (PFASs) contamination and the bacterial community composition, surface sediment samples were collected along the Xiaoqing River in Shandong Province in April and July 2014 (XQ1-XQ10), where many PFASs manufacturers were located. PFASs were quantified by HPLC/MS-MS, related environmental factors affecting the microbial community structure were measured, and the microbial community structure in surface sediments was measured by the second-generation sequencing technology Illumina MiSeq. The results not only revealed the degree of PFASs pollution in the sediments of Xiaoqing River, but also illustrated the relationship between PFASs pollution and the microbial community structure. Among the twelve kinds of PFASs detected in this study, PFOA was the predominant compound, and the highest PFOA concentrations were detected in the sample of XQ5 (April: 456. 2 ng. g-1; July: 748.7 ng . g-1) located at the downstream of Xiaoqing River with many fluoropolymer producing facilities. PFOA contamination was the main factor affecting the microbial community structure in April, accordingly community richness and evenness were significantly negatively correlated with PFOA levels. The abundance of Thiobacillus increased with the increasing PFOA concentration in the sediment PFOA. This suggested that Thiobacillus was sensitive to PFOA pollution and might be the potential indicator to reveal the degree of PFOA pollution in sediment. When the concentrations of PFOA were below 100 ng . g-1, no significant effects on the microbial community structure were observed.
Effects of algal-derived carbon on sediment methane ...
Nutrient loading is known to have adverse consequences for aquatic ecosystems, particularly in the form of algal blooms that may result. These blooms pose problems for humans and wildlife, including harmful toxin release, aquatic hypoxia and increased costs for water treatment. Another potential disservice resulting from algal blooms is the enhanced production of methane (CH4), a potent greenhouse gas, in aquatic sediments. Laboratory experiments have shown that algal biomass additions to sediment cores increase rates of CH4 production, but it is unclear whether or not this effect occurs at the ecosystem scale. The goal of this research was to explore the link between algal-derived carbon and methane production in the sediment of a eutrophic reservoir located in southwest Ohio, using a sampling design that capitalized on spatial and temporal gradients in autochthonous carbon input to sediments. Specifically, we aimed to determine if the within-reservoir gradient of sediment algal-derived organic matter and sediment CH4 production rates correlate. This was done by retrieving sediment cores from 15 sites within the reservoir along a known gradient of methane emission rates, at two separate time points in 2016: late spring before the sediments had received large amounts of algal input and mid-summer after algal blooms had been prevalent in the reservoir. Potential CH4 production rates, sediment organic matter source, and microbial community composition were charac
Perryman, Shane E; Rees, Gavin N; Walsh, Christopher J; Grace, Michael R
2011-05-01
The export of nitrogen from urban catchments is a global problem, and denitrifying bacteria in stream ecosystems are critical for reducing in-stream N. However, the environmental factors that control the composition of denitrifying communities in streams are not well understood. We determined whether denitrifying community composition in sediments of nine streams on the eastern fringe of Melbourne, Australia was correlated with two measures of catchment urban impact: effective imperviousness (EI, the proportion of a catchment covered by impervious surfaces with direct connection to streams) or septic tank density (which affects stream water chemistry, particularly stream N concentrations). Denitrifying community structure was examined by comparing terminal restriction fragment length polymorphisms of nosZ genes in the sediments, as the nosZ gene codes for nitrous oxide reductase, the last step in the denitrification pathway. We also determined the chemical and physical characteristics of the streams that were best correlated with denitrifying community composition. EI was strongly correlated with community composition and sediment physical and chemical properties, while septic tank density was not. Sites with high EI were sandier, with less fine sediment and lower organic carbon content, higher sediment cations (calcium, sodium and magnesium) and water filterable reactive phosphorus concentrations. These were also the best small-scale environmental variables that explained denitrifying community composition. Among our study streams, which differed in the degree of urban stormwater impact, sediment grain size and carbon content are the most likely drivers of change in community composition. Denitrifying community composition is another in a long list of ecological indicators that suggest the profound degradation of streams is caused by urban stormwater runoff. While the relationships between denitrifying community composition and denitrification rates are yet to be unequivocally established, landscape-scale indices of environmental impact such as EI may prove to be useful indicators of change in microbial communities.
NASA Astrophysics Data System (ADS)
Újvári, Gábor; Klötzli, Urs
2015-07-01
Loess sediments in Austria deposited ca. 30-20 ka ago yield different zircon age signatures for samples collected around Krems (SE Bohemian Massif; samples K23 and S1) and Wels (halfway between the Bohemian Massif and the Eastern Alps; sample A16). Cathodoluminescence (CL) imaging reveals both old, multistage zircons with complex growth histories and inherited cores, and young, first-cycle magmatic zircons. Paleoproterozoic ages between 2,200 and 1,800 Ma (K23 and S1), an age gap of 1,800-1,000 Ma for S1 and abundant Cadomian grains, indicate NW African/North Gondwanan derivation of these zircons. Also, A16 yields ages between 630 and 600 Ma that can be attributed to "Pan-African" orogenic processes. Significant differences are seen for the <500 Ma part of the age spectra with major age peaks at 493-494 and 344-335 Ma (K23 and S1), and 477 and 287 Ma (A16). All three samples show negative initial ɛHf signatures (-25 to -10, except one grain with +9.4) implying zircon crystallization from magmas derived by recycling of older continental crust. Hf isotopic compositions of 330- to 320-Ma-old zircons from S1 and K23 preclude a derivation from Bavarian Forest granites and intermediate granitoids. Rather, all the data suggest strong contributions of eroded local rocks (South Bohemian pluton, Gföhl unit) to loess material at the SE edge of the Bohemian Massif (K23 and S1) and sourcing of zircons from sediment donor regions in the Eastern Alps for loess at Wels (A16). We tentatively infer primary fluvial transport and secondary eolian reworking and re-deposition of detritus from western/southwestern directions. Finally, our data highlight that loess zircon ages are fundamentally influenced by fluvial transport, its directions, the interplay of sediment donor regions through the mixing of detritus and zircon fertility of rocks, rather than Paleowind directions.
NASA Astrophysics Data System (ADS)
Cho, P. G.; Vidal, E.; Paek, J. H.; Borsook, A.; Lee, W.; Wu, M. S.; Ponton, C.; Galy, V.; Feakins, S. J.
2017-12-01
Our research aims to understand past climatic variability in the monsoon-influenced Ganges-Brahmaputra catchment as recorded by plant wax molecules exported and sequestered in the sediments of the Bengal Fan. Samples from the late Miocene were selected from cores retrieved by the IODP (International Ocean Discovery Program) Expedition 354 that recently drilled the central Bengal Fan along a transect at 8°N. Fan sedimentation includes sand, silt, and clay mostly derived from the Himalayan range via turbiditic transport within the Bengal fan. Sedimentation is highly episodic in the fan, but a transect of drilled sites provides a record of terrigenous sediment exported and buried over the last 20 million years. A team of researchers at the University of Southern California worked to collectively process 468 samples for compound specific biomarker identification and quantification. The samples derive from Site U1451 and U1455 ranging from 0 to 1097m depth (CSF-A). Total organic carbon ranges from 0.04-0.84%. To date, 300 samples have been solvent-extracted and prepared for plant wax analyses. Long chain n-alkanoic acids and n-alkanes were identified and quantified using GC-MS and GC-FID, respectively. In the samples quantified so far, we find ΣC24-34 n-alkanoic acid concentrations from 0.07-14.16 μg/g of dry sediment and ΣC25-35 n-alkanes from 0.04-4.61 μg/g. Concentrations of C30 n-alkanoic acid range from 0.01-1.92 μg/g of dry sediment and of C33 n-alkane from <0.01-0.65 μg/g. The molecular abundance distributions of both compound-classes were found to be diagnostic of a terrestrial higher plant source. Additionally, the molecular composition of the total lipid extract was analyzed at the Woods Hole Oceanographic Institution using a GC-TOF-MS. Overall, these extracts are dominated by plant-wax compounds and other diagnostic terrestrial molecules (e.g. plant terpenoids and sterols). The results from this effort contribute to a larger mission to reconstruct vegetation and climate change, over the past 20 million years in the core of the monsoon-influenced region, through compound-specific isotope analyses of the plant waxes extracted from these samples.
δ 13C and δD identification of sources of lipid biomarkers in sediments of Lake Haruna (Japan)
NASA Astrophysics Data System (ADS)
Chikaraishi, Yoshito; Naraoka, Hiroshi
2005-07-01
Organic materials in lacustrine sediments are from multiple terrestrial and aquatic sources. In this study, carbon (δ 13C) and hydrogen isotopic compositions (δD) of phytol, various sterols, and major n-fatty acids in sediments at Lake Haruna, Japan, were determined in their solvent-extractable (free) and saponification-released forms (bound). The δ 13C-δD distributions of these lipid molecules in sediments are compared with those of terrestrial C3 and C4 plants, aquatic C3 plants, and plankton to evaluate their relative contributions. δ 13C-δD of free phytol in sediments is very close to that of phytol in plankton samples, whereas δ 13C-δD of bound phytol in sediments is on a mixing line between terrestrial C3 plant and plankton material. Unlike phytol, no significant δ 13C-δD difference between free and bound forms was found in sterols and n-fatty acids. δ 13C-δD values of algal sterols such as 24-methylcholesta-5,22-dien-3β-ol in sediments are close to those of plankton, whereas δ 13C-δD of multiple-source sterols such as 24-ethylcholest-5-en-3β-ol and of major n-fatty acids such as n-hexadecanoic acid in sediments are between those of terrestrial C3 plants and plankton samples. Thus, δ 13C-δD distributions clearly indicate the specific source contributions of biomarkers preserved in a lacustrine environment. Free phytol and algal sterols can be attributed to phytoplankton, and bound phytol, multiple source sterols, and major n-fatty acids are contributed by both terrestrial C3 plants and phytoplankton.
Fazi, Stefano; Amalfitano, Stefano; Pizzetti, Ilaria; Pernthaler, Jakob
2007-09-01
We studied the efficiency of two hybridization techniques for the analysis of benthic bacterial community composition under varying sediment water content. Microcosms were set up with sediments from four European temporary rivers. Wet sediments were dried, and dry sediments were artificially rewetted. The percentage of bacterial cells detected by fluorescence in situ hybridization with fluorescently monolabeled probes (FISH) significantly increased from dry to wet sediments, showing a positive correlation with the community activity measured via incorporation of (3)H leucine. FISH and signal amplification by catalyzed reporter deposition (CARD-FISH) could significantly better detect cells with low activity in dried sediments. Through the application of an optimized cell permeabilization protocol, the percentage of hybridized cells by CARD-FISH showed comparable values in dry and wet conditions. This approach was unrelated to (3)H leucine incorporation rates. Moreover, the optimized protocol allowed a significantly better visualization of Gram-positive Actinobacteria in the studied samples. CARD-FISH is, therefore, proposed as an effective technique to compare bacterial communities residing in sediments with contrasting water content, irrespective of differences in the activity state of target cells. Considering the increasing frequencies of flood and drought cycles in European temporary rivers, our approach may help to better understand the dynamics of microbial communities in such systems.
