Progressive Failure Analysis Methodology for Laminated Composite Structures
NASA Technical Reports Server (NTRS)
Sleight, David W.
1999-01-01
A progressive failure analysis method has been developed for predicting the failure of laminated composite structures under geometrically nonlinear deformations. The progressive failure analysis uses C(exp 1) shell elements based on classical lamination theory to calculate the in-plane stresses. Several failure criteria, including the maximum strain criterion, Hashin's criterion, and Christensen's criterion, are used to predict the failure mechanisms and several options are available to degrade the material properties after failures. The progressive failure analysis method is implemented in the COMET finite element analysis code and can predict the damage and response of laminated composite structures from initial loading to final failure. The different failure criteria and material degradation methods are compared and assessed by performing analyses of several laminated composite structures. Results from the progressive failure method indicate good correlation with the existing test data except in structural applications where interlaminar stresses are important which may cause failure mechanisms such as debonding or delaminations.
An overview of computational simulation methods for composite structures failure and life analysis
NASA Technical Reports Server (NTRS)
Chamis, Christos C.
1993-01-01
Three parallel computational simulation methods are being developed at the LeRC Structural Mechanics Branch (SMB) for composite structures failure and life analysis: progressive fracture CODSTRAN; hierarchical methods for high-temperature composites; and probabilistic evaluation. Results to date demonstrate that these methods are effective in simulating composite structures failure/life/reliability.
Effect of stress concentrations in composite structures
NASA Technical Reports Server (NTRS)
Babcock, C. D.; Waas, A. M.
1985-01-01
Composite structures have found wide use in many engineering fields and a sound understanding of their response under load is important to their utilization. An experimental program is being carried out to gain a fundamental understanding of the failure mechanics of multilayered composite structures at GALCIT. As a part of this continuing study, the performance of laminated composite plates in the presence of a stress gradient and the failure of composite structures at points of thickness discontinuity is assessed. In particular, the questions of initiation of failure and its subsequent growth to complete failure of the structure are addressed.
Evaluation of a Progressive Failure Analysis Methodology for Laminated Composite Structures
NASA Technical Reports Server (NTRS)
Sleight, David W.; Knight, Norman F., Jr.; Wang, John T.
1997-01-01
A progressive failure analysis methodology has been developed for predicting the nonlinear response and failure of laminated composite structures. The progressive failure analysis uses C plate and shell elements based on classical lamination theory to calculate the in-plane stresses. Several failure criteria, including the maximum strain criterion, Hashin's criterion, and Christensen's criterion, are used to predict the failure mechanisms. The progressive failure analysis model is implemented into a general purpose finite element code and can predict the damage and response of laminated composite structures from initial loading to final failure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wierzbicki, T.; Jones, N.
1989-01-01
The book discusses the fragmentation of solids under dynamic loading, the debris-impact protection of space structures, the controlled fracturing of structures by shock-wave interaction and focusing, the tearing of thin metal sheets, and the dynamic inelastic failure of beams, and dynamic rupture of shells. Consideration is also given to investigations of the failure of brittle and composite materials by numerical methods, the energy absorption of polymer matrix composite structures (frictional effects), the mechanics of deep plastic collapse of thin-walled structures, the denting and bending of tubular beams under local loads, the dynamic bending collapse of strain-softening cantilever beams, and themore » failure of bar structures under repeated loading. Other topics discussed are on the behavior of composite and metallic superstructures under blast loading, the catastrophic failure modes of marine structures, and industrial experience with structural failure.« less
NASA Technical Reports Server (NTRS)
Wanthal, Steven; Schaefer, Joseph; Justusson, Brian; Hyder, Imran; Engelstad, Stephen; Rose, Cheryl
2017-01-01
The Advanced Composites Consortium is a US Government/Industry partnership supporting technologies to enable timeline and cost reduction in the development of certified composite aerospace structures. A key component of the consortium's approach is the development and validation of improved progressive damage and failure analysis methods for composite structures. These methods will enable increased use of simulations in design trade studies and detailed design development, and thereby enable more targeted physical test programs to validate designs. To accomplish this goal with confidence, a rigorous verification and validation process was developed. The process was used to evaluate analysis methods and associated implementation requirements to ensure calculation accuracy and to gage predictability for composite failure modes of interest. This paper introduces the verification and validation process developed by the consortium during the Phase I effort of the Advanced Composites Project. Specific structural failure modes of interest are first identified, and a subset of standard composite test articles are proposed to interrogate a progressive damage analysis method's ability to predict each failure mode of interest. Test articles are designed to capture the underlying composite material constitutive response as well as the interaction of failure modes representing typical failure patterns observed in aerospace structures.
Effect of stress concentrations in composite structures
NASA Technical Reports Server (NTRS)
Babcock, G. D.; Knauss, W. G.
1984-01-01
The goal of achieving a better understanding of the failure of complex composite structure is sought. This type of structure requires a thorough understanding of the behavior under load both on a macro and micro scale if failure mechanisms are to be understood. The two problems being studied are the failure at a panel/stiffener interface and a generic problem of failure at a stress concentration.
Failure Analysis and Mechanisms of Failure of Fibrous Composite Structures
NASA Technical Reports Server (NTRS)
Noor, A. K. (Compiler); Shuart, M. J. (Compiler); Starnes, J. H., Jr. (Compiler); Williams, J. G. (Compiler)
1983-01-01
The state of the art of failure analysis and current design practices, especially as applied to the use of fibrous composite materials in aircraft structures is discussed. Deficiencies in these technologies are identified, as are directions for future research.
Failure mechanisms in energy-absorbing composite structures
NASA Astrophysics Data System (ADS)
Johnson, Alastair F.; David, Matthew
2010-11-01
Quasi-static tests are described for determination of the energy-absorption properties of composite crash energy-absorbing segment elements under axial loads. Detailed computer tomography scans of failed specimens were used to identify local compression crush failure mechanisms at the crush front. These mechanisms are important for selecting composite materials for energy-absorbing structures, such as helicopter and aircraft sub-floors. Finite element models of the failure processes are described that could be the basis for materials selection and future design procedures for crashworthy structures.
An overview of the crash dynamics failure behavior of metal and composite aircraft structures
NASA Technical Reports Server (NTRS)
Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.
1991-01-01
An overview of failure behavior results is presented from some of the crash dynamics research conducted with concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. Experimental and analytical data are presented that indicate some general trends in the failure behavior of a class of composite structures that includes fuselage panels, individual fuselage sections, fuselage frames, skeleton subfloors with stringers and floor beams without skin covering, and subfloors with skin added to the frame stringer structure. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models.
Micromechanics Fatigue Damage Analysis Modeling for Fabric Reinforced Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Min, J. B.; Xue, D.; Shi, Y.
2013-01-01
A micromechanics analysis modeling method was developed to analyze the damage progression and fatigue failure of fabric reinforced composite structures, especially for the brittle ceramic matrix material composites. A repeating unit cell concept of fabric reinforced composites was used to represent the global composite structure. The thermal and mechanical properties of the repeating unit cell were considered as the same as those of the global composite structure. The three-phase micromechanics, the shear-lag, and the continuum fracture mechanics models were integrated with a statistical model in the repeating unit cell to predict the progressive damages and fatigue life of the composite structures. The global structure failure was defined as the loss of loading capability of the repeating unit cell, which depends on the stiffness reduction due to material slice failures and nonlinear material properties in the repeating unit cell. The present methodology is demonstrated with the analysis results evaluated through the experimental test performed with carbon fiber reinforced silicon carbide matrix plain weave composite specimens.
Failure Analysis in Platelet Molded Composite Systems
NASA Astrophysics Data System (ADS)
Kravchenko, Sergii G.
Long-fiber discontinuous composite systems in the form of chopped prepreg tapes provide an advanced, structural grade, molding compound allowing for fabrication of complex three-dimensional components. Understanding of process-structure-property relationship is essential for application of prerpeg platelet molded components, especially because of their possible irregular disordered heterogeneous morphology. Herein, a structure-property relationship was analyzed in the composite systems of many platelets. Regular and irregular morphologies were considered. Platelet-based systems with more ordered morphology possess superior mechanical performance. While regular morphologies allow for a careful inspection of failure mechanisms derived from the morphological characteristics, irregular morphologies are representative of the composite architectures resulting from uncontrolled deposition and molding with chopped prerpegs. Progressive failure analysis (PFA) was used to study the damaged deformation up to ultimate failure in a platelet-based composite system. Computational damage mechanics approaches were utilized to conduct the PFA. The developed computational models granted understanding of how the composite structure details, meaning the platelet geometry and system morphology (geometrical arrangement and orientation distribution of platelets), define the effective mechanical properties of a platelet-molded composite system, its stiffness, strength and variability in properties.
NASA Astrophysics Data System (ADS)
Kosztowny, Cyrus Joseph Robert
Use of carbon fiber textiles in complex manufacturing methods creates new implementations of structural components by increasing performance, lowering manufacturing costs, and making composites overall more attractive across industry. Advantages of textile composites include high area output, ease of handling during the manufacturing process, lower production costs per material used resulting from automation, and provide post-manufacturing assembly mainstreaming because significantly more complex geometries such as stiffened shell structures can be manufactured with fewer pieces. One significant challenge with using stiffened composite structures is stiffener separation under compression. Axial compression loading conditions have frequently observed catastrophic structural failure due to stiffeners separating from the shell skin. Characterizing stiffener separation behavior is often costly computationally and experimentally. The objectives of this research are to demonstrate unitized stiffened textile composite panels can be manufactured to produce quality test specimens, that existing characterization techniques applied to state-of-the-art high-performance composites provide valuable information in modeling such structures, that the unitized structure concept successfully removes stiffener separation as a primary structural failure mode, and that modeling textile material failure modes are sufficient to accurately capture postbuckling and final failure responses of the stiffened structures. The stiffened panels in this study have taken the integrally stiffened concept to an extent such that the stiffeners and skin are manufactured at the same time, as one single piece, and from the same composite textile layers. Stiffener separation is shown to be removed as a primary structural failure mode for unitized stiffened composite textile panels loaded under axial compression well into the postbuckling regime. Instead of stiffener separation, a material damaging and failure model effectively captures local post-peak material response via incorporating a mesoscale model using a multiscaling framework with a smeared crack element-based failure model in the macroscale stiffened panel. Material damage behavior is characterized by simple experimental tests and incorporated into the post-peak stiffness degradation law in the smeared crack implementation. Computational modeling results are in overall excellent agreement compared to the experimental responses.
Failure analysis of thick composite cylinders under external pressure
NASA Technical Reports Server (NTRS)
Caiazzo, A.; Rosen, B. W.
1992-01-01
Failure of thick section composites due to local compression strength and overall structural instability is treated. Effects of material nonlinearity, imperfect fiber architecture, and structural imperfections upon anticipated failure stresses are determined. Comparisons with experimental data for a series of test cylinders are described. Predicting the failure strength of composite structures requires consideration of stability and material strength modes of failure using linear and nonlinear analysis techniques. Material strength prediction requires the accurate definition of the local multiaxial stress state in the material. An elasticity solution for the linear static analysis of thick anisotropic cylinders and rings is used herein to predict the axisymmetric stress state in the cylinders. Asymmetric nonlinear behavior due to initial cylinder out of roundness and the effects of end closure structure are treated using finite element methods. It is assumed that local fiber or ply waviness is an important factor in the initiation of material failure. An analytical model for the prediction of compression failure of fiber composites, which includes the effects of fiber misalignments, matrix inelasticity, and multiaxial applied stresses is used for material strength calculations. Analytical results are compared to experimental data for a series of glass and carbon fiber reinforced epoxy cylinders subjected to external pressure. Recommendations for pretest characterization and other experimental issues are presented. Implications for material and structural design are discussed.
A review of failure models for unidirectional ceramic matrix composites under monotonic loads
NASA Technical Reports Server (NTRS)
Tripp, David E.; Hemann, John H.; Gyekenyesi, John P.
1989-01-01
Ceramic matrix composites offer significant potential for improving the performance of turbine engines. In order to achieve their potential, however, improvements in design methodology are needed. In the past most components using structural ceramic matrix composites were designed by trial and error since the emphasis of feasibility demonstration minimized the development of mathematical models. To understand the key parameters controlling response and the mechanics of failure, the development of structural failure models is required. A review of short term failure models with potential for ceramic matrix composite laminates under monotonic loads is presented. Phenomenological, semi-empirical, shear-lag, fracture mechanics, damage mechanics, and statistical models for the fast fracture analysis of continuous fiber unidirectional ceramic matrix composites under monotonic loads are surveyed.
Compression failure mechanisms of composite structures
NASA Technical Reports Server (NTRS)
Hahn, H. T.; Sohi, M.; Moon, S.
1986-01-01
An experimental and analytical study was conducted to delineate the compression failure mechanisms of composite structures. The present report summarizes further results on kink band formation in unidirectional composites. In order to assess the compressive strengths and failure modes of fibers them selves, a fiber bundle was embedded in epoxy casting and tested in compression. A total of six different fibers were used together with two resins of different stiffnesses. The failure of highly anisotropic fibers such as Kevlar 49 and P-75 graphite was due to kinking of fibrils. However, the remaining fibers--T300 and T700 graphite, E-glass, and alumina--failed by localized microbuckling. Compressive strengths of the latter group of fibers were not fully utilized in their respective composite. In addition, acoustic emission monitoring revealed that fiber-matrix debonding did not occur gradually but suddenly at final failure. The kink band formation in unidirectional composites under compression was studied analytically and through microscopy. The material combinations selected include seven graphite/epoxy composites, two graphite/thermoplastic resin composites, one Kevlar 49/epoxy composite and one S-glass/epoxy composite.
Failure behavior of generic metallic and composite aircraft structural components under crash loads
NASA Technical Reports Server (NTRS)
Carden, Huey D.; Robinson, Martha P.
1990-01-01
Failure behavior results are presented from crash dynamics research using concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs incorporating improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures including individual fuselage frames, skeleton subfloors with stringers and floor beams without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models.
Micromechanics of compression failures in open hole composite laminates
NASA Technical Reports Server (NTRS)
Guynn, E. Gail; Bradley, Walter L.
1987-01-01
The high strength-to-weight ratio of composite materials is ideally suited for aerospace applications where they already are used in commercial and military aircraft secondary structures and will soon be used for heavily loaded primary structures. One area impeding the widespread application of composites is their inherent weakness in compressive strength when compared to the tensile properties of the same material. Furthermore, these airframe designs typically contain many bolted or riveted joints, as well as electrical and hydraulic control lines. These applications produce areas of stress concentration, and thus, further complicate the compression failure problem. Open hole compression failures which represent a typical failure mode for composite materials are addressed.
Flexural Progressive Failure of Carbon/Glass Interlayer and Intralayer Hybrid Composites.
Wang, Qingtao; Wu, Weili; Gong, Zhili; Li, Wei
2018-04-17
The flexural progressive failure modes of carbon fiber and glass fiber (C/G) interlayer and intralayer hybrid composites were investigated in this work. Results showed that the bending failure modes for interlayer hybrid composites are determined by the layup structure. Besides, the bending failure is characterized by the compression failure of the upper layer, when carbon fiber tends to distribute in the upper layer, the interlayer hybrid composite fails early, the failure force is characterized by a multi-stage slightly fluctuating decline and the fracture area exhibits a diamond shape. While carbon fiber distributes in the middle or bottom layer, the failure time starts late, and the failure process exhibits one stage sharp force/stress drop, the fracture zone of glass fiber above the carbon layers presents an inverted trapezoid shape, while the fracture of glass fiber below the carbon layers exhibits an inverted triangular shape. With regards to the intralayer hybrid composites, the C/G hybrid ratio plays a dominating role in the bending failure which could be considered as the mixed failures of four structures. The bending failure of intralayer hybrid composites occurs in advance since carbon fiber are located in each layer; the failure process shows a multi-stage fluctuating decline, and the decline slows down as carbon fiber content increases, and the fracture sound release has the characteristics of a low intensity and high frequency for a long time. By contrast, as glass fiber content increases, the bending failure of intralayer composites is featured with a multi-stage cliff decline with a high amplitude and low frequency for a short-time fracture sound release.
Investigating accidents involving aircraft manufactured from polymer composite materials
NASA Astrophysics Data System (ADS)
Dunn, Leigh
This study looks into the examination of polymer composite wreckage from the perspective of the aircraft accident investigator. It develops an understanding of the process of wreckage examination as well as identifying the potential for visual and macroscopic interpretation of polymer composite aircraft wreckage. The in-field examination of aircraft wreckage, and subsequent interpretations of material failures, can be a significant part of an aircraft accident investigation. As the use of composite materials in aircraft construction increases, the understanding of how macroscopic failure characteristics of composite materials may aid the field investigator is becoming of increasing importance.. The first phase of this research project was to explore how investigation practitioners conduct wreckage examinations. Four accident investigation case studies were examined. The analysis of the case studies provided a framework of the wreckage examination process. Subsequently, a literature survey was conducted to establish the current level of knowledge on the visual and macroscopic interpretation of polymer composite failures. Relevant literature was identified and a compendium of visual and macroscopic characteristics was created. Two full-scale polymer composite wing structures were loaded statically, in an upward bending direction, until each wing structure fractured and separated. The wing structures were subsequently examined for the existence of failure characteristics. The examination revealed that whilst characteristics were present, the fragmentation of the structure destroyed valuable evidence. A hypothetical accident scenario utilising the fractured wing structures was developed, which UK government accident investigators subsequently investigated. This provided refinement to the investigative framework and suggested further guidance on the interpretation of polymer composite failures by accident investigators..
Factors Influencing Progressive Failure Analysis Predictions for Laminated Composite Structure
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.
2008-01-01
Progressive failure material modeling methods used for structural analysis including failure initiation and material degradation are presented. Different failure initiation criteria and material degradation models are described that define progressive failure formulations. These progressive failure formulations are implemented in a user-defined material model for use with a nonlinear finite element analysis tool. The failure initiation criteria include the maximum stress criteria, maximum strain criteria, the Tsai-Wu failure polynomial, and the Hashin criteria. The material degradation model is based on the ply-discounting approach where the local material constitutive coefficients are degraded. Applications and extensions of the progressive failure analysis material model address two-dimensional plate and shell finite elements and three-dimensional solid finite elements. Implementation details are described in the present paper. Parametric studies for laminated composite structures are discussed to illustrate the features of the progressive failure modeling methods that have been implemented and to demonstrate their influence on progressive failure analysis predictions.
Fracture mechanisms and fracture control in composite structures
NASA Astrophysics Data System (ADS)
Kim, Wone-Chul
Four basic failure modes--delamination, delamination buckling of composite sandwich panels, first-ply failure in cross-ply laminates, and compression failure--are analyzed using linear elastic fracture mechanics (LEFM) and the J-integral method. Structural failures, including those at the micromechanical level, are investigated with the aid of the models developed, and the critical strains for crack propagation for each mode are obtained. In the structural fracture analyses area, the fracture control schemes for delamination in a composite rib stiffener and delamination buckling in composite sandwich panels subjected to in-plane compression are determined. The critical fracture strains were predicted with the aid of LEFM for delamination and the J-integral method for delamination buckling. The use of toughened matrix systems has been recommended for improved damage tolerant design for delamination crack propagation. An experimental study was conducted to determine the onset of delamination buckling in composite sandwich panel containing flaws. The critical fracture loads computed using the proposed theoretical model and a numerical computational scheme closely followed the experimental measurements made on sandwich panel specimens of graphite/epoxy faceskins and aluminum honeycomb core with varying faceskin thicknesses and core sizes. Micromechanical models of fracture in composites are explored to predict transverse cracking of cross-ply laminates and compression fracture of unidirectional composites. A modified shear lag model which takes into account the important role of interlaminar shear zones between the 0 degree and 90 degree piles in cross-ply laminate is proposed and criteria for transverse cracking have been developed. For compressive failure of unidirectional composites, pre-existing defects play an important role. Using anisotropic elasticity, the stress state around a defect under a remotely applied compressive load is obtained. The experimentally observed complex compressive failure modes, such as shear crippling and pure compressive fiber failure of fibers are explained by the predicted stress distributions calculated in this work. These fracture analyses can be damage tolerant design methodology for composite structures. The proposed fracture criteria and the corresponding critical fracture strains provide the designer with quantitative guidelines for safe-life design. These have been incorporated into a fracture control plan for composite structures, which is also described. Currently, fracture control plans do not exist for composite structures; the proposed plan is a first step towards establishing fracture control and damage tolerant design methodology for this important class of materials.
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2006-01-01
A framework is presented that enables coupled multiscale analysis of composite structures. The recently developed, free, Finite Element Analysis - Micromechanics Analysis Code (FEAMAC) software couples the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) with ABAQUS to perform micromechanics based FEA such that the nonlinear composite material response at each integration point is modeled at each increment by MAC/GMC. As a result, the stochastic nature of fiber breakage in composites can be simulated through incorporation of an appropriate damage and failure model that operates within MAC/GMC on the level of the fiber. Results are presented for the progressive failure analysis of a titanium matrix composite tensile specimen that illustrate the power and utility of the framework and address the techniques needed to model the statistical nature of the problem properly. In particular, it is shown that incorporating fiber strength randomness on multiple scales improves the quality of the simulation by enabling failure at locations other than those associated with structural level stress risers.
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2007-01-01
A framework is presented that enables coupled multiscale analysis of composite structures. The recently developed, free, Finite Element Analysis-Micromechanics Analysis Code (FEAMAC) software couples the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC) with ABAQUS to perform micromechanics based FEA such that the nonlinear composite material response at each integration point is modeled at each increment by MAC/GMC. As a result, the stochastic nature of fiber breakage in composites can be simulated through incorporation of an appropriate damage and failure model that operates within MAC/GMC on the level of the fiber. Results are presented for the progressive failure analysis of a titanium matrix composite tensile specimen that illustrate the power and utility of the framework and address the techniques needed to model the statistical nature of the problem properly. In particular, it is shown that incorporating fiber strength randomness on multiple scales improves the quality of the simulation by enabling failure at locations other than those associated with structural level stress risers.
Flexural Progressive Failure of Carbon/Glass Interlayer and Intralayer Hybrid Composites
Wu, Weili; Gong, Zhili
2018-01-01
The flexural progressive failure modes of carbon fiber and glass fiber (C/G) interlayer and intralayer hybrid composites were investigated in this work. Results showed that the bending failure modes for interlayer hybrid composites are determined by the layup structure. Besides, the bending failure is characterized by the compression failure of the upper layer, when carbon fiber tends to distribute in the upper layer, the interlayer hybrid composite fails early, the failure force is characterized by a multi-stage slightly fluctuating decline and the fracture area exhibits a diamond shape. While carbon fiber distributes in the middle or bottom layer, the failure time starts late, and the failure process exhibits one stage sharp force/stress drop, the fracture zone of glass fiber above the carbon layers presents an inverted trapezoid shape, while the fracture of glass fiber below the carbon layers exhibits an inverted triangular shape. With regards to the intralayer hybrid composites, the C/G hybrid ratio plays a dominating role in the bending failure which could be considered as the mixed failures of four structures. The bending failure of intralayer hybrid composites occurs in advance since carbon fiber are located in each layer; the failure process shows a multi-stage fluctuating decline, and the decline slows down as carbon fiber content increases, and the fracture sound release has the characteristics of a low intensity and high frequency for a long time. By contrast, as glass fiber content increases, the bending failure of intralayer composites is featured with a multi-stage cliff decline with a high amplitude and low frequency for a short-time fracture sound release. PMID:29673236
Full-Field Strain Methods for Investigating Failure Mechanisms in Triaxial Braided Composites
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Binienda, Wieslaw K.; Goldberg, Robert K.; Roberts, Gary D.
2008-01-01
Recent advancements in braiding technology have led to commercially viable manufacturing approaches for making large structures with complex shape out of triaxial braided composite materials. In some cases, the static load capability of structures made using these materials has been higher than expected based on material strength properties measured using standard coupon tests. A more detailed investigation of deformation and failure processes in large-unit-cell-size triaxial braid composites is needed to evaluate the applicability of standard test methods for these materials and to develop alternative testing approaches. This report presents some new techniques that have been developed to investigate local deformation and failure using digital image correlation techniques. The methods were used to measure both local and global strains during standard straight-sided coupon tensile tests on composite materials made with 12- and 24-k yarns and a 0 /+60 /-60 triaxial braid architecture. Local deformation and failure within fiber bundles was observed and correlations were made between these local failures and global composite deformation and strength.
Capturing the Energy Absorbing Mechanisms of Composite Structures under Crash Loading
NASA Astrophysics Data System (ADS)
Wade, Bonnie
As fiber reinforced composite material systems become increasingly utilized in primary aircraft and automotive structures, the need to understand their contribution to the crashworthiness of the structure is of great interest to meet safety certification requirements. The energy absorbing behavior of a composite structure, however, is not easily predicted due to the great complexity of the failure mechanisms that occur within the material. Challenges arise both in the experimental characterization and in the numerical modeling of the material/structure combination. At present, there is no standardized test method to characterize the energy absorbing capability of composite materials to aide crashworthy structural design. In addition, although many commercial finite element analysis codes exist and offer a means to simulate composite failure initiation and propagation, these models are still under development and refinement. As more metallic structures are replaced by composite structures, the need for both experimental guidelines to characterize the energy absorbing capability of a composite structure, as well as guidelines for using numerical tools to simulate composite materials in crash conditions has become a critical matter. This body of research addresses both the experimental characterization of the energy absorption mechanisms occurring in composite materials during crushing, as well as the numerical simulation of composite materials undergoing crushing. In the experimental investigation, the specific energy absorption (SEA) of a composite material system is measured using a variety of test element geometries, such as corrugated plates and tubes. Results from several crush experiments reveal that SEA is not a constant material property for laminated composites, and varies significantly with the geometry of the test specimen used. The variation of SEA measured for a single material system requires that crush test data must be generated for a range of different test geometries in order to define the range of its energy absorption capability. Further investigation from the crush tests has led to the development of a direct link between geometric features of the crush specimen and its resulting SEA. Through micrographic analysis, distinct failure modes are shown to be guided by the geometry of the specimen, and subsequently are shown to directly influence energy absorption. A new relationship between geometry, failure mode, and SEA has been developed. This relationship has allowed for the reduction of the element-level crush testing requirement to characterize the composite material energy absorption capability. In the numerical investigation, the LS-DYNA composite material model MAT54 is selected for its suitability to model composite materials beyond failure determination, as required by crush simulation, and its capability to remain within the scope of ultimately using this model for large-scale crash simulation. As a result of this research, this model has been thoroughly investigated in depth for its capacity to simulate composite materials in crush, and results from several simulations of the element-level crush experiments are presented. A modeling strategy has been developed to use MAT54 for crush simulation which involves using the experimental data collected from the coupon- and element-level crush tests to directly calibrate the crush damage parameter in MAT54 such that it may be used in higher-level simulations. In addition, the source code of the material model is modified to improve upon its capability. The modifications include improving the elastic definition such that the elastic response to multi-axial load cases can be accurately portrayed simultaneously in each element, which is a capability not present in other composite material models. Modifications made to the failure determination and post-failure model have newly emphasized the post-failure stress degradation scheme rather than the failure criterion which is traditionally considered the most important composite material model definition for crush simulation. The modification efforts have also validated the use of the MAT54 failure criterion and post-failure model for crash modeling when its capabilities and limitations are well understood, and for this reason guidelines for using MAT54 for composite crush simulation are presented. This research has effectively (a) developed and demonstrated a procedure that defines a set of experimental crush results that characterize the energy absorption capability of a composite material system, (b) used the experimental results in the development and refinement of a composite material model for crush simulation, (c) explored modifying the material model to improve its use in crush modeling, and (d) provided experimental and modeling guidelines for composite structures under crush at the element-level in the scope of the Building Block Approach.
Investigation of Composite Structures
NASA Technical Reports Server (NTRS)
Hyer, Michael W.
2000-01-01
This final report consists of a compilation of four separate written documents, three dealing with the response and failure of elliptical composite cylinders to an internal pressure load, and the fourth dealing with the influence of manufacturing imperfections in curved composite panels. The three focused on elliptical cylinders consist of the following: 1 - A paper entitled "Progressive Failure Analysis of Internally Pressurized Elliptical Composite Cylinders," 2 - A paper entitled "Influence of Geometric Nonlinearities on the Response and Failure of Internally Pressurized Elliptical Composite Cylinders," and 3 - A report entitled "Response and Failure of Internally Pressurized Elliptical Composite Cyclinders." The document which deals with the influence of manufacturing imperfections is a paper entitled "Manufacturing Distortions of Curved Composite Panels."
Nelson, Stacy; English, Shawn; Briggs, Timothy
2016-05-06
Fiber-reinforced composite materials offer light-weight solutions to many structural challenges. In the development of high-performance composite structures, a thorough understanding is required of the composite materials themselves as well as methods for the analysis and failure prediction of the relevant composite structures. However, the mechanical properties required for the complete constitutive definition of a composite material can be difficult to determine through experimentation. Therefore, efficient methods are necessary that can be used to determine which properties are relevant to the analysis of a specific structure and to establish a structure's response to a material parameter that can only be definedmore » through estimation. The objectives of this paper deal with demonstrating the potential value of sensitivity and uncertainty quantification techniques during the failure analysis of loaded composite structures; and the proposed methods are applied to the simulation of the four-point flexural characterization of a carbon fiber composite material. Utilizing a recently implemented, phenomenological orthotropic material model that is capable of predicting progressive composite damage and failure, a sensitivity analysis is completed to establish which material parameters are truly relevant to a simulation's outcome. Then, a parameter study is completed to determine the effect of the relevant material properties' expected variations on the simulated four-point flexural behavior as well as to determine the value of an unknown material property. This process demonstrates the ability to formulate accurate predictions in the absence of a rigorous material characterization effort. Finally, the presented results indicate that a sensitivity analysis and parameter study can be used to streamline the material definition process as the described flexural characterization was used for model validation.« less
NASA Astrophysics Data System (ADS)
Yu, Guo-qing; Ren, Yi-ru; Zhang, Tian-tian; Xiao, Wan-shen; Jiang, Hong-yong
2018-04-01
A damage assessment methodology based on the Hashin failure theory for glass fiber reinforced polymer (GFRP) composite blade is proposed. The typical failure mechanisms including the fiber tension/compression and matrix tension/compression are considered to describe the damage behaviors. To give the flapwise and edgewise loading along the blade span, the Blade Element Momentum Theory (BEMT) is adopted. In conjunction with the hydrodynamic analysis, the structural analysis of the composite blade is cooperatively performed with the Hashin damage model. The damage characteristics of the composite blade, under normal and extreme operational conditions, are comparatively analyzed. Numerical results demonstrate that the matrix tension damage is the most significant failure mode which occurs in the mid-span of the blade. The blade internal configurations including the box-beam, Ibeam, left-C beam and right-C beam are compared and analyzed. The GFRP and carbon fiber reinforced polymer (CFRP) are considered and combined. Numerical results show that the I-beam is the best structural type. The structural performance of composite tidal turbine blades could be improved by combining the GFRP and CFRP structure considering the damage and cost-effectiveness synthetically.
Simulations of carbon fiber composite delamination tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kay, G
2007-10-25
Simulations of mode I interlaminar fracture toughness tests of a carbon-reinforced composite material (BMS 8-212) were conducted with LSDYNA. The fracture toughness tests were performed by U.C. Berkeley. The simulations were performed to investigate the validity and practicality of employing decohesive elements to represent interlaminar bond failures that are prevalent in carbon-fiber composite structure penetration events. The simulations employed a decohesive element formulation that was verified on a simple two element model before being employed to perform the full model simulations. Care was required during the simulations to ensure that the explicit time integration of LSDYNA duplicate the near steady-statemore » testing conditions. In general, this study validated the use of employing decohesive elements to represent the interlaminar bond failures seen in carbon-fiber composite structures, but the practicality of employing the elements to represent the bond failures seen in carbon-fiber composite structures during penetration events was not established.« less
Impact Damage and Strain Rate Effects for Toughened Epoxy Composite Structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Minnetyan, Levon
2006-01-01
Structural integrity of composite systems under dynamic impact loading is investigated herein. The GENOA virtual testing software environment is used to implement the effects of dynamic loading on fracture progression and damage tolerance. Combinations of graphite and glass fibers with a toughened epoxy matrix are investigated. The effect of a ceramic coating for the absorption of impact energy is also included. Impact and post impact simulations include verification and prediction of (1) Load and Impact Energy, (2) Impact Damage Size, (3) Maximum Impact Peak Load, (4) Residual Strength, (5) Maximum Displacement, (6) Contribution of Failure Modes to Failure Mechanisms, (7) Prediction of Impact Load Versus Time, and (8) Damage, and Fracture Pattern. A computer model is utilized for the assessment of structural response, progressive fracture, and defect/damage tolerance characteristics. Results show the damage progression sequence and the changes in the structural response characteristics due to dynamic impact. The fundamental premise of computational simulation is that the complete evaluation of composite fracture requires an assessment of ply and subply level damage/fracture processes as the structure is subjected to loads. Simulation results for the graphite/epoxy composite were compared with the impact and tension failure test data, correlation and verification was obtained that included: (1) impact energy, (2) damage size, (3) maximum impact peak load, (4) residual strength, (5) maximum displacement, and (6) failure mechanisms of the composite structure.
Composite Interlaminar Shear Fracture Toughness, G(sub 2c): Shear Measurement of Sheer Myth?
NASA Technical Reports Server (NTRS)
OBrien, T. Kevin
1997-01-01
The concept of G2c as a measure of the interlaminar shear fracture toughness of a composite material is critically examined. In particular, it is argued that the apparent G2c as typically measured is inconsistent with the original definition of shear fracture. It is shown that interlaminar shear failure actually consists of tension failures in the resin rich layers between plies followed by the coalescence of ligaments created by these failures and not the sliding of two planes relative to one another that is assumed in fracture mechanics theory. Several strain energy release rate solutions are reviewed for delamination in composite laminates and structural components where failures have been experimentally documented. Failures typically occur at a location where the mode 1 component accounts for at least one half of the total G at failure. Hence, it is the mode I and mixed-mode interlaminar fracture toughness data that will be most useful in predicting delamination failure in composite components in service. Although apparent G2c measurements may prove useful for completeness of generating mixed-mode criteria, the accuracy of these measurements may have very little influence on the prediction of mixed-mode failures in most structural components.
Unique failure behavior of metal/composite aircraft structural components under crash type loads
NASA Technical Reports Server (NTRS)
Carden, Huey D.
1990-01-01
Failure behavior results are presented on some of the crash dynamics research conducted with concepts of aircraft elements and substructure which have not necessarily been designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs which incorporate improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash type loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures which include individual fuselage frames, skeleton subfloors with stringers and floor beams but without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models. It is believed that the thread of similarity in behavior is telling the designer and dynamists a great deal about what to expect in the crash behavior of these structures and can guide designs for improving the energy absorption and crash behavior of such structures.
Analysis for the Progressive Failure Response of Textile Composite Fuselage Frames
NASA Technical Reports Server (NTRS)
Johnson, Eric R.; Boitnott, Richard L. (Technical Monitor)
2002-01-01
A part of aviation accident mitigation is a crashworthy airframe structure, and an important measure of merit for a crashworthy structure is the amount of kinetic energy that can be absorbed in the crush of the structure. Prediction of the energy absorbed from finite element analyses requires modeling the progressive failure sequence. Progressive failure modes may include material degradation, fracture and crack growth, and buckling and collapse. The design of crashworthy airframe components will benefit from progressive failure analyses that have been validated by tests. The subject of this research is the development of a progressive failure analysis for a textile composite, circumferential fuselage frame subjected to a quasi-static, crash-type load. The test data for the frame are reported, and these data are used to develop and to validate methods for the progressive failure response.
Acoustic emissions (AE) monitoring of large-scale composite bridge components
NASA Astrophysics Data System (ADS)
Velazquez, E.; Klein, D. J.; Robinson, M. J.; Kosmatka, J. B.
2008-03-01
Acoustic Emissions (AE) has been successfully used with composite structures to both locate and give a measure of damage accumulation. The current experimental study uses AE to monitor large-scale composite modular bridge components. The components consist of a carbon/epoxy beam structure as well as a composite to metallic bonded/bolted joint. The bonded joints consist of double lap aluminum splice plates bonded and bolted to carbon/epoxy laminates representing the tension rail of a beam. The AE system is used to monitor the bridge component during failure loading to assess the failure progression and using time of arrival to give insight into the origins of the failures. Also, a feature in the AE data called Cumulative Acoustic Emission counts (CAE) is used to give an estimate of the severity and rate of damage accumulation. For the bolted/bonded joints, the AE data is used to interpret the source and location of damage that induced failure in the joint. These results are used to investigate the use of bolts in conjunction with the bonded joint. A description of each of the components (beam and joint) is given with AE results. A summary of lessons learned for AE testing of large composite structures as well as insight into failure progression and location is presented.
An experimental investigation on the three-point bending behavior of composite laminate
NASA Astrophysics Data System (ADS)
A, Azzam; W, Li
2014-08-01
The response of composite laminate structure to three-point bending load was investigated by subjecting two types of stacking sequences of composite laminate structure by using electronic universal tester (Type: WDW-20) machine. Optical microscope was selected in order to characterize bending damage, delamination, and damage shapes in composite laminate structures. The results showed that the [0/90/-45/45]2s exhibits a brittle behavior, while other laminates exhibit a progressive failure mode consisting of fiber failure, debonding (splitting), and delamination. The [45/45/90/0]2s laminate has a highly nonlinear load- displacement curve due to compressive yielding.
Advances in Micromechanics Modeling of Composites Structures for Structural Health Monitoring
NASA Astrophysics Data System (ADS)
Moncada, Albert
Although high performance, light-weight composites are increasingly being used in applications ranging from aircraft, rotorcraft, weapon systems and ground vehicles, the assurance of structural reliability remains a critical issue. In composites, damage is absorbed through various fracture processes, including fiber failure, matrix cracking and delamination. An important element in achieving reliable composite systems is a strong capability of assessing and inspecting physical damage of critical structural components. Installation of a robust Structural Health Monitoring (SHM) system would be very valuable in detecting the onset of composite failure. A number of major issues still require serious attention in connection with the research and development aspects of sensor-integrated reliable SHM systems for composite structures. In particular, the sensitivity of currently available sensor systems does not allow detection of micro level damage; this limits the capability of data driven SHM systems. As a fundamental layer in SHM, modeling can provide in-depth information on material and structural behavior for sensing and detection, as well as data for learning algorithms. This dissertation focuses on the development of a multiscale analysis framework, which is used to detect various forms of damage in complex composite structures. A generalized method of cells based micromechanics analysis, as implemented in NASA's MAC/GMC code, is used for the micro-level analysis. First, a baseline study of MAC/GMC is performed to determine the governing failure theories that best capture the damage progression. The deficiencies associated with various layups and loading conditions are addressed. In most micromechanics analysis, a representative unit cell (RUC) with a common fiber packing arrangement is used. The effect of variation in this arrangement within the RUC has been studied and results indicate this variation influences the macro-scale effective material properties and failure stresses. The developed model has been used to simulate impact damage in a composite beam and an airfoil structure. The model data was verified through active interrogation using piezoelectric sensors. The multiscale model was further extended to develop a coupled damage and wave attenuation model, which was used to study different damage states such as fiber-matrix debonding in composite structures with surface bonded piezoelectric sensors.
Global Failure Modes in High Temperature Composite Structures
NASA Technical Reports Server (NTRS)
Knauss, W. G.
1998-01-01
Composite materials have been considered for many years as the major advance in the construction of energy efficient aerospace structures. Notable advances have been made in understanding the special design considerations that set composites apart from the usual "isotropic" engineering materials such as the metals. As a result, a number of significant engineering designs have been accomplished. However, one shortcoming of the currently favored composites is their relatively unforgiving behavior with respect to failure (brittleness) under seemingly mild impact conditions and large efforts are underway to rectify that situation, much along the lines of introducing thermoplastic matrix materials. Because of their relatively more pronounced (thermo) viscoelastic behavior these materials respond with "toughness" in fracture situations. From the point of view of applications requiring material strength, this property is highly desirable. This feature impacts several important and distinct engineering problems which have been' considered under this grant and cover the 1) effect of impact damage on structural (buckling) stability of composite panels, the 2) effect of time dependence on the progression of buckling instabilities, and the 3) evolution of damage and fracture at generic thickness discontinuities in structures. The latter topic has serious implications for structural stability problems (buckling failure in reinforced shell structures) as well as failure progression in stringer-reinforced shell structures. This grant has dealt with these issues. Polymer "toughness" is usually associated with uncrosslinked or thermo-plastic polymers. But, by comparison with their thermoset counterparts they tend to exhibit more pronounced time dependent material behavior; also, that time dependence can occur at lower temperatures which places restriction in the high temperature use of these "newer and tougher" materials that are not quite so serious with the thermoset matrix materials. From a structural point of view the implications of this material behavior are potentially severe in that structural failure characteristics are no longer readily observed in short term qualification tests so characteristic for aerospace structures built from typical engineering metals.
2014-09-01
TERMS fluid structure interaction, composite structures shipbuilding, fatigue loading 15. NUMBER OF PAGES 85 16. PRICE CODE 17. SECURITY...under the three point bending test. All the composites exhibit an initial nonlinear and inelastic deformation trend and end with a catastrophic abrupt
Analysis for the Progressive Failure Response of Textile Composite Fuselage Frames
NASA Technical Reports Server (NTRS)
Johnson, Eric R.; Boitnott, Richard L. (Technical Monitor)
2002-01-01
A part of aviation accident mitigation is a crash worthy airframe structure, and an important measure of merit for a crash worthy structure is the amount of kinetic energy that can be absorbed in the crush of the structure. Prediction of the energy absorbed from finite element analyses requires modeling the progressive failure sequence. Progressive failure modes may include material degradation, fracture and crack growth, and buckling and collapse. The design of crash worthy airframe components will benefit from progressive failure analyses that have been validated by tests. The subject of this research is the development of a progressive failure analysis for textile composite. circumferential fuselage frames subjected to a quasi-static, crash-type load. The test data for these frames are reported, and these data, along with stub column test data, are to be used to develop and to validate methods for the progressive failure response.
Characterization and manufacture of braided composites for large commercial aircraft structures
NASA Technical Reports Server (NTRS)
Fedro, Mark J.; Willden, Kurtis
1992-01-01
Braided composite materials has been recognized as a potential cost effective material form for fuselage structural elements. Consequently, there is a strong need for more knowledge in the design, manufacture, test, and analysis of textile structural composites. Advance braided composite technology is advanced towards applications to a large commercial transport fuselage. The mechanics are summarized of materials and manufacturing demonstration results which were obtained in order to acquire an understanding of how braided composites can be applied to a commercial fuselage. Textile composites consisting of 2-D, 2-D triaxial, and 3-D braid patterns with thermoplastic and two resin transfer molding resin systems were studied. The structural performance of braided composites was evaluated through an extensive mechanical test program. Analytical methods were also developed and applied to predict the following: internal fiber architecture; stiffness; fiber stresses; failure mechanisms; notch effects; and the history of failure of the braided composite specimens. The applicability of braided composites to a commercial transport fuselage was further assessed through a manufacturing demonstration.
Analysis of Discrete-Source Damage Progression in a Tensile Stiffened Composite Panel
NASA Technical Reports Server (NTRS)
Wang, John T.; Lotts, Christine G.; Sleight, David W.
1999-01-01
This paper demonstrates the progressive failure analysis capability in NASA Langley s COMET-AR finite element analysis code on a large-scale built-up composite structure. A large-scale five stringer composite panel with a 7-in. long discrete source damage was analyzed from initial loading to final failure including the geometric and material nonlinearities. Predictions using different mesh sizes, different saw cut modeling approaches, and different failure criteria were performed and assessed. All failure predictions have a reasonably good correlation with the test result.
Large Area Nondestructive Evaluation of a Fatigue Loaded Composite Structure
NASA Technical Reports Server (NTRS)
Zalameda, Joseph N.; Burke, Eric R.; Horne, Michael R.; Madaras, Eric I.
2016-01-01
Large area nondestructive evaluation (NDE) inspections are required for fatigue testing of composite structures to track damage initiation and growth. Of particular interest is the progression of damage leading to ultimate failure to validate damage progression models. In this work, passive thermography and acoustic emission NDE were used to track damage growth up to failure of a composite three-stringer panel. Fourteen acoustic emission sensors were placed on the composite panel. The signals from the array were acquired simultaneously and allowed for acoustic emission location. In addition, real time thermal data of the composite structure were acquired during loading. Details are presented on the mapping of the acoustic emission locations directly onto the thermal imagery to confirm areas of damage growth leading to ultimate failure. This required synchronizing the acoustic emission and thermal data with the applied loading. In addition, processing of the thermal imagery which included contrast enhancement, removal of optical barrel distortion and correction of angular rotation before mapping the acoustic event locations are discussed.
Failure Analysis of Discrete Damaged Tailored Extension-Shear-Coupled Stiffened Composite Panels
NASA Technical Reports Server (NTRS)
Baker, Donald J.
2005-01-01
The results of an analytical and experimental investigation of the failure of composite is tiffener panels with extension-shear coupling are presented. This tailored concept, when used in the cover skins of a tiltrotor aircraft wing has the potential for increasing the aeroelastic stability margins and improving the aircraft productivity. The extension-shear coupling is achieved by using unbalanced 45 plies in the skin. The failure analysis of two tailored panel configurations that have the center stringer and adjacent skin severed is presented. Finite element analysis of the damaged panels was conducted using STAGS (STructural Analysis of General Shells) general purpose finite element program that includes a progressive failure capability for laminated composite structures that is based on point-stress analysis, traditional failure criteria, and ply discounting for material degradation. The progressive failure predicted the path of the failure and maximum load capability. There is less than 12 percent difference between the predicted failure load and experimental failure load. There is a good match of the panel stiffness and strength between the progressive failure analysis and the experimental results. The results indicate that the tailored concept would be feasible to use in the wing skin of a tiltrotor aircraft.
Damage Model and Progressive Failure Analyses for Filament Wound Composite Laminates
NASA Astrophysics Data System (ADS)
Ribeiro, Marcelo Leite; Vandepitte, Dirk; Tita, Volnei
2013-10-01
Recent improvements in manufacturing processes and materials properties associated with excellent mechanical characteristics and low weight have made composite materials very attractive for application on civil aircraft structures. However, even new designs are still very conservative, because the composite failure phenomenon is very complex. Several failure criteria and theories have been developed to describe the damage process and how it evolves, but the solution of the problem is still open. Moreover, modern filament winding techniques have been used to produce a wide variety of structural shapes not only cylindrical parts, but also “flat” laminates. Therefore, this work presents the development of a damage model and its application to simulate the progressive failure of flat composite laminates made using a filament winding process. The damage model was implemented as a UMAT (User Material Subroutine), in ABAQUSTM Finite Element (FE) framework. Progressive failure analyses were carried out using FE simulation in order to simulate the failure of flat filament wound composite structures under different loading conditions. In addition, experimental tests were performed in order to identify parameters related to the material model, as well as to evaluate both the potential and the limitations of the model. The difference between numerical and the average experimental results in a four point bending set-up is only 1.6 % at maximum load amplitude. Another important issue is that the model parameters are not so complicated to be identified. This characteristic makes this model very attractive to be applied in an industrial environment.
Effect of Discontinuities and Uncertainties on the Response and Failure of Composite Structures
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Perry, Ferman W.; Poteat, Marcia M. (Technical Monitor)
2000-01-01
The overall goal of this research was to assess the effect of discontinuities and uncertainties on the nonlinear response and failure of composite structures subjected to combined mechanical and thermal loads. The four key elements of the study were: (1) development of simple and efficient procedures for the accurate determination of transverse shear and transverse normal stresses in structural sandwiches as well as in unstiffened and stiffened composite panels and shells; (2) study the effects of transverse stresses on the response, damage initiation and propagation in composite and sandwich structures; (3) use of hierarchical sensitivity coefficients to identify the major parameters that affect the response and damage in each of the different levels in the hierarchy (micro-mechanical, layer, panel, subcomponent and component levels); and (4) application of fuzzy set techniques to identify the range and variation of possible responses. The computational models developed were used in conjunction with experiments, to understand the physical phenomena associated with the nonlinear response and failure of composite and sandwich structures. A toolkit was developed for use in conjunction with deterministic analysis programs to help the designer in assessing the effect of uncertainties in the different computational model parameters on the variability of the response quantities.
Global Failure Modes in Composite Structures
NASA Technical Reports Server (NTRS)
Knauss, W. G.; Gonzalez, Luis
2001-01-01
Composite materials provide well-known advantages for space and aeronautical applications in terms of strength and rigidity to weight ratios and other mechanical properties. As a consequence, their use has experienced a constant increase in the past decades and it is anticipated that this trend will be maintained in the near future. At the same time, being these materials relatively new compared to metals, and having failure characteristics completely different from them, their damage growth and their failure mechanisms are not as well understood in a predictive sense. For example, while in metals fracture produces "clean" cracks with their well defined analytically stress fields at the crack tip, composite fracture is a more complex phenomenon. Instead of a crack, we confront a "damage zone" that may include fiber breakage, fiber microbuckling, fiber pullout, matrix cracking, delamination, debonding or any combination of all these different mechanisms. These phenomena are prevalent in any failure process through an aircraft structure, whether one addresses a global failure such as the ripping of a fuselage or wing section, or whether one is concerned with the failure initiation near a thickness change at stringers or other reinforcement. Thus the topic that has been under consideration has wide application in any real structure and is considered an essential contribution to the predictive failure analysis capability for aircraft containing composite components. The heterogeneity and the anisotropy of composites are not only advantageous but essential characteristics, yet these same features provide complex stress fields, especially in the presence of geometrical discontinuities such as notches, holes or cutouts or structural elements such as stiffeners, stringers, etc. To properly address the interaction between a damage/crack front and a hole with a stringer it is imperative that the stress and deformation fields of the former be (sufficiently well) characterized. The question of "scaling" is an essential concern in any structural materials investigation. For example, experiments in the past have shown that the "strength" of a composite depends on hole size. As a consequence the validity of traditional fracture mechanics concepts applied to composite materials failure must be questioned. The size of the fibers, the dimensions of the laminae, etc. together with the fact that, because of the layered anisotropy, the stress field is no longer two-dimensional, prevent the otherwise obviously confident use of "similarity concepts". Therefore, the question needs to be raised of whether in composites "size matters or not", i.e., whether the results obtained in a laboratory using small coupons are truly representative of the situation involving a full scale component.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.
1990-01-01
Scale model technology represents one method of investigating the behavior of advanced, weight-efficient composite structures under a variety of loading conditions. It is necessary, however, to understand the limitations involved in testing scale model structures before the technique can be fully utilized. These limitations, or scaling effects, are characterized. in the large deflection response and failure of composite beams. Scale model beams were loaded with an eccentric axial compressive load designed to produce large bending deflections and global failure. A dimensional analysis was performed on the composite beam-column loading configuration to determine a model law governing the system response. An experimental program was developed to validate the model law under both static and dynamic loading conditions. Laminate stacking sequences including unidirectional, angle ply, cross ply, and quasi-isotropic were tested to examine a diversity of composite response and failure modes. The model beams were loaded under scaled test conditions until catastrophic failure. A large deflection beam solution was developed to compare with the static experimental results and to analyze beam failure. Also, the finite element code DYCAST (DYnamic Crash Analysis of STructure) was used to model both the static and impulsive beam response. Static test results indicate that the unidirectional and cross ply beam responses scale as predicted by the model law, even under severe deformations. In general, failure modes were consistent between scale models within a laminate family; however, a significant scale effect was observed in strength. The scale effect in strength which was evident in the static tests was also observed in the dynamic tests. Scaling of load and strain time histories between the scale model beams and the prototypes was excellent for the unidirectional beams, but inconsistent results were obtained for the angle ply, cross ply, and quasi-isotropic beams. Results show that valuable information can be obtained from testing on scale model composite structures, especially in the linear elastic response region. However, due to scaling effects in the strength behavior of composite laminates, caution must be used in extrapolating data taken from a scale model test when that test involves failure of the structure.
NASA Technical Reports Server (NTRS)
Sanchez, Christopher M.
2011-01-01
NASA White Sands Test Facility (WSTF) is leading an evaluation effort in advanced destructive and nondestructive testing of composite pressure vessels and structures. WSTF is using progressive finite element analysis methods for test design and for confirmation of composite pressure vessel performance. Using composite finite element analysis models and failure theories tested in the World-Wide Failure Exercise, WSTF is able to estimate the static strength of composite pressure vessels. Additionally, test and evaluation on composites that have been impact damaged is in progress so that models can be developed to estimate damage tolerance and the degradation in static strength.
Reliability and life prediction of ceramic composite structures at elevated temperatures
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.; Gyekenyesi, John P.
1994-01-01
Methods are highlighted that ascertain the structural reliability of components fabricated of composites with ceramic matrices reinforced with ceramic fibers or whiskers and subject to quasi-static load conditions at elevated temperatures. Each method focuses on a particular composite microstructure: whisker-toughened ceramics, laminated ceramic matrix composites, and fabric reinforced ceramic matrix composites. In addition, since elevated service temperatures usually involve time-dependent effects, a section dealing with reliability degradation as a function of load history has been included. A recurring theme throughout this chapter is that even though component failure is controlled by a sequence of many microfailure events, failure of ceramic composites will be modeled using macrovariables.
Impact analysis of composite aircraft structures
NASA Technical Reports Server (NTRS)
Pifko, Allan B.; Kushner, Alan S.
1993-01-01
The impact analysis of composite aircraft structures is discussed. Topics discussed include: background remarks on aircraft crashworthiness; comments on modeling strategies for crashworthiness simulation; initial study of simulation of progressive failure of an aircraft component constructed of composite material; and research direction in composite characterization for impact analysis.
User-Defined Material Model for Progressive Failure Analysis
NASA Technical Reports Server (NTRS)
Knight, Norman F. Jr.; Reeder, James R. (Technical Monitor)
2006-01-01
An overview of different types of composite material system architectures and a brief review of progressive failure material modeling methods used for structural analysis including failure initiation and material degradation are presented. Different failure initiation criteria and material degradation models are described that define progressive failure formulations. These progressive failure formulations are implemented in a user-defined material model (or UMAT) for use with the ABAQUS/Standard1 nonlinear finite element analysis tool. The failure initiation criteria include the maximum stress criteria, maximum strain criteria, the Tsai-Wu failure polynomial, and the Hashin criteria. The material degradation model is based on the ply-discounting approach where the local material constitutive coefficients are degraded. Applications and extensions of the progressive failure analysis material model address two-dimensional plate and shell finite elements and three-dimensional solid finite elements. Implementation details and use of the UMAT subroutine are described in the present paper. Parametric studies for composite structures are discussed to illustrate the features of the progressive failure modeling methods that have been implemented.
Probabilistic sizing of laminates with uncertainties
NASA Technical Reports Server (NTRS)
Shah, A. R.; Liaw, D. G.; Chamis, C. C.
1993-01-01
A reliability based design methodology for laminate sizing and configuration for a special case of composite structures is described. The methodology combines probabilistic composite mechanics with probabilistic structural analysis. The uncertainties of constituent materials (fiber and matrix) to predict macroscopic behavior are simulated using probabilistic theory. Uncertainties in the degradation of composite material properties are included in this design methodology. A multi-factor interaction equation is used to evaluate load and environment dependent degradation of the composite material properties at the micromechanics level. The methodology is integrated into a computer code IPACS (Integrated Probabilistic Assessment of Composite Structures). Versatility of this design approach is demonstrated by performing a multi-level probabilistic analysis to size the laminates for design structural reliability of random type structures. The results show that laminate configurations can be selected to improve the structural reliability from three failures in 1000, to no failures in one million. Results also show that the laminates with the highest reliability are the least sensitive to the loading conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Stacy; English, Shawn; Briggs, Timothy
Fiber-reinforced composite materials offer light-weight solutions to many structural challenges. In the development of high-performance composite structures, a thorough understanding is required of the composite materials themselves as well as methods for the analysis and failure prediction of the relevant composite structures. However, the mechanical properties required for the complete constitutive definition of a composite material can be difficult to determine through experimentation. Therefore, efficient methods are necessary that can be used to determine which properties are relevant to the analysis of a specific structure and to establish a structure's response to a material parameter that can only be definedmore » through estimation. The objectives of this paper deal with demonstrating the potential value of sensitivity and uncertainty quantification techniques during the failure analysis of loaded composite structures; and the proposed methods are applied to the simulation of the four-point flexural characterization of a carbon fiber composite material. Utilizing a recently implemented, phenomenological orthotropic material model that is capable of predicting progressive composite damage and failure, a sensitivity analysis is completed to establish which material parameters are truly relevant to a simulation's outcome. Then, a parameter study is completed to determine the effect of the relevant material properties' expected variations on the simulated four-point flexural behavior as well as to determine the value of an unknown material property. This process demonstrates the ability to formulate accurate predictions in the absence of a rigorous material characterization effort. Finally, the presented results indicate that a sensitivity analysis and parameter study can be used to streamline the material definition process as the described flexural characterization was used for model validation.« less
[Progressive damage monitoring of corrugated composite skins by the FBG spectral characteristics].
Zhang, Yong; Wang, Bang-Feng; Lu, Ji-Yun; Gu, Li-Li; Su, Yong-Gang
2014-03-01
In the present paper, a method of monitoring progressive damage of composite structures by non-uniform fiber Bragg grating (FBG) reflection spectrum is proposed. Due to the finite element analysis of corrugated composite skins specimens, the failure process under tensile load and corresponding critical failure loads of corrugated composite skin was predicated. Then, the non-uniform reflection spectrum of FBG sensor could be reconstructed and the corresponding relationship between layer failure order sequence of corrugated composite skin and FBG sensor reflection spectrums was acquired. A monitoring system based on FBG non-uniform reflection spectrum, which can be used to monitor progressive damage of corrugated composite skins, was built. The corrugated composite skins were stretched under this FBG non-uniform reflection spectrum monitoring system. The results indicate that real-time spectrums acquired by FBG non-uniform reflection spectrum monitoring system show the same trend with the reconstruction reflection spectrums. The maximum error between the corresponding failure and the predictive value is 8.6%, which proves the feasibility of using FBG sensor to monitor progressive damage of corrugated composite skin. In this method, the real-time changes in the FBG non-uniform reflection spectrum within the scope of failure were acquired through the way of monitoring and predicating, and at the same time, the progressive damage extent and layer failure sequence of corru- gated composite skin was estimated, and without destroying the structure of the specimen, the method is easy and simple to operate. The measurement and transmission section of the system are completely composed of optical fiber, which provides new ideas and experimental reference for the field of dynamic monitoring of smart skin.
Development of GENOA Progressive Failure Parallel Processing Software Systems
NASA Technical Reports Server (NTRS)
Abdi, Frank; Minnetyan, Levon
1999-01-01
A capability consisting of software development and experimental techniques has been developed and is described. The capability is integrated into GENOA-PFA to model polymer matrix composite (PMC) structures. The capability considers the physics and mechanics of composite materials and structure by integration of a hierarchical multilevel macro-scale (lamina, laminate, and structure) and micro scale (fiber, matrix, and interface) simulation analyses. The modeling involves (1) ply layering methodology utilizing FEM elements with through-the-thickness representation, (2) simulation of effects of material defects and conditions (e.g., voids, fiber waviness, and residual stress) on global static and cyclic fatigue strengths, (3) including material nonlinearities (by updating properties periodically) and geometrical nonlinearities (by Lagrangian updating), (4) simulating crack initiation. and growth to failure under static, cyclic, creep, and impact loads. (5) progressive fracture analysis to determine durability and damage tolerance. (6) identifying the percent contribution of various possible composite failure modes involved in critical damage events. and (7) determining sensitivities of failure modes to design parameters (e.g., fiber volume fraction, ply thickness, fiber orientation. and adhesive-bond thickness). GENOA-PFA progressive failure analysis is now ready for use to investigate the effects on structural responses to PMC material degradation from damage induced by static, cyclic (fatigue). creep, and impact loading in 2D/3D PMC structures subjected to hygrothermal environments. Its use will significantly facilitate targeting design parameter changes that will be most effective in reducing the probability of a given failure mode occurring.
Scalable File Systems for High Performance Computing Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandt, S A
2007-10-03
Simulations of mode I interlaminar fracture toughness tests of a carbon-reinforced composite material (BMS 8-212) were conducted with LSDYNA. The fracture toughness tests were performed by U.C. Berkeley. The simulations were performed to investigate the validity and practicality of employing decohesive elements to represent interlaminar bond failures that are prevalent in carbon-fiber composite structure penetration events. The simulations employed a decohesive element formulation that was verified on a simple two element model before being employed to perform the full model simulations. Care was required during the simulations to ensure that the explicit time integration of LSDYNA duplicate the near steady-statemore » testing conditions. In general, this study validated the use of employing decohesive elements to represent the interlaminar bond failures seen in carbon-fiber composite structures, but the practicality of employing the elements to represent the bond failures seen in carbon-fiber composite structures during penetration events was not established.« less
Ultrasonic nonlinear guided wave inspection of microscopic damage in a composite structure
NASA Astrophysics Data System (ADS)
Zhang, Li; Borigo, Cody; Owens, Steven; Lissenden, Clifford; Rose, Joseph; Hakoda, Chris
2017-02-01
Sudden structural failure is a severe safety threat to many types of military and industrial composite structures. Because sudden structural failure may occur in a composite structure shortly after macroscale damage initiates, reliable early diagnosis of microdamage formation in the composite structure is critical to ensure safe operation and to reduce maintenance costs. Ultrasonic guided waves have been widely used for long-range defect detection in various structures. When guided waves are generated under certain excitation conditions, in addition to the traditional linear wave mode (known as the fundamental harmonic wave mode), a number of nonlinear higher-order harmonic wave modes are also be generated. Research shows that the nonlinear parameters of a higher-order harmonic wave mode could have excellent sensitivity to microstructural changes in a material. In this work, we successfully employed a nonlinear guided wave structural health monitoring (SHM) method to detect microscopic impact damage in a 32-layer carbon/epoxy fiber-reinforced composite plate. Our effort has demonstrated that, utilizing appropriate transducer design, equipment, excitation signals, and signal processing techniques, nonlinear guided wave parameter measurements can be reliably used to monitor microdamage initiation and growth in composite structures.
Review on failure prediction techniques of composite single lap joint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ab Ghani, A.F., E-mail: ahmadfuad@utem.edu.my; Rivai, Ahmad, E-mail: ahmadrivai@utem.edu.my
2016-03-29
Adhesive bonding is the most appropriate joining method in construction of composite structures. The use of reliable design and prediction technique will produce better performance of bonded joints. Several papers from recent papers and journals have been reviewed and synthesized to understand the current state of the art in this area. It is done by studying the most relevant analytical solutions for composite adherends with start of reviewing the most fundamental ones involving beam/plate theory. It is then extended to review single lap joint non linearity and failure prediction and finally on the failure prediction on composite single lap joint.more » The review also encompasses the finite element modelling part as tool to predict the elastic response of composite single lap joint and failure prediction numerically.« less
Combined investigation of Eddy current and ultrasonic techniques for composite materials NDE
NASA Technical Reports Server (NTRS)
Davis, C. W.; Nath, S.; Fulton, J. P.; Namkung, M.
1993-01-01
Advanced composites are not without trade-offs. Their increased designability brings an increase in the complexity of their internal geometry and, as a result, an increase in the number of failure modes associated with a defect. When two or more isotropic materials are combined in a composite, the isotropic material failure modes may also combine. In a laminate, matrix delamination, cracking and crazing, and voids and porosity, will often combine with fiber breakage, shattering, waviness, and separation to bring about ultimate structural failure. This combining of failure modes can result in defect boundaries of different sizes, corresponding to the failure of each structural component. This paper discusses a dual-technology NDE (Non Destructive Evaluation) (eddy current (EC) and ultrasonics (UT)) study of graphite/epoxy (gr/ep) laminate samples. Eddy current and ultrasonic raster (Cscan) imaging were used together to characterize the effects of mechanical impact damage, high temperature thermal damage and various types of inserts in gr/ep laminate samples of various stacking sequences.
Modeling Composite Laminate Crushing for Crash Analysis
NASA Technical Reports Server (NTRS)
Fleming, David C.; Jones, Lisa (Technical Monitor)
2002-01-01
Crash modeling of composite structures remains limited in application and has not been effectively demonstrated as a predictive tool. While the global response of composite structures may be well modeled, when composite structures act as energy-absorbing members through direct laminate crushing the modeling accuracy is greatly reduced. The most efficient composite energy absorbing structures, in terms of energy absorbed per unit mass, are those that absorb energy through a complex progressive crushing response in which fiber and matrix fractures on a small scale dominate the behavior. Such failure modes simultaneously include delamination of plies, failure of the matrix to produce fiber bundles, and subsequent failure of fiber bundles either in bending or in shear. In addition, the response may include the significant action of friction, both internally (between delaminated plies or fiber bundles) or externally (between the laminate and the crushing surface). A figure shows the crushing damage observed in a fiberglass composite tube specimen, illustrating the complexity of the response. To achieve a finite element model of such complex behavior is an extremely challenging problem. A practical crushing model based on detailed modeling of the physical mechanisms of crushing behavior is not expected in the foreseeable future. The present research describes attempts to model composite crushing behavior using a novel hybrid modeling procedure. Experimental testing is done is support of the modeling efforts, and a test specimen is developed to provide data for validating laminate crushing models.
NASA Astrophysics Data System (ADS)
Pickett, Leon, Jr.
Past research has conclusively shown that long fiber structural composites possess superior specific energy absorption characteristics as compared to steel and aluminum structures. However, destructive physical testing of composites is very costly and time consuming. As a result, numerical solutions are desirable as an alternative to experimental testing. Up until this point, very little numerical work has been successful in predicting the energy absorption of composite crush structures. This research investigates the ability to use commercially available numerical modeling tools to approximate the energy absorption capability of long-fiber composite crush tubes. This study is significant because it provides a preliminary analysis of the suitability of LS-DYNA to numerically characterize the crushing behavior of a dynamic axial impact crushing event. Composite crushing theory suggests that there are several crushing mechanisms occurring during a composite crush event. This research evaluates the capability and suitability of employing, LS-DYNA, to simulate the dynamic crush event of an E-glass/epoxy cylindrical tube. The model employed is the composite "progressive failure model", a much more limited failure model when compared to the experimental failure events which naturally occur. This numerical model employs (1) matrix cracking, (2) compression, and (3) fiber breakage failure modes only. The motivation for the work comes from the need to reduce the significant cost associated with experimental trials. This research chronicles some preliminary efforts to better understand the mechanics essential in pursuit of this goal. The immediate goal is to begin to provide deeper understanding of a composite crush event and ultimately create a viable alternative to destructive testing of composite crush tubes.
