Sample records for composite structures analytical

  1. Effects of cutouts on the behavior of symmetric composite laminates subjected to bending and twisting loads

    NASA Technical Reports Server (NTRS)

    Prasad, C. B.; Shuart, M. J.; Bains, N. J.; Rouse, M.

    1993-01-01

    Composite structures are used for a wide variety of aerospace applications. Practical structures contain cutouts and these structures are subjected to in-plane and out-of-plane loading conditions. Structurally efficient designs for composite structures require a thorough understanding of the effects of cutouts on the response of composite plates subjected to inplane or out-of-plane loadings. Most investigations of the behavior of composite plates with cutouts have considered in-plane loadings only. Out-of-plane loadings suchas bending or twisting have received very limited attention. The response of homogeneous plates (e.g., isotropic or orthotropic plates) subjected to bending or twisting moments has been studied analytically. These analyses are for infinite plates and neglect finite-plate effects. Recently, analytical and experimental studies were conducted to determine the effects of cutouts on the response of laminated composite plates subjected to bending moments. No analytical or experimental results are currently available for the effects of cutouts on the response of composite laminates subjected to twisting moments.

  2. SUPRAMOLECULAR COMPOSITE MATERIALS FROM CELLULOSE, CHITOSAN AND CYCLODEXTRIN: FACILE PREPARATION AND THEIR SELECTIVE INCLUSION COMPLEX FORMATION WITH ENDOCRINE DISRUPTORS

    PubMed Central

    Duri, Simon; Tran, Chieu D.

    2013-01-01

    We have successfully developed a simple and one step method to prepare high performance supramolecular polysaccharide composites from cellulose (CEL), chitosan (CS) and (2,3,6-tri-O-acetyl)-α-, β- and γ-cyclodextrin (α-, β- and γ-TCD). In this method, [BMIm+Cl−], an ionic liquid (IL), was used as a solvent to dissolve and prepare the composites. Since majority (>88%) of the IL used was recovered for reuse, the method is recyclable. XRD, FT-IR, NIR and SEM were used to monitor the dissolution process and to confirm that the polysaccharides were regenerated without any chemical modifications. It was found that unique properties of each component including superior mechanical properties (from CEL), excellent adsorbent for pollutants and toxins (from CS) and size/structure selectivity through inclusion complex formation (from TCDs) remain intact in the composites. Specifically, results from kinetics and adsorption isotherms show that while CS-based composites can effectively adsorb the endocrine disruptors (polychlrophenols, bisphenol-A), its adsorption is independent on the size and structure of the analytes. Conversely, the adsorption by γ-TCD-based composites exhibits strong dependency on size and structure of the analytes. For example, while all three TCD-based composites (i.e., α-, β- and γ-TCD) can effectively adsorb 2-, 3- and 4-chlorophenol, only γ-TCD-based composite can adsorb analytes with bulky groups including 3,4-dichloro- and 2,4,5-trichlorophenol. Furthermore, equilibrium sorption capacities for the analytes with bulky groups by γ-TCD-based composite are much higher than those by CS-based composites. Together, these results indicate that γ-TCD-based composite with its relatively larger cavity size can readily form inclusion complexes with analytes with bulky groups, and through inclusion complex formation, it can strongly adsorb much more analytes and with size/structure selectivity compared to CS-based composites which can adsorb the analyte only by surface adsorption. PMID:23517477

  3. Progressive damage, fracture predictions and post mortem correlations for fiber composites

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Lewis Research Center is involved in the development of computational mechanics methods for predicting the structural behavior and response of composite structures. In conjunction with the analytical methods development, experimental programs including post failure examination are conducted to study various factors affecting composite fracture such as laminate thickness effects, ply configuration, and notch sensitivity. Results indicate that the analytical capabilities incorporated in the CODSTRAN computer code are effective in predicting the progressive damage and fracture of composite structures. In addition, the results being generated are establishing a data base which will aid in the characterization of composite fracture.

  4. Effects of floor location on response of composite fuselage frames

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Jones, Lisa E.; Fasanella, Edwin L.

    1992-01-01

    Experimental and analytical results are presented which show the effect of floor placement on the structural response and strength of circular fuselage frames constructed of graphite-epoxy composite material. The research was conducted to study the behavior of conventionally designed advanced composite aircraft components. To achieve desired new designs which incorporate improved energy absorption capabilities requires an understanding of how these conventional designs behave under crash type loadings. Data are presented on the static behavior of the composite structure through photographs of the frame specimen, experimental strain distributions, and through analytical data from composite structural models. An understanding of this behavior can aid the dynamist in predicting the crash behavior of these structures and may assist the designer in achieving improved designs for energy absorption and crash behavior of future structures.

  5. Durability predictions of adhesively bonded composite structures using accelerated characterization methods

    NASA Technical Reports Server (NTRS)

    Brinson, H. F.

    1985-01-01

    The utilization of adhesive bonding for composite structures is briefly assessed. The need for a method to determine damage initiation and propagation for such joints is outlined. Methods currently in use to analyze both adhesive joints and fiber reinforced plastics is mentioned and it is indicated that all methods require the input of the mechanical properties of the polymeric adhesive and composite matrix material. The mechanical properties of polymers are indicated to be viscoelastic and sensitive to environmental effects. A method to analytically characterize environmentally dependent linear and nonlinear viscoelastic properties is given. It is indicated that the methodology can be used to extrapolate short term data to long term design lifetimes. That is, the method can be used for long term durability predictions. Experimental results for near adhesive resins, polymers used as composite matrices and unidirectional composite laminates is given. The data is fitted well with the analytical durability methodology. Finally, suggestions are outlined for the development of an analytical methodology for the durability predictions of adhesively bonded composite structures.

  6. Low velocity impact analysis of composite laminated plates

    NASA Astrophysics Data System (ADS)

    Zheng, Daihua

    2007-12-01

    In the past few decades polymer composites have been utilized more in structures where high strength and light weight are major concerns, e.g., aircraft, high-speed boats and sports supplies. It is well known that they are susceptible to damage resulting from lateral impact by foreign objects, such as dropped tools, hail and debris thrown up from the runway. The impact response of the structures depends not only on the material properties but also on the dynamic behavior of the impacted structure. Although commercial software is capable of analyzing such impact processes, it often requires extensive expertise and rigorous training for design and analysis. Analytical models are useful as they allow parametric studies and provide a foundation for validating the numerical results from large-scale commercial software. Therefore, it is necessary to develop analytical or semi-analytical models to better understand the behaviors of composite structures under impact and their associated failure process. In this study, several analytical models are proposed in order to analyze the impact response of composite laminated plates. Based on Meyer's Power Law, a semi-analytical model is obtained for small mass impact response of infinite composite laminates by the method of asymptotic expansion. The original nonlinear second-order ordinary differential equation is transformed into two linear ordinary differential equations. This is achieved by neglecting high-order terms in the asymptotic expansion. As a result, the semi-analytical solution of the overall impact response can be applied to contact laws with varying coefficients. Then an analytical model accounting for permanent deformation based on an elasto-plastic contact law is proposed to obtain the closed-form solutions of the wave-controlled impact responses of composite laminates. The analytical model is also used to predict the threshold velocity for delamination onset by combining with an existing quasi-static delamination criterion. The predictions are compared with experimental data and explicit finite element LS-DYNA simulation. The comparisons show reasonable agreement. Furthermore, an analytical model is developed to evaluate the combined effects of prestresses and permanent deformation based on the linearized elasto-plastic contact law and the Laplace Transform technique. It is demonstrated that prestresses do not have noticeable effects on the time history of contact force and strains, but they have significant consequences on the plate central displacement. For a impacted composite laminate with the presence of prestresses, the contact force increases with the increasing of the mass of impactor, thickness and interlaminar shear strength of the laminate. The combined analytical and numerical investigations provide validated models for elastic and elasto-plastic impact analysis of composite structures and shed light on the design of impact-resistant composite systems.

  7. Transport composite fuselage technology: Impact dynamics and acoustic transmission

    NASA Technical Reports Server (NTRS)

    Jackson, A. C.; Balena, F. J.; Labarge, W. L.; Pei, G.; Pitman, W. A.; Wittlin, G.

    1986-01-01

    A program was performed to develop and demonstrate the impact dynamics and acoustic transmission technology for a composite fuselage which meets the design requirements of a 1990 large transport aircraft without substantial weight and cost penalties. The program developed the analytical methodology for the prediction of acoustic transmission behavior of advanced composite stiffened shell structures. The methodology predicted that the interior noise level in a composite fuselage due to turbulent boundary layer will be less than in a comparable aluminum fuselage. The verification of these analyses will be performed by NASA Langley Research Center using a composite fuselage shell fabricated by filament winding. The program also developed analytical methodology for the prediction of the impact dynamics behavior of lower fuselage structure constructed with composite materials. Development tests were performed to demonstrate that the composite structure designed to the same operating load requirement can have at least the same energy absorption capability as aluminum structure.

  8. Analysis of thin-walled cylindrical composite shell structures subject to axial and bending loads: Concept development, analytical modeling and experimental verification

    NASA Astrophysics Data System (ADS)

    Mahadev, Sthanu

    Continued research and development efforts devoted in recent years have generated novel avenues towards the advancement of efficient and effective, slender laminated fiber-reinforced composite members. Numerous studies have focused on the modeling and response characterization of composite structures with particular relevance to thin-walled cylindrical composite shells. This class of shell configurations is being actively explored to fully determine their mechanical efficacy as primary aerospace structural members. The proposed research is targeted towards formulating a composite shell theory based prognosis methodology that entails an elaborate analysis and investigation of thin-walled cylindrical shell type laminated composite configurations that are highly desirable in increasing number of mechanical and aerospace applications. The prime motivation to adopt this theory arises from its superior ability to generate simple yet viable closed-form analytical solution procedure to numerous geometrically intense, inherent curvature possessing composite structures. This analytical evaluative routine offers to acquire a first-hand insight on the primary mechanical characteristics that essentially govern the behavior of slender composite shells under typical static loading conditions. Current work exposes the robustness of this mathematical framework via demonstrating its potential towards the prediction of structural properties such as axial stiffness and bending stiffness respectively. Longitudinal ply-stress computations are investigated upon deriving the global stiffness matrix model for composite cylindrical tubes with circular cross-sections. Additionally, this work employs a finite element based numerical technique to substantiate the analytical results reported for cylindrically shaped circular composite tubes. Furthermore, this concept development is extended to the study of thin-walled, open cross-sectioned, curved laminated shells that are geometrically distinguished with respect to the circumferential arc angle, thickness-to-mean radius ratio and total laminate thickness. The potential of this methodology is challenged to analytically determine the location of the centroid. This precise location dictates the decoupling of extension-bending type deformational response in tension loaded composite structures. Upon the cross-validation of the centroidal point through the implementation of an ANSYS based finite element routine, influence of centroid is analytically examined under the application of a concentrated longitudinal tension and bending type loadings on a series of cylindrical shells characterized by three different symmetric-balanced stacking sequences. In-plane ply-stresses are computed and analyzed across the circumferential contour. An experimental investigation has been incorporated via designing an ad-hoc apparatus and test-up that accommodates the quantification of in-plane strains, computation of ply-stresses and addresses the physical characteristics for a set of auto-clave fabricated cylindrical shell articles. Consequently, this work is shown to essentially capture the mechanical aspects of cylindrical shells, thus facilitating structural engineers to design and manufacture viable structures.

  9. Analytical and experimental investigation of aircraft metal structures reinforced with filamentary composites. Phase 3: Major component development

    NASA Technical Reports Server (NTRS)

    Bryson, L. L.; Mccarty, J. E.

    1973-01-01

    Analytical and experimental investigations, performed to establish the feasibility of reinforcing metal aircraft structures with advanced filamentary composites, are reported. Aluminum-boron-epoxy and titanium-boron-epoxy were used in the design and manufacture of three major structural components. The components were representative of subsonic aircraft fuselage and window belt panels and supersonic aircraft compression panels. Both unidirectional and multidirectional reinforcement concepts were employed. Blade penetration, axial compression, and inplane shear tests were conducted. Composite reinforced structural components designed to realistic airframe structural criteria demonstrated the potential for significant weight savings while maintaining strength, stability, and damage containment properties of all metal components designed to meet the same criteria.

  10. NASTRAN as an analytical research tool for composite mechanics and composite structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.; Sullivan, T. L.

    1976-01-01

    Selected examples are described in which NASTRAN is used as an analysis research tool for composite mechanics and for composite structural components. The examples were selected to illustrate the importance of using NASTRAN as an analysis tool in this rapidly advancing field.

  11. An overview of the crash dynamics failure behavior of metal and composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.

    1991-01-01

    An overview of failure behavior results is presented from some of the crash dynamics research conducted with concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. Experimental and analytical data are presented that indicate some general trends in the failure behavior of a class of composite structures that includes fuselage panels, individual fuselage sections, fuselage frames, skeleton subfloors with stringers and floor beams without skin covering, and subfloors with skin added to the frame stringer structure. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models.

  12. Structural Acoustic Physics Based Modeling of Curved Composite Shells

    DTIC Science & Technology

    2017-09-19

    Results show that the finite element computational models accurately match analytical calculations, and that the composite material studied in this...products. 15. SUBJECT TERMS Finite Element Analysis, Structural Acoustics, Fiber-Reinforced Composites, Physics-Based Modeling 16. SECURITY...2 4 FINITE ELEMENT MODEL DESCRIPTION

  13. Integrated analysis and design of thick composite structures for optimal passive damping characteristics

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.

    1993-01-01

    The development of novel composite mechanics for the analysis of damping in composite laminates and structures and the more significant results of this effort are summarized. Laminate mechanics based on piecewise continuous in-plane displacement fields are described that can represent both intralaminar stresses and interlaminar shear stresses and the associated effects on the stiffness and damping characteristics of a composite laminate. Among other features, the mechanics can accurately model the static and damped dynamic response of either thin or thick composite laminates, as well as, specialty laminates with embedded compliant damping layers. The discrete laminate damping theory is further incorporated into structural analysis methods. In this context, an exact semi-analytical method for the simulation of the damped dynamic response of composite plates was developed. A finite element based method and a specialty four-node plate element were also developed for the analysis of composite structures of variable shape and boundary conditions. Numerous evaluations and applications demonstrate the quality and superiority of the mechanics in predicting the damped dynamic characteristics of composite structures. Finally, additional development was focused on the development of optimal tailoring methods for the design of thick composite structures based on the developed analytical capability. Applications on composite plates illustrated the influence of composite mechanics in the optimal design of composites and the potential for significant deviations in the resultant designs when more simplified (classical) laminate theories are used.

  14. Curved Thermopiezoelectric Shell Structures Modeled by Finite Element Analysis

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun

    2000-01-01

    "Smart" structures composed of piezoelectric materials may significantly improve the performance of aeropropulsion systems through a variety of vibration, noise, and shape-control applications. The development of analytical models for piezoelectric smart structures is an ongoing, in-house activity at the NASA Glenn Research Center at Lewis Field focused toward the experimental characterization of these materials. Research efforts have been directed toward developing analytical models that account for the coupled mechanical, electrical, and thermal response of piezoelectric composite materials. Current work revolves around implementing thermal effects into a curvilinear-shell finite element code. This enhances capabilities to analyze curved structures and to account for coupling effects arising from thermal effects and the curved geometry. The current analytical model implements a unique mixed multi-field laminate theory to improve computational efficiency without sacrificing accuracy. The mechanics can model both the sensory and active behavior of piezoelectric composite shell structures. Finite element equations are being implemented for an eight-node curvilinear shell element, and numerical studies are being conducted to demonstrate capabilities to model the response of curved piezoelectric composite structures (see the figure).

  15. Critical joints in large composite primary aircraft structures. Volume 2: Technology demonstration test report

    NASA Technical Reports Server (NTRS)

    Bunin, Bruce L.

    1985-01-01

    A program was conducted to develop the technology for critical structural joints in composite wing structure that meets all the design requirements of a 1990 commercial transport aircraft. The results of four large composite multirow bolted joint tests are presented. The tests were conducted to demonstrate the technology for critical joints in highly loaded composite structure and to verify the analytical methods that were developed throughout the program. The test consisted of a wing skin-stringer transition specimen representing a stringer runout and skin splice on the wing lower surface at the side of the fuselage attachment. All tests were static tension tests. The composite material was Toray T-300 fiber with Ciba-Geigy 914 resin in 10 mil tape form. The splice members were metallic, using combinations of aluminum and titanium. Discussions are given of the test article, instrumentation, test setup, test procedures, and test results for each of the four specimens. Some of the analytical predictions are also included.

  16. Failure behavior of generic metallic and composite aircraft structural components under crash loads

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Robinson, Martha P.

    1990-01-01

    Failure behavior results are presented from crash dynamics research using concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs incorporating improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures including individual fuselage frames, skeleton subfloors with stringers and floor beams without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models.

  17. Nanostructured metal-polyaniline composites

    DOEpatents

    Wang, Hsing-Lin; Li, Wenguang; Bailey, James A.; Gao, Yuan

    2010-08-31

    Metal-polyaniline (PANI) composites are provided together with a process of preparing such composites by an electrodeless process. The metal of the composite can have nanoscale structural features and the composites can be used in applications such as catalysis for hydrogenation reactions and for analytical detection methods employing SERS.

  18. Evaluation of Long Composite Struts

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Wu, K. Chauncey; Phelps, James E.; McKenney, Martin J.; Oremont, Leonard; Barnard, Ansley

    2011-01-01

    Carbon-epoxy tapered struts are structurally efficient and offer opportunities for weight savings on aircraft and spacecraft structures. Seven composite struts were designed, fabricated and experimentally evaluated through uniaxial loading. The design requirements, analytical predictions and experimental results are presented. Struts with a tapered composite body and corrugated titanium end fittings successfully supported their design ultimate loads with no evidence of failure.

  19. Analytical electron microscopy in mineralogy; exsolved phases in pyroxenes

    USGS Publications Warehouse

    Nord, G.L.

    1982-01-01

    Analytical scanning transmission electron microscopy has been successfully used to characterize the structure and composition of lamellar exsolution products in pyroxenes. At operating voltages of 100 and 200 keV, microanalytical techniques of x-ray energy analysis, convergent-beam electron diffraction, and lattice imaging have been used to chemically and structurally characterize exsolution lamellae only a few unit cells wide. Quantitative X-ray energy analysis using ratios of peak intensities has been adopted for the U.S. Geological Survey AEM in order to study the compositions of exsolved phases and changes in compositional profiles as a function of time and temperature. The quantitative analysis procedure involves 1) removal of instrument-induced background, 2) reduction of contamination, and 3) measurement of correction factors obtained from a wide range of standard compositions. The peak-ratio technique requires that the specimen thickness at the point of analysis be thin enough to make absorption corrections unnecessary (i.e., to satisfy the "thin-foil criteria"). In pyroxenes, the calculated "maximum thicknesses" range from 130 to 1400 nm for the ratios Mg/Si, Fe/Si, and Ca/Si; these "maximum thicknesses" have been contoured in pyroxene composition space as a guide during analysis. Analytical spatial resolutions of 50-100 nm have been achieved in AEM at 200 keV from the composition-profile studies, and analytical reproducibility in AEM from homogeneous pyroxene standards is ?? 1.5 mol% endmember. ?? 1982.

  20. Nanostructured metal-polyaniline composites and applications thereof

    DOEpatents

    Wang, Hsing-Lin; Li, Wenguang; Bailey, James A.; Gao, Yuan

    2012-10-02

    Metal-polyaniline (PANI) composites are provided together with a process of preparing such composites by an electrodeless process. The metal of the composite can have nanoscale structural features and the composites can be used in applications such as catalysis for hydrogenation reactions and for analytical detection methods employing SERS.

  1. Reliability analysis of composite structures

    NASA Technical Reports Server (NTRS)

    Kan, Han-Pin

    1992-01-01

    A probabilistic static stress analysis methodology has been developed to estimate the reliability of a composite structure. Closed form stress analysis methods are the primary analytical tools used in this methodology. These structural mechanics methods are used to identify independent variables whose variations significantly affect the performance of the structure. Once these variables are identified, scatter in their values is evaluated and statistically characterized. The scatter in applied loads and the structural parameters are then fitted to appropriate probabilistic distribution functions. Numerical integration techniques are applied to compute the structural reliability. The predicted reliability accounts for scatter due to variability in material strength, applied load, fabrication and assembly processes. The influence of structural geometry and mode of failure are also considerations in the evaluation. Example problems are given to illustrate various levels of analytical complexity.

  2. Design and analysis of composite structures with stress concentrations

    NASA Technical Reports Server (NTRS)

    Garbo, S. P.

    1983-01-01

    An overview of an analytic procedure which can be used to provide comprehensive stress and strength analysis of composite structures with stress concentrations is given. The methodology provides designer/analysts with a user-oriented procedure which, within acceptable engineering accuracy, accounts for the effects of a wide range of application design variables. The procedure permits the strength of arbitrary laminate constructions under general bearing/bypass load conditions to be predicted with only unnotched unidirectional strength and stiffness input data required. Included is a brief discussion of the relevancy of this analysis to the design of primary aircraft structure; an overview of the analytic procedure with theory/test correlations; and an example of the use and interaction of this strength analysis relative to the design of high-load transfer bolted composite joints.

  3. Acoustic emission source location in composite structure by Voronoi construction using geodesic curve evolution.

    PubMed

    Gangadharan, R; Prasanna, G; Bhat, M R; Murthy, C R L; Gopalakrishnan, S

    2009-11-01

    Conventional analytical/numerical methods employing triangulation technique are suitable for locating acoustic emission (AE) source in a planar structure without structural discontinuities. But these methods cannot be extended to structures with complicated geometry, and, also, the problem gets compounded if the material of the structure is anisotropic warranting complex analytical velocity models. A geodesic approach using Voronoi construction is proposed in this work to locate the AE source in a composite structure. The approach is based on the fact that the wave takes minimum energy path to travel from the source to any other point in the connected domain. The geodesics are computed on the meshed surface of the structure using graph theory based on Dijkstra's algorithm. By propagating the waves in reverse virtually from these sensors along the geodesic path and by locating the first intersection point of these waves, one can get the AE source location. In this work, the geodesic approach is shown more suitable for a practicable source location solution in a composite structure with arbitrary surface containing finite discontinuities. Experiments have been conducted on composite plate specimens of simple and complex geometry to validate this method.

  4. Evaluation of capillary reinforced composites

    NASA Technical Reports Server (NTRS)

    Cahill, J. E.; Halase, J. F.; South, W. K.; Stoffer, L. J.

    1985-01-01

    Anti-icing of the inlet of jet engines is generally performed with high pressure heated air that is directed forward from the compressor through a series of pipes to various manifolds located near the structures to be anti-iced. From these manifolds, the air is directed to all flowpath surfaces that may be susceptible to ice formation. There the anti-icing function may be performed by either heat conduction or film heating. Unfortunately, the prospect of utilizing lighweight, high strength composites for inlet structures of jet engines has been frustrated by the low transverse thermal conductivity of such materials. It was the objective of this program to develop an advanced materials and design concept for anti-icing composite structures. The concept that was evaluated used capillary glass tubes embedded on the surface of a composite structure with heated air ducted through the tubes. An analytical computer program was developed to predict the anti-icing performance of such tubes and a test program was conducted to demonstrate actual performance of this system. Test data and analytical code results were in excellent agreement. Both indicate feasibility of using capillary tubes for surface heating as a means for composite engine structures to combat ice accumulation.

  5. Analysis of the connection of the timber-fiber concrete composite structure

    NASA Astrophysics Data System (ADS)

    Holý, Milan; Vráblík, Lukáš; Petřík, Vojtěch

    2017-09-01

    This paper deals with an implementation of the material parameters of the connection to complex models for analysis of the timber-fiber concrete composite structures. The aim of this article is to present a possible way of idealization of the continuous contact model that approximates the actual behavior of timber-fiber reinforced concrete structures. The presented model of the connection was derived from push-out shear tests. It was approved by use of the nonlinear numerical analysis, that it can be achieved a very good compliance between results of numerical simulations and results of the experiments by a suitable choice of the material parameters of the continuous contact. Finally, an application for an analytical calculation of timber-fiber concrete composite structures is developed for the practical use in engineering praxis. The input material parameters for the analytical model was received using data from experiments.

  6. Research in structures, structural dynamics and materials, 1989

    NASA Technical Reports Server (NTRS)

    Hunter, William F. (Compiler); Noor, Ahmed K. (Compiler)

    1989-01-01

    Topics addressed include: composite plates; buckling predictions; missile launch tube modeling; structural/control systems design; optimization of nonlinear R/C frames; error analysis for semi-analytic displacement; crack acoustic emission; and structural dynamics.

  7. Features and characterization needs of rubber composite structures

    NASA Technical Reports Server (NTRS)

    Tabaddor, Farhad

    1989-01-01

    Some of the major unique features of rubber composite structures are outlined. The features covered are those related to the material properties, but the analytical features are also briefly discussed. It is essential to recognize these features at the planning stage of any long-range analytical, experimental, or application program. The development of a general and comprehensive program which fully accounts for all the important characteristics of tires, under all the relevant modes of operation, may present a prohibitively expensive and impractical task at the near future. There is therefore a need to develop application methodologies which can utilize the less general models, beyond their theoretical limitations and yet with reasonable reliability, by proper mix of analytical, experimental, and testing activities.

  8. Molecular modeling of polymer composite interactions with analytes in electronic nose sensors for environmental monitoring in International Space Station

    NASA Technical Reports Server (NTRS)

    Shevade, A. V.; Ryan, M. A.; Homer, M. L.; Manfreda, A. M.; Zhou, H.; Manatt, K.

    2002-01-01

    We report a molecular modeling study to investigate the polymer-carbon black (CB) composite-analyte interactions in resistive sensors. These sensors comprise the JPL Electronic Nose (ENose) sensing array developed for monitoring breathing air in human habitats. The polymer in the composite is modeled based on its stereisomerism and sequence isomerism, while the CB is modeled as uncharged naphthalene rings (with no hydrogens). The Dreiding 2.21 force field is used for the polymer and solvent molecules and graphite parameters are assigned to the carbon black atoms. A combination of molecular mechanics (MM) and molecular dynamics (NPT-MD and NVT-MD) techniques are used to obtain the equilibrium composite structure by inserting naphthalene rings in the polymer matrix. Polymers considered for this work include poly(4- vinylphenol), polyethylene oxide, and ethyl cellulose. Analytes studied are representative of both inorganic (ammonia) and organic (methanol, toluene, hydrazine) compounds. The results are analyzed for the composite microstructure by calculating the radial distribution profiles as well as for the sensor response by predicting the interaction energies of the analytes with the composites.

  9. Molecular modeling of polymer composite-analyte interactions in electronic nose sensors

    NASA Technical Reports Server (NTRS)

    Shevade, A. V.; Ryan, M. A.; Homer, M. L.; Manfreda, A. M.; Zhou, H.; Manatt, K. S.

    2003-01-01

    We report a molecular modeling study to investigate the polymer-carbon black (CB) composite-analyte interactions in resistive sensors. These sensors comprise the JPL electronic nose (ENose) sensing array developed for monitoring breathing air in human habitats. The polymer in the composite is modeled based on its stereoisomerism and sequence isomerism, while the CB is modeled as uncharged naphthalene rings with no hydrogens. The Dreiding 2.21 force field is used for the polymer, solvent molecules and graphite parameters are assigned to the carbon black atoms. A combination of molecular mechanics (MM) and molecular dynamics (NPT-MD and NVT-MD) techniques are used to obtain the equilibrium composite structure by inserting naphthalene rings in the polymer matrix. Polymers considered for this work include poly(4-vinylphenol), polyethylene oxide, and ethyl cellulose. Analytes studied are representative of both inorganic and organic compounds. The results are analyzed for the composite microstructure by calculating the radial distribution profiles as well as for the sensor response by predicting the interaction energies of the analytes with the composites. c2003 Elsevier Science B.V. All rights reserved.

  10. Characterization and manufacture of braided composites for large commercial aircraft structures

    NASA Technical Reports Server (NTRS)

    Fedro, Mark J.; Willden, Kurtis

    1992-01-01

    Braided composite materials, one of the advanced material forms which is under investigation in Boeing's ATCAS program, have been recognized as a potential cost-effective material form for fuselage structural elements. Consequently, there is a strong need for more knowledge in the design, manufacture, test, and analysis of textile structural composites. The overall objective of this work is to advance braided composite technology towards applications to a large commercial transport fuselage. This paper summarizes the mechanics of materials and manufacturing demonstration results which have been obtained in order to acquire an understanding of how braided composites can be applied to a commercial fuselage. Textile composites consisting of 1D, 2D triaxial, and 3D braid patterns with thermoplastic and two RTM resin systems were investigated. The structural performance of braided composites was evaluated through an extensive mechanical test program. Analytical methods were also developed and applied to predict the following: internal fiber architectures, stiffnesses, fiber stresses, failure mechanisms, notch effects, and the entire history of failure of the braided composites specimens. The applicability of braided composites to a commercial transport fuselage was further assessed through a manufacturing demonstration. Three foot fuselage circumferential hoop frames were manufactured to demonstrate the feasibility of consistently producing high quality braided/RTM composite primary structures. The manufacturing issues (tooling requirements, processing requirements, and process/quality control) addressed during the demonstration are summarized. The manufacturing demonstration in conjunction with the mechanical test results and developed analytical methods increased the confidence in the ATCAS approach to the design, manufacture, test, and analysis of braided composites.

  11. Optimal design of damping layers in SMA/GFRP laminated hybrid composites

    NASA Astrophysics Data System (ADS)

    Haghdoust, P.; Cinquemani, S.; Lo Conte, A.; Lecis, N.

    2017-10-01

    This work describes the optimization of the shape profiles for shape memory alloys (SMA) sheets in hybrid layered composite structures, i.e. slender beams or thinner plates, designed for the passive attenuation of flexural vibrations. The paper starts with the description of the material and architecture of the investigated hybrid layered composite. An analytical method, for evaluating the energy dissipation inside a vibrating cantilever beam is developed. The analytical solution is then followed by a shape profile optimization of the inserts, using a genetic algorithm to minimize the SMA material layer usage, while maintaining target level of structural damping. Delamination problem at SMA/glass fiber reinforced polymer interface is discussed. At the end, the proposed methodology has been applied to study the hybridization of a wind turbine layered structure blade with SMA material, in order to increase its passive damping.

  12. Compression failure mechanisms of composite structures

    NASA Technical Reports Server (NTRS)

    Hahn, H. T.; Sohi, M.; Moon, S.

    1986-01-01

    An experimental and analytical study was conducted to delineate the compression failure mechanisms of composite structures. The present report summarizes further results on kink band formation in unidirectional composites. In order to assess the compressive strengths and failure modes of fibers them selves, a fiber bundle was embedded in epoxy casting and tested in compression. A total of six different fibers were used together with two resins of different stiffnesses. The failure of highly anisotropic fibers such as Kevlar 49 and P-75 graphite was due to kinking of fibrils. However, the remaining fibers--T300 and T700 graphite, E-glass, and alumina--failed by localized microbuckling. Compressive strengths of the latter group of fibers were not fully utilized in their respective composite. In addition, acoustic emission monitoring revealed that fiber-matrix debonding did not occur gradually but suddenly at final failure. The kink band formation in unidirectional composites under compression was studied analytically and through microscopy. The material combinations selected include seven graphite/epoxy composites, two graphite/thermoplastic resin composites, one Kevlar 49/epoxy composite and one S-glass/epoxy composite.

  13. Analytical and experimental study of structurally efficient composite hat-stiffened panels loaded in axial compression

    NASA Technical Reports Server (NTRS)

    Williams, J. G.; Mikulus, M. M., Jr.

    1976-01-01

    Structural efficiency studies were made to determine the weight saving potential of graphite/epoxy composite structures for compression panel applications. Minimum weight hat-stiffened and open corrugation configurations were synthesized using a nonlinear mathematical programming technique. Selected configurations were built and tested to study local and Euler buckling characteristics. Test results for 23 panels critical in local buckling and six panels critical in Euler buckling are compared with analytical results obtained using the BUCLASP-2 branched plate buckling program. A weight efficiency comparison is made between composite and aluminum compression panels using metal test data generated by the NACA. Theoretical studies indicate that potential weight savings of up to 50% are possible for composite hat-stiffened panels when compared with similar aluminum designs. Weight savings of 32% to 42% were experimentally achieved. Experience suggests that most of the theoretical weight saving potential is available if design deficiencies are eliminated and strict fabrication control is exercised.

  14. Composite Repairs of Cracked Metallic Airframe Structures

    DTIC Science & Technology

    1993-05-01

    painting of the surface of composites. Therefore, repairs on external surfaces of aircraft should be painted prior to service. 30 2. ANALITICAL AND...tends to decrease the ’apparent’ stress intensity factor. These factors have to be taken into account when comparing the analytical predictions with the...analytical predictions . The fatigue crack growth data for one of the specimens appears in Figure 2-46Zhe ’Inferred’ stress-intensity factor [from the

  15. Behavior of composite/metal aircraft structural elements and components under crash type loads: What are they telling us

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.

    1990-01-01

    Failure behavior results are presented from crash dynamics research using concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs which incorporate improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures which include individual fuselage frames, skeleton subfloors with stringers and floor beams but without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static and dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models. It is believed that the similarity in behavior is giving the designer and dynamists much information about what to expect in the crash behavior of these structures and can guide designs for improving the energy absorption and crash behavior of such structures.

  16. Behavior of composite/metal aircraft structural elements and components under crash type loads - What are they telling us?

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.

    1990-01-01

    Failure behavior results are presented from crash dynamics research using concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs which incorporate improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures which include individual fuselage frames, skeleton subfloors with stringers and floor beams but without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static and dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models. It is believed that the similarity in behavior is giving the designer and dynamists much information about what to expect in the crash behavior of these structures and can guide designs for improving the energy absorption and crash behavior of such structures.

  17. Unique failure behavior of metal/composite aircraft structural components under crash type loads

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.

    1990-01-01

    Failure behavior results are presented on some of the crash dynamics research conducted with concepts of aircraft elements and substructure which have not necessarily been designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs which incorporate improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash type loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures which include individual fuselage frames, skeleton subfloors with stringers and floor beams but without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models. It is believed that the thread of similarity in behavior is telling the designer and dynamists a great deal about what to expect in the crash behavior of these structures and can guide designs for improving the energy absorption and crash behavior of such structures.

  18. Load Diffusion in Composite Structures

    NASA Technical Reports Server (NTRS)

    Horgan, Cornelius O.; Simmonds, J. G.

    2000-01-01

    This research has been concerned with load diffusion in composite structures. Fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses. The decay behavior of stresses and other field quantities provides a significant aid towards this process. The results are also amendable to parameter study with a large parameter space and should be useful in structural tailoring studies.

  19. Influence of BN fiber coatings on the interfacial structure of sapphire fiber reinforced NiAl composites

    NASA Astrophysics Data System (ADS)

    Reichert, K.; Wen, K.; Cremer, R.; Hu, W.; Neuschütz, D.; Gottstein, G.

    2001-07-01

    A new concept for a tailored fiber-matrix interface for sapphire fiber reinforced NiAl matrix composites is proposed, consisting of an initial hexagonal boron nitride (hBN) fiber coating. For this, single crystal Al 2O 3 fibers were coated with hBN by chemical vapor deposition (CVD). Following a comprehensive characterization of the CVD coating as to composition and structure by means of X-ray photoelectron spectroscopy (XPS) and grazing incidence X-ray diffraction (GIXRD), the fiber reinforced NiAl matrix composites were fabricated by diffusion bonding at 1400°C. The interfaces NiAl/BN and BN/Al 2O 3 were analyzed by scanning electron microscopy (SEM), analytical transmission electron microscopy (TEM), and selected area diffraction (SAD). An interfacial reaction between NiAl and hBN to form AlN was revealed using these analytical techniques.

  20. Impact and Penetration Simulations for Composite Wing-like Structures

    NASA Technical Reports Server (NTRS)

    Knight, Norman F.

    1998-01-01

    The goal of this research project was to develop methodologies for the analysis of wing-like structures subjected to impact loadings. Low-speed impact causing either no damage or only minimal damage and high-speed impact causing severe laminate damage and possible penetration of the structure were to be considered during this research effort. To address this goal, an assessment of current analytical tools for impact analysis was performed. Assessment of the analytical tools for impact and penetration simulations with regard to accuracy, modeling, and damage modeling was considered as well as robustness, efficient, and usage in a wing design environment. Following a qualitative assessment, selected quantitative evaluations will be performed using the leading simulation tools. Based on this assessment, future research thrusts for impact and penetration simulation of composite wing-like structures were identified.

  1. Spectroscopic studies of PVA/Gly:Na2SO4 polymer composites

    NASA Astrophysics Data System (ADS)

    G, Thejas Urs; T, Ananda H.; Mahadevaiah, Somashekar, R.

    2015-06-01

    As a continued work on investigating a good conducting polymer, Sodium sulphate doped PVA polymer composites were prepared by solution casting method and subjected to various analytical measurements such as FT-IR spectroscopy, UV/Visible absorbance and Wide angle X-ray scattering technique. The changes observed in the structure of these polymer composites for various concentrations are computed by the results obtained from all above techniques are reported and related with the structure property. The Microstructural parameters of these polymer composites are evaluated using in-house programs.

  2. Flexural waves induced by electro-impulse deicing forces

    NASA Technical Reports Server (NTRS)

    Gien, P. H.

    1990-01-01

    The generation, reflection and propagation of flexural waves created by electroimpulsive deicing forces are demonstrated both experimentally and analytically in a thin circular plate and a thin semicylindrical shell. Analytical prediction of these waves with finite element models shows good correlation with acceleration and displacement measurements at discrete points on the structures studied. However, sensitivity to spurious flexural waves resulting from the spatial discretization of the structures is shown to be significant. Consideration is also given to composite structures as an extension of these studies.

  3. Failure analysis of thick composite cylinders under external pressure

    NASA Technical Reports Server (NTRS)

    Caiazzo, A.; Rosen, B. W.

    1992-01-01

    Failure of thick section composites due to local compression strength and overall structural instability is treated. Effects of material nonlinearity, imperfect fiber architecture, and structural imperfections upon anticipated failure stresses are determined. Comparisons with experimental data for a series of test cylinders are described. Predicting the failure strength of composite structures requires consideration of stability and material strength modes of failure using linear and nonlinear analysis techniques. Material strength prediction requires the accurate definition of the local multiaxial stress state in the material. An elasticity solution for the linear static analysis of thick anisotropic cylinders and rings is used herein to predict the axisymmetric stress state in the cylinders. Asymmetric nonlinear behavior due to initial cylinder out of roundness and the effects of end closure structure are treated using finite element methods. It is assumed that local fiber or ply waviness is an important factor in the initiation of material failure. An analytical model for the prediction of compression failure of fiber composites, which includes the effects of fiber misalignments, matrix inelasticity, and multiaxial applied stresses is used for material strength calculations. Analytical results are compared to experimental data for a series of glass and carbon fiber reinforced epoxy cylinders subjected to external pressure. Recommendations for pretest characterization and other experimental issues are presented. Implications for material and structural design are discussed.

  4. Analytical and experimental investigation of aircraft metal structures reinforced with filamentary composites. Phase 1: Concept development and feasibility

    NASA Technical Reports Server (NTRS)

    Oken, S.; June, R. R.

    1971-01-01

    The analytical and experimental investigations are described in the first phase of a program to establish the feasibility of reinforcing metal aircraft structures with advanced filamentary composites. The interactions resulting from combining the two types of materials into single assemblies as well as their ability to function structurally were studied. The combinations studied were boron-epoxy reinforced aluminum, boron-epoxy reinforced titanium, and boron-polyimide reinforced titanium. The concepts used unidirectional composites as reinforcement in the primary loading direction and metal for carrying the transverse loads as well as its portion of the primary load. The program established that several realistic concepts could be fabricated, that these concepts could perform to a level that would result in significant weight savings, and that there are means for predicting their capability within a reasonable degree of accuracy. This program also encountered problems related to the application of polyimide systems that resulted in their relatively poor and variable performance.

  5. Dynamic behaviour of thin composite plates for different boundary conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprintu, Iuliana, E-mail: sprintui@yahoo.com, E-mail: rotaruconstantin@yahoo.com; Rotaru, Constantin, E-mail: sprintui@yahoo.com, E-mail: rotaruconstantin@yahoo.com

    2014-12-10

    In the context of composite materials technology, which is increasingly present in industry, this article covers a topic of great interest and theoretical and practical importance. Given the complex design of fiber-reinforced materials and their heterogeneous nature, mathematical modeling of the mechanical response under different external stresses is very difficult to address in the absence of simplifying assumptions. In most structural applications, composite structures can be idealized as beams, plates, or shells. The analysis is reduced from a three-dimensional elasticity problem to a oneor two-dimensional problem, based on certain simplifying assumptions that can be made because the structure is thin.more » This paper aims to validate a mathematical model illustrating how thin rectangular orthotropic plates respond to the actual load. Thus, from the theory of thin plates, new analytical solutions are proposed corresponding to orthotropic rectangular plates having different boundary conditions. The proposed analytical solutions are considered both for solving equation orthotropic rectangular plates and for modal analysis.« less

  6. Analysis of Tile-Reinforced Composite Armor. Part 1; Advanced Modeling and Strength Analyses

    NASA Technical Reports Server (NTRS)

    Davila, C. G.; Chen, Tzi-Kang; Baker, D. J.

    1998-01-01

    The results of an analytical and experimental study of the structural response and strength of tile-reinforced components of the Composite Armored Vehicle are presented. The analyses are based on specialized finite element techniques that properly account for the effects of the interaction between the armor tiles, the surrounding elastomers, and the glass-epoxy sublaminates. To validate the analytical predictions, tests were conducted with panels subjected to three-point bending loads. The sequence of progressive failure events for the laminates is described. This paper describes the results of Part 1 of a study of the response and strength of tile-reinforced composite armor.

  7. Design of Structurally Efficient Tapered Struts

    NASA Technical Reports Server (NTRS)

    Messinger, Ross

    2010-01-01

    This report describes the analytical study of two full-scale tapered composite struts. The analytical study resulted in the design of two structurally efficient carbon/epoxy struts in accordance with NASA-specified geometries and loading conditions. Detailed stress analysis was performed of the insert, end fitting, and strut body to obtain an optimized weight with positive margins. Two demonstration struts were fabricated based on a well-established design from a previous Space Shuttle strut development program.

  8. Stress analysis in curved composites due to thermal loading

    NASA Astrophysics Data System (ADS)

    Polk, Jared Cornelius

    Many structures in aircraft, cars, trucks, ships, machines, tools, bridges, and buildings, consist of curved sections. These sections vary from straight line segments that have curvature at either one or both ends, segments with compound curvatures, segments with two mutually perpendicular curvatures or Gaussian curvatures, and segments with a simple curvature. With the advancements made in multi-purpose composites over the past 60 years, composites slowly but steadily have been appearing in these various vehicles, compound structures, and buildings. These composite sections provide added benefits over isotropic, polymeric, and ceramic materials by generally having a higher specific strength, higher specific stiffnesses, longer fatigue life, lower density, possibilities in reduction of life cycle and/or acquisition cost, and greater adaptability to intended function of structure via material composition and geometry. To be able to design and manufacture a safe composite laminate or structure, it is imperative that the stress distributions, their causes, and effects are thoroughly understood in order to successfully accomplish mission objectives and manufacture a safe and reliable composite. The objective of the thesis work is to expand upon the knowledge of simply curved composite structures by exploring and ascertaining all pertinent parameters, phenomenon, and trends in stress variations in curved laminates due to thermal loading. The simply curved composites consist of composites with one radius of curvature throughout the span of the specimen about only one axis. Analytical beam theory, classical lamination theory, and finite element analysis were used to ascertain stress variations in a flat, isotropic beam. An analytical method was developed to ascertain the stress variations in an isotropic, simply curved beam under thermal loading that is under both free-free and fixed-fixed constraint conditions. This is the first such solution to Author's best knowledge of such a problem. It was ascertained and proven that the general, non-modified (original) version of classical lamination theory cannot be used for an analytical solution for a simply curved beam or any other structure that would require rotations of laminates out their planes in space. Finite element analysis was used to ascertain stress variations in a simply curved beam. It was verified that these solutions reduce to the flat beam solutions as the radius of curvature of the beams tends to infinity. MATLAB was used to conduct the classical lamination theory numerical analysis. A MATLAB program was written to conduct the finite element analysis for the flat and curved beams, isotropic and composite. It does not require incompatibility techniques used in mechanics of isotropic materials for indeterminate structures that are equivalent to fixed-beam problems. Finally, it has the ability to enable the user to define and create unique elements not accessible in commercial software, and modify finite element procedures to take advantage of new paradigms.

  9. Characterization and manufacture of braided composites for large commercial aircraft structures

    NASA Technical Reports Server (NTRS)

    Fedro, Mark J.; Willden, Kurtis

    1992-01-01

    Braided composite materials has been recognized as a potential cost effective material form for fuselage structural elements. Consequently, there is a strong need for more knowledge in the design, manufacture, test, and analysis of textile structural composites. Advance braided composite technology is advanced towards applications to a large commercial transport fuselage. The mechanics are summarized of materials and manufacturing demonstration results which were obtained in order to acquire an understanding of how braided composites can be applied to a commercial fuselage. Textile composites consisting of 2-D, 2-D triaxial, and 3-D braid patterns with thermoplastic and two resin transfer molding resin systems were studied. The structural performance of braided composites was evaluated through an extensive mechanical test program. Analytical methods were also developed and applied to predict the following: internal fiber architecture; stiffness; fiber stresses; failure mechanisms; notch effects; and the history of failure of the braided composite specimens. The applicability of braided composites to a commercial transport fuselage was further assessed through a manufacturing demonstration.

  10. Structural mechanics and helical geometry of thin elastic composites.

    PubMed

    Wada, Hirofumi

    2016-09-21

    Helices are ubiquitous in nature, and helical shape transition is often observed in residually stressed bodies, such as composites, wherein materials with different mechanical properties are glued firmly together to form a whole body. Inspired by a variety of biological examples, the basic physical mechanism responsible for the emergence of twisting and bending in such thin composite structures has been extensively studied. Here, we propose a simplified analytical model wherein a slender membrane tube undergoes a helical transition driven by the contraction of an elastic ribbon bound to the membrane surface. We analytically predict the curvature and twist of an emergent helix as functions of differential strains and elastic moduli, which are confirmed by our numerical simulations. Our results may help understand shapes observed in different biological systems, such as spiral bacteria, and could be applied to novel designs of soft machines and robots.

  11. The European Gender Equality Index: Conceptual and Analytical Issues

    ERIC Educational Resources Information Center

    Bericat, Eduardo

    2012-01-01

    This article presents a composite indicator designed to measure and compare existing structural gender equality in the countries of the European Union. The construction of an index is always a complex task which requires making a great many important conceptual, analytical and empirical decisions. This complexity explains the wide variety of…

  12. Computer modeling of the mechanical behavior of composites -- Interfacial cracks in fiber-reinforced materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmauder, S.; Haake, S.; Mueller, W.H.

    Computer modeling of materials and especially modeling the mechanical behavior of composites became increasingly popular in the past few years. Among them are examples of micromechanical modeling of real structures as well as idealized model structures of linear elastic and elasto-plastic material response. In this paper, Erdogan`s Integral Equation Method (IEM) is chosen as an example for a powerful method providing principle insight into elastic fracture mechanical situations. IEM or, alternatively, complex function techniques sometimes even allow for deriving analytical solutions such as in the case of a circumferential crack along a fiber/matrix interface. The analytical formulae of this interfacemore » crack will be analyzed numerically and typical results will be presented graphically.« less

  13. Arrow-wing supersonic cruise aircraft structural design concepts evaluation. Volume 2: Sections 7 through 11

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.

    1975-01-01

    The materials and advanced producibility methods that offer potential structural mass savings in the design of the primary structure for a supersonic cruise aircraft are identified and reported. A summary of the materials and fabrication techniques selected for this analytical effort is presented. Both metallic and composite material systems were selected for application to a near-term start-of-design technology aircraft. Selective reinforcement of the basic metallic structure was considered as the appropriate level of composite application for the near-term design.

  14. Frequency Response Function Based Damage Identification for Aerospace Structures

    NASA Astrophysics Data System (ADS)

    Oliver, Joseph Acton

    Structural health monitoring technologies continue to be pursued for aerospace structures in the interests of increased safety and, when combined with health prognosis, efficiency in life-cycle management. The current dissertation develops and validates damage identification technology as a critical component for structural health monitoring of aerospace structures and, in particular, composite unmanned aerial vehicles. The primary innovation is a statistical least-squares damage identification algorithm based in concepts of parameter estimation and model update. The algorithm uses frequency response function based residual force vectors derived from distributed vibration measurements to update a structural finite element model through statistically weighted least-squares minimization producing location and quantification of the damage, estimation uncertainty, and an updated model. Advantages compared to other approaches include robust applicability to systems which are heavily damped, large, and noisy, with a relatively low number of distributed measurement points compared to the number of analytical degrees-of-freedom of an associated analytical structural model (e.g., modal finite element model). Motivation, research objectives, and a dissertation summary are discussed in Chapter 1 followed by a literature review in Chapter 2. Chapter 3 gives background theory and the damage identification algorithm derivation followed by a study of fundamental algorithm behavior on a two degree-of-freedom mass-spring system with generalized damping. Chapter 4 investigates the impact of noise then successfully proves the algorithm against competing methods using an analytical eight degree-of-freedom mass-spring system with non-proportional structural damping. Chapter 5 extends use of the algorithm to finite element models, including solutions for numerical issues, approaches for modeling damping approximately in reduced coordinates, and analytical validation using a composite sandwich plate model. Chapter 6 presents the final extension to experimental systems-including methods for initial baseline correlation and data reduction-and validates the algorithm on an experimental composite plate with impact damage. The final chapter deviates from development and validation of the primary algorithm to discuss development of an experimental scaled-wing test bed as part of a collaborative effort for developing structural health monitoring and prognosis technology. The dissertation concludes with an overview of technical conclusions and recommendations for future work.

  15. High-Speed, Three Dimensional Object Composition Mapping Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishikawa, M Y

    2001-02-14

    This document overviews an entirely new approach to determining the composition--the chemical-elemental, isotopic and molecular make-up--of complex, highly structured objects, moreover with microscopic spatial resolution in all 3 dimensions. The front cover depicts the new type of pulsed laser system at the heart of this novel technology under adjustment by Alexis Wynne, and schematically indicates two of its early uses: swiftly analyzing the 3-D composition governed structure of a transistor circuit with both optical and mass-spectrometric detectors, and of fossilized dinosaur and turtle bones high-speed probed by optical detection means. Studying the composition-cued 3-D micro-structures of advanced composite materials andmore » the microscopic scale composition-texture of biological tissues are two near-term examples of the rich spectrum of novel applications enabled by this field-opening analytic tool-set.« less

  16. Correlation of Structural Analysis and Test Results for the McDonnell Douglas Stitched/RFI All-Composite Wing Stub Box

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Jegley, Dawn C.; Bush, Harold G.; Hinrichs, Stephen C.

    1996-01-01

    The analytical and experimental results of an all-composite wing stub box are presented in this report. The wing stub box, which is representative of an inboard portion of a commercial transport high-aspect-ratio wing, was fabricated from stitched graphite-epoxy material with a Resin Film Infusion manufacturing process. The wing stub box was designed and constructed by the McDonnell Douglas Aerospace Company as part of the NASA Advanced Composites Technology program. The test article contained metallic load-introduction structures on the inboard and outboard ends of the graphite-epoxy wing stub box. The root end of the inboard load introduction structure was attached to a vertical reaction structure, and an upward load was applied to the outermost tip of the outboard load introduction structure to induce bending of the wing stub box. A finite element model was created in which the center portion of the wing-stub-box upper cover panel was modeled with a refined mesh. The refined mesh was required to represent properly the geometrically nonlinear structural behavior of the upper cover panel and to predict accurately the strains in the stringer webs of the stiffened upper cover panel. The analytical and experimental results for deflections and strains are in good agreement.

  17. Hybrid-Wing-Body Vehicle Composite Fuselage Analysis and Case Study

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    2014-01-01

    Recent progress in the structural analysis of a Hybrid Wing-Body (HWB) fuselage concept is presented with the objective of structural weight reduction under a set of critical design loads. This pressurized efficient HWB fuselage design is presently being investigated by the NASA Environmentally Responsible Aviation (ERA) project in collaboration with the Boeing Company, Huntington Beach. The Pultruded Rod-Stiffened Efficient Unitized Structure (PRSEUS) composite concept, developed at the Boeing Company, is approximately modeled for an analytical study and finite element analysis. Stiffened plate linear theories are employed for a parametric case study. Maximum deflection and stress levels are obtained with appropriate assumptions for a set of feasible stiffened panel configurations. An analytical parametric case study is presented to examine the effects of discrete stiffener spacing and skin thickness on structural weight, deflection and stress. A finite-element model (FEM) of an integrated fuselage section with bulkhead is developed for an independent assessment. Stress analysis and scenario based case studies are conducted for design improvement. The FEM model specific weight of the improved fuselage concept is computed and compared to previous studies, in order to assess the relative weight/strength advantages of this advanced composite airframe technology

  18. Composite Flywheels Assessed Analytically by NDE and FEA

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.

    2000-01-01

    As an alternative to expensive and short-lived lead-acid batteries, composite flywheels are being developed to provide an uninterruptible power supply for advanced aerospace and industrial applications. Flywheels can help prevent irregularities in voltage caused by power spikes, sags, surges, burnout, and blackouts. Other applications include load-leveling systems for wind and solar power facilities, where energy output fluctuates with weather. Advanced composite materials are being considered for these components because they are significantly lighter than typical metallic alloys and have high specific strength and stiffness. However, much more research is needed before these materials can be fully utilized, because there is insufficient data concerning their fatigue characteristics and nonlinear behavior, especially at elevated temperatures. Moreover, these advanced types of structural composites pose greater challenges for nondestructive evaluation (NDE) techniques than are encountered with typical monolithic engineering metals. This is particularly true for ceramic polymer and metal matrix composites, where structural properties are tailored during the processing stages. Current efforts involving the NDE group at the NASA Glenn Research Center at Lewis Field are focused on evaluating many important structural components, including the flywheel system. Glenn's in-house analytical and experimental capabilities are being applied to analyze data produced by computed tomography (CT) scans to help assess the damage and defects of high-temperature structural composite materials. Finite element analysis (FEA) has been used extensively to model the effects of static and dynamic loading on aerospace propulsion components. This technique allows the use of complicated loading schemes by breaking the complex part geometry into many smaller, geometrically simple elements.

  19. Vibrations and structureborne noise in space station

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.

    1985-01-01

    Theoretical models were developed capable of predicting structural response and noise transmission to random point mechanical loads. Fiber reinforced composite and aluminum materials were considered. Cylindrical shells and circular plates were taken as typical representatives of structural components for space station habitability modules. Analytical formulations include double wall and single wall constructions. Pressurized and unpressurized models were considered. Parametric studies were conducted to determine the effect on structural response and noise transmission due to fiber orientation, point load location, damping in the core and the main load carrying structure, pressurization, interior acoustic absorption, etc. These analytical models could serve as preliminary tools for assessing noise related problems, for space station applications.

  20. A new experimental method for the accelerated characterization of composite materials

    NASA Technical Reports Server (NTRS)

    Yeow, Y. T.; Morris, D. H.; Brinson, H. F.

    1978-01-01

    The use of composite materials for a variety of practical structural applications is presented and the need for an accelerated characterization procedure is assessed. A new experimental and analytical method is presented which allows the prediction of long term properties from short term tests. Some preliminary experimental results are presented.

  1. Nonlinear Analysis and Scaling Laws for Noncircular Composite Structures Subjected to Combined Loads

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Rose, Cheryl A.; Starnes, James H., Jr.

    2001-01-01

    Results from an analytical study of the response of a built-up, multi-cell noncircular composite structure subjected to combined internal pressure and mechanical loads are presented. Nondimensional parameters and scaling laws based on a first-order shear-deformation plate theory are derived for this noncircular composite structure. The scaling laws are used to design sub-scale structural models for predicting the structural response of a full-scale structure representative of a portion of a blended-wing-body transport aircraft. Because of the complexity of the full-scale structure, some of the similitude conditions are relaxed for the sub-scale structural models. Results from a systematic parametric study are used to determine the effects of relaxing selected similitude conditions on the sensitivity of the effectiveness of using the sub-scale structural model response characteristics for predicting the full-scale structure response characteristics.

  2. A Review of Research on Impulsive Loading of Marine Composites

    NASA Astrophysics Data System (ADS)

    Porfiri, Maurizio; Gupta, Nikhil

    Impulsive loading conditions, such as those produced by blast waves, are being increasingly recognized as relevant in marine applications. Significant research efforts are directed towards understanding the impulsive loading response of traditional naval materials, such as aluminum and steel, and advanced composites, such as laminates and sandwich structures. Several analytical studies are directed towards establishing predictive models for structural response and failure of marine structures under blast loading. In addition, experimental research efforts are focused on characterizing structural response to blast loading. The aim of this review is to provide a general overview of the state of the art on analytical and experimental studies in this field that can serve as a guideline for future research directions. Reported studies cover the Office of Naval Research-Solid Mechanics Program sponsored research along with other worldwide research efforts of relevance to marine applications. These studies have contributed to developing a fundamental knowledge of the mechanics of advanced materials subjected to impulsive loading, which is of interest to all Department of Defense branches.

  3. Analytical, Numerical and Experimental Examination of Reinforced Composites Beams Covered with Carbon Fiber Reinforced Plastic

    NASA Astrophysics Data System (ADS)

    Kasimzade, A. A.; Tuhta, S.

    2012-03-01

    In the article, analytical, numerical (Finite Element Method) and experimental investigation results of beam that was strengthened with fiber reinforced plastic-FRP composite has been given as comparative, the effect of FRP wrapping number to the maximum load and moment capacity has been evaluated depending on this results. Carbon FRP qualitative dependences have been occurred between wrapping number and beam load and moment capacity for repair-strengthen the reinforced concrete beams with carbon fiber. Shown possibilities of application traditional known analysis programs, for the analysis of Carbon Fiber Reinforced Plastic (CFRP) strengthened structures.

  4. Aeroelastic characteristics of composite bearingless rotor blades

    NASA Technical Reports Server (NTRS)

    Bielawa, R. L.

    1976-01-01

    Owing to the inherent unique structural features of composite bearingless rotors, various assumptions upon which conventional rotor aeroelastic analyses are formulated, are violated. Three such features identified are highly nonlinear and time-varying structural twist, structural redundancy in bending and torsion, and for certain configurations a strongly coupled low frequency bending-torsion mode. An examination of these aeroelastic considerations and appropriate formulations required for accurate analyses of such rotor systems is presented. Also presented are test results from a dynamically scaled model rotor and complementary analytic results obtained with the appropriately reformulated aeroelastic analysis.

  5. Environmental and High-Strain Rate effects on composites for engine applications

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Smith, G. T.

    1982-01-01

    The Lewis Research Center is conducting a series of programs intended to investigate and develop the application of composite materials to structural components for turbojet engines. A significant part of that effort is directed to establishing resistance, defect growth, and strain rate characteristics of composite materials over the wide range of environmental and load conditions found in commercial turbojet engine operations. Both analytical and experimental efforts are involved.

  6. Automated glycopeptide analysis—review of current state and future directions

    PubMed Central

    Dallas, David C.; Martin, William F.; Hua, Serenus

    2013-01-01

    Glycosylation of proteins is involved in immune defense, cell–cell adhesion, cellular recognition and pathogen binding and is one of the most common and complex post-translational modifications. Science is still struggling to assign detailed mechanisms and functions to this form of conjugation. Even the structural analysis of glycoproteins—glycoproteomics—remains in its infancy due to the scarcity of high-throughput analytical platforms capable of determining glycopeptide composition and structure, especially platforms for complex biological mixtures. Glycopeptide composition and structure can be determined with high mass-accuracy mass spectrometry, particularly when combined with chromatographic separation, but the sheer volume of generated data necessitates computational software for interpretation. This review discusses the current state of glycopeptide assignment software—advances made to date and issues that remain to be addressed. The various software and algorithms developed so far provide important insights into glycoproteomics. However, there is currently no freely available software that can analyze spectral data in batch and unambiguously determine glycopeptide compositions for N- and O-linked glycopeptides from relevant biological sources such as human milk and serum. Few programs are capable of aiding in structural determination of the glycan component. To significantly advance the field of glycoproteomics, analytical software and algorithms are required that: (i) solve for both N- and O-linked glycopeptide compositions, structures and glycosites in biological mixtures; (ii) are high-throughput and process data in batches; (iii) can interpret mass spectral data from a variety of sources and (iv) are open source and freely available. PMID:22843980

  7. Photogrammetrically Measured Distortions of Composite Structure Microwave Reflectors at Approximately 90 K

    NASA Technical Reports Server (NTRS)

    Mule, Peter; Hill, Michael D.; Sampler, Henry P.

    2000-01-01

    The Microwave Anisotropy Probe (MAP) Observatory, scheduled for a fall 2000 launch, is designed to measure temperature fluctuations (anisotropy) and produce a high sensitivity and high spatial resolution (better than 0.3 deg.) map of the cosmic microwave background (CMB) radiation over the entire sky between 22 and 90 GHz. MAP utilizes back-to-back composite Gregorian telescopes supported on a composite truss structure to focus the microwave signals into 10 differential microwave receivers. Proper position and shape of the telescope reflectors at the operating temperature of approximately 90 K is a critical element to ensuring mission success. We describe the methods and analysis used to validate the in-flight position and shape predictions for the reflectors based on photogrammetric (PG) metrology data taken under vacuum with the reflectors at approximately 90 K. Contour maps showing reflector distortion analytical extrapolations were generated. The resulting reflector distortion data are shown to be crucial to the analytical assessment of the MAP instrument's microwave system in-flight performance.

  8. Nonlinear analyses of composite aerospace structures in sonic fatigue

    NASA Technical Reports Server (NTRS)

    Mei, Chuh

    1993-01-01

    This report summarizes the semiannual research progress, accomplishments, and future plans performed under the NASA Langley Research Center Grant No. NAG-1-1358. The primary research effort of this project is the development of analytical methods for the prediction of nonlinear random response of composite aerospace structures subjected to combined acoustic and thermal loads. The progress, accomplishments, and future plates on four sonic fatigue research topics are described. The sonic fatigue design and passive control of random response of shape memory alloy hybrid composites presented in section 4, which is suited especially for HSCT, is a new initiative.

  9. Nonlinear analyses of composite aerospace structures in sonic fatigue

    NASA Astrophysics Data System (ADS)

    Mei, Chuh

    1993-06-01

    This report summarizes the semiannual research progress, accomplishments, and future plans performed under the NASA Langley Research Center Grant No. NAG-1-1358. The primary research effort of this project is the development of analytical methods for the prediction of nonlinear random response of composite aerospace structures subjected to combined acoustic and thermal loads. The progress, accomplishments, and future plates on four sonic fatigue research topics are described. The sonic fatigue design and passive control of random response of shape memory alloy hybrid composites presented in section 4, which is suited especially for HSCT, is a new initiative.

  10. Rapid qualitative and quantitative analysis of proanthocyanidin oligomers and polymers by UPLC-MS/MS

    USDA-ARS?s Scientific Manuscript database

    Proanthocyanidins (PAs) are a structurally complex and bioactive group of tannins. Detailed analysis of PA concentration, composition, and structure typically requires the use of one or more time-consuming analytical methods. For example, the commonly employed thiolysis and phloroglucinolysis method...

  11. Nutritional Lipidomics: Molecular Metabolism, Analytics, and Diagnostics

    PubMed Central

    Smilowitz, Jennifer T.; Zivkovic, Angela M.; Wan, Yu-Jui Yvonne; Watkins, Steve M.; Nording, Malin L.; Hammock, Bruce D.; German, J. Bruce

    2013-01-01

    The field of lipidomics is providing nutritional science a more comprehensive view of lipid intermediates. Lipidomics research takes advantage of the increase in accuracy and sensitivity of mass detection of mass spectrometry with new bioinformatics toolsets to characterize the structures and abundances of complex lipids. Yet, translating lipidomics to practice via nutritional interventions is still in its infancy. No single instrumentation platform is able to solve the varying analytical challenges of the different molecular lipid species. Biochemical pathways of lipid metabolism remain incomplete and the tools to map lipid compositional data to pathways are still being assembled. Biology itself is dauntingly complex and simply separating biological structures remains a key challenge to lipidomics. Nonetheless, the strategy of combining tandem analytical methods to perform the sensitive, high-throughput, quantitative and comprehensive analysis of lipid metabolites of very large numbers of molecules is poised to drive the field forward rapidly. Among the next steps for nutrition to understand the changes in structures, compositions and function of lipid biomolecules in response to diet is to describe their distribution within discrete functional compartments-lipoproteins. Additionally, lipidomics must tackle the task of assigning the functions of lipids as signaling molecules, nutrient sensors, and intermediates of metabolic pathways. PMID:23818328

  12. High temperature structural sandwich panels

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, Christos G.

    High strength composites are being used for making lightweight structural panels that are being employed in aerospace, naval and automotive structures. Recently, there is renewed interest in use of these panels. The major problem of most commercial available sandwich panels is the fire resistance. A recently developed inorganic matrix is investigated for use in cases where fire and high temperature resistance are necessary. The focus of this dissertation is the development of a fireproof composite structural system. Sandwich panels made with polysialate matrices have an excellent potential for use in applications where exposure to high temperatures or fire is a concern. Commercial available sandwich panels will soften and lose nearly all of their compressive strength temperatures lower than 400°C. This dissertation consists of the state of the art, the experimental investigation and the analytical modeling. The state of the art covers the performance of existing high temperature composites, sandwich panels and reinforced concrete beams strengthened with Fiber Reinforced Polymers (FRP). The experimental part consists of four major components: (i) Development of a fireproof syntactic foam with maximum specific strength, (ii) Development of a lightweight syntactic foam based on polystyrene spheres, (iii) Development of the composite system for the skins. The variables are the skin thickness, modulus of elasticity of skin and high temperature resistance, and (iv) Experimental evaluation of the flexural behavior of sandwich panels. Analytical modeling consists of a model for the flexural behavior of lightweight sandwich panels, and a model for deflection calculations of reinforced concrete beams strengthened with FRP subjected to fatigue loading. The experimental and analytical results show that sandwich panels made with polysialate matrices and ceramic spheres do not lose their load bearing capability during severe fire exposure, where temperatures reach several hundred degrees Centigrade. Hence the material has excellent potential for various types of applications. The analytical predictions from both models provide reasonably accurate results. Glass, AR-glass, carbon and Nicalon tows and carbon fabrics could be successfully used as skin reinforcements increasing the flexural stiffness and strength of the core. No occurrence of fiber delamination was observed.