NASA Astrophysics Data System (ADS)
Pehlivan, Rustem
2010-07-01
The Buyukmelen River is expected to be a water source that can supply the drinking water needs of Istanbul until 2040. The drinking and utility water needs of Istanbul are to transport water from the Buyukmelen River to Istanbul via pipeline and pump it into the Alibeykoy and Omerli reservoirs when their water levels drop. The Buyukmelen River is located in the province of Duzce in 170 km east of Istanbul and its water basin is approximately 2250 km 2. The Buyukmelen River flows muddy in the rainy season and into the Black Sea. The chemical compositions of natural waters alter due to interaction with geological formations, physical and chemical weathering of various rocks and the effects of mining and agricultural production. A research was conducted at the Buyukmelen River basin to determine the effects of hydrological processes. Therefore, the samples of rocks, soil, stream water, suspended and bed sediment were collected from the Buyukmelen River basin. Geochemical and water chemistry analyses of samples were performed at ALS Chemex laboratories, Canada. The bed sediments contain quartz, calcite, plagioclase, amphibole and clay minerals. The clay minerals in the suspended and bed sediment samples are kaolinite, smectite and illite. The water samples collected from the Aksu, Kucukmelen, Asarsu and Ugursuyu streams and the Buyukmelen River in winter (December 2005) and summer (June 2006) periods are rich in Ca and HCO 3 ions. The ions most abundant in rainfall sample are HCO 3 and Na. The ion compositions of surface waters have increased due to the weathering of limestone, agglomerate and volcanic sandstones, light acidic rainfall, semi-arid Black Sea climate in the Buyukmelen basin. The suspended sediment amount of the Buyukmelen River in the rainy season (December 2005) is 174 mg/l. According to the water contamination regulation of Turkey, the Buyukmelen Rivers belongs to quality class 4 based on Al ion and to quality class 3 based on Fe ion in winter period, and to quality class 2 based on Mn concentration in summer period. Chemical index of alteration (CIA) indices observed in the suspended and bed sediments (average of 55) suggest that their source area underwent moderate degrees of chemical weathering processes. According to Upper Continental Crust (UCC) values, the suspended sediment was rich in elements such as Fe 2O 3, CaO, MgO, MnO, TiO 2, P 2O 5, V, Cr, Co, Cu, Zn, As, Cd, Sb, Hg and Pb. The element concentrations of the suspended sediments were related to size fractionation, mainly of clay content. The mentioned enrichment was contributed by agglomerate, basalt, volcanic sandstone and graywacke from rocks in the study area. Source of ions such as Al, Fe, Mn, Ba, Cr, Co, Cu, Ni, Ti and Hg and major in the Buyukmelen River is interaction with rocks such as the agglomerate, basalt, andesite, volcanic sandstone and graywacke. As suggested by Singh et al. (2005), before weathering of some rocks in the Buyukmelen River basin, it was determined that they were graywacke and literanite based on the geochemistry of the suspended and bed sediments.
Mars mission relevant investigations on a ~ 3.5 Ga Mars analogue rock from the Pilbara and Barberton
NASA Astrophysics Data System (ADS)
Westall, F.; Pullan, D.; Schröder, C.; Klingelhöfer, G.; Fernández-Sánchez, J.; Jorge, S.; Edwards, H.; Cressey, G.
2007-08-01
Volcaniclastic sediments deposited in shallow water basins on the early Earth represent ideal analogues for Noachian volcanic sediments since the environmental conditions and settings for both were quite similar: important volcanic and hydrothermal activity (somewhat less on Mars), period of late heavy bombardment (~4.0 Ga), water bodies with a slightly acidic pH, higher salt content, atmosphere with minimal O2 (<0.2 % PAL), high UV flux to the surface. Life apparently thrived in these conditions on Earth, leaving structural and geochemical signatures in the Early Archaean sediments. Within the framework of the PAFS-net* programme, using space qualified instrumentation, we analysed previously well-characterised volcanic sedimentary rocks from a number of locations in the 3.5-3.3 Ga-old greenstone belts of the Pilbara (Australia) and Barberton (South Africa). They included mud flat sediments containing traces of probable chemolithotrophic and anoxygenic photosynthetic microorganisms, a small stromatolite (some microfossil traces) and a banded iron formation sample (also some microfossil traces). All the sediments were silicified by early diagenetic processes. The instruments used were the Beagle2 Development Model (DM) stereo camera for proximal (~100 cm) and macroscopic (~10 cm) imaging, the Beagle 2 microscope for microscopic (~1 cm) imaging, a Nuance multi-spectral imager, a TN Technologies Spectrace 9000 commercial energy dispersive XRF spectrometer, a Philips PW1710 diffractometer for XRD, and the Beagle2 spare Mössbauer spectrometer. The camera systems were well able to depict the fine-scale sedimentological structures of the rock samples that, in the case of the volcaniclastic sediment and the stromatolite, can be used to interpret a shallow water environment of deposition (the flaser-linsen bedding of the former and the convex, sinuous layering of the latter). The massively quartz-rich (chert) composition of the silicified sediments was picked up by the XRD and the Raman spectrometers. The silicified volcanics also contain feldspar, identified by the Raman, whereas the XRF analyses showed that they are K-feldspars. The traces of Ba and Cu in this sample are probably related to the mostly hydothermal origin of the silica that cemented the volcanic sediments. Raman spectroscopy also identified a greater abundance of carbon (matured kerogen) in the black layers of this sample (finer grained volcaniclastics). The stromatolite sample, on the other hand, consists largely of quartz although Raman showed some dolomite and carbon (mature kerogen) in the grey layers (silicified stromatolitic layers). The layering in the laminated volcaniclastic sediment was too fine for the Mössbauer spectrometer to pick up any details. The Mössbauer was able to detect a very thin layer of Fe oxide <<0.2 mm on the surface of the stromatolite. Compositional layering in the BIF was clearly visible using multispectral imaging with the Nuance camera and the Mössbauer could identify highly crystalline and chemically pure goethite in the Fe-rich layers with minor goethite and hematite occurring in the quartz-rich layers. The combination of the instrumentation used for imaging and chemical analysis was quite sufficient to identify the sedimentary origin of the finely laminated volcaniclastic and stromatolite rocks and to demonstrate their pervasive silicification. The presence of carbon in these rocks would, in a Mars scenario, make them ideal subjects for organo-geochemical analysis. The same suite of instruments was also able to demonstrate the origin of the BIF, again, a suitable candidate for further analysis. * Planetary Analogue Field Study network (main coordinator D. Pullan)
Bioremediation of marine oil spills: when and when not--the Exxon Valdez experience.
Atlas, Ronald; Bragg, James
2009-03-01
In this article we consider what we have learned from the Exxon Valdez oil spill (EVOS) in terms of when bioremediation should be considered and what it can accomplish. We present data on the state of oiling of Prince William Sound shorelines 18 years after the spill, including the concentration and composition of subsurface oil residues (SSOR) sampled by systematic shoreline surveys conducted between 2002 and 2007. Over this period, 346 sediment samples were analysed by GC-MS and extents of hydrocarbon depletion were quantified. In 2007 alone, 744 sediment samples were collected and extracted, and 222 were analysed. Most sediment samples from sites that were heavily oiled by the spill and physically cleaned and bioremediated between 1989 and 1991 show no remaining SSOR. Where SSOR does remain, it is for the most part highly weathered, with 82% of 2007 samples indicating depletion of total polycyclic aromatic hydrocarbon (Total PAH) of >70% relative to EVOS oil. This SSOR is sequestered in patchy deposits under boulder/cobble armour, generally in the mid-to-upper intertidal zone. The relatively high nutrient concentrations measured at these sites, the patchy distribution and the weathering state of the SSOR suggest that it is in a form and location where bioremediation likely would be ineffective at increasing the rate of hydrocarbon removal. © 2009 The Authors. Journal compilation © 2009 Society for Applied Microbiology and Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Vetterli, Adrien; Hyytiäinen, Kirsi; Ahjos, Minttu; Auvinen, Petri; Paulin, Lars; Hietanen, Susanna; Leskinen, Elina
2015-11-01
Coastal areas are critical in mitigating the impact of nutrient runoffs and downstream eutrophication of aquatic ecosystems. In the Gulf of Finland, the easternmost sub-basin of the Baltic Sea, seasonal and long-term oxygen depletion at the surface of the sediment feeds back the eutrophication loop by promoting the release of nutrients locked in the sediment matrix. In order to understand how the bacterial community responds to the seasonal variations, we sequenced ribosomal gene fragments from the top sediment layer at two coastal sites in southern Finland in spring, summer and late autumn during two consecutive years. Analysis of the samples collected at a shallow (11 m) and deep site (33 m) revealed that the overall community composition was rather constant over time with an extensive collection of shared operational taxonomic units (OTU) between sites. The dominant taxa were related to organoheterotrophs and sulfate reducers and the variation in community structure was linked to the availability of organic matter in the surface sediment. Proteobacteria formed the most abundant and diverse group. The taxa characteristic of spring samples belonged primarily to Actinobacteria, possibly of fresh water origin and linked to humic carbon. Summer communities were characterized by an increase in the number of reads associated with heterotrophic bacteria such as Bacteroidetes which feed on labile organic matter from spring bloom. Taxa typical of autumn samples were linked to Cyanobacteria and other bloom-forming bacteria from the overlying water and to bacteria feeding on organic matter drifting from the phytal zone.
NASA Astrophysics Data System (ADS)
Chang, C.; Kenna, T. C.; Nitsche, F. O.
2016-12-01
The IPCC predicts that the frequency and severity of storms worldwide will increase due to climate change, a growing concern for the highly populated coastal areas near the Hudson River estuary. Storms have the potential to change the river's sediment budget, and it is necessary to update the current understanding of the effect of storms on sediment dynamics. In 2011, Tropical Storm Lee and Hurricane Irene delivered over 2.7 million tons of sediment to the Hudson River including over 1.5 million tons from the Mohawk River, a freshwater tributary, in addition to record amounts contributed from other major tributaries. The goals of this project are to use sediment elemental compositions to trace the major tributaries contributing to this storm-deposited sediment and to determine where sediment is accumulating as a result of storm activity. Chemical analysis of over 800 archived sediment samples are compiled to provide a pre-storm background level. These samples are compared to newly deposited sediment and material from specific tributaries. Elemental abundances (K, Ca, Ti, Cr, Mn, Fe, Co, Cu, Zn, Rb, Sr, Zr, Pb, and U) are measured using a field portable X-Ray Fluorescence (XRF) unit and core scanning XRF unit. Bulk matrix density is measured using a pycnometer. The measurements are used to identify elemental signatures from tributary sediment and to trace the influence of specific tributaries on deposition through the river. Our results suggests measureable signatures in sediment from individual tributaries. The Mohawk River contributes high concentrations of Ca due to the calcite deposits in its watershed. XRF measurements also show the effect of human activity on sediment deposition; variations in Rb and Zr indicate changes in deposition due to dredging in Haverstraw Bay. The salt wedge front, where ocean and fresh water meets is evident in areas of below average matrix density. This project shows significant geochemical variability between sediment from different areas of the river, and indicates that XRF can be used to track sediment sources and deposition.