NASA Technical Reports Server (NTRS)
Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.
1990-01-01
Failure behavior results are presented from crash dynamics research using concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs which incorporate improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures which include individual fuselage frames, skeleton subfloors with stringers and floor beams but without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static and dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models. It is believed that the similarity in behavior is giving the designer and dynamists much information about what to expect in the crash behavior of these structures and can guide designs for improving the energy absorption and crash behavior of such structures.
NASA Technical Reports Server (NTRS)
Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.
1990-01-01
Failure behavior results are presented from crash dynamics research using concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs which incorporate improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures which include individual fuselage frames, skeleton subfloors with stringers and floor beams but without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static and dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models. It is believed that the similarity in behavior is giving the designer and dynamists much information about what to expect in the crash behavior of these structures and can guide designs for improving the energy absorption and crash behavior of such structures.
NASA Astrophysics Data System (ADS)
Paranjpe, Nikhil; Alamir, Mohammed; Alonayni, Abdullah; Asmatulu, Eylem; Rahman, Muhammad M.; Asmatulu, Ramazan
2018-03-01
Adhesives are widely utilized materials in aviation, automotive, energy, defense, and marine industries. Adhesive joints are gradually supplanting mechanical fasteners because they are lightweight structures, thus making the assembly lighter and easier. They also act as a sealant to prevent a structural joint from galvanic corrosion and leakages. Adhesive bonds provide high joint strength because of the fact that the load is distributed uniformly on the joint surface, while in mechanical joints, the load is concentrated at one point, thus leading to stress at that point and in turn causing joint failures. This research concentrated on the analysis of bond strength and failure loads in adhesive joint of composite-to-composite surfaces. Different durations of plasma along with the detergent cleaning were conducted on the composite surfaces prior to the adhesive applications and curing processes. The joint strength of the composites increased about 34% when the surface was plasma treated for 12 minutes. It is concluded that the combination of different surface preparations, rather than only one type of surface treatment, provides an ideal joint quality for the composites.
NASA Technical Reports Server (NTRS)
Gotsis, Pascal K.; Chamis, Christos C.; Minnetyan, Levon
1996-01-01
Graphite/epoxy composite thin shell structures were simulated to investigate damage and fracture progression due to internal pressure and axial loading. Defective and defect-free structures (thin cylinders) were examined. The three different laminates examined had fiber orientations of (90/0/+/-0)(sub s), where 0 is 45, 60, and 75 deg. CODSTRAN, an integrated computer code that scales up constituent level properties to the structural level and accounts for all possible failure modes, was used to simulate composite degradation under loading. Damage initiation, growth, accumulation, and propagation to fracture were included in the simulation. Burst pressures for defective and defect-free shells were compared to evaluate damage tolerance. The results showed that damage initiation began with matrix failure whereas damage and/or fracture progression occurred as a result of additional matrix failure and fiber fracture. In both thin cylinder cases examined (defective and defect-free), the optimum layup configuration was (90/0/+/-60)(sub s) because it had the best damage tolerance with respect to the burst pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dvorak, G.J.
1974-10-01
The research effort was concentrated on metal matrix composites, such as the Al--B, Al--Be, Cu--W, and similar systems. It was found that in as- fabricated composites with soft matrices fatigue failure can be prevented if the composite shakes down during cyclic loading. The fatigue strength of heat- treated composites is affected by residual microstresses, but failure can be prevented if the total microstresses are kept within the respective fatigue limits (at 10 to the 7th power cycles) of the constituents. These criteria for prevention of fatigue failure in metal matrix composite systems were verified by extensive comparisons of theoretical predictionsmore » with available experimental results. (GRA)« less
Norem, James H.; Pellin, Michael J.
2013-06-11
Superconducting rf is limited by a wide range of failure mechanisms inherent in the typical manufacture methods. This invention provides a method for fabricating superconducting rf structures comprising coating the structures with single atomic-layer thick films of alternating chemical composition. Also provided is a cavity defining the invented laminate structure.
Failure analysis of single-bolted joint for lightweight composite laminates and metal plate
NASA Astrophysics Data System (ADS)
Li, Linjie; Qu, Junli; Liu, Xiangdong
2018-01-01
A three-dimensional progressive damage model was developed in ANSYS to predict the damage accumulation of single bolted joint in composite laminates under in-plane tensile loading. First, we describe the formulation and algorithm of this model. Second, we calculate the failure loads of the joint in fibre reinforced epoxy laminated composite plates and compare it with the experiment results, which validates that our model can appropriately simulate the ultimate tensile strength of the joints and the whole process of failure of structure. Finally, this model is applied to study the failure process of the light-weight composite material (USN125). The study also has a great potential to provide a strong basis for bolted joints design in composite Laminates as well as a simple tool for comparing different laminate geometries and bolt arrangements.
Composite Bending Box Section Modal Vibration Fault Detection
NASA Technical Reports Server (NTRS)
Werlink, Rudy
2002-01-01
One of the primary concerns with Composite construction in critical structures such as wings and stabilizers is that hidden faults and cracks can develop operationally. In the real world, catastrophic sudden failure can result from these undetected faults in composite structures. Vibration data incorporating a broad frequency modal approach, could detect significant changes prior to failure. The purpose of this report is to investigate the usefulness of frequency mode testing before and after bending and torsion loading on a composite bending Box Test section. This test article is representative of construction techniques being developed for the recent NASA Blended Wing Body Low Speed Vehicle Project. The Box section represents the construction technique on the proposed blended wing aircraft. Modal testing using an impact hammer provides an frequency fingerprint before and after bending and torsional loading. If a significant structural discontinuity develops, the vibration response is expected to change. The limitations of the data will be evaluated for future use as a non-destructive in-situ method of assessing hidden damage in similarly constructed composite wing assemblies. Modal vibration fault detection sensitivity to band-width, location and axis will be investigated. Do the sensor accelerometers need to be near the fault and or in the same axis? The response data used in this report was recorded at 17 locations using tri-axial accelerometers. The modal tests were conducted following 5 independent loading conditions before load to failure and 2 following load to failure over a period of 6 weeks. Redundant data was used to minimize effects from uncontrolled variables which could lead to incorrect interpretations. It will be shown that vibrational modes detected failure at many locations when skin de-bonding failures occurred near the center section. Important considerations are the axis selected and frequency range.
Fractographic Examination of the Vertical Stabilizer and Rudder from American Airlines Flight 587
NASA Technical Reports Server (NTRS)
Fox, Matthew R.; Schultheisz, Carl R.; Reeder, James R.
2005-01-01
The first major structural component failure of a composite part on a commercial airplane occurred during the crash of American Airlines Flight 587. The fractured composite lugs that attached the vertical stabilizer to the aircraft tail and the fractured composite honeycomb rudder were examined as part of the National Transportation Safety Board investigation of the accident. In this paper the composite fractures are described and the resulting clues to the failure events are discussed.
NASA Technical Reports Server (NTRS)
Carpenter, J. L., Jr.
1976-01-01
This bibliography is comprised of approximately 1,600 reference citations related to four problem areas in the mechanics of failure in aerospace structures. The bibliography represents a search of the literature published in the period 1962-1976, the effort being largely limited to documents published in the United States. Listings are subdivided into the four problem areas: Hydrogen Embrittlement; Protective Coatings; Composite Materials; and Nondestructive Evaluation. An author index is included.
NASA Technical Reports Server (NTRS)
Yew, Calinda; Stephens, Matt
2015-01-01
The JWST IEC conformal shields are mounted onto a composite frame structure that must undergo qualification testing to satisfy mission assurance requirements. The composite frame segments are bonded together at the joints using epoxy, EA 9394. The development of a test method to verify the integrity of the bonded structure at its operating environment introduces challenges in terms of requirements definition and the attainment of success criteria. Even though protoflight thermal requirements were not achieved, the first attempt in exposing the structure to cryogenic operating conditions in a thermal vacuum environment resulted in approximately 1 bonded joints failure during mechanical pull tests performed at 1.25 times the flight loads. Failure analysis concluded that the failure mode was due to adhesive cracks that formed and propagated along stress concentrated fillets as a result of poor bond squeeze-out control during fabrication. Bond repairs were made and the structures successfully re-tested with an improved LN2 immersion test method to achieve protoflight thermal requirements.
A Novel Multiscale Physics Based Progressive Failure Methodology for Laminated Composite Structures
NASA Technical Reports Server (NTRS)
Pineda, Evan J.; Waas, Anthony M.; Bednarcyk, Brett A.; Collier, Craig S.; Yarrington, Phillip W.
2008-01-01
A variable fidelity, multiscale, physics based finite element procedure for predicting progressive damage and failure of laminated continuous fiber reinforced composites is introduced. At every integration point in a finite element model, progressive damage is accounted for at the lamina-level using thermodynamically based Schapery Theory. Separate failure criteria are applied at either the global-scale or the microscale in two different FEM models. A micromechanics model, the Generalized Method of Cells, is used to evaluate failure criteria at the micro-level. The stress-strain behavior and observed failure mechanisms are compared with experimental results for both models.
Enhanced dielectric standoff and mechanical failure in field-structured composites
NASA Astrophysics Data System (ADS)
Martin, James E.; Tigges, Chris P.; Anderson, Robert A.; Odinek, Judy
1999-09-01
We report dielectric breakdown experiments on electric-field-structured composites of high-dielectric-constant BaTiO3 particles in an epoxy resin. These experiments show a significant increase in the dielectric standoff strength perpendicular to the field structuring direction, relative to control samples consisting of randomly dispersed particles. To understand the relation of this observation to microstructure, we apply a simple resistor-short breakdown model to three-dimensional composite structures generated from a dynamical simulation. In this breakdown model the composite material is assumed to conduct primarily through particle contacts, so the simulated structures are mapped onto a resistor network where the center of mass of each particle is a node that is connected to neighboring nodes by resistors of fixed resistance that irreversibly short to perfect conductors when the current reaches a threshold value. This model gives relative breakdown voltages that are in good agreement with experimental results. Finally, we consider a primitive model of the mechanical strength of a field-structured composite material, which is a current-driven, conductor-insulator fuse model. This model leads to a macroscopic fusing behavior and can be related to mechanical failure of the composite.
NASA Astrophysics Data System (ADS)
Thionnet, A.; Chou, H. Y.; Bunsell, A.
2015-04-01
The purpose of these three papers is not to just revisit the modelling of unidirectional composites. It is to provide a robust framework based on physical processes that can be used to optimise the design and long term reliability of internally pressurised filament wound structures. The model presented in Part 1 for the case of monotonically loaded unidirectional composites is further developed to consider the effects of the viscoelastic nature of the matrix in determining the kinetics of fibre breaks under slow or sustained loading. It is shown that the relaxation of the matrix around fibre breaks leads to locally increasing loads on neighbouring fibres and in some cases their delayed failure. Although ultimate failure is similar to the elastic case in that clusters of fibre breaks ultimately control composite failure the kinetics of their development varies significantly from the elastic case. Failure loads have been shown to reduce when loading rates are lowered.
Continuous fiber ceramic matrix composites for heat engine components
NASA Technical Reports Server (NTRS)
Tripp, David E.
1988-01-01
High strength at elevated temperatures, low density, resistance to wear, and abundance of nonstrategic raw materials make structural ceramics attractive for advanced heat engine applications. Unfortunately, ceramics have a low fracture toughness and fail catastrophically because of overload, impact, and contact stresses. Ceramic matrix composites provide the means to achieve improved fracture toughness while retaining desirable characteristics, such as high strength and low density. Materials scientists and engineers are trying to develop the ideal fibers and matrices to achieve the optimum ceramic matrix composite properties. A need exists for the development of failure models for the design of ceramic matrix composite heat engine components. Phenomenological failure models are currently the most frequently used in industry, but they are deterministic and do not adequately describe ceramic matrix composite behavior. Semi-empirical models were proposed, which relate the failure of notched composite laminates to the stress a characteristic distance away from the notch. Shear lag models describe composite failure modes at the micromechanics level. The enhanced matrix cracking stress occurs at the same applied stress level predicted by the two models of steady state cracking. Finally, statistical models take into consideration the distribution in composite failure strength. The intent is to develop these models into computer algorithms for the failure analysis of ceramic matrix composites under monotonically increasing loads. The algorithms will be included in a postprocessor to general purpose finite element programs.
NASA Technical Reports Server (NTRS)
Dorris, William J.; Hairr, John W.; Huang, Jui-Tien; Ingram, J. Edward; Shah, Bharat M.
1992-01-01
Non-linear analysis methods were adapted and incorporated in a finite element based DIAL code. These methods are necessary to evaluate the global response of a stiffened structure under combined in-plane and out-of-plane loading. These methods include the Arc Length method and target point analysis procedure. A new interface material model was implemented that can model elastic-plastic behavior of the bond adhesive. Direct application of this method is in skin/stiffener interface failure assessment. Addition of the AML (angle minus longitudinal or load) failure procedure and Hasin's failure criteria provides added capability in the failure predictions. Interactive Stiffened Panel Analysis modules were developed as interactive pre-and post-processors. Each module provides the means of performing self-initiated finite elements based analysis of primary structures such as a flat or curved stiffened panel; a corrugated flat sandwich panel; and a curved geodesic fuselage panel. This module brings finite element analysis into the design of composite structures without the requirement for the user to know much about the techniques and procedures needed to actually perform a finite element analysis from scratch. An interactive finite element code was developed to predict bolted joint strength considering material and geometrical non-linearity. The developed method conducts an ultimate strength failure analysis using a set of material degradation models.
Progressive Damage and Failure Analysis of Composite Laminates
NASA Astrophysics Data System (ADS)
Joseph, Ashith P. K.
Composite materials are widely used in various industries for making structural parts due to higher strength to weight ratio, better fatigue life, corrosion resistance and material property tailorability. To fully exploit the capability of composites, it is required to know the load carrying capacity of the parts made of them. Unlike metals, composites are orthotropic in nature and fails in a complex manner under various loading conditions which makes it a hard problem to analyze. Lack of reliable and efficient failure analysis tools for composites have led industries to rely more on coupon and component level testing to estimate the design space. Due to the complex failure mechanisms, composite materials require a very large number of coupon level tests to fully characterize the behavior. This makes the entire testing process very time consuming and costly. The alternative is to use virtual testing tools which can predict the complex failure mechanisms accurately. This reduces the cost only to it's associated computational expenses making significant savings. Some of the most desired features in a virtual testing tool are - (1) Accurate representation of failure mechanism: Failure progression predicted by the virtual tool must be same as those observed in experiments. A tool has to be assessed based on the mechanisms it can capture. (2) Computational efficiency: The greatest advantages of a virtual tools are the savings in time and money and hence computational efficiency is one of the most needed features. (3) Applicability to a wide range of problems: Structural parts are subjected to a variety of loading conditions including static, dynamic and fatigue conditions. A good virtual testing tool should be able to make good predictions for all these different loading conditions. The aim of this PhD thesis is to develop a computational tool which can model the progressive failure of composite laminates under different quasi-static loading conditions. The analysis tool is validated by comparing the simulations against experiments for a selected number of quasi-static loading cases.
Safe structures for future aircraft
NASA Technical Reports Server (NTRS)
Mccomb, H. G., Jr.
1983-01-01
The failure mechanisms, design lessons, and test equipment employed by NASA in establishing the airworthiness and crashworthiness of aircraft components for commercial applications are described. The composites test programs have progressed to medium primary structures such as stabilizers and a vertical fin. The failures encountered to date have been due to the nonyielding nature of composites, which do not diffuse loads like metals, and the presence of eccentricities, irregular shapes, stiffness changes, and discontinuities that cause tension and shear. Testing to failure, which always occurred in first tests before the design loads were reached, helped identify design changes and reinforcements that produced successful products. New materials and NDE techniques are identified, together with aircraft structural design changes that offer greater protection to the passengers, fuel antimisting agents, and landing gear systems.
Acoustic method of damage sensing in composite materials
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Walker, James; Lansing, Matthew
1994-01-01
The use of acoustic emission and acousto-ultrasonics to characterize impact damage in composite structures is being performed on both graphite epoxy and kevlar bottles. Further development of the acoustic emission methodology to include neural net analysis and/or other multivariate techniques will enhance the capability of the technique to identify failure mechanisms during fracture. The acousto-ultrasonics technique will be investigated to determine its ability to predict regions prone to failure prior to the burst tests. The combination of the two methods will allow for simple nondestructive tests to be capable of predicting the performance of a composite structure prior to being placed in service and during service.
NASA Technical Reports Server (NTRS)
Humphreys, E. A.
1981-01-01
A computerized, analytical methodology was developed to study damage accumulation during low velocity lateral impact of layered composite plates. The impact event was modeled as perfectly plastic with complete momentum transfer to the plate structure. A transient dynamic finite element approach was selected to predict the displacement time response of the plate structure. Composite ply and interlaminar stresses were computed at selected time intervals and subsequently evaluated to predict layer and interlaminar damage. The effects of damage on elemental stiffness were then incorporated back into the analysis for subsequent time steps. Damage predicted included fiber failure, matrix ply failure and interlaminar delamination.
Tensile failure criteria for fiber composite materials
NASA Technical Reports Server (NTRS)
Rosen, B. W.; Zweben, C. H.
1972-01-01
The analysis provides insight into the failure mechanics of these materials and defines criteria which serve as tools for preliminary design material selection and for material reliability assessment. The model incorporates both dispersed and propagation type failures and includes the influence of material heterogeneity. The important effects of localized matrix damage and post-failure matrix shear stress transfer are included in the treatment. The model is used to evaluate the influence of key parameters on the failure of several commonly used fiber-matrix systems. Analyses of three possible failure modes were developed. These modes are the fiber break propagation mode, the cumulative group fracture mode, and the weakest link mode. Application of the new model to composite material systems has indicated several results which require attention in the development of reliable structural composites. Prominent among these are the size effect and the influence of fiber strength variability.
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.; Lopez, Osvaldo F.
1991-01-01
Experimentally determined axial compressive failure loads, strains and failure modes of composite flat panels and cylinders are presented. A comparison of two types of filament wound flat graphite-epoxy panels indicates that the winding pattern can influence structural response. A comparison of hand laid-up tape and filament wound composite cylinders indicates that fabrication method may not significantly influence the failure mode or average failure strain of thick-walled (radius-to-thickness ratio less than 15) graphite-epoxy cylinders. The interaction of manufacturing-induced features (fiber cross-overs) and low-speed impact damage for graphite-epoxy specimens is also presented. Filament would flat panels with many fiber cross-overs exhibited lower failure strains than filament wound panels without fiber cross-overs for all impact speeds examined. Graphite-thermoplastic cylinders exhibited a significantly different failure mode from the graphite-epoxy cylinders.
Peridynamic theory for modeling three-dimensional damage growth in metallic and composite structures
NASA Astrophysics Data System (ADS)
Ochoa-Ricoux, Juan Pedro
A recently introduced nonlocal peridynamic theory removes the obstacles present in classical continuum mechanics that limit the prediction of crack initiation and growth in materials. It is also applicable at different length scales. This study presents an alternative approach for the derivation of peridynamic equations of motion based on the principle of virtual work. It also presents solutions for the longitudinal vibration of a bar subjected to an initial stretch, propagation of a pre-existing crack in a plate subjected to velocity boundary conditions, and crack initiation and growth in a plate with a circular cutout. Furthermore, damage growth in composites involves complex and progressive failure modes. Current computational tools are incapable of predicting failure in composite materials mainly due to their mathematical structure. However, the peridynamic theory removes these obstacles by taking into account non-local interactions between material points. Hence, an application of the peridynamic theory to predict how damage propagates in fiber reinforced composite materials subjected to mechanical and thermal loading conditions is presented. Finally, an analysis approach based on a merger of the finite element method and the peridynamic theory is proposed. Its validity is established through qualitative and quantitative comparisons against the test results for a stiffened composite curved panel with a central slot under combined internal pressure and axial tension. The predicted initial and final failure loads, as well as the final failure modes, are in close agreement with the experimental observations. This proposed approach demonstrates the capability of the PD approach to assess the durability of complex composite structures.
Highly Loaded Composite Strut Test Results
NASA Technical Reports Server (NTRS)
Wu, K. C.; Jegley, Dawn C.; Barnard, Ansley; Phelps, James E.; McKeney, Martin J.
2011-01-01
Highly loaded composite struts from a proposed truss-based Altair lunar lander descent stage concept were selected for development under NASA's Advanced Composites Technology program. Predicted compressive member forces during launch and ascent of over -100,000 lbs were much greater than the tensile loads. Therefore, compressive failure modes, including structural stability, were primary design considerations. NASA's industry partner designed and built highly loaded struts that were delivered to NASA for testing. Their design, fabricated on a washout mandrel, had a uniform-diameter composite tube with composite tapered ends. Each tapered end contained a titanium end fitting with facing conical ramps that are overlaid and overwrapped with composite materials. The highly loaded struts were loaded in both tension and compression, with ultimate failure produced in compression. Results for the two struts tested are presented and discussed, along with measured deflections, strains and observed failure mechanisms.
Advanced Composite Wind Turbine Blade Design Based on Durability and Damage Tolerance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abumeri, Galib; Abdi, Frank
2012-02-16
The objective of the program was to demonstrate and verify Certification-by-Analysis (CBA) capability for wind turbine blades made from advanced lightweight composite materials. The approach integrated durability and damage tolerance analysis with robust design and virtual testing capabilities to deliver superior, durable, low weight, low cost, long life, and reliable wind blade design. The GENOA durability and life prediction software suite was be used as the primary simulation tool. First, a micromechanics-based computational approach was used to assess the durability of composite laminates with ply drop features commonly used in wind turbine applications. Ply drops occur in composite joints andmore » closures of wind turbine blades to reduce skin thicknesses along the blade span. They increase localized stress concentration, which may cause premature delamination failure in composite and reduced fatigue service life. Durability and damage tolerance (D&DT) were evaluated utilizing a multi-scale micro-macro progressive failure analysis (PFA) technique. PFA is finite element based and is capable of detecting all stages of material damage including initiation and propagation of delamination. It assesses multiple failure criteria and includes the effects of manufacturing anomalies (i.e., void, fiber waviness). Two different approaches have been used within PFA. The first approach is Virtual Crack Closure Technique (VCCT) PFA while the second one is strength-based. Constituent stiffness and strength properties for glass and carbon based material systems were reverse engineered for use in D&DT evaluation of coupons with ply drops under static loading. Lamina and laminate properties calculated using manufacturing and composite architecture details matched closely published test data. Similarly, resin properties were determined for fatigue life calculation. The simulation not only reproduced static strength and fatigue life as observed in the test, it also showed composite damage and fracture modes that resemble those reported in the tests. The results show that computational simulation can be relied on to enhance the design of tapered composite structures such as the ones used in turbine wind blades. A computational simulation for durability, damage tolerance (D&DT) and reliability of composite wind turbine blade structures in presence of uncertainties in material properties was performed. A composite turbine blade was first assessed with finite element based multi-scale progressive failure analysis to determine failure modes and locations as well as the fracture load. D&DT analyses were then validated with static test performed at Sandia National Laboratories. The work was followed by detailed weight analysis to identify contribution of various materials to the overall weight of the blade. The methodology ensured that certain types of failure modes, such as delamination progression, are contained to reduce risk to the structure. Probabilistic analysis indicated that composite shear strength has a great influence on the blade ultimate load under static loading. Weight was reduced by 12% with robust design without loss in reliability or D&DT. Structural benefits obtained with the use of enhanced matrix properties through nanoparticles infusion were also assessed. Thin unidirectional fiberglass layers enriched with silica nanoparticles were applied to the outer surfaces of a wind blade to improve its overall structural performance and durability. The wind blade was a 9-meter prototype structure manufactured and tested subject to three saddle static loading at Sandia National Laboratory (SNL). The blade manufacturing did not include the use of any nano-material. With silica nanoparticles in glass composite applied to the exterior surfaces of the blade, the durability and damage tolerance (D&DT) results from multi-scale PFA showed an increase in ultimate load of the blade by 9.2% as compared to baseline structural performance (without nano). The use of nanoparticles lead to a delay in the onset of delamination. Load-displacement relationships obtained from testing of the blade with baseline neat material were compared to the ones from analytical simulation using neat resin and using silica nanoparticles in the resin. Multi-scale PFA results for the neat material construction matched closely those from test for both load displacement and location and type of damage and failure. AlphaSTAR demonstrated that wind blade structures made from advanced composite materials can be certified with multi-scale progressive failure analysis by following building block verification approach.« less
Progressive Failure Studies of Composite Panels with and without Cutouts
NASA Technical Reports Server (NTRS)
Jaunky, Navin; Ambur, Damodar R.; Davila, Carlos G.; Hilburger, Mark; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
Progressive failure analyses results are presented for composite panels with and without a cutout and subjected to in-plane shear loading and compression loading well into their postbuckling regime. Ply damage modes such as matrix cracking, fiber-matrix shear, and fiber failure are modeled by degrading the material properties. Results from finite element analyses are compared with experimental data. Good agreement between experimental data and numerical results are observed for most structural configurations when initial geometric imperfections are appropriately modeled.
Progressive Failure Studies of Composite Panels With and Without Cutouts
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Jaunky, Navin; Davila, Carlos G.; Hilburger, Mark
2001-01-01
Progressive failure analyses results are presented for composite panels with and without a cutout and are subjected to in-plane shear loading and compression loading well into their post-buckling regime. Ply damage modes such as matrix cracking, fiber-matrix shear, and fiber failure are modeled by degrading the material properties. Results from finite element analyses are compared with experimental data. Good agreement between experimental data and numerical results are observed for most structural configurations when initial geometric imperfections are appropriately modeled.
Composite structural materials
NASA Technical Reports Server (NTRS)
Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.
1979-01-01
A multifaceted program is described in which aeronautical, mechanical, and materials engineers interact to develop composite aircraft structures. Topics covered include: (1) the design of an advanced composite elevator and a proposed spar and rib assembly; (2) optimizing fiber orientation in the vicinity of heavily loaded joints; (3) failure mechanisms and delamination; (4) the construction of an ultralight sailplane; (5) computer-aided design; finite element analysis programs, preprocessor development, and array preprocessor for SPAR; (6) advanced analysis methods for composite structures; (7) ultrasonic nondestructive testing; (8) physical properties of epoxy resins and composites; (9) fatigue in composite materials, and (10) transverse thermal expansion of carbon/epoxy composites.
Evaluation of Long Composite Struts
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.; Wu, K. Chauncey; Phelps, James E.; McKenney, Martin J.; Oremont, Leonard; Barnard, Ansley
2011-01-01
Carbon-epoxy tapered struts are structurally efficient and offer opportunities for weight savings on aircraft and spacecraft structures. Seven composite struts were designed, fabricated and experimentally evaluated through uniaxial loading. The design requirements, analytical predictions and experimental results are presented. Struts with a tapered composite body and corrugated titanium end fittings successfully supported their design ultimate loads with no evidence of failure.
Materials Examination of the Vertical Stabilizer from American Airlines Flight 587
NASA Technical Reports Server (NTRS)
Fox, Matthew R.; Schultheisz, Carl R.; Reeder, James R.; Jensen, Brian J.
2005-01-01
The first in-flight failure of a primary structural component made from composite material on a commercial airplane led to the crash of American Airlines Flight 587. As part of the National Transportation Safety Board investigation of the accident, the composite materials of the vertical stabilizer were tested, microstructure was analyzed, and fractured composite lugs that attached the vertical stabilizer to the aircraft tail were examined. In this paper the materials testing and analysis is presented, composite fractures are described, and the resulting clues to the failure events are discussed.
2015-04-24
for designing blast-resistant structures [16]. The failure mechanisms in unidirectional fiber -reinforced composites of delamination, fiber -matrix...Batra, R.C., and Hassan, N.M., “Blast resistance of unidirectional fiber reinforced composites ,” Composites Part B: Engineering, 2008 18. Liu, X...feature a lighter weight structure, because this enables faster transport, higher mobility, greater fuel conservation, higher payload capacity, and
Progressive Fracture of Composite Structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Minnetyan, Levon
2008-01-01
A new approach is described for evaluating fracture in composite structures. This approach is independent of classical fracture mechanics parameters like fracture toughness. It relies on computational simulation and is programmed in a stand-alone integrated computer code. It is multiscale, multifunctional because it includes composite mechanics for the composite behavior and finite element analysis for predicting the structural response. It contains seven modules; layered composite mechanics (micro, macro, laminate), finite element, updating scheme, local fracture, global fracture, stress based failure modes, and fracture progression. The computer code is called CODSTRAN (Composite Durability Structural ANalysis). It is used in the present paper to evaluate the global fracture of four composite shell problems and one composite built-up structure. Results show that the composite shells and the built-up composite structure global fracture are enhanced when internal pressure is combined with shear loads.
Application of Laser Based Ultrasound for NDE of Damage in Thick Stitched Composites
NASA Technical Reports Server (NTRS)
Anastasi, Robert F.; Friedman, Adam D.; Hinders, Mark K.; Madaras, Eric I.
1997-01-01
As design engineers implement new composite systems such as thick, load bearing composite structures, they must have certifiable confidence in structure s durability and worthiness. This confidence builds from understanding the structural response and failure characteristics of simple components loaded in testing machines to tests on full scale sections. Nondestructive evaluation is an important element which can provide quantitative information on the damage initiation, propagation, and final failure modes for the composite structural components. Although ultrasound is generally accepted as a test method, the use of conventional ultrasound for in-situ monitoring of damage during tests of large structures is not practical. The use of lasers to both generate and detect ultrasound extends the application of ultrasound to in- situ sensing of damage in a deformed structure remotely and in a non-contact manner. The goal of the present research is to utilize this technology to monitor damage progression during testing. The present paper describes the application of laser based ultrasound to quantify damage in thick stitched composite structural elements to demonstrate the method. This method involves using a Q-switched laser to generate a rapid, local linear thermal strain on the surface of the structure. This local strain causes the generation of ultrasonic waves into the material. A second laser used with a Fabry-Perot interferometer detects the surface deflections. The use of fiber optics provides for eye safety and a convenient method of delivering the laser over long distances to the specimens. The material for these structural elements is composed of several stacks of composite material assembled together by stitching through the laminate thickness that ranging from 0.5 to 0.8 inches. The specimens used for these nondestructive evaluation studies had either impact damage or skin/stiffener interlaminar failure. Although little or no visible surface damage existed, internal damage was detected by laser based ultrasound.
Structural Durability of Damaged Metallic Panel Repaired with Composite Patches
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Chamis, Christos C.
1997-01-01
Structural durability/damage tolerance characteristics of an aluminum tension specimen possessing a short crack and repaired by applying a fiber composite surface patch is investigated via computational simulation. The composite patch is made of graphite/epoxy plies with various layups. An integrated computer code that accounts for all possible failure modes is utilized for the simulation of combined fiber-composite/aluminum structural degradation under loading. Damage initiation, growth, accumulation, and propagation to structural fracture are included in the simulation. Results show the structural degradation stages due to tensile loading and illustrate the use of computational simulation for the investigation of a composite patch repaired cracked metallic panel.
NASA Technical Reports Server (NTRS)
Waller, Jess M.; Saulsberry, Regor L.; Nichols, Charles T.; Wentzel, Daniel J.
2010-01-01
This slide presentation reviews the use of Modal Acoustic Emission to monitor damage progression to carbon fiber/epoxy tows. There is a risk for catastrophic failure of composite overwrapped pressure vessels (COPVs) due to burst-before-leak (BBL) stress rupture (SR) failure of carbon-epoxy (C/Ep) COPVs. A lack of quantitative nondestructive evaluation (NDE) is causing problems in current and future spacecraft designs. It is therefore important to develop and demonstrate critical NDE that can be implemented during stages of the design process since the observed rupture can occur with little of no advanced warning. Therefore a program was required to develop quantitative acoustic emission (AE) procedures specific to C/Ep overwraps, but which also have utility for monitoring damage accumulation in composite structure in general, and to lay the groundwork for establishing critical thresholds for accumulated damage in composite structures, such as COPVs, so that precautionary or preemptive engineering steps can be implemented to minimize of obviate the risk of catastrophic failure. A computed Felicity Ratio (FR) coupled with fast Fourier Transform (FFT) frequency analysis shows promise as an analytical pass/fail criterion. The FR analysis and waveform and FFT analysis are reviewed
NASA Astrophysics Data System (ADS)
Kerr-Anderson, Eric
Structural composite laminates were ballistically impacted while under in-plane compressive pre-stress. Residual properties, damage characterization, and energy absorption were compared to determine synergistic effects of in-plane compressive pre-stress and impact velocity. A fixture was developed to apply in-plane compressive loads up to 30 tons to structural composites during an impact event using a single-stage light-gas gun. Observed failure modes included typical conical delamination, the development of an impact initiated shear crack (IISC), and the shear failure of a pre-stressed composite due to impact. It was observed that the compressive failure threshold quadratically decreased in relation to the impact velocity up to velocities that caused partial penetration. For all laminates impacted at velocities causing partial or full penetration up to 350 ms-1, the failure threshold was consistent and used as an experimental normalization. Samples impacted below 65% of the failure threshold witnessed no significant change in damage morphology or residual properties when compared to typical conical delamination. Samples impacted above 65% of the failure threshold witnessed additional damage in the form of a shear crack extending perpendicular to the applied load from the point of impact. The presence of an IISC reduced the residual properties and even caused failure upon impact at extreme combinations. Four failure envelopes have been established as: transient failure, steady state failure, impact initiated shear crack, and conical damage. Boundaries and empirically based equations for residual compressive strength have been developed for each envelope with relation to two E-glass/vinyl ester laminate systems. Many aspects of pre-stressed impact have been individually examined, but there have been no comprehensive examinations of pre-stressed impact. This research has resulted in the exploration and characterization of compressively pre-stressed damage for impact velocities resulting in reflection, partial penetration, and penetration at pre-stress levels resulting in conical damage, shear cracking, and failure.
Composite structural materials
NASA Technical Reports Server (NTRS)
Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.
1984-01-01
Progress is reported in studies of constituent materials composite materials, generic structural elements, processing science technology, and maintaining long-term structural integrity. Topics discussed include: mechanical properties of high performance carbon fibers; fatigue in composite materials; experimental and theoretical studies of moisture and temperature effects on the mechanical properties of graphite-epoxy laminates and neat resins; numerical investigations of the micromechanics of composite fracture; delamination failures of composite laminates; effect of notch size on composite laminates; improved beam theory for anisotropic materials; variation of resin properties through the thickness of cured samples; numerical analysis composite processing; heat treatment of metal matrix composites, and the RP-1 and RP2 gliders of the sailplane project.
NASA Technical Reports Server (NTRS)
Kassapoglou, Christos; Dinicola, Al J.; Chou, Jack C.
1992-01-01
The autoclave based THERM-X(sub R) process was evaluated by cocuring complex curved panels with frames and stiffeners. The process was shown to result in composite parts of high quality with good compaction at sharp radius regions and corners of intersecting parts. The structural properties of the postbuckled panels fabricated were found to be equivalent to those of conventionally tooled hand laid-up parts. Significant savings in bagging time over conventional tooling were documented. Structural details such as cocured shear ties and embedded stiffener flanges in the skin were found to suppress failure modes such as failure at corners of intersecting members and skin stiffeners separation.
Proof test methodology for composites
NASA Technical Reports Server (NTRS)
Wu, Edward M.; Bell, David K.
1992-01-01
The special requirements for proof test of composites are identified based on the underlying failure process of composites. Two proof test methods are developed to eliminate the inevitable weak fiber sites without also causing flaw clustering which weakens the post-proof-test composite. Significant reliability enhancement by these proof test methods has been experimentally demonstrated for composite strength and composite life in tension. This basic proof test methodology is relevant to the certification and acceptance of critical composite structures. It can also be applied to the manufacturing process development to achieve zero-reject for very large composite structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janicki, G.; Bailey, V.; Schjelderup, H.
The present conference discusses topics in the fields of ultralightweight structures, producibility of thermoplastic composites, innovation in sandwich structures, composite failure processes, toughened materials, metal-matrix composites, advanced materials for future naval systems, thermoplastic polymers, automated composites manufacturers, advanced adhesives, emerging processes for aerospace component fabrication, and modified resin systems. Also discussed are matrix behavior for damage tolerance, composite materials repair, testing for damage tolerance, composite strength analyses, materials workplace health and safety, cost-conscious composites, bismaleimide systems, and issues facing advanced composite materials suppliers.
Full-field Strain Methods for Investigating Failure Mechanisms in Triaxial Braided Composites
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Binienda, Wieslaw K.; Goldberg, Robert K.; Roberts, Gary D.
2008-01-01
Composite materials made with triaxial braid architecture and large tow size carbon fibers are beginning to be used in many applications, including composite aircraft and engine structures. Recent advancements in braiding technology have led to commercially viable manufacturing approaches for making large structures with complex shape. Although the large unit cell size of these materials is an advantage for manufacturing efficiency, the fiber architecture presents some challenges for materials characterization, design, and analysis. In some cases, the static load capability of structures made using these materials has been higher than expected based on material strength properties measured using standard coupon tests. A potential problem with using standard tests methods for these materials is that the unit cell size can be an unacceptably large fraction of the specimen dimensions. More detailed investigation of deformation and failure processes in large unit cell size triaxial braid composites is needed to evaluate the applicability of standard test methods for these materials and to develop alternative testing approaches. In recent years, commercial equipment has become available that enables digital image correlation to be used on a more routine basis for investigation of full field 3D deformation in materials and structures. In this paper, some new techniques that have been developed to investigate local deformation and failure using digital image correlation techniques are presented. The methods were used to measure both local and global strains during standard straight-sided coupon tensile tests on composite materials made with 12 and 24 k yarns and a 0/+60/-60 triaxial braid architecture. Local deformation and failure within fiber bundles was observed, and this local failure had a significant effect on global stiffness and strength. The matrix material had a large effect on local damage initiation for the two matrix materials used in this investigation. Premature failure in regions of the unit cell near the edge of the straight-sided specimens was observed for transverse tensile tests in which the braid axial fibers were perpendicular to the specimen axis and the bias fibers terminated on the cut edges in the specimen gage section. This edge effect is one factor that could contribute to a measured strength that is lower than the actual material strength in a structure without edge effects.
Compression Strength of Composite Primary Structural Components
NASA Technical Reports Server (NTRS)
Johnson, Eric R.
1998-01-01
Research conducted under NASA Grant NAG-1-537 focussed on the response and failure of advanced composite material structures for application to aircraft. Both experimental and analytical methods were utilized to study the fundamental mechanics of the response and failure of selected structural components subjected to quasi-static loads. Most of the structural components studied were thin-walled elements subject to compression, such that they exhibited buckling and postbuckling responses prior to catastrophic failure. Consequently, the analyses were geometrically nonlinear. Structural components studied were dropped-ply laminated plates, stiffener crippling, pressure pillowing of orthogonally stiffened cylindrical shells, axisymmetric response of pressure domes, and the static crush of semi-circular frames. Failure of these components motivated analytical studies on an interlaminar stress postprocessor for plate and shell finite element computer codes, and global/local modeling strategies in finite element modeling. These activities are summarized in the following section. References to literature published under the grant are listed on pages 5 to 10 by a letter followed by a number under the categories of journal publications, conference publications, presentations, and reports. These references are indicated in the text by their letter and number as a superscript.
Strength and fatigue life evaluation of composite laminate with embedded sensors
NASA Astrophysics Data System (ADS)
Rathod, Vivek T.; Hiremath, S. R.; Roy Mahapatra, D.
2014-04-01
Prognosis regarding durability of composite structures using various Structural Health Monitoring (SHM) techniques is an important and challenging topic of research. Ultrasonic SHM systems with embedded transducers have potential application here due to their instant monitoring capability, compact packaging potential toward unobtrusiveness and noninvasiveness as compared to non-contact ultrasonic and eddy current techniques which require disassembly of the structure. However, embedded sensors pose a risk to the structure by acting as a flaw thereby reducing life. The present paper focuses on the determination of strength and fatigue life of the composite laminate with embedded film sensors like CNT nanocomposite, PVDF thin films and piezoceramic films. First, the techniques of embedding these sensors in composite laminates is described followed by the determination of static strength and fatigue life at coupon level testing in Universal Testing Machine (UTM). Failure mechanisms of the composite laminate with embedded sensors are studied for static and dynamic loading cases. The coupons are monitored for loading and failure using the embedded sensors. A comparison of the performance of these three types of embedded sensors is made to study their suitability in various applications. These three types of embedded sensors cover a wide variety of applications, and prove to be viable in embedded sensor based SHM of composite structures.
Peridynamics for failure and residual strength prediction of fiber-reinforced composites
NASA Astrophysics Data System (ADS)
Colavito, Kyle
Peridynamics is a reformulation of classical continuum mechanics that utilizes integral equations in place of partial differential equations to remove the difficulty in handling discontinuities, such as cracks or interfaces, within a body. Damage is included within the constitutive model; initiation and propagation can occur without resorting to special crack growth criteria necessary in other commonly utilized approaches. Predicting damage and residual strengths of composite materials involves capturing complex, distinct and progressive failure modes. The peridynamic laminate theory correctly predicts the load redistribution in general laminate layups in the presence of complex failure modes through the use of multiple interaction types. This study presents two approaches to obtain the critical peridynamic failure parameters necessary to capture the residual strength of a composite structure. The validity of both approaches is first demonstrated by considering the residual strength of isotropic materials. The peridynamic theory is used to predict the crack growth and final failure load in both a diagonally loaded square plate with a center crack, as well as a four-point shear specimen subjected to asymmetric loading. This study also establishes the validity of each approach by considering composite laminate specimens in which each failure mode is isolated. Finally, the failure loads and final failure modes are predicted in a laminate with various hole diameters subjected to tensile and compressive loads.
Composite Structural Analysis of Flat-Back Shaped Blade for Multi-MW Class Wind Turbine
NASA Astrophysics Data System (ADS)
Kim, Soo-Hyun; Bang, Hyung-Joon; Shin, Hyung-Ki; Jang, Moon-Seok
2014-06-01
This paper provides an overview of failure mode estimation based on 3D structural finite element (FE) analysis of the flat-back shaped wind turbine blade. Buckling stability, fiber failure (FF), and inter-fiber failure (IFF) analyses were performed to account for delamination or matrix failure of composite materials and to predict the realistic behavior of the entire blade region. Puck's fracture criteria were used for IFF evaluation. Blade design loads applicable to multi-megawatt (MW) wind turbine systems were calculated according to the Germanischer Lloyd (GL) guideline and the International Electrotechnical Commission (IEC) 61400-1 standard, under Class IIA wind conditions. After the post-processing of final load results, a number of principal load cases were selected and converted into applied forces at the each section along the blade's radius of the FE model. Nonlinear static analyses were performed for laminate failure, FF, and IFF check. For buckling stability, linear eigenvalue analysis was performed. As a result, we were able to estimate the failure mode and locate the major weak point.
Characterization and manufacture of braided composites for large commercial aircraft structures
NASA Technical Reports Server (NTRS)
Fedro, Mark J.; Willden, Kurtis
1992-01-01
Braided composite materials, one of the advanced material forms which is under investigation in Boeing's ATCAS program, have been recognized as a potential cost-effective material form for fuselage structural elements. Consequently, there is a strong need for more knowledge in the design, manufacture, test, and analysis of textile structural composites. The overall objective of this work is to advance braided composite technology towards applications to a large commercial transport fuselage. This paper summarizes the mechanics of materials and manufacturing demonstration results which have been obtained in order to acquire an understanding of how braided composites can be applied to a commercial fuselage. Textile composites consisting of 1D, 2D triaxial, and 3D braid patterns with thermoplastic and two RTM resin systems were investigated. The structural performance of braided composites was evaluated through an extensive mechanical test program. Analytical methods were also developed and applied to predict the following: internal fiber architectures, stiffnesses, fiber stresses, failure mechanisms, notch effects, and the entire history of failure of the braided composites specimens. The applicability of braided composites to a commercial transport fuselage was further assessed through a manufacturing demonstration. Three foot fuselage circumferential hoop frames were manufactured to demonstrate the feasibility of consistently producing high quality braided/RTM composite primary structures. The manufacturing issues (tooling requirements, processing requirements, and process/quality control) addressed during the demonstration are summarized. The manufacturing demonstration in conjunction with the mechanical test results and developed analytical methods increased the confidence in the ATCAS approach to the design, manufacture, test, and analysis of braided composites.
NASA Technical Reports Server (NTRS)
Rudraraju, Siva Shankar; Garikipati, Krishna; Waas, Anthony M.; Bednarcyk, Brett A.
2013-01-01
The phenomenon of crack propagation is among the predominant modes of failure in many natural and engineering structures, often leading to severe loss of structural integrity and catastrophic failure. Thus, the ability to understand and a priori simulate the evolution of this failure mode has been one of the cornerstones of applied mechanics and structural engineering and is broadly referred to as "fracture mechanics." The work reported herein focuses on extending this understanding, in the context of through-thickness crack propagation in cohesive materials, through the development of a continuum-level multiscale numerical framework, which represents cracks as displacement discontinuities across a surface of zero measure. This report presents the relevant theory, mathematical framework, numerical modeling, and experimental investigations of through-thickness crack propagation in fiber-reinforced composites using the Variational Multiscale Cohesive Method (VMCM) developed by the authors.
Progressive damage, fracture predictions and post mortem correlations for fiber composites
NASA Technical Reports Server (NTRS)
1985-01-01
Lewis Research Center is involved in the development of computational mechanics methods for predicting the structural behavior and response of composite structures. In conjunction with the analytical methods development, experimental programs including post failure examination are conducted to study various factors affecting composite fracture such as laminate thickness effects, ply configuration, and notch sensitivity. Results indicate that the analytical capabilities incorporated in the CODSTRAN computer code are effective in predicting the progressive damage and fracture of composite structures. In addition, the results being generated are establishing a data base which will aid in the characterization of composite fracture.
Static Strength of Adhesively-bonded Woven Fabric Kenaf Composite Plates
NASA Astrophysics Data System (ADS)
Hilton, Ahmad; Lee, Sim Yee; Supar, Khairi
2017-06-01
Natural fibers are potentially used as reinforcing materials and combined with epoxy resin as matrix system to form a superior specific strength (or stiffness) materials known as composite materials. The advantages of implementing natural fibers such as kenaf fibers are renewable, less hazardous during fabrication and handling process; and relatively cheap compared to synthetic fibers. The aim of current work is to conduct a parametric study on static strength of adhesively bonded woven fabric kenaf composite plates. Fabrication of composite panels were conducted using hand lay-up techniques, with variation of stacking sequence, over-lap length, joint types and lay-up types as identified in testing series. Quasi-static testing was carried out using mechanical testing following code of practice. Load-displacement profiles were analyzed to study its structural response prior to ultimate failures. It was found that cross-ply lay-up demonstrates better static strength compared to quasi-isotropic lay-up counterparts due to larger volume of 0° plies exhibited in cross-ply lay-up. Consequently, larger overlap length gives better joining strength, as expected, however this promotes to weight penalty in the joining structure. Most samples showed failures within adhesive region known as cohesive failure modes, however, few sample demonstrated interface failure. Good correlations of parametric study were found and discussed in the respective section.
Commercial transport aircraft composite structures
NASA Technical Reports Server (NTRS)
Mccarty, J. E.
1983-01-01
The role that analysis plays in the development, production, and substantiation of aircraft structures is discussed. The types, elements, and applications of failure that are used and needed; the current application of analysis methods to commercial aircraft advanced composite structures, along with a projection of future needs; and some personal thoughts on analysis development goals and the elements of an approach to analysis development are discussed.
An acoustic emission and acousto-ultrasonic analysis of impact damaged composite pressure vessels
NASA Technical Reports Server (NTRS)
Workman, Gary L. (Principal Investigator); Walker, James L.
1996-01-01
The use of acoustic emission to characterize impact damage in composite structures is being performed on composite bottles wrapped with graphite epoxy and kevlar bottles. Further development of the acoustic emission methodology will include neural net analysis and/or other multivariate techniques to enhance the capability of the technique to identify dominant failure mechanisms during fracture. The acousto-ultrasonics technique will also continue to be investigated to determine its ability to predict regions prone to failure prior to the burst tests. Characterization of the stress wave factor before, and after impact damage will be useful for inspection purposes in manufacturing processes. The combination of the two methods will also allow for simple nondestructive tests capable of predicting the performance of a composite structure prior to its being placed in service and during service.
Tannin-based flax fibre reinforced composites for structural applications in vehicles
NASA Astrophysics Data System (ADS)
Zhu, J.; Abhyankar, H.; Nassiopoulos, E.; Njuguna, J.
2012-09-01
Innovation is often driven by changes in government policies regulating the industries, especially true in case of the automotive. Except weight savings, the strict EU regulation of 95% recyclable material-made vehicles drives the manufactures and scientists to seek new 'green materials' for structural applications. With handing at two major drawbacks (production cost and safety), ECHOSHELL is supported by EU to develop and optimise structural solutions for superlight electric vehicles by using bio-composites made of high-performance natural fibres and resins, providing enhanced strength and bio-degradability characteristics. Flax reinforced tannin-based composite is selected as one of the candidates and were firstly investigated with different fabric lay-up angles (non-woven flax mat, UD, [0, 90°]4 and [0, +45°, 90°, -45°]2) through authors' work. Some of the obtained results, such as tensile properties and SEM micrographs were shown in this conference paper. The UD flax reinforced composite exhibits the best tensile performance, with tensile strength and modulus of 150 MPa and 9.6 MPa, respectively. It was observed that during tension the oriented-fabric composites showed some delamination process, which are expected to be eliminated through surface treatment (alkali treatment etc.) and nanotechnology, such as the use of nano-fibrils. Failure mechanism of the tested samples were identified through SEM results, indicating that the combination of fibre pull-out, fibre breakage and brittle resins failure mainly contribute to the fracture failure of composites.
Compression Strength of Composite Primary Structural Components
NASA Technical Reports Server (NTRS)
Johnson, Eric R.; Starnes, James H., Jr. (Technical Monitor)
2000-01-01
The focus of research activities under NASA Grant NAG-1-2035 was the response and failure of thin-walled structural components. The research is applicable to the primary load carrying structure of flight vehicles, with particular emphasis on fuselage and wing'structure. Analyses and tests were performed that are applicable to the following structural components an aft pressure bulkhead, or a composite pressure dome, pressure cabin damage containment, and fuselage frames subject to crash-type loads.
NASA Technical Reports Server (NTRS)
Werlink, Rudolph J.; Pena, Francisco
2015-01-01
This Paper will describe the results of pressurization to failure of 100 gallon composite tanks using liquid nitrogen. Advanced methods of health monitoring will be compared as will the experimental data to a finite element model. The testing is wholly under NASA including unique PZT (Lead Zirconate Titanate) based active vibration technology. Other technologies include fiber optics strain based systems including NASA AFRC technology, Acoustic Emission, Acellent smart sensor, this work is expected to lead to a practical in-Sutu system for composite tanks.
NASA Astrophysics Data System (ADS)
Roirand, Q.; Missoum-Benziane, D.; Thionnet, A.; Laiarinandrasana, L.
2017-09-01
Textile composites are composed of 3D complex architecture. To assess the durability of such engineering structures, the failure mechanisms must be highlighted. Examinations of the degradation have been carried out thanks to tomography. The present work addresses a numerical damage model dedicated to the simulation of the crack initiation and propagation at the scale of the warp yarns. For the 3D woven composites under study, loadings in tension and combined tension and bending were considered. Based on an erosion procedure of broken elements, the failure mechanisms have been modelled on 3D periodic cells by finite element calculations. The breakage of one element was determined using a failure criterion at the mesoscopic scale based on the yarn stress at failure. The results were found to be in good agreement with the experimental data for the two kinds of macroscopic loadings. The deterministic approach assumed a homogeneously distributed stress at failure all over the integration points in the meshes of woven composites. A stochastic approach was applied to a simple representative elementary periodic cell. The distribution of the Weibull stress at failure was assigned to the integration points using a Monte Carlo simulation. It was shown that this stochastic approach allowed more realistic failure simulations avoiding the idealised symmetry due to the deterministic modelling. In particular, the stochastic simulations performed have shown several variations of the stress as well as strain at failure and the failure modes of the yarn.
Multiscale Multifunctional Progressive Fracture of Composite Structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Minnetyan, L.
2012-01-01
A new approach is described for evaluating fracture in composite structures. This approach is independent of classical fracture mechanics parameters like fracture toughness. It relies on computational simulation and is programmed in a stand-alone integrated computer code. It is multiscale, multifunctional because it includes composite mechanics for the composite behavior and finite element analysis for predicting the structural response. It contains seven modules; layered composite mechanics (micro, macro, laminate), finite element, updating scheme, local fracture, global fracture, stress based failure modes, and fracture progression. The computer code is called CODSTRAN (Composite Durability Structural ANalysis). It is used in the present paper to evaluate the global fracture of four composite shell problems and one composite built-up structure. Results show that the composite shells. Global fracture is enhanced when internal pressure is combined with shear loads. The old reference denotes that nothing has been added to this comprehensive report since then.
NASA Astrophysics Data System (ADS)
Pommatau, Gilles
2014-06-01
The present paper deals with the industrial application, via a software developed by Thales Alenia Space, of a new failure criterion named "Tsai-Hill equivalent criterion" for composite structural parts of satellites. The first part of the paper briefly describes the main hypothesis and the possibilities in terms of failure analysis of the software. The second parts reminds the quadratic and conservative nature of the new failure criterion, already presented in ESA conference in a previous paper. The third part presents the statistical calculation possibilities of the software, and the associated sensitivity analysis, via results obtained on different composites. Then a methodology, proposed to customers and agencies, is presented with its limitations and advantages. It is then conclude that this methodology is an efficient industrial way to perform mechanical analysis on quasi-isotropic composite parts.
NASA Astrophysics Data System (ADS)
Madhavi, M.; Venkat, R.
2014-01-01
Fiber reinforced polymer composite materials with their higher specific strength, moduli and tailorability characteristics will result in reduction of weight of the structure. The composite pressure vessels with integrated end domes develop hoop stresses that are twice longitudinal stresses and when isotropic materials like metals are used for development of the hardware and the material is not fully utilized in the longitudinal/meridional direction resulting in over weight components. The determination of a proper winding angles and thickness is very important to decrease manufacturing difficulties and to increase structural efficiency. In the present study a methodology is developed to understand structural characteristics of filament wound pressure vessels with integrated end domes. Progressive ply wise failure analysis of composite pressure vessel with geodesic end domes is carried out to determine matrix crack failure, burst pressure values at various positions of the shell. A three dimensional finite element analysis is computed to predict the deformations and stresses in the composite pressure vessel. The proposed method could save the time to design filament wound structures, to check whether the ply design is safe for the given input conditions and also can be adapted to non-geodesic structures. The results can be utilized to understand structural characteristics of filament wound pressure vessels with integrated end domes. This approach can be adopted for various applications like solid rocket motor casings, automobile fuel storage tanks and chemical storage tanks. Based on the predictions a composite pressure vessel is designed and developed. Hydraulic test is performed on the composite pressure vessel till the burst pressure.
NASA Technical Reports Server (NTRS)
Zalameda, Joseph N.; Horne, Michael R.; Madaras, Eric I.; Burke, Eric R.
2016-01-01
Passive thermography and acoustic emission data were obtained for improved real time damage detection during fatigue loading. A strong positive correlation was demonstrated between acoustic energy event location and thermal heating, especially if the structure under load was nearing ultimate failure. An image processing routine was developed to map the acoustic emission data onto the thermal imagery. This required removing optical barrel distortion and angular rotation from the thermal data. The acoustic emission data were then mapped onto thermal data, revealing the cluster of acoustic emission event locations around the thermal signatures of interest. By combining both techniques, progression of damage growth is confirmed and areas of failure are identified. This technology provides improved real time inspections of advanced composite structures during fatigue testing.Keywords: Thermal nondestructive evaluation, fatigue damage detection, aerospace composite inspection, acoustic emission, passive thermography
NASA Technical Reports Server (NTRS)
Garg, A.; Ishaei, O.
1983-01-01
Efforts to characterize and differentiate between two major failure processes in graphite/epoxy composites - transverse cracking and Mode I delamination are described. Representative laminates were tested in uniaxial tension and flexure. The failure processes were monitored and identified by acoustic emission (AE). The effect of moisture on AE was also investigated. Each damage process was found to have a distinctive AE output that is significantly affected by moisture conditions. It is concluded that AE can serve as a useful tool for detecting and identifying failure modes in composite structures in laboratory and in service environments.
Multi-physics damage sensing in nano-engineered structural composites.
de Villoria, Roberto Guzmán; Yamamoto, Namiko; Miravete, Antonio; Wardle, Brian L
2011-05-06
Non-destructive evaluation techniques can offer viable diagnostic and prognostic routes to mitigating failures in engineered structures such as bridges, buildings and vehicles. However, existing techniques have significant drawbacks, including poor spatial resolution and limited in situ capabilities. We report here a novel approach where structural advanced composites containing electrically conductive aligned carbon nanotubes (CNTs) are ohmically heated via simple electrical contacts, and damage is visualized via thermographic imaging. Damage, in the form of cracks and other discontinuities, usefully increases resistance to both electrical and thermal transport in these materials, which enables tomographic full-field damage assessment in many cases. Characteristics of the technique include the ability for real-time measurement of the damage state during loading, low-power operation (e.g. 15 °C rise at 1 W), and beyond state-of-the-art spatial resolution for sensing damage in composites. The enhanced thermographic technique is a novel and practical approach for in situ monitoring to ascertain structural health and to prevent structural failures in engineered structures such as aerospace and automotive vehicles and wind turbine blades, among others.
Multi-physics damage sensing in nano-engineered structural composites
NASA Astrophysics Data System (ADS)
Guzmán de Villoria, Roberto; Yamamoto, Namiko; Miravete, Antonio; Wardle, Brian L.
2011-05-01
Non-destructive evaluation techniques can offer viable diagnostic and prognostic routes to mitigating failures in engineered structures such as bridges, buildings and vehicles. However, existing techniques have significant drawbacks, including poor spatial resolution and limited in situ capabilities. We report here a novel approach where structural advanced composites containing electrically conductive aligned carbon nanotubes (CNTs) are ohmically heated via simple electrical contacts, and damage is visualized via thermographic imaging. Damage, in the form of cracks and other discontinuities, usefully increases resistance to both electrical and thermal transport in these materials, which enables tomographic full-field damage assessment in many cases. Characteristics of the technique include the ability for real-time measurement of the damage state during loading, low-power operation (e.g. 15 °C rise at 1 W), and beyond state-of-the-art spatial resolution for sensing damage in composites. The enhanced thermographic technique is a novel and practical approach for in situ monitoring to ascertain structural health and to prevent structural failures in engineered structures such as aerospace and automotive vehicles and wind turbine blades, among others.
Modeling delamination growth in composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reedy, E.D. Jr.; Mello, F.J.
1996-12-01
A method for modeling the initiation and growth of discrete delaminations in shell-like composite structures is presented. The laminate is divided into two or more sublaminates, with each sublaminate modeled with four-noded quadrilateral shell elements. A special, eight-noded hex constraint element connects opposing sublaminate shell elements. It supplies the nodal forces and moments needed to make the two opposing shell elements act as a single shell element until a prescribed failure criterion is satisfied. Once the failure criterion is attained, the connection is broken, creating or growing a discrete delamination. This approach has been implemented in a 3D finite elementmore » code. This code uses explicit time integration, and can analyze shell-like structures subjected to large deformations and complex contact conditions. The shell elements can use existing composite material models that include in-plane laminate failure modes. This analysis capability was developed to perform crashworthiness studies of composite structures, and is useful whenever there is a need to estimate peak loads, energy absorption, or the final shape of a highly deformed composite structure. This paper describes the eight-noded hex constraint element used to model the initiation and growth of a delamination, and discusses associated implementation issues. Particular attention is focused on the delamination growth criterion, and it is verified that calculated results do not depend on element size. In addition, results for double cantilever beam and end notched flexure specimens are presented and compared to measured data to assess the ability of the present approach to model a growing delamination.« less
NASA Astrophysics Data System (ADS)
Werner, Brian Thomas
Composite structures have long been used in many industries where it is advantageous to reduce weight while maintaining high stiffness and strength. Composites can now be found in an ever broadening range of applications: sporting equipment, automobiles, marine and aerospace structures, and energy production. These structures are typically sandwich panels composed of fiber reinforced polymer composite (FRPC) facesheets which provide the stiffness and the strength and a low density polymeric foam core that adds bending rigidity with little additional weight. The expanding use of composite structures exposes them to high energy, high velocity dynamic loadings which produce multi-axial dynamic states of stress. This circumstance can present quite a challenge to designers, as composite structures are highly anisotropic and display properties that are sensitive to loading rates. Computer codes are continually in development to assist designers in the creation of safe, efficient structures. While the design of an optimal composite structure is more complex, engineers can take advantage of the effect of enhanced energy dissipation displayed by a composite when loaded at high strain rates. In order to build and verify effective computer codes, the underlying assumptions must be verified by laboratory experiments. Many of these codes look to use a micromechanical approach to determine the response of the structure. For this, the material properties of the constituent materials must be verified, three-dimensional constitutive laws must be developed, and failure of these materials must be investigated under static and dynamic loading conditions. In this study, simple models are sought not only to ease their implementation into such codes, but to allow for efficient characterization of new materials that may be developed. Characterization of composite materials and sandwich structures is a costly, time intensive process. A constituent based design approach evaluates potential combinations of materials in a much faster and more efficient manner.
Improvement of Progressive Damage Model to Predicting Crashworthy Composite Corrugated Plate
NASA Astrophysics Data System (ADS)
Ren, Yiru; Jiang, Hongyong; Ji, Wenyuan; Zhang, Hanyu; Xiang, Jinwu; Yuan, Fuh-Gwo
2018-02-01
To predict the crashworthy composite corrugated plate, different single and stacked shell models are evaluated and compared, and a stacked shell progressive damage model combined with continuum damage mechanics is proposed and investigated. To simulate and predict the failure behavior, both of the intra- and inter- laminar failure behavior are considered. The tiebreak contact method, 1D spot weld element and cohesive element are adopted in stacked shell model, and a surface-based cohesive behavior is used to capture delamination in the proposed model. The impact load and failure behavior of purposed and conventional progressive damage models are demonstrated. Results show that the single shell could simulate the impact load curve without the delamination simulation ability. The general stacked shell model could simulate the interlaminar failure behavior. The improved stacked shell model with continuum damage mechanics and cohesive element not only agree well with the impact load, but also capture the fiber, matrix debonding, and interlaminar failure of composite structure.
Accelerated Aging Experiments for Prognostics of Damage Growth in Composite Materials
NASA Technical Reports Server (NTRS)
Saxena, Abhinav; Goebel, Kai Frank; Larrosa, Cecilia C.; Janapati, Vishnuvardhan; Roy, Surajit; Chang, Fu-Kuo
2011-01-01
Composite structures are gaining importance for use in the aerospace industry. Compared to metallic structures their behavior is less well understood. This lack of understanding may pose constraints on their use. One possible way to deal with some of the risks associated with potential failure is to perform in-situ monitoring to detect precursors of failures. Prognostic algorithms can be used to predict impending failures. They require large amounts of training data to build and tune damage model for making useful predictions. One of the key aspects is to get confirmatory feedback from data as damage progresses. These kinds of data are rarely available from actual systems. The next possible resource to collect such data is an accelerated aging platform. To that end this paper describes a fatigue cycling experiment with the goal to stress carbon-carbon composite coupons with various layups. Piezoelectric disc sensors were used to periodically interrogate the system. Analysis showed distinct differences in the signatures of growing failures between data collected at conditions. Periodic X-radiographs were taken to assess the damage ground truth. Results after signal processing showed clear trends of damage growth that were correlated to damage assessed from the X-ray images.
NASA Technical Reports Server (NTRS)
Kim, W. M.; Koczak, M. J.; Lawley, A.
1979-01-01
The microstructural and interface stability of FPalpha-Al203/Al-Li composites are investigated as a function of isothermal exposure at 500 C or thermal cycling between 140 and 500 C with hold time at Tmax. Interfacial morphology, growth kinetics, crystal structure, and composition of interfacial reaction products are characterized. Strength is monitored in the transverse orientation, and fracture mechanics is analyzed in terms of interface reaction products. The interfacial reaction product in FP/Al is Li2O.5Al2O3. Significant fiber-matrix reaction occurs during fabrication. The number of thermal cycles rather than total time at Tmax is the determining factor in strength degradation, thermal cycling giving rise to voids at the fiber-matrix interface. Extensive interface failures occur at composite fracture stresses below about 128 MPa; above this stress level failure is attributed to ductile matrix fracture.
Analysis of a Hybrid Wing Body Center Section Test Article
NASA Technical Reports Server (NTRS)
Wu, Hsi-Yung T.; Shaw, Peter; Przekop, Adam
2013-01-01
The hybrid wing body center section test article is an all-composite structure made of crown, floor, keel, bulkhead, and rib panels utilizing the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) design concept. The primary goal of this test article is to prove that PRSEUS components are capable of carrying combined loads that are representative of a hybrid wing body pressure cabin design regime. This paper summarizes the analytical approach, analysis results, and failure predictions of the test article. A global finite element model of composite panels, metallic fittings, mechanical fasteners, and the Combined Loads Test System (COLTS) test fixture was used to conduct linear structural strength and stability analyses to validate the specimen under the most critical combination of bending and pressure loading conditions found in the hybrid wing body pressure cabin. Local detail analyses were also performed at locations with high stress concentrations, at Tee-cap noodle interfaces with surrounding laminates, and at fastener locations with high bearing/bypass loads. Failure predictions for different composite and metallic failure modes were made, and nonlinear analyses were also performed to study the structural response of the test article under combined bending and pressure loading. This large-scale specimen test will be conducted at the COLTS facility at the NASA Langley Research Center.
