ERIC Educational Resources Information Center
Weiss, Stanley J.; Kearns, David N.; Antoshina, Maria
2009-01-01
According to the composite-stimulus control model (Weiss, 1969, 1972b), an individual discriminative stimulus (S[superscript D]) is composed of that S[superscript D]'s on-state plus the off-states of all other relevant S[superscript D]s. The present experiment investigated the reversibility of composite-stimulus control. Separate groups of rats…
Ionic polymer-metal composite torsional sensor: physics-based modeling and experimental validation
NASA Astrophysics Data System (ADS)
Aidi Sharif, Montassar; Lei, Hong; Khalid Al-Rubaiai, Mohammed; Tan, Xiaobo
2018-07-01
Ionic polymer-metal composites (IPMCs) have intrinsic sensing and actuation properties. Typical IPMC sensors are in the shape of beams and only respond to stimuli acting along beam-bending directions. Rod or tube-shaped IPMCs have been explored as omnidirectional bending actuators or sensors. In this paper, physics-based modeling is studied for a tubular IPMC sensor under pure torsional stimulus. The Poisson–Nernst–Planck model is used to describe the fundamental physics within the IPMC, where it is hypothesized that the anion concentration is coupled to the sum of shear strains induced by the torsional stimulus. Finite element simulation is conducted to solve for the torsional sensing response, where some of the key parameters are identified based on experimental measurements using an artificial neural network. Additional experimental results suggest that the proposed model is able to capture the torsional sensing dynamics for different amplitudes and rates of the torsional stimulus.
Joint Control for Dummies: An Elaboration of Lowenkron's Model of Joint (Stimulus) Control
ERIC Educational Resources Information Center
Sidener, David W.
2006-01-01
The following paper describes Lowenkron's model of joint (stimulus) control. Joint control is described as a means of accounting for performances, especially generalized performances, for which a history of contingency control does not provide an adequate account. Examples are provided to illustrate instances in which joint control may facilitate…
Summation and subtraction using a modified autoshaping procedure in pigeons.
Ploog, Bertram O
2008-06-01
A modified autoshaping paradigm (significantly different from those previously reported in the summation literature) was employed to allow for the simultaneous assessment of stimulus summation and subtraction in pigeons. The response requirements and the probability of food delivery were adjusted such that towards the end of training 12 of 48 trials ended in food delivery, the same proportion as under testing. Stimuli (outlines of squares of three sizes and colors: A, B, and C) were used that could be presented separately or in any combination of two or three stimuli. Twelve of the pigeons (summation groups) were trained with either A, B, and C or with AB, BC, and CA, and tested with ABC. The remaining 12 pigeons (subtraction groups) received training with ABC but were tested with A, B, and C or with AB, BC, and CA. These groups were further subdivided according to whether stimulus elements were presented either in a concentric or dispersed manner. Summation did not occur; subtraction occurred in the two concentric groups. For interpretation of the results, configural theory, the Rescorla-Wagner model, and the composite-stimulus control model were considered. The results suggest different mechanisms responsible for summation and subtraction.
NASA Astrophysics Data System (ADS)
Ru, Jie; Zhu, Zicai; Wang, Yanjie; Chen, Hualing; Bian, Changsheng; Luo, Bin; Li, Dichen
2018-02-01
Ionic polymer-metal composite (IPMC) actuator can generate large and rapid deformation based on ion migration under a relatively low driving voltage. Under full hydrated conditions, the deformation is always prone to relaxation. At room humidity conditions, the deformation increases substantially at the early stage of actuation, and then decreases gradually. Generally, most researchers considered that the change of water content or relative humidity mainly leads to the deformation instabilities, which severely limits the practical applications of IPMC. In this Letter, a novel actuation mode is proposed to control the deformation behavior of IPMC by employing moisture as an independent or collaborative incentive source together with the electric field. The deformation response is continuously measured under electric field, electric field-moisture coupling stimulus and moisture stimulus. The result shows that moisture can be a favorable driving factor for IPMC actuation. Such an electric field-moisture coupling stimulus can avoid the occurrence of deformation instabilities and guarantee a superior controllable deformation in IPMC actuation. This research provides a new method to obtain stable and large deformation of IPMC, which is of great significance for the guidance of material design and application for IPMC and IPMC-type iEAP materials.
Piacentini, Emma; Drioli, Enrico; Giorno, Lidietta
2011-04-01
In this work, a novel strategy for the controlled fabrication of biomolecular stimulus responsive water-in-oil-in-water (W/O/W) multiple emulsion using the membrane emulsification process was investigated. The emulsions interface was functionalized with a biomolecule able to function as a receptor for a target compound. The interaction between the biomolecular receptor and target stimulus activated the release of bioactive molecules contained within the structured emulsion. A glucose sensitive emulsion was investigated as a model study case. Concanavalin A (Con A) was used as the biomolecular glucose sensor. Various physicochemical strategies for stimulus responsive materials formulation are available in literature, but the preparation of biomolecule-responsive emulsions has been explored for the first time in this paper. The development of novel drug delivery systems requires advanced and highly precise techniques to obtain their particular properties and targeting requirements. The present study has proven the flexibility and suitability of membrane emulsification for the preparation of stable and functional multiple emulsions containing Con A as interfacial biomolecular receptor able to activate the release of a bioactive molecule as a consequence of interaction with the glucose target molecule. The influence of emulsion interfacial composition and membrane emulsification operating conditions on droplets stability and functional properties have been investigated. The release of the bioactive molecule as a function of glucose stimulus and its concentration has been demonstrated. Copyright © 2010 Wiley Periodicals, Inc.
Singh, Nagendra Madan; Sathyaprabha, T N; Thirthalli, Jagadisha; Andrade, Chittaranjan
2018-01-01
No electroconvulsive therapy (ECT) study on humans or in animal models has so far examined whether differently composed electrical stimuli exert different cardiac electrophysiological effects at constant electrical dose. The subject is important because cardiac electrophysiological changes may provide indirect information about ECT seizure quality as modulated by stimulus composition. Adult female Wistar rats ( n = 20/group) received fixed, moderately suprathreshold (18 mC) electrical stimuli. This stimulus in each of eight groups was formed by varying pulse amplitude, pulse width, pulse frequency, and stimulus duration. The electrocardiogram was recorded, and time and frequency domain variables were examined in 30 s epochs in preictal (30 s before electroconvulsive shock [ECS]), early postictal (starting 15 s after stimulation), and late postictal (5 h after ECS) periods. Alpha for statistical significance was set at P < 0.01 to adjust for multiple hypothesis testing. Cardiac electrophysiological indices in the eight groups did not differ significantly at baseline. At both early and late postictal time points, almost no analysis yielded statistically significant differences between groups for four time domain variables, including heart rate and standard deviation of R-R intervals, and for six frequency domain variables, including low-frequency power, high-frequency power, and total power. Cardiac electrophysiological measures may not be helpful to identify differences in seizure quality that are driven by differences in the composition of electrical stimuli at constant, moderately suprathreshold electrical dose. The generalization of this conclusion to threshold electrical doses and to human contexts requires a study.
Singh, Nagendra Madan; Sathyaprabha, T. N.; Thirthalli, Jagadisha; Andrade, Chittaranjan
2018-01-01
Background: No electroconvulsive therapy (ECT) study on humans or in animal models has so far examined whether differently composed electrical stimuli exert different cardiac electrophysiological effects at constant electrical dose. The subject is important because cardiac electrophysiological changes may provide indirect information about ECT seizure quality as modulated by stimulus composition. Materials and Methods: Adult female Wistar rats (n = 20/group) received fixed, moderately suprathreshold (18 mC) electrical stimuli. This stimulus in each of eight groups was formed by varying pulse amplitude, pulse width, pulse frequency, and stimulus duration. The electrocardiogram was recorded, and time and frequency domain variables were examined in 30 s epochs in preictal (30 s before electroconvulsive shock [ECS]), early postictal (starting 15 s after stimulation), and late postictal (5 h after ECS) periods. Alpha for statistical significance was set at P < 0.01 to adjust for multiple hypothesis testing. Results: Cardiac electrophysiological indices in the eight groups did not differ significantly at baseline. At both early and late postictal time points, almost no analysis yielded statistically significant differences between groups for four time domain variables, including heart rate and standard deviation of R-R intervals, and for six frequency domain variables, including low-frequency power, high-frequency power, and total power. Conclusions: Cardiac electrophysiological measures may not be helpful to identify differences in seizure quality that are driven by differences in the composition of electrical stimuli at constant, moderately suprathreshold electrical dose. The generalization of this conclusion to threshold electrical doses and to human contexts requires a study. PMID:29736058
Bidirectional Telemetry Controller for Neuroprosthetic Devices
Sharma, Vishnu; McCreery, Douglas B.; Han, Martin; Pikov, Victor
2010-01-01
We present versatile multifunctional programmable controller with bidirectional data telemetry, implemented using existing commercial microchips and standard Bluetooth protocol, which adds convenience, reliability, and ease-of-use to neuroprosthetic devices. Controller, weighing 190 g, is placed on animal's back and provides bidirectional sustained telemetry rate of 500 kb/s, allowing real-time control of stimulation parameters and viewing of acquired data. In continuously-active state, controller consumes ∼420 mW and operates without recharge for 8 h. It features independent 16-channel current-controlled stimulation, allowing current steering; customizable stimulus current waveforms; recording of stimulus voltage waveforms and evoked neuronal responses with stimulus artifact blanking circuitry. Flexibility, scalability, cost-efficiency, and a user-friendly computer interface of this device allow use in animal testing for variety of neuroprosthetic applications. Initial testing of the controller has been done in a feline model of brainstem auditory prosthesis. In this model, the electrical stimulation is applied to the array of microelectrodes implanted in the ventral cochlear nucleus, while the evoked neuronal activity was recorded with the electrode implanted in the contralateral inferior colliculus. Stimulus voltage waveforms to monitor the access impedance of the electrodes were acquired at the rate of 312 kilosamples/s. Evoked neuronal activity in the inferior colliculus was recorded after the blanking (transient silencing) of the recording amplifier during the stimulus pulse, allowing the detection of neuronal responses within 100 μs after the end of the stimulus pulse applied in the cochlear nucleus. PMID:19933010
A model for food and stimulus changes that signal time-based contingency changes.
Cowie, Sarah; Davison, Michael; Elliffe, Douglas
2014-11-01
When the availability of reinforcers depends on time since an event, time functions as a discriminative stimulus. Behavioral control by elapsed time is generally weak, but may be enhanced by added stimuli that act as additional time markers. The present paper assessed the effect of brief and continuous added stimuli on control by time-based changes in the reinforcer differential, using a procedure in which the local reinforcer ratio reversed at a fixed time after the most recent reinforcer delivery. Local choice was enhanced by the presentation of the brief stimuli, even when the stimulus change signalled only elapsed time, but not the local reinforcer ratio. The effect of the brief stimulus presentations on choice decreased as a function of time since the most recent stimulus change. We compared the ability of several versions of a model of local choice to describe these data. The data were best described by a model which assumed that error in discriminating the local reinforcer ratio arose from imprecise discrimination of reinforcers in both time and space, suggesting that timing behavior is controlled not only by discrimination elapsed time, but by discrimination of the reinforcer differential in time. © Society for the Experimental Analysis of Behavior.
Ma, Ning; Yu, Angela J
2016-01-01
Inhibitory control, the ability to stop or modify preplanned actions under changing task conditions, is an important component of cognitive functions. Two lines of models of inhibitory control have previously been proposed for human response in the classical stop-signal task, in which subjects must inhibit a default go response upon presentation of an infrequent stop signal: (1) the race model, which posits two independent go and stop processes that race to determine the behavioral outcome, go or stop; and (2) an optimal decision-making model, which posits that observers decides whether and when to go based on continually (Bayesian) updated information about both the go and stop stimuli. In this work, we probe the relationship between go and stop processing by explicitly manipulating the discrimination difficulty of the go stimulus. While the race model assumes the go and stop processes are independent, and therefore go stimulus discriminability should not affect the stop stimulus processing, we simulate the optimal model to show that it predicts harder go discrimination should result in longer go reaction time (RT), lower stop error rate, as well as faster stop-signal RT. We then present novel behavioral data that validate these model predictions. The results thus favor a fundamentally inseparable account of go and stop processing, in a manner consistent with the optimal model, and contradicting the independence assumption of the race model. More broadly, our findings contribute to the growing evidence that the computations underlying inhibitory control are systematically modulated by cognitive influences in a Bayes-optimal manner, thus opening new avenues for interpreting neural responses underlying inhibitory control.