Minor soil erosion contribution to denudation in Central Nepal Himalaya.
NASA Astrophysics Data System (ADS)
Morin, Guillaume; France-Lanord, Christian; Gallo, Florian; Lupker, Maarten; Lavé, Jérôme; Gajurel, Ananta
2013-04-01
In order to decipher river sediments provenance in terms of erosion processes, we characterized geochemical compositions of hillslope material coming from soils, glaciers and landslide, and compared them to rivers sediments. We focused our study on two South flank Himalayan catchments: (1) Khudi khola, as an example of small High Himalayan catchment (150 km2), undergoing severe precipitation, and rapid erosion ≈ 3.5 mm/yr [A] and (2) the Narayani-Gandak Transhimalayan basin (52000 km2) that drains the whole central Nepal. To assess the question, systematic samplings were conducted on hillslope material from different erosion processes in the basins. River sediment include daily sampling during the 2010 monsoon at two stations, and banks samples in different parts of the basins. Source rocks, soil and landslide samples, are compared to river sediment mobile to immobile element ratios, completed by hydration degree H2O+ analysis[2]. Data show that soils are clearly depleted in mobile elements Na, K, Ca, and highly hydrated compared to source rocks and other erosion products. In the Khudi basin, the contrast between soil and river sediment signatures allow to estimate that soil erosion represents less than 5% of the total sediment exported by the river. Most of the river sediment therefore derives from landslides inputs and to a lesser extent by barren high elevation sub-basins. This is further consistent with direct observation that, during monsoon, significant tributaries of the Khudi river do not export sediments. Considering that active landslide zones represent less than 0.5% of the total watershed area, it implies that erosion distribution is highly heterogeneous. Landslide erosion rate could reach more than 50 cm/yr in the landslide area. Sediments of the Narayani river are not significantly different from those of the Khudi in spite of more diverse geomorphology and larger area of the basin. Only H2O+ and Total Organic Carbon concentrations normalised to Al/Si ratios show distinctly higher values. This suggests that contribution of soil erosion is higher than in the Khudi basin. Nevertheless, soil erosion remains a minor source of sediments implying that more physical processes such as landslide and glaciers dominate the erosional flux. In spite of high deforestation and agricultural land-use [B], soil erosion does not represent an important source of sediments in Nepal Himalaya. [A] Gabet et al. (2008) Earth and Planetary Science Letters 267, 482-494. [B] Gardner et al. (2003) Applied Geography 23, 23-45.
NASA Astrophysics Data System (ADS)
Pasterski, M. J.; Barry, G. E.; Hanley, L.; Kenig, F. P. H.
2017-12-01
One of the major challenges within the field of organic geochemistry is to determine whether an observed biomarker signature is indigenous (emplaced during sedimentation), non-indigenous (emplaced after sedimentation) or contaminant (incorporated during sampling, storage or analysis). The challenge of determining the mode of emplacement of an observed biomarker signature is accentuated in analyses of Precambrian samples, and may be an issue upon Mars sample return. Current geochemical techniques (e.g. gas chromatography-mass spectrometry, GC-MS, GC×GC-MS) can determine the composition and structure of the organic constituents of a sample. However, the preparatory steps necessary prior to GC-MS analysis (sample crushing, solvent extraction) make it impossible to determine the precise spatial distribution of organic molecules within rocks and sediments. Here, we will present data from the first set of micron (2-5 μm width × 8 μm depth) resolution MS-images of organic compounds in geologic material. Fs-LDPI-MS was utilized to create MS-images of organic compounds in four samples: (1) an Antarctic igneous dike used as a sample blank; (2) a 93 million year-old (Ma) burrowed carbonate collected near Pueblo, CO; (3) a 164 Ma organic rich mudstone collected in central England; and (4) a 2680 Ma metasediment collected in Timmins, ON, Canada. Prior to this study, all samples had been analyzed via GC-MS to determine the bulk hydrocarbon composition. For this study, thick sections (70-100 μm thick) were prepared in-house using custom-designed clean preparation techniques. Petrographic maps of the thick sections were created to highlight geologic features such as burrows (sample 2), particulate organic matter (sample 3) and hydrothermal veins (sample 4). Fs-LDPI-MS analysis was performed on the mapped thick sections. MS-images of targeted organic compounds were created, and the MS-images were overlain with the petrographic maps to determine the spatial distribution of the organic compounds relative to host rock features. We were able to use the spatial distribution of the targeted organic compounds to unambiguously characterize them as either indigenous, non-indigenous or contaminants. This technique is applicable to the analysis of both Precambrian samples and extraterrestrial material.
Pape, Ellen; Jones, Daniel O. B.; Manini, Elena; Bezerra, Tania Nara; Vanreusel, Ann
2013-01-01
Along a west-to-east axis spanning the Galicia Bank region (Iberian margin) and the Mediterranean basin, a reduction in surface primary productivity and in seafloor flux of particulate organic carbon was mirrored in the in situ organic matter quantity and quality within the underlying deep-sea sediments at different water depths (1200, 1900 and 3000 m). Nematode standing stock (abundance and biomass) and genus and trophic composition were investigated to evaluate downward benthic-pelagic coupling. The longitudinal decline in seafloor particulate organic carbon flux was reflected by a reduction in benthic phytopigment concentrations and nematode standing stock. An exception was the station sampled at the Galicia Bank seamount, where despite the maximal particulate organic carbon flux estimate, we observed reduced pigment levels and nematode standing stock. The strong hydrodynamic forcing at this station was believed to be the main cause of the local decoupling between pelagic and benthic processes. Besides a longitudinal cline in nematode standing stock, we noticed a west-to-east gradient in nematode genus and feeding type composition (owing to an increasing importance of predatory/scavenging nematodes with longitude) governed by potential proxies for food availability (percentage of nitrogen, organic carbon, and total organic matter). Within-station variability in generic composition was elevated in sediments with lower phytopigment concentrations. Standing stock appeared to be regulated by sedimentation rates and benthic environmental variables, whereas genus composition covaried only with benthic environmental variables. The coupling between deep-sea nematode assemblages and surface water processes evidenced in the present study suggests that it is likely that climate change will affect the composition and function of deep-sea nematodes. PMID:23565176
Brantley, Steven T.; Bissett, Spencer N.; Young, Donald R.; Wolner, Catherine W. V.; Moore, Laura J.
2014-01-01
Barrier islands are complex and dynamic systems that provide critical ecosystem services to coastal populations. Stability of these systems is threatened by rising sea level and the potential for coastal storms to increase in frequency and intensity. Recovery of dune-building grasses following storms is an important process that promotes topographic heterogeneity and long-term stability of barrier islands, yet factors that drive dune recovery are poorly understood. We examined vegetation recovery in overwash zones on two geomorphically distinct (undisturbed vs. frequently overwashed) barrier islands on the Virginia coast, USA. We hypothesized that vegetation recovery in overwash zones would be driven primarily by environmental characteristics, especially elevation and beach width. We sampled species composition and environmental characteristics along a continuum of disturbance from active overwash zones to relict overwash zones and in adjacent undisturbed environments. We compared species assemblages along the disturbance chronosequence and between islands and we analyzed species composition data and environmental measurements with Canonical Correspondence Analysis to link community composition with environmental characteristics. Recovering and geomorphically stable dunes were dominated by Ammophila breviligulata Fernaud (Poaceae) on both islands while active overwash zones were dominated by Spartina patens (Aiton) Muhl. (Poaceae) on the frequently disturbed island and bare sand on the less disturbed island. Species composition was associated with environmental characteristics only on the frequently disturbed island (p = 0.005) where A. breviligulata was associated with higher elevation and greater beach width. Spartina patens, the second most abundant species, was associated with larger sediment grain size and greater sediment size distribution. On the less frequently disturbed island, time since disturbance was the only factor that affected community composition. Thus, factors driving the abundance of dune-building grasses and subsequent recovery of dunes varied between the two geomorphically distinct islands. PMID:25148028
Lin, Zhiyong; Sun, Xiaoming; Peckmann, Jörn; Lu, Yang; Strauss, Harald; Xu, Li; Lu, Hongfeng; Teichert, Barbara M A
2017-08-31
Different sulfur isotope compositions of authigenic pyrite typically result from the sulfate-driven anaerobic oxidation of methane (SO4-AOM) and organiclastic sulfate reduction (OSR) in marine sediments. However, unravelling the complex pyritization sequence is a challenge because of the coexistence of different sequentially formed pyrite phases. This manuscript describes a sample preparation procedure that enables the use of secondary ion mass spectroscopy (SIMS) to obtain in situ δ 34 S values of various pyrite generations. This allows researchers to constrain how SO4-AOM affects pyritization in methane-bearing sediments. SIMS analysis revealed an extreme range in δ 34 S values, spanning from -41.6 to +114.8‰, which is much wider than the range of δ 34 S values obtained by the traditional bulk sulfur isotope analysis of the same samples. Pyrite in the shallow sediment mainly consists of 34 S-depleted framboids, suggesting early diagenetic formation by OSR. Deeper in the sediment, more pyrite occurs as overgrowths and euhedral crystals, which display much higher SIMS δ 34 S values than the framboids. Such 34 S-enriched pyrite is related to enhanced SO4-AOM at the sulfate-methane transition zone, postdating OSR. High-resolution in situ SIMS sulfur isotope analyses allow for the reconstruction of the pyritization processes, which cannot be resolved by bulk sulfur isotope analysis.
Hydrates of natural gas in continental margins
Kvenvolden, K.A.; Barnard, L.A.
1982-01-01
Natural gas hydrates in continental margin sediment can be inferred from the widespread occurrence of an anomalous seismic reflector which coincides with the predicted transition boundary at the base of the gas hydrate zone. Direct evidence of gas hydrates is provided by visual observations of sediments from the landward wall of the Mid-America Trench off Mexico and Guatemala, from the Blake Outer Ridge off the southeastern United States, and from the Black Sea in the U.S.S.R. Where solid gas hydrates have been sampled, the gas is composed mainly of methane accompanied by CO2 and low concentrations of ethane and hydrocarbons of higher molecular weight. The molecular and isotopic composition of hydrocarbons indicates that most of the methane is of biolog cal origin. The gas was probably produced by the bacterial alteration of organic matter buried in the sediment. Organic carbon contents of the sediment containing sampled gas hydrates are higher than the average organic carbon content of marine sediments. The main economic importance of gas hydrates may reside in their ability to serve as a cap under which free gas can collect. To be producible, however, such trapped gas must occur in porous and permeable reservoirs. Although gas hydrates are common along continental margins, the degree to which they are associated with significant reservoirs remains to be investigated.
High fungal diversity and abundance recovered in the deep-sea sediments of the Pacific Ocean.