A new yield and failure theory for composite materials under static and dynamic loading
Daniel, Isaac M.; Daniel, Sam M.; Fenner, Joel S.
2017-09-12
In order to facilitate and accelerate the process of introducing, evaluating and adopting new material systems, it is important to develop/establish comprehensive and effective procedures of characterization, modeling and failure prediction of composite structures based on the properties of the constituent materials, e. g., fibers, matrix, and the single ply or lamina. A new yield/failure theory is proposed for predicting lamina yielding and failure under multi-axial states of stress including strain rate effects. It is based on the equivalent stress concept derived from energy principles and is expressed in terms of a single criterion. It is presented in the formmore » of master yield and failure envelopes incorporating strain rate effects. The theory can be further adapted and extended to the prediction of in situ first ply yielding and failure (FPY and FPF) and progressive damage of multi-directional laminates under static and dynamic loadings. The significance of this theory is that it allows for rapid screening of new composite materials without extensive testing and offers easily implemented design tools.« less
A new yield and failure theory for composite materials under static and dynamic loading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, Isaac M.; Daniel, Sam M.; Fenner, Joel S.
In order to facilitate and accelerate the process of introducing, evaluating and adopting new material systems, it is important to develop/establish comprehensive and effective procedures of characterization, modeling and failure prediction of composite structures based on the properties of the constituent materials, e. g., fibers, matrix, and the single ply or lamina. A new yield/failure theory is proposed for predicting lamina yielding and failure under multi-axial states of stress including strain rate effects. It is based on the equivalent stress concept derived from energy principles and is expressed in terms of a single criterion. It is presented in the formmore » of master yield and failure envelopes incorporating strain rate effects. The theory can be further adapted and extended to the prediction of in situ first ply yielding and failure (FPY and FPF) and progressive damage of multi-directional laminates under static and dynamic loadings. The significance of this theory is that it allows for rapid screening of new composite materials without extensive testing and offers easily implemented design tools.« less
Experimental investigation of the crashworthiness of scaled composite sailplane fuselages
NASA Technical Reports Server (NTRS)
Kampf, Karl-Peter; Crawley, Edward F.; Hansman, R. John, Jr.
1989-01-01
The crash dynamics and energy absorption of composite sailplane fuselage segments undergoing nose-down impact were investigated. More than 10 quarter-scale structurally similar test articles, typical of high-performance sailplane designs, were tested. Fuselages segments were fabricated of combinations of fiberglass, graphite, Kevlar, and Spectra fabric materials. Quasistatic and dynamic tests were conducted. The quasistatic tests were found to replicate the strain history and failure modes observed in the dynamic tests. Failure modes of the quarter-scale model were qualitatively compared with full-scale crash evidence and quantitatively compared with current design criteria. By combining material and structural improvements, substantial increases in crashworthiness were demonstrated.
Hybrid composite rebars for smart concrete structures
NASA Astrophysics Data System (ADS)
Krishnamoorthy, R. K.; Belarbi, Abdeldjelil; Chandrashekhara, K.; Watkins, Steve E.
1997-05-01
In reinforced concrete structures, steel reinforcing bars (rebars) corrode with time and thus reduce their life span. Composite rebars can be used in lieu of steel rebars to overcome this problem. The conventional composite rebars designed to take tensile force are composed of unidirectional fibers in a resin matrix, and are linearly elastic till failure; thus providing a brittle behavior. The problems of corrosion and brittle behavior can be solved by using a composite rebar which fails gradually under tension. The rebar consists of a hybrid composite system in conjunction with helical fibers. The hybrid system gives the rebar its initial stiffness and enables pseudo-yielding at lower strains. As the strain increase, the load is gradually transferred from the hybrid core to the helical fibers, which enables the rebar to undergo large elongations before failure. Embedded fiber optic sensors in the rebar can be used for health monitoring over a long period of time. The proof of concept and preliminary test results are described in the paper.
NASA Astrophysics Data System (ADS)
Kim, Hansang
2015-01-01
The in-plane shear property of carbon fiber laminates is one of the most important structural features of aerospace and marine structures. Fiber-matrix debonding caused by in-plane shear loading is the major failure mode of carbon fiber composites because of the stress concentration at the interfaces. In this study, carbon nanotube mats (CNT mat) were incorporated in two different types of carbon fiber composites. For the case of woven fabric composites, mechanical interlocking between the CNTs and the carbon fibers increased resistance to shear failure. However, not much improvement was observed for the prepreg composites as a result of incorporation of the CNT mats. The reinforcement mechanism of the CNT mat layer was investigated by a fractographic study using scanning electron microscopy. In addition, the CNT mat was functionalized by three different methods and the effectiveness of the functionalization methods was determined and the most appropriate functionalization method for the CNT mat was air oxidation.
Three-Dimensional High Fidelity Progressive Failure Damage Modeling of NCF Composites
NASA Technical Reports Server (NTRS)
Aitharaju, Venkat; Aashat, Satvir; Kia, Hamid G.; Satyanarayana, Arunkumar; Bogert, Philip B.
2017-01-01
Performance prediction of off-axis laminates is of significant interest in designing composite structures for energy absorption. Phenomenological models available in most of the commercial programs, where the fiber and resin properties are smeared, are very efficient for large scale structural analysis, but lack the ability to model the complex nonlinear behavior of the resin and fail to capture the complex load transfer mechanisms between the fiber and the resin matrix. On the other hand, high fidelity mesoscale models, where the fiber tows and matrix regions are explicitly modeled, have the ability to account for the complex behavior in each of the constituents of the composite. However, creating a finite element model of a larger scale composite component could be very time consuming and computationally very expensive. In the present study, a three-dimensional mesoscale model of non-crimp composite laminates was developed for various laminate schemes. The resin material was modeled as an elastic-plastic material with nonlinear hardening. The fiber tows were modeled with an orthotropic material model with brittle failure. In parallel, new stress based failure criteria combined with several damage evolution laws for matrix stresses were proposed for a phenomenological model. The results from both the mesoscale and phenomenological models were compared with the experiments for a variety of off-axis laminates.
Tensile Response of Hoop Reinforced Multiaxially Braided Thin Wall Composite Tubes
NASA Astrophysics Data System (ADS)
Roy, Sree Shankhachur; Potluri, Prasad; Soutis, Constantinos
2017-04-01
This paper presents the tensile response of thin-walled composite tubes with multi-axial fibre architecture. A hybrid braid-wound layup has the potential to optimise the composite tube properties, however, stacking sequence plays a role in the failure mechanism. A braid-winding method has been used to produce stacked overwound braid layup [(±45°/0°)5/90°4]T. Influence of stacking sequence on premature failure of hoop layers has been reported. Under tensile loading, a cross-ply composite tube with the alternate stacking of hoop and axial fibre show hoop plies splitting similar to the overwound braided composite tube. However, splitting has been restricted by the surrounding axial plies and contained between the adjacent axial fibre tows. This observation suggests hoop layers sandwiched between braid layers will improve structural integrity. A near net shape architecture with three fibre orientation in a triaxial braid will provide additional support to prevent extensive damage for plies loaded in off-axis. Several notable observations for relatively open braid structures such as tow scissoring, high Poisson's ratio and influence of axial tow crimp on the strain to failure have been reported. Digital Image Correlation (DIC) in conjunction with surface strain gauging has been employed to capture the strain pattern.
A model for the progressive failure of laminated composite structural components
NASA Technical Reports Server (NTRS)
Allen, D. H.; Lo, D. C.
1991-01-01
Laminated continuous fiber polymeric composites are capable of sustaining substantial load induced microstructural damage prior to component failure. Because this damage eventually leads to catastrophic failure, it is essential to capture the mechanics of progressive damage in any cogent life prediction model. For the past several years the authors have been developing one solution approach to this problem. In this approach the mechanics of matrix cracking and delamination are accounted for via locally averaged internal variables which account for the kinematics of microcracking. Damage progression is predicted by using phenomenologically based damage evolution laws which depend on the load history. The result is a nonlinear and path dependent constitutive model which has previously been implemented to a finite element computer code for analysis of structural components. Using an appropriate failure model, this algorithm can be used to predict component life. In this paper the model will be utilized to demonstrate the ability to predict the load path dependence of the damage and stresses in plates subjected to fatigue loading.
NASA Technical Reports Server (NTRS)
Nairn, John A.
1992-01-01
A combined analytical and experimental study was conducted to analyze microcracking, microcrack-induced delamination, and longitudinal splitting in polymer matrix composites. Strain energy release rates, calculated by a variational analysis, were used in a failure criterion to predict microcracking. Predictions and test results were compared for static, fatigue, and cyclic thermal loading. The longitudinal splitting analysis accounted for the effects of fiber bridging. Test data are analyzed and compared for longitudinal splitting and delamination under mixed-mode loading. This study emphasizes the importance of using fracture mechanics analyses to understand the complex failure processes that govern composite strength and life.
NASA Technical Reports Server (NTRS)
Bogert, Philip B.; Satyanarayana, Arunkumar; Chunchu, Prasad B.
2006-01-01
Splitting, ultimate failure load and the damage path in center notched composite specimens subjected to in-plane tension loading are predicted using progressive failure analysis methodology. A 2-D Hashin-Rotem failure criterion is used in determining intra-laminar fiber and matrix failures. This progressive failure methodology has been implemented in the Abaqus/Explicit and Abaqus/Standard finite element codes through user written subroutines "VUMAT" and "USDFLD" respectively. A 2-D finite element model is used for predicting the intra-laminar damages. Analysis results obtained from the Abaqus/Explicit and Abaqus/Standard code show good agreement with experimental results. The importance of modeling delamination in progressive failure analysis methodology is recognized for future studies. The use of an explicit integration dynamics code for simple specimen geometry and static loading establishes a foundation for future analyses where complex loading and nonlinear dynamic interactions of damage and structure will necessitate it.
Guidelines for VCCT-Based Interlaminar Fatigue and Progressive Failure Finite Element Analysis
NASA Technical Reports Server (NTRS)
Deobald, Lyle R.; Mabson, Gerald E.; Engelstad, Steve; Prabhakar, M.; Gurvich, Mark; Seneviratne, Waruna; Perera, Shenal; O'Brien, T. Kevin; Murri, Gretchen; Ratcliffe, James;
2017-01-01
This document is intended to detail the theoretical basis, equations, references and data that are necessary to enhance the functionality of commercially available Finite Element codes, with the objective of having functionality better suited for the aerospace industry in the area of composite structural analysis. The specific area of focus will be improvements to composite interlaminar fatigue and progressive interlaminar failure. Suggestions are biased towards codes that perform interlaminar Linear Elastic Fracture Mechanics (LEFM) using Virtual Crack Closure Technique (VCCT)-based algorithms [1,2]. All aspects of the science associated with composite interlaminar crack growth are not fully developed and the codes developed to predict this mode of failure must be programmed with sufficient flexibility to accommodate new functional relationships as the science matures.
Reproducibility of structural strength and stiffness for graphite-epoxy aircraft spoilers
NASA Technical Reports Server (NTRS)
Howell, W. E.; Reese, C. D.
1978-01-01
Structural strength reproducibility of graphite epoxy composite spoilers for the Boeing 737 aircraft was evaluated by statically loading fifteen spoilers to failure at conditions simulating aerodynamic loads. Spoiler strength and stiffness data were statistically modeled using a two parameter Weibull distribution function. Shape parameter values calculated for the composite spoiler strength and stiffness were within the range of corresponding shape parameter values calculated for material property data of composite laminates. This agreement showed that reproducibility of full scale component structural properties was within the reproducibility range of data from material property tests.
Progressive Damage Modeling of Notched Composites
NASA Technical Reports Server (NTRS)
Aitharaju, Venkat; Aashat, Satvir; Kia, Hamid; Satyanarayana, Arunkumar; Bogert, Philip
2016-01-01
There is an increased interest in using non-crimp fabric reinforced composites for primary and secondary structural weight savings in high performance automobile applications. However, one of the main challenges in implementing these composites is the lack of understanding of damage progression under a wide variety of loading conditions for general configurations. Towards that end, researchers at GM and NASA are developing new damage models to predict accurately the progressive failure of these composites. In this investigation, the developed progressive failure analysis model was applied to study damage progression in center-notched and open-hole tension specimens for various laminate schemes. The results of a detailed study with respect to the effect of element size on the analysis outcome are presented.
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2012-01-01
A framework for the multiscale design and analysis of composite materials and structures is presented. The ImMAC software suite, developed at NASA Glenn Research Center, embeds efficient, nonlinear micromechanics capabilities within higher scale structural analysis methods such as finite element analysis. The result is an integrated, multiscale tool that relates global loading to the constituent scale, captures nonlinearities at this scale, and homogenizes local nonlinearities to predict their effects at the structural scale. Example applications of the multiscale framework are presented for the stochastic progressive failure of a SiC/Ti composite tensile specimen and the effects of microstructural variations on the nonlinear response of woven polymer matrix composites.
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.
2011-01-01
A framework for the multiscale design and analysis of composite materials and structures is presented. The ImMAC software suite, developed at NASA Glenn Research Center, embeds efficient, nonlinear micromechanics capabilities within higher scale structural analysis methods such as finite element analysis. The result is an integrated, multiscale tool that relates global loading to the constituent scale, captures nonlinearities at this scale, and homogenizes local nonlinearities to predict their effects at the structural scale. Example applications of the multiscale framework are presented for the stochastic progressive failure of a SiC/Ti composite tensile specimen and the effects of microstructural variations on the nonlinear response of woven polymer matrix composites.
Low-velocity impact tests on fibrous composite sandwich structures
NASA Technical Reports Server (NTRS)
Sharma, A. V.
1981-01-01
The effect of low-velocity projectile impact on the load-carrying ability of the composite sandwich structural components is investigated experimentally, the impact simulating the damage caused by runway debris and the accidental dropping of hand tools during servicing on secondary aircraft structures made with composites. The sandwich-type beam specimens were fabricated with graphite/epoxy face sheets, aluminum honeycomb core, and a steel (back) plate. A four-point beam-loading apparatus was used, and the ultimate strength, ultimate strain, and residual strength of the composites were determined. A faired curve is presented indicating the lower bound of the failure threshold for each of the laminate configurations tested in compression and tension as a function of the projectile impact energy. It is shown that strength degradation due to impact is dependent on the laminate configuration and the fiber/matrix combination. The laminates having more angle plies near the impact surface and unidirectional plies elsewhere seem to show extensive interply and intraply fiber delaminations at failure relative to the laminates with a cross-ply on the impact surface.
Bibliography of information on mechanics of structural failure
NASA Technical Reports Server (NTRS)
Carpenter, J. L., Jr.; Moya, N.; Shaffer, R. A.; Smith, D. M.
1973-01-01
A bibliography of approximately 1500 reference citations related to six problem areas in the mechanics of failure in aerospace structures is presented. The bibliography represents a search of the literature published in the ten year period 1962-1972 and is largely limited to documents published in the United States. Listings are subdivided into the six problem areas: (1) life prediction of structural materials; (2) fracture toughness data; (3) fracture mechanics analysis; (4) hydrogen embrittlement; (5) protective coatings; and (6) composite materials. An author index is included.
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Bednarcyk, Brett A.; Pineda, Evan J.; Walton, Owen J.; Arnold, Steven M.
2016-01-01
Stochastic-based, discrete-event progressive damage simulations of ceramic-matrix composite and polymer matrix composite material structures have been enabled through the development of a unique multiscale modeling tool. This effort involves coupling three independently developed software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/ Life), and (3) the Abaqus finite element analysis (FEA) program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating unit cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC. Abaqus is used at the global scale to model the overall composite structure. An Abaqus user-defined material (UMAT) interface, referred to here as "FEAMAC/CARES," was developed that enables MAC/GMC and CARES/Life to operate seamlessly with the Abaqus FEA code. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events, which incrementally progress and lead to ultimate structural failure. This report describes the FEAMAC/CARES methodology and discusses examples that illustrate the performance of the tool. A comprehensive example problem, simulating the progressive damage of laminated ceramic matrix composites under various off-axis loading conditions and including a double notched tensile specimen geometry, is described in a separate report.
A Stress Gradient Failure Theory for Textile Structural Composites
2006-05-01
additional element failures occur. Incorporation of thermal stresses and investigation of the coefficient of thermal expansion is another potential...avenue for further development of the failure modeling. Due to mismatches between the coefficient of thermal expansion of constituent materials...directly from ABAQUS software, which yields element volumes as outputs, thus the volume of all matrix elements can be compared to the volume of all
Structural Qualification of Composite Airframes
NASA Technical Reports Server (NTRS)
Kedward, Keith T.; McCarty, John E.
1997-01-01
The development of fundamental approaches for predicting failure and elongation characteristics of fibrous composites are summarized in this document. The research described includes a statistical formulation for individual fiber breakage and fragmentation and clustered fiber breakage, termed macrodefects wherein the aligned composite may represent a structural component such as a reinforcing bar element, a rebar. Experimental work conducted in support of the future exploitation of aligned composite rebar elements is also described. This work discusses the experimental challenges associated with rebar tensile test evaluation and describes initial numerical analyses performed in support of the experimental program.
Progressive Damage Analysis of Bonded Composite Joints
NASA Technical Reports Server (NTRS)
Leone, Frank A., Jr.; Girolamo, Donato; Davila, Carlos G.
2012-01-01
The present work is related to the development and application of progressive damage modeling techniques to bonded joint technology. The joint designs studied in this work include a conventional composite splice joint and a NASA-patented durable redundant joint. Both designs involve honeycomb sandwich structures with carbon/epoxy facesheets joined using adhesively bonded doublers.Progressive damage modeling allows for the prediction of the initiation and evolution of damage within a structure. For structures that include multiple material systems, such as the joint designs under consideration, the number of potential failure mechanisms that must be accounted for drastically increases the complexity of the analyses. Potential failure mechanisms include fiber fracture, intraply matrix cracking, delamination, core crushing, adhesive failure, and their interactions. The bonded joints were modeled using highly parametric, explicitly solved finite element models, with damage modeling implemented via custom user-written subroutines. Each ply was discretely meshed using three-dimensional solid elements. Layers of cohesive elements were included between each ply to account for the possibility of delaminations and were used to model the adhesive layers forming the joint. Good correlation with experimental results was achieved both in terms of load-displacement history and the predicted failure mechanism(s).
Progressive Damage Modeling of Durable Bonded Joint Technology
NASA Technical Reports Server (NTRS)
Leone, Frank A.; Davila, Carlos G.; Lin, Shih-Yung; Smeltzer, Stan; Girolamo, Donato; Ghose, Sayata; Guzman, Juan C.; McCarville, Duglas A.
2013-01-01
The development of durable bonded joint technology for assembling composite structures for launch vehicles is being pursued for the U.S. Space Launch System. The present work is related to the development and application of progressive damage modeling techniques to bonded joint technology applicable to a wide range of sandwich structures for a Heavy Lift Launch Vehicle. The joint designs studied in this work include a conventional composite splice joint and a NASA-patented Durable Redundant Joint. Both designs involve a honeycomb sandwich with carbon/epoxy facesheets joined with adhesively bonded doublers. Progressive damage modeling allows for the prediction of the initiation and evolution of damage. For structures that include multiple materials, the number of potential failure mechanisms that must be considered increases the complexity of the analyses. Potential failure mechanisms include fiber fracture, matrix cracking, delamination, core crushing, adhesive failure, and their interactions. The joints were modeled using Abaqus parametric finite element models, in which damage was modeled with user-written subroutines. Each ply was meshed discretely, and layers of cohesive elements were used to account for delaminations and to model the adhesive layers. Good correlation with experimental results was achieved both in terms of load-displacement history and predicted failure mechanisms.
Lectures on Composite Materials for Aircraft Structures,
1982-10-01
9 Moh), derived composites can be machined only with great difficulty, with diamond-tipped tools. 2.4 Aramid Fibres These fibres are the latest type...between fibrils. Failed specimens often give the appearance of broomsticks due to this failure mode. Machining of Kevlar composites requires careful...Compressive Strength of Kevlar 49/Epoxy Composites , Composites , vol. 6, pp. 217-225, 1975. 13. Anon., A Guide to Cutting and Machining Kevlar Aramid, Du
Statistical Physics of Rupture in Heterogeneous Media
NASA Astrophysics Data System (ADS)
Sornette, Didier
The damage and fracture of materials are technologically of enormous interest due to their economic and human cost. They cover a wide range of phenomena like cracking of glass, aging of concrete, the failure of fiber networks in the formation of paper and the breaking of a metal bar subject to an external load. Failure of composite systems is of utmost importance in naval, aeronautics and space industry [1]. By the term composite, we refer to materials with heterogeneous microscopic structures and also to assemblages of macroscopic elements forming a super-structure. Chemical and nuclear plants suffer from cracking due to corrosion either of chemical or radioactive origin, aided by thermal and/or mechanical stress.
NASA Astrophysics Data System (ADS)
Herrmann, Kelsey M.
Research to date indicates that traditional composite material failure analysis methods are not appropriate for thin laminates in flexure. Thin composite structures subjected to large bending deformations often attain significantly higher strain-to-failure than previously anticipated tensile and compression coupon test data and linear material model assumption predict. At NASA Langley Research Center, a new bend test method is being developed for High Strain Composite (HSC) structures. This method provides an adequate approximation of a pure moment, large deformation bend test for thin-ply, high strain composites to analyze the large strain flexure response of the laminates. The objective of this research was to further develop this new test method to measure the true bending stiffness and strain-to-failure of high strain composite materials. Of primary importance is the ability to characterize composite laminates that are of interest for current NASA deployable structures in both materials and layups. Two separate testing campaigns were performed for the development of the testing procedure. Initially six laminates were bend tested in three different fiber orientations. These laminates were some combination of unidirectional intermediate modulus (IM) carbon, high tenacity (HT) carbon plain weave, and astroquartz plain weave composite materials. The second test campaign was performed as a more detailed look into the simplest composite laminates at thicknesses that better represented deployable boom structures. The second campaign tested three basic, thinner laminates, again in three different fiber orientations. All testing was monotonic loading to failure. The thickness of the laminates tested ranged from 0.166mm (campaign 2) to 0.45mm (campaign 1). The measured strains at failure for the unidirectional material were approximately 2.1% and 1.4% at the compression and tension sides, respectively, failing as fiber tensile fracture. Both of these values differ from what would be expected from considering much thicker coupons tested under pure compression and tension, that show a strain-to-failure of 1.0-1.1% and 1.6-1.7%, respectively. The significant differences in strain values obtained at the outer surfaces of the coupon is thought to be related to the shift in neutral axis that the specimen experiences during the large deformation bending test as a result of fiber material nonlinearities at higher strains. The vertical test nature of the CBT when compared to other test methods proves to be helpful for visually capturing with Digital Image Correlation the distinct behavior of the flexure on both the compressive and tensile sides. It was found that the thinner the laminate tested, the more confirmation of a nonlinear response of this classification of composites. The moment versus curvature curves were predominantly nonlinear resulting in a near linear bending stiffness versus curvature response. At these large strains, carbon fibers are highly nonlinear resulting in the laminate flexure modulus increasing by up to 5x. The theoretical bending stiffness values calculated using Classical Lamination Theory analysis are within small differences with respect to the experimentally measured values: errors of approximately 5-10% for both D11 and D22. The error between the finite element model computed strain response and the experimental values was on average around 22%, with 35% of the laminates and orientation having errors less than 7%. Comparison between CLT, FEA, and experimentation show that the Column Bend Test appears to be a promising candidate for characterization of large deformation bending behavior of thin-ply high strain composite laminates.
Critical joints in large composite aircraft structure
NASA Technical Reports Server (NTRS)
Nelson, W. D.; Bunin, B. L.; Hart-Smith, L. J.
1983-01-01
A program was conducted at Douglas Aircraft Company to develop the technology for critical structural joints of composite wing structure that meets design requirements for a 1990 commercial transport aircraft. The prime objective of the program was to demonstrate the ability to reliably predict the strength of large bolted composite joints. Ancillary testing of 180 specimens generated data on strength and load-deflection characteristics which provided input to the joint analysis. Load-sharing between fasteners in multirow bolted joints was computed by the nonlinear analysis program A4EJ. This program was used to predict strengths of 20 additional large subcomponents representing strips from a wing root chordwise splice. In most cases, the predictions were accurate to within a few percent of the test results. In some cases, the observed mode of failure was different than anticipated. The highlight of the subcomponent testing was the consistent ability to achieve gross-section failure strains close to 0.005. That represents a considerable improvement over the state of the art.
Mechanical properties of 2D and 3D braided textile composites
NASA Technical Reports Server (NTRS)
Norman, Timothy L.
1991-01-01
The purpose of this research was to determine the mechanical properties of 2D and 3D braided textile composite materials. Specifically, those designed for tension or shear loading were tested under static loading to failure to investigate the effects of braiding. The overall goal of the work was to provide a structural designer with an idea of how textile composites perform under typical loading conditions. From test results for unnotched tension, it was determined that the 2D is stronger, stiffer, and has higher elongation to failure than the 3D. It was also found that the polyetherether ketone (PEEK) resin system was stronger, stiffer, and had higher elongation at failure than the resin transfer molding (RTM) epoxy. Open hole tension tests showed that PEEK resin is more notch sensitive than RTM epoxy. Of greater significance, it was found that the 3D is less notch sensitive than the 2D. Unnotched compression tests indicated, as did the tension tests, that the 2D is stronger, stiffer, and has higher elongation at failure than the RTM epoxy. The most encouraging results were from compression after impact. The 3D braided composite showed a compression after impact failure stress equal to 92 percent of the unimpacted specimen. The 2D braided composite failed at about 67 percent of the unimpacted specimen. Higher damage tolerance is observed in textiles over conventional composite materials. This is observed in the results, especially in the 3D braided materials.
NASA Technical Reports Server (NTRS)
Ricks, Trenton M.; Lacy, Jr., Thomas E.; Bednarcyk, Brett A.; Arnold, Steven M.
2013-01-01
Continuous fiber unidirectional polymer matrix composites (PMCs) can exhibit significant local variations in fiber volume fraction as a result of processing conditions that can lead to further local differences in material properties and failure behavior. In this work, the coupled effects of both local variations in fiber volume fraction and the empirically-based statistical distribution of fiber strengths on the predicted longitudinal modulus and local tensile strength of a unidirectional AS4 carbon fiber/ Hercules 3502 epoxy composite were investigated using the special purpose NASA Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC); local effective composite properties were obtained by homogenizing the material behavior over repeating units cells (RUCs). The predicted effective longitudinal modulus was relatively insensitive to small (8%) variations in local fiber volume fraction. The composite tensile strength, however, was highly dependent on the local distribution in fiber strengths. The RUC-averaged constitutive response can be used to characterize lower length scale material behavior within a multiscale analysis framework that couples the NASA code FEAMAC and the ABAQUS finite element solver. Such an approach can be effectively used to analyze the progressive failure of PMC structures whose failure initiates at the RUC level. Consideration of the effect of local variations in constituent properties and morphologies on progressive failure of PMCs is a central aspect of the application of Integrated Computational Materials Engineering (ICME) principles for composite materials.
Influence of Finite Element Size in Residual Strength Prediction of Composite Structures
NASA Technical Reports Server (NTRS)
Satyanarayana, Arunkumar; Bogert, Philip B.; Karayev, Kazbek Z.; Nordman, Paul S.; Razi, Hamid
2012-01-01
The sensitivity of failure load to the element size used in a progressive failure analysis (PFA) of carbon composite center notched laminates is evaluated. The sensitivity study employs a PFA methodology previously developed by the authors consisting of Hashin-Rotem intra-laminar fiber and matrix failure criteria and a complete stress degradation scheme for damage simulation. The approach is implemented with a user defined subroutine in the ABAQUS/Explicit finite element package. The effect of element size near the notch tips on residual strength predictions was assessed for a brittle failure mode with a parametric study that included three laminates of varying material system, thickness and stacking sequence. The study resulted in the selection of an element size of 0.09 in. X 0.09 in., which was later used for predicting crack paths and failure loads in sandwich panels and monolithic laminated panels. Comparison of predicted crack paths and failure loads for these panels agreed well with experimental observations. Additionally, the element size vs. normalized failure load relationship, determined in the parametric study, was used to evaluate strength-scaling factors for three different element sizes. The failure loads predicted with all three element sizes provided converged failure loads with respect to that corresponding with the 0.09 in. X 0.09 in. element size. Though preliminary in nature, the strength-scaling concept has the potential to greatly reduce the computational time required for PFA and can enable the analysis of large scale structural components where failure is dominated by fiber failure in tension.
Ultrasonic NDE and mechanical testing of fiber placement composites
NASA Astrophysics Data System (ADS)
Liu, Zhanjie; Fei, Dong; Hsu, David K.; Dayal, Vinay; Hale, Richard D.
2002-05-01
A fiber placed composite, especially with fiber steering, has considerably more complex internal structure than a laminate laid up from unidirectional prepreg tapes. In this work, we performed ultrasonic imaging of ply interfaces of fiber placed composite laminates, with an eye toward developing a tool for evaluating their quality. Mechanical short-beam shear tests were also conducted on both nonsteered and steered specimens to examine their failure behavior and its relationship to the structural defects indicated by ultrasonic imaging.
Integrated Composite Analyzer (ICAN): Users and programmers manual
NASA Technical Reports Server (NTRS)
Murthy, P. L. N.; Chamis, C. C.
1986-01-01
The use of and relevant equations programmed in a computer code designed to carry out a comprehensive linear analysis of multilayered fiber composites is described. The analysis contains the essential features required to effectively design structural components made from fiber composites. The inputs to the code are constituent material properties, factors reflecting the fabrication process, and composite geometry. The code performs micromechanics, macromechanics, and laminate analysis, including the hygrothermal response of fiber composites. The code outputs are the various ply and composite properties, composite structural response, and composite stress analysis results with details on failure. The code is in Fortran IV and can be used efficiently as a package in complex structural analysis programs. The input-output format is described extensively through the use of a sample problem. The program listing is also included. The code manual consists of two parts.
Structural vibration-based damage classification of delaminated smart composite laminates
NASA Astrophysics Data System (ADS)
Khan, Asif; Kim, Heung Soo; Sohn, Jung Woo
2018-03-01
Separation along the interfaces of layers (delamination) is a principal mode of failure in laminated composites and its detection is of prime importance for structural integrity of composite materials. In this work, structural vibration response is employed to detect and classify delaminations in piezo-bonded laminated composites. Improved layerwise theory and finite element method are adopted to develop the electromechanically coupled governing equation of a smart composite laminate with and without delaminations. Transient responses of the healthy and damaged structures are obtained through a surface bonded piezoelectric sensor by solving the governing equation in the time domain. Wavelet packet transform (WPT) and linear discriminant analysis (LDA) are employed to extract discriminative features from the structural vibration response of the healthy and delaminated structures. Dendrogram-based support vector machine (DSVM) is used to classify the discriminative features. The confusion matrix of the classification algorithm provided physically consistent results.
Modelling of Damage Evolution in Braided Composites: Recent Developments
NASA Astrophysics Data System (ADS)
Wang, Chen; Roy, Anish; Silberschmidt, Vadim V.; Chen, Zhong
2017-12-01
Composites reinforced with woven or braided textiles exhibit high structural stability and excellent damage tolerance thanks to yarn interlacing. With their high stiffness-to-weight and strength-to-weight ratios, braided composites are attractive for aerospace and automotive components as well as sports protective equipment. In these potential applications, components are typically subjected to multi-directional static, impact and fatigue loadings. To enhance material analysis and design for such applications, understanding mechanical behaviour of braided composites and development of predictive capabilities becomes crucial. Significant progress has been made in recent years in development of new modelling techniques allowing elucidation of static and dynamic responses of braided composites. However, because of their unique interlacing geometric structure and complicated failure modes, prediction of damage initiation and its evolution in components is still a challenge. Therefore, a comprehensive literature analysis is presented in this work focused on a review of the state-of-the-art progressive damage analysis of braided composites with finite-element simulations. Recently models employed in the studies on mechanical behaviour, impact response and fatigue analyses of braided composites are presented systematically. This review highlights the importance, advantages and limitations of as-applied failure criteria and damage evolution laws for yarns and composite unit cells. In addition, this work provides a good reference for future research on FE simulations of braided composites.
Failure Analysis of Alumina Reinforced Aluminum Microtruss and Tube Composites
NASA Astrophysics Data System (ADS)
Chien, Hsueh Fen (Karen)
The energy absorption capacity of cellular materials can be dramatically increased by applying a structural coating. This thesis examined the failure mechanisms of alumina reinforced 3003 aluminum alloy microtrusses and tubes. Alumina coatings were produced by hard anodizing and by plasma electrolytic oxidation (PEO). The relatively thin and discontinuous oxide coating at the hinge acted as a localized weak spot which triggered a chain reaction of failure, including oxide fracture, oxide spallation, oxide penetration to the aluminum core and severe local plastic deformation of the core. For the PEO microtrusses, delamination occurred within the oxide coating resulting in a global strut buckling failure mode. A new failure mode for the anodized tubes was observed: (i) axisymmetric folding of the aluminum core, (ii) longitudinal fracture, and (iii) alumina pulverization. Overall, the alumina coating enhanced the buckling resistance of the composites, while the aluminum core supported the oxide during the damage propagation.
NASA Astrophysics Data System (ADS)
Monicke, A.; Katajisto, H.; Leroy, M.; Petermann, N.; Kere, P.; Perillo, M.
2012-07-01
For many years, layered composites have proven essential for the successful design of high-performance space structures, such as launchers or satellites. A generic cylindrical composite structure for a launcher application was optimized with respect to objectives and constraints typical for space applications. The studies included the structural stability, laminate load response and failure analyses. Several types of cylinders (with and without stiffeners) were considered and optimized using different lay-up parameterizations. Results for the best designs are presented and discussed. The simulation tools, ESAComp [1] and modeFRONTIER [2], employed in the optimization loop are elucidated and their value for the optimization process is explained.
Christian, W J R; DiazDelaO, F A; Atherton, K; Patterson, E A
2018-05-01
A new method has been developed for creating localized in-plane fibre waviness in composite coupons and used to create a large batch of specimens. This method could be used by manufacturers to experimentally explore the effect of fibre waviness on composite structures both directly and indirectly to develop and validate computational models. The specimens were assessed using ultrasound, digital image correlation and a novel inspection technique capable of measuring residual strain fields. To explore how the defect affects the performance of composite structures, the specimens were then loaded to failure. Predictions of remnant strength were made using a simple ultrasound damage metric and a new residual strain-based damage metric. The predictions made using residual strain measurements were found to be substantially more effective at characterizing ultimate strength than ultrasound measurements. This suggests that residual strains have a significant effect on the failure of laminates containing fibre waviness and that these strains could be incorporated into computational models to improve their ability to simulate the defect.
Mechanical energy dissipation in natural ceramic composites.
Mayer, George
2017-12-01
Ceramics and glasses, in their monolithic forms, typically exhibit low fracture toughness values, but rigid natural marine ceramic and glass composites have shown remarkable resistance to mechanical failure. This has been observed in load-extension behavior by recognizing that the total area under the curve, notably the part beyond the yield point, often conveys substantial capacity to carry mechanical load. The mechanisms underlying the latter observations are proposed as defining factors for toughness that provide resistance to failure, or capability to dissipate energy, rather than fracture toughness. Such behavior is exhibited in the spicules of glass sponges and in mollusk shells. There are a number of similarities in the manner in which energy dissipation takes place in both sponges and mollusks. It was observed that crack diversion, a new form of crack bridging, creation of new surface area, and other important energy-dissipating mechanisms occur and aid in "toughening". Crack tolerance, key to energy dissipation in these natural composite materials, is assisted by promoting energy distribution over large volumes of loaded specimens by minor components of organic constituents that also serve important roles as adhesives. Viscoelastic deformation was a notable characteristic of the organic component. Some of these energy-dissipating modes and characteristics were found to be quite different from the toughening mechanisms that are utilized for more conventional structural composites. Complementary to those mechanisms found in rigid natural ceramic/organic composites, layered architectures and very thin organic layers played major roles in energy dissipation in these structures. It has been demonstrated in rigid natural marine composites that not only architecture, but also the mechanical behavior of the individual constituents, the nature of the interfaces, and interfacial bonding play important roles in energy dissipation. Additionally, the controlling effects of thin organic layers have been observed in other natural ceramic composite structures, such as teeth and bones, indicating that a variety of similar energy dissipating mechanisms in natural ceramic composites may operate as means to resist failure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lamb Wave-Based Structural Health Monitoring on Composite Bolted Joints under Tensile Load
Yang, Bin; Xuan, Fu-Zhen; Xiang, Yanxun; Li, Dan; Zhu, Wujun; Tang, Xiaojun; Xu, Jichao; Yang, Kang; Luo, Chengqiang
2017-01-01
Online and offline monitoring of composite bolted joints under tensile load were investigated using piezoelectric transducers. The relationships between Lamb wave signals, pre-tightening force, the applied tensile load, as well as the failure modes were investigated. Results indicated that S0/A0 wave amplitudes decrease with the increasing of load. Relationships between damage features and S0/A0 mode were built based on the finite element (FE) simulation and experimental results. The possibility of application of Lamb wave-based structure health monitoring in bolted joint-like composite structures was thus achieved. PMID:28773014
Damage and failure behavior of metal matrix composites under biaxial loads
NASA Astrophysics Data System (ADS)
Kirkpatrick, Steven Wayne
Metal matrix composites (MMCs) are being considered for increased use in structures that require the ductility and damage tolerance of the metal matrix and the enhanced strength and creep resistance at elevated temperatures of high performance fibers. Particularly promising for advanced aerospace engines and airframes are SiC fiber/titanium matrix composites (TMCs). A large program was undertaken in the Air Force to characterize the deformation and failure behaviors of TMCs and to develop computational models that can be used for component design. The effort reported here focused on a SiC SCS-6/Timetal 21S composite under biaxial loading conditions. Biaxial loading conditions are important because multiaxial stresses have been shown to influence the strength and ductility of engineering materials and, in general, structural components are subjected to multiaxial loads. The TMC material response, including stress-strain curves and failure surfaces, was measured using a combination of off-axis uniaxial tension and compression tests and biaxial cruciform tests. The off-axis tests produce combinations of in-plane tension, compression, and shear stresses, the mix of which are controlled by the relative angle between the fiber and specimen axes. The biaxial cruciform tests allowed independent control over the tensile or compressive loads in the fiber and transverse directions. The results of these characterization tests were used to develop a microstructural constitutive model and failure criteria. The basis of the micromechanical constitutive model is a representative unit volume of the MMC with a periodic array of fibers. The representative unit volume is divided into a fiber and three matrix cells for which the microstructural equilibrium and compatibility equations can be analyzed. The resulting constitutive model and associated failure criteria can be used to predict the material behavior under general loading conditions.
Patel, Deepak K.
2016-01-01
This paper is concerned with predicting the progressive damage and failure of multi-layered hybrid textile composites subjected to uniaxial tensile loading, using a novel two-scale computational mechanics framework. These composites include three-dimensional woven textile composites (3DWTCs) with glass, carbon and Kevlar fibre tows. Progressive damage and failure of 3DWTCs at different length scales are captured in the present model by using a macroscale finite-element (FE) analysis at the representative unit cell (RUC) level, while a closed-form micromechanics analysis is implemented simultaneously at the subscale level using material properties of the constituents (fibre and matrix) as input. The N-layers concentric cylinder (NCYL) model (Zhang and Waas 2014 Acta Mech. 225, 1391–1417; Patel et al. submitted Acta Mech.) to compute local stress, srain and displacement fields in the fibre and matrix is used at the subscale. The 2-CYL fibre–matrix concentric cylinder model is extended to fibre and (N−1) matrix layers, keeping the volume fraction constant, and hence is called the NCYL model where the matrix damage can be captured locally within each discrete layer of the matrix volume. The influence of matrix microdamage at the subscale causes progressive degradation of fibre tow stiffness and matrix stiffness at the macroscale. The global RUC stiffness matrix remains positive definite, until the strain softening response resulting from different failure modes (such as fibre tow breakage, tow splitting in the transverse direction due to matrix cracking inside tow and surrounding matrix tensile failure outside of fibre tows) are initiated. At this stage, the macroscopic post-peak softening response is modelled using the mesh objective smeared crack approach (Rots et al. 1985 HERON 30, 1–48; Heinrich and Waas 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23–26 April 2012. AIAA 2012-1537). Manufacturing-induced geometric imperfections are included in the simulation, where the FE mesh of the unit cell is generated directly from micro-computed tomography (MCT) real data using a code Simpleware. Results from multi-scale analysis for both an idealized perfect geometry and one that includes geometric imperfections are compared with experimental results (Pankow et al. 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23–26 April 2012. AIAA 2012-1572). This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242294
Patel, Deepak K; Waas, Anthony M
2016-07-13
This paper is concerned with predicting the progressive damage and failure of multi-layered hybrid textile composites subjected to uniaxial tensile loading, using a novel two-scale computational mechanics framework. These composites include three-dimensional woven textile composites (3DWTCs) with glass, carbon and Kevlar fibre tows. Progressive damage and failure of 3DWTCs at different length scales are captured in the present model by using a macroscale finite-element (FE) analysis at the representative unit cell (RUC) level, while a closed-form micromechanics analysis is implemented simultaneously at the subscale level using material properties of the constituents (fibre and matrix) as input. The N-layers concentric cylinder (NCYL) model (Zhang and Waas 2014 Acta Mech. 225, 1391-1417; Patel et al. submitted Acta Mech.) to compute local stress, srain and displacement fields in the fibre and matrix is used at the subscale. The 2-CYL fibre-matrix concentric cylinder model is extended to fibre and (N-1) matrix layers, keeping the volume fraction constant, and hence is called the NCYL model where the matrix damage can be captured locally within each discrete layer of the matrix volume. The influence of matrix microdamage at the subscale causes progressive degradation of fibre tow stiffness and matrix stiffness at the macroscale. The global RUC stiffness matrix remains positive definite, until the strain softening response resulting from different failure modes (such as fibre tow breakage, tow splitting in the transverse direction due to matrix cracking inside tow and surrounding matrix tensile failure outside of fibre tows) are initiated. At this stage, the macroscopic post-peak softening response is modelled using the mesh objective smeared crack approach (Rots et al. 1985 HERON 30, 1-48; Heinrich and Waas 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23-26 April 2012 AIAA 2012-1537). Manufacturing-induced geometric imperfections are included in the simulation, where the FE mesh of the unit cell is generated directly from micro-computed tomography (MCT) real data using a code Simpleware Results from multi-scale analysis for both an idealized perfect geometry and one that includes geometric imperfections are compared with experimental results (Pankow et al. 2012 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, 23-26 April 2012 AIAA 2012-1572). This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Wang, Jing; Shi, Chen; Feng, Jiayue; Long, Xi; Meng, Lingzhi; Ren, Hang
2018-01-01
The effects of oxygen plasma treatment power on Aramid Fiber III chemical structure and its reinforced bismaleimides (BMI) composite humidity resistance properties were investigated in this work. The aramid fiber III chemical structure under different plasma treatment power were measured by FTIR. The composite bending strength and interlinear shear strength with different plasma treatment power before and after absorption water were tested respectively. The composite rupture morphology was observed by SEM. The FTIR results showed that oxygen plasma treatment do not change the fiber bulk chemical structure. The composite humidity resistance of bending strength and interlinear shear strength are similar for untreated and plasma treated samples. The retention rate of composite bending strength and interlinear shear strength are about 75% and 94%, respectively. The composite rupture mode turns to be the fiber failure after water absorption.
NASA Technical Reports Server (NTRS)
Cerracchio, Priscilla; Gherlone, Marco; Di Sciuva, Marco; Tessler, Alexander
2013-01-01
The marked increase in the use of composite and sandwich material systems in aerospace, civil, and marine structures leads to the need for integrated Structural Health Management systems. A key capability to enable such systems is the real-time reconstruction of structural deformations, stresses, and failure criteria that are inferred from in-situ, discrete-location strain measurements. This technology is commonly referred to as shape- and stress-sensing. Presented herein is a computationally efficient shape- and stress-sensing methodology that is ideally suited for applications to laminated composite and sandwich structures. The new approach employs the inverse Finite Element Method (iFEM) as a general framework and the Refined Zigzag Theory (RZT) as the underlying plate theory. A three-node inverse plate finite element is formulated. The element formulation enables robust and efficient modeling of plate structures instrumented with strain sensors that have arbitrary positions. The methodology leads to a set of linear algebraic equations that are solved efficiently for the unknown nodal displacements. These displacements are then used at the finite element level to compute full-field strains, stresses, and failure criteria that are in turn used to assess structural integrity. Numerical results for multilayered, highly heterogeneous laminates demonstrate the unique capability of this new formulation for shape- and stress-sensing.
Stochastic-Strength-Based Damage Simulation of Ceramic Matrix Composite Laminates
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Mital, Subodh K.; Murthy, Pappu L. N.; Bednarcyk, Brett A.; Pineda, Evan J.; Bhatt, Ramakrishna T.; Arnold, Steven M.
2016-01-01
The Finite Element Analysis-Micromechanics Analysis Code/Ceramics Analysis and Reliability Evaluation of Structures (FEAMAC/CARES) program was used to characterize and predict the progressive damage response of silicon-carbide-fiber-reinforced reaction-bonded silicon nitride matrix (SiC/RBSN) composite laminate tensile specimens. Studied were unidirectional laminates [0] (sub 8), [10] (sub 8), [45] (sub 8), and [90] (sub 8); cross-ply laminates [0 (sub 2) divided by 90 (sub 2),]s; angled-ply laminates [plus 45 (sub 2) divided by -45 (sub 2), ]s; doubled-edge-notched [0] (sub 8), laminates; and central-hole laminates. Results correlated well with the experimental data. This work was performed as a validation and benchmarking exercise of the FEAMAC/CARES program. FEAMAC/CARES simulates stochastic-based discrete-event progressive damage of ceramic matrix composite and polymer matrix composite material structures. It couples three software programs: (1) the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC), (2) the Ceramics Analysis and Reliability Evaluation of Structures Life Prediction Program (CARES/Life), and (3) the Abaqus finite element analysis program. MAC/GMC contributes multiscale modeling capabilities and micromechanics relations to determine stresses and deformations at the microscale of the composite material repeating-unit-cell (RUC). CARES/Life contributes statistical multiaxial failure criteria that can be applied to the individual brittle-material constituents of the RUC, and Abaqus is used to model the overall composite structure. For each FEAMAC/CARES simulation trial, the stochastic nature of brittle material strength results in random, discrete damage events that incrementally progress until ultimate structural failure.
Analysis of whisker-toughened CMC structural components using an interactive reliability model
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.; Palko, Joseph L.
1992-01-01
Realizing wider utilization of ceramic matrix composites (CMC) requires the development of advanced structural analysis technologies. This article focuses on the use of interactive reliability models to predict component probability of failure. The deterministic William-Warnke failure criterion serves as theoretical basis for the reliability model presented here. The model has been implemented into a test-bed software program. This computer program has been coupled to a general-purpose finite element program. A simple structural problem is presented to illustrate the reliability model and the computer algorithm.
Ceramics and composites for rocket engines and space structures
NASA Astrophysics Data System (ADS)
Upadhya, Kamleshwar
1992-05-01
The use of ceramic and other nonmetallic composites is considered for engine and structural elements of the National Aerospace Plane (NASP), the Space Shuttle, and space stations. Attention is given to the application of refractory composites with protective coatings for oxidation and hydrogen contamination to the NASP to address the high-temperature environments the vehicle is expected to encounter. Existing applications of metal-matrix composite struts and Gr-Ep cargo-bay doors on the Space Shuttle are reviewed, and the need for more data on the service life and failure modes of the materials is identified.
NASA Technical Reports Server (NTRS)
Bhatt, R. T.; Kiser, J. D.
2017-01-01
SiC/SiC composites fabricated by melt infiltration are being considered as potential candidate materials for next generation turbine components. However these materials are limited to 2400 F application because of the presence of residual silicon in the SiC matrix. Currently there is an increasing interest in developing and using silicon free SiC/SiC composites for structural aerospace applications above 2400 F. Full PIP or full CVI or CVI + PIP hybrid SiC/SiC composites can be fabricated without excess silicon, but the upper temperature stress capabilities of these materials are not fully known. In this study, the on-axis creep and rupture properties of the state-of-the-art full CVI and full PIP SiC/SiC composites with Sylramic-iBN fibers were measured at temperatures to 2700 F in air and their failure modes examined. In this presentation creep rupture properties, failure mechanisms and upper temperature capabilities of these two systems will be discussed and compared with the literature data.
Reliability-Based Design Optimization of a Composite Airframe Component
NASA Technical Reports Server (NTRS)
Pai, Shantaram S.; Coroneos, Rula; Patnaik, Surya N.
2011-01-01
A stochastic optimization methodology (SDO) has been developed to design airframe structural components made of metallic and composite materials. The design method accommodates uncertainties in load, strength, and material properties that are defined by distribution functions with mean values and standard deviations. A response parameter, like a failure mode, has become a function of reliability. The primitive variables like thermomechanical loads, material properties, and failure theories, as well as variables like depth of beam or thickness of a membrane, are considered random parameters with specified distribution functions defined by mean values and standard deviations.
NASA Astrophysics Data System (ADS)
Zhang, Jian; Liu, Wei; Gao, Weicheng
2018-02-01
This work is carried out to study the influence of double cutouts and stiffener reinforcements on the performance of I-section Carbon Fibre/Epoxy composites beam, including buckling, post-buckling behavior and the ultimate failure. The cantilever I-section beam with two diamond-shaped cutouts in the web and three longitudinal L-shaped stiffeners bonded to one side is subjected to a shear load at free end. Both numerical modelling and Experiment of I-section CFRP beam are performed. In numerical analysis, Tsai-Wu failure criterion is utilized to detect the first-ply-failure load in nonlinear analysis by predicting the load-deflection response. Good agreements are obtained from comparison between the numerical simulations and test results. For the double-hole beam web, the two cutouts show close surface deformation amplitude, which indicates that the stiffeners make the force transformation more effective. Comparing to the numerical result of corresponding beam with single cutout and stiffener reinforcement, the longitudinal stiffeners can not only play a significant role in improving the structural stability (increase about 30%), but also take effects to improve the deformation compatibility of structure. Local buckling happened within the sub-webs partioned by the stiffener and the buckling load is different but close. With post-buckling regime, the two areas show similar deformation characteristic, while the sub-web close to fixed end bears more shear load than the sub-web close to loading end with the increase of normal deformation of structure. The catastrophic failure load is approximate 75.6% higher comparing to buckling load. Results illustrate that the tensile fracture of the fiber is the immediate cause of the ultimate failure of the structure.
2011-11-01
Approved for public release; distribution unlimited. See additional restrictions described on inside pages STINFO COPY AIR...pin density, diameter and length are some of the parameters related to the effectiveness of z-pins for increasing the delamination resistance...has received considerable attention in recent years due to increased use of composite materials in aerospace and related industries. Mainly in the
Computational Methods for Failure Analysis and Life Prediction
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Compiler); Harris, Charles E. (Compiler); Housner, Jerrold M. (Compiler); Hopkins, Dale A. (Compiler)
1993-01-01
This conference publication contains the presentations and discussions from the joint UVA/NASA Workshop on Computational Methods for Failure Analysis and Life Prediction held at NASA Langley Research Center 14-15 Oct. 1992. The presentations focused on damage failure and life predictions of polymer-matrix composite structures. They covered some of the research activities at NASA Langley, NASA Lewis, Southwest Research Institute, industry, and universities. Both airframes and propulsion systems were considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schubbe, J.J.
1990-12-01
Metal matrix composites (MMCs) are rapidly becoming strong candidates for high temperature and high stiffness structural applications such as the Advanced Tactical Fighter (ATF). This study systematically investigated the failure modes and associated damage in a cross-ply, (0/90)2s SCS6/Ti-15-3 metal matrix composite under in-phase and out-of-phase thermomechanic fatigue. Initiation and progression of fatigue damage were recorded and correlated to changes in Young's Modulus of the composite material. Experimental results show an internal stabilization of reaction zone size but degradation and separation from constituent materials under extended cyclic thermal loading. Critical to damage were transverse cracks initiating in the 90 degreesmore » plies, growing and coalescing from fiber/matrix interfaces internal to the specimen, progressing outward through the 0 degree plies before failure. Maximum mechanical strain at failure was determined to be approximately 0.0075 mm/mm. A correlation was made relating maximum matrix stress to failure life, resulting in a fatigue threshold limit of 280 MPa. An attempt was made to correlate the degradation in Young's Modulus (Damage=1-E/Eo) with the applied life cycles from different TMF tests.« less
NASA Astrophysics Data System (ADS)
Kholish Rumayshah, Khodijah; Prayoga, Aditya; Mochammad Agoes Moelyadi, Ing., Dr.
2018-04-01
Research on a High Altitude Long Endurance (HALE) Unmanned Aerial Vehicle (UAV) is currently being conducted at Bandung Institute of Technology (ITB). Previously, the 1st generation of HALE UAV ITB used balsa wood for most of its structure. Flight test gave the result of broken wings due to extreme side-wind that causes large bending to its high aspect ratio wing. This paper conducted a study on designing the 2nd generation of HALE UAV ITB which used composite materials in order to substitute balsa wood at some critical parts of the wing’s structure. Finite element software ABAQUS/CAE is used to predict the stress and deformation that occurred. Tsai-Wu and Von-Mises failure criteria were applied to check whether the structure failed or not. The initial configuration gave the results that the structure experienced material failure. A second iteration was done by proposing a new configuration and it was proven safe against the load given.
Application of the strain invariant failure theory (SIFT) to metals and fiber-polymer composites
NASA Astrophysics Data System (ADS)
Hart-Smith, L. J.
2010-11-01
The strain invariant failure theory (SIFT) model, developed to predict the onset of irreversible damage of fiber-polymer composite laminates, may be also applied to metals. Indeed, it can be applied to all solid materials. Two initial failure mechanisms are considered - distortion and dilatation. The author's experiences are confined to the structures of transport aircraft; phase changes in metals and self-destruction of laminates during curing are not covered. Doing so would need additional material properties, and probably a different failure theory. SIFT does not cover environmental attack on the interface between fibers and resin; it covers only cohesive failures within the fibers or resin, or within a homogeneous piece of metal. In the SIFT model, each damage mechanism is characterized by its own critical value of a strain invariant. Each mechanism dominates its own portion of the strain domain; there is no interaction between them. Application of SIFT to metals is explained first. Fiber-polymer composites contain two discrete constituents; each material must be characterized independently by its own two invariants. This is why fiber-polymer composites need four invariants whereas metals require only two. There is no such thing as a composite material, only composites of materials. The "composite materials" must not be modeled as homogeneous anisotropic solids because it is then not even possible to differentiate between fiber and matrix failures. The SIFT model uses measured material properties; it does not require that half of them be arbitrarily replaced by unmeasurable properties to fit laminate test data, as so many earlier composite failure criteria have. The biggest difference in using SIFT for metals and fiber-reinforced materials is internal residual thermal and moisture absorption stresses created by the gross dissimilarity in properties between embedded fibers and thermoset resin matrices. These residual stresses consume so much of the strength of unreinforced polymers for typical thermoset resins cured at high temperature, like epoxies, that little strength is available to resist mechanical loads. (Thermoplastic polymers suffer far less in this regard.) The paper explains how SIFT is used via worked examples, which demonstrate the kind of detailed information that SIFT analyses can generate.
A Study of Flexible Composites for Expandable Space Structures
NASA Technical Reports Server (NTRS)
Scotti, Stephen J.
2016-01-01
Payload volume for launch vehicles is a critical constraint that impacts spacecraft design. Deployment mechanisms, such as those used for solar arrays and antennas, are approaches that have successfully accommodated this constraint, however, providing pressurized volumes that can be packaged compactly at launch and expanded in space is still a challenge. One approach that has been under development for many years is to utilize softgoods - woven fabric for straps, cloth, and with appropriate coatings, bladders - to provide this expandable pressure vessel capability. The mechanics of woven structure is complicated by a response that is nonlinear and often nonrepeatable due to the discrete nature of the woven fiber architecture. This complexity reduces engineering confidence to reliably design and certify these structures, which increases costs due to increased requirements for system testing. The present study explores flexible composite materials systems as an alternative to the heritage softgoods approach. Materials were obtained from vendors who utilize flexible composites for non-aerospace products to determine some initial physical and mechanical properties of the materials. Uniaxial mechanical testing was performed to obtain the stress-strain response of the flexible composites and the failure behavior. A failure criterion was developed from the data, and a space habitat application was used to provide an estimate of the relative performance of flexible composites compared to the heritage softgoods approach. Initial results are promising with a 25% mass savings estimated for the flexible composite solution.
Design/Analysis of Metal/Composite Bonded Joints for Survivability at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Bartoszyk, Andrew E.
2004-01-01
A major design and analysis challenge for the JWST ISM structure is the metal/composite bonded joints that will be required to survive down to an operational ultra-low temperature of 30K (-405 F). The initial and current baseline design for the plug-type joint consists of a titanium thin walled fitting (1-3mm thick) bonded to the interior surface of an M555/954-6 composite truss square tube with an axially stiff biased lay-up. Metallic fittings are required at various nodes of the truss structure to accommodate instrument and lift-point bolted interfaces. Analytical experience and design work done on metal/composite bonded joints at temperatures below liquid nitrogen are limited and important analysis tools, material properties, and failure criteria for composites at cryogenic temperatures are virtually nonexistent. Increasing the challenge is the difficulty in testing for these required tools and parameters at 30K. A preliminary finite element analysis shows that failure due to CTE mismatch between the biased composite and titanium or aluminum is likely. Failure is less likely with Invar, however an initial mass estimate of Invar fittings demonstrates that Invar is not an automatic alternative. In order to gain confidence in analyzing and designing the ISM joints, a comprehensive joint development testing program has been planned and is currently running. The test program is designed for the correlation of the analysis methodology, including tuning finite element model parameters, and developing a composite failure criterion for the effect of multi-axial composite stresses on the strength of a bonded joint at 30K. The testing program will also consider stress mitigation using compliant composite layers and potential strength degradation due to multiple thermal cycles. Not only will the finite element analysis be correlated to the test data, but the FEA will be used to guide the design of the test. The first phase of the test program has been completed and the preliminary analysis has been revisited based on the test data In this work, we present an overview of the test plan, results today, and resulting design improvements.
NASA Astrophysics Data System (ADS)
Srirengan, Kanthikannan
The overall objective of this research was to develop the finite element code required to efficiently predict the strength of plain weave composite structures. Towards which, three-dimensional conventional progressive damage analysis was implemented to predict the strength of plain weave composites subjected to periodic boundary conditions. Also, modal technique for three-dimensional global/local stress analysis was developed to predict the failure initiation in plain weave composite structures. The progressive damage analysis was used to study the effect of quadrature order, mesh refinement and degradation models on the predicted damage and strength of plain weave composites subjected to uniaxial tension in the warp tow direction. A 1/32sp{nd} part of the representative volume element of a symmetrically stacked configuration was analyzed. The tow geometry was assumed to be sinusoidal. Graphite/Epoxy system was used. Maximum stress criteria and combined stress criteria were used to predict failure in the tows and maximum principal stress criterion was used to predict failure in the matrix. Degradation models based on logical reasoning, micromechanics idealization and experimental comparisons were used to calculate the effective material properties with of damage. Modified Newton-Raphson method was used to determine the incremental solution for each applied strain level. Using a refined mesh and the discount method based on experimental comparisons, the progressive damage and the strength of plain weave composites of waviness ratios 1/3 and 1/6 subjected to uniaxial tension in the warp direction have been characterized. Plain weave composites exhibit a brittle response in uniaxial tension. The strength decreases significantly with the increase in waviness ratio. Damage initiation and collapse were caused dominantly due to intra-tow cracking and inter-tow debonding respectively. The predicted strength of plain weave composites of racetrack geometry and waviness ratio 1/25.7 was compared with analytical predictions and experimental findings and was found to match well. To evaluate the performance of the modal technique, failure initiation in a short woven composite cantilevered plate subjected to end moment and transverse end load was predicted. The global/local predictions were found to reasonably match well with the conventional finite element predictions.
Yield and failure criteria for composite materials under static and dynamic loading
Daniel, Isaac M.
2015-12-23
To facilitate and accelerate the process of introducing, evaluating and adopting of new material systems, it is important to develop/establish comprehensive and effective procedures of characterization, modeling and failure prediction of structural laminates based on the properties of the constituent materials, e. g., fibers, matrix, and the single ply or lamina. A new failure theory, the Northwestern (NU-Daniel) theory, has been proposed for predicting lamina yielding and failure under multi-axial states of stress including strain rate effects. It is primarily applicable to matrix-dominated interfiber/interlaminar failures. It is based on micromechanical failure mechanisms but is expressed in terms of easily measuredmore » macroscopic lamina stiffness and strength properties. It is presented in the form of a master failure envelope incorporating strain rate effects. The theory was further adapted and extended to the prediction of in situ first ply yielding and failure (FPY and FPF) and progressive failure of multi-directional laminates under static and dynamic loadings. The significance of this theory is that it allows for rapid screening of new composite materials without very extensive testing and offers easily implemented design tools.« less
Energy absorption capability and crashworthiness of composite material structures: A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carruthers, J.J.; Kettle, A.P.; Robinson, A.M.
1998-10-01
The controlled brittle failure of thermosetting fiber-reinforced polymer composites can provide a very efficient energy absorption mechanism. Consequently, the use of these materials in crashworthy vehicle designs has been the subject of considerable interest. In this respect, their more widespread application has been limited by the complexity of their collapse behavior. This article reviews the current level of understanding i this field, including the correlations between failure mode and energy absorption, the principal material, geometric, and physical parameters relevant to crashworthy design and methods of predicting the energy absorption capability of polymer composites. Areas which require further investigation are identified.more » This review article contains 70 references.« less
Tiltrotor Research Aircraft composite blade repairs - Lessons learned
NASA Technical Reports Server (NTRS)
Espinosa, Paul S.; Groepler, David R.
1992-01-01
The XV-15, N703NA Tiltrotor Research Aircraft located at the NASA Ames Research Center, Moffett Field, California, currently uses a set of composite rotor blades of complex shape known as the advanced technology blades (ATBs). The main structural element of the blades is a D-spar constructed of unidirectional, angled fiberglass/graphite, with the aft fairing portion of the blades constructed of a fiberglass cross-ply skin bonded to a Nomex honeycomb core. The blade tip is a removable laminate shell that fits over the outboard section of the spar structure, which contains a cavity to retain balance weights. Two types of tip shells are used for research. One is highly twisted (more than a conventional helicopter blade) and has a hollow core constructed of a thin Nomex-honeycomb-and-fiberglass-skin sandwich; the other is untwisted with a solid Nomex honeycomb core and a fiberglass cross-ply skin. During initial flight testing of the blades, a number of problems in the composite structure were encountered. These problems included debonding between the fiberglass skin and the honeycomb core, failure of the honeycomb core, failures in fiberglass splices, cracks in fiberglass blocks, misalignment of mated composite parts, and failures of retention of metal fasteners. Substantial time was spent in identifying and repairing these problems. Discussed here are the types of problems encountered, the inspection procedures used to identify each problem, the repairs performed on the damaged or flawed areas, the level of criticality of the problems, and the monitoring of repaired areas. It is hoped that this discussion will help designers, analysts, and experimenters in the future as the use of composites becomes more prevalent.
Tiltrotor research aircraft composite blade repairs: Lessons learned
NASA Technical Reports Server (NTRS)
Espinosa, Paul S.; Groepler, David R.
1991-01-01
The XV-15, N703NA Tiltrotor Research Aircraft located at the NASA Ames Research Center, Moffett Field, California, currently uses a set of composite rotor blades of complex shape known as the advanced technology blades (ATBs). The main structural element of the blades is a D-spar constructed of unidirectional, angled fiberglass/graphite, with the aft fairing portion of the blades constructed of a fiberglass cross-ply skin bonded to a Nomex honeycomb core. The blade tip is a removable laminate shell that fits over the outboard section of the spar structure, which contains a cavity to retain balance weights. Two types of tip shells are used for research. One is highly twisted (more than a conventional helicopter blade) and has a hollow core constructed of a thin Nomex-honeycomb-and-fiberglass-skin sandwich; the other is untwisted with a solid Nomex honeycomb core and a fiberglass cross-ply skin. During initial flight testing of the blades, a number of problems in the composite structure were encountered. These problems included debonding between the fiberglass skin and the honeycomb core, failure of the honeycomb core, failures in fiberglass splices, cracks in fiberglass blocks, misalignment of mated composite parts, and failures of retention of metal fasteners. Substantial time was spent in identifying and repairing these problems. Discussed here are the types of problems encountered, the inspection procedures used to identify each problem, the repairs performed on the damaged or flawed areas, the level of criticality of the problems, and the monitoring of repaired areas. It is hoped that this discussion will help designers, analysts, and experimenters in the future as the use of composites becomes more prevalent.
2014-11-01
such as orthogonal (Z- fiber) weave, layer-to-layer, and angle interlock. Figure 1 provides an example of 2 different types of 3-D woven structures...o.~os~~~o. t Deflection (in) (c) 90° Orientation 18 6.4 LCC Test Specimen Failure Analysis LCC posttest failure analysis was conducted
Multi-field coupled sensing network for health monitoring of composite bolted joint
NASA Astrophysics Data System (ADS)
Wang, Yishou; Qing, Xinlin; Dong, Liang; Banerjee, Sourav
2016-04-01
Advanced fiber reinforced composite materials are becoming the main structural materials of next generation of aircraft because of their high strength and stiffness to weight ratios, and excellent designability. As key components of large composite structures, joints play important roles to ensure the integrity of the composite structures. However, it is very difficult to analyze the strength and failure modes of composite joints due to their complex nonlinear coupling factors. Therefore, there is a need to monitor, diagnose, evaluate and predict the structure state of composite joints. This paper proposes a multi-field coupled sensing network for health monitoring of composite bolted joints. Major work of this paper includes: 1) The concept of multifunctional sensor layer integrated with eddy current sensors, Rogowski coil and arrayed piezoelectric sensors; 2) Development of the process for integrating the eddy current sensor foil, Rogowski coil and piezoelectric sensor array in multifunctional sensor layer; 3) A new concept of smart composite joint with multifunctional sensing capability. The challenges for building such a structural state sensing system and some solutions to address the challenges are also discussed in the study.