  13. Stomatal Opening: The Role of Cell-Wall Mechanical Anisotropy and Its Analytical Relations to the Bio-composite Characteristics

    PubMed Central

    Marom, Ziv; Shtein, Ilana; Bar-On, Benny

    2017-01-01

    Stomata are pores on the leaf surface, which are formed by a pair of curved, tubular guard cells; an increase in turgor pressure deforms the guard cells, resulting in the opening of the stomata. Recent studies employed numerical simulations, based on experimental data, to analyze the effects of various structural, chemical, and mechanical features of the guard cells on the stomatal opening characteristics; these studies all support the well-known qualitative observation that the mechanical anisotropy of the guard cells plays a critical role in stomatal opening. Here, we propose a computationally based analytical model that quantitatively establishes the relations between the degree of anisotropy of the guard cell, the bio-composite constituents of the cell wall, and the aperture and area of stomatal opening. The model introduces two non-dimensional key parameters that dominate the guard cell deformations—the inflation driving force and the anisotropy ratio—and it serves as a generic framework that is not limited to specific plant species. The modeling predictions are in line with a wide range of previous experimental studies, and its analytical formulation sheds new light on the relations between the structure, mechanics, and function of stomata. Moreover, the model provides an analytical tool to back-calculate the elastic characteristics of the matrix that composes the guard cell walls, which, to the best of our knowledge, cannot be probed by direct nano-mechanical experiments; indeed, the estimations of our model are in good agreement with recently published results of independent numerical optimization schemes. The emerging insights from the stomatal structure-mechanics “design guidelines” may promote the development of miniature, yet complex, multiscale composite actuation mechanisms for future engineering platforms. PMID:29312365

  14. SAW-Based Phononic Crystal Microfluidic Sensor—Microscale Realization of Velocimetry Approaches for Integrated Analytical Platform Applications

    PubMed Central

    Lucklum, Ralf; Zubtsov, Mikhail; Schmidt, Marc-Peter; Mukhin, Nikolay V.; Hirsch, Soeren

    2017-01-01

    The current work demonstrates a novel surface acoustic wave (SAW) based phononic crystal sensor approach that allows the integration of a velocimetry-based sensor concept into single chip integrated solutions, such as Lab-on-a-Chip devices. The introduced sensor platform merges advantages of ultrasonic velocimetry analytic systems and a microacoustic sensor approach. It is based on the analysis of structural resonances in a periodic composite arrangement of microfluidic channels confined within a liquid analyte. Completed theoretical and experimental investigations show the ability to utilize periodic structure localized modes for the detection of volumetric properties of liquids and prove the efficacy of the proposed sensor concept. PMID:28946609

  15. SAW-Based Phononic Crystal Microfluidic Sensor-Microscale Realization of Velocimetry Approaches for Integrated Analytical Platform Applications.

    PubMed

    Oseev, Aleksandr; Lucklum, Ralf; Zubtsov, Mikhail; Schmidt, Marc-Peter; Mukhin, Nikolay V; Hirsch, Soeren

    2017-09-23

    The current work demonstrates a novel surface acoustic wave (SAW) based phononic crystal sensor approach that allows the integration of a velocimetry-based sensor concept into single chip integrated solutions, such as Lab-on-a-Chip devices. The introduced sensor platform merges advantages of ultrasonic velocimetry analytic systems and a microacoustic sensor approach. It is based on the analysis of structural resonances in a periodic composite arrangement of microfluidic channels confined within a liquid analyte. Completed theoretical and experimental investigations show the ability to utilize periodic structure localized modes for the detection of volumetric properties of liquids and prove the efficacy of the proposed sensor concept.

  16. Analytical Ultrasonics in Materials Research and Testing

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1986-01-01

    Research results in analytical ultrasonics for characterizing structural materials from metals and ceramics to composites are presented. General topics covered by the conference included: status and advances in analytical ultrasonics for characterizing material microstructures and mechanical properties; status and prospects for ultrasonic measurements of microdamage, degradation, and underlying morphological factors; status and problems in precision measurements of frequency-dependent velocity and attenuation for materials analysis; procedures and requirements for automated, digital signal acquisition, processing, analysis, and interpretation; incentives for analytical ultrasonics in materials research and materials processing, testing, and inspection; and examples of progress in ultrasonics for interrelating microstructure, mechanical properites, and dynamic response.

  17. Modeling of Lamb Waves and Application to Crack Identification

    DTIC Science & Technology

    2009-09-01

    and Structures, vol. 13, pp. 621–630, 2004. [13] Seth S Kessler , S. Mark Spearing, and Constantinos Soutis, “Damage detection in composite materials...growth in metallic structures. Kessler et al. [13] presented part of an experimental and analytical survey of candidate methods for in-situ damage

  18. The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering.

    PubMed

    Kular, Jaspreet K; Basu, Shouvik; Sharma, Ram I

    2014-01-01

    The extracellular matrix is a structural support network made up of diverse proteins, sugars and other components. It influences a wide number of cellular processes including migration, wound healing and differentiation, all of which is of particular interest to researchers in the field of tissue engineering. Understanding the composition and structure of the extracellular matrix will aid in exploring the ways the extracellular matrix can be utilised in tissue engineering applications especially as a scaffold. This review summarises the current knowledge of the composition, structure and functions of the extracellular matrix and introduces the effect of ageing on extracellular matrix remodelling and its contribution to cellular functions. Additionally, the current analytical technologies to study the extracellular matrix and extracellular matrix-related cellular processes are also reviewed.

  19. Material, process, and product design of thermoplastic composite materials

    NASA Astrophysics Data System (ADS)

    Dai, Heming

    Thermoplastic composites made of polypropylene (PP) and E-glass fibers were investigated experimentally as well as theoretically for two new classes of product designs. The first application was for reinforcement of wood. Commingled PP/glass yarn was consolidated and bonded on wood panel using a tie layer. The processing parameters, including temperature, pressure, heating time, cooling time, bonding strength, and bending strength were tested experimentally and evaluated analytically. The thermoplastic adhesive interface was investigated with environmental scanning electron microscopy. The wood/composite structural design was optimized and evaluated using a Graphic Method. In the second application, we evaluated use of thermoplastic composites for explosion containment in an arrester. PP/glass yarn was fabricated in a sleeve form and wrapped around the arrester. After consolidation, the flexible composite sleeve forms a solid composite shell. The composite shell acts as a protection layer in a surge test to contain the fragments of the arrester. The manufacturing process for forming the composite shell was designed. Woven, knitted, and braided textile composite shells made of commingled PP/glass yarn were tested and evaluated. Mechanical performance of the woven, knitted, and braided composite shells was examined analytically. The theoretical predictions were used to verify the experimental results.

  20. Recent progress in NASA Langley Research Center textile reinforced composites program

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson; Harris, Charles E.; Johnston, Norman J.

    1992-01-01

    Research was conducted to explore the benefits of textile reinforced composites for transport aircraft primary structures. The objective is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structural concepts. Some program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. Textile 3-D weaving, 3-D braiding, and knitting and/or stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighted against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural parts are required to establish the potential of textile reinforced composite materials.

  1. Modeling of Failure for Analysis of Triaxial Braided Carbon Fiber Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Littell, Justin D.; Binienda, Wieslaw K.

    2010-01-01

    In the development of advanced aircraft-engine fan cases and containment systems, composite materials are beginning to be used due to their low weight and high strength. The design of these structures must include the capability of withstanding impact loads from a released fan blade. Relatively complex triaxially braided fiber architectures have been found to yield the best performance for the fan cases. To properly work with and design these structures, robust analytical tools are required that can be used in the design process. A new analytical approach models triaxially braided carbon fiber composite materials within the environment of a transient dynamic finite-element code, specifically the commercially available transient dynamic finite-element code LS-DYNA. The geometry of the braided composites is approximated by a series of parallel laminated composites. The composite is modeled by using shell finite elements. The material property data are computed by examining test data from static tests on braided composites, where optical strain measurement techniques are used to examine the local strain variations within the material. These local strain data from the braided composite tests are used along with a judicious application of composite micromechanics- based methods to compute the stiffness properties of an equivalent unidirectional laminated composite required for the shell elements. The local strain data from the braided composite tests are also applied to back out strength and failure properties of the equivalent unidirectional composite. The properties utilized are geared towards the application of a continuum damage mechanics-based composite constitutive model available within LS-DYNA. The developed model can be applied to conduct impact simulations of structures composed of triaxially braided composites. The advantage of this technology is that it facilitates the analysis of the deformation and damage response of a triaxially braided polymer matrix composite within the environment of a transient dynamic finite-element code such as LS-DYNA in a manner which accounts for the local physical mechanisms but is still computationally efficient. This methodology is tightly coupled to experimental tests on the braided composite, which ensures that the material properties have physical significance. Aerospace or automotive companies interested in using triaxially braided composites in their structures, particularly for impact or crash applications, would find the technology useful. By the development of improved design tools, the amount of very expensive impact testing that will need to be performed can be significantly reduced.

  2. Studies of in-plane shear behaviour of braided composite reinforcements

    NASA Astrophysics Data System (ADS)

    Xiao, Shenglei; Wang, Peng; Soulat, Damien; Legrand, Xavier; Gao, Hang

    2018-05-01

    Braided fabrics are wildly used as textile reinforcements to manufacture the advanced composite parts. The braids can be used as two-dimensional reinforcement to manufacture the composite reinforced by braided fabrics. This study proposed the analysis on the in-plane shear behavior of braided structure fabric. Firstly, the geometric criterion and analytical model have been developed. Secondly, E-glass fibres reinforced braided fabrics have been performed in bias-extension tests to verify the analytical model. The conclusion was that the change of dimension ratio could influence on the shear load /displacement behavior significantly owing to the increasing area for sustaining load with an increase in ratio. However, varying dimension ratio r in axial direction had nearly no effect on shear moment/angle behavior. And the experimental and theoretical results had a good agreement.

  3. Variational finite-difference methods in linear and nonlinear problems of the deformation of metallic and composite shells (review)

    NASA Astrophysics Data System (ADS)

    Maksimyuk, V. A.; Storozhuk, E. A.; Chernyshenko, I. S.

    2012-11-01

    Variational finite-difference methods of solving linear and nonlinear problems for thin and nonthin shells (plates) made of homogeneous isotropic (metallic) and orthotropic (composite) materials are analyzed and their classification principles and structure are discussed. Scalar and vector variational finite-difference methods that implement the Kirchhoff-Love hypotheses analytically or algorithmically using Lagrange multipliers are outlined. The Timoshenko hypotheses are implemented in a traditional way, i.e., analytically. The stress-strain state of metallic and composite shells of complex geometry is analyzed numerically. The numerical results are presented in the form of graphs and tables and used to assess the efficiency of using the variational finite-difference methods to solve linear and nonlinear problems of the statics of shells (plates)

  4. Evaluation of Lightning Induced Effects in a Graphite Composite Fairing Structure. Parts 1 and 2

    NASA Technical Reports Server (NTRS)

    Trout, Dawn H.; Stanley, James E.; Wahid, Parveen F.

    2011-01-01

    Defining the electromagnetic environment inside a graphite composite fairing due to lightning is of interest to spacecraft developers. This paper is the first in a two part series and studies the shielding effectiveness of a graphite composite model fairing using derived equivalent properties. A frequency domain Method of Moments (MoM) model is developed and comparisons are made with shielding test results obtained using a vehicle-like composite fairing. The comparison results show that the analytical models can adequately predict the test results. Both measured and model data indicate that graphite composite fairings provide significant attenuation to magnetic fields as frequency increases. Diffusion effects are also discussed. Part 2 examines the time domain based effects through the development of a loop based induced field testing and a Transmission-Line-Matrix (TLM) model is developed in the time domain to study how the composite fairing affects lightning induced magnetic fields. Comparisons are made with shielding test results obtained using a vehicle-like composite fairing in the time domain. The comparison results show that the analytical models can adequately predict the test and industry results.

  5. Development of an engineering analysis of progressive damage in composites during low velocity impact

    NASA Technical Reports Server (NTRS)

    Humphreys, E. A.

    1981-01-01

    A computerized, analytical methodology was developed to study damage accumulation during low velocity lateral impact of layered composite plates. The impact event was modeled as perfectly plastic with complete momentum transfer to the plate structure. A transient dynamic finite element approach was selected to predict the displacement time response of the plate structure. Composite ply and interlaminar stresses were computed at selected time intervals and subsequently evaluated to predict layer and interlaminar damage. The effects of damage on elemental stiffness were then incorporated back into the analysis for subsequent time steps. Damage predicted included fiber failure, matrix ply failure and interlaminar delamination.

  6. Hierarchical analysis of the degradation of fibre-reinforced polymers under the presence of void imperfections

    PubMed Central

    2016-01-01

    The subject of this work is the investigation of the influence of voids on the mechanical properties of fibre-reinforced polymers (FRPs) under compression loading. To specify the damage accumulation of FRPs in the presence of voids, the complex three-dimensional structure of the composite including voids was analysed and a reduced mechanical model composite was derived. The hierarchical analysis of the model composite on a micro-scale level implies the description of the stress and strain behaviour of the matrix using the photoelasticity technique and digital image correlation technology. These studies are presented along with an analytical examination of the stability of a single fibre. As a result of the experimental and analytical studies, the stiffness of the matrix and fibre as well as their bonding, the initial fibre orientation and the fibre diameter have the highest impact on the failure initiation. All these facts lead to a premature fibre–matrix debonding with ongoing loss of stability of the fibre and followed by kink-band formation. Additional studies on the meso-scale of transparent glass FRPs including a unique void showed that the experiments carried out on the model composites could be transferred to real composites. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242296

  7. Johnson Space Center Overview

    NASA Technical Reports Server (NTRS)

    Gafka, Tammy; Terrier, Doug; Smith, James

    2011-01-01

    This slide presentation is a review of the work of Johnson Space Center. It includes a section on technology development areas, (i.e., composite structures, non-destructive evaluation, applied nanotechnology, additive manufacturing, and fracture and fatigue analytical methods), a section on structural analysis capabilities within NASA/JSC and a section on Friction stir welding and laser peening.

  8. Doped colorimetric assay liposomes

    DOEpatents

    Charych, Deborah; Stevens, Raymond C.

    2001-01-01

    The present invention provides compositions comprising colorimetric assay liposomes. The present invention also provides methods for producing colorimetric liposomes and calorimetric liposome assay systems. In preferred embodiments, these calorimetric liposome systems provide high levels of sensitivity through the use of dopant molecules. As these dopants allow the controlled destabilization of the liposome structure, upon exposure of the doped liposomes to analyte(s) of interest, the indicator color change is facilitated and more easily recognized.

  9. Network model for thermal conductivities of unidirectional fiber-reinforced composites

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Peng, Chaoyi; Zhang, Weihua

    2014-12-01

    An empirical network model has been developed to predict the in-plane thermal conductivities along arbitrary directions for unidirectional fiber-reinforced composites lamina. Measurements of thermal conductivities along different orientations were carried out. Good agreement was observed between values predicted by the network model and the experimental data; compared with the established analytical models, the newly proposed network model could give values with higher precision. Therefore, this network model is helpful to get a wider and more comprehensive understanding of heat transmission characteristics of fiber-reinforced composites and can be utilized as guidance to design and fabricate laminated composites with specific directional or specific locational thermal conductivities for structures that simultaneously perform mechanical and thermal functions, i.e. multifunctional structures (MFS).

  10. Modeling and Predicting the Stress Relaxation of Composites with Short and Randomly Oriented Fibers

    PubMed Central

    Obaid, Numaira; Sain, Mohini

    2017-01-01

    The addition of short fibers has been experimentally observed to slow the stress relaxation of viscoelastic polymers, producing a change in the relaxation time constant. Our recent study attributed this effect of fibers on stress relaxation behavior to the interfacial shear stress transfer at the fiber-matrix interface. This model explained the effect of fiber addition on stress relaxation without the need to postulate structural changes at the interface. In our previous study, we developed an analytical model for the effect of fully aligned short fibers, and the model predictions were successfully compared to finite element simulations. However, in most industrial applications of short-fiber composites, fibers are not aligned, and hence it is necessary to examine the time dependence of viscoelastic polymers containing randomly oriented short fibers. In this study, we propose an analytical model to predict the stress relaxation behavior of short-fiber composites where the fibers are randomly oriented. The model predictions were compared to results obtained from Monte Carlo finite element simulations, and good agreement between the two was observed. The analytical model provides an excellent tool to accurately predict the stress relaxation behavior of randomly oriented short-fiber composites. PMID:29053601

  11. Micromechanical analysis of a hybrid composite—effect of boron carbide particles on the elastic properties of basalt fiber reinforced polymer composite

    NASA Astrophysics Data System (ADS)

    Krishna Golla, Sai; Prasanthi, P.

    2016-11-01

    A fiber reinforced polymer (FRP) composite is an important material for structural application. The diversified application of FRP composites has become the center of attention for interdisciplinary research. However, improvements in the mechanical properties of this class of materials are still under research for different applications. The reinforcement of inorganic particles in a composite improves its structural properties due to their high stiffness. The present research work is focused on the prediction of the mechanical properties of the hybrid composites where continuous fibers are reinforced in a micro boron carbide particle mixed polypropylene matrix. The effectiveness of the addition of 30 wt. % of boron carbide (B4C) particle contributions regarding the longitudinal and transverse properties of the basalt fiber reinforced polymer composite at various fiber volume fractions is examined by finite element analysis (FEA). The experimental approach is the best way to determine the properties of the composite but it is expensive and time-consuming. Therefore, the finite element method (FEM) and analytical methods are the viable methods for the determination of the composite properties. The FEM results were obtained by adopting a micromechanics approach with the support of FEM. Assuming a uniform distribution of reinforcement and considering one unit-cell of the whole array, the properties of the composite materials are determined. The predicted elastic properties from FEA are compared with the analytical results. The results suggest that B4C particles are a good reinforcement for the enhancement of the transverse properties of basalt fiber reinforced polypropylene.

  12. Dispersion of Lamb waves in a honeycomb composite sandwich panel.

    PubMed

    Baid, Harsh; Schaal, Christoph; Samajder, Himadri; Mal, Ajit

    2015-02-01

    Composite materials are increasingly being used in advanced aircraft and aerospace structures. Despite their many advantages, composites are often susceptible to hidden damages that may occur during manufacturing and/or service of the structure. Therefore, safe operation of composite structures requires careful monitoring of the initiation and growth of such defects. Ultrasonic methods using guided waves offer a reliable and cost effective method for defects monitoring in advanced structures due to their long propagation range and their sensitivity to defects in their propagation path. In this paper, some of the useful properties of guided Lamb type waves are investigated, using analytical, numerical and experimental methods, in an effort to provide the knowledge base required for the development of viable structural health monitoring systems for composite structures. The laboratory experiments involve a pitch-catch method in which a pair of movable transducers is placed on the outside surface of the structure for generating and recording the wave signals. The specific cases considered include an aluminum plate, a woven composite laminate and an aluminum honeycomb sandwich panel. The agreement between experimental, numerical and theoretical results are shown to be excellent in certain frequency ranges, providing a guidance for the design of effective inspection systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Dynamic mechanical analysis and organization/storage of data for polymetric materials

    NASA Technical Reports Server (NTRS)

    Rosenberg, M.; Buckley, W.

    1982-01-01

    Dynamic mechanical analysis was performed on a variety of temperature resistant polymers and composite resin matrices. Data on glass transition temperatures and degree of cure attained were derived. In addition a laboratory based computer system was installed and data base set up to allow entry of composite data. The laboratory CPU termed TYCHO is based on a DEC PDP 11/44 CPU with a Datatrieve relational data base. The function of TYCHO is integration of chemical laboratory analytical instrumentation and storage of chemical structures for modeling of new polymeric structures and compounds

  14. Dynamics of nanoparticle-protein corona complex formation: analytical results from population balance equations.

    PubMed

    Darabi Sahneh, Faryad; Scoglio, Caterina; Riviere, Jim

    2013-01-01

    Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid.

  15. Design and fabrication of planar structures with graded electromagnetic properties

    NASA Astrophysics Data System (ADS)

    Good, Brandon Lowell

    Successfully integrating electromagnetic properties in planar structures offers numerous benefits to the microwave and optical communities. This work aims at formulating new analytic and optimized design methods, creating new fabrication techniques for achieving those methods, and matching appropriate implementation of methods to fabrication techniques. The analytic method consists of modifying an approach that realizes perfect antireflective properties from graded profiles. This method is shown for all-dielectric and magneto-dielectric grading profiles. The optimized design methods are applied to transformer (discrete) or taper (continuous) designs. From these methods, a subtractive and an additive manufacturing technique were established and are described. The additive method, dry powder dot deposition, enables three dimensional varying electromagnetic properties in a structural composite. Combining the methods and fabrication is shown in two applied methodologies. The first uses dry powder dot deposition to design one dimensionally graded electromagnetic profiles in a planar fiberglass composite. The second method simultaneously applies antireflective properties and adjusts directivity through a slab through the use of subwavelength structures to achieve a flat antireflective lens. The end result of this work is a complete set of methods, formulations, and fabrication techniques to achieve integrated electromagnetic properties in planar structures.

  16. Compression Strength of Composite Primary Structural Components

    NASA Technical Reports Server (NTRS)

    Johnson, Eric R.

    1998-01-01

    Research conducted under NASA Grant NAG-1-537 focussed on the response and failure of advanced composite material structures for application to aircraft. Both experimental and analytical methods were utilized to study the fundamental mechanics of the response and failure of selected structural components subjected to quasi-static loads. Most of the structural components studied were thin-walled elements subject to compression, such that they exhibited buckling and postbuckling responses prior to catastrophic failure. Consequently, the analyses were geometrically nonlinear. Structural components studied were dropped-ply laminated plates, stiffener crippling, pressure pillowing of orthogonally stiffened cylindrical shells, axisymmetric response of pressure domes, and the static crush of semi-circular frames. Failure of these components motivated analytical studies on an interlaminar stress postprocessor for plate and shell finite element computer codes, and global/local modeling strategies in finite element modeling. These activities are summarized in the following section. References to literature published under the grant are listed on pages 5 to 10 by a letter followed by a number under the categories of journal publications, conference publications, presentations, and reports. These references are indicated in the text by their letter and number as a superscript.

  17. Dynamic Loading and Characterization of Fiber-Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Sierakowski, Robert L.; Chaturvedi, Shive K.

    1997-02-01

    Emphasizing polymer based fiber-reinforced composites, this book is designed to provide readers with a significant understanding of the complexities involved in characterizing dynamic events and the corresponding response of advanced fiber composite materials and structures. These elements include dynamic loading devices, material properties characterization, analytical and experimental techniques to assess the damage and failure modes associated with various dynamic loading events. Concluding remarks are presented throughout the text which summarize key points and raise issues related to important research needed.

  18. Description of the HiMAT Tailored composite structure and laboratory measured vehicle shape under load

    NASA Technical Reports Server (NTRS)

    Monaghan, R. C.

    1981-01-01

    The aeroelastically tailored outer wing and canard of the highly maneuverable aircraft technology (HiMAT) vehicle are closely examined and a general description of the overall structure of the vehicle is provided. Test data in the form of laboratory measured twist under load and predicted twist from the HiMAT NASTRAN structural design program are compared. The results of this comparison indicate that the measured twist is generally less than the NASTRAN predicted twist. These discrepancies in twist predictions are attributed, at least in part, to the inability of current analytical composite materials programs to provide sufficiently accurate properties of matrix dominated laminates for input into structural programs such as NASTRAN.

  19. Polymer-encapsulated metal nanoparticles: optical, structural, micro-analytical and hydrogenation studies of a composite material.

    PubMed

    Scalzullo, Stefania; Mondal, Kartick; Witcomb, Mike; Deshmukh, Amit; Scurrell, Mike; Mallick, Kaushik

    2008-02-20

    A single-step synthesis route is described for the preparation of a metal-polymer composite in which palladium acetate and meta-amino benzoic acid were used as the precursors for palladium nanoparticles and poly(meta-amino benzoic acid) (PABA). The palladium nanoparticles were found to be uniformly dispersed and highly stabilized throughout the macromolecule matrix. The resultant composite material was characterized by means of different techniques, such as IR and Raman spectroscopy, which provided information regarding the chemical structure of the polymer, whereas electron microscopy images yielded information regarding the morphology of the composite material and the distribution of the metal particles in the composite material. The composite material was used as a catalyst for the ethylene hydrogenation reaction and showed catalytic activity at higher temperatures. TEM studies confirmed the changed environment of the nanoparticles at these temperatures.

  20. Laser modification of graphene oxide layers

    NASA Astrophysics Data System (ADS)

    Malinský, Petr; Macková, Anna; Cutroneo, Mariapompea; Siegel, Jakub; Bohačová, Marie; Klímova, Kateřina; Švorčík, Václav; Sofer, Zdenĕk

    2018-01-01

    The effect of linearly polarized laser irradiation with various energy densities was successfully used for reduction of graphene oxide (GO). The ion beam analytical methods (RBS, ERDA) were used to follow the elemental composition which is expected as the consequence of GO reduction. The chemical composition analysis was accompanied by structural study showing changed functionalities in the irradiated GO foils using spectroscopy techniques including XPS, FTIR and Raman spectroscopy. The AFM was employed to identify the surface morphology and electric properties evolution were subsequently studied using standard two point method measurement. The used analytical methods report on reduction of irradiated graphene oxide on the surface and the decrease of surface resistivity as a growing function of the laser beam energy density.

  1. End Effects and Load Diffusion in Composite Structures

    NASA Technical Reports Server (NTRS)

    Horgan, Cornelius O.; Ambur, D. (Technical Monitor); Nemeth, M. P. (Technical Monitor)

    2002-01-01

    The research carried out here builds on our previous NASA supported research on the general topic of edge effects and load diffusion in composite structures. Further fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Specific problems recently considered were focussed on end effects in sandwich structures and for functionally graded materials. Both linear and nonlinear (geometric and material) problems have been addressed. Our goal is the development of readily applicable design formulas for the decay lengths in terms of non-dimensional material and geometric parameters. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses. The decay behavior of stresses and other field quantities provides a significant aid towards this process. The analysis is also amenable to parameter study with a large parameter space and should be useful in structural tailoring studies.

  2. A new sensitivity analysis for structural optimization of composite rotor blades

    NASA Technical Reports Server (NTRS)

    Venkatesan, C.; Friedmann, P. P.; Yuan, Kuo-An

    1993-01-01

    This paper presents a detailed mathematical derivation of the sensitivity derivatives for the structural dynamic, aeroelastic stability and response characteristics of a rotor blade in hover and forward flight. The formulation is denoted by the term semianalytical approach, because certain derivatives have to be evaluated by a finite difference scheme. Using the present formulation, sensitivity derivatives for the structural dynamic and aeroelastic stability characteristics, were evaluated for both isotropic and composite rotor blades. Based on the results, useful conclusions are obtained regarding the relative merits of the semi-analytical approach, for calculating sensitivity derivatives, when compared to a pure finite difference approach.

  3. Electron Microscopy and Analytical X-ray Characterization of Compositional and Nanoscale Structural Changes in Fossil Bone

    NASA Astrophysics Data System (ADS)

    Boatman, Elizabeth Marie

    The nanoscale structure of compact bone contains several features that are direct indicators of bulk tissue mechanical properties. Fossil bone tissues represent unique opportunities to understand the compact bone structure/property relationships from a deep time perspective, offering a possible array of new insights into bone diseases, biomimicry of composite materials, and basic knowledge of bioapatite composition and nanoscale bone structure. To date, most work with fossil bone has employed microscale techniques and has counter-indicated the survival of bioapatite and other nanoscale structural features. The obvious disconnect between the use of microscale techniques and the discernment of nanoscale structure has prompted this work. The goal of this study was to characterize the nanoscale constituents of fossil compact bone by applying a suite of diffraction, microscopy, and spectrometry techniques, representing the highest levels of spatial and energy resolution available today, and capable of complementary structural and compositional characterization from the micro- to the nanoscale. Fossil dinosaur and crocodile long bone specimens, as well as modern ratite and crocodile femurs, were acquired from the UC Museum of Paleontology. Preserved physiological features of significance were documented with scanning electron microscopy back-scattered imaging. Electron microprobe wavelength-dispersive X-ray spectroscopy (WDS) revealed fossil bone compositions enriched in fluorine with a complementary loss of oxygen. X-ray diffraction analyses demonstrated that all specimens were composed of apatite. Transmission electron microscopy (TEM) imaging revealed preserved nanocrystallinity in the fossil bones and electron diffraction studies further identified these nanocrystallites as apatite. Tomographic analyses of nanoscale elements imaged by TEM and small angle X-ray scattering were performed, with the results of each analysis further indicating that nanoscale structure is highly conserved in these four fossil specimens. Finally, the results of this study indicate that bioapatite can be preserved in even the most ancient vertebrate specimens, further supporting the idea that fossilization is a preservational process. This work also underlines the importance of using appropriately selected characterization and analytical techniques for the study of fossil bone, especially from the perspective of spatial resolution and the scale of the bone structural features in question.

  4. The presence of cutan limits the interpretation of cuticular chemistry and structure: Ficus elastica leaf as an example.

    PubMed

    Guzmán-Delgado, Paula; Graça, José; Cabral, Vanessa; Gil, Luis; Fernández, Victoria

    2016-06-01

    Plant cuticles have been traditionally classified on the basis of their ultrastructure, with certain chemical composition assumptions. However, the nature of the plant cuticle may be misinterpreted in the prevailing model, which was established more than 150 years ago. Using the adaxial leaf cuticle of Ficus elastica, a study was conducted with the aim of analyzing cuticular ultrastructure, chemical composition and the potential relationship between structure and chemistry. Gradual chemical extractions and diverse analytical and microscopic techniques were performed on isolated leaf cuticles of two different stages of development (i.e. young and mature leaves). Evidence for the presence of cutan in F. elastica leaf cuticles has been gained after chemical treatments and tissue analysis by infrared spectroscopy and electron microscopy. Significant calcium, boron and silicon concentrations were also measured in the cuticle of this species. Such mineral elements which are often found in plant cell walls may play a structural role and their presence in isolated cuticles further supports the interpretation of the cuticle as the most external region of the epidermal cell wall. The complex and heterogeneous nature of the cuticle, and constraints associated with current analytical procedures may limit the chance for establishing a relationship between cuticle chemical composition and structure also in relation to organ ontogeny. © 2016 Scandinavian Plant Physiology Society.

  5. Methods and Piezoelectric Imbedded Sensors for Damage Detection in Composite Plates Under Ambient and Cryogenic Conditions

    NASA Technical Reports Server (NTRS)

    Engberg, Robert; Ooi, Teng K.

    2004-01-01

    New methods for structural health monitoring are being assessed, especially in high-performance, extreme environment, safety-critical applications. One such application is for composite cryogenic fuel tanks. The work presented here attempts to characterize and investigate the feasibility of using imbedded piezoelectric sensors to detect cracks and delaminations under cryogenic and ambient conditions. A variety of damage detection methods and different Sensors are employed in the different composite plate samples to aid in determining an optimal algorithm, sensor placement strategy, and type of imbedded sensor to use. Variations of frequency, impedance measurements, and pulse echoing techniques of the sensors are employed and compared. Statistical and analytic techniques are then used to determine which method is most desirable for a specific type of damage. These results are furthermore compared with previous work using externally mounted sensors. Results and optimized methods from this work can then be incorporated into a larger composite structure to validate and assess its structural health. This could prove to be important in the development and qualification of any 2" generation reusable launch vehicle using composites as a structural element.

  6. Analytical and experimental investigation of aircraft metal structures reinforced with filamentary composites. Phase 2: Structural fatigue, thermal cycling, creep, and residual strength

    NASA Technical Reports Server (NTRS)

    Blichfeldt, B.; Mccarty, J. E.

    1972-01-01

    Specimens representative of metal aircraft structural components reinforced with boron filamentary composites were manufactured and tested under cyclic loading, cyclic temperature, or continuously applied loading to evaluate some of the factors that affect structural integrity under cyclic conditions. Bonded, stepped joints were used throughout to provide composite-to-metal transition regions at load introduction points. Honeycomb panels with titanium or aluminum faces reinforced with unidirectional boron composite were fatigue tested at constant amplitude under completely reversed loading. Results indicated that the matrix material was the most fatigue-sensitive part of the design, with debonding initiating in the stepped joints. However, comparisons with equal weight all-metal specimens show a 10 to 50 times improved fatigue life. Fatigue crack propagation and residual strength were studied for several different stiffened panel concepts, and were found to vary considerably depending on the configuration. Composite-reinforced metal specimens were also subjected to creep and thermal cycling tests. Thermal cycling of stepped joint tensile specimens resulted in a ten percent decrease in residual strength after 4000 cycles.

  7. Resin transfer molding of textile preforms for aircraft structural applications

    NASA Technical Reports Server (NTRS)

    Hasko, Gregory H.; Dexter, H. Benson; Weideman, Mark H.

    1992-01-01

    The NASA LaRC is conducting and supporting research to develop cost-effective fabrication methods that are applicable to primary composite aircraft structures. One of the most promising fabrication methods that has evolved is resin transfer molding (RTM) of dry textile material forms. RTM has been used for many years for secondary structures, but has received increased emphasis because it is an excellent method for applying resin to damage-tolerant textile preforms at low cost. Textile preforms based on processes such as weaving, braiding, knitting, stitching, and combinations of these have been shown to offer significant improvements in damage tolerance compared to laminated tape composites. The use of low-cost resins combined with textile preforms could provide a major breakthrough in achieving cost-effective composite aircraft structures. RTM uses resin in its lowest cost form, and storage and spoilage costs are minimal. Near net shape textile preforms are expected to be cost-effective because automated machines can be used to produce the preforms, post-cure operations such as machining and fastening are minimized, and material scrap rate may be reduced in comparison with traditional prepreg molding. The purpose of this paper is to discuss experimental and analytical techniques that are under development at NASA Langley to aid the engineer in developing RTM processes for airframe structural elements. Included are experimental techniques to characterize preform and resin behavior and analytical methods that were developed to predict resin flow and cure kinetics.

  8. Experimental and analytical investigation of dynamic characteristics of extension-twist-coupled composite tubular spars

    NASA Astrophysics Data System (ADS)

    Lake, Renee C.; Izadpanah, Amir P.; Baucom, Robert M.

    1993-02-01

    The results from a study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of extension-twist coupling are presented. A set of extension-twist-coupled composite spars was manufactured with four plies of graphite-epoxy cloth prepreg. These spars were noncircular in cross-section design and were therefore subject to warping deformations. Three different cross-sectional geometries were developed: D-shape, square, and flattened ellipse. Three spars of each type were fabricated to assess the degree of repeatability in the manufacturing process of extension-twist-coupled structures. Results from free-free vibration tests of the spars were compared with results from normal modes and frequency analyses of companion shell-finite-element models. Five global modes were identified within the frequency range from 0 to 2000 Hz for each spar. The experimental results for only one D-shape spar could be determined, however, and agreed within 13.8 percent of the analytical results. Frequencies corresponding to the five global modes for the three square spars agreed within 9.5, 11.6, and 8.5 percent of the respective analytical results and for the three elliptical spars agreed within 4.9, 7.7, and 9.6 percent of the respective analytical results.

  9. Experimental and analytical investigation of dynamic characteristics of extension-twist-coupled composite tubular spars

    NASA Technical Reports Server (NTRS)

    Lake, Renee C.; Izadpanah, Amir P.; Baucom, Robert M.

    1993-01-01

    The results from a study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of extension-twist coupling are presented. A set of extension-twist-coupled composite spars was manufactured with four plies of graphite-epoxy cloth prepreg. These spars were noncircular in cross-section design and were therefore subject to warping deformations. Three different cross-sectional geometries were developed: D-shape, square, and flattened ellipse. Three spars of each type were fabricated to assess the degree of repeatability in the manufacturing process of extension-twist-coupled structures. Results from free-free vibration tests of the spars were compared with results from normal modes and frequency analyses of companion shell-finite-element models. Five global modes were identified within the frequency range from 0 to 2000 Hz for each spar. The experimental results for only one D-shape spar could be determined, however, and agreed within 13.8 percent of the analytical results. Frequencies corresponding to the five global modes for the three square spars agreed within 9.5, 11.6, and 8.5 percent of the respective analytical results and for the three elliptical spars agreed within 4.9, 7.7, and 9.6 percent of the respective analytical results.

  10. Modeling of a rotary motor driven by an anisotropic piezoelectric composite laminate.

    PubMed

    Zhu, M L; Lee, S R; Zhang, T Y; Tong, P

    2000-01-01

    This paper proposes an analytical model of a rotary motor driven by an anisotropic piezoelectric composite laminate. The driving element of the motor is a three-layer laminated plate. A piezoelectric layer is sandwiched between two anti-symmetric composite laminae. Because of the material anisotropy and the anti-symmetric configuration, torsional vibration can be induced through the inplane strain actuated by the piezoelectric layer. The advantages of the motor are its magnetic field immunity, simple structure, easy maintenance, low cost, and good low-speed performance. In this paper, the motor is considered to be a coupled dynamic system. The analytical model includes the longitudinal and torsional vibrations of the laminate and the rotating motion of the rotor under action of contact forces. The analytical model can predict the overall characteristics of the motor, including the modal frequency and the response of motion of the laminate, the rotating speed of the rotor, the input power, the output power, and the efficiency of the motor. The effects of the initial compressive force, the applied voltage, the moment of rotor inertia, and the frictional coefficient of the contact interface on the characteristics of the motor are simulated and discussed. A selection of the numerical results from the analytical model is confirmed by experimental data.

  11. Spider Silk Spun and Integrated into Composites

    DTIC Science & Technology

    2009-02-20

    and elongation of sericin is lower than those of fibroin and, finally, (0 local shear damage is dominant in damaged sericin between fibres, while the... sericin at fibre-joint often shows microflow. These analytical studies are presently being expanded to include synthetic composites made of both...with sericin . Such a cocoon consists of three main parts: an outermost loose mesh structure, the middle shell layers and the innermost tetelette; all

  12. Program for establishing long-time flight service performance of composite materials in the center wing structure of C-130 aircraft. Phase 4: Ground/flight acceptance tests

    NASA Technical Reports Server (NTRS)

    Harvill, W. E.; Kizer, J. A.

    1976-01-01

    The advantageous structural uses of advanced filamentary composites are demonstrated by design, fabrication, and test of three boron-epoxy reinforced C-130 center wing boxes. The advanced development work necessary to support detailed design of a composite reinforced C-130 center wing box was conducted. Activities included the development of a basis for structural design, selection and verification of materials and processes, manufacturing and tooling development, and fabrication and test of full-scale portions of the center wing box. Detailed design drawings, and necessary analytical structural substantiation including static strength, fatigue endurance, flutter, and weight analyses are considered. Some additional component testing was conducted to verify the design for panel buckling, and to evaluate specific local design areas. Development of the cool tool restraint concept was completed, and bonding capabilities were evaluated using full-length skin panel and stringer specimens.

  13. Structural Analysis of Composite Flywheels: an Integrated NDE and FEM Approach

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George; Trudell, Jeffrey

    2001-01-01

    A structural assessment by integrating finite-element methods (FEM) and a nondestructive evaluation (NDE) of two flywheel rotor assemblies is presented. Composite rotor A is pancake-like with a solid hub design, and composite rotor B is cylindrical with a hollow hub design. Detailed analyses under combined centrifugal and interference-fit loading are performed. Two- and three-dimensional stress analyses and two-dimensional fracture mechanics analyses are conducted. A comparison of the structural analysis results obtained with those extracted via NDE findings is reported. Contact effects due to press-fit conditions are evaluated. Stress results generated from the finite-element analyses were corroborated with the analytical solution. Cracks due to rotational loading up to 48,000 rpm for rotor A and 34,000 rpm for rotor B were successfully imaged with NDE and predicted with FEM and fracture mechanics analyses. A procedure that extends current structural analysis to a life prediction tool is also defined.

  14. Layerwise Finite Elements for Smart Piezoceramic Composite Plates in Thermal Environments

    NASA Technical Reports Server (NTRS)

    Saravanos, Dimitris A.; Lee, Ho-Jun

    1996-01-01

    Analytical formulations are presented which account for the coupled mechanical, electrical, and thermal response of piezoelectric composite laminates and plate structures. A layerwise theory is formulated with the inherent capability to explicitly model the active and sensory response of piezoelectric composite plates having arbitrary laminate configurations in thermal environments. Finite element equations are derived and implemented for a bilinear 4-noded plate element. Application cases demonstrate the capability to manage thermally induced bending and twisting deformations in symmetric and antisymmetric composite plates with piezoelectric actuators, and show the corresponding electrical response of distributed piezoelectric sensors. Finally, the resultant stresses in the thermal piezoelectric composite laminates are investigated.

  15. Computational Modelling of Materials for Wind Turbine Blades: Selected DTU Wind Energy Activities.

    PubMed

    Mikkelsen, Lars Pilgaard; Mishnaevsky, Leon

    2017-11-08

    Computational and analytical studies of degradation of wind turbine blade materials at the macro-, micro-, and nanoscale carried out by the modelling team of the Section Composites and Materials Mechanics, Department of Wind Energy, DTU, are reviewed. Examples of the analysis of the microstructural effects on the strength and fatigue life of composites are shown. Computational studies of degradation mechanisms of wind blade composites under tensile and compressive loading are presented. The effect of hybrid and nanoengineered structures on the performance of the composite was studied in computational experiments as well.

  16. Computational Modelling of Materials for Wind Turbine Blades: Selected DTU Wind Energy Activities

    PubMed Central

    2017-01-01

    Computational and analytical studies of degradation of wind turbine blade materials at the macro-, micro-, and nanoscale carried out by the modelling team of the Section Composites and Materials Mechanics, Department of Wind Energy, DTU, are reviewed. Examples of the analysis of the microstructural effects on the strength and fatigue life of composites are shown. Computational studies of degradation mechanisms of wind blade composites under tensile and compressive loading are presented. The effect of hybrid and nanoengineered structures on the performance of the composite was studied in computational experiments as well. PMID:29117138

  17. Composite Cure Process Modeling and Simulations using COMPRO(Registered Trademark) and Validation of Residual Strains using Fiber Optics Sensors

    NASA Technical Reports Server (NTRS)

    Sreekantamurthy, Thammaiah; Hudson, Tyler B.; Hou, Tan-Hung; Grimsley, Brian W.

    2016-01-01

    Composite cure process induced residual strains and warping deformations in composite components present significant challenges in the manufacturing of advanced composite structure. As a part of the Manufacturing Process and Simulation initiative of the NASA Advanced Composite Project (ACP), research is being conducted on the composite cure process by developing an understanding of the fundamental mechanisms by which the process induced factors influence the residual responses. In this regard, analytical studies have been conducted on the cure process modeling of composite structural parts with varied physical, thermal, and resin flow process characteristics. The cure process simulation results were analyzed to interpret the cure response predictions based on the underlying physics incorporated into the modeling tool. In the cure-kinetic analysis, the model predictions on the degree of cure, resin viscosity and modulus were interpreted with reference to the temperature distribution in the composite panel part and tool setup during autoclave or hot-press curing cycles. In the fiber-bed compaction simulation, the pore pressure and resin flow velocity in the porous media models, and the compaction strain responses under applied pressure were studied to interpret the fiber volume fraction distribution predictions. In the structural simulation, the effect of temperature on the resin and ply modulus, and thermal coefficient changes during curing on predicted mechanical strains and chemical cure shrinkage strains were studied to understand the residual strains and stress response predictions. In addition to computational analysis, experimental studies were conducted to measure strains during the curing of laminated panels by means of optical fiber Bragg grating sensors (FBGs) embedded in the resin impregnated panels. The residual strain measurements from laboratory tests were then compared with the analytical model predictions. The paper describes the cure process procedures and residual strain predications, and discusses pertinent experimental results from the validation studies.

  18. Analytical modeling of demagnetizing effect in magnetoelectric ferrite/PZT/ferrite trilayers taking into account a mechanical coupling

    NASA Astrophysics Data System (ADS)

    Loyau, V.; Aubert, A.; LoBue, M.; Mazaleyrat, F.

    2017-03-01

    In this paper, we investigate the demagnetizing effect in ferrite/PZT/ferrite magnetoelectric (ME) trilayer composites consisting of commercial PZT discs bonded by epoxy layers to Ni-Co-Zn ferrite discs made by a reactive Spark Plasma Sintering (SPS) technique. ME voltage coefficients (transversal mode) were measured on ferrite/PZT/ferrite trilayer ME samples with different thicknesses or phase volume ratio in order to highlight the influence of the magnetic field penetration governed by these geometrical parameters. Experimental ME coefficients and voltages were compared to analytical calculations using a quasi-static model. Theoretical demagnetizing factors of two magnetic discs that interact together in parallel magnetic structures were derived from an analytical calculation based on a superposition method. These factors were introduced in ME voltage calculations which take account of the demagnetizing effect. To fit the experimental results, a mechanical coupling factor was also introduced in the theoretical formula. This reflects the differential strain that exists in the ferrite and PZT layers due to shear effects near the edge of the ME samples and within the bonding epoxy layers. From this study, an optimization in magnitude of the ME voltage is obtained. Lastly, an analytical calculation of demagnetizing effect was conducted for layered ME composites containing higher numbers of alternated layers (n ≥ 5). The advantage of such a structure is then discussed.

  19. Load Diffusion in Composite and Smart Structures

    NASA Technical Reports Server (NTRS)

    Horgan, Cornelius O.; Ambur, D. (Technical Monitor); Nemeth, M. P. (Technical Monitor)

    2003-01-01

    The research carried out here builds on our previous NASA supported research on the general topic of edge effects and load diffusion in composite structures. Further fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for the multi-functional large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Some specific problems recently considered were those of end effects in smart materials and structures, study of the stress response of pressurized linear piezoelectric cylinders for both static and steady rotating configurations, an analysis of the effect of pre-stressing and pre-polarization on the decay of end effects in piezoelectric solids and investigation of constitutive models for hardening rubber-like materials. Our goal in the study of load diffusion is the development of readily applicable results for the decay lengths in terms of non-dimensional material and geometric parameters. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses.

  20. Influence of cross section variations on the structural behaviour of composite rotor blades

    NASA Astrophysics Data System (ADS)

    Rapp, Helmut; Woerndle, Rudolf

    1991-09-01

    A highly sophisticated structural analysis is required for helicopter rotor blades with nonhomogeneous cross sections made from nonisotropic material. Combinations of suitable analytical techniques with FEM-based techniques permit a cost effective and sufficiently accurate analysis of these complicated structures. It is determined that in general the 1D engineering theory of bending combined with 2D theories for determining the cross section properties is sufficient to describe the structural blade behavior.

  1. The elastic and inelastic behavior of woven graphite fabric reinforced polyimide composites

    NASA Astrophysics Data System (ADS)

    Searles, Kevin H.

    In many aerospace and conventional engineering applications, load-bearing composite structures are designed with the intent of being subjected to uniaxial stresses that are predominantly tensile or compressive. However, it is likely that biaxial and possibly triaxial states of stress will exist throughout the in-service life of the structure or component. The existing paradigm suggests that unidirectional tape materials are superior under uniaxial conditions since the vast majority of fibers lie in-plane and can be aligned to the loading axis. This may be true, but not without detriment to impact performance, interlaminar strength, strain to failure and complexity of part geometry. In circumstances where a sufficient balance of these properties is required, composites based on woven fabric reinforcements become attractive choices. In this thesis, the micro- and mesoscale elastic behavior of composites based on 8HS woven graphite fabric architectures and polyimide matrices is studied analytically and numerically. An analytical model is proposed to predict the composite elastic constants and is verified using numerical strain energy methods of equivalence. The model shows good agreement with the experiments and numerical strain energy equivalence. Lamina stresses generated numerically from in-plane shear loading show substantial shear and transverse normal stress concentrations in the transverse undulated tow which potentially leads to intralaminar damage. The macroscale inelastic behavior of the same composites is also studied experimentally and numerically. On an experimental basis, the biaxial and modified biaxial Iosipescu test methods are employed to study the weaker-mode shear and biaxial failure properties at room and elevated temperatures. On a numerical basis, the macroscale inelastic shear behavior of the composites is studied. Structural nonlinearities and material nonlinearities are identified and resolved. In terms of specimen-to-fixture interactions, load eccentricities, geometric (large strains and rotations) nonlinearities and boundary contact (friction) nonlinearities are explored. In terms of material nonlinearities, anisotropic plasticity and progressive damage are explored. A progressive damage criterion is proposed which accounts for the elastic strain energy densities in three directions. Of the types of nonlinearities studied, the nonlinear shear stress-strain behavior of the composites is principally from progressive intralaminar damage. Structural nonlinearities and elastoplastic deformation appear to be inconsequential.

  2. Dynamics of Nanoparticle-Protein Corona Complex Formation: Analytical Results from Population Balance Equations

    PubMed Central

    Darabi Sahneh, Faryad; Scoglio, Caterina; Riviere, Jim

    2013-01-01

    Background Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. Method This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. Results The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. Conclusion The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid. PMID:23741371

  3. Foreign body impact event damage formation in composite structures

    NASA Technical Reports Server (NTRS)

    Bucinell, Ronald B.

    1994-01-01

    This report discusses a methodology that can be used to assess the effect of foreign body impacts on composite structural integrity. The described effort focuses on modeling the effect of a central impact on a 5 3/4 inch filament wound test article. The discussion will commence with details of the material modeling that was used to establish the input properties for the analytical model. This discussion is followed by an overview of the impact assessment methodology. The progress on this effort to date is reviewed along with a discussion of tasks that have yet to be completed.

  4. Load Diffusion in Composite and Smart Structures

    NASA Technical Reports Server (NTRS)

    Horgan, C. O.

    2003-01-01

    The research carried out here builds on our previous NASA supported research on the general topic of edge effects and load diffusion in composite structures. Further fundamental solid mechanics studies were carried out to provide a basis for assessing the complicated modeling necessary for the multi-functional large scale structures used by NASA. An understanding of the fundamental mechanisms of load diffusion in composite subcomponents is essential in developing primary composite structures. Some specific problems recently considered were those of end effects in smart materials and structures, study of the stress response of pressurized linear piezoelectric cylinders for both static and steady rotating configurations, an analysis of the effect of pre-stressing and pre-polarization on the decay of end effects in piezoelectric solids and investigation of constitutive models for hardening rubber-like materials. Our goal in the study of load diffusion is the development of readily applicable results for the decay lengths in terms of non-dimensional material and geometric parameters. Analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and assessing results from finite element analyses. The decay behavior of stresses and other field quantities provides a significant aid towards this process. The analysis is also amenable to parameter study with a large parameter space and should be useful in structural tailoring studies. Special purpose analytical models of load diffusion behavior are extremely valuable in building an intuitive base for developing refined modeling strategies and in assessing results from general purpose finite element analyses. For example, a rational basis is needed in choosing where to use three-dimensional to two-dimensional transition finite elements in analyzing stiffened plates and shells. The decay behavior of stresses and other field quantities furnished by this research provides a significant aid towards this element transition issue. A priori knowledge of the extent of boundary-layers induced by edge effects is also useful in determination of the instrumentation location in structural verification tests or in material characterization tests.

  5. Spiral wound extraction cartridge

    DOEpatents

    Wisted, Eric E.; Lundquist, Susan H.

    1999-01-01

    A cartridge device for removing an analyte from a fluid comprises a hollow core, a sheet composite comprising a particulate-loaded porous membrane and optionally at least one reinforcing spacer sheet, the particulate being capable of binding the analyte, the sheet composite being formed into a spiral configuration about the core, wherein the sheet composite is wound around itself and wherein the windings of sheet composite are of sufficient tightness so that adjacent layers are essentially free of spaces therebetween, two end caps which are disposed over the core and the lateral ends of the spirally wound sheet composite, and means for securing the end caps to the core, the end caps also being secured to the lateral ends of the spirally wound sheet composite. A method for removing an analyte from a fluid comprises the steps of providing a spirally wound element of the invention and passing the fluid containing the analyte through the element essentially normal to a surface of the sheet composite so as to bind the analyte to the particulate of the particulate-loaded porous membrane, the method optionally including the step of eluting the bound analyte from the sheet composite.

  6. Modeling the Structure of Composite Supernova Remnants

    NASA Astrophysics Data System (ADS)

    Slane, Patrick

    2015-09-01

    The dynamical structure of a composite SNR, along with its broadband emission, provides crucial constraints on the ejecta mass and explosion energy, the properties of the pulsar that powers the associated wind nebula, and the ultimate fate of the particles that it injects. Of particular importance is the effect of asymmetries introduced through spatial variations in the ambient medium density and by rapid motion of the pulsar. Here we propose hydrodynamical and semi-analytical modeling of G21.5-0.9 and G292.0+1.8, SNRs for which deep Chandra observations have provided key input parameters for these models. We will derive ambient conditions and pulsar properties that lead to the observed morphology, broadband emission, and shock conditions in these important composite systems.

  7. Structural Health Monitoring of Composite Plates Under Ambient and Cryogenic Conditions

    NASA Technical Reports Server (NTRS)

    Engberg, Robert C.

    2005-01-01

    Methods for structural health monitoring are now being assessed, especially in high-performance, extreme environment, safety-critical applications. One such application is for composite cryogenic fuel tanks. The work presented here attempts to characterize and investigate the feasibility of using imbedded piezoelectric sensors to detect cracks and delaminations under cryogenic and ambient conditions. Different types of excitation and response signals and different sensors are employed in composite plate samples to aid in determining an optimal algorithm, sensor placement strategy, and type of imbedded sensor to use. Variations of frequency and high frequency chirps of the sensors are employed and compared. Statistical and analytic techniques are then used to determine which method is most desirable for a specific type of damage and operating environment. These results are furthermore compared with previous work using externally mounted sensors. More work is needed to accurately account for changes in temperature seen in these environments and be statistically significant. Sensor development and placement strategy are other areas of further work to make structural health monitoring more robust. Results from this and other work might then be incorporated into a larger composite structure to validate and assess its structural health. This could prove to be important in the development and qualification of any 2nd generation reusable launch vehicle using composites as a structural element.

  8. Discrete-Layer Piezoelectric Plate and Shell Models for Active Tip-Clearance Control

    NASA Technical Reports Server (NTRS)

    Heyliger, P. R.; Ramirez, G.; Pei, K. C.

    1994-01-01

    The objectives of this work were to develop computational tools for the analysis of active-sensory composite structures with added or embedded piezoelectric layers. The targeted application for this class of smart composite laminates and the analytical development is the accomplishment of active tip-clearance control in turbomachinery components. Two distinct theories and analytical models were developed and explored under this contract: (1) a discrete-layer plate theory and corresponding computational models, and (2) a three dimensional general discrete-layer element generated in curvilinear coordinates for modeling laminated composite piezoelectric shells. Both models were developed from the complete electromechanical constitutive relations of piezoelectric materials, and incorporate both displacements and potentials as state variables. This report describes the development and results of these models. The discrete-layer theories imply that the displacement field and electrostatic potential through-the-thickness of the laminate are described over an individual layer rather than as a smeared function over the thickness of the entire plate or shell thickness. This is especially crucial for composites with embedded piezoelectric layers, as the actuating and sensing elements within these layers are poorly represented by effective or smeared properties. Linear Lagrange interpolation polynomials were used to describe the through-thickness laminate behavior. Both analytic and finite element approximations were used in the plane or surface of the structure. In this context, theoretical developments are presented for the discrete-layer plate theory, the discrete-layer shell theory, and the formulation of an exact solution for simply-supported piezoelectric plates. Finally, evaluations and results from a number of separate examples are presented for the static and dynamic analysis of the plate geometry. Comparisons between the different approaches are provided when possible, and initial conclusions regarding the accuracy and limitations of these models are given.

  9. A bioinspired study on the compressive resistance of helicoidal fibre structures

    NASA Astrophysics Data System (ADS)

    Tan, Ting; Ribbans, Brian

    2017-10-01

    Helicoidal fibre structures are widely observed in natural materials. In this paper, an integrated experimental and analytical approach was used to investigate the compressive resistance of helicoidal fibre structures. First, helicoidal fibre-reinforced composites were created using three-dimensionally printed helicoids and polymeric matrices, including plain, ring-reinforced and helix-reinforced helicoids. Then, load-displacement curves under monotonic compression tests were collected to measure the compressive strengths of helicoidal fibre composites. Fractographic characterization was performed using an X-ray microtomographer and scanning electron microscope, through which crack propagations in helicoidal structures were illustrated. Finally, mathematical modelling was performed to reveal the essential fibre architectures in the compressive resistance of helicoidal fibre structures. This work reveals that fibre-matrix ratios, helix pitch angles and interlayer rotary angles are critical to the compressive resistance of helicoidal structures.

  10. High-performance liquid chromatographic enantioseparation of unusual isoxazoline-fused 2-aminocyclopentanecarboxylic acids on macrocyclic glycopeptide-based chiral stationary phases.

    PubMed

    Sipos, László; Ilisz, István; Nonn, Melinda; Fülöp, Ferenc; Pataj, Zoltán; Armstrong, Daniel W; Péter, Antal

    2012-04-06

    The enantiomers of four unusual isoxazoline-fused 2-aminocyclopentanecarboxylic acids were directly separated on chiral stationary phases containing macrocyclic glycopeptide antibiotics teicoplanin (Astec Chirobiotic T and T2), teicoplanin aglycone (Chirobiotic TAG), vancomycin (Chirobiotic V) and vancomycin aglycone (Chirobiotic VAG) as chiral selectors. The effects of the mobile phase composition, the structure of the analytes and temperature on the separations were investigated. Experiments were performed at constant mobile phase compositions in the temperature range 5-45 °C to study the effects of temperature, and thermodynamic parameters were calculated from plots of lnk or lnα versus 1/T. Some mechanistic aspects of the chiral recognition process are discussed with respect to the structures of the analytes. It was found that the enantiomeric separations were in most cases enthalpy-driven. The sequence of elution of the enantiomers was determined in all cases. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. High-performance liquid chromatographic enantioseparation of monoterpene-based 2-amino carboxylic acids on macrocyclic glycopeptide-based phases.

    PubMed

    Sipos, László; Ilisz, István; Pataj, Zoltán; Szakonyi, Zsolt; Fülöp, Ferenc; Armstrong, Daniel W; Péter, Antal

    2010-10-29

    The enantiomers of five monoterpene-based 2-amino carboxylic acids were directly separated on chiral stationary phases containing macrocyclic glycopeptide antibiotics such as teicoplanin (Astec Chirobiotic T and T2) and teicoplanin aglycone (Chirobiotic TAG) as chiral selectors. The effects of pH, the mobile phase composition, the structure of the analyte and temperature on the separations were investigated. Experiments were performed at constant mobile phase compositions in the temperature range 10-40°C to study the effects of temperature and thermodynamic parameters on separations. Apparent thermodynamic parameters and T(iso) values were calculated from plots of ln k or ln α versus 1/T. Some mechanistic aspects of the chiral recognition process are discussed with respect to the structures of the analytes. It was found that the enantioseparations were in most cases enthalpy driven. The sequence of elution of the enantiomers was determined in all cases. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Construct Validation of Analytic Rating Scales in a Speaking Assessment: Reporting a Score Profile and a Composite

    ERIC Educational Resources Information Center

    Sawaki, Yasuyo

    2007-01-01

    This is a construct validation study of a second language speaking assessment that reported a language profile based on analytic rating scales and a composite score. The study addressed three key issues: score dependability, convergent/discriminant validity of analytic rating scales and the weighting of analytic ratings in the composite score.…

  13. Damage Arresting Composites for Shaped Vehicles - Phase II Final Report

    NASA Technical Reports Server (NTRS)

    Velicki, Alex; Yovanof, Nicolette; Baraja, Jaime; Linton, Kim; Li, Victor; Hawley, Arthur; Thrash, Patrick; DeCoux, Steve; Pickell, Robert

    2011-01-01

    This report describes the development of a novel structural concept, Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS), that addresses the demanding fuselage loading requirements for the Hybrid Wing or Blended Wing Body (BWB) airplane configuration. In addition to the analytical studies, a three specimen test program was also completed to assess the concept under axial tension loading, axial compression loading, and internal pressure loading.

  14. Functionalization of Graphene Oxide and its Composite with Poly(3,4-ethylenedioxythiophene) as Electrode Material for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Minchao; Jamal, Ruxangul; Wang, Yujie; Yang, Lei; Liu, Fangfang; Abdiryim, Tursun

    2015-09-01

    In this study, poly(3,4-ethylenedioxythiophene)/thiophene-grafted graphene oxide (PEDOT/Th-GO) composites from covalently linking of Th-GO with PEDOT chains were prepared via in situ chemical polymerization with different weight percentage of Th-GO ranging between 40 and 70 % in reaction medium. The resulting composite materials were characterized using a various analytical techniques. The structural analysis showed that the composites displayed a higher degree of conjugation and thermal stability than pure PEDOT, and the weight percentage of Th-GO could affect the doping level, amount of undesired conjugated segments, and porous structure of composites. Electrochemical analysis suggested that the highest specific capacitance of 320 F g-1 at a current density of 1 A g-1 with good cycling stability (capacitance retention of 80 % at 1 A g-1 after 1000 cycles) was achieved for the composite prepared from 50 wt% Th-GO content in reaction medium.

  15. Functionalization of Graphene Oxide and its Composite with Poly(3,4-ethylenedioxythiophene) as Electrode Material for Supercapacitors.

    PubMed

    Wang, Minchao; Jamal, Ruxangul; Wang, Yujie; Yang, Lei; Liu, Fangfang; Abdiryim, Tursun

    2015-12-01

    In this study, poly(3,4-ethylenedioxythiophene)/thiophene-grafted graphene oxide (PEDOT/Th-GO) composites from covalently linking of Th-GO with PEDOT chains were prepared via in situ chemical polymerization with different weight percentage of Th-GO ranging between 40 and 70 % in reaction medium. The resulting composite materials were characterized using a various analytical techniques. The structural analysis showed that the composites displayed a higher degree of conjugation and thermal stability than pure PEDOT, and the weight percentage of Th-GO could affect the doping level, amount of undesired conjugated segments, and porous structure of composites. Electrochemical analysis suggested that the highest specific capacitance of 320 F g(-1) at a current density of 1 A g(-1) with good cycling stability (capacitance retention of 80 % at 1 A g(-1) after 1000 cycles) was achieved for the composite prepared from 50 wt% Th-GO content in reaction medium.

  16. Mechanical properties of triaxially braided composites: Experimental and analytical results

    NASA Technical Reports Server (NTRS)

    Masters, John E.; Foye, Raymond L.; Pastore, Christopher M.; Gowayed, Yasser A.

    1992-01-01

    This paper investigates the unnotched tensile properties of two-dimensional triaxial braid reinforced composites from both an experimental and analytical viewpoint. The materials are graphite fibers in an epoxy matrix. Three different reinforcing fiber architectures were considered. Specimens were cut from resin transfer molded (RTM) composite panels made from each braid. There were considerable differences in the observed elastic constants from different size strain gage and extensometer readings. Larger strain gages gave more consistent results and correlated better with the extensometer readings. Experimental strains correlated reasonably well with analytical predictions in the longitudinal, zero degree, fiber direction but not in the transverse direction. Tensile strength results were not always predictable even in reinforcing directions. Minor changes in braid geometry led to disproportionate strength variations. The unit cell structure of the triaxial braid was discussed with the assistence of computer analysis of the microgeometry. Photomicrographs of the braid geometry were used to improve upon the computer graphics representations of unit cells. These unit cells were used to predict the elastic moduli with various degrees of sophistication. The simple and the complex analyses were generally in agreement but none adequately matched the experimental results for all the braids.

  17. Mechanical properties of triaxially braided composites: Experimental and analytical results

    NASA Technical Reports Server (NTRS)

    Masters, John E.; Foye, Raymond L.; Pastore, Christopher M.; Gowayed, Yasser A.

    1992-01-01

    The unnotched tensile properties of 2-D triaxial braid reinforced composites from both an experimental and an analytical viewpoint are studied. The materials are graphite fibers in an epoxy matrix. Three different reinforcing fiber architectures were considered. Specimens were cut from resin transfer molded (RTM) composite panels made from each braid. There were considerable differences in the observed elastic constants from different size strain gage and extensometer reading. Larger strain gages gave more consistent results and correlated better with the extensometer reading. Experimental strains correlated reasonably well with analytical predictions in the longitudinal, 0 degrees, fiber direction but not in the transverse direction. Tensile strength results were not always predictable even in reinforcing directions. Minor changes in braid geometry led to disproportionate strength variations. The unit cell structure of the triaxial braid was discussed with the assistance of computer analysis of the microgeometry. Photomicrographs of braid geometry were used to improve upon the computer graphics representations of unit cells. These unit cells were used to predict the elastic moduli with various degrees of sophistication. The simple and the complex analyses were generally in agreement but none adequately matched the experimental results for all the braids.

  18. Dynamic testing and analysis of extension-twist-coupled composite tubular spars

    NASA Astrophysics Data System (ADS)

    Lake, Renee C.; Izapanah, Amir P.; Baucon, Robert M.

    The results from a study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of extension-twist elastic coupling are presented. A set of extension-twist-coupled composite tubular spars, representative of the primary load carrying structure within a helicopter rotor blade, was manufactured using four plies of woven graphite/epoxy cloth 'prepreg.' These spars were non-circular in cross section design and were therefore subject to warping deformations. Three cross-sectional geometries were developed: square, D-shape, and flattened ellipse. Results from free-free vibration tests of the spars were compared with results from normal modes and frequency analyses of companion shell-finite-element models developed in MSC/NASTRAN. Five global or 'non-shell' modes were identified within the 0-2000 Hz range for each spar. The frequencies and associated mode shapes for the D-shape spar were correlated with analytical results, showing agreement within 13.8 percent. Frequencies corresponding to the five global mode shapes for the square spar agreed within 9.5 percent of the analytical results. Five global modes were similarly identified for the elliptical spar and agreed within 4.9 percent of the respective analytical results.

  19. Dynamic testing and analysis of extension-twist-coupled composite tubular spars

    NASA Technical Reports Server (NTRS)

    Lake, Renee C.; Izapanah, Amir P.; Baucon, Robert M.

    1992-01-01

    The results from a study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of extension-twist elastic coupling are presented. A set of extension-twist-coupled composite tubular spars, representative of the primary load carrying structure within a helicopter rotor blade, was manufactured using four plies of woven graphite/epoxy cloth 'prepreg.' These spars were non-circular in cross section design and were therefore subject to warping deformations. Three cross-sectional geometries were developed: square, D-shape, and flattened ellipse. Results from free-free vibration tests of the spars were compared with results from normal modes and frequency analyses of companion shell-finite-element models developed in MSC/NASTRAN. Five global or 'non-shell' modes were identified within the 0-2000 Hz range for each spar. The frequencies and associated mode shapes for the D-shape spar were correlated with analytical results, showing agreement within 13.8 percent. Frequencies corresponding to the five global mode shapes for the square spar agreed within 9.5 percent of the analytical results. Five global modes were similarly identified for the elliptical spar and agreed within 4.9 percent of the respective analytical results.

  20. A Mixed Multi-Field Finite Element Formulation for Thermopiezoelectric Composite Shells

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun; Saravanos, Dimitris A.

    1999-01-01

    Analytical formulations are presented which account for the coupled mechanical, electrical, and thermal response of piezoelectric composite shell structures. A new mixed multi-field laminate theory is developed which combines "single layer" assumptions for the displacements along with layerwise fields for the electric potential and temperature. This laminate theory is formulated using curvilinear coordinates and is based on the principles of linear thermopiezoelectricity. The mechanics have the inherent capability to explicitly model both the active and sensory responses of piezoelectric composite shells in thermal environment. Finite element equations are derived and implemented for an eight-noded shell element. Numerical studies are conducted to investigate both the sensory and active responses of piezoelectric composite shell structures subjected to thermal loads. Results for a cantilevered plate with an attached piezoelectric layer are com- pared with corresponding results from a commercial finite element code and a previously developed program. Additional studies are conducted on a cylindrical shell with an attached piezoelectric layer to demonstrate capabilities to achieve thermal shape control on curved piezoelectric structures.

  1. 3D ultrasound characterization of woven composites

    NASA Astrophysics Data System (ADS)

    Tayong, Rostand B.; Mienczakowski, Martin J.; Smith, Robert A.