Xu, Wei; Pang, Ka-Lai; Luo, Zhu-Hua
2014-11-01
Knowledge about the presence and ecological significance of bacteria and archaea in the deep-sea environments has been well recognized, but the eukaryotic microorganisms, such as fungi, have rarely been reported. The present study investigated the composition and abundance of fungal community in the deep-sea sediments of the Pacific Ocean. In this study, a total of 1,947 internal transcribed spacer (ITS) regions of fungal rRNA gene clones were recovered from five sediment samples at the Pacific Ocean (water depths ranging from 5,017 to 6,986 m) using three different PCR primer sets. There were 16, 17, and 15 different operational taxonomic units (OTUs) identified from fungal-universal, Ascomycota-, and Basidiomycota-specific clone libraries, respectively. Majority of the recovered sequences belonged to diverse phylotypes of Ascomycota (25 phylotypes) and Basidiomycota (18 phylotypes). The multiple primer approach totally recovered 27 phylotypes which showed low similarities (≤97 %) with available fungal sequences in the GenBank, suggesting possible new fungal taxa occurring in the deep-sea environments or belonging to taxa not represented in the GenBank. Our results also recovered high fungal LSU rRNA gene copy numbers (3.52 × 10(6) to 5.23 × 10(7)copies/g wet sediment) from the Pacific Ocean sediment samples, suggesting that the fungi might be involved in important ecological functions in the deep-sea environments.
NASA Astrophysics Data System (ADS)
Wang, Guoqiang; A, Yinglan; Jiang, Hong; Fu, Qing; Zheng, Binghui
2015-01-01
Increasing water pollution in developing countries poses a significant threat to environmental health and human welfare. Understanding the spatial distribution and apportioning the sources of pollution are important for the efficient management of water resources. In this study, ten types of heavy metals were detected during 2010-2013 for all ambient samples and point sources samples. A pollution assessment based on the surficial sediment dataset by Enrichment Factor (EF) showed the surficial sediment was moderately contaminated. A comparison of the multivariate approach (principle components analysis/absolute principle component score, PCA/APCS) and the chemical mass balance model (CMB) shows that the identification of sources and calculation of source contribution based on the CMB were more objective and acceptable when source profiles were known and source composition was complex. The results of source apportionment for surficial heavy metals, both from PCA/APCS and CMB model, showed that the natural background (30%) was the most dominant contributor to the surficial heavy metals, followed by mining activities (29%). The contribution percentage of the natural background was negatively related to the degree of contamination. The peak concentrations of many heavy metals (Cu, Ba, Fe, As and Hg) were found in the middle layer of sediment, which is most likely due to the result of development of industry beginning in the 1970s. However, the highest concentration of Pb appeared in the surficial sediment layer, which was most likely due to the sharp increase in the traffic volume. The historical analysis of the sources based on the CMB showed that mining and the chemical industry are stable sources for all of the sections. The comparing of change rates of source contribution versus years indicated that the composition of the materials in estuary site (HF1) is sensitive to the input from the land, whereas center site (HF4) has a buffering effect on the materials from the land through a series of complex movements. These results provide information for the development of improved pollution control strategies for the lakes and reservoirs.
Dispersal of suspended matter in Makasar Strait and the Flores Basin
NASA Astrophysics Data System (ADS)
Eisma, D.; Kalf, J.; Karmini, M.; Mook, W. G.; van Put, A.; Bernard, P.; van Grieken, R.
In November 1984 in Makasar and the Flores Basin water samples were collected (T, S, dissolved O 2, total CO 2), bottom samples (sediment composition) and suspended matter (particle composition, particle size). A sediment trap was moored in the Flores Basin at 4600 m depth for nearly four months, covering the dry season. In the Flores Basin there are indications for bottom flow resuspending bottom material or preventing suspended material from settling; in Makasar Strait there is probably inflow of deep water both from the south and from the north, resulting in a very slow bottom water flor. Bottom deposits in Makasar Strait and the Flores Basin are predominantly terrigenous, with an admixture of organic carbonate and silica (mostly coccoliths). Volcanic material is primarily present near to the volcanoes in the south and reaches the deeper basins by slumping. In the suspended matter no volcanic particles and little planktonic material were found, although the latter form 10 to 15% of the top sediment and of the material deposited in the sediment trap. In suspension particles with a large concentration of tin (Sn) were found associated mainly with iron. They probably come from northern Kalimantan or northern Sulawesi. Suspended matter concentrations were mainly less than 0.5 mg·dm -3, only off the Mahakam river mouth were concentrations higher than 1 mg·dm -3. Particle size was erratic because of the variable composition of the coarser particles in suspension. Organic matter concentrations in suspension (in mg·dm -3) roughly follow the distribution of total suspended matter but organic content (in %) of the suspended matter does not show any trends. All organic matter in suspension is of marine origin except in the Mahakam river and estuary. Deposition rates, as estimated from the sediment trap results, are 150 mg·cm -2·a -1 for the total sediment, 26 mg·cm -2·a -1 for carbonate and 13 mg·cm -2·a -1 for organic matter. Flocs and fibres in suspension were only found in and below the Mahakam river plume that reaches ca 400 km from the river mouth to the southeast, and in surface waters associated with plankton (diatoms). The formation of these flocs (broken-up macroflocs or marine snow) is primarily related to particle concentration, turbulence, and the presence of organisms that produce sticky material or glue particles together.
Bothner, Michael H.; Reynolds, R.L.; Casso, M.A.; Storlazzi, C.D.; Field, M.E.
2006-01-01
Sediment traps were used to evaluate the frequency, cause, and relative intensity of sediment mobility/resuspension along the fringing coral reef off southern Molokai (February 2000–May 2002). Two storms with high rainfall, floods, and exceptionally high waves resulted in sediment collection rates > 1000 times higher than during non-storm periods, primarily because of sediment resuspension by waves. Based on quantity and composition of trapped sediment, floods recharged the reef flat with land-derived sediment, but had a low potential for burying coral on the fore reef when accompanied by high waves.The trapped sediments have low concentrations of anthropogenic metals. The magnetic properties of trapped sediment may provide information about the sources of land-derived sediment reaching the fore reef. The high trapping rate and low sediment cover indicate that coral surfaces on the fore reef are exposed to transient resuspended sediment, and that the traps do not measure net sediment accumulation on the reef surface.
Bothner, Michael H; Reynolds, Richard L; Casso, Michael A; Storlazzi, Curt D; Field, Michael E
2006-09-01
Sediment traps were used to evaluate the frequency, cause, and relative intensity of sediment mobility/resuspension along the fringing coral reef off southern Molokai (February 2000-May 2002). Two storms with high rainfall, floods, and exceptionally high waves resulted in sediment collection rates>1000 times higher than during non-storm periods, primarily because of sediment resuspension by waves. Based on quantity and composition of trapped sediment, floods recharged the reef flat with land-derived sediment, but had a low potential for burying coral on the fore reef when accompanied by high waves. The trapped sediments have low concentrations of anthropogenic metals. The magnetic properties of trapped sediment may provide information about the sources of land-derived sediment reaching the fore reef. The high trapping rate and low sediment cover indicate that coral surfaces on the fore reef are exposed to transient resuspended sediment, and that the traps do not measure net sediment accumulation on the reef surface.
NASA Astrophysics Data System (ADS)
Bischoff, James L.; Cummins, Kathleen
2001-01-01
Chemical analyses of the clay-sized fractions of 564 continuous sediment samples (200-yr resolution) from composite core OL90/92 allow quantification of an abundance of glacial rock flour. Rock flour produced during glacier advances is represented by clay-sized plagioclase, K-feldspar, and biotite in homogeneous internal composition. The abundance of rock flour is deemed proportional to the intensity of glacies advances. Age control for the composite section is provided by combining previously published radiocarbon dates on organics, U/Th dates on ostracode shells, and U/Th dates on saline minerals from nearby Searles Lake correlated to OL92 by pollen. The rock flour record displays three levels of variability: (1) a dominant one of about 20,000 yr related to summer insolation and precipitation; (2) an intermediate one of 3000-5000 yr, perhaps related to North Atlantic Heinrich events; and (3) a minor one of 1000-2000 yr, perhaps related to North Atlantic thermohaline-driven air-temperature variation.
Bischoff, J.L.; Cummins, K.
2001-01-01
Chemical analyses of the clay-sized fractions of 564 continuous sediment samples (200-yr resolution) from composite core OL90/92 allow quantification of an abundance of glacial rock flour. Rock flour produced during glacier advances is represented by clay-sized plagioclase, K-feldspar, and biotite in homogeneous internal composition. The abundance of rock flour is deemed proportional to the intensity of glacies advances. Age control for the composite section is provided by combining previously published radiocarbon dates on organics, U/Th dates on ostracode shells, and U/Th dates on saline minerals from nearby Searles Lake correlated to OL92 by pollen. The rock flour record displays three levels of variability: (1) a dominant one of about 20,000 yr related to summer insolation and precipitation; (2) an intermediate one of 3000-5000 yr, perhaps related to North Atlantic Heinrich events; and (3) a minor one of 1000-2000 yr, perhaps related to North Atlantic thermohaline-driven air-temperature variation. ?? 2001 University of Washington.
NASA Astrophysics Data System (ADS)
Itoh, Nobuyasu; Tani, Yukinori; Soma, Yuko; Soma, Mitsuyuki
2007-01-01
We investigated the factors controlling the composition of sedimentary photosynthetic pigments in Lake Hamana (Japan), a shallow (12 m), brackish, holomictic lake, by analyzing photosynthetic pigments and the sterol composition of steryl esters of pyropheophorbide a (steryl chlorin esters, SCEs) in the water column and surface sediments. The mean annual composition of carotenoids in the water was quite different from that in the surface sediments. We evaluated the relative accumulation efficiency of individual pigments in the sediments by comparing ratios of individual pigment concentrations relative to total chlorophyll a (TChl- a) in sediment to those in the water column. The relative accumulation efficiencies decreased in the following order: lutein > diatoxanthin > β,β-carotene > zeaxanthin > β,ɛ-carotene > alloxanthin ≫ fucoxanthin. The ratio of total pyro-derivatives of chlorophyll a, formed through the grazing of algae by zooplankton, to TChl- a in the surface sediments was much higher (0.24-0.33) than that in the water column, which was less than 0.03 even in the deepest water (10 m). The summed concentration of pyropheophytin a and SCEs (TPyphe- a) showed positive and significant relationships ( r2 > 0.56, n = 7) with residual carotenoids in sediments. These results suggest that incorporation of algal pigments in fecal pellets through grazing by zooplankton enhances pigment preservation during early diagenesis at the sediment surface. Moreover, sedimentary carotenoid compositions were consistent with the sterol compositions of sedimentary SCE fractions. Selective grazing by zooplankton was thus a primary factor determining the composition of sedimentary carotenoids in this lake.
NASA Astrophysics Data System (ADS)
Mabson, M.; Pierce, E. L.; Dale, C. L.; Williams, T.; Hemming, S. R.; van de Flierdt, T.; Cook, C.; Goldstein, S. L.