Self-healing polymers and composites based on thermal activation
NASA Astrophysics Data System (ADS)
Wang, Ying; Bolanos, Ed; Wudl, Fred; Hahn, Thomas; Kwok, Nathan
2007-04-01
Structural polymer composites are susceptible to premature failure in the form of microcracks in the matrix. Although benign initially when they form, these matrix cracks tend to coalesce and lead in service to critical damage modes such as ply delamination. The matrix cracks are difficult to detect and almost impossible to repair because they form inside the composite laminate. Therefore, polymers with self-healing capability would provide a promising potential to minimize maintenance costs while extending the service lifetime of composite structures. In this paper we report on a group of polymers and their composites which exhibit mendable property upon heating. The failure and healing mechanisms of the polymers involve Diels-Alder (DA) and retro-Diels-Alder (RDA) reactions on the polymer back-bone chain, which are thermally reversible reactions requiring no catalyst. The polymers exhibited good healing property in bulk form. Composite panels were prepared by sandwiching the monomers between carbon fiber fabric layers and cured in autoclave. Microcracks were induced on the resin-rich surface of composite with Instron machine at room temperature by holding at 1% strain for 1 min. The healing ability of the composite was also demonstrated by the disappearance of microcracks after heating. In addition to the self-healing ability, the polymers and composites also exhibited shape memory property. These unique properties may provide the material multi-functional applications. Resistance heating of traditional composites and its applicability in self-healing composites is also studied to lay groundwork for a fully integrated self-healing composite.
Bagheri, Zahra S; El Sawi, Ihab; Schemitsch, Emil H; Zdero, Rad; Bougherara, Habiba
2013-04-01
This work is part of an ongoing program to develop a new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite material for use as an orthopaedic long bone fracture plate, instead of a metal plate. The purpose of this study was to evaluate the mechanical properties of this new novel composite material. The composite material had a "sandwich structure", in which two thin sheets of CF/epoxy were attached to each outer surface of the flax/epoxy core, which resulted in a unique structure compared to other composite plates for bone plate applications. Mechanical properties were determined using tension, three-point bending, and Rockwell hardness tests. Also, scanning electron microscopy (SEM) was used to characterize the failure mechanism of specimens in tension and three-point bending tests. The results of mechanical tests revealed a considerably high ultimate strength in both tension (399.8MPa) and flexural loading (510.6MPa), with a higher elastic modulus in bending tests (57.4GPa) compared to tension tests (41.7GPa). The composite material experienced brittle catastrophic failure in both tension and bending tests. The SEM images, consistent with brittle failure, showed mostly fiber breakage and fiber pull-out at the fractured surfaces with perfect bonding at carbon fibers and flax plies. Compared to clinically-used orthopaedic metal plates, current CF/flax/epoxy results were closer to human cortical bone, making the material a potential candidate for use in long bone fracture fixation. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Binienda, Wieslaw K.; Sancaktar, Erol; Roberts, Gary D. (Technical Monitor)
2002-01-01
An effective design methodology was established for composite jet engine containment structures. The methodology included the development of the full and reduced size prototypes, and FEA models of the containment structure, experimental and numerical examination of the modes of failure clue to turbine blade out event, identification of materials and design candidates for future industrial applications, and design and building of prototypes for testing and evaluation purposes.
Crazing in Polymeric and Composite Systems
1988-04-30
Characterization of Random Microstructural Systems , Proceedings, International Conference on Structure, Solid Mechanics and Engineering Design in Civil...AND COMPOSITE SYSTEMS 12. PERSONAL AUTHOR(S) HSIAO, C. C. 13a. TYPE OF REPORT J13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT...study of the failure of composite systems under stress is important both theoretically and practically. This program aims to develop time dependent
A study of tensile residual strength of composite laminates under different patch-repaired series
NASA Astrophysics Data System (ADS)
Ding, M. H.; zhan, S.; Tang, Y. H.; Wang, L.; Ma, D. Q.; Wang, R. G.
2017-09-01
The tensile behavior of composite laminate structures repaired by bonding external patches was studied in the paper. Two different types of patches including wedge patches and inverted wedge patches were used and failure mechanisms, failure load and strength predictions were studied. A convenient and fast method of building 2-D finite element modeling (FEM) of laminate structure repaired was proposed and the strength of repaired laminate structures was calculated by FEM. The results showed that more than 80% tensile strength of the undamaged laminate could be recovered by bonding patch repairs. Moreover, the results indicated that the strength of inverted wedge patches repair were higher than that of wedge patches repair. FEM simulation results indicated that high stress concentration was found along the edges of invert patches and the most weakness part located in the adhesive bondline. FEM analysis results showed that the strength predicted matched well with the test strength.
Progressive fracture of fiber composites
NASA Technical Reports Server (NTRS)
Irvin, T. B.; Ginty, C. A.
1983-01-01
Refined models and procedures are described for determining progressive composite fracture in graphite/epoxy angleplied laminates. Lewis Research Center capabilities are utilized including the Real Time Ultrasonic C Scan (RUSCAN) experimental facility and the Composite Durability Structural Analysis (CODSTRAN) computer code. The CODSTRAN computer code is used to predict the fracture progression based on composite mechanics, finite element stress analysis, and fracture criteria modules. The RUSCAN facility, CODSTRAN computer code, and scanning electron microscope are used to determine durability and identify failure mechanisms in graphite/epoxy composites.
Layered Composite Analysis Capability
NASA Technical Reports Server (NTRS)
Narayanaswami, R.; Cole, J. G.
1985-01-01
Laminated composite material construction is gaining popularity within industry as an attractive alternative to metallic designs where high strength at reduced weights is of prime consideration. This has necessitated the development of an effective analysis capability for the static, dynamic and buckling analyses of structural components constructed of layered composites. Theoretical and user aspects of layered composite analysis and its incorporation into CSA/NASTRAN are discussed. The availability of stress and strain based failure criteria is described which aids the user in reviewing the voluminous output normally produced in such analyses. Simple strategies to obtain minimum weight designs of composite structures are discussed. Several example problems are presented to demonstrate the accuracy and user convenient features of the capability.
NASA Astrophysics Data System (ADS)
Talagani, Mohamad R.; Abdi, Frank; Saravanos, Dimitris; Chrysohoidis, Nikos; Nikbin, Kamran; Ragalini, Rose; Rodov, Irena
2013-05-01
The paper proposes the diagnostic and prognostic modeling and test validation of a Wireless Integrated Strain Monitoring and Simulation System (WISMOS). The effort verifies a hardware and web based software tool that is able to evaluate and optimize sensorized aerospace composite structures for the purpose of Structural Health Monitoring (SHM). The tool is an extension of an existing suite of an SHM system, based on a diagnostic-prognostic system (DPS) methodology. The goal of the extended SHM-DPS is to apply multi-scale nonlinear physics-based Progressive Failure analyses to the "as-is" structural configuration to determine residual strength, remaining service life, and future inspection intervals and maintenance procedures. The DPS solution meets the JTI Green Regional Aircraft (GRA) goals towards low weight, durable and reliable commercial aircraft. It will take advantage of the currently developed methodologies within the European Clean sky JTI project WISMOS, with the capability to transmit, store and process strain data from a network of wireless sensors (e.g. strain gages, FBGA) and utilize a DPS-based methodology, based on multi scale progressive failure analysis (MS-PFA), to determine structural health and to advice with respect to condition based inspection and maintenance. As part of the validation of the Diagnostic and prognostic system, Carbon/Epoxy ASTM coupons were fabricated and tested to extract the mechanical properties. Subsequently two composite stiffened panels were manufactured, instrumented and tested under compressive loading: 1) an undamaged stiffened buckling panel; and 2) a damaged stiffened buckling panel including an initial diamond cut. Next numerical Finite element models of the two panels were developed and analyzed under test conditions using Multi-Scale Progressive Failure Analysis (an extension of FEM) to evaluate the damage/fracture evolution process, as well as the identification of contributing failure modes. The comparisons between predictions and test results were within 10% accuracy.
Progressive Fracture of Composite Structures
NASA Technical Reports Server (NTRS)
Minnetyan, Levon
2001-01-01
This report includes the results of a research in which the COmposite Durability STRuctural ANalysis (CODSTRAN) computational simulation capabilities were augmented and applied to various structures for demonstration of the new features and verification. The first chapter of this report provides an introduction to the computational simulation or virtual laboratory approach for the assessment of damage and fracture progression characteristics in composite structures. The second chapter outlines the details of the overall methodology used, including the failure criteria and the incremental/iterative loading procedure with the definitions of damage, fracture, and equilibrium states. The subsequent chapters each contain an augmented feature of the code and/or demonstration examples. All but one of the presented examples contains laminated composite structures with various fiber/matrix constituents. For each structure simulated, damage initiation and progression mechanisms are identified and the structural damage tolerance is quantified at various degradation stages. Many chapters contain the simulation of defective and defect free structures to evaluate the effects of existing defects on structural durability.
A Mixed-Mode (I-II) Fracture Criterion for AS4/8552 Carbon/Epoxy Composite Laminate
NASA Astrophysics Data System (ADS)
Karnati, Sidharth Reddy
A majority of aerospace structures are subjected to bending and stretching loads that introduce peel and shear stresses between the plies of a composite laminate. These two stress components cause a combination of mode I and II fracture modes in the matrix layer of the composite laminate. The most common failure mode in laminated composites is delamination that affects the structural integrity of composite structures. Damage tolerant designs of structures require two types of materials data: mixed-mode (I-II) delamination fracture toughness that predicts failure and delamination growth rate that predicts the life of the structural component. This research focuses determining mixed-mode (I-II) fracture toughness under a combination of mode I and mode II stress states and then a fracture criterion for AS4/8552 composite laminate, which is widely used in general aviation. The AS4/8552 prepreg was supplied by Hexcel Corporation and autoclave fabricated into a 20-ply unidirectional laminate with an artificial delamination by a Fluorinated Ethylene Propylene (FEP) film at the mid-plane. Standard split beam specimens were prepared and tested in double cantilever beam (DCB) and end notched flexure modes to determine mode I (GIC) and II (GIIC) fracture toughnesses, respectively. The DCB specimens were also tested in a modified mixed-mode bending apparatus at GIIm /GT ratios of 0.18, 0.37, 0.57 and 0.78, where GT is total and GIIm is the mode II component of energy release rates. The measured fracture toughness, GC, was found to follow the locus a power law equation. The equation was validated for the present and literature experimental data.
NASA Technical Reports Server (NTRS)
Bartolotta, Paul A.
1991-01-01
Metal Matrix Composites (MMC) and Intermetallic Matrix Composites (IMC) were identified as potential material candidates for advanced aerospace applications. They are especially attractive for high temperature applications which require a low density material that maintains its structural integrity at elevated temperatures. High temperature fatigue resistance plays an important role in determining the structural integrity of the material. This study attempts to examine the relevance of test techniques, failure criterion, and life prediction as they pertain to an IMC material, specifically, unidirectional SiC fiber reinforced titanium aluminide. A series of strain and load controlled fatigue tests were conducted on unidirectional SiC/Ti-24Al-11Nb composite at 425 and 815 C. Several damage mechanism regimes were identified by using a strain-based representation of the data, Talreja's fatigue life diagram concept. Results of these tests were then used to address issues of test control modes, definition of failure, and testing techniques. Finally, a strain-based life prediction method was proposed for an IMC under tensile cyclic loadings at elevated temperatures.
DiazDelaO, F. A.; Atherton, K.
2018-01-01
A new method has been developed for creating localized in-plane fibre waviness in composite coupons and used to create a large batch of specimens. This method could be used by manufacturers to experimentally explore the effect of fibre waviness on composite structures both directly and indirectly to develop and validate computational models. The specimens were assessed using ultrasound, digital image correlation and a novel inspection technique capable of measuring residual strain fields. To explore how the defect affects the performance of composite structures, the specimens were then loaded to failure. Predictions of remnant strength were made using a simple ultrasound damage metric and a new residual strain-based damage metric. The predictions made using residual strain measurements were found to be substantially more effective at characterizing ultimate strength than ultrasound measurements. This suggests that residual strains have a significant effect on the failure of laminates containing fibre waviness and that these strains could be incorporated into computational models to improve their ability to simulate the defect. PMID:29892446
Elastic Response and Failure Studies of Multi-Wall Carbon Nanotube Twisted Yarns
NASA Technical Reports Server (NTRS)
Gates, Thomas S.; Jefferson, Gail D.; Frankland, Sarah-Jane V.
2007-01-01
Experimental data on the stress-strain behavior of a polymer multiwall carbon nanotube (MWCNT) yarn composite are used to motivate an initial study in multi-scale modeling of strength and stiffness. Atomistic and continuum length scale modeling methods are outlined to illustrate the range of parameters required to accurately model behavior. The carbon nanotubes yarns are four-ply, twisted, and combined with an elastomer to form a single-layer, unidirectional composite. Due to this textile structure, the yarn is a complicated system of unique geometric relationships subjected to combined loads. Experimental data illustrate the local failure modes induced by static, tensile tests. Key structure-property relationships are highlighted at each length scale indicating opportunities for parametric studies to assist the selection of advantageous material development and manufacturing methods.
Progressive Fracture of Laminated Fiber-Reinforced Composite Stiffened Plate Under Pressure
NASA Technical Reports Server (NTRS)
Gotsis, Pascalis K.; Abdi, Frank; Chamis, Christos C.; Tsouros, Konstantinos
2007-01-01
S-Glass/epoxy laminated fiber-reinforced composite stiffened plate structure with laminate configuration (0/90)5 was simulated to investigate damage and fracture progression, under uniform pressure. For comparison reasons a simple plate was examined, in addition with the stiffened plate. An integrated computer code was used for the simulation. The damage initiation began with matrix failure in tension, continuous with damage and/or fracture progression as a result of additional matrix failure and fiber fracture and followed by additional interply delamination. Fracture through the thickness began when the damage accumulation was 90%. After that stage, the cracks propagate rapidly and the structures collapse. The collapse load for the simple plate is 21.57 MPa (3120 psi) and for the stiffened plate 25.24 MPa (3660 psi).
Failure Analysis of Composite Structure Materials.
1987-05-27
cracking intersected the trailing edge of the skin at a radius for a runout of an overhanging tab. Extensive delamination was evident or each side of...structure with an abrasive cutoff wheel to minimize artifacts. Detailed crack mapping of the delamination surfaces was performed by optical microscopy
A nonlinear viscoelastic approach to durability predictions for polymer based composite structures
NASA Technical Reports Server (NTRS)
Brinson, Hal F.
1991-01-01
Current industry approaches for the durability assessment of metallic structures are briefly reviewed. For polymer based composite structures, it is suggested that new approaches must be adopted to include memory or viscoelastic effects which could lead to delayed failures that might not be predicted using current techniques. A durability or accelerated life assessment plan for fiber reinforced plastics (FRP) developed and documented over the last decade or so is reviewed and discussed. Limitations to the plan are outlined and suggestions to remove the limitations are given. These include the development of a finite element code to replace the previously used lamination theory code and the development of new specimen geometries to evaluate delamination failures. The new DCB model is reviewed and results are presented. Finally, it is pointed out that new procedures are needed to determine interfacial properties and current efforts underway to determine such properties are reviewed. Suggestions for additional efforts to develop a consistent and accurate durability predictive approach for FRP structures are outlined.
A nonlinear viscoelastic approach to durability predictions for polymer based composite structures
NASA Technical Reports Server (NTRS)
Brinson, Hal F.; Hiel, C. C.
1990-01-01
Current industry approaches for the durability assessment of metallic structures are briefly reviewed. For polymer based composite structures, it is suggested that new approaches must be adopted to include memory or viscoelastic effects which could lead to delayed failures that might not be predicted using current techniques. A durability or accelerated life assessment plan for fiber reinforced plastics (FRP) developed and documented over the last decade or so is reviewed and discussed. Limitations to the plan are outlined and suggestions to remove the limitations are given. These include the development of a finite element code to replace the previously used lamination theory code and the development of new specimen geometries to evaluate delamination failures. The new DCB model is reviewed and results are presented. Finally, it is pointed out that new procedures are needed to determine interfacial properties and current efforts underway to determine such properties are reviewed. Suggestions for additional efforts to develop a consistent and accurate durability predictive approach for FRP structures is outlined.
Structural integrity of power generating speed bumps made of concrete foam composite
NASA Astrophysics Data System (ADS)
Syam, B.; Muttaqin, M.; Hastrino, D.; Sebayang, A.; Basuki, W. S.; Sabri, M.; Abda, S.
2018-02-01
In this paper concrete foam composite speed bumps were designed to generate electrical power by utilizing the movements of commuting vehicles on highways, streets, parking gates, and drive-thru station of fast food restaurants. The speed bumps were subjected to loadings generated by vehicles pass over the power generating mechanical system. In this paper, we mainly focus our discussion on the structural integrity of the speed bumps and discuss the electrical power generating speed bumps in another paper. One aspect of structural integrity is its ability to support designed loads without breaking and includes the study of past structural failures in order to prevent failures in future designs. The concrete foam composites were used for the speed bumps; the reinforcement materials are selected from empty fruit bunch of oil palm. In this study, the speed bump materials and structure were subjected to various tests to obtain its physical and mechanical properties. To analyze the structure stability of the speed bumps some models were produced and tested in our speed bump test station. We also conduct a FEM-based computer simulation to analyze stress responses of the speed bump structures. It was found that speed bump type 1 significantly reduced the radial voltage. In addition, the speed bump is equipped with a steel casing is also suitable for use as a component component in generating electrical energy.
Chandrasekaran, S.; Liebig, W. V.; Mecklenberg, M.; ...
2015-11-04
Aerographite (AG) is a mechanically robust, lightweight synthetic cellular material, which consists of a 3D interconnected network of tubular carbon [1]. The presence of open channels in AG aids to infiltrate them with polymer matrices, thereby yielding an electrical conducting and lightweight composite. Aerographite produced with densities in the range of 7–15 mg/cm 3 was infiltrated with a low viscous epoxy resin by means of vacuum infiltration technique. Detailed morphological and structural investigations on synthesized AG and AG/epoxy composite were performed by scanning electron microscopic techniques. Our present study investigates the fracture and failure of AG/epoxy composites and its energymore » absorption capacity under compression. The composites displayed an extended plateau region when uni-axially compressed, which led to an increase in energy absorption of ~133% per unit volume for 1.5 wt% of AG, when compared to pure epoxy. Preliminary results on fracture toughness showed an enhancement of ~19% in K IC for AG/epoxy composites with 0.45 wt% of AG. Furthermore, our observations of fractured surfaces under scanning electron microscope gives evidence of pull-out of arms of AG tetrapod, interface and inter-graphite failure as the dominating mechanism for the toughness improvement in these composites. These observations were consistent with the results obtained from photoelasticity experiments on a thin film AG/epoxy model composite.« less
Probability techniques for reliability analysis of composite materials
NASA Technical Reports Server (NTRS)
Wetherhold, Robert C.; Ucci, Anthony M.
1994-01-01
Traditional design approaches for composite materials have employed deterministic criteria for failure analysis. New approaches are required to predict the reliability of composite structures since strengths and stresses may be random variables. This report will examine and compare methods used to evaluate the reliability of composite laminae. The two types of methods that will be evaluated are fast probability integration (FPI) methods and Monte Carlo methods. In these methods, reliability is formulated as the probability that an explicit function of random variables is less than a given constant. Using failure criteria developed for composite materials, a function of design variables can be generated which defines a 'failure surface' in probability space. A number of methods are available to evaluate the integration over the probability space bounded by this surface; this integration delivers the required reliability. The methods which will be evaluated are: the first order, second moment FPI methods; second order, second moment FPI methods; the simple Monte Carlo; and an advanced Monte Carlo technique which utilizes importance sampling. The methods are compared for accuracy, efficiency, and for the conservativism of the reliability estimation. The methodology involved in determining the sensitivity of the reliability estimate to the design variables (strength distributions) and importance factors is also presented.
Improving Interlaminar Shear Strength
NASA Technical Reports Server (NTRS)
Jackson, Justin
2015-01-01
To achieve NASA's mission of space exploration, innovative manufacturing processes are being applied to the fabrication of complex propulsion elements.1 Use of fiber-reinforced, polymeric composite tanks are known to reduce weight while increasing performance of propulsion vehicles. Maximizing the performance of these materials is needed to reduce the hardware weight to result in increased performance in support of NASA's missions. NASA has partnered with the Mississippi State University (MSU) to utilize a unique scalable approach of locally improving the critical properties needed for composite structures. MSU is responsible for the primary development of the concept with material and engineering support provided by NASA. The all-composite tank shown in figure 1 is fabricated using a prepreg system of IM7 carbon fiber/CYCOM 5320-1 epoxy resin. This is a resin system developed for out-of-autoclave applications. This new technology is needed to support the fabrication of large, all composite structures and is currently being evaluated on a joint project with Boeing for the Space Launch System (SLS) program. In initial efforts to form an all composite pressure vessel using this prepreg system, a 60% decrease in properties was observed in scarf joint regions. Inspection of these areas identified interlaminar failure in the adjacent laminated structure as the main failure mechanism. This project seeks to improve the interlaminar shear strength (ILSS) within the prepreg layup by locally modifying the interply region shown in figure 2.2
Research on the fragment impact resistance of a composite mast
NASA Astrophysics Data System (ADS)
Zhang, Wei; Wu, Chao; Yang, Wenshan; Xu, Shanshan; Ren, Shaofei
2011-09-01
Due to the unique structural mode and material property of a composite sandwich plate, related research such as fragment impact resistance of a composite mast is short of publication and urgent in this field. In this paper, the commonly accepted sandwich core board theory was modified. Damage caused by a fragment attack was simulated onto a sandwich plate model built with solid and shell elements. It was shown that shear failure and vast matrix cracking are the main reasons for outer coat damage, and tension failure and partial matrix cracking are the cause for inner coat damage. Additionally, according to complexities in actual sea battles, different work conditions of missile attacks were set. Ballistic limit values of different fragment sizes were also obtained, which provides references for enhancing the fragment impact resistance of a composite mast.
NASA Technical Reports Server (NTRS)
Rosser, R. W.; Taylor, M. S.
1986-01-01
Composite materials made from unfilled and glass-fiber-reinforced epoxy toughened by copolymerization with elastomeric prepolymers of perfluoroalkyl ether diacyl fluoride (EDAF). Improved properties due to hydrogen bonding between rubber phase and epoxy matrix, plus formation of rubberlike phase domains that molecularly interpenetrate with epoxy matrix. With optimum rubber content, particle size, and particle shape, entire molecular structure reinforced and toughened. Improved composites also show increased failure strength, stiffness, glass-transition temperature, and resistance to water.
NASA Technical Reports Server (NTRS)
Bergan, Andrew C.; Bakuckas, John G., Jr.; Lovejoy, Andrew E.; Jegley, Dawn C.; Awerbuch, Jonathan; Tan, Tein-Min
2012-01-01
An area that shows promise in enhancing structural integrity of aircraft and aerospace structures is the integrally stitched composite technology. The most recent generation of this technology is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept developed by Boeing Research and Technology and the National Aeronautics and Space Administration. A joint test program on the assessment of damage containment capabilities of the PRSEUS concept for curved fuselage structures was conducted recently at the Federal Aviation Administration William J. Hughes Technical Center. The panel was subjected to axial tension, internal pressure, and combined axial tension and internal pressure load conditions up to fracture, with a through-the-thickness, two-bay notch severing the central stiffener. For the purpose of future progressive failure analysis development and verification, extensive post failure nondestructive and teardown inspections were conducted. Detailed inspections were performed directly ahead of the notch tip where stable damage progression was observed. These examinations showed: 1) extensive delaminations developed ahead of the notch tip, 2) the extent and location of damage, 3) the typical damage mechanisms observed in composites, and 4) the role of stitching and warp-knitting in the failure mechanisms. The objective of this paper is to provide a summary of results from these posttest inspections.
Multi-physics modeling of multifunctional composite materials for damage detection
NASA Astrophysics Data System (ADS)
Sujidkul, Thanyawalai
This study presents a modeling of multifunction composite materials for damage detection with its verification and validation to mechanical behavior predictions of Carbon Fibre Reinforced Polymer composites (CFRPs), CFRPs laminated composites, and woven SiC/SiC matrix composites that are subjected to fracture damage. Advantages of those materials are low cost, low density, high strength-to-weight ratio, and comparable specific tensile properties, the special of SiC/SiC is good environmental stability at high temperature. Resulting in, the composite has been used for many important structures such as helicopter rotors, aerojet engines, gas turbines, hot control surfaces, sporting goods, and windmill blades. Damage or material defect detection in a mechanical component can provide vital information for the prediction of remaining useful life, which will result in the prevention of catastrophic failures. Thus the understanding of the mechanical behavior have been challenge to the prevent damage and failure of composites in different scales. The damage detection methods in composites have been investigated widely in recent years. Non-destructive techniques are the traditional methods to detect the damage such as X-ray, acoustic emission and thermography. However, due to the invisible damage in composite can be occurred, to prevent the failure in composites. The developments of damage detection methods have been considered. Due to carbon fibers are conductive materials, in resulting CFRPs can be self-sensing to detect damage. As is well known, the electrical resistance has been shown to be a sensitive measure of internal damage, and also this work study in thermal resistance can detect damage in composites. However, there is a few number of different micromechanical modeling schemes has been proposed in the published literature for various types of composites. This works will provide with a numerical, analytical, and theoretical failure models in different damages to predict the mechanical damage behavior with electrical properties and thermal properties.
Manufacturing of GLARE Parts and Structures
NASA Astrophysics Data System (ADS)
Sinke, J.
2003-07-01
GLARE is a hybrid material consisting of alternating layers of metal sheets and composite layers, requiring special attention when manufacturing of parts and structures is concerned. On one hand the applicable manufacturing processes for GLARE are limited, on the other hand, due to the constituents and composition of the laminate, it offers new opportunities for production. One of the opportunities is the manufacture of very large skin panels by lay-up techniques. Lay-up techniques are common for full composites, but uncommon for metallic structures. Nevertheless, large GLARE skin panels are made by lay-up processes. In addition, the sequences of forming and laminating processes, that can be selected, offer manufacturing options that are not applicable to metals or full composites. With respect to conventional manufacturing processes, the possibilities for Fibre Metal Laminates in general, are limited. The limits are partly due to the different failure modes, partly due to the properties of the constituents in the laminate. For machining processes: the wear of the cutting tools during machining operations of GLARE stems from the abrasive nature of the glass fibres. For the forming processes: the limited formability, expressed by a small failure strain, is related to the glass fibres. However, although these manufacturing issues may restrict the use of manufacturing processes for FMLs, application of these laminates in aircraft is not hindered.
Analysis of Crushing Response of Composite Crashworthy Structures
NASA Astrophysics Data System (ADS)
David, Matthew; Johnson, Alastair F.; Voggenreiter, H.
2013-10-01
The paper describes quasi-static and dynamic tests to characterise the energy absorption properties of polymer composite crash energy absorbing segment elements under axial loads. Detailed computer tomography scans of failed specimens are used to identify local compression crush failure mechanisms at the crush front. The varied crushing morphology between the compression strain rates identified in this paper is observed to be due to the differences in the response modes and mechanical properties of the strain dependent epoxy matrix. The importance of understanding the role of strain rate effects in composite crash energy absorbing structures is highlighted in this paper.
Post-Buckling and Ultimate Strength Analysis of Stiffened Composite Panel Base on Progressive Damage
NASA Astrophysics Data System (ADS)
Zhang, Guofan; Sun, Xiasheng; Sun, Zhonglei
Stiffened composite panel is the typical thin wall structure applied in aerospace industry, and its main failure mode is buckling subjected to compressive loading. In this paper, the development of an analysis approach using Finite Element Method on post-buckling behavior of stiffened composite structures under compression was presented. Then, the numerical results of stiffened panel are obtained by FE simulations. A thorough comparison were accomplished by comparing the load carrying capacity and key position strains of the specimen with test. The comparison indicates that the FEM results which adopted developed methodology could meet the demand of engineering application in predicting the post-buckling behavior of intact stiffened structures in aircraft design stage.
Computational Simulation of Composite Structural Fatigue
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Chamis, Christos C. (Technical Monitor)
2005-01-01
Progressive damage and fracture of composite structures subjected to monotonically increasing static, tension-tension cyclic, pressurization, and flexural cyclic loading are evaluated via computational simulation. Constituent material properties, stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for composites. Damage initiation, growth, accumulation, and propagation to fracture due to monotonically increasing static and cyclic loads are included in the simulations. Results show the number of cycles to failure at different temperatures and the damage progression sequence during different degradation stages. A procedure is outlined for use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of results with insight for design decisions.
Computational Simulation of Composite Structural Fatigue
NASA Technical Reports Server (NTRS)
Minnetyan, Levon
2004-01-01
Progressive damage and fracture of composite structures subjected to monotonically increasing static, tension-tension cyclic, pressurization, and flexural cyclic loading are evaluated via computational simulation. Constituent material properties, stress and strain limits are scaled up to the structure level to evaluate the overall damage and fracture propagation for composites. Damage initiation, growth, accumulation, and propagation to fracture due to monotonically increasing static and cyclic loads are included in the simulations. Results show the number of cycles to failure at different temperatures and the damage progression sequence during different degradation stages. A procedure is outlined for use of computational simulation data in the assessment of damage tolerance, determination of sensitive parameters affecting fracture, and interpretation of results with insight for design decisions.
Design of hat-stiffened composite panels loaded in axial compression
NASA Astrophysics Data System (ADS)
Paul, T. K.; Sinha, P. K.
An integrated step-by-step analysis procedure for the design of axially compressed stiffened composite panels is outlined. The analysis makes use of the effective width concept. A computer code, BUSTCOP, is developed incorporating various aspects of buckling such as skin buckling, stiffener crippling and column buckling. Other salient features of the computer code include capabilities for generation of data based on micromechanics theories and hygrothermal analysis, and for prediction of strength failure. Parametric studies carried out on a hat-stiffened structural element indicate that, for all practical purposes, composite panels exhibit higher structural efficiency. Some hybrid laminates with outer layers made of aluminum alloy also show great promise for flight vehicle structural applications.
Deployment Testing of Flexible Composite Hinges in Bi-Material Beams
NASA Technical Reports Server (NTRS)
Sauder, Jonathan F.; Trease, Brian
2016-01-01
Composites have excellent properties for strength, thermal stability, and weight. However, they are traditionally highly rigid, and when used in deployable structures require hinges bonded to the composite material, which increases complexity and opportunities for failure. Recent research in composites has found by adding an elastomeric soft matrix, often silicone instead of an epoxy, the composite becomes flexible. This work explores the deployment repeatability of silicone matrix composite hinges which join rigid composite beams. The hinges were found to have sub-millimeter deployment repeatability. Also, an interesting creep effect was discovered, that a hinges deployment error would decrease with time.
Compression Behavior of Fluted-Core Composite Panels
NASA Technical Reports Server (NTRS)
Schultz, Marc R.; Oremont, Leonard; Guzman, J. Carlos; McCarville, Douglas; Rose, Cheryl A.; Hilburger, Mark W.
2011-01-01
In recent years, fiber-reinforced composites have become more accepted for aerospace applications. Specifically, during NASA s recent efforts to develop new launch vehicles, composite materials were considered and baselined for a number of structures. Because of mass and stiffness requirements, sandwich composites are often selected for many applications. However, there are a number of manufacturing and in-service concerns associated with traditional honeycomb-core sandwich composites that in certain instances may be alleviated through the use of other core materials or construction methods. Fluted-core, which consists of integral angled web members with structural radius fillers spaced between laminate face sheets, is one such construction alternative and is considered herein. Two different fluted-core designs were considered: a subscale design and a full-scale design sized for a heavy-lift-launch-vehicle interstage. In particular, axial compression of fluted-core composites was evaluated with experiments and finite-element analyses (FEA); axial compression is the primary loading condition in dry launch-vehicle barrel sections. Detailed finite-element models were developed to represent all components of the fluted-core construction, and geometrically nonlinear analyses were conducted to predict both buckling and material failures. Good agreement was obtained between test data and analyses, for both local buckling and ultimate material failure. Though the local buckling events are not catastrophic, the resulting deformations contribute to material failures. Consequently, an important observation is that the material failure loads and modes would not be captured by either linear analyses or nonlinear smeared-shell analyses. Compression-after-impact (CAI) performance of fluted core composites was also investigated by experimentally testing samples impacted with 6 ft.-lb. impact energies. It was found that such impacts reduced the ultimate load carrying capability by approximately 40% on the subscale test articles and by less than 20% on the full-scale test articles. Nondestructive inspection of the damage zones indicated that the detectable damage was limited to no more than one flute on either side of any given impact. More study is needed, but this may indicate that an inherent damage-arrest capability of fluted core could provide benefits over traditional sandwich designs in certain weight-critical applications.
NASA Astrophysics Data System (ADS)
Hufenbach, W.; Gude, M.; Czulak, A.; Kretschmann, Martin
2014-04-01
Increasing economic, political and ecological pressure leads to steadily rising percentage of modern processing and manufacturing processes for fibre reinforced polymers in industrial batch production. Component weights beneath a level achievable by classic construction materials, which lead to a reduced energy and cost balance during product lifetime, justify the higher fabrication costs. However, complex quality control and failure prediction slow down the substitution by composite materials. High-resolution fibre-optic sensors (FOS), due their low diameter, high measuring point density and simple handling, show a high applicability potential for an automated sensor-integration in manufacturing processes, and therefore the online monitoring of composite products manufactured in industrial scale. Integrated sensors can be used to monitor manufacturing processes, part tests as well as the component structure during product life cycle, which simplifies allows quality control during production and the optimization of single manufacturing processes.[1;2] Furthermore, detailed failure analyses lead to a enhanced understanding of failure processes appearing in composite materials. This leads to a lower wastrel number and products of a higher value and longer product life cycle, whereby costs, material and energy are saved. This work shows an automation approach for FOS-integration in the braiding process. For that purpose a braiding wheel has been supplemented with an appliance for automatic sensor application, which has been used to manufacture preforms of high-pressure composite vessels with FOS-networks integrated between the fibre layers. All following manufacturing processes (vacuum infiltration, curing) and component tests (quasi-static pressure test, programmed delamination) were monitored with the help of the integrated sensor networks. Keywords: SHM, high-pressure composite vessel, braiding, automated sensor integration, pressure test, quality control, optic-fibre sensors, Rayleigh, Luna Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noguchi, R.A.
1994-06-01
Composite materials are affected by environments differently than conventional airframe structural materials are. This study identifies the environmental conditions which the composite-airframe ARM UAV may encounter, and discusses the potential degradation processes composite materials may undergo when subjected to those environments. This information is intended to be useful in a follow-on program to develop equipment and procedures to prevent, detect, or otherwise mitigate significant degradation with the ultimate goal of preventing catastrophic aircraft failure.
NONLINEAR SYSTEMS, LINEAR SYSTEMS, SUBROUTINES , SOIL MECHANICS, INTERFACES, DYNAMICS, LOADS(FORCES), FORCE(MECHANICS), DAMPING, ACCELERATION, ELASTIC...PROPERTIES, PLASTIC PROPERTIES, CRACKS , REINFORCING MATERIALS , COMPOSITE MATERIALS , FAILURE(MECHANICS), MECHANICAL PROPERTIES, INSTRUCTION MANUALS, DIGITAL COMPUTERS...STRESSES, *COMPUTER PROGRAMS), (*STRUCTURES, STRESSES), (*DATA PROCESSING, STRUCTURAL PROPERTIES), SOILS , STRAIN(MECHANICS), MATHEMATICAL MODELS
NASA Technical Reports Server (NTRS)
Bales, K. S.
1983-01-01
The objectives, expected results, approach, and milestones for research projects of the IPAD Project Office and the impact dynamics, structural mechanics, and structural dynamics branches of the Structures and Dynamics Division are presented. Research facilities are described. Topics covered include computer aided design; general aviation/transport crash dynamics; aircraft ground performance; composite structures; failure analysis, space vehicle dynamics; and large space structures.
Register of experts for information on mechanics of structural failure
NASA Technical Reports Server (NTRS)
Carpenter, J. L., Jr.; Stuhrke, W. F.
1975-01-01
This register is comprised of a list of approximately 300 experts from approximately 90 organizations who have published results of theoretical and/or experimental research related to six problem areas in the mechanics of structural failure: (1) life prediction for structural materials, (2) fracture toughness testing, (3) fracture mechanics analysis; (4) hydrogen embrittlement; (5) protective coatings; and (6) composite materials. The criteria for the selection of names for the register are recent contributions to the literature, participation in or support of relevant research programs, and referral by peers. Each author included is listed by organizational affiliation, address, and principal field of expertise. The purpose of the register is to present, in easy reference form, sources for dependable information regarding failure modes and mechanisms of aerospace structures. The register includes two indexes; an alphabetical listing of the experts and an alphabetical listing of the organizations with whom they are affiliated.
Design Criteria for X-CRV Honeycomb Panels: A Preliminary Study
NASA Technical Reports Server (NTRS)
Caccese, Vincent; Verinder, Irene
1997-01-01
The objective of this project is to perform the first step in developing structural design criteria for composite sandwich panels that are to be used in the aeroshell of the crew return vehicle (X-CRV). The preliminary concept includes a simplified method for assessing the allowable strength in the laminate material. Ultimately, it is intended that the design criteria be extended to address the global response of the vehicle. This task will require execution of a test program as outlined in the recommendation section of this report. The aeroshell of the X-CRV is comprised of composite sandwich panels consisting of fiberite face sheets and a phenolic honeycomb core. The function of the crew return vehicle is to enable the safe return of injured or ill crewpersons from space station, the evacuation of crew in case of emergency or the return of crew if an orbiter is not available. A significant objective of the X-CRV project is to demonstrate that this vehicle can be designed, built and operated at lower cost and at a significantly faster development time. Development time can be reduced by driving out issues in both structural design and manufacturing concurrently. This means that structural design and analysis progresses in conjunction with manufacturing and testing. Preliminary tests results on laminate coupons are presented in the report. Based on these results a method for detection material failure in the material is presented. In the long term, extrapolation of coupon data to large scale structures may be inadequate. Test coupons used to develop failure criteria at the material scale are typically small when compared to the overall structure. Their inherent small size indicates that the material failure criteria can be used to predict localized failure of the structure, however, it can not be used to predict failure for all failure modes. Some failure modes occur only when the structure or one of its sub-components are studied as a whole. Conversely, localized failure may not indicate failure of the structure as a whole and the amount of reserve capacity, if any, should be assessed. To develop a complete design criteria experimental studies of the sandwich panel are needed. Only then can a conservative and accurate design criteria be developed. This criteria should include effects of flaws and defects, and environmental factors such as temperature and moisture. Preliminary results presented in this report suggest that a simplified analysis can be used to predict the strength of a laminate. Testing for environmental effects have yet to be included in this work. The so called 'rogue flaw test' appears to be a promising method for assessing the effect of a defect in a laminate. This method fits in quite well with the philosophy of achieving a damage tolerant design.
A Generalized Orthotropic Elasto-Plastic Material Model for Impact Analysis
NASA Astrophysics Data System (ADS)
Hoffarth, Canio
Composite materials are now beginning to provide uses hitherto reserved for metals in structural systems such as airframes and engine containment systems, wraps for repair and rehabilitation, and ballistic/blast mitigation systems. These structural systems are often subjected to impact loads and there is a pressing need for accurate prediction of deformation, damage and failure. There are numerous material models that have been developed to analyze the dynamic impact response of polymer matrix composites. However, there are key features that are missing in those models that prevent them from providing accurate predictive capabilities. In this dissertation, a general purpose orthotropic elasto-plastic computational constitutive material model has been developed to predict the response of composites subjected to high velocity impacts. The constitutive model is divided into three components - deformation model, damage model and failure model, with failure to be added at a later date. The deformation model generalizes the Tsai-Wu failure criteria and extends it using a strain-hardening-based orthotropic yield function with a non-associative flow rule. A strain equivalent formulation is utilized in the damage model that permits plastic and damage calculations to be uncoupled and capture the nonlinear unloading and local softening of the stress-strain response. A diagonal damage tensor is defined to account for the directionally dependent variation of damage. However, in composites it has been found that loading in one direction can lead to damage in multiple coordinate directions. To account for this phenomena, the terms in the damage matrix are semi-coupled such that the damage in a particular coordinate direction is a function of the stresses and plastic strains in all of the coordinate directions. The overall framework is driven by experimental tabulated temperature and rate-dependent stress-strain data as well as data that characterizes the damage matrix and failure. The developed theory has been implemented in a commercial explicit finite element analysis code, LS-DYNARTM, as MAT213. Several verification and validation tests using a commonly available carbon-fiber composite, Toyobo's T800/F3900, have been carried and the results show that the theory and implementation are efficient, robust and accurate.
Methods for forewarning of critical condition changes in monitoring civil structures
Abercrombie, Robert K.; Hively, Lee M.
2013-04-02
Sensor modules (12) including accelerometers (20) are placed on a physical structure (10) and tri-axial accelerometer data is converted to mechanical power (P) data (41) which then processed to provide a forewarning (57) of a critical event concerning the physical structure (10). The forewarning is based on a number of occurrences of a composite measure of dissimilarity (C.sub.i) exceeding a forewarning threshold over a defined sampling time; and a forewarning signal (58) is provided to a human observer through a visual, audible or tangible signal. A forewarning of a structural failure can also be provided based on a number of occurrences of (C.sub.i) above a failure value threshold.
Design of Composite Structures for Reliability and Damage Tolerance
NASA Technical Reports Server (NTRS)
Rais-Rohani, Masoud
1999-01-01
A summary of research conducted during the first year is presented. The research objectives were sought by conducting two tasks: (1) investigation of probabilistic design techniques for reliability-based design of composite sandwich panels, and (2) examination of strain energy density failure criterion in conjunction with response surface methodology for global-local design of damage tolerant helicopter fuselage structures. This report primarily discusses the efforts surrounding the first task and provides a discussion of some preliminary work involving the second task.
Composite blade structural analyzer (COBSTRAN) user's manual
NASA Technical Reports Server (NTRS)
Aiello, Robert A.
1989-01-01
The installation and use of a computer code, COBSTRAN (COmposite Blade STRuctrual ANalyzer), developed for the design and analysis of composite turbofan and turboprop blades and also for composite wind turbine blades was described. This code combines composite mechanics and laminate theory with an internal data base of fiber and matrix properties. Inputs to the code are constituent fiber and matrix material properties, factors reflecting the fabrication process, composite geometry and blade geometry. COBSTRAN performs the micromechanics, macromechanics and laminate analyses of these fiber composites. COBSTRAN generates a NASTRAN model with equivalent anisotropic homogeneous material properties. Stress output from NASTRAN is used to calculate individual ply stresses, strains, interply stresses, thru-the-thickness stresses and failure margins. Curved panel structures may be modeled providing the curvature of a cross-section is defined by a single value function. COBSTRAN is written in FORTRAN 77.
Progressive Failure Analysis of Composite Stiffened Panels
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Yarrington, Phillip W.; Collier, Craig S.; Arnold, Steven M.
2006-01-01
A new progressive failure analysis capability for stiffened composite panels has been developed based on the combination of the HyperSizer stiffened panel design/analysis/optimization software with the Micromechanics Analysis Code with Generalized Method of Cells (MAC/GMC). MAC/GMC discretizes a composite material s microstructure into a number of subvolumes and solves for the stress and strain state in each while providing the homogenized composite properties as well. As a result, local failure criteria may be employed to predict local subvolume failure and the effects of these local failures on the overall composite response. When combined with HyperSizer, MAC/GMC is employed to represent the ply level composite material response within the laminates that constitute a stiffened panel. The effects of local subvolume failures can then be tracked as loading on the stiffened panel progresses. Sample progressive failure results are presented at both the composite laminate and the composite stiffened panel levels. Deformation and failure model predictions are compared with experimental data from the World Wide Failure Exercise for AS4/3501-6 graphite/epoxy laminates.
Analysis of composite laminates with multiple fasteners by boundary collocation technique
NASA Astrophysics Data System (ADS)
Sergeev, Boris Anatolievich
Mechanical fasteners remain the primary means of load transfer between structural components made of composite laminates. As, in pursuit of increasing efficiency of the structure, the operational load continues to grow, the load carried by each fastener increases accordingly. This accelerates initiation of fatigue-related cracks near the fasteners holes and increases probability of failure. Therefore, the assessment of the stresses around the fastener holes and the stress intensity factors associated with edge cracks becomes critical for damage-tolerant design. Because of the presence of unknown contact stresses and the contact region between the fastener and the laminate, the analysis of a pin-loaded hole becomes considerably more complex than that of a traction-free hole. The accurate prediction of the contact stress distribution along the hole boundary is critical for determining the stress intensity factors and is essential for reliable strength evaluation and failure prediction. This study concerns the development of an analytical methodology, based on the boundary collocation technique, to determine the contact stresses and stress intensity factors required for strength and life prediction of bolted joints with many fasteners. It provides an analytical capability for determining the non-linear contact stresses in mechanically fastened composite laminates while capturing the effects of finite geometry, presence of edge cracks, interaction among fasteners, material anisotropy, fastener flexibility, fastener-hole clearance, friction between the pin and the laminate, and by-pass loading. Also, the proposed approach permits the determination of the fastener load distribution, which significantly influences the failure load of a multi-fastener joint. The well known phenomenon of the fastener tightening torque (clamping force) influence on the load distribution among the different fastener in a multi-fastener joints is taken into account by means of bi-linear representation of the elastic fastener deflection. Finally, two different failure criteria, maximum strains averaged over the characteristic distances and Tsai-Wu criterion, were used to predict the failure load and failure mode in two composite-aluminum joints. The comparison of the present predictions with the published experimental results reveals their agreement.
Microstructure of the smart composite structures with embedded fiber optic sensing nerves
NASA Astrophysics Data System (ADS)
Liu, Jingyuan; Luo, Fei; Li, Changchun; Ma, Naibin
1997-11-01
The composite structures with embedded optical fiber sensors construct a smart composite structure system, which may have the characteristics of the in-service self-measurement, self- recognition and self-judgement action. In the present work, we studied the microstructures of carbon/epoxy composite laminates with embedded sensing optical fibers, and the integration of optical fiber with composites was also discussed. The preliminary experiment results show that because of the difference between the sensing optical fibers and the reinforcing fibers in their size, the microstructure of the composites with embedded optical fibers will produce partial local changes in the area of embedded optical fiber, these changes may affect the mechanical properties of composite structures. When the optical fibers are embedded parallel to the reinforcing fibers, due to the composite prepregs are formed under a press action during its curing process, the reinforcing fibers can be arranged equably around the optical fibers. But when the optical fibers are embedded perpendicularly to the reinforcement fibers, the resin rich pocket will appear in the composite laminates surrounding the embedded optical fiber. The gas holes will be easily produced in these zones which may produce a premature failure of the composite structure. The photoelastic experiments are also given in the paper.
NASA Astrophysics Data System (ADS)
Liu, Hanyang; Tang, Zhanwen; Pan, Lingying; Zhao, Weidong; Sun, Baogang; Jiang, Wenge
2016-05-01
Impact damage has been identified as a critical form of the defects that constantly threatened the reliability of composite structures, such as those used in the aerospace structures and systems. Low energy impacts can introduce barely visible damage and cause the degradation of structural stiffness, furthermore, the flaws caused by low-velocity impact are so dangerous that they can give rise to the further extended delaminations. In order to improve the reliability and load carrying capacity of composite laminates under low-velocity impact, in this paper, the numerical simulatings and experimental studies on the woven fiber-reinforced composite laminates under low-velocity impact with impact energy 16.7J were discussed. The low velocity impact experiment was carried out through drop-weight system as the reason of inertia effect. A numerical progressive damage model was provided, in which the damages of fiber, matrix and interlamina were considered by VUMT subroutine in ABAQUS, to determine the damage modes. The Hashin failure criteria were improved to cover the failure modes of fiber failure in the directions of warp/weft and delaminations. The results of Finite Element Analysis (FEA) were compared with the experimental results of nondestructive examination including the results of ultrasonic C-scan, cross-section stereomicroscope and contact force - time history curves. It is found that the response of laminates under low-velocity impact could be divided into stages with different damage. Before the max-deformation of the laminates occurring, the matrix cracking, fiber breakage and delaminations were simulated during the impactor dropping. During the releasing and rebounding period, matrix cracking and delaminations areas kept increasing in the laminates because of the stress releasing of laminates. Finally, the simulating results showed the good agreements with the results of experiment.
Torque Limit for Bolted Joint for Composites. Part A; TTTC Properties of Laminated Composites
NASA Technical Reports Server (NTRS)
Zhao, Yi
2003-01-01
The existing design code for torque limit of bolted joints for composites at Marshall Space Flight Center is MSFC-STD-486B, which was originally developed in 1960s for metallic materials. The theoretical basis for this code was a simplified mechanics analysis, which takes into account only the bolt, nut and washers, but not the structural members to be connected. The assumption was that metallic materials would not fail due to the bearing stress at the contact area between washer and the mechanical member. This is true for metallic materials; but for composite materials the results could be completely different. Unlike most metallic materials, laminated composite materials have superior mechanical properties (such as modulus and strength) in the in-plane direction, but not in the out-of-plane, or through-the-thickness (TTT) direction. During the torquing, TTT properties (particularly compressive modulus and compressive strength) play a dominant role in composite failure. Because of this concern, structural design engineers at Marshall are currently using a compromised empirical approach: using 50% of the torque value for composite members. Companies like Boeing is using a similar approach. An initial study was conducted last summer on this topic to develop theoretical model(s) that takes into consideration of composite members. Two simplified models were developed based on stress failure criterion and strain failure criterion, respective. However, these models could not be used to predict the torque limit because of the unavailability of material data, specifically, through-the-thickness compression (TTTC) modulus and strength. Therefore, the task for this summer is to experimentally determine the TTTC properties. Due to the time limitation, only one material has been tested: IM7/8552 with [0 degrees,plus or minus 45 degrees, 90 degree ] configuration. This report focuses the test results and their significance, while the experimentation will be described in a separate report by Mr. Kris Kostreva.
A Method of Strengthening Composite/Metal Joints
NASA Technical Reports Server (NTRS)
Polis, Daniel L.
2011-01-01
The term tape setback method denotes a method of designing and fabricating bonded joints between (1) box beams or other structural members made of laminated composite (matrix/ fiber) materials and (2) metal end fittings used to fasten these structural members to other structural members. The basic idea of the tape setback method is to mask the bonded interface between the metallic end fitting and composite member such that the bond does not extend out to the free edges of the composite member. The purpose served by the tape setback method is to strengthen the joints by decoupling stress concentrations from edge defects, which can cause premature failures. A related prior method that serves a similar purpose, involving the use of tapered adherends at the joints, can be too difficult and costly to be acceptable in some applications. The tape setback method offers an easier, less costly alternative. The structural members to which the method was originally applied were box beams in the form of composite tubes having flat faces with rounded corners. The end fittings were plugs made of a low-thermal- expansion nickel/iron alloy (see figure). In computational-simulation studies of tensile and compressive loading of members without tape setback, stresses were found to be concentrated at the free end edges of the composite tubes, and inspection of members that had been subjected to real tension and compression tests showed that cracks started at the free end edges. As applied to these members, the tape setback method makes them less vulnerable to initiation of failure at edge defects produced during fabrication. In real tension tests of comparable members without and with tape setback, the average mean tensile strength of the members with tape setback was found to be 1.9 times that of the members without tape setback.
Behaviour of partially composite precast concrete sandwich panels under flexural and axial loads
NASA Astrophysics Data System (ADS)
Tomlinson, Douglas George
Precast concrete sandwich panels are commonly used on building exteriors. They are typically composed of two concrete wythes that surround rigid insulation. They are advantageous as they provide both structural and thermal resistance. The structural response of sandwich panels is heavily influenced by shear connectors that link the wythes together. This thesis presents a study on partially composite non-prestressed precast concrete wall panels. Nine flexure tests were conducted on a wall design incorporating 'floating' concrete studs and Glass Fibre Reinforced Polymer (GFRP) connectors. The studs encapsulate and stiffen the connectors, reducing shear deformations. Ultimate loads increased from 58 to 80% that of a composite section as the connectors' reinforcement ratio increased from 2.6 to 9.8%. This design was optimized by reinforcing the studs and integrating them with the structural wythe; new connectors composed of angled steel or Basalt-FRP (BFRP) were used. The load-slip response of the new connector design was studied through 38 double shear push-through tests using various connector diameters and insertion angles. Larger connectors were stronger but more likely to pull out. Seven flexure tests were conducted on the new wall design reinforced with different combinations of steel and BFRP connectors and reinforcement. Composite action varied from 50 to 90% depending on connector and reinforcement material. Following this study, the axial-bending interaction curves were established for the new wall design using both BFRP and steel connectors and reinforcement. Eight panels were axially loaded to predesignated loads then loaded in flexure to failure. A technique is presented to experimentally determine the effective centroid of partially composite sections. Beyond the tension and compression-controlled failure regions of the interaction curve, a third region was observed in between, governed by connector failure. Theoretical models were developed for the bond-slip behaviour of the shear connection and to analyze the full panel's flexural and axial response to determine the longitudinal shear force transferred between wythes and account for partial composite behavior. The models were validated against experiments and used to conduct a parametric study. Among several interesting findings, the study demonstrated how composite action increases with the slenderness of axially loaded panels.
Three-Axis Distributed Fiber Optic Strain Measurement in 3D Woven Composite Structures
NASA Technical Reports Server (NTRS)
Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David
2013-01-01
Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading. Keywords: fiber optic, distributed strain sensing, Rayleigh scatter, optical frequency domain reflectometry
Nonlinear and progressive failure aspects of transport composite fuselage damage tolerance
NASA Technical Reports Server (NTRS)
Walker, Tom; Ilcewicz, L.; Murphy, Dan; Dopker, Bernhard
1993-01-01
The purpose is to provide an end-user's perspective on the state of the art in life prediction and failure analysis by focusing on subsonic transport fuselage issues being addressed in the NASA/Boeing Advanced Technology Composite Aircraft Structure (ATCAS) contract and a related task-order contract. First, some discrepancies between the ATCAS tension-fracture test database and classical prediction methods is discussed, followed by an overview of material modeling work aimed at explaining some of these discrepancies. Finally, analysis efforts associated with a pressure-box test fixture are addressed, as an illustration of modeling complexities required to model and interpret tests.
Impact Testing of Composites for Aircraft Engine Fan Cases
NASA Technical Reports Server (NTRS)
Roberts, Gary D.; Revilock, Duane M.; Binienda, Wieslaw K.; Nie, Walter Z.; Mackenzie, S. Ben; Todd, Kevin B.
2001-01-01
Before composite materials can be considered for use in the fan case of a commercial jet engine, the performance of a composite structure under blade-out loads needs to be demonstrated. The objective of this program is to develop an efficient test and analysis method for evaluating potential composite case concepts. Ballistic impact tests were performed on laminated glass/epoxy composites in order to identify potential failure modes and to provide data for analysis. Flat 7x7 in. panels were impacted with cylindrical titanium projectiles, and 15 in. diameter half-rings were impacted with wedge-shaped titanium projectiles. Composite failure involved local fiber fracture as well as tearing and delamination on a larger scale. A 36 in. diameter full-ring subcomponent was proposed for larger scale testing. Explicit, transient, finite element analyses were used to evaluate impact dynamics and subsequent global deformation for the proposed full-ring subcomponent test. Analyses on half-ring and quarter ring configurations indicated that less expensive smaller scale tests could be used to screen potential composite concepts when evaluation of local impact damage is the primary concern.
GENOA-PFA: Progressive Fracture in Composites Simulated Computationally
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.
2000-01-01
GENOA-PFA is a commercial version of the Composite Durability Structural Analysis (CODSTRAN) computer program that simulates the progression of damage ultimately leading to fracture in polymer-matrix-composite (PMC) material structures under various loading and environmental conditions. GENOA-PFA offers several capabilities not available in other programs developed for this purpose, making it preferable for use in analyzing the durability and damage tolerance of complex PMC structures in which the fiber reinforcements occur in two- and three-dimensional weaves and braids. GENOA-PFA implements a progressive-fracture methodology based on the idea that a structure fails when flaws that may initially be small (even microscopic) grow and/or coalesce to a critical dimension where the structure no longer has an adequate safety margin to avoid catastrophic global fracture. Damage is considered to progress through five stages: (1) initiation, (2) growth, (3) accumulation (coalescence of propagating flaws), (4) stable propagation (up to the critical dimension), and (5) unstable or very rapid propagation (beyond the critical dimension) to catastrophic failure. The computational simulation of progressive failure involves formal procedures for identifying the five different stages of damage and for relating the amount of damage at each stage to the overall behavior of the deteriorating structure. In GENOA-PFA, mathematical modeling of the composite physical behavior involves an integration of simulations at multiple, hierarchical scales ranging from the macroscopic (lamina, laminate, and structure) to the microscopic (fiber, matrix, and fiber/matrix interface), as shown in the figure. The code includes algorithms to simulate the progression of damage from various source defects, including (1) through-the-thickness cracks and (2) voids with edge, pocket, internal, or mixed-mode delaminations.
Measurement of multiaxial ply strength by an off-axis flexure test
NASA Technical Reports Server (NTRS)
Crews, John H., Jr.; Naik, Rajiv A.
1992-01-01
An off-axis flexure (OAF) test was performed to measure ply strength under multiaxial stress states. This test involves unidirectional off-axis specimens loaded in bending, using an apparatus that allows these anisotropic specimens to twist as well as flex without the complications of a resisting torque. A 3D finite element stress analysis verified that simple beam theory could be used to compute the specimen bending stresses at failure. Unidirectional graphite/epoxy specimens with fiber angles ranging from 90 deg to 15 deg have combined normal and shear stresses on their failure planes that are typical of 45 deg plies in structural laminates. Tests for a range of stress states with AS4/3501-6 specimens showed that both normal and shear stresses on the failure plane influenced cracking resistance. This OAF test may prove to be useful for generating data needed to predict ply cracking in composite structures and may also provide an approach for studying fiber-matrix interface failures under stress states typical of structures.
NASA Astrophysics Data System (ADS)
Raad Hussein, Alaa; Badri Albarody, Thar M.; Megat Yusoff, Puteri Sri Melor Bt
2018-05-01
Nowadays there is no viable non-destructive method that could detect flaws in complex composite products. Such a method could provide unique tools to allow engineers to minimize time consumption and cost during the evaluation of various product parameters without disturbing production. The latest research and development on propagation waves introduce micro, radio and millimetre waves as new potential non-destructive test methods for evaluation of mechanical flaws and prediction of failure in a product during production. This paper focuses on recent developments, usage, classification of electromagnetic waves under the range of radio frequency, millimetre and micro-waves. In addition, this paper reviews the application of propagation wave and proposed a new health monitoring technique based on Doppler Effect for vibration measurement in complex composite structures. Doppler Effect is influenced by dynamic behaviour of the composite structures and both are effect by flaws occurred inside the structure. Composite manufacturers, especially Aerospace industry are demanding these methods comprehensively inspect and evaluate the damages and defects in their products.
Modeling of Failure for Analysis of Triaxial Braided Carbon Fiber Composites
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Littell, Justin D.; Binienda, Wieslaw K.
2010-01-01
In the development of advanced aircraft-engine fan cases and containment systems, composite materials are beginning to be used due to their low weight and high strength. The design of these structures must include the capability of withstanding impact loads from a released fan blade. Relatively complex triaxially braided fiber architectures have been found to yield the best performance for the fan cases. To properly work with and design these structures, robust analytical tools are required that can be used in the design process. A new analytical approach models triaxially braided carbon fiber composite materials within the environment of a transient dynamic finite-element code, specifically the commercially available transient dynamic finite-element code LS-DYNA. The geometry of the braided composites is approximated by a series of parallel laminated composites. The composite is modeled by using shell finite elements. The material property data are computed by examining test data from static tests on braided composites, where optical strain measurement techniques are used to examine the local strain variations within the material. These local strain data from the braided composite tests are used along with a judicious application of composite micromechanics- based methods to compute the stiffness properties of an equivalent unidirectional laminated composite required for the shell elements. The local strain data from the braided composite tests are also applied to back out strength and failure properties of the equivalent unidirectional composite. The properties utilized are geared towards the application of a continuum damage mechanics-based composite constitutive model available within LS-DYNA. The developed model can be applied to conduct impact simulations of structures composed of triaxially braided composites. The advantage of this technology is that it facilitates the analysis of the deformation and damage response of a triaxially braided polymer matrix composite within the environment of a transient dynamic finite-element code such as LS-DYNA in a manner which accounts for the local physical mechanisms but is still computationally efficient. This methodology is tightly coupled to experimental tests on the braided composite, which ensures that the material properties have physical significance. Aerospace or automotive companies interested in using triaxially braided composites in their structures, particularly for impact or crash applications, would find the technology useful. By the development of improved design tools, the amount of very expensive impact testing that will need to be performed can be significantly reduced.
NASA Technical Reports Server (NTRS)
Sharma, A. V.
1980-01-01
The effect of low velocity projectile impact on sandwich-type structural components was investigated. The materials used in the fabrication of the impact surface were graphite-, Kevlar-, and boron-fibers with appropriate epoxy matrices. The testing of the specimens was performed at moderately low- and high-temperatures as well as at room temperature to assess the impact-initiated strength degradation of the laminates. Eleven laminates with different stacking sequences, orientations, and thicknesses were tested. The low energy projectile impact is considered to simulate the damage caused by runway debris, the dropping of the hand tools during servicing, etc., on the secondary aircraft structures fabricated with the composite materials. The results show the preload and the impact energy combinations necessary to cause catastrophic failure in the laminates tested. A set of faired curves indicating the failure thresholds is shown separately for the tension-and compression-loaded laminates. The specific-strengths and -modulii for the various laminates tested are also given.
Post-Crazing Stress Analysis of Glass-Epoxy Laminates.
1979-05-01
element Stress concentrations Thick-shell element b. Identiflers/Open-Ended Terms Thick-plate element Glass-epoxy Laminates Composite materials Failure...number) / Glass-Epoxy Angle Plys Finite Elements’ Laminates Shear Testing Isoparametric.,lement Composite Materials Compression Testing Doubly-Curved...with light weight. This favorable strength- weight ratio makes the material attractive for some flight structures as well as other machines and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrison, L. M.; Katoh, Y.; Snead, L. L.
Tungsten-copper laminate composite has shown promise as a structural plasma-facing component as compared to tungsten rod or plate. The present study evaluated the tungsten-copper composite after irradiation in the High Flux Isotope Reactor (HFIR) at temperatures of 410-780°C and fast neutron fluences of 0.02-9.0×1025 n/m2, E>0.1 MeV, 0.0039-1.76 displacements per atom (dpa) in tungsten. Tensile tests were performed on the composites, and the fracture surfaces were analyzed with scanning electron microscopy. Before irradiation, the tungsten layers had brittle cleavage failure, but the overall composite had 15.5% elongation at 22°C. After only 0.0039 dpa this was reduced to 7.7% elongation, andmore » no ductility was observed after 0.2 dpa at all irradiation temperatures when tensile tested at 22°C. For elevated temperature tensile tests after irradiation, the composite only had ductile failure at temperatures where the tungsten was delaminating or ductile.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrison, L. M.; Katoh, Yutai; Snead, Lance L.
Tungsten-copper laminate composite has shown promise as a structural plasma-facing component as compared to tungsten rod or plate. The present study evaluated the tungsten-copper composite after irradiation in the High Flux Isotope Reactor (HFIR) at temperatures of 410–780 °C and fast neutron fluences of 0.02–9.0 × 10 25 n/m 2, E > 0.1 MeV, 0.0039–1.76 displacements per atom (dpa) in tungsten. Tensile tests were performed on the composites, and the fracture surfaces were analyzed with scanning electron microscopy. Before irradiation, the tungsten layers had brittle cleavage failure, but the overall composite had 15.5% elongation at 22 °C. After only 0.0039more » dpa this was reduced to 7.7% elongation, and no ductility was observed after 0.2 dpa at all irradiation temperatures when tensile tested at 22 °C. In conclusion, tor elevated temperature tensile tests after irradiation, the composite only had ductile failure at temperatures where the tungsten was delaminating or ductile.« less
NASA Astrophysics Data System (ADS)
Yu, Deying
Stretchable organic electronics have emerged as interesting technologies for several applications where stretchability is considered important. The easy and low-cost deposition procedures for the fabrication of stretchable organic solar cells and organic light emitting devices reduce the overall cost for the fabrication of these devices. However, the interfacial cracks and defects at the interfaces of the devices, during fabrication, are detrimental to the performance of stretchable organic electronic devices. Also, as the devices are deformed under service conditions, it is possible for cracks to grow. Furthermore, the multilayered structures of the devices can fail due to the delamination and buckling of the layered structures. There is, therefore, a need to study the failure mechanism in the layered structures that are relevant to stretchable organic electronic devices. Hence, in this study, a combined experimental, analytical and computational approach is used to study the effects of adhesion and deformation on the failure mechanisms in structures that are relevant to stretchable electronic devices. First, the failure mechanisms are studied in stretchable inorganic electronic structures. The wrinkles and buckles are formed by the unloading of pre-stretched PDMS/Au structure, after the evaporation of nano-scale Au layers. They are then characterized using atomic force microscopy and scanning electron microscopy. Analytical models are used to determine the critical stresses for wrinkling and buckling. The interfacial cracking and film buckling that can occur are also studied using finite element simulations. The implications of the results are then discussed for the potential applications of micro-wrinkles and micro-buckles in the stretchable electronic structures and biomedical devices. Subsequently, the adhesion between bi-material pairs that are relevant to organic light emitting devices, composite organic/inorganic light emitting devices, organic bulk heterojunction solar cells, and composite organic/inorganic solar cells on flexible substrates, is measured using force microscopy (AFM) techniques. The AFM measurements are incorporated into the Derjaguin-Muller-Toporov model to calculate the adhesion energies. The implications of the results are then discussed for the design of robust organic and composite organic/inorganic electronic devices. Finally, the lamination of organic solar cells and organic light emitting devices is studied using a combination of experimental, computational, and analytical approaches. First, the effects of applied lamination force (on contact between the laminated layers) are studied using experiments and models. The crack driving forces associated with the interfacial cracks that form at the interfaces between layers (at the bi-material interfaces) are estimated along with the critical interfacial crack driving forces associated with the separation of thin films, after layer transfer. The conditions for successful lamination are predicted using a combination of experiments and models. Guidelines are developed for the lamination of low-cost organic electronic structures.