    2018-04-01

    Recent studies on the Non-Destructive Testing (NDT) of composites for the aerospace industry have led to an understanding of ultrasonic propagation in these materials [1]. Techniques for enhanced ultrasonic imaging of the internal structure of composite laminates containing unidirectional fibers have been proposed and tested in a laboratory environment. For the automotive industry, textile composites are often preferred and widely used. The reason for this is that these types of composites offer good mechanical performance, with resistance to delamination and reduced manufacturing costs. In this study, two models are developed and shown to be suitable to characterize the woven specimen. The first model is a 1D analytical model that makes simplified assumptions and the second is a 3D time-domain Finite Element (FE) model developed [2] for advanced understanding of the woven composite response to an ultrasonic excitation. For each of the proposed models, three parameters are defined and used to analyze the structure behavior. They are the instantaneous amplitude, instantaneous phase and instantaneous frequency. These parameters are employed to track the in-plane fiber orientation and the ply-interface location and for the sentencing of features. Three different specimens with the following weave type: 3D orthogonal, 2D plain and Multilayer stitching were considered and scanned (using a focused ultrasonic transducer) to validate the proposed models. As a preliminary study, the work only focuses on the Orthogonal weave specimen. The results obtained from experimental, analytical and FE modeling, B-scan and C-scan are compared, discussed and presented in terms of the above defined parameters.

  2. Advance study of fiber-reinforced self-compacting concrete

    NASA Astrophysics Data System (ADS)

    Mironova, M.; Ivanova, M.; Naidenov, V.; Georgiev, I.; Stary, J.

    2015-10-01

    Incorporation in concrete composition of steel macro- and micro - fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural and material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.

  3. Spiral wound extraction cartridge

    DOEpatents

    Wisted, E.E.; Lundquist, S.H.

    1999-04-27

    A cartridge device for removing an analyte from a fluid comprises a hollow core, a sheet composite comprising a particulate-loaded porous membrane and optionally at least one reinforcing spacer sheet, the particulate being capable of binding the analyte, the sheet composite being formed into a spiral configuration about the core, wherein the sheet composite is wound around itself and wherein the windings of sheet composite are of sufficient tightness so that adjacent layers are essentially free of spaces therebetween, two end caps which are disposed over the core and the lateral ends of the spirally wound sheet composite, and means for securing the end caps to the core, the end caps also being secured to the lateral ends of the spirally wound sheet composite. A method for removing an analyte from a fluid comprises the steps of providing a spirally wound element of the invention and passing the fluid containing the analyte through the element essentially normal to a surface of the sheet composite so as to bind the analyte to the particulate of the particulate-loaded porous membrane, the method optionally including the step of eluting the bound analyte from the sheet composite. 4 figs.

  4. ANALYTICAL TOOL INTERFACE FOR LANDSCAPE ASSESSMENTS (ATIILA): AN ARCVIEW EXTENSION FOR THE ANALYSIS OF LANDSCAPE PATTERNS, COMPOSITION, AND STRUCTURE

    EPA Science Inventory

    Environmental management practices are trending away from simple, local- scale assessments toward complex, multiple-stressor regional assessments. Landscape ecology provides the theory behind these assessments while geographic information systems (GIS) supply the tools to impleme...

  5. Sorption of benzotriazoles under the conditions of RP HPLC

    NASA Astrophysics Data System (ADS)

    Dzhabieva, S. A.; Kurbatova, S. V.; Belousova, Z. P.

    2016-02-01

    The results of a chromatographic study of sorption of several benzotriazole derivatives on octadecyl silica gel were reported. The physicochemical and electronic parameters of benzotriazoles were calculated. The effect of the structure of analyte molecules and eluent composition on chromatographic retention of these substances was analyzed.

  6. Integrated NDE and FEM characterization of composite rotors

    NASA Astrophysics Data System (ADS)

    Abdul-Aziz, Ali; Baaklini, George Y.; Trudell, Jeffrey J.

    2001-08-01

    A structural assessment by integrating finite-element methods (FEM) and a nondestructive evaluation (NDE) of two flywheel rotor assemblies is presented. Composite rotor A is pancake like with a solid hub design, and composite rotor B is cylindrical with a hollow hub design. Detailed analyses under combined centrifugal and interference-fit loading are performed. Two- and three-dimensional stress analyses and two-dimensional fracture mechanics analyses are conducted. A comparison of the structural analysis results obtained with those extracted via NDE findings is reported. Contact effects due to press-fit conditions are evaluated. Stress results generated from the finite-element analyses were corroborated with the analytical solution. Cracks due to rotational loading up to 48 000 rpm for rotor A and 34 000 rpm for rotor B were successfully imaged with NDE and predicted with FEM and fracture mechanics analyses. A procedure that extends current structural analysis to a life prediction tool is also defined.

  7. An Integrated NDE and FEM Characterization of Composite Rotors

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.; Trudell, Jeffrey J.

    2000-01-01

    A structural assessment by integrating finite-element methods (FEM) and a nondestructive evaluation (NDE) of two flywheel rotor assemblies is presented. Composite rotor A is pancake like with a solid hub design, and composite rotor B is cylindrical with a hollow hub design. Detailed analyses under combined centrifugal and interference-fit loading are performed. Two- and three-dimensional stress analyses and two-dimensional fracture mechanics analyses are conducted. A comparison of the structural analysis results obtained with those extracted via NDE findings is reported. Contact effects due to press-fit conditions are evaluated. Stress results generated from the finite-element analyses were corroborated with the analytical solution. Cracks due to rotational loading up to 49 000 rpm for rotor A and 34 000 rpm for rotor B were successfully imaged with NDE and predicted with FEM and fracture mechanics analyses. A procedure that extends current structural analysis to a life prediction tool is also defined.

  8. Formation of the lamellar structure in Group IA and IIID iron meteorites

    NASA Technical Reports Server (NTRS)

    Kowalik, J. A.; Williams, D. B.; Goldstein, J. I.

    1988-01-01

    Analytical EM, light microscopy, and electron microprobe analysis are used to study the lamellar plessite structure of Group IA and IIID iron meteorites. The alpha lamellae in IIID structures contained a compositional gradient from 6.1 + or - 0.7 wt pct Ni at the center of the alpha lamellae to 3.6 + or - 0.5 wt pct at the alpha/gamma interface. For the Group IA irons, compositions of 4 wt pct Ni in alpha and about 48 wt pct Ni in gamma are found. Convergent beam electron diffraction was used to characterize the orientation relations at the alpha/gamma interface in the lamellar regions of both Group IA and IIID. The phase transformations responsible for the observed lamellar structure in the IA and IIID chemical groups were also investigated.

  9. A method for the geometrically nonlinear analysis of compressively loaded prismatic composite structures

    NASA Technical Reports Server (NTRS)

    Stoll, Frederick; Gurdal, Zafer; Starnes, James H., Jr.

    1991-01-01

    A method was developed for the geometrically nonlinear analysis of the static response of thin-walled stiffened composite structures loaded in uniaxial or biaxial compression. The method is applicable to arbitrary prismatic configurations composed of linked plate strips, such as stiffened panels and thin-walled columns. The longitudinal ends of the structure are assumed to be simply supported, and geometric shape imperfections can be modeled. The method can predict the nonlinear phenomena of postbuckling strength and imperfection sensitivity which are exhibited by some buckling-dominated structures. The method is computer-based and is semi-analytic in nature, making it computationally economical in comparison to finite element methods. The method uses a perturbation approach based on the use of a series of buckling mode shapes to represent displacement contributions associated with nonlinear response. Displacement contributions which are of second order in the model amplitudes are incorported in addition to the buckling mode shapes. The principle of virtual work is applied using a finite basis of buckling modes, and terms through the third order in the model amplitudes are retained. A set of cubic nonlinear algebraic equations are obtained, from which approximate equilibrium solutions are determined. Buckling mode shapes for the general class of structure are obtained using the VIPASA analysis code within the PASCO stiffened-panel design code. Thus, subject to some additional restrictions in loading and plate anisotropy, structures which can be modeled with respect to buckling behavior by VIPASA can be analyzed with respect to nonlinear response using the new method. Results obtained using the method are compared with both experimental and analytical results in the literature. The configurations investigated include several different unstiffened and blade-stiffening panel configurations, featuring both homogeneous, isotropic materials, and laminated composite material.

  10. Analytical, numerical, and experimental investigations on effective mechanical properties and performances of carbon nanotubes and nanotube based nanocomposites with novel three dimensional nanostructures

    NASA Astrophysics Data System (ADS)

    Askari, Davood

    The theoretical objectives and accomplishment of this work are the analytical and numerical investigation of material properties and mechanical behavior of carbon nanotubes (CNTs) and nanotube nanocomposites when they are subjected to various loading conditions. First, the finite element method is employed to investigate numerically the effective Young's modulus and Poisson's ratio of a single-walled CNT. Next, the effects of chirality on the effective Young's modulus and Poisson's ratio are investigated and then variations of their effective coefficient of thermal expansions and effective thermal conductivities are studied for CNTs with different structural configurations. To study the influence of small vacancy defects on mechanical properties of CNTs, finite element analyses are performed and the behavior of CNTs with various structural configurations having different types of vacancy defects is studied. It is frequently reported that nano-materials are excellent candidates as reinforcements in nanocomposites to change or enhance material properties of polymers and their nanocomposites. Second, the inclusion of nano-materials can considerably improve electrical, thermal, and mechanical properties of the bonding agent, i.e., resin. Note that, materials atomic and molecular level do not usually show isotropic behaviour, rather they have orthotropic properties. Therefore, two-phase and three-phase cylindrically orthotropic composite models consisting of different constituents with orthotropic properties are developed and introduced in this work to analytically predict the effective mechanical properties and mechanical behavior of such structures when they are subjected to various external loading conditions. To verify the analytically obtained exact solutions, finite element analyses of identical cylindrical structures are also performed and then results are compared with those obtained analytically, and excellent agreement is achieved. The third part of this dissertation investigates the growth of vertically aligned, long, and high density arrays of CNTs and novel 3-D carbon nanotube nano-forests. A Chemical vapor deposition technique is used to grow radially aligned CNTs on various types of fibrous materials such as silicon carbide, carbon, Kevlar, and glass fibers and clothes that can be used for the fabrication of multifunctional high performing laminated nanocomposite structures. Using the CNTs nano-forest clothes, nanocomposite samples are prepared and tested giving promising results for the improvement of mechanical properties and performance of composites structures.

  11. 21 CFR 165.110 - Bottled water.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    .... (3) Physical quality. Bottled water shall, when a composite of analytical units of equal volume from.... 1 (4) Chemical quality. (i)(A) Bottled water shall, when a composite of analytical units of equal... bottled water, when a composite of analytical units of equal volume from a sample is examined by the...

  12. Graphene-magnesium nanocomposite: An advanced material for aerospace application

    NASA Astrophysics Data System (ADS)

    Das, D. K.; Sarkar, Jit

    2018-02-01

    This work focuses on the analytical study of mechanical and thermal properties of a nanocomposite that can be obtained by reinforcing graphene in magnesium. The estimated mechanical and thermal properties of graphene-magnesium nanocomposite are much higher than magnesium and other existing alloys used in aerospace materials. We also altered the weight percentage of graphene in the composite and observed mechanical and thermal properties of the composite increase with increase in concentration of graphene reinforcement. The Young’s modulus and thermal conductivity of graphene-magnesium nanocomposite are found to be ≥165 GPa and ≥175 W/mK, respectively. Nanocomposite material with desired properties for targeted applications can also be designed by our analytical modeling technique. This graphene-magnesium nanocomposite can be used for designing improved aerospace structure systems with enhanced properties.

  13. Porous Silicon Structures as Optical Gas Sensors.

    PubMed

    Levitsky, Igor A

    2015-08-14

    We present a short review of recent progress in the field of optical gas sensors based on porous silicon (PSi) and PSi composites, which are separate from PSi optochemical and biological sensors for a liquid medium. Different periodical and nonperiodical PSi photonic structures (bares, modified by functional groups or infiltrated with sensory polymers) are described for gas sensing with an emphasis on the device specificity, sensitivity and stability to the environment. Special attention is paid to multiparametric sensing and sensor array platforms as effective trends for the improvement of analyte classification and quantification. Mechanisms of gas physical and chemical sorption inside PSi mesopores and pores of PSi functional composites are discussed.

  14. Finite Element Analysis of Active and Sensory Thermopiezoelectric Composite Materials. Degree awarded by Northwestern Univ., Dec. 2000

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun

    2001-01-01

    Analytical formulations are developed to account for the coupled mechanical, electrical, and thermal response of piezoelectric composite materials. The coupled response is captured at the material level through the thermopiezoelectric constitutive equations and leads to the inherent capability to model both the sensory and active responses of piezoelectric materials. A layerwise laminate theory is incorporated to provide more accurate analysis of the displacements, strains, stresses, electric fields, and thermal fields through-the-thickness. Thermal effects which arise from coefficient of thermal expansion mismatch, pyroelectric effects, and temperature dependent material properties are explicitly accounted for in the formulation. Corresponding finite element formulations are developed for piezoelectric beam, plate, and shell elements to provide a more generalized capability for the analysis of arbitrary piezoelectric composite structures. The accuracy of the current formulation is verified with comparisons from published experimental data and other analytical models. Additional numerical studies are also conducted to demonstrate additional capabilities of the formulation to represent the sensory and active behaviors. A future plan of experimental studies is provided to characterize the high temperature dynamic response of piezoelectric composite materials.

  15. Micromechanics Analysis Code (MAC) User Guide: Version 1.0

    NASA Technical Reports Server (NTRS)

    Wilt, T. E.; Arnold, S. M.

    1994-01-01

    The ability to accurately predict the thermomechanical deformation response of advanced composite materials continues to play an important role in the development of these strategic materials. Analytical models that predict the effective behavior of composites are used not only by engineers performing structural analysis of large-scale composite components but also by material scientists in developing new material systems. For an analytical model to fulfill these two distinct functions it must be based on a micromechanics approach which utilizes physically based deformation and life constitutive models and allows one to generate the average (macro) response of a composite material given the properties of the individual constituents and their geometric arrangement. Here the user guide for the recently developed, computationally efficient and comprehensive micromechanics analysis code, MAC, who's predictive capability rests entirely upon the fully analytical generalized method of cells, GMC, micromechanics model is described. MAC is a versatile form of research software that 'drives' the double or triple ply periodic micromechanics constitutive models based upon GMC. MAC enhances the basic capabilities of GMC by providing a modular framework wherein (1) various thermal, mechanical (stress or strain control), and thermomechanical load histories can be imposed; (2) different integration algorithms may be selected; (3) a variety of constituent constitutive models may be utilized and/or implemented; and (4) a variety of fiber architectures may be easily accessed through their corresponding representative volume elements.

  16. Micromechanics Analysis Code (MAC). User Guide: Version 2.0

    NASA Technical Reports Server (NTRS)

    Wilt, T. E.; Arnold, S. M.

    1996-01-01

    The ability to accurately predict the thermomechanical deformation response of advanced composite materials continues to play an important role in the development of these strategic materials. Analytical models that predict the effective behavior of composites are used not only by engineers performing structural analysis of large-scale composite components but also by material scientists in developing new material systems. For an analytical model to fulfill these two distinct functions it must be based on a micromechanics approach which utilizes physically based deformation and life constitutive models and allows one to generate the average (macro) response of a composite material given the properties of the individual constituents and their geometric arrangement. Here the user guide for the recently developed, computationally efficient and comprehensive micromechanics analysis code's (MAC) who's predictive capability rests entirely upon the fully analytical generalized method of cells (GMC), micromechanics model is described. MAC is a versatile form of research software that 'drives' the double or triply periodic micromechanics constitutive models based upon GMC. MAC enhances the basic capabilities of GMC by providing a modular framework wherein (1) various thermal, mechanical (stress or strain control) and thermomechanical load histories can be imposed, (2) different integration algorithms may be selected, (3) a variety of constituent constitutive models may be utilized and/or implemented, and (4) a variety of fiber and laminate architectures may be easily accessed through their corresponding representative volume elements.

  17. Tailored composite wings with elastically produced chordwise camber

    NASA Technical Reports Server (NTRS)

    Rehfield, Lawrence W.; Chang, Stephen; Zischka, Peter J.; Pickings, Richard D.; Holl, Michael W.

    1991-01-01

    Four structural concepts were created which produce chordwise camber deformation that results in enhanced lift. A wing box can be tailored to utilize each of these with composites. In attempting to optimize the aerodynamic benefits, researchers found that there are two optimum designs that are of interest. There is a weight optimum which corresponds to the maximum lift per unit structural weight. There is also a lift optimum that corresponds to maximum absolute lift. Experience indicates that a large weight penalty accompanies the transition from weight to lift optimum designs. New structural models, the basic deformation mechanisms that are utilized, and typical analytical results are presented. It appears that lift enhancements of sufficient magnitude can be produced to render this type of wing tailoring of practical interest.

  18. Statics and buckling problems of aircraft structurally-anisotropic composite panels with the influence of production technology

    NASA Astrophysics Data System (ADS)

    Gavva, L. M.; Endogur, A. I.

    2018-02-01

    The mathematical model relations for stress-strain state and for buckling investigation of structurally-anisotropic panels made of composite materials are presented. The mathematical model of stiffening rib being torsioned under one-side contact with the skin is refined. One takes into account the influence of panel production technology: residual thermal stresses and reinforcing fibers preliminary tension. The resolved eight order equation and natural boundary conditions are obtained with variation Lagrange procedure. Exact analytical solutions for edge problems are considered. Computer program package is developed using operating MATLAB environment. The influence of the structure parameters on the level of stresses, displacements, of critical buckling forces for bending and for torsion modes has analyzed.

  19. Microcracking, microcrack-induced delamination, and longitudinal splitting of advanced composite structures

    NASA Technical Reports Server (NTRS)

    Nairn, John A.

    1992-01-01

    A combined analytical and experimental study was conducted to analyze microcracking, microcrack-induced delamination, and longitudinal splitting in polymer matrix composites. Strain energy release rates, calculated by a variational analysis, were used in a failure criterion to predict microcracking. Predictions and test results were compared for static, fatigue, and cyclic thermal loading. The longitudinal splitting analysis accounted for the effects of fiber bridging. Test data are analyzed and compared for longitudinal splitting and delamination under mixed-mode loading. This study emphasizes the importance of using fracture mechanics analyses to understand the complex failure processes that govern composite strength and life.

  20. The Emergence of Compositional Communication in a Synthetic Ethology Framework

    DTIC Science & Technology

    2005-08-12

    34Integrating Language and Cognition: A Cognitive Robotics Approach", invited contribution to IEEE Computational Intelligence Magazine . The first two...papers address the main topic of investigation of the research proposal. In particular, we have introduced a simple structured meaning-signal mapping...Cavalli-Sforza (1982) to investigate analytically the evolution of structured com- munication codes. Let x 6 [0,1] be the proportion of individuals in a

  1. Cross reactive arrays of three-way junction sensors for steroid determination

    NASA Technical Reports Server (NTRS)

    Stojanovic, Milan N. (Inventor); Nikic, Dragan B. (Inventor); Landry, Donald (Inventor)

    2008-01-01

    This invention provides analyte sensitive oligonucleotide compositions for detecting and analyzing analytes in solution, including complex solutions using cross reactive arrays of analyte sensitive oligonucleotide compositions.

  2. The Role of Ultrahigh Resolution Fourier Transform Mass Spectrometry (FT-MS) in Astrobiology-Related Research: Analysis of Meteorites and Tholins.

    PubMed

    Somogyi, Árpád; Thissen, Roland; Orthous-Daunay, Francois-Régis; Vuitton, Véronique

    2016-03-24

    It is an important but also a challenging analytical problem to understand the chemical composition and structure of prebiotic organic matter that is present in extraterrestrial materials. Its formation, evolution and content in the building blocks ("seeds") for more complex molecules, such as proteins and DNA, are key questions in the field of exobiology. Ultrahigh resolution mass spectrometry is one of the best analytical techniques that can be applied because it provides reliable information on the chemical composition and structure of individual components of complex organic mixtures. Prebiotic organic material is delivered to Earth by meteorites or generated in laboratories in simulation (model) experiments that mimic space or atmospheric conditions. Recent representative examples for ultrahigh resolution mass spectrometry studies using Fourier-transform (FT) mass spectrometers such as Orbitrap and ion cyclotron resonance (ICR) mass spectrometers are shown and discussed in the present article, including: (i) the analysis of organic matter of meteorites; (ii) modeling atmospheric processes in ICR cells; and (iii) the structural analysis of laboratory made tholins that might be present in the atmosphere and surface of Saturn's largest moon, Titan.

  3. The Role of Ultrahigh Resolution Fourier Transform Mass Spectrometry (FT-MS) in Astrobiology-Related Research: Analysis of Meteorites and Tholins

    PubMed Central

    Somogyi, Árpád; Thissen, Roland; Orthous-Daunay, Francois-Régis; Vuitton, Véronique

    2016-01-01

    It is an important but also a challenging analytical problem to understand the chemical composition and structure of prebiotic organic matter that is present in extraterrestrial materials. Its formation, evolution and content in the building blocks (“seeds”) for more complex molecules, such as proteins and DNA, are key questions in the field of exobiology. Ultrahigh resolution mass spectrometry is one of the best analytical techniques that can be applied because it provides reliable information on the chemical composition and structure of individual components of complex organic mixtures. Prebiotic organic material is delivered to Earth by meteorites or generated in laboratories in simulation (model) experiments that mimic space or atmospheric conditions. Recent representative examples for ultrahigh resolution mass spectrometry studies using Fourier-transform (FT) mass spectrometers such as Orbitrap and ion cyclotron resonance (ICR) mass spectrometers are shown and discussed in the present article, including: (i) the analysis of organic matter of meteorites; (ii) modeling atmospheric processes in ICR cells; and (iii) the structural analysis of laboratory made tholins that might be present in the atmosphere and surface of Saturn’s largest moon, Titan. PMID:27023520

  4. Adhesion and the Lamination/Failure of Stretchable Organic and Composite Organic/Inorganic Electronic Structures

    NASA Astrophysics Data System (ADS)

    Yu, Deying

    Stretchable organic electronics have emerged as interesting technologies for several applications where stretchability is considered important. The easy and low-cost deposition procedures for the fabrication of stretchable organic solar cells and organic light emitting devices reduce the overall cost for the fabrication of these devices. However, the interfacial cracks and defects at the interfaces of the devices, during fabrication, are detrimental to the performance of stretchable organic electronic devices. Also, as the devices are deformed under service conditions, it is possible for cracks to grow. Furthermore, the multilayered structures of the devices can fail due to the delamination and buckling of the layered structures. There is, therefore, a need to study the failure mechanism in the layered structures that are relevant to stretchable organic electronic devices. Hence, in this study, a combined experimental, analytical and computational approach is used to study the effects of adhesion and deformation on the failure mechanisms in structures that are relevant to stretchable electronic devices. First, the failure mechanisms are studied in stretchable inorganic electronic structures. The wrinkles and buckles are formed by the unloading of pre-stretched PDMS/Au structure, after the evaporation of nano-scale Au layers. They are then characterized using atomic force microscopy and scanning electron microscopy. Analytical models are used to determine the critical stresses for wrinkling and buckling. The interfacial cracking and film buckling that can occur are also studied using finite element simulations. The implications of the results are then discussed for the potential applications of micro-wrinkles and micro-buckles in the stretchable electronic structures and biomedical devices. Subsequently, the adhesion between bi-material pairs that are relevant to organic light emitting devices, composite organic/inorganic light emitting devices, organic bulk heterojunction solar cells, and composite organic/inorganic solar cells on flexible substrates, is measured using force microscopy (AFM) techniques. The AFM measurements are incorporated into the Derjaguin-Muller-Toporov model to calculate the adhesion energies. The implications of the results are then discussed for the design of robust organic and composite organic/inorganic electronic devices. Finally, the lamination of organic solar cells and organic light emitting devices is studied using a combination of experimental, computational, and analytical approaches. First, the effects of applied lamination force (on contact between the laminated layers) are studied using experiments and models. The crack driving forces associated with the interfacial cracks that form at the interfaces between layers (at the bi-material interfaces) are estimated along with the critical interfacial crack driving forces associated with the separation of thin films, after layer transfer. The conditions for successful lamination are predicted using a combination of experiments and models. Guidelines are developed for the lamination of low-cost organic electronic structures.

  5. Military engine computational structures technology

    NASA Technical Reports Server (NTRS)

    Thomson, Daniel E.

    1992-01-01

    Integrated High Performance Turbine Engine Technology Initiative (IHPTET) goals require a strong analytical base. Effective analysis of composite materials is critical to life analysis and structural optimization. Accurate life prediction for all material systems is critical. User friendly systems are also desirable. Post processing of results is very important. The IHPTET goal is to double turbine engine propulsion capability by the year 2003. Fifty percent of the goal will come from advanced materials and structures, the other 50 percent will come from increasing performance. Computer programs are listed.

  6. Compositional control of continuously graded anode functional layer

    NASA Astrophysics Data System (ADS)

    McCoppin, J.; Barney, I.; Mukhopadhyay, S.; Miller, R.; Reitz, T.; Young, D.

    2012-10-01

    In this work, solid oxide fuel cells (SOFC's) are fabricated with linear-compositionally graded anode functional layers (CGAFL) using a computer-controlled compound aerosol deposition (CCAD) system. Cells with different CGAFL thicknesses (30 um and 50 um) are prepared with a continuous compositionally graded interface deposited between the electrolyte and anode support current collecting regions. The compositional profile was characterized using energy dispersive X-ray spectroscopic mapping. An analytical model of the compound aerosol deposition was developed. The model predicted compositional profiles for both samples that closely matched the measured profiles, suggesting that aerosol-based deposition methods are capable of creating functional gradation on length scales suitable for solid oxide fuel cell structures. The electrochemical performances of the two cells are analyzed using electrochemical impedance spectroscopy (EIS).

  7. Static Strength Characteristics of Mechanically Fastened Composite Joints

    NASA Technical Reports Server (NTRS)

    Fox, D. E.; Swaim, K. W.

    1999-01-01

    The analysis of mechanically fastened composite joints presents a great challenge to structural analysts because of the large number of parameters that influence strength. These parameters include edge distance, width, bolt diameter, laminate thickness, ply orientation, and bolt torque. The research presented in this report investigates the influence of some of these parameters through testing and analysis. A methodology is presented for estimating the strength of the bolt-hole based on classical lamination theory using the Tsai-Hill failure criteria and typical bolthole bearing analytical methods.

  8. An Investigation to Manufacturing Analytical Services Composition using the Analytical Target Cascading Method.

    PubMed

    Tien, Kai-Wen; Kulvatunyou, Boonserm; Jung, Kiwook; Prabhu, Vittaldas

    2017-01-01

    As cloud computing is increasingly adopted, the trend is to offer software functions as modular services and compose them into larger, more meaningful ones. The trend is attractive to analytical problems in the manufacturing system design and performance improvement domain because 1) finding a global optimization for the system is a complex problem; and 2) sub-problems are typically compartmentalized by the organizational structure. However, solving sub-problems by independent services can result in a sub-optimal solution at the system level. This paper investigates the technique called Analytical Target Cascading (ATC) to coordinate the optimization of loosely-coupled sub-problems, each may be modularly formulated by differing departments and be solved by modular analytical services. The result demonstrates that ATC is a promising method in that it offers system-level optimal solutions that can scale up by exploiting distributed and modular executions while allowing easier management of the problem formulation.

  9. Systematization of the mass spectra for speciation of inorganic salts with static secondary ion mass spectrometry.

    PubMed

    Van Ham, Rita; Van Vaeck, Luc; Adams, Freddy C; Adriaens, Annemie

    2004-05-01

    The analytical use of mass spectra from static secondary ion mass spectrometry for the molecular identification of inorganic analytes in real life surface layers and microobjects requires an empirical insight in the signals to be expected from a given compound. A comprehensive database comprising over 50 salts has been assembled to complement prior data on oxides. The present study allows the systematic trends in the relationship between the detected signals and molecular composition of the analyte to be delineated. The mass spectra provide diagnostic information by means of atomic ions, structural fragments, molecular ions, and adduct ions of the analyte neutrals. The prediction of mass spectra from a given analyte must account for the charge state of the ions in the salt, the formation of oxide-type neutrals from oxy salts, and the occurrence of oxidation-reduction processes.

  10. Structural mechanics of 3-D braided preforms for composites. IV - The 4-step tubular braiding

    NASA Technical Reports Server (NTRS)

    Hammad, M.; El-Messery, M.; El-Shiekh, A.

    1991-01-01

    This paper presents the fundamentals of the 4-step 3D tubular braiding process and the structure of the preforms produced. Based on an idealized structural model, geometric relations between the structural parameters of the preform are analytically established. The effects of machine arrangement and operating conditions are discussed. Yarn retraction, yarn surface angle, outside diameter, and yarn volume fraction of the preform in terms of the pitch length, the inner diameter, and the machine arrangement are theoretically predicted and experimentally verified.

  11. Analysis of dynamic properties for a composite robotic arm at intermediate strain rate

    NASA Astrophysics Data System (ADS)

    Lin, Jin-Chein

    The dynamic mechanical properties of any structure are governed by the storage moduli representing the stiffness and loss moduli representing the internal damping capacity. The dynamic mechanical behavior of a graphite epoxy composite laminate in flexural vibration has been investigated. This study presents the results of a theoretical and experimental effort to determine the dynamic properties of multilaminate composites. The effects of fiber orientation and vibration frequency for both unidirectional tape and Kevlar fabric were studied both analytically and experimentally. Measurement of storage and loss moduli were presented for laminated double cantilever beams of fiber reinforced composite with frequency range from 8 to 1230 Hz (up to 5th mode).

  12. The multimodal magnetoelectric effect in the ring-shaped magnetostrictive-piezoelectric bulk composites

    NASA Astrophysics Data System (ADS)

    Radchenko, G. S.; Filippov, D. A.; Laletin, V. M.

    2015-11-01

    The theoretical and experimental investigation of the direct magnetoelectric effect in the ring-type structures made of the bulk magnetostrictive-piezoelectric composites has been presented. The analytical expression for the magnetoelectric voltage coefficient has been obtained using the effective parameters method. The frequency dependence of this parameter is also analyzed. The dependence of the resonant frequency and the amplitude of this effect of the geometrical parameters of the ring for the first and second oscillation modes are presented. The experimental investigation of the direct magnetoelectric effect for the ring-type composite specimens consisting of the nickel ferrite spinel-PZT bulk composite is done. The obtained experimental data are in good agreement with the theoretical predictions.

  13. Experimental and Analytical Evaluation of a Composite Honeycomb Deployable Energy Absorber

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Kellas, Sotiris; Horta, Lucas G.; Annett, Martin S.; Polanco, Michael A.; Littell, Justin D.; Fasanella, Edwin L.

    2011-01-01

    In 2006, the NASA Subsonic Rotary Wing Aeronautics Program sponsored the experimental and analytical evaluation of an externally deployable composite honeycomb structure that is designed to attenuate impact energy during helicopter crashes. The concept, which is designated the Deployable Energy Absorber (DEA), utilizes an expandable Kevlar honeycomb structure to dissipate kinetic energy through crushing. The DEA incorporates a unique flexible hinge design that allows the honeycomb to be packaged and stowed flat until needed for deployment. A variety of deployment options such as linear, radial, and/or hybrid methods can be used. Experimental evaluation of the DEA utilized a building block approach that included material characterization testing of its constituent, Kevlar -129 fabric/epoxy, and flexural testing of single hexagonal cells. In addition, the energy attenuation capabilities of the DEA were demonstrated through multi-cell component dynamic crush tests, and vertical drop tests of a composite fuselage section, retrofitted with DEA blocks, onto concrete, water, and soft soil. During each stage of the DEA evaluation process, finite element models of the test articles were developed and simulations were performed using the explicit, nonlinear transient dynamic finite element code, LS-DYNA. This report documents the results of the experimental evaluation that was conducted to assess the energy absorption capabilities of the DEA.

  14. Stability analysis of magnetized neutron stars - a semi-analytic approach

    NASA Astrophysics Data System (ADS)

    Herbrik, Marlene; Kokkotas, Kostas D.

    2017-04-01

    We implement a semi-analytic approach for stability analysis, addressing the ongoing uncertainty about stability and structure of neutron star magnetic fields. Applying the energy variational principle, a model system is displaced from its equilibrium state. The related energy density variation is set up analytically, whereas its volume integration is carried out numerically. This facilitates the consideration of more realistic neutron star characteristics within the model compared to analytical treatments. At the same time, our method retains the possibility to yield general information about neutron star magnetic field and composition structures that are likely to be stable. In contrast to numerical studies, classes of parametrized systems can be studied at once, finally constraining realistic configurations for interior neutron star magnetic fields. We apply the stability analysis scheme on polytropic and non-barotropic neutron stars with toroidal, poloidal and mixed fields testing their stability in a Newtonian framework. Furthermore, we provide the analytical scheme for dropping the Cowling approximation in an axisymmetric system and investigate its impact. Our results confirm the instability of simple magnetized neutron star models as well as a stabilization tendency in the case of mixed fields and stratification. These findings agree with analytical studies whose spectrum of model systems we extend by lifting former simplifications.

  15. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST). Research on Materials for the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Gangloff, Richard P.; Starke, Edgar A., Jr.; Kelly, Robert G.; Scully, John R.; Stoner, Glenn E.; Wert, John A.

    1997-01-01

    Since 1986, the NASA-Langley Research Center has sponsored the NASA-UVa Light Alloy and Structures Technology (LA2ST) Program at the University of Virginia (UVa). The fundamental objective of the LA2ST program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures. The LA2ST program has aimed to product relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. The scope of the LA2ST Program is broad. Research areas include: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals and Composites, (2) Aerospace Materials Science, (3) Mechanics of materials for Aerospace Structures, and (4) Thermal Gradient Structures. A substantial series of semi-annual progress reports issued since 1987 documents the technical objectives, experimental or analytical procedures, and detailed results of graduate student research in these topical areas.

  16. The Effect of Structural Curvings on the Stress Distribution in a Rigidly Fixed Composite Plate under Forced Vibration

    NASA Astrophysics Data System (ADS)

    Zamanov, A. D.

    2002-01-01

    Based on the exact three-dimensional equations of continuum mechanics and the Akbarov-Guz' continuum theory, the problem on forced vibrations of a rectangular plate made of a composite material with a periodically curved structure is formulated. The plate is rigidly fixed along the Ox 1 axis. Using the semi-analytic method of finite elements, a numerical procedure is elaborated for investigating this problem. The numerical results on the effect of structural curvings on the stress distribution in the plate under forced vibrations are analyzed. It is shown that the disturbances of the stress σ22 in a hinge-supported plate are greater than in a rigidly fixed one. Also, it is found that the structural curvings considerably affect the stress distribution in plates both under static and dynamic loading.

  17. Analysis of Smart Composite Structures Including Debonding

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Aditi; Seeley, Charles E.

    1997-01-01

    Smart composite structures with distributed sensors and actuators have the capability to actively respond to a changing environment while offering significant weight savings and additional passive controllability through ply tailoring. Piezoelectric sensing and actuation of composite laminates is the most promising concept due to the static and dynamic control capabilities. Essential to the implementation of these smart composites are the development of accurate and efficient modeling techniques and experimental validation. This research addresses each of these important topics. A refined higher order theory is developed to model composite structures with surface bonded or embedded piezoelectric transducers. These transducers are used as both sensors and actuators for closed loop control. The theory accurately captures the transverse shear deformation through the thickness of the smart composite laminate while satisfying stress free boundary conditions on the free surfaces. The theory is extended to include the effect of debonding at the actuator-laminate interface. The developed analytical model is implemented using the finite element method utilizing an induced strain approach for computational efficiency. This allows general laminate geometries and boundary conditions to be analyzed. The state space control equations are developed to allow flexibility in the design of the control system. Circuit concepts are also discussed. Static and dynamic results of smart composite structures, obtained using the higher order theory, are correlated with available analytical data. Comparisons, including debonded laminates, are also made with a general purpose finite element code and available experimental data. Overall, very good agreement is observed. Convergence of the finite element implementation of the higher order theory is shown with exact solutions. Additional results demonstrate the utility of the developed theory to study piezoelectric actuation of composite laminates with pre-existing debonding. Significant changes in the modes shapes and reductions in the control authority result due to partially debonded actuators. An experimental investigation addresses practical issues, such as circuit design and implementation, associated with piezoelectric sensing and actuation of composite laminates. Composite specimens with piezoelectric transducers were designed, constructed and tested to validate the higher order theory. These specimens were tested with various stacking sequences, debonding lengths and gains for both open and closed loop cases. Frequency changes of 15% and damping on the order of more than 20% of critical damping, via closed loop control, was achieved. Correlation with the higher order theory is very good. Debonding is shown to adversely affect the open and closed loop frequencies, damping ratios, settling time and control authority.

  18. Development of lightweight aluminum compression panels reinforced by boron-epoxy infiltrated extrusions

    NASA Technical Reports Server (NTRS)

    Roy, P. A.; Mcelman, J. A.; Henshaw, J.

    1973-01-01

    Analytical and experimental studies were performed to evaluate the structural efficiencies afforded by the selective reinforcement of conventional aluminum compression panels with unidirectional boron epoxy composite materials. A unique approach for selective reinforcement was utilized called boron/epoxy infiltration. This technique uses extruded metal sections with preformed hollow voids into which unidirectional boron filaments are drawn and subsequently infiltrated with resin to form an integral part. Simplified analytical models were developed to investigate the behavior of stiffener webs with reinforced flanges. Theoretical results are presented demonstrating the effects of transverse shear, of the reinforcement, flange eccentricity and torsional stiffness in such construction. A series of 55 tests were conducted on boron-infiltrated rods and extruded structural sections.

  19. Novel Multidisciplinary Models Assess the Capabilities of Smart Structures to Manage Vibration, Sound, and Thermal Distortion in Aeropropulsion Components

    NASA Technical Reports Server (NTRS)

    Saravanos, Dimitris A.

    1997-01-01

    The development of aeropropulsion components that incorporate "smart" composite laminates with embedded piezoelectric actuators and sensors is expected to ameliorate critical problems in advanced aircraft engines related to vibration, noise emission, and thermal stability. To facilitate the analytical needs of this effort, the NASA Lewis Research Center has developed mechanics and multidisciplinary computational models to analyze the complicated electromechanical behavior of realistic smart-structure configurations operating in combined mechanical, thermal, and acoustic environments. The models have been developed to accommodate the particular geometries, environments, and technical challenges encountered in advanced aircraft engines, yet their unique analytical features are expected to facilitate application of this new technology in a variety of commercial applications.

  20. Bend-Twist Coupled Carbon-Fiber Laminate Beams: Fundamental Behavior and Applications

    NASA Astrophysics Data System (ADS)

    Babuska, Pavel

    Material-induced bend-twist coupling in laminated composite beams has seen applications in engineered structures for decades, ranging from airplane wings to turbine blades. Symmetric, unbalanced, carbon fiber laminates which exhibit bend-twist coupling can be difficult to characterize and exhibit unintuitive deformation states which may pose challenges to the engineer. In this thesis, bend-twist coupled beams are investigated comprehensively, by experimentation, numerical modeling, and analytical methods. Beams of varying fiber angle and amount of coupling were manufactured and physically tested in both linear and nonlinear static and dynamic settings. Analytical mass and stiffness matrices were derived for the development of a beam element to use in the stiffness matrix analysis method. Additionally, an ABAQUS finite element model was used in conjunction with the analytical methods to predict and further characterize the behavior of the beams. The three regimes, experimental, analytical, and numerical, represent a full-field characterization of bend-twist coupling in composite beams. A notable application of bend-twist coupled composites is for passively adaptive turbine blades whereby the deformation coupling can be built into the blade structure to simultaneously bend and twist, thus pitching the blade into or away from the fluid flow, changing the blade angle of attack. Passive pitch adaptation has been implemented successfully in wind turbine blades, however, for marine turbine blades, the technology is still in the development phase. Bend-twist coupling has been shown numerically to be beneficial to the tidal turbine performance, however little validation has been conducted in the experimental regime. In this thesis, passively adaptive experiment scale tidal turbine blades were designed, analyzed, manufactured, and physically tested, validating the foundational numerical work. It was shown that blade forces and root moments as well as turbine thrust and power coefficients can be manipulated by inclusion of passive pitch adaption by bend-twist coupling.

  1. Advance study of fiber-reinforced self-compacting concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mironova, M., E-mail: mirona@imbm.bas.bg; Ivanova, M., E-mail: magdalena.ivanova@imbm.bas.bg; Naidenov, V., E-mail: valna53@mail.bg

    2015-10-28

    Incorporation in concrete composition of steel macro- and micro – fiber reinforcement with structural function increases the degree of ductility of typically brittle cement-containing composites, which in some cases can replace completely or partially conventional steel reinforcement in the form of rods and meshes. Thus, that can reduce manufacturing, detailing and placement of conventional reinforcement, which enhances productivity and economic efficiency of the building process. In this paper, six fiber-reinforced with different amounts of steel fiber cement-containing self-compacting compositions are investigated. The results of some of their main strength-deformation characteristics are presented. Advance approach for the study of structural andmore » material properties of these type composites is proposed by using the methods of industrial computed tomography. The obtained original tomography results about the microstructure and characteristics of individual structural components make it possible to analyze the effective macro-characteristics of the studied composites. The resulting analytical data are relevant for the purposes of multi-dimensional modeling of these systems. Multifactor structure-mechanical analysis of the obtained with different methods original scientific results is proposed. It is presented a conclusion of the capabilities and effectiveness of complex analysis in the studies to characterize the properties of self-compacting fiber-reinforced concrete.« less

  2. Coupling of wet chemistry methods and spectroscopic data for elucidating composition and structure of purified condensed tannins

    USDA-ARS?s Scientific Manuscript database

    Condensed tannins (CTs) consist of oligomers and polymers of flavan-3-ol subunits varying in hydroxylation patterns, cis- and trans-configuration of C-ring substituents, interflavan bond connections, mean degree of polymerization (mDP), and extent of esterification. Robust analytical methods to dete...

  3. Multi-Scale Modeling of an Integrated 3D Braided Composite with Applications to Helicopter Arm

    NASA Astrophysics Data System (ADS)

    Zhang, Diantang; Chen, Li; Sun, Ying; Zhang, Yifan; Qian, Kun

    2017-10-01

    A study is conducted with the aim of developing multi-scale analytical method for designing the composite helicopter arm with three-dimensional (3D) five-directional braided structure. Based on the analysis of 3D braided microstructure, the multi-scale finite element modeling is developed. Finite element analysis on the load capacity of 3D five-directional braided composites helicopter arm is carried out using the software ABAQUS/Standard. The influences of the braiding angle and loading condition on the stress and strain distribution of the helicopter arm are simulated. The results show that the proposed multi-scale method is capable of accurately predicting the mechanical properties of 3D braided composites, validated by the comparison the stress-strain curves of meso-scale RVCs. Furthermore, it is found that the braiding angle is an important factor affecting the mechanical properties of 3D five-directional braided composite helicopter arm. Based on the optimized structure parameters, the nearly net-shaped composite helicopter arm is fabricated using a novel resin transfer mould (RTM) process.

  4. Passively Damped Laminated Piezoelectric Shell Structures with Integrated Electric Networks

    NASA Technical Reports Server (NTRS)

    Saravanos, Dimitris A.

    1999-01-01

    Multi-field mechanics are presented for curvilinear piezoelectric laminates interfaced with distributed passive electric components. The equations of motion for laminated piezoelectric shell structures with embedded passive electric networks are directly formulated and solved using a finite element methodology. The modal damping and frequencies of the piezoelectric shell are calculated from the poles of the system. Experimental and numerical results are presented for the modal damping and frequency of composite beams with a resistively shunted piezoceramic patch. The modal damping and frequency of plates, cylindrical shells and cylindrical composite blades with piezoelectric-resistor layers are predicted. Both analytical and experimental studies illustrate a unique dependence of modal damping and frequencies on the shunting resistance and show the effect of structural shape and curvature on piezoelectric damping.

  5. Self-actuating and self-diagnosing plastically deforming piezo-composite flapping wing MAV

    NASA Astrophysics Data System (ADS)

    Harish, Ajay B.; Harursampath, Dineshkumar; Mahapatra, D. Roy

    2011-04-01

    In this work, we propose a constitutive model to describe the behavior of Piezoelectric Fiber Reinforced Composite (PFRC) material consisting of elasto-plastic matrix reinforced by strong elastic piezoelectric fibers. Computational efficiency is achieved using analytical solutions for elastic stifness matrix derived from Variational Asymptotic Methods (VAM). This is extended to provide Structural Health Monitoring (SHM) based on plasticity induced degradation of flapping frequency of PFRC. Overall this work provides an effective mathematical tool that can be used for structural self-health monitoring of plasticity induced flapping degradation of PFRC flapping wing MAVs. The developed tool can be re-calibrated to also provide SHM for other forms of failures like fatigue, matrix cracking etc.

  6. Porous Silicon Structures as Optical Gas Sensors

    PubMed Central

    Levitsky, Igor A.

    2015-01-01

    We present a short review of recent progress in the field of optical gas sensors based on porous silicon (PSi) and PSi composites, which are separate from PSi optochemical and biological sensors for a liquid medium. Different periodical and nonperiodical PSi photonic structures (bares, modified by functional groups or infiltrated with sensory polymers) are described for gas sensing with an emphasis on the device specificity, sensitivity and stability to the environment. Special attention is paid to multiparametric sensing and sensor array platforms as effective trends for the improvement of analyte classification and quantification. Mechanisms of gas physical and chemical sorption inside PSi mesopores and pores of PSi functional composites are discussed. PMID:26287199

  7. Evaluation of structural design concepts for an arrow-wing supersonic cruise aircraft

    NASA Technical Reports Server (NTRS)

    Sakata, I. F.; Davis, G. W.

    1977-01-01

    An analytical study was performed to determine the best structural approach for design of primary wing and fuselage structure of a Mach 2.7 arrow wing supersonic cruise aircraft. Concepts were evaluated considering near term start of design. Emphasis was placed on the complex interactions between thermal stress, static aeroelasticity, flutter, fatigue and fail safe design, static and dynamic loads, and the effects of variations in structural arrangements, concepts and materials on these interactions. Results indicate that a hybrid wing structure incorporating low profile convex beaded and honeycomb sandwich surface panels of titanium alloy 6Al-4V were the most efficient. The substructure includes titanium alloy spar caps reinforced with boron polyimide composites. The fuselage shell consists of hat stiffened skin and frame construction of titanium alloy 6Al-4V. A summary of the study effort is presented, and a discussion of the overall logic, design philosophy and interaction between the analytical methods for supersonic cruise aircraft design are included.

  8. Functional adaptation of crustacean exoskeletal elements through structural and compositional diversity: a combined experimental and theoretical study.

    PubMed

    Fabritius, Helge-Otto; Ziegler, Andreas; Friák, Martin; Nikolov, Svetoslav; Huber, Julia; Seidl, Bastian H M; Ruangchai, Sukhum; Alagboso, Francisca I; Karsten, Simone; Lu, Jin; Janus, Anna M; Petrov, Michal; Zhu, Li-Fang; Hemzalová, Pavlína; Hild, Sabine; Raabe, Dierk; Neugebauer, Jörg

    2016-09-09

    The crustacean cuticle is a composite material that covers the whole animal and forms the continuous exoskeleton. Nano-fibers composed of chitin and protein molecules form most of the organic matrix of the cuticle that, at the macroscale, is organized in up to eight hierarchical levels. At least two of them, the exo- and endocuticle, contain a mineral phase of mainly Mg-calcite, amorphous calcium carbonate and phosphate. The high number of hierarchical levels and the compositional diversity provide a high degree of freedom for varying the physical, in particular mechanical, properties of the material. This makes the cuticle a versatile material ideally suited to form a variety of skeletal elements that are adapted to different functions and the eco-physiological strains of individual species. This review presents our recent analytical, experimental and theoretical studies on the cuticle, summarising at which hierarchical levels structure and composition are modified to achieve the required physical properties. We describe our multi-scale hierarchical modeling approach based on the results from these studies, aiming at systematically predicting the structure-composition-property relations of cuticle composites from the molecular level to the macro-scale. This modeling approach provides a tool to facilitate the development of optimized biomimetic materials within a knowledge-based design approach.

  9. Advanced grid-stiffened composite shells for applications in heavy-lift helicopter rotor blade spars

    NASA Astrophysics Data System (ADS)

    Narayanan Nampy, Sreenivas

    Modern rotor blades are constructed using composite materials to exploit their superior structural performance compared to metals. Helicopter rotor blade spars are conventionally designed as monocoque structures. Blades of the proposed Heavy Lift Helicopter are envisioned to be as heavy as 800 lbs when designed using the monocoque spar design. A new and innovative design is proposed to replace the conventional spar designs with light weight grid-stiffened composite shell. Composite stiffened shells have been known to provide excellent strength to weight ratio and damage tolerance with an excellent potential to reduce weight. Conventional stringer--rib stiffened construction is not suitable for rotor blade spars since they are limited in generating high torsion stiffness that is required for aeroelastic stability of the rotor. As a result, off-axis (helical) stiffeners must be provided. This is a new design space where innovative modeling techniques are needed. The structural behavior of grid-stiffened structures under axial, bending, and torsion loads, typically experienced by rotor blades need to be accurately predicted. The overall objective of the present research is to develop and integrate the necessary design analysis tools to conduct a feasibility study in employing grid-stiffened shells for heavy-lift rotor blade spars. Upon evaluating the limitations in state-of-the-art analytical models in predicting the axial, bending, and torsion stiffness coefficients of grid and grid-stiffened structures, a new analytical model was developed. The new analytical model based on the smeared stiffness approach was developed employing the stiffness matrices of the constituent members of the grid structure such as an arch, helical, or straight beam representing circumferential, helical, and longitudinal stiffeners. This analysis has the capability to model various stiffening configurations such as angle-grid, ortho-grid, and general-grid. Analyses were performed using an existing state-of-the-art and newly developed model to predict the torsion, bending, and axial stiffness of grid and grid-stiffened structures with various stiffening configurations. These predictions were compared to results generated using finite element analysis (FEA) to observe excellent correlation (within 6%) for a range of parameters for grid and grid-stiffened structures such as grid density, stiffener angle, and aspect ratio of the stiffener cross-section. Experimental results from cylindrical grid specimen testing were compared with analytical prediction using the new analysis. The new analysis predicted stiffness coefficients with nearly 7% error compared to FEA results. From the parametric studies conducted, it was observed that the previous state-of-the-art analysis on the other hand exhibited errors of the order of 39% for certain designs. Stability evaluations were also conducted by integrating the new analysis with established stability formulations. A design study was conducted to evaluate the potential weight savings of a simple grid-stiffened rotor blade spar structure compared to a baseline monocoque design. Various design constraints such as stiffness, strength, and stability were imposed. A manual search was conducted for design parameters such as stiffener density, stiffener angle, shell laminate, and stiffener aspect ratio that provide lightweight grid-stiffened designs compared to the baseline. It was found that a weight saving of 9.1% compared to the baseline is possible without violating any of the design constraints.

  10. Detection of internal cracks in rubber composite structures using an impact acoustic modality

    NASA Astrophysics Data System (ADS)

    Shen, Q.; Kurfess, T. R.; Omar, M.; Gramling, F.

    2014-01-01

    The objective of this study is to investigate the use of impact acoustic signals to non-intrusively inspect rubber composite structures for the presence of internal cracks, such as those found in an automobile tyre. Theoretical contact dynamic models for both integral and defective rubber structures are developed based on Hertz's impact model, further modified for rubber composite materials. The model generates the prediction of major impact dynamic quantities, namely the maximum impact force, impact duration and contact deformation; such parameters are also theoretically proven to be correlated with the presence of internal cracks. The tyre structures are simplified into cubic rubber blocks, to mitigate complexity for analytical modelling. Both impact force and impact sound signals are measured experimentally, and extraction of useful features from both signals for defect identification is achieved. The impact force produces two direct measurements of theoretical impact dynamic quantities. A good correlation between these experimental discriminators and the theoretical dynamic quantities provide validation for the contact dynamics models. Defect discriminators extracted from the impact sound are dependent on both time- and frequency-domain analyses. All the discriminators are closely connected with the theoretical dynamic quantities and experimentally verified as good indicators of internal cracks in rubber composite structures.

  11. Stimuli-responsive cellulose-based nematogels

    NASA Astrophysics Data System (ADS)

    Liu, Qingkun; Smalyukh, Ivan

    Physical properties of composite materials can be pre-engineered by controlling their structure and composition at the mesoscale. Yet, approaches for achieving this are limited and rarely scalable. We introduce a new breed of self-assembled nematogels formed by an orientationally ordered network of thin cellulose nanofibers infiltrated with a thermotropic nematic fluid. The interplay of orientational ordering within the nematic network and that of the small-molecule liquid crystal around it yields a composite with highly tunable optical properties. By means of combining experimental characterization and analytical modeling, we demonstrate sub-milisecond electric switching of transparency and also facile response of the composite to temperature changes and light illumination. Finally, we discuss a host of potential technological uses of these self-assembled nematogel composites, ranging from smart and privacy windows to novel flexible display modes.

  12. Review on failure prediction techniques of composite single lap joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ab Ghani, A.F., E-mail: ahmadfuad@utem.edu.my; Rivai, Ahmad, E-mail: ahmadrivai@utem.edu.my

    2016-03-29

    Adhesive bonding is the most appropriate joining method in construction of composite structures. The use of reliable design and prediction technique will produce better performance of bonded joints. Several papers from recent papers and journals have been reviewed and synthesized to understand the current state of the art in this area. It is done by studying the most relevant analytical solutions for composite adherends with start of reviewing the most fundamental ones involving beam/plate theory. It is then extended to review single lap joint non linearity and failure prediction and finally on the failure prediction on composite single lap joint.more » The review also encompasses the finite element modelling part as tool to predict the elastic response of composite single lap joint and failure prediction numerically.« less

  13. Analysis of thermal mechanical fatigue in titanium matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. Steven; Mirdamadi, Massoud

    1993-01-01

    Titanium metal matrix composites are being evaluated for structural applications on advanced hypersonic vehicles. These composites are reinforced with ceramic fibers such as silicon carbide, SCS-6. This combination of matrix and fiber results in a high stiffness, high strength composite that has good retention of properties even at elevated temperatures. However, significant thermal stresses are developed within the composite between the fiber and the matrix due to the difference in their respective coefficients of thermal expansion. In addition to the internal stresses that are generated due to thermal cycling, the overall laminate will be subjected to considerable mechanical loads during the thermal cycling. In order to develop life prediction methodology, one must be able to predict the stresses and strains that occur in the composite's constituents during the complex loading. Thus the purpose is to describe such an analytical tool, VISCOPLY.

  14. New on-line separation workflow of microbial metabolites via hyphenation of analytical and preparative comprehensive two-dimensional liquid chromatography.

    PubMed

    Yan, Xia; Wang, Li-Juan; Wu, Zhen; Wu, Yun-Long; Liu, Xiu-Xiu; Chang, Fang-Rong; Fang, Mei-Juan; Qiu, Ying-Kun

    2016-10-15

    Microbial metabolites represent an important source of bioactive natural products, but always exhibit diverse of chemical structures or complicated chemical composition with low active ingredients content. Traditional separation methods rely mainly on off-line combination of open-column chromatography and preparative high performance liquid chromatography (HPLC). However, the multi-step and prolonged separation procedure might lead to exposure to oxygen and structural transformation of metabolites. In the present work, a new two-dimensional separation workflow for fast isolation and analysis of microbial metabolites from Chaetomium globosum SNSHI-5, a cytotoxic fungus derived from extreme environment. The advantage of this analytical comprehensive two-dimensional liquid chromatography (2D-LC) lies on its ability to analyze the composition of the metabolites, and to optimize the separation conditions for the preparative 2D-LC. Furthermore, gram scale preparative 2D-LC separation of the crude fungus extract could be performed on a medium-pressure liquid chromatograph×preparative high-performance liquid chromatography system, under the optimized condition. Interestingly, 12 cytochalasan derivatives, including two new compounds named cytoglobosin Ab (3) and isochaetoglobosin Db (8), were successfully obtained with high purity in a short period of time. The structures of the isolated metabolites were comprehensively characterized by HR ESI-MS and NMR. To be highlighted, this is the first report on the combination of analytical and preparative 2D-LC for the separation of microbial metabolites. The new workflow exhibited apparent advantages in separation efficiency and sample treatment capacity compared with conventional methods. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Scaling effects in the impact response of graphite-epoxy composite beams

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.

    1989-01-01

    In support of crashworthiness studies on composite airframes and substructure, an experimental and analytical study was conducted to characterize size effects in the large deflection response of scale model graphite-epoxy beams subjected to impact. Scale model beams of 1/2, 2/3, 3/4, 5/6, and full scale were constructed of four different laminate stacking sequences including unidirectional, angle ply, cross ply, and quasi-isotropic. The beam specimens were subjected to eccentric axial impact loads which were scaled to provide homologous beam responses. Comparisons of the load and strain time histories between the scale model beams and the prototype should verify the scale law and demonstrate the use of scale model testing for determining impact behavior of composite structures. The nonlinear structural analysis finite element program DYCAST (DYnamic Crash Analysis of STructures) was used to model the beam response. DYCAST analysis predictions of beam strain response are compared to experimental data and the results are presented.

  16. Preliminary design methods for fiber reinforced composite structures employing a personal computer

    NASA Technical Reports Server (NTRS)

    Eastlake, C. N.

    1986-01-01

    The objective of this project was to develop a user-friendly interactive computer program to be used as an analytical tool by structural designers. Its intent was to do preliminary, approximate stress analysis to help select or verify sizing choices for composite structural members. The approach to the project was to provide a subroutine which uses classical lamination theory to predict an effective elastic modulus for a laminate of arbitrary material and ply orientation. This effective elastic modulus can then be used in a family of other subroutines which employ the familiar basic structural analysis methods for isotropic materials. This method is simple and convenient to use but only approximate, as is appropriate for a preliminary design tool which will be subsequently verified by more sophisticated analysis. Additional subroutines have been provided to calculate laminate coefficient of thermal expansion and to calculate ply-by-ply strains within a laminate.

  17. Design/Analysis of the JWST ISIM Bonded Joints for Survivability at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Bartoszyk, Andrew; Johnston, John; Kaprielian, Charles; Kuhn, Jonathan; Kunt, Cengiz; Rodini,Benjamin; Young, Daniel

    1990-01-01

    A major design and analysis challenge for the JWST ISIM structure is thermal survivability of metal/composite bonded joints below the cryogenic temperature of 30K (-405 F). Current bonded joint concepts include internal invar plug fittings, external saddle titanium/invar fittings and composite gusset/clip joints all bonded to M55J/954-6 and T300/954-6 hybrid composite tubes (75mm square). Analytical experience and design work done on metal/composite bonded joints at temperatures below that of liquid nitrogen are limited and important analysis tools, material properties, and failure criteria for composites at cryogenic temperatures are sparse in the literature. Increasing this challenge is the difficulty in testing for these required tools and properties at cryogenic temperatures. To gain confidence in analyzing and designing the ISIM joints, a comprehensive joint development test program has been planned and is currently running. The test program is designed to produce required analytical tools and develop a composite failure criterion for bonded joint strengths at cryogenic temperatures. Finite element analysis is used to design simple test coupons that simulate anticipated stress states in the flight joints; subsequently the test results are used to correlate the analysis technique for the final design of the bonded joints. In this work, we present an overview of the analysis and test methodology, current results, and working joint designs based on developed techniques and properties.

  18. Cryotank Skin/Stringer Bondline Analysis

    NASA Technical Reports Server (NTRS)

    Nguyen, Bao

    1999-01-01

    The need for light weight structure for advanced launch systems have presented great challenges and led to the usage of composites materials in a variety of structural assemblies where joining of two or more components is imperative. Although joints can be mechanically bolted, adhesive bonding has always been a very desirable method for joining the composite components, particularly for the cryotank systems, to achieve maximum structural efficiency. This paper presents the analytical approach resulted from the conceptual development of the DC-Y composite cryotank, conducted under the NASA/Boeing NRA 8-12 Partnership, to support the continued progress of SSTO (Single-Stage-To-Orbit) concepts. One of the critical areas of design was identified as the bonded interface between the skin (tank wall) and stringer. The approach to analyze this critical area will be illustrated through the steps which were used to evaluate the structural integrity of the bondline. Detailed finite element models were developed and numerous coupon test data were also gathered as part of the approach. Future plan is to incorporate this approach as a building block in analyzing bondline for the cryotank systems of RLVs (Reusable Launch Vehicles).

  19. Impact damage and residual strength analysis of composite panels with bonded stiffeners. [for primary aircraft structures

    NASA Technical Reports Server (NTRS)

    Madan, Ram C.; Shuart, Mark J.

    1990-01-01

    Blade-stiffened, compression-loaded cover panels were designed, manufactured, analyzed, and tested. All panels were fabricated from IM6/1808I interleafed graphite-epoxy. An orthotropic blade stiffener and an orthotropic skin were selected to satisfy the design requirements for an advanced aircraft configuration. All specimens were impact damaged prior to testing. Experimental results were obtained for three- and five-stiffener panels. Analytical results described interlaminar forces caused by impact and predicted specimen residual strength. The analytical results compared reasonably with the experimental results for residual strength of the specimens.

  20. Electro-chemical manifestation of nanoplasmonics in fractal media

    NASA Astrophysics Data System (ADS)

    Baskin, Emmanuel; Iomin, Alexander

    2013-06-01

    Electrodynamics of composite materials with fractal geometry is studied in the framework of fractional calculus. This consideration establishes a link between fractal geometry of the media and fractional integrodifferentiation. The photoconductivity in the vicinity of the electrode-electrolyte fractal interface is studied. The methods of fractional calculus are employed to obtain an analytical expression for the giant local enhancement of the optical electric field inside the fractal composite structure at the condition of the surface plasmon excitation. This approach makes it possible to explain experimental data on photoconductivity in the nano-electrochemistry.

  1. Coupled attenuation and multiscale damage model for composite structures

    NASA Astrophysics Data System (ADS)

    Moncada, Albert M.; Chattopadhyay, Aditi; Bednarcyk, Brett; Arnold, Steven M.

    2011-04-01

    Composite materials are widely used in many applications for their high strength, low weight, and tailorability for specific applications. However, the development of robust and reliable methodologies to detect micro level damage in composite structures has been challenging. For composite materials, attenuation of ultrasonic waves propagating through the media can be used to determine damage within the material. Currently available numerical solutions for attenuation induce arbitrary damage, such as fiber-matrix debonding or inclusions, to show variations between healthy and damaged states. This paper addresses this issue by integrating a micromechanics analysis to simulate damage in the form of a fiber-matrix crack and an analytical model for calculating the attenuation of the waves when they pass through the damaged region. The hybrid analysis is validated by comparison with experimental stress-strain curves and piezoelectric sensing results for attenuation measurement. The results showed good agreement between the experimental stress-strain curves and the results from the micromechanics analysis. Wave propagation analysis also showed good correlation between simulation and experiment for the tested frequency range.

  2. Exploring the Micro-Social Geography of Children's Interactions in Preschool: A Long-Term Observational Study and Analysis Using Geographic Information Technologies

    ERIC Educational Resources Information Center

    Torrens, Paul M.; Griffin, William A.

    2013-01-01

    The authors describe an observational and analytic methodology for recording and interpreting dynamic microprocesses that occur during social interaction, making use of space--time data collection techniques, spatial-statistical analysis, and visualization. The scheme has three investigative foci: Structure, Activity Composition, and Clustering.…

  3. Normal Theory Two-Stage ML Estimator When Data Are Missing at the Item Level

    ERIC Educational Resources Information Center

    Savalei, Victoria; Rhemtulla, Mijke

    2017-01-01

    In many modeling contexts, the variables in the model are linear composites of the raw items measured for each participant; for instance, regression and path analysis models rely on scale scores, and structural equation models often use parcels as indicators of latent constructs. Currently, no analytic estimation method exists to appropriately…

  4. Delamination Assessment Tool for Spacecraft Composite Structures

    NASA Astrophysics Data System (ADS)

    Portela, Pedro; Preller, Fabian; Wittke, Henrik; Sinnema, Gerben; Camanho, Pedro; Turon, Albert

    2012-07-01

    Fortunately only few cases are known where failure of spacecraft structures due to undetected damage has resulted in a loss of spacecraft and launcher mission. However, several problems related to damage tolerance and in particular delamination of composite materials have been encountered during structure development of various ESA projects and qualification testing. To avoid such costly failures during development, launch or service of spacecraft, launcher and reusable launch vehicles structures a comprehensive damage tolerance verification approach is needed. In 2009, the European Space Agency (ESA) initiated an activity called “Delamination Assessment Tool” which is led by the Portuguese company HPS Lda and includes academic and industrial partners. The goal of this study is the development of a comprehensive damage tolerance verification approach for launcher and reusable launch vehicles (RLV) structures, addressing analytical and numerical methodologies, material-, subcomponent- and component testing, as well as non-destructive inspection. The study includes a comprehensive review of current industrial damage tolerance practice resulting from ECSS and NASA standards, the development of new Best Practice Guidelines for analysis, test and inspection methods and the validation of these with a real industrial case study. The paper describes the main findings of this activity so far and presents a first iteration of a Damage Tolerance Verification Approach, which includes the introduction of novel analytical and numerical tools at an industrial level. This new approach is being put to the test using real industrial case studies provided by the industrial partners, MT Aerospace, RUAG Space and INVENT GmbH

  5. Finite element modeling of mitral leaflet tissue using a layered shell approximation

    PubMed Central

    Ratcliffe, Mark B.; Guccione, Julius M.

    2012-01-01

    The current study presents a finite element model of mitral leaflet tissue, which incorporates the anisotropic material response and approximates the layered structure. First, continuum mechanics and the theory of layered composites are used to develop an analytical representation of membrane stress in the leaflet material. This is done with an existing anisotropic constitutive law from literature. Then, the concept is implemented in a finite element (FE) model by overlapping and merging two layers of transversely isotropic membrane elements in LS-DYNA, which homogenizes the response. The FE model is then used to simulate various biaxial extension tests and out-of-plane pressure loading. Both the analytical and FE model show good agreement with experimental biaxial extension data, and show good mutual agreement. This confirms that the layered composite approximation presented in the current study is able to capture the exponential stiffening seen in both the circumferential and radial directions of mitral leaflets. PMID:22971896

  6. Optimization of SMA layers in composite structures to enhance damping

    NASA Astrophysics Data System (ADS)

    Haghdoust, P.; Cinquemani, S.; Lecis, N.; Bassani, P.

    2016-04-01

    The performance of lightweight structures can be severely affected by vibration. New design concepts leading to lightweight, slender structural components can increase the vulnerability of the components to failure due to excessive vibration. The intelligent approach to address the problem would be the use of materials which are more capable in dissipating the energy due to their high value of loss factor. Among the different materials available to achieve damping, much attention has been attached to the use of shape memory alloys (SMAs) because of their unique microstructure, leading to good damping capacity. This work describes the design and optimization of a hybrid layered composite structure for the passive suppression of flexural vibrations in slender and light structures. Embedding the SMA layers in composite structure allows to combine different properties: the lightness of the base composite (e.g. fiber glass), the mechanical strength of the insert of metallic material and the relevant damping properties of SMA, in the martensitic phase. In particular, we put our attention on embedding the CuZnAl in the form of thin sheet in a layered composite made by glass fiber reinforced epoxy. By appropriately positioning of the SMA sheets so that they are subjected to the maximum curvature, the damping of the hybrid system can be considerably enhanced. Accordingly analytical method for evaluating the energy dissipation of the thin sheets with different shapes and patterns is developed and is followed by a shape optimization based on genetic algorithm. Eventually different configurations of the hybrid beam structure with different patterns of SMA layer are proposed and compared in the term of damping capacity.