2010-12-01
Michelle Mabson (Howard University), Elizabeth Pierce (Lamont-Doherty Earth Observatory, Columbia University), Cathleen Doherty (Lamont-Doherty Earth Observatory, Columbia University), Trevor Williams (Lamont-Doherty Earth Observatory), Sidney Hemming (Lamont-Doherty Earth Observatory), Tina van de Flierdt (Imperial College London), Carys Cook (Imperial College London), Steve Goldstein (Lamont-Doherty Earth Observatory) Since initiation of major ice sheets on Antarctica at about 34 Ma, Antarctica has been a major player in global climate change. Understanding the response of the East Antarctic Ice Sheet to major climate changes through the Cenozoic has fundamental importance to both Earth Sciences and Society. Previous study of Nd isotope composition of sediments at Ocean Drilling Program (ODP) Site 1166 within Prydz Bay found evidence for variations of the Nd isotope composition between -15 to -30 epsilon units through this pre-glacial to glacial record (van de Flierdt et al., 2008, GRL). The Nd isotope composition of sediments provides an estimate for the average continental crust formation age of the sources. The sources around Prydz Bay have a wide range of formation ages, from Archean to Phanerozoic, so the areas which were being preferentially eroded can be inferred. This study seeks to contribute evidence for the local variations in provenance of sediments by extending the record of Nd isotope variations to ODP Site 739 in Prydz Bay. ODP Site 1165 has an unconformity that spans ~30-3 Ma. This part of the record is much more complete in ODP site 739, located about 200 km from the coast of Prydz Bay, probably more protected from ice stream erosion in the Prydz Channel. Because of its location we can conclude that the sediment deposited into this area is derived from the Lambert Glacier, and thus the variations in epsilon Nd will allow testing whether changes in the extent of this ice stream could lead to variations in the provenance of sediment carried by this ice. Recently Williams et al. (2010, EPSL) published evidence for dramatic changes in the sources of glacially derived sediments at ODP Site 1165, further offshore from Prydz Bay, at 7, 4.8 and 3.5 Ma. Their interpretation was based on the Ar-Ar ages of detrital hornblende grains, but samples taken across the 4.8 Ma event also showed an intriguing variation of the Nd isotope composition. The older part of the event includes a significant fraction of exotic Ar-Ar ages, but with epsilon Nd similar to the background values, while the younger part of the event shows a significant decrease in epsilon Nd but Ar-Ar of local origin. The specific goal of this study is to test the hypothesis that the shift to lower epsilon Nd in the 4.8 Ma ice rafting event is due to dynamical changes in the Prydz Bay sector of the East Antarctic ice sheet. Alternatively, the Lambert glacier may have retreated far enough to allow other sources in this sector to dominate the sediment composition in core 1165.
Zakaria, Mohamad Pauzi; Takada, Hideshige; Tsutsumi, Shinobu; Ohno, Kei; Yamada, Junya; Kouno, Eriko; Kumata, Hidetoshi
2002-05-01
This is the first publication on the distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in riverine and coastal sediments in South East Asia where the rapid transfer of land-based pollutants into aquatic environments by heavy rainfall and runoff waters is of great concern. Twenty-nine Malaysian riverine and coastal sediments were analyzed for PAHs (3-7 rings) by gas chromatography mass spectrometry. Total PAHs concentrations in the sediment ranged from 4 to 924 ng/g. Alkylated homologues were abundant for all sediment samples. The ratio of the sum of methylphenanthrenes to phenanthrene (MP/P), an index of petrogenic PAHs contribution, was more than unity for 26 sediment samples and more than 3 for seven samples for urban rivers covering a broad range of locations. The MP/P ratio showed a strong correlation with the total PAHs concentrations, with an r2 value of 0.74. This ratio and all other compositional features indicated that Malaysian urban sediments are heavily impacted by petrogenic PAHs. This finding is in contrast to other studies reported in many industrialized countries where PAHs are mostly of pyrogenic origin. The MP/P ratio was also significantly correlated with higher molecular weight PAHs such as benzo[a]pyrene, suggesting unique PAHs source in Malaysia which contains both petrogenic PAHs and pyrogenic PAHs. PAHs and hopanes fingerprints indicated that used crankcase oil is one of the major contributors of the sedimentary PAHs. Two major routes of inputs to aquatic environments have been identified: (1) spillage and dumping of waste crankcase oil and (2) leakage of crankcase oils from vehicles onto road surfaces, with the subsequent washout by street runoff. N-Cyclohexyl-2-benzothiazolamine (NCBA), a molecular marker of street dust, was detected in the polluted sediments. NCBA and other biomarker profiles confirmed our hypothesis of the input from street dust contained the leaked crankcase oil. The fingerprints excluded crude oil, fresh lubricating oil, asphalt, and tire-particles as major contributors.
NASA Astrophysics Data System (ADS)
Henkel, S. K.; Politano, K. K.
2017-07-01
Increasing interest in offshore development has motivated intensified efforts to map the seafloor for marine spatial planning. However, surficial geologic maps do not accurately represent habitats for various species groups of concern. This study used a bottom-up approach to integrate macrofaunal densities and benthic conditions on the Pacific Northwest shelf to identify macrofaunal assemblages and associated habitat features. Benthic cores and water-column profiles were collected from 137 stations from 50 to 110 m depth. Analyses grouping stations based on both similar species abundances and benthic conditions resulted in six broad habitats. Within the sampled depth and latitudinal range, sediment characteristics were the primary structuring variable. A major break in assemblages was detected between sediment that had less than 1% silt/clay and those containing more than 1% silt/clay. Assemblages differed primarily in the bivalve species present and secondarily in polychaete species. Within the greater than and less than 1% silt/clay habitats, further discretization of assemblages was based mostly on differing abundances of characteristic bivalves and polychaetes associated with differing median grain sizes, which did not correspond to traditional definitions of fine or medium sand. These data show that a bottom-up methodology is necessary to discern habitats for macrofauna and that site-specific physical sampling is necessary to predict macrofaunal assemblage composition. However, if detailed sediment characteristics are known, macrofaunal assemblages may be predicted without time-intensive biological sampling and processing. These results also indicate that seemingly small sedimentary changes due to offshore installations may have measureable effects on the relative abundances and even the species composition of macrofauna.
Zhang, Li; Wang, Shengrui; Yang, Jiachun; Xu, Kechen
2018-05-08
Dissolved organic nitrogen (DON) constitutes a significant fraction of the total dissolved nitrogen content of most aquatic systems and is thus a major nitrogen source for bacteria and phytoplankton. The present work applied Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to a compound-level analysis of the depth-dependent molecular composition of water-extractable organic nitrogen (WEON) in lake sediment. The study focused on Erhai Lake, China. It was found that a large portion (from 16.33 ± 7.87 to 39.54 ± 5.77%) of the WEON in the lake sediment was reactive under cultivation by algal or bacteria. The WEON in the mid-region of Erhai sediment particularly exhibited a lower bioavailability, having been less affected by the basin environment. The FT-ICR MS results revealed the presence of thousands of compounds in the Erhai Lake sediment samples collected at different depths, with the N-containing compounds accounting for 28.3-34.4% of all the compounds. The WEON molecular weight was also observed to increase with increasing sediment depth. A van Krevelen diagram showed that the lignin-type components were dominant (~ 56.2%) in the sediment WEON, contributing to its stabilization and reducing the risk of sediment nutrient release. The FT-ICR MS results further revealed 204 overlapping formulas of WEON for each core sediment sample, attributable to the presence of refractory components. It was observed that 78.4% of the formulas were within the lignin-like region, suggesting unique allochthonous DON sources. The aliphatic component proportion of all the unique formulas was also found to increase with increasing sediment depth. This indicates that, with the development and evolution of the Erhai Basin, the more labile WEON components were transformed into more stable lignin-like substrates, with a positive effect on the Lake Erhai ecosystem. Graphical abstract ᅟ.
Zhu, Haowen; Wang, Ying; Wang, Xiaowei; Luan, Tiangang; Tam, Nora F Y
2014-01-15
Polybrominated diphenyl ethers (PBDEs) have been used extensively as brominated flame retardants in various polymers, and have become serious environmental contaminants, particularly in coastal sediments. Mangrove wetlands are important coastal ecosystems in tropical and subtropical regions, and mangrove sediments are often the pollutant sinks due to their close proximity with human activities. In Hong Kong, sediment samples collected from five mangrove swamps were found to be contaminated with PBDEs and the eight measured BDE congeners, including BDE-28, -47, -99, -100, -153, -154, -183 and -209 were detected in all mangrove sediments, indicating that these pollutants were widespread in Hong Kong mangrove wetlands. Among the five swamps, relatively high concentrations of PBDEs were recorded in Mai Po mangrove swamp in the northwestern Hong Kong, which is part of the RAMSAR site but is severely influenced by the pollution from the Pearl River Delta. The depth profile of PBDEs in sediment cores collected from Mai Po also showed the inputs of PBDEs in this mangrove swamp increased year by year. In all sediments, the concentrations of BDE-209 were 1-2 orders of magnitude higher than the other congeners in the same sediment. The concentrations of BDE-209 and ∑PBDEs (defined as the sum of seven targeted BDE congeners except BDE-209) ranged from 1.53 to 75.9 ng g(-1) and from 0.57 to 14.4 ng g(-1), respectively. Among the targeted BDE congeners except BDE-209, slightly different composition was recorded among samples collected from different locations, with BDE-153 and -183 being the pre-dominated congeners. In all mangrove swamps, except Tai O in the southwest of Hong Kong, ∑PBDEs concentrations showed a common trend of landward>seaward>mudflat. The concentrations of ∑PBDEs were significantly correlated with total organic matter (TOM) content in sediments but not with the sediment particle sizes in each mangrove swamp. © 2013.
NASA Astrophysics Data System (ADS)
Gourdin, E.; Huon, S.; Evrard, O.; Ribolzi, O.; Bariac, T.; Sengtaheuanghoung, O.; Ayrault, S.
2015-02-01
The yields of the tropical rivers of Southeast Asia supply large quantities of carbon to the ocean. The origin and dynamics of particulate organic matter were studied in the Houay Xon River catchment located in northern Laos during the first erosive flood of the rainy season in May 2012. This cultivated catchment is equipped with three successive gauging stations draining areas ranging between 0.2 and 11.6 km2 on the main stem of the permanent stream, and two additional stations draining 0.6 ha hillslopes. In addition, the sequential monitoring of rainwater, overland flow and suspended organic matter compositions was conducted at the 1 m2 plot scale during a storm. The composition of particulate organic matter (total organic carbon and total nitrogen concentrations, δ13C and δ15N) was determined for suspended sediment, soil surface (top 2 cm) and soil subsurface (gullies and riverbanks) samples collected in the catchment (n = 57, 65 and 11, respectively). Hydrograph separation of event water was achieved using water electric conductivity and δ18O measurements for rainfall, overland flow and river water base flow (n = 9, 30 and 57, respectively). The composition of particulate organic matter indicates that upstream suspended sediments mainly originated from cultivated soils labelled by their C3 vegetation cover (upland rice, fallow vegetation and teak plantations). In contrast, channel banks characterized by C4 vegetation (Napier grass) supplied significant quantities of sediment to the river during the flood rising stage at the upstream station as well as in downstream river sections. The highest runoff coefficient (11.7%), sediment specific yield (433 kg ha-1), total organic carbon specific yield (8.3 kg C ha-1) and overland flow contribution (78-100%) were found downstream of reforested areas planted with teaks. Swamps located along the main stream acted as sediment filters and controlled the composition of suspended organic matter. Total organic carbon specific yields were particularly high because they occurred during the first erosive storm of the rainy season, just after the period of slash-and-burn operations in the catchment.