Fokkinga, Wietske A; Kreulen, Cees M; Vallittu, Pekka K; Creugers, Nico H J
2004-01-01
This study sought to aggregate literature data on in vitro failure loads and failure modes of prefabricated fiber-reinforced composite (FRC) post systems and to compare them to those of prefabricated metal, custom-cast, and ceramic post systems. The literature was searched using MEDLINE from 1984 to 2003 for dental articles in English. Keywords used were (post or core or buildup or dowel) and (teeth or tooth). Additional inclusion/exclusion steps were conducted, each step by two independent readers: (1) Abstracts describing post-and-core techniques to reconstruct endodontically treated teeth and their mechanical and physical characteristics were included (descriptive studies or reviews were excluded); (2) articles that included FRC post systems were selected; (3) in vitro studies, single-rooted human teeth, prefabricated FRC posts, and composite as the core material were the selection criteria; and (4) failure loads and modes were extracted from the selected papers, and failure modes were dichotomized (distinction was made between "favorable failures," defined as reparable failures, and "unfavorable failures,"defined as irreparable [root] fractures). The literature search revealed 1,984 abstracts. Included were 244, 42, and 12 articles in the first, second, and third selection steps, respectively. Custom-cast post systems showed higher failure loads than prefabricated FRC post systems, whereas ceramic showed lower failure loads. Significantly more favorable failures occurred with prefabricated FRC post systems than with prefabricated and custom-cast metal post systems. The variable "post system" had a significant effect on mean failure loads. FRC post systems more frequently showed favorable failure modes than did metal post systems.
Structural Test Documentation and Results for the McDonnell Douglas All-Composite Wing Stub Box
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.; Bush, Harold G.
1997-01-01
The results of a series of tests conducted at the NASA Langley Research Center to evaluate the behavior of an all-composite full-scale wing box are presented. The wing stub box is representative of a section of a commercial transport aircraft wing box and was designed and constructed by McDonnell Douglas Aerospace Company as part of the NASA Advanced Composites Technology (ACT) program. Tests were conducted with and without low-speed impact damage and repairs. The structure with nonvisible impact damage carried 140 percent of Design Limit Load prior to failure through an impact site.
Impact analysis of natural fiber and synthetic fiber reinforced polymer composite
NASA Astrophysics Data System (ADS)
Sangamesh, Ravishankar, K. S.; Kulkarni, S. M.
2018-05-01
Impact analysis of the composite structure is essential for many fields like automotive, aerospace and naval structure which practically difficult to characterize. In the present study impact analysis of carbon-epoxy (CE) and jute-epoxy (JE) laminates were studied for three different thicknesses. The 3D finite element model was adopted to study the impact forces experienced, energy absorption and fracture behavior of the laminated composites. These laminated composites modeled as a 3D deformable solid element and an impactor at a constant velocity were modeled as a discrete rigid element. The energy absorption and fracture behaviors for various material combinations and thickness were studied. The fracture behavior of these composite showed progressive damage with matrix failure at the initial stage followed by complete fiber breakage.
Deployment Testing of Flexible Composite Hinges in Bi-Material Beams
NASA Technical Reports Server (NTRS)
Sauder, Jonathan F.; Trease, Brian
2016-01-01
Composites have excellent properties for strength, thermal stability, and weight. However, they are traditionally highly rigid, and when used in deployable structures require hinges bonded to the composite material, which increases complexity and opportunities for failure. Recent research in composites has found by adding an elastomeric soft matrix, often silicone instead of an epoxy, the composite becomes flexible. This work explores the deployment repeatability of silicone matrix composite hinges which join rigid composite beams. The hinges were found to have sub-millimeter linear deployment repeatability, and sub-degree angular deployment repeatability. Also, an interesting relaxation effect was discovered, as a hinges deployment error would decrease with time.
NASA Technical Reports Server (NTRS)
Cater, Christopher; Xiao, Xinran; Goldberg, Robert K.; Kohlman, Lee W.
2015-01-01
A combined experimental and analytical approach was performed for characterizing and modeling triaxially braided composites with a modified subcell modeling strategy. Tensile coupon tests were conducted on a [0deg/60deg/-60deg] braided composite at angles of 0deg, 30deg, 45deg, 60deg and 90deg relative to the axial tow of the braid. It was found that measured coupon strength varied significantly with the angle of the applied load and each coupon direction exhibited unique final failures. The subcell modeling approach implemented into the finite element software LS-DYNA was used to simulate the various tensile coupon test angles. The modeling approach was successful in predicting both the coupon strength and reported failure mode for the 0deg, 30deg and 60deg loading directions. The model over-predicted the strength in the 90deg direction; however, the experimental results show a strong influence of free edge effects on damage initiation and failure. In the absence of these local free edge effects, the subcell modeling approach showed promise as a viable and computationally efficient analysis tool for triaxially braided composite structures. Future work will focus on validation of the approach for predicting the impact response of the braided composite against flat panel impact tests.
NASA Technical Reports Server (NTRS)
Cater, Christopher; Xiao, Xinran; Goldberg, Robert K.; Kohlman, Lee W.
2015-01-01
A combined experimental and analytical approach was performed for characterizing and modeling triaxially braided composites with a modified subcell modeling strategy. Tensile coupon tests were conducted on a [0deg/60deg/-60deg] braided composite at angles [0deg, 30deg, 45deg, 60deg and 90deg] relative to the axial tow of the braid. It was found that measured coupon strength varied significantly with the angle of the applied load and each coupon direction exhibited unique final failures. The subcell modeling approach implemented into the finite element software LS-DYNA was used to simulate the various tensile coupon test angles. The modeling approach was successful in predicting both the coupon strength and reported failure mode for the 0deg, 30deg and 60deg loading directions. The model over-predicted the strength in the 90deg direction; however, the experimental results show a strong influence of free edge effects on damage initiation and failure. In the absence of these local free edge effects, the subcell modeling approach showed promise as a viable and computationally efficient analysis tool for triaxially braided composite structures. Future work will focus on validation of the approach for predicting the impact response of the braided composite against flat panel impact tests.
Acoustic emission monitoring of polymer composite materials
NASA Technical Reports Server (NTRS)
Bardenheier, R.
1981-01-01
The techniques of acoustic emission monitoring of polymer composite materials is described. It is highly sensitive, quasi-nondestructive testing method that indicates the origin and behavior of flaws in such materials when submitted to different load exposures. With the use of sophisticated signal analysis methods it is possible the distinguish between different types of failure mechanisms, such as fiber fracture delamination or fiber pull-out. Imperfections can be detected while monitoring complex composite structures by acoustic emission measurements.
Sakhavand, Navid; Shahsavari, Rouzbeh
2015-03-16
Many natural and biomimetic platelet-matrix composites--such as nacre, silk, and clay-polymer-exhibit a remarkable balance of strength, toughness and/or stiffness, which call for a universal measure to quantify this outstanding feature given the structure and material characteristics of the constituents. Analogously, there is an urgent need to quantify the mechanics of emerging electronic and photonic systems such as stacked heterostructures. Here we report the development of a unified framework to construct universal composition-structure-property diagrams that decode the interplay between various geometries and inherent material features in both platelet-matrix composites and stacked heterostructures. We study the effects of elastic and elastic-perfectly plastic matrices, overlap offset ratio and the competing mechanisms of platelet versus matrix failures. Validated by several 3D-printed specimens and a wide range of natural and synthetic materials across scales, the proposed universally valid diagrams have important implications for science-based engineering of numerous platelet-matrix composites and stacked heterostructures.
Effects of Simulated Functional Loading Conditions on Dentin, Composite, and Laminate Structures
Walker, Mary P.; Teitelbaum, Heather K.; Eick, J. David; Williams, Karen B.
2008-01-01
Use of composite restorations continues to increase, tempered by more potential problems when placed in posterior dentition. Thus, it is essential to understand how these materials function under stress-bearing clinical conditions. Since mastication is difficult to replicate in the laboratory, cyclic loading is frequently used within in vitro evaluations but often employs traditional fatigue testing, which typically does not simulate occlusal loading because higher stresses and loading frequencies are used, so failure mechanisms may be different. The present investigation utilized relevant parameters (specimen size; loading frequency) to assess the effects of cyclic loading on flexural mechanical properties and fracture morphology of (coronal) dentin, composite, and dentin-adhesive-composite “laminate” structures. Incremental monitoring of flexural modulus on individual beams over 60,000 loading cycles revealed a gradual increase across materials; post-hoc comparisons indicated statistical significance only for 1 versus 60k cycles. Paired specimens were tested (one exposed to 60k loading cycles, one to static loading only), and comparisons of flexural modulus and strength showed statistically significantly higher values for cyclically-loaded specimens across materials, with no observable differences in fracture morphology. Localized reorganization of dentin collagen and polymer chains could have increased flexural modulus and strength during cyclic loading, which may have implications toward the life and failure mechanisms of clinical restorations and underlying tooth structure. PMID:18823019
NASA Astrophysics Data System (ADS)
Topics addressed include the prediction of helicopter component loads using neural networks, spacecraft on-orbit coupled loads analysis, hypersonic flutter of a curved shallow panel with aerodynamic heating, thermal-acoustic fatigue of ceramic matrix composite materials, transition elements based on transfinite interpolation, damage progression in stiffened composite panels, a direct treatment of min-max dynamic response optimization problems, and sources of helicopter rotor hub inplane shears. Also discussed are dynamics of a layered elastic system, confidence bounds on structural reliability, mixed triangular space-time finite elements, advanced transparency development for USAF aircraft, a low-velocity impact on a graphite/PEEK, an automated mode-tracking strategy, transonic flutter suppression by a passive flap, a nonlinear response of composite panels to random excitation, an optimal placement of elastic supports on a simply supported plate, a probabilistic assessment of composite structures, a model for mode I failure of laminated composites, a residual flexibility approach to multibody dynamics,and multilayer piezoelectric actuators.
NASA Astrophysics Data System (ADS)
Tarfaoui, M.; Nachtane, M.; Khadimallah, H.; Saifaoui, D.
2018-04-01
Issues such as energy generation/transmission and greenhouse gas emissions are the two energy problems we face today. In this context, renewable energy sources are a necessary part of the solution essentially winds power, which is one of the most profitable sources of competition with new fossil energy facilities. This paper present the simulation of mechanical behavior and damage of a 48 m composite wind turbine blade under critical wind loads. The finite element analysis was performed by using ABAQUS code to predict the most critical damage behavior and to apprehend and obtain knowledge of the complex structural behavior of wind turbine blades. The approach developed based on the nonlinear FE analysis using mean values for the material properties and the failure criteria of Tsai-Hill to predict failure modes in large structures and to identify the sensitive zones.
Deformation and failure information from composite materials via acoustic emission
NASA Technical Reports Server (NTRS)
Hamstad, M. A.
1978-01-01
The paper reviews some principles of applying acoustic emission (AE) to the study of fiber-composite materials and structures. This review covers the basics of using AE to monitor the deformation and fracture processes that occur when fiber-composite materials are stressed. Also, new results in some areas of current research interest are presented. The following areas are emphasized: study of couplants for AE testing of composites, evaluation of a special immersion-type AE transducer, and wave propagation complications and the development of techniques for locating AE sources in Kevlar 49/epoxy composite pre
NASA Technical Reports Server (NTRS)
Ishai, O.; Garg, A.; Nelson, H. G.
1986-01-01
The critical load levels and associated cracking beyond which a multidirectional laminate can be considered as structurally failed has been determined by loading graphite fiber-reinforced epoxy laminates to different strain levels up to ultimate failure. Transverse matrix cracking was monitored by acoustic and optical methods. The residual stiffness and strength parallel and perpendicular to the cracks were determined and related to the environmental/loading history. Within the range of experimental conditions studied, it is concluded that the transverse cracking process does not have a crucial effect on the structural performance of multidirectional composite laminates.
Static and fatigue testing of full-scale fuselage panels fabricated using a Therm-X(R) process
NASA Technical Reports Server (NTRS)
Dinicola, Albert J.; Kassapoglou, Christos; Chou, Jack C.
1992-01-01
Large, curved, integrally stiffened composite panels representative of an aircraft fuselage structure were fabricated using a Therm-X process, an alternative concept to conventional two-sided hard tooling and contour vacuum bagging. Panels subsequently were tested under pure shear loading in both static and fatigue regimes to assess the adequacy of the manufacturing process, the effectiveness of damage tolerant design features co-cured with the structure, and the accuracy of finite element and closed-form predictions of postbuckling capability and failure load. Test results indicated the process yielded panels of high quality and increased damage tolerance through suppression of common failure modes such as skin-stiffener separation and frame-stiffener corner failure. Finite element analyses generally produced good predictions of postbuckled shape, and a global-local modelling technique yielded failure load predictions that were within 7% of the experimental mean.
Structural health monitoring and impact detection for primary aircraft structures
NASA Astrophysics Data System (ADS)
Kosters, Eric; van Els, Thomas J.
2010-04-01
The increasing use of thermoplastic carbon fiber-reinforced plastic (CFRP) materials in the aerospace industry for primary aircraft structures, such as wing leading-edge surfaces and fuselage sections, has led to rapid growth in the field of structural health monitoring (SHM). Impact, vibration, and load can all cause failure, such as delamination and matrix cracking, in composite materials. Moreover, the internal material damage can occur without being visible to the human eye, making inspection of and clear insight into structural integrity difficult using currently available evaluation methods. Here, we describe the detection of impact and its localization in materials and structures by high-speed interrogation of multiple-fiber Bragg grating (FBG) sensors mounted on a composite aircraft component.
Flexure fatigue testing of 90 deg graphite/epoxy composites
NASA Technical Reports Server (NTRS)
Peck, Ann Nancy W.
1995-01-01
A great deal of research has been performed characterizing the in-plane fiber-dominated properties, under both static and fatigue loading, of advanced composite materials. To the author's knowledge, no study has been performed to date investigating fatigue characteristics in the transverse direction. This information is important in the design of bonded composite airframe structure where repeated, cyclic out-of-plane bending may occur. Recent tests characterizing skin/stringer debond failures in reinforced composite panels where the dominant loading in the skin is flexure along the edge of the frame indicate failure initiated either in the skin or else the flange, near the flange tip. When failure initiated in the skin, transverse matrix cracks formed in the surface skin ply closest to the flange and either initiated delaminations or created matrix cracks in the next lower ply, which in turn initiated delaminations. When failure initiated in the flanges, transverse cracks formed in the flange angle ply closest to the skin and initiated delamination. In no configuration did failure propagate through the adhesive bond layer. For the examined skin/flange configurations, the maximum transverse tension stress at failure correlates very well with the transverse tension strength of the composites. Transverse tension strength (static) data of graphite epoxy composites have been shown to vary with the volume of material stressed. As the volume of material stressed increased, the strength decreased. A volumetric scaling law based on Weibull statistics can be used to predict the transverse strength measurements. The volume dependence reflects the presence of inherent flaws in the microstructure of the lamina. A similar approach may be taken to determine a volume scale effect on the transverse tension fatigue behavior of graphite/epoxy composites. The objective of this work is to generate transverse tension strength and fatigue S-N characteristics for composite materials using 3-point flexure tests of 90 deg graphite/epoxy specimens. Investigations will include the volume scale effect as well as frequency and span-to-thickness ratio effects. Prior to the start of the experimental study, an analytical study using finite element modeling will be performed to investigate the span-to-thickness effect. The ratio of transverse flexure stress to shear stress will be monitored and its values predicted by the FEM analysis compared with the value obtained using a 'strength of materials' based approach.
A Numerical/Experimental Study on the Impact and CAI Behaviour of Glass Reinforced Compsite Plates
NASA Astrophysics Data System (ADS)
Perillo, Giovanni; Jørgensen, Jens K.; Cristiano, Roberta; Riccio, Aniello
2018-04-01
This paper focuses on the development of an advance numerical model specifically for simulating low velocity impact events and related stiffness reduction on composite structures. The model is suitable for low cost thick composite structures like wind turbine blade and maritime vessels. The model consist of a combination of inter and intra laminar models. The intra-laminar model present a combination of Puck and Hashin failure theories for the evaluation of the fibre and matrix failure. The inter-laminar damage is instead simulated by Cohesive Zone Method based on energy approach. Basic material properties, easily measurable according to standardized tests, are required. The model has been used to simulate impact and compression after impact tests. Experimental tests have been carried out on thick E-Glass/Epoxy composite commonly used in the wind turbine industry. The clustering effect as well as the consequence of the impact energy have been experimentally tested. The accuracy of numerical model has been verified against experimental data showing a very good accuracy of the model.
Stochastic Nonlinear Response of Woven CMCs
NASA Technical Reports Server (NTRS)
Kuang, C. Liu; Arnold, Steven M.
2013-01-01
It is well known that failure of a material is a locally driven event. In the case of ceramic matrix composites (CMCs), significant variations in the microstructure of the composite exist and their significance on both deformation and life response need to be assessed. Examples of these variations include changes in the fiber tow shape, tow shifting/nesting and voids within and between tows. In the present work, the influence of scale specific architectural features of woven ceramic composite are examined stochastically at both the macroscale (woven repeating unit cell (RUC)) and structural scale (idealized using multiple RUCs). The recently developed MultiScale Generalized Method of Cells methodology is used to determine the overall deformation response, proportional elastic limit (first matrix cracking), and failure under tensile loading conditions and associated probability distribution functions. Prior results showed that the most critical architectural parameter to account for is weave void shape and content with other parameters being less in severity. Current results show that statistically only the post-elastic limit region (secondary hardening modulus and ultimate tensile strength) is impacted by local uncertainties both at the macro and structural level.
Huang, C.-Y.; Trask, R. S.; Bond, I. P.
2010-01-01
A study of the influence of embedded circular hollow vascules on structural performance of a fibre-reinforced polymer (FRP) composite laminate is presented. Incorporating such vascules will lead to multi-functional composites by bestowing functions such as self-healing and active thermal management. However, the presence of off-axis vascules leads to localized disruption to the fibre architecture, i.e. resin-rich pockets, which are regarded as internal defects and may cause stress concentrations within the structure. Engineering approaches for creating these simple vascule geometries in conventional FRP laminates are proposed and demonstrated. This study includes development of a manufacturing method for forming vascules, microscopic characterization of their effect on the laminate, finite element (FE) analysis of crack initiation and failure under load, and validation of the FE results via mechanical testing observed using high-speed photography. The failure behaviour predicted by FE modelling is in good agreement with experimental results. The reduction in compressive strength owing to the embedding of circular vascules ranges from 13 to 70 per cent, which correlates with vascule dimension. PMID:20150337
Irradiation effects in tungsten-copper laminate composite
Garrison, L. M.; Katoh, Yutai; Snead, Lance L.; ...
2016-09-19
Tungsten-copper laminate composite has shown promise as a structural plasma-facing component as compared to tungsten rod or plate. The present study evaluated the tungsten-copper composite after irradiation in the High Flux Isotope Reactor (HFIR) at temperatures of 410–780 °C and fast neutron fluences of 0.02–9.0 × 10 25 n/m 2, E > 0.1 MeV, 0.0039–1.76 displacements per atom (dpa) in tungsten. Tensile tests were performed on the composites, and the fracture surfaces were analyzed with scanning electron microscopy. Before irradiation, the tungsten layers had brittle cleavage failure, but the overall composite had 15.5% elongation at 22 °C. After only 0.0039more » dpa this was reduced to 7.7% elongation, and no ductility was observed after 0.2 dpa at all irradiation temperatures when tensile tested at 22 °C. In conclusion, tor elevated temperature tensile tests after irradiation, the composite only had ductile failure at temperatures where the tungsten was delaminating or ductile.« less
Failure rate of single-unit restorations on posterior vital teeth: A systematic review.
Afrashtehfar, Kelvin I; Emami, Elham; Ahmadi, Motahareh; Eilayyan, Owis; Abi-Nader, Samer; Tamimi, Faleh
2017-03-01
No knowledge synthesis exists concerning when to use a direct restoration versus a complete-coverage indirect restoration in posterior vital teeth. The purpose of this systematic review was to identify the failure rate of conventional single-unit tooth-supported restorations in posterior permanent vital teeth as a function of remaining tooth structure. Four databases were searched electronically, and 8 selected journals were searched manually up to February 2015. Clinical studies of tooth-supported single-unit restorative treatments with a mean follow-up period of at least 3 years were selected. The outcome measured was the restorations' clinical or radiological failure. Following the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines, the Cochrane Collaboration procedures for randomized control trials, the Strengthening the Reporting of Observational Studies in Epidemiology criteria for observational studies, 2 reviewers independently applied eligibility criteria, extracted data, and assessed the quality of the evidence of the included studies using the American Association of Critical Care Nurses' system. The weighted-mean group 5-year failure rates of the restorations were reported according to the type of treatment and remaining tooth structure. A metaregression model was used to assess the correlation between the number of remaining tooth walls and the weighted-mean 5-year failure rates. Five randomized controlled trials and 9 observational studies were included and their quality ranged from low to moderate. These studies included a total of 358 crowns, 4804 composite resins, and 303582 amalgams. Data obtained from the randomized controlled trials showed that, regardless of the amount of remaining tooth structure, amalgams presented better outcomes than composite resins. Furthermore, in teeth with fewer than 2 remaining walls, high-quality observational studies demonstrated that crowns were better than amalgams. A clear inverse correlation was found between the amount of remaining tooth structure and restoration failure. Insufficient high-quality data are available to support one restorative treatment or material over another for the restoration of vital posterior teeth. However, the current evidence suggests that the failure rates of treatments may depend on the amount of remaining tooth structure and types of treatment. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
AdaFF: Adaptive Failure-Handling Framework for Composite Web Services
NASA Astrophysics Data System (ADS)
Kim, Yuna; Lee, Wan Yeon; Kim, Kyong Hoon; Kim, Jong
In this paper, we propose a novel Web service composition framework which dynamically accommodates various failure recovery requirements. In the proposed framework called Adaptive Failure-handling Framework (AdaFF), failure-handling submodules are prepared during the design of a composite service, and some of them are systematically selected and automatically combined with the composite Web service at service instantiation in accordance with the requirement of individual users. In contrast, existing frameworks cannot adapt the failure-handling behaviors to user's requirements. AdaFF rapidly delivers a composite service supporting the requirement-matched failure handling without manual development, and contributes to a flexible composite Web service design in that service architects never care about failure handling or variable requirements of users. For proof of concept, we implement a prototype system of the AdaFF, which automatically generates a composite service instance with Web Services Business Process Execution Language (WS-BPEL) according to the users' requirement specified in XML format and executes the generated instance on the ActiveBPEL engine.
Fully Coupled Micro/Macro Deformation, Damage, and Failure Prediction for SiC/Ti-15-3 Laminates
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.; Lerch, Brad A.
2001-01-01
The deformation, failure, and low cycle fatigue life of SCS-6/Ti-15-3 composites are predicted using a coupled deformation and damage approach in the context of the analytical generalized method of cells (GMC) micromechanics model. The local effects of inelastic deformation, fiber breakage, fiber-matrix interfacial debonding, and fatigue damage are included as sub-models that operate on the micro scale for the individual composite phases. For the laminate analysis, lamination theory is employed as the global or structural scale model, while GMC is embedded to operate on the meso scale to simulate the behavior of the composite material within each laminate layer. While the analysis approach is quite complex and multifaceted, it is shown, through comparison with experimental data, to be quite accurate and realistic while remaining extremely efficient.
Structural Analysis for the American Airlines Flight 587 Accident Investigation: Global Analysis
NASA Technical Reports Server (NTRS)
Young, Richard D.; Lovejoy, Andrew E.; Hilburger, Mark W.; Moore, David F.
2005-01-01
NASA Langley Research Center (LaRC) supported the National Transportation Safety Board (NTSB) in the American Airlines Flight 587 accident investigation due to LaRC's expertise in high-fidelity structural analysis and testing of composite structures and materials. A Global Analysis Team from LaRC reviewed the manufacturer s design and certification procedures, developed finite element models and conducted structural analyses, and participated jointly with the NTSB and Airbus in subcomponent tests conducted at Airbus in Hamburg, Germany. The Global Analysis Team identified no significant or obvious deficiencies in the Airbus certification and design methods. Analysis results from the LaRC team indicated that the most-likely failure scenario was failure initiation at the right rear main attachment fitting (lug), followed by an unstable progression of failure of all fin-to-fuselage attachments and separation of the VTP from the aircraft. Additionally, analysis results indicated that failure initiates at the final observed maximum fin loading condition in the accident, when the VTP was subjected to loads that were at minimum 1.92 times the design limit load condition for certification. For certification, the VTP is only required to support loads of 1.5 times design limit load without catastrophic failure. The maximum loading during the accident was shown to significantly exceed the certification requirement. Thus, the structure appeared to perform in a manner consistent with its design and certification, and failure is attributed to VTP loads greater than expected.
Dynamic Loading and Characterization of Fiber-Reinforced Composites
NASA Astrophysics Data System (ADS)
Sierakowski, Robert L.; Chaturvedi, Shive K.
1997-02-01
Emphasizing polymer based fiber-reinforced composites, this book is designed to provide readers with a significant understanding of the complexities involved in characterizing dynamic events and the corresponding response of advanced fiber composite materials and structures. These elements include dynamic loading devices, material properties characterization, analytical and experimental techniques to assess the damage and failure modes associated with various dynamic loading events. Concluding remarks are presented throughout the text which summarize key points and raise issues related to important research needed.
Embedded electronics for intelligent structures
NASA Astrophysics Data System (ADS)
Warkentin, David J.; Crawley, Edward F.
The signal, power, and communications provisions for the distributed control processing, sensing, and actuation of an intelligent structure could benefit from a method of physically embedding some electronic components. The preliminary feasibility of embedding electronic components in load-bearing intelligent composite structures is addressed. A technique for embedding integrated circuits on silicon chips within graphite/epoxy composite structures is presented which addresses the problems of electrical, mechanical, and chemical isolation. The mechanical and chemical isolation of test articles manufactured by this technique are tested by subjecting them to static and cyclic mechanical loads and a temperature/humidity/bias environment. The likely failure modes under these conditions are identified, and suggestions for further improvements in the technique are discussed.
NASA Astrophysics Data System (ADS)
Shrivastava, Sachin; Mohite, P. M.
2015-01-01
A redesign of canard control-surface of an advanced all-metallic fighter aircraft was carried out by using carbon fibre composite (CFC) for ribs and panels. In this study ply-orientations of CFC structure are optimized using a Genetic-Algorithm (GA) with an objective function to have minimum failure index (FI) according to Tsai-Wu failure criterion. The redesigned CFC structure was sufficiently strong to withstand aerodynamic loads from stress and deflection points of view. Now, in the present work CFC canard structure has been studied for its buckling strength in comparison to existing metallic design. In this study, the existing metallic design was found to be weak in buckling. Upon a detailed investigation, it was revealed that there are reported failures in the vicinity of zones where initial buckling modes are excited as predicted by the finite element based buckling analysis. In view of buckling failures, the redesigned CFC structure is sufficiently reinforced with stringers at specific locations. After providing reinforcements against buckling, the twist and the camber variations of the airfoil are checked and compared with existing structure data. Finally, the modal analysis has been carried out to compare the variation in excitation frequency due to material change. The CFC structure thus redesigned is safe from buckling and aerodynamic aspects as well.
NASA Astrophysics Data System (ADS)
Various papers on AE from composite materials are presented. Among the individual topics addressed are: acoustic analysis of tranverse lamina cracking in CFRP laminates under tensile loading, characterization of fiber failure in graphite-epoxy (G/E) composites, application of AE in the study of microfissure damage to composite used in the aeronautic and space industries, interfacial shear properties and AE behavior of model aluminum and titanium matrix composites, amplitude distribution modelling and ultimate strength prediction of ASTM D-3039 G/E tensile specimens, AE prefailure warning system for composite structural tests, characterization of failure mechanisms in G/E tensile tests specimens using AE data, development of a standard testing procedure to yield an AE vs. strain curve, benchmark exercise on AE measurements from carbon fiber-epoxy composites. Also discussed are: interpretation of optically detected AE signals, acoustic emission monitoring of fracture process of SiC/Al composites under cyclic loading, application of pattern recognition techniques to acousto-ultrasonic testing of Kevlar composite panels, AE for high temperature monitoring of processing of carbon/carbon composite, monitoring the resistance welding of thermoplastic composites through AE, plate wave AE composite materials, determination of the elastic properties of composite materials using simulated AE signals, AE source location in thin plates using cross-correlation, propagation of flexural mode AE signals in Gr/Ep composite plates.
Test and Analysis of a Buckling-Critical Large-Scale Sandwich Composite Cylinder
NASA Technical Reports Server (NTRS)
Schultz, Marc R.; Sleight, David W.; Gardner, Nathaniel W.; Rudd, Michelle T.; Hilburger, Mark W.; Palm, Tod E.; Oldfield, Nathan J.
2018-01-01
Structural stability is an important design consideration for launch-vehicle shell structures and it is well known that the buckling response of such shell structures can be very sensitive to small geometric imperfections. As part of an effort to develop new buckling design guidelines for sandwich composite cylindrical shells, an 8-ft-diameter honeycomb-core sandwich composite cylinder was tested under pure axial compression to failure. The results from this test are compared with finite-element-analysis predictions and overall agreement was very good. In particular, the predicted buckling load was within 1% of the test and the character of the response matched well. However, it was found that the agreement could be improved by including composite material nonlinearity in the analysis, and that the predicted buckling initiation site was sensitive to the addition of small bending loads to the primary axial load in analyses.
NASA Astrophysics Data System (ADS)
Kim, Sang-Young; Shim, Chun Sik; Sturtevant, Caleb; Kim, Dave (Dae-Wook); Song, Ha Cheol
2014-09-01
Glass Fiber Reinforced Plastic (GFRP) structures are primarily manufactured using hand lay-up or vacuum infusion techniques, which are cost-effective for the construction of marine vessels. This paper aims to investigate the mechanical properties and failure mechanisms of the hybrid GFRP composites, formed by applying the hand lay-up processed exterior and the vacuum infusion processed interior layups, providing benefits for structural performance and ease of manufacturing. The hybrid GFRP composites contain one, two, and three vacuum infusion processed layer sets with consistent sets of hand lay-up processed layers. Mechanical properties assessed in this study include tensile, compressive and in-plane shear properties. Hybrid composites with three sets of vacuum infusion layers showed the highest tensile mechanical properties while those with two sets had the highest mechanical properties in compression. The batch homogeneity, for the GFRP fabrication processes, is evaluated using the experimentally obtained mechanical properties
Reliability analysis of composite structures
NASA Technical Reports Server (NTRS)
Kan, Han-Pin
1992-01-01
A probabilistic static stress analysis methodology has been developed to estimate the reliability of a composite structure. Closed form stress analysis methods are the primary analytical tools used in this methodology. These structural mechanics methods are used to identify independent variables whose variations significantly affect the performance of the structure. Once these variables are identified, scatter in their values is evaluated and statistically characterized. The scatter in applied loads and the structural parameters are then fitted to appropriate probabilistic distribution functions. Numerical integration techniques are applied to compute the structural reliability. The predicted reliability accounts for scatter due to variability in material strength, applied load, fabrication and assembly processes. The influence of structural geometry and mode of failure are also considerations in the evaluation. Example problems are given to illustrate various levels of analytical complexity.
Proteins, pathogens, and failure at the composite-tooth interface.
Spencer, P; Ye, Q; Misra, A; Goncalves, S E P; Laurence, J S
2014-12-01
In the United States, composites accounted for nearly 70% of the 173.2 million composite and amalgam restorations placed in 2006 (Kingman et al., 2012), and it is likely that the use of composite will continue to increase as dentists phase out dental amalgam. This trend is not, however, without consequences. The failure rate of composite restorations is double that of amalgam (Ferracane, 2013). Composite restorations accumulate more biofilm, experience more secondary decay, and require more frequent replacement. In vivo biodegradation of the adhesive bond at the composite-tooth interface is a major contributor to the cascade of events leading to restoration failure. Binding by proteins, particularly gp340, from the salivary pellicle leads to biofilm attachment, which accelerates degradation of the interfacial bond and demineralization of the tooth by recruiting the pioneer bacterium Streptococcus mutans to the surface. Bacterial production of lactic acid lowers the pH of the oral microenvironment, erodes hydroxyapatite in enamel and dentin, and promotes hydrolysis of the adhesive. Secreted esterases further hydrolyze the adhesive polymer, exposing the soft underlying collagenous dentinal matrix and allowing further infiltration by the pathogenic biofilm. Manifold approaches are being pursued to increase the longevity of composite dental restorations based on the major contributing factors responsible for degradation. The key material and biological components and the interactions involved in the destructive processes, including recent advances in understanding the structural and molecular basis of biofilm recruitment, are described in this review. Innovative strategies to mitigate these pathogenic effects and slow deterioration are discussed. © International & American Associations for Dental Research.
Lessons Learned from Recent Failure and Incident Investigations of Composite Structures
NASA Technical Reports Server (NTRS)
Ransom, J. B.; Glaessgen, E. H.; Raju, L. S.; Knight, N. F., Jr.; Reeder, J. R.
2008-01-01
During the past few decades, NASA Langley Research Center (LaRC) has supported several large-scale failure and incident investigations and numerous requests for engineering consultations. Although various extenuating circumstances contributed to each of these incidents, in all cases, the failure resulted from accumulation and/or propagation of damage that reduced the load carrying capability of the structure to a level below that which was needed to sustain structural loads. A brief overview of various failure and incident investigations supported by LaRC, including some of the computational and experimental methodologies that have been applied, is presented. An important outcome of many of these failure and incident investigations is the development of an improved understanding of not only the state-of-the-art in experimental and analytical methods but also the state-of-the-art in the design and manufacturing processes that may contribute to such failures. In order to provide insight into such large-scale investigations, a series of lessons learned were captured. Awareness of these lessons learned is highly beneficial to engineers involved in similar investigations. Therefore, it is prudent that the lessons learned are disseminated such that they can be built upon in other investigations and in ensuing research and development activities.
Structural dynamic analysis of turbine blade
NASA Astrophysics Data System (ADS)
Antony, A. Daniel; Gopalsamy, M.; Viswanadh, Chaparala B. V.; Krishnaraj, R.
2017-10-01
In any gas turbine design cycle, blade design is a crucial element which needs maximum attention to meet the aerodynamic performance, structural safety margins, manufacturing feasibility, material availability etc. In present day gas turbine engines, most of the failures occur during engine development test and in-service, in rotor and stator blades due to fatigue and resonance failures. To address this issue, an extensive structural dynamic analysis is carried out to predict the natural frequencies and mode shapes using FE methods. Using the dynamics characteristics, the Campbell diagram is constructed to study the possibility of resonance at various operating speeds. In this work, the feasibility of using composite material in place of titanium alloy from the structural dynamics point of view. This is being attempted in a Low-pressure compressor where the temperatures are relatively low and fixed with the casings. The analysis will be carried out using FE method for different composite material with different lamina orientations chosen through the survey. This study will focus on the sensitivity of blade mode shapes to different laminae orientations, which will be used to alter the natural frequency and tailor the mode shapes. Campbell diagrams of existing titanium alloy are compared with the composite materials with different laminae at all critical operating conditions. The existing manufacturing methods and the proven techniques for blade profiles will also be discussed in this report.
PAFAC- PLASTIC AND FAILURE ANALYSIS OF COMPOSITES
NASA Technical Reports Server (NTRS)
Bigelow, C. A.
1994-01-01
The increasing number of applications of fiber-reinforced composites in industry demands a detailed understanding of their material properties and behavior. A three-dimensional finite-element computer program called PAFAC (Plastic and Failure Analysis of Composites) has been developed for the elastic-plastic analysis of fiber-reinforced composite materials and structures. The evaluation of stresses and deformations at edges, cut-outs, and joints is essential in understanding the strength and failure for metal-matrix composites since the onset of plastic yielding starts very early in the loading process as compared to the composite's ultimate strength. Such comprehensive analysis can only be achieved by a finite-element program like PAFAC. PAFAC is particularly suited for the analysis of laminated metal-matrix composites. It can model the elastic-plastic behavior of the matrix phase while the fibers remain elastic. Since the PAFAC program uses a three-dimensional element, the program can also model the individual layers of the laminate to account for thickness effects. In PAFAC, the composite is modeled as a continuum reinforced by cylindrical fibers of vanishingly small diameter which occupy a finite volume fraction of the composite. In this way, the essential axial constraint of the phases is retained. Furthermore, the local stress and strain fields are uniform. The PAFAC finite-element solution is obtained using the displacement method. Solution of the nonlinear equilibrium equations is obtained with a Newton-Raphson iteration technique. The elastic-plastic behavior of composites consisting of aligned, continuous elastic filaments and an elastic-plastic matrix is described in terms of the constituent properties, their volume fractions, and mutual constraints between phases indicated by the geometry of the microstructure. The program uses an iterative procedure to determine the overall response of the laminate, then from the overall response determines the stress state in each phase of the composite material. Failure of the fibers or matrix within an element can also be modeled by PAFAC. PAFAC is written in FORTRAN IV for batch execution and has been implemented on a CDC CYBER 170 series computer with a segmented memory requirement of approximately 66K (octal) of 60 bit words. PAFAC was developed in 1982.
NASA Astrophysics Data System (ADS)
Zhang, Xiangyang; Li, Yong; Van Hoa, Suong; Xiao, Jun; Chu, Qiyi
2018-02-01
Skin/stiffener debonding has been a longstanding concern for the users of stiffened composite panels in long-term service. Z-pinning technology is an emerging solution to reinforce the composite assembly joints. This work experimentally characterizes the progressive debonding of Z-pinned skin/stiffener interface with the skin under static bend loading. The three-stage failure process is identified as: flange edge debonding, pin/laminate debonding, and ultimate structural failure. Three different distribution patterns were compared in terms of the static debonding properties revealed the affirmative fact that locating pins in high normal stress regions, that is close to the flange edges in skin/stiffener structures, is more beneficial to utilize the full potential of Z-pinning reinforcement. The unit strip FE model was developed and demonstrated effective to analysis the effect of Z-pin distribution on the ultimate debond load. On the other hand, the evolution of fatigue cracks at Z-pinned skin/flange interface was investigated with a series of displacement-controlled fatigue bending tests and microscopic observations. Results show that Z-pinning postpones crack initiations at low displacement levels, and the remarkable crack-arresting function of pins enables the structure a prolonged fatigue life. However, pins become less effective when the maximum displacement exceeds the crack initiation level due to gradually pullout of pins.
NASA Technical Reports Server (NTRS)
Littell, Justin D.
2013-01-01
Increasingly, carbon composite structures are being used in aerospace applications. Their highstrength, high-stiffness, and low-weight properties make them good candidates for replacing many aerospace structures currently made of aluminum or steel. Recently, many of the aircraft engine manufacturers have developed new commercial jet engines that will use composite fan cases. Instead of using traditional composite layup techniques, these new fan cases will use a triaxially braided pattern, which improves case performance. The impact characteristics of composite materials for jet engine fan case applications have been an important research topic because Federal regulations require that an engine case be able to contain a blade and blade fragments during an engine blade-out event. Once the impact characteristics of these triaxial braided materials become known, computer models can be developed to simulate a jet engine blade-out event, thus reducing cost and time in the development of these composite jet engine cases. The two main problems that have arisen in this area of research are that the properties for these materials have not been fully determined and computationally efficient computer models, which incorporate much of the microscale deformation and failure mechanisms, are not available. The research reported herein addresses some of the deficiencies present in previous research regarding these triaxial braided composite materials. The current research develops new techniques to accurately quantify the material properties of the triaxial braided composite materials. New test methods are developed for the polymer resin composite constituent and representative composite coupons. These methods expand previous research by using novel specimen designs along with using a noncontact measuring system that is also capable of identifying and quantifying many of the microscale failure mechanisms present in the materials. Finally, using the data gathered, a new hybrid micromacromechanical computer model is created to simulate the behavior of these composite material systems under static and ballistic impact loading using the test data acquired. The model also quantifies the way in which the fiber/matrix interface affects material response under static and impact loading. The results show that the test methods are capable of accurately quantifying the polymer resin under a variety of strain rates and temperature for three loading conditions. The resin strength and stiffness data show a clear rate and temperature dependence. The data also show the hydrostatic stress effects and hysteresis, all of which can be used by researchers developing composite constitutive models for the resins. The results for the composite data reveal noticeable differences in strength, failure strain, and stiffness in the different material systems presented. The investigations into the microscale failure mechanisms provide information about the nature of the different material system behaviors. Finally, the developed computer model predicts composite static strength and stiffness to within 10 percent of the gathered test data and also agrees with composite impact data, where available.
Development of thermoplastic composite aircraft structures
NASA Technical Reports Server (NTRS)
Renieri, Michael P.; Burpo, Steven J.; Roundy, Lance M.; Todd, Stephanie A.; Kim, H. J.
1992-01-01
Efforts focused on the use of thermoplastic composite materials in the development of structural details associated with an advanced fighter fuselage section with applicability to transport design. In support of these designs, mechanics developments were conducted in two areas. First, a dissipative strain energy approach to material characterization and failure prediction, developed at the Naval Research Laboratory, was evaluated as a design/analysis tool. Second, a finite element formulation for thick composites was developed and incorporated into a lug analysis method which incorporates pin bending effects. Manufacturing concepts were developed for an upper fuel cell cover. A detailed trade study produced two promising concepts: fiber placement and single-step diaphragm forming. Based on the innovative design/manufacturing concepts for the fuselage section primary structure, elements were designed, fabricated, and structurally tested. These elements focused on key issues such as thick composite lugs and low cost forming of fastenerless, stiffener/moldine concepts. Manufacturing techniques included autoclave consolidation, single diaphragm consolidation (SDCC) and roll-forming.
Composite Materials for Structural Design.
1982-03-01
location of failure initiation. Accurate results for the third require additional considerations not treated here. 49 ABSTRACT Tranverse Shear Deformation...mentioned competing effects so as to minimize the residual thermal stress at the termination of the cool-down phase. Elastic Analysis Consider a symmetric
Macrodamage Accumulation Model for a Human Femur
2017-01-01
The objective of this study was to more fully understand the mechanical behavior of bone tissue that is important to find an alternative material to be used as an implant and to develop an accurate model to predict the fracture of the bone. Predicting and preventing bone failure is an important area in orthopaedics. In this paper, the macrodamage accumulation models in the bone tissue have been investigated. Phenomenological models for bone damage have been discussed in detail. In addition, 3D finite element model of the femur prepared from imaging data with both cortical and trabecular structures is delineated using MIMICS and ANSYS® and simulated as a composite structure. The damage accumulation occurring during cyclic loading was analyzed for fatigue scenario. We found that the damage accumulates sooner in the multiaxial than in the uniaxial loading condition for the same number of cycles, and the failure starts in the cortical bone. The damage accumulation behavior seems to follow a three-stage growth: a primary phase, a secondary phase of damage growth marked by linear damage growth, and a tertiary phase that leads to failure. Finally, the stiffness of the composite bone comprising the cortical and trabecular bone was significantly different as expected. PMID:28951659
Reliability-Based Design Optimization of a Composite Airframe Component
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Pai, Shantaram S.; Coroneos, Rula M.
2009-01-01
A stochastic design optimization methodology (SDO) has been developed to design components of an airframe structure that can be made of metallic and composite materials. The design is obtained as a function of the risk level, or reliability, p. The design method treats uncertainties in load, strength, and material properties as distribution functions, which are defined with mean values and standard deviations. A design constraint or a failure mode is specified as a function of reliability p. Solution to stochastic optimization yields the weight of a structure as a function of reliability p. Optimum weight versus reliability p traced out an inverted-S-shaped graph. The center of the inverted-S graph corresponded to 50 percent (p = 0.5) probability of success. A heavy design with weight approaching infinity could be produced for a near-zero rate of failure that corresponds to unity for reliability p (or p = 1). Weight can be reduced to a small value for the most failure-prone design with a reliability that approaches zero (p = 0). Reliability can be changed for different components of an airframe structure. For example, the landing gear can be designed for a very high reliability, whereas it can be reduced to a small extent for a raked wingtip. The SDO capability is obtained by combining three codes: (1) The MSC/Nastran code was the deterministic analysis tool, (2) The fast probabilistic integrator, or the FPI module of the NESSUS software, was the probabilistic calculator, and (3) NASA Glenn Research Center s optimization testbed CometBoards became the optimizer. The SDO capability requires a finite element structural model, a material model, a load model, and a design model. The stochastic optimization concept is illustrated considering an academic example and a real-life raked wingtip structure of the Boeing 767-400 extended range airliner made of metallic and composite materials.
NASA Astrophysics Data System (ADS)
Du, Fangzhu; Li, Dongsheng
2018-03-01
As a new kind of composite structures, the using of steel confined reinforced concrete column attract increasing attention in civil engineer. During the damage process, this new structure offers highly complex and invisible failure mechanism due to the combination effects of steel tubes, concrete, and steel rebar. Acoustic emission (AE) technique has been extensively studied in nondestructive testing (NDT) and is currently applied in civil engineering for structural health monitoring (SHM) and damage evaluation. In the present study, damage property and failure evolution of steel confined and unconfined reinforced concrete (RC) columns are investigated under quasi-static loading through (AE) signal. Significantly improved loading capacity and excellent energy dissipation characteristic demonstrated the practicality of that proposed structure. AE monitoring results indicated that the progressive deformation of the test specimens occur in three stages representing different damage conditions. Sentry function compares the logarithm ratio between the stored strain energy (Es) and the released acoustic energy (Ea); explicitly disclose the damage growth and failure mechanism of the test specimens. Other extended AE features including index of damage (ID), and relax ratio are calculated to quantitatively evaluate the damage severity and critical point. Complicated temporal evolution of different AE features confirms the potential importance of integrated analysis of two or more parameters. The proposed multi-indicators analysis is capable of revealing the damage growth and failure mechanism for steel confined RC columns, and providing critical warning information for structure failure.
NASA Technical Reports Server (NTRS)
Coats, Timothy William
1994-01-01
Progressive failure is a crucial concern when using laminated composites in structural design. Therefore the ability to model damage and predict the life of laminated composites is vital. The purpose of this research was to experimentally verify the application of the continuum damage model, a progressive failure theory utilizing continuum damage mechanics, to a toughened material system. Damage due to tension-tension fatigue was documented for the IM7/5260 composite laminates. Crack density and delamination surface area were used to calculate matrix cracking and delamination internal state variables, respectively, to predict stiffness loss. A damage dependent finite element code qualitatively predicted trends in transverse matrix cracking, axial splits and local stress-strain distributions for notched quasi-isotropic laminates. The predictions were similar to the experimental data and it was concluded that the continuum damage model provided a good prediction of stiffness loss while qualitatively predicting damage growth in notched laminates.
Multi-scale analysis and characterization of the ITER pre-compression rings
NASA Astrophysics Data System (ADS)
Foussat, A.; Park, B.; Rajainmaki, H.
2014-01-01
The toroidal field (TF) system of ITER Tokamak composed of 18 "D" shaped Toroidal Field (TF) coils during an operating scenario experiences out-of-plane forces caused by the interaction between the 68kA operating TF current and the poloidal magnetic fields. In order to keep the induced static and cyclic stress range in the intercoil shear keys between coils cases within the ITER allowable limits [1], centripetal preload is introduced by means of S2 fiber-glass/epoxy composite pre-compression rings (PCRs). Those PCRs consist in two sets of three rings, each 5 m in diameter and 337 × 288 mm in cross-section, and are installed at the top and bottom regions to apply a total resultant preload of 70 MN per TF coil equivalent to about 400 MPa hoop stress. Recent developments of composites in the aerospace industry have accelerated the use of advanced composites as primary structural materials. The PCRs represent one of the most challenging composite applications of large dimensions and highly stressed structures operating at 4 K over a long term life. Efficient design of those pre-compression composite structures requires a detailed understanding of both the failure behavior of the structure and the fracture behavior of the material. Due to the inherent difficulties to carry out real scale testing campaign, there is a need to develop simulation tools to predict the multiple complex failure mechanisms in pre-compression rings. A framework contract was placed by ITER Organization with SENER Ingenieria y Sistemas SA to develop multi-scale models representative of the composite structure of the Pre-compression rings based on experimental material data. The predictive modeling based on ABAQUS FEM provides the opportunity both to understand better how PCR composites behave in operating conditions and to support the development of materials by the supplier with enhanced performance to withstand the machine design lifetime of 30,000 cycles. The multi-scale stress analysis has revealed a complete picture of the stress levels within the fiber and the matrix regarding the static and fatigue performance of the rings structure including the presence of a delamination defect of critical size. The analysis results of the composite material demonstrate that the rings performance objectives under all loading and strength conditions are met.
Ageing and degradation determines failure mode on sea urchin spines.
Merino, Monica; Vicente, Erika; Gonzales, Karen N; Torres, Fernando G
2017-09-01
Sea urchin spines are an example of a hard natural composite with mineral and organic phases. The role of the organic phase in the response to mechanical stress was assessed by promoting the degradation of such spines by exposing them to ageing and ultraviolet (UV) irradiation. Thermal and structural characterization of the irradiated samples show that this UV irradiation treatment promotes degradation of the organic and inorganic phase of spines. Uniaxial compression tests carried out on aged and UV irradiated samples showed that both treatments affected the mechanical properties of the spines. Scanning electron microscopy (SEM) images of failed specimens were used to analyze the failure mechanisms of the compressed spines. The analysis of the fracture surfaces showed that the failure mechanisms of spines were modified as a consequence of UV irradiation, leading in the last case to mostly brittle fracture surfaces. We suggest that the proteins responsible for the formation of calcite also determine the mechanical properties and the failure mode of spines. This system can be used as a model for the study of the failure modes of other natural and synthetic hard composites. Copyright © 2017 Elsevier B.V. All rights reserved.
Embedding of Superelastic SMA Wires into Composite Structures: Evaluation of Impact Properties
NASA Astrophysics Data System (ADS)
Pappadà, Silvio; Rametta, Rocco; Toia, Luca; Coda, Alberto; Fumagalli, Luca; Maffezzoli, Alfonso
2009-08-01
Shape memory alloy (SMA) represents the most versatile way to realize smart materials with sensing, controlling, and actuating functions. Due to their unique mechanical and thermodynamic properties and to the possibility to obtain SMA wires with very small diameters, they are used as smart components embedded into the conventional resins or composites, obtaining active abilities, tunable properties, self-healing properties, and damping capacity. Moreover, superelastic SMAs are used to increase the impact resistance properties of composite materials. In this study, the influence of the integration of thin superelastic wires to suppress propagating damage of composite structures has been investigated. Superelastic SMAs have very high strain to failure and recoverable elastic strain, due to a stress-induced martensitic phase transition creating a plateau region in the stress-strain curve. NiTi superelastic wires ( A f = -15 °C fully annealed) of 0.10 mm in diameter have been produced and characterized by SAES Getters. The straight annealed wire shows the typical flag stress-strain behavior. The measured loading plateau is about 450 MPa at ambient temperature with a recoverable elastic strain of more than 6%. For these reasons superelastic SMA fibers can absorb much more strain energy than other fibers before their failure, partly with a constant stress level. In this paper, the improvement of composite laminates impact properties by embedding SMA wires is evaluated and indications for design and manufacturing of SMA composites with high-impact properties are also given.
Dynamic Failure of Sandwich Beams With Fluid-Structure Interaction Under Impact Loading
2010-12-01
constructed using vacuum assisted transfer molding , with a 6.35 mm balsa core and symmetrical plain weave 6 oz E-glass skins. The experiment...consisted of three phases. First, using three- point bending, strain rate characteristics were examined both in air and under water. After establishing...understanding of sandwich composite characteristics subjected to underwater impact. 15. NUMBER OF PAGES 57 14. SUBJECT TERMS Sandwich Composite, Low
2002-06-17
power law type (References 6.8.6.1(h) and (i)). Various attempts have been made to use fracture mechanics based methods for predicting failure of...participate in the MIL-HDBK-17 coordination activity . 7. All information and data contained in this handbook have been coordinated with industry and the U.S...for statistically- based properties ............................. 6 2.2.3 Issues of data equivalence
The Adhesive Bonding of Thermoplastic Composites
1989-09-19
o f Science, (wf aplicable ) Technology and Medicine USARDSG-UK 1’ DDRESS (City, S ap ar~ 7I.oe b ADDRESS (City, State, and ZIP Code) 01’r me f...I I II This thesis first discusses the problems that occur when thermoplastic-based fibre-composite materials are bonded using structural engineering...failure have been understood tnd predicted. Finally, having identified techniques for obtaining good interfacial adhesion,the thesis concludes by
2015-10-01
Materials; CRC Press, 1997. (70) Zhang, Y.; Zheng, L.; Sun , G.; Zhan, Z.; Liao, K. Failure Mechanisms of Carbon Nanotube Fibers under Different...Buehler, M. J. Mesoscale Modeling of Mechanics of Carbon Nanotubes: Self-Assembly, Self-Folding, and Fracture . J. Mater. Res. 2006, 21 (11), 2855–2869...close surface contact between CNTs to substantially improve the load transfer and mechanical properties. We also revealed that extremely low
Composite structural materials
NASA Technical Reports Server (NTRS)
Ansell, G. S.; Loewy, R. G.; Wiberley, S. E.
1983-01-01
Progress and plans are reported for investigations of: (1) the mechanical properties of high performance carbon fibers; (2) fatigue in composite materials; (3) moisture and temperature effects on the mechanical properties of graphite-epoxy laminates; (4) the theory of inhomogeneous swelling in epoxy resin; (5) numerical studies of the micromechanics of composite fracture; (6) free edge failures of composite laminates; (7) analysis of unbalanced laminates; (8) compact lug design; (9) quantification of Saint-Venant's principles for a general prismatic member; (10) variation of resin properties through the thickness of cured samples; and (11) the wing fuselage ensemble of the RP-1 and RP-2 sailplanes.
NASA Astrophysics Data System (ADS)
Deng, Jian; Zhou, Guangming; Ji, Le; Wang, Xiaopei
2017-12-01
Mechanical properties and failure mechanisms of a newly designed 3D multi-layer braided composites are evaluated by experimental, numerical and theoretical studies. The microstructure of the composites is introduced. The unit cell technique is employed to address the periodic arrangement of the structure. The volume averaging method is used in theoretical solutions while FEM with reasonable periodic boundary conditions and meshing technique in numerical simulations. Experimental studies are also conducted to verify the feasibility of the proposed models. Predicted elastic properties agree well with the experimental data, indicating the feasibility of the proposed models. Numerical evaluation is more accurate than theoretical assessment. Deformations and stress distributions of the unit cell under tension shows displacement and traction continuity, guaranteeing the rationality of the applied periodic boundary conditions. Although compression and tension modulus are close, the compressive strength only reaches 70% of the tension strength. This indicates that the composites can be weakened in compressive loading. Additionally, by analysing the micrograph of fracture faces and strain-stress curves, a brittle failure mechanism is observed both in composites under tension and compression.
NASA Technical Reports Server (NTRS)
Kohlman, Lee W.; Ruggeri, Charles R.; Roberts, Gary D.; Handschuh, Robert Frederick
2013-01-01
Composite materials have the potential to reduce the weight of rotating drive system components. However, these components are more complex to design and evaluate than static structural components in part because of limited ability to acquire deformation and failure initiation data during dynamic tests. Digital image correlation (DIC) methods have been developed to provide precise measurements of deformation and failure initiation for material test coupons and for structures under quasi-static loading. Attempts to use the same methods for rotating components (presented at the AHS International 68th Annual Forum in 2012) are limited by high speed camera resolution, image blur, and heating of the structure by high intensity lighting. Several improvements have been made to the system resulting in higher spatial resolution, decreased image noise, and elimination of heating effects. These improvements include the use of a high intensity synchronous microsecond pulsed LED lighting system, different lenses, and changes in camera configuration. With these improvements, deformation measurements can be made during rotating component tests with resolution comparable to that which can be achieved in static tests
NASA Technical Reports Server (NTRS)
Kohlman, Lee; Ruggeri, Charles; Roberts, Gary; Handshuh, Robert
2013-01-01
Composite materials have the potential to reduce the weight of rotating drive system components. However, these components are more complex to design and evaluate than static structural components in part because of limited ability to acquire deformation and failure initiation data during dynamic tests. Digital image correlation (DIC) methods have been developed to provide precise measurements of deformation and failure initiation for material test coupons and for structures under quasi-static loading. Attempts to use the same methods for rotating components (presented at the AHS International 68th Annual Forum in 2012) are limited by high speed camera resolution, image blur, and heating of the structure by high intensity lighting. Several improvements have been made to the system resulting in higher spatial resolution, decreased image noise, and elimination of heating effects. These improvements include the use of a high intensity synchronous microsecond pulsed LED lighting system, different lenses, and changes in camera configuration. With these improvements, deformation measurements can be made during rotating component tests with resolution comparable to that which can be achieved in static tests.
Burst pressure investigation of filament wound type IV composite pressure vessel
NASA Astrophysics Data System (ADS)
Farhood, Naseer H.; Karuppanan, Saravanan; Ya, H. H.; Baharom, Mohamad Ariff
2017-12-01
Currently, composite pressure vessels (PVs) are employed in many industries such as aerospace, transportations, medical etc. Basically, the use of PVs in automotive application as a compressed natural gas (CNG) storage cylinder has been growing rapidly. Burst failure due to the laminate failure is the most critical failure mechanism for composite pressure vessels. It is predominantly caused by excessive internal pressure due to an overfilling or an overheating. In order to reduce fabrication difficulties and increase the structural efficiency, researches and studies are conducted continuously towards the proper selection of vessel design parameters. Hence, this paper is focused on the prediction of first ply failure pressure for such vessels utilizing finite element simulation based on Tsai-Wu and maximum stress failure criterions. The effects of laminate stacking sequence and orientation angle on the burst pressure were investigated in this work for a constant layered thickness PV. Two types of winding design, A [90°2/∓θ16/90°2] and B [90°2/∓θ]ns with different orientations of helical winding reinforcement were analyzed for carbon/epoxy composite material. It was found that laminate A sustained a maximum burst pressure of 55 MPa for a sequence of [90°2/∓15°16/90°2] while the laminate B returned a maximum burst pressure of 45 MPa corresponding to a stacking sequence of [90°2/±15°/90°2/±15°/90°2/±15° ....] up to 20 layers for a constant vessel thickness. For verification, a comparison was done with the literature under similar conditions of analysis and good agreement was achieved with a maximum difference of 4% and 10% for symmetrical and unsymmetrical layout, respectively.
NASA Astrophysics Data System (ADS)
Germain, Norbert; Besson, Jacques; Feyel, Frédéric
2007-07-01
Simulating damage and failure of laminate composites structures often fails when using the standard finite element procedure. The difficulties arise from an uncontrolled mesh dependence caused by damage localization and an increase in computational costs. One of the solutions to the first problem, widely used to predict the failure of metallic materials, consists of using non-local damage constitutive equations. The second difficulty can then be solved using specific finite element formulations, such as shell element, which decrease the number of degrees of freedom. The main contribution of this paper consists of extending these techniques to layered materials such as polymer matrix composites. An extension of the non-local implicit gradient formulation, accounting for anisotropy and stratification, and an original layered shell element, based on a new partition of the unity, are proposed. Finally the efficiency of the resulting numerical scheme is studied by comparing simulation with experimental results.
Burst Testing of Triaxial Braided Composite Tubes
NASA Technical Reports Server (NTRS)
Salem, J. A.; Bail, J. L.; Wilmoth, N. G.; Ghosn, L. J.; Kohlman, L. W.; Roberts, G. D.; Martin, R. E.
2014-01-01
Applications using triaxial braided composites are limited by the materials transverse strength which is determined by the delamination capacity of unconstrained, free-edge tows. However, structural applications such as cylindrical tubes can be designed to minimize free edge effects and thus the strength with and without edge stresses is relevant to the design process. The transverse strength of triaxial braided composites without edge effects was determined by internally pressurizing tubes. In the absence of edge effects, the axial and transverse strength were comparable. In addition, notched specimens, which minimize the effect of unconstrained tow ends, were tested in a variety of geometries. Although the commonly tested notch geometries exhibited similar axial and transverse net section failure strength, significant dependence on notch configuration was observed. In the absence of unconstrained tows, failure ensues as a result of bias tow rotation, splitting, and fracture at cross-over regions.
Reliability and Confidence Interval Analysis of a CMC Turbine Stator Vane
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Gyekenyesi, John P.; Mital, Subodh K.
2008-01-01
High temperature ceramic matrix composites (CMC) are being explored as viable candidate materials for hot section gas turbine components. These advanced composites can potentially lead to reduced weight, enable higher operating temperatures requiring less cooling and thus leading to increased engine efficiencies. However, these materials are brittle and show degradation with time at high operating temperatures due to creep as well as cyclic mechanical and thermal loads. In addition, these materials are heterogeneous in their make-up and various factors affect their properties in a specific design environment. Most of these advanced composites involve two- and three-dimensional fiber architectures and require a complex multi-step high temperature processing. Since there are uncertainties associated with each of these in addition to the variability in the constituent material properties, the observed behavior of composite materials exhibits scatter. Traditional material failure analyses employing a deterministic approach, where failure is assumed to occur when some allowable stress level or equivalent stress is exceeded, are not adequate for brittle material component design. Such phenomenological failure theories are reasonably successful when applied to ductile materials such as metals. Analysis of failure in structural components is governed by the observed scatter in strength, stiffness and loading conditions. In such situations, statistical design approaches must be used. Accounting for these phenomena requires a change in philosophy on the design engineer s part that leads to a reduced focus on the use of safety factors in favor of reliability analyses. The reliability approach demands that the design engineer must tolerate a finite risk of unacceptable performance. This risk of unacceptable performance is identified as a component's probability of failure (or alternatively, component reliability). The primary concern of the engineer is minimizing this risk in an economical manner. The methods to accurately determine the service life of an engine component with associated variability have become increasingly difficult. This results, in part, from the complex missions which are now routinely considered during the design process. These missions include large variations of multi-axial stresses and temperatures experienced by critical engine parts. There is a need for a convenient design tool that can accommodate various loading conditions induced by engine operating environments, and material data with their associated uncertainties to estimate the minimum predicted life of a structural component. A probabilistic composite micromechanics technique in combination with woven composite micromechanics, structural analysis and Fast Probability Integration (FPI) techniques has been used to evaluate the maximum stress and its probabilistic distribution in a CMC turbine stator vane. Furthermore, input variables causing scatter are identified and ranked based upon their sensitivity magnitude. Since the measured data for the ceramic matrix composite properties is very limited, obtaining a probabilistic distribution with their corresponding parameters is difficult. In case of limited data, confidence bounds are essential to quantify the uncertainty associated with the distribution. Usually 90 and 95% confidence intervals are computed for material properties. Failure properties are then computed with the confidence bounds. Best estimates and the confidence bounds on the best estimate of the cumulative probability function for R-S (strength - stress) are plotted. The methodologies and the results from these analyses will be discussed in the presentation.
Micromechanics Based Failure Analysis of Heterogeneous Materials
NASA Astrophysics Data System (ADS)
Sertse, Hamsasew M.
In recent decades, heterogeneous materials are extensively used in various industries such as aerospace, defense, automotive and others due to their desirable specific properties and excellent capability of accumulating damage. Despite their wide use, there are numerous challenges associated with the application of these materials. One of the main challenges is lack of accurate tools to predict the initiation, progression and final failure of these materials under various thermomechanical loading conditions. Although failure is usually treated at the macro and meso-scale level, the initiation and growth of failure is a complex phenomena across multiple scales. The objective of this work is to enable the mechanics of structure genome (MSG) and its companion code SwiftComp to analyze the initial failure (also called static failure), progressive failure, and fatigue failure of heterogeneous materials using micromechanics approach. The initial failure is evaluated at each numerical integration point using pointwise and nonlocal approach for each constituent of the heterogeneous materials. The effects of imperfect interfaces among constituents of heterogeneous materials are also investigated using a linear traction-displacement model. Moreover, the progressive and fatigue damage analyses are conducted using continuum damage mechanics (CDM) approach. The various failure criteria are also applied at a material point to analyze progressive damage in each constituent. The constitutive equation of a damaged material is formulated based on a consistent irreversible thermodynamics approach. The overall tangent modulus of uncoupled elastoplastic damage for negligible back stress effect is derived. The initiation of plasticity and damage in each constituent is evaluated at each numerical integration point using a nonlocal approach. The accumulated plastic strain and anisotropic damage evolution variables are iteratively solved using an incremental algorithm. The damage analyses are performed for both brittle failure/high cycle fatigue (HCF) for negligible plastic strain and ductile failure/low cycle fatigue (LCF) for large plastic strain. The proposed approach is incorporated in SwiftComp and used to predict the initial failure envelope, stress-strain curve for various loading conditions, and fatigue life of heterogeneous materials. The combined effects of strain hardening and progressive fatigue damage on the effective properties of heterogeneous materials are also studied. The capability of the current approach is validated using several representative examples of heterogeneous materials including binary composites, continuous fiber-reinforced composites, particle-reinforced composites, discontinuous fiber-reinforced composites, and woven composites. The predictions of MSG are also compared with the predictions obtained using various micromechanics approaches such as Generalized Methods of Cells (GMC), Mori-Tanaka (MT), and Double Inclusions (DI) and Representative Volume Element (RVE) Analysis (called as 3-dimensional finite element analysis (3D FEA) in this document). This study demonstrates that a micromechanics based failure analysis has a great potential to rigorously and more accurately analyze initiation and progression of damage in heterogeneous materials. However, this approach requires material properties specific to damage analysis, which are needed to be independently calibrated for each constituent.
Fracture mechanics methodology: Evaluation of structural components integrity
NASA Astrophysics Data System (ADS)
Sih, G. C.; de Oliveira Faria, L.