  7. Analytical pyrolysis-based study on intra-skeletal organic matrices from Mediterranean corals.

    PubMed

    Adamiano, Alessio; Goffredo, Stefano; Dubinsky, Zvy; Levy, Oren; Fermani, Simona; Fabbri, Daniele; Falini, Giuseppe

    2014-09-01

    Off-line analytical pyrolysis combined with gas chromatography–mass spectroscopy (GC–MS), directly or after trimethylsilylation, along with infrared spectroscopy and amino acid analysis was applied for the first time to the characterization of the intra-skeletal organic matrix (OM) extracted from four Mediterranean hard corals. They were diverse in growth form and trophic strategy namely Balanophyllia europaea and Leptopsammia pruvoti—solitary corals, only the first having zooxanthelle—and Cladocora caespitosa and Astroides calycularis—colonial corals, only the first with zooxanthelle. Pyrolysis products evolved from OM could be assigned to lipid (e.g. fatty acids, fatty alcohols, monoacylglicerols), protein (e.g. 2,5-diketopiperazines, DKPs) and polysaccharide (e.g. anhydrosugars) precursors. Their quantitative distribution showed for all the species a low protein content with respect to lipids and polysaccharides. A chemometric approach using principal component analysis (PCA) and clustering analysis was applied on OM mean amino acidic compositions. The small compositional diversity across coral species was tentatively related with coral growth form. The presence of N-acetyl glucosamine markers suggested a functional link with other calcified tissues containing chitin. The protein fraction was further investigated using novel DKP markers tentatively identified from analytical pyrolysis of model polar linear dipeptides. Again, no correlation was observed in relation to coral ecology. These analytical results revealed that the bulk structure and composition of OMs among studied corals are similar, as it is the textural organization of the skeleton mineralized units. Therefore, they suggest that coral’s biomineralization is governed by similar macromolecules, and probably mechanisms, independently from their ecology.

  8. A Study on Flexural Properties of Sandwich Structures with Fiber/Metal Laminate Face Sheets

    NASA Astrophysics Data System (ADS)

    Dariushi, S.; Sadighi, M.

    2013-10-01

    In this work, a new family of sandwich structures with fiber metal laminate (FML) faces is investigated. FMLs have benefits over both metal and fiber reinforced composites. To investigate the bending properties of sandwich beams with FML faces and compare with similar sandwich beams with fibrous composite faces, 6 groups of specimen with different layer arrangements were made and tested. Results show that FML faces have good resistance against transverse local loads and minimize stress concentration and local deformations of skin and core under the loading tip. In addition, FML faces have a good integrity even after plateau region of foam cores and prevent from catastrophic failures, which cannot be seen in fibrous composite faces. Also, FML faces are lighter than metal faces and have better connection with foam cores. Sandwich beams with FML faces have a larger elastic region because of simultaneous deformation of top and bottom faces and larger failure strain thanks to good durability of FMLs. A geometrical nonlinear classical theory is used to predict force-deflection behavior. In this model an explicit formula between symmetrical sandwich beams deflections and applied force which can be useful for designers, is derived. Good agreement is obtained between the analytical predictions and experimental results. Also, analytical results are compared with small deformation solution in a parametric study, and the effects of geometric parameters on difference between linear and nonlinear results are discussed.

  9. Development of design and analysis methodology for composite bolted joints

    NASA Astrophysics Data System (ADS)

    Grant, Peter; Sawicki, Adam

    1991-05-01

    This paper summarizes work performed to develop composite joint design methodology for use on rotorcraft primary structure, determine joint characteristics which affect joint bearing and bypass strength, and develop analytical methods for predicting the effects of such characteristics in structural joints. Experimental results have shown that bearing-bypass interaction allowables cannot be defined using a single continuous function due to variance of failure modes for different bearing-bypass ratios. Hole wear effects can be significant at moderate stress levels and should be considered in the development of bearing allowables. A computer program has been developed and has successfully predicted bearing-bypass interaction effects for the (0/+/-45/90) family of laminates using filled hole and unnotched test data.

  10. Analysis of Sensory/Active Piezoelectric Composite Structures in Thermal Environments

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun; Saravanos, Dimitris A.

    1996-01-01

    Although there has been extensive development of analytical methods for modeling the behavior of piezoelectric structures, only a limited amount of research has been performed concerning the implications of thermal effects on both the active and sensory response of smart structures. Thermal effects become important when the piezoelectric structure has to operate in either extremely hot or cold temperature environments. Consequently, the purpose of this paper is to extend the previously developed discrete layer formulation of Saravanos and Heyliger to account for the coupled mechanical, electrical, and thermal response in modern smart composite beams. The mechanics accounts for thermal effects which may arise in the elastic and piezoelectric media at the material level through the constitutive equations. The displacements, electric potentials, and temperatures are introduced as state variables, allowing them to be modeled as variable fields through the laminate thickness. This unified representation leads to an inherent capability to model both the active compensation of thermal distortions in smart structures and the resultant sensory voltage when thermal loads are applied. The corresponding finite element formulation is developed and numerical results demonstrate the ability to model both the active and sensory modes of composite beams with heterogeneous plies with attached piezoelectric layers under thermal loadings.

  11. Ductile-Phase-Toughened Tungsten for Plasma-Facing Materials

    NASA Astrophysics Data System (ADS)

    Cunningham, Kevin Hawkins

    A variety of processing approaches were employed to fabricate ductile-phase-toughened (DPT) tungsten (W) composites. Mechanical testing and analytical modeling were used to guide composite development. This work provides a basis for further development of W composites to be used in structural divertor components of future fusion reactors. W wire was tested in tension, showing significant ductility and strength. Coatings of copper (Cu) or tungsten carbide (WC) were applied to the W wire via electrodeposition and carburization, respectively. Composites were fabricated using spark plasma sintering (SPS) to consolidate W powders together with each type of coated W wire. DPT behavior, e.g. crack arrest and crack bridging, was not observed in three-point bend testing of the sintered composites. A laminate was fabricated by hot pressing W and Cu foils together with W wires, and subsequently tested in tension. This laminate was bonded via hot pressing to thick W plate as a reinforcing layer, and the composite was tested in three-point bending. Crack arrest was observed along with some fiber pullout, but significant transverse cracking in the W plate confounded further fracture toughness analysis. The fracture toughness of thin W plate was measured in three-point bending. W plates were brazed with Cu foils to form a laminate. Crack arrest and crack bridging were observed in three-point bend tests of the laminate, and fracture resistance curves were successfully calculated for this DPT composite. An analytical model of crack bridging was developed using the basis described by Chao in previous work by the group. The model uses the specimen geometry, matrix properties, and the stress-displacement function of a ductile reinforcement ("bridging law") to calculate the fracture resistance curve (R-curve) and load-displacement curve (P-D curve) for any test specimen geometry. The code was also implemented to estimate the bridging law of an arbitrary composite using R-curve data. Finally, a parametric study was performed to quantitatively determine the necessary mechanical properties of useful toughening reinforcements for a DPT W composite. The analytical model has a broad applicability for any DPT material.

  12. Attenuation of stress waves in single and multi-layered structures. [mitigation of elastic and plastic stress waves during spacecraft landing

    NASA Technical Reports Server (NTRS)

    Yang, J. C. S.; Tsui, C. Y.

    1972-01-01

    Analytical and experimental studies were made of the attenuation of the stress waves during passage through single and multilayer structures. The investigation included studies on elastic and plastic stress wave propagation in the composites and those on shock mitigating material characteristics such as dynamic stress-strain relations and energy absorbing properties. The results of the studies are applied to methods for reducing the stresses imposed on a spacecraft during planetary or ocean landings.

  13. The Behaviour of Naturally Debonded Composites Due to Bending Using a Meso-Level Model

    NASA Astrophysics Data System (ADS)

    Lord, C. E.; Rongong, J. A.; Hodzic, A.

    2012-06-01

    Numerical simulations and analytical models are increasingly being sought for the design and behaviour prediction of composite materials. The use of high-performance composite materials is growing in both civilian and defence related applications. With this growth comes the necessity to understand and predict how these new materials will behave under their exposed environments. In this study, the displacement behaviour of naturally debonded composites under out-of-plane bending conditions has been investigated. An analytical approach has been developed to predict the displacement response behaviour. The analytical model supports multi-layered composites with full and partial delaminations. The model can be used to extract bulk effective material properties in which can be represented, later, as an ESL (Equivalent Single Layer). The friction between each of the layers is included in the analytical model and is shown to have distinct behaviour for these types of composites. Acceptable agreement was observed between the model predictions, the ANSYS finite element model, and the experiments.

  14. Recent progress in NASA Langley textile reinforced composites program

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson; Harris, Charles E.; Johnston, Norman J.

    1992-01-01

    The NASA LaRC is conducting and sponsoring research to explore the benefits of textile reinforced composites for civil transport aircraft primary structures. The objective of this program is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structural concepts. In addition to in-house research, the program was recently expanded to include major participation by the aircraft industry and aerospace textile companies. The major program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. The NASA Langley in-house focus is as follows: development of a science-based understanding of resin transfer molding (RTM), development of powder-coated towpreg processes, analysis methodology, and development of a performance database on textile reinforced composites. The focus of the textile industry participation is on development of multidirectional, damage-tolerant preforms, and the aircraft industry participation is in the areas of design, fabrication and testing of textile reinforced composite structural elements and subcomponents. Textile processes such as 3D weaving, 2D and 3D braiding, and knitting/stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighed against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural components are required to establish the full potential of textile reinforced composite materials.

  15. An overview of the NASA textile composites program

    NASA Technical Reports Server (NTRS)

    Dexter, H. Benson

    1993-01-01

    The NASA Langley Research Center is conducting and sponsoring research to explore the benefits of textile reinforced composites for civil transport aircraft primary structures. The objective of this program is to develop and demonstrate the potential of affordable textile reinforced composite materials to meet design properties and damage tolerance requirements of advanced aircraft structures. In addition to in-house research, the program includes major participation by the aircraft industry and aerospace textile companies. The major program elements include development of textile preforms, processing science, mechanics of materials, experimental characterization of materials, and development and evaluation of textile reinforced composite structural elements and subcomponents. The NASA Langley in-house research is focused on science-based understanding of resin transfer molding (RTM), development of powder-coated towpreg processes, analysis methodology, and development of a performance database on textile reinforced composites. The focus of the textile industry participation is on development of multidirectional, damage-tolerant preforms, and the aircraft industry participation is in the areas of innovative design concepts, cost-effective fabrication, and testing of textile reinforced composite structural elements and subcomponents. Textile processes such as 3-D weaving, 2-D and 3-D braiding, and knitting/stitching are being compared with conventional laminated tape processes for improved damage tolerance. Through-the-thickness reinforcements offer significant damage tolerance improvements. However, these gains must be weighed against potential loss in in-plane properties such as strength and stiffness. Analytical trade studies are underway to establish design guidelines for the application of textile material forms to meet specific loading requirements. Fabrication and testing of large structural components are required to establish the full potential of textile reinforced composite materials. The goals of the NASA Langley-sponsored research program are to demonstrate technology readiness with subscale composite components by 1995 and to verify the performance of full-scale composite primary aircraft structural components by 1997. The status of textile reinforced composite structural elements under development by Boeing, Douglas, Lockheed, and Grumman are presented. Included are braided frames and woven/stitched wing and fuselage panels.

  16. Forming of complex-shaped composite tubes using optimized bladder-assisted resin transfer molding

    NASA Astrophysics Data System (ADS)

    Schillfahrt, Christian; Fauster, Ewald; Schledjewski, Ralf

    2018-05-01

    This work addresses the manufacturing of tubular composite structures by means of bladder-assisted resin transfer molding using elastomeric bladders. In order to achieve successful processing of such parts, knowledge of the compaction and impregnation behavior of the textile preform is vital. Hence, efficient analytical models that describe the influencing parameters of the preform compaction and filling stage were developed and verified through practical experiments. A process window describing optimal and critical operating conditions during the injection stage was created by evaluating the impact of the relevant process pressures on filling time. Finally, a cascaded injection procedure was investigated that particularly facilitates the manufacturing of long composite tubes.

  17. Structural health monitoring in composite materials using frequency response methods

    NASA Astrophysics Data System (ADS)

    Kessler, Seth S.; Spearing, S. Mark; Atalla, Mauro J.; Cesnik, Carlos E. S.; Soutis, Constantinos

    2001-08-01

    Cost effective and reliable damage detection is critical for the utilization of composite materials in structural applications. Non-destructive evaluation techniques (e.g. ultrasound, radiography, infra-red imaging) are available for use during standard repair and maintenance cycles, however by comparison to the techniques used for metals these are relatively expensive and time consuming. This paper presents part of an experimental and analytical survey of candidate methods for the detection of damage in composite materials. The experimental results are presented for the application of modal analysis techniques applied to rectangular laminated graphite/epoxy specimens containing representative damage modes, including delamination, transverse ply cracks and through-holes. Changes in natural frequencies and modes were then found using a scanning laser vibrometer, and 2-D finite element models were created for comparison with the experimental results. The models accurately predicted the response of the specimems at low frequencies, but the local excitation and coalescence of higher frequency modes make mode-dependent damage detection difficult and most likely impractical for structural applications. The frequency response method was found to be reliable for detecting even small amounts of damage in a simple composite structure, however the potentially important information about damage type, size, location and orientation were lost using this method since several combinations of these variables can yield identical response signatures.

  18. Behavior of Frame-Stiffened Composite Panels with Damage

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    2013-01-01

    NASA, the Air Force Research Laboratory and The Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept has been developed which offers advantages over traditional metallic structures. In this concept, a stitched carbon-epoxy material system has been developed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners, thereby reducing part count and labor. Stitching and the use of thin skins with rod-stiffeners to move loading away from the morevulnerable outer surface produces a structurally efficient, damage tolerant design. This study focuses on the behavior of PRSEUS panels loaded in the frame direction and subjected to severe damage in the form of a severed central frame in a three-frame panel. Experimental results for a pristine two-frame panel and analytical predictions for pristine two-frame and three-frame panels as well as damaged three-frame panels are described.

  19. An analytical and experimental investigation of sandwich composites subjected to low-velocity impact

    NASA Astrophysics Data System (ADS)

    Anderson, Todd Alan

    1999-12-01

    This study involves an experimental and analytical investigation of low-velocity impact phenomenon in sandwich composite structures. The analytical solution of a three-dimensional finite-geometry multi-layer specially orthotropic panel subjected to static and transient transverse loading cases is presented. The governing equations of the static and dynamic formulations are derived from Reissner's functional and solved by enforcing the continuity of traction and displacement components between adjacent layers. For the dynamic loading case, the governing equations are solved by applying Fourier or Laplace transformation in time. Additionally, the static solution is extended to solve the contact problem between the sandwich laminate and a rigid sphere. An iterative method is employed to determine the sphere's unknown contact area and pressure distribution. A failure criterion is then applied to the sandwich laminate's stress and strain field to predict impact damage. The analytical accuracy of the present study is verified through comparisons with finite element models, other analyses, and through experimentation. Low-velocity impact tests were conducted to characterize the type and extent of the damage observed in a variety of sandwich configurations with graphite/epoxy face sheets and foam or honeycomb cores. Correlation of the residual indentation and cross-sectional views of the impacted specimens provides a criterion for the extent of damage. Quasi-static indentation tests are also performed and show excellent agreement when compared with the analytical predictions. Finally, piezoelectric polyvinylidene fluoride (PVF2) film sensors are found to be effective in detecting low-velocity impact.

  20. Use of Modal Acoustic Emission to Monitor Damage Progression in Carbon Fiber/Epoxy Tows and Implications for Composite Structures

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Saulsberry, Regor L.; Nichols, Charles T.; Wentzel, Daniel J.

    2010-01-01

    This slide presentation reviews the use of Modal Acoustic Emission to monitor damage progression to carbon fiber/epoxy tows. There is a risk for catastrophic failure of composite overwrapped pressure vessels (COPVs) due to burst-before-leak (BBL) stress rupture (SR) failure of carbon-epoxy (C/Ep) COPVs. A lack of quantitative nondestructive evaluation (NDE) is causing problems in current and future spacecraft designs. It is therefore important to develop and demonstrate critical NDE that can be implemented during stages of the design process since the observed rupture can occur with little of no advanced warning. Therefore a program was required to develop quantitative acoustic emission (AE) procedures specific to C/Ep overwraps, but which also have utility for monitoring damage accumulation in composite structure in general, and to lay the groundwork for establishing critical thresholds for accumulated damage in composite structures, such as COPVs, so that precautionary or preemptive engineering steps can be implemented to minimize of obviate the risk of catastrophic failure. A computed Felicity Ratio (FR) coupled with fast Fourier Transform (FFT) frequency analysis shows promise as an analytical pass/fail criterion. The FR analysis and waveform and FFT analysis are reviewed

  1. Nanocomposite polymer structures for optical sensors of hydrogen sulfide

    NASA Astrophysics Data System (ADS)

    Sergeev, A. A.; Mironenko, A. Yu.; Nazirov, A. E.; Leonov, A. A.; Voznesenskii, S. S.

    2017-08-01

    Composite coatings based on gold and silver nanoparticles reduced in situ in the film of chitosan polysaccharide are studied. In the presence of hydrogen sulfide, the maximum of plasmon resonance of the nanoparticles that is proportional to the analyte concentration decreases. The detection limits for hydrogen sulfide are 0.1 and 5 ppm for the chitosan/silver and chitosan/gold nanocomposites, respectively.

  2. Detailed Chemical Composition of Condensed Tannins via Quantitative (31)P NMR and HSQC Analyses: Acacia catechu, Schinopsis balansae, and Acacia mearnsii.

    PubMed

    Crestini, Claudia; Lange, Heiko; Bianchetti, Giulia

    2016-09-23

    The chemical composition of Acacia catechu, Schinopsis balansae, and Acacia mearnsii proanthocyanidins has been determined using a novel analytical approach that rests on the concerted use of quantitative (31)P NMR and two-dimensional heteronuclear NMR spectroscopy. This approach has offered significant detailed information regarding the structure and purity of these complex and often elusive proanthocyanidins. More specifically, rings A, B, and C of their flavan-3-ol units show well-defined and resolved absorbance regions in both the quantitative (31)P NMR and HSQC spectra. By integrating each of these regions in the (31)P NMR spectra, it is possible to identify the oxygenation patterns of the flavan-3-ol units. At the same time it is possible to acquire a fingerprint of the proanthocyanidin sample and evaluate its purity via the HSQC information. This analytical approach is suitable for both the purified natural product proanthocyanidins and their commercial analogues. Overall, this effort demonstrates the power of the concerted use of these two NMR techniques for the structural elucidation of natural products containing labile hydroxy protons and a carbon framework that can be traced out via HSQC.

  3. A Study of metabolic transformation of organic and inorganic components in PM2.5 and PM10, South Korea

    NASA Astrophysics Data System (ADS)

    Kim, J.; Yoon, H.; Lee, M.

    2012-12-01

    The important factors of atmospheric particle matter (PM) are size, concentration, composition and toxicity which can considerably affect the possible human health problem, especially respiratory diseases, visibility reduction and climate change. PM2.5 and PM10 are complex mixture of ammonium sulfate, ammonium nitrate, organic carbon, inorganic carbon and inorganic constituents. Recently, most researches of source attribution and assessments of the relationship between health effects and particle concentrations have not taken advantage of the development in analytical tools measuring the detailed molecular structure and microstructure of particles and of the knowledge of particle formation mechanisms in combustion system. This study will combine variety analytical techniques that can provide structural and compositional information to determine the correlation between sources of hazardous material and physicochemical properties in aerosol particle. Inorganic metal can be rapidly quantifying to filter base using ED-XRF (Energy-dispersive X-ray fluorescence). Speciation and quantification of water soluble components applied HPLC-ICP-MS and LC-MS NMR (nuclear magnetic resonance). Afterward, we investigate metabolic transformations of atmospheric particle matter also using FE-TEM (Field Emission Transmission Electron Microscopy).

  4. Study of Composite Plate Damages Using Embedded PZT Sensors with Various Center Frequency

    NASA Astrophysics Data System (ADS)

    Kang, Kyoung-Tak; Chun, Heoung-Jae; Son, Ju-Hyun; Byun, Joon-Hyung; Um, Moon-Kwang; Lee, Sang-Kwan

    This study presents part of an experimental and analytical survey of candidate methods for damage detection of composite structural. Embedded piezoceramic (PZT) sensors were excited with the high power ultrasonic wave generator generating a propagation of stress wave along the composite plate. The same embedded piezoceramic (PZT) sensors are used as receivers for acquiring stress signals. The effects of center frequency of embedded sensor were evaluated for the damage identification capability with known localized defects. The study was carried out to assess damage in composite plate by fusing information from multiple sensing paths of the embedded network. It was based on the Hilbert transform, signal correlation and probabilistic searching. The obtained results show that satisfactory detection of defects could be achieved by proposed method.

  5. Dynamic Impact Testing and Model Development in Support of NASA's Advanced Composites Program

    NASA Technical Reports Server (NTRS)

    Melis, Matthew E.; Pereira, J. Michael; Goldberg, Robert; Rassaian, Mostafa

    2018-01-01

    The purpose of this paper is to provide an executive overview of the HEDI effort for NASA's Advanced Composites Program and establish the foundation for the remaining papers to follow in the 2018 SciTech special session NASA ACC High Energy Dynamic Impact. The paper summarizes the work done for the Advanced Composites Program to advance our understanding of the behavior of composite materials during high energy impact events and to advance the ability of analytical tools to provide predictive simulations. The experimental program carried out at GRC is summarized and a status on the current development state for MAT213 will be provided. Future work will be discussed as the HEDI effort transitions from fundamental analysis and testing to investigating sub-component structural concept response to impact events.

  6. Use of microfasteners to produce damage tolerant composite structures

    PubMed Central

    Hallett, Stephen R.

    2016-01-01

    The paper concerns the mechanical performance of continuous fibre/thermosetting polymer matrix composites reinforced in the through-thickness direction with fibrous or metallic rods or threads in order to mitigate against low delamination resistance. Specific illustrations of the effects of microfasteners in reducing delamination crack growth are made for Z-pinned and tufted composites. Response to loading in such ‘structured materials’ is subject to multiple parameters defining their in-plane and out-of-plane properties. Single microfastener mechanical tests are well suited to establish the crack bridging laws under a range of loading modes, from simple delamination crack opening to shear, and provide the basis for predicting the corresponding response of microfastener arrays, within a given material environment. The fundamental experiments on microfasteners can be used to derive analytical expressions to describe the crack bridging behaviour in a general sense, to cover all possible loadings. These expressions can be built into cohesive element constitutive laws in a finite-element framework for modelling the effects of microfastener arrays on the out-of-plane mechanical response of reinforced structural elements, including the effects of known manufacturing imperfections. Such predictive behaviour can then be used to assess structural integrity under complex loading, as part of the component design process. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242299

  7. 21 CFR 165.110 - Bottled water.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., when a composite of analytical units of equal volume from a sample is examined by the method described...)(A) Bottled water shall, when a composite of analytical units of equal volume from a sample is..., and Cosmetic Act, the Food and Drug Administration has determined that bottled water, when a composite...

  8. Optimal design of a thermally stable composite optical bench

    NASA Technical Reports Server (NTRS)

    Gray, C. E., Jr.

    1985-01-01

    The Lidar Atmospheric Sensing Experiment will be performed aboard an ER-2 aircraft; the lidar system used will be mounted on a lightweight, thermally stable graphite/epoxy optical bench whose design is presently subjected to analytical study and experimental validation. Attention is given to analytical methods for the selection of such expected laminate properties as the thermal expansion coefficient, the apparent in-plane moduli, and ultimate strength. For a symmetric laminate in which one of the lamina angles remains variable, an optimal lamina angle is selected to produce a design laminate with a near-zero coefficient of thermal expansion. Finite elements are used to model the structural concept of the design, with a view to the optical bench's thermal structural response as well as the determination of the degree of success in meeting the experiment's alignment tolerances.

  9. Multiscale structural gradients enhance the biomechanical functionality of the spider fang

    PubMed Central

    Bar-On, Benny; Barth, Friedrich G.; Fratzl, Peter; Politi, Yael

    2014-01-01

    The spider fang is a natural injection needle, hierarchically built from a complex composite material comprising multiscale architectural gradients. Considering its biomechanical function, the spider fang has to sustain significant mechanical loads. Here we apply experiment-based structural modelling of the fang, followed by analytical mechanical description and Finite-Element simulations, the results of which indicate that the naturally evolved fang architecture results in highly adapted effective structural stiffness and damage resilience. The analysis methods and physical insights of this work are potentially important for investigating and understanding the architecture and structural motifs of sharp-edge biological elements such as stingers, teeth, claws and more. PMID:24866935

  10. Design/analysis of the JWST ISIM bonded joints for survivability at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Bartoszyk, Andrew; Johnston, John; Kaprielian, Charles; Kuhn, Jonathan; Kunt, Cengiz; Rodini, Benjamin; Young, Daniel

    2005-08-01

    A major design and analysis challenge for the JWST ISIM structure is thermal survivability of metal/composite adhesively bonded joints at the cryogenic temperature of 30K (-405°F). Current bonded joint concepts include internal invar plug fittings, external saddle titanium/invar fittings and composite gusset/clip joints all bonded to hybrid composite tubes (75mm square) made with M55J/954-6 and T300/954-6 prepregs. Analytical experience and design work done on metal/composite bonded joints at temperatures below that of liquid nitrogen are limited and important analysis tools, material properties, and failure criteria for composites at cryogenic temperatures are sparse in the literature. Increasing this challenge is the difficulty in testing for these required tools and properties at cryogenic temperatures. To gain confidence in analyzing and designing the ISIM joints, a comprehensive joint development test program has been planned and is currently running. The test program is designed to produce required analytical tools and develop a composite failure criterion for bonded joint strengths at cryogenic temperatures. Finite element analysis is used to design simple test coupons that simulate anticipated stress states in the flight joints; subsequently, the test results are used to correlate the analysis technique for the final design of the bonded joints. In this work, we present an overview of the analysis and test methodology, current results, and working joint designs based on developed techniques and properties.

  11. An analytical and experimental investigation of the response of the curved, composite frame/skin specimens

    NASA Technical Reports Server (NTRS)

    Moas, Eduardo; Boitnott, Richard L.; Griffin, O. Hayden, Jr.

    1994-01-01

    Six-foot diameter, semicircular graphite/epoxy specimens representative of generic aircraft frames were loaded quasi-statistically to determine their load response and failure mechanisms for large deflections that occur in airplanes crashes. These frame/skin specimens consisted of a cylindrical skin section co-cured with a semicircular I-frame. The skin provided the necessary lateral stiffness to keep deformations in the plane of the frame in order to realistically represent deformations as they occur in actual fuselage structures. Various frame laminate stacking sequences and geometries were evaluated by statically loading the specimen until multiple failures occurred. Two analytical methods were compared for modeling the frame/skin specimens: a two-dimensional shell finite element analysis and a one-dimensional, closed-form, curved beam solution derived using an energy method. Flange effectivities were included in the beam analysis to account for the curling phenomenon that occurs in thin flanges of curved beams. Good correlation was obtained between experimental results and the analytical predictions of the linear response of the frames prior to the initial failure. The specimens were found to be useful for evaluating composite frame designs.

  12. Modeling and control of flexible space platforms with articulated payloads

    NASA Technical Reports Server (NTRS)

    Graves, Philip C.; Joshi, Suresh M.

    1989-01-01

    The first steps in developing a methodology for spacecraft control-structure interaction (CSI) optimization are identification and classification of anticipated missions, and the development of tractable mathematical models in each mission class. A mathematical model of a generic large flexible space platform (LFSP) with multiple independently pointed rigid payloads is considered. The objective is not to develop a general purpose numerical simulation, but rather to develop an analytically tractable mathematical model of such composite systems. The equations of motion for a single payload case are derived, and are linearized about zero steady-state. The resulting model is then extended to include multiple rigid payloads, yielding the desired analytical form. The mathematical models developed clearly show the internal inertial/elastic couplings, and are therefore suitable for analytical and numerical studies. A simple decentralized control law is proposed for fine pointing the payloads and LFSP attitude control, and simulation results are presented for an example problem. The decentralized controller is shown to be adequate for the example problem chosen, but does not, in general, guarantee stability. A centralized dissipative controller is then proposed, requiring a symmetric form of the composite system equations. Such a controller guarantees robust closed loop stability despite unmodeled elastic dynamics and parameter uncertainties.

  13. Response of Composite Fuselage Sandwich Side Panels Subjected to Internal Pressure and Axial Tension

    NASA Technical Reports Server (NTRS)

    Rouse, Marshall; Ambur, Damodar R.; Dopker, Bernard; Shah, Bharat

    1998-01-01

    The results from an experimental and analytical study of two composite sandwich fuselage side panels for a transport aircraft are presented. Each panel has two window cutouts and three frames and utilizes a distinctly different structural concept. These panels have been evaluated with internal pressure loads that generate biaxial tension loading conditions. Design limit load and design ultimate load tests have been performed on both panels. One of the sandwich panels was tested with the middle frame removed to demonstrate the suitability of this two-frame design for supporting the prescribed biaxial loading conditions with twice the initial frame spacing of 20 inches. A damage tolerance study was conducted on the two-frame panel by cutting a notch in the panel that originates at the edge of a cutout and extends in the panel hoop direction through the window-belt area. This panel with a notch was tested in a combined-load condition to demonstrate the structural damage tolerance at the design limit load condition. Both the sandwich panel designs successfully satisfied all desired load requirements in the experimental part of the study, and experimental results from the two-frame panel with and without damage are fully explained by the analytical results. The results of this study suggest that there is potential for using sandwich structural concepts with greater than the usual 20-in. wide frame spacing to further reduce aircraft fuselage structural weight.

  14. Vibration Analysis of Composite Laminate Plate Excited by Piezoelectric Actuators

    PubMed Central

    Her, Shiuh-Chuan; Lin, Chi-Sheng

    2013-01-01

    Piezoelectric materials can be used as actuators for the active vibration control of smart structural systems. In this work, piezoelectric patches are surface bonded to a composite laminate plate and used as vibration actuators. A static analysis based on the piezoelectricity and elasticity is conducted to evaluate the loads induced by the piezoelectric actuators to the host structure. The loads are then employed to develop the vibration response of a simply supported laminate rectangular plate excited by piezoelectric patches subjected to time harmonic voltages. An analytical solution of the vibration response of a simply supported laminate rectangular plate under time harmonic electrical loading is obtained and compared with finite element results to validate the present approach. The effects of location and exciting frequency of piezoelectric actuators on the vibration response of the laminate plate are investigated through a parametric study. Numerical results show that modes can be selectively excited, leading to structural vibration control. PMID:23529121

  15. Sulphured Polyacrylonitrile Composite Analysed by in operando UV-Visible Spectroscopy and 4-electrode Swagelok Cell.

    PubMed

    Dominko, Robert; Patel, Manu U M; Bele, Marjan; Pejovnik, Stane

    2016-01-01

    The electrochemical characteristics of sulfurized polyacrylonitrile composite (PAN/S) cathodes were compared with the commonly used carbon/S-based composite material. The difference in the working mechanism of these composites was examined. Analytical investigations were performed on both kinds of cathode electrode composites by using two reliable analytical techniques, in-situ UV-Visible spectroscopy and a four-electrode Swagelok cell. This study differentiates the working mechanisms of PAN/S composites from conventional elemental sulphur/carbon composite and also sheds light on factors that could be responsible for capacity fading in the case of PAN/S composites.

  16. Mechanical and analytical screening of braided composites for transport fuselage applications

    NASA Technical Reports Server (NTRS)

    Fedro, Mark J.; Gunther, Christian; Ko, Frank K.

    1991-01-01

    The mechanics of materials progress in support of the goal of understanding the application of braided composites in a transport aircraft fuselage are summarized. Composites consisting of both 2-D and 3-D braid patterns are investigated. Both consolidation of commingled graphite/PEEK and resin transfer molding of graphite-epoxy braided composite processes are studied. Mechanical tests were used to examine unnotched tension, open hole tension, compression, compression after impact, in-plane shear, out-of-plane tension, bearing, and crippling. Analytical methods are also developed and applied to predict the stiffness and strengths of test specimens. A preliminary study using the test data and analytical results is performed to assess the applicability of braided composites to a commercial aircraft fuselage.

  17. Sol-Gel Matrices For Direct Colorimetric Detection Of Analytes

    DOEpatents

    Charych, Deborah H.; Sasaki, Darryl; Yamanaka, Stacey

    2002-11-26

    The present invention relates to methods and compositions for the direct detection of analytes using color changes that occur in immobilized biopolymeric material in response to selective binding of analytes to their surface. In particular, the present invention provides methods and compositions related to the encapsulation of biopolymeric material into metal oxide glass using the sol-gel method.

  18. Sol-gel matrices for direct colorimetric detection of analytes

    DOEpatents

    Charych, Deborah H.; Sasaki, Darryl; Yamanaka, Stacey

    2000-01-01

    The present invention relates to methods and compositions for the direct detection of analytes using color changes that occur in immobilized biopolymeric material in response to selective binding of analytes to their surface. In particular, the present invention provides methods and compositions related to the encapsulation of biopolymeric material into metal oxide glass using the sol-gel method.

  19. Heuristic Reasoning in Chemistry: Making decisions about acid strength

    NASA Astrophysics Data System (ADS)

    McClary, LaKeisha; Talanquer, Vicente

    2011-07-01

    The characterization of students' reasoning strategies is of central importance in the development of instructional strategies that foster meaningful learning. In particular, the identification of shortcut reasoning procedures (heuristics) used by students to reduce cognitive load can help us devise strategies to facilitate the development of more analytical ways of thinking. The central goal of this qualitative study was thus to investigate heuristic reasoning as used by organic chemistry college students, focusing our attention on their ability to predict the relative acid strength of chemical compounds represented using explicit composition and structural features (i.e., structural formulas). Our results indicated that many study participants relied heavily on one or more of the following heuristics to make most of their decisions: reduction, representativeness, and lexicographic. Despite having visual access to reach structural information about the substances included in each ranking task, many students relied on isolated composition features to make their decisions. However, the specific characteristics of the tasks seemed to trigger heuristic reasoning in different ways. Although the use of heuristics allowed students to simplify some components of the ranking tasks and generate correct responses, it often led them astray. Very few study participants predicted the correct trends based on scientifically acceptable arguments. Our results suggest the need for instructional interventions that explicitly develop college chemistry students' abilities to monitor their thinking and evaluate the effectiveness of analytical versus heuristic reasoning strategies in different contexts.

  20. Damping of composite plate for space structures: Prediction and measurement methods

    NASA Astrophysics Data System (ADS)

    Marchetti, M.; Morganti, F.; Mucciante, L.; Bruno, C.

    Composite materials are extensively used for space structures: the sandwich and laminate panels are now part of the current manufacturing technology for spacecraft and antenna reflectors. Depending on the applications, some mechanical parameters are considered driving in the design, in order to satisfy the required structural performance. Among them, the knowledge of the damping is necessary to evaluate the dynamic behaviour of the structures. That particularly applies to the composite structures for space applications; for which an optimization of their mass versus their stiffness is attempted to take into account both launch and on station environments. The prediction of the damping factors of composites is rather difficult since it depends not only on the nature of the materials, which are in general neither homogeneous nor isotropic, but also on the kind of structures (i.e. size and shape) and on the manufacturing methodology, due to the strong non-linearity in the material behaviour. All the above is also impacted by the tendency of these materials to microcracking under stress. This phenomenon, mainly correlated to the cyclic loads introduced by thermal ageing, produces a variation of damping with time. For these reasons an evaluation of the damping characteristics of this kind of structure has been generally obtained by tests on full scale hardware or specimens with suitable dimension, being any prediction method rather difficult to apply. The purpose of this work is to study the damping behaviour of Gr/Ep, Kevlar/Ep and Glass Fiber/Ep composites which are extensively used in space structures, starting from test results on beam and plate shaped specimens. Experimental evidence will be fitted in an analytical and numerical study, the purpose of which is to correlate the energy dissipated in the composite to the lamination typology. Using a Finite Element Method, the amount of energy dissipated for each mode will be also evaluated, providing the correlations with the test results obtained with a modal analyzer.

  1. Active shape control of composite blades using shape memory actuation

    NASA Astrophysics Data System (ADS)

    Chandra, Ramesh

    2001-10-01

    This paper presents active shape control of composite beams using shape memory actuation. Shape memory alloy (SMA) bender elements trained to memorize bending shape were used to induce bending and twisting deformations in composite beams. Bending-torsion coupled graphite-epoxy and kevlar-epoxy composite beams with Teflon inserts were manufactured using an autoclave-molding technique. Teflon inserts were replaced by trained SMA bender elements. Composite beams with SMA bender elements were activated by heating these using electrical resistive heating and the bending and twisting deformations of the beams were measured using a mirror and laser system. The structural response of the composite beams activated by SMA elements was predicted using the Vlasov theory, where these beams were modeled as open sections with many branches. The bending moment induced by a SMA bender element was calculated from its experimentally determined memorized shape. The bending, torsion, and bending-torsion coupling stiffness coefficients of these beams were obtained using analytical formulation of an open-section composite beam with many branches (Vlasov theory).

  2. Graphite fiber textile preform/copper matrix composites

    NASA Technical Reports Server (NTRS)

    Gilatovs, G. J.; Lee, Bruce; Bass, Lowell

    1995-01-01

    Graphite fiber reinforced/copper matrix composites have sufficiently high thermal conduction to make them candidate materials for critical heat transmitting and rejection components. The term textile composites arises because the preform is braided from fiber tows, conferring three-dimensional reinforcement and near net shape. The principal issues investigated in the past two years have centered on developing methods to characterize the preform and fabricated composite and on braidability. It is necessary to have an analytic structural description for both processing and final property modeling. The structure of the true 3-D braids used is complex and has required considerable effort to model. A structural mapping has been developed as a foundation for analytic models for thermal conduction and mechanical properties. The conductivity has contributions both from the copper and the reinforcement. The latter is accomplished by graphitization of the fibers, the higher the amount of graphitization the greater the conduction. This is accompanied by an increase in the fiber modulus, which is desirable from a stiffness point of view but decreases the braidability; the highest conductivity fibers are simply too brittle to be braided. Considerable effort has been expended on determining the optimal braidability--conductivity region. While a number of preforms have been fabricated, one other complication intervenes; graphite and copper are immiscible, resulting in a poor mechanical bond and difficulties in infiltration by molten copper. The approach taken is to utilize a proprietary fiber coating process developed by TRA, of Salt Lake City, Utah, which forms an itermediary bond. A number of preforms have been fabricated from a variety of fiber types and two sets of these have been infiltrated with OFHC copper, one with the TRA coating and one without. Mechanical tests have been performed using a small-scale specimen method and show the coated specimens to have superior mechanical properties. Final batches of preforms, including a finned, near net shape tube, are being fabricated and will be infiltrated before summer.

  3. Unsettling Binary Thinking: Tracing an Analytic Trajectory of the Place of Indigenous Musical Knowledge in the Academy

    ERIC Educational Resources Information Center

    Hess, Juliet

    2015-01-01

    Six years ago, I wrote a composition about the state of indigenous music in the academy with an accompanying research paper. In this work, I attempted to trace the presence of indigenous music in the institution both musically and through an anti-colonial lens. The writing was structured around three musical snapshots entitled Subjugation,…

  4. Profiling defect depth in composite materials using thermal imaging NDE

    NASA Astrophysics Data System (ADS)

    Obeidat, Omar; Yu, Qiuye; Han, Xiaoyan

    2018-04-01

    Sonic Infrared (IR) NDE, is a relatively new NDE technology; it has been demonstrated as a reliable and sensitive method to detect defects. SIR uses ultrasonic excitation with IR imaging to detect defects and flaws in the structures being inspected. An IR camera captures infrared radiation from the target for a period of time covering the ultrasound pulse. This period of time may be much longer than the pulse depending on the defect depth and the thermal properties of the materials. With the increasing deployment of composites in modern aerospace and automobile structures, fast, wide-area and reliable NDE methods are necessary. Impact damage is one of the major concerns in modern composites. Damage can occur at a certain depth without any visual indication on the surface. Defect depth information can influence maintenance decisions. Depth profiling relies on the time delays in the captured image sequence. We'll present our work on the defect depth profiling by using the temporal information of IR images. An analytical model is introduced to describe heat diffusion from subsurface defects in composite materials. Depth profiling using peak time is introduced as well.

  5. Numerical Evaluation of Dynamic Response for Flexible Composite Structures under Slamming Impact for Naval Applications

    NASA Astrophysics Data System (ADS)

    Hassoon, O. H.; Tarfaoui, M.; El Moumen, A.; Benyahia, H.; Nachtane, M.

    2018-06-01

    The deformable composite structures subjected to water-entry impact can be caused a phenomenon called hydroelastic effect, which can modified the fluid flow and estimated hydrodynamic loads comparing with rigid body. This is considered very important for ship design engineers to predict the global and the local hydrodynamic loads. This paper presents a numerical model to simulate the slamming water impact of flexible composite panels using an explicit finite element method. In order to better describe the hydroelastic influence and mechanical properties, composite materials panels with different stiffness and under different impact velocities with deadrise angle of 100 have been studied. In the other hand, the inertia effect was observed in the early stage of the impact that relative to the loading rate. Simulation results have been indicated that the lower stiffness panel has a higher hydroelastic effect and becomes more important when decreasing of the deadrise angle and increasing the impact velocity. Finally, the simulation results were compared with the experimental data and the analytical approaches of the rigid body to describe the behavior of the hydroelastic influence.

  6. Numerical Evaluation of Dynamic Response for Flexible Composite Structures under Slamming Impact for Naval Applications

    NASA Astrophysics Data System (ADS)

    Hassoon, O. H.; Tarfaoui, M.; El Moumen, A.; Benyahia, H.; Nachtane, M.

    2017-10-01

    The deformable composite structures subjected to water-entry impact can be caused a phenomenon called hydroelastic effect, which can modified the fluid flow and estimated hydrodynamic loads comparing with rigid body. This is considered very important for ship design engineers to predict the global and the local hydrodynamic loads. This paper presents a numerical model to simulate the slamming water impact of flexible composite panels using an explicit finite element method. In order to better describe the hydroelastic influence and mechanical properties, composite materials panels with different stiffness and under different impact velocities with deadrise angle of 100 have been studied. In the other hand, the inertia effect was observed in the early stage of the impact that relative to the loading rate. Simulation results have been indicated that the lower stiffness panel has a higher hydroelastic effect and becomes more important when decreasing of the deadrise angle and increasing the impact velocity. Finally, the simulation results were compared with the experimental data and the analytical approaches of the rigid body to describe the behavior of the hydroelastic influence.

  7. A review of the analytical simulation of aircraft crash dynamics

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Carden, Huey D.; Boitnott, Richard L.; Hayduk, Robert J.

    1990-01-01

    A large number of full scale tests of general aviation aircraft, helicopters, and one unique air-to-ground controlled impact of a transport aircraft were performed. Additionally, research was also conducted on seat dynamic performance, load-limiting seats, load limiting subfloor designs, and emergency-locator-transmitters (ELTs). Computer programs were developed to provide designers with methods for predicting accelerations, velocities, and displacements of collapsing structure and for estimating the human response to crash loads. The results of full scale aircraft and component tests were used to verify and guide the development of analytical simulation tools and to demonstrate impact load attenuating concepts. Analytical simulation of metal and composite aircraft crash dynamics are addressed. Finite element models are examined to determine their degree of corroboration by experimental data and to reveal deficiencies requiring further development.

  8. Compositional Analysis of Lignocellulosic Feedstocks. 1. Review and Description of Methods

    PubMed Central

    2010-01-01

    As interest in lignocellulosic biomass feedstocks for conversion into transportation fuels grows, the summative compositional analysis of biomass, or plant-derived material, becomes ever more important. The sulfuric acid hydrolysis of biomass has been used to measure lignin and structural carbohydrate content for more than 100 years. Researchers have applied these methods to measure the lignin and structural carbohydrate contents of woody materials, estimate the nutritional value of animal feed, analyze the dietary fiber content of human food, compare potential biofuels feedstocks, and measure the efficiency of biomass-to-biofuels processes. The purpose of this paper is to review the history and lineage of biomass compositional analysis methods based on a sulfuric acid hydrolysis. These methods have become the de facto procedure for biomass compositional analysis. The paper traces changes to the biomass compositional analysis methods through time to the biomass methods currently used at the National Renewable Energy Laboratory (NREL). The current suite of laboratory analytical procedures (LAPs) offered by NREL is described, including an overview of the procedures and methodologies and some common pitfalls. Suggestions are made for continuing improvement to the suite of analyses. PMID:20669951

  9. Three new natural compounds from the root bark essential oil from Xylopia aethiopica.

    PubMed

    Yapi, Thierry Acafou; Boti, Jean Brice; Attioua, Barthelemy Koffi; Ahibo, Antoine Coffy; Bighelli, Ange; Casanova, Joseph; Tomi, Félix

    2012-01-01

    In the course of on-going work on the characterisation of aromatic plants from the Ivory Coast we investigated the composition of the root oil from Xylopia aethiopica. The aim of this work was to investigate the chemical composition of X. aethiopica root oil and elucidate the structure of two new compounds. Analysis of the essential oil was carried out using a combination of chromatographic (CC, GC with retention indices) and spectroscopic techniques (MS, (13)C-NMR, 2D-NMR). Twenty seven components, accounting for 95.6% of the whole composition, were identified including various compounds for which spectroscopic data were absent on commercial computerised MS libraries. Three compounds are reported for the first time as natural compounds and the structure of two new compounds, 4,4-dimethyl-2-vinylcyclohexene and endo-5-methoxy-3-patchoulene, has been elucidated using extensive two-dimensional NMR spectroscopy. The composition of X. aethiopica root oil is dominated by two dimethylvinylcyclohexene isomers. It differs drastically from the composition of leaf and fruit oils of the same plant. The combination of analytical techniques appeared crucial for a fruitful analysis. Copyright © 2012 John Wiley & Sons, Ltd.

  10. Analytical test results for archived core composite samples from tanks 241-TY-101 and 241-TY-103

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, M.A.

    1993-07-16

    This report describes the analytical tests performed on archived core composite samples form a 1.085 sampling of the 241-TY-101 (101-TY) and 241-TY-103 (103-TY) single shell waste tanks. Both tanks are suspected of containing quantities of ferrocyanide compounds, as a result of process activities in the late 1950`s. Although limited quantities of the composite samples remained, attempts were made to obtain as much analytical information as possible, especially regarding the chemical and thermal properties of the material.

  11. Design of a piezoelectric-based structural health monitoring system for damage detection in composite materials

    NASA Astrophysics Data System (ADS)

    Kessler, Seth S.; Spearing, S. Mark

    2002-07-01

    Cost-effective and reliable damage detection is critical for the utilization of composite materials. This paper presents the conclusions of an experimental and analytical survey of candidate methods for in-situ damage detection in composite structures. Experimental results are presented for the application of modal analysis and Lamb wave techniques to quasi-isotropic graphite/epoxy test specimens containing representative damage. Piezoelectric patches were used as actuators and sensors for both sets of experiments. Modal analysis methods were reliable for detecting small amounts of global damage in a simple composite structure. By comparison, Lamb wave methods were sensitive to all types of local damage present between the sensor and actuator, provided useful information about damage presence and severity, and present the possibility of estimating damage type and location. Analogous experiments were also performed for more complex built-up structures. These techniques are suitable for structural health monitoring applications since they can be applied with low power conformable sensors and can provide useful information about the state of a structure during operation. Piezoelectric patches could also be used as multipurpose sensors to detect damage by a variety of methods such as modal analysis, Lamb wave, acoustic emission and strain based methods simultaneously, by altering driving frequencies and sampling rates. This paper present guidelines and recommendations drawn from this research to assist in the design of a structural health monitoring system for a vehicle. These systems will be an important component in future designs of air and spacecraft to increase the feasibility of their missions.

  12. [Influence of mobile phase composition on chiral separation of organic selenium racemates].

    PubMed

    Han, Xiao-qian; Qi, Bang-feng; Dun, Hui-juan; Zhu, Xin-yi; Na, Peng-jun; Jiang, Sheng-xiang; Chen, Li-ren

    2002-05-01

    The chiral separation of some chiral compounds with similar structure on the cellulose tris (3,5-dimethylphenylcarbamate) chiral stationary phase prepared by us was obtained. Ternary mobile phases influencing chiral recognition were investigated. A mode of interaction between the structural character of samples and chiral stationary phase is discussed. The results indicated that the retention and chiral separation of the analytes had a bigger change with minute addition of alcohols or acetonitrile as modifier in n-hexane/2-propanol (80/20, volume ratio) binary mobile phase.

  13. Novel biomimetic composite material for potentiometric screening of acetylcholine, a neurotransmitter in Alzheimer's disease.

    PubMed

    Sacramento, Ana S; Moreira, Felismina T C; Guerreiro, Joana L; Tavares, Ana P; Sales, M Goreti F

    2017-10-01

    This work describes a novel approach to produce an antibody-like biomimetic material. It includes preparing composite imprinted material never presented before, with highly conductive support nanostructures and assembling a high conductivity polymeric layer at low temperature. Overall, such highly conductive material may enhance the final features of electrically-based devices. Acetylcholine (ACh) was selected as target analyte, a neurotransmitter of importance in Alzheimer's disease. Potentiometric transduction was preferred, allowing quick responses and future adaptation to point-of-care requirements. The biomimetic material was obtained by bulk polymerization, where ACh was placed in a composite matrix of multiwalled carbon nanotubes (MWCNTs) and aniline (ANI). Subsequent polymerization, initiated by radical species, yielded a polymeric structure of polyaniline (PANI) acting as physical support of the composite. A non-imprinted material (NIM) having only PANI/MWCNT (without ACh) has been prepared for comparison of the biomimetic-imprinted material (BIM). RAMAN and Fourier Transform Infrared spectroscopy (FTIR), Transmission Electron microscopy (TEM), and Scanning Electron microscope (SEM) analysis characterized the structures of the materials. The ability of this biomaterial to rebind ACh was confirmed by including it as electroactive compound in a PVC/plasticizer mixture. The membranes with imprinted material and anionic additive presented the best analytical characteristics, with a sensitivity of 83.86mV decade -1 and limit of detection (LOD) of 3.45×10 -5 mol/L in HEPES buffer pH4.0. Good selectivity was observed against creatinine, creatine, glucose, cysteine and urea. The electrodes were also applied on synthetic serum samples and seemed a reliable tool for screening ACh in synthetic serum samples. The overall performance showed fast response, reusability, simplicity and low price. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Surface modification of polyethylene/graphene composite using corona discharge

    NASA Astrophysics Data System (ADS)

    Popelka, Anton; Noorunnisa Khanam, P.; AlMaadeed, Mariam Ali

    2018-03-01

    Polyethylene/graphene composites are suitable for electromagnetic interference shielding applications and are often fabricated as sandwich structures. However, the hydrophobic character of these composites can lead to delamination. Corona treatment was used to enhance the surface hydrophilicity of composites prepared from linear low-density polyethylene (LLDPE) and graphene nanoplatelets (GNPs) with different content (2, 4, 6, and 8 wt.%). This enhancement of wettability also led to good adhesion properties. The presence of GNPs in LLDPE had a positive effect on the surface properties after corona treatment. The surface free energy of the LLDPE/GNP composites increased by almost 64.6% for 2 wt.% of GNPs in the LLDPE/GNP composite, while the surface free energy of neat LLDPE increased by only 38.1%. The best improvement in adhesion properties after corona treatment was observed for 2 wt.% of GNPs in the LLDPE/GNP composite, while peel resistance increased by 137.9%. Various analytical techniques and methods proved that the changes in the surface morphology and chemical composition of the LLDPE/GNP composite after this treatment resulted in an improvement of adhesion.

  15. Micromechanics Analysis Code With Generalized Method of Cells (MAC/GMC): User Guide. Version 3

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Bednarcyk, B. A.; Wilt, T. E.; Trowbridge, D.

    1999-01-01

    The ability to accurately predict the thermomechanical deformation response of advanced composite materials continues to play an important role in the development of these strategic materials. Analytical models that predict the effective behavior of composites are used not only by engineers performing structural analysis of large-scale composite components but also by material scientists in developing new material systems. For an analytical model to fulfill these two distinct functions it must be based on a micromechanics approach which utilizes physically based deformation and life constitutive models and allows one to generate the average (macro) response of a composite material given the properties of the individual constituents and their geometric arrangement. Here the user guide for the recently developed, computationally efficient and comprehensive micromechanics analysis code, MAC, who's predictive capability rests entirely upon the fully analytical generalized method of cells, GMC, micromechanics model is described. MAC/ GMC is a versatile form of research software that "drives" the double or triply periodic micromechanics constitutive models based upon GMC. MAC/GMC enhances the basic capabilities of GMC by providing a modular framework wherein 1) various thermal, mechanical (stress or strain control) and thermomechanical load histories can be imposed, 2) different integration algorithms may be selected, 3) a variety of material constitutive models (both deformation and life) may be utilized and/or implemented, and 4) a variety of fiber architectures (both unidirectional, laminate and woven) may be easily accessed through their corresponding representative volume elements contained within the supplied library of RVEs or input directly by the user, and 5) graphical post processing of the macro and/or micro field quantities is made available.

  16. The electrochemical performance of graphene modified electrodes: an analytical perspective.

    PubMed

    Brownson, Dale A C; Foster, Christopher W; Banks, Craig E

    2012-04-21

    We explore the use of graphene modified electrodes towards the electroanalytical sensing of various analytes, namely dopamine hydrochloride, uric acid, acetaminophen and p-benzoquinone via cyclic voltammetry. In line with literature methodologies and to investigate the full-implications of employing graphene in this electrochemical context, we modify electrode substrates that exhibit either fast or slow electron transfer kinetics (edge- or basal- plane pyrolytic graphite electrodes respectively) with well characterised commercially available graphene that has not been chemically treated, is free from surfactants and as a result of its fabrication has an extremely low oxygen content, allowing the true electroanalytical applicability of graphene to be properly de-convoluted and determined. In comparison to the unmodified underlying electrode substrates (constructed from graphite), we find that graphene exhibits a reduced analytical performance in terms of sensitivity, linearity and observed detection limits towards each of the various analytes studied within. Owing to graphene's structural composition, low proportion of edge plane sites and consequent slow heterogeneous electron transfer rates, there appears to be no advantages, for the analytes studied here, of employing graphene in this electroanalytical context.

  17. Analytical Methods for Biomass Characterization during Pretreatment and Bioconversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pu, Yunqiao; Meng, Xianzhi; Yoo, Chang Geun

    2016-01-01

    Lignocellulosic biomass has been introduced as a promising resource for alternative fuels and chemicals because of its abundance and complement for petroleum resources. Biomass is a complex biopolymer and its compositional and structural characteristics largely vary depending on its species as well as growth environments. Because of complexity and variety of biomass, understanding its physicochemical characteristics is a key for effective biomass utilization. Characterization of biomass does not only provide critical information of biomass during pretreatment and bioconversion, but also give valuable insights on how to utilize the biomass. For better understanding biomass characteristics, good grasp and proper selection ofmore » analytical methods are necessary. This chapter introduces existing analytical approaches that are widely employed for biomass characterization during biomass pretreatment and conversion process. Diverse analytical methods using Fourier transform infrared (FTIR) spectroscopy, gel permeation chromatography (GPC), and nuclear magnetic resonance (NMR) spectroscopy for biomass characterization are reviewed. In addition, biomass accessibility methods by analyzing surface properties of biomass are also summarized in this chapter.« less

  18. Photogrammetrically Measured Distortions of Composite Structure Microwave Reflectors at -90K

    NASA Technical Reports Server (NTRS)

    Mule, Peter; Hill, Michael D.; Sampler, Henry P.

    2000-01-01

    The Microwave Anisotropy Probe (MAP) Observatory, scheduled for a late 2000 launch, is designed to measure temperature fluctuations (anisotropy) and produce a high sensitivity and high spatial resolution (better than 0.3 deg. at 90 GHz.) map of the Cosmic Microwave Background (CMB) radiation over the entire sky between 22 and 90 GHz. MAP utilizes back-to-back composite Gregorian telescopes supported on a composite truss structure to focus the microwave signals into 10 differential microwave receivers. Proper position and shape of the telescope reflectors at the operating temperature of -90 K is a critical element to ensure mission success. We describe the methods and analysis used to validate the in-flight position and shape predictions for the reflectors based on photogrammetric metrology data taken under vacuum with the reflectors at -90 K. Contour maps showing reflector distortion were generated. The resulting reflector distortion data are shown to be crucial to the analytical assessment of the MAP instrument's microwave system in-flight performance.

  19. Towards a damage tolerance philosophy for composite materials and structures

    NASA Technical Reports Server (NTRS)

    O'Brien, T. Kevin

    1990-01-01

    A damage-threshold/fail-safe approach is proposed to ensure that composite structures are both sufficiently durable for economy of operation, as well as adequately fail-safe or damage tolerant for flight safety. Matrix cracks are assumed to exist throughout the off-axis plies. Delamination onset is predicted using a strain energy release rate characterization. Delamination growth is accounted for in one of three ways: either analytically, using delamination growth laws in conjunction with strain energy release rate analyses incorporating delamination resistance curves; experimentally, using measured stiffness loss; or conservatively, assuming delamination onset corresponds to catastrophic delamination growth. Fail-safety is assessed by accounting for the accumulation of delaminations through the thickness. A tension fatigue life prediction for composite laminates is presented as a case study to illustrate how this approach may be implemented. Suggestions are made for applying the damage-threshold/fail-safe approach to compression fatigue, tension/compression fatigue, and compression strength following low velocity impact.

  20. Structural performance of notch damaged steel beams repaired with composite materials

    NASA Astrophysics Data System (ADS)

    El-Taly, Boshra

    2016-06-01

    An experimental program and an analytical model using ANSYS program were employed to estimate the structural performance of repaired damaged steel beams using fiber reinforced polymer (FRP) composite materials. The beams were artificially notched in the tension flanges at mid-spans and retrofitted by FRP flexible sheets on the tension flanges and the sheets were extended to cover parts of the beams webs with different heights. Eleven box steel beams, including one intact beam, one notch damaged beam and nine notches damaged beam and retrofitted with composite materials, were tested in two-point loading up to failure. The parameters considered were the FRP type (GFRP and CFRP) and number of layers. The results indicated that bonding CFRP sheets to both of the tension steel flange and part of the webs, instead of the tension flange only, enhances the ultimate load of the retrofitted beams, avoids the occurrence of the debonding and increases the beam ductility. Also the numerical models give acceptable results in comparison with the experimental results.

  1. Towards a damage tolerance philosophy for composite materials and structures

    NASA Technical Reports Server (NTRS)

    Obrien, T. Kevin

    1988-01-01

    A damage-threshold/fail-safe approach is proposed to ensure that composite structures are both sufficiently durable for economy of operation, as well as adequately fail-safe or damage tolerant for flight safety. Matrix cracks are assumed to exist throughout the off-axis plies. Delamination onset is predicted using a strain energy release rate characterization. Delamination growth is accounted for in one of three ways: either analytically, using delamination growth laws in conjunction with strain energy release rate analyses incorporating delamination resistance curves; experimentally, using measured stiffness loss; or conservatively, assuming delamination onset corresponds to catastrophic delamination growth. Fail-safety is assessed by accounting for the accumulation of delaminations through the thickness. A tension fatigue life prediction for composite laminates is presented as a case study to illustrate how this approach may be implemented. Suggestions are made for applying the damage-threshold/fail-safe approach to compression fatigue, tension/compression fatigue, and compression strength following low velocity impact.

  2. The Analysis of Adhesively Bonded Advanced Composite Joints Using Joint Finite Elements

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott E.; Waas, Anthony M.

    2012-01-01

    The design and sizing of adhesively bonded joints has always been a major bottleneck in the design of composite vehicles. Dense finite element (FE) meshes are required to capture the full behavior of a joint numerically, but these dense meshes are impractical in vehicle-scale models where a course mesh is more desirable to make quick assessments and comparisons of different joint geometries. Analytical models are often helpful in sizing, but difficulties arise in coupling these models with full-vehicle FE models. Therefore, a joint FE was created which can be used within structural FE models to make quick assessments of bonded composite joints. The shape functions of the joint FE were found by solving the governing equations for a structural model for a joint. By analytically determining the shape functions of the joint FE, the complex joint behavior can be captured with very few elements. This joint FE was modified and used to consider adhesives with functionally graded material properties to reduce the peel stress concentrations located near adherend discontinuities. Several practical concerns impede the actual use of such adhesives. These include increased manufacturing complications, alterations to the grading due to adhesive flow during manufacturing, and whether changing the loading conditions significantly impact the effectiveness of the grading. An analytical study is conducted to address these three concerns. Furthermore, proof-of-concept testing is conducted to show the potential advantages of functionally graded adhesives. In this study, grading is achieved by strategically placing glass beads within the adhesive layer at different densities along the joint. Furthermore, the capability to model non-linear adhesive constitutive behavior with large rotations was developed, and progressive failure of the adhesive was modeled by re-meshing the joint as the adhesive fails. Results predicted using the joint FE was compared with experimental results for various joint configurations, including double cantilever beam and single lap joints.

  3. Bonded composite to metal scarf joint performance in an aircraft landing gear drag strut. [for Boeing 747 aircraft

    NASA Technical Reports Server (NTRS)

    Howell, W. E.

    1974-01-01

    The structural performance of a boron-epoxy reinforced titanium drag strut, which contains a bonded scarf joint and was designed to the criteria of the Boeing 747 transport, was evaluated. An experimental and analytical investigation was conducted. The strut was exposed to two lifetimes of spectrum loading and was statically loaded to the tensile and compressive design ultimate loads. Throughout the test program no evidence of any damage in the drag strut was detected by strain gage measurements, ultrasonic inspection, or visual observation. An analytical study of the bonded joint was made using the NASA structural analysis computer program NASTRAN. A comparison of the strains predicted by the NASTRAN computer program with the experimentally determined values shows excellent agreement. The NASTRAN computer program is a viable tool for studying, in detail, the stresses and strains induced in a bonded joint.

  4. Properties of vapor detector arrays formed through plasticization of carbon black-organic polymer composites.

    PubMed

    Koscho, Michael E; Grubbs, Robert H; Lewis, Nathan S

    2002-03-15

    Arrays of vapor detectors have been formed through addition of varying mass fractions of the plasticizer diethylene glycol dibenzoate to carbon black-polymer composites of poly(vinyl acetate) (PVAc) or of poly(N-vinylpyrrolidone). Addition of plasticizer in 5% mass fraction increments produced 20 compositionally different detectors from each polymer composite. Differences in vapor sorption and permeability that effected changes in the dc electrical resistance response of these compositionally different detectors allowed identification and classification of various test analytes using standard chemometric methods. Glass transition temperatures, Tg, were measured using differential scanning calorimetry for plasticized polymers having a mass fraction of 0, 0.10, 0.20, 0.30, 0.40, or 0.50 of plasticizer in the composite. The plasticized PVAc composites with Tg < 25 degrees C showed rapid responses at room temperature to all of the test analyte vapors studied in this work, whereas composites with Tg > 25 degrees C showed response times that were highly dependent on the polymer/analyte combination. These composites showed a discontinuity in the temperature dependence of their resistance, and this discontinuity provided a simple method for determining the Tg of the composite and for determining the temperature or plasticizer mass fraction above which rapid resistance responses could be obtained for all members of the test set of analyte vapors. The plasticization approach provides a method for achieving rapid detector response times as well as for producing a large number of chemically different vapor detectors from a limited number of initial chemical feedstocks.

  5. Molecular modeling of interactions in electronic nose sensors for environmental monitoring

    NASA Technical Reports Server (NTRS)

    Shevade, A. V.; Ryan, M. A.; Homer, M. L.; Manfreda, A. M.; Yen, S. -P. S.; Zhou, H.; Manatt, K.

    2002-01-01

    We report a study aimed at understanding analyte interactions with sensors made from polymer-carbon black composite films. The sensors are used in an Electronic Nose (ENose) which is used for monitoring the breathing air quality in human habitats. The model mimics the experimental conditions of the composite film deposition and formation and was developed using molecular modeling and simulation tools. The Dreiding 2.21 Force Field was used for the polymer and analyte molecules while graphite parameters were assigned to the carbon black atoms. The polymer considered for this work is methyl vinyl ether / maleic acid copolymer. The target analytes include both inorganic (NH3) and organic (methanol) types of compound. Results indicate different composite-analyte interaction behavior.

  6. Low power, lightweight vapor sensing using arrays of conducting polymer composite chemically-sensitive resistors

    NASA Technical Reports Server (NTRS)

    Ryan, M. A.; Lewis, N. S.

    2001-01-01

    Arrays of broadly responsive vapor detectors can be used to detect, identify, and quantify vapors and vapor mixtures. One implementation of this strategy involves the use of arrays of chemically-sensitive resistors made from conducting polymer composites. Sorption of an analyte into the polymer composite detector leads to swelling of the film material. The swelling is in turn transduced into a change in electrical resistance because the detector films consist of polymers filled with conducting particles such as carbon black. The differential sorption, and thus differential swelling, of an analyte into each polymer composite in the array produces a unique pattern for each different analyte of interest, Pattern recognition algorithms are then used to analyze the multivariate data arising from the responses of such a detector array. Chiral detector films can provide differential detection of the presence of certain chiral organic vapor analytes. Aspects of the spaceflight qualification and deployment of such a detector array, along with its performance for certain analytes of interest in manned life support applications, are reviewed and summarized in this article.

  7. Some trends in aircraft design: Structures

    NASA Technical Reports Server (NTRS)

    Brooks, G. W.

    1975-01-01

    Trends and programs currently underway on the national scene to improve the structural interface in the aircraft design process are discussed. The National Aeronautics and Space Administration shares a partnership with the educational and industrial community in the development of the tools, the criteria, and the data base essential to produce high-performance and cost-effective vehicles. Several thrusts to build the technology in materials, structural concepts, analytical programs, and integrated design procedures essential for performing the trade-offs required to fashion competitive vehicles are presented. The application of advanced fibrous composites, improved methods for structural analysis, and continued attention to important peripheral problems of aeroelastic and thermal stability are among the topics considered.

  8. Plate Deformation Behavior of Polymer Matrix Composite-Ti Honeycomb-Metal Sandwiches for Pressurized Propulsion Component Applications

    NASA Technical Reports Server (NTRS)

    Bertelsen, William D.; Shin, E. eugene; Thesken, John C.; Sutter, James K.; Martin, Rich

    2004-01-01

    THe objectives are: 1. To experimentally validate bi-axial plate flexural performance of PMC-Ti H/C-A286 sandwich panels for the internally pressurized RBCC combustion chamber support structure. 2. To explore ASTM 2-D plate flexure test (D 6416) to simulate the internal pressure loading and to correlate the results with analytical and FE modeling based on 2-D flexure properties.

  9. Laser-Induced Temperature Rise in a Composite Sandwich Structure

    DTIC Science & Technology

    2013-01-01

    Bertolotti and Sibilia, 1981; Burgener and Reedy, 1982; Calder and Sue, 1982; Moody and Hendel, 1982; Sanders, 1984; Araya and Gutierrez, 2006 ...REFERENCES [1] G. Araya , G. and G. Gutierre, Analytical solution for a transient, three-dimensional temperature distribution due to a moving laser...beam, Int. J. Heat and Mass Transfer, 49 ( 2006 ), 4124-4131. [2] N. Asmar, Partial Differential Equations with Fourier Series and Boundary Value

  10. Sorption of 4-carboxyquinoline derivatives from aqueous acetonitrile solutions on the surface of porous graphitized carbon

    NASA Astrophysics Data System (ADS)

    Savchenkova, A. S.; Buryak, A. K.; Kurbatova, S. V.

    2015-09-01

    The sorption of 4-carboxyquinoline derivatives from aqueous acetonitrile solutions on porous graphitized carbon was studied. The effect of the structure of analyte molecules and the eluent composition on the characteristics of retention under the conditions of RP HPLC was analyzed. The effect of pH of the eluent on the shift of equilibrium in aqueous acetonitrile solutions was investigated.

  11. An analytical platform for mass spectrometry-based identification and chemical analysis of RNA in ribonucleoprotein complexes.