NASA Astrophysics Data System (ADS)
France-Lanord, C.; Lave, J.; Morin, G. P.; Gajurel, A.; Galy, A.; Bosia, C.; Sinha, R.
2016-12-01
Evolution of the erosion of continental surfaces through geologic times provides key evidences to assess the interplay of controls exerted by tectonic, topography, climate, and lately, human activities. Mountains belts, and particularly the Himalaya, present intense tectonic activity, contrasted seasonality marked by the monsoon, steep topography and recent socio-economic development, which makes it a laboratory to assess main issues on these complex interactions.Taking advantage of the large Sr and Nd isotopic contrasts of the main geological and physiographic Himalayan units, this study explores the time variations of the spatial distribution of erosion in Central Nepal Himalaya. Compiling Sr and Nd isotopic compositions of rivers sediments from many tributaries within the Narayani Basin in central Nepal, we first define the mean Sr and Nd isotopic compositions of the three main Himalayan geological units in this region. Then, we present isotopic chronicles of river sediments sampled at the outlet of the Narayani Basin during 21 years, and 50-kyr-long sedimentary archives drilled in the foreland basin.Using Sr and Nd isotopic compositions to trace relative geological provenances and contributions, we show that erosion distribution in the Narayani Basin remained stable for 50 kyr until the end of the 20th century. Sediment fluxes were primarily derived from erosion of the High Himalayan regions (Tethys H. and HHC) ( 80 %), i.e. from the areas presenting high reliefs and steep slopes. Erosion distribution stability during the Pleistocene-Holocene climatic transition provides new evidence for a primary control of erosion by tectonic forcing rather than climatic forcing in the Himalayas. Since 2000s, a shift of the sediment isotopic compositions reveals an intensification of erosion in the Lesser Himalaya (from 15-25% to 30-45% of the sediment budget) despite unchanged tectonic or climatic conditions. We propose that this strong increase by 2-3 fold of erosion of the Lesser Himalayan region is a consequence of recent human activities, and likely roads constructions in the Middle Hills of Nepal, highlighting the role of anthropic activities as erosion agents on sensitive environments such as can be mountain ranges.
NASA Astrophysics Data System (ADS)
Häggi, Christoph; Sawakuchi, André O.; Chiessi, Cristiano M.; Mulitza, Stefan; Mollenhauer, Gesine; Sawakuchi, Henrique O.; Baker, Paul A.; Zabel, Matthias; Schefuß, Enno
2016-11-01
Paleoenvironmental studies based on terrigenous biomarker proxies from sediment cores collected close to the mouth of large river systems rely on a proper understanding of the processes controlling origin, transport and deposition of biomarkers. Here, we contribute to the understanding of these processes by analyzing long-chain n-alkanes from the Amazon River system. We use the δD composition of long-chain n-alkanes from river bed sediments from the Amazon River and its major tributaries, as well as marine core-top samples collected off northeastern South America as tracers for different source areas. The δ13C composition of the same compounds is used to differentiate between long-chain n-alkanes from modern forest vegetation and petrogenic organic matter. Our δ13C results show depleted δ13C values (-33 to -36‰) in most samples, indicating a modern forest source for most of the samples. Enriched values (-31 to -33‰) are only found in a few samples poor in organic carbon indicating minor contributions from a fossil petrogenic source. Long-chain n-alkane δD analyses show more depleted values for the western tributaries, the Madeira and Solimões Rivers (-152 to -168‰), while n-alkanes from the lowland tributaries, the Negro, Xingu and Tocantins Rivers (-142 to -154‰), yield more enriched values. The n-alkane δD values thus reflect the mean annual isotopic composition of precipitation, which is most deuterium-depleted in the western Amazon Basin and more enriched in the eastern sector of the basin. Samples from the Amazon estuary show a mixed long-chain n-alkane δD signal from both eastern lowland and western tributaries. Marine core-top samples underlying the Amazon freshwater plume yield δD values similar to those from the Amazon estuary, while core-top samples from outside the plume showed more enriched values. Although the variability in the river bed data precludes quantitative assessment of relative contributions, our results indicate that long-chain n-alkanes from the Amazon estuary and plume represent an integrated signal of different regions of the onshore basin. Our results also imply that n-alkanes are not extensively remineralized during transport and that the signal at the Amazon estuary and plume includes refractory compounds derived from the western sector of the Basin. These findings will aid in the interpretation of plant wax-based records of marine sediment cores collected from the adjacent ocean.
Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments
Chiou, C.T.; Mcgroddy, S.E.; Kile, D.E.
1998-01-01
The partition behavior was determined for three polycyclic aromatic hydrocarbons (PAHs), i.e., naphthalene, phenanthrene, and pyrene, from water to a range of soil and sediment samples. The measured partition coefficients of the individual PAHs between soil/sediment organic matter (SOM) and water (i.e., K(oc) values) are relatively invariant either for the 'clean' (uncontaminated) soils or for the clean sediments; however, the mean K(oc) values on the sediments are about twice the values on the soils. This disparity is similar to the earlier observation for other nonpolar solutes and reflects the compositional differences between soil and sediment organic matters. No significant differences in K(oc) are observed between a clean coastal marine sediment and freshwater sediments. The coastal sediments that are significantly impacted by organic contaminants exhibit higher K(oc) values. At given K(ow) values (octanol-water), the PAHs exhibit much higher K(oc) values than other relatively nonpolar solutes (e.g., chlorinated hydrocarbons). This effect is shown to result from the enhanced partition of PAHs to SOM rather than from lower K(ow) values of PAHs at given supercooled liquid solute solubilities in water. The enhanced partition of PAHs over other nonpolar solutes in SOM provides an account of the markedly different correlations between log K(oc) and log K(ow) for PAHs and for other nonpolar solutes. The improved partition of PAHs in SOM stems apparently from the enhanced compatibility of their cohesive energy densities with those of the aromatic components in SOM. The approximate aromatic fraction in soil/sediment organic matter has been assessed by solid-state 13C-NMR spectroscopy.The partition behavior was determined for three polycyclic aromatic hydrocarbons (PAHs), i.e., naphthalene, phenanthrene, and pyrene, from water to a range of soil and sediment samples. The measured partition coefficients of the individual PAHs between soil/sediment organic matter (SOM) and water (i.e., Koc values) are relatively invariant either for the `clean' (uncontaminated) soils or for the clean sediments; however, the mean Koc values on the sediments are about twice the values on the soils. This disparity is similar to the earlier observation for other nonpolar solutes and reflects the compositional differences between soil and sediment organic matters. No significant differences in Koc are observed between a clean coastal marine sediment and freshwater sediments. The coastal sediments that are significantly impacted by organic contaminants exhibit higher Koc values. At given Kow values (octanol-water), the PAHs exhibit much higher Koc values than other relatively nonpolar solutes (e.g., chlorinated hydrocarbons). This effect is shown to result from the enhanced partition of PAHs to SOM rather than from lower Kow values of PAHs at given supercooled liquid solute solubilities in water. The enhanced partition of PAHs over other nonpolar solutes in SOM provides an account of the markedly different correlations between log Koc and log Kow for PAHs and for other nonpolar solutes. The improved partition of PAHs in SOM stems apparently from the enhanced compatibility of their cohesive energy densities with those of the aromatic components in SOM. The approximate aromatic fraction in soil/sediment organic matter has been assessed by solid-state 13C-NMR spectroscopy.
NASA Astrophysics Data System (ADS)
Missimer, T. M.; Al-Mashharawi, S.; Dehwah, A. H. A.; Coulibaly, K.
2017-12-01
Three sites in the Red Sea were investigated to assess the variability of composition in Holocene sediments of the backreef environment within 0-2 m of water depth. This is important because composition of the sediment is commonly used to estimate water depth in ancient carbonate rocks. The site located at the King Abdullah Economic City (Saudi Arabia) contains a fringing reef with the reef tract located very close to the beach at the north end, flaring to the south to produce a narrower backreef area compared to the other two sites. This geometry produces a north to south current with a velocity of up to 15 cm s-1, particularly during high onshore winds. The sediments contain predominantly non-skeletal grains, including peloids, coated grains, ooids, and grapestones that form on the bottom. The percentage of coralgal grains in the sediment was significantly lower than at the other two sites studied. Om Al Misk Island and Shoaiba have a much lower-velocity current within the backreef zone and contain predominantly coralgal sediments from the beach to the landward edge of the reef tract. The two locations containing the predominantly coralgal microfacies were statistically similar, but the King Abdullah Economic City site was statistically different despite having a similar water depth profile. Slight differences in reef configuration, including reef orientation and distance from the shore, can produce considerable differences in sediment thickness and composition within the backreef environment, which should induce caution in the interpretation of water depth in ancient carbonate rocks using composition.
Wang, Miao-miao; Sun, Zhi-gao; Lu, Xiao-ning; Wang, Wei; Wang, Chuan-yuan
2015-04-01
Based on the laser particle size and X-ray diffraction (XRD) analysis, 28 sediment samples collected from the inshore region of the Yellow River estuary in October 2013 were determined to discuss the influence of long-term implementation of the flow-sediment regulation scheme (FSRS, initiated in 2002) on the distributions of grain size and clay components (smectite, illite, kaolinite and chlorite) in sediments. Results showed that, after the FSRS was implemented for more than 10 years, although the proportion of sand in inshore sediments of the Yellow River estuary was higher (average value, 23.5%) than those in sediments of the Bohai Sea and the Yellow River, silt was predominated (average value, 59.1%) and clay components were relatively low (average value, 17.4%). The clay components in sediments of the inshore region in the Yellow River estuary were close with those in the Yellow River. The situation was greatly changed due to the implementation of FSRS since 2002, and the clay components were in the order of illite > smectite > chlorite > kaolinite. This study also indicated that, compared to large-scale investigation in Bohai Sea, the local study on the inshore region of the Yellow River estuary was more favorable for revealing the effects of long-term implementation of the FSRS on sedimentation environment of the Yellow River estuary.
NASA Astrophysics Data System (ADS)
Natarajan, T.; Seshachalam, S.; Ponniah, J.; Varadhan, R.; M, S.
2008-05-01
Geochemical studies, comprising major elements and trace elements, including the Rare Earth Elements (REE), have been carried out on the modern sediments of inner continental shelf representing nearshore marine environments. Concentrations were normalized with Chondrite and PAAS show LREE enriched and flat HREE patterns with slight positive Eu anomaly which is due to the influence of feldspar rich source materials. The LREE enriched and flat HREE patterns with positive Eu anomaly have been considered as the typical character of post- Archaean Sediments. The La/Th ratio ranges from 1.66 to 8.84 with an average value of 4.09, which indicates a heterogenitic source for the sediments of the study area. The La-Th-Sc ternary plot suggests all the samples fall close to the field dominated by tonalite to granite and away from the basalt and komatiite compositions and appear to be derived from sources enriched in felsic components. The transition metal ratios such as Cr/V, Ni/CO and V/Ni indicate both Archaean and Post-Archaean nature to the sediments indicating that the sediments have been derived from heterogenitic sources. The ternary diagram plot of Th-Hf-Co and La-Th-Sc falls in the field of upper continental crust of post Archaean age. This clearly indicates the terrestrial source for the sediments from the nearby landmass. The data are slightly offset from the upper crustal composition away from the Hf apex. This is probably a result of Zircon concentration. Geochemical data have also helped in ascertaining the weathering trends. The Chemical Index of Alteration (CIA) has been used to quantify the degree of weathering. The calculated CIA values for sediments demonstrate both low CIA values of less than 50 percent (low silicate weathering) and intermediate CIA values (60-70 percent) indicating that the sediments are possibly the product of sedimentary and metasedimentary rocks that have undergone intermediate chemical weathering. On an A—CN—K diagram, the data fall closer to the trend parallel to Al2O3 (CaO*+Na2O) join, suggesting that the sediments represent weathered products from granite and charnockite.