1984-09-01
The application of fracture mechanics to structural-design problems is discussed in lectures presented in the AGARD Fracture Mechanics Methodology course held in Lisbon, Portugal, in June 1981. The emphasis is on aeronautical design, and chapters are included on fatigue-life prediction for metals and composites, the fracture mechanics of engineering structural components, failure mechanics and damage evaluation of structural components, flaw-acceptance methods, and reliability in probabilistic design. Graphs, diagrams, drawings, and photographs are provided.
A Probabilistic Design Method Applied to Smart Composite Structures
NASA Technical Reports Server (NTRS)
Shiao, Michael C.; Chamis, Christos C.
1995-01-01
A probabilistic design method is described and demonstrated using a smart composite wing. Probabilistic structural design incorporates naturally occurring uncertainties including those in constituent (fiber/matrix) material properties, fabrication variables, structure geometry and control-related parameters. Probabilistic sensitivity factors are computed to identify those parameters that have a great influence on a specific structural reliability. Two performance criteria are used to demonstrate this design methodology. The first criterion requires that the actuated angle at the wing tip be bounded by upper and lower limits at a specified reliability. The second criterion requires that the probability of ply damage due to random impact load be smaller than an assigned value. When the relationship between reliability improvement and the sensitivity factors is assessed, the results show that a reduction in the scatter of the random variable with the largest sensitivity factor (absolute value) provides the lowest failure probability. An increase in the mean of the random variable with a negative sensitivity factor will reduce the failure probability. Therefore, the design can be improved by controlling or selecting distribution parameters associated with random variables. This can be implemented during the manufacturing process to obtain maximum benefit with minimum alterations.
Energy-absorption capability of composite tubes and beams. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Farley, Gary L.; Jones, Robert M.
1989-01-01
In this study the objective was to develop a method of predicting the energy-absorption capability of composite subfloor beam structures. Before it is possible to develop such an analysis capability, an in-depth understanding of the crushing process of composite materials must be achieved. Many variables affect the crushing process of composite structures, such as the constituent materials' mechanical properties, specimen geometry, and crushing speed. A comprehensive experimental evaluation of tube specimens was conducted to develop insight into how composite structural elements crush and what are the controlling mechanisms. In this study the four characteristic crushing modes, transverse shearing, brittle fracturing, lamina bending, and local buckling were identified and the mechanisms that control the crushing process defined. An in-depth understanding was developed of how material properties affect energy-absorption capability. For example, an increase in fiber and matrix stiffness and failure strain can, depending upon the configuration of the tube, increase energy-absorption capability. An analysis to predict the energy-absorption capability of composite tube specimens was developed and verified. Good agreement between experiment and prediction was obtained.
The elastic and inelastic behavior of woven graphite fabric reinforced polyimide composites
NASA Astrophysics Data System (ADS)
Searles, Kevin H.
In many aerospace and conventional engineering applications, load-bearing composite structures are designed with the intent of being subjected to uniaxial stresses that are predominantly tensile or compressive. However, it is likely that biaxial and possibly triaxial states of stress will exist throughout the in-service life of the structure or component. The existing paradigm suggests that unidirectional tape materials are superior under uniaxial conditions since the vast majority of fibers lie in-plane and can be aligned to the loading axis. This may be true, but not without detriment to impact performance, interlaminar strength, strain to failure and complexity of part geometry. In circumstances where a sufficient balance of these properties is required, composites based on woven fabric reinforcements become attractive choices. In this thesis, the micro- and mesoscale elastic behavior of composites based on 8HS woven graphite fabric architectures and polyimide matrices is studied analytically and numerically. An analytical model is proposed to predict the composite elastic constants and is verified using numerical strain energy methods of equivalence. The model shows good agreement with the experiments and numerical strain energy equivalence. Lamina stresses generated numerically from in-plane shear loading show substantial shear and transverse normal stress concentrations in the transverse undulated tow which potentially leads to intralaminar damage. The macroscale inelastic behavior of the same composites is also studied experimentally and numerically. On an experimental basis, the biaxial and modified biaxial Iosipescu test methods are employed to study the weaker-mode shear and biaxial failure properties at room and elevated temperatures. On a numerical basis, the macroscale inelastic shear behavior of the composites is studied. Structural nonlinearities and material nonlinearities are identified and resolved. In terms of specimen-to-fixture interactions, load eccentricities, geometric (large strains and rotations) nonlinearities and boundary contact (friction) nonlinearities are explored. In terms of material nonlinearities, anisotropic plasticity and progressive damage are explored. A progressive damage criterion is proposed which accounts for the elastic strain energy densities in three directions. Of the types of nonlinearities studied, the nonlinear shear stress-strain behavior of the composites is principally from progressive intralaminar damage. Structural nonlinearities and elastoplastic deformation appear to be inconsequential.
NASA Astrophysics Data System (ADS)
Devaprakasam, D.; Hatton, P. V.; Möbus, G.; Inkson, B. J.
2008-08-01
In this work we have investigated the influence of nanoscale and microscale structure on the tribo-mechanical performance and failure mechanisms of two biocompatible dental polymer composites, with different reinforcing particulates, using advanced microscopy techniques. Nano- and micro structural analysis reveals the shape, size and distribution of the particles in the composites. In the microparticle filled polymer composite (microcomposite), the particles are of irregular shape with sharp edges with non-uniform distribution in the matrix. However, in the nanoparticle filled composites (nanocomposite), filler particles are spherical in shape with uniform distribution in the matrix. From nanoindentation measurements, hardness and reduced modulus of the microcomposite were found to be heterogeneous. However, the hardness and reduced modulus of the nanocomposite were found to be homogeneous. The nanocomposite shows better tribo-mechanical performance compared to that of the microcomposite.
High-Fidelity Modeling for Health Monitoring in Honeycomb Sandwich Structures
NASA Technical Reports Server (NTRS)
Luchinsky, Dimitry G.; Hafiychuk, Vasyl; Smelyanskiy, Vadim; Tyson, Richard W.; Walker, James L.; Miller, Jimmy L.
2011-01-01
High-Fidelity Model of the sandwich composite structure with real geometry is reported. The model includes two composite facesheets, honeycomb core, piezoelectric actuator/sensors, adhesive layers, and the impactor. The novel feature of the model is that it includes modeling of the impact and wave propagation in the structure before and after the impact. Results of modeling of the wave propagation, impact, and damage detection in sandwich honeycomb plates using piezoelectric actuator/sensor scheme are reported. The results of the simulations are compared with the experimental results. It is shown that the model is suitable for analysis of the physics of failure due to the impact and for testing structural health monitoring schemes based on guided wave propagation.
Unified continuum damage model for matrix cracking in composite rotor blades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pollayi, Hemaraju; Harursampath, Dineshkumar
This paper deals with modeling of the first damage mode, matrix micro-cracking, in helicopter rotor/wind turbine blades and how this effects the overall cross-sectional stiffness. The helicopter/wind turbine rotor system operates in a highly dynamic and unsteady environment leading to severe vibratory loads present in the system. Repeated exposure to this loading condition can induce damage in the composite rotor blades. These rotor/turbine blades are generally made of fiber-reinforced laminated composites and exhibit various competing modes of damage such as matrix micro-cracking, delamination, and fiber breakage. There is a need to study the behavior of the composite rotor system undermore » various key damage modes in composite materials for developing Structural Health Monitoring (SHM) system. Each blade is modeled as a beam based on geometrically non-linear 3-D elasticity theory. Each blade thus splits into 2-D analyzes of cross-sections and non-linear 1-D analyzes along the beam reference curves. Two different tools are used here for complete 3-D analysis: VABS for 2-D cross-sectional analysis and GEBT for 1-D beam analysis. The physically-based failure models for matrix in compression and tension loading are used in the present work. Matrix cracking is detected using two failure criterion: Matrix Failure in Compression and Matrix Failure in Tension which are based on the recovered field. A strain variable is set which drives the damage variable for matrix cracking and this damage variable is used to estimate the reduced cross-sectional stiffness. The matrix micro-cracking is performed in two different approaches: (i) Element-wise, and (ii) Node-wise. The procedure presented in this paper is implemented in VABS as matrix micro-cracking modeling module. Three examples are presented to investigate the matrix failure model which illustrate the effect of matrix cracking on cross-sectional stiffness by varying the applied cyclic load.« less
High velocity impact on composite link of aircraft wing flap mechanism
NASA Astrophysics Data System (ADS)
Heimbs, Sebastian; Lang, Holger; Havar, Tamas
2012-12-01
This paper describes the numerical investigation of the mechanical behaviour of a structural component of an aircraft wing flap support impacted by a wheel rim fragment. The support link made of composite materials was modelled in the commercial finite element code Abaqus/Explicit, incorporating intralaminar and interlaminar failure modes by adequate material models and cohesive interfaces. Validation studies were performed step by step using quasi-static tensile test data and low velocity impact test data. Finally, high velocity impact simulations with a metallic rim fragment were performed for several load cases involving different impact angles, impactor rotation and pre-stress. The numerical rim release analysis turned out to be an efficient approach in the development process of such composite structures and for the identification of structural damage and worst case impact loading scenarios.
NASA Technical Reports Server (NTRS)
Griffin, Charles F.; James, Arthur M.
1985-01-01
The damage-tolerance characteristics of high strain-to-failure graphite fibers and toughened resins were evaluated. Test results show that conventional fuel tank sealing techniques are applicable to composite structures. Techniques were developed to prevent fuel leaks due to low-energy impact damage. For wing panels subjected to swept stroke lightning strikes, a surface protection of graphite/aluminum wire fabric and a fastener treatment proved effective in eliminating internal sparking and reducing structural damage. The technology features developed were incorporated and demonstrated in a test panel designed to meet the strength, stiffness, and damage tolerance requirements of a large commercial transport aircraft. The panel test results exceeded design requirements for all test conditions. Wing surfaces constructed with composites offer large weight savings if design allowable strains for compression can be increased from current levels.
NASA Technical Reports Server (NTRS)
Miller, Sandi G.; Roberts, Gary D.; Kohlman, Lee W.; Heimann, Paula J.; Pereira, J. Michael; Ruggeri, Charles R.; Martin, Richard E.; McCorkle, Linda S.
2015-01-01
Impact damage tolerance and damage resistance is a critical metric for application of polymer matrix composites where failure caused by impact damage could compromise structural performance and safety. As a result, several materials and/or design approaches to improve impact damage tolerance have been investigated over the past several decades. Many composite toughening methodologies impart a trade-off between increased fracture toughness and compromised in-plane strength and modulus. In large part, mechanical tests to evaluate composite damage tolerance include static methods such as Mode I, Mode II, and mixed mode failures. However, ballistic impact damage resistance does not always correlate with static properties. The intent of this paper is to evaluate the influence of a thermoplastic polyurethane veil interleave on the static and dynamic performance of composite test articles. Static coupon tests included tension, compression, double cantilever beam, and end notch flexure. Measurement of the resistance to ballistic impact damage were made to evaluate the composites response to high speed impact. The interlayer material showed a decrease of in-plane performance with only a moderate improvement to Mode I and Mode II fracture toughness. However, significant benefit to impact damage tolerance was observed through ballistic tests.
Electronic equipment vulnerability to fire released carbon fibers
NASA Technical Reports Server (NTRS)
Pride, R. A.; Mchatton, A. D.; Musselman, K. A.
1980-01-01
The vulnerability of electronic equipment to damage by carbon fibers released from burning aircraft type structural composite materials was investigated. Tests were conducted on commercially available stereo power amplifiers which showed that the equipment was damaged by fire released carbon fibers but not by the composite resin residue, soot and products of combustion of the fuel associated with burning the carbon fiber composites. Results indicate that the failure rates of the equipment exposed to the fire released fiber were consistent with predictions based on tests using virgin fibers.
Embedded Bragg grating fiber optic sensor for composite flexbeams
NASA Astrophysics Data System (ADS)
Bullock, Daniel; Dunphy, James; Hufstetler, Gerard
1993-03-01
An embedded fiber-optic (F-O) sensor has been developed for translaminar monitoring of the structural integrity of composites, with a view to application in composite helicopter flexbeams for bearingless main rotor hubs. This through-thickness strain sensor is much more sensitive than conventional in-plane embedded F-O sensors to ply delamination, on the basis of a novel insertion technique and innovative Bragg grating sensor. Experimental trials have demonstrated the detection by this means of potential failures in advance of the edge-delamination or crack-propagation effect.
Ultrafine-grained Aluminm and Boron Carbide Metal Matrix Composites
NASA Astrophysics Data System (ADS)
Vogt, Rustin
Cryomilling is a processing technique used to generate homogenously distributed boron carbide (B4C) particulate reinforcement within an ultrafine-grained aluminum matrix. The motivation behind characterizing a composite consisting of cryomilled aluminum B4C metal matrix composite is to design and develop a high-strength, lightweight aluminum composite for structural and high strain rate applications. Cryomilled Al 5083 and B4C powders were synthesized into bulk composite by various thermomechanical processing methods to form plate and extruded geometries. The effects of processing method on microstructure and mechanical behavior for the final consolidated composite were investigated. Cryomilling for extended periods of time in liquid nitrogen has shown to increase strength and thermal stability. The effects associated with cryomilling with stearic acid additions (as a process-control agent) on the degassing behavior of Al powders is investigated and results show that the liberation of compounds associated with stearic acid were suppressed in cryomilled Al powders. The effect of thermal expansion mismatch strain on strengthening due to geometrically necessary dislocations resulting from quenching is investigated and found not to occur in bulk cryomilled Al 5083 and B 4C composites. Previous cryomilled Al 5083 and B4C composites have exhibited ultrahigh strength associated with considerable strain-to-failure (>14 pct.) at high strain rates (>103/s) during mechanical testing, but only limited strain-to-failure (˜0.75 pct.) at quasi-static strain rates (10-3/s). The increased strain to failure at high strain rates is attributed to micro-flaw developments, including kinking, extensive axial splitting, and grain growth were observed after high strain rate deformation, and the significance of these mechanisms is considered.
Hierarchical Process Composition: Dynamic Maintenance of Structure in a Distributed Environment
1988-01-01
One prominent hne of research stresses the independence of address space and thread of control, and the resulting efficiencies due to shared memory...cooperating processes. StarOS focuses on case of use and a general capability mechanism, while Medusa stresses the effect of distributed hardware on system...process structure and the asynchrony among agents and between agents and sources of failure. By stressing dynamic structure, we are led to adopt an
The compressive failure of graphite/epoxy plates with circular holes
NASA Technical Reports Server (NTRS)
Knauss, J. F.; Starnes, J. H., Jr.; Henneke, E. G., II
1978-01-01
The behavior of fiber reinforced composite plates containing a circular cutout was characterized in terms of geometry (thickness, width, hole diameter), and material properties (bending/extensional stiffness). Results were incorporated in a data base for use by designers in determining the ultimate strength of such a structure. Two thicknesses, 24 plies and 48 plies were chosen to differentiate between buckling and strength failures due to the presence of a cutout. Consistent post-buckling strength was exhibited by both laminate configurations.
User-defined Material Model for Thermo-mechanical Progressive Failure Analysis
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.
2008-01-01
Previously a user-defined material model for orthotropic bimodulus materials was developed for linear and nonlinear stress analysis of composite structures using either shell or solid finite elements within a nonlinear finite element analysis tool. Extensions of this user-defined material model to thermo-mechanical progressive failure analysis are described, and the required input data are documented. The extensions include providing for temperature-dependent material properties, archival of the elastic strains, and a thermal strain calculation for materials exhibiting a stress-free temperature.
NASA Astrophysics Data System (ADS)
Kim, S. Y.; Yoo, J. H.; Kim, H. K.; Shin, K. Y.; Yoon, S. J.
2018-06-01
In this paper, we discussed the structural behavior of bolted lap-joint connections in pultruded FRP structural members. Especially, bolted connections in pultruded FRP members are investigated for their failure modes and strength. Specimens with single and multiple bolt-holes are tested in tension under bolt-loading conditions. All of the specimens are instrumented with strain gages and the load-strain responses are monitored. The failed specimens are examined for the cracks and failure patterns. The purpose of this paper is to predict the failure strength by using the ratio of the results obtained by the experiment and the finite element analysis. In the study, several tests are conducted to determine the mechanical properties of pultruded FRP materials before the main experiment. The results are used in the finite element analysis for single and multiple bolted lap-joint specimens. The results obtained by the experiment are compared with the results obtained by the finite element analysis.
NASA Astrophysics Data System (ADS)
Juliyana, M.; Santhana Krishnan, R.
2018-02-01
The sandwich composite panels consisting of facesheet and core material are used as a primary structural member for aerospace, civil and marine areas due to its high stiffness to weight ratio. But the debonding nature of facesheet from the foam core under shear loading conditions leads to failure of the composite structure. To inhibit the debonding, an innovative methodology of introducing semi-torus key is used in the present study. The polyvinyl chloride foam core(PVC) is grooved and filled with semi-torus shaped chopped strand prepregs which are sandwiched between alternate layers of woven roven(WR) and chopped strand mat(CSM) skins by vacuum infusion process. The sandwich panel manufactured with semi-torus keys is evaluated regarding experimental and numerical simulations under shear loading conditions. The present innovative concept delays the debonding between face-sheet and foam core with enhancement the shear load carrying capability as the initial stiffness is higher than the conventional model. Also, the shear behaviour of the proposed concept is in good agreement with experimental results. The split semi-torus keys sustain the shear failure resulting in resistance to debonding capability.
Fracture Characteristics of Structural Steels: Reference Manual
1979-04-01
materials were fractured undcr tensile, fatigue, and impact loading con- ditions. The effects of hydrogen embrittlement on the steels ’ behavior when...years after paint failure. The composition and the heat treatment of 4160 steel results in a steel extremely susceptible to stress corrosion cracking and...A35 Fracture Surface of Tensile Specimen No. 3 322 22 IL TABLES Number Page 1 Chemical Composition of Steels and Weld Metal 32 2 Welding Parameters 33
Experimental methods for identifying failure mechanisms
NASA Technical Reports Server (NTRS)
Daniel, I. M.
1983-01-01
Experimental methods for identifying failure mechanisms in fibrous composites are studied. Methods to identify failure in composite materials includes interferometry, holography, fractography and ultrasonics.
Hamilton Jr, David A; Reilly, Danielle; Wipf, Felix; Kamineni, Srinath
2015-01-01
AIM: To determine whether use of a precontoured olecranon plate provides adequate fixation to withstand supraphysiologic force in a comminuted olecranon fracture model. METHODS: Five samples of fourth generation composite bones and five samples of fresh frozen human cadaveric left ulnae were utilized for this study. The cadaveric specimens underwent dual-energy X-ray absorptiometry (DEXA) scanning to quantify the bone quality. The composite and cadaveric bones were prepared by creating a comminuted olecranon fracture and fixed with a pre-contoured olecranon plate with locking screws. Construct stiffness and failure load were measured by subjecting specimens to cantilever bending moments until failure. Fracture site motion was measured with differential variable resistance transducer spanning the fracture. Statistical analysis was performed with two-tailed Mann-Whitney-U test with Monte Carlo Exact test. RESULTS: There was a significant difference in fixation stiffness and strength between the composite bones and human cadaver bones. Failure modes differed in cadaveric and composite specimens. The load to failure for the composite bones (n = 5) and human cadaver bones (n = 5) specimens were 10.67 nm (range 9.40-11.91 nm) and 13.05 nm (range 12.59-15.38 nm) respectively. This difference was statistically significant (P ˂ 0.007, 97% power). Median stiffness for composite bones and human cadaver bones specimens were 5.69 nm/mm (range 4.69-6.80 nm/mm) and 7.55 nm/mm (range 6.31-7.72 nm/mm). There was a significant difference for stiffness (P ˂ 0.033, 79% power) between composite bones and cadaveric bones. No correlation was found between the DEXA results and stiffness. All cadaveric specimens withstood the physiologic load anticipated postoperatively. Catastrophic failure occurred in all composite specimens. All failures resulted from composite bone failure at the distal screw site and not hardware failure. There were no catastrophic fracture failures in the cadaveric specimens. Failure of 4/5 cadaveric specimens was defined when a fracture gap of 2 mm was observed, but 1/5 cadaveric specimens failed due to a failure of the triceps mechanism. All failures occurred at forces greater than that expected in postoperative period prior to healing. CONCLUSION: The pre-contoured olecranon plate provides adequate fixation to withstand physiologic force in a composite bone and cadaveric comminuted olecranon fracture model. PMID:26495247
Detection of Internal Delamination in Composite Mono Leaf Spring based on Vibration Characteristics
NASA Astrophysics Data System (ADS)
Jamadar, Nagendra Iranna; Kivade, S. B.
2017-06-01
Structural health monitoring (SHM) is one of the non destructive evaluations universally accepted to detect defect or damage in composite structures. The paper deals with detection of inter laminar delamination problems in composite mono leaf spring during service conditions by vibration techniques. The delamination detection is crucial issue as it leads to catastrophic failure. The vibration parameters such as natural frequency and modes shapes are evaluated for healthy and delaminated spring. It has been observed that some mode shapes are found to be more sensitive to the delaminated region. The presence, location and severity of delamination are simulated and validated by experimental modal analysis for both the spring and found closer approximation with each other.
NASA Astrophysics Data System (ADS)
Tallman, T.; Semperlotti, F.; Wang, K. W.
2012-04-01
The high strength to weight ratio of fibrous composites such as glass-fiber reinforced polymers (GFRP) makes them prominent structural materials. However, their laminar nature is susceptible to delamination failure the onset of which traditional structural health monitoring (SHM) techniques cannot reliably and accurately detect. Carbon nano-tubes (CNT) have been recently used to tailor the electrical conductivity of polymer based materials that otherwise behave as insulators. The occurrence of damage in the polymer matrix produces localized changes in conductivity which can be tracked using electrical impedance tomography (EIT). This paper explores combining advances in composite manufacturing with EIT to develop a SHM technique that exploits anisotropic conductance monitoring for enhanced delamination and matrix crack detection.
Impact-initiated damage thresholds in composites
NASA Technical Reports Server (NTRS)
Sharma, A. V.
1980-01-01
An experimental investigation was conducted to study the effect of low velocity projectile impact on the sandwich-type structural components. The materials used in the fabrication of the impact surface were graphite-, Kevlar-, and boron-fibers with appropriate epoxy matrices. The testing of the specimens was performed at moderately low- and high-temperatures as well as at room temperature to assess the impact-initiated strength degradation of the laminates. Eleven laminates with different stacking sequences, orientations, and thicknesses were tested. The low energy projectile impact is considered to simulate the damage caused by runway debris, dropping of the hand tools during servicing, etc., on the secondary aircraft structures fabricated with the composite materials. The results show the preload and the impact energy combinations necessary to cause catastrophic failures in the laminates tested. A set of faired curves indicating the failure thresholds is shown separately for the tension- and compression-loaded laminates. The specific-strengths and -moduli for the various laminates tested are also given.
Liang, Zheng; Lin, Dingchang; Zhao, Jie; Lu, Zhenda; Liu, Yayuan; Liu, Chong; Lu, Yingying; Wang, Haotian; Yan, Kai; Tao, Xinyong; Cui, Yi
2016-03-15
Lithium metal-based battery is considered one of the best energy storage systems due to its high theoretical capacity and lowest anode potential of all. However, dendritic growth and virtually relative infinity volume change during long-term cycling often lead to severe safety hazards and catastrophic failure. Here, a stable lithium-scaffold composite electrode is developed by lithium melt infusion into a 3D porous carbon matrix with "lithiophilic" coating. Lithium is uniformly entrapped on the matrix surface and in the 3D structure. The resulting composite electrode possesses a high conductive surface area and excellent structural stability upon galvanostatic cycling. We showed stable cycling of this composite electrode with small Li plating/stripping overpotential (<90 mV) at a high current density of 3 mA/cm(2) over 80 cycles.
The Inclusion of Arbitrary Load Histories in the Strength Decay Model for Stress Rupture
NASA Technical Reports Server (NTRS)
Reeder, James R.
2014-01-01
Stress rupture is a failure mechanism where failures can occur after a period of time, even though the material has seen no increase in load. Carbon/epoxy composite materials have demonstrated the stress rupture failure mechanism. In a previous work, a model was proposed for stress rupture of composite overwrap pressure vessels (COPVs) and similar composite structures based on strength degradation. However, the original model was limited to constant load periods (holds) at constant load. The model was expanded in this paper to address arbitrary loading histories and specifically the inclusions of ramp loadings up to holds and back down. The broadening of the model allows for failures on loading to be treated as any other failure that may occur during testing instead of having to be treated as a special case. The inclusion of ramps can also influence the length of the "safe period" following proof loading that was previously predicted by the model. No stress rupture failures are predicted in a safe period because time is required for strength to decay from above the proof level to the lower level of loading. Although the model can predict failures during the ramp periods, no closed-form solution for the failure times could be derived. Therefore, two suggested solution techniques were proposed. Finally, the model was used to design an experiment that could detect the difference between the strength decay model and a commonly used model for stress rupture. Although these types of models are necessary to help guide experiments for stress rupture, only experimental evidence will determine how well the model may predict actual material response. If the model can be shown to be accurate, current proof loading requirements may result in predicted safe periods as long as 10(13) years. COPVs design requirements for stress rupture may then be relaxed, allowing more efficient designs, while still maintaining an acceptable level of safety.
Crazing of nanocomposites with polymer-tethered nanoparticles
Meng, Dong; Kumar, Sanat K.; Ge, Ting; ...
2016-09-07
The crazing behavior of polymer nanocomposites formed by blending polymer grafted nanoparticles with an entangled polymer melt is studied by molecular dynamics simulations. We focus on the three key differences in the crazing behavior of a composite relative to the pure homopolymer matrix, namely, a lower yield stress, a smaller extension ratio, and a grafted chain length dependent failure stress. The yield behavior is found to be mostly controlled by the local nanoparticle-grafted polymer interfacial energy, with the grafted polymer-polymer matrix interfacial structure being of little to no relevance. Increasing the attraction between nanoparticle core and the grafted polymer inhibitsmore » void nucleation and leads to a higher yield stress. In the craze growth regime, the presence of “grafted chain” sections of ≈100 monomers alters the mechanical response of composite samples, giving rise to smaller extension ratios and higher drawing stresses than for the homopolymer matrix. As a result, the dominant failure mechanism of composite samples depends strongly on the length of the grafted chains, with disentanglement being the dominant mechanism for short chains, while bond breaking is the failure mode for chain lengths >10N e, where N e is the entanglement length.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrar, Charles R; Gobbato, Maurizio; Conte, Joel
2009-01-01
The extensive use of lightweight advanced composite materials in unmanned aerial vehicles (UAVs) drastically increases the sensitivity to both fatigue- and impact-induced damage of their critical structural components (e.g., wings and tail stabilizers) during service life. The spar-to-skin adhesive joints are considered one of the most fatigue sensitive subcomponents of a lightweight UAV composite wing with damage progressively evolving from the wing root. This paper presents a comprehensive probabilistic methodology for predicting the remaining service life of adhesively-bonded joints in laminated composite structural components of UAVs. Non-destructive evaluation techniques and Bayesian inference are used to (i) assess the current statemore » of damage of the system and, (ii) update the probability distribution of the damage extent at various locations. A probabilistic model for future loads and a mechanics-based damage model are then used to stochastically propagate damage through the joint. Combined local (e.g., exceedance of a critical damage size) and global (e.g.. flutter instability) failure criteria are finally used to compute the probability of component failure at future times. The applicability and the partial validation of the proposed methodology are then briefly discussed by analyzing the debonding propagation, along a pre-defined adhesive interface, in a simply supported laminated composite beam with solid rectangular cross section, subjected to a concentrated load applied at mid-span. A specially developed Eliler-Bernoulli beam finite element with interlaminar slip along the damageable interface is used in combination with a cohesive zone model to study the fatigue-induced degradation in the adhesive material. The preliminary numerical results presented are promising for the future validation of the methodology.« less
Chen, Jinxiang; Tuo, Wanyong; Zhang, Xiaoming; He, Chenglin; Xie, Juan; Liu, Chang
2016-12-01
To develop lightweight biomimetic composite structures, the compressive failure and mechanical properties of fully integrated honeycomb plates were investigated experimentally and through the finite element method. The results indicated that: fracturing of the fully integrated honeycomb plates primarily occurred in the core layer, including the sealing edge structure. The morphological failures can be classified into two types, namely dislocations and compactions, and were caused primarily by the stress concentrations at the interfaces between the core layer and the upper and lower laminations and secondarily by the disordered short-fiber distribution in the material; although the fully integrated honeycomb plates manufactured in this experiment were imperfect, their mass-specific compressive strength was superior to that of similar biomimetic samples. Therefore, the proposed bio-inspired structure possesses good overall mechanical properties, and a range of parameters, such as the diameter of the transition arc, was defined for enhancing the design of fully integrated honeycomb plates and improving their compressive mechanical properties. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bowland, Christopher C.; Wang, Yangyang; Naskar, Amit K.
2017-04-01
Carbon fiber composites experience sudden, catastrophic failure when exposed to sufficient stress levels and provide no obvious visual indication of damage before they fail. With the commercial adoption of these high-performance composites in structural applications, a need for in-situ monitoring of their structural integrity is paramount. Therefore, ways in which to monitor these systems has gathered research interest. A common method for accomplishing this is measuring through-thickness resistance changes of the composite due to the fact that carbon fiber composites are electrically conductive. This provides information on whole-body stress levels imparted on the composite and can help identify the presence of damage. However, this technique relies on the carbon fiber and polymer matrix to reveal a resistance change. Here, an approach is developed that increases damage detection sensitivity. This is achieved by developing a facile synthesis method of integrating semiconducting nanomaterials, such as silicon carbide, into carbon fiber sizing. The piezoresistive effect exhibited by these nanomaterials provides more pronounced resistance changes in response to mechanical stress as compared to carbon fiber alone. This is investigated through fabricating a unidirectional composite and subsequently monitoring the electrical resistance during mechanical testing. By establishing this route for integrating nanomaterials into carbon fiber composites, various nanomaterials can see future composite integration to realize novel properties.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Hoffarth, Canio; Khaled, Bilal; Shyamsunder, Loukham; Rajan, Subramaniam; Blankenhorn, Gunther
2017-01-01
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased use in the aerospace and automotive communities. The aerospace community has identified several key capabilities which are currently lacking in the available material models in commercial transient dynamic finite element codes. To attempt to improve the predictive capability of composite impact simulations, a next generation material model is being developed for incorporation within the commercial transient dynamic finite element code LS-DYNA. The material model, which incorporates plasticity, damage and failure, utilizes experimentally based tabulated input to define the evolution of plasticity and damage and the initiation of failure as opposed to specifying discrete input parameters such as modulus and strength. The plasticity portion of the orthotropic, three-dimensional, macroscopic composite constitutive model is based on an extension of the Tsai-Wu composite failure model into a generalized yield function with a non-associative flow rule. For the damage model, a strain equivalent formulation is used to allow for the uncoupling of the deformation and damage analyses. For the failure model, a tabulated approach is utilized in which a stress or strain based invariant is defined as a function of the location of the current stress state in stress space to define the initiation of failure. Failure surfaces can be defined with any arbitrary shape, unlike traditional failure models where the mathematical functions used to define the failure surface impose a specific shape on the failure surface. In the current paper, the complete development of the failure model is described and the generation of a tabulated failure surface for a representative composite material is discussed.
Lohbauer, Ulrich; Belli, Renan; Cune, Marco S; Schepke, Ulf
2017-01-01
Today, a substantial part of the dental crown production uses computer-aided design and computer-aided manufacturing (CAD/CAM) technology. A recent step in restorative dentistry is the replacement of natural tooth structure with pre-polymerized and machined resin-based methacrylic polymers. Recently, a new CAD/CAM composite was launched for the crown indication in the load-bearing area, but the clinical reality forced the manufacturer to withdraw this specific indication. In parallel, a randomized clinical trial of CAD/CAM composite crowns luted on zirconia implant abutments revealed a high incidence of failure within the first year of service. Fractured crowns of this clinical trial were retrieved and submitted to a fractographic examination. The aim of the case series presented in this article was to identify failure reasons for a new type of CAD/CAM composite crown material (Lava Ultimate; 3M Oral Care, St. Paul, Minnesota, USA) via fractographic examinations and analytical assessment of luting surfaces and water absorption behavior. As a result, the debonding of the composite crowns from the zirconia implant abutments was identified as the central reason for failure. The adhesive interface was found the weakest link. A lack of silica at the zirconia surface certainly has compromised the bonding potential of the adhesive system from the beginning. Additionally, the hydrolytic stress released from swelling of the resin-based crown (water absorption) and transfer to the luting interface further added to the interfacial stress and most probably contributed to a great extend to the debonding failure. PMID:29204275
Lohbauer, Ulrich; Belli, Renan; Cune, Marco S; Schepke, Ulf
2017-01-01
Today, a substantial part of the dental crown production uses computer-aided design and computer-aided manufacturing (CAD/CAM) technology. A recent step in restorative dentistry is the replacement of natural tooth structure with pre-polymerized and machined resin-based methacrylic polymers. Recently, a new CAD/CAM composite was launched for the crown indication in the load-bearing area, but the clinical reality forced the manufacturer to withdraw this specific indication. In parallel, a randomized clinical trial of CAD/CAM composite crowns luted on zirconia implant abutments revealed a high incidence of failure within the first year of service. Fractured crowns of this clinical trial were retrieved and submitted to a fractographic examination. The aim of the case series presented in this article was to identify failure reasons for a new type of CAD/CAM composite crown material (Lava Ultimate; 3M Oral Care, St. Paul, Minnesota, USA) via fractographic examinations and analytical assessment of luting surfaces and water absorption behavior. As a result, the debonding of the composite crowns from the zirconia implant abutments was identified as the central reason for failure. The adhesive interface was found the weakest link. A lack of silica at the zirconia surface certainly has compromised the bonding potential of the adhesive system from the beginning. Additionally, the hydrolytic stress released from swelling of the resin-based crown (water absorption) and transfer to the luting interface further added to the interfacial stress and most probably contributed to a great extend to the debonding failure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandrasekaran, S.; Liebig, W. V.; Mecklenberg, M.
Aerographite (AG) is a mechanically robust, lightweight synthetic cellular material, which consists of a 3D interconnected network of tubular carbon [1]. The presence of open channels in AG aids to infiltrate them with polymer matrices, thereby yielding an electrical conducting and lightweight composite. Aerographite produced with densities in the range of 7–15 mg/cm 3 was infiltrated with a low viscous epoxy resin by means of vacuum infiltration technique. Detailed morphological and structural investigations on synthesized AG and AG/epoxy composite were performed by scanning electron microscopic techniques. Our present study investigates the fracture and failure of AG/epoxy composites and its energymore » absorption capacity under compression. The composites displayed an extended plateau region when uni-axially compressed, which led to an increase in energy absorption of ~133% per unit volume for 1.5 wt% of AG, when compared to pure epoxy. Preliminary results on fracture toughness showed an enhancement of ~19% in K IC for AG/epoxy composites with 0.45 wt% of AG. Furthermore, our observations of fractured surfaces under scanning electron microscope gives evidence of pull-out of arms of AG tetrapod, interface and inter-graphite failure as the dominating mechanism for the toughness improvement in these composites. These observations were consistent with the results obtained from photoelasticity experiments on a thin film AG/epoxy model composite.« less
NASA Astrophysics Data System (ADS)
Mahmoodan, Morteza; Gholamipour, Reza; Mirdamadi, Shamseddin; Nategh, Said
2017-05-01
In the present study, (Zr55Cu30Al10Ni5)100- x Nb( x=0,1,2,3) bulk metallic glass matrix/tungsten wire composites were fabricated by infiltration process. Structural studies were investigated by scanning electron microscopy and X-ray diffraction method. Also, mechanical behaviors of the materials were analyzed using quasi-static compressive tests. Results indicated that the best mechanical properties i.e., 2105 MPa compressive ultimate strength and 28 pct plastic strain before failure, were achieved in the composite sample with X = 2. It was also found that adding Nb to the matrix modified interface structure in W fiber/(Zr55Cu30Al10Ni5)98Nb2 since the stable diffusion band formation acts as a functionally graded layer. Finally, the observation of multiple shear bands formation in the matrix could confirm the excellent plastic deformation behavior of the composite.
NASA Technical Reports Server (NTRS)
Corvelli, N.; Carri, R.
1972-01-01
Results of a study to demonstrate the applicability of boron-epoxy-composite-reinforced titanium tubular members to a space shuttle booster thrust structure are presented and discussed. The experimental results include local buckling of all-composite and composite-reinforced-metal cylinders with low values of diameter-thickness ratio, static tests on composite-to-metal bonded step joints, and a test to failure of a boron-epoxy-reinforced titanium demonstration truss. The demonstration truss failed at 118 percent of design ultimate load. Test results and analysis for all specimens and the truss are compared. Comparing an all-titanium design and a boron-epoxy-reinforced-titanium (75 percent B-E and 25 percent Ti) design for application to the space shuttle booster thrust structure indicates that the latter would weigh approximately 24 percent less. Experimental data on the local buckling strength of cylinders with a diameter-thickness ratio of approximately 50 are needed to insure that undue conservatism is not used in future designs.
NASA Technical Reports Server (NTRS)
Gotsis, P. K.; Chamis, C. C.; Minnetyan, L.
1996-01-01
Defect-free and defected composite thin shells with ply orientation (90/0/+/-75) made of graphite/epoxy are simulated for damage progression and fracture due to internal pressure and axial loading. The thin shells have a cylindrical geometry with one end fixed and the other free. The applied load consists of an internal pressure in conjunction with an axial load at the free end, the cure temperature was 177 C (350 F) and the operational temperature was 21 C (70 F). The residual stresses due to the processing are taken into account. Shells with defect and without defects were examined by using CODSTRAN an integrated computer code that couples composite mechanics, finite element and account for all possible failure modes inherent in composites. CODSTRAN traces damage initiation, growth, accumulation, damage propagation and the final fracture of the structure. The results show that damage initiation started with matrix failure while damage/fracture progression occurred due to additional matrix failure and fiber fracture. The burst pressure of the (90/0/+/- 75) defected shell was 0.092% of that of the free defect. Finally the results of the damage progression of the (90/0/+/- 75), defective composite shell was compared with the (90/0/+/- theta, where theta = 45 and 60, layup configurations. It was shown that the examined laminate (90/0/+/- 75) has the least damage tolerant of the two compared defective shells with the (90/0/+/- theta), theta = 45 and 60 laminates.
Concepts for improving the damage tolerance of composite compression panels. [aircraft structures
NASA Technical Reports Server (NTRS)
Rhodes, M. D.; Williams, J. G.
1984-01-01
The residual strength of specimens with damage and the sensitivity to damage while subjected to an applied inplane compression load were determined for flatplate specimens and blade-stiffened panels. The results suggest that matrix materials that fail by delamination have the lowest damage tolerance capability. Alternate matrix materials or laminates which are transversely reinforced suppress the delamination mode of failure and change the failure mode to transverse shear crippling which occurs at a higher strain value. Several damage-tolerant blade-stiffened panel design concepts are evaluated. Structural efficiency studies conducted show only small mass penalties may result from incorporating these damage-tolerant features in panel design. The implication of test results on the design of aircraft structures was examined with respect to FAR requirements.
Micromechanical models for textile structural composites
NASA Technical Reports Server (NTRS)
Marrey, Ramesh V.; Sankar, Bhavani V.
1995-01-01
The objective is to develop micromechanical models for predicting the stiffness and strength properties of textile composite materials. Two models are presented to predict the homogeneous elastic constants and coefficients of thermal expansion of a textile composite. The first model is based on rigorous finite element analysis of the textile composite unit-cell. Periodic boundary conditions are enforced between opposite faces of the unit-cell to simulate deformations accurately. The second model implements the selective averaging method (SAM), which is based on a judicious combination of stiffness and compliance averaging. For thin textile composites, both models can predict the plate stiffness coefficients and plate thermal coefficients. The finite element procedure is extended to compute the thermal residual microstresses, and to estimate the initial failure envelope for textile composites.
NASA Astrophysics Data System (ADS)
Nousiainen, O.; Putaala, J.; Kangasvieri, T.; Rautioaho, R.; Vähäkangas, J.
2007-03-01
The thermal fatigue endurance of completely lead-free 95.5Sn4Ag0.7Cu/plastic core solder ball (PCSB) composite joint structures in low-temperature Co-fired ceramic/printed wiring board (LTCC/PWB) assemblies was investigated using thermal cycling tests over the temperature ranges of -40°C 125°C and 0°C 100°C. Two separate creep/fatigue failures initiated and propagated in the joints during the tests: (1) a crack along the intermetallic compound (IMC)/solder interface on the LTCC side of the joint, which formed at the high-temperature extremes; and (2) a crack in the solder near the LTCC solder land, which formed at the low-temperature extremes. Moreover, localized recrystallization was detected at the outer edge of the joints that were tested in the harsh (-40°C 125°C) test conditions. The failure mechanism was creep/fatigue-induced mixed intergranular and transgranular cracking in the recrystallized zone, but it was dominated by transgranular thermal fatigue failure beyond the recrystallized zone. The change in the failure mechanism increased the rate of crack growth. When the lower temperature extreme was raised from -40°C to 0°C, no recrystallized zone was detected and the failure was due to intergranular cracks.
Structural reliability analysis of laminated CMC components
NASA Technical Reports Server (NTRS)
Duffy, Stephen F.; Palko, Joseph L.; Gyekenyesi, John P.
1991-01-01
For laminated ceramic matrix composite (CMC) materials to realize their full potential in aerospace applications, design methods and protocols are a necessity. The time independent failure response of these materials is focussed on and a reliability analysis is presented associated with the initiation of matrix cracking. A public domain computer algorithm is highlighted that was coupled with the laminate analysis of a finite element code and which serves as a design aid to analyze structural components made from laminated CMC materials. Issues relevant to the effect of the size of the component are discussed, and a parameter estimation procedure is presented. The estimation procedure allows three parameters to be calculated from a failure population that has an underlying Weibull distribution.
Dikshit, Vishwesh; Nagalingam, Arun Prasanth; Yap, Yee Ling; Sing, Swee Leong; Yeong, Wai Yee; Wei, Jun
2017-01-01
The objective of this investigation was to determine the quasi-static indentation response and failure mode in three-dimensional (3D) printed trapezoidal core structures, and to characterize the energy absorbed by the structures. In this work, the trapezoidal sandwich structure was designed in the following two ways. Firstly, the trapezoidal core along with its facesheet was 3D printed as a single element comprising a single material for both core and facesheet (type A); Secondly, the trapezoidal core along with facesheet was 3D printed, but with variation in facesheet materials (type B). Quasi-static indentation was carried out using three different indenters, namely standard hemispherical, conical, and flat indenters. Acoustic emission (AE) technique was used to capture brittle cracking in the specimens during indentation. The major failure modes were found to be brittle failure and quasi-brittle fractures. The measured indentation energy was at a maximum when using a conical indenter at 9.40 J and 9.66 J and was at a minimum when using a hemispherical indenter at 6.87 J and 8.82 J for type A and type B series specimens respectively. The observed maximum indenter displacements at failure were the effect of material variations and composite configurations in the facesheet. PMID:28772649
Dikshit, Vishwesh; Nagalingam, Arun Prasanth; Yap, Yee Ling; Sing, Swee Leong; Yeong, Wai Yee; Wei, Jun
2017-03-14
The objective of this investigation was to determine the quasi-static indentation response and failure mode in three-dimensional (3D) printed trapezoidal core structures, and to characterize the energy absorbed by the structures. In this work, the trapezoidal sandwich structure was designed in the following two ways. Firstly, the trapezoidal core along with its facesheet was 3D printed as a single element comprising a single material for both core and facesheet (type A); Secondly, the trapezoidal core along with facesheet was 3D printed, but with variation in facesheet materials (type B). Quasi-static indentation was carried out using three different indenters, namely standard hemispherical, conical, and flat indenters. Acoustic emission (AE) technique was used to capture brittle cracking in the specimens during indentation. The major failure modes were found to be brittle failure and quasi-brittle fractures. The measured indentation energy was at a maximum when using a conical indenter at 9.40 J and 9.66 J and was at a minimum when using a hemispherical indenter at 6.87 J and 8.82 J for type A and type B series specimens respectively. The observed maximum indenter displacements at failure were the effect of material variations and composite configurations in the facesheet.
A Study of Failure Criteria of Fibrous Composite Materials
NASA Technical Reports Server (NTRS)
Paris, Federico; Jackson, Karen E. (Technical Monitor)
2001-01-01
The research described in this paper is focused on two areas: (1) evaluation of existing composite failure criteria in the nonlinear, explicit transient dynamic finite element code, MSC.Dytran, and (2) exploration of the possibilities for modification of material and failure models to account for large deformations, progressive failure, and interaction of damage accumulation with stress/strain response of laminated composites. Following a review of the MSC.Dytran user manual, a bibliographical review of existing failure criteria of composites was performed. The papers considered most interesting for the objective of this report are discussed in section 2. The failure criteria included in the code under consideration are discussed in section 3. A critical summary of the present procedures to perform analysis and design of composites is presented in section 4. A study of the most important historical failure criteria for fibrous composite materials and some of the more recent modifications proposed were studied. The result of this analysis highlighted inadequacies in the existing failure criteria and the need to perform some numerical analyses to elucidate the answer to questions on which some of the proposed criteria are based. A summary of these ideas, which is a proposal of studies to be developed, is presented in section 5. Finally, some ideas for future developments are summarized in section 6.
Strength and deformability of concrete beams reinforced by non-metallic fiber and composite rebar
NASA Astrophysics Data System (ADS)
Kudyakov, K. L.; Plevkov, V. S.; Nevskii, A. V.
2015-01-01
Production of durable and high-strength concrete structures with unique properties has always been crucial. Therefore special attention has been paid to non-metallic composite and fiber reinforcement. This article describes the experimental research of strength and deformability of concrete beams with dispersed and core fiber-based reinforcement. As composite reinforcement fiberglass reinforced plastic rods with diameters 6 mm and 10 mm are used. Carbon and basalt fibers are used as dispersed reinforcement. The developed experimental program includes designing and production of flexural structures with different parameters of dispersed fiber and composite rebar reinforcement. The preliminary testing of mechanical properties of these materials has shown their effectiveness. Structures underwent bending testing on a special bench by applying flexural static load up to complete destruction. During the tests vertical displacements were recorded, as well as value of actual load, slippage of rebars in concrete, crack formation. As a result of research were obtained structural failure and crack formation graphs, value of fracture load and maximum displacements of the beams at midspan. Analysis of experimental data showed the effectiveness of using dispersed reinforcement of concrete and the need for prestressing of fiberglass composite rebar.
NASA Technical Reports Server (NTRS)
Charette, R. F.; Hyer, M. W.
1990-01-01
The influence is investigated of a curvilinear fiber format on load carrying capacity of a layered fiber reinforced plate with a centrally located hole. A curvilinear fiber format is descriptive of layers in a laminate having fibers which are aligned with the principal stress directions in those layers. Laminates of five curvilinear fiber format designs and four straightline fiber format designs are considered. A quasi-isotropic laminate having a straightline fiber format is used to define a baseline design for comparison with the other laminate designs. Four different plate geometries are considered and differentiated by two values of hole diameter/plate width equal to 1/6 and 1/3, and two values of plate length/plate width equal to 2 and 1. With the plates under uniaxial tensile loading on two opposing edges, alignment of fibers in the curvilinear layers with the principal stress directions is determined analytically by an iteration procedure. In-plane tensile load capacity is computed for all of the laminate designs using a finite element analysis method. A maximum strain failure criterion and the Tsai-Wu failure criterion are applied to determine failure loads and failure modes. Resistance to buckling of the laminate designs to uniaxial compressive loading is analyzed using the commercial code Engineering Analysis Language. Results indicate that the curvilinear fiber format laminates have higher in-plane tensile load capacity and comparable buckling resistance relative to the straightline fiber format laminates.
Optimization of Composite Material System and Lay-up to Achieve Minimum Weight Pressure Vessel
NASA Astrophysics Data System (ADS)
Mian, Haris Hameed; Wang, Gang; Dar, Uzair Ahmed; Zhang, Weihong
2013-10-01
The use of composite pressure vessels particularly in the aerospace industry is escalating rapidly because of their superiority in directional strength and colossal weight advantage. The present work elucidates the procedure to optimize the lay-up for composite pressure vessel using finite element analysis and calculate the relative weight saving compared with the reference metallic pressure vessel. The determination of proper fiber orientation and laminate thickness is very important to decrease manufacturing difficulties and increase structural efficiency. In the present work different lay-up sequences for laminates including, cross-ply [ 0 m /90 n ] s , angle-ply [ ±θ] ns , [ 90/±θ] ns and [ 0/±θ] ns , are analyzed. The lay-up sequence, orientation and laminate thickness (number of layers) are optimized for three candidate composite materials S-glass/epoxy, Kevlar/epoxy and Carbon/epoxy. Finite element analysis of composite pressure vessel is performed by using commercial finite element code ANSYS and utilizing the capabilities of ANSYS Parametric Design Language and Design Optimization module to automate the process of optimization. For verification, a code is developed in MATLAB based on classical lamination theory; incorporating Tsai-Wu failure criterion for first-ply failure (FPF). The results of the MATLAB code shows its effectiveness in theoretical prediction of first-ply failure strengths of laminated composite pressure vessels and close agreement with the FEA results. The optimization results shows that for all the composite material systems considered, the angle-ply [ ±θ] ns is the optimum lay-up. For given fixed ply thickness the total thickness of laminate is obtained resulting in factor of safety slightly higher than two. Both Carbon/epoxy and Kevlar/Epoxy resulted in approximately same laminate thickness and considerable percentage of weight saving, but S-glass/epoxy resulted in weight increment.
NASA Technical Reports Server (NTRS)
Bowles, K. J.
1985-01-01
A study was conducted to relate the impact resistance of graphite fiber reinforced composites with matrix properties through gaining an understanding of the basic mechanics involved in the deformation and fracture process, and the effect of the polymer matrix structure on these mechanisms. It was found that the resin matrix structure influences the composite impact resistance in at least two ways. The integration of flexibilizers into the polymer chain structure tends to reduce the T sub g and the mechanical properties of the polymer. The reduction in the mechanical properties of the matrix does not enhance the composite impact resistance because it allows matrix controlled failure to initiate impact damage. It was found that when the instrumented dropweight impact tester is used as a means for assessing resin toughness, the resin toughness is enhanced by the ability of the clamped specimen to deflect enough to produce sufficient membrane action to support a significant amount of the load. The results of this study indicate that crossplied composite impact resistance is very much dependent on the matrix mechanical properties.
NASA Technical Reports Server (NTRS)
Saulsberry, Regor; Nichols, Charles; Waller, Jess
2012-01-01
Currently there are no integrated NDE methods for baselining and monitoring defect levels in fleet for Composite Overwrapped Pressure Vessels (COPVs) or related fracture critical composites, or for performing life-cycle maintenance inspections either in a traditional remove-and-inspect mode or in a more modern in situ inspection structural health monitoring (SHM) mode. Implicit in SHM and autonomous inspection is the existence of quantitative accept-reject criteria. To be effective, these criteria must correlate with levels of damage known to cause composite failure. Furthermore, implicit in SHM is the existence of effective remote sensing hardware and automated techniques and algorithms for interpretation of SHM data. SHM of facture critical composite structures, especially high pressure COPVs, is critical to the success of nearly every future NASA space exploration program as well as life extension of the International Space Station. It has been clearly stated that future NASA missions may not be successful without SHM [1]. Otherwise, crews will be busy addressing subsystem health issues and not focusing on the real NASA mission
Crack detection and fatigue related delamination in FRP composites applied to concrete
NASA Astrophysics Data System (ADS)
Brown, Jeff; Baker, Rebecca; Kallemeyn, Lisa; Zendler, Andrew
2008-03-01
Reinforced concrete beams are designed to allow minor concrete cracking in the tension zone. The severity of cracking in a beam element is a good indicator of how well a structure is performing and whether or not repairs are needed to prevent structural failure. FRP composites are commonly used to increase the flexural and shear capacity of RC beam elements, but one potential disadvantage of this method is that strengthened surfaces are no longer visible and cracks or delaminations that result from excessive loading or fatigue may go undetected. This research investigated thermal imaging techniques for detecting load induced cracking in the concrete substrate and delamination of FRP strengthening systems applied to reinforced concrete (RC). One small-scale RC beam (5 in. x 6 in. x 60 in.) was strengthened with FRP and loaded to failure monotonically. An infrared thermography inspection was performed after failure. A second strengthened beam was loaded cyclically for 1,750,000 cycles to investigate how fatigue might affect substrate cracking and delamination growth throughout the service-life of a repaired element. No changes were observed in the FRP bond during/after the cyclic loading. The thermal imaging component of this research included pixel normalization to enhance detectability and characterization of this specific type of damage.
Compendium of Post-Failure Analysis Techniques for Composite Materials.
1987-01-01
HHdrocarbon 285.0 Ether or alcohol 286.5 Ketone 288.0 Ester 288.8 (Ref. 5) Figure 3-37. Carbon Peak Shifts in XPS 5-B70227Rt -130 " Hydrocarbon...structure overlays composite material since neutrons are not as attenuated by metal as X-rays, and are relatively sensitive to poly - meric materials...Thermal Aging 3-18 Glass Transition Temperature Determination - 3-37 TMA Penetration Test Setup 3-19 Glass Transition Temperature Determination - 3-37 TMA
NASA Technical Reports Server (NTRS)
Hashin, Z. (Editor); Herakovich, C. T. (Editor)
1983-01-01
The present conference on the mechanics of composites discusses microstructure's influence on particulate and short fiber composites' thermoelastic and transport properties, the elastoplastic deformation of composites, constitutive equations for viscoplastic composites, the plasticity and fatigue of metal matrix composites, laminate damping mechanisms, the micromechanical modeling of Kevlar/epoxy composites' time-dependent failure, the variational characterization of waves in composites, and computational methods for eigenvalue problems in composite design. Also discussed are the elastic response of laminates, elastic coupling nonlinear effects in unsymmetrical laminates, elasticity solutions for laminate problems having stress singularities, the mechanics of bimodular composite structures, the optimization of laminated plates and shells, NDE for laminates, the role of matrix cracking in the continuum constitutive behavior of a damaged composite ply, and the energy release rates of various microcracks in short fiber composites.
Probabilistic Evaluation of Advanced Ceramic Matrix Composite Structures
NASA Technical Reports Server (NTRS)
Abumeri, Galib H.; Chamis, Christos C.
2003-01-01
The objective of this report is to summarize the deterministic and probabilistic structural evaluation results of two structures made with advanced ceramic composites (CMC): internally pressurized tube and uniformly loaded flange. The deterministic structural evaluation includes stress, displacement, and buckling analyses. It is carried out using the finite element code MHOST, developed for the 3-D inelastic analysis of structures that are made with advanced materials. The probabilistic evaluation is performed using the integrated probabilistic assessment of composite structures computer code IPACS. The affects of uncertainties in primitive variables related to the material, fabrication process, and loadings on the material property and structural response behavior are quantified. The primitive variables considered are: thermo-mechanical properties of fiber and matrix, fiber and void volume ratios, use temperature, and pressure. The probabilistic structural analysis and probabilistic strength results are used by IPACS to perform reliability and risk evaluation of the two structures. The results will show that the sensitivity information obtained for the two composite structures from the computational simulation can be used to alter the design process to meet desired service requirements. In addition to detailed probabilistic analysis of the two structures, the following were performed specifically on the CMC tube: (1) predicted the failure load and the buckling load, (2) performed coupled non-deterministic multi-disciplinary structural analysis, and (3) demonstrated that probabilistic sensitivities can be used to select a reduced set of design variables for optimization.
Interactive Reliability Model for Whisker-toughened Ceramics
NASA Technical Reports Server (NTRS)
Palko, Joseph L.
1993-01-01
Wider use of ceramic matrix composites (CMC) will require the development of advanced structural analysis technologies. The use of an interactive model to predict the time-independent reliability of a component subjected to multiaxial loads is discussed. The deterministic, three-parameter Willam-Warnke failure criterion serves as the theoretical basis for the reliability model. The strength parameters defining the model are assumed to be random variables, thereby transforming the deterministic failure criterion into a probabilistic criterion. The ability of the model to account for multiaxial stress states with the same unified theory is an improvement over existing models. The new model was coupled with a public-domain finite element program through an integrated design program. This allows a design engineer to predict the probability of failure of a component. A simple structural problem is analyzed using the new model, and the results are compared to existing models.
A mechanics framework for a progressive failure methodology for laminated composites
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Allen, David H.; Lo, David C.
1989-01-01
A laminate strength and life prediction methodology has been postulated for laminated composites which accounts for the progressive development of microstructural damage to structural failure. A damage dependent constitutive model predicts the stress redistribution in an average sense that accompanies damage development in laminates. Each mode of microstructural damage is represented by a second-order tensor valued internal state variable which is a strain like quantity. The mechanics framework together with the global-local strategy for predicting laminate strength and life is presented in the paper. The kinematic effects of damage are represented by effective engineering moduli in the global analysis and the results of the global analysis provide the boundary conditions for the local ply level stress analysis. Damage evolution laws are based on experimental results.
Failure models for textile composites
NASA Technical Reports Server (NTRS)
Cox, Brian
1995-01-01
The goals of this investigation were to: (1) identify mechanisms of failure and determine how the architecture of reinforcing fibers in 3D woven composites controlled stiffness, strength, strain to failure, work of fracture, notch sensitivity, and fatigue life; and (2) to model composite stiffness, strength, and fatigue life. A total of 11 different angle and orthogonal interlock woven composites were examined. Composite properties depended on the weave architecture, the tow size, and the spatial distributions and strength of geometrical flaws. Simple models were developed for elastic properties, strength, and fatigue life. A more complicated stochastic model, called the 'Binary Model,' was developed for damage tolerance and ultimate failure. These 3D woven composites possessed an extraordinary combination of strength, damage tolerance, and notch insensitivity.
NASA Technical Reports Server (NTRS)
Moncada, Albert M.; Chattopadhyay, Aditi; Bednarcyk, Brett A.; Arnold, Steven M.
2008-01-01
Predicting failure in a composite can be done with ply level mechanisms and/or micro level mechanisms. This paper uses the Generalized Method of Cells and High-Fidelity Generalized Method of Cells micromechanics theories, coupled with classical lamination theory, as implemented within NASA's Micromechanics Analysis Code with Generalized Method of Cells. The code is able to implement different failure theories on the level of both the fiber and the matrix constituents within a laminate. A comparison is made among maximum stress, maximum strain, Tsai-Hill, and Tsai-Wu failure theories. To verify the failure theories the Worldwide Failure Exercise (WWFE) experiments have been used. The WWFE is a comprehensive study that covers a wide range of polymer matrix composite laminates. The numerical results indicate good correlation with the experimental results for most of the composite layups, but also point to the need for more accurate resin damage progression models.
NASA Astrophysics Data System (ADS)
Irfan, Mohammad Abdulaziz
Dynamic deformation, flow, and failure are integral parts of all dynamic processes in materials. Invariably, dynamic failure also involves the relative sliding of one component of the material over the other. Advances in elucidation of these failure mechanisms under high loading rates has been of great interest to scientists working in this area. The need to develop new dynamic mechanical property tests for materials under well characterized and controllable loading conditions has always been a challenge to experimentalists. The current study focuses on the development of two experimental methods to study some aspects of dynamic material response. The first part focuses on the development of a single stage gas gun facility for investigating high-speed metal to metal interfacial friction with applications to high speed machining. During the course of this investigation a gas gun was designed and built capable of accelerating projectiles upto velocities of 1 km/s. Using this gas gun pressure-shear plate impact friction experiments were conducted to simulate conditions similar to high speed machining at the tool-workpiece interface. The impacting plates were fabricated from materials representing the tribo-pair of interest. Accurate measurements of the interfacial tractions, i.e. the normal pressure and the frictional stress at the tribo-pair interface, and the interfacial slip velocity could be made by employing laser interferometry. Normal pressures of the order of 1-2 MPa were generated and slipping velocities of the order of 50 m/s were obtained. In order to illustrate the structure of the constitutive law governing friction, the study included experimental investigation of frictional response to step changes in normal pressure and interfacial shear stress. The results of these experiments indicate that sliding resistance for Ti6Al4V/CH steel interface is much lower than measured under quasi-static sliding conditions. Also the temperature at the interface strongly effects the sliding resistance of the interface. The experimental results deduced from the response of the sliding interface to step changes in normal pressure and the applied shear stress reinforce the importance of including frictional memory in the development of rate dependent state variable friction models. The second part of the thesis presents an investigation into the dynamic deformation and failure of extrinsically toughened DRA composites. Experiments were conducted using the split Hopkinson pressure bar to investigate the deformation and flow behavior under dynamic compression loading. A modified Hopkinson bar apparatus was used to explore the dynamic fracture behavior of three different extrinsically toughened DRA composites. The study was paralleled by systematic exploration of the failure modes in each composite. For all the composites evaluated the dynamic crack propagation characteristics of the composites are observed to be strongly dependent on the volume fraction of the ductile phase reinforcement in the composite, the yield stress of the ductile phase reinforcement, the micro-structural arrangement of the ductile phase reinforcements with respect to the notch, and the impact velocity employed in the particular experiment.
Multiscale Analysis of Nanocomposites and Their Use in Structural Level Applications
NASA Astrophysics Data System (ADS)
Hasan, Zeaid
This research focuses on the benefits of using nanocomposites in aerospace structural components to prevent or delay the onset of unique composite failure modes, such as delamination. Analytical, numerical, and experimental analyses were conducted to provide a comprehensive understanding of how carbon nanotubes (CNTs) can provide additional structural integrity when they are used in specific hot spots within a structure. A multiscale approach was implemented to determine the mechanical and thermal properties of the nanocomposites, which were used in detailed finite element models (FEMs) to analyze interlaminar failures in T and Hat section stringers. The delamination that first occurs between the tow filler and the bondline between the stringer and skin was of particular interest. Both locations are considered to be hot spots in such structural components, and failures tend to initiate from these areas. In this research, nanocomposite use was investigated as an alternative to traditional methods of suppressing delamination. The stringer was analyzed under different loading conditions and assuming different structural defects. Initial damage, defined as the first drop in the load displacement curve was considered to be a useful variable to compare the different behaviors in this study and was detected via the virtual crack closure technique (VCCT) implemented in the FE analysis. Experiments were conducted to test T section skin/stringer specimens under pull-off loading, replicating those used in composite panels as stiffeners. Two types of designs were considered: one using pure epoxy to fill the tow region and another that used nanocomposite with 5 wt. % CNTs. The response variable in the tests was the initial damage. Detailed analyses were conducted using FEMs to correlate with the experimental data. The correlation between both the experiment and model was satisfactory. Finally, the effects of thermal cure and temperature variation on nanocomposite structure behavior were studied, and both variables were determined to influence the nanocomposite structure performance.
Socioecological disparities in New Orleans following Hurricane Katrina
Joshua A. Lewis; Wayne C. Zipperer; Henrik Ernstson; Brittany Bernik; Rebecca Hazen; Thomas Elmqvist; Michael J. Blum
2017-01-01
Despite growing interest in urban resilience, remarkably little is known about vegetation dynamics in the aftermath of disasters. In this study, we examined the composition and structure of plant communities across New Orleans (Louisiana, USA) following catastrophic flooding triggered by levee failures during Hurricane Katrina in 2005. Focusing on eight...
NASA Astrophysics Data System (ADS)
Heller, R. A.; Thangjitham, S.; Wang, X.
1992-04-01
The state of stress in a cylindrical structure consisting of multiple layers of carbon-carbon composite and subjected to thermal and pressure shock are analyzed using an elasticity approach. The reliability of the structure based on the weakest link concept and the Weibull distribution is also calculated. Coupled thermo-elasticity is first assumed and is shown to be unnecessary for the material considered. The effects of external and internal thermal shock as well as a superimposed pressure shock are examined. It is shown that for the geometry chosen, the structure may fail when exposed to thermal shock alone while a superimposed pressure shock can mitigate the probability of failure.
Liang, Zheng; Lin, Dingchang; Zhao, Jie; Lu, Zhenda; Liu, Yayuan; Liu, Chong; Lu, Yingying; Wang, Haotian; Yan, Kai; Tao, Xinyong; Cui, Yi
2016-01-01
Lithium metal-based battery is considered one of the best energy storage systems due to its high theoretical capacity and lowest anode potential of all. However, dendritic growth and virtually relative infinity volume change during long-term cycling often lead to severe safety hazards and catastrophic failure. Here, a stable lithium–scaffold composite electrode is developed by lithium melt infusion into a 3D porous carbon matrix with “lithiophilic” coating. Lithium is uniformly entrapped on the matrix surface and in the 3D structure. The resulting composite electrode possesses a high conductive surface area and excellent structural stability upon galvanostatic cycling. We showed stable cycling of this composite electrode with small Li plating/stripping overpotential (<90 mV) at a high current density of 3 mA/cm2 over 80 cycles. PMID:26929378
NASA Technical Reports Server (NTRS)
Davila, Carlos G.; Camanho, Pedro P.
2003-01-01
Delamination is one of the predominant forms of failure in laminated composites especially when there is no reinforcement in the thickness direction. To develop composite structures that are more damage tolerant, it is necessary to understand how delamination develops and how it can affect the residual performance. A number of factors such as residual thermal strains, matrix curing shrinkage, and manufacturing defects affect how damage will grow in a composite structure. It is important to develop analysis methods that are computationally efficient that can account for all such factors. The objective of the current work is to apply a newly developed decohesion element to investigate the debond strength of skin/stiffener composite specimens. The process of initiation of delaminations and the propagation of delamination fronts is investigated. The numerical predictions are compared with published experimental results.
X-33 LH2 Tank Failure Investigation Findings
NASA Technical Reports Server (NTRS)
Niedermeyer, Melinda
2003-01-01
This viewgraph presentation provides information on the composite sandwich-honeycomb structure of the liquid hydrogen tank of the X-33 reusable launch vehicle, and describes why the the first pressure test to determine the tank's structural integrity failed. The presentation includes images of the tank before and after the failed test, including photomicrographs. It then reaches conclusions on the nature of the microcracks which caused the liquid hydrogen leakage.