Yang, Eun-Jin; Wilczynski, Walter
2002-09-01
We investigated the relationship between aggressive behavior and circulating androgens in the context of agonistic social interaction and examined the effect of this interaction on the androgen-aggression relationship in response to a subsequent social challenge in male Anolis carolinensis lizards. Individuals comprising an aggressive encounter group were exposed to an aggressive conspecific male for 10 min per day during a 5-day encounter period, while controls were exposed to a neutral stimulus for the same period. On the sixth day, their responses to an intruder test were observed. At intervals, individuals were sacrificed to monitor plasma androgen levels. Structural equation modeling (SEM) was used to test three a priori interaction models of the relationship between social stimulus, aggressive behavior, and androgen. Model 1 posits that exposure to a social stimulus influences androgen and aggressive behavior independently. In Model 2, a social stimulus triggers aggressive behavior, which in turn increases circulating levels of androgen. In Model 3, exposure to a social stimulus influences circulating androgen levels, which in turn triggers aggressive behavior. During the 5 days of the encounter period, circulating testosterone (T) levels of the aggressive encounter group followed the same pattern as their aggressive behavioral responses, while the control group did not show significant changes in their aggressive behavior or T level. Our SEM results supported Model 2. A means analysis showed that during the intruder test, animals with 5 days of aggressive encounters showed more aggressive responses than did control animals, while their circulating androgen levels did not differ. This further supports Model 2, suggesting that an animal's own aggressive behavior may trigger increases in levels of plasma androgen. Copyright 2002 Elsevier Science (USA)
Arrington, Catherine M; Weaver, Starla M
2015-01-01
Under conditions of volitional control in multitask environments, subjects may engage in a variety of strategies to guide task selection. The current research examines whether subjects may sometimes use a top-down control strategy of selecting a task-irrelevant stimulus dimension, such as location, to guide task selection. We term this approach a stimulus set selection strategy. Using a voluntary task switching procedure, subjects voluntarily switched between categorizing letter and number stimuli that appeared in two, four, or eight possible target locations. Effects of stimulus availability, manipulated by varying the stimulus onset asynchrony between the two target stimuli, and location repetition were analysed to assess the use of a stimulus set selection strategy. Considered across position condition, Experiment 1 showed effects of both stimulus availability and location repetition on task choice suggesting that only in the 2-position condition, where selection based on location always results in a target at the selected location, subjects may have been using a stimulus set selection strategy on some trials. Experiment 2 replicated and extended these findings in a visually more cluttered environment. These results indicate that, contrary to current models of task selection in voluntary task switching, the top-down control of task selection may occur in the absence of the formation of an intention to perform a particular task.
The role of stimulus-specific adaptation in songbird syntax generation
NASA Astrophysics Data System (ADS)
Wittenbach, Jason D.
Sequential behaviors are an important part of the behavioral repertoire of many animals and understanding how neural circuits encode and generate such sequences is a long-standing question in neuroscience. The Bengalese finch is a useful model system for studying variable action sequences. The songs of these birds consist of well-defined vocal elements (syllables) that are strung together to form sequences. The ordering of the syllables within the sequence is variable but not random - it shows complex statistical patterns (syntax). While often thought to be first-order, the syntax of the Bengalese finch song shows a distinct form of history dependence where the probability of repeating a syllable decreases as a function of the number of repetitions that have already occurred. Current models of the Bengalese finch song control circuitry offer no explanation for this repetition adaptation. The Bengalese finch also uses real-time auditory feedback to control the song syntax. Considering these facts, we hypothesize that repetition adaptation in the Bengalese finch syntax may be caused by stimulus-specific adaptation - a wide-spread phenomenon where neural responses to a specific stimulus become weaker with repeated presentations of the same stimulus. We begin by proposing a computational model for the song-control circuit where an auditory feedback signal that undergoes stimulus-specific adaptation helps drive repeated syllables. We show that this model does indeed capture the repetition adaptation observed in Bengalese finch syntax; along the way, we derive a new probabilistic model for repetition adaptation. Key predictions of our model are analyzed in light of experiments performed by collaborators. Next we extend the model in order to predict how the syntax will change as a function of brain temperature. These predictions are compared to experimental results from collaborators where portions of the Bengalese finch song circuit are cooled in awake and behaving birds. Finally we show that repetition adaptation persists even in a simplified dynamical system model when a parameter controlling the repeat probability changes slowly over repetitions.
A model of the hierarchy of behaviour, cognition, and consciousness.
Toates, Frederick
2006-03-01
Processes comparable in important respects to those underlying human conscious and non-conscious processing can be identified in a range of species and it is argued that these reflect evolutionary precursors of the human processes. A distinction is drawn between two types of processing: (1) stimulus-based and (2) higher-order. For 'higher-order,' in humans the operations of processing are themselves associated with conscious awareness. Conscious awareness sets the context for stimulus-based processing and its end-point is accessible to conscious awareness. However, the mechanics of the translation between stimulus and response proceeds without conscious control. The paper argues that higher-order processing is an evolutionary addition to stimulus-based processing. The model's value is shown for gaining insight into a range of phenomena and their link with consciousness. These include brain damage, learning, memory, development, vision, emotion, motor control, reasoning, the voluntary versus involuntary debate, and mental disorder.
White, Corey N.; Congdon, Eliza; Mumford, Jeanette A.; Karlsgodt, Katherine H.; Sabb, Fred W.; Freimer, Nelson B.; London, Edythe D.; Cannon, Tyrone D.; Bilder, Robert M.; Poldrack, Russell A.
2014-01-01
The Stop-signal task (SST), in which participants must inhibit prepotent responses, has been used to identify neural systems that vary with individual differences in inhibitory control. To explore how these differences relate to other aspects of decision-making, a drift diffusion model of simple decisions was fitted to SST data from Go trials to extract measures of caution, motor execution time, and stimulus processing speed for each of 123 participants. These values were used to probe fMRI data to explore individual differences in neural activation. Faster processing of the Go stimulus correlated with greater activation in the right frontal pole for both Go and Stop trials. On Stop trials stimulus processing speed also correlated with regions implicated in inhibitory control, including the right inferior frontal gyrus, medial frontal gyrus, and basal ganglia. Individual differences in motor execution time correlated with activation of the right parietal cortex. These findings suggest a robust relationship between the speed of stimulus processing and inhibitory processing at the neural level. This model-based approach provides novel insight into the interrelationships among decision components involved in inhibitory control, and raises interesting questions about strategic adjustments in performance and inhibitory deficits associated with psychopathology. PMID:24405185
Obidziński, Michał; Nieznański, Marek
2017-10-01
The presented research was conducted in order to investigate the connections between developmental dyslexia and the functioning of verbatim and gist memory traces-assumed in the fuzzy-trace theory. The participants were 71 high school students (33 with dyslexia and 38 without learning difficulties). The modified procedure and multinomial model of Stahl and Klauer (simplified conjoint recognition model) was used to collect and analyze data. Results showed statistically significant differences in four of the model parameters: (a) the probability of verbatim trace recollection upon presentation of orthographically similar stimulus was higher in the control than dyslexia group, (b) the probability of verbatim trace recollection upon presentation of semantically similar stimulus was higher in the control than dyslexia group, (c) the probability of gist trace retrieval upon presentation of semantically similar stimulus was higher in the dyslexia than control group, and (d) the probability of gist trace retrieval upon target stimulus presentation (in the semantic condition) was higher in the control than dyslexia group. The obtained results suggest differences of memory functioning in terms of verbatim and gist trace retrieval between people with and without dyslexia on specific, elementary cognitive processes postulated by the fuzzy-trace theory. These can indicate new approaches in the education of persons with developmental dyslexia, focused on specific impairments and the strengths of their memory functioning.
A flexible dual mode tactile and proximity sensor using carbon microcoils
NASA Astrophysics Data System (ADS)
Han, Hyo Seung; Park, Junwoo; Nguyen, Tien Dat; Kim, Uikyum; Jeong, Soon Cheol; Kang, Doo In; Choi, Hyouk Ryeol
2016-04-01
This paper proposes a flexible dual mode tactile and proximity sensor using Carbon Microcoils (CMCs). The sensor consists of a Flexible Printed Circuit Board (FPCB) electrode layer and a dielectric layer of CMCs composite. In order to avoid damage from frequent contacts, the sensor has all electrodes on the same plane and a polymer covering is placed on the top of the sensor. CMCs can be modeled as complex LCR circuit and the sensitivity of the sensor highly depends on the CMC content. Proper CMC content is experimentally investigated and applied to make the CMCs composite for the dielectric layer. The CMC sensor measures the capacitance for tactile stimulus and inductance for proximity stimulus. A prototype with a size of 30 × 30 × 0.6 𝑚𝑚3, is manufactured and its feasibility is experimentally validated.
NASA Astrophysics Data System (ADS)
Leung, Kawai; Mohammadi, Aylia; Ryu, William; Nemenman, Ilya
In animals, we must infer the pain level from experimental characterization of behavior. This is not trivial since behaviors are very complex and multidimensional. To establish C.elegans as a model for pain research, we propose for the first time a quantitative model that allows inference of a thermal nociceptive stimulus level from the behavior of an individual worm. We apply controlled levels of pain by locally heating worms with an infrared laser and capturing the subsequent behavior. We discover that the behavioral response is a product of stereotypical behavior and a nonlinear function of the strength of stimulus. The same stereotypical behavior is observed in normal, anesthetized and mutated worms. From this result we build a Bayesian model to infer the strength of laser stimulus from the behavior. This model allows us to measure the efficacy of anaesthetization and mutation by comparing the inferred strength of stimulus. Based on the measured nociceptive escape of over 200 worms, our model is able to significantly differentiate normal, anaesthetized and mutated worms with 40 worm samples. This work was partially supported by NSF Grant No. IOS/1208126 and HFSP Grant No. RGY0084/.
Taylor, Joseph J; Neitzke, Daniel J; Khouri, George; Borckardt, Jeffrey J; Acierno, Ron; Tuerk, Peter W; Schmidt, Matthew; George, Mark S
2014-11-30
Eliminating the controllability of a noxious stimulus may induce a learned helplessness (LH) that resembles aspects of depression and post-traumatic stress disorder (PTSD). This study examined whether repetitive transcranial magnetic stimulation (rTMS) of the left dorsolateral prefrontal cortex (DLPFC) promotes resilience in an aversive stimulus model of LH. All 55 participants were told that an undisclosed sequence of button presses would terminate an aversive stimulus on their forearm. In truth, only half had control (+C). The other half had no control (-C). All participants received real (R) or sham (S) left DLPFC rTMS during the paradigm (+C/R, -C/S,+C/S,-C/R). We evaluated the cognitive effects of LH using an anagram task. The LH paradigm successfully reduced perceived control in the -C groups. As predicted, the +C/R and +C/S groups tended to give up less quickly and take less time to solve each anagram than did the -C/S group. Superior anagram performance in the -C/R group approached statistical significance. Our preliminary results suggest that manipulating the controllability of an aversive stimulus may induce an LH effect that manifests as impaired anagram performance. Further research is needed to refine this model and determine if DLPFC rTMS mitigates any LH effects. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Taylor, Joseph J.; Neitzke, Daniel J.; Khouri, George; Borckardt, Jeffrey J.; Acierno, Ron; Tuerk, Peter W.; Schmidt, Matthew; George, Mark S.
2014-01-01
Eliminating the controllability of a noxious stimulus may induce a learned helplessness (LH) that resembles aspects of depression and post-traumatic stress disorder (PTSD). This study examined whether repetitive transcranial magnetic stimulation (rTMS) of the left dorsolateral prefrontal cortex (DLPFC) promotes resilience in an aversive stimulus model of LH. All 55 participants were told that an undisclosed sequence of button presses would terminate an aversive stimulus on their forearm. In truth, only half had control (+C). The other half had no control (−C). All participants received real (R) or sham (S) left DLPFC rTMS during the paradigm (+C/R, −C/S,+C/S, −C/R). We evaluated the cognitive effects of LH using an anagram task. The LH paradigm successfully reduced perceived control in the −C groups. As predicted, the +C/R and +C/S groups tended to give up less quickly and take less time to solve each anagram than did the −C/S group. Superior anagram performance in the −C/R group approached statistical significance. Our preliminary results suggest that manipulating the controllability of an aversive stimulus may induce a LH effect that manifests as impaired anagram performance. Further research is needed to refine this model and determine if DLPFC rTMS mitigates any LH effects. PMID:25023370
A mathematical model of cortical bone remodeling at cellular level under mechanical stimulus
NASA Astrophysics Data System (ADS)
Qin, Qing-Hua; Wang, Ya-Nan
2012-12-01
A bone cell population dynamics model for cortical bone remodeling under mechanical stimulus is developed in this paper. The external experiments extracted from the literature which have not been used in the creation of the model are used to test the validity of the model. Not only can the model compare reasonably well with these experimental results such as the increase percentage of final values of bone mineral content (BMC) and bone fracture energy (BFE) among different loading schemes (which proves the validity of the model), but also predict the realtime development pattern of BMC and BFE, as well as the dynamics of osteoblasts (OBA), osteoclasts (OCA), nitric oxide (NO) and prostaglandin E2 (PGE2) for each loading scheme, which can hardly be monitored through experiment. In conclusion, the model is the first of its kind that is able to provide an insight into the quantitative mechanism of bone remodeling at cellular level by which bone cells are activated by mechanical stimulus in order to start resorption/formation of bone mass. More importantly, this model has laid a solid foundation based on which future work such as systemic control theory analysis of bone remodeling under mechanical stimulus can be investigated. The to-be identified control mechanism will help to develop effective drugs and combined nonpharmacological therapies to combat bone loss pathologies. Also this deeper understanding of how mechanical forces quantitatively interact with skeletal tissue is essential for the generation of bone tissue for tissue replacement purposes in tissue engineering.
Digital signaling decouples activation probability and population heterogeneity.