Spaulding, S.A.; McKnight, Diane M.; Stoermer, E.F.; Doran, P.T.
1997-01-01
Diatom assemblages in surficial sediments, sediment cores, sediment traps, and inflowing streams of perennially ice-covered Lake Hore, South Victorialand, Antarctica were examined to determine the distribution of diatom taxa, and to ascertain if diatom species composition has changed over time. Lake Hoare is a closed-basin lake with an area of 1.8 km2, maximum depth of 34 m, and mean depth of 14 m, although lake level has been rising at a rate of 0.09 m yr-1 in recent decades. The lake has an unusual regime of sediment deposition: coarse grained sediments accumulate on the ice surface and are deposited episodically on the lake bottom. Benthic microbial mats are covered in situ by the coarse episodic deposits, and the new surfaces are recolonized. Ice cover prevents wind-induced mixing, creating the unique depositional environment in which sediment cores record the history of a particular site, rather than a lake=wide integration. Shallow-water (<1 m) diatom assemblages (Stauroneis anceps, Navicula molesta, Diadesmis contenta var. parallela, Navicula peraustralis) were distinct from mid-depth (4-16 m) assemblages (Diadesmis contenta, Luticola muticopsis fo. reducta, Stauroneis anceps, Diadesmis contenta var. parallela, Luticola murrayi) and deep-water (2-31 m) assemblages (Luticola murrayi, Luticola muticopsis fo. reducta, Navicula molesta. Analysis of a sediment core (30 cm long, from 11 m water depth) from Lake Hoare revealed two abrupt changes in diatom assemblages. The upper section of the sediment core contained the greatest biomass of benthic microbial mat, as well as the greatest total abundance and diversity of diatoms. Relative abundances of diatoms in this section are similar to the surficial samples from mid-depths. An intermediate zone contained less organic material and lower densities of diatoms. The bottom section of core contained the least amount of microbial mat and organic material, and the lowest density of diatoms. The dominant process influencing species composition and abundance of diatom assemblages in the benthic microbial mats is episodic deposition of coarse sediment from the ice surface.
NASA Astrophysics Data System (ADS)
Shrull, S.; Wilson, C.; Snedden, G.; Bentley, S. J.
2017-12-01
Barataria Basin on the south Louisiana coast is experiencing some of the greatest amounts of coastal land loss in the United States with rates as high as 23.1 km2 lost per year. In an attempt to help slow or reverse land loss, millions of dollars are being spent to create sediment diversions to increase the amount of available inorganic sediments to these vulnerable coastal marsh areas. A better understanding of the spatial trends and patterns of background accretion rates needs to be established in order to effectively implement such structures. Core samples from 25 Coastwide Reference Monitoring System (CRMS) sites spanning inland freshwater to coastal saline areas within the basin were extracted, and using vertical accretion rates from Cs-137 & Pb-210 radionuclide detection, mineral versus organic sediment composition, grain size distribution, and spatial trends of bulk densities, the controls on the accretion rates of the marsh soils will be constrained. Initial rates show a range from 0.31 cm/year to 1.02 cm/year with the average being 0.79 cm/year. Preliminary results suggest that location and proximity to an inorganic sediment source (i.e. river/tributary or open water) have a stronger influence on vertical accretion rates than marsh classification and salinity, with no clear relationship between vertical accretion and salinity. Down-core sediment composition and bulk density analyses observed at a number of the sites likely suggest episodic sedimentation and show different vertical accretion rates through time. Frequency and length of inundation (i.e. hydroperiod), and land/marsh classification from the CRMS data set will be further investigated to constrain the spatial variability in vertical accretion for the basin.
Uranium Isotope Systematic in Saanich Inlet
NASA Astrophysics Data System (ADS)
Amini, M.; Holmden, C.; Francois, R.
2008-12-01
As a redox-sensitive element Uranium has become the focus of stable isotope studies. Based on the nuclear field shift effect [1], U isotope fractionation was predicted as a function of U(IV)-U(VI) exchange reactions with the insoluble reduced U(IV) species being heavier than the soluble oxidized U(VI) species. Recently, variations in 238U/235U were reported in low temperature aqueous and sedimentary environments [2,3] indicating that U deposited in well-oxygenated environments is characterized by light isotopic composition, whereas suboxic and anoxic deposits tend towards a heavy isotopic signature. U isotope fractionation has been hence proposed as a promising new paleo-redox proxy. In order to test the efficacy of U isotope fractionation to record oxidation states in marine systems, we are investigating sediment samples deposited over a range of redox conditions in the seasonally anoxic Saanich Inlet, on the east coast of Vancouver Island. We have also made δ238U measurements for water samples from above and below the redoxcline. The measurements were carried out by MC-ICPMS using 233U/236U-double spike technique. The data are reported as δ238U relative to NBL 112a with a 238U/235U ratio of 137.88 (2sd). External precision is better than 0.10 permil (2sd). Eleven analyses of seawater performed over the course of this work yielded δ238U of -0.41±0.07 permil (2sd). No clear difference in δ238U values has been found, thus far, in water samples collected at 10m (O2~380μM) and 200m (O2~1μM) depths from a single location in the middle of the inlet. The mean of two measurements of the deepwater sample yielded -0.43±0.01 permil (2sd). Two measurements of the shallow water sample yielded a mean value of -0.38±0.03 permil (2sd). The δ238U values for HF-HNO3 digestions of the organic rich sediments, one taken in the middle of the basin (3.11% organic carbon) below seasonally anoxic bottom waters (-0.22±0.01 permil, n=2), and the other taken from the sill (1.29% organic carbon) below well-oxygenated bottom waters (-0.22 permil, n=1) are identical. The δ238U value matches previously reported values for suboxic sediments from the Peru margin [3], but is lighter than organic rich sediments from the Black Sea [3], where the bottom waters are strongly euxinic. The consistency in δ238U vaues between previously investigated suboxic sediment samples [3] and our two sediment samples indicates that the magnitude of the U isotopic fractionation is identical between seawater and sediments deposited under a range of bottom water oxygen conditions from oxygenated to anoxic. However, differences between the U isotope compositions in Saanich Inlet and those from the Black Sea remain to be explained, if U isotope fractionation is be used as a quantitative proxy for paleoredox in ancient oceans. [1] Schauble (2007) GCA 71, 2170- 2189. [2] Stirling et al. (2007) EPSL 264, 208-225. [3] Weyer et al. (2007) GCA 72, 345-399.
Compositional Variations of Paleogene and Neogene Tephra From the Northern Izu-Bonin-Mariana Arc
NASA Astrophysics Data System (ADS)
Tepley, F. J., III; Barth, A. P.; Brandl, P. A.; Hickey-Vargas, R.; Jiang, F.; Kanayama, K.; Kusano, Y.; Li, H.; Marsaglia, K. M.; McCarthy, A.; Meffre, S.; Savov, I. P.; Yogodzinski, G. M.
2014-12-01
A primary objective of IODP Expedition 351 was to evaluate arc initiation processes of the Izu-Bonin-Mariana (IBM) volcanic arc and its compositional evolution through time. To this end, a single thick section of sediment overlying oceanic crust was cored in the Amami Sankaku Basin where a complete sediment record of arc inception and evolution is preserved. This sediment record includes ash and pyroclasts, deposited in fore-arc, arc, and back-arc settings, likely associated with both the ~49-25 Ma emergent IBM volcanic arc and the evolving Ryukyu-Kyushu volcanic arc. Our goal was to assess the major element evolution of the nascent and evolving IBM system using the temporally constrained record of the early and developing system. In all, more than 100 ash and tuff layers, and pyroclastic fragments were selected from temporally resolved portions of the core, and from representative fractions of the overall core ("core catcher"). The samples were prepared to determine major and minor element compositions via electron microprobe analyses. This ash and pyroclast record will allow us to 1) resolve the Paleogene evolutionary history of the northern IBM arc in greater detail; 2) determine compositional variations of this portion of the IBM arc through time; 3) compare the acquired data to an extensive whole rock and tephra dataset from other segments of the IBM arc; 4) test hypotheses of northern IBM arc evolution and the involvement of different source reservoirs; and 5) mark important stratigraphic markers associated with the Neogene volcanic history of the adjacent evolving Ryukyu-Kyushu arc.
Sediment characteristics and provenance of the Taiwan Shoal in the southern Taiwan Strait
NASA Astrophysics Data System (ADS)
Koo, W. S.; Lin, A. T.; Kuo, L. W.; Lee, Y. H.
2016-12-01
The Taiwan Shoal in the southern Taiwan Strait exhibits a lobe-shaped shallow water area, with a depth less than around 40 m and an area approximately of 13,000 km2. The Shoal consists of relict sediments remnant from deltaic deposits during the last glacial period and associated with the paleo-Min River. We collected seafloor sediments in and around the Taiwan Shoal to study the sediment characteristics and provenance of the Shoal as well as Taiwanese river sediments to characterize sediment sourced from southern Taiwan. Our results help to understand possible sediment delivery pathways in a source-to-sink context from the southern Taiwan Strait to the northern South China Sea. The method of X-ray diffraction is used to identify mineral compositions for muds and mineral compositions are examined under polarized microscope for sands. Zircon grains are separated from heavy minerals for U-Pb dating in order to understand the sediment source terranes. Sediments of the Taiwan Shoal are mostly tawny-colored, medium to coarse-grained sands with abundant shell fragments and shallow-water benthic foraminifera. Sediments to the south of the Taiwan Shoal and in the outer shelf consist of dark brown-colored and fine-grained sands with rare shell fragments. Siliciclastic compositions of the Taiwan Shoal sediments are mostly quartz. The second abundant composition is rock fragments with more occurrences near the Chinese coastline and the Penghu archipelago. Slate fragments are found to occur near Taiwan, especially in the Penghu Channel area. Clay minerals from the Penghu Channels and south of the Taiwan Shoal are dominated by illite and chlorite with minor smectite and kaolinite. The sediment colors and mineral species are very different for the sediments of the Taiwan Shoal and outer shelf, revealing that these two areas featuring different oceanographic processes and sediment provenance.