    PubMed

    Taoka, Masato; Yamauchi, Yoshio; Nobe, Yuko; Masaki, Shunpei; Nakayama, Hiroshi; Ishikawa, Hideaki; Takahashi, Nobuhiro; Isobe, Toshiaki

    2009-11-01

    We describe here a mass spectrometry (MS)-based analytical platform of RNA, which combines direct nano-flow reversed-phase liquid chromatography (RPLC) on a spray tip column and a high-resolution LTQ-Orbitrap mass spectrometer. Operating RPLC under a very low flow rate with volatile solvents and MS in the negative mode, we could estimate highly accurate mass values sufficient to predict the nucleotide composition of a approximately 21-nucleotide small interfering RNA, detect post-transcriptional modifications in yeast tRNA, and perform collision-induced dissociation/tandem MS-based structural analysis of nucleolytic fragments of RNA at a sub-femtomole level. Importantly, the method allowed the identification and chemical analysis of small RNAs in ribonucleoprotein (RNP) complex, such as the pre-spliceosomal RNP complex, which was pulled down from cultured cells with a tagged protein cofactor as bait. We have recently developed a unique genome-oriented database search engine, Ariadne, which allows tandem MS-based identification of RNAs in biological samples. Thus, the method presented here has broad potential for automated analysis of RNA; it complements conventional molecular biology-based techniques and is particularly suited for simultaneous analysis of the composition, structure, interaction, and dynamics of RNA and protein components in various cellular RNP complexes.

  12. Prediction of microcracking in composite laminates under thermomechanical loading

    NASA Technical Reports Server (NTRS)

    Maddocks, Jason R.; Mcmanus, Hugh L.

    1995-01-01

    Composite laminates used in space structures are exposed to both thermal and mechanical loads. Cracks in the matrix form, changing the laminate thermoelastic properties. An analytical methodology is developed to predict microcrack density in a general laminate exposed to an arbitrary thermomechanical load history. The analysis uses a shear lag stress solution in conjunction with an energy-based cracking criterion. Experimental investigation was used to verify the analysis. Correlation between analysis and experiment is generally excellent. The analysis does not capture machining-induced cracking, or observed delayed crack initiation in a few ply groups, but these errors do not prevent the model from being a useful preliminary design tool.

  13. Mineral Composition and Structure of the Sverdlovsk Meteorite (H4-5)

    NASA Astrophysics Data System (ADS)

    Berzin, S. V.; Koroteev, V. A.; Ivanov, K. S.; Kleimenov, D. A.; Kiseleva, D. V.; Cherednichenko, N. V.

    2018-03-01

    A fragment of the Sverdlovsk Meteorite, which was found in 1985 in the Central Urals, is studied by modern analytical methods. It belongs to H chondrites of petrologic type 4-5; shock stage of meteorite is S1-2, terrestrial weathering is W1. The composition of minerals of the meteorite is studied. It is found for the first time that the metal and sulfides are concentrated in fine veinlets of the recrystallized matrix of the chondrite and are accompanied by segregations of metal and troilite inside these veinlets. The distribution of trace elements of the metal phase of the meteorite is studied.

  14. Structural Assessment of Advanced Composite Tow-Steered Shells

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Stanford, Bret K.; Hrinda, Glenn A.; Wang, Zhuosong; Martin, Robert a.; Kim, H. Alicia

    2013-01-01

    The structural performance of two advanced composite tow-steered shells, manufactured using a fiber placement system, is assessed using both experimental and analytical methods. The fiber orientation angles vary continuously around the shell circumference from 10 degrees on the shell crown and keel, to 45 degrees on the shell sides. The two shells differ in that one shell has the full 24-tow course applied during each pass of the fiber placement system, while the second shell uses the fiber placement system s tow drop/add capability to achieve a more uniform shell wall thickness. The shells are tested in axial compression, and estimates of their prebuckling axial stiffnesses and bifurcation buckling loads are predicted using linear finite element analyses. These preliminary predictions compare well with the test results, with an average agreement of approximately 10 percent.

  15. Damage Arresting Composites for Shaped Vehicles

    NASA Technical Reports Server (NTRS)

    Velicki, Alex

    2009-01-01

    This report describes the development of a novel structural solution that addresses the demanding fuselage loading requirements for the Hybrid Wing or Blended Wing Body configurations that are described in NASA NRA subtopic A2A.3, "Materials and Structures for Wing Components and Non-Circular Fuselage." The phase I portion of this task includes a comprehensive finite element model-based structural sizing exercise performed using the BWB airplane configuration to generate internal loads and fuselage panel weights for an advanced Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) structural concept. An accompanying element-level test program is also described which substantiates the analytical results and calculation methods used in the trade study. The phase II plan for the continuation of this research is also included herein.

  16. Hierarchical Analytical Approaches for Unraveling the Composition of Proprietary Mixtures

    EPA Pesticide Factsheets

    The composition of commercial mixtures including pesticide inert ingredients, aircraft deicers, and aqueous film-forming foam (AFFF) formulations, and by analogy, fracking fluids, are proprietary. Quantitative analytical methodologies can only be developed for mixture components once their identities are known. Because proprietary mixtures may contain volatile and non-volatile components, a hierarchy of analytical methods is often required for the full identification of all proprietary mixture components.

  17. Mechanics of fiber reinforced materials

    NASA Astrophysics Data System (ADS)

    Sun, Huiyu

    This dissertation is dedicated to mechanics of fiber reinforced materials and the woven reinforcement and composed of four parts of research: analytical characterization of the interfaces in laminated composites; micromechanics of braided composites; shear deformation, and Poisson's ratios of woven fabric reinforcements. A new approach to evaluate the mechanical characteristics of interfaces between composite laminae based on a modified laminate theory is proposed. By including an interface as a special lamina termed the "bonding-layer" in the analysis, the mechanical properties of the interfaces are obtained. A numerical illustration is given. For micro-mechanical properties of three-dimensionally braided composite materials, a new method via homogenization theory and incompatible multivariable FEM is developed. Results from the hybrid stress element approach compare more favorably with the experimental data than other existing numerical methods widely used. To evaluate the shearing properties for woven fabrics, a new mechanical model is proposed during the initial slip region. Analytical results show that this model provides better agreement with the experiments for both the initial shear modulus and the slipping angle than the existing models. Finally, another mechanical model for a woven fabric made of extensible yarns is employed to calculate the fabric Poisson's ratios. Theoretical results are compared with the available experimental data. A thorough examination on the influences of various mechanical properties of yarns and structural parameters of fabrics on the Poisson's ratios of a woven fabric is given at the end.

  18. Recent advances in applications of nanomaterials for sample preparation.

    PubMed

    Xu, Linnan; Qi, Xiaoyue; Li, Xianjiang; Bai, Yu; Liu, Huwei

    2016-01-01

    Sample preparation is a key step for qualitative and quantitative analysis of trace analytes in complicated matrix. Along with the rapid development of nanotechnology in material science, numerous nanomaterials have been developed with particularly useful applications in analytical chemistry. Benefitting from their high specific areas, increased surface activities, and unprecedented physical/chemical properties, the potentials of nanomaterials for rapid and efficient sample preparation have been exploited extensively. In this review, recent progress of novel nanomaterials applied in sample preparation has been summarized and discussed. Both nanoparticles and nanoporous materials are evaluated for their unusual performance in sample preparation. Various compositions and functionalizations extended the applications of nanomaterials in sample preparations, and distinct size and shape selectivity was generated from the diversified pore structures of nanoporous materials. Such great variety make nanomaterials a kind of versatile tools in sample preparation for almost all categories of analytes. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Impact of metal matrix composite on the evolution and erosion performance characteristics of non lubricated-dry abrasive degradation of ternary composite coating for refineries system

    NASA Astrophysics Data System (ADS)

    Anawe, Paul Apeye Lucky; Fayomi, Ojo Sunday Isaac

    2018-06-01

    The application of rational design principles and process in electrodeposition can eliminate many engineering catastrophes related to corrosion and micromechanical failure in service. This has led to appreciate the need of surface modification on component for enhance life span. Admixed Zn-30Al-13Ti-chloride composite bath was electrolytically prepared and successfully deposited on UNS G10150 mild steel substrate by zinc dual anode deposition processes within an interval of applied current density, particle concentration and constant time. The codeposition of Zn-Al-Ti coating was studied in the presence of other bath ingredient. The effect of deposition current and particle concentration on structural property, adhesion behaviour, ideal crystal orientation, surface topography and electrochemical properties of Zn-Al-Ti alloy coating series on mild steel were analytically examined. The wear stability of the developed composite materials was examined via sliding reciprocating rig. The structural integrity was examined with scanning electron microscope equipped with EDS, X-ray diffraction; Atomic force microscope, dura scan micro-hardness tester and 3 μ metrohm Potentiostat/galvanostat. Interestingly the induced activity of the Zn-Al-Ti chloride composite alloy results into excellent structural modification and stable crystal precipitation within the structural interface as a result of Zn3Al, Zn2Ti and ZnAl3Ti2 intermetallic phase. The obtained results showed that the introduction of Ti particles in the presence of other bath additive in the plating bath mostly modified the surface and brings an increase in the microhardness, corrosion resistance and reduce wear deformation of Zn-Al-Ti chloride composite alloy.

  20. Creep-rupture of polymer-matrix composites. [graphite-epoxy laminates

    NASA Technical Reports Server (NTRS)

    Brinson, H. F.; Griffith, W. I.; Morris, D. H.

    1980-01-01

    An accelerated characterization method for resin matrix composites is reviewed. Methods for determining modulus and strength master curves are given. Creep rupture analytical models are discussed as applied to polymers and polymer matrix composites. Comparisons between creep rupture experiments and analytical models are presented. The time dependent creep rupture process in graphite epoxy laminates is examined as a function of temperature and stress level.

  1. Stress and Damage in Polymer Matrix Composite Materials Due to Material Degradation at High Temperatures

    NASA Technical Reports Server (NTRS)

    McManus, Hugh L.; Chamis, Christos C.

    1996-01-01

    This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) is presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.

  2. Engine environmental effects on composite behavior

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Smith, G. T.

    1980-01-01

    A series of programs were conducted to investigate and develop the application of composite materials to turbojet engines. A significant part of that effort was directed to establishing the impact resistance and defect growth chracteristics of composite materials over the wide range of environmental conditions found in commercial turbojet engine operations. Both analytical and empirical efforts were involved. The experimental programs and the analytical methodology development as well as an evaluation program for the use of composite materials as fan exit guide vanes are summarized.

  3. Energy absorption capabilities of composite sandwich panels under blast loads

    NASA Astrophysics Data System (ADS)

    Sankar Ray, Tirtha

    As blast threats on military and civilian structures continue to be a significant concern, there remains a need for improved design strategies to increase blast resistance capabilities. The approach to blast resistance proposed here is focused on dissipating the high levels of pressure induced during a blast through maximizing the potential for energy absorption of composite sandwich panels, which are a competitive structural member type due to the inherent energy absorption capabilities of fiber reinforced polymer (FRP) composites. Furthermore, the middle core in the sandwich panels can be designed as a sacrificial layer allowing for a significant amount of deformation or progressive failure to maximize the potential for energy absorption. The research here is aimed at the optimization of composite sandwich panels for blast mitigation via energy absorption mechanisms. The energy absorption mechanisms considered include absorbed strain energy due to inelastic deformation as well as energy dissipation through progressive failure of the core of the sandwich panels. The methods employed in the research consist of a combination of experimentally-validated finite element analysis (FEA) and the derivation and use of a simplified analytical model. The key components of the scope of work then includes: establishment of quantified energy absorption criteria, validation of the selected FE modeling techniques, development of the simplified analytical model, investigation of influential core architectures and geometric parameters, and investigation of influential material properties. For the parameters that are identified as being most-influential, recommended values for these parameters are suggested in conceptual terms that are conducive to designing composite sandwich panels for various blast threats. Based on reviewing the energy response characteristic of the panel under blast loading, a non-dimensional parameter AET/ ET (absorbed energy, AET, normalized by total energy, ET) was suggested to compare energy absorption capabilities of the structures under blast loading. In addition, AEweb/ET (where AEweb is the energy absorbed by the middle core) was also employed to evaluate the energy absorption contribution from the web. Taking advantage of FEA and the simplified analytical model, the influences of material properties as well as core architectures and geometries on energy absorption capabilities (quantified by AET/ ET and AEweb/E T) were investigated through parametric studies. Results from the material property investigation indicated that density of the front face sheet and strength were most influential on the energy absorption capability of the composite sandwich panels under blast loading. The study to investigate the potential effectiveness of energy absorbed via inelastic deformation compared to energy absorbed via progressive failure indicated that for practical applications (where the position of bomb is usually unknown and the panel is designed to be the same anywhere), the energy absorption via inelastic deformation is the more efficient approach. Regarding the geometric optimization, it was found that a core architecture consisting of vertically-oriented webs was ideal. The optimum values for these parameters can be generally described as those which cause the most inelasticity, but not failure, of the face sheets and webs.

  4. Analysis of a Hybrid Wing Body Center Section Test Article

    NASA Technical Reports Server (NTRS)

    Wu, Hsi-Yung T.; Shaw, Peter; Przekop, Adam

    2013-01-01

    The hybrid wing body center section test article is an all-composite structure made of crown, floor, keel, bulkhead, and rib panels utilizing the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) design concept. The primary goal of this test article is to prove that PRSEUS components are capable of carrying combined loads that are representative of a hybrid wing body pressure cabin design regime. This paper summarizes the analytical approach, analysis results, and failure predictions of the test article. A global finite element model of composite panels, metallic fittings, mechanical fasteners, and the Combined Loads Test System (COLTS) test fixture was used to conduct linear structural strength and stability analyses to validate the specimen under the most critical combination of bending and pressure loading conditions found in the hybrid wing body pressure cabin. Local detail analyses were also performed at locations with high stress concentrations, at Tee-cap noodle interfaces with surrounding laminates, and at fastener locations with high bearing/bypass loads. Failure predictions for different composite and metallic failure modes were made, and nonlinear analyses were also performed to study the structural response of the test article under combined bending and pressure loading. This large-scale specimen test will be conducted at the COLTS facility at the NASA Langley Research Center.

  5. Simulation of an Impact Test of the All-Composite Lear Fan Aircraft

    NASA Technical Reports Server (NTRS)

    Stockwell, Alan E.; Jones, Lisa E. (Technical Monitor)

    2002-01-01

    An MSC.Dytran model of an all-composite Lear Fan aircraft fuselage was developed to simulate an impact test conducted at the NASA Langley Research Center Impact Dynamics Research Facility (IDRF). The test was the second of two Lear Fan impact tests. The purpose of the second test was to evaluate the performance of retrofitted composite energy-absorbing floor beams. A computerized photogrammetric survey was performed to provide airframe geometric coordinates, and over 5000 points were processed and imported into MSC.Patran via an IGES file. MSC.Patran was then used to develop the curves and surfaces and to mesh the finite element model. A model of the energy-absorbing floor beams was developed separately and then integrated into the Lear Fan model. Structural responses of components such as the wings were compared with experimental data or previously published analytical data wherever possible. Comparisons with experimental results were used to guide structural model modifications to improve the simulation performance. This process was based largely on qualitative (video and still camera images and post-test inspections) rather than quantitative results due to the relatively few accelerometers attached to the structure.

  6. Advances and trends in structural and solid mechanics; Proceedings of the Symposium, Washington, DC, October 4-7, 1982

    NASA Technical Reports Server (NTRS)

    Noor, A. K. (Editor); Housner, J. M.

    1983-01-01

    The mechanics of materials and material characterization are considered, taking into account micromechanics, the behavior of steel structures at elevated temperatures, and an anisotropic plasticity model for inelastic multiaxial cyclic deformation. Other topics explored are related to advances and trends in finite element technology, classical analytical techniques and their computer implementation, interactive computing and computational strategies for nonlinear problems, advances and trends in numerical analysis, database management systems and CAD/CAM, space structures and vehicle crashworthiness, beams, plates and fibrous composite structures, design-oriented analysis, artificial intelligence and optimization, contact problems, random waves, and lifetime prediction. Earthquake-resistant structures and other advanced structural applications are also discussed, giving attention to cumulative damage in steel structures subjected to earthquake ground motions, and a mixed domain analysis of nuclear containment structures using impulse functions.

  7. Charge modeling of ionic polymer-metal composites for dynamic curvature sensing

    NASA Astrophysics Data System (ADS)

    Bahramzadeh, Yousef; Shahinpoor, Mohsen

    2011-04-01

    A curvature sensor based on Ionic Polymer-Metal Composite (IPMC) is proposed and characterized for sensing of curvature variation in structures such as inflatable space structures in which using low power and flexible curvature sensor is of high importance for dynamic monitoring of shape at desired points. The linearity of output signal of sensor for calibration, effect of deflection rate at low frequencies and the phase delay between the output signal and the input deformation of IPMC curvature sensor is investigated. An analytical chemo-electro-mechanical model for charge dynamic of IPMC sensor is presented based on Nernst-Planck partial differential equation which can be used to explain the phenomena observed in experiments. The rate dependency of output signal and phase delay between the applied deformation and sensor signal is studied using the proposed model. The model provides a background for predicting the general characteristics of IPMC sensor. It is shown that IPMC sensor exhibits good linearity, sensitivity, and repeatability for dynamic curvature sensing of inflatable structures.

  8. Standard deviations of composition measurements in atom probe analyses. Part I conventional 1D atom probe.

    PubMed

    Danoix, F; Grancher, G; Bostel, A; Blavette, D

    2007-09-01

    Atom probe is a very powerful instrument to measure concentrations on a sub nanometric scale [M.K. Miller, G.D.W. Smith, Atom Probe Microanalysis, Principles and Applications to Materials Problems, Materials Research Society, Pittsburgh, 1989]. Atom probe is therefore a unique tool to study and characterise finely decomposed metallic materials. Composition profiles or 3D mapping can be realised by gathering elemental composition measurements. As the detector efficiency is generally not equal to 1, the measured compositions are only estimates of actual values. The variance of the estimates depends on which information is to be estimated. It can be calculated when the detection process is known. These two papers are devoted to give complete analytical derivation and expressions of the variance on composition measurements in several situations encountered when using atom probe. In the first paper, we will concentrate on the analytical derivation of the variance when estimation of compositions obtained from a conventional one dimension (1D) atom probe is considered. In particular, the existing expressions, and the basic hypotheses on which they rely, will be reconsidered, and complete analytical demonstrations established. In the second companion paper, the case of 3D atom probe will be treated, highlighting how the knowledge of the 3D position of detected ions modifies the analytical derivation of the variance of local composition data.

  9. A Simple Analytical Model for Magnetization and Coercivity of Hard/Soft Nanocomposite Magnets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Jihoon; Hong, Yang-Ki; Lee, Woncheol

    Here, we present a simple analytical model to estimate the magnetization (σ s) and intrinsic coercivity (Hci) of a hard/soft nanocomposite magnet using the mass fraction. Previously proposed models are based on the volume fraction of the hard phase of the composite. But, it is difficult to measure the volume of the hard or soft phase material of a composite. We synthesized Sm 2Co 7/Fe-Co, MnAl/Fe-Co, MnBi/Fe-Co, and BaFe 12O 19/Fe-Co composites for characterization of their σs and Hci. The experimental results are in good agreement with the present model. Therefore, this analytical model can be extended to predict themore » maximum energy product (BH) max of hard/soft composite.« less

  10. A Simple Analytical Model for Magnetization and Coercivity of Hard/Soft Nanocomposite Magnets

    DOE PAGES

    Park, Jihoon; Hong, Yang-Ki; Lee, Woncheol; ...

    2017-07-10

    Here, we present a simple analytical model to estimate the magnetization (σ s) and intrinsic coercivity (Hci) of a hard/soft nanocomposite magnet using the mass fraction. Previously proposed models are based on the volume fraction of the hard phase of the composite. But, it is difficult to measure the volume of the hard or soft phase material of a composite. We synthesized Sm 2Co 7/Fe-Co, MnAl/Fe-Co, MnBi/Fe-Co, and BaFe 12O 19/Fe-Co composites for characterization of their σs and Hci. The experimental results are in good agreement with the present model. Therefore, this analytical model can be extended to predict themore » maximum energy product (BH) max of hard/soft composite.« less

  11. Application of Interface Technology in Progressive Failure Analysis of Composite Panels

    NASA Technical Reports Server (NTRS)

    Sleight, D. W.; Lotts, C. G.

    2002-01-01

    A progressive failure analysis capability using interface technology is presented. The capability has been implemented in the COMET-AR finite element analysis code developed at the NASA Langley Research Center and is demonstrated on composite panels. The composite panels are analyzed for damage initiation and propagation from initial loading to final failure using a progressive failure analysis capability that includes both geometric and material nonlinearities. Progressive failure analyses are performed on conventional models and interface technology models of the composite panels. Analytical results and the computational effort of the analyses are compared for the conventional models and interface technology models. The analytical results predicted with the interface technology models are in good correlation with the analytical results using the conventional models, while significantly reducing the computational effort.

  12. Development of a composite geodetic structure for space construction, phase 2

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Primary physical and mechanical properties were defined for pultruded hybrid HMS/E-glass P1700 rod material used for the fabrication of geodetic beams. Key properties established were used in the analysis, design, fabrication, instrumentation, and testing of a geodetic parameter cylinder and a lattice cone closeout joined to a short cylindrical geodetic beam segment. Requirements of structural techniques were accomplished. Analytical procedures were refined and extended to include the effect of rod dimensions for the helical and longitudinal members on local buckling, and the effect of different flexural and extensional moduli on general instability buckling.

  13. Flame deformation and entrainment associated with an isothermal transverse fuel jet

    NASA Technical Reports Server (NTRS)

    Jenkins, D. W.; Karagozian, A. R.

    1992-01-01

    This paper describes an analytical model of an incompressible, isothermal reacting jet in crossflow. The model represents the flow in the jet cross-section by a counter rotating vortex pair, a flow structure that has been observed to dominate the jet behavior. The reaction surface surrounding the fuel jet is represented as a composite of strained diffusion flames that are stretched and deformed by the vortex pair flow. The results shed new light on the interaction between the vortex pair circulation and flame structure evolution and their relation to the concept of entrainment.

  14. Behavior Of Aircraft Components Under Crash-Type Loads

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.

    1993-01-01

    Report presents overview of research involving use of concepts of aircraft elements and substructures not necessarily designed or optimized with respect to energy-absorption or crash-loading considerations. Experimental and analytical data presented in report indicate some general trends in failure behaviors of class of composite-material structures including individual fuselage frames, skeleton subfloors with stringers and floor beams but without skin covering, and subfloors with skin added to frame/stringer arrangement.

  15. Review of availability of food composition data for fish and shellfish.

    PubMed

    Rittenschober, Doris; Nowak, Verena; Charrondiere, U Ruth

    2013-12-15

    The FAO/INFOODS database on fish and shellfish (aFiSh) is a collection of analytical data from primary sources and holds values for 2,277 entries on raw and processed food with sufficient quality. Most data were entered on fatty acids (60%), followed by macronutrients and their fractions (16%), minerals (10%), amino acids (7%), (pro)vitamins (2%), heavy metals (2%) and other components (3%). Information on several factors that contribute to the variation of compositional data (e.g., biodiversity, catch season, habitat, size and part of fish/shellfish analysed) as well as the bibliographic references are presented alongside with each food entry. The data were published in the FAO/INFOODS Food Composition Database for Biodiversity (BioFoodComp2.0) and in the FAO/INFOODS Analytical Food Composition Database (AnFooD1.0), freely available at the INFOODS webpage http://www.fao.org/infoods/biodiversity/index_en.stm. The provision of easy accessible, analytical compositional data should be seen as stimulation for researchers and compilers to incorporate more analytical and detailed data of fish and shellfish into future food composition tables and databases and to improve dietary assessment tools. Copyright © 2013 Food and Agriculture Organization of the United Nations. Published by Elsevier Ltd.. All rights reserved.

  16. Application of surface analytical methods in thin film analysis

    NASA Astrophysics Data System (ADS)

    Wen, Xingu

    Self-assembly and the sol-gel process are two promising methods for the preparation of novel materials and thin films. In this research, these two methods were utilized to prepare two types of thin films: self-assembled monolayers of peptides on gold and SiO2 sol-gel thin films modified with Ru(II) complexes. The properties of the resulting thin films were investigated by several analytical techniques in order to explore their potential applications in biomaterials, chemical sensors, nonlinear optics and catalysis. Among the analytical techniques employed in the study, surface analytical techniques, such as X-ray photoelectron spectroscopy (XPS) and grazing angle reflection absorption Fourier transform infrared spectroscopy (RA-FTIR), are particularly useful in providing information regarding the compositions and structures of the thin films. In the preparation of peptide thin films, monodisperse peptides were self-assembled on gold substrate via the N-terminus-coupled lipoic acid. The film compositions were investigated by XPS and agreed well with the theoretical values. XPS results also revealed that the surface coverage of the self-assembled films was significantly larger than that of the physisorbed films and that the chemisorption between the peptides and gold surface was stable in solvent. Studies by angle dependent XPS (ADXPS) and grazing angle RA-FTIR indicated that the peptides were on average oriented at a small angle from the surface normal. By using a model of orientation distribution function, both the peptide tilt angle and film thickness can be well calculated. Ru(II) complex doped SiO2 sol-gel thin films were prepared by low temperature sol-gel process. The ability of XPS coupled with Ar + ion sputtering to provide both chemical and compositional depth profile information of these sol-gel films was evaluated. This technique, together with UV-VIS and electrochemical measurements, was used to investigate the stability of Ru complexes in the composite films. The stability of Ru complexes with respect to dopant leaching was dependent on the film microstructures. Three methods aiming to improve the dopant stability were also explored. In addition, the ion exchange properties of the composite films, upon exposure to various ions in aqueous solutions, were investigated by XPS, and the ion exchange mechanism was elucidated.

  17. Finite-Element Vibration Analysis and Modal Testing of Graphite Epoxy Tubes and Correlation Between the Data

    NASA Technical Reports Server (NTRS)

    Taleghani, Barmac K.; Pappa, Richard S.

    1996-01-01

    Structural materials in the form of graphite epoxy composites with embedded rubber layers are being used to reduce vibrations in rocket motor tubes. Four filament-wound, graphite epoxy tubes were studied to evaluate the effects of the rubber layer on the modal parameters (natural vibration frequencies, damping, and mode shapes). Tube 1 contained six alternating layers of 30-degree helical wraps and 90-degree hoop wraps. Tube 2 was identical to tube 1 with the addition of an embedded 0.030-inch-thick rubber layer. Tubes 3 and 4 were identical to tubes 1 and 2, respectively, with the addition of a Textron Kelpoxy elastomer. This report compares experimental modal parameters obtained by impact testing with analytical modal parameters obtained by NASTRAN finite-element analysis. Four test modes of tube 1 and five test modes of tube 3 correlate highly with corresponding analytical predictions. Unsatisfactory correlation of test and analysis results occurred for tubes 2 and 4 and these comparisons are not shown. Work is underway to improve the analytical models of these tubes. Test results clearly show that the embedded rubber layers significantly increase structural modal damping as well as decrease natural vibration frequencies.

  18. Solution-based analysis of multiple analytes by a sensor array: toward the development of an electronic tongue

    NASA Astrophysics Data System (ADS)

    Savoy, Steven M.; Lavigne, John J.; Yoo, J. S.; Wright, John; Rodriguez, Marc; Goodey, Adrian; McDoniel, Bridget; McDevitt, John T.; Anslyn, Eric V.; Shear, Jason B.; Ellington, Andrew D.; Neikirk, Dean P.

    1998-12-01

    A micromachined sensor array has been developed for the rapid characterization of multi-component mixtures in aqueous media. The sensor functions in a manner analogous to that of the mammalian tongue, using an array composed of individually immobilized polystyrene-polyethylene glycol composite microspheres selectively arranged in micromachined etch cavities localized o n silicon wafers. Sensing occurs via colorimetric or fluorometric changes to indicator molecules that are covalently bound to amine termination sites on the polymeric microspheres. The hybrid micromachined structure has been interfaced directly to a charged-coupled-device that is used for the simultaneous acquisition of the optical data from the individually addressable `taste bud' elements. With the miniature sensor array, acquisition of data streams composed of red, green, and blue color patterns distinctive for the analytes in the solution are rapidly acquired. The unique combination of carefully chosen reporter molecules with water permeable microspheres allows for the simultaneous detection and quantification of a variety of analytes. The fabrication of the sensor structures and the initial colorimetric and fluorescent responses for pH, Ca+2, Ce+3, and sugar are reported. Interface to microfluidic components should also be possible, producing a complete sampling/sensing system.

  19. Analytical studies on ascosin, candicidin and levorin multicomponent antifungal antibiotic complexes. The stereostructure of ascosin A2

    NASA Astrophysics Data System (ADS)

    Szczeblewski, Paweł; Laskowski, Tomasz; Kubacki, Bartosz; Dziergowska, Marta; Liczmańska, Magda; Grynda, Jakub; Kubica, Paweł; Kot-Wasik, Agata; Borowski, Edward

    2017-01-01

    In the class of polyene macrolides, there is a subgroup of aromatic heptaenes, which exhibit the highest antifungal activity within this type of antibiotics. Yet, due to their complex nature, aromatic heptaenes were not extensively studied and their potential as drugs is currently underexploited. Moreover, there are many inconsistencies in the literature regarding the composition and the structures of the individual components of the aromatic heptaene complexes. Inspired by one of such cases, herein we conducted the analytical studies on ascosin, candicidin and levorin using HPLC-DAD-(ESI)Q-TOF techniques. The resulting chromatograms and the molecular masses of the individual components of these three complexes strongly indicated that the major components of ascosin, candicidin and levorin are structurally identical. In order to validate these results, the main component of previously structurally uncharacterized ascosin was derivatized, isolated and subjected to 2D NMR studies. The resulting structure of the ascosin’s main component, herein named ascosin A2, was shown to be identical with the earlier reported structures of the main components of candicidin and levorin complexes: candicidin D and levorin A2. In the end, all the structural knowledge regarding these three antibiotic complexes was gathered, systematized and completed, and the new nomenclature was proposed.

  20. Enhanced hydrogen evolution performance of ultra thin nanoslice/nanopetal structured XS{sub 2} (X = W, Mo): From experiment to theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Honglin; Tang, Zheng; Zhu, Ziqiang

    2016-07-14

    The production of H{sub 2} through water splitting to make the reaction process economical and friendly has attracted a lot attention. In this work, we synthesized the novel well-defined nanostructured WS{sub 2}/MoS{sub 2} composite for using as the electrocatalyst of hydrogen evolution. The final obtained nanoslice/nanopetal nanostructured WS{sub 2}/MoS{sub 2} composite possessed massive active sites that originated from its well-defined hierarchical structure with densely stacked MoS{sub 2} nanopetals. The synthesized composite exhibited significantly enhanced hydrogen evolution reaction (HER) activity and clearly superior to the pristine MoS{sub 2}/WS{sub 2}. With the purpose to give a theoretical explanation of the corresponding enhancementmore » mechanism, the first-principles investigation based on the density functional theory was further employed to survey the electronic properties of different structures. Charge density difference and Bader charge analyses revealed that electrons could directional transfer from WS{sub 2} to MoS{sub 2} and provided an “electron-rich” environment, which was beneficial to the improvement of HER efficiency. These analytical methods will necessarily offer new angles to explain the enhancement mechanism of HER processes regarding the interaction between WS{sub 2} and MoS{sub 2}, which can accurately elucidate the reason why composite structure exhibits a better HER performance based on the experimental results.« less

  1. Physics-Based Simulation and Experiment on Blast Protection of Infill Walls and Sandwich Composites Using New Generation of Nano Particle Reinforced Materials

    NASA Astrophysics Data System (ADS)

    Irshidat, Mohammad

    A critical issue for the development of nanotechnology is our ability to understand, model, and simulate the behavior of small structures and to make the connection between nano structure properties and their macroscopic functions. Material modeling and simulation helps to understand the process, to set the objectives that could guide laboratory efforts, and to control material structures, properties, and processes at physical implementation. These capabilities are vital to engineering design at the component and systems level. In this research, experimental-computational-analytical program was employed to investigate the performance of the new generation of polymeric nano-composite materials, like nano-particle reinforced elastomeric materials (NPREM), for the protection of masonry structures against blast loads. New design tools for using these kinds of materials to protect Infill Walls (e.g. masonry walls) against blast loading were established. These tools were also extended to cover other type of panels like sandwich composites. This investigation revealed that polymeric nano composite materials are strain rate sensitive and have large amount of voids distributed randomly inside the materials. Results from blast experiments showed increase in ultimate flexural resistance achieved by both unreinforced and nano reinforced polyurea retrofit systems applied to infill masonry walls. It was also observed that a thin elastomeric coating on the interior face of the walls could be effective at minimizing the fragmentation resulting from blast. More conclusions are provided with recommended future research.

  2. Determining the composition of gold nanoparticles: a compilation of shapes, sizes, and calculations using geometric considerations.

    PubMed

    Mori, Taizo; Hegmann, Torsten

    2016-01-01

    Size, shape, overall composition, and surface functionality largely determine the properties and applications of metal nanoparticles. Aside from well-defined metal clusters, their composition is often estimated assuming a quasi-spherical shape of the nanoparticle core. With decreasing diameter of the assumed circumscribed sphere, particularly in the range of only a few nanometers, the estimated nanoparticle composition increasingly deviates from the real composition, leading to significant discrepancies between anticipated and experimentally observed composition, properties, and characteristics. We here assembled a compendium of tables, models, and equations for thiol-protected gold nanoparticles that will allow experimental scientists to more accurately estimate the composition of their gold nanoparticles using TEM image analysis data. The estimates obtained from following the routines described here will then serve as a guide for further analytical characterization of as-synthesized gold nanoparticles by other bulk (thermal, structural, chemical, and compositional) and surface characterization techniques. While the tables, models, and equations are dedicated to gold nanoparticles, the composition of other metal nanoparticle cores with face-centered cubic lattices can easily be estimated simply by substituting the value for the radius of the metal atom of interest.

  3. Design of SC walls and slabs for impulsive loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varma, Amit H.

    2015-11-11

    Reinforced concrete (RC) structures have historically been the preferred choice for blast resistant structures because of their mass and the ductility provided by steel reinforcement. Steel-plate composite (SC) walls are a viable alternative to RC for protecting the infrastructure against explosive threats. SC structures consist of two steel faceplates with a plain concrete core between them. The steel faceplates are anchored to the concrete using stud anchors and connected to each other using tie bars. SC structures provide mass from the concrete infill and ductility from the continuous external steel faceplates. This dissertation presents findings and recommendations from experimental andmore » analytical investigations of the performance of SC walls subjected to far-field blast loads.« less

  4. Analytical and experimental studies on detection of longitudinal, L and inverted T cracks in isotropic and bi-material beams based on changes in natural frequencies

    NASA Astrophysics Data System (ADS)

    Ravi, J. T.; Nidhan, S.; Muthu, N.; Maiti, S. K.

    2018-02-01

    An analytical method for determination of dimensions of longitudinal crack in monolithic beams, based on frequency measurements, has been extended to model L and inverted T cracks. Such cracks including longitudinal crack arise in beams made of layered isotropic or composite materials. A new formulation for modelling cracks in bi-material beams is presented. Longitudinal crack segment sizes, for L and inverted T cracks, varying from 2.7% to 13.6% of length of Euler-Bernoulli beams are considered. Both forward and inverse problems have been examined. In the forward problems, the analytical results are compared with finite element (FE) solutions. In the inverse problems, the accuracy of prediction of crack dimensions is verified using FE results as input for virtual testing. The analytical results show good agreement with the actual crack dimensions. Further, experimental studies have been done to verify the accuracy of the analytical method for prediction of dimensions of three types of crack in isotropic and bi-material beams. The results show that the proposed formulation is reliable and can be employed for crack detection in slender beam like structures in practice.

  5. Modern analytics for synthetically derived complex drug substances: NMR, AFFF-MALS, and MS tests for glatiramer acetate.

    PubMed

    Rogstad, Sarah; Pang, Eric; Sommers, Cynthia; Hu, Meng; Jiang, Xiaohui; Keire, David A; Boyne, Michael T

    2015-11-01

    Glatiramer acetate (GA) is a mixture of synthetic copolymers consisting of four amino acids (glutamic acid, lysine, alanine, and tyrosine) with a labeled molecular weight range of 5000 to 9000 Da. GA is marketed as Copaxone™ by Teva for the treatment of multiple sclerosis. Here, the agency has evaluated the structure and composition of GA and a commercially available comparator, Copolymer-1. Modern analytical technologies which can characterize these complex mixtures are desirable for analysis of their comparability and structural "sameness." In the studies herein, a molecular fingerprinting approach is taken using mass-accurate mass spectrometry (MS) analysis, nuclear magnetic resonance (NMR) (1D-(1)H-NMR, 1D-(13)C-NMR, and 2D NMR), and asymmetric field flow fractionation (AFFF) coupled with multi-angle light scattering (MALS) for an in-depth characterization of three lots of the marketplace drug and a formulated sample of the comparator. Statistical analyses were applied to the MS and AFFF-MALS data to assess these methods' ability to detect analytical differences in the mixtures. The combination of multiple orthogonal measurements by liquid chromatography coupled with MS (LC-MS), AFFF-MALS, and NMR on the same sample set was found to be fit for the intended purpose of distinguishing analytical differences between these complex mixtures of peptide chains.

  6. An Investigation of Reliability Models for Ceramic Matrix Composites and their Implementation into Finite Element Codes

    NASA Technical Reports Server (NTRS)

    Duffy, Stephen F.

    1998-01-01

    The development of modeling approaches for the failure analysis of ceramic-based material systems used in high temperature environments was the primary objective of this research effort. These materials have the potential to support many key engineering technologies related to the design of aeropropulsion systems. Monolithic ceramics exhibit a number of useful properties such as retention of strength at high temperatures, chemical inertness, and low density. However, the use of monolithic ceramics has been limited by their inherent brittleness and a large variation in strength. This behavior has motivated material scientists to reinforce the monolithic material with a ceramic fiber. The addition of a second ceramic phase with an optimized interface increases toughness and marginally increases strength. The primary purpose of the fiber is to arrest crack growth, not to increase strength. The material systems of interest in this research effort were laminated ceramic matrix composites, as well as two- and three- dimensional fabric reinforced ceramic composites. These emerging composite systems can compete with metals in many demanding applications. However, the ongoing metamorphosis of ceramic composite material systems, and the lack of standardized design data has in the past tended to minimize research efforts related to structural analysis. Many structural components fabricated from ceramic matrix composites (CMC) have been designed by "trial and error." The justification for this approach lies in the fact that during the initial developmental phases for a material system fabrication issues are paramount. Emphasis is placed on demonstrating feasibility rather than fully understanding the processes controlling mechanical behavior. This is understandable during periods of rapid improvements in material properties for any composite system. But to avoid the ad hoc approach, the analytical methods developed under this effort can be used to develop rational structural design protocols.

  7. Lateral Torsional Buckling of Anisotropic Laminated Composite Beams Subjected to Various Loading and Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Ahmadi, Habiburrahman

    Thin-walled structures are major components in many engineering applications. When a thin-walled slender beam is subjected to lateral loads, causing moments, the beam may buckle by a combined lateral bending and twisting of cross-section, which is called lateral-torsional buckling. A generalized analytical approach for lateral-torsional buckling of anisotropic laminated, thin-walled, rectangular cross-section composite beams under various loading conditions (namely, pure bending and concentrated load) and boundary conditions (namely, simply supported and cantilever) was developed using the classical laminated plate theory (CLPT), with all considered assumptions, as a basis for the constitutive equations. Buckling of such type of members has not been addressed in the literature. Closed form buckling expressions were derived in terms of the lateral, torsional and coupling stiffness coefficients of the overall composite. These coefficients were obtained through dimensional reduction by static condensation of the 6x6 constitutive matrix mapped into an effective 2x2 coupled weak axis bending-twisting relationship. The stability of the beam under different geometric and material parameters, like length/height ratio, ply thickness, and ply orientation, was investigated. The analytical formulas were verified against finite element buckling solutions using ABAQUS for different lamination orientations showing excellent accuracy.

  8. Physicochemical characterisation and investigation of the bonding mechanisms of API-titanate nanotube composites as new drug carrier systems.

    PubMed

    Sipos, Barbara; Pintye-Hódi, Klára; Kónya, Zoltán; Kelemen, András; Regdon, Géza; Sovány, Tamás

    2017-02-25

    Titanate nanotube (TNT) has recently been explored as a new carrier material for active pharmaceutical ingredients (API). The aim of the present work was to reveal the physicochemical properties of API-TNT composites, focusing on the interactions between the TNTs and the incorporated APIs. Drugs belonging to different Biopharmaceutical Classification System (BCS) classes were loaded into TNTs: diltiazem hydrochloride (BCS I.), diclofenac sodium (BCS II.), atenolol (BCS III.) and hydrochlorothiazide (BCS IV.). Experimental results demonstrated that it is feasible for spiral cross-sectioned titanate nanotubes to carry drugs and maintain their bioactivity. The structural properties of the composites were characterized by a range of analytical techniques, including FT-IR, DSC, TG-MS, etc. The interactions between APIs and TNTs were identified as electrostatic attractions, mainly dominated by hydrogen bonds. Based on the results, it can be stated that the strength of the association depends on the hydrogen donor strength of the API. The drug release of incorporated APIs was evaluated from compressed tablets and compared to that of pure APIs. Differences noticed in the dissolution profiles due to incorporation showed a correlation with the strength of interactions between the APIs and the TNTs observed in the above analytical studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Nonlinear Dynamic Behavior of Impact Damage in a Composite Skin-Stiffener Structure

    NASA Technical Reports Server (NTRS)

    Ooijevaar, T. H.; Rogge, M. D.; Loendersloot, R.; Warnet, L.; Akkerman, R.; deBoer, A.

    2013-01-01

    One of the key issues in composite structures for aircraft applications is the early identification of damage. Often, service induced damage does not involve visible plastic deformation, but internal matrix related damage, like delaminations. A wide range of technologies, comprising global vibration and local wave propagation methods can be employed for health monitoring purposes. Traditional low frequency modal analysis based methods are linear methods. The effectiveness of these methods is often limited since they rely on a stationary and linear approximation of the system. The nonlinear interaction between a low frequency wave field and a local impact induced skin-stiffener failure is experimentally demonstrated in this paper. The different mechanisms that are responsible for the nonlinearities (opening, closing and contact) of the distorted harmonic waveforms are separated with the help of phase portraits. A basic analytical model is employed to support the observations.

  10. Probabilistic structural analysis using a general purpose finite element program

    NASA Astrophysics Data System (ADS)

    Riha, D. S.; Millwater, H. R.; Thacker, B. H.

    1992-07-01

    This paper presents an accurate and efficient method to predict the probabilistic response for structural response quantities, such as stress, displacement, natural frequencies, and buckling loads, by combining the capabilities of MSC/NASTRAN, including design sensitivity analysis and fast probability integration. Two probabilistic structural analysis examples have been performed and verified by comparison with Monte Carlo simulation of the analytical solution. The first example consists of a cantilevered plate with several point loads. The second example is a probabilistic buckling analysis of a simply supported composite plate under in-plane loading. The coupling of MSC/NASTRAN and fast probability integration is shown to be orders of magnitude more efficient than Monte Carlo simulation with excellent accuracy.

  11. Microstructural Influence on Deformation and Fatigue Life of Composites Using the Generalized Method of Cells

    NASA Technical Reports Server (NTRS)

    Arnold, S. M.; Murthy, P.; Bednarcyk, B. A.; Pineda, E. J.

    2015-01-01

    A fully coupled deformation and damage approach to modeling the response of composite materials and composite laminates is presented. It is based on the semi-­-analytical generalized method of cells (GMC) micromechanics model as well as its higher fidelity counterpart, HFGMC, both of which provide closed-form constitutive equations for composite materials as well as the micro scale stress and strain fields in the composite phases. The provided constitutive equations allow GMC and HFGMC to function within a higher scale structural analysis (e.g., finite element analysis or lamination theory) to represent a composite material point, while the availability of the micro fields allow the incorporation of lower scale sub­-models to represent local phenomena in the fiber and matrix. Further, GMC's formulation performs averaging when applying certain governing equations such that some degree of microscale field accuracy is surrendered in favor of extreme computational efficiency, rendering the method quite attractive as the centerpiece in a integrated computational material engineering (ICME) structural analysis; whereas HFGMC retains this microscale field accuracy, but at the price of significantly slower computational speed. Herein, the sensitivity of deformation and the fatigue life of graphite/epoxy PMC composites, with both ordered and disordered microstructures, has been investigated using this coupled deformation and damage micromechanics based approach. The local effects of fiber breakage and fatigue damage are included as sub-models that operate on the microscale for the individual composite phases. For analysis of laminates, classical lamination theory is employed as the global or structural scale model, while GMC/HFGMC is embedded to operate on the microscale to simulate the behavior of the composite material within each laminate layer. A key outcome of this study is the statistical influence of microstructure and micromechanics idealization (GMC or HFGMC) on the overall accuracy of unidirectional and laminated composite deformation and fatigue response.

  12. Innovative Structural Materials and Sections with Strain Hardening Cementitious Composites

    NASA Astrophysics Data System (ADS)

    Dey, Vikram

    The motivation of this work is based on development of new construction products with strain hardening cementitious composites (SHCC) geared towards sustainable residential applications. The proposed research has three main objectives: automation of existing manufacturing systems for SHCC laminates; multi-level characterization of mechanical properties of fiber, matrix, interface and composites phases using servo-hydraulic and digital image correlation techniques. Structural behavior of these systems were predicted using ductility based design procedures using classical laminate theory and structural mechanics. SHCC sections are made up of thin sections of matrix with Portland cement based binder and fine aggregates impregnating continuous one-dimensional fibers in individual or bundle form or two/three dimensional woven, bonded or knitted textiles. Traditional fiber reinforced concrete (FRC) use random dispersed chopped fibers in the matrix at a low volume fractions, typically 1-2% to avoid to avoid fiber agglomeration and balling. In conventional FRC, fracture localization occurs immediately after the first crack, resulting in only minor improvement in toughness and tensile strength. However in SHCC systems, distribution of cracking throughout the specimen is facilitated by the fiber bridging mechanism. Influence of material properties of yarn, composition, geometry and weave patterns of textile in the behavior of laminated SHCC skin composites were investigated. Contribution of the cementitious matrix in the early age and long-term performance of laminated composites was studied with supplementary cementitious materials such as fly ash, silica fume, and wollastonite. A closed form model with classical laminate theory and ply discount method, coupled with a damage evolution model was utilized to simulate the non-linear tensile response of these composite materials. A constitutive material model developed earlier in the group was utilized to characterize and correlate the behavior of these structural composites under uniaxial tension and flexural loading responses. Development and use of analytical models enables optimal design for application of these materials in structural applications. Another area of immediate focus is the development of new construction products from SHCC laminates such as angles, channels, hat sections, closed sections with optimized cross sections. Sandwich composites with stress skin-cellular core concept were also developed to utilize strength and ductility of fabric reinforced skin in addition to thickness, ductility, and thermal benefits of cellular core materials. The proposed structurally efficient and durable sections promise to compete with wood and light gage steel based sections for lightweight construction and panel application.

  13. [Composition of chicken and quail eggs].

    PubMed

    Closa, S J; Marchesich, C; Cabrera, M; Morales, J C

    1999-06-01

    Qualified food composition data on lipids composition are needed to evaluate intakes as a risk factor in the development of heart disease. Proximal composition, cholesterol and fatty acid content of chicken and quail eggs, usually consumed or traded, were analysed. Proximal composition were determined using AOAC (1984) specific techniques; lipids were extracted by a Folch's modified technique and cholesterol and fatty acids were determined by gas chromatography. Results corroborate the stability of eggs composition. Cholesterol content of quail eggs is similar to chicken eggs, but it is almost the half content of data registered in Handbook 8. Differences may be attributed to the analytical methodology used to obtain them. This study provides data obtained with up-date analytical techniques and accessory information useful for food composition tables.

  14. Design, analysis, and testing of a metal matrix composite web/flange intersection

    NASA Technical Reports Server (NTRS)

    Biggers, S. B.; Knight, N. F., Jr.; Moran, S. G.; Olliffe, R.

    1992-01-01

    An experimental and analytical program to study the local design details of a typical T-shaped web/flange intersection made from a metal matrix composite is described. Loads creating flange bending were applied to specimens having different designs and boundary conditions. Finite element analyses were conducted on models of the test specimens to predict the structural response. The analyses correctly predict failure load, mode, and location in the fillet material in the intersection region of the web and the flange when specimen quality is good. The test program shows the importance of fabrication quality in the intersection region. The full-scale test program that led to the investigation of this local detail is also described.

  15. The nonlinear viscoelastic response of resin matrix composite laminates

    NASA Technical Reports Server (NTRS)

    Hiel, C.; Cardon, A. H.; Brinson, H. F.

    1984-01-01

    Possible treatments of the nonlinear viscoelastic behavior of materials are reviewed. A thermodynamic based approach, developed by Schapery, is discussed and used to interpret the nonlinear viscoelastic response of a graphite epoxy laminate, T300/934. Test data to verify the analysis for Fiberite 934 neat resin as well as transverse and shear properties of the unidirectional T300/934 composited are presented. Long time creep characteristics as a function of stress level and temperature are generated. Favorable comparisons between the traditional, graphical, and the current analytical approaches are shown. A free energy based rupture criterion is proposed as a way to estimate the life that remains in a structure at any time.

  16. Tensile buckling of advanced turboprops

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Aiello, R. A.

    1982-01-01

    Theoretical studies were conducted to determine analytically the tensile buckling of advanced propeller blades (turboprops) in centrifugal fields, as well as the effects of tensile buckling on other types of structural behavior, such as resonant frequencies and flutter. Theoretical studies were also conducted to establish the advantages of using high performance composite turboprops as compared to titanium. Results show that the vibration frequencies are not affected appreciably prior to 80 percent of the tensile speed. Some frequencies approach zero as the tensile buckling speed is approached. Composites provide a substantial advantage over titanium on a buckling speed to weight basis. Vibration modes change as the rotor speed is increased and substantial geometric coupling is present.

  17. Compendium of Abstracts and Viewgraphs. International Workshop on Composite Materials and Structures for Rotorcraft (2nd) Held Rensselaer Polytechnic Institute, Troy, New York on 14-15 September 1989

    DTIC Science & Technology

    1989-11-30

    The design of Composite Rotor Blades requires the analysis of tridimen- sional stress states including interlaminar stresses. Despite the powerfulness ...1500 grid points (-7000 DOF’s) * 350 8- noded shell elements ANALYTICAL SOLUTION General Differential Equation D22W1i + Elltf =otf - w y , W(x) L...STRAIN a (s) s = s22 K2 (1P) = (K12)2 / 11K22 GRiEF SPAR E+20,-70,+20,-70,-70,+201 NACA 0012 2.60 5 FE 802 6 S03 2 801 0o1 20 30 40 RADIAL STATION . IN

  18. Fully Coupled Micro/Macro Deformation, Damage, and Failure Prediction for SiC/Ti-15-3 Laminates

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Arnold, Steven M.; Lerch, Brad A.

    2001-01-01

    The deformation, failure, and low cycle fatigue life of SCS-6/Ti-15-3 composites are predicted using a coupled deformation and damage approach in the context of the analytical generalized method of cells (GMC) micromechanics model. The local effects of inelastic deformation, fiber breakage, fiber-matrix interfacial debonding, and fatigue damage are included as sub-models that operate on the micro scale for the individual composite phases. For the laminate analysis, lamination theory is employed as the global or structural scale model, while GMC is embedded to operate on the meso scale to simulate the behavior of the composite material within each laminate layer. While the analysis approach is quite complex and multifaceted, it is shown, through comparison with experimental data, to be quite accurate and realistic while remaining extremely efficient.

  19. Fabrication, Characterization, and Evaluation of Bionanocomposites Based on Natural Polymers and Antibiotics for Wound Healing Applications.

    PubMed

    Rădulescu, Marius; Holban, Alina Maria; Mogoantă, Laurențiu; Bălşeanu, Tudor-Adrian; Mogoșanu, George Dan; Savu, Diana; Popescu, Roxana Cristina; Fufă, Oana; Grumezescu, Alexandru Mihai; Bezirtzoglou, Eugenia; Lazar, Veronica; Chifiriuc, Mariana Carmen

    2016-06-10

    The aim of our research activity was to obtain a biocompatible nanostructured composite based on naturally derived biopolymers (chitin and sodium alginate) loaded with commercial antibiotics (either Cefuroxime or Cefepime) with dual functions, namely promoting wound healing and assuring the local delivery of the loaded antibiotic. Compositional, structural, and morphological evaluations were performed by using the thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and fourier transform infrared spectroscopy (FTIR) analytical techniques. In order to quantitatively and qualitatively evaluate the biocompatibility of the obtained composites, we performed the tetrazolium-salt (MTT) and agar diffusion in vitro assays on the L929 cell line. The evaluation of antimicrobial potential was evaluated by the viable cell count assay on strains belonging to two clinically relevant bacterial species (i.e., Escherichia coli and Staphylococcus aureus).

  20. Strategy for the elucidation of elemental compositions of trace analytes based on a mass resolution of 100,000 full width at half maximum.

    PubMed

    Kaufmann, Anton

    2010-07-30

    Elemental compositions (ECs) can be elucidated by evaluating the high-resolution mass spectra of unknown or suspected unfragmented analyte ions. Classical approaches utilize the exact mass of the monoisotopic peak (M + 0) and the relative abundance of isotope peaks (M + 1 and M + 2). The availability of high-resolution instruments like the Orbitrap currently permits mass resolutions up to 100,000 full width at half maximum. This not only allows the determination of relative isotopic abundances (RIAs), but also the extraction of other diagnostic information from the spectra, such as fully resolved signals originating from (34)S isotopes and fully or partially resolved signals related to (15)N isotopes (isotopic fine structure). Fully and partially resolved peaks can be evaluated by visual inspection of the measured peak profiles. This approach is shown to be capable of correctly discarding many of the EC candidates which were proposed by commercial EC calculating algorithms. Using this intuitive strategy significantly extends the upper mass range for the successful elucidation of ECs. Copyright 2010 John Wiley & Sons, Ltd.

  1. Methods of chemical and phase composition analysis of gallstones

    NASA Astrophysics Data System (ADS)

    Suvorova, E. I.; Pantushev, V. V.; Voloshin, A. E.

    2017-11-01

    This review presents the instrumental methods used for chemical and phase composition investigation of gallstones. A great body of data has been collected in the literature on the presence of elements and their concentrations, obtained by fluorescence microscopy, X-ray fluorescence spectroscopy, neutron activation analysis, proton (particle) induced X-ray emission, atomic absorption spectroscopy, high-resolution gamma-ray spectrometry, electron paramagnetic resonance. Structural methods—powder X-ray diffraction, infrared spectroscopy, Raman spectroscopy—provide information about organic and inorganic phases in gallstones. Stone morphology was studied at the macrolevel with optical microscopy. Results obtained by analytical scanning and transmission electron microscopy with X-ray energy dispersive spectrometry are discussed. The chemical composition and structure of gallstones determine the strategy of removing stone from the body and treatment of patients: surgery or dissolution in the body. Therefore one chapter of the review describes the potential of dissolution methods. Early diagnosis and appropriate treatment of the disease depend on the development of clinical methods for in vivo investigation, which gave grounds to present the main characteristics and potential of ultrasonography (ultrasound scanning), magnetic resonance imaging, and X-ray computed tomography.

  2. The Effect of Temperature Dependent Material Nonlinearities on the Response of Piezoelectric Composite Plates

    NASA Technical Reports Server (NTRS)

    Lee, Ho-Jun; Saravanos, Dimitris A.

    1997-01-01

    Previously developed analytical formulations for piezoelectric composite plates are extended to account for the nonlinear effects of temperature on material properties. The temperature dependence of the composite and piezoelectric properties are represented at the material level through the thermopiezoelectric constitutive equations. In addition to capturing thermal effects from temperature dependent material properties, this formulation also accounts for thermal effects arising from: (1) coefficient of thermal expansion mismatch between the various composite and piezoelectric plies and (2) pyroelectric effects on the piezoelectric material. The constitutive equations are incorporated into a layerwise laminate theory to provide a unified representation of the coupled mechanical, electrical, and thermal behavior of smart structures. Corresponding finite element equations are derived and implemented for a bilinear plate element with the inherent capability to model both the active and sensory response of piezoelectric composite laminates. Numerical studies are conducted on a simply supported composite plate with attached piezoceramic patches under thermal gradients to investigate the nonlinear effects of material property temperature dependence on the displacements, sensory voltages, active voltages required to minimize thermal deflections, and the resultant stress states.

  3. Analytical and numerical techniques for predicting the interfacial stresses of wavy carbon nanotube/polymer composites

    NASA Astrophysics Data System (ADS)

    Yazdchi, K.; Salehi, M.; Shokrieh, M. M.

    2009-03-01

    By introducing a new simplified 3D representative volume element for wavy carbon nanotubes, an analytical model is developed to study the stress transfer in single-walled carbon nanotube-reinforced polymer composites. Based on the pull-out modeling technique, the effects of waviness, aspect ratio, and Poisson ratio on the axial and interfacial shear stresses are analyzed in detail. The results of the present analytical model are in a good agreement with corresponding results for straight nanotubes.

  4. Arbitrarily accurate twin composite π -pulse sequences

    NASA Astrophysics Data System (ADS)

    Torosov, Boyan T.; Vitanov, Nikolay V.

    2018-04-01

    We present three classes of symmetric broadband composite pulse sequences. The composite phases are given by analytic formulas (rational fractions of π ) valid for any number of constituent pulses. The transition probability is expressed by simple analytic formulas and the order of pulse area error compensation grows linearly with the number of pulses. Therefore, any desired compensation order can be produced by an appropriate composite sequence; in this sense, they are arbitrarily accurate. These composite pulses perform equally well as or better than previously published ones. Moreover, the current sequences are more flexible as they allow total pulse areas of arbitrary integer multiples of π .

  5. Spatially resolved thermal desorption/ionization coupled with mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jesse, Stephen; Van Berkel, Gary J; Ovchinnikova, Olga S

    2013-02-26

    A system and method for sub-micron analysis of a chemical composition of a specimen are described. The method includes providing a specimen for evaluation and a thermal desorption probe, thermally desorbing an analyte from a target site of said specimen using the thermally active tip to form a gaseous analyte, ionizing the gaseous analyte to form an ionized analyte, and analyzing a chemical composition of the ionized analyte. The thermally desorbing step can include heating said thermally active tip to above 200.degree. C., and positioning the target site and the thermally active tip such that the heating step forms themore » gaseous analyte. The thermal desorption probe can include a thermally active tip extending from a cantilever body and an apex of the thermally active tip can have a radius of 250 nm or less.« less

  6. ASTROP2 users manual: A program for aeroelastic stability analysis of propfans

    NASA Technical Reports Server (NTRS)

    Narayanan, G. V.; Kaza, K. R. V.

    1991-01-01

    A user's manual is presented for the aeroelastic stability and response of propulsion systems computer program called ASTROP2. The ASTROP2 code preforms aeroelastic stability analysis of rotating propfan blades. This analysis uses a two-dimensional, unsteady cascade aerodynamics model and a three-dimensional, normal-mode structural model. Analytical stability results from this code are compared with published experimental results of a rotating composite advanced turboprop model and of nonrotating metallic wing model.

  7. Modeling Carbon-Black/Polymer Composite Sensors

    PubMed Central

    Lei, Hua; Pitt, William G.; McGrath, Lucas K.; Ho, Clifford K.

    2012-01-01

    Conductive polymer composite sensors have shown great potential in identifying gaseous analytes. To more thoroughly understand the physical and chemical mechanisms of this type of sensor, a mathematical model was developed by combining two sub-models: a conductivity model and a thermodynamic model, which gives a relationship between the vapor concentration of analyte(s) and the change of the sensor signals. In this work, 64 chemiresistors representing eight different carbon concentrations (8–60 vol% carbon) were constructed by depositing thin films of a carbon-black/polyisobutylene composite onto concentric spiral platinum electrodes on a silicon chip. The responses of the sensors were measured in dry air and at various vapor pressures of toluene and trichloroethylene. Three parameters in the conductivity model were determined by fitting the experimental data. It was shown that by applying this model, the sensor responses can be adequately predicted for given vapor pressures; furthermore the analyte vapor concentrations can be estimated based on the sensor responses. This model will guide the improvement of the design and fabrication of conductive polymer composite sensors for detecting and identifying mixtures of organic vapors. PMID:22518071

  8. Carbon-carbon primary structure for SSTO vehicles

    NASA Astrophysics Data System (ADS)

    Croop, Harold C.; Lowndes, Holland B.

    1997-01-01

    A hot structures development program is nearing completion to validate use of carbon-carbon composite structure for primary load carrying members in a single-stage-to-orbit, or SSTO, vehicle. A four phase program was pursued which involved design development and fabrication of a full-scale wing torque box demonstration component. The design development included vehicle and component selection, design criteria and approach, design data development, demonstration component design and analysis, test fixture design and analysis, demonstration component test planning, and high temperature test instrumentation development. The fabrication effort encompassed fabrication of structural elements for mechanical property verification as well as fabrication of the demonstration component itself and associated test fixturing. The demonstration component features 3D woven graphite preforms, integral spars, oxidation inhibited matrix, chemical vapor deposited (CVD) SiC oxidation protection coating, and ceramic matrix composite fasteners. The demonstration component has been delivered to the United States Air Force (USAF) for testing in the Wright Laboratory Structural Test Facility, WPAFB, OH. Multiple thermal-mechanical load cycles will be applied simulating two atmospheric cruise missions and one orbital mission. This paper discusses the overall approach to validation testing of the wing box component and presents some preliminary analytical test predictions.

  9. Hybrid Wing-Body (HWB) Pressurized Fuselage Modeling, Analysis, and Design for Weight Reduction

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    2012-01-01

    This paper describes the interim progress for an in-house study that is directed toward innovative structural analysis and design of next-generation advanced aircraft concepts, such as the Hybrid Wing-Body (HWB) and the Advanced Mobility Concept-X flight vehicles, for structural weight reduction and associated performance enhancement. Unlike the conventional, skin-stringer-frame construction for a cylindrical fuselage, the box-type pressurized fuselage panels in the HWB undergo significant deformation of the outer aerodynamic surfaces, which must be minimized without significant structural weight penalty. Simple beam and orthotropic plate theory is first considered for sizing, analytical verification, and possible equivalent-plate analysis with appropriate simplification. By designing advanced composite stiffened-shell configurations, significant weight reduction may be possible compared with the sandwich and ribbed-shell structural concepts that have been studied previously. The study involves independent analysis of the advanced composite structural concepts that are presently being developed by The Boeing Company for pressurized HWB flight vehicles. High-fidelity parametric finite-element models of test coupons, panels, and multibay fuselage sections, were developed for conducting design studies and identifying critical areas of potential failure. Interim results are discussed to assess the overall weight/strength advantages.

  10. Aeroservoelastic and Structural Dynamics Research on Smart Structures Conducted at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria Rivas; Wilkie, W. Keats; Moses, Robert W.; Lake, Renee C.; Florance, Jennifer Pinkerton; Wieseman, Carol D.; Reaves, Mercedes C.; Taleghani, Barmac K.; Mirick, Paul H.; Wilbur, Matthew L.

    1998-01-01

    An overview of smart structures research currently underway at the NASA Langley Research Center in the areas of aeroservoelasticity and structural dynamics is presented. Analytical and experimental results, plans, potential technology pay-offs, and challenges are discussed. The goal of this research is to develop the enabling technologies to actively and passively control aircraft and rotorcraft vibration and loads using smart devices. These enabling technologies and related research efforts include developing experimentally-validated finite element and aeroservoelastic modeling techniques; conducting bench experimental tests to assess feasibility and understand system trade-offs; and conducting large-scale wind- tunnel tests to demonstrate system performance. The key aeroservoelastic applications of this research include: active twist control of rotor blades using interdigitated electrode piezoelectric composites and active control of flutter, and gust and buffeting responses using discrete piezoelectric patches. In addition, NASA Langley is an active participant in the DARPA/ Air Force Research Laboratory/ NASA/ Northrop Grumman Smart Wing program which is assessing aerodynamic performance benefits using smart materials. Keywords: aeroelasticity, smart structures, piezoelectric actuators, active fiber composites, rotorcraft, buffet load alleviation, individual blade control, aeroservoelasticity, shape memory alloys, damping augmentation, piezoelectric power consumption

  11. Multi-disciplinary optimization of aeroservoelastic systems

    NASA Technical Reports Server (NTRS)

    Karpel, Mordechay

    1990-01-01

    Efficient analytical and computational tools for simultaneous optimal design of the structural and control components of aeroservoelastic systems are presented. The optimization objective is to achieve aircraft performance requirements and sufficient flutter and control stability margins with a minimal weight penalty and without violating the design constraints. Analytical sensitivity derivatives facilitate an efficient optimization process which allows a relatively large number of design variables. Standard finite element and unsteady aerodynamic routines are used to construct a modal data base. Minimum State aerodynamic approximations and dynamic residualization methods are used to construct a high accuracy, low order aeroservoelastic model. Sensitivity derivatives of flutter dynamic pressure, control stability margins and control effectiveness with respect to structural and control design variables are presented. The performance requirements are utilized by equality constraints which affect the sensitivity derivatives. A gradient-based optimization algorithm is used to minimize an overall cost function. A realistic numerical example of a composite wing with four controls is used to demonstrate the modeling technique, the optimization process, and their accuracy and efficiency.

  12. Multidisciplinary optimization of aeroservoelastic systems using reduced-size models

    NASA Technical Reports Server (NTRS)

    Karpel, Mordechay

    1992-01-01

    Efficient analytical and computational tools for simultaneous optimal design of the structural and control components of aeroservoelastic systems are presented. The optimization objective is to achieve aircraft performance requirements and sufficient flutter and control stability margins with a minimal weight penalty and without violating the design constraints. Analytical sensitivity derivatives facilitate an efficient optimization process which allows a relatively large number of design variables. Standard finite element and unsteady aerodynamic routines are used to construct a modal data base. Minimum State aerodynamic approximations and dynamic residualization methods are used to construct a high accuracy, low order aeroservoelastic model. Sensitivity derivatives of flutter dynamic pressure, control stability margins and control effectiveness with respect to structural and control design variables are presented. The performance requirements are utilized by equality constraints which affect the sensitivity derivatives. A gradient-based optimization algorithm is used to minimize an overall cost function. A realistic numerical example of a composite wing with four controls is used to demonstrate the modeling technique, the optimization process, and their accuracy and efficiency.

  13. A combined analytical formulation and genetic algorithm to analyze the nonlinear damage responses of continuous fiber toughened composites

    NASA Astrophysics Data System (ADS)

    Jeon, Haemin; Yu, Jaesang; Lee, Hunsu; Kim, G. M.; Kim, Jae Woo; Jung, Yong Chae; Yang, Cheol-Min; Yang, B. J.

    2017-09-01

    Continuous fiber-reinforced composites are important materials that have the highest commercialized potential in the upcoming future among existing advanced materials. Despite their wide use and value, their theoretical mechanisms have not been fully established due to the complexity of the compositions and their unrevealed failure mechanisms. This study proposes an effective three-dimensional damage modeling of a fibrous composite by combining analytical micromechanics and evolutionary computation. The interface characteristics, debonding damage, and micro-cracks are considered to be the most influential factors on the toughness and failure behaviors of composites, and a constitutive equation considering these factors was explicitly derived in accordance with the micromechanics-based ensemble volume averaged method. The optimal set of various model parameters in the analytical model were found using modified evolutionary computation that considers human-induced error. The effectiveness of the proposed formulation was validated by comparing a series of numerical simulations with experimental data from available studies.