Kellogg, Ryan A; Tian, Chengzhe; Lipniacki, Tomasz; Quake, Stephen R; Tay, Savaş
2015-10-21
Digital signaling enhances robustness of cellular decisions in noisy environments, but it is unclear how digital systems transmit temporal information about a stimulus. To understand how temporal input information is encoded and decoded by the NF-κB system, we studied transcription factor dynamics and gene regulation under dose- and duration-modulated inflammatory inputs. Mathematical modeling predicted and microfluidic single-cell experiments confirmed that integral of the stimulus (or area, concentration × duration) controls the fraction of cells that activate NF-κB in the population. However, stimulus temporal profile determined NF-κB dynamics, cell-to-cell variability, and gene expression phenotype. A sustained, weak stimulation lead to heterogeneous activation and delayed timing that is transmitted to gene expression. In contrast, a transient, strong stimulus with the same area caused rapid and uniform dynamics. These results show that digital NF-κB signaling enables multidimensional control of cellular phenotype via input profile, allowing parallel and independent control of single-cell activation probability and population heterogeneity.
Schmidt, James R; De Houwer, Jan; Rothermund, Klaus
2016-12-01
The current paper presents an extension of the Parallel Episodic Processing model. The model is developed for simulating behaviour in performance (i.e., speeded response time) tasks and learns to anticipate both how and when to respond based on retrieval of memories of previous trials. With one fixed parameter set, the model is shown to successfully simulate a wide range of different findings. These include: practice curves in the Stroop paradigm, contingency learning effects, learning acquisition curves, stimulus-response binding effects, mixing costs, and various findings from the attentional control domain. The results demonstrate several important points. First, the same retrieval mechanism parsimoniously explains stimulus-response binding, contingency learning, and practice effects. Second, as performance improves with practice, any effects will shrink with it. Third, a model of simple learning processes is sufficient to explain phenomena that are typically (but perhaps incorrectly) interpreted in terms of higher-order control processes. More generally, we argue that computational models with a fixed parameter set and wider breadth should be preferred over those that are restricted to a narrow set of phenomena. Copyright © 2016 Elsevier Inc. All rights reserved.
Modeling lateral geniculate nucleus response with contrast gain control. Part 2: Analysis
Cope, Davis; Blakeslee, Barbara; McCourt, Mark E.
2014-01-01
Cope, Blakeslee and McCourt (2013) proposed a class of models for LGN ON-cell behavior consisting of a linear response with divisive normalization by local stimulus contrast. Here we analyze a specific model with the linear response defined by a difference-of-Gaussians filter and a circular Gaussian for the gain pool weighting function. For sinusoidal grating stimuli, the parameter region for band-pass behavior of the linear response is determined, the gain control response is shown to act as a switch (changing from “off” to “on” with increasing spatial frequency), and it is shown that large gain pools stabilize the optimal spatial frequency of the total nonlinear response at a fixed value independent of contrast and stimulus magnitude. Under- and super-saturation as well as contrast saturation occur as typical effects of stimulus magnitude. For circular spot stimuli, it is shown that large gain pools stabilize the spot size that yields the maximum response. PMID:24562034
Subliminal action priming modulates the perceived intensity of sensory action consequences.
Stenner, Max-Philipp; Bauer, Markus; Sidarus, Nura; Heinze, Hans-Jochen; Haggard, Patrick; Dolan, Raymond J
2014-02-01
The sense of control over the consequences of one's actions depends on predictions about these consequences. According to an influential computational model, consistency between predicted and observed action consequences attenuates perceived stimulus intensity, which might provide a marker of agentic control. An important assumption of this model is that these predictions are generated within the motor system. However, previous studies of sensory attenuation have typically confounded motor-specific perceptual modulation with perceptual effects of stimulus predictability that are not specific to motor action. As a result, these studies cannot unambiguously attribute sensory attenuation to a motor locus. We present a psychophysical experiment on auditory attenuation that avoids this pitfall. Subliminal masked priming of motor actions with compatible prime-target pairs has previously been shown to modulate both reaction times and the explicit feeling of control over action consequences. Here, we demonstrate reduced perceived loudness of tones caused by compatibly primed actions. Importantly, this modulation results from a manipulation of motor processing and is not confounded by stimulus predictability. We discuss our results with respect to theoretical models of the mechanisms underlying sensory attenuation and subliminal motor priming. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Subliminal action priming modulates the perceived intensity of sensory action consequences☆
Stenner, Max-Philipp; Bauer, Markus; Sidarus, Nura; Heinze, Hans-Jochen; Haggard, Patrick; Dolan, Raymond J.
2014-01-01
The sense of control over the consequences of one’s actions depends on predictions about these consequences. According to an influential computational model, consistency between predicted and observed action consequences attenuates perceived stimulus intensity, which might provide a marker of agentic control. An important assumption of this model is that these predictions are generated within the motor system. However, previous studies of sensory attenuation have typically confounded motor-specific perceptual modulation with perceptual effects of stimulus predictability that are not specific to motor action. As a result, these studies cannot unambiguously attribute sensory attenuation to a motor locus. We present a psychophysical experiment on auditory attenuation that avoids this pitfall. Subliminal masked priming of motor actions with compatible prime–target pairs has previously been shown to modulate both reaction times and the explicit feeling of control over action consequences. Here, we demonstrate reduced perceived loudness of tones caused by compatibly primed actions. Importantly, this modulation results from a manipulation of motor processing and is not confounded by stimulus predictability. We discuss our results with respect to theoretical models of the mechanisms underlying sensory attenuation and subliminal motor priming. PMID:24333539
Mechanical behaviour of degradable phosphate glass fibres and composites-a review.
Colquhoun, R; Tanner, K E
2015-12-23
Biodegradable materials are potentially an advantageous alternative to the traditional metallic fracture fixation devices used in the reconstruction of bone tissue defects. This is due to the occurrence of stress shielding in the surrounding bone tissue that arises from the absence of mechanical stimulus to the regenerating bone due to the mismatch between the elastic modulus of bone and the metal implant. However although degradable polymers may alleviate such issues, these inert materials possess insufficient mechanical properties to be considered as a suitable alternative to current metallic devices at sites of sufficient mechanical loading. Phosphate based glasses are an advantageous group of materials for tissue regenerative applications due to their ability to completely degrade in vivo at highly controllable rates based on the specific glass composition. Furthermore the release of the glass's constituent ions can evoke a therapeutic stimulus in vivo (i.e. osteoinduction) whilst also generating a bioactive response. The processing of these materials into fibres subsequently allows them to act as reinforcing agents in degradable polymers to simultaneously increase its mechanical properties and enhance its in vivo response. However despite the various review articles relating to the compositional influences of different phosphate glass systems, there has been limited work summarising the mechanical properties of different phosphate based glass fibres and their subsequent incorporation as a reinforcing agent in degradable composite materials. As a result, this review article examines the compositional influences behind the development of different phosphate based glass fibre compositions intended as composite reinforcing agents along with an analysis of different potential composite configurations. This includes variations in the fibre content, matrix material and fibre architecture as well as other novel composites designs.
Rincover, A; Ducharme, J M
1987-01-01
Three variables (diagnosis, location of cues, and MA of learners) influencing stimulus control and stimulus overselectivity in autistic children were assessed. Eight autistic and 8 intellectually average children, matched on MA, were trained on two discrimination tasks; one task contained two "within-stimulus" (i.e., physically connected) cues; the other contained the same two cues presented "extra-stimulus" (i.e., physically separate). Generalization gradients were used following training to measure the degree of stimulus control acquired by each cue. Results showed: autistic subjects tended to respond overselectively only in the extra-stimulus condition; MA was positively correlated with breadth of learning; and when autistic children were overselective to one cue, some stimulus control was also acquired by the second cue. The notion of tunnel vision was discussed, as it may represent a "keystone" deficit interfering with stimulus control and learning by autistic children.
Trial-by-trial adjustments in control triggered by incidentally encoded semantic cues.
Blais, Chris; Harris, Michael B; Sinanian, Michael H; Bunge, Silvia A
2015-01-01
Cognitive control mechanisms provide the flexibility to rapidly adapt to contextual demands. These contexts can be defined by top-down goals-but also by bottom-up perceptual factors, such as the location at which a visual stimulus appears. There are now several experiments reporting contextual control effects. Such experiments establish that contexts defined by low-level perceptual cues such as the location of a visual stimulus can lead to context-specific control, suggesting a relatively early focus for cognitive control. The current set of experiments involved a word-word interference task designed to assess whether a high-level cue, the semantic category to which a word belongs, can also facilitate contextual control. Indeed, participants exhibit a larger Flanker effect to items pertaining to a semantic category in which 75% of stimuli are incongruent than in response to items pertaining to a category in which 25% of stimuli are incongruent. Thus, both low-level and high-level stimulus features can affect the bottom-up engagement of cognitive control. The implications for current models of cognitive control are discussed.
Neurophysiological model of the normal and abnormal human pupil
NASA Technical Reports Server (NTRS)
Krenz, W.; Robin, M.; Barez, S.; Stark, L.
1985-01-01
Anatomical, experimental, and computer simulation studies were used to determine the structure of the neurophysiological model of the pupil size control system. The computer simulation of this model demonstrates the role played by each of the elements in the neurological pathways influencing the size of the pupil. Simulations of the effect of drugs and common abnormalities in the system help to illustrate the workings of the pathways and processes involved. The simulation program allows the user to select pupil condition (normal or an abnormality), specific site along the neurological pathway (retina, hypothalamus, etc.) drug class input (barbiturate, narcotic, etc.), stimulus/response mode, display mode, stimulus type and input waveform, stimulus or background intensity and frequency, the input and output conditions, and the response at the neuroanatomical site. The model can be used as a teaching aid or as a tool for testing hypotheses regarding the system.
Observing Behavior and Atypically Restricted Stimulus Control
ERIC Educational Resources Information Center
Dube, William V.; Dickson, Chata A.; Balsamo, Lyn M.; O'Donnell, Kristin Lombard; Tomanari, Gerson Y.; Farren, Kevin M.; Wheeler, Emily E.; McIlvane, William J.
2010-01-01
Restricted stimulus control refers to discrimination learning with atypical limitations in the range of controlling stimuli or stimulus features. In the study reported here, 4 normally capable individuals and 10 individuals with intellectual disabilities (ID) performed two-sample delayed matching to sample. Sample-stimulus observing was recorded…
Barlow, SM; Lee, Jaehoon; Wang, Jingyan; Oder, Austin; Oh, Hyuntaek; Hall, Sue; Knox, Kendi; Weatherstone, Kathleen; Thompson, Diane
2013-01-01
The precocial nature of orofacial sensorimotor control underscores the biological importance of establishing ororythmic activity in human infants. The purpose of this study was to assess the effects of comparable doses of three forms of orosensory experience, including a low-velocity spectrally reduced orocutaneous stimulus (NT1), a high-velocity broad spectrum orocutaneous stimulus (NT2), and a SHAM stimulus consisting of a blind pacifier. Each orosensory experience condition was paired with gavage feedings 3x/day for 10 days in the neonatal intensive care unit (NICU). Four groups of preterm infants (N=214), including those with respiratory distress syndrome (RDS), chronic lung disease (CLD), infants of diabetic mothers (IDM), and healthy controls (HI) were randomized to the type of orosensory condition. Mixed modeling, adjusted for gender, gestational age, postmenstrual age, and birth weight, demonstrated the most significant gains in non-nutritive suck (NNS) development among CLD infants who were treated with the NT2 stimulus, with smaller gains realized among RDS and IDM infants. The broader spectrum of the NT2 stimulus maps closely to known response properties of mechanoreceptors in lip, tongue, and oral mucosa and is more effective in promoting NNS development among preterm infants with impaired oromotor function compared to the low-velocity, spectrally reduced NT1 orosensory stimulus. PMID:25018662
The role of contextual associations in producing the partial reinforcement acquisition deficit.
Miguez, Gonzalo; Witnauer, James E; Miller, Ralph R
2012-01-01
Three conditioned suppression experiments with rats as subjects assessed the contributions of the conditioned stimulus (CS)-context and context-unconditioned stimulus (US) associations to the degraded stimulus control by the CS that is observed following partial reinforcement relative to continuous reinforcement training. In Experiment 1, posttraining associative deflation (i.e., extinction) of the training context after partial reinforcement restored responding to a level comparable to the one produced by continuous reinforcement. In Experiment 2, posttraining associative inflation of the context (achieved by administering unsignaled outcome presentations in the context) enhanced the detrimental effect of partial reinforcement. Experiment 3 found that the training context must be an effective competitor to produce the partial reinforcement acquisition deficit. When the context was down-modulated, the target regained behavioral control thereby demonstrating higher-order retrospective revaluation. The results are discussed in terms of retrospective revaluation, and are used to contrast the predictions of a performance-focused model with those of an acquisition-focused model. (c) 2012 APA, all rights reserved.
Neurophysiological bases of exponential sensory decay and top-down memory retrieval: a model.
Zylberberg, Ariel; Dehaene, Stanislas; Mindlin, Gabriel B; Sigman, Mariano
2009-01-01
Behavioral observations suggest that multiple sensory elements can be maintained for a short time, forming a perceptual buffer which fades after a few hundred milliseconds. Only a subset of this perceptual buffer can be accessed under top-down control and broadcasted to working memory and consciousness. In turn, single-cell studies in awake-behaving monkeys have identified two distinct waves of response to a sensory stimulus: a first transient response largely determined by stimulus properties and a second wave dependent on behavioral relevance, context and learning. Here we propose a simple biophysical scheme which bridges these observations and establishes concrete predictions for neurophsyiological experiments in which the temporal interval between stimulus presentation and top-down allocation is controlled experimentally. Inspired in single-cell observations, the model involves a first transient response and a second stage of amplification and retrieval, which are implemented biophysically by distinct operational modes of the same circuit, regulated by external currents. We explicitly investigated the neuronal dynamics, the memory trace of a presented stimulus and the probability of correct retrieval, when these two stages were bracketed by a temporal gap. The model predicts correctly the dependence of performance with response times in interference experiments suggesting that sensory buffering does not require a specific dedicated mechanism and establishing a direct link between biophysical manipulations and behavioral observations leading to concrete predictions.