Chen, Biao; Li, Shufeng; Imai, Hisashi; Umeda, Junko; Takahashi, Makoto; Kondoh, Katsuyoshi
2015-02-01
In situ scanning electron microscopy (SEM) observation of a tensile test was performed to investigate the fracturing behavior of multi-walled carbon nanotubes (MWCNTs) in powder metallurgy Al matrix composites. A multiple peeling phenomenon during MWCNT fracturing was clearly observed. Its formation mechanism and resultant effect on the composite strength were examined. Through transition electron microscopy characterizations, it was observed that defective structures like inter-wall bridges cross-linked adjacent walls of MWCNTs. This structure was helpful to improve the inter-wall bonding conditions, leading to the effective load transfer between walls and resultant peeling behaviors of MWCNTs. These results might provide new understandings of the fracturing mechanisms of carbon nanotube reinforcements for designing high-performance nanocomposites. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ataş, Akın; Gautam, Mayank; Soutis, Constantinos; Potluri, Prasad
2017-04-01
Experimental behaviour of bolted joints in triaxial braided (0°/±45°) carbon fibre/epoxy composite laminates with drilled and moulded-in fastener holes has been investigated in this paper. Braided laminates were manufactured by vacuum infusion process using 12 K T700S carbon fibres (for bias and axial tows) and Araldite LY-564 epoxy resin. Moulded-in fastener holes were formed using guide pins which were inserted in the braided structure prior to the vacuum infusion process. The damage mechanism of the specimens was investigated using ultrasonic C-Scan technique. The specimens were dimensioned to obtain a bearing mode of failure. The bearing strength of the specimens with moulded-in hole was reduced in comparison to the specimens with drilled hole, due to the increased fibre misalignment angle following the pin insertion procedure. An improvement on the bearing strength of moulded-in hole specimens might be developed if the specimen dimensions would be prepared for a net-tension mode of failure where the fibre misalignment would not have an effect as significant as in the case of bearing failure mode, but this mode should be avoided since it leads to sudden catastrophic failures.
Titanium reinforced boron-polyimide composite
NASA Technical Reports Server (NTRS)
Clark, G. A.; Clayton, K. I.
1969-01-01
Processing techniques for boron polyimide prepreg were developed whereby composites could be molded under vacuum bag pressure only. A post-cure cycle was developed which resulted in no loss in room temperature mechanical properties of the composite at any time during up to 16 hours at 650 F. A design utilizing laminated titanium foil was developed to achieve a smooth transition of load from the titanium attachment points into the boron-reinforced body of the structure. The box beam test article was subjected to combined bending and torsional loads while exposed to 650 F. Loads were applied incrementally until failure occurred at 83% design limit load.
NASA Astrophysics Data System (ADS)
Vereschaka, Alexey; Migranov, Mars; Oganyan, Gaik; Sotova, Catherine S.; Batako, Andre
2018-03-01
This paper addresses the challenges of increasing the efficiency of the machining of austenitic stainless steels AISI 321 and S31600 by application of cutting tools with multilayer composite nano-structured coatings. The main mechanical properties and internal structures of the coatings under study (hardness, adhesion strength in the "coating-substrate" system) were investigated, and their chemical compositions were analyzed. The conducted research of tool life and nature of wear of carbide tools with the investigated coatings during turning of the above mentioned steels showed that the application of those coatings increases the tool life by up to 2.5 times. In addition, the use of a cutting tool with coatings allows machining at higher cutting speeds. It was also found that the use of a tool with multilayer composite nano-structured coating (Zr,Nb)N-(Zr,Al,Nb)N ensures better results compared with not only monolithic coating TiN, but also with nano-structured coatings Ti-TiN-(Ti,Al)N and (Zr,Nb)N-(Cr,Zr,Nb,Al)N. The mechanism of failure of the coatings under study was also investigated.
Failure of Non-Circular Composite Cylinders
NASA Technical Reports Server (NTRS)
Hyer, M. W.
2004-01-01
In this study, a progressive failure analysis is used to investigate leakage in internally pressurized non-circular composite cylinders. This type of approach accounts for the localized loss of stiffness when material failure occurs at some location in a structure by degrading the local material elastic properties by a certain factor. The manner in which this degradation of material properties takes place depends on the failure modes, which are determined by the application of a failure criterion. The finite-element code STAGS, which has the capability to perform progressive failure analysis using different degradation schemes and failure criteria, is utilized to analyze laboratory scale, graphite-epoxy, elliptical cylinders with quasi-isotropic, circumferentially-stiff, and axially-stiff material orthotropies. The results are divided into two parts. The first part shows that leakage, which is assumed to develop if there is material failure in every layer at some axial and circumferential location within the cylinder, does not occur without failure of fibers. Moreover before fibers begin to fail, only matrix tensile failures, or matrix cracking, takes place, and at least one layer in all three cylinders studied remain uncracked, preventing the formation of a leakage path. That determination is corroborated by the use of different degradation schemes and various failure criteria. Among the degradation schemes investigated are the degradation of different engineering properties, the use of various degradation factors, the recursive or non-recursive degradation of the engineering properties, and the degradation of material properties using different computational approaches. The failure criteria used in the analysis include the noninteractive maximum stress criterion and the interactive Hashin and Tsai-Wu criteria. The second part of the results shows that leakage occurs due to a combination of matrix tensile and compressive, fiber tensile and compressive, and inplane shear failure modes in all three cylinders. Leakage develops after a relatively low amount of fiber damage, at about the same pressure for three material orthotropies, and at approximately the same location.
NASA Technical Reports Server (NTRS)
Ricks, Trenton M.; Lacy, Thomas E., Jr.; Bednarcyk, Brett A.; Arnold, Steven M.; Hutchins, John W.
2014-01-01
A multiscale modeling methodology was developed for continuous fiber composites that incorporates a statistical distribution of fiber strengths into coupled multiscale micromechanics/finite element (FE) analyses. A modified two-parameter Weibull cumulative distribution function, which accounts for the effect of fiber length on the probability of failure, was used to characterize the statistical distribution of fiber strengths. A parametric study using the NASA Micromechanics Analysis Code with the Generalized Method of Cells (MAC/GMC) was performed to assess the effect of variable fiber strengths on local composite failure within a repeating unit cell (RUC) and subsequent global failure. The NASA code FEAMAC and the ABAQUS finite element solver were used to analyze the progressive failure of a unidirectional SCS-6/TIMETAL 21S metal matrix composite tensile dogbone specimen at 650 degC. Multiscale progressive failure analyses were performed to quantify the effect of spatially varying fiber strengths on the RUC-averaged and global stress-strain responses and failure. The ultimate composite strengths and distribution of failure locations (predominately within the gage section) reasonably matched the experimentally observed failure behavior. The predicted composite failure behavior suggests that use of macroscale models that exploit global geometric symmetries are inappropriate for cases where the actual distribution of local fiber strengths displays no such symmetries. This issue has not received much attention in the literature. Moreover, the model discretization at a specific length scale can have a profound effect on the computational costs associated with multiscale simulations.models that yield accurate yet tractable results.
Full-scale testing and progressive damage modeling of sandwich composite aircraft fuselage structure
NASA Astrophysics Data System (ADS)
Leone, Frank A., Jr.
A comprehensive experimental and computational investigation was conducted to characterize the fracture behavior and structural response of large sandwich composite aircraft fuselage panels containing artificial damage in the form of holes and notches. Full-scale tests were conducted where panels were subjected to quasi-static combined pressure, hoop, and axial loading up to failure. The panels were constructed using plain-weave carbon/epoxy prepreg face sheets and a Nomex honeycomb core. Panel deformation and notch tip damage development were monitored during the tests using several techniques, including optical observations, strain gages, digital image correlation (DIC), acoustic emission (AE), and frequency response (FR). Additional pretest and posttest inspections were performed via thermography, computer-aided tap tests, ultrasound, x-radiography, and scanning electron microscopy. The framework to simulate damage progression and to predict residual strength through use of the finite element (FE) method was developed. The DIC provided local and full-field strain fields corresponding to changes in the state-of-damage and identified the strain components driving damage progression. AE was monitored during loading of all panels and data analysis methodologies were developed to enable real-time determination of damage initiation, progression, and severity in large composite structures. The FR technique has been developed, evaluating its potential as a real-time nondestructive inspection technique applicable to large composite structures. Due to the large disparity in scale between the fuselage panels and the artificial damage, a global/local analysis was performed. The global FE models fully represented the specific geometries, composite lay-ups, and loading mechanisms of the full-scale tests. A progressive damage model was implemented in the local FE models, allowing the gradual failure of elements in the vicinity of the artificial damage. A set of modifications to the definitions of the local FE model boundary conditions is proposed and developed to address several issues related to the scalability of progressive damage modeling concepts, especially in regards to full-scale fuselage structures. Notable improvements were observed in the ability of the FE models to predict the strength of damaged composite fuselage structures. Excellent agreement has been established between the FE model predictions and the experimental results recorded by DIC, AE, FR, and visual observations.
Fatigue damage accumulation in various metal matrix composites
NASA Technical Reports Server (NTRS)
Johnson, W. S.
1987-01-01
The purpose of this paper is to review some of the latest understanding of the fatigue behavior of continuous fiber reinforced metal matrix composites. The emphasis is on the development of an understanding of different fatigue damage mechanisms and why and how they occur. The fatigue failure modes in continuous fiber reinforced metal matrix composites are controlled by the three constituents of the system: fiber, matrix, and fiber/matrix interface. The relative strains to fatigue failure of the fiber and matrix will determine the failure mode. Several examples of matrix, fiber, and self-similar damage growth dominated fatigue damage are given for several metal matrix composite systems. Composite analysis, failure modes, and damage modeling are discussed. Boron/aluminum, silicon-carbide/aluminum, FP/aluminum, and borsic/titanium metal matrix composites are discussed.
Parametric Study of Single Bolted Composite Bolted Joint Subjected to Static Tensile Loading
NASA Astrophysics Data System (ADS)
Awadhani, L. V.; Bewoor, Anand, Dr.
2017-08-01
The use of composites is increasing in the engineering applications in order to reduce the weight, building energy efficient systems, designing a suitable material according to the requirements of the application. But at the same time, building a structure is possible only by bonding or bolting or combination of them. There are limitations for the bonding methods and problems with the bolting such as stress concentration near the neighborhood of the bolt hole, tensile or shear failure, delamination etc. Hence the design of a composite bolted structure needs a special attention. This paper focuses on the performance of the composite bolted joint under static tensile loading and the effect of variation in the parameters such as the bolt pitch, plate width, thickness, bolt tightening torque, composite material, coefficient of friction between the bolt and plate etc. A simple spring mass model is used to study the single bolted composite bolted joint. The influencing parameters are identified through the developed model and compared with the results from the literature. The best geometric parameters for the applied load are identified for the composite bolted joints.
NDE of ceramics and ceramic composites
NASA Technical Reports Server (NTRS)
Vary, Alex; Klima, Stanley J.
1991-01-01
Although nondestructive evaluation (NDE) techniques for ceramics are fairly well developed, they are difficult to apply in many cases for high probability detection of the minute flaws that can cause failure in monolithic ceramics. Conventional NDE techniques are available for monolithic and fiber reinforced ceramic matrix composites, but more exact quantitative techniques needed are still being investigated and developed. Needs range from flaw detection to below 100 micron levels in monolithic ceramics to global imaging of fiber architecture and matrix densification anomalies in ceramic composites. NDE techniques that will ultimately be applicable to production and quality control of ceramic structures are still emerging from the lab. Needs are different depending on the processing stage, fabrication method, and nature of the finished product. NDE techniques are being developed in concert with materials processing research where they can provide feedback information to processing development and quality improvement. NDE techniques also serve as research tools for materials characterization and for understanding failure processes, e.g., during thermomechanical testing.
Explicit Pore Pressure Material Model in Carbon-Cloth Phenolic
NASA Technical Reports Server (NTRS)
Gutierrez-Lemini, Danton; Ehle, Curt
2003-01-01
An explicit material model that uses predicted pressure in the pores of a carbon-cloth phenolic (CCP) composite has been developed. This model is intended to be used within a finite-element model to predict phenomena specific to CCP components of solid-fuel-rocket nozzles subjected to high operating temperatures and to mechanical stresses that can be great enough to cause structural failures. Phenomena that can be predicted with the help of this model include failures of specimens in restrained-thermal-growth (RTG) tests, pocketing erosion, and ply lifting
Evaluation of energy absorption of new concepts of aircraft composite subfloor intersections
NASA Technical Reports Server (NTRS)
Jones, Lisa E.; Carden, Huey D.
1989-01-01
Forty-one composite aircraft subfloor intersection specimens were tested to determine the effects of geometry and material on the energy absorbing behavior, failure characteristics, and post-crush structural integrity of the specimens. The intersections were constructed of twelve ply + or - 45 sub 6 laminates of either Kevlar 49/934 or AS-4/934 graphite-epoxy in heights of 4, 8, and 12 inches. The geometry of the specimens varied in the designs of the intersection attachment angle. Four different geometries were tested.
Using Ultrasonic Lamb Waves To Measure Moduli Of Composites
NASA Technical Reports Server (NTRS)
Kautz, Harold E.
1995-01-01
Measurements of broad-band ultrasonic Lamb waves in plate specimens of ceramic-matrix/fiber and metal-matrix/fiber composite materials used to determine moduli of elasticity of materials. In one class of potential applications of concept, Lamb-wave responses of specimens measured and analyzed at various stages of thermal and/or mechanical processing to determine effects of processing, without having to dissect specimens. In another class, structural components having shapes supporting propagation of Lamb waves monitored ultrasonically to identify signs of deterioration and impending failure.
Static Strength Characteristics of Mechanically Fastened Composite Joints
NASA Technical Reports Server (NTRS)
Fox, D. E.; Swaim, K. W.
1999-01-01
The analysis of mechanically fastened composite joints presents a great challenge to structural analysts because of the large number of parameters that influence strength. These parameters include edge distance, width, bolt diameter, laminate thickness, ply orientation, and bolt torque. The research presented in this report investigates the influence of some of these parameters through testing and analysis. A methodology is presented for estimating the strength of the bolt-hole based on classical lamination theory using the Tsai-Hill failure criteria and typical bolthole bearing analytical methods.
A Hollow Extrusion Die for Big Square Tube Profiles of Al-alloy
NASA Astrophysics Data System (ADS)
Huang, Xuemei; Deng, Rurong
2018-03-01
The factors on premature failure of the traditional extrusion die for the big square tube profiles were introduced. And the characteristics of the conventional structure were analyzed. A new type of hollow die structure for these profiles was presented. And the composition elements of the new die structure were described, including its advantages. According to the comparison conventional with new die structure in use, it was shown that the new die structure has obvious advantages, it could greatly improve the die life. This is a type of die structure which is worth promoting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, Isaac M.
To facilitate and accelerate the process of introducing, evaluating and adopting of new material systems, it is important to develop/establish comprehensive and effective procedures of characterization, modeling and failure prediction of structural laminates based on the properties of the constituent materials, e. g., fibers, matrix, and the single ply or lamina. A new failure theory, the Northwestern (NU-Daniel) theory, has been proposed for predicting lamina yielding and failure under multi-axial states of stress including strain rate effects. It is primarily applicable to matrix-dominated interfiber/interlaminar failures. It is based on micromechanical failure mechanisms but is expressed in terms of easily measuredmore » macroscopic lamina stiffness and strength properties. It is presented in the form of a master failure envelope incorporating strain rate effects. The theory was further adapted and extended to the prediction of in situ first ply yielding and failure (FPY and FPF) and progressive failure of multi-directional laminates under static and dynamic loadings. The significance of this theory is that it allows for rapid screening of new composite materials without very extensive testing and offers easily implemented design tools.« less
Carbon Fiber Reinforced Ceramic Composites for Propulsion Applications
NASA Technical Reports Server (NTRS)
Freedman, Marc (Technical Monitor); Shivakumar, Kunigal N.
2003-01-01
Fiber reinforced ceramic composites are materials of choice for gas turbine engines because of their high thermal efficiency, thrust/weight ratio, and operating temperatures. However, the successful introduction of ceramic composites to hot structures is limited because of excessive cost of manufacturing, reproducibility, nonuniformity, and reliability. Intense research is going on around the world to address some of these issues. The proposed effort is to develop a comprehensive status report of the technology on processing, testing, failure mechanics, and environmental durability of carbon fiber reinforced ceramic composites through extensive literature study, vendor and end-user survey, visits to facilities doing this type of work, and interviews. Then develop a cooperative research plan between NASA GRC and NCA&T (Center for Composite Materials Research) for processing, testing, environmental protection, and evaluation of fiber reinforced ceramic composites.
Acoustic emission evaluation of reinforced concrete bridge beam with graphite composite laminate
NASA Astrophysics Data System (ADS)
Johnson, Dan E.; Shen, H. Warren; Finlayson, Richard D.
2001-07-01
A test was recently conducted on August 1, 2000 at the FHwA Non-Destructive Evaluation Validation Center, sponsored by The New York State DOT, to evaluate a graphite composite laminate as an effective form of retrofit for reinforced concrete bridge beam. One portion of this testing utilized Acoustic Emission Monitoring for Evaluation of the beam under test. Loading was applied to this beam using a two-point loading scheme at FHwA's facility. This load was applied in several incremental loadings until the failure of the graphite composite laminate took place. Each loading culminated by either visual crack location or large audible emissions from the beam. Between tests external cracks were located visually and highlighted and the graphite epoxy was checked for delamination. Acoustic Emission data was collected to locate cracking areas of the structure during the loading cycles. To collect this Acoustic Emission data, FHwA and NYSDOT utilized a Local Area Monitor, an Acoustic Emission instrument developed in a cooperative effort between FHwA and Physical Acoustics Corporation. Eight Acoustic Emission sensors were attached to the structure, with four on each side, in a symmetrical fashion. As testing progressed and culminated with beam failure, Acoustic Emission data was gathered and correlated against time and test load. This paper will discuss the analysis of this test data.
Nuclear fuel elements made from nanophase materials
Heubeck, Norman B.
1998-01-01
A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000.degree. F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics.
Nuclear fuel elements made from nanophase materials
Heubeck, N.B.
1998-09-08
A nuclear reactor core fuel element is composed of nanophase high temperature materials. An array of the fuel elements in rod form are joined in an open geometry fuel cell that preferably also uses such nanophase materials for the cell structures. The particular high temperature nanophase fuel element material must have the appropriate mechanical characteristics to avoid strain related failure even at high temperatures, in the order of about 3000 F. Preferably, the reactor type is a pressurized or boiling water reactor and the nanophase material is a high temperature ceramic or ceramic composite. Nanophase metals, or nanophase metals with nanophase ceramics in a composite mixture, also have desirable characteristics, although their temperature capability is not as great as with all-ceramic nanophase material. Combinations of conventional or nanophase metals and conventional or nanophase ceramics can be employed as long as there is at least one nanophase material in the composite. The nuclear reactor so constructed has a number of high strength fuel particles, a nanophase structural material for supporting a fuel rod at high temperature, a configuration to allow passive cooling in the event of a primary cooling system failure, an ability to retain a coolable geometry even at high temperatures, an ability to resist generation of hydrogen gas, and a configuration having good nuclear, corrosion, and mechanical characteristics. 5 figs.
Deformation and failure mechanisms of graphite/epoxy composites under static loading
NASA Technical Reports Server (NTRS)
Clements, L. L.
1981-01-01
The mechanisms of deformation and failure of graphite epoxy composites under static loading were clarified. The influence of moisture and temperature upon these mechanisms were also investigated. Because the longitudinal tensile properties are the most critical to the performance of the composite, these properties were investigated in detail. Both ultimate and elastic mechanical properties were investigated, but the study of mechanisms emphasized those leading to failure of the composite. The graphite epoxy composite selected for study was the system being used in several NASA sponsored flight test programs.
NASA Astrophysics Data System (ADS)
Lan, Xin; Liu, Liwu; Li, Fengfeng; Pan, Chengtong; Liu, Yanju; Leng, Jinsong
2017-04-01
Shape memory polymers (SMPs) are a new type of smart material, they perform large reversible deformation with a certain external stimulus (e.g., heat and electricity). The properties (e.g., stiffness, strength and other mechanically static or quasi-static load-bearing capacity) are primarily considered for conventional resin-based composite materials which are mainly used for structural materials. By contrast, the mechanical actuating performance with finite deformation is considered for the shape memory polymers and their composites which can be used for both structural materials and functional materials. For shape memory polymers and their composites, the performance of active deformation is expected to further promote the development in smart active deformation structures, such as deployable space structures and morphing wing aircraft. The shape memory polymer composites (SMPCs) are also one type of High Strain Composite (HSC). The space deployable structures based on carbon fiber reinforced shape memory polymer composites (SMPCs) show great prospects. Considering the problems that SMPCs are difficult to meet the practical applications in space deployable structures in the recent ten years, this paper aims to research the mechanics of deformation, actuation and failure of SMPCs. In the overall view of the shape memory polymer material's nonlinearity (nonlinearity and stress softening in the process of pre-deformation and recovery, relaxation in storage process, irreversible deformation), by the multiple verifications among theory, finite element and experiments, one obtains the deformation and actuation mechanism for the process of "pre-deformation, energy storage and actuation" and its non-fracture constraint domain. Then, the parameters of SMPCs will be optimized. Theoretical analysis is realized by the strain energy function, additionally considering the interaction strain energy between the fiber and the matrix. For the common resin-based or soft-material-based composites under pure bending deformation, we expect to uniformly explain the whole process of buckling occurrence, evolution and finally failure, especially for the early evolution characteristics of fiber microbuckling inside the microstructures. The research results are meaningful for the practical applications for SMPC deployable structures in space. Considering the deformation mechanisms of SMPCs, the local post-microbuckling is required for the unidirectional fiber reinforced composite materials, at the conditions of its large geometrical deflection. The cross section of SMPC is divided into three areas: non-buckling stretching area, non-buckling compressive area, and buckling compressive area. Three variables are considered: critical buckling position, and neutral plane, the fiber buckling half-wavelength. Considering the condition of the small strain and large displacement, the strain energy expression of the SMP/fiber system was derived, which contains two types, e.g., strain energy of SMP and fiber. According to the minimum energy principle, the expression for all key parameters were derived, including the critical buckling curvature, neutral plane position, the buckling half-wavelength, fiber buckling amplitude, and strain.
Compression failure mechanisms of single-ply, unidirectional, carbon-fiber composites
NASA Technical Reports Server (NTRS)
Ha, Jong-Bae; Nairn, John A.
1992-01-01
A single-ply composite compression test was used to study compression failure mechanisms as a function of fiber type, matrix type, and interfacial strength. Composites made with low- and intermediate-modulus fibers (Hercules AS4 and IM7) in either an epoxy (Hercules 3501-6) or a thermoplastic (ULTEM and LARC-TPI) matrix failed by kink banding and out-of-plane slip. The failures proceeded by rapid and catastrophic damage propagation across the specimen width. Composites made with high-modulus fibers (Hercules HMS4/3501-6) had a much lower compression strength. Their failures were characterized by kink banding and longitudinal splitting. The damage propagated slowly across the specimen width. Composites made with fibers treated to give low interfacial strength had low compression strength. These composites typically failed near the specimen ends and had long kink bands.
Seismic Behaviour of Composite Steel Fibre Reinforced Concrete Shear Walls
NASA Astrophysics Data System (ADS)
Boita, Ioana-Emanuela; Dan, Daniel; Stoian, Valeriu
2017-10-01
In this paper is presented an experimental study conducted at the “Politehnica” University of Timisoara, Romania. This study provides results from a comprehensive experimental investigation on the behaviour of composite steel fibre reinforced concrete shear walls (CSFRCW) with partially or totally encased profiles. Two experimental composite steel fibre reinforced concrete walls (CSFRCW) and, as a reference specimen, a typical reinforced concrete shear wall (RCW), (without structural reinforcement), were fabricated and tested under constant vertical load and quasi-static reversed cyclic lateral loads, in displacement control. The tests were performed until failure. The tested specimens were designed as 1:3 scale steel-concrete composite elements, representing a three storeys and one bay element from the base of a lateral resisting system made by shear walls. Configuration/arrangement of steel profiles in cross section were varied within the specimens. The main objective of this research consisted in identifying innovative solutions for composite steel-concrete shear walls with enhanced performance, as steel fibre reinforced concrete which was used in order to replace traditional reinforced concrete. A first conclusion was that replacing traditional reinforcement with steel fibre changes the failure mode of the elements, as from a flexural mode, in case of element RCW, to a shear failure mode for CSFRCW. The maximum lateral force had almost similar values but test results indicated an improvement in cracking response, and a decrease in ductility. The addition of steel fibres in the concrete mixture can lead to an increase of the initial cracking force, and can change the sudden opening of a crack in a more stable process.
NASA Technical Reports Server (NTRS)
Bowles, Kenneth J.; Madhukar, Madhu; Papadopoulos, Demetrios; Inghram, Linda; McCorkle, Linda
1997-01-01
A detailed experimental study was conducted to establish the structure-property relationships between elevated temperature aging and (I) fiber-matrix bonding, (2) Mode II interlaminar fracture toughness, and (3) failure modes of carbon fiber/PMR-15 composites. The fiber-matrix adhesion was varied by using carbon fibers with different surface treatments. Short beam shear tests were used to quantify the interfacial shear strength afforded by the use of the different fiber surface treatments. The results of the short beam shear tests definitely showed that, for aging times up to 1000 hr, the aging process caused no observable changes in the bulk of the three composite materials that---would degrade the shear properties of the material. Comparisons between the interlaminar shear strength (ILSS) measured by the short beam shear tests and the GII c test results, as measured by the ENF test, indicated that the differences in the surface treatments significantly affected the fracture properties while the effect of the aging process was probably limited to changes at the starter crack tip. The fracture properties changed due to a shift in the fracture from an interfacial failure to a failure within the matrix when the fiber was changed from AU-4 to AS-4 or AS-4G. There appears to be an effect of the fiber/matrix bonding on the thermo-oxidative stability of the composites that were tested. The low bonding afforded by the AU-4 fiber resulted in weight losses about twice those experienced by the AS-4 reinforced composites, the ones with the best TOS.
NASA Technical Reports Server (NTRS)
Bowles, Kenneth J.; Madhukar, Madhu; Papadopolous, Demetrios S.; Inghram, Linda; Mccorkle, Linda
1995-01-01
A detailed experimental study was conducted to establish the structure-property relationships between elevated temperature aging and fiber-matrix bonding, Mode 2 interlaminar fracture toughness, and failure modes of carbon fiber/PMR-15 composites. The fiber-matrix adhesion was varied by using carbon fibers with different surface treatments. Short beam shear tests were used to quantify the interfacial shear strength afforded by the use of the different fiber surface treatments. The results of the short beam shear tests showed that, for times up to 1000 hr, the aging process caused no changes in the bulk of the three composite materials that would degrade the shear properties of the material. Comparisons between the interlaminar shear strengths (ILSS) measured by the short beam shear tests and the GIIC test results, as measured by the ENF test, indicated that the differences in the surface treatments significantly affected the fracture properties while the effect of the aging process was probably limited to changes at the starter crack tip. The fracture properties changed due to a shift in the fracture from an interfacial failure to a failure within the matrix when the fiber was changed from AU-4 to AS-4 or AS-4G. There appears to be an effect of the fiber/matrix bonding on the thermo-oxidative stability of the composites that were tested. The low bonding afforded by the AU 1 fiber resulted in weight losses about twice those experienced by the AS 1 reinforced composites, the ones with the best TOS.
Anker, Stefan D; Schroeder, Stefan; Atar, Dan; Bax, Jeroen J; Ceconi, Claudio; Cowie, Martin R; Crisp, Adam; Dominjon, Fabienne; Ford, Ian; Ghofrani, Hossein-Ardeschir; Gropper, Savion; Hindricks, Gerhard; Hlatky, Mark A; Holcomb, Richard; Honarpour, Narimon; Jukema, J Wouter; Kim, Albert M; Kunz, Michael; Lefkowitz, Martin; Le Floch, Chantal; Landmesser, Ulf; McDonagh, Theresa A; McMurray, John J; Merkely, Bela; Packer, Milton; Prasad, Krishna; Revkin, James; Rosano, Giuseppe M C; Somaratne, Ransi; Stough, Wendy Gattis; Voors, Adriaan A; Ruschitzka, Frank
2016-05-01
Composite endpoints are commonly used as the primary measure of efficacy in heart failure clinical trials to assess the overall treatment effect and to increase the efficiency of trials. Clinical trials still must enrol large numbers of patients to accrue a sufficient number of outcome events and have adequate power to draw conclusions about the efficacy and safety of new treatments for heart failure. Additionally, the societal and health system perspectives on heart failure have raised interest in ascertaining the effects of therapy on outcomes such as repeat hospitalization and the patient's burden of disease. Thus, novel methods for using composite endpoints in clinical trials (e.g. clinical status composite endpoints, recurrent event analyses) are being applied in current and planned trials. Endpoints that measure functional status or reflect the patient experience are important but used cautiously because heart failure treatments may improve function yet have adverse effects on mortality. This paper discusses the use of traditional and new composite endpoints, identifies qualities of robust composites, and outlines opportunities for future research. © 2016 The Authors. European Journal of Heart Failure © 2016 European Society of Cardiology.
Experimental study on beam for composite CES structural system
NASA Astrophysics Data System (ADS)
Matsui, Tomoya
2017-10-01
Development study on Concrete Encase Steel (CES) composite structure system has been continuously conducted toward the practical use. CES structure is composed of steel and fiber reinforced concrete. In previous study, it was found that CES structure has good seismic performance from experimental study of columns, beam - column joints, shear walls and a two story two span frame. However, as fundamental study on CES beam could be lacking, it is necessary to understand the structural performance of CES beam. In this study, static loading tests of CES beams were conducted with experimental valuable of steel size, the presence or absence of slab and thickness of slab. And restoring characteristics, failure behavior, deformation behavior, and strength evaluation method of CES beam were investigated. As the results, it was found that CES beam showed stable hysteresis behavior. Furthermore it was found that the flexural strength of the CES beam could be evaluated by superposition strength theory.
Matrix Dominated Failure of Fiber-Reinforced Composite Laminates Under Static and Dynamic Loading
NASA Astrophysics Data System (ADS)
Schaefer, Joseph Daniel
Hierarchical material systems provide the unique opportunity to connect material knowledge to solving specific design challenges. Representing the quickest growing class of hierarchical materials in use, fiber-reinforced polymer composites (FRPCs) offer superior strength and stiffness-to-weight ratios, damage tolerance, and decreasing production costs compared to metals and alloys. However, the implementation of FRPCs has historically been fraught with inadequate knowledge of the material failure behavior due to incomplete verification of recent computational constitutive models and improper (or non-existent) experimental validation, which has severely slowed creation and development. Noted by the recent Materials Genome Initiative and the Worldwide Failure Exercise, current state of the art qualification programs endure a 20 year gap between material conceptualization and implementation due to the lack of effective partnership between computational coding (simulation) and experimental characterization. Qualification processes are primarily experiment driven; the anisotropic nature of composites predisposes matrix-dominant properties to be sensitive to strain rate, which necessitates extensive testing. To decrease the qualification time, a framework that practically combines theoretical prediction of material failure with limited experimental validation is required. In this work, the Northwestern Failure Theory (NU Theory) for composite lamina is presented as the theoretical basis from which the failure of unidirectional and multidirectional composite laminates is investigated. From an initial experimental characterization of basic lamina properties, the NU Theory is employed to predict the matrix-dependent failure of composites under any state of biaxial stress from quasi-static to 1000 s-1 strain rates. It was found that the number of experiments required to characterize the strain-rate-dependent failure of a new composite material was reduced by an order of magnitude, and the resulting strain-rate-dependence was applicable for a large class of materials. The presented framework provides engineers with the capability to quickly identify fiber and matrix combinations for a given application and determine the failure behavior over the range of practical loadings cases. The failure-mode-based NU Theory may be especially useful when partnered with computational approaches (which often employ micromechanics to determine constituent and constitutive response) to provide accurate validation of the matrix-dominated failure modes experienced by laminates during progressive failure.
Application of Interface Technology in Progressive Failure Analysis of Composite Panels
NASA Technical Reports Server (NTRS)
Sleight, D. W.; Lotts, C. G.
2002-01-01
A progressive failure analysis capability using interface technology is presented. The capability has been implemented in the COMET-AR finite element analysis code developed at the NASA Langley Research Center and is demonstrated on composite panels. The composite panels are analyzed for damage initiation and propagation from initial loading to final failure using a progressive failure analysis capability that includes both geometric and material nonlinearities. Progressive failure analyses are performed on conventional models and interface technology models of the composite panels. Analytical results and the computational effort of the analyses are compared for the conventional models and interface technology models. The analytical results predicted with the interface technology models are in good correlation with the analytical results using the conventional models, while significantly reducing the computational effort.
NASA Astrophysics Data System (ADS)
Ammar Khodja, L'Hady
The rehabilitation and strengthening concrete structures in shear using composite materials such as externally bonded (EB) or near surface mounted rebar (NSMR) are well established techniques. However, debonding of these strengthening materials is still present and constitute the principal cause of shear failure of beams strengthened with composite materials. A new method called ETS (Embedded Through Section) was recently developed in order to avoid premature failures due to debonding of composite materials. The objective of this study is to highlight the importance and influence of important parameters on the behavior of CFRP bars anchorages subjected to pullout forces. These parameters are: concrete strength, anchorage length of CFRP bars, hole diameter in concrete, diameter of the bar and CFRP surface type (smooth versus sanded). Understanding the influence of these parameters on the relationship between the pullout force and the slip is paramount. This allows an accurate description of the behavior of all elements that contribute to the resistance of the CFRP bars pullout. A series of 25 specimens were subjected to pullout tests. The impact of these parameters on the pullout performance of CFRP rods is summarized in terms of failure mode, ultimate tensile strength and loading force slip relationship. The results of these investigations show that using the ETS method, failure of the anchors can be avoided by providing adequate anchorage length and concrete strength. The method provides greater confinement and thus leads to a substantial improvement in the performance of anchors. As a result, designers will be able to avoid failures that are due to debonding of anchors using thereby the full capabilities of reinforced beams strengthened in shear with EB FRP. Keywords: ETS method, shear, strengthening, anchor, slip, FRP, NSM.
NASA Technical Reports Server (NTRS)
Shives, T. R.; Willard, W. A.
1979-01-01
The design and application of advanced composites is discussed with emphasis on aerospace, aircraft, automotive, marine, and industrial applications. Failure modes in advanced composites are also discussed.
1989-12-01
Bose, Ohio Appni’-sd for puauc t&cw 189 12 29 023 I [ AFIT /GAE /ENY/ 89D-06 A STUDY OF FAILURE CHARACTERISTICS IN THERMOPLASTIC COMPOSITE LAMINATES DUE...distribution unlimited I ,I AFIT / GAE / ENY /89D-06 A STUDY OF FAILURE CHARACTERISTICS IN THERMOPLASTIC COMPOSITE LAMINATES DUE TO AN ECCENTRIC CIRCULAR...the Flight Dynamics Laboratory. Dr. Sandhu provided me with an insight into composite materials, and testing techniques, that will benefit me for a
Failure at Frame-Stringer Intersections in PRSEUS Panels
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.
2012-01-01
NASA, the Air Force Research Laboratory and The Boeing Company have worked to develop new low-cost, light-weight composite structures for aircraft. A Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept has been developed which offers advantages over traditional metallic structures. In this concept a stitched carbon-epoxy material system has been developed with the potential for reducing the weight and cost of transport aircraft structure by eliminating fasteners, thereby reducing part count and labor. By adding unidirectional carbon rods to the top of stiffeners, the panel becomes more structurally efficient. This combination produces a more damage tolerant design. This study focuses on the intersection between the rod-stiffener and the foam-filled frame in a PRSEUS specimen. Compression loading is considered, which induces stress concentrations at the intersection point that can lead to failures. An experiment with accompanying analysis for a single-frame specimen is described, followed by a parametric study of simple reinforcements to reduce strains in the intersection region.
Nissan, Joseph; Barnea, Eitan; Bar Hen, Doron; Assif, David
2008-09-01
Endodontically treated maxillary first premolars present a restorative challenge. The objective of the present study was to assess the resistance to fracture of crowned endodontically treated maxillary first premolars under simulated occlusal load, while preserving various degrees of remaining coronal structure. The study consisted of 50 intact maxillary first premolars with bifurcated roots and similar root diameter and length, randomly divided into 5 equal experimental groups. All dowels were luted with Flexi-Flow titanium-reinforced composite resin cement. TiCore titanium-reinforced composite resin was used to fabricate the core. Complete cast crowns were fabricated and cemented with zinc phosphate cement. Forces at fracture and mode of failure were recorded. Statistically significant differences (P < .05) were found among mean failure forces for all tested groups in their resistance to fracture under load with the Kruskal-Wallias test and among all combinations of the 5 groups (Z = -1.56/-2.34; P > .05) with the Mann-Whitney test. This indicates that crowned maxillary first premolars with varying degrees of remaining coronal structure differ significantly in their resistance to fracture under occlusal load. There was increased protection against fracture under occlusal loads with more remaining tooth structure. Within the limitations of this study, remaining coronal structure influenced the fracture resistance of crowned endodontically treated maxillary first premolars. Preservation of tooth structure is important for its protection against fracture under occlusal loads and may influence the tooth prognosis.
Damage of composite structures: Detection technique, dynamic response and residual strength
NASA Astrophysics Data System (ADS)
Lestari, Wahyu
2001-10-01
Reliable and accurate health monitoring techniques can prevent catastrophic failures of structures. Conventional damage detection methods are based on visual or localized experimental methods and very often require prior information concerning the vicinity of the damage or defect. The structure must also be readily accessible for inspections. The techniques are also labor intensive. In comparison to these methods, health-monitoring techniques that are based on the structural dynamic response offers unique information on failure of structures. However, systematic relations between the experimental data and the defect are not available and frequently, the number of vibration modes needed for an accurate identification of defects is much higher than the number of modes that can be readily identified in the experiment. These motivated us to develop an experimental data based detection method with systematic relationships between the experimentally identified information and the analytical or mathematical model representing the defective structures. The developed technique use changes in vibrational curvature modes and natural frequencies. To avoid misinterpretation of the identified information, we also need to understand the effects of defects on the structural dynamic response prior to developing health-monitoring techniques. In this thesis work we focus on two type of defects in composite structures, namely delamination and edge notch like defect. Effects of nonlinearity due to the presence of defect and due to the axial stretching are studied for beams with delamination. Once defects are detected in a structure, next concern is determining the effects of the defects on the strength of the structure and its residual stiffness under dynamic loading. In this thesis, energy release rate due to dynamic loading in a delaminated structure is studied, which will be a foundation toward determining the residual strength of the structure.
Second Generation Integrated Composite Analyzer (ICAN) Computer Code
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Ginty, Carol A.; Sanfeliz, Jose G.
1993-01-01
This manual updates the original 1986 NASA TP-2515, Integrated Composite Analyzer (ICAN) Users and Programmers Manual. The various enhancements and newly added features are described to enable the user to prepare the appropriate input data to run this updated version of the ICAN code. For reference, the micromechanics equations are provided in an appendix and should be compared to those in the original manual for modifications. A complete output for a sample case is also provided in a separate appendix. The input to the code includes constituent material properties, factors reflecting the fabrication process, and laminate configuration. The code performs micromechanics, macromechanics, and laminate analyses, including the hygrothermal response of polymer-matrix-based fiber composites. The output includes the various ply and composite properties, the composite structural response, and the composite stress analysis results with details on failure. The code is written in FORTRAN 77 and can be used efficiently as a self-contained package (or as a module) in complex structural analysis programs. The input-output format has changed considerably from the original version of ICAN and is described extensively through the use of a sample problem.
Failure analysis of energy storage spring in automobile composite brake chamber
NASA Astrophysics Data System (ADS)
Luo, Zai; Wei, Qing; Hu, Xiaofeng
2015-02-01
This paper set energy storage spring of parking brake cavity, part of automobile composite brake chamber, as the research object. And constructed the fault tree model of energy storage spring which caused parking brake failure based on the fault tree analysis method. Next, the parking brake failure model of energy storage spring was established by analyzing the working principle of composite brake chamber. Finally, the data of working load and the push rod stroke measured by comprehensive test-bed valve was used to validate the failure model above. The experimental result shows that the failure model can distinguish whether the energy storage spring is faulted.
NASA Astrophysics Data System (ADS)
Balaji, R.; Sasikumar, M.
2017-09-01
Glass-fibre-reinforced polymer matrix composites are widely used in various industries because of their unique high strength to weight ratio. Unlike metals, strain-induced and damage states of composites are complicated to predict under real-time loading due to their anisotropic nature. With that focus, a piezoresistive nanomaterial-based structural health monitoring system for laminated polymer composites is proposed to measure the strain induced in the composite under real-time loading. Nanometallic nickel-coated glass fibres are embedded into the polymer composites to monitor the strain and damage induced in them. The nanometallic nickel is coated over the glass fibre by a dip coating technique using epoxy as the binding agent. A microcontroller-based electrical resistance measurement system is used to measure the piezoresistive variation in the coated glass fibre under real-time loading. Using the piezoresistance variation of the embedded nanometallic nickel-coated glass fibre, the real-time strain and damage induced in the composite can be correlated. The piezoresistive response of the coated glass fibre is descibed in two phases, the deformation phase and the failure phase, which clearly show the various states of strain and damage induced in the composites.
NASA Astrophysics Data System (ADS)
Kim, Dave (dea-wook); Hennigan, Daniel John; Beavers, Kevin Daniel
2010-03-01
Polymer composite materialsoffer high strength and stiffness to weight ratio, corrosion resistance, and total life cost reductions that appeal to the marine industry. The advantages of composite construction have led to their incorporation in U.S. yacht hull structures over 46 meters (150 feet) in length. In order to construct even larger hull structures, higher quality composites with a lower cost production techniques need to be developed. In this study, the effect of composite hull fabrication processes on mechanical properties of glass fiber reinforced plastic(GFRP) composites is presented. Fabrication techniques used in this study are hand lay-up (HL), vacuum infusion (VI), and hybrid (HL+VI) processes. Mechanical property testing includes: tensile, compressive, and ignition loss sample analysis. Results demonstrate that the vacuum pressure implemented during composite fabrication has an effect on mechanical properties. The VI processed GFRP yields improved mechanical properties in tension/compression strengths and tensile modulus. The hybrid GFRP composites, however, failed in a sequential manor, due to dissimilar failure modes in the HL and VI processed sides. Fractography analysis was conducted to validate the mechanical property testing results
Connection Capacity of the Transition Zone in Steel-Concrete Hybrid Beam
NASA Astrophysics Data System (ADS)
Kozioł, Piotr; Kożuch, Maciej; Lorenc, Wojciech; Rowiński, Sławomir
2017-06-01
The problem of transition zone of structural steel element connected to concrete is discussed in the following paper. This zone may be located for instance in specific bridge composite girder. In such case the composite beam passes smoothly into concrete beam. Because of several dowels usage in the transition zone, the problem of uneven force distribution were discussed through analogy to bolted and welded connections. The authors present innovative solution of transition zone and discuss the results, with emphasis put on the transition zone structural response in term of bending capacity, failure model and force distribution on the connection length. The article wider the already executed experimental test and presents its newest results.
Self-actuating and self-diagnosing plastically deforming piezo-composite flapping wing MAV
NASA Astrophysics Data System (ADS)
Harish, Ajay B.; Harursampath, Dineshkumar; Mahapatra, D. Roy
2011-04-01
In this work, we propose a constitutive model to describe the behavior of Piezoelectric Fiber Reinforced Composite (PFRC) material consisting of elasto-plastic matrix reinforced by strong elastic piezoelectric fibers. Computational efficiency is achieved using analytical solutions for elastic stifness matrix derived from Variational Asymptotic Methods (VAM). This is extended to provide Structural Health Monitoring (SHM) based on plasticity induced degradation of flapping frequency of PFRC. Overall this work provides an effective mathematical tool that can be used for structural self-health monitoring of plasticity induced flapping degradation of PFRC flapping wing MAVs. The developed tool can be re-calibrated to also provide SHM for other forms of failures like fatigue, matrix cracking etc.
Improved Joining of Metal Components to Composite Structures
NASA Technical Reports Server (NTRS)
Semmes, Edmund
2009-01-01
Systems requirements for complex spacecraft drive design requirements that lead to structures, components, and/or enclosures of a multi-material and multifunctional design. The varying physical properties of aluminum, tungsten, Invar, or other high-grade aerospace metals when utilized in conjunction with lightweight composites multiply system level solutions. These multi-material designs are largely dependent upon effective joining techAn improved method of joining metal components to matrix/fiber composite material structures has been invented. The method is particularly applicable to equipping such thin-wall polymer-matrix composite (PMC) structures as tanks with flanges, ceramic matrix composite (CMC) liners for high heat engine nozzles, and other metallic-to-composite attachments. The method is oriented toward new architectures and distributing mechanical loads as widely as possible in the vicinities of attachment locations to prevent excessive concentrations of stresses that could give rise to delaminations, debonds, leaks, and other failures. The method in its most basic form can be summarized as follows: A metal component is to be joined to a designated attachment area on a composite-material structure. In preparation for joining, the metal component is fabricated to include multiple studs projecting from the aforementioned face. Also in preparation for joining, holes just wide enough to accept the studs are molded into, drilled, or otherwise formed in the corresponding locations in the designated attachment area of the uncured ("wet') composite structure. The metal component is brought together with the uncured composite structure so that the studs become firmly seated in the holes, thereby causing the composite material to become intertwined with the metal component in the joining area. Alternately, it is proposed to utilize other mechanical attachment schemes whereby the uncured composite and metallic parts are joined with "z-direction" fasteners. The resulting "wet" assembly is then subjected to the composite-curing heat treatment, becoming a unitary structure. It should be noted that this new art will require different techniques for CMC s versus PMC's, but the final architecture and companion curing philosophy is the same. For instance, a chemical vapor infiltration (CVI) fabrication technique may require special integration of the pre-form and
Thermographic inspection of marine composite structures
NASA Astrophysics Data System (ADS)
Jones, Thomas S.; Lindgren, Eric A.
1994-03-01
The marine industry is now facing the problems that were faced by the aircraft industry 20 to 25 years ago: glass-fiber-composite structures do not lend themselves to traditional methods of interrogation. Both the material response and the failure modes of composites are different from traditional materials. Infrared thermographic techniques were investigated for application to composite hull structures and found to be very effective in locating and identifying damage to both solid laminate and sandwich panel construction. The thermographic techniques have been applied to cruising as well as racing yachts with good results. Indicated damage has matched well with the damage discovered during repair operations. More recently, the thermographic techniques have been applied to much thicker solid laminate hull construction used in a new U.S. Navy mine hunter, the MHC-51, U.S.S. Osprey. Thermographic investigations were performed on large test panels used to evaluate different material systems for this vessel and on the vessel itself to provide a baseline thermal characterization. Later this year, shock trials will be performed on the U.S.S. Osprey. Additional thermographic studies are planned following the shock trials.
Failure Analysis for Composition of Web Services Represented as Labeled Transition Systems
NASA Astrophysics Data System (ADS)
Nadkarni, Dinanath; Basu, Samik; Honavar, Vasant; Lutz, Robyn
The Web service composition problem involves the creation of a choreographer that provides the interaction between a set of component services to realize a goal service. Several methods have been proposed and developed to address this problem. In this paper, we consider those scenarios where the composition process may fail due to incomplete specification of goal service requirements or due to the fact that the user is unaware of the functionality provided by the existing component services. In such cases, it is desirable to have a composition algorithm that can provide feedback to the user regarding the cause of failure in the composition process. Such feedback will help guide the user to re-formulate the goal service and iterate the composition process. We propose a failure analysis technique for composition algorithms that views Web service behavior as multiple sequences of input/output events. Our technique identifies the possible cause of composition failure and suggests possible recovery options to the user. We discuss our technique using a simple e-Library Web service in the context of the MoSCoE Web service composition framework.
Line Scanning Thermography for Rapid Nondestructive Inspection of Large Scale Composites
NASA Astrophysics Data System (ADS)
Chung, S.; Ley, O.; Godinez, V.; Bandos, B.
2011-06-01
As next generation structures are utilizing larger amounts of composite materials, a rigorous and reliable method is needed to inspect these structures in order to prevent catastrophic failure and extend service life. Current inspection methods, such as ultrasonic, generally require extended down time and man hours as they are typically carried out via point-by-point measurements. A novel Line Scanning Thermography (LST) System has been developed for the non-contact, large-scale field inspection of composite structures with faster scanning times than conventional thermography systems. LST is a patented dynamic thermography technique where the heat source and thermal camera move in tandem, which allows the continuous scan of long surfaces without the loss of resolution. The current system can inspect an area of 10 in2 per 1 second, and has a resolution of 0.05×0.03 in2. Advanced data gathering protocols have been implemented for near-real time damage visualization and post-analysis algorithms for damage interpretation. The system has been used to successfully detect defects (delamination, dry areas) in fiber-reinforced composite sandwich panels for Navy applications, as well as impact damage in composite missile cases and armor ceramic panels.
Strength criteria for composite materials (a literature survey)
NASA Technical Reports Server (NTRS)
Roode, F.
1982-01-01
Literature concerning strength (failure) criteria for composite materials is reviewed with emphasis on phenomenological failure criteria. These criteria are primarily intended to give a good estimation of the safety margin with respect to failure for arbitrary multiaxial stress states. The failure criteria do not indicate the types of fracture that will occur in the material. The collection of failure criteria is evaluated for applicability for the glass reinforced plastics used in mine detectors. Material tests necessary to determine the parameters in the failure criteria are discussed.
Perspective for Fibre-Hybrid Composites in Wind Energy Applications
2017-01-01
Increasing the efficiency of wind turbines will be vital for the wind energy sector to continue growing. The drive for increased efficiency is pushing turbine manufacturers to shift from glass fibre composite blades towards carbon/glass fibre-hybrid composite blades. This shift brings significant challenges in terms of optimising the design and understanding the failure of these new blade materials. This review therefore surveys the literature on fibre-hybrid composites, with an emphasis on aspects that are relevant for turbine blade materials. The literature on tensile, flexural, compressive, and fatigue performance is critically assessed and areas for future research are identified. Numerical simulations of fibre-hybrid composites have reached a reasonable maturity for tensile failure, but significant progress is required for flexural, compressive, and fatigue failure. Fatigue failure of fibre-hybrid composites in particular, requires more careful attention from both a modelling and experimental point of view. PMID:29117126
Perspective for Fibre-Hybrid Composites in Wind Energy Applications.
Swolfs, Yentl
2017-11-08
Increasing the efficiency of wind turbines will be vital for the wind energy sector to continue growing. The drive for increased efficiency is pushing turbine manufacturers to shift from glass fibre composite blades towards carbon/glass fibre-hybrid composite blades. This shift brings significant challenges in terms of optimising the design and understanding the failure of these new blade materials. This review therefore surveys the literature on fibre-hybrid composites, with an emphasis on aspects that are relevant for turbine blade materials. The literature on tensile, flexural, compressive, and fatigue performance is critically assessed and areas for future research are identified. Numerical simulations of fibre-hybrid composites have reached a reasonable maturity for tensile failure, but significant progress is required for flexural, compressive, and fatigue failure. Fatigue failure of fibre-hybrid composites in particular, requires more careful attention from both a modelling and experimental point of view.
Experimental Tests on the Composite Foam Sandwich Pipes Subjected to Axial Load
NASA Astrophysics Data System (ADS)
Li, Feng; Zhao, QiLin; Xu, Kang; Zhang, DongDong
2015-12-01
Compared to the composite thin-walled tube, the composite foam sandwich pipe has better local flexural rigidity, which can take full advantage of the high strength of composite materials. In this paper, a series of composite foam sandwich pipes with different parameters were designed and manufactured using the prefabricated polyurethane foam core-skin co-curing molding technique with E-glass fabric prepreg. The corresponding axial-load compressive tests were conducted to investigate the influence factors that experimentally determine the axial compressive performances of the tubes. In the tests, the detailed failure process and the corresponding load-displacement characteristics were obtained; the influence rules of the foam core density, surface layer thickness, fiber ply combination and end restraint on the failure modes and ultimate bearing capacity were studied. Results indicated that: (1) the fiber ply combination, surface layer thickness and end restraint have a great influence on the ultimate load bearing capacity; (2) a reasonable fiber ply combination and reliable interfacial adhesion not only optimize the strength but also transform the failure mode from brittle failure to ductile failure, which is vital to the fully utilization of the composite strength of these composite foam sandwich pipes.
A simple nonlocal damage model for predicting failure of notched laminates
NASA Technical Reports Server (NTRS)
Kennedy, T. C.; Nahan, M. F.
1995-01-01
The ability to predict failure loads in notched composite laminates is a requirement in a variety of structural design circumstances. A complicating factor is the development of a zone of damaged material around the notch tip. The objective of this study was to develop a computational technique that simulates progressive damage growth around a notch in a manner that allows the prediction of failure over a wide range of notch sizes. This was accomplished through the use of a relatively simple, nonlocal damage model that incorporates strain-softening. This model was implemented in a two-dimensional finite element program. Calculations were performed for two different laminates with various notch sizes under tensile loading, and the calculations were found to correlate well with experimental results.
Analysis of Tile-Reinforced Composite Armor. Part 1; Advanced Modeling and Strength Analyses
NASA Technical Reports Server (NTRS)
Davila, C. G.; Chen, Tzi-Kang; Baker, D. J.
1998-01-01
The results of an analytical and experimental study of the structural response and strength of tile-reinforced components of the Composite Armored Vehicle are presented. The analyses are based on specialized finite element techniques that properly account for the effects of the interaction between the armor tiles, the surrounding elastomers, and the glass-epoxy sublaminates. To validate the analytical predictions, tests were conducted with panels subjected to three-point bending loads. The sequence of progressive failure events for the laminates is described. This paper describes the results of Part 1 of a study of the response and strength of tile-reinforced composite armor.
Energy absorption capabilities of composite sandwich panels under blast loads
NASA Astrophysics Data System (ADS)
Sankar Ray, Tirtha
As blast threats on military and civilian structures continue to be a significant concern, there remains a need for improved design strategies to increase blast resistance capabilities. The approach to blast resistance proposed here is focused on dissipating the high levels of pressure induced during a blast through maximizing the potential for energy absorption of composite sandwich panels, which are a competitive structural member type due to the inherent energy absorption capabilities of fiber reinforced polymer (FRP) composites. Furthermore, the middle core in the sandwich panels can be designed as a sacrificial layer allowing for a significant amount of deformation or progressive failure to maximize the potential for energy absorption. The research here is aimed at the optimization of composite sandwich panels for blast mitigation via energy absorption mechanisms. The energy absorption mechanisms considered include absorbed strain energy due to inelastic deformation as well as energy dissipation through progressive failure of the core of the sandwich panels. The methods employed in the research consist of a combination of experimentally-validated finite element analysis (FEA) and the derivation and use of a simplified analytical model. The key components of the scope of work then includes: establishment of quantified energy absorption criteria, validation of the selected FE modeling techniques, development of the simplified analytical model, investigation of influential core architectures and geometric parameters, and investigation of influential material properties. For the parameters that are identified as being most-influential, recommended values for these parameters are suggested in conceptual terms that are conducive to designing composite sandwich panels for various blast threats. Based on reviewing the energy response characteristic of the panel under blast loading, a non-dimensional parameter AET/ ET (absorbed energy, AET, normalized by total energy, ET) was suggested to compare energy absorption capabilities of the structures under blast loading. In addition, AEweb/ET (where AEweb is the energy absorbed by the middle core) was also employed to evaluate the energy absorption contribution from the web. Taking advantage of FEA and the simplified analytical model, the influences of material properties as well as core architectures and geometries on energy absorption capabilities (quantified by AET/ ET and AEweb/E T) were investigated through parametric studies. Results from the material property investigation indicated that density of the front face sheet and strength were most influential on the energy absorption capability of the composite sandwich panels under blast loading. The study to investigate the potential effectiveness of energy absorbed via inelastic deformation compared to energy absorbed via progressive failure indicated that for practical applications (where the position of bomb is usually unknown and the panel is designed to be the same anywhere), the energy absorption via inelastic deformation is the more efficient approach. Regarding the geometric optimization, it was found that a core architecture consisting of vertically-oriented webs was ideal. The optimum values for these parameters can be generally described as those which cause the most inelasticity, but not failure, of the face sheets and webs.
Durability of pulp fiber-cement composites
NASA Astrophysics Data System (ADS)
Mohr, Benjamin J.
Wood pulp fibers are a unique reinforcing material as they are non-hazardous, renewable, and readily available at relatively low cost compared to other commercially available fibers. Today, pulp fiber-cement composites can be found in products such as extruded non-pressure pipes and non-structural building materials, mainly thin-sheet products. Although natural fibers have been used historically to reinforce various building materials, little scientific effort has been devoted to the examination of natural fibers to reinforce engineering materials until recently. The need for this type of fundamental research has been emphasized by widespread awareness of moisture-related failures of some engineered materials; these failures have led to the filing of national- and state-level class action lawsuits against several manufacturers. Thus, if pulp fiber-cement composites are to be used for exterior structural applications, the effects of cyclical wet/dry (rain/heat) exposure on performance must be known. Pulp fiber-cement composites have been tested in flexure to examine the progression of strength and toughness degradation. Based on scanning electron microscopy (SEM), environmental scanning electron microscopy (ESEM), energy dispersive spectroscopy (EDS), a three-part model describing the mechanisms of progressive degradation has been proposed: (1) initial fiber-cement/fiber interlayer debonding, (2) reprecipitation of crystalline and amorphous ettringite within the void space at the former fiber-cement interface, and (3) fiber embrittlement due to reprecipitation of calcium hydroxide filling the spaces within the fiber cell wall structure. Finally, as a means to mitigate kraft pulp fiber-cement composite degradation, the effects of partial portland cement replacement with various supplementary cementitious materials (SCMs) has been investigated for their effect on mitigating kraft pulp fiber-cement composite mechanical property degradation (i.e., strength and toughness losses) during wet/dry cycling. SCMs have been found to be effective in mitigating composite degradation through several processes, including a reduction in the calcium hydroxide content, stabilization of monosulfate by maintaining pore solution pH, and a decrease in ettringite reprecipitation accomplished by increased binding of aluminum in calcium aluminate phases and calcium in the calcium silicate hydrate (C-S-H) phase.
Adhesive/Dentin Interface: The Weak Link in the Composite Restoration
Spencer, Paulette; Ye, Qiang; Park, Jonggu; Topp, Elizabeth M.; Misra, Anil; Marangos, Orestes; Wang, Yong; Bohaty, Brenda S.; Singh, Viraj; Sene, Fabio; Eslick, John; Camarda, Kyle; Katz, J. Lawrence
2010-01-01
Results from clinical studies suggest that more than half of the 166 million dental restorations that were placed in the United States in 2005 were replacements for failed restorations. This emphasis on replacement therapy is expected to grow as dentists use composite as opposed to dental amalgam to restore moderate to large posterior lesions. Composite restorations have higher failure rates, more recurrent caries, and increased frequency of replacement as compared to amalgam. Penetration of bacterial enzymes, oral fluids, and bacteria into the crevices between the tooth and composite undermines the restoration and leads to recurrent decay and premature failure. Under in vivo conditions the bond formed at the adhesive/dentin interface can be the first defense against these noxious, damaging substances. The intent of this article is to review structural aspects of the clinical substrate that impact bond formation at the adhesive/dentin interface; to examine physico-chemical factors that affect the integrity and durability of the adhesive/dentin interfacial bond; and to explore how these factors act synergistically with mechanical forces to undermine the composite restoration. The article will examine the various avenues that have been pursued to address these problems and it will explore how alterations in material chemistry could address the detrimental impact of physico-chemical stresses on the bond formed at the adhesive/dentin interface. PMID:20195761
NASA Technical Reports Server (NTRS)
1997-01-01
The NASA Lewis Research Center Structures Division is an international leader and pioneer in developing new structural analysis, life prediction, and failure analysis related to rotating machinery and more specifically to hot section components in air-breathing aircraft engines and spacecraft propulsion systems. The research consists of both deterministic and probabilistic methodology. Studies include, but are not limited to, high-cycle and low-cycle fatigue as well as material creep. Studies of structural failure are at both the micro- and macrolevels. Nondestructive evaluation methods related to structural reliability are developed, applied, and evaluated. Materials from which structural components are made, studied, and tested are monolithics and metal-matrix, polymer-matrix, and ceramic-matrix composites. Aeroelastic models are developed and used to determine the cyclic loading and life of fan and turbine blades. Life models are developed and tested for bearings, seals, and other mechanical components, such as magnetic suspensions. Results of these studies are published in NASA technical papers and reference publication as well as in technical society journal articles. The results of the work of the Structures Division and the bibliography of its publications for calendar year 1995 are presented.
Mechanical Behavior of CFRP Lattice Core Sandwich Bolted Corner Joints
NASA Astrophysics Data System (ADS)
Zhu, Xiaolei; Liu, Yang; Wang, Yana; Lu, Xiaofeng; Zhu, Lingxue
2017-12-01
The lattice core sandwich structures have drawn more attention for the integration of load capacity and multifunctional applications. However, the connection of carbon fibers reinforced polymer composite (CFRP) lattice core sandwich structure hinders its application. In this paper, a typical connection of two lattice core sandwich panels, named as corner joint or L-joint, was investigated by experiment and finite element method (FEM). The mechanical behavior and failure mode of the corner joints were discussed. The results showed that the main deformation pattern and failure mode of the lattice core sandwich bolted corner joints structure were the deformation of metal connector and indentation of the face sheet in the bolt holes. The metal connectors played an important role in bolted corner joints structure. In order to save the calculation resource, a continuum model of pyramid lattice core was used to replace the exact structure. The computation results were consistent with experiment, and the maximum error was 19%. The FEM demonstrated the deflection process of the bolted corner joints structure visually. So the simplified FEM can be used for further analysis of the bolted corner joints structure in engineering.
Structures Division 1994 Annual Report
NASA Technical Reports Server (NTRS)
1996-01-01
The NASA Lewis Research Center Structures Division is an international leader and pioneer in developing new structural analysis, life prediction, and failure analysis related to rotating machinery and more specifically to hot section components in air-breathing aircraft engines and spacecraft propulsion systems. The research consists of both deterministic and probabilistic methodology. Studies include, but are not limited to, high-cycle and low-cycle fatigue as well as material creep. Studies of structural failure are at both the micro- and macrolevels. Nondestructive evaluation methods related to structural reliability are developed, applied, and evaluated. Materials from which structural components are made, studied, and tested are monolithics and metal-matrix, polymer-matrix, and ceramic-matrix composites. Aeroelastic models are developed and used to determine the cyclic loading and life of fan and turbine blades. Life models are developed and tested for bearings, seals, and other mechanical components, such as magnetic suspensions. Results of these studies are published in NASA technical papers and reference publication as well as in technical society journal articles. The results of the work of the Structures Division and the bibliography of its publications for calendar year 1994 are presented.
Research on graphite reinforced glass matrix composites
NASA Technical Reports Server (NTRS)
Bacon, J. F.; Prewo, K. M.; Thompson, E. R.
1978-01-01
A composite that can be used at temperatures up to 875 K with mechanical properties equal or superior to graphite fiber reinforced epoxy composites is presented. The composite system consist of graphite fiber, uniaxially or biaxially, reinforced borosilicate glass. The mechanical and thermal properties of such a graphite fiber reinforced glass composite are described, and the system is shown to offer promise as a high performance structural material. Specific properties that were measured were: a modified borosilicate glass uniaxially reinforced by Hercules HMS graphite fiber has a three-point flexural strength of 1030 MPa, a four-point flexural strength of 964 MPa, an elastic modulus of 199 GPa and a failure strain of 0.0052. The preparation and properties of similar composites with Hercules HTS, Celanese DG-102, Thornel 300 and Thornel Pitch graphite fibers are also described.
Real time in-situ sensing of damage evolution in nanocomposite bonded surrogate energetic materials
NASA Astrophysics Data System (ADS)
Sengezer, Engin C.; Seidel, Gary D.
2016-04-01
The current work aims to explore the potential for in-situ structural health monitoring in polymer bonded energetic materials through the introduction of carbon nanotubes (CNTs) into the binder phase as a means to establish a significant piezoresistive response through the resulting nanocomposite binder. The experimental effort herein is focused towards electro-mechanical characterization of surrogate materials in place of actual energetic (explosive) materials in order to provide proof of concept for the strain and damage sensing. The electrical conductivity and the piezoresistive behavior of samples containing randomly oriented MWCNTs introduced into the epoxy (EPON 862) binder of 70 wt% ammonium perchlorate-epoxy hybrid composites are quantitatively and qualitatively evaluated. Brittle failure going through linear elastic behavior, formation of microcracks leading to reduction in composite load carrying capacity and finally macrocracks resulting in eventual failure are observed in the mechanical response of MWNT-ammonium perchlorateepoxy hybrid composites. Incorporating MWNTs into local polymer binder improves the effective stiffness about 40% compared to neat ammonium perchlorate-polymer samples. The real time in-situ relative change in resistance for MWNT hybrid composites was detected with the applied strains through piezoresistive response.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Carney, Kelly S.; Dubois, Paul; Hoffarth, Canio; Khaled, Bilal; Shyamsunder, Loukham; Rajan, Subramaniam; Blankenhorn, Gunther
2017-01-01
The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased use in the aerospace and automotive communities. The aerospace community has identified several key capabilities which are currently lacking in the available material models in commercial transient dynamic finite element codes. To attempt to improve the predictive capability of composite impact simulations, a next generation material model is being developed for incorporation within the commercial transient dynamic finite element code LS-DYNA. The material model, which incorporates plasticity, damage and failure, utilizes experimentally based tabulated input to define the evolution of plasticity and damage and the initiation of failure as opposed to specifying discrete input parameters such as modulus and strength. The plasticity portion of the orthotropic, three-dimensional, macroscopic composite constitutive model is based on an extension of the Tsai-Wu composite failure model into a generalized yield function with a non-associative flow rule. For the damage model, a strain equivalent formulation is used to allow for the uncoupling of the deformation and damage analyses. In the damage model, a semi-coupled approach is employed where the overall damage in a particular coordinate direction is assumed to be a multiplicative combination of the damage in that direction resulting from the applied loads in various coordinate directions. For the failure model, a tabulated approach is utilized in which a stress or strain based invariant is defined as a function of the location of the current stress state in stress space to define the initiation of failure. Failure surfaces can be defined with any arbitrary shape, unlike traditional failure models where the mathematical functions used to define the failure surface impose a specific shape on the failure surface. In the current paper, the complete development of the failure model is described and the generation of a tabulated failure surface for a representative composite material is discussed.