  14. NASA/University JOint VEnture (JOVE) Program: Transverse Shear Moduli Using the Torsional Responses of Rectangular Laminates

    NASA Technical Reports Server (NTRS)

    Bogan, Sam

    2001-01-01

    The first year included a study of the non-visible damage of composite overwrapped pressure vessels with B. Poe of the Materials Branch of Nasa-Langley. Early determinations showed a clear reduction in non-visible damage for thin COPVs when partially pressurized rather than unpressurized. Literature searches on Thicker-wall COPVs revealed surface damage but clearly visible. Analysis of current Analytic modeling indicated that that current COPV models lacked sufficient thickness corrections to predict impact damage. After a comprehensive study of available published data and numerous numerical studies based on observed data from Langley, the analytic framework for modeling the behavior was determined lacking and both Poe and Bogan suggested any short term (3yr) result for Jove would be overly ambitious and emphasis should be placed on transverse shear moduli studies. Transverse shear moduli determination is relevant to the study of fatigue, fracture and aging effects in composite structures. Based on the techniques developed by Daniel & Tsai, Bogan and Gates determined to verify the results for K3B and 8320. A detailed analytic and experimental plan was established and carried out that included variations in layup, width, thickness, and length. As well as loading rate variations to determine effects and relaxation moduli. The additional axial loads during the torsion testing were studied as was the placement of gages along the composite specimen. Of the proposed tasks, all of tasks I and 2 were completed with presentations given at Langley, SEM conferences and ASME/AIAA conferences. Sensitivity issues with the technique associated with the use of servohydraulic test systems for applying the torsional load to the composite specimen limited the torsion range for predictable and repeatable transverse shear properties. Bogan and Gates determined to diverge on research efforts with Gates continuing the experimental testing at Langley and Bogan modeling the apparent non-linear behavior at low torque & angles apparent from the tests.

  15. A new light on Alkaptonuria: A Fourier-transform infrared microscopy (FTIRM) and low energy X-ray fluorescence (LEXRF) microscopy correlative study on a rare disease.

    PubMed

    Mitri, Elisa; Millucci, Lia; Merolle, Lucia; Bernardini, Giulia; Vaccari, Lisa; Gianoncelli, Alessandra; Santucci, Annalisa

    2017-05-01

    Alkaptonuria (AKU) is an ultra-rare disease associated to the lack of an enzyme involved in tyrosine catabolism. This deficiency results in the accumulation of homogentisic acid (HGA) in the form of ochronotic pigment in joint cartilage, leading to a severe arthropathy. Secondary amyloidosis has been also unequivocally assessed as a comorbidity of AKU arthropathy. Composition of ochronotic pigment and how it is structurally related to amyloid is still unknown. We exploited Synchrotron Radiation Infrared and X-Ray Fluorescence microscopies in combination with conventional bio-assays and analytical tools to characterize chemical composition and morphology of AKU cartilage. We evinced that AKU cartilage is characterized by proteoglycans depletion, increased Sodium levels, accumulation of lipids in the peri-lacunar regions and amyloid formation. We also highlighted an increase of aromatic compounds and oxygen-containing species, depletion in overall Magnesium content (although localized in the peri-lacunar region) and the presence of calcium carbonate fragments in proximity of cartilage lacunae. We highlighted common features between AKU and arthropathy, but also specific signatures of the disease, like presence of amyloids and peculiar calcifications. Our analyses provide a unified picture of AKU cartilage, shedding a new light on the disease and opening new perspectives. Ochronotic pigment is a hallmark of AKU and responsible of tissue degeneration. Conventional bio-assays have not yet clarified its composition and its structural relationship with amyloids. The present work proposes new strategies for filling the aforementioned gap that encompass the integration of new analytical approaches with standardized analyses. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Titan's organic aerosols: Molecular composition and structure of laboratory analogues inferred from pyrolysis gas chromatography mass spectrometry analysis

    NASA Astrophysics Data System (ADS)

    Morisson, Marietta; Szopa, Cyril; Carrasco, Nathalie; Buch, Arnaud; Gautier, Thomas

    2016-10-01

    Analogues of Titan's aerosols are of primary interest in the understanding of Titan's atmospheric chemistry and climate, and in the development of in situ instrumentation for future space missions. Numerous studies have been carried out to characterize laboratory analogues of Titan aerosols (tholins), but their molecular composition and structure are still poorly known. If pyrolysis gas chromatography mass spectrometry (pyr-GCMS) has been used for years to give clues about their chemical composition, highly disparate results were obtained with this technique. They can be attributed to the variety of analytical conditions used for pyr-GCMS analyses, and/or to differences in the nature of the analogues analyzed, that were produced with different laboratory set-ups under various operating conditions. In order to have a better description of Titan's tholin's molecular composition by pyr-GCMS, we carried out a systematic study with two major objectives: (i) exploring the pyr-GCMS analytical parameters to find the optimal ones for the detection of a wide range of chemical products allowing a characterization of the tholins composition as comprehensive as possible, and (ii) highlighting the role of the CH4 ratio in the gaseous reactive medium on the tholin's molecular structure. We used a radio-frequency plasma discharge to synthetize tholins with different concentrations of CH4 diluted in N2. The samples were pyrolyzed at temperatures covering the 200-700°C range. The extracted gases were then analyzed by GCMS for their molecular identification. The optimal pyrolysis temperature for characterizing the molecular composition of our tholins by GCMS analysis is found to be 600°C. This temperature choice results from the best compromise between the number of compounds released, the quality of the signal and the appearance of pyrolysis artifacts. About a hundred molecules are identified as pyrolysates. A common major chromatographic pattern appears clearly for all the samples even if the number of released compounds can significantly differ. The hydrocarbon chain content increases in tholins when the CH4 ratio increases. A semi-quantitative study of the nitriles (most abundant chemical family in our chromatograms) released during the pyrolysis shows the existence of a correlation between the amount of a nitrile released and its molecular mass, similarly to the previous quantification of nitriles in the plasma gas-phase. Moreover, numerous nitriles are present both in tholins and in the gas phase, confirming their suspected role in the gas phase as precursors of the solid organic particles.

  17. Evaluating and interpreting cross-taxon congruence: Potential pitfalls and solutions

    NASA Astrophysics Data System (ADS)

    Gioria, Margherita; Bacaro, Giovanni; Feehan, John

    2011-05-01

    Characterizing the relationship between different taxonomic groups is critical to identify potential surrogates for biodiversity. Previous studies have shown that cross-taxa relationships are generally weak and/or inconsistent. The difficulties in finding predictive patterns have often been attributed to the spatial and temporal scales of these studies and on the differences in the measure used to evaluate such relationships (species richness versus composition). However, the choice of the analytical approach used to evaluate cross-taxon congruence inevitably represents a major source of variation. Here, we described the use of a range of methods that can be used to comprehensively assess cross-taxa relationships. To do so, we used data for two taxonomic groups, wetland plants and water beetles, collected from 54 farmland ponds in Ireland. Specifically, we used the Pearson correlation and rarefaction curves to analyse patterns in species richness, while Mantel tests, Procrustes analysis, and co-correspondence analysis were used to evaluate congruence in species composition. We compared the results of these analyses and we described some of the potential pitfalls associated with the use of each of these statistical approaches. Cross-taxon congruence was moderate to strong, depending on the choice of the analytical approach, on the nature of the response variable, and on local and environmental conditions. Our findings indicate that multiple approaches and measures of community structure are required for a comprehensive assessment of cross-taxa relationships. In particular, we showed that selection of surrogate taxa in conservation planning should not be based on a single statistic expressing the degree of correlation in species richness or composition. Potential solutions to the analytical issues associated with the assessment of cross-taxon congruence are provided and the implications of our findings in the selection of surrogates for biodiversity are discussed.

  18. Analysis and experiments for composite laminates with holes and subjected to 4-point bending

    NASA Technical Reports Server (NTRS)

    Shuart, M. J.; Prasad, C. B.

    1990-01-01

    Analytical and experimental results are presented for composite laminates with a hole and subjected to four-point bending. A finite-plate analysis is used to predict moment and strain distributions for six-layer quasi-isotropic laminates and transverse-ply laminates. Experimental data are compared with the analytical results. Experimental and analytical strain results show good agreement for the quasi-isotropic laminates. Failure of the two types of composite laminates is described, and failure strain results are presented as a function of normalized hole diameter. The failure results suggest that the initial failure mechanism for laminates subjected to four-point bending are similar to the initial failure mechanisms for corresponding laminates subjected to uniaxial inplane loadings.

  19. The role of local interaction mechanics in fiber optic smart structures

    NASA Astrophysics Data System (ADS)

    Sirkis, J. S.; Dasgupta, A.

    1993-04-01

    The concept of using 'smart' composite materials/structures with built-in self-diagnostic capabilities for health monitoring involves embedding discrete and/or distributed sensory networks in the host composite material, along with a central and/or distributed artificial intelligence capability for signal processing, data collection, interpretation and diagnostic evaluations. This article concentrates on the sensory functions in 'smart' structure applications and concentrates in particular on optical fiber sensors. Specifically, we present an overview of recent research dealing with the basic mechanics of local interactions between the embedded optical fiber sensors and the surrounding host composite. The term 'local' is defined by length scales on the order of several optical fiber diameters. We examine some generic issues, such as the 'calibration' and 'obtrusivity' of the sensor, and the inherent damage caused by the sensor inclusions to the surrounding host and vice-versa under internal and/or external applied loads. Analytical, numerical and experimental results are presented regarding the influence of local strain concentrations caused by the sensory inclusions on sensor and host performance. The important issues examined are the local mechanistic effects of optical fiber coatings on the behavior of the sensor and the host, and mechanical survivability of optical fibers experiencing quasi-static and time-varying thermomechanical loading.

  20. Core lipid, surface lipid and apolipoprotein composition analysis of lipoprotein particles as a function of particle size in one workflow integrating asymmetric flow field-flow fractionation and liquid chromatography-tandem mass spectrometry

    PubMed Central

    Jones, Jeffery I.; Gardner, Michael S.; Schieltz, David M.; Parks, Bryan A.; Toth, Christopher A.; Rees, Jon C.; Andrews, Michael L.; Carter, Kayla; Lehtikoski, Antony K.; McWilliams, Lisa G.; Williamson, Yulanda M.; Bierbaum, Kevin P.; Pirkle, James L.; Barr, John R.

    2018-01-01

    Lipoproteins are complex molecular assemblies that are key participants in the intricate cascade of extracellular lipid metabolism with important consequences in the formation of atherosclerotic lesions and the development of cardiovascular disease. Multiplexed mass spectrometry (MS) techniques have substantially improved the ability to characterize the composition of lipoproteins. However, these advanced MS techniques are limited by traditional pre-analytical fractionation techniques that compromise the structural integrity of lipoprotein particles during separation from serum or plasma. In this work, we applied a highly effective and gentle hydrodynamic size based fractionation technique, asymmetric flow field-flow fractionation (AF4), and integrated it into a comprehensive tandem mass spectrometry based workflow that was used for the measurement of apolipoproteins (apos A-I, A-II, A-IV, B, C-I, C-II, C-III and E), free cholesterol (FC), cholesterol esters (CE), triglycerides (TG), and phospholipids (PL) (phosphatidylcholine (PC), sphingomyelin (SM), phosphatidylethanolamine (PE), phosphatidylinositol (PI) and lysophosphatidylcholine (LPC)). Hydrodynamic size in each of 40 size fractions separated by AF4 was measured by dynamic light scattering. Measuring all major lipids and apolipoproteins in each size fraction and in the whole serum, using total of 0.1 ml, allowed the volumetric calculation of lipoprotein particle numbers and expression of composition in molar analyte per particle number ratios. Measurements in 110 serum samples showed substantive differences between size fractions of HDL and LDL. Lipoprotein composition within size fractions was expressed in molar ratios of analytes (A-I/A-II, C-II/C-I, C-II/C-III. E/C-III, FC/PL, SM/PL, PE/PL, and PI/PL), showing differences in sample categories with combinations of normal and high levels of Total-C and/or Total-TG. The agreement with previous studies indirectly validates the AF4-LC-MS/MS approach and demonstrates the potential of this workflow for characterization of lipoprotein composition in clinical studies using small volumes of archived frozen samples. PMID:29634782

  1. Software and Dataware for Energy Generation and Consumption Analysis System of Gas Processing Enterprises

    NASA Astrophysics Data System (ADS)

    Dolotovskii, I. V.; Dolotovskaya, N. V.; Larin, E. A.

    2018-05-01

    The article presents the architecture and content of a specialized analytical system for monitoring operational conditions, planning of consumption and generation of energy resources, long-term planning of production activities and development of a strategy for the development of the energy complex of gas processing enterprises. A compositional model of structured data on the equipment of the main systems of the power complex is proposed. The correctness of the use of software modules and the database of the analytical system is confirmed by comparing the results of measurements on the equipment of the electric power system and simulation at the operating gas processing plant. A high accuracy in the planning of consumption of fuel and energy resources has been achieved (the error does not exceed 1%). Information and program modules of the analytical system allow us to develop a strategy for improving the energy complex in the face of changing technological topology and partial uncertainty of economic factors.

  2. Household structure vs. composition: Understanding gendered effects on educational progress in rural South Africa.

    PubMed

    Madhavan, Sangeetha; Myroniuk, Tyler W; Kuhn, Randall; Collinson, Mark A

    2017-01-01

    Demographers have long been interested in the relationship between living arrangements and gendered outcomes for children in sub-Saharan Africa. Most extant research conflates household structure with composition and has revealed little about the pathways that link these components to gendered outcomes. First, we offer a conceptual approach that differentiates structure from composition with a focus on gendered processes that operate in the household; and second, we demonstrate the value of this approach through an analysis of educational progress for boys and girls in rural South Africa. We use data from the 2002 round of the Agincourt Health and Demographic Surveillance System. Our analytical sample includes 22,997 children aged 6-18 who were neither parents themselves nor lived with a partner or partner's family. We employ ordinary least squares regression models to examine the effects of structure and composition on educational progress of girls and boys. The results suggest that non-nuclear structures are associated with similar negative effects for both boys and girls compared to children growing up in nuclear households. However, the presence of other kin in the absence of one or both parents results in gendered effects favouring boys. The absence of any gendered effects when using a household structure typology suggests that secular changes to attitudes about gender equity trump any specific gendered processes stemming from particular configurations. On the other hand, gendered effects that appear when one or both parents are absent show that traditional gender norms and/or resource constraints continue to favour boys. Despite the wealth of literature on household structure and children's educational outcomes in sub-Saharan Africa, the conceptual basis of these effects has not been well articulated. We have shown the value of unpacking household structure to better understand how gender norms and gendered resource allocations impact education.

  3. Study on Design of High Efficiency and Light Weight Composite Propeller Blade for a Regional Turboprop Aircraft

    NASA Astrophysics Data System (ADS)

    Kong, Changduk; Lee, Kyungsun

    2013-03-01

    In this study, aerodynamic and structural design of the composite propeller blade for a regional turboprop aircraft is performed. The thin and wide chord propeller blade of high speed turboprop aircraft should have proper strength and stiffness to carry various kinds of loads such as high aerodynamic bending and twisting moments and centrifugal forces. Therefore the skin-spar-foam sandwich structure using high strength and stiffness carbon/epoxy composite materials is used to improve the lightness. A specific design procedure is proposed in this work as follows; firstly the aerodynamic configuration design, which is acceptable for the design requirements, is carried out using the in-house code developed by authors, secondly the structure design loads are determined through the aerodynamic load case analysis, thirdly the spar flange and the skin are preliminarily sized by consideration of major bending moments and shear forces using both the netting rule and the rule of mixture, and finally, the stress analysis is performed to confirm the structural safety and stability using finite element analysis commercial code, MSC. NASTRAN/PATRAN. Furthermore the additional analysis is performed to confirm the structural safety due to bird strike impact on the blade during flight operation using a commercial code, ANSYS. To realize the proposed propeller design, the prototype blades are manufactured by the following procedure; the carbon/epoxy composite fabric prepregs are laid up for skin and spar on a mold using the hand lay-up method and consolidated with a proper temperature and vacuum in the oven. To finalize the structural design, the full-scale static structural test is performed under the simulated aerodynamic loads using 3 point loading method. From the experimental results, it is found that the designed blade has a good structural integrity, and the measured results agree well with the analytical results as well.

  4. High-Temperature Magnetism as a Probe for Structural and Compositional Uniformity in Ligand-Capped Magnetite Nanoparticles

    PubMed Central

    2015-01-01

    To investigate magnetostructural relationships in colloidal magnetite (Fe3O4) nanoparticles (NPs) at high temperature (300–900 K), we measured the temperature dependence of magnetization (M) of oleate-capped magnetite NPs ca. 20 nm in size. Magnetometry revealed an unusual irreversible high-temperature dependence of M for these NPs, with dip and loop features observed during heating–cooling cycles. Detailed characterizations of as-synthesized and annealed Fe3O4 NPs as well as reference ligand-free Fe3O4 NPs indicate that both types of features in M(T) are related to thermal decomposition of the capping ligands. The ligand decomposition upon the initial heating induces a reduction of Fe3+ to Fe2+ and the associated dip in M, leading to more structurally and compositionally uniform magnetite NPs. Having lost the protective ligands, the NPs continually sinter during subsequent heating cycles, resulting in divergent M curves featuring loops. The increase in M with sintering proceeds not only through elimination of a magnetically dead layer on the particle surface, as a result of a decrease in specific surface area with increasing size, but also through an uncommonly invoked effect resulting from a significant change in Fe3+/Fe2+ ratio with heat treatment. The interpretation of irreversible features in M(T) indicates that reversible M(T) behavior, conversely, can be expected only for ligand-free, structurally and compositionally uniform magnetite NPs, suggesting a general applicability of high-temperature M(T) measurements as an analytical method for probing the structure and composition of magnetic nanomaterials. PMID:25506407

  5. Influence of Impact Damage on Carbon-Epoxy Stiffener Crippling

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.

    2010-01-01

    NASA, the Air Force Research Laboratory and The Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept has been developed which offers advantages over traditional metallic structure. In this concept a stitched carbon-epoxy material system has been developed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners, thereby reducing part count and labor. By adding unidirectional carbon rods to the top of stiffeners, the panel becomes more structurally efficient. This combination produces a more damage tolerant design. This document describes the results of experimentation on PRSEUS specimens loaded in unidirectional compression subjected to impact damage and loaded in fatigue and to failure. A comparison with analytical predictions for pristine and damaged specimens is included.

  6. Simulating the Response of a Composite Honeycomb Energy Absorber. Part 1; Dynamic Crushing of Components and Multi-Terrain Impacts

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Polanco, Michael A.

    2012-01-01

    This paper describes the experimental and analytical evaluation of an externally deployable composite honeycomb structure that is designed to attenuate impact energy during helicopter crashes. The concept, designated the Deployable Energy Absorber (DEA), utilizes an expandable Kevlar (Registered Trademark) honeycomb to dissipate kinetic energy through crushing. The DEA incorporates a unique flexible hinge design that allows the honeycomb to be packaged and stowed until needed for deployment. Experimental evaluation of the DEA included dynamic crush tests of multi-cell components and vertical drop tests of a composite fuselage section, retrofitted with DEA blocks, onto multi-terrain. Finite element models of the test articles were developed and simulations were performed using the transient dynamic code, LSDYNA (Registered Trademark). In each simulation, the DEA was represented using shell elements assigned two different material properties: Mat 24, an isotropic piecewise linear plasticity model, and Mat 58, a continuum damage mechanics model used to represent laminated composite fabrics. DEA model development and test-analysis comparisons are presented.

  7. Identifying Nanoscale Structure-Function Relationships Using Multimodal Atomic Force Microscopy, Dimensionality Reduction, and Regression Techniques.

    PubMed

    Kong, Jessica; Giridharagopal, Rajiv; Harrison, Jeffrey S; Ginger, David S

    2018-05-31

    Correlating nanoscale chemical specificity with operational physics is a long-standing goal of functional scanning probe microscopy (SPM). We employ a data analytic approach combining multiple microscopy modes, using compositional information in infrared vibrational excitation maps acquired via photoinduced force microscopy (PiFM) with electrical information from conductive atomic force microscopy. We study a model polymer blend comprising insulating poly(methyl methacrylate) (PMMA) and semiconducting poly(3-hexylthiophene) (P3HT). We show that PiFM spectra are different from FTIR spectra, but can still be used to identify local composition. We use principal component analysis to extract statistically significant principal components and principal component regression to predict local current and identify local polymer composition. In doing so, we observe evidence of semiconducting P3HT within PMMA aggregates. These methods are generalizable to correlated SPM data and provide a meaningful technique for extracting complex compositional information that are impossible to measure from any one technique.

  8. Flexural stiffness of the composite steel and fibre-reinforced concrete circular hollow section column

    NASA Astrophysics Data System (ADS)

    Tretyakov, A.; Tkalenko, I.; Wald, F.; Novak, J.; Stefan, R.; Kohoutková, A.

    2017-09-01

    The recent development in technology of production and transportation of steel fibre-reinforced concrete enables its utilization in composite steel-concrete structures. This work is a part of a project which focuses on development of mechanical behaviour of circular hollow section (CHS) composite steel and fibre-concrete (SFRC) columns at elevate temperature. Research includes two levels of accuracy/complexity, allowing simplified or advanced approach for design that follows upcoming changes in European standard for composite member design in fire EN1994-1-2 [1]. One part is dedicated to determination and description of flexural stiffness of the SFRC CHS columns. To determinate flexural stiffness were prepared series of pure bending tests at elevated and ambient temperature. Presented paper focuses on the results of the tests and determination of flexural stiffness at ambient temperature. Obtained outputs were compared to data of existing studies about concrete-filled tube members with plain concrete and values analytically calculated according to the existing European standard EN1994-1-1 [2].

  9. Stress and Damage in Polymer Matrix Composite Materials Due to Material Degradation at High Temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mcmanus, H.L.; Chamis, C.C.

    1996-01-01

    This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) ismore » presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.« less

  10. Deformation analysis of polymers composites: rheological model involving time-based fractional derivative

    NASA Astrophysics Data System (ADS)

    Zhou, H. W.; Yi, H. Y.; Mishnaevsky, L.; Wang, R.; Duan, Z. Q.; Chen, Q.

    2017-05-01

    A modeling approach to time-dependent property of Glass Fiber Reinforced Polymers (GFRP) composites is of special interest for quantitative description of long-term behavior. An electronic creep machine is employed to investigate the time-dependent deformation of four specimens of dog-bond-shaped GFRP composites at various stress level. A negative exponent function based on structural changes is introduced to describe the damage evolution of material properties in the process of creep test. Accordingly, a new creep constitutive equation, referred to fractional derivative Maxwell model, is suggested to characterize the time-dependent behavior of GFRP composites by replacing Newtonian dashpot with the Abel dashpot in the classical Maxwell model. The analytic solution for the fractional derivative Maxwell model is given and the relative parameters are determined. The results estimated by the fractional derivative Maxwell model proposed in the paper are in a good agreement with the experimental data. It is shown that the new creep constitutive model proposed in the paper needs few parameters to represent various time-dependent behaviors.

  11. Space Shuttle Orbiter - Leading edge structural design/analysis and material allowables

    NASA Technical Reports Server (NTRS)

    Johnson, D. W.; Curry, D. M.; Kelly, R. E.

    1986-01-01

    Reinforced Carbon-Carbon (RCC), a structural composite whose development was targeted for the high temperature reentry environments of reusable space vehicles, has successfully demonstrated that capability on the Space Shuttle Orbiter. Unique mechanical properties, particularly at elevated temperatures up to 3000 F, make this material ideally suited for the 'hot' regions of multimission space vehicles. Design allowable characterization testing, full-scale development and qualification testing, and structural analysis techniques will be presented herein that briefly chart the history of the RCC material from infancy to eventual multimission certification for the Orbiter. Included are discussions pertaining to the development of the design allowable data base, manipulation of the test data into usable forms, and the analytical verification process.

  12. Comprehensive identification and structural characterization of target components from Gelsemium elegans by high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry based on accurate mass databases combined with MS/MS spectra.

    PubMed

    Liu, Yan-Chun; Xiao, Sa; Yang, Kun; Ling, Li; Sun, Zhi-Liang; Liu, Zhao-Ying

    2017-06-01

    This study reports an applicable analytical strategy of comprehensive identification and structure characterization of target components from Gelsemium elegans by using high-performance liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QqTOF MS) based on the use of accurate mass databases combined with MS/MS spectra. The databases created included accurate masses and elemental compositions of 204 components from Gelsemium and their structural data. The accurate MS and MS/MS spectra were acquired through data-dependent auto MS/MS mode followed by an extraction of the potential compounds from the LC-QqTOF MS raw data of the sample. The same was matched using the databases to search for targeted components in the sample. The structures for detected components were tentatively characterized by manually interpreting the accurate MS/MS spectra for the first time. A total of 57 components have been successfully detected and structurally characterized from the crude extracts of G. elegans, but has failed to differentiate some isomers. This analytical strategy is generic and efficient, avoids isolation and purification procedures, enables a comprehensive structure characterization of target components of Gelsemium and would be widely applicable for complicated mixtures that are derived from Gelsemium preparations. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Long-term variability in sugarcane bagasse feedstock compositional methods: Sources and magnitude of analytical variability

    DOE PAGES

    Templeton, David W.; Sluiter, Justin B.; Sluiter, Amie; ...

    2016-10-18

    In an effort to find economical, carbon-neutral transportation fuels, biomass feedstock compositional analysis methods are used to monitor, compare, and improve biofuel conversion processes. These methods are empirical, and the analytical variability seen in the feedstock compositional data propagates into variability in the conversion yields, component balances, mass balances, and ultimately the minimum ethanol selling price (MESP). We report the average composition and standard deviations of 119 individually extracted National Institute of Standards and Technology (NIST) bagasse [Reference Material (RM) 8491] run by seven analysts over 7 years. Two additional datasets, using bulk-extracted bagasse (containing 58 and 291 replicates each),more » were examined to separate out the effects of batch, analyst, sugar recovery standard calculation method, and extractions from the total analytical variability seen in the individually extracted dataset. We believe this is the world's largest NIST bagasse compositional analysis dataset and it provides unique insight into the long-term analytical variability. Understanding the long-term variability of the feedstock analysis will help determine the minimum difference that can be detected in yield, mass balance, and efficiency calculations. The long-term data show consistent bagasse component values through time and by different analysts. This suggests that the standard compositional analysis methods were performed consistently and that the bagasse RM itself remained unchanged during this time period. The long-term variability seen here is generally higher than short-term variabilities. It is worth noting that the effect of short-term or long-term feedstock compositional variability on MESP is small, about $0.03 per gallon. The long-term analysis variabilities reported here are plausible minimum values for these methods, though not necessarily average or expected variabilities. We must emphasize the importance of training and good analytical procedures needed to generate this data. As a result, when combined with a robust QA/QC oversight protocol, these empirical methods can be relied upon to generate high-quality data over a long period of time.« less

  14. Long-term variability in sugarcane bagasse feedstock compositional methods: Sources and magnitude of analytical variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Templeton, David W.; Sluiter, Justin B.; Sluiter, Amie

    In an effort to find economical, carbon-neutral transportation fuels, biomass feedstock compositional analysis methods are used to monitor, compare, and improve biofuel conversion processes. These methods are empirical, and the analytical variability seen in the feedstock compositional data propagates into variability in the conversion yields, component balances, mass balances, and ultimately the minimum ethanol selling price (MESP). We report the average composition and standard deviations of 119 individually extracted National Institute of Standards and Technology (NIST) bagasse [Reference Material (RM) 8491] run by seven analysts over 7 years. Two additional datasets, using bulk-extracted bagasse (containing 58 and 291 replicates each),more » were examined to separate out the effects of batch, analyst, sugar recovery standard calculation method, and extractions from the total analytical variability seen in the individually extracted dataset. We believe this is the world's largest NIST bagasse compositional analysis dataset and it provides unique insight into the long-term analytical variability. Understanding the long-term variability of the feedstock analysis will help determine the minimum difference that can be detected in yield, mass balance, and efficiency calculations. The long-term data show consistent bagasse component values through time and by different analysts. This suggests that the standard compositional analysis methods were performed consistently and that the bagasse RM itself remained unchanged during this time period. The long-term variability seen here is generally higher than short-term variabilities. It is worth noting that the effect of short-term or long-term feedstock compositional variability on MESP is small, about $0.03 per gallon. The long-term analysis variabilities reported here are plausible minimum values for these methods, though not necessarily average or expected variabilities. We must emphasize the importance of training and good analytical procedures needed to generate this data. As a result, when combined with a robust QA/QC oversight protocol, these empirical methods can be relied upon to generate high-quality data over a long period of time.« less

  15. Structure-property relationships in an Al matrix Ca nanofilamentary composite conductor with potential application in high-voltage power transmission

    NASA Astrophysics Data System (ADS)

    Tian, Liang

    This study investigated the processing-structure-properties relationships in an Al/Ca composites using both experiments and modeling/simulation. A particular focus of the project was understanding how the strength and electrical conductivity of the composite are related to its microstructure in the hope that a conducting material with light weight, high strength, and high electrical conductivity can be developed to produce overhead high-voltage power transmission cables. The current power transmission cables (e.g., Aluminum Conductor Steel Reinforced (ACSR)) have acceptable performance for high-voltage AC transmission, but are less well suited for high-voltage DC transmission due to the poorly conducting core materials that support the cable weight. This Al/Ca composite was produced by powder metallurgy and severe plastic deformation by extrusion and swaging. The fine Ca metal powders have been produced by centrifugal atomization with rotating liquid oil quench bath, and a detailed study about the atomization process and powder characteristics has been conducted. The microstructure of Al/Ca composite was characterized by electron microscopy. Microstructure changes at elevated temperature were characterized by thermal analysis and indirect resistivity tests. The strength and electrical conductivity were measured by tensile tests and four-point probe resistivity tests. Predicting the strength and electrical conductivity of the composite was done by micro-mechanics-based analytical modeling. Microstructure evolution was studied by mesoscale-thermodynamics-based phase field modeling and a preliminary atomistic molecular dynamics simulation. The application prospects of this composite was studied by an economic analysis. This study suggests that the Al/Ca (20 vol. %) composite shows promise for use as overhead power transmission cables. Further studies are needed to measure the corrosion resistance, fatigue properties and energized field performance of this composite.

  16. Exploratory Factor Analyses of the CAHPS® Hospital Pilot Survey Responses across and within Medical, Surgical, and Obstetric Services

    PubMed Central

    O'Malley, A James; Zaslavsky, Alan M; Hays, Ron D; Hepner, Kimberly A; Keller, San; Cleary, Paul D

    2005-01-01

    Objectives To estimate the associations among hospital-level scores from the Consumer Assessments of Healthcare Providers and Systems (CAHPS®) Hospital pilot survey within and across different services (surgery, obstetrics, medical), and to evaluate differences between hospital- and patient-level analyses. Data Source CAHPS Hospital pilot survey data provided by the Centers for Medicare and Medicaid Services. Study Design Responses to 33 questionnaire items were analyzed using patient- and hospital-level exploratory factor analytic (EFA) methods to identify both a patient-level and hospital-level composite structures for the CAHPS Hospital survey. The latter EFA was corrected for patient-level sampling variability using a hierarchical model. We compared results of these analyses with each other and to separate EFAs conducted at the service level. To quantify the similarity of assessments across services, we compared correlations of different composites within the same service with those of the same composite across different services. Data Collection Cross-sectional data were collected during the summer of 2003 via mail and telephone from 19,720 patients discharged from November 2002 through January 2003 from 132 hospitals in three states. Principal Findings Six factors provided the best description of inter-item covariation at the patient level. Analyses that assessed variability across both services and hospitals suggested that three dimensions provide a parsimonious summary of inter-item covariation at the hospital level. Hospital-level factor structures also differed across services; as much variation in quality reports was explained by service as by composite. Conclusions Variability of CAHPS scores across hospitals can be reported parsimoniously using a limited number of composites. There is at least as much distinct information in composite scores from different services as in different composite scores within each service. Because items cluster slightly differently in the different services, service-specific composites may be more informative when comparing patients in a given service across hospitals. When studying individual-level variability, a more differentiated structure is probably more appropriate. PMID:16316439

  17. Analysis of Graphite-Reinforced Cementitious Composites

    NASA Technical Reports Server (NTRS)

    Vaughan, R. E.

    2002-01-01

    Strategically embedding graphite meshes in a compliant cementitious matrix produces a composite material with relatively high tension and compressive properties as compared to steel-reinforced structures fabricated from a standard concrete mix. Although these composite systems are somewhat similar, the methods used to analyze steel-reinforced composites often fail to characterize the behavior of their more advanced graphite-reinforced counterparts. This Technical Memorandum describes some of the analytical methods being developed to determine the deflections and stresses in graphite-reinforced cementitious composites. It is initially demonstrated that the standard transform section method fails to provide accurate results when the elastic moduli ratio exceeds 20. An alternate approach is formulated by using the rule of mixtures to determine a set of effective material properties for the composite. Tensile tests are conducted on composite samples to verify this approach. When the effective material properties are used to characterize the deflections of composite beams subjected to pure bending, an excellent agreement is obtained. Laminated composite plate theory is investigated as a means for analyzing even more complex composites, consisting of multiple graphite layers oriented in different directions. In this case, composite beams are analyzed using the laminated composite plate theory with material properties established from tensile tests. Then, finite element modeling is used to verify the results. Considering the complexity of the samples, a very good agreement is obtained.

  18. Synthesis and characterization of Fe{sub 3}O{sub 4}: Porous carbon nanocomposites for biosensor application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arora, Manju, E-mail: marora@nplindia.org; Zargar, R. A., E-mail: rayeesphy12@gmail.com

    2015-08-28

    Fe{sub 3}O{sub 4}:Porous carbon (Fe{sub 3}O{sub 4}:PC) nano-magnetic composites were prepared by using different weight fractions of acid treated PC by the chemical co-precipitation route and annealed at 573 K, 773 K and 973 K temperatures in inert N{sub 2} gas atmosphere for 2 hrs to obtain desired stoichiometry of nanocomposites. The structural, morphological and magnetic properties of these composites were characterized by powder XRD, TEM, EPR and VSM analytical techniques. The crystallinity of the composites, g-value and spin concentration increases with increasing annealing temperature. TEM images confirmed the formation of nanosized ferrite nanoprticles whose size increases from 23 nm to 54 nm on increasingmore » annealing temperature. Porous carbon increases porosity, coercivity and reduces saturation magnetization of these prepared nanocomposites.« less

  19. A multiple technique approach to the analysis of urinary calculi.

    PubMed

    Rodgers, A L; Nassimbeni, L R; Mulder, K J

    1982-01-01

    10 urinary calculi have been qualitatively and quantitatively analysed using X-ray diffraction, infra-red, scanning electron microscopy, X-ray fluorescence, atomic absorption and density gradient procedures. Constituents and compositional features which often go undetected due to limitations in the particular analytical procedure being used, have been identified and a detailed picture of each stone's composition and structure has been obtained. In all cases at least two components were detected suggesting that the multiple technique approach might cast some doubt as to the existence of "pure" stones. Evidence for a continuous, non-sequential deposition mechanism has been detected. In addition, the usefulness of each technique in the analysis of urinary stones has been assessed and the multiple technique approach has been evaluated as a whole.

  20. An Analysis of Interfacial Stresses in Steel Beams Bonded With a Thin Composite Plate Under Thermomechanical Loading

    NASA Astrophysics Data System (ADS)

    Benyoucef, S.; Tounsi, A.; Yeghnem, R.; Bachir Bouiadjra, M.; Adda Bedia, E. A.

    2014-01-01

    The strengthening of steel structures in situ with externally bonded fiber-reinforced plastic (FRP) composite sheets is increasingly being used for the repair and rehabilitation of existing structures. The previous researchers have developed several analytical methods to predict the interface performance of bonded repairs. An important feature of a reinforced steel beam is the significant stress concentration in the adhesive at the ends of the FRP plate. In this paper, a closed-form solution for the interfacial shear and normal stresses in simply supported steel beams strengthened with a bonded FRP plate and subjected to thermomechanical loadings is presented. The shear strains of the adherends are included in the present theoretical analysis by assuming a parabolic distribution of shear stress across their thickness. Contrary to some existing studies, the assumption that both adherends have the same curvature is not used in the present study. The results of this numerical study are beneficial for understanding the mechanical behavior of material interfaces and for the design of hybrid FRP-reinforced steel structures.

  1. Damage-Tolerance Characteristics of Composite Fuselage Sandwich Structures with Thick Facesheets

    NASA Technical Reports Server (NTRS)

    McGowan, David M.; Ambur, Damodar R.

    1997-01-01

    Damage tolerance characteristics and results from experimental and analytical studies of a composite fuselage keel sandwich structure subjected to low-speed impact damage and discrete-source damage are presented. The test specimens are constructed from graphite-epoxy skins borided to a honeycomb core, and they are representative of a highly loaded fuselage keel structure. Results of compression-after-impact (CAI) and notch-length sensitivity studies of 5-in.-wide by 10-in.long specimens are presented. A correlation between low-speed-impact dent depth, the associated damage area, and residual strength for different impact-energy levels is described; and a comparison of the strength for undamaged and damaged specimens with different notch-length-to-specimen-width ratios is presented. Surface strains in the facesheets of the undamaged specimens as well as surface strains that illustrate the load redistribution around the notch sites in the notched specimens are presented and compared with results from finite element analyses. Reductions in strength of as much as 53.1 percent for the impacted specimens and 64.7 percent for the notched specimens are observed.

  2. Application of damage tolerance methodology in certification of the Piaggio P-180 Avanti

    NASA Technical Reports Server (NTRS)

    Johnson, Jerry

    1992-01-01

    The Piaggio P-180 Avanti, a twin pusher-prop engine nine-passenger business aircraft was certified in 1990, to the requirements of FAR Part 23 and Associated Special Conditions for Composite Structure. Certification included the application of a damage tolerant methodology to the design of the composite forward wing and empennage (vertical fin, horizontal stabilizer, tailcone, and rudder) structure. This methodology included an extensive analytical evaluation coupled with sub-component and full-scale testing of the structure. The work from the Damage Tolerance Analysis Assessment was incorporated into the full-scale testing. Damage representing hazards such as dropped tools, ground equipment, handling, and runway debris, was applied to the test articles. Additional substantiation included allowing manufacturing discrepancies to exist unrepaired on the full-scale articles and simulated bondline failures in critical elements. The importance of full-scale testing in the critical environmental conditions and the application of critical damage are addressed. The implication of damage tolerance on static and fatigue testing is discussed. Good correlation between finite element solutions and experimental test data was observed.

  3. Structural Integrity Evaluation of the Lear Fan 2100 Aircraft

    NASA Technical Reports Server (NTRS)

    Kan, H. P.; Dyer, T. A.

    1996-01-01

    An in-situ nondestructive inspection was conducted to detect manufacturing and assembly induced defects in the upper two wing surfaces (skin s) and upper fuselage skin of the Lear Fan 2100 aircraft E009. The effects of the defects, detected during the inspection, on the integrity of the structure was analytically evaluated. A systematic evaluation was also conducted to determine the damage tolerance capability of the upper wing skin against impact threats and assembly induced damage. The upper wing skin was divided into small regions for damage tolerance evaluations. Structural reliability, margin of safety, allowable strains, and allowable damage size were computed. The results indicated that the impact damage threat imposed on composite military aircraft structures is too severe for the Lear Fan 2100 upper wing skin. However, the structural integrity is not significantly degraded by the assembly induced damage for properly assembled structures, such as the E009 aircraft.

  4. A smart composite patch for the repair of aircraft structures

    NASA Astrophysics Data System (ADS)

    Wakha, Kelah; Samuel, Paul; Pines, Darryll J.

    2005-05-01

    Recent interest in bonded composite patch repair technology for aerospace systems is because this method can be carried out at a reduced cost and time and can easily be applied to complex geometric structures. This paper details the development of a dual stiffness/energy sensor for monitoring the integrity of a composite patch used to repair an aluminum structural component. The smart sensor has the ability to predict the elastic field of a given host structure based on the strain state of two sub-sensors integrated into the structure. The present study shows the possibility of using the sensor to deduce the local instantaneous host stiffness. Damaged structures are characterized by a reduction in their elastic stiffness that evolve from microstructural defects. A local smart sensor can be developed to sense the local average properties on a host. In this paper, sensors are attached to a structure and a modified Eshelby's equivalent inclusion method is used to derive the elastic properties of the host. An analytical derivation and a sensitivity analysis for the quasistatic application is given in a papers by Majed, Dasgupta, Kelah and Pines. A summary of the derivation of the dynamic Eshelby tensor is presented. This is of importance because damage detection in structures undergoing vibratory and other motions present a greater challenge than those in quasistatic motion. An in-situ health monitoring active sensor system for a real structure (an aluminum plate with an attached repair patch) under close-to real lifecycle loading conditions is developed. The detection of the onset of any damage to the structure as well as the repair patch and the subsequent monitoring of the growth of this damage constitute important goals of the system. Both experimental and finite element methods were applied. Experimental results are presented for tests of the aluminum plate with the repair patch under monotonic quasi-static and dynamic loading vibratory conditions. In summary, the study shows that smart bonded composite repair patches are very effective in the repair of thin aluminum structures since they are able to determine the integrity of the repair structure as well as the repair patch.

  5. Surface enhanced Raman scattering activity of dual-functional Fe3O4/Au composites

    NASA Astrophysics Data System (ADS)

    Wang, Li-Ping; Huang, Yu-Bin; Lai, Ying-Huang

    2018-03-01

    There is a high demand for multifunctional materials that can integrate sample collection and sensing. In this study, magnetic Fe3O4 clusters were fabricated using a simple solvent-thermal method. The effect of the reductant (sodium citrate, SC) on the structure and morphology of Fe3O4 was examined by the variation in the reagent amount. The resulting Fe3O4 clusters were functionalized with 3-aminopropyltriethoxysilane (APTES) to anchor Au nanoparticles to its surface. The fabricated composites were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and a superconducting quantum interference device (SQUID) magnetometer. Dual-functional Fe3O4/Au clusters were obtained, effectively combining magnetic and plasmonic optical properties. The magnetic Fe3O4 cluster cores permitted the adsorption of the probe molecules, while sample concentration and collection were carried out under an external magnetic field. In addition, 4-nitrothiophenol (4-NTP) was chosen as the probe molecule to examine the analyte concentration ability and surface-enhanced Raman scattering (SERS) activity of the Fe3O4/Au composites. The results indicated that the Fe3O4/Au clusters exhibit a prominent SERS effect. The best 4-NTP detection limit obtained was 1 × 10-8 M, with a corresponding SERS analytical enhancement factor (AEF) exceeding 2 × 105.

  6. Buckling Design Studies of Inverted, Oblate Bulkheads for a Propellant Tank

    NASA Technical Reports Server (NTRS)

    Smeltzer, Stanley S., III; Bowman, Lynn M.

    2002-01-01

    An investigation of the deformation and buckling characteristics of a composite, oblate bulkhead that has an inverted geometry and is subjected to pressure-only loading is presented for three bulkhead geometries and thicknesses. The effects of a stiffening support ring at the bulkhead to cylinder interface are also evaluated. Buckling analyses conducted using the axisymmetric shell code BOSOR4 are discussed for several bulkhead configurations. These results are analytically verified using results from the Structural Analysis of General Shells (STAGS) code for a selected bulkhead configuration. The buckling characterization of an inverted, oblate bulkhead requires careful attention as small changes in bulkhead parameters can have a significant effect on the critical buckling load. Comparison of BOSOR4 and STAGS results provided a very good correlation between the two analysis methods. In addition, the analysis code BOSOR4 was found to be an efficient sizing tool that is useful during the preliminary design stage of a practical shell structure. Together, these two aspects should give the design engineer confidence in sizing these stability critical structures. Additional characterization is warranted, especially for a composite tank structure, since only one bulkhead configuration was examined closely.

  7. Circular Functions Based Comprehensive Analysis of Plastic Creep Deformations in the Fiber Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Monfared, Vahid

    2016-12-01

    Analytically based model is presented for behavioral analysis of the plastic deformations in the reinforced materials using the circular (trigonometric) functions. The analytical method is proposed to predict creep behavior of the fibrous composites based on basic and constitutive equations under a tensile axial stress. New insight of the work is to predict some important behaviors of the creeping matrix. In the present model, the prediction of the behaviors is simpler than the available methods. Principal creep strain rate behaviors are very noteworthy for designing the fibrous composites in the creeping composites. Analysis of the mentioned parameter behavior in the reinforced materials is necessary to analyze failure, fracture, and fatigue studies in the creep of the short fiber composites. Shuttles, spaceships, turbine blades and discs, and nozzle guide vanes are commonly subjected to the creep effects. Also, predicting the creep behavior is significant to design the optoelectronic and photonic advanced composites with optical fibers. As a result, the uniform behavior with constant gradient is seen in the principal creep strain rate behavior, and also creep rupture may happen at the fiber end. Finally, good agreements are found through comparing the obtained analytical and FEM results.

  8. Composite material bend-twist coupling for wind turbine blade applications

    NASA Astrophysics Data System (ADS)

    Walsh, Justin M.

    Current efforts in wind turbine blade design seek to employ bend-twist coupling of composite materials for passive power control by twisting blades to feather. Past efforts in this area of study have proved to be problematic, especially in formulation of the bend-twist coupling coefficient alpha. Kevlar/epoxy, carbon/epoxy and glass/epoxy specimens were manufactured to study bend-twist coupling, from which numerical and analytical models could be verified. Finite element analysis was implemented to evaluate fiber orientation and material property effects on coupling magnitude. An analytical/empirical model was then derived to describe numerical results and serve as a replacement for the commonly used coupling coefficient alpha. Through the results from numerical and analytical models, a foundation for aeroelastic design of wind turbines blades utilizing biased composite materials is provided.

  9. Capillary electrophoretic study of dibasic acids of different structures: Relation to separation of oxidative intermediates in remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Z.; Cocke, D.L.

    Dicarboxylic acids are important in environmental chemistry because they are intermediates in oxidative processes involved in natural remediation and waste management processes such as oxidative detoxification and advanced oxidation. Capillary electrophoresis (CE), a promising technique for separating and analyzing these intermediates, has been used to examine a series of dibasic acids of different structures and conformations. This series includes malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, maleic acid, fumaric acid, phthalic acid, and trans, trans-muconic acid. The CE parameters as well as structural variations (molecular structure and molecular isomers, buffer composition, pH, applied voltage, injection mode, current,more » temperature, and detection wavelength) that affect the separations and analytical results have been examined in this study. Those factors that affect the separation have been delineated. Among these parameters, the pH has been found to be the most important, which affects the double-layer of the capillary wall, the electro-osmotic flow and analyte mobility. The optimum pH for separating these dibasic acids, as well as the other parameters are discussed in detail and related to the development of methods for analyzing oxidation intermediates in oxidative waste management procedures.« less

  10. Analytical Simulations of Energy-Absorbing Impact Spheres for a Mars Sample Return Earth Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Billings, Marcus Dwight; Fasanella, Edwin L. (Technical Monitor)

    2002-01-01

    Nonlinear dynamic finite element simulations were performed to aid in the design of an energy-absorbing impact sphere for a passive Earth Entry Vehicle (EEV) that is a possible architecture for the Mars Sample Return (MSR) mission. The MSR EEV concept uses an entry capsule and energy-absorbing impact sphere designed to contain and limit the acceleration of collected samples during Earth impact without a parachute. The spherical shaped impact sphere is composed of solid hexagonal and pentagonal foam-filled cells with hybrid composite, graphite-epoxy/Kevlar cell walls. Collected Martian samples will fit inside a smaller spherical sample container at the center of the EEV's cellular structure. Comparisons were made of analytical results obtained using MSC.Dytran with test results obtained from impact tests performed at NASA Langley Research Center for impact velocities from 30 to 40 m/s. Acceleration, velocity, and deformation results compared well with the test results. The correlated finite element model was then used for simulations of various off-nominal impact scenarios. Off-nominal simulations at an impact velocity of 40 m/s included a rotated cellular structure impact onto a flat surface, a cellular structure impact onto an angled surface, and a cellular structure impact onto the corner of a step.

  11. Lightning Strike Ablation Damage Influence Factors Analysis of Carbon Fiber/Epoxy Composite Based on Coupled Electrical-Thermal Simulation

    NASA Astrophysics Data System (ADS)

    Yin, J. J.; Chang, F.; Li, S. L.; Yao, X. L.; Sun, J. R.; Xiao, Y.

    2017-10-01

    According to the mathematical analysis model constructed on the basis of energy-balance relationship in lightning strike, and accompany with the simplified calculation strategy of composite resin pyrolysis degree dependent electrical conductivity, an effective three dimensional thermal-electrical coupling analysis finite element model of composite laminate suffered from lightning current was established based on ABAQUS, to elucidate the effects of lighting current waveform parameters and thermal/electrical properties of composite laminate on the extent of ablation damage. Simulated predictions agree well with the composite lightning strike directed effect experimental data, illustrating the potential accuracy of the constructed model. The analytical results revealed that extent of composite lightning strike ablation damage can be characterized by action integral validly, there exist remarkable power function relationships between action integral and visual damage area, projected damage area, maximum damage depth and damage volume of ablation damage, and enhancing the electrical conductivity and specific heat of composite, ablation damage will be descended obviously, power function relationships also exist between electrical conductivity, specific heat and ablation damage, however, the impact of thermal conductivity on the extent of ablation damage is not notable. The conclusions obtained provide some guidance for composite anti-lightning strike structure-function integration design.

  12. Low thermal flux glass-fiber tubing for cryogenic service

    NASA Technical Reports Server (NTRS)

    Hall, C. A.; Spond, D. E.

    1977-01-01

    This paper describes analytical techniques, fabrication development, and test results for composite tubing that has many applications in aerospace and commercial cryogenic installations. Metal liner fabrication is discussed in detail with attention given to resistance-welded liners, fusion-welded liners, chem-milled tubing liners, joining tube liners and end fittings, heat treatment and leak checks. Composite overwrapping, a second method of tubing fabrication, is also discussed. Test programs and analytical correlation are considered along with composite tubing advantages such as minimum weight, thermal efficiency and safety and reliability.

  13. Modeling of layered anisotropic composite material based on effective medium theory

    NASA Astrophysics Data System (ADS)

    Bao, Yang; Song, Jiming

    2018-04-01

    In this paper, we present an efficient method to simulate multilayered anisotropic composite material with effective medium theory. Effective permittivity, permeability and orientation angle for a layered anisotropic composite medium are extracted with this equivalent model. We also derive analytical expressions for effective parameters and orientation angle with low frequency (LF) limit, which will be shown in detail. Numerical results are shown in comparing extracted effective parameters and orientation angle with analytical results from low frequency limit. Good agreements are achieved to demonstrate the accuracy of our efficient model.

  14. Normal Theory Two-Stage ML Estimator When Data Are Missing at the Item Level

    PubMed Central

    Savalei, Victoria; Rhemtulla, Mijke

    2017-01-01

    In many modeling contexts, the variables in the model are linear composites of the raw items measured for each participant; for instance, regression and path analysis models rely on scale scores, and structural equation models often use parcels as indicators of latent constructs. Currently, no analytic estimation method exists to appropriately handle missing data at the item level. Item-level multiple imputation (MI), however, can handle such missing data straightforwardly. In this article, we develop an analytic approach for dealing with item-level missing data—that is, one that obtains a unique set of parameter estimates directly from the incomplete data set and does not require imputations. The proposed approach is a variant of the two-stage maximum likelihood (TSML) methodology, and it is the analytic equivalent of item-level MI. We compare the new TSML approach to three existing alternatives for handling item-level missing data: scale-level full information maximum likelihood, available-case maximum likelihood, and item-level MI. We find that the TSML approach is the best analytic approach, and its performance is similar to item-level MI. We recommend its implementation in popular software and its further study. PMID:29276371

  15. Normal Theory Two-Stage ML Estimator When Data Are Missing at the Item Level.

    PubMed

    Savalei, Victoria; Rhemtulla, Mijke

    2017-08-01

    In many modeling contexts, the variables in the model are linear composites of the raw items measured for each participant; for instance, regression and path analysis models rely on scale scores, and structural equation models often use parcels as indicators of latent constructs. Currently, no analytic estimation method exists to appropriately handle missing data at the item level. Item-level multiple imputation (MI), however, can handle such missing data straightforwardly. In this article, we develop an analytic approach for dealing with item-level missing data-that is, one that obtains a unique set of parameter estimates directly from the incomplete data set and does not require imputations. The proposed approach is a variant of the two-stage maximum likelihood (TSML) methodology, and it is the analytic equivalent of item-level MI. We compare the new TSML approach to three existing alternatives for handling item-level missing data: scale-level full information maximum likelihood, available-case maximum likelihood, and item-level MI. We find that the TSML approach is the best analytic approach, and its performance is similar to item-level MI. We recommend its implementation in popular software and its further study.

  16. Nondestructive atomic compositional analysis of BeMgZnO quaternary alloys using ion beam analytical techniques

    NASA Astrophysics Data System (ADS)

    Zolnai, Z.; Toporkov, M.; Volk, J.; Demchenko, D. O.; Okur, S.; Szabó, Z.; Özgür, Ü.; Morkoç, H.; Avrutin, V.; Kótai, E.

    2015-02-01

    The atomic composition with less than 1-2 atom% uncertainty was measured in ternary BeZnO and quaternary BeMgZnO alloys using a combination of nondestructive Rutherford backscattering spectrometry with 1 MeV He+ analyzing ion beam and non-Rutherford elastic backscattering experiments with 2.53 MeV energy protons. An enhancement factor of 60 in the cross-section of Be for protons has been achieved to monitor Be atomic concentrations. Usually the quantitative analysis of BeZnO and BeMgZnO systems is challenging due to difficulties with appropriate experimental tools for the detection of the light Be element with satisfactory accuracy. As it is shown, our applied ion beam technique, supported with the detailed simulation of ion stopping, backscattering, and detection processes allows of quantitative depth profiling and compositional analysis of wurtzite BeZnO/ZnO/sapphire and BeMgZnO/ZnO/sapphire layer structures with low uncertainty for both Be and Mg. In addition, the excitonic bandgaps of the layers were deduced from optical transmittance measurements. To augment the measured compositions and bandgaps of BeO and MgO co-alloyed ZnO layers, hybrid density functional bandgap calculations were performed with varying the Be and Mg contents. The theoretical vs. experimental bandgaps show linear correlation in the entire bandgap range studied from 3.26 eV to 4.62 eV. The analytical method employed should help facilitate bandgap engineering for potential applications, such as solar blind UV photodetectors and heterostructures for UV emitters and intersubband devices.

  17. Emissive sensors and devices incorporating these sensors

    DOEpatents

    Swager, Timothy M; Zhang, Shi-Wei

    2013-02-05

    The present invention generally relates to luminescent and/or optically absorbing compositions and/or precursors to those compositions, including solid films incorporating these compositions/precursors, exhibiting increased luminescent lifetimes, quantum yields, enhanced stabilities and/or amplified emissions. The present invention also relates to sensors and methods for sensing analytes through luminescent and/or optically absorbing properties of these compositions and/or precursors. Examples of analytes detectable by the invention include electrophiles, alkylating agents, thionyl halides, and phosphate ester groups including phosphoryl halides, cyanides and thioates such as those found in certain chemical warfare agents. The present invention additionally relates to devices and methods for amplifying emissions, such as those produced using the above-described compositions and/or precursors, by incorporating the composition and/or precursor within a polymer having an energy migration pathway. In some cases, the compositions and/or precursors thereof include a compound capable of undergoing a cyclization reaction.

  18. Generalized model of electromigration with 1:1 (analyte:selector) complexation stoichiometry: part II. Application to dual systems and experimental verification.

    PubMed

    Müllerová, Ludmila; Dubský, Pavel; Gaš, Bohuslav

    2015-03-06

    Interactions among analyte forms that undergo simultaneous dissociation/protonation and complexation with multiple selectors take the shape of a highly interconnected multi-equilibrium scheme. This makes it difficult to express the effective mobility of the analyte in these systems, which are often encountered in electrophoretical separations, unless a generalized model is introduced. In the first part of this series, we presented the theory of electromigration of a multivalent weakly acidic/basic/amphoteric analyte undergoing complexation with a mixture of an arbitrary number of selectors. In this work we demonstrate the validity of this concept experimentally. The theory leads to three useful perspectives, each of which is closely related to the one originally formulated for simpler systems. If pH, IS and the selector mixture composition are all kept constant, the system is treated as if only a single analyte form interacted with a single selector. If the pH changes at constant IS and mixture composition, the already well-established models of a weakly acidic/basic analyte interacting with a single selector can be employed. Varying the mixture composition at constant IS and pH leads to a situation where virtually a single analyte form interacts with a mixture of selectors. We show how to switch between the three perspectives in practice and confirm that they can be employed interchangeably according to the specific needs by measurements performed in single- and dual-selector systems at a pH where the analyte is fully dissociated, partly dissociated or fully protonated. Weak monoprotic analyte (R-flurbiprofen) and two selectors (native β-cyclodextrin and monovalent positively charged 6-monodeoxy-6-monoamino-β-cyclodextrin) serve as a model system. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stegen, James C.; Lin, Xueju; Fredrickson, Jim K.

    Across a set of ecological communities connected to each other through organismal dispersal (a ‘meta-community’), turnover in composition is governed by (ecological) Drift, Selection, and Dispersal Limitation. Quantitative estimates of these processes remain elusive, but would represent a common currency needed to unify community ecology. Using a novel analytical framework we quantitatively estimate the relative influences of Drift, Selection, and Dispersal Limitation on subsurface, sediment-associated microbial meta-communities. The communities we study are distributed across two geologic formations encompassing ~12,500m3 of uranium-contaminated sediments within the Hanford Site in eastern Washington State. We find that Drift consistently governs ~25% of spatial turnovermore » in community composition; Selection dominates (governing ~60% of turnover) across spatially-structured habitats associated with fine-grained, low permeability sediments; and Dispersal Limitation is most influential (governing ~40% of turnover) across spatially-unstructured habitats associated with coarse-grained, highly-permeable sediments. Quantitative influences of Selection and Dispersal Limitation may therefore be predictable from knowledge of environmental structure. To develop a system-level conceptual model we extend our analytical framework to compare process estimates across formations, characterize measured and unmeasured environmental variables that impose Selection, and identify abiotic features that limit dispersal. Insights gained here suggest that community ecology can benefit from a shift in perspective; the quantitative approach developed here goes beyond the ‘niche vs. neutral’ dichotomy by moving towards a style of natural history in which estimates of Selection, Dispersal Limitation and Drift can be described, mapped and compared across ecological systems.« less

  20. Thermomechanical Response of Shape Memory Alloy Hybrid Composites. Degree awarded by Virginia Polytechnic Inst. and State Univ., Blackburg, Virginia, Nov. 2000.

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.

    2001-01-01

    This study examines the use of embedded shape memory alloy (SMA) actuators for adaptive control of the thermomechanical response of composite structures. A nonlinear thermomechanical model is presented for analyzing shape memory alloy hybrid composite (SMAHC) structures exposed to steady-state thermal and dynamic mechanical loads. Also presented are (1) fabrication procedures for SMAHC specimens, (2) characterization of the constituent materials for model quantification, (3) development of the test apparatus for conducting static and dynamic experiments on specimens with and without SMA, (4) discussion of the experimental results, and (5) validation of the analytical and numerical tools developed in the study. Excellent agreement is achieved between the predicted and measured SAMHC responses including thermal buckling, thermal post-buckling and dynamic response due to inertial loading. The validated model and thermomechanical analysis tools are used to demonstrate a variety of static and dynamic response behaviors including control of static (thermal buckling and post-buckling) and dynamic responses (vibration, sonic fatigue, and acoustic transmission). and SMAHC design considerations for these applications. SMAHCs are shown to have significant advantages over conventional response abatement approaches for vibration, sonic fatigue, and noise control.

  1. Failure Analysis of Discrete Damaged Tailored Extension-Shear-Coupled Stiffened Composite Panels

    NASA Technical Reports Server (NTRS)

    Baker, Donald J.

    2005-01-01

    The results of an analytical and experimental investigation of the failure of composite is tiffener panels with extension-shear coupling are presented. This tailored concept, when used in the cover skins of a tiltrotor aircraft wing has the potential for increasing the aeroelastic stability margins and improving the aircraft productivity. The extension-shear coupling is achieved by using unbalanced 45 plies in the skin. The failure analysis of two tailored panel configurations that have the center stringer and adjacent skin severed is presented. Finite element analysis of the damaged panels was conducted using STAGS (STructural Analysis of General Shells) general purpose finite element program that includes a progressive failure capability for laminated composite structures that is based on point-stress analysis, traditional failure criteria, and ply discounting for material degradation. The progressive failure predicted the path of the failure and maximum load capability. There is less than 12 percent difference between the predicted failure load and experimental failure load. There is a good match of the panel stiffness and strength between the progressive failure analysis and the experimental results. The results indicate that the tailored concept would be feasible to use in the wing skin of a tiltrotor aircraft.

  2. Ultrasonic guided wave monitoring of composite wing skin-to-spar bonded joints in aerospace structures

    NASA Astrophysics Data System (ADS)

    Matt, Howard; Bartoli, Ivan; Lanza di Scalea, Francesco

    2005-10-01

    The monitoring of adhesively bonded joints by ultrasonic guided waves is the general topic of this paper. Specifically, composite-to-composite joints representative of the wing skin-to-spar bonds of unmanned aerial vehicles (UAVs) are examined. This research is the first step towards the development of an on-board structural health monitoring system for UAV wings based on integrated ultrasonic sensors. The study investigates two different lay-ups for the wing skin and two different types of bond defects, namely poorly cured adhesive and disbonded interfaces. The assessment of bond state is based on monitoring the strength of transmission through the joints of selected guided modes. The wave propagation problem is studied numerically by a semi-analytical finite element method that accounts for viscoelastic damping, and experimentally by ultrasonic testing that uses small PZT disks preferably exciting and detecting the single-plate s0 mode. Both the models and the experiments confirm that the ultrasonic energy transmission through the joint is highly dependent on the bond conditions, with defected bonds resulting in increased transmission strength. Large sensitivity to the bond conditions is found at mode coupling points, as a result of the large interlayer energy transfer.

  3. Structural Anomalies Detected in Ceramic Matrix Composites Using Combined Nondestructive Evaluation and Finite Element Analysis (NDE and FEA)

    NASA Technical Reports Server (NTRS)

    Abdul-Aziz, Ali; Baaklini, George Y.; Bhatt, Ramakrishna T.

    2003-01-01

    Most reverse engineering approaches involve imaging or digitizing an object and then creating a computerized reconstruction that can be integrated, in three dimensions, into a particular design environment. The rapid prototyping technique builds high-quality physical prototypes directly from computer-aided design files. This fundamental technique for interpreting and interacting with large data sets is being used here via Velocity2 (an integrated image-processing software, ref. 1) using computed tomography (CT) data to produce a prototype three-dimensional test specimen model for analyses. A study at the NASA Glenn Research Center proposes to use these capabilities to conduct a combined nondestructive evaluation (NDE) and finite element analysis (FEA) to screen pretest and posttest structural anomalies in structural components. A tensile specimen made of silicon nitrite (Si3N4) ceramic matrix composite was considered to evaluate structural durability and deformity. Ceramic matrix composites are being sought as candidate materials to replace nickel-base superalloys for turbine engine applications. They have the unique characteristics of being able to withstand higher operating temperatures and harsh combustion environments. In addition, their low densities relative to metals help reduce component mass (ref. 2). Detailed three-dimensional volume rendering of the tensile test specimen was successfully carried out with Velocity2 (ref. 1) using two-dimensional images that were generated via computed tomography. Subsequent, three-dimensional finite element analyses were performed, and the results obtained were compared with those predicted by NDE-based calculations and experimental tests. It was shown that Velocity2 software can be used to render a three-dimensional object from a series of CT scan images with a minimum level of complexity. The analytical results (ref. 3) show that the high-stress regions correlated well with the damage sites identified by the CT scans and the experimental data. Furthermore, modeling of the voids collected via NDE offered an analytical advantage that resulted in more accurate assessments of the material s structural strength. The top figure shows a CT scan image of the specimen test section illustrating various hidden structural entities in the material and an optical image of the test specimen considered in this study. The bottom figure represents the stress response predicted from the finite element analyses (ref .3 ) for a selected CT slice where it clearly illustrates the correspondence of the high stress risers due to voids in the material with those predicted by the NDE. This study is continuing, and efforts are concentrated on improving the modeling capabilities to imitate the structural anomalies as detected.

  4. Viscoplastic deformations and compressive damage in an A359/SiC{sub p} metal-matrix composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y.; Ramesh, K.T.; Chin, E.S.C.

    2000-04-19

    Recent work by the authors has examined the high-strain-rate compression of a metal-matrix composite consisting of an A359 Al alloy matrix reinforced by 20 vol.% of silicon carbide particulates (SiC{sub p}). The work-hardening that is observed in the experiments is much lower than that predicted by analytical and computational models which assume perfect particle-matrix interfaces and undamaged particles. In this work, the authors show that the discrepancy is a result of particle damage that develops within the A359/SiC{sub p} composite under compression. The evolution of particle damage has been characterized using quantitative microscopy, and is shown to be a functionmore » of the applied strain. A simple analytical model that incorporates evolving damage within the composite is proposed, and it is shown that the analytical predictions are consistent with the experimental observations over a wide range of strain rates.« less

  5. Standard deviations of composition measurements in atom probe analyses-Part II: 3D atom probe.

    PubMed

    Danoix, F; Grancher, G; Bostel, A; Blavette, D

    2007-09-01

    In a companion paper [F. Danoix, G. Grancher, A. Bostel, D. Blavette, Surf. Interface Anal. this issue (previous paper).], the derivation of variances of the estimates of measured composition, and the underlying hypotheses, have been revisited in the the case of conventional one dimensional (1D) atom probes. In this second paper, we will concentrate on the analytical derivation of the variance when the estimate of composition is obtained from a 3D atom probe. As will be discussed, when the position information is available, compositions can be derived either from constant number of atoms, or from constant volume, blocks. The analytical treatment in the first case is identical to the one developed for conventional 1D instruments, and will not be discussed further in this paper. Conversely, in the second case, the analytical treatment is different, as well as the formula of the variance. In particular, it will be shown that the detection efficiency plays an important role in the determination of the variance.