ERIC Educational Resources Information Center
Brino, Ana Leda F., Barros, Romariz S., Galvao, Ol; Garotti, M.; Da Cruz, Ilara R. N.; Santos, Jose R.; Dube, William V.; McIlvane, William J.
2011-01-01
This paper reports use of sample stimulus control shaping procedures to teach arbitrary matching-to-sample to 2 capuchin monkeys ("Cebus apella"). The procedures started with identity matching-to-sample. During shaping, stimulus features of the sample were altered gradually, rendering samples and comparisons increasingly physically dissimilar. The…
Aesthetic Pleasure versus Aesthetic Interest: The Two Routes to Aesthetic Liking
Graf, Laura K. M.; Landwehr, Jan R.
2017-01-01
Although existing research has established that aesthetic pleasure and aesthetic interest are two distinct positive aesthetic responses, empirical research on aesthetic preferences usually considers only aesthetic liking to capture participants’ aesthetic response. This causes some fundamental contradictions in the literature; some studies find a positive relationship between easy-to-process stimulus characteristics and aesthetic liking, while others suggest a negative relationship. The present research addresses these empirical contradictions by investigating the dual character of aesthetic liking as manifested in both the pleasure and interest components. Based on the Pleasure-Interest Model of Aesthetic Liking (PIA Model; Graf and Landwehr, 2015), two studies investigated the formation of pleasure and interest and their relationship with aesthetic liking responses. Using abstract art as the stimuli, Study 1 employed a 3 (stimulus fluency: low, medium, high) × 2 (processing style: automatic, controlled) × 2 (aesthetic response: pleasure, interest) experimental design to examine the processing dynamics responsible for experiencing aesthetic pleasure versus aesthetic interest. We find that the effect of stimulus fluency on pleasure is mediated by a gut-level fluency experience. Stimulus fluency and interest, by contrast, are related through a process of disfluency reduction, such that disfluent stimuli that grow more fluent due to processing efforts become interesting. The second study employed product designs (bikes, chairs, and lamps) as stimuli and a 2 (fluency: low, high) × 2 (processing style: automatic, controlled) × 3 (product type: bike, chair, lamp) experimental design to examine pleasure and interest as mediators of the relationship between stimulus fluency and design attractiveness. With respect to lamps and chairs, the results suggest that the effect of stimulus fluency on attractiveness is fully mediated by aesthetic pleasure, especially in the automatic processing style. Conversely, disfluent product designs can enhance design attractiveness judgments due to interest when a controlled processing style is adopted. PMID:28194119
Koppes, A. N.; Keating, K. W.; McGregor, A. L.; Koppes, R. A.; Kearns, K. R.; Ziemba, A. M.; McKay, C. A.; Zuidema, J. M.; Rivet, C. J.; Gilbert, R. J.; Thompson, D. M.
2016-01-01
The use of exogenous electrical stimulation to promote nerve regeneration has achieved only limited success. Conditions impeding optimized outgrowth may arise from inadequate stimulus presentation due to differences in injury geometry or signal attenuation. Implantation of an electrically-conductive biomaterial may mitigate this attenuation and provide a more reproducible signal. In this study, a conductive nanofiller (single-walled carbon nanotubes [SWCNT]) was selected as one possible material to manipulate the bulk electrical properties of a collagen type I-10% Matrigel™ composite hydrogel. Neurite outgrowth within hydrogels (SWCNT or nanofiller-free controls) was characterized to determine if: 1) nanofillers influence neurite extension and 2) electrical stimulation of the nanofiller composite hydrogel enhances neurite outgrowth. Increased SWCNT loading (10–100-μg/ml) resulted in greater bulk conductivity (up to 1.7-fold) with no significant changes to elastic modulus. Neurite outgrowth increased 3.3-fold in 20-μg/mL SWCNT loaded biomaterials relative to the nanofiller-free control. Electrical stimulation promoted greater outgrowth (2.9-fold) within SWCNT-free control. The concurrent presentation of electrical stimulation and SWCNT-loaded biomaterials resulted in a 7.0-fold increase in outgrowth relative to the unstimulated, nanofiller-free controls. Local glia residing within the DRG likely contribute, in part, to the observed increases in outgrowth; but it is unknown which specific nanofiller properties influence neurite extension. Characterization of neuronal behavior in model systems, such as those described here, will aid the rational development of biomaterials as well as the appropriate delivery of electrical stimuli to support nerve repair. PMID:27167609
NASA Astrophysics Data System (ADS)
Ge, Qi; Dunn, Conner K.; Qi, H. Jerry; Dunn, Martin L.
2014-09-01
Recent advances in three dimensional (3D) printing technology that allow multiple materials to be printed within each layer enable the creation of materials and components with precisely controlled heterogeneous microstructures. In addition, active materials, such as shape memory polymers, can be printed to create an active microstructure within a solid. These active materials can subsequently be activated in a controlled manner to change the shape or configuration of the solid in response to an environmental stimulus. This has been termed 4D printing, with the 4th dimension being the time-dependent shape change after the printing. In this paper, we advance the 4D printing concept to the design and fabrication of active origami, where a flat sheet automatically folds into a complicated 3D component. Here we print active composites with shape memory polymer fibers precisely printed in an elastomeric matrix and use them as intelligent active hinges to enable origami folding patterns. We develop a theoretical model to provide guidance in selecting design parameters such as fiber dimensions, hinge length, and programming strains and temperature. Using the model, we design and fabricate several active origami components that assemble from flat polymer sheets, including a box, a pyramid, and two origami airplanes. In addition, we directly print a 3D box with active composite hinges and program it to assume a temporary flat shape that subsequently recovers to the 3D box shape on demand.
A model for discriminating reinforcers in time and space.
Cowie, Sarah; Davison, Michael; Elliffe, Douglas
2016-06-01
Both the response-reinforcer and stimulus-reinforcer relation are important in discrimination learning; differential responding requires a minimum of two discriminably-different stimuli and two discriminably-different associated contingencies of reinforcement. When elapsed time is a discriminative stimulus for the likely availability of a reinforcer, choice over time may be modeled by an extension of the Davison and Nevin (1999) model that assumes that local choice strictly matches the effective local reinforcer ratio. The effective local reinforcer ratio may differ from the obtained local reinforcer ratio for two reasons: Because the animal inaccurately estimates times associated with obtained reinforcers, and thus incorrectly discriminates the stimulus-reinforcer relation across time; and because of error in discriminating the response-reinforcer relation. In choice-based timing tasks, the two responses are usually highly discriminable, and so the larger contributor to differences between the effective and obtained reinforcer ratio is error in discriminating the stimulus-reinforcer relation. Such error may be modeled either by redistributing the numbers of reinforcers obtained at each time across surrounding times, or by redistributing the ratio of reinforcers obtained at each time in the same way. We assessed the extent to which these two approaches to modeling discrimination of the stimulus-reinforcer relation could account for choice in a range of temporal-discrimination procedures. The version of the model that redistributed numbers of reinforcers accounted for more variance in the data. Further, this version provides an explanation for shifts in the point of subjective equality that occur as a result of changes in the local reinforcer rate. The inclusion of a parameter reflecting error in discriminating the response-reinforcer relation enhanced the ability of each version of the model to describe data. The ability of this class of model to account for a range of data suggests that timing, like other conditional discriminations, is choice under the joint discriminative control of elapsed time and differential reinforcement. Understanding the role of differential reinforcement is therefore critical to understanding control by elapsed time. Copyright © 2016 Elsevier B.V. All rights reserved.
The 5-HT1A Receptor and the Stimulus Effects of LSD in the Rat
Reissig, C.J.; Eckler, J.R.; Rabin, R.A.; Winter, J.C.
2005-01-01
Rationale It has been suggested that the 5-HT1A receptor plays a significant modulatory role in the stimulus effects of the indoleamine hallucinogen lysergic acid diethylamide (LSD). Objectives The present study sought to characterize the effects of several compounds with known affinity for the 5-HT1A receptor on the discriminative stimulus effects of LSD. Methods 12 Male F-344 rats were trained in a two-lever, fixed ratio10, food reinforced task with LSD (0.1 mg/kg; IP; 15 min pretreatment) as a discriminative stimulus. Combination and substitution tests with the 5-HT1A agonists, 8-OH-DPAT, buspirone, gepirone, and ipsapirone, with LSD-induced stimulus control were then performed. The effects of these 5-HT1A ligands were also tested in the presence of the selective 5-HT1A receptor antagonist, WAY-100,635 (0.3 mg/kg; SC; 30 min. pretreatment). Results In combination tests stimulus control by LSD was increased by all 5-HT1A receptor ligands with agonist properties. Similarly, in tests of antagonism, the increase in drug-appropriate responding caused by stimulation of the 5-HT1A receptor was abolished by administration of WAY-100,635. Conclusions These data, obtained using a drug discrimination model of the hallucinogenic effects of LSD, provide support for the hypothesis that the 5-HT1A receptor has a significant modulatory role in the stimulus effects of LSD. PMID:16025319
Effects of Ventral Striatum Lesions on Stimulus-Based versus Action-Based Reinforcement Learning.
Rothenhoefer, Kathryn M; Costa, Vincent D; Bartolo, Ramón; Vicario-Feliciano, Raquel; Murray, Elisabeth A; Averbeck, Bruno B
2017-07-19
Learning the values of actions versus stimuli may depend on separable neural circuits. In the current study, we evaluated the performance of rhesus macaques with ventral striatum (VS) lesions on a two-arm bandit task that had randomly interleaved blocks of stimulus-based and action-based reinforcement learning (RL). Compared with controls, monkeys with VS lesions had deficits in learning to select rewarding images but not rewarding actions. We used a RL model to quantify learning and choice consistency and found that, in stimulus-based RL, the VS lesion monkeys were more influenced by negative feedback and had lower choice consistency than controls. Using a Bayesian model to parse the groups' learning strategies, we also found that VS lesion monkeys defaulted to an action-based choice strategy. Therefore, the VS is involved specifically in learning the value of stimuli, not actions. SIGNIFICANCE STATEMENT Reinforcement learning models of the ventral striatum (VS) often assume that it maintains an estimate of state value. This suggests that it plays a general role in learning whether rewards are assigned based on a chosen action or stimulus. In the present experiment, we examined the effects of VS lesions on monkeys' ability to learn that choosing a particular action or stimulus was more likely to lead to reward. We found that VS lesions caused a specific deficit in the monkeys' ability to discriminate between images with different values, whereas their ability to discriminate between actions with different values remained intact. Our results therefore suggest that the VS plays a specific role in learning to select rewarded stimuli. Copyright © 2017 the authors 0270-6474/17/376902-13$15.00/0.
Discrepancy between stimulus response and tolerance of pain in Alzheimer disease
Werner, Mads U.; Jensen, Troels Staehelin; Ballegaard, Martin; Andersen, Birgitte Bo; Høgh, Peter; Waldemar, Gunhild
2015-01-01
Background: Affective-motivational and sensory-discriminative aspects of pain were investigated in patients with mild to moderate Alzheimer disease (AD) and healthy elderly controls using the cold pressor test tolerance and repetitive stimuli of warmth and heat stimuli, evaluating the stimulus-response function. Methods: A case-control design was applied examining 33 patients with mild to moderate AD dementia and 32 healthy controls with the cold pressor test (4°C). Warmth detection threshold (WDT) and heat pain threshold (HPT) were assessed using 5 stimulations. A stimulus-response function was estimated using 4 incrementally increasing suprathreshold heat stimuli. Results: Cold pressor tolerance was lower in patients with AD dementia than in controls (p = 0.027). There were no significant differences between groups regarding WDT and HPT. Significant successive increases in HPT assessments indicated habituation (p < 0.0001), which was similar in the 2 groups (p = 0.85). A mixed model for repeated measures demonstrated that pain rating of suprathreshold stimuli depended on HPT (p = 0.0004) and stimulus intensity (p < 0.0001). Patients with AD dementia had significantly lower increases in pain ratings than controls during suprathreshold stimulation (p = 0.0072). Conclusion: Our results indicate that AD dementia is not associated with a propensity toward development of sensitization or a lack of habituation, suggesting preservation of sensory-discriminative aspects of pain perception. The results further suggest that the attenuated cold pressor pain tolerance may relate to impairment of coping abilities. Paradoxically, we found an attenuated stimulus-response function, compared to controls, suggesting that AD dementia interferes with pain ratings over time, most likely due to memory impairment. PMID:25788560
Stimulus control in a two-choice discrimination procedure
NASA Technical Reports Server (NTRS)
Galloway, W. D.
1973-01-01
Experimental investigation upon pigeons of the relation between performance during discriminative training and subsequently obtained stimulus control test results. The results obtained support the proposition that bias generated by training dependencies is a major determiner of stimulus control.