NASA Astrophysics Data System (ADS)
Zhao, Da; Liu, Tao; Zhang, Mei; Liang, Richard; Wang, Ben
2012-11-01
Traditional multifunctional composite structures are produced by embedding parasitic parts, such as foil sensors, optical fibers and bulky connectors. As a result, the mechanical properties of the composites, especially the interlaminar shear strength (ILSS), could be largely undermined. In the present study, we demonstrated an innovative aerosol-jet printing technology for printing electronics inside composite structures without degrading the mechanical properties. Using the maskless fine feature deposition (below 10 μm) characteristics of this printing technology and a pre-cure protocol, strain sensors were successfully printed onto carbon fiber prepregs to enable fabricating composites with intrinsic sensing capabilities. The degree of pre-cure of the carbon fiber prepreg on which strain sensors were printed was demonstrated to be critical. Without pre-curing, the printed strain sensors were unable to remain intact due to the resin flow during curing. The resin flow-induced sensor deformation can be overcome by introducing 10% degree of cure of the prepreg. In this condition, the fabricated composites with printed strain sensors showed almost no mechanical degradation (short beam shearing ILSS) as compared to the control samples. Also, the failure modes examined by optical microscopy showed no difference. The resistance change of the printed strain sensors in the composite structures were measured under a cyclic loading and proved to be a reliable mean strain gauge factor of 2.2 ± 0.06, which is comparable to commercial foil metal strain gauge.
Structural Response and Failure of a Full-Scale Stitched Graphite-Epoxy Wing
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.; Lovejoy, Andrew E.; Bush, Harold G.
2001-01-01
Analytical and experimental results of the test for an all-composite full-scale wing box are presented. The wing box is representative of a section of a 220-passenger commercial transport aircraft wing box and was designed and constructed by The Boeing Company as part of the NASA Advanced Subsonics Technology (AST) program. The semi-span wing was fabricated from a graphite-epoxy material system with cover panels and spars held together using Kevlar stitches through the thickness. No mechanical fasteners were used to hold the stiffeners to the skin of the cover panels. Tests were conducted with and without low-speed impact damage, discrete source damage and repairs. Up-bending down-bending and brake roll loading conditions were applied. The structure with nonvisible impact damage carried 97% of Design Ultimate Load prior to failure through a lower cover panel access hole. Finite element and experimental results agree for the global response of the structure.
Evaluation of the Structural Response and Failure of a Full-Scale Stitched Graphite-Epoxy Wing
NASA Astrophysics Data System (ADS)
Jegley, Dawn C.; Bush, Harold G.; Lovejoy, Andrew E.
2001-01-01
Analytical and experimental results for an all-composite full-scale wing box are presented. The wing box is representative of a section of a 220-passenger commercial transport aircraft wing box and was designed and constructed by The Boeing Company as part of the NASA Advanced Subsonics Technology (AST) program. The semi-span wing was fabricated from a graphite-epoxy material system with cover panels and spars held together using Kevlar stitches through the thickness. No mechanical fasteners were used to hold the stiffeners to the skin of the cover panels. Tests were conducted with and without low-speed impact damage, discrete source damage and repairs. Upbending, down-bending and brake roll loading conditions were applied. The structure with nonvisible impact damage carried 97% of Design Ultimate Load prior to failure through a lower cover panel access hole. Finite element and experimental results agree for the global response of the structure.
Tensile experiments and SEM fractography on bovine subchondral bone.
Braidotti, P; Bemporad, E; D'Alessio, T; Sciuto, S A; Stagni, L
2000-09-01
Subchondral bone undecalcified samples, extracted from bovine femoral heads, are subjected to a direct tensile load. The Young's modulus of each sample is determined from repeated tests within the elastic limit. In a last test, the tensile load is increased up to the specimen failure, determining the ultimate tensile strength. The investigation is performed on both dry and wet specimens. The measured Young's modulus for dry samples is 10.3+/-2.5GPa, while that of wet samples is 3.5+/-1.2GPa. The ultimate tensile strengths are 36+/-10 and 30+/-7.5MPa for dry and wet specimens, respectively. SEM micrographs of failure surfaces show characteristic lamellar bone structures, with lamellae composed of calcified collagen fibers. Rudimentary osteon-like structures are also observed. Failure surfaces of wet samples show a marked fiber pull-out, while delamination predominates in dry samples. The obtained results are interpreted on the basis of the deformation mechanisms typical of fiber-reinforced laminated composite materials.
Design, fabrication, and characterization of laminated hydroxyapatite-polysulfone composites
NASA Astrophysics Data System (ADS)
Wilson, Clifford Adams, II
There exists a need to develop devices that can be used to replace hard tissues, such as bone, in load-bearing areas of the body. An ideal hard tissue replacement device is one that stimulates growth of natural tissues, and is slowly resorbed by the body. The implant is also required to have elastic modulus, strength, and toughness values similar to the tissues being replaced. Hydroxyapatite (HA) is the primary mineral phase of bone and has the potential for use in biomedical applications because it stimulates cell growth and is resorbable. Unfortunately, HA is a relatively low strength, low toughness material, which limits its application to only low load-bearing regions of the body. In order to apply HA to greater load-bearing areas of the body, strength and toughness must be improved through the formation of a composite structure. The goal of this study to show that a composite structure formed from HA and a biocompatible polymer can be fabricated with strength and toughness values that are within the range necessary for load-bearing biomedical applications. Therefore, Polysulfone-HA composites were developed and tested. Polysulfone (PSu) is a hard, glassy polymer that has been shown to be biocompatible. Composites were fabricated through a combination of tape casting, solvent casting, and lamination. Monolithic HA and laminate specimens were tested in biaxial flexure. A unique laminate theory solution was developed to characterize stress distributions for laminates. Failure loads, failure stress, work of fracture, and apparent toughness were compared for the laminates against monolithic HA specimens. Initial testing results showed that laminates had a failure stress of 60 +/- 10, which is a 170% improvement over the 22 +/- 2 MPa failure stress for monolithic HA. The work of fracture was improved by 5500% from 11 +/- 2 for the monolithic HA to 612 +/- 240 for the laminates. Work of fracture values gave the laminates an apparent fracture toughness of 7.2 MPa•m1/2 compared to 0.6 MPa•m1/2 for the monolithic HA. Laminates with different geometries were built and tested in an attempt to optimize the strength and toughness of the composites. Laminate behavior was characterized as a function of initial flaw size, HA layer thickness, PSu layer thickness, and stressing rate. The failure stress of the laminates was maximized at a value of 108 +/- 14 MPa, which is a 400% improvement over monolithic HA, and close to the 12-160 MPa range reported for bone. The work of fracture of laminates was maximized at 724 +/- 206 J/m2, which is a 6400% improvement over monolithic HA, and yields an apparent fracture toughness value of 7.5 MPa•m1/2. This apparent toughness value is within the 2-12 MPa•m1/2 range for bone, and an 1100% improvement over the fracture toughness of monolithic HA.
Effect of molding conditions on fracture mechanisms and stiffness of a composite of grid structure
NASA Astrophysics Data System (ADS)
Nikolaev, V. P.; Pichugin, V. S.; Korobeinikov, A. G.
1999-01-01
Methods of determining a complex of stiffness and deformability characteristics of a composite with rhomb-type grid structure were elaborated. Rhomb-type specimens were used for testing the ribs of the structure in tension, compression, and bending and the nodal points in shear in the plane of the ribs. The effect of additional tensioning of the ribs preceding the curing of the binder was investigated (ten tensioning levels ranging from 8 to 70 N/bundle with a linear density of 390 tex were applied). In testing epoxy-carbon specimens (UKN-5000+EHD-MK) in compression and tension, the failure mode changed depending on the tensioning level, i.e., the presence or absence of delamination and the appearance of "dry" fibers were detected. Dependences of the mechanical properties on tensioning were of a markedly pronounced extreme nature. The methods elaborated allow us to investigate the effect of other molding parameters, as well as the conditions and nature of loading, on the mechanical characteristics of composites.
Torque Limits for Fasteners in Composites
NASA Technical Reports Server (NTRS)
Zhao, Yi
2002-01-01
The two major classes of laminate joints are bonded and bolted. Often the two classes are combined as bonded-bolted joints. Several characteristics of fiber reinforced composite materials render them more susceptible to joint problems than conventional metals. These characteristics include weakness in in-plane shear, transverse tension/compression, interlaminar shear, and bearing strength relative to the strength and stiffness in the fiber direction. Studies on bolted joints of composite materials have been focused on joining assembly subject to in-plane loads. Modes of failure under these loading conditions are net-tension failure, cleavage tension failure, shear-out failure, bearing failure, etc. Although the studies of torque load can be found in literature, they mainly discussed the effect of the torque load on in-plane strength. Existing methods for calculating torque limit for a mechanical fastener do not consider connecting members. The concern that a composite member could be crushed by a preload inspired the initiation of this study. The purpose is to develop a fundamental knowledge base on how to determine a torque limit when a composite member is taken into account. Two simplified analytical models were used: a stress failure analysis model based on maximum stress criterion, and a strain failure analysis model based on maximum strain criterion.
Effect of Electrospun Nanofibers on the Short Beam Strength of Laminated Fiberglass Composite
NASA Astrophysics Data System (ADS)
Shinde, Dattaji K.
High specific modulus and strength are the most desirable properties for the material used in structural applications. Composite materials exhibit these properties and over the last decade, their usage has increased significantly, particularly in automotive, defense, and aerospace applications. The major cause of failures in composite laminates is due to delaminations. Delamination in composite laminates can occur due to fatigue, low velocity impact and other loadings modes. Conventional methods like "through-the-thickness stitching" or "Z-Pinning" have limitations for improving flexural and interlaminar properties in woven composites due to the fact that while improving interlaminar properties, the presence of stitches or Z pins affects in-plane properties. This study investigates the flexural behavior of fiberglass composites interleaved with non-woven Tetra Ethyl Orthosilicate (TEOS) electrsopsun nanofibers (ENFs). TEOS ENFs were manufactured using an electrospinning technique and then sintered. Nanoengineered beams were fabricated by interleaving TEOS ENFs between the laminated fiberglass composites to improve the flexural properties. TEOS ENFs, resin film, and failed fiberglass laminated composites with and without nanofibers were characterized using SEM Imaging and ASTM standard testing methods. A hybrid composite was made by interleaving a non-woven sheet of TEOS ENFs between the fiberglass laminates with additional epoxy resin film and fabricated using the out of autoclave vacuum bagging method. Four commonly used stacking sequences of fiberglass laminates with and without nanofibers were used to study the progressive failure and deformation mechanics under flexural loadings. The experimental study has shown significant improvements in short beam strength and strain energy absorption in the nanoengineered laminated fiberglass composites before complete failure. The modes were investigated by performing detailed fractographic examination of failed specimens. Experimental results were validated by developing a detailed three dimensional finite element model. Results of the progressive deformation and damage mechanics from the finite element model agreed well with the experimental results. Overall, nanoengineered beams showed improvement in the short beam strength and 30 % improvement in energy absorption as compared to a fiberglass beam without the presence of nanofibers.
The Assessing of the Failure Behavior of Glass/Polyester Composites Subject to Quasi Static Stresses
NASA Astrophysics Data System (ADS)
Stanciu, M. D.; Savin, A.; Teodorescu-Drăghicescu, H.
2017-06-01
Using glass fabric reinforced composites for structure of wind turbine blades requires high mechanical strengths especially to cyclic stresses. Studies have shown that approximately 50% of composite material failure occurs because of fatigue. Composites behavior to cyclic stresses involves three stages regarding to stiffness variation: the first stage is characterized by the accelerated decline of stiffness with micro-cracks, the second stage - a slight decrease of stiffness characterized by the occurrence of delamination and third stage characterized by higher decreases of resistance and occurrence of fracture thereof. The aim of the paper is to analyzed the behavior of composites reinforced with glass fibers fabric type RT500 and polyester resin subjected to tensile cyclic loading with pulsating quasi-static regime with asymmetry coefficient R = 0. The samples were tested with the universal tensile machine LS100 Lloyd Instruments Plus, with a load capacity of 100 kN. The load was applied with different speeds of 1 mm/min, 10 mm/min and 20 mm/min. After tests, it was observed that the greatest permanent strains were recorded in the first load cycles when the total energy storage by material was lost due to internal friction. With increasing number of cycles, the glass/polyester composites ability to store energy of deformation decreases, the flow phenomenon characterized by large displacements to smaller loading forces appearing.
Design/Analysis of the JWST ISIM Bonded Joints for Survivability at Cryogenic Temperatures
NASA Technical Reports Server (NTRS)
Bartoszyk, Andrew; Johnston, John; Kaprielian, Charles; Kuhn, Jonathan; Kunt, Cengiz; Rodini,Benjamin; Young, Daniel
1990-01-01
A major design and analysis challenge for the JWST ISIM structure is thermal survivability of metal/composite bonded joints below the cryogenic temperature of 30K (-405 F). Current bonded joint concepts include internal invar plug fittings, external saddle titanium/invar fittings and composite gusset/clip joints all bonded to M55J/954-6 and T300/954-6 hybrid composite tubes (75mm square). Analytical experience and design work done on metal/composite bonded joints at temperatures below that of liquid nitrogen are limited and important analysis tools, material properties, and failure criteria for composites at cryogenic temperatures are sparse in the literature. Increasing this challenge is the difficulty in testing for these required tools and properties at cryogenic temperatures. To gain confidence in analyzing and designing the ISIM joints, a comprehensive joint development test program has been planned and is currently running. The test program is designed to produce required analytical tools and develop a composite failure criterion for bonded joint strengths at cryogenic temperatures. Finite element analysis is used to design simple test coupons that simulate anticipated stress states in the flight joints; subsequently the test results are used to correlate the analysis technique for the final design of the bonded joints. In this work, we present an overview of the analysis and test methodology, current results, and working joint designs based on developed techniques and properties.
Basic failure mechanisms in advanced composites
NASA Technical Reports Server (NTRS)
Mullin, J. V.; Mazzio, V. F.; Mehan, R. L.
1972-01-01
Failure mechanisms in carbon-epoxy composites are identified as a basis for more reliable prediction of the performance of these materials. The approach involves both the study of local fracture events in model specimens containing small groups of filaments and fractographic examination of high fiber content engineering composites. Emphasis is placed on the correlation of model specimen observations with gross fracture modes. The effects of fiber surface treatment, resin modification and fiber content are studied and acoustic emission methods are applied. Some effort is devoted to analysis of the failure process in composite/metal specimens.
Shrinkage Stresses Generated during Resin-Composite Applications: A Review
Schneider, Luis Felipe J.; Cavalcante, Larissa Maria; Silikas, Nick
2010-01-01
Many developments have been made in the field of resin composites for dental applications. However, the manifestation of shrinkage due to the polymerization process continues to be a major problem. The material's shrinkage, associated with dynamic development of elastic modulus, creates stresses within the material and its interface with the tooth structure. As a consequence, marginal failure and subsequent secondary caries, marginal staining, restoration displacement, tooth fracture, and/or post-operative sensitivity are clinical drawbacks of resin-composite applications. The aim of the current paper is to present an overview about the shrinkage stresses created during resin-composite applications, consequences, and advances. The paper is based on results of many researches that are available in the literature. PMID:20948573
Development of a Composite Delamination Fatigue Life Prediction Methodology
NASA Technical Reports Server (NTRS)
OBrien, Thomas K.
2009-01-01
Delamination is one of the most significant and unique failure modes in composite structures. Because of a lack of understanding of the consequences of delamination and the inability to predict delamination onset and growth, many composite parts are unnecessarily rejected upon inspection, both immediately after manufacture and while in service. NASA Langley is leading the efforts in the U.S. to develop a fatigue life prediction methodology for composite delamination using fracture mechanics. Research being performed to this end will be reviewed. Emphasis will be placed on the development of test standards for delamination characterization, incorporation of approaches for modeling delamination in commercial finite element codes, and efforts to mature the technology for use in design handbooks and certification documents.
A concept for fault tolerant design and improved availability of active composite elastic structures
NASA Astrophysics Data System (ADS)
Soeffker, D.; Wolters, K.; Krajcin, I.
2005-05-01
New functionalities, higher comfort and increasing performance requirements are often be solved by adding new technologies to existing (passive) solutions. Monitoring and control approaches uses additional sensors and actuators, new materials, microprocessors and new devices realizing new and improved functionalities. Two effects are becoming more and more interesting: (1) the lifetime of new actuators/materials strongly depends on the usage-history, (2) the functionality of the new composed systems depends on the fully functionality of all elements. In the consequence, the availability of such new systems is decreased by the number of elements and depends strongly on the use. These effects are known and act against new developments improving performance behavior also in mechanical engineering, automotive systems etc. This will be also the case for multifunctional composite or compound systems such as piezomaterials, magnetostrictive alloys or smart memory alloys (SMA) and is actually within the focus of the Structural-Health-Monitoring (SHM)-community. This contribution explains a new and systematically structured methodological approach to avoid and eliminate failures in mechatronical systems in an integrated and intelligent way to achieve a desirable or required amount of utilization in compliance with a defined failure rate. The result is an enhancement of the dependability of such a system.
NASA Technical Reports Server (NTRS)
Hairr, John W.; Huang, Jui-Ten; Ingram, J. Edward; Shah, Bharat M.
1992-01-01
The ISPAN Program (Interactive Stiffened Panel Analysis) is an interactive design tool that is intended to provide a means of performing simple and self contained preliminary analysis of aircraft primary structures made of composite materials. The program combines a series of modules with the finite element code DIAL as its backbone. Four ISPAN Modules were developed and are documented. These include: (1) flat stiffened panel; (2) curved stiffened panel; (3) flat tubular panel; and (4) curved geodesic panel. Users are instructed to input geometric and material properties, load information and types of analysis (linear, bifurcation buckling, or post-buckling) interactively. The program utilizing this information will generate finite element mesh and perform analysis. The output in the form of summary tables of stress or margins of safety, contour plots of loads or stress, and deflected shape plots may be generalized and used to evaluate specific design.
Hybrid Composites for LH2 Fuel Tank Structure
NASA Technical Reports Server (NTRS)
Grimsley, Brian W.; Cano, Roberto J.; Johnston, Norman J.; Loos, Alfred C.; McMahon, William M.
2001-01-01
The application of lightweight carbon fiber reinforced plastics (CFRP) as structure for cryogenic fuel tanks is critical to the success of the next generation of Reusable Launch Vehicles (RLV). The recent failure of the X-33 composite fuel tank occurred in part due to microcracking of the polymer matrix, which allowed cryogen to permeate through the inner skin to the honeycomb core. As part of an approach to solve these problems, NASA Langley Research Center (LaRC) and Marshall Space Flight Center (MSFC) are working to develop and investigate polymer films that will act as a barrier to the permeation of LH2 through the composite laminate. In this study two commercially available films and eleven novel LaRC films were tested in an existing cryogenics laboratory at MSFC to determine the permeance of argon at room temperature. Several of these films were introduced as a layer in the composite to form an interleaved, or hybrid, composite to determine the effects on permeability. In addition, the effects of the interleaved layer thickness, number, and location on the mechanical properties of the composite laminate were investigated. In this initial screening process, several of the films were found to exhibit lower permeability to argon than the composite panels tested.
Impact tests on fibrous composite sandwich structures
NASA Technical Reports Server (NTRS)
Rhodes, M. D.
1978-01-01
The effect of low velocity impact on the strength of laminates fabricated from graphite/epoxy and Kevlar 49/epoxy composite materials was studied. The test laminates were loaded statically either in uniaxial tension or compression when impact occurred to evaluate the effect of loading on the initiation of damage and/or failure. Typical aircraft service conditions such as runway debris encountered during landing were simulated by impacting 1.27-cm-diameter projectiles normal to the plane of the test laminates at velocities between 5.2 and 48.8 m/s.
Graduate engineering research participation in aeronautics
NASA Technical Reports Server (NTRS)
Roberts, A. S., Jr.
1984-01-01
Graduate student engineering research in aeronautics at Old Dominion University is surveyed. Student participation was facilitated through a NASA sponsored university program which enabled the students to complete degrees. Research summaries are provided and plans for the termination of the grant program are outlined. Project topics include: Failure modes for mechanically fastened joints in composite materials; The dynamic stability of an earth orbiting satellite deploying hinged appendages; The analysis of the Losipescu shear test for composite materials; and the effect of boundary layer structure on wing tip vortex formation and decay.
Numerical Characterization of a Composite Bonded Wing-Box
NASA Technical Reports Server (NTRS)
Smeltzer, Stanley S., III; Lovejoy, Andrew E.; Satyanarayana, Arunkumar
2008-01-01
The development of composite wing structures has focused on the use of mechanical fasteners to join heavily-loaded areas, while bonded joints have been used only for select locations. The focus of this paper is the examination of the adhesive layer in a generic bonded wing box that represents a "fastenerless" or unitized structure in order to characterize the general behavior and failure mechanisms. A global/local approach was applied to study the response of the adhesive layer using a global shell model and a local shell/solid model. The wing box was analyzed under load to represent a high-g up-bending condition such that the strains in the composite sandwich face sheets are comparable to an expected design allowable. The global/local analysis indicates that at these wing load levels the strains in the adhesive layer are well within the adhesive's elastic region, such that yielding would not be expected in the adhesive layer. The global/local methodology appears to be a promising approach to evaluate the structural integrity of the adhesively bonded structures.
NASA Technical Reports Server (NTRS)
Leifeste, Mark R.
2007-01-01
Composite Overwrapped Pressure Vessels (COPVs) are commonly used in spacecraft for containment of pressurized gases and fluids, incorporating strength and weight savings. The energy stored is capable of extensive spacecraft damage and personal injury in the event of sudden failure. These apparently simple structures, composed of a metallic media impermeable liner and fiber/resin composite overwrap are really complex structures with numerous material and structural phenomena interacting during pressurized use which requires multiple, interrelated monitoring methodologies to monitor and understand subtle changes critical to safe use. Testing of COPVs at NASA Johnson Space Center White Sands T est Facility (WSTF) has employed multiple in-situ, real-time nondestructive evaluation (NDE) methodologies as well as pre- and post-test comparative techniques to monitor changes in material and structural parameters during advanced pressurized testing. The use of NDE methodologies and their relationship to monitoring changes is discussed based on testing of real-world spacecraft COPVs. Lessons learned are used to present recommendations for use in testing, as well as a discussion of potential applications to vessel health monitoring in future applications.
Analysis of Composite Panel-Stiffener Debonding Using a Shell/3D Modeling Technique
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Minguet, Pierre J.
2006-01-01
Interlaminar fracture mechanics has proven useful for characterizing the onset of delaminations in composites and has been used with limited success primarily to investigate onset in fracture toughness specimens and laboratory size coupon type specimens. Future acceptance of the methodology by industry and certification authorities however, requires the successful demonstration of the methodology on structural level. For this purpose a panel was selected that was reinforced with stringers. Shear loading cases the panel to buckle and the resulting out-of-plane deformations initiate skin/stringer separation at the location of an embedded defect. For finite element analysis, the panel and surrounding load fixture were modeled with shell element. A small section of the stringer foot and the panel in the vicinity of the embedded defect were modeled with a local 3D solid model. A failure index was calculated by correlating computed mixed-mode failure criterion of the graphite/epoxy material.
Modelling the side impact of carbon fibre tubes
NASA Astrophysics Data System (ADS)
Sudharsan, Ms R.; Rolfe, B. F., Dr; Hodgson, P. D., Prof
2010-06-01
Metallic tubes have been extensively studied for their crashworthiness as they closely resemble automotive crash rails. Recently, the demand to improve fuel economy and reduce vehicle emissions has led automobile manufacturers to explore the crash properties of light weight materials such as fibre reinforced polymer composites, metallic foams and sandwich structures in order to use them as crash barriers. This paper discusses the response of carbon fibre reinforced polymer (CFRP) tubes and their failure mechanisms during side impact. The energy absorption of CFRP tubes is compared to similar Aluminium tubes. The response of the CFRP tubes during impact was modelled using Abaqus finite element software with a composite fabric material model. The material inputs were given based on standard tension and compression test results and the in-plane damage was defined based on cyclic shear tests. The failure modes and energy absorption observed during the tests were well represented by the finite element model.
NASA Technical Reports Server (NTRS)
Hyder, Imran; Schaefer, Joseph; Justusson, Brian; Wanthal, Steve; Leone, Frank; Rose, Cheryl
2017-01-01
Reducing the timeline for development and certification for composite structures has been a long standing objective of the aerospace industry. This timeline can be further exacerbated when attempting to integrate new fiber-reinforced composite materials due to the large number of testing required at every level of design. computational progressive damage and failure analysis (PDFA) attempts to mitigate this effect; however, new PDFA methods have been slow to be adopted in industry since material model evaluation techniques have not been fully defined. This study presents an efficient evaluation framework which uses a piecewise verification and validation (V&V) approach for PDFA methods. Specifically, the framework is applied to evaluate PDFA research codes within the context of intralaminar damage. Methods are incrementally taken through various V&V exercises specifically tailored to study PDFA intralaminar damage modeling capability. Finally, methods are evaluated against a defined set of success criteria to highlight successes and limitations.
Revealing catastrophic failure of leaf networks under stress
Brodribb, Timothy J.; Bienaimé, Diane; Marmottant, Philippe
2016-01-01
The intricate patterns of veins that adorn the leaves of land plants are among the most important networks in biology. Water flows in these leaf irrigation networks under tension and is vulnerable to embolism-forming cavitations, which cut off water supply, ultimately causing leaf death. Understanding the ways in which plants structure their vein supply network to protect against embolism-induced failure has enormous ecological and evolutionary implications, but until now there has been no way of observing dynamic failure in natural leaf networks. Here we use a new optical method that allows the initiation and spread of embolism bubbles in the leaf network to be visualized. Examining embolism-induced failure of architecturally diverse leaf networks, we found that conservative rules described the progression of hydraulic failure within veins. The most fundamental rule was that within an individual venation network, susceptibility to embolism always increased proportionally with the size of veins, and initial nucleation always occurred in the largest vein. Beyond this general framework, considerable diversity in the pattern of network failure was found between species, related to differences in vein network topology. The highest-risk network was found in a fern species, where single events caused massive disruption to leaf water supply, whereas safer networks in angiosperm leaves contained veins with composite properties, allowing a staged failure of water supply. These results reveal how the size structure of leaf venation is a critical determinant of the spread of embolism damage to leaves during drought. PMID:27071104
Revealing catastrophic failure of leaf networks under stress.
Brodribb, Timothy J; Bienaimé, Diane; Marmottant, Philippe
2016-04-26
The intricate patterns of veins that adorn the leaves of land plants are among the most important networks in biology. Water flows in these leaf irrigation networks under tension and is vulnerable to embolism-forming cavitations, which cut off water supply, ultimately causing leaf death. Understanding the ways in which plants structure their vein supply network to protect against embolism-induced failure has enormous ecological and evolutionary implications, but until now there has been no way of observing dynamic failure in natural leaf networks. Here we use a new optical method that allows the initiation and spread of embolism bubbles in the leaf network to be visualized. Examining embolism-induced failure of architecturally diverse leaf networks, we found that conservative rules described the progression of hydraulic failure within veins. The most fundamental rule was that within an individual venation network, susceptibility to embolism always increased proportionally with the size of veins, and initial nucleation always occurred in the largest vein. Beyond this general framework, considerable diversity in the pattern of network failure was found between species, related to differences in vein network topology. The highest-risk network was found in a fern species, where single events caused massive disruption to leaf water supply, whereas safer networks in angiosperm leaves contained veins with composite properties, allowing a staged failure of water supply. These results reveal how the size structure of leaf venation is a critical determinant of the spread of embolism damage to leaves during drought.
Enhanced bending failure strain in biological glass fibers due to internal lamellar architecture.
Monn, Michael A; Kesari, Haneesh
2017-12-01
The remarkable mechanical properties of biological structures, like tooth and bone, are often a consequence of their architecture. The tree ring-like layers that comprise the skeletal elements of the marine sponge Euplectella aspergillum are a quintessential example of the intricate architectures prevalent in biological structures. These skeletal elements, known as spicules, are hair-like fibers that consist of a concentric array of silica cylinders separated by thin, organic layers. Thousands of spicules act like roots to anchor the sponge to the sea floor. While spicules have been the subject of several structure-property investigations, those studies have mostly focused on the relationship between the spicule's layered architecture and toughness properties. In contrast, we hypothesize that the spicule's layered architecture enhances its bending failure strain, thereby allowing it to provide a better anchorage to the sea floor. We test our hypothesis by performing three-point bending tests on E. aspergillum spicules, measuring their bending failure strains, and comparing them to those of spicules from a related sponge, Tethya aurantia. The T. aurantia spicules have a similar chemical composition to E. aspergillum spicules but have no architecture. Thus, any difference between the bending failure strains of the two types of spicules can be attributed to the E. aspergillum spicules' layered architecture. We found that the bending failure strains of the E. aspergillum spicules were roughly 2.4 times larger than those of the T. aurantia spicules. Copyright © 2017 Elsevier Ltd. All rights reserved.
Delamination Assessment Tool for Spacecraft Composite Structures
NASA Astrophysics Data System (ADS)
Portela, Pedro; Preller, Fabian; Wittke, Henrik; Sinnema, Gerben; Camanho, Pedro; Turon, Albert
2012-07-01
Fortunately only few cases are known where failure of spacecraft structures due to undetected damage has resulted in a loss of spacecraft and launcher mission. However, several problems related to damage tolerance and in particular delamination of composite materials have been encountered during structure development of various ESA projects and qualification testing. To avoid such costly failures during development, launch or service of spacecraft, launcher and reusable launch vehicles structures a comprehensive damage tolerance verification approach is needed. In 2009, the European Space Agency (ESA) initiated an activity called “Delamination Assessment Tool” which is led by the Portuguese company HPS Lda and includes academic and industrial partners. The goal of this study is the development of a comprehensive damage tolerance verification approach for launcher and reusable launch vehicles (RLV) structures, addressing analytical and numerical methodologies, material-, subcomponent- and component testing, as well as non-destructive inspection. The study includes a comprehensive review of current industrial damage tolerance practice resulting from ECSS and NASA standards, the development of new Best Practice Guidelines for analysis, test and inspection methods and the validation of these with a real industrial case study. The paper describes the main findings of this activity so far and presents a first iteration of a Damage Tolerance Verification Approach, which includes the introduction of novel analytical and numerical tools at an industrial level. This new approach is being put to the test using real industrial case studies provided by the industrial partners, MT Aerospace, RUAG Space and INVENT GmbH
Baeza, Francisco Javier; Galao, Oscar; Zornoza, Emilio; Garcés, Pedro
2013-01-01
In this research, strain-sensing and damage-sensing functional properties of cement composites have been studied on a conventional reinforced concrete (RC) beam. Carbon nanofiber (CNFCC) and fiber (CFCC) cement composites were used as sensors on a 4 m long RC beam. Different casting conditions (in situ or attached), service location (under tension or compression) and electrical contacts (embedded or superficial) were compared. Both CNFCC and CFCC were suitable as strain sensors in reversible (elastic) sensing condition testing. CNFCC showed higher sensitivities (gage factor up to 191.8), while CFCC only reached gage factors values of 178.9 (tension) or 49.5 (compression). Furthermore, damage-sensing tests were run, increasing the applied load progressively up to the RC beam failure. In these conditions, CNFCC sensors were also strain sensitive, but no damage sensing mechanism was detected for the strain levels achieved during the tests. Hence, these cement composites could act as strain sensors, even for severe damaged structures near to their collapse. PMID:28809343
Baeza, Francisco Javier; Galao, Oscar; Zornoza, Emilio; Garcés, Pedro
2013-03-06
In this research, strain-sensing and damage-sensing functional properties of cement composites have been studied on a conventional reinforced concrete (RC) beam. Carbon nanofiber (CNFCC) and fiber (CFCC) cement composites were used as sensors on a 4 m long RC beam. Different casting conditions ( in situ or attached), service location (under tension or compression) and electrical contacts (embedded or superficial) were compared. Both CNFCC and CFCC were suitable as strain sensors in reversible (elastic) sensing condition testing. CNFCC showed higher sensitivities (gage factor up to 191.8), while CFCC only reached gage factors values of 178.9 (tension) or 49.5 (compression). Furthermore, damage-sensing tests were run, increasing the applied load progressively up to the RC beam failure. In these conditions, CNFCC sensors were also strain sensitive, but no damage sensing mechanism was detected for the strain levels achieved during the tests. Hence, these cement composites could act as strain sensors, even for severe damaged structures near to their collapse.
Kinet, Damien; Mégret, Patrice; Goossen, Keith W.; Qiu, Liang; Heider, Dirk; Caucheteur, Christophe
2014-01-01
Nowadays, smart composite materials embed miniaturized sensors for structural health monitoring (SHM) in order to mitigate the risk of failure due to an overload or to unwanted inhomogeneity resulting from the fabrication process. Optical fiber sensors, and more particularly fiber Bragg grating (FBG) sensors, outperform traditional sensor technologies, as they are lightweight, small in size and offer convenient multiplexing capabilities with remote operation. They have thus been extensively associated to composite materials to study their behavior for further SHM purposes. This paper reviews the main challenges arising from the use of FBGs in composite materials. The focus will be made on issues related to temperature-strain discrimination, demodulation of the amplitude spectrum during and after the curing process as well as connection between the embedded optical fibers and the surroundings. The main strategies developed in each of these three topics will be summarized and compared, demonstrating the large progress that has been made in this field in the past few years. PMID:24763215
Elasticity dominates strength and failure in metallic glasses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Z. Q.; Qu, R. T.; Zhang, Z. F., E-mail: zhfzhang@imr.ac.cn
2015-01-07
Two distinct deformation mechanisms of shearing and volume dilatation are quantitatively analyzed in metallic glasses (MGs) from the fundamental thermodynamics. Their competition is deduced to intrinsically dominate the strength and failure behaviors of MGs. Both the intrinsic shear and normal strengths give rise to the critical mechanical energies to activate destabilization of amorphous structures, under pure shearing and volume dilatation, respectively, and can be determined in terms of elastic constants. By adopting an ellipse failure criterion, the strength and failure behaviors of MGs can be precisely described just according to their shear modulus and Poisson's ratio without mechanical testing. Quantitativemore » relations are established systematically and verified by experimental results. Accordingly, the real-sense non-destructive failure prediction can be achieved in various MGs. By highlighting the broad key significance of elasticity, a “composition-elasticity-property” scheme is further outlined for better understanding and controlling the mechanical properties of MGs and other glassy materials from the elastic perspectives.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanswijgenhoven, E.; Holmes, J.; Wevers, M.
Fiber-reinforced ceramic-matrix composites are under development for high-temperature structural applications. These applications involve fatigue loading under a wide range of frequencies. To date, high-temperature fatigue experiments have typically been performed at loading frequencies of 10 Hz or lower. At higher frequencies, a strong effect of loading frequency on fatigue life has been demonstrated for certain CMC`s tested at room temperature. The fatigue life of CMC`s with weak fiber-matrix interfaces typically decreases as the loading frequency increases. This decrease is attributed to frictional heating and frequency dependent interface and fiber damage. More recently, it has been shown that the room temperaturemore » fatigue life of a Nicalon-fabric-reinforced composite with a strong interface (SYLRAMIC{trademark}) appears to be independent of loading frequency. The high-temperature low-frequency fatigue behavior of the SYLRAMIC composite has also been investigated. For a fatigue peak stress {sigma}{sub peak} above a proportional limit stress of 70 MPa, the number of cycles to failure N{sub f} decreased with an increase in {sigma}{sub peak}. The material endured more than 10{sup 6} cycles for {sigma}{sub peak} below 70 MPa. In this paper, the influence of loading frequency on the high-temperature fatigue behavior of the SYLRAMIC composite is reported. It will be shown that the fatigue limit is unaffected by the loading frequency, that the number of fatigue cycles to failure N{sub f} increases with an increase in frequency, and that the time to failure t{sub f} decreases with an increase in frequency.« less
Fiber-Optic Sensor And Smart Structures Research At Florida Institute Of Technology
NASA Astrophysics Data System (ADS)
Grossman, Barry G.; Alavie, A. Tino; Ham, Fredric M.; Franke, Jorge E.; Thursby, Michael H.
1990-02-01
This paper discusses the fundamental issues being investigated by Florida Institute of Technology (F.I.T.) to implement the technology of smart structural systems for DoD, NASA, and commercial applications. Embedded sensors and actuators controlled by processors can provide a modification of the mechanical characteristics of composite structures to produce smart structures1-3. Recent advances in material science have spurred the development and use of composite materials in a wide range of applications from rotocraft blades and advanced tactical fighter aircraft to undersea and aerospace structures. Along with the advantages of an increased strength-to-weight ratio, the use of these materials has raised a number of questions related to understanding their failure mechanisms. Also, being able to predict structural failures far enough in advance to prevent them and to provide real-time structural health and damage monitoring has become a realistic possibility. Unfortunately, conventional sensors, actuators, and digital processors, although highly developed and well proven for other systems, may not be best suited for most smart structure applications. Our research has concentrated on few-mode and polarimetric single-fiber strain sensors4-7 and optically activated shape memory alloy (SMA) actuators controlled by artificial neural processors. We have constructed and characterized both few-mode and polarimetric sensors for a variety of fiber types, including standard single-mode, high-birefringence polarization preserving, and low-birefringence polarization insensitive fibers. We have investigated signal processing techniques for these sensors and have demonstrated active phase tracking for the high- and low-birefringence polarimetric sensors through the incorporation into the system of an electrooptic modulator designed and fabricated at F.I.T.. We have also started the design and testing of neural network architectures for processing the sensor signal outputs to calculate strain magnitude and actuator control signals for simple structures.
Compression failure of composite laminates
NASA Technical Reports Server (NTRS)
Pipes, R. B.
1983-01-01
This presentation attempts to characterize the compressive behavior of Hercules AS-1/3501-6 graphite-epoxy composite. The effect of varying specimen geometry on test results is examined. The transition region is determined between buckling and compressive failure. Failure modes are defined and analytical models to describe these modes are presented.
Vallabhajosyula, Saraschandra; Jentzer, Jacob C; Geske, Jeffrey B; Kumar, Mukesh; Sakhuja, Ankit; Singhal, Akhil; Poterucha, Joseph T; Kashani, Kianoush; Murphy, Joseph G; Gajic, Ognjen; Kashyap, Rahul
2018-02-01
The association between new-onset left ventricular (LV) dysfunction during sepsis with long-term heart failure outcomes is lesser understood. Retrospective cohort study of all adult patients with severe sepsis and septic shock between 2007 and 2014 who underwent echocardiography within 72 h of admission to the intensive care unit. Patients with prior heart failure, LV dysfunction, and structural heart disease were excluded. LV systolic dysfunction was defined as LV ejection fraction <50% and LV diastolic dysfunction as ≥grade II. Primary composite outcome included new hospitalization for acute decompensated heart failure and all-cause mortality at 2-year follow-up. Secondary outcomes included persistent LV dysfunction, and hospital mortality and length of stay. During this 8-year period, 434 patients with 206 (48%) patients having LV dysfunction were included. The two groups had similar baseline characteristics, but those with LV dysfunction had worse function as demonstrated by worse LV ejection fraction, cardiac index, and LV diastolic dysfunction. In the 331 hospital survivors, new-onset acute decompensated heart failure hospitalization did not differ between the two cohorts (15% vs. 11%). The primary composite outcome was comparable at 2-year follow-up between the groups with and without LV dysfunction (P = 0.24). Persistent LV dysfunction was noted in 28% hospital survivors on follow-up echocardiography. Other secondary outcomes were similar between the two groups. In patients with severe sepsis and septic shock, the presence of new-onset LV dysfunction did not increase the risk of long-term adverse heart failure outcomes.
A Study on Flexural Properties of Sandwich Structures with Fiber/Metal Laminate Face Sheets
NASA Astrophysics Data System (ADS)
Dariushi, S.; Sadighi, M.
2013-10-01
In this work, a new family of sandwich structures with fiber metal laminate (FML) faces is investigated. FMLs have benefits over both metal and fiber reinforced composites. To investigate the bending properties of sandwich beams with FML faces and compare with similar sandwich beams with fibrous composite faces, 6 groups of specimen with different layer arrangements were made and tested. Results show that FML faces have good resistance against transverse local loads and minimize stress concentration and local deformations of skin and core under the loading tip. In addition, FML faces have a good integrity even after plateau region of foam cores and prevent from catastrophic failures, which cannot be seen in fibrous composite faces. Also, FML faces are lighter than metal faces and have better connection with foam cores. Sandwich beams with FML faces have a larger elastic region because of simultaneous deformation of top and bottom faces and larger failure strain thanks to good durability of FMLs. A geometrical nonlinear classical theory is used to predict force-deflection behavior. In this model an explicit formula between symmetrical sandwich beams deflections and applied force which can be useful for designers, is derived. Good agreement is obtained between the analytical predictions and experimental results. Also, analytical results are compared with small deformation solution in a parametric study, and the effects of geometric parameters on difference between linear and nonlinear results are discussed.
Impact resistance of fiber composite blades used in aircraft turbine engines
NASA Technical Reports Server (NTRS)
Friedrich, L. A.; Preston, J. L., Jr.
1973-01-01
Resistance of advanced fiber reinforced epoxy matrix composite materials to ballistic impact was investigated as a function of impacting projectile characteristics, and composite material properties. Ballistic impact damage due to normal impacts, was classified as transverse (stress wave delamination and splitting), penetrative, or structural (gross failure). Steel projectiles were found to be gelatin ice projectiles in causing penetrative damage leading to reduced tensile strength. Gelatin and ice projectiles caused either transverse or structural damage, depending upon projectile mass and velocity. Improved composite transverse tensile strength, use of dispersed ply lay-ups, and inclusion of PRD-49-1 or S-glass fibers correlated with improved resistance of composite materials to transverse damage. In non-normal impacts against simulated blade shapes, the normal velocity component of the impact was used to correlate damage results with normal impact results. Stiffening the leading edge of simulated blade specimens led to reduced ballistic damage, while addition of a metallic leading edge provided nearly complete protection against 0.64 cm diameter steel, and 1.27 cm diameter ice and gelatin projectiles, and partial protection against 2.54 cm diameter projectiles of ice and gelatin.
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.
1999-01-01
Ceramic matrix composites are being developed for elevated-temperature engine applications. A leading material system in this class of materials is silicon carbide (SiC) fiber-reinforced SiC matrix composites. Unfortunately, the nonoxide fibers, matrix, and interphase (boron nitride in this system) can react with oxygen or water vapor in the atmosphere, leading to strength degradation of the composite at elevated temperatures. For this study, constant-load stress-rupture tests were performed in air at temperatures ranging from 815 to 960 C until failure. From these data, predictions can be made for the useful life of such composites under similar stressed-oxidation conditions. During these experiments, the sounds of failure events (matrix cracking and fiber breaking) were monitored with a modal acoustic emission (AE) analyzer through transducers that were attached at the ends of the tensile bars. Such failure events, which are caused by applied stress and oxidation reactions, cause these composites to fail prematurely. Because of the nature of acoustic waveform propagation in thin tensile bars, the location of individual source events and the eventual failure event could be detected accurately.
NASA Technical Reports Server (NTRS)
Hart-Smith, L. J.
1992-01-01
The irrelevance of most composite failure criteria to conventional fiber-polymer composites is claimed to have remained undetected primarily because the experiments that can either validate or disprove them are difficult to perform. Uniaxial tests are considered inherently incapable of validating or refuting any composite failure theory because so much of the total load is carried by the fibers aligned in the direction of the load. The Ten-Percent Rule, a simple rule-of-mixtures analysis method, is said to work well only because of this phenomenon. It is stated that failure criteria can be verified for fibrous composites only by biaxial tests, with orthogonal in-plane stresses of the same as well as different signs, because these particular states of combined stress reveal substantial differences between the predictions of laminate strength made by various theories. Three scientifically plausible failure models for fibrous composites are compared, and it is shown that only the in-plane shear test (orthogonal tension and compression) is capable of distinguishing between them. This is because most theories are 'calibrated' against the measured uniaxial tension and compression tests and any cross-plied laminate tests dominated by those same states of stress must inevitably 'confirm' the theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Kunc, Vlastimil; Jin, Xiaoshi
2013-12-18
This article illustrates the predictive capabilities for long-fiber thermoplastic (LFT) composites that first simulate the injection molding of LFT structures by Autodesk® Simulation Moldflow® Insight (ASMI) to accurately predict fiber orientation and length distributions in these structures. After validating fiber orientation and length predictions against the experimental data, the predicted results are used by ASMI to compute distributions of elastic properties in the molded structures. In addition, local stress-strain responses and damage accumulation under tensile loading are predicted by an elastic-plastic damage model of EMTA-NLA, a nonlinear analysis tool implemented in ABAQUS® via user-subroutines using an incremental Eshelby-Mori-Tanaka approach. Predictedmore » stress-strain responses up to failure and damage accumulations are compared to the experimental results to validate the model.« less
Multi-Scale Analyses of Three Dimensional Woven Composite 3D Shell With a Cut Out Circle
NASA Astrophysics Data System (ADS)
Nguyen, Duc Hai; Wang, Hu
2018-06-01
A composite material are made by combining two or more constituent materials to obtain the desired material properties of each product type. The matrix material which can be polymer and fiber is used as reinforcing material. Currently, the polymer matrix is widely used in many different fields with differently designed structures such as automotive structures and aviation, aerospace, marine, etc. because of their excellent mechanical properties; in addition, they possess the high level of hardness and durability together with a significant reduction in weight compared to traditional materials. However, during design process of structure, there will be many interruptions created for the purpose of assembling the structures together or for many other design purposes. Therefore, when this structure is subject to load-bearing, its failure occurs at these interruptions due to stress concentration. This paper proposes multi-scale modeling and optimization strategies in evaluation of the effectiveness of fiber orientation in an E-glass/Epoxy woven composite 3D shell with circular holes at the center investigated by FEA results. A multi-scale model approach was developed to predict the mechanical behavior of woven composite 3D shell with circular holes at the center with different designs of material and structural parameters. Based on the analysis result of laminae, we have found that the 3D shell with fiber direction of 450 shows the best stress and strain bearing capacity. Thus combining several layers of 450 fiber direction in a multi-layer composite 3D shell reduces the stresses concentrated on the cuts of the structures.
Optimization of SMA layers in composite structures to enhance damping
NASA Astrophysics Data System (ADS)
Haghdoust, P.; Cinquemani, S.; Lecis, N.; Bassani, P.
2016-04-01
The performance of lightweight structures can be severely affected by vibration. New design concepts leading to lightweight, slender structural components can increase the vulnerability of the components to failure due to excessive vibration. The intelligent approach to address the problem would be the use of materials which are more capable in dissipating the energy due to their high value of loss factor. Among the different materials available to achieve damping, much attention has been attached to the use of shape memory alloys (SMAs) because of their unique microstructure, leading to good damping capacity. This work describes the design and optimization of a hybrid layered composite structure for the passive suppression of flexural vibrations in slender and light structures. Embedding the SMA layers in composite structure allows to combine different properties: the lightness of the base composite (e.g. fiber glass), the mechanical strength of the insert of metallic material and the relevant damping properties of SMA, in the martensitic phase. In particular, we put our attention on embedding the CuZnAl in the form of thin sheet in a layered composite made by glass fiber reinforced epoxy. By appropriately positioning of the SMA sheets so that they are subjected to the maximum curvature, the damping of the hybrid system can be considerably enhanced. Accordingly analytical method for evaluating the energy dissipation of the thin sheets with different shapes and patterns is developed and is followed by a shape optimization based on genetic algorithm. Eventually different configurations of the hybrid beam structure with different patterns of SMA layer are proposed and compared in the term of damping capacity.
Analysis and experiments for composite laminates with holes and subjected to 4-point bending
NASA Technical Reports Server (NTRS)
Shuart, M. J.; Prasad, C. B.
1990-01-01
Analytical and experimental results are presented for composite laminates with a hole and subjected to four-point bending. A finite-plate analysis is used to predict moment and strain distributions for six-layer quasi-isotropic laminates and transverse-ply laminates. Experimental data are compared with the analytical results. Experimental and analytical strain results show good agreement for the quasi-isotropic laminates. Failure of the two types of composite laminates is described, and failure strain results are presented as a function of normalized hole diameter. The failure results suggest that the initial failure mechanism for laminates subjected to four-point bending are similar to the initial failure mechanisms for corresponding laminates subjected to uniaxial inplane loadings.
Development of design and analysis methodology for composite bolted joints
NASA Astrophysics Data System (ADS)
Grant, Peter; Sawicki, Adam
1991-05-01
This paper summarizes work performed to develop composite joint design methodology for use on rotorcraft primary structure, determine joint characteristics which affect joint bearing and bypass strength, and develop analytical methods for predicting the effects of such characteristics in structural joints. Experimental results have shown that bearing-bypass interaction allowables cannot be defined using a single continuous function due to variance of failure modes for different bearing-bypass ratios. Hole wear effects can be significant at moderate stress levels and should be considered in the development of bearing allowables. A computer program has been developed and has successfully predicted bearing-bypass interaction effects for the (0/+/-45/90) family of laminates using filled hole and unnotched test data.
Tough composite materials: Recent developments
NASA Technical Reports Server (NTRS)
Vosteen, L. F. (Editor); Johnston, N. J. (Editor); Teichman, L. A. (Editor); Blankenship, C. P. (Editor)
1985-01-01
The present volume broadly considers topics in composite fracture toughness and impact behavior characterization, composite system constituent properties and their interrelationships, and matrix systems' synthesis and characterization. Attention is given to the characterization of interlaminar crack growth in composites by means of the double cantilever beam specimen, the characterization of delamination resistance in toughened resin composites, the effect of impact damage and open holes on the compressive strength of tough resin/high strain fiber laminates, the effect of matrix and fiber properties on compression failure mechanisms and impact resistance, the relation of toughened neat resin properties to advanced composite mechanical properties, and constituent and composite properties' relationships in thermosetting matrices. Also treated are the effect of cross-link density on the toughening mechanism of elastomer-modified epoxies, the chemistry of fiber/resin interfaces, novel carbon fibers and their properties, the development of a heterogeneous laminating resin, solvent-resistant thermoplastics, NASA Lewis research in advanced composites, and opportunities for the application of composites in commercial aircraft transport structures.
A Protection And Detection Surface (PADS) for damage tolerance
NASA Technical Reports Server (NTRS)
Shuart, M. J.; Prasad, C. B.; Biggers, S. B.
1990-01-01
A protection and detection surface (PADS) concept was studied for application to composite primary aircraft structures. A Kevlar-epoxy woven face sheet with a Rohacell foam core was found to be the most effective PADS configuration among the configurations evaluated. The weight of the PADS configuration was estimated to be approximately 17 percent of the structural weight. The PADS configuration was bonded to graphite-epoxy base laminates, and up to a 70 percent improvement in compression-after-impact failure strains was observed.
A Protection And Detection Surface (PADS) for damage tolerance
NASA Technical Reports Server (NTRS)
Shuart, Mark J.; Prasad, Chunchu B.; Biggers, Sherrill B.
1990-01-01
A protection and detection surface (PADS) concept was studied for application to composite primary aircraft structures. A Kevlar-epoxy woven face sheet with a Rohacell foam core was found to be the most effective PADS configuration among the configurations evaluated. The weight of the PADS configuration was estimated to be approximately 17 pct of the structural weight. The PADS configuration was bonded to graphite-epoxy base laminates, and up to a 70 pct improvement in compression-after-impact failure strains was observed.
Infrared thermography for examination of paper structure
NASA Astrophysics Data System (ADS)
Kiiskinen, Harri T.; Pakarinen, Pekka I.
1998-03-01
The paper industry has used IR cameras primarily for troubleshooting, where the most common examples include the examination of the condition of dryer fabrics and dryer cylinders and the analysis of moisture variations in a paper web. Another application extensively using IR thermography is non-destructive testing of composite materials. This paper presents some recently developed laboratory methods using an IR camera to examine paper structure. Specific areas include cockling, moisture content, thermal uniformity, mechanism of failure, and an analysis of the copying process.
NASA Technical Reports Server (NTRS)
Hoggatt, J. T.
1974-01-01
Filament wound pressure vessels of various configurations were evaluated for burst strength and fatigue performance. The dimensions and characteristics of the vessels are described. The types of tests conducted are explained. It was determined that all vessels leaked in a relatively few cycles (20 to 60 cycles) with failure occurring in all cases in the metallic liner. The thin liner would de-bond from the composite and buckling took place during depressurization. No composite failures or indications of impeding composite failures were obtained in the metal-lined vessels.
Talic, Nabeel F
2016-08-01
This comparative prospective randomized clinical trial examined the in vivo failure rates of fixed mandibular and maxillary lingual retainers bonded with two light-cured flowable composites over 6 months. Consecutive patients were divided into two groups on a 1:1 basis. Two hundred fixed lingual retainers were included, and their failures were followed for 6 months. One group (n = 50) received retainers bonded with a nano-hybrid composite based on nano-optimized technology (Tetric-N-Flow, Ivoclar Vivadent). Another group (n = 50) received retainers bonded with a low viscosity (LV) composite (Transbond Supreme LV, 3M Unitek). There was no significant difference between the overall failure rates of mandibular retainers bonded with Transbond (8%) and those bonded with Tetric-N-Flow (18%). However, the odds ratio for failure using Tetric-N-flow was 2.52-fold greater than that of Transbond. The failure rate of maxillary retainers bonded with Transbond was higher (14%), but not significantly different, than that of maxillary retainers bonded with Tetric-N-flow (10%). There was no significant difference in the estimated mean survival times of the maxillary and mandibular retainers bonded with the two composites. Both types of composites tested in the current study can be used to bond fixed maxillary and mandibular lingual retainers, with low failure rates.
A micrographic study of bending failure in five thermoplastic/carbon fiber composite laminates
NASA Technical Reports Server (NTRS)
Yurgartis, S. W.; Sternstein, S. S.
1987-01-01
The local deformation and failure sequences of five thermoplastic matrix composites were microscopically observed while bending the samples in a small fixture attached to a microscope stage. The themoplastics are polycarbonate, polysulfone, polyphenylsulfide, polyethersulfone, and polyetheretherketone. Comparison was made to an epoxy matrix composite, 5208/T-300. Laminates tested are (0/90) sub 2S, with outer ply fibers parallel to the beam axis. Four point bending was used at a typical span-to-thickness ratio of 39:1. It was found that all of the thermoplastic composites failed by abrupt longitudinal compression buckling of the outer ply. Very little precursory damage was observed. Micrographs reveal typical fiber kinking associated with longitudinal compression failure. Curved fracture surfaces on the fibers suggest they failed in bending rather than direct compression. Delamination was suppressed in the thermoplastic composites, and the delamination that did occur was found to be the result of compression buckling, rather than visa-versa. Microbuckling also caused other subsequent damage such as ply splitting, transverse ply shear failure, fiber tensile failure, and transverse ply cracking.
NASA Astrophysics Data System (ADS)
Beaumont, Peter W. R.
2014-02-01
Predicting precisely where a crack will develop in a material under stress and exactly when in time catastrophic fracture of the component will occur is one the oldest unsolved mysteries in the design and building of large engineering structures. Where human life depends upon engineering ingenuity, the burden of testing to prove a "fracture safe design" is immense. For example, when human life depends upon structural integrity as an essential design requirement, it takes ten thousand material test coupons per composite laminate configuration to evaluate an airframe plus loading to ultimate failure tails, wing boxes, and fuselages to achieve a commercial aircraft airworthiness certification. Fitness considerations for long-life implementation of aerospace composites include understanding phenomena such as impact, fatigue, creep, and stress corrosion cracking that affect reliability, life expectancy, and durability of structure. Structural integrity analysis treats the design, the materials used, and figures out how best components and parts can be joined. Furthermore, SI takes into account service duty. However, there are conflicting aims in the complete design process of designing simultaneously for high efficiency and safety assurance throughout an economically viable lifetime with an acceptable level of risk.
Dong, Shaopeng; Yuan, Mei; Wang, Qiusheng; Liang, Zhiling
2018-05-21
The acoustic emission (AE) method is useful for structural health monitoring (SHM) of composite structures due to its high sensitivity and real-time capability. The main challenge, however, is how to classify the AE data into different failure mechanisms because the detected signals are affected by various factors. Empirical wavelet transform (EWT) is a solution for analyzing the multi-component signals and has been used to process the AE data. In order to solve the spectrum separation problem of the AE signals, this paper proposes a novel modified separation method based on local window maxima (LWM) algorithm. It searches the local maxima of the Fourier spectrum in a proper window, and automatically determines the boundaries of spectrum segmentations, which helps to eliminate the impact of noise interference or frequency dispersion in the detected signal and obtain the meaningful empirical modes that are more related to the damage characteristics. Additionally, both simulation signal and AE signal from the composite structures are used to verify the effectiveness of the proposed method. Finally, the experimental results indicate that the proposed method performs better than the original EWT method in identifying different damage mechanisms of composite structures.
Dong, Shaopeng; Yuan, Mei; Wang, Qiusheng; Liang, Zhiling
2018-01-01
The acoustic emission (AE) method is useful for structural health monitoring (SHM) of composite structures due to its high sensitivity and real-time capability. The main challenge, however, is how to classify the AE data into different failure mechanisms because the detected signals are affected by various factors. Empirical wavelet transform (EWT) is a solution for analyzing the multi-component signals and has been used to process the AE data. In order to solve the spectrum separation problem of the AE signals, this paper proposes a novel modified separation method based on local window maxima (LWM) algorithm. It searches the local maxima of the Fourier spectrum in a proper window, and automatically determines the boundaries of spectrum segmentations, which helps to eliminate the impact of noise interference or frequency dispersion in the detected signal and obtain the meaningful empirical modes that are more related to the damage characteristics. Additionally, both simulation signal and AE signal from the composite structures are used to verify the effectiveness of the proposed method. Finally, the experimental results indicate that the proposed method performs better than the original EWT method in identifying different damage mechanisms of composite structures. PMID:29883411
NASA Astrophysics Data System (ADS)
Ravishankar, Bharani
Conventional space vehicles have thermal protection systems (TPS) that provide protection to an underlying structure that carries the flight loads. In an attempt to save weight, there is interest in an integrated TPS (ITPS) that combines the structural function and the TPS function. This has weight saving potential, but complicates the design of the ITPS that now has both thermal and structural failure modes. The main objectives of this dissertation was to optimally design the ITPS subjected to thermal and mechanical loads through deterministic and reliability based optimization. The optimization of the ITPS structure requires computationally expensive finite element analyses of 3D ITPS (solid) model. To reduce the computational expenses involved in the structural analysis, finite element based homogenization method was employed, homogenizing the 3D ITPS model to a 2D orthotropic plate. However it was found that homogenization was applicable only for panels that are much larger than the characteristic dimensions of the repeating unit cell in the ITPS panel. Hence a single unit cell was used for the optimization process to reduce the computational cost. Deterministic and probabilistic optimization of the ITPS panel required evaluation of failure constraints at various design points. This further demands computationally expensive finite element analyses which was replaced by efficient, low fidelity surrogate models. In an optimization process, it is important to represent the constraints accurately to find the optimum design. Instead of building global surrogate models using large number of designs, the computational resources were directed towards target regions near constraint boundaries for accurate representation of constraints using adaptive sampling strategies. Efficient Global Reliability Analyses (EGRA) facilitates sequentially sampling of design points around the region of interest in the design space. EGRA was applied to the response surface construction of the failure constraints in the deterministic and reliability based optimization of the ITPS panel. It was shown that using adaptive sampling, the number of designs required to find the optimum were reduced drastically, while improving the accuracy. System reliability of ITPS was estimated using Monte Carlo Simulation (MCS) based method. Separable Monte Carlo method was employed that allowed separable sampling of the random variables to predict the probability of failure accurately. The reliability analysis considered uncertainties in the geometry, material properties, loading conditions of the panel and error in finite element modeling. These uncertainties further increased the computational cost of MCS techniques which was also reduced by employing surrogate models. In order to estimate the error in the probability of failure estimate, bootstrapping method was applied. This research work thus demonstrates optimization of the ITPS composite panel with multiple failure modes and large number of uncertainties using adaptive sampling techniques.
NASA Astrophysics Data System (ADS)
Ren, Yiru; Zhang, Songjun; Jiang, Hongyong; Xiang, Jinwu
2018-04-01
Based on continuum damage mechanics (CDM), a sophisticated 3D meso-scale finite element (FE) model is proposed to characterize the progressive damage behavior of 2D Triaxial Braided Composites (2DTBC) with 60° braiding angle under quasi-static tensile load. The modified Von Mises strength criterion and 3D Hashin failure criterion are used to predict the damage initiation of the pure matrix and fiber tows. A combining interface damage and friction constitutive model is applied to predict the interface damage behavior. Murakami-Ohno stiffness degradation scheme is employed to predict the damage evolution process of each constituent. Coupling with the ordinary and translational symmetry boundary conditions, the tensile elastic response including tensile strength and failure strain of 2DTBC are in good agreement with the available experiment data. The numerical results show that the main failure modes of the composites under axial tensile load are pure matrix cracking, fiber and matrix tension failure in bias fiber tows, matrix tension failure in axial fiber tows and interface debonding; the main failure modes of the composites subjected to transverse tensile load are free-edge effect, matrix tension failure in bias fiber tows and interface debonding.
NASA Astrophysics Data System (ADS)
Blinkov, Pavel; Ogorodov, Leonid; Grabovyy, Peter
2018-03-01
Modern high-rise construction introduces a number of limitations and tasks. In addition to durability, comfort and profitability, projects should take into account energy efficiency and environmental problems. Polymer building materials are used as substitutes for materials such as brick, concrete, metal, wood and glass, and in addition to traditional materials. Plastic materials are light, can be formed into complex shapes, durable and low, and also possess a wide range of properties. Plastic materials are available in various forms, colors and textures and require minimal or no color. They are resistant to heat transfer and diffusion of moisture and do not suffer from metal corrosion or microbial attack. Polymeric materials, including thermoplastics, thermoset materials and wood-polymer composites, have many structural and non-structural applications in the construction industry. They provide unique and innovative solutions at a low cost, and their use is likely to grow in the future. A number of polymer composite materials form complex material compositions, which are applied in the construction in order to analyze the processes of damage accumulation under the conditions of complex nonstationary loading modes, and to determine the life of structural elements considering the material aging. This paper present the results of tests on short-term compression loading with a deformation rate of v = 2 mm/min using composite samples of various shapes and sizes.
ICAN: Integrated composites analyzer
NASA Technical Reports Server (NTRS)
Murthy, P. L. N.; Chamis, C. C.
1984-01-01
The ICAN computer program performs all the essential aspects of mechanics/analysis/design of multilayered fiber composites. Modular, open-ended and user friendly, the program can handle a variety of composite systems having one type of fiber and one matrix as constituents as well as intraply and interply hybrid composite systems. It can also simulate isotropic layers by considering a primary composite system with negligible fiber volume content. This feature is specifically useful in modeling thin interply matrix layers. Hygrothermal conditions and various combinations of in-plane and bending loads can also be considered. Usage of this code is illustrated with a sample input and the generated output. Some key features of output are stress concentration factors around a circular hole, locations of probable delamination, a summary of the laminate failure stress analysis, free edge stresses, microstresses and ply stress/strain influence coefficients. These features make ICAN a powerful, cost-effective tool to analyze/design fiber composite structures and components.
Structural characterization of high temperature composites
NASA Technical Reports Server (NTRS)
Mandell, J. F.; Grande, D. H.
1991-01-01
Glass, ceramic, and carbon matrix composite materials have emerged in recent years with potential properties and temperature resistance which make them attractive for high temperature applications such as gas turbine engines. At the outset of this study, only flexural tests were available to evaluate brittle matrix composites at temperatures in the 600 to 1000 C range. The results are described of an ongoing effort to develop appropriate tensile, compression, and shear test methods for high temperature use. A tensile test for unidirectional composites was developed and used to evaluate the properties and behavior of ceramic fiber reinforced glass and glass-ceramic matrix composites in air at temperatures up to 1000 C. The results indicate generally efficient fiber reinforcement and tolerance to matrix cracking similar to polymer matrix composites. Limiting properties in these materials may be an inherently very low transverse strain to failure, and high temperature embrittlement due to fiber/matrix interface oxidation.
Analysis of Composite Panel-Stiffener Debonding Using a Shell/3D Modeling Technique
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Ratcliffe, James; Minguet, Pierre J.
2007-01-01
Interlaminar fracture mechanics has proven useful for characterizing the onset of delaminations in composites and has been used successfully primarily to investigate onset in fracture toughness specimens and laboratory size coupon type specimens. Future acceptance of the methodology by industry and certification authorities, however, requires the successful demonstration of the methodology on the structural level. For this purpose, a panel was selected that is reinforced with stiffeners. Shear loading causes the panel to buckle, and the resulting out-of-plane deformations initiate skin/stiffener separation at the location of an embedded defect. A small section of the stiffener foot, web and noodle as well as the panel skin in the vicinity of the delamination front were modeled with a local 3D solid model. Across the width of the stiffener foot, the mixedmode strain energy release rates were calculated using the virtual crack closure technique. A failure index was calculated by correlating the results with a mixed-mode failure criterion of the graphite/epoxy material. Computed failure indices were compared to corresponding results where the entire web was modeled with shell elements and only a small section of the stiffener foot and panel were modeled locally with solid elements. Including the stiffener web in the local 3D solid model increased the computed failure index. Further including the noodle and transition radius in the local 3D solid model changed the local distribution across the width. The magnitude of the failure index decreased with increasing transition radius and noodle area. For the transition radii modeled, the material properties used for the noodle area had a negligible effect on the results. The results of this study are intended to be used as a guide for conducting finite element and fracture mechanics analyses of delamination and debonding in complex structures such as integrally stiffened panels.