  6. STATISTICAL ANALYSIS OF TANK 5 FLOOR SAMPLE RESULTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shine, E.

    2012-03-14

    Sampling has been completed for the characterization of the residual material on the floor of Tank 5 in the F-Area Tank Farm at the Savannah River Site (SRS), near Aiken, SC. The sampling was performed by Savannah River Remediation (SRR) LLC using a stratified random sampling plan with volume-proportional compositing. The plan consisted of partitioning the residual material on the floor of Tank 5 into three non-overlapping strata: two strata enclosed accumulations, and a third stratum consisted of a thin layer of material outside the regions of the two accumulations. Each of three composite samples was constructed from five primarymore » sample locations of residual material on the floor of Tank 5. Three of the primary samples were obtained from the stratum containing the thin layer of material, and one primary sample was obtained from each of the two strata containing an accumulation. This report documents the statistical analyses of the analytical results for the composite samples. The objective of the analysis is to determine the mean concentrations and upper 95% confidence (UCL95) bounds for the mean concentrations for a set of analytes in the tank residuals. The statistical procedures employed in the analyses were consistent with the Environmental Protection Agency (EPA) technical guidance by Singh and others [2010]. Savannah River National Laboratory (SRNL) measured the sample bulk density, nonvolatile beta, gross alpha, radionuclide, inorganic, and anion concentrations three times for each of the composite samples. The analyte concentration data were partitioned into three separate groups for further analysis: analytes with every measurement above their minimum detectable concentrations (MDCs), analytes with no measurements above their MDCs, and analytes with a mixture of some measurement results above and below their MDCs. The means, standard deviations, and UCL95s were computed for the analytes in the two groups that had at least some measurements above their MDCs. The identification of distributions and the selection of UCL95 procedures generally followed the protocol in Singh, Armbya, and Singh [2010]. When all of an analyte's measurements lie below their MDCs, only a summary of the MDCs can be provided. The measurement results reported by SRNL are listed in Appendix A, and the results of this analysis are reported in Appendix B. The data were generally found to follow a normal distribution, and to be homogeneous across composite samples.« less

  7. Statistical Analysis of Tank 5 Floor Sample Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shine, E. P.

    2013-01-31

    Sampling has been completed for the characterization of the residual material on the floor of Tank 5 in the F-Area Tank Farm at the Savannah River Site (SRS), near Aiken, SC. The sampling was performed by Savannah River Remediation (SRR) LLC using a stratified random sampling plan with volume-proportional compositing. The plan consisted of partitioning the residual material on the floor of Tank 5 into three non-overlapping strata: two strata enclosed accumulations, and a third stratum consisted of a thin layer of material outside the regions of the two accumulations. Each of three composite samples was constructed from five primarymore » sample locations of residual material on the floor of Tank 5. Three of the primary samples were obtained from the stratum containing the thin layer of material, and one primary sample was obtained from each of the two strata containing an accumulation. This report documents the statistical analyses of the analytical results for the composite samples. The objective of the analysis is to determine the mean concentrations and upper 95% confidence (UCL95) bounds for the mean concentrations for a set of analytes in the tank residuals. The statistical procedures employed in the analyses were consistent with the Environmental Protection Agency (EPA) technical guidance by Singh and others [2010]. Savannah River National Laboratory (SRNL) measured the sample bulk density, nonvolatile beta, gross alpha, and the radionuclide1, elemental, and chemical concentrations three times for each of the composite samples. The analyte concentration data were partitioned into three separate groups for further analysis: analytes with every measurement above their minimum detectable concentrations (MDCs), analytes with no measurements above their MDCs, and analytes with a mixture of some measurement results above and below their MDCs. The means, standard deviations, and UCL95s were computed for the analytes in the two groups that had at least some measurements above their MDCs. The identification of distributions and the selection of UCL95 procedures generally followed the protocol in Singh, Armbya, and Singh [2010]. When all of an analyte's measurements lie below their MDCs, only a summary of the MDCs can be provided. The measurement results reported by SRNL are listed, and the results of this analysis are reported. The data were generally found to follow a normal distribution, and to be homogenous across composite samples.« less

  8. Statistical Analysis Of Tank 5 Floor Sample Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shine, E. P.

    2012-08-01

    Sampling has been completed for the characterization of the residual material on the floor of Tank 5 in the F-Area Tank Farm at the Savannah River Site (SRS), near Aiken, SC. The sampling was performed by Savannah River Remediation (SRR) LLC using a stratified random sampling plan with volume-proportional compositing. The plan consisted of partitioning the residual material on the floor of Tank 5 into three non-overlapping strata: two strata enclosed accumulations, and a third stratum consisted of a thin layer of material outside the regions of the two accumulations. Each of three composite samples was constructed from five primarymore » sample locations of residual material on the floor of Tank 5. Three of the primary samples were obtained from the stratum containing the thin layer of material, and one primary sample was obtained from each of the two strata containing an accumulation. This report documents the statistical analyses of the analytical results for the composite samples. The objective of the analysis is to determine the mean concentrations and upper 95% confidence (UCL95) bounds for the mean concentrations for a set of analytes in the tank residuals. The statistical procedures employed in the analyses were consistent with the Environmental Protection Agency (EPA) technical guidance by Singh and others [2010]. Savannah River National Laboratory (SRNL) measured the sample bulk density, nonvolatile beta, gross alpha, and the radionuclide, elemental, and chemical concentrations three times for each of the composite samples. The analyte concentration data were partitioned into three separate groups for further analysis: analytes with every measurement above their minimum detectable concentrations (MDCs), analytes with no measurements above their MDCs, and analytes with a mixture of some measurement results above and below their MDCs. The means, standard deviations, and UCL95s were computed for the analytes in the two groups that had at least some measurements above their MDCs. The identification of distributions and the selection of UCL95 procedures generally followed the protocol in Singh, Armbya, and Singh [2010]. When all of an analyte's measurements lie below their MDCs, only a summary of the MDCs can be provided. The measurement results reported by SRNL are listed in Appendix A, and the results of this analysis are reported in Appendix B. The data were generally found to follow a normal distribution, and to be homogenous across composite samples.« less

  9. Geomagnetism of earth's core

    NASA Technical Reports Server (NTRS)

    Benton, E. R.

    1983-01-01

    Instrumentation, analytical methods, and research goals for understanding the behavior and source of geophysical magnetism are reviewed. Magsat, launched in 1979, collected global magnetometer data and identified the main terrestrial magnetic fields. The data has been treated by representing the curl-free field in terms of a scalar potential which is decomposed into a truncated series of spherical harmonics. Solutions to the Laplace equation then extend the field upward or downward from the measurement level through intervening spaces with no source. Further research is necessary on the interaction between harmonics of various spatial scales. Attempts are also being made to analytically model the main field and its secular variation at the core-mantle boundary. Work is also being done on characterizing the core structure, composition, thermodynamics, energetics, and formation, as well as designing a new Magsat or a tethered satellite to be flown on the Shuttle.

  10. Experimental verification of distributed piezoelectric actuators for use in precision space structures

    NASA Technical Reports Server (NTRS)

    Crawley, E. F.; De Luis, J.

    1986-01-01

    An analytic model for structures with distributed piezoelectric actuators is experimentally verified for the cases of both surface-bonded and embedded actuators. A technique for the selection of such piezoelectric actuators' location has been developed, and is noted to indicate that segmented actuators are always more effective than continuous ones, since the output of each can be individually controlled. Manufacturing techniques for the bonding or embedding of segmented piezoelectric actuators are also developed which allow independent electrical contact to be made with each actuator. Static tests have been conducted to determine how the elastic properties of the composite are affected by the presence of an embedded actuator, for the case of glass/epoxy laminates.

  11. Analysis and Test of Repair Concepts for a Carbon-Rod Reinforced Laminate

    NASA Technical Reports Server (NTRS)

    Baker, Donald J.; Rousseau, Carl Q.

    2000-01-01

    The use of pultruded carbon-epoxy rods for the reinforcement of composite laminates in some structures results in an efficient structural concept. The results of an analytical and experimental investigation of repair concepts of completely severed carbon-epoxy rods is presented. Three repair concepts are considered: (a) bonded repair with outside moldline and inside moldline doublers; (b) bonded repair with fasteners, and (c) bonded repair with outside moldline doubler only. The stiffness of the repairs was matched with the stiffness of the baseline specimen. The failure strains for the bonded repair with fasteners and the bonded repair with an outside moldline doubler exceeded a target design strain set for the repair concepts.

  12. Structural and thermal testing of lightweight reflector panels

    NASA Technical Reports Server (NTRS)

    Mcgregor, J.; Helms, R.; Hill, T.

    1992-01-01

    The paper describes the test facility developed for testing large lightweight reflective panels with very accurate and stable surfaces, such as the mirror panels of composite construction developed for the NASA's Precision Segmented Reflector (PSR). Special attention is given to the panel construction and the special problems posed by the characteristics of these panels; the design of the Optical/Thermal Vacuum test facility for structural and thermal testing, developed at the U.S. AFPL; and the testing procedure. The results of the PSR panel test program to date are presented. The test data showed that the analytical approaches used for the panel design and for the prediction of the on-orbit panel behavior were adequate.

  13. Material property for designing, analyzing, and fabricating space structures

    NASA Technical Reports Server (NTRS)

    Kolkailah, Faysal A.

    1991-01-01

    An analytical study was made of plasma assisted bullet projectile. The finite element analysis and the micro-macromechanic analysis was applied to an optimum design technique for the multilayered graphite-epoxy composite projectile that will achieve hypervelocity of 6 to 10 Km/s. The feasibility was determined of dialectics to monitor cure of graphite-epoxies. Several panels were fabricated, cured, and tested with encouraging results of monitoring the cure of graphite-epoxies. The optimum cure process for large structures was determined. Different orientation were used and three different curing cycles were employed. A uniaxial tensile test was performed on all specimens. The optimum orientation with the optimum cure cycle were concluded.

  14. Graphite-silicone rubber composite electrode: Preparation and possibilities of analytical application.

    PubMed

    de Oliveira, Aline Carlos; dos Santos, Sidney Xavier; Cavalheiro, Eder Tadeu Gomes

    2008-01-15

    Composite electrodes were prepared using graphite powder and silicone rubber in different compositions. The use of such hydrophopic materials interned to diminish the swallowing observed in other cases when the electrodes are used in aqueous solutions for a long time. The composite was characterized for the response reproducibility, ohmic resistance, thermal behavior and active area. The voltammetric response in relation to analytes with known voltammetric behavior was also evaluated, always in comparison with the glassy carbon. The 70% (graphite, w/w) composite electrode was used in the quantitative determination of hydroquinone (HQ) in a DPV procedure in which a detection limit of 5.1x10(-8)molL(-1) was observed. HQ was determined in a photographic developer sample with errors lower then 1% in relation to the label value.

  15. Semi-active control of a sandwich beam partially filled with magnetorheological elastomer

    NASA Astrophysics Data System (ADS)

    Dyniewicz, Bartłomiej; Bajkowski, Jacek M.; Bajer, Czesław I.

    2015-08-01

    The paper deals with the semi-active control of vibrations of structural elements. Elastomer composites with ferromagnetic particles that act as magnetorheological fluids are used. The damping coefficient and the shear modulus of the elastomer increases when it is exposed to an electro-magnetic field. The control of this process in time allows us to reduce vibrations more effectively than if the elastomer is permanently exposed to a magnetic field. First the analytical solution for the vibrations of a sandwich beam filled with an elastomer is given. Then the control problem is defined and applied to the analytical formula. The numerical solution of the minimization problem results in a periodic, perfectly rectangular control function if free vibrations are considered. Such a temporarily acting magnetic field is more efficient than a constantly acting one. The surplus reaches 20-50% or more, depending on the filling ratio of the elastomer. The resulting control was verified experimentally in the vibrations of a cantilever sandwich beam. The proposed semi-active control can be directly applied to engineering vibrating structural elements, for example helicopter rotors, aircraft wings, pads under machines, and vehicles.

  16. Multimodal Characterization of the Morphology and Functional Interfaces in Composite Electrodes for Li-S Batteries by Li Ion and Electron Beams.

    PubMed

    Oleshko, Vladimir P; Herzing, Andrew A; Twedt, Kevin A; Griebel, Jared J; McClelland, Jabez J; Pyun, Jeffrey; Soles, Christopher L

    2017-09-19

    We report the characterization of multiscale 3D structural architectures of novel poly[sulfur-random-(1,3-diisopropenylbenzene)] copolymer-based cathodes for high-energy-density Li-S batteries capable of realizing discharge capacities >1000 mAh/g and long cycling lifetimes >500 cycles. Hierarchical morphologies and interfacial structures have been investigated by a combination of focused Li ion beam (LiFIB) and analytical electron microscopy in relation to the electrochemical performance and physicomechanical stability of the cathodes. Charge-free surface topography and composition-sensitive imaging of the electrodes was performed using recently introduced low-energy scanning LiFIB with Li + probe sizes of a few tens of nanometers at 5 keV energy and 1 pA probe current. Furthermore, we demonstrate that LiFIB has the ability to inject a certain number of Li cations into the material with nanoscale precision, potentially enabling control of the state of discharge in the selected area. We show that chemical modification of the cathodes by replacing the elemental sulfur with organosulfur copolymers significantly improves its structural integrity and compositional homogeneity down to the sub-5-nm length scale, resulting in the creation of (a) robust functional interfaces and percolated conductive pathways involving graphitic-like outer shells of aggregated nanocarbons and (b) extended micro- and mesoscale porosities required for effective ion transport.

  17. Modeling the chemistry of complex petroleum mixtures.

    PubMed Central

    Quann, R J

    1998-01-01

    Determining the complete molecular composition of petroleum and its refined products is not feasible with current analytical techniques because of the astronomical number of molecular components. Modeling the composition and behavior of such complex mixtures in refinery processes has accordingly evolved along a simplifying concept called lumping. Lumping reduces the complexity of the problem to a manageable form by grouping the entire set of molecular components into a handful of lumps. This traditional approach does not have a molecular basis and therefore excludes important aspects of process chemistry and molecular property fundamentals from the model's formulation. A new approach called structure-oriented lumping has been developed to model the composition and chemistry of complex mixtures at a molecular level. The central concept is to represent an individual molecular or a set of closely related isomers as a mathematical construct of certain specific and repeating structural groups. A complex mixture such as petroleum can then be represented as thousands of distinct molecular components, each having a mathematical identity. This enables the automated construction of large complex reaction networks with tens of thousands of specific reactions for simulating the chemistry of complex mixtures. Further, the method provides a convenient framework for incorporating molecular physical property correlations, existing group contribution methods, molecular thermodynamic properties, and the structure--activity relationships of chemical kinetics in the development of models. PMID:9860903

  18. Laboratory Analytical Procedures | Bioenergy | NREL

    Science.gov Websites

    analytical procedures (LAPs) to provide validated methods for biofuels and pyrolysis bio-oils research . Biomass Compositional Analysis These lab procedures provide tested and accepted methods for performing

  19. Titan's Organic Aerosols : Molecular Composition And Structure Inferred From Systematic Pyrolysis Gas Chromatography Mass Spectrometry Analysis of Analogues

    NASA Astrophysics Data System (ADS)

    Morisson, Marietta; Szopa, Cyril; Buch, Arnaud; Carrasco, Nathalie; Gautier, Thomas

    2015-04-01

    In spite of numerous studies carried out to characterize the chemical composition of laboratory analogues of Titan aerosols (tholins), their molecular composition as well as their structuration are still little known. If Pyrolysis gas chromatography mass spectrometry (Pyr-GCMS) has been used for years to give clues about this composition, the highly disparate results obtained show that they can be attributed to the analytical conditions used, to differences in the nature of the analogues studied, or both. In order to have a better description of Titan's tholins molecular composition, we led a systematic analysis of these materials by pyr-GCMS, exploring the analytical parameters to estimate the biases this technique can induce. With this aim, we used the PAMPRE experiment, a capacitively coupled RF cold plasma reactor (Szopa et al. 2006), to synthetize tholins with 2%, 5% and 10% of CH4 in N2. The three samples were systematically pyrolyzed in the temperature range 200-600°C with a 100°C step. The evolved gases were then injected into a GC-MS device for molecular identification. This systematic pyr-GC-MS analysis had two major objectives: (i) optimizing all the analytical parameters for the detection of a wide range of compounds and thus a characterization of the tholins composition as comprehensive as possible, and (ii) highlighting the role of the CH4 ratio on the tholins molecular structure. About a hundred of molecules have been identified in the pyrolysis products. Although an identical major pattern of nitriles and ethylene appears clearly for the three samples, some discriminant signatures were highlighted. The samples mainly differ by the number of released compounds. The results show especially an increase in the hydrocarbonaceous chains when the CH4 ratio increases. At the opposite, the formation of poly-nitrogenous compounds seems to be easier for lower CH4 ratios. We also performed a semi-quantitative study on the best represented chemical family in our chromatograms - namely nitriles: the existence of a relation between the quantity of a released compound and its molecular mass is consistent with the quantification of nitriles in the PAMPRE gas phase done by Gautier et al., 2011. Moreover, numerous species are present both in tholins and in the gas phase. That allowed us to make out potential precursors of the solid organic particles. From all these results, we conclude that the optimal pyrolysis temperature for a GC-MS analysis of our tholins is 600°C. This temperature choice results from the best compromise between the number of released compounds, the quality of the signal and the appearance of pyrolysis artefacts. Lastly, thanks to a review of pyr-GCMS studies carried out on Titan tholins since the first work of Khare et al. (1981), we compared all the previous analyses between them and with our own results in order to better understand the differences. References B. N. Khare et al., Icarus, vol. 48, no. 2, pp. 290-297, Nov. 1981. C. Szopa et al., Planet. Space Sci., vol. 54, no. 4, pp. 394-404, Apr. 2006. T. Gautier et al., Icarus, vol. 213, no. 2, pp. 625-635, Jun. 2011.

  20. Inelastic response of metal matrix composites under biaxial loading

    NASA Technical Reports Server (NTRS)

    Mirzadeh, F.; Pindera, Marek-Jerzy; Herakovich, Carl T.

    1990-01-01

    Elements of the analytical/experimental program to characterize the response of silicon carbide titanium (SCS-6/Ti-15-3) composite tubes under biaxial loading are outlined. The analytical program comprises prediction of initial yielding and subsequent inelastic response of unidirectional and angle-ply silicon carbide titanium tubes using a combined micromechanics approach and laminate analysis. The micromechanics approach is based on the method of cells model and has the capability of generating the effective thermomechanical response of metal matrix composites in the linear and inelastic region in the presence of temperature and time-dependent properties of the individual constituents and imperfect bonding on the initial yield surfaces and inelastic response of (0) and (+ or - 45)sub s SCS-6/Ti-15-3 laminates loaded by different combinations of stresses. The generated analytical predictions will be compared with the experimental results. The experimental program comprises generation of initial yield surfaces, subsequent stress-strain curves and determination of failure loads of the SCS-6/Ti-15-3 tubes under selected loading conditions. The results of the analytical investigation are employed to define the actual loading paths for the experimental program. A brief overview of the experimental methodology is given. This includes the test capabilities of the Composite Mechanics Laboratory at the University of Virginia, the SCS-6/Ti-15-3 composite tubes secured from McDonnell Douglas Corporation, a text fixture specifically developed for combined axial-torsional loading, and the MTS combined axial-torsion loader that will be employed in the actual testing.

  1. Experimental and analytical characterization of triaxially braided textile composites

    NASA Technical Reports Server (NTRS)

    Masters, John E.; Fedro, Mark J.; Ifju, Peter G.

    1993-01-01

    There were two components, experimental and analytical, to this investigation of triaxially braided textile composite materials. The experimental portion of the study centered on measuring the materials' longitudinal and transverse tensile moduli, Poisson's ratio, and strengths. The identification of the damage mechanisms exhibited by these materials was also a prime objective of the experimental investigation. The analytical portion of the investigation utilized the Textile Composites Analysis (TECA) model to predict modulus and strength. The analytical and experimental results were compared to assess the effectiveness of the analysis. The figures contained in this paper reflect the presentation made at the conference. They may be divided into four sections: a definition of the material system tested; followed by a series of figures summarizing the experimental results (these figures contain results of a Moire interferometry study of the strain distribution in the material, examples and descriptions of the types of damage encountered in these materials, and a summary of the measured properties); a description of the TECA model follows the experimental results (this includes a series of predicted results and a comparison with measured values); and finally, a brief summary completes the paper.

  2. Development of Amperometric Biosensors Based on Nanostructured Tyrosinase-Conducting Polymer Composite Electrodes

    PubMed Central

    Lupu, Stelian; Lete, Cecilia; Balaure, Paul Cătălin; Caval, Dan Ion; Mihailciuc, Constantin; Lakard, Boris; Hihn, Jean-Yves; del Campo, Francisco Javier

    2013-01-01

    Bio-composite coatings consisting of poly(3,4-ethylenedioxythiophene) (PEDOT) and tyrosinase (Ty) were successfully electrodeposited on conventional size gold (Au) disk electrodes and microelectrode arrays using sinusoidal voltages. Electrochemical polymerization of the corresponding monomer was carried out in the presence of various Ty amounts in aqueous buffered solutions. The bio-composite coatings prepared using sinusoidal voltages and potentiostatic electrodeposition methods were compared in terms of morphology, electrochemical properties, and biocatalytic activity towards various analytes. The amperometric biosensors were tested in dopamine (DA) and catechol (CT) electroanalysis in aqueous buffered solutions. The analytical performance of the developed biosensors was investigated in terms of linear response range, detection limit, sensitivity, and repeatability. A semi-quantitative multi-analyte procedure for simultaneous determination of DA and CT was developed. The amperometric biosensor prepared using sinusoidal voltages showed much better analytical performance. The Au disk biosensor obtained by 50 mV alternating voltage amplitude displayed a linear response for DA concentrations ranging from 10 to 300 μM, with a detection limit of 4.18 μM. PMID:23698270

  3. Advanced composite combustor structural concepts program

    NASA Technical Reports Server (NTRS)

    Sattar, M. A.; Lohmann, R. P.

    1984-01-01

    An analytical study was conducted to assess the feasibility of and benefits derived from the use of high temperature composite materials in aircraft turbine engine combustor liners. The study included a survey and screening of the properties of three candidate composite materials including tungsten reinforced superalloys, carbon-carbon and silicon carbide (SiC) fibers reinforcing a ceramic matrix of lithium aluminosilicate (LAS). The SiC-LAS material was selected as offering the greatest near term potential primarily on the basis of high temperature capability. A limited experimental investigation was conducted to quantify some of the more critical mechanical properties of the SiC-LAS composite having a multidirection 0/45/-45/90 deg fiber orientation favored for the combustor linear application. Rigorous cyclic thermal tests demonstrated that SiC-LAS was extremely resistant to the thermal fatigue mechanisms that usually limit the life of metallic combustor liners. A thermal design study led to the definition of a composite liner concept that incorporated film cooled SiC-LAS shingles mounted on a Hastelloy X shell. With coolant fluxes consistent with the most advanced metallic liner technology, the calculated hot surface temperatures of the shingles were within the apparent near term capability of the material. Structural analyses indicated that the stresses in the composite panels were low, primarily because of the low coefficient of expansion of the material and it was concluded that the dominant failure mode of the liner would be an as yet unidentified deterioration of the composite from prolonged exposure to high temperature. An economic study, based on a medium thrust size commercial aircraft engine, indicated that the SiC-LAS combustor liner would weigh 22.8N (11.27 lb) less and cost less to manufacture than advanced metallic liner concepts intended for use in the late 1980's.

  4. Synthesis and characterization of a novel porous titanium silicate/g-C{sub 3}N{sub 4} hybrid nanocomposite catalyst for environmental applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adepu, Ajay Kumar; Narayanan, Venkatathri, E-mail: venkatathrin@yahoo.com, E-mail: ajay.kumar553@gmail.com

    2016-04-13

    Herein we developed a novel porous Titanium silicate/g-C{sub 3}N{sub 4} (TSCN) hybrid composite with a inorganic-organic heterojunction. The synthesized porous TSCN were well characterized by various analytical techniques for structural and chemical properties evaluation. FESEM results shows the growth of finely distributed porous titanium silicate on the surface of the g-C{sub 3}N{sub 4}. Porous TSCN hybrid nanocomposite has a great influence on the electronic and optical properties.

  5. Prediction of response of aircraft panels subjected to acoustic and thermal loads

    NASA Technical Reports Server (NTRS)

    Mei, Chuh

    1992-01-01

    The primary effort of this research project has been focused on the development of analytical methods for the prediction of random response of structural panels subjected to combined and intense acoustic and thermal loads. The accomplishments on various acoustic fatigue research activities are described first, then followed by publications and theses. Topics covered include: transverse shear deformation; finite element models of vibrating composite laminates; large deflection vibration modeling; finite element analysis of thermal buckling; and prediction of three dimensional duct using boundary element method.

  6. Material Property Characterization of AS4/VRM-34 Textile Laminates

    NASA Technical Reports Server (NTRS)

    Grenoble, Ray W.; Johnston, William M

    2013-01-01

    Several material properties (modulus, strengths, and fracture toughness) of a textile composite have been evaluated to provide input data to analytical models of Pultruded Rod Stiffened Efficient Unitized Structure (PRSEUS). The material system is based on warp-knitted preforms of AS4 carbon fibers and VRM-34 epoxy resin, which have been processed via resin infusion and oven curing. Tensile, compressive, shear, and fracture toughness properties have been measured at ambient and elevated temperatures. All specimens were tested in as-fabricated (dry) condition. Specimens were tested with and without through-thickness stitching.

  7. An integrated approach using orthogonal analytical techniques to characterize heparan sulfate structure.

    PubMed

    Beccati, Daniela; Lech, Miroslaw; Ozug, Jennifer; Gunay, Nur Sibel; Wang, Jing; Sun, Elaine Y; Pradines, Joël R; Farutin, Victor; Shriver, Zachary; Kaundinya, Ganesh V; Capila, Ishan

    2017-02-01

    Heparan sulfate (HS), a glycosaminoglycan present on the surface of cells, has been postulated to have important roles in driving both normal and pathological physiologies. The chemical structure and sulfation pattern (domain structure) of HS is believed to determine its biological function, to vary across tissue types, and to be modified in the context of disease. Characterization of HS requires isolation and purification of cell surface HS as a complex mixture. This process may introduce additional chemical modification of the native residues. In this study, we describe an approach towards thorough characterization of bovine kidney heparan sulfate (BKHS) that utilizes a variety of orthogonal analytical techniques (e.g. NMR, IP-RPHPLC, LC-MS). These techniques are applied to characterize this mixture at various levels including composition, fragment level, and overall chain properties. The combination of these techniques in many instances provides orthogonal views into the fine structure of HS, and in other instances provides overlapping / confirmatory information from different perspectives. Specifically, this approach enables quantitative determination of natural and modified saccharide residues in the HS chains, and identifies unusual structures. Analysis of partially digested HS chains allows for a better understanding of the domain structures within this mixture, and yields specific insights into the non-reducing end and reducing end structures of the chains. This approach outlines a useful framework that can be applied to elucidate HS structure and thereby provides means to advance understanding of its biological role and potential involvement in disease progression. In addition, the techniques described here can be applied to characterization of heparin from different sources.

  8. Analytical effective tensor for flow-through composites

    DOEpatents

    Sviercoski, Rosangela De Fatima [Los Alamos, NM

    2012-06-19

    A machine, method and computer-usable medium for modeling an average flow of a substance through a composite material. Such a modeling includes an analytical calculation of an effective tensor K.sup.a suitable for use with a variety of media. The analytical calculation corresponds to an approximation to the tensor K, and follows by first computing the diagonal values, and then identifying symmetries of the heterogeneity distribution. Additional calculations include determining the center of mass of the heterogeneous cell and its angle according to a defined Cartesian system, and utilizing this angle into a rotation formula to compute the off-diagonal values and determining its sign.

  9. An Investigation of SiC/SiC Woven Composite Under Monotonic and Cyclic Loading

    NASA Technical Reports Server (NTRS)

    Lang, J.; Sankar, J.; Kelkar, A. D.; Bhatt, R. T.; Singh, M.; Lua, J.

    1997-01-01

    The desirable properties in ceramic matrix composites (CMCs), such as high temperature strength, corrosion resistance, high toughness, low density, or good creep resistance have led to increased use of CMCs in high-speed engine structural components and structures that operate in extreme temperature and hostile aero-thermo-chemical environments. Ceramic matrix composites have been chosen for turbine material in the design of 21 st-century civil propulsion systems to achieve high fuel economy, improved reliability, extended life, and reduced cost. Most commercial CMCs are manufactured using a chemical vapor infiltration (CVI) process. However, a lower cost fabrication known as melt-infiltration process is also providing CMCs marked for use in hot sections of high-speed civil transports. The scope of this paper is to report on the material and mechanical characterization of the CMCs subjected to this process and to predict the behavior through an analytical model. An investigation of the SiC/SiC 8-harness woven composite is ongoing and its tensile strength and fatigue behavior is being characterized for room and elevated temperatures. The investigation is being conducted at below and above the matrix cracking stress once these parameters are identified. Fractography and light microscopy results are being studied to characterize the failure modes resulting from pure uniaxial loading. A numerical model is also being developed to predict the laminate properties by using the constituent material properties and tow undulation.

  10. Quantitative Understanding of SHAPE Mechanism from RNA Structure and Dynamics Analysis.

    PubMed

    Hurst, Travis; Xu, Xiaojun; Zhao, Peinan; Chen, Shi-Jie

    2018-05-10

    The selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) method probes RNA local structural and dynamic information at single nucleotide resolution. To gain quantitative insights into the relationship between nucleotide flexibility, RNA 3D structure, and SHAPE reactivity, we develop a 3D Structure-SHAPE Relationship model (3DSSR) to rebuild SHAPE profiles from 3D structures. The model starts from RNA structures and combines nucleotide interaction strength and conformational propensity, ligand (SHAPE reagent) accessibility, and base-pairing pattern through a composite function to quantify the correlation between SHAPE reactivity and nucleotide conformational stability. The 3DSSR model shows the relationship between SHAPE reactivity and RNA structure and energetics. Comparisons between the 3DSSR-predicted SHAPE profile and the experimental SHAPE data show correlation, suggesting that the extracted analytical function may have captured the key factors that determine the SHAPE reactivity profile. Furthermore, the theory offers an effective method to sieve RNA 3D models and exclude models that are incompatible with experimental SHAPE data.

  11. Matrix-assisted laser desorption/ionization sample preparation optimization for structural characterization of poly(styrene-co-pentafluorostyrene) copolymers.

    PubMed

    Tisdale, Evgenia; Kennedy, Devin; Xu, Xiaodong; Wilkins, Charles

    2014-01-15

    The influence of the sample preparation parameters (the choice of the matrix, matrix:analyte ratio, salt:analyte ratio) was investigated and optimal conditions were established for the MALDI time-of-flight mass spectrometry analysis of the poly(styrene-co-pentafluorostyrene) copolymers. These were synthesized by atom transfer radical polymerization. Use of 2,5-dihydroxybenzoic acid as matrix resulted in spectra with consistently high ion yields for all matrix:analyte:salt ratios tested. The optimized MALDI procedure was successfully applied to the characterization of three copolymers obtained by varying the conditions of polymerization reaction. It was possible to establish the nature of the end groups, calculate molecular weight distributions, and determine the individual length distributions for styrene and pentafluorostyrene monomers, contained in the resulting copolymers. Based on the data obtained, it was concluded that individual styrene chain length distributions are more sensitive to the change in the composition of the catalyst (the addition of small amount of CuBr2) than is the pentafluorostyrene component distribution. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Multi-scale analytical investigation of fly ash in concrete

    NASA Astrophysics Data System (ADS)

    Aboustait, Mohammed B.

    Much research has been conducted to find an acceptable concrete ingredient that would act as cement replacement. One promising material is fly ash. Fly ash is a by-product from coal-fired power plants. Throughout this document work on the characterization of fly ash structure and composition will be explored. This effort was conducted through a mixture of cutting edge multi-scale analytical X-ray based techniques that use both bulk experimentation and nano/micro analytical techniques. Furtherly, this examination was coupled by performing Physical/Mechanical ASTM based testing on fly ash-enrolled-concrete to examine the effects of fly ash introduction. The most exotic of the cutting edge characterization techniques endorsed in this work uses the Nano-Computed Tomography and the Nano X-ray Fluorescence at Argonne National Laboratory to investigate single fly ash particles. Additional Work on individual fly ash particles was completed by laboratory-based Micro-Computed Tomography and Scanning Electron Microscopy. By combining the results of individual particles and bulk property tests, a compiled perspective is introduced, and accessed to try and make new insights into the reactivity of fly ash within concrete.

  13. Exosomes as therapeutics: The implications of molecular composition and exosomal heterogeneity.

    PubMed

    Ferguson, Scott W; Nguyen, Juliane

    2016-04-28

    Harnessing exosomes as therapeutic drug delivery vehicles requires a better understanding of exosomal composition and their mode of action. A full appreciation of all the exosomal components (proteins, lipids, and RNA content) will be important for the design of effective exosome-based or exosome-mimicking drug carriers. In this review we describe the presence of rarely studied, non-coding RNAs that exist in high numbers in exosomes. We discuss the implications of the molecular composition and heterogeneity of exosomes on their biological and therapeutic effects. Finally, we highlight outstanding questions with regard to RNA loading into exosomes, analytical methods to sort exosomes and their sub-populations, and the effects of exosomal proteins and lipids on recipient cells. Investigations into these facets of exosome biology will further advance the field, could lead to the clinical translation of exosome-based therapeutics, and aid in the reverse-engineering of synthetic exosomes. Although synthetic exosomes are still an underexplored area, they could offer researchers a way to manufacture exosomes with highly defined structure, composition, and function. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. The in situ transverse lamina strength of composite laminates

    NASA Technical Reports Server (NTRS)

    Flaggs, D. L.

    1983-01-01

    The objective of the work reported in this presentation is to determine the in situ transverse strength of a lamina within a composite laminate. From a fracture mechanics standpoint, in situ strength may be viewed as constrained cracking that has been shown to be a function of both lamina thickness and the stiffness of adjacent plies that serve to constrain the cracking process. From an engineering point of view, however, constrained cracking can be perceived as an apparent increase in lamina strength. With the growing need to design more highly loaded composite structures, the concept of in situ strength may prove to be a viable means of increasing the design allowables of current and future composite material systems. A simplified one dimensional analytical model is presented that is used to predict the strain at onset of transverse cracking. While it is accurate only for the most constrained cases, the model is important in that the predicted failure strain is seen to be a function of a lamina's thickness d and of the extensional stiffness bE theta of the adjacent laminae that constrain crack propagation in the 90 deg laminae.

  15. NMR analysis of compositional heterogeneity in polysaccharides

    USDA-ARS?s Scientific Manuscript database

    Many copolysaccharides are compositionally heterogeneous, and the composition determined by the usual analytical or spectroscopic methods provides only an average value. For some polysaccharides, the NMR data contain copolymer sequence information, such as diad, triad, and tetrad sequence intensiti...

  16. Influence of constituent properties and geometric form on behavior of woven fabric reinforced composites

    NASA Technical Reports Server (NTRS)

    Pipes, R. B.; Wilson, D. W.

    1984-01-01

    Th potential for woven fabric composite forms to increase the interlaminar strength and toughness properties of laminated composite septems is studied. Experimental and analytical studies were performed on a z-axis fabric.

  17. Studies on Effective Elastic Properties of CNT/Nano-Clay Reinforced Polymer Hybrid Composite

    NASA Astrophysics Data System (ADS)

    Thakur, Arvind Kumar; Kumar, Puneet; Srinivas, J.

    2016-02-01

    This paper presents a computational approach to predict elastic propertiesof hybrid nanocomposite material prepared by adding nano-clayplatelets to conventional CNT-reinforced epoxy system. In comparison to polymers alone/single-fiber reinforced polymers, if an additional fiber is added to the composite structure, it was found a drastic improvement in resultant properties. In this regard, effective elastic moduli of a hybrid nano composite are determined by using finite element (FE) model with square representative volume element (RVE). Continuum mechanics based homogenization of the nano-filler reinforced composite is considered for evaluating the volumetric average of the stresses and the strains under different periodic boundary conditions.A three phase Halpin-Tsai approach is selected to obtain the analytical result based on micromechanical modeling. The effect of the volume fractions of CNTs and nano-clay platelets on the mechanical behavior is studied. Two different RVEs of nano-clay platelets were used to investigate the influence of nano-filler geometry on composite properties. The combination of high aspect ratio of CNTs and larger surface area of clay platelets contribute to the stiffening effect of the hybrid samples. Results of analysis are validated with Halpin-Tsai empirical formulae.

  18. [Preparation and catalytic activity of surface-modification CNTs/TiO2 composite photocatalysts].

    PubMed

    Wang, Huan-Ying; Li, Wen-Jun; Chang, Zhi-Dong; Zhou, Hua-Lei; Guo, Hui-Chao

    2011-09-01

    A novel kind of carbon nanotubes/titanium dioxide (CNTs/TiO2) composite photocatalyst was prepared by a modified sol-gel method in which the nanoscaled TiO2 particles were uniformly deposited on the CNTs modified with poly(vinyl pyrrolidone) (PVP). The composites were characterized by a range of analytical techniques including high resolution transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The results show the successful covering of the CNTs with PVP, forming core-shell structure. The nanoscaled TiO2 particles were uniformly deposited on the surface of CNTs reducing the bare CNTs which avoid losing the absorption and scattering of photons. The combination of CNTs and TiO2 particles imply the enhanced interactions between the CNTs and TiO2 interface which possibly becomes heterojunction. The composites become mesoporous crystalline TiO2 (anatase) clusters after annealing at 500 degrees C, and the surface area increases obviously. The photocatalytic activities of surface modification CNTs/TiO2 (smCNTs/TiO2) composites are extremely enhanced from the results of the photodegradation of methylene blue (MB).

  19. Polystyrene Core-Silica Shell Particles with Defined Nanoarchitectures as a Versatile Platform for Suspension Array Technology.

    PubMed

    Sarma, Dominik; Gawlitza, Kornelia; Rurack, Knut

    2016-04-19

    The need for rapid and high-throughput screening in analytical laboratories has led to significant growth in interest in suspension array technologies (SATs), especially with regard to cytometric assays targeting a low to medium number of analytes. Such SAT or bead-based assays rely on spherical objects that constitute the analytical platform. Usually, functionalized polymer or silica (SiO2) microbeads are used which each have distinct advantages and drawbacks. In this paper, we present a straightforward synthetic route to highly monodisperse SiO2-coated polystyrene core-shell (CS) beads for SAT with controllable architectures from smooth to raspberry- and multilayer-like shells by varying the molecular weight of poly(vinylpyrrolidone) (PVP), which was used as the stabilizer of the cores. The combination of both organic polymer core and a structurally controlled inorganic SiO2 shell in one hybrid particle holds great promises for flexible next-generation design of the spherical platform. The particles were characterized by electron microscopy (SEM, T-SEM, and TEM), thermogravimetry, flow cytometry, and nitrogen adsorption/desorption, offering comprehensive information on the composition, size, structure, and surface area. All particles show ideal cytometric detection patterns and facile handling due to the hybrid structure. The beads are endowed with straightforward modification possibilities through the defined SiO2 shells. We successfully implemented the particles in fluorometric SAT model assays, illustrating the benefits of tailored surface area which is readily available for small-molecule anchoring. Very promising assay performance was shown for DNA hybridization assays with quantification limits down to 8 fmol.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prof. P. Somasundaran

    The aim of the project is to develop and evaluate efficient novel surfactant mixtures for enhanced oil recovery. Preliminary ultra-filtration tests suggest that two kinds of micelles may exist in binary surfactant mixtures at different concentrations. Due to the important role played in interfacial processes by micelles as determined by their structures, focus of the current work is on the delineation of the relationship between such aggregate structures and chemical compositions of the surfactants. A novel analytical centrifuge application is explored to generate information on structures of different surfactants aggregates. In this report, optical systems, typical output of the analyticalmore » ultracentrifuge results and four basic experiments are discussed. Initial sedimentation velocity investigations were conducted using nonyl phenol ethoxylated decyl ether (NP-10) to choose the best analytical protocol, calculate the partial specific volume and obtain information on sedimentation coefficient, aggregation mass of micelles. The partial specific volume was calculated to be 0.920. Four softwares: Optima{trademark} XL-A/XL-I data analysis software, DCDT+, Svedberg and SEDFIT, were compared for the analysis of sedimentation velocity experimental data. The sedimentation coefficient and aggregation number of NP-10 micelles obtained using the first three softwares at 25 C are 209, 127, and 111, respectively. The last one is closest to the result from Light Scattering. The reason for the differences in numbers obtained using the three softwares is discussed. Based on these tests, Svedberg and SEDFIT analysis are chosen for further studies. This approach using the analytical ultracentrifugation offers an unprecedented opportunity now to obtain important information on mixed micelles and their role in interfacial processes.« less

  1. Analytical investigation of a three-dimensional FRP-retrofitted reinforced concrete structure's behaviour under earthquake load effect in ANSYS program

    NASA Astrophysics Data System (ADS)

    Altun, F.; Birdal, F.

    2012-12-01

    In this study, a 1:3 scaled, three-storey, FRP (Fiber Reinforced Polymer) retrofitted reinforced concrete model structure whose behaviour and crack development were identified experimentally in the laboratory was investigated analytically. Determination of structural behaviour under earthquake load is only possible in a laboratory environment with a specific scale, as carrying out structural experiments is difficult due to the evaluation of increased parameter numbers and because it requires an expensive laboratory setup. In an analytical study, structure was modelled using ANSYS Finite Element Package Program (2007), and its behaviour and crack development were revealed. When experimental difficulties are taken into consideration, analytical investigation of structure behaviour is more economic and much faster. At the end of the study, experimental results of structural behaviour and crack development were compared with analytical data. It was concluded that in a model structure retrofitted with FRP, the behaviour and cracking model can be determined without testing by determining the reasons for the points where analytical results are not converged with experimental data. Better understanding of structural behaviour is analytically enabled with the study.

  2. Compressive Behavior of Frame-Stiffened Composite Panels

    NASA Technical Reports Server (NTRS)

    Yovanof, Nicolette P.; Jegley, Dawn C.

    2011-01-01

    New technologies are being developed under NASA's Environmentally Responsible Aviation (ERA) Program aimed at reducing fuel burn and emissions in large commercial aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept is being developed which offers advantages over traditional metallic structure. In this concept a stitched carbon-epoxy material system is employed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners and producing a more damage tolerant design. In addition, by adding unidirectional carbon rods to the top of stiffeners and minimizing the interference between the sandwich frames and the rod-stiffened stringers, the panel becomes more structurally efficient. This document describes the results of experimentation on a PRSEUS panel in which the frames are loaded in unidirectional compression beyond the local buckling of the skin of a Hybrid Wing Body (HWB) aircraft. A comparison with analytical predictions and the relationship between these test results and the global aircraft design is presented.

  3. Quantitative Evaluation of Delamination in Composites Using Lamb Waves

    NASA Astrophysics Data System (ADS)

    Michalcová, L.; Hron, R.

    2018-03-01

    Ultrasonic guided wave monitoring has become very popular in the area of structural health monitoring (SHM) of aerospace structures. Any possible type of damage must be reliably assessed. The paper deals with delamination length determination in DCB specimens using Lamb waves. An analytical equation based on the velocity dependence on variable thickness is utilized. The group velocity of the fundamental antisymmetric A0 mode rapidly changes in a particular range of the frequency-thickness product. Using the same actuation frequency the propagation velocity is different for delaminated structure. Lamb wave based delamination lengths were compared to the visually determined lengths. The method of the wave velocity determination proved to be essential. More accurate results were achieved by tracking the maximum amplitude of A0 mode than the first signal arrival. These findings are considered as the basis for the damage evaluation of complex structures.

  4. Analysis of composite laminates with multiple fasteners by boundary collocation technique

    NASA Astrophysics Data System (ADS)

    Sergeev, Boris Anatolievich

    Mechanical fasteners remain the primary means of load transfer between structural components made of composite laminates. As, in pursuit of increasing efficiency of the structure, the operational load continues to grow, the load carried by each fastener increases accordingly. This accelerates initiation of fatigue-related cracks near the fasteners holes and increases probability of failure. Therefore, the assessment of the stresses around the fastener holes and the stress intensity factors associated with edge cracks becomes critical for damage-tolerant design. Because of the presence of unknown contact stresses and the contact region between the fastener and the laminate, the analysis of a pin-loaded hole becomes considerably more complex than that of a traction-free hole. The accurate prediction of the contact stress distribution along the hole boundary is critical for determining the stress intensity factors and is essential for reliable strength evaluation and failure prediction. This study concerns the development of an analytical methodology, based on the boundary collocation technique, to determine the contact stresses and stress intensity factors required for strength and life prediction of bolted joints with many fasteners. It provides an analytical capability for determining the non-linear contact stresses in mechanically fastened composite laminates while capturing the effects of finite geometry, presence of edge cracks, interaction among fasteners, material anisotropy, fastener flexibility, fastener-hole clearance, friction between the pin and the laminate, and by-pass loading. Also, the proposed approach permits the determination of the fastener load distribution, which significantly influences the failure load of a multi-fastener joint. The well known phenomenon of the fastener tightening torque (clamping force) influence on the load distribution among the different fastener in a multi-fastener joints is taken into account by means of bi-linear representation of the elastic fastener deflection. Finally, two different failure criteria, maximum strains averaged over the characteristic distances and Tsai-Wu criterion, were used to predict the failure load and failure mode in two composite-aluminum joints. The comparison of the present predictions with the published experimental results reveals their agreement.

  5. Mechanical Properties of Triaxial Braided Carbon/Epoxy Composites

    NASA Technical Reports Server (NTRS)

    Bowman, C. L.; Roberts, G. D.; Braley, M. S.; Xie, M.; Booker, M. J.

    2003-01-01

    In an on-going effort to increase the safety and efficiency of turbine engines, the National Aeronautics and Space Administration is exploring lightweight alternatives to the metal containment structures that currently encase commercial jet engines. Epoxy reinforced with braided carbon fibers is a candidate structural material which may be suitable for an engine case. This paper reports flat-coupon mechanical-property experiments performed to compliment previously reported subcomponent impact testing and analytical simulation of containment structures. Triaxial-braid T700/5208 epoxy and triaxial-braid T700/M36 toughened epoxy composites were evaluated. Also, two triaxial-braid architectures (0 +/- 60 deg., 0 +/- 45 deg.) with the M36 resin were evaluated through tension, compression, and shear testing. Tensile behavior was compared between standard straight-sided specimens (ASTM D3039) and bowtie specimens. Both double-notch shear (ASTM D3846) and Iosepescu (ASTM D5379) tests were performed as well. The M36/0 +/- 45 deg. configuration yield the best response when measurements were made parallel to the axial tows. Conversely, the M36/0 +/- 60 deg. configuration was best when measurements were made perpendicular to the axial tows. The results were used to identify critical properties and to augment the analysis of impact experiments.

  6. Origin of positive fixed charge at insulator/AlGaN interfaces and its control by AlGaN composition

    NASA Astrophysics Data System (ADS)

    Matys, M.; Stoklas, R.; Blaho, M.; Adamowicz, B.

    2017-06-01

    The key feature for the precise tuning of Vth in GaN-based metal-insulator-semiconductor (MIS) high electron mobility transistors is the control of the positive fixed charge (Qf) at the insulator/III-N interfaces, whose amount is often comparable to the negative surface polarization charge ( Qp o l -). In order to clarify the origin of Qf, we carried out a comprehensive capacitance-voltage (C-V) characterization of SiO2/AlxGa1-xN/GaN and SiN/AlxGa1-xN/GaN structures with Al composition (x) varying from 0.15 to 0.4. For both types of structures, we observed a significant Vth shift in C-V curves towards the positive gate voltage with increasing x. On the contrary, the Schottky gate structures exhibited Vth shift towards the more negative biases. From the numerical simulations of C-V curves using the Poisson's equation supported by the analytical calculations of Vth, we showed that the Vth shift in the examined MIS structures is due to a significant decrease in the positive Qf with rising x. Finally, we examined this result with respect to various hypotheses developed in the literature to explain the origin of the positive Qf at insulator/III-N interfaces.

  7. Structural Performance of Advanced Composite Tow-Steered Shells With Cutouts

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Turpin, Jason D.; Stanford, Bret K.; Martin, Robert A.

    2014-01-01

    The structural performance of two advanced composite tow-steered shells with cutouts, manufactured using an automated fiber placement system, is assessed using both experimental and analytical methods. The shells' fiber orientation angles vary continuously around their circumference from +/-10 degrees on the crown and keel, to +/-45 degrees on the sides. The raised surface features on one shell result from application of all 24 tows during each fiber placement system pass, while the second shell uses the system's tow drop/add capability to achieve a more uniform wall thickness. These unstiffened shells were previously tested in axial compression and buckled elastically. A single cutout, scaled to represent a passenger door on a commercial aircraft, is then machined into one side of each shell. The prebuckling axial stiffnesses and bifurcation buckling loads of the shells with cutouts are also computed using linear finite element structural analyses for initial comparisons with test data. When retested, large deflections were observed around the cutouts, but the shells carried an average of 92 percent of the axial stiffness, and 86 percent of the buckling loads, of the shells without cutouts. These relatively small reductions in performance demonstrate the potential for using tow steering to mitigate the adverse effects of typical design features on the overall structural performance.

  8. Experimental Measurement and Numerical Modeling of the Effective Thermal Conductivity of TRISO Fuel Compacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Folsom, Charles; Xing, Changhu; Jensen, Colby

    2015-03-01

    Accurate modeling capability of thermal conductivity of tristructural-isotropic (TRISO) fuel compacts is important to fuel performance modeling and safety of Generation IV reactors. To date, the effective thermal conductivity (ETC) of tristructural-isotropic (TRISO) fuel compacts has not been measured directly. The composite fuel is a complicated structure comprised of layered particles in a graphite matrix. In this work, finite element modeling is used to validate an analytic ETC model for application to the composite fuel material for particle-volume fractions up to 40%. The effect of each individual layer of a TRISO particle is analyzed showing that the overall ETC ofmore » the compact is most sensitive to the outer layer constituent. In conjunction with the modeling results, the thermal conductivity of matrix-graphite compacts and the ETC of surrogate TRISO fuel compacts have been successfully measured using a previously developed measurement system. The ETC of the surrogate fuel compacts varies between 50 and 30 W m -1 K -1 over a temperature range of 50-600°C. As a result of the numerical modeling and experimental measurements of the fuel compacts, a new model and approach for analyzing the effect of compact constituent materials on ETC is proposed that can estimate the fuel compact ETC with approximately 15-20% more accuracy than the old method. Using the ETC model with measured thermal conductivity of the graphite matrix-only material indicate that, in the composite form, the matrix material has a much greater thermal conductivity, which is attributed to the high anisotropy of graphite thermal conductivity. Therefore, simpler measurements of individual TRISO compact constituents combined with an analytic ETC model, will not provide accurate predictions of overall ETC of the compacts emphasizing the need for measurements of composite, surrogate compacts.« less

  9. Nucleic acid-coupled colorimetric analyte detectors

    DOEpatents

    Charych, Deborah H.; Jonas, Ulrich

    2001-01-01

    The present invention relates to methods and compositions for the direct detection of analytes and membrane conformational changes through the detection of color changes in biopolymeric materials. In particular, the present invention provide for the direct colorimetric detection of analytes using nucleic acid ligands at surfaces of polydiacetylene liposomes and related molecular layer systems.

  10. Role of segregation and precipitates on interfacial strengthening mechanisms in metal matrix composites when subjected to thermo-mechanical processing

    NASA Astrophysics Data System (ADS)

    Myriounis, Dimitrios

    Metal Matrix ceramic-reinforced composites are rapidly becoming strong candidates as structural materials for many high temperatures and aerospace applications. Metal matrix composites combine the ductile properties of the matrix with a brittle phase of the reinforcement, leading to high stiffness and strength with a reduction in structural weight. The main objective of using a metal matrix composite system is to increase service temperature or improve specific mechanical properties of structural components by replacing existing superalloys.The satisfactory performance of metal matrix composites depends critically on their integrity, the heart of which is the quality of the matrix-reinforcement interface. The nature of the interface depends on the processing of the metal matrix composite component. At the micro-level the development of local stress concentration gradients around the ceramic reinforcement, as the metal matrix attempts to deform during processing, can be very different to the nominal conditions and play a crucial role in important microstructural events such as segregation and precipitation at the matrix-reinforcement interface. These events dominate the cohesive strength and subsequent mechanical properties of the interface.At present the relationship between the strength properties of metal matrix composites and the details of the thermo-mechanical forming processes is not well understood.The purpose of the study is to investigate several strengthening mechanisms and the effect of thermo-mechanical processing of SiCp reinforced A359 aluminium alloy composites on the particle-matrix interface and the overall mechanical properties of the material. From experiments performed on composite materials subjected to various thermo-mechanical conditions and by observation using SEM microanalysis and mechanical testing, data were obtained, summarised and mathematically/statistically analysed upon their significance.The Al/SiCp composites studied, processed in specific thermo-mechanical conditions in order to attain higher values of interfacial fracture strength, due to precipitation hardening and segregation mechanisms, also exhibited enhanced bulk mechanical and fracture resistant properties.An analytical model to predict the interfacial fracture strength in the presence of material segregation was also developed during this research effort. Its validity was determined based on the data gathered from the experiments.The tailoring of the properties due to the microstructural modification of the composites was examined in relation to the experimental measurements obtained, which define the macroscopical behaviour of the material.

  11. Advanced High-Temperature Engine Materials Technology Progresses

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The objective of the Advanced High Temperature Engine Materials Technology Program (HITEMP) is to generate technology for advanced materials and structural analysis that will increase fuel economy, improve reliability, extend life, and reduce operating costs for 21st century civil propulsion systems. The primary focus is on fan and compressor materials (polymer-matrix composites--PMC's), compressor and turbine materials (superalloys, and metal-matrix and intermetallic-matrix composites--MMC's and IMC's) and turbine materials (ceramic-matrix composites--CMC's). These advanced materials are being developed by in-house researchers and on grants and contracts. NASA considers this program to be a focused materials and structures research effort that builds on our base research programs and supports component-development projects. HITEMP is coordinated with the Advanced Subsonic Technology (AST) Program and the Department of Defense/NASA Integrated High-Performance Turbine Engine Technology (IHPTET) Program. Advanced materials and structures technologies from HITEMP may be used in these future applications. Recent technical accomplishments have not only improved the state-of-the-art but have wideranging applications to industry. A high-temperature thin-film strain gage was developed to measure both dynamic and static strain up to 1100 C (2000 F). The gage's unique feature is that it is minimally intrusive. This technology, which received a 1995 R&D 100 Award, has been transferred to AlliedSignal Engines, General Electric Company, and Ford Motor Company. Analytical models developed at the NASA Lewis Research Center were used to study Textron Specialty Materials' manufacturing process for titanium-matrix composite rings. Implementation of our recommendations on tooling and processing conditions resulted in the production of defect free rings. In the Lincoln Composites/AlliedSignal/Lewis cooperative program, a composite compressor case is being manufactured with a Lewis-developed matrix, VCAP. The compressor case, which will reduce weight by 30 percent and costs by 50 percent, is scheduled to be engine tested in the near future.

  12. Evaluation of a metal shear web selectively reinforced with filamentary composites for space shuttle application. Phase 3 Summary report: Shear web component testing and analysis

    NASA Technical Reports Server (NTRS)

    Laakso, J. H.; Straayer, J. W.

    1973-01-01

    Three large scale advanced composite shear web components were tested and analyzed to evaluate application of the design concept to a space shuttle orbiter thrust structure. The shear web design concept consisted of a titanium-clad + or - 45 deg boron/epoxy web laminate stiffened with vertical boron/epoxy reinforced aluminum stiffeners. The design concept was evaluated to be efficient and practical for the application that was studied. Because of the effects of buckling deflections, a requirement is identified for shear buckling resistant design to maximize the efficiency of highly-loaded advanced composite shear webs. An approximate analysis of prebuckling deflections is presented and computer-aided design results, which consider prebuckling deformations, indicate that the design concept offers a theoretical weight saving of 31 percent relative to all metal construction. Recommendations are made for design concept options and analytical methods that are appropriate for production hardware.

  13. A thermo-mechanical correlation with driving forces for hcp martensite and twin formations in the Fe-Mn-C system exhibiting multicomposition sets.

    PubMed

    Nakano, Jinichiro

    2013-02-01

    The thermodynamic properties of the Fe-Mn-C system were investigated by using an analytical model constructed by a CALPHAD approach. The stacking fault energy (SFE) of the fcc structure with respect to the hcp phase was always constant at T 0 , independent of the composition and temperature when other related parameters were assumed to be constant. Experimental limits for the thermal hcp formation and the mechanical (deformation-induced) hcp formation were separated by the SFE at T 0 . The driving force for the fcc to hcp transition, defined as a dimensionless value -d G m /( RT ), was determined in the presence of Fe-rich and Mn-rich composition sets in each phase. Carbon tended to partition to the Mn-rich phase rather than to the Fe-rich phase for the compositions studied. The results obtained revealed a thermo-mechanical correlation with empirical yield strength, maximum true stress and maximum true strain. The proportionality between thermodynamics and mechanical properties is discussed.

  14. The application of symmetry and centricity to polychordal wedge harmony in "Motherchord"

    NASA Astrophysics Data System (ADS)

    Cathey, Tully J.

    This dissertation is in two volumes. Volume I is an analytical paper in two parts. Part I presents a polychordal harmonic system called the "The Desire Matrix Harmonic System," that was used to compose a work for large orchestra called "Motherchord" (Volume II). The polychords are comprised of two triadic units and of major triads only, built on two pairs of intersecting chromatic scales. The system embraces pitch-centric characteristics as well as symmetry. Scales, or tone sets, are derived from the polychords and used for melodic and contrapuntal purposes. Compositional procedures are developed, and a matrix of polychordal wedges is assembled that serves as a further compositional device. Part II of the paper is an analysis of the formal structure of "Motherchord." "Motherchord" is a one-movement composition of approximately seventeen minutes and forty seconds duration. It is divided into seven parts, but proceeds from beginning to end without a break in sound. The title of the work derives from the central tonic polychord.

  15. Comparison of Hard Surface and Soft Soil Impact Performance of a Crashworthy Composite Fuselage Concept

    NASA Technical Reports Server (NTRS)

    Sareen, Ashish K.; Sparks, Chad; Mullins, B. R., Jr.; Fasanella, Edwin; Jackson, Karen

    2002-01-01

    A comparison of the soft soil and hard surface impact performance of a crashworthy composite fuselage concept has been performed. Specifically, comparisons of the peak acceleration values, pulse duration, and onset rate at specific locations on the fuselage were evaluated. In a prior research program, the composite fuselage section was impacted at 25 feet per second onto concrete at the Impact Dynamics Research Facility (IDRF) at NASA Langley Research Center. A soft soil test was conducted at the same impact velocity as a part of the NRTC/RITA Crashworthy and Energy Absorbing Structures project. In addition to comparisons of soft soil and hard surface test results, an MSC. Dytran dynamic finite element model was developed to evaluate the test analysis correlation. In addition, modeling parameters and techniques affecting test analysis correlation are discussed. Once correlated, the analytical methodology will be used in follow-on work to evaluate the specific energy absorption of various subfloor concepts for improved crash protection during hard surface and soft soil impacts.

  16. Vibrations and structureborne noise in space station

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.; Lyrintzis, C. S.; Bofilios, D. A.

    1987-01-01

    Analytical models were developed to predict vibrations and structureborne noise generation of cylindrical and rectangular acoustic enclosures. These models are then used to determine structural vibration levels and interior noise to random point input forces. The guidelines developed could provide preliminary information on acoustical and vibrational environments in space station habitability modules under orbital operations. The structural models include single wall monocoque shell, double wall shell, stiffened orthotropic shell, descretely stiffened flat panels, and a coupled system composed of a cantilever beam structure and a stiffened sidewall. Aluminum and fiber reinforced composite materials are considered for single and double wall shells. The end caps of the cylindrical enclosures are modeled either as single or double wall circular plates. Sound generation in the interior space is calculated by coupling the structural vibrations to the acoustic field in the enclosure. Modal methods and transfer matrix techniques are used to obtain structural vibrations. Parametric studies are performed to determine the sensitivity of interior noise environment to changes in input, geometric and structural conditions.

  17. Hybrid Wing-Body Pressurized Fuselage and Bulkhead, Design and Optimization

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    2013-01-01

    The structural weight reduction of a pressurized Hybrid Wing-Body (HWB) fuselage is a serious challenge. Hence, research and development are presently being continued at NASA under the Environmentally Responsible Aviation (ERA) and Subsonic Fixed Wing (SFW) projects in collaboration with the Boeing Company, Huntington Beach and Air Force Research Laboratory (AFRL). In this paper, a structural analysis of the HWB fuselage and bulkhead panels is presented, with the objectives of design improvement and structural weight reduction. First, orthotropic plate theories for sizing, and equivalent plate analysis with appropriate simplification are considered. Then parametric finite-element analysis of a fuselage section and bulkhead are conducted using advanced stitched composite structural concepts, which are presently being developed at Boeing for pressurized HWB flight vehicles. With this advanced stiffened-shell design, structural weights are computed and compared to the thick sandwich, vaulted-ribbed-shell, and multi-bubble stiffened-shell structural concepts that had been studied previously. The analytical and numerical results are discussed to assess the overall weight/strength advantages.

  18. Laminar flow control perforated wing panel development

    NASA Technical Reports Server (NTRS)

    Fischler, J. E.

    1986-01-01

    Many structural concepts for a wing leading edge laminar flow control hybrid panel were analytically investigated. After many small, medium, and large tests, the selected design was verified. New analytic methods were developed to combine porous titanium sheet bonded to a substructure of fiberglass and carbon/epoxy cloth. At -65 and +160 F test conditions, the critical bond of the porous titanium to the composite failed at lower than anticipated test loads. New cure cycles, design improvements, and test improvements significantly improved the strength and reduced the deflections from thermal and lateral loadings. The wave tolerance limits for turbulence were not exceeded. Consideration of the beam column midbay deflections from the combinations of the axial and lateral loadings and thermal bowing at -65 F, room temperature, and +160 F were included. Many lap shear tests were performed at several cure cycles. Results indicate that sufficient verification was obtained to fabricate a demonstration vehicle.

  19. Hybrid passive/active damping for robust multivariable acoustic control in composite plates

    NASA Astrophysics Data System (ADS)

    Veeramani, Sudha; Wereley, Norman M.

    1996-05-01

    Noise transmission through a flexible kevlar-epoxy composite trim panel into an acoustic cavity or box is studied with the intent of controlling the interior sound fields. A hybrid noise attenuation technique is proposed which uses viscoelastic damping layers in the composite plate for passive attenuation of high frequency noise transmission, and uses piezo-electric patch actuators for active control in the low frequency range. An adaptive feedforward noise control strategy is applied. The passive structural damping augmentation incorporated in the composite plates is also intended to increase stability robustness of the active noise control strategy. A condenser microphone in the interior of the enclosure functions as the error sensor. Three composite plates were experimentally evaluated: one with no damping layer, the second with a 10 mil damping layer, and the third with a 15 mil damping layer. The damping layer was cocured in the kevlar-epoxy trim panels. Damping in the plates was increased from 1.6% for the plate with no damping layer, to 5.9% for the plate with a 15 mil damping layer. In experimental studies, the improved stability robustness of the controller was demonstrated by improved adaptive feedforward control algorithm convergence. A preliminary analytical model is presented that describes the dynamic behavior of a composite panel actuated by piezoelectric actuators bonded to its surface.

  20. The bending stress distribution in bilayered and graded zirconia-based dental ceramics

    PubMed Central

    Fabris, Douglas; Souza, Júlio C.M.; Silva, Filipe S.; Fredel, Márcio; Mesquita-Guimarães, Joana; Zhang, Yu; Henriques, Bruno

    2016-01-01

    The purpose of this study was to evaluate the biaxial flexural stresses in classic bilayered and in graded zirconia-feldspathic porcelain composites. A finite element method and an analytical model were used to simulate the piston-on-ring test and to predict the biaxial stress distributions across the thickness of the bilayer and graded zirconia-feldspathic porcelain discs. An axisymmetric model and a flexure formula of Hsueh et al. were used in the FEM and analytical analysis, respectively. Four porcelain thicknesses were tested in the bilayered discs. In graded discs, continuous and stepwise transitions from the bottom zirconia layer to the top porcelain layer were studied. The resulting stresses across the thickness, measured along the central axis of the disc, for the bilayered and graded discs were compared. In bilayered discs, the maximum tensile stress decreased while the stress mismatch (at the interface) increased with the porcelain layer thickness. The optimized balance between both variables is achieved for a porcelain thickness ratio in the range of 0.30–0.35. In graded discs, the highest tensile stresses were registered for porcelain rich interlayers (p=0.25) whereas the zirconia rich ones (p=8) yield the lowest tensile stresses. In addition, the maximum stresses in a graded structure can be tailored by altering compositional gradients. A decrease in maximum stresses with increasing values of p (a scaling exponent in the power law function) was observed. Our findings showed a good agreement between the analytical and simulated models, particularly in the tensile region of the disc. Graded zirconia-feldspathic porcelain composites exhibited a more favourable stress distribution relative to conventional bilayered systems. This fact can significantly impact the clinical performance of zirconia-feldspathic porcelain prostheses, namely reducing the fracture incidence of zirconia and the chipping and delamination of porcelain. PMID:28104926

  1. New experimental and analytical results for diffusion and swelling of resins used in graphite/epoxy composite materials

    NASA Technical Reports Server (NTRS)

    Hiel, C. C.; Adamson, M. J.

    1986-01-01

    The epoxy resins currently in use can slowly absorb moisture from the atmosphere over a long period. This reduces those mechanical properties of composites which depend strongly on the matrix, such as compressive strength and buckling instabilities. The effect becomes greater at elevated temperatures. The paper will discuss new phenomena which occur under simultaneous temperature and moisture variations. An analytical model will also be discussed and documented.

  2. [Comparative anatomy of the mandible. Functional aspects].

    PubMed

    Denoix, J M

    1983-12-01

    The structural morphology of the mandibula is presented and correlated to various types of mastication in several Mammalian species. The latter include: Carnivores (Dog, Cat, Cheetah, Lion); Omnivores (Man, Chimpanzee, Hog); Herbivores (Horse, Ox, Goat, Camel, Rabbit). While the mandibula is studied as a composite unit, a more analytical, segmental approach has been included, and both are illustrated by X-rays. The aspects presented underline the distribution as well as the local modifications of compact bone, and in addition, the arrangement and the development of spongy bone trabeculae. A preliminary classification with respect to structural elements has been suggested from two viewpoints: that of tension, the other of compression. Are also presented those variations linked to diet and alimentary intake, as well as their functional correlates.

  3. Nonlinear analysis of structures. [within framework of finite element method

    NASA Technical Reports Server (NTRS)

    Armen, H., Jr.; Levine, H.; Pifko, A.; Levy, A.

    1974-01-01

    The development of nonlinear analysis techniques within the framework of the finite-element method is reported. Although the emphasis is concerned with those nonlinearities associated with material behavior, a general treatment of geometric nonlinearity, alone or in combination with plasticity is included, and applications presented for a class of problems categorized as axisymmetric shells of revolution. The scope of the nonlinear analysis capabilities includes: (1) a membrane stress analysis, (2) bending and membrane stress analysis, (3) analysis of thick and thin axisymmetric bodies of revolution, (4) a general three dimensional analysis, and (5) analysis of laminated composites. Applications of the methods are made to a number of sample structures. Correlation with available analytic or experimental data range from good to excellent.

  4. Global Failure Modes in Composite Structures

    NASA Technical Reports Server (NTRS)

    Knauss, W. G.; Gonzalez, Luis

    2001-01-01

    Composite materials provide well-known advantages for space and aeronautical applications in terms of strength and rigidity to weight ratios and other mechanical properties. As a consequence, their use has experienced a constant increase in the past decades and it is anticipated that this trend will be maintained in the near future. At the same time, being these materials relatively new compared to metals, and having failure characteristics completely different from them, their damage growth and their failure mechanisms are not as well understood in a predictive sense. For example, while in metals fracture produces "clean" cracks with their well defined analytically stress fields at the crack tip, composite fracture is a more complex phenomenon. Instead of a crack, we confront a "damage zone" that may include fiber breakage, fiber microbuckling, fiber pullout, matrix cracking, delamination, debonding or any combination of all these different mechanisms. These phenomena are prevalent in any failure process through an aircraft structure, whether one addresses a global failure such as the ripping of a fuselage or wing section, or whether one is concerned with the failure initiation near a thickness change at stringers or other reinforcement. Thus the topic that has been under consideration has wide application in any real structure and is considered an essential contribution to the predictive failure analysis capability for aircraft containing composite components. The heterogeneity and the anisotropy of composites are not only advantageous but essential characteristics, yet these same features provide complex stress fields, especially in the presence of geometrical discontinuities such as notches, holes or cutouts or structural elements such as stiffeners, stringers, etc. To properly address the interaction between a damage/crack front and a hole with a stringer it is imperative that the stress and deformation fields of the former be (sufficiently well) characterized. The question of "scaling" is an essential concern in any structural materials investigation. For example, experiments in the past have shown that the "strength" of a composite depends on hole size. As a consequence the validity of traditional fracture mechanics concepts applied to composite materials failure must be questioned. The size of the fibers, the dimensions of the laminae, etc. together with the fact that, because of the layered anisotropy, the stress field is no longer two-dimensional, prevent the otherwise obviously confident use of "similarity concepts". Therefore, the question needs to be raised of whether in composites "size matters or not", i.e., whether the results obtained in a laboratory using small coupons are truly representative of the situation involving a full scale component.