Cross, Katy A; Torrisi, Salvatore; Reynolds Losin, Elizabeth A; Iacoboni, Marco
2013-12-01
Humans have an automatic tendency to imitate others. Although several regions commonly observed in social tasks have been shown to be involved in imitation control, there is little work exploring how these regions interact with one another. We used fMRI and dynamic causal modeling to identify imitation-specific control mechanisms and examine functional interactions between regions. Participants performed a pre-specified action (lifting their index or middle finger) in response to videos depicting the same two actions (biological cues) or dots moving with similar trajectories (non-biological cues). On congruent trials, the stimulus and response were similar (e.g. index finger response to index finger or left side dot stimulus), while on incongruent trials the stimulus and response were dissimilar (e.g. index finger response to middle finger or right side dot stimulus). Reaction times were slower on incongruent compared to congruent trials for both biological and non-biological stimuli, replicating previous findings that suggest the automatic imitative or spatially compatible (congruent) response must be controlled on incongruent trials. Neural correlates of the congruency effects were different depending on the cue type. The medial prefrontal cortex, anterior cingulate, inferior frontal gyrus pars opercularis (IFGpo) and the left anterior insula were involved specifically in controlling imitation. In addition, the IFGpo was also more active for biological compared to non-biological stimuli, suggesting that the region represents the frontal node of the human mirror neuron system (MNS). Effective connectivity analysis exploring the interactions between these regions, suggests a role for the mPFC and ACC in imitative conflict detection and the anterior insula in conflict resolution processes, which may occur through interactions with the frontal node of the MNS. We suggest an extension of the previous models of imitation control involving interactions between imitation-specific and general cognitive control mechanisms. © 2013.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rees, D.C.; Wood, R.W.; Laties, V.G.
1984-03-01
The behavioral effects of d-amphetamine have been shown to be modulated by stimulus control, with less impairment of performance occurring when control is great. When the fixed-consecutive-number schedule is used (on which at least a specified consecutive number of responses must be made on one operandum before a single response on another will produce a reinforcer), response rate tends to invariant but reinforcement frequency is not. This study asks whether the differences in reinforcement frequency that usually accompany changes in stimulus control could themselves be responsible for the performance differences. Two versions of the fixed-consecutive-number schedule of reinforcement were combinedmore » into a multiple schedule within which stimulus control was varied but differences in reinforcement frequency were minimized by omitting some reinforcer deliveries during the component that usually had the higher reinforcement frequency. In one component, a compound discriminative stimulus was added with the eighth consecutive response on the first lever, a single response on the second lever was then reinforced. In the other component, no such stimulus was presented. With no added stimulus, large decreases occurred in the number of runs satisfying the minimum requirement for reinforcement at doses of drug that produced only minimal changes when an added stimulus controlled behavior. Thus, increased stimulus control diminishes the behavioral changes produced by d-amphetamine even when the possible contribution by baseline reinforcement rate is minimized. 17 references, 6 figures, 4 tables.« less
Cerebellum, temporal predictability and the updating of a mental model.
Kotz, Sonja A; Stockert, Anika; Schwartze, Michael
2014-12-19
We live in a dynamic and changing environment, which necessitates that we adapt to and efficiently respond to changes of stimulus form ('what') and stimulus occurrence ('when'). Consequently, behaviour is optimal when we can anticipate both the 'what' and 'when' dimensions of a stimulus. For example, to perceive a temporally expected stimulus, a listener needs to establish a fairly precise internal representation of its external temporal structure, a function ascribed to classical sensorimotor areas such as the cerebellum. Here we investigated how patients with cerebellar lesions and healthy matched controls exploit temporal regularity during auditory deviance processing. We expected modulations of the N2b and P3b components of the event-related potential in response to deviant tones, and also a stronger P3b response when deviant tones are embedded in temporally regular compared to irregular tone sequences. We further tested to what degree structural damage to the cerebellar temporal processing system affects the N2b and P3b responses associated with voluntary attention to change detection and the predictive adaptation of a mental model of the environment, respectively. Results revealed that healthy controls and cerebellar patients display an increased N2b response to deviant tones independent of temporal context. However, while healthy controls showed the expected enhanced P3b response to deviant tones in temporally regular sequences, the P3b response in cerebellar patients was significantly smaller in these sequences. The current data provide evidence that structural damage to the cerebellum affects the predictive adaptation to the temporal structure of events and the updating of a mental model of the environment under voluntary attention. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Cerebellum, temporal predictability and the updating of a mental model
Kotz, Sonja A.; Stockert, Anika; Schwartze, Michael
2014-01-01
We live in a dynamic and changing environment, which necessitates that we adapt to and efficiently respond to changes of stimulus form (‘what’) and stimulus occurrence (‘when’). Consequently, behaviour is optimal when we can anticipate both the ‘what’ and ‘when’ dimensions of a stimulus. For example, to perceive a temporally expected stimulus, a listener needs to establish a fairly precise internal representation of its external temporal structure, a function ascribed to classical sensorimotor areas such as the cerebellum. Here we investigated how patients with cerebellar lesions and healthy matched controls exploit temporal regularity during auditory deviance processing. We expected modulations of the N2b and P3b components of the event-related potential in response to deviant tones, and also a stronger P3b response when deviant tones are embedded in temporally regular compared to irregular tone sequences. We further tested to what degree structural damage to the cerebellar temporal processing system affects the N2b and P3b responses associated with voluntary attention to change detection and the predictive adaptation of a mental model of the environment, respectively. Results revealed that healthy controls and cerebellar patients display an increased N2b response to deviant tones independent of temporal context. However, while healthy controls showed the expected enhanced P3b response to deviant tones in temporally regular sequences, the P3b response in cerebellar patients was significantly smaller in these sequences. The current data provide evidence that structural damage to the cerebellum affects the predictive adaptation to the temporal structure of events and the updating of a mental model of the environment under voluntary attention. PMID:25385781
A Stimulus-Locked Vector Autoregressive Model for Slow Event-Related fMRI Designs
Siegle, Greg
2009-01-01
Summary Neuroscientists have become increasingly interested in exploring dynamic relationships among brain regions. Such a relationship, when directed from one region toward another, is denoted by “effective connectivity.” An fMRI experimental paradigm which is well-suited for examination of effective connectivity is the slow event-related design. This design presents stimuli at sufficient temporal spacing for determining within-trial trajectories of BOLD activation, allowing for the analysis of stimulus-locked temporal covariation of brain responses in multiple regions. This may be especially important for emotional stimuli processing, which can evolve over the course of several seconds, if not longer. However, while several methods have been devised for determining fMRI effective connectivity, few are adapted to event-related designs, which include non-stationary BOLD responses and multiple levels of nesting. We propose a model tailored for exploring effective connectivity of multiple brain regions in event-related fMRI designs - a semi-parametric adaptation of vector autoregressive (VAR) models, termed “stimulus-locked VAR” (SloVAR). Connectivity coefficients vary as a function of time relative to stimulus onset, are regularized via basis expansions, and vary randomly across subjects. SloVAR obtains flexible, data-driven estimates of effective connectivity and hence is useful for building connectivity models when prior information on dynamic regional relationships is sparse. Indices derived from the coefficient estimates can also be used to relate effective connectivity estimates to behavioral or clinical measures. We demonstrate the SloVAR model on a sample of clinically depressed and normal controls, showing that early but not late cortico-amygdala connectivity appears crucial to emotional control and early but not late cortico-cortico connectivity predicts depression severity in the depressed group, relationships that would have been missed in a more traditional VAR analysis. PMID:19236927
Decoding the auditory brain with canonical component analysis.
de Cheveigné, Alain; Wong, Daniel D E; Di Liberto, Giovanni M; Hjortkjær, Jens; Slaney, Malcolm; Lalor, Edmund
2018-05-15
The relation between a stimulus and the evoked brain response can shed light on perceptual processes within the brain. Signals derived from this relation can also be harnessed to control external devices for Brain Computer Interface (BCI) applications. While the classic event-related potential (ERP) is appropriate for isolated stimuli, more sophisticated "decoding" strategies are needed to address continuous stimuli such as speech, music or environmental sounds. Here we describe an approach based on Canonical Correlation Analysis (CCA) that finds the optimal transform to apply to both the stimulus and the response to reveal correlations between the two. Compared to prior methods based on forward or backward models for stimulus-response mapping, CCA finds significantly higher correlation scores, thus providing increased sensitivity to relatively small effects, and supports classifier schemes that yield higher classification scores. CCA strips the brain response of variance unrelated to the stimulus, and the stimulus representation of variance that does not affect the response, and thus improves observations of the relation between stimulus and response. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Emotion and attention: event-related brain potential studies.
Schupp, Harald T; Flaisch, Tobias; Stockburger, Jessica; Junghöfer, Markus
2006-01-01
Emotional pictures guide selective visual attention. A series of event-related brain potential (ERP) studies is reviewed demonstrating the consistent and robust modulation of specific ERP components by emotional images. Specifically, pictures depicting natural pleasant and unpleasant scenes are associated with an increased early posterior negativity, late positive potential, and sustained positive slow wave compared with neutral contents. These modulations are considered to index different stages of stimulus processing including perceptual encoding, stimulus representation in working memory, and elaborate stimulus evaluation. Furthermore, the review includes a discussion of studies exploring the interaction of motivated attention with passive and active forms of attentional control. Recent research is reviewed exploring the selective processing of emotional cues as a function of stimulus novelty, emotional prime pictures, learned stimulus significance, and in the context of explicit attention tasks. It is concluded that ERP measures are useful to assess the emotion-attention interface at the level of distinct processing stages. Results are discussed within the context of two-stage models of stimulus perception brought out by studies of attention, orienting, and learning.
Dalili, Michael N; Schofield-Toloza, Lawrence; Munafò, Marcus R; Penton-Voak, Ian S
2017-08-01
Many cognitive bias modification (CBM) tasks use facial expressions of emotion as stimuli. Some tasks use unique facial stimuli, while others use composite stimuli, given evidence that emotion is encoded prototypically. However, CBM using composite stimuli may be identity- or emotion-specific, and may not generalise to other stimuli. We investigated the generalisability of effects using composite faces in two experiments. Healthy adults in each study were randomised to one of four training conditions: two stimulus-congruent conditions, where same faces were used during all phases of the task, and two stimulus-incongruent conditions, where faces of the opposite sex (Experiment 1) or faces depicting another emotion (Experiment 2) were used after the modification phase. Our results suggested that training effects generalised across identities. However, our results indicated only partial generalisation across emotions. These findings suggest effects obtained using composite stimuli may extend beyond the stimuli used in the task but remain emotion-specific.
Experiment K-6-07. Metabolic and morphologic properties of muscle fibers after spaceflight
NASA Technical Reports Server (NTRS)
Edgerton, R.; Miu, B.; Martin, Thomas P.; Roy, R.; Marini, J.; Leger, J. J.; Oganov, V.; Ilyina-Kakueva, E.
1990-01-01
The present study demonstrates that the general capability of skeletal muscle to maintain its proteins decreases rapidly in response to space flight. The present findings suggest further that the magnitude of enzymatic and cell volumes changes in response to space flight depend on several factors including the muscle and its fiber type composition. It appears that in order to associate physiological relevance to the observed enzymatic changes, cell volume should be considered also. Although it remains unclear as to the stimulus, or lack of stimulus, that triggers the rapid changes in muscle proteins in response to space flight, ground-based models of muscle atrophy suggest that the reduction in mechanical loading of muscle may be more important than the total amount of activation over a 24-hr period.
A stimulus-control account of regulated drug intake in rats.
Panlilio, Leigh V; Thorndike, Eric B; Schindler, Charles W
2008-02-01
Patterns of drug self-administration are often highly regular, with a consistent pause after each self-injection. This pausing might occur because the animal has learned that additional injections are not reinforcing once the drug effect has reached a certain level, possibly due to the reinforcement system reaching full capacity. Thus, interoceptive effects of the drug might function as a discriminative stimulus, signaling when additional drug will be reinforcing and when it will not. This hypothetical stimulus control aspect of drug self-administration was emulated using a schedule of food reinforcement. Rats' nose-poke responses produced food only when a cue light was present. No drug was administered at any time. However, the state of the light stimulus was determined by calculating what the whole-body drug level would have been if each response in the session had produced a drug injection. The light was only presented while this virtual drug level was below a specific threshold. A range of doses of cocaine and remifentanil were emulated using parameters based on previous self-administration experiments. Response patterns were highly regular, dose-dependent, and remarkably similar to actual drug self-administration. This similarity suggests that the emulation schedule may provide a reasonable model of the contingencies inherent in drug reinforcement. Thus, these results support a stimulus control account of regulated drug intake in which rats learn to discriminate when the level of drug effect has fallen to a point where another self-injection will be reinforcing.
Worrying affects associative fear learning: a startle fear conditioning study.
Gazendam, Femke J; Kindt, Merel
2012-01-01
A valuable experimental model for the pathogenesis of anxiety disorders is that they originate from a learned association between an intrinsically non-aversive event (Conditioned Stimulus, CS) and an anticipated disaster (Unconditioned Stimulus, UCS). Most anxiety disorders, however, do not evolve from a traumatic experience. Insights from neuroscience show that memory can be modified post-learning, which may elucidate how pathological fear can develop after relatively mild aversive events. Worrying--a process frequently observed in anxiety disorders--is a potential candidate to strengthen the formation of fear memory after learning. Here we tested in a discriminative fear conditioning procedure whether worry strengthens associative fear memory. Participants were randomly assigned to either a Worry (n = 23) or Control condition (n = 25). After fear acquisition, the participants in the Worry condition processed six worrisome questions regarding the personal aversive consequences of an electric stimulus (UCS), whereas the Control condition received difficult but neutral questions. Subsequently, extinction, reinstatement and re-extinction of fear were tested. Conditioned responding was measured by fear-potentiated startle (FPS), skin conductance (SCR) and UCS expectancy ratings. Our main results demonstrate that worrying resulted in increased fear responses (FPS) to both the feared stimulus (CS(+)) and the originally safe stimulus (CS(-)), whereas FPS remained unchanged in the Control condition. In addition, worrying impaired both extinction and re-extinction learning of UCS expectancy. The implication of our findings is that they show how worry may contribute to the development of anxiety disorders by affecting associative fear learning.
Hunt, Pamela S; Barnet, Robert C
2015-09-01
Animal models of Fetal Alcohol Spectrum Disorders (FASD) afford the unique capacity to precisely control timing of alcohol exposure and alcohol exposure amounts in the developing animal. These models have powerfully informed neurophysiological alterations associated with fetal and perinatal alcohol. In two experiments presented here we expand use of the Pavlovian Trace Conditioning procedure to examine cognitive deficits and intervention strategies in a rat model of FASD. Rat pups were exposed to 5g/kg/day ethanol on postnatal days (PD) 4-9, simulating alcohol exposure in the third trimester in humans. During early adolescence, approximately PD 30, the rats were trained in the trace conditioning task in which a light conditioned stimulus (CS) and shock unconditioned stimulus (US) were paired but separated by a 10-s stimulus free trace interval. Learning was assessed in freezing behavior during shock-free tests. Experiment 1 revealed that neonatal ethanol exposure significantly impaired hippocampus-dependent trace conditioning relative to controls. In Experiment 2 a serial compound conditioning procedure known as 'gap filling' completely reversed the ethanol-induced deficit in trace conditioning. We also discuss prior data regarding the beneficial effects of supplemental choline and novel preliminary data regarding the pharmacological cognitive enhancer physostigmine, both of which mitigate the alcohol-induced cognitive deficit otherwise seen in trace conditioning controls. We suggest trace conditioning as a useful tool for characterizing some of the core cognitive deficits seen in FASD, and as a model for developing effective environmental as well as nutritional and pharmacological interventions. Copyright © 2014 Elsevier Inc. All rights reserved.
Hunt, Pamela S.; Barnet, Robert C.
2014-01-01
Animal models of Fetal Alcohol Spectrum Disorders (FASD) afford the unique capacity to precisely control timing of alcohol exposure and alcohol exposure amounts in the developing animal. These models have powerfully informed neurophysiological alterations associated with fetal and perinatal alcohol. In two experiments presented here we expand use of the Pavlovian Trace Conditioning procedure to examine cognitive deficits and intervention strategies in a rat model of FASD. Rat pups were exposed to 5 g/kg/day ethanol on postnatal days (PD) 4–9, simulating alcohol exposure in the third trimester in humans. During early adolescence, approximately PD 30, the rats were trained in the trace conditioning task in which a light conditioned stimulus (CS) and shock unconditioned stimulus (US) were paired but separated by a 10-s stimulus free trace interval. Learning was assessed in freezing behavior during shock-free tests. Experiment 1 revealed that neonatal ethanol exposure significantly impaired hippocampus-dependent trace conditioning relative to controls. In Experiment 2 a serial compound conditioning procedure known as ‘gap filling’ completely reversed the ethanol-induced deficit in trace conditioning. We also discuss prior data regarding the beneficial effects of supplemental choline and novel preliminary data regarding the pharmacological cognitive enhancer physostigmine, both of which mitigate the alcohol-induced cognitive deficit otherwise seen in trace conditioning controls. We suggest trace conditioning as a useful tool for characterizing some of the core cognitive deficits seen in FASD, and as a model for developing effective environmental as well as nutritional and pharmacological interventions. PMID:25477227
ERIC Educational Resources Information Center
Meier, Matt E.; Kane, Michael J.
2015-01-01
Three experiments examined the relation between working memory capacity (WMC) and 2 different forms of cognitive conflict: stimulus-stimulus (S-S) and stimulus-response (S-R) interference. Our goal was to test whether WMC's relation to conflict-task performance is mediated by stimulus-identification processes (captured by S-S conflict),…
Goel, Namni
2006-09-01
A musically enhanced bird song stimulus presented in the early subjective night phase delays human circadian rhythms. This study determined the phase-shifting effects of the same stimulus in the early subjective day. Eleven subjects (ages 18-63 yr; mean +/- SD: 28.0 +/- 16.6 yr) completed two 4-day laboratory sessions in constant dim light (<20 lux). They received two consecutive presentations of either a 2-h musically enhanced bird song or control stimulus from 0600 to 0800 on the second and third mornings while awake. The 4-day sessions employing either the stimulus or control were counterbalanced. Core body temperature (CBT) was collected throughout the study, and salivary melatonin was obtained every 30 min from 1900 to 2330 on the baseline and poststimulus/postcontrol nights. Dim light melatonin onset and CBT minimum circadian phase before and after stimulus or control presentation was assessed. The musically enhanced bird song stimulus produced significantly larger phase advances of the circadian melatonin (mean +/- SD: 0.87 +/- 0.36 vs. 0.24 +/- 0.22 h) and CBT (1.08 +/- 0.50 vs. 0.43 +/- 0.37 h) rhythms than the control. The stimulus also decreased fatigue and total mood disturbance, suggesting arousing effects. This study shows that a musically enhanced bird song stimulus presented during the early subjective day phase advances circadian rhythms. However, it remains unclear whether the phase shifts are due directly to effects of the stimulus on the clock or are arousal- or dim light-mediated effects. This nonphotic stimulus mediates circadian resynchronization in either the phase advance or delay direction.
Garrido, Margarida V; Lopes, Diniz; Prada, Marília; Rodrigues, David; Jerónimo, Rita; Mourão, Rui P
2017-08-01
This article presents subjective rating norms for a new set of Stills And Videos of facial Expressions-the SAVE database. Twenty nonprofessional models were filmed while posing in three different facial expressions (smile, neutral, and frown). After each pose, the models completed the PANAS questionnaire, and reported more positive affect after smiling and more negative affect after frowning. From the shooting material, stills and 5 s and 10 s videos were edited (total stimulus set = 180). A different sample of 120 participants evaluated the stimuli for attractiveness, arousal, clarity, genuineness, familiarity, intensity, valence, and similarity. Overall, facial expression had a main effect in all of the evaluated dimensions, with smiling models obtaining the highest ratings. Frowning expressions were perceived as being more arousing, clearer, and more intense, but also as more negative than neutral expressions. Stimulus presentation format only influenced the ratings of attractiveness, familiarity, genuineness, and intensity. The attractiveness and familiarity ratings increased with longer exposure times, whereas genuineness decreased. The ratings in the several dimensions were correlated. The subjective norms of facial stimuli presented in this article have potential applications to the work of researchers in several research domains. From our database, researchers may choose the most adequate stimulus presentation format for a particular experiment, select and manipulate the dimensions of interest, and control for the remaining dimensions. The full stimulus set and descriptive results (means, standard deviations, and confidence intervals) for each stimulus per dimension are provided as supplementary material.
How glitter relates to gold: similarity-dependent reward prediction errors in the human striatum.
Kahnt, Thorsten; Park, Soyoung Q; Burke, Christopher J; Tobler, Philippe N
2012-11-14
Optimal choices benefit from previous learning. However, it is not clear how previously learned stimuli influence behavior to novel but similar stimuli. One possibility is to generalize based on the similarity between learned and current stimuli. Here, we use neuroscientific methods and a novel computational model to inform the question of how stimulus generalization is implemented in the human brain. Behavioral responses during an intradimensional discrimination task showed similarity-dependent generalization. Moreover, a peak shift occurred, i.e., the peak of the behavioral generalization gradient was displaced from the rewarded conditioned stimulus in the direction away from the unrewarded conditioned stimulus. To account for the behavioral responses, we designed a similarity-based reinforcement learning model wherein prediction errors generalize across similar stimuli and update their value. We show that this model predicts a similarity-dependent neural generalization gradient in the striatum as well as changes in responding during extinction. Moreover, across subjects, the width of generalization was negatively correlated with functional connectivity between the striatum and the hippocampus. This result suggests that hippocampus-striatal connections contribute to stimulus-specific value updating by controlling the width of generalization. In summary, our results shed light onto the neurobiology of a fundamental, similarity-dependent learning principle that allows learning the value of stimuli that have never been encountered.
Pillow, Jonathan W; Ahmadian, Yashar; Paninski, Liam
2011-01-01
One of the central problems in systems neuroscience is to understand how neural spike trains convey sensory information. Decoding methods, which provide an explicit means for reading out the information contained in neural spike responses, offer a powerful set of tools for studying the neural coding problem. Here we develop several decoding methods based on point-process neural encoding models, or forward models that predict spike responses to stimuli. These models have concave log-likelihood functions, which allow efficient maximum-likelihood model fitting and stimulus decoding. We present several applications of the encoding model framework to the problem of decoding stimulus information from population spike responses: (1) a tractable algorithm for computing the maximum a posteriori (MAP) estimate of the stimulus, the most probable stimulus to have generated an observed single- or multiple-neuron spike train response, given some prior distribution over the stimulus; (2) a gaussian approximation to the posterior stimulus distribution that can be used to quantify the fidelity with which various stimulus features are encoded; (3) an efficient method for estimating the mutual information between the stimulus and the spike trains emitted by a neural population; and (4) a framework for the detection of change-point times (the time at which the stimulus undergoes a change in mean or variance) by marginalizing over the posterior stimulus distribution. We provide several examples illustrating the performance of these estimators with simulated and real neural data.
Dynamics of normalization underlying masking in human visual cortex.
Tsai, Jeffrey J; Wade, Alex R; Norcia, Anthony M
2012-02-22
Stimulus visibility can be reduced by other stimuli that overlap the same region of visual space, a process known as masking. Here we studied the neural mechanisms of masking in humans using source-imaged steady state visual evoked potentials and frequency-domain analysis over a wide range of relative stimulus strengths of test and mask stimuli. Test and mask stimuli were tagged with distinct temporal frequencies and we quantified spectral response components associated with the individual stimuli (self terms) and responses due to interaction between stimuli (intermodulation terms). In early visual cortex, masking alters the self terms in a manner consistent with a reduction of input contrast. We also identify a novel signature of masking: a robust intermodulation term that peaks when the test and mask stimuli have equal contrast and disappears when they are widely different. We fit all of our data simultaneously with family of a divisive gain control models that differed only in their dynamics. Models with either very short or very long temporal integration constants for the gain pool performed worse than a model with an integration time of ∼30 ms. Finally, the absolute magnitudes of the response were controlled by the ratio of the stimulus contrasts, not their absolute values. This contrast-contrast invariance suggests that many neurons in early visual cortex code relative rather than absolute contrast. Together, these results provide a more complete description of masking within the normalization framework of contrast gain control and suggest that contrast normalization accomplishes multiple functional goals.
Oe, Momoko; Ogawa, Hiroto
2013-01-01
Crickets exhibit oriented walking behavior in response to air-current stimuli. Because crickets move in the opposite direction from the stimulus source, this behavior is considered to represent ‘escape behavior’ from an approaching predator. However, details of the stimulus-angle-dependent control of locomotion during the immediate phase, and the neural basis underlying the directional motor control of this behavior remain unclear. In this study, we used a spherical-treadmill system to measure locomotory parameters including trajectory, turn angle and velocity during the immediate phase of responses to air-puff stimuli applied from various angles. Both walking direction and turn angle were correlated with stimulus angle, but their relationships followed different rules. A shorter stimulus also induced directionally-controlled walking, but reduced the yaw rotation in stimulus-angle-dependent turning. These results suggest that neural control of the turn angle requires different sensory information than that required for oriented walking. Hemi-severance of the ventral nerve cords containing descending axons from the cephalic to the prothoracic ganglion abolished stimulus-angle-dependent control, indicating that this control required descending signals from the brain. Furthermore, we selectively ablated identified ascending giant interneurons (GIs) in vivo to examine their functional roles in wind-elicited walking. Ablation of GI8-1 diminished control of the turn angle and decreased walking distance in the initial response. Meanwhile, GI9-1b ablation had no discernible effect on stimulus-angle-dependent control or walking distance, but delayed the reaction time. These results suggest that the ascending signals conveyed by GI8-1 are required for turn-angle control and maintenance of walking behavior, and that GI9-1b is responsible for rapid initiation of walking. It is possible that individual types of GIs separately supply the sensory signals required to control wind-elicited walking. PMID:24244644
Stenner, Max-Philipp; Bauer, Markus; Haggard, Patrick; Heinze, Hans-Jochen; Dolan, Ray
2014-11-01
The perceived intensity of sensory stimuli is reduced when these stimuli are caused by the observer's actions. This phenomenon is traditionally explained by forward models of sensory action-outcome, which arise from motor processing. Although these forward models critically predict anticipatory modulation of sensory neural processing, neurophysiological evidence for anticipatory modulation is sparse and has not been linked to perceptual data showing sensory attenuation. By combining a psychophysical task involving contrast discrimination with source-level time-frequency analysis of MEG data, we demonstrate that the amplitude of alpha-oscillations in visual cortex is enhanced before the onset of a visual stimulus when the identity and onset of the stimulus are controlled by participants' motor actions. Critically, this prestimulus enhancement of alpha-amplitude is paralleled by psychophysical judgments of a reduced contrast for this stimulus. We suggest that alpha-oscillations in visual cortex preceding self-generated visual stimulation are a likely neurophysiological signature of motor-induced sensory anticipation and mediate sensory attenuation. We discuss our results in relation to proposals that attribute generic inhibitory functions to alpha-oscillations in prioritizing and gating sensory information via top-down control.
Minimum energy control for a two-compartment neuron to extracellular electric fields
NASA Astrophysics Data System (ADS)
Yi, Guo-Sheng; Wang, Jiang; Li, Hui-Yan; Wei, Xi-Le; Deng, Bin
2016-11-01
The energy optimization of extracellular electric field (EF) stimulus for a neuron is considered in this paper. We employ the optimal control theory to design a low energy EF input for a reduced two-compartment model. It works by driving the neuron to closely track a prescriptive spike train. A cost function is introduced to balance the contradictory objectives, i.e., tracking errors and EF stimulus energy. By using the calculus of variations, we transform the minimization of cost function to a six-dimensional two-point boundary value problem (BVP). Through solving the obtained BVP in the cases of three fundamental bifurcations, it is shown that the control method is able to provide an optimal EF stimulus of reduced energy for the neuron to effectively track a prescriptive spike train. Further, the feasibility of the adopted method is interpreted from the point of view of the biophysical basis of spike initiation. These investigations are conducive to designing stimulating dose for extracellular neural stimulation, which are also helpful to interpret the effects of extracellular field on neural activity.
Stimulus onset predictability modulates proactive action control in a Go/No-go task
Berchicci, Marika; Lucci, Giuliana; Spinelli, Donatella; Di Russo, Francesco
2015-01-01
The aim of the study was to evaluate whether the presence/absence of visual cues specifying the onset of an upcoming, action-related stimulus modulates pre-stimulus brain activity, associated with the proactive control of goal-directed actions. To this aim we asked 12 subjects to perform an equal probability Go/No-go task with four stimulus configurations in two conditions: (1) uncued, i.e., without any external information about the timing of stimulus onset; and (2) cued, i.e., with external visual cues providing precise information about the timing of stimulus onset. During task both behavioral performance and event-related potentials (ERPs) were recorded. Behavioral results showed faster response times in the cued than uncued condition, confirming existing literature. ERPs showed novel results in the proactive control stage, that started about 1 s before the motor response. We observed a slow rising prefrontal positive activity, more pronounced in the cued than the uncued condition. Further, also pre-stimulus activity of premotor areas was larger in cued than uncued condition. In the post-stimulus period, the P3 amplitude was enhanced when the time of stimulus onset was externally driven, confirming that external cueing enhances processing of stimulus evaluation and response monitoring. Our results suggest that different pre-stimulus processing come into play in the two conditions. We hypothesize that the large prefrontal and premotor activities recorded with external visual cues index the monitoring of the external stimuli in order to finely regulate the action. PMID:25964751
[Microcomputer control of a LED stimulus display device].
Ohmoto, S; Kikuchi, T; Kumada, T
1987-02-01
A visual stimulus display system controlled by a microcomputer was constructed at low cost. The system consists of a LED stimulus display device, a microcomputer, two interface boards, a pointing device (a "mouse") and two kinds of software. The first software package is written in BASIC. Its functions are: to construct stimulus patterns using the mouse, to construct letter patterns (alphabet, digit, symbols and Japanese letters--kanji, hiragana, katakana), to modify the patterns, to store the patterns on a floppy disc, to translate the patterns into integer data which are used to display the patterns in the second software. The second software package, written in BASIC and machine language, controls display of a sequence of stimulus patterns in predetermined time schedules in visual experiments.
Variability and Correlations in Primary Visual Cortical Neurons Driven by Fixational Eye Movements
McFarland, James M.; Cumming, Bruce G.
2016-01-01
The ability to distinguish between elements of a sensory neuron's activity that are stimulus independent versus driven by the stimulus is critical for addressing many questions in systems neuroscience. This is typically accomplished by measuring neural responses to repeated presentations of identical stimuli and identifying the trial-variable components of the response as noise. In awake primates, however, small “fixational” eye movements (FEMs) introduce uncontrolled trial-to-trial differences in the visual stimulus itself, potentially confounding this distinction. Here, we describe novel analytical methods that directly quantify the stimulus-driven and stimulus-independent components of visual neuron responses in the presence of FEMs. We apply this approach, combined with precise model-based eye tracking, to recordings from primary visual cortex (V1), finding that standard approaches that ignore FEMs typically miss more than half of the stimulus-driven neural response variance, creating substantial biases in measures of response reliability. We show that these effects are likely not isolated to the particular experimental conditions used here, such as the choice of visual stimulus or spike measurement time window, and thus will be a more general problem for V1 recordings in awake primates. We also demonstrate that measurements of the stimulus-driven and stimulus-independent correlations among pairs of V1 neurons can be greatly biased by FEMs. These results thus illustrate the potentially dramatic impact of FEMs on measures of signal and noise in visual neuron activity and also demonstrate a novel approach for controlling for these eye-movement-induced effects. SIGNIFICANCE STATEMENT Distinguishing between the signal and noise in a sensory neuron's activity is typically accomplished by measuring neural responses to repeated presentations of an identical stimulus. For recordings from the visual cortex of awake animals, small “fixational” eye movements (FEMs) inevitably introduce trial-to-trial variability in the visual stimulus, potentially confounding such measures. Here, we show that FEMs often have a dramatic impact on several important measures of response variability for neurons in primary visual cortex. We also present an analytical approach for quantifying signal and noise in visual neuron activity in the presence of FEMs. These results thus highlight the importance of controlling for FEMs in studies of visual neuron function, and demonstrate novel methods for doing so. PMID:27277801
Variance adaptation in navigational decision making
NASA Astrophysics Data System (ADS)
Gershow, Marc; Gepner, Ruben; Wolk, Jason; Wadekar, Digvijay
Drosophila larvae navigate their environments using a biased random walk strategy. A key component of this strategy is the decision to initiate a turn (change direction) in response to declining conditions. We modeled this decision as the output of a Linear-Nonlinear-Poisson cascade and used reverse correlation with visual and fictive olfactory stimuli to find the parameters of this model. Because the larva responds to changes in stimulus intensity, we used stimuli with uncorrelated normally distributed intensity derivatives, i.e. Brownian processes, and took the stimulus derivative as the input to our LNP cascade. In this way, we were able to present stimuli with 0 mean and controlled variance. We found that the nonlinear rate function depended on the variance in the stimulus input, allowing larvae to respond more strongly to small changes in low-noise compared to high-noise environments. We measured the rate at which the larva adapted its behavior following changes in stimulus variance, and found that larvae adapted more quickly to increases in variance than to decreases, consistent with the behavior of an optimal Bayes estimator. Supported by NIH Grant 1DP2EB022359 and NSF Grant PHY-1455015.
Modeling conflict and error in the medial frontal cortex.
Mayer, Andrew R; Teshiba, Terri M; Franco, Alexandre R; Ling, Josef; Shane, Matthew S; Stephen, Julia M; Jung, Rex E
2012-12-01
Despite intensive study, the role of the dorsal medial frontal cortex (dMFC) in error monitoring and conflict processing remains actively debated. The current experiment manipulated conflict type (stimulus conflict only or stimulus and response selection conflict) and utilized a novel modeling approach to isolate error and conflict variance during a multimodal numeric Stroop task. Specifically, hemodynamic response functions resulting from two statistical models that either included or isolated variance arising from relatively few error trials were directly contrasted. Twenty-four participants completed the task while undergoing event-related functional magnetic resonance imaging on a 1.5-Tesla scanner. Response times monotonically increased based on the presence of pure stimulus or stimulus and response selection conflict. Functional results indicated that dMFC activity was present during trials requiring response selection and inhibition of competing motor responses, but absent during trials involving pure stimulus conflict. A comparison of the different statistical models suggested that relatively few error trials contributed to a disproportionate amount of variance (i.e., activity) throughout the dMFC, but particularly within the rostral anterior cingulate gyrus (rACC). Finally, functional connectivity analyses indicated that an empirically derived seed in the dorsal ACC/pre-SMA exhibited strong connectivity (i.e., positive correlation) with prefrontal and inferior parietal cortex but was anti-correlated with the default-mode network. An empirically derived seed from the rACC exhibited the opposite pattern, suggesting that sub-regions of the dMFC exhibit different connectivity patterns with other large scale networks implicated in internal mentations such as daydreaming (default-mode) versus the execution of top-down attentional control (fronto-parietal). Copyright © 2011 Wiley Periodicals, Inc.
Fear of falling and postural reactivity in patients with glaucoma.
Daga, Fábio B; Diniz-Filho, Alberto; Boer, Erwin R; Gracitelli, Carolina P B; Abe, Ricardo Y; Medeiros, Felipe A
2017-01-01
To investigate the relationship between postural metrics obtained by dynamic visual stimulation in a virtual reality environment and the presence of fear of falling in glaucoma patients. This cross-sectional study included 35 glaucoma patients and 26 controls that underwent evaluation of postural balance by a force platform during presentation of static and dynamic visual stimuli with head-mounted goggles (Oculus Rift). In dynamic condition, a peripheral translational stimulus was used to induce vection and assess postural reactivity. Standard deviations of torque moments (SDTM) were calculated as indicative of postural stability. Fear of falling was assessed by a standardized questionnaire. The relationship between a summary score of fear of falling and postural metrics was investigated using linear regression models, adjusting for potentially confounding factors. Subjects with glaucoma reported greater fear of falling compared to controls (-0.21 vs. 0.27; P = 0.039). In glaucoma patients, postural metrics during dynamic visual stimulus were more associated with fear of falling (R2 = 18.8%; P = 0.001) than static (R2 = 3.0%; P = 0.005) and dark field (R2 = 5.7%; P = 0.007) conditions. In the univariable model, fear of falling was not significantly associated with binocular standard perimetry mean sensitivity (P = 0.855). In the multivariable model, each 1 Nm larger SDTM in anteroposterior direction during dynamic stimulus was associated with a worsening of 0.42 units in the fear of falling questionnaire score (P = 0.001). In glaucoma patients, postural reactivity to a dynamic visual stimulus using a virtual reality environment was more strongly associated with fear of falling than visual field testing and traditional balance assessment.
Fear of falling and postural reactivity in patients with glaucoma
Daga, Fábio B.; Diniz-Filho, Alberto; Boer, Erwin R.; Gracitelli, Carolina P. B.; Abe, Ricardo Y.; Medeiros, Felipe A.
2017-01-01
Purpose To investigate the relationship between postural metrics obtained by dynamic visual stimulation in a virtual reality environment and the presence of fear of falling in glaucoma patients. Methods This cross-sectional study included 35 glaucoma patients and 26 controls that underwent evaluation of postural balance by a force platform during presentation of static and dynamic visual stimuli with head-mounted goggles (Oculus Rift). In dynamic condition, a peripheral translational stimulus was used to induce vection and assess postural reactivity. Standard deviations of torque moments (SDTM) were calculated as indicative of postural stability. Fear of falling was assessed by a standardized questionnaire. The relationship between a summary score of fear of falling and postural metrics was investigated using linear regression models, adjusting for potentially confounding factors. Results Subjects with glaucoma reported greater fear of falling compared to controls (-0.21 vs. 0.27; P = 0.039). In glaucoma patients, postural metrics during dynamic visual stimulus were more associated with fear of falling (R2 = 18.8%; P = 0.001) than static (R2 = 3.0%; P = 0.005) and dark field (R2 = 5.7%; P = 0.007) conditions. In the univariable model, fear of falling was not significantly associated with binocular standard perimetry mean sensitivity (P = 0.855). In the multivariable model, each 1 Nm larger SDTM in anteroposterior direction during dynamic stimulus was associated with a worsening of 0.42 units in the fear of falling questionnaire score (P = 0.001). Conclusion In glaucoma patients, postural reactivity to a dynamic visual stimulus using a virtual reality environment was more strongly associated with fear of falling than visual field testing and traditional balance assessment. PMID:29211742
A novel paradigm to evaluate conditioned pain modulation in fibromyalgia.
Schoen, Cynthia J; Ablin, Jacob N; Ichesco, Eric; Bhavsar, Rupal J; Kochlefl, Laura; Harris, Richard E; Clauw, Daniel J; Gracely, Richard H; Harte, Steven E
2016-01-01
Application of noxious stimulation to one body area reduces pain sensitivity in a remote body area through activation of an endogenous pain-inhibitory network, a behavioral phenomenon referred to as conditioned pain modulation (CPM). The efficiency of CPM is predictive of a variety of health outcomes, while impaired CPM has been associated with various chronic pain conditions. Current methods used to assess CPM vary widely, and interest in CPM method development remains strong. Here, we evaluated a novel method for assessing CPM in healthy controls and fibromyalgia (FM) patients using thumb pressure as both a test and conditioning stimulus. Sixteen female FM patients and 14 matched healthy controls underwent CPM testing with thumbnail pressure as the test stimulus, and either cold water or noxious pressure as the conditioning stimulus. CPM magnitude was evaluated as the difference in pain rating of the test stimulus applied before and during the conditioning stimulus. In healthy controls, application of either pressure or cold water conditioning stimulation induced CPM as evidenced by a significant reduction in test stimulus pain rating during conditioning ( P =0.007 and P =0.021, respectively). In contrast, in FM patients, neither conditioning stimulus induced a significant CPM effect ( P >0.274). There was a significant difference in CPM magnitude for FM patients compared to healthy controls with noxious pressure conditioning stimulation ( P =0.023); however, no significant difference in CPM was found between groups using cold water as a conditioning stimulus ( P =0.269). The current study demonstrates that thumbnail pressure can be used as both a test and conditioning stimulus in the assessment of CPM. This study further confirms previous findings of attenuated CPM in FM patients compared with healthy controls.
A novel paradigm to evaluate conditioned pain modulation in fibromyalgia
Schoen, Cynthia J; Ablin, Jacob N; Ichesco, Eric; Bhavsar, Rupal J; Kochlefl, Laura; Harris, Richard E; Clauw, Daniel J; Gracely, Richard H; Harte, Steven E
2016-01-01
Introduction Application of noxious stimulation to one body area reduces pain sensitivity in a remote body area through activation of an endogenous pain-inhibitory network, a behavioral phenomenon referred to as conditioned pain modulation (CPM). The efficiency of CPM is predictive of a variety of health outcomes, while impaired CPM has been associated with various chronic pain conditions. Current methods used to assess CPM vary widely, and interest in CPM method development remains strong. Here, we evaluated a novel method for assessing CPM in healthy controls and fibromyalgia (FM) patients using thumb pressure as both a test and conditioning stimulus. Methods Sixteen female FM patients and 14 matched healthy controls underwent CPM testing with thumbnail pressure as the test stimulus, and either cold water or noxious pressure as the conditioning stimulus. CPM magnitude was evaluated as the difference in pain rating of the test stimulus applied before and during the conditioning stimulus. Results In healthy controls, application of either pressure or cold water conditioning stimulation induced CPM as evidenced by a significant reduction in test stimulus pain rating during conditioning (P=0.007 and P=0.021, respectively). In contrast, in FM patients, neither conditioning stimulus induced a significant CPM effect (P>0.274). There was a significant difference in CPM magnitude for FM patients compared to healthy controls with noxious pressure conditioning stimulation (P=0.023); however, no significant difference in CPM was found between groups using cold water as a conditioning stimulus (P=0.269). Conclusion The current study demonstrates that thumbnail pressure can be used as both a test and conditioning stimulus in the assessment of CPM. This study further confirms previous findings of attenuated CPM in FM patients compared with healthy controls. PMID:27713648
Startle stimuli reduce the internal model control in discrete movements.
Wright, Zachary A; Rogers, Mark W; MacKinnon, Colum D; Patton, James L
2009-01-01
A well known and major component of movement control is the feedforward component, also known as the internal model. This model predicts and compensates for expected forces seen during a movement, based on recent experience, so that a well-learned task such as reaching to a target can be executed in a smooth straight manner. It has recently been shown that the state of preparation of planned movements can be tested using a startling acoustic stimulus (SAS). SAS, presented 500, 250 or 0 ms before the expected "go" cue resulted in the early release of the movement trajectory associated with the after-effects of the force field training (i.e. the internal model). In a typical motor adaptation experiment with a robot-applied force field, we tested if a SAS stimulus influences the size of after-effects that are typically seen. We found that in all subjects the after-effect magnitudes were significantly reduced when movements were released by SAS, although this effect was not further modulated by the timing of SAS. Reduced after-effects reveal at least partial existence of learned preparatory control, and identify startle effects that could influence performance in tasks such as piloting, teleoperation, and sports.
A systematic analysis of the Braitenberg vehicle 2b for point-like stimulus sources.
Rañó, Iñaki
2012-09-01
Braitenberg vehicles have been used experimentally for decades in robotics with limited empirical understanding. This paper presents the first mathematical model of the vehicle 2b, displaying so-called aggression behaviour, and analyses the possible trajectories for point-like smooth stimulus sources. This sensory-motor steering control mechanism is used to implement biologically grounded target approach, target-seeking or obstacle-avoidance behaviour. However, the analysis of the resulting model reveals that complex and unexpected trajectories can result even for point-like stimuli. We also prove how the implementation of the controller and the vehicle morphology interact to affect the behaviour of the vehicle. This work provides a better understanding of Braitenberg vehicle 2b, explains experimental results and paves the way for a formally grounded application on robotics as well as for a new way of understanding target seeking in biology.
New Knowledge Derived from Learned Knowledge: Functional-Anatomic Correlates of Stimulus Equivalence
ERIC Educational Resources Information Center
Schlund, Michael W.; Hoehn-Saric, Rudolf; Cataldo, Michael F.
2007-01-01
Forming new knowledge based on knowledge established through prior learning is a central feature of higher cognition that is captured in research on stimulus equivalence (SE). Numerous SE investigations show that reinforcing behavior under control of distinct sets of arbitrary conditional relations gives rise to stimulus control by new, "derived"…
Sexual attraction to others: a comparison of two models of alloerotic responding in men.
Blanchard, Ray; Kuban, Michael E; Blak, Thomas; Klassen, Philip E; Dickey, Robert; Cantor, James M
2012-02-01
The penile response profiles of homosexual and heterosexual pedophiles, hebephiles, and teleiophiles to laboratory stimuli depicting male and female children and adults may be conceptualized as a series of overlapping stimulus generalization gradients. This study used such profile data to compare two models of alloerotic responding (sexual responding to other people) in men. The first model was based on the notion that men respond to a potential sexual object as a compound stimulus made up of an age component and a gender component. The second model was based on the notion that men respond to a potential sexual object as a gestalt, which they evaluate in terms of global similarity to other potential sexual objects. The analytic strategy was to compare the accuracy of these models in predicting a man's penile response to each of his less arousing (nonpreferred) stimulus categories from his response to his most arousing (preferred) stimulus category. Both models based their predictions on the degree of dissimilarity between the preferred stimulus category and a given nonpreferred stimulus category, but each model used its own measure of dissimilarity. According to the first model ("summation model"), penile response should vary inversely as the sum of stimulus differences on separate dimensions of age and gender. According to the second model ("bipolar model"), penile response should vary inversely as the distance between stimulus categories on a single, bipolar dimension of morphological similarity-a dimension on which children are located near the middle, and adult men and women are located at opposite ends. The subjects were 2,278 male patients referred to a specialty clinic for phallometric assessment of their erotic preferences. Comparisons of goodness of fit to the observed data favored the unidimensional bipolar model.
Understanding Pitch Perception as a Hierarchical Process with Top-Down Modulation
Balaguer-Ballester, Emili; Clark, Nicholas R.; Coath, Martin; Krumbholz, Katrin; Denham, Susan L.
2009-01-01
Pitch is one of the most important features of natural sounds, underlying the perception of melody in music and prosody in speech. However, the temporal dynamics of pitch processing are still poorly understood. Previous studies suggest that the auditory system uses a wide range of time scales to integrate pitch-related information and that the effective integration time is both task- and stimulus-dependent. None of the existing models of pitch processing can account for such task- and stimulus-dependent variations in processing time scales. This study presents an idealized neurocomputational model, which provides a unified account of the multiple time scales observed in pitch perception. The model is evaluated using a range of perceptual studies, which have not previously been accounted for by a single model, and new results from a neurophysiological experiment. In contrast to other approaches, the current model contains a hierarchy of integration stages and uses feedback to adapt the effective time scales of processing at each stage in response to changes in the input stimulus. The model has features in common with a hierarchical generative process and suggests a key role for efferent connections from central to sub-cortical areas in controlling the temporal dynamics of pitch processing. PMID:19266015
StimDuino: an Arduino-based electrophysiological stimulus isolator.
Sheinin, Anton; Lavi, Ayal; Michaelevski, Izhak
2015-03-30
Electrical stimulus isolator is a widely used device in electrophysiology. The timing of the stimulus application is usually automated and controlled by the external device or acquisition software; however, the intensity of the stimulus is adjusted manually. Inaccuracy, lack of reproducibility and no automation of the experimental protocol are disadvantages of the manual adjustment. To overcome these shortcomings, we developed StimDuino, an inexpensive Arduino-controlled stimulus isolator allowing highly accurate, reproducible automated setting of the stimulation current. The intensity of the stimulation current delivered by StimDuino is controlled by Arduino, an open-source microcontroller development platform. The automatic stimulation patterns are software-controlled and the parameters are set from Matlab-coded simple, intuitive and user-friendly graphical user interface. The software also allows remote control of the device over the network. Electrical current measurements showed that StimDuino produces the requested current output with high accuracy. In both hippocampal slice and in vivo recordings, the fEPSP measurements obtained with StimDuino and the commercial stimulus isolators showed high correlation. Commercial stimulus isolators are manually managed, while StimDuino generates automatic stimulation patterns with increasing current intensity. The pattern is utilized for the input-output relationship analysis, necessary for assessment of excitability. In contrast to StimuDuino, not all commercial devices are capable for remote control of the parameters and stimulation process. StimDuino-generated automation of the input-output relationship assessment eliminates need for the current intensity manually adjusting, improves stimulation reproducibility, accuracy and allows on-site and remote control of the stimulation parameters. Copyright © 2015 Elsevier B.V. All rights reserved.
Reuter, Benedikt; Elsner, Björn; Möllers, David; Kathmann, Norbert
2016-11-01
Clinical and theoretical models suggest deficient volitional initiation of action in schizophrenia patients. Recent research provided an experimental model of testing this assumption using saccade tasks. However, inconsistent findings necessitate a specification of conditions on which the deficit may occur. The present study sought to detect mechanisms that may contribute to poor performance. Sixteen schizophrenia patients and 16 healthy control participants performed visually guided and two types of volitional saccade tasks. All tasks varied as to whether the initial fixation stimulus disappeared (fixation stimulus offset) or continued during saccade initiation, and whether a direction cue allowed motor preparation of the specific saccade. Saccade latencies of the two groups were differentially affected by task type, fixation stimulus offset, and cueing, suggesting abnormal volitional saccade generation, fixation release, and motor preparation in schizophrenia. However, substantial performance deficits may only occur if all affected processes are required in a task. © 2016 Society for Psychophysiological Research.
Yoles-Frenkel, Michal; Cohen, Oksana; Bansal, Rohini; Horesh, Noa; Ben-Shaul, Yoram
2017-06-15
Achieving controlled stimulus delivery is a major challenge in the physiological analysis of the vomeronasal system (VNS). We provide a comprehensive description of a setup allowing controlled stimulus delivery into the vomeronasal organ (VNO) of anesthetized mice. VNO suction is achieved via electrical stimulation of the sympathetic nerve trunk (SNT) using cuff electrodes, followed by flushing of the nasal cavity. Successful application of this methodology depends on several aspects including the surgical preparation, fabrication of cuff electrodes, experimental setup modifications, and the stimulus delivery and flushing. Here, we describe all these aspects in sufficient detail to allow other researchers to readily adopt it. We also present a custom written MATLAB based software with a graphical user interface that controls all aspects of the actual experiment, including trial sequencing, hardware control, and data logging. The method allows measurement of stimulus evoked sensory responses in brain regions that receive vomeronasal inputs. An experienced investigator can complete the entire surgical procedure within thirty minutes. This is the only approach that allows repeated and controlled stimulus delivery to the intact VNO, employing the natural mode of stimulus uptake. The approach is economical with respect to stimuli, requiring stimulus volumes as low as 1-2μl. This comprehensive description will allow other investigators to adapt this setup to their own experimental needs and can thus promote our physiological understanding of this fascinating chemosensory system. With minor changes it can also be adapted for other rodent species. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Miliotis, Adriane; Sidener, Tina M.; Reeve, Kenneth F.; Carbone, Vincent; Sidener, David W.; Rader, Lisa; Delmolino, Lara
2012-01-01
Stimulus-stimulus pairing (SSP) of vocalizations pairs the speech of others with the delivery of highly preferred items. The goal of this procedure is to produce a temporary increase in vocalizations, thus creating a larger variety of sounds that can subsequently be brought under appropriate stimulus control (Esch, Carr, & Grow, 2009). In this…
Effects of inferior olive lesion on fear-conditioned bradycardia
Kotajima, Hiroko; Sakai, Kazuhisa; Hashikawa, Tsutomu
2014-01-01
The inferior olive (IO) sends excitatory inputs to the cerebellar cortex and cerebellar nuclei through the climbing fibers. In eyeblink conditioning, a model of motor learning, the inactivation of or a lesion in the IO impairs the acquisition or expression of conditioned eyeblink responses. Additionally, climbing fibers originating from the IO are believed to transmit the unconditioned stimulus to the cerebellum in eyeblink conditioning. Studies using fear-conditioned bradycardia showed that the cerebellum is associated with adaptive control of heart rate. However, the role of inputs from the IO to the cerebellum in fear-conditioned bradycardia has not yet been investigated. To examine this possible role, we tested fear-conditioned bradycardia in mice by selective disruption of the IO using 3-acetylpyridine. In a rotarod test, mice with an IO lesion were unable to remain on the rod. The number of neurons of IO nuclei in these mice was decreased to ∼40% compared with control mice. Mice with an IO lesion did not show changes in the mean heart rate or in heart rate responses to a conditioned stimulus, or in their responses to a painful stimulus in a tail-flick test. However, they did show impairment of the acquisition/expression of conditioned bradycardia and attenuation of heart rate responses to a pain stimulus used as an unconditioned stimulus. These results indicate that the IO inputs to the cerebellum play a key role in the acquisition/expression of conditioned bradycardia. PMID:24784584
Dendrites Enable a Robust Mechanism for Neuronal