NASA Astrophysics Data System (ADS)
Ingels, Jeroen; Billett, David S. M.; Kiriakoulakis, Konstadinos; Wolff, George A.; Vanreusel, Ann
2011-12-01
Samples collected at two different depths (ca. 3200 and ca. 4200 m) in the Setúbal and Cascais canyons off the Portuguese coast, during the HERMES RRS Charles Darwin cruise CD179, were analysed for (1) sediment biogeochemistry (TOC, TN) and (2) composition, and structural and trophic diversity of nematode communities. Multivariate PERMANOVA analysis on the nematode community data revealed differences between sediment layers that were greater than differences between canyons, water depths, and stations. This suggests that biogeochemical gradients along the vertical sediment profile are crucial in determining nematode community structure. The interaction between canyon conditions and the nematode community is illustrated by biogeochemical patterns in the sediment and the prevalence of nematode genera that are able to persist in disturbed sediments. Trophic analysis of the nematode community indicated that non-selective deposit feeders are dominant, presumably because of their non-selective feeding behaviour compared to other feeding types, which gives them a competitive advantage in exploiting lower-quality food resources. This study presents a preliminary conceptual scheme for interactions between canyon conditions and the resident fauna.
Ma, Xindong; Chen, Chen; Zhang, Haijun; Gao, Yuan; Wang, Zhen; Yao, Ziwei; Chen, Jiping; Chen, Jingwen
2014-02-15
Short-chain chlorinated paraffins (SCCPs) are a new type of persistent organic pollutants that are of great environmental concern because of their wide distribution. In this study, surface sediments and bivalve samples were collected from the coastal area of the Bohai Sea in China. Total SCCP (ΣSCCP) concentrations in surface sediments and bivalves ranged from 97.4 ng g(-1) dry weight (dw) to 1756.7 ng g(-1) dw and 476.4-3269.5 ng g(-1) dw, respectively. C10-CPs and C11-CPs were the predominant homologue groups in all sediments and bivalves. Specific congener composition analysis and correspondence analysis indicated that the local SCCP source mainly came from CP-42 and CP-52 products, and riverine input had an important function. The biota-sediment accumulation factors of ΣSCCPs for bivalves ranged from 1.08 to 1.61, and a significant correlation indicated that the SCCP congener with higher chlorination degree was more likely to be accumulated in bivalves. Copyright © 2014. Published by Elsevier Ltd.
Shifts in microbial community composition following surface application of dredged river sediments.
Baniulyte, Dovile; Favila, Emmanuel; Kelly, John J
2009-01-01
Sediment input to the Illinois River has drastically decreased river depth and reduced habitats for aquatic organisms. Dredging is being used to remove sediment from the Illinois River, and the dredged sediment is being applied to the surface of a brownfield site in Chicago with the goal of revegetating the site. In order to determine the effects of this drastic habitat change on sediment microbial communities, we examined sediment physical, chemical, and microbial characteristics at the time of sediment application to the soil surface as well as 1 and 2 years after application. Microbial community biomass was determined by measurement of lipid phosphate. Microbial community composition was assessed using phospholipid fatty acid (PLFA) analysis, terminal restriction fragment length polymorphism (T-RFLP) analysis of 16S rRNA genes, and clone library sequencing of 16S rRNA genes. Results indicated that the moisture content, organic carbon, and total nitrogen content of the sediment all decreased over time. Total microbial biomass did not change over the course of the study, but there were significant changes in the composition of the microbial communities. PLFA analysis revealed relative increases in fungi, actinomycetes, and Gram positive bacteria. T-RFLP analysis indicated a significant shift in bacterial community composition within 1 year of application, and clone library analysis revealed relative increases in Proteobacteria, Gemmatimonadetes, and Bacteriodetes and relative decreases in Acidobacteria, Spirochaetes, and Planctomycetes. These results provide insight into microbial community shifts following land application of dredged sediment.
Piper, D.Z.; Rude, P.D.; Monteith, S.
1987-01-01
The chemical and mineralogical composition of burrowed sediment, recovered in 66 box cores at latitude 9??25???N and longitude 151??15???W in the equatorial Pacific, demonstrates the important role of infauna in determining the geochemistry of pelagic sediment. Haloed burrows, approximately 3 cm across, were present in many of the cores. Within early Tertiary sediment that was covered by less than 5 cm of surface Quaternary sediment in several cores, the burrows in cross-section consist of three units: (1) a dark yellowish-brown central zone of Quaternary sediment surrounded, by (2) a pale yellowish-orange zone (the halo) of Tertiary sediment, which is surrounded by (3) a metal-oxide precipitate; the enclosing Tertiary sediment is dusky brown. Several elements - Mn, Ni, Cu, Co, Zn, Sb and Ce - have been leached from the light-colored halo, whereas Cr, Cs, Hf, Rb, Sc, Ta, Th, U, the rare earth elements exclusive of Ce, and the major oxides have not been leached. The metal-oxide zone, 1-5 mm thick, contains as much as 16% MnO2, as the mineral todorokite. The composition of the todorokite, exclusive of the admixed Tertiary sediment, resembles the composition of the metal deficit of the halo and also the composition of surface ferromanganese nodules that have been interpreted as having a predominantly diagenetic origin. Thus bioturbation contributes not only to the redistribution of metals within pelagic sediment, but also to the accretion of ferromanganese nodules on the sea floor. ?? 1987.
Hydrocarbons in the Surface Layer of Bottom Sediments in the Northwestern Caspian Sea
NASA Astrophysics Data System (ADS)
Nemirovskaya, I. A.; Ostrovskaya, E. V.
2018-03-01
The paper presents research results on the concentrations and compositions of aliphatic and polycyclic aromatic hydrocarbons in the surface layer of bottom sediments in the Northwestern Caspian Sea (2014) and compares them to data for sediments of the Middle and Southern Caspian (2012-2013). The seepage of hydrocarbons out of the sediment mass, resulting in abnormally high concentrations of aliphatic hydrocarbons per dry weight (up to 468 μg/g), as well as within the Corg composition (up to 35.2%), is considered the main source of hydrocarbons in sediments in the surveyed area of the Northern Caspian. This is also confirmed by the absence of any correlation between the hydrocarbon and Corg distributions, as well as by the transformed oil composition of high-molecular alkanes. The distribution of markers within polycyclic aromatic hydrocarbons points to a mixed genesis—petrogenic and pyrogenic—with prevalence of the latter. Unlike the shallow-water northern part of the Caspian Sea, the content and composition of hydrocarbons in deep-seated sediments are affected by facial conditions of sedimentation and by matter exchange at the water-bottom interface. Therefore, despite high Corg concentrations (up to 9.9%), sediments in deep-water depressions are characterized by a quite low concentration of aliphatic hydrocarbons (52 μg/g on average; 0.2% of Corg) with prevailing natural allochthonous alkanes.
Aszalós, Júlia Margit; Krett, Gergely; Anda, Dóra; Márialigeti, Károly; Nagy, Balázs; Borsodi, Andrea K
2016-09-01
Ojos del Salado, the highest volcano on Earth is surrounded by a special mountain desert with extreme aridity, great daily temperature range, intense solar radiation, and permafrost from 5000 meters above sea level. Several saline lakes and permafrost derived high-altitude lakes can be found in this area, often surrounded by fumaroles and hot springs. The aim of this study was to gain information about the bacterial communities inhabiting the sediment of high-altitude lakes of the Ojos del Salado region located between 3770 and 6500 m. Altogether 11 sediment samples from 4 different altitudes were examined with 16S rRNA gene based denaturing gradient gel electrophoresis and clone libraries. Members of 17 phyla or candidate divisions were detected with the dominance of Proteobacteria, Acidobacteria, Actinobacteria and Bacteroidetes. The bacterial community composition was determined mainly by the altitude of the sampling sites; nevertheless, the extreme aridity and the active volcanism had a strong influence on it. Most of the sequences showed the highest relation to bacterial species or uncultured clones from similar extreme environments.
Lee, G.K.; Antweiler, J.C.; Love, J.D.; Benedict, J.F.
1982-01-01
A brief geologic reconnaissance and geochemical survey of molybdenum mineralization near Schiestler Peak, Sublette County, Wyo., indicates that molybdenite occurs in this area as disseminations and blebs in granitic or quartz monzonitic rocks intruded by felsic dikes of similar composition. Samples of stream sediments, panned concentrates from stream sediments, soils, rocks, and water were collected in the geochemical survey. Analytical results show that in reconnaissance, panned concentrates are the best of the sample types used in this study to detect molybdenum mineralization. More detailed analysis of the distribution of the molybdenum is best achieved through the collection of rock samples. Hydrothermal alteration is generally not conspicuous in the study area; however, rock samples that contain molybdenite are usually slightly enriched in silver, copper, lead, and in several instances, gold. Conversely, there appear to be negative associations between molybdenum and zinc and between molybdenum and several of the rare-earth elements. Mo concentrations in the rock samples with no visible molybdenite range from undetectable at a sensitivity of 5 parts per million (ppm) to 700 ppm. Mo content in rock samples containing visible molybdenite ranges from 10 ppm to greater than 2,000 ppm. Stream-sediment values range from undetected to 15 ppm; panned concentrates from undetected to 15 ppm; soils from undetected to 20 ppm. Analyses of the water samples indicate Mo concentrations from 0.8 parts per billion (ppb) to 4.8 ppb. As currently understood, this deposit is not extensive or continuous, but drilling to provide information on the vertical extent of mineralization may alter this opinion.
Clennell, M.B.; Henry, P.; Hovland, M.; Booth, J.S.; Winters, W.J.; Thomas, M.
2000-01-01
The stability conditions of submarine gas hydrates (methane clathrates) are largely dictated by pressure, temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of the host sediments also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our model presumes that gas hydrate behaves in a way analogous to ice in the pores of a freezing soil, where capillary forces influence the energy balance. Hydrate growth is inhibited within fine-grained sediments because of the excess internal phase pressure of small crystals with high surface curvature that coexist with liquid water in small pores. Therefore, the base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature, and so nearer to the seabed than would be calculated from bulk thermodynamic equilibrium. The growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, sheets, and lenses in muds; cements in sand and ash layers) can be explained by a requirement to minimize the excess of mechanical and surface energy in the system.
Zonation of Microbial Communities by a Hydrothermal Mound in the Atlantis II Deep (the Red Sea).
Wang, Yong; Li, Jiang Tao; He, Li Sheng; Yang, Bo; Gao, Zhao Ming; Cao, Hui Luo; Batang, Zenon; Al-Suwailem, Abdulaziz; Qian, Pei-Yuan
2015-01-01
In deep-sea geothermal rift zones, the dispersal of hydrothermal fluids of moderately-high temperatures typically forms subseafloor mounds. Major mineral components of the crust covering the mound are barite and metal sulfides. As a result of the continental rifting along the Red Sea, metalliferous sediments accumulate on the seafloor of the Atlantis II Deep. In the present study, a barite crust was identified in a sediment core from the Atlantis II Deep, indicating the formation of a hydrothermal mound at the sampling site. Here, we examined how such a dense barite crust could affect the local environment and the distribution of microbial inhabitants. Our results demonstrate distinctive features of mineral components and microbial communities in the sediment layers separated by the barite crust. Within the mound, archaea accounted for 65% of the community. In contrast, the sediments above the barite boundary were overwhelmed by bacteria. The composition of microbial communities under the mound was similar to that in the sediments of the nearby Discovery Deep and marine cold seeps. This work reveals the zonation of microbial communities after the formation of the hydrothermal mound in the subsurface sediments of the rift basin.