  5. Bending efficiency through property gradients in bamboo, palm, and wood-based composites.

    PubMed

    Wegst, Ulrike G K

    2011-07-01

    Nature, to a greater extent than engineering, takes advantage of hierarchical structures. These allow for optimization at each structural level to achieve mechanical efficiency, meaning mechanical performance per unit mass. Palms and bamboos do this exceptionally well; both are fibre-reinforced cellular materials in which the fibres are aligned parallel to the stem or culm, respectively. The distribution of these fibres is, however, not uniform: there is a density and modulus gradient across the section. This property gradient increases the flexural rigidity of the plants per unit mass, mass being a measure of metabolic investment made into an organism's construction. An analytical model is presented with which a 'gradient shape factor' can be calculated that describes by how much a plant's bending efficiency is increased through gradient structures. Combining the 'gradient shape factor' with a 'microstructural shape factor' that captures the efficiency gained through the cellular nature of the fibre composite's matrix, and a 'macroscopical shape factor' with which the tubular shape of bamboo can be described, for example, it is possible to explore how much each of these three structural levels of the hierarchy contributes to the overall bending performance of the stem or culm. In analogy, the bending efficiency of the commonly used wood-based composite medium-density fibreboard can be analysed; its property gradient is due to its manufacture by hot pressing. A few other engineered materials exist that emulate property gradients; new manufacturing routes to prepare them are currently being explored. It appears worthwhile to pursue these further. Copyright © 2011. Published by Elsevier Ltd.

  6. Variable stiffness corrugated composite structure with shape memory polymer for morphing skin applications

    NASA Astrophysics Data System (ADS)

    Gong, Xiaobo; Liu, Liwu; Scarpa, Fabrizio; Leng, Jinsong; Liu, Yanju

    2017-03-01

    This work presents a variable stiffness corrugated structure based on a shape memory polymer (SMP) composite with corrugated laminates as reinforcement that shows smooth aerodynamic surface, extreme mechanical anisotropy and variable stiffness for potential morphing skin applications. The smart composite corrugated structure shows a low in-plane stiffness to minimize the actuation energy, but also possess high out-of-plane stiffness to transfer the aerodynamic pressure load. The skin provides an external smooth aerodynamic surface because of the one-sided filling with the SMP. Due to variable stiffness of the shape memory polymer the morphing skin exhibits a variable stiffness with a change of temperature, which can help the skin adjust its stiffness according different service environments and also lock the temporary shape without external force. Analytical models related to the transverse and bending stiffness are derived and validated using finite element techniques. The stiffness of the morphing skin is further investigated by performing a parametric analysis against the geometry of the corrugation and various sets of SMP fillers. The theoretical and numerical models show a good agreement and demonstrate the potential of this morphing skin concept for morphing aircraft applications. We also perform a feasibility study of the use of this morphing skin in a variable camber morphing wing baseline. The results show that the morphing skin concept exhibits sufficient bending stiffness to withstand the aerodynamic load at low speed (less than 0.3 Ma), while demonstrating a large transverse stiffness variation (up to 191 times) that helps to create a maximum mechanical efficiency of the structure under varying external conditions.

  7. Soft Plumbing: Direct-Writing and Controllable Perfusion of Tubular Soft Materials

    NASA Astrophysics Data System (ADS)

    Guenther, Axel; Omoruwa, Patricia; Chen, Haotian; McAllister, Arianna; Jeronimo, Mark; Malladi, Shashi; Hakimi, Navid; Cao, Li; Ramchandran, Arun

    2016-11-01

    Tubular and ductular structures are abundant in tissues in a wide variety of diameters, wall thicknesses, and compositions. In spite of their relevance to engineered tissues, organs-on-chips and soft robotics, the rapid and consistent preparation of tubular structures remains a challenge. Here, we use a microfabricated printhead to direct-write biopolymeric tubes with dimensional and compositional control. A biopolymer solution is introduced to the center layer of the printhead, and the confining fluids to the top and the bottom layers. The radially flowing biopolymer solution is sandwiched between confining solutions that initiate gelation, initially assuming the shape of a funnel until emerging through a cylindrical confinement as a continuous biopolymer tube. Tubular constructs of sodium alginate and collagen I were obtained with inner diameters (0.6-2.2mm) and wall thicknesses (0.1-0.4mm) in favorable agreement with predictions of analytical models. We obtained homogeneous tubes with smooth and buckled walls and heterotypic constructs that possessed compositions that vary along the tube circumference or radius. Ductular soft materials were reversibly hosted in 3D printed fluidic devices for the perfusion at well-defined transmural pressures to explore the rich variety of dynamical features associated with collapsible tubes that include buckling, complete collapse, and self-oscillation.

  8. Species sorting and patch dynamics in harlequin metacommunities affect the relative importance of environment and space.

    PubMed

    Leibold, Mathew A; Loeuille, Nicolas

    2015-12-01

    Metacommunity theory indicates that variation in local community structure can be partitioned into components including those related to local environmental conditions vs. spatial effects and that these can be quantified using statistical methods based on variation partitioning. It has been hypothesized that joint associations of community composition with environment and space could be due to patch dynamics involving colonization-extinction processes in environmentally heterogeneous landscapes but this has yet to be theoretically shown. We develop a two-patch, type-two, species competition model in such a "harlequin" landscape (where different patches have different environments) to evaluate how composition is related to environmental and spatial effects as a function of background extinction rate. Using spatially implicit analytical models, we find that the environmental association of community composition declines with extinction rate as expected. Using spatially explicit simulation models, we further find that there is an increase in the spatial structure with extinction due to spatial patterning into clusters that are not related to environmental conditions but that this increase is limited. Natural metacommunities often show both environment and spatial determination even under conditions of relatively high isolation and these could be more easily explained by our model than alternative metacommunity models.

  9. On a high-potential variable flexural stiffness device

    NASA Astrophysics Data System (ADS)

    Henke, Markus; Gerlach, Gerald

    2013-05-01

    There are great efforts in developing effective composite structures for lightweight constructions for nearly every field of engineering. This concerns for example aeronautics and spacecrafts, but also automotive industry and energy harvesting applications. Modern concepts of lightweight components try to make use of structures with properties which can be adjusted in a controllable was. However, classic composite materials can only slightly adapt to varying environmental conditions because most materials, like carbon or glass-fiber composites show properties which are time-constant and not changeable. This contribution describes the development, the potential and the limitations of novel smart, self-controlling structures which can change their mechanical properties - e.g. their flexural stiffness - by more then one order of magnitude. These structures use a multi-layer approach with a 10-layer stack of 0.75 mm thick polycarbonate. The set-up is analytically described and its mechanical behavior is predicted by finite element analysis done with ABAQUS. The layers are braided together by an array of shape memory alloy (SMA) wires, which can be activated independently. Depending on the temperature applied by the electrical current flowing through the wires and the corresponding contraction the wires can tightly clamp the layers so that they cannot slide against each other due to friction forces. In this case the multilayer acts as rigid beam with high stiffness. If the friction-induced shear stress is smaller than a certain threshold, then the layers can slide over each other and the multilayer becomes compliant under bending load. The friction forces between the layers and, hence, the stiffness of the beam is controlled by the electrical current through the wires. The more separate parts of SMA wires the structure has the larger is the number of steps of stiffness changes of the flexural beam.

  10. Analytical Modeling for Mechanical Strength Prediction with Raman Spectroscopy and Fractured Surface Morphology of Novel Coconut Shell Powder Reinforced: Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Singh, Savita; Singh, Alok; Sharma, Sudhir Kumar

    2017-06-01

    In this paper, an analytical modeling and prediction of tensile and flexural strength of three dimensional micro-scaled novel coconut shell powder (CSP) reinforced epoxy polymer composites have been reported. The novel CSP has a specific mixing ratio of different coconut shell particle size. A comparison is made between obtained experimental strength and modified Guth model. The result shows a strong evidence for non-validation of modified Guth model for strength prediction. Consequently, a constitutive modeled equation named Singh model has been developed to predict the tensile and flexural strength of this novel CSP reinforced epoxy composite. Moreover, high resolution Raman spectrum shows that 40 % CSP reinforced epoxy composite has high dielectric constant to become an alternative material for capacitance whereas fractured surface morphology revealed that a strong bonding between novel CSP and epoxy polymer for the application as light weight composite materials in engineering.

  11. Computational Simulation of the High Strain Rate Tensile Response of Polymer Matrix Composites

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.

    2002-01-01

    A research program is underway to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. Under these types of loading conditions, the material response can be highly strain rate dependent and nonlinear. State variable constitutive equations based on a viscoplasticity approach have been developed to model the deformation of the polymer matrix. The constitutive equations are then combined with a mechanics of materials based micromechanics model which utilizes fiber substructuring to predict the effective mechanical and thermal response of the composite. To verify the analytical model, tensile stress-strain curves are predicted for a representative composite over strain rates ranging from around 1 x 10(exp -5)/sec to approximately 400/sec. The analytical predictions compare favorably to experimentally obtained values both qualitatively and quantitatively. Effective elastic and thermal constants are predicted for another composite, and compared to finite element results.

  12. A Palladium-Tin Modified Microband Electrode Array for Nitrate Determination

    PubMed Central

    Fu, Yexiang; Bian, Chao; Kuang, Jian; Wang, Jinfen; Tong, Jianhua; Xia, Shanhong

    2015-01-01

    A microband electrode array modified with palladium-tin bimetallic composite has been developed for nitrate determination. The microband electrode array was fabricated by Micro Electro-Mechanical System (MEMS) technique. Palladium and tin were electrodeposited successively on the electrode, forming a double-layer structure. The effect of the Pd-Sn composite was investigated and its enhancement of catalytic activity and lifetime was revealed. The Pd-Sn modified electrode showed good linearity (R2 = 0.998) from 1 mg/L to 20 mg/L for nitrate determination with a sensitivity of 398 μA/(mg∙L−1∙cm2). The electrode exhibited a satisfying analytical performance after 60 days of storage, indicating a long lifetime. Good repeatability was also displayed by the Pd-Sn modified electrodes. The results provided an option for nitrate determination in water. PMID:26389904

  13. Graphite Fiber Textile Preform/Copper Matrix Composites

    NASA Technical Reports Server (NTRS)

    Filatovs, G. J.; Lee, Bruce; Bass, Lowell

    1996-01-01

    Graphite fiber reinforced/copper matrix composites are candidate materials for critical heat transmitting and rejection components because of their high thermal conduction. The use of textile (braid) preforms allows near-net shapes which confers additional advantages, both for enhanced thermal conduction and increased robustness of the preform against infiltration and handling damage. Issues addressed in the past year center on the determination of the braid structure following infiltration, and the braidability vs. the conductivity of the fibers. Highly conductive fibers eventuate from increased graphitization, which increases the elastic modulus, but lowers the braidability; a balance between these factors must be achieved. Good quality braided preform bars have been fabricated and infiltrated, and their thermal expansion characterized; their analytic modeling is underway. The braided preform of an integral finned tube has been fabricated and is being prepared for infiltration.

  14. Monoenergetic ion acceleration and Rayleigh-Taylor instability of the composite target irradiated by the laser pulse

    NASA Astrophysics Data System (ADS)

    Khudik, Vladimir; Yi, S. Austin; Shvets, Gennady

    2012-10-01

    Acceleration of ions in the two-specie composite target irradiated by a circularly polarized laser pulse is studied analytically and via particle-in-cell (PIC) simulations. A self-consistent analytical model of the composite target is developed. In this model, target parameters are stationary in the center of mass of the system: heavy and light ions are completely separated from each other and form two layers, while electrons are bouncing in the potential well formed by the laser ponderomotive and electrostatic potentials. They are distributed in the direction of acceleration by the Boltzmann law and over velocities by the Maxwell-Juttner law. The laser pulse interacts directly only with electrons in a thin sheath layer, and these electrons transfer the laser pressure to the target ions. In the fluid approximation it is shown, the composite target is still susceptible to the Rayleigh-Taylor instability [1]. Using PIC simulations we found the growth rate of initially seeded perturbations as a function of their wavenumber for different composite target parameters and compare it with analytical results. Useful scaling laws between this rate and laser pulse pressure and target parameters are discussed.[4pt] [1] T.P. Yu, A. Pukhov, G. Shvets, M. Chen, T. H. Ratliff, S. A. Yi, and V. Khudik, Phys. Plasmas, 18, 043110 (2011).

  15. Molecular- and nm-scale Investigation of the Structure and Compositional Heterogeneity of Naturally Occurring Ferrihydrite

    NASA Astrophysics Data System (ADS)

    Cismasu, C.; Michel, F. M.; Stebbins, J. F.; Tcaciuc, A. P.; Brown, G. E.

    2008-12-01

    Ferrihydrite is a hydrated Fe(III) nano-oxide that forms in vast quantities in contaminated acid mine drainage environments. As a result of its high surface area, ferrihydrite is an important environmental sorbent, and plays an essential role in the geochemical cycling of pollutant metal(loid)s in these settings. Despite its environmental relevance, this nanomineral remains one of the least understood environmental solids in terms of its structure (bulk and surface), compositional variations, and the factors affecting its reactivity. Under natural aqueous conditions, ferrihydrite often precipitates in the presence of several inorganic compounds such as aluminum, silica, arsenic, etc., or in the presence of organic matter. These impurities can affect the molecular-level structure of naturally occurring ferrihydrite, thus modifying fundamental properties that are directly correlated with solid-phase stability and surface reactivity. Currently there exists a significant gap in our understanding of the structure of synthetic vs. natural ferrihydrites, due to the inherent difficulties associated to the investigation of these poorly crystalline nanophases. In this study, we combined synchrotron- and laboratory-based techniques to characterize naturally occurring ferrihydrite from an acid mine drainage system situated at the New Idria mercury mine in California. We used high-energy X-ray total scattering and pair distribution function analysis to elucidate quantitative structural details of these samples. We have additionally used scanning transmission X-ray microscopy high resolution imaging (30 nm) to evaluate the spatial relationship of major elements Si, Al, and C within ferrihydrite. Al, Si and C K-edge near- edge X-ray absorption fine structure spectroscopy and 27Al nuclear magnetic resonance spectroscopy were used to obtain short-range structural information. By combining these techniques we attain the highest level of resolution permitted by current analytical methods to study such naturally occurring nanomaterials, both at the molecular- and nm-scale. This work provides structural information at the short-, medium- and long- range, as well as evidence of compositional heterogeneity, and mineral/organic matter associations.

  16. Impact of Carrier Fluid Composition on Recovery of Nanoparticles and Proteins in Flow Field Flow Fractionation

    PubMed Central

    Schachermeyer, Samantha; Ashby, Jonathan; Kwon, MinJung; Zhong, Wenwan

    2012-01-01

    Flow field flow fractionation (F4) is an invaluable separation tool for large analytes, including nanoparticles and biomolecule complexes. However, sample loss due to analyte-channel membrane interaction limits extensive usage of F4 at present, which could be strongly affected by the carrier fluid composition. This work studied the impacts of carrier fluid (CF) composition on nanoparticle (NP) recovery in F4, with focus on high ionic strength conditions. Successful analysis of NPs in a biomolecules-friendly environment could expand the applicability of F4 to the developing field of nanobiotechnology. Recovery of the unfunctionalized polystyrene NPs of 199-, 102-, and 45-nm in CFs with various pH (6.2, 7.4 and 8.2), increasing ionic strength (0–0.1 M), and different types of co- and counter-ions, were investigated. Additionally, elution of the 85-nm carboxylate NPs and two proteins, human serum albumin (HSA) and immunoglobulin (IgG), at high ionic strengths (0–0.15 M) was investigated. Our results suggested that; 1) Electrostatic repulsion between the negatively charged NPs and the regenerated cellulose membrane was the main force to avoid particle adsorption on the membrane; 2) Larger particles experienced higher attractive force and thus were influenced more by variation in CF composition; and 3) Buffers containing weak anions or NPs with weak anion as the surface functional groups provided higher tolerance to the increase in ionic strength, owing to more anions being trapped inside the NP porous structure. Protein adsorption onto the membrane was also briefly investigated in salted CFs, using human serum albumin and immunoglobulin. We believe our findings could help to identify the basic carrier fluid composition for higher sample recovery in F4 analysis of nanoparticles in a protein-friendly environment, which will be useful for applying F4 in bioassays and in nanotoxicology studies. PMID:23058938

  17. Thermal conductivity of hybrid short fiber composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, M.L.; Taya, M.; Hatta, H.

    1993-01-01

    A combined analytical/experimental study has been undertaken to investigate the effective thermal conductivity of hybrid composite materials. The analysis utilizes the equivalent inclusion approach for steady state heat conduction (Hatta and Taya, 1986) through which the interaction between the various reinforcing phases at finite concentrations is approximated by the Mori-Tanaka (1973) mean field approach. The multiple reinforcing phases of the composite are modeled as ellipsoidal in shape and thus can simulate a wide range of microstructural geometries ranging from thin platelet to continuous fiber reinforcement. The case when one phase of the composite is penny-shaped microcracks is studied in detail.more » Multiphase composites consisting of a Kerimid matrix and Al2O3 short fibers and Si3N4 whiskers were fabricated and, after a careful study of their microstructure, their thermal conductivities were measured. Analytical predictions are shown to be in good agreement with experimental results obtained for the Al2O3/Si3N4/Kerimid short fiber composites. 26 refs.« less

  18. The effect of BaM/PANI composition with epoxy paint matrix on single and double layers coating with spray coating method for radar absorbing materials applications

    NASA Astrophysics Data System (ADS)

    Widyastuti, Fajarin, Rindang; Pratiwi, Vania Mitha; Kholid, Rifki Rachman; Habib, Abdulloh

    2018-04-01

    In this study, RAM composite has been succesfully synthesized by mixing BaM as magnetic materials and PANI as conductive materials. BaM and PANI materials were prepared separately by solid state method and polymerization method, respectively. To investigated the presence of BaM phase and magnetic property of the as prepared BaM, XRD pert PAN analytical and VSM 250 Dexing Magnet were employed. Inductance Capacitance Resistance technique was carried out to measure electrical conductivity of the synthesized PANI materials. In order to further characterized the structural features of BaM and PANI, SEM-EDX FEI 850 and FTIR characterizations were conducted. RAM composite was prepared by mixing BaM and PANI powders with ultrasonic cleaner. Afterwards, VNA (Vector Network Analyzer) characterization was carried out to determine reflection loss value of RAM by applying mixed RAM composite and epoxy paint on aluminum plate using spray gun. Microscopic characterization was employed to investigated the distribution of RAM particles on the substrate. It was found that reflection loss value as low as -27.153 dB was achieved when applied 15 wt% BaM/PANi composite at 100.6 µm thickness. In addition, the absorption of electromagnetic waves value increase as the addition of RAM composite composition increases.

  19. Combination of sorption properties of polydimethylsiloxane and solid-phase extraction sorbents in a single composite material for the passive sampling of polar and apolar pesticides in water.

    PubMed

    Martin, Alexis; Margoum, Christelle; Coquery, Marina; Randon, Jérôme

    2016-10-01

    Passive sampling techniques have been developed as an alternative method for in situ integrative monitoring of trace levels of neutral pesticides in environmental waters. The objective of this work was to develop a new receiving phase for pesticides with a wide range of polarities in a single step. We describe the development of three new composite silicone rubbers, combining polydimethylsiloxane mechanical and sorption properties with solid-phase extraction sorbents, prepared as a receiving phase for passive sampling. A composite silicone rubber composed of polydimethylsiloxane/poly(divinylbenzene-co-N-vinylpyrrolidone) was selected by batch experiments for its high sorption properties for pesticides with octanol-water partition coefficients ranging from 2.3 to 5.5. We named this composite material "Polar/Apolar Composite Silicone Rubber". A structural study by scanning electron microscopy confirmed the homogeneous dispersion of the sorbent particles and the encapsulation of particles within the polydimethylsiloxane matrix. We also demonstrate that this composite material is resistant to common solvents used for the back-extraction of analytes and has a maximal resistance temperature of 350°C. Therefore, the characteristics of the "Polar/Apolar Composite Silicone Rubber" meet most of the criteria for use as a receiving phase for the passive sampling of pesticides. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Combined mechanical loading of composite tubes

    NASA Technical Reports Server (NTRS)

    Derstine, Mark S.; Pindera, Marek-Jerzy; Bowles, David E.

    1988-01-01

    An analytical/experimental investigation was performed to study the effect of material nonlinearities on the response of composite tubes subjected to combined axial and torsional loading. The effect of residual stresses on subsequent mechanical response was included in the investigation. Experiments were performed on P75/934 graphite-epoxy tubes with a stacking sequence of (15/0/ + or - 10/0/ -15), using pure torsion and combined axial/torsional loading. In the presence of residual stresses, the analytical model predicted a reduction in the initial shear modulus. Experimentally, coupling between axial loading and shear strain was observed in laminated tubes under combined loading. The phenomenon was predicted by the nonlinear analytical model. The experimentally observed linear limit of the global shear response was found to correspond to the analytically predicted first ply failure. Further, the failure of the tubes was found to be path dependent above a critical load level.

  1. Comparisons between mammalian and artificial olfaction based on arrays of carbon black-polymer composite vapor detectors.

    PubMed

    Lewis, Nathan S

    2004-09-01

    Arrays of broadly cross-reactive vapor sensors provide a man-made implementation of an olfactory system, in which an analyte elicits a response from many receptors and each receptor responds to a variety of analytes. Pattern recognition methods are then used to detect analytes based on the collective response of the sensor array. With the use of this architecture, arrays of chemically sensitive resistors made from composites of conductors and insulating organic polymers have been shown to robustly classify, identify, and quantify a diverse collection of organic vapors, even though no individual sensor responds selectively to a particular analyte. The properties and functioning of these arrays are inspired by advances in the understanding of biological olfaction, and in turn, evaluation of the performance of the man-made array provides suggestions regarding some of the fundamental odor detection principles of the mammalian olfactory system.

  2. An analytical and experimental study of crack extension in center-notched composites

    NASA Technical Reports Server (NTRS)

    Beuth, Jack L., Jr.; Herakovich, Carl T.

    1987-01-01

    The normal stress ratio theory for crack extension in anisotropic materials is studied analytically and experimentally. The theory is applied within a microscopic-level analysis of a single center notch of arbitrary orientation in a unidirectional composite material. The bulk of the analytical work of this study applies an elasticity solution for an infinite plate with a center line to obtain critical stress and crack growth direction predictions. An elasticity solution for an infinite plate with a center elliptical flaw is also used to obtain qualitative predictions of the location of crack initiation on the border of a rounded notch tip. The analytical portion of the study includes the formulation of a new crack growth theory that includes local shear stress. Normal stress ratio theory predictions are obtained for notched unidirectional tensile coupons and unidirectional Iosipescu shear specimens. These predictions are subsequently compared to experimental results.

  3. Dynamic Stability of Uncertain Laminated Beams Under Subtangential Loads

    NASA Technical Reports Server (NTRS)

    Goyal, Vijay K.; Kapania, Rakesh K.; Adelman, Howard (Technical Monitor); Horta, Lucas (Technical Monitor)

    2002-01-01

    Because of the inherent complexity of fiber-reinforced laminated composites, it can be challenging to manufacture composite structures according to their exact design specifications, resulting in unwanted material and geometric uncertainties. In this research, we focus on the deterministic and probabilistic stability analysis of laminated structures subject to subtangential loading, a combination of conservative and nonconservative tangential loads, using the dynamic criterion. Thus a shear-deformable laminated beam element, including warping effects, is derived to study the deterministic and probabilistic response of laminated beams. This twenty-one degrees of freedom element can be used for solving both static and dynamic problems. In the first-order shear deformable model used here we have employed a more accurate method to obtain the transverse shear correction factor. The dynamic version of the principle of virtual work for laminated composites is expressed in its nondimensional form and the element tangent stiffness and mass matrices are obtained using analytical integration The stability is studied by giving the structure a small disturbance about an equilibrium configuration, and observing if the resulting response remains small. In order to study the dynamic behavior by including uncertainties into the problem, three models were developed: Exact Monte Carlo Simulation, Sensitivity Based Monte Carlo Simulation, and Probabilistic FEA. These methods were integrated into the developed finite element analysis. Also, perturbation and sensitivity analysis have been used to study nonconservative problems, as well as to study the stability analysis, using the dynamic criterion.

  4. Wettability, Polarity, and Water Absorption of Holm Oak Leaves: Effect of Leaf Side and Age1[OPEN

    PubMed Central

    Fernández, Victoria; Sancho-Knapik, Domingo; Guzmán, Paula; Peguero-Pina, José Javier; Gil, Luis; Karabourniotis, George; Khayet, Mohamed; Fasseas, Costas; Heredia-Guerrero, José Alejandro; Heredia, Antonio; Gil-Pelegrín, Eustaquio

    2014-01-01

    Plant trichomes play important protective functions and may have a major influence on leaf surface wettability. With the aim of gaining insight into trichome structure, composition, and function in relation to water-plant surface interactions, we analyzed the adaxial and abaxial leaf surface of holm oak (Quercus ilex) as a model. By measuring the leaf water potential 24 h after the deposition of water drops onto abaxial and adaxial surfaces, evidence for water penetration through the upper leaf side was gained in young and mature leaves. The structure and chemical composition of the abaxial (always present) and adaxial (occurring only in young leaves) trichomes were analyzed by various microscopic and analytical procedures. The adaxial surfaces were wettable and had a high degree of water drop adhesion in contrast to the highly unwettable and water-repellent abaxial holm oak leaf sides. The surface free energy and solubility parameter decreased with leaf age, with higher values determined for the adaxial sides. All holm oak leaf trichomes were covered with a cuticle. The abaxial trichomes were composed of 8% soluble waxes, 49% cutin, and 43% polysaccharides. For the adaxial side, it is concluded that trichomes and the scars after trichome shedding contribute to water uptake, while the abaxial leaf side is highly hydrophobic due to its high degree of pubescence and different trichome structure, composition, and density. Results are interpreted in terms of water-plant surface interactions, plant surface physical chemistry, and plant ecophysiology. PMID:24913938

  5. A hierarchical framework for investigating epiphyte assemblages: networks, meta-communities, and scale.

    PubMed

    Burns, K C; Zotz, G

    2010-02-01

    Epiphytes are an important component of many forested ecosystems, yet our understanding of epiphyte communities lags far behind that of terrestrial-based plant communities. This discrepancy is exacerbated by the lack of a theoretical context to assess patterns in epiphyte community structure. We attempt to fill this gap by developing an analytical framework to investigate epiphyte assemblages, which we then apply to a data set on epiphyte distributions in a Panamanian rain forest. On a coarse scale, interactions between epiphyte species and host tree species can be viewed as bipartite networks, similar to pollination and seed dispersal networks. On a finer scale, epiphyte communities on individual host trees can be viewed as meta-communities, or suites of local epiphyte communities connected by dispersal. Similar analytical tools are typically employed to investigate species interaction networks and meta-communities, thus providing a unified analytical framework to investigate coarse-scale (network) and fine-scale (meta-community) patterns in epiphyte distributions. Coarse-scale analysis of the Panamanian data set showed that most epiphyte species interacted with fewer host species than expected by chance. Fine-scale analyses showed that epiphyte species richness on individual trees was lower than null model expectations. Therefore, epiphyte distributions were clumped at both scales, perhaps as a result of dispersal limitations. Scale-dependent patterns in epiphyte species composition were observed. Epiphyte-host networks showed evidence of negative co-occurrence patterns, which could arise from adaptations among epiphyte species to avoid competition for host species, while most epiphyte meta-communities were distributed at random. Application of our "meta-network" analytical framework in other locales may help to identify general patterns in the structure of epiphyte assemblages and their variation in space and time.

  6. Analysis for stresses and buckling of heated composite stiffened panels and other structures, phase 3

    NASA Technical Reports Server (NTRS)

    Viswanathan, A. V.; Tamekuni, M.

    1973-01-01

    Analytical methods based on linear theory are presented for predicting the thermal stresses in and the buckling of heated structures with arbitrary uniform cross section. The structure is idealized as an assemblage of laminated plate-strip elements, curved and planar, and beam elements. Uniaxially stiffened plates and shells of arbitrary cross section are typical examples. For the buckling analysis the structure or selected elements may be subjected to mechanical loads, in additional to thermal loads, in any desired combination of inplane transverse load and axial compression load. The analysis is also applicable to stiffened structures under inplane loads varying through the cross section, as in stiffened shells under bending. The buckling analysis is general and covers all modes of instability. The analysis has been applied to a limited number of problems and the results are presented. These while showing the validity and the applicability of the method do not reflect its full capability.

  7. Structural investigation of Zn doped sodium bismuth borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatia, V., E-mail: vijetabhatia0712@gmail.com; Kumar, D.; Singh, D.

    2016-05-06

    A series of Bismuth Borate Oxide Glass samples with composition x(ZnO):(15-x)Na{sub 2}O:15Bi{sub 2}O{sub 3}:70B{sub 2}O{sub 3} (variation in x is from 6 to 12 mole %) have been prepared by conventional melt quenching technique. All the chemicals used were of Analytical Grade. In order to verify the amorphous nature of the prepared samples the X-Ray Diffraction (XRD) was done. The physical and structural properties have been explored by using the techniques such as density, molar volume and FTIR in order to understand the effect of alkali and transition metal ions on the structure of these glasses. The results obtained bymore » these techniques are in good agreement to one another and with literature as well. With the increase in the content of ZnO, the increase in density and some variations in structural coordination (ratio of BO{sub 3} & BO{sub 4} structural units) have been observed.« less

  8. Damage of composite structures: Detection technique, dynamic response and residual strength

    NASA Astrophysics Data System (ADS)

    Lestari, Wahyu

    2001-10-01

    Reliable and accurate health monitoring techniques can prevent catastrophic failures of structures. Conventional damage detection methods are based on visual or localized experimental methods and very often require prior information concerning the vicinity of the damage or defect. The structure must also be readily accessible for inspections. The techniques are also labor intensive. In comparison to these methods, health-monitoring techniques that are based on the structural dynamic response offers unique information on failure of structures. However, systematic relations between the experimental data and the defect are not available and frequently, the number of vibration modes needed for an accurate identification of defects is much higher than the number of modes that can be readily identified in the experiment. These motivated us to develop an experimental data based detection method with systematic relationships between the experimentally identified information and the analytical or mathematical model representing the defective structures. The developed technique use changes in vibrational curvature modes and natural frequencies. To avoid misinterpretation of the identified information, we also need to understand the effects of defects on the structural dynamic response prior to developing health-monitoring techniques. In this thesis work we focus on two type of defects in composite structures, namely delamination and edge notch like defect. Effects of nonlinearity due to the presence of defect and due to the axial stretching are studied for beams with delamination. Once defects are detected in a structure, next concern is determining the effects of the defects on the strength of the structure and its residual stiffness under dynamic loading. In this thesis, energy release rate due to dynamic loading in a delaminated structure is studied, which will be a foundation toward determining the residual strength of the structure.

  9. Determination of the structure and composition of Au-Ag bimetallic spherical nanoparticles using single particle ICP-MS measurements performed with normal and high temporal resolution.

    PubMed

    Kéri, Albert; Kálomista, Ildikó; Ungor, Ditta; Bélteki, Ádám; Csapó, Edit; Dékány, Imre; Prohaska, Thomas; Galbács, Gábor

    2018-03-01

    In this study, the information that can be obtained by combining normal and high resolution single particle ICP-MS (spICP-MS) measurements for spherical bimetallic nanoparticles (BNPs) was assessed. One commercial certified core-shell Au-Ag nanoparticle and three newly synthesized and fully characterized homogenous alloy Au-Ag nanoparticle batches of different composition were used in the experiments as BNP samples. By scrutinizing the high resolution spICP-MS signal time profiles, it was revealed that the width of the signal peak linearly correlates with the diameter of nanoparticles. It was also observed that the width of the peak for same-size nanoparticles is always significantly larger for Au than for Ag. It was also found that it can be reliably determined whether a BNP is of homogeneus alloy or core-shell structure and that, in the case of the latter, the core comprises of which element. We also assessed the performance of several ICP-MS based analytical methods in the analysis of the quantitative composition of bimetallic nanoparticles. Out of the three methods (normal resolution spICP-MS, direct NP nebulization with solution-mode ICP-MS, and solution-mode ICP-MS after the acid dissolution of the nanoparticles), the best accuracy and precision was achieved by spICP-MS. This method allows the determination of the composition with less than 10% relative inaccuracy and better than 3% precision. The analysis is fast and only requires the usual standard colloids for size calibration. Combining the results from both quantitative and structural analyses, the core diameter and shell thickness of core-shell particles can also be calculated. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Comprehensive comparison of the chemical and structural characterization of landfill leachate and leonardite humic fractions.

    PubMed

    Tahiri, Abdelghani; Richel, Aurore; Destain, Jacqueline; Druart, Philippe; Thonart, Philippe; Ongena, Marc

    2016-03-01

    Humic substances (HS) are complex and heterogeneous mixtures of organic compounds that occur everywhere in the environment. They represent most of the dissolved organic matter in soils, sediments (fossil), water, and landfills. The exact structure of HS macromolecules has not yet been determined because of their complexity and heterogeneity. Various descriptions of HS are used depending on specific environments of origin and research interests. In order to improve the understanding of the structure of HS extracted from landfill leachate (LHS) and commercial HS from leonardite (HHS), this study sought to compare the composition and characterization of the structure of LHS and HHS using elemental composition, chromatographic (high-performance liquid chromatography (HPLC)), and spectroscopic techniques (UV-vis, FTIR, NMR, and MALDI-TOF). The results showed that LHS molecules have a lower molecular weight and less aromatic structure than HHS molecules. The characteristics of functional groups of both LHS and HHS, however, were basically similar, but there was some differences in absorbance intensity. There were also less aliphatic and acidic functional groups and more aromatic and polyphenolic compounds in the humic acid (HA) fraction than in the fulvic acid (FA) and other molecules (OM) fractions of both origins. The differences between LHS and HHS might be due to the time course of humification. Combining the results obtained from these analytical techniques cold improve our understanding of the structure of HS of different origins and thus enhance their potential use.

  11. The Ins and Outs of USDA Nutrient Composition

    USDA-ARS?s Scientific Manuscript database

    The USDA National Nutrient Database for Standard Reference (SR) is the major source of food composition data in the United States, providing the foundation for most food composition databases in the public and private sectors. Sources of data used in SR include analytical studies, food manufacturer...

  12. Iron meteorite fragment studied by atomic and nuclear analytical methods

    NASA Astrophysics Data System (ADS)

    Cesnek, Martin; Štefánik, Milan; Kmječ, Tomáš; Miglierini, Marcel

    2016-10-01

    Chemical and structural compositions of a fragment of Sikhote-Alin iron meteorite were investigated by X-ray fluorescence analysis (XRF), neutron activation analysis (NAA) and Mössbauer spectroscopy (MS). XRF and NAA revealed the presence of chemical elements which are characteristic for iron meteorites. XRF also showed a significant amount of Si and Al on the surface of the fragment. MS spectra revealed possible presence of α-Fe(Ni, Co) phase with different local Ni concentration. Furthermore, paramagnetic singlet was detected in Mössbauer spectra recorded at room temperature and at 4.2 K.

  13. A Thermostructural Analysis of a Diboride Composite Leading Edge

    NASA Technical Reports Server (NTRS)

    Kowalski, Tom; Buesking, Kent; Kolodziej, Paul; Bull, Jeff

    1996-01-01

    In an effort to support the design of zirconium diboride composite leading edges for hypersonic vehicles, a finite element model (FEM) of a prototype leading edge was created and finite element analysis (FEA) was employed to assess its thermal and structural response to aerothermal boundary conditions. Unidirectional material properties for the structural components of the leading edge, a continuous fiber reinforced diboride composite, were computed with COSTAR. These properties agree well with those experimentally measured. To verify the analytical approach taken with COSMOS/M, an independent FEA of one of the leading edge assembly components was also done with COSTAR. Good agreement was obtained between the two codes. Both showed that a unidirectional lay-up had the best margin of safety for a simple loading case. Both located the maximum stress in the same region and ply. The magnitudes agreed within 4 percent. Trajectory based aerothermal heating was then applied to the leading edge assembly FEM created with COSMOS/M to determine steady state temperature response, displacement, stresses, and contact forces due to thermal expansion and thermal strains. Results show that the leading edge stagnation line temperature reached 4700 F. The maximum computed failure index for the laminated composite components peaks at 4.2, and is located at the bolt flange in layer 2 of the side bracket. The temperature gradient in the tip causes a compressive stress of 279 ksi along its width and substantial tensile stresses within its depth.

  14. Solar Ion Processing of Major Element Surface Compositions of Mature Mare Soils: Insights from Combined XPS and Analytical TEM Observations

    NASA Technical Reports Server (NTRS)

    Christoffersen, R.; Dukes, C.; Keller, L. P.; Baragiola, R.

    2012-01-01

    Solar wind ions are capable of altering the sur-face chemistry of the lunar regolith by a number of mechanisms including preferential sputtering, radiation-enhanced diffusion and sputter erosion of space weathered surfaces containing pre-existing compositional profiles. We have previously reported in-situ ion irradiation experiments supported by X-ray photoelectron spectroscopy (XPS) and analytical TEM that show how solar ions potentially drive Fe and Ti reduction at the monolayer scale as well as the 10-100 nm depth scale in lunar soils [1]. Here we report experimental data on the effect of ion irradiation on the major element surface composition in a mature mare soil.

  15. Analytical Chemistry and the Microchip.

    ERIC Educational Resources Information Center

    Lowry, Robert K.

    1986-01-01

    Analytical techniques used at various points in making microchips are described. They include: Fourier transform infrared spectrometry (silicon purity); optical emission spectroscopy (quantitative thin-film composition); X-ray photoelectron spectroscopy (chemical changes in thin films); wet chemistry, instrumental analysis (process chemicals);…

  16. Combined use of optical and electron microscopic techniques for the measurement of hygroscopic property, chemical composition, and morphology of individual aerosol particles.

    PubMed

    Ahn, Kang-Ho; Kim, Sun-Man; Jung, Hae-Jin; Lee, Mi-Jung; Eom, Hyo-Jin; Maskey, Shila; Ro, Chul-Un

    2010-10-01

    In this work, an analytical method for the characterization of the hygroscopic property, chemical composition, and morphology of individual aerosol particles is introduced. The method, which is based on the combined use of optical and electron microscopic techniques, is simple and easy to apply. An optical microscopic technique was used to perform the visual observation of the phase transformation and hygroscopic growth of aerosol particles on a single particle level. A quantitative energy-dispersive electron probe X-ray microanalysis, named low-Z particle EPMA, was used to perform a quantitative chemical speciation of the same individual particles after the measurement of the hygroscopic property. To validate the analytical methodology, the hygroscopic properties of artificially generated NaCl, KCl, (NH(4))(2)SO(4), and Na(2)SO(4) aerosol particles of micrometer size were investigated. The practical applicability of the analytical method for studying the hygroscopic property, chemical composition, and morphology of ambient aerosol particles is demonstrated.

  17. A Development Strategy for Creating a Suite of Reference Materials for the in-situ Microanalysis of Non-conventional Raw Materials

    NASA Astrophysics Data System (ADS)

    Renno, A. D.; Merchel, S.; Michalak, P. P.; Munnik, F.; Wiedenbeck, M.

    2010-12-01

    Recent economic trends regarding the supply of rare metals readily justify scientific research into non-conventional raw materials, where a particular need is a better understanding of the relationship between mineralogy, microstructure and the distribution of key metals within ore deposits (geometallurgy). Achieving these goals will require an extensive usage of in-situ microanalytical techniques capable of spatially resolving material heterogeneities which can be key for understanding better resource utilization. The availability of certified reference materials (CRMs) is an essential prerequisite for (1) validating new analytical methods, (2) demonstrating data quality to the contracting authorities, (3) supporting method development and instrument calibration, and (4) establishing traceability between new analytical approaches and existing data sets. This need has led to the granting of funding by the European Union and the German Free State of Saxony for a program to develop such reference materials . This effort will apply the following strategies during the selection of the phases: (1) will use exclusively synthetic minerals, thereby providing large volumes of homogeneous starting material. (2) will focus on matrices which are capable of incorporating many ‘important’ elements while avoid exotic compositions which would not be optimal matrix matches. (3) will emphasise those phases which remain stable during the various microanalytical procedure. This initiative will assess the homogeneity of the reference materials at sampling sizes ranging between 50 and 1 µm; it is also intended to document crystal structural homogeneity too, as this too may potentially impact specific analytical methods. As far as possible both definitive methods as well as methods involving matrix corrections will be used for determining the compositions of the of the individual materials. A critical challenge will be the validation of the determination of analytes concentrations as sub-µg sampling masses. It is planned to cooperate with those who are interested in the development of such reference materials and we invite them to take part in round-robin exercises.

  18. Mapping the magnonic landscape in patterned magnetic structures

    NASA Astrophysics Data System (ADS)

    Davies, C. S.; Poimanov, V. D.; Kruglyak, V. V.

    2017-09-01

    We report the development of a hybrid numerical/analytical model capable of mapping the spatially varying distributions of the local ferromagnetic resonance (FMR) frequency and dynamic magnetic susceptibility in a wide class of patterned and compositionally modulated magnetic structures. Starting from the numerically simulated static micromagnetic state, the magnetization is deliberately deflected orthogonally to its equilibrium orientation, and the magnetic fields generated in response to this deflection are evaluated using micromagnetic software. This allows us to calculate the elements of the effective demagnetizing tensor, which are then used within a linear analytical formalism to map the local FMR frequency and dynamic magnetic susceptibility. To illustrate the typical results that one can obtain using this model, we analyze three micromagnetic systems boasting nonuniformity in either one or two dimensions, and successfully explain the spin-wave emission observed in each case, demonstrating the ubiquitous nature of the Schlömann excitation mechanism underpinning the observations. Finally, the developed model of local FMR frequency can be used to explain how spin waves could be confined and steered using magnetic nonuniformities of various origins, rendering it a powerful tool for the mapping of the graded magnonic index in magnonics.

  19. Membrane wrinkling patterns and control with SMA and SMPC actuators

    NASA Astrophysics Data System (ADS)

    Lu, Mingyu; Li, Yunliang; Tan, Huifeng; Zhou, Limin

    2009-07-01

    Wrinkling is a main factor affecting the performance of the membrane structures and is always considered to be a failure as it can cause dramatic decrease of shape accuracy. The study of membrane wrinkling control has the analytical and experimental meanings. In this paper, a feasible membrane shape control method is presented. An expression of wrinkle wavelength using stress extremum principle is established based on the tension field theory and the Von Karman large deflection formula which verifies the generation and evolution reason of membrane wrinkles. The control mechanism for membrane wrinkles is developed using shape memory alloy (SMA) and shape memory polymer composite (SMPC) actuators which are attached to the boundaries of the membrane for producing contraction/expansion forces to adjust the shape of the membrane. The whole control process is monitored by photogrammetric technique. Numerical simulations are also conducted using ANSYS finite element software with the nonlinear post-buckling analytical method. Both the experimental and numerical results show that the amplitudes of wrinkles are effectively controlled by SMA and SMPC actuators. The method introduced in this paper provides the foundation for shape control of the membrane wrinkling and is important to the future work on vibration control of space membrane structures.

  20. In situ synthesis of di-n-butyl l-tartrate-boric acid complex chiral selector and its application in chiral microemulsion electrokinetic chromatography.

    PubMed

    Hu, Shaoqiang; Chen, Yonglei; Zhu, Huadong; Zhu, Jinhua; Yan, Na; Chen, Xingguo

    2009-11-06

    A novel procedure for in situ assembling a complex chiral selector, di-n-butyl l-tartrate-boric acid complex, by the reaction of di-n-butyl l-tartrate with boric acid in a running buffer was reported and its application in the enantioseparation of beta-blockers and structural related compounds by chiral microemulsion electrokinetic chromatography (MEEKC) has been demonstrated. In order to achieve a good enantioseparation, the effect of dibutyl l-tartrate and sodium tetraborate concentration, surfactant identity and concentration, cosurfactant, buffer pH and composition, organic modifiers, as well as applied voltage and capillary length were investigated. Ten pairs of enantiomers that could not be separated with only dibutyl l-tartrate, obtained good chiral separation using the complex chiral selector; among them, seven pairs could be baseline resolved under optimized experimental conditions. The fixation of chiral centers by the formation of five-membered rings, and being oppositely charged with basic analytes were thought to be the key factors giving the complex chiral selector a superior chiral recognition capability. The effect of the molecular structure of analytes on enantioseparation was discussed in terms of molecular interaction.

  1. Analytical characterization of human milk oligosaccharides - potential applications in pharmaceutical analysis.

    PubMed

    Grabarics, Márkó; Csernák, Orsolya; Balogh, Réka; Béni, Szabolcs

    2017-11-30

    Human breast milk is the gold standard for infant feeding and the best possible nourishment a new-born could have. Breastfeeding is the natural way to provide optimal nutritional, immunological and emotional nurturing for the healthy growth and development of infants. Human milk is a complex and dynamic biofluid comprised of many hundreds to thousands of distinct bioactive structures, among which one of the most abundant substances are the non-conjugated complex carbohydrates referred to as human milk oligosaccharides (HMOs). Due to their structural diversity and abundance, HMOs possess many beneficial biological functions. In order to understand human milk composition and HMO functions, state-of-the-art glycomic methods are inevitable. The industrial, large scale chemoenzymatic production of the most abundant HMOs became a reality in the last years and it evokes the need for straightforward and genuine analytical procedures to monitor the synthetic process and the quality of the products. It is obvious, that HMOs represent the next breakthrough in infant nutrition, as the addition of HMOs (such as 2'-fucosyllactose or lacto-N-neotetraose) to infant- and follow-on formulas, processed cereal-based food and baby foods for infants and young children etc. will revolutionize this field. This review highlights the potential applications of HMOs in the (bio)pharmaceutical industry, also summarizes the analytical methods available for the characterization of HMOs. An overview of the structure and function of HMOs along with their determination methods in complex matrices are provided. Various separation methods including liquid- and gas chromatography and capillary electrophoresis for the characterization and novel approaches for the quantitation of HMOs are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Application of Analytic Hierarchy Process (AHP) in the analysis of the fuel efficiency in the automobile industry with the utilization of Natural Fiber Polymer Composites (NFPC)

    NASA Astrophysics Data System (ADS)

    Jayamani, E.; Perera, D. S.; Soon, K. H.; Bakri, M. K. B.

    2017-04-01

    A systematic method of material analysis aiming for fuel efficiency improvement with the utilization of natural fiber reinforced polymer matrix composites in the automobile industry is proposed. A multi-factor based decision criteria with Analytical Hierarchy Process (AHP) was used and executed through MATLAB to achieve improved fuel efficiency through the weight reduction of vehicular components by effective comparison between two engine hood designs. The reduction was simulated by utilizing natural fiber polymer composites with thermoplastic polypropylene (PP) as the matrix polymer and benchmarked against a synthetic based composite component. Results showed that PP with 35% of flax fiber loading achieved a 0.4% improvement in fuel efficiency, and it was the highest among the 27 candidate fibers.

  3. Transient Creep of a Composite Lower Crust. 1; Constitutive Theory

    NASA Technical Reports Server (NTRS)

    Ivins, Erik R.; Sammis, Charles G.

    1996-01-01

    A composite model is proposed to describe the time-dependent response of the Earth's lower crust. The motivation for such it model is twofold: First, new observations of widespread postseismic deformation indicate that the deep continental crust responds viscoelastically, having both long-and short-term decay times. Second, by any number of observationally based rationales, the lower crust is compositionally and structurally heterogeneous over many length scales. For heterogeneities that have much smaller characteristic lengths than the minimum deformation wavelength of interest, the aggregate rheology can be described by composite media theory. For wavelengths of the order of the thickness of the lower crust (approx. = 25-40 km) and larger, composite theory may be applied to heterogeneities that are smaller than about several hundred meters, or equivalent to the vertical extent of a thick lower crustal mylonitic shear zone. The composite media theory developed here is constructed using both Eshelhy-Mori-Tanaka theory for aligned generalized spheroidal inclusions and a generalized self-consistent method. The inclusions and matrix are considered to be Maxwellian viscoelastic: a rheology that is consistent with past homogeneous models of postseismic stress relaxation. The composite theory presented here introduces a transient response to a suddenly imposed stress field which does not appear in homogeneous Maxwell models. Analytic expressions for the amplitude and duration of the transient and for the effective long-and short-term viscosities of the composite are given which describe the sensitivity to inclusion concentration (phi), to shape, and to ratio of inclusion-to-matrix viscosity (R).

  4. An analytical solution for the elastoplastic response of a continuous fiber composite under uniaxial loading

    NASA Technical Reports Server (NTRS)

    Lee, Jong-Won; Allen, David H.

    1990-01-01

    A continuous fiber composite is modelled by a two-element composite cylinder in order to predict the elastoplastic response of the composite under a monotonically increasing tensile loading parallel to fibers. The fibers and matrix are assumed to be elastic-perfectly plastic materials obeying Hill's and Tresca's yield criteria, respectively. Here, the composite behavior when the fibers yield prior to the matrix is investigated.

  5. 40 CFR 140.5 - Analytical procedures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 140.5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) MARINE SANITATION DEVICE STANDARD § 140.5 Analytical procedures. In determining the composition and quality of effluent discharge from marine sanitation devices, the procedures contained in 40 CFR part 136...

  6. Noncontact power/interrogation system for smart structures

    NASA Astrophysics Data System (ADS)

    Spillman, William B., Jr.; Durkee, S.

    1994-05-01

    The field of smart structures has been largely driven by the development of new high performance designed materials. Use of these materials has been generally limited due to the fact that they have not been in use long enough for statistical data bases to be developed on their failure modes. Real time health monitoring is therefore required for the benefits of structures using these materials to be realized. In this paper a non-contact method of powering and interrogating embedded electronic and opto-electronic systems is described. The technique utilizes inductive coupling between external and embedded coils etched on thin electronic circuit cards. The technique can be utilized to interrogate embedded sensors and to provide > 250 mW for embedded electronics. The system has been successfully demonstrated with a number of composite and plastic materials through material thicknesses up to 1 cm. An analytical description of the system is provided along with experimental results.

  7. Structural Response and Failure of a Full-Scale Stitched Graphite-Epoxy Wing

    NASA Technical Reports Server (NTRS)

    Jegley, Dawn C.; Lovejoy, Andrew E.; Bush, Harold G.

    2001-01-01

    Analytical and experimental results of the test for an all-composite full-scale wing box are presented. The wing box is representative of a section of a 220-passenger commercial transport aircraft wing box and was designed and constructed by The Boeing Company as part of the NASA Advanced Subsonics Technology (AST) program. The semi-span wing was fabricated from a graphite-epoxy material system with cover panels and spars held together using Kevlar stitches through the thickness. No mechanical fasteners were used to hold the stiffeners to the skin of the cover panels. Tests were conducted with and without low-speed impact damage, discrete source damage and repairs. Up-bending down-bending and brake roll loading conditions were applied. The structure with nonvisible impact damage carried 97% of Design Ultimate Load prior to failure through a lower cover panel access hole. Finite element and experimental results agree for the global response of the structure.

  8. Surface and ultrastructural characterization of raw and pretreated switchgrass.

    PubMed

    Donohoe, Bryon S; Vinzant, Todd B; Elander, Richard T; Pallapolu, Venkata Ramesh; Lee, Y Y; Garlock, Rebecca J; Balan, Venkatesh; Dale, Bruce E; Kim, Youngmi; Mosier, Nathan S; Ladisch, Michael R; Falls, Matthew; Holtzapple, Mark T; Sierra-Ramirez, Rocio; Shi, Jian; Ebrik, Mirvat A; Redmond, Tim; Yang, Bin; Wyman, Charles E; Hames, Bonnie; Thomas, Steve; Warner, Ryan E

    2011-12-01

    The US Department of Energy-funded Biomass Refining CAFI (Consortium for Applied Fundamentals and Innovation) project has developed leading pretreatment technologies for application to switchgrass and has evaluated their effectiveness in recovering sugars from the coupled operations of pretreatment and enzymatic hydrolysis. Key chemical and physical characteristics have been determined for pretreated switchgrass samples. Several analytical microscopy approaches utilizing instruments in the Biomass Surface Characterization Laboratory (BSCL) at the National Renewable Energy Laboratory (NREL) have been applied to untreated and CAFI-pretreated switchgrass samples. The results of this work have shown that each of the CAFI pretreatment approaches on switchgrass result in different structural impacts at the plant tissue, cellular, and cell wall levels. Some of these structural changes can be related to changes in chemical composition upon pretreatment. There are also apparently different structural mechanisms that are responsible for achieving the highest enzymatic hydrolysis sugar yields. Copyright © 2011. Published by Elsevier Ltd.

  9. Progress in the Modeling of NiAl-Based Alloys Using the BFS Method

    NASA Technical Reports Server (NTRS)

    Bozzolo, Guillermo; Noebe, Ronald D.; Ferrante, John; Garg, Anita

    1997-01-01

    The BFS method has been applied to the study of NiAl-based materials to assess the effect of alloying additions on structure. Ternary, quaternary and even pent-alloys based on Ni-rich NiAl with additions of Ti, Cr and Cu were studied. Two approaches were used, Monte Carlo simulations to determine ground state structures and analytical calculations of high symmetry configurations which give physical insight into preferred bonding. Site occupancy energetics for ternary and the more complicated case of quaternary additions were determined, and solubility limits and precipitate formation with corresponding information concerning structure and lattice parameter were also 'observed' computationally. The method was also applied to determine the composition of alloy surfaces and interfaces. Overall, the results demonstrate that the BFS method for alloys is a powerful tool for alloy design and with its simplicity and obvious advantages can be used to complement any experimental alloy design program.

  10. Evaluation of the Structural Response and Failure of a Full-Scale Stitched Graphite-Epoxy Wing

    NASA Astrophysics Data System (ADS)

    Jegley, Dawn C.; Bush, Harold G.; Lovejoy, Andrew E.

    2001-01-01

    Analytical and experimental results for an all-composite full-scale wing box are presented. The wing box is representative of a section of a 220-passenger commercial transport aircraft wing box and was designed and constructed by The Boeing Company as part of the NASA Advanced Subsonics Technology (AST) program. The semi-span wing was fabricated from a graphite-epoxy material system with cover panels and spars held together using Kevlar stitches through the thickness. No mechanical fasteners were used to hold the stiffeners to the skin of the cover panels. Tests were conducted with and without low-speed impact damage, discrete source damage and repairs. Upbending, down-bending and brake roll loading conditions were applied. The structure with nonvisible impact damage carried 97% of Design Ultimate Load prior to failure through a lower cover panel access hole. Finite element and experimental results agree for the global response of the structure.

  11. Chemical mapping of pharmaceutical cocrystals using terahertz spectroscopic imaging.

    PubMed

    Charron, Danielle M; Ajito, Katsuhiro; Kim, Jae-Young; Ueno, Yuko

    2013-02-19

    Terahertz (THz) spectroscopic imaging is a promising technique for distinguishing pharmaceuticals of similar molecular composition but differing crystal structures. Physicochemical properties, for instance bioavailability, are manipulated by altering a drug's crystal structure through methods such as cocrystallization. Cocrystals are molecular complexes having crystal structures different from those of their pure components. A technique for identifying the two-dimensional distribution of these alternate forms is required. Here we present the first demonstration of THz spectroscopic imaging of cocrystals. THz spectra of caffeine-oxalic acid cocrystal measured at low temperature exhibit sharp peaks, enabling us to visualize the cocrystal distribution in nonuniform tablets. The cocrystal distribution was clearly identified using THz spectroscopic data, and the cocrystal concentration was calculated with 0.3-1.3% w/w error from the known total concentration. From this result, THz spectroscopy allows quantitative chemical mapping of cocrystals and offers researchers and drug developers a new analytical tool.

  12. COI Structural Analysis Presentation

    NASA Technical Reports Server (NTRS)

    Cline, Todd; Stahl, H. Philip (Technical Monitor)

    2001-01-01

    This report discusses the structural analysis of the Next Generation Space Telescope Mirror System Demonstrator (NMSD) developed by Composite Optics Incorporated (COI) in support of the Next Generation Space Telescope (NGST) project. The mirror was submitted to Marshall Space Flight Center (MSFC) for cryogenic testing and evaluation. Once at MSFC, the mirror was lowered to approximately 40 K and the optical surface distortions were measured. Alongside this experiment, an analytical model was developed and used to compare to the test results. A NASTRAN finite element model was provided by COI and a thermal model was developed from it. Using the thermal model, steady state nodal temperatures were calculated based on the predicted environment of the large cryogenic test chamber at MSFC. This temperature distribution was applied in the structural analysis to solve for the deflections of the optical surface. Finally, these deflections were submitted for optical analysis and comparison to the interferometer test data.

  13. Rheology of heterotypic collagen networks.

    PubMed

    Piechocka, Izabela K; van Oosten, Anne S G; Breuls, Roel G M; Koenderink, Gijsje H

    2011-07-11

    Collagen fibrils are the main structural element of connective tissues. In many tissues, these fibrils contain two fibrillar collagens (types I and V) in a ratio that changes during tissue development, regeneration, and various diseases. Here we investigate the influence of collagen composition on the structure and rheology of networks of purified collagen I and V, combining fluorescence and atomic force microscopy, turbidimetry, and rheometry. We demonstrate that the network stiffness strongly decreases with increasing collagen V content, even though the network structure does not substantially change. We compare the rheological data with theoretical models for rigid polymers and find that the elasticity is dominated by nonaffine deformations. There is no analytical theory describing this regime, hampering a quantitative interpretation of the influence of collagen V. Our findings are relevant for understanding molecular origins of tissue biomechanics and for guiding rational design of collagenous biomaterials for biomedical applications.

  14. Experimental and Numerical Analysis of Triaxially Braided Composites Utilizing a Modified Subcell Modeling Approach

    NASA Technical Reports Server (NTRS)

    Cater, Christopher; Xiao, Xinran; Goldberg, Robert K.; Kohlman, Lee W.

    2015-01-01

    A combined experimental and analytical approach was performed for characterizing and modeling triaxially braided composites with a modified subcell modeling strategy. Tensile coupon tests were conducted on a [0deg/60deg/-60deg] braided composite at angles of 0deg, 30deg, 45deg, 60deg and 90deg relative to the axial tow of the braid. It was found that measured coupon strength varied significantly with the angle of the applied load and each coupon direction exhibited unique final failures. The subcell modeling approach implemented into the finite element software LS-DYNA was used to simulate the various tensile coupon test angles. The modeling approach was successful in predicting both the coupon strength and reported failure mode for the 0deg, 30deg and 60deg loading directions. The model over-predicted the strength in the 90deg direction; however, the experimental results show a strong influence of free edge effects on damage initiation and failure. In the absence of these local free edge effects, the subcell modeling approach showed promise as a viable and computationally efficient analysis tool for triaxially braided composite structures. Future work will focus on validation of the approach for predicting the impact response of the braided composite against flat panel impact tests.

  15. Experimental and Numerical Analysis of Triaxially Braided Composites Utilizing a Modified Subcell Modeling Approach

    NASA Technical Reports Server (NTRS)

    Cater, Christopher; Xiao, Xinran; Goldberg, Robert K.; Kohlman, Lee W.

    2015-01-01

    A combined experimental and analytical approach was performed for characterizing and modeling triaxially braided composites with a modified subcell modeling strategy. Tensile coupon tests were conducted on a [0deg/60deg/-60deg] braided composite at angles [0deg, 30deg, 45deg, 60deg and 90deg] relative to the axial tow of the braid. It was found that measured coupon strength varied significantly with the angle of the applied load and each coupon direction exhibited unique final failures. The subcell modeling approach implemented into the finite element software LS-DYNA was used to simulate the various tensile coupon test angles. The modeling approach was successful in predicting both the coupon strength and reported failure mode for the 0deg, 30deg and 60deg loading directions. The model over-predicted the strength in the 90deg direction; however, the experimental results show a strong influence of free edge effects on damage initiation and failure. In the absence of these local free edge effects, the subcell modeling approach showed promise as a viable and computationally efficient analysis tool for triaxially braided composite structures. Future work will focus on validation of the approach for predicting the impact response of the braided composite against flat panel impact tests.

  16. Volcanoes Behave as Composite Materials: Implications for Modeling Magma Chambers, Dikes, and Surface Deformation

    NASA Astrophysics Data System (ADS)

    Leiss, B.; Gudmundsson, A.; Philipp, S. L.

    2005-12-01

    By definition, composite volcanoes are composed of numerous alternating material units or layers such as lavas, sediments, and pyroclastics. Commonly, these layers have widely different mechanical properties. In particular, some lava flows and welded pyroclastic flows may be stiff (with a high Young's modulus), whereas others, such as non-welded pyroclastic units and sediments, may be soft (with a low Young's modulus). As a consequence, even if the loading (tectonic stress, magmatic pressure, or displacement) is uniform, the stresses within the composite volcano will vary widely. In this sense, the behavior of composite volcanoes is similar to that of general composite materials. The deformation of the surface of a volcano during an unrest period results from stresses generated by processes and parameters such as fluid pressure in a geothermal field or a magma chamber, a regional tectonic event, and a dike injection. Here we present new numerical models on mechanics of magma chambers and dikes, and the associated surface deformation of composite volcanoes. The models show that the surface deformation during magma-chamber inflation and deflation depends much on the chamber geometry, the loading conditions, and the mechanical properties of the rock units that constitute the volcano. The models also indicate that the surface deformation induced by a propagating dike depends much on the mechanical properties of the layers between the dike tip and the surface. In particular, the numerical results show that soft layers and weak contacts between layers may suppress the dike-induced tensile stresses and the associated surface deformation. Many dikes may therefore become injected and arrested at shallow depths in a volcano while giving rise to little or no surface deformation. Traditional analytical surface-deformation models such as a point source (Mogi model) for a magma-chamber pressure change and a dislocation for a dike normally assume the volcano to behave as a homogeneous, isotropic half space. The present numerical results, combined with field studies, indicate that such analytical models may yield results that have little similarity with the actual structure being modeled.

  17. Scattering of Lamb waves by cracks in a composite graphite fiber-reinforced epoxy plate

    NASA Technical Reports Server (NTRS)

    Bratton, Robert; Datta, Subhendu K.; Shah, Arvind

    1990-01-01

    Recent investigations of space construction techniques have explored the used of composite materials in the construction of space stations and platforms. These composites offer superior strength to weight ratio and are thermally stable. For example, a composite material being considered is laminates of graphite fibers in an epoxy matrix. The overall effective elastic constants of such a medium can be calculated from fiber and matrix properties by using an effective modulus theory as shown in Datta, el. al. The investigation of propagation and scattering of elastic waves in composite materials is necessary in order to develop an ability to characterize cracks and predict the reliability of composite structures. The objective of this investigation is the characterization of a surface breaking crack by ultrasonic techniques. In particular, the use of Lamb waves for this purpose is studied here. The Lamb waves travel through the plate, encountering a crack, and scatter. Of interest is the modeling of the scattered wave in terms of the Lamb wave modes. The direct problem of propagation and scattering of Lamb waves by a surface breaking crack has been analyzed. This would permit an experimentalist to characterize the crack by comparing the measured response to the analytical model. The plate is assumed to be infinite in the x and y directions with a constant thickness in the z direction. The top and bottom surfaces are traction free. Solving the governing wave equations and using the stress-free boundary conditions results in the dispersion equation. This equation yields the guided modes in the homogeneous plate. The theoretical model is a hybrid method that combines analytical and finite elements techniques to describe the scattered displacements. A finite region containing the defects is discretized by finite elements. Outside the local region, the far field solution is expressed as a Fourier summation of the guided modes obtained from the dispersion equation. Continuity of tractions and displacements at the boundaries of the two regions provides the necessary equations to determine the expansion coefficients and the nodal displacements. In the hybrid method used here these defects can be of arbitrary shapes as well as inclusions of different materials.

  18. Structural characterization and chemical classification of some bryophytes found in Latvia.

    PubMed

    Maksimova, Viktorija; Klavina, Laura; Bikovens, Oskars; Zicmanis, Andris; Purmalis, Oskars

    2013-07-01

    Bryophytes are the second largest taxonomic group in the plant kingdom; yet, studies conducted to better understand their chemical composition are rare. The aim of this study was to characterize the chemical composition of bryophytes common in Northern Europe by using elemental, spectral, and non-destructive analytical methods, such as Fourier transform IR spectrometry (FT-IR), solid-phase (13) C-NMR spectrometry, and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), for the purpose of investigating their chemotaxonomic relationships on the basis of chemical-composition data. The results of all these analyses showed that bryophytes consist mainly of carbohydrates. Judging by FT-IR spectra, the OH groups in combination of CO groups were the most abundant groups. The (13) C-NMR spectra provided information on the presence of such compounds as phenolics and lipids. It was found that the amount of phenolic compounds in bryophytes is relatively small. This finding definitely confirmed the absence of lignin in the studied bryophytes. Cluster analysis was used to better understand differences in the chemical composition of bryophyte samples and to evaluate possible usage of these methods in the chemotaxonomy of bryophytes. Copyright © 2013 Verlag Helvetica Chimica Acta AG, Zürich.

  19. Composite Behavior of a Novel Insulated Concrete Sandwich Wall Panel Reinforced with GFRP Shear Grids: Effects of Insulation Types.

    PubMed

    Kim, JunHee; You, Young-Chan

    2015-03-03

    A full-scale experimental program was used in this study to investigate the structural behavior of novel insulated concrete sandwich wall panels (SWPs) reinforced with grid-type glass-fiber-reinforced polymer (GFRP) shear connectors. Two kinds of insulation-expanded polystyrene (EPS) and extruded polystyrene (XPS) with 100 mm thickness were incased between the two concrete wythes to meet the increasing demand for the insulation performance of building envelope. One to four GFRP shear grids were used to examine the degree of composite action of the two concrete wythes. Ten specimens of SWPs were tested under displacement control subjected to four-point concentrated loads. The test results showed that the SWPs reinforced with GFRP grids as shear connectors developed a high degree of composite action resulting in high flexural strength. The specimens with EPS foam exhibited an enhanced load-displacement behavior compared with the specimens with XPS because of the relatively stronger bond between insulation and concrete. In addition, the ultimate strength of the test results was compared to the analytical prediction with the mechanical properties of only GRFP grids. The specimens with EPS insulation presented higher strength-based composite action than the ones with XPS insulation.

  20. Theoretical Estimation of Thermal Effects in Drilling of Woven Carbon Fiber Composite

    PubMed Central

    Díaz-Álvarez, José; Olmedo, Alvaro; Santiuste, Carlos; Miguélez, María Henar

    2014-01-01

    Carbon Fiber Reinforced Polymer (CFRPs) composites are extensively used in structural applications due to their attractive properties. Although the components are usually made near net shape, machining processes are needed to achieve dimensional tolerance and assembly requirements. Drilling is a common operation required for further mechanical joining of the components. CFRPs are vulnerable to processing induced damage; mainly delamination, fiber pull-out, and thermal degradation, drilling induced defects being one of the main causes of component rejection during manufacturing processes. Despite the importance of analyzing thermal phenomena involved in the machining of composites, only few authors have focused their attention on this problem, most of them using an experimental approach. The temperature at the workpiece could affect surface quality of the component and its measurement during processing is difficult. The estimation of the amount of heat generated during drilling is important; however, numerical modeling of drilling processes involves a high computational cost. This paper presents a combined approach to thermal analysis of composite drilling, using both an analytical estimation of heat generated during drilling and numerical modeling for heat propagation. Promising results for indirect detection of risk of thermal damage, through the measurement of thrust force and cutting torque, are obtained. PMID:28788685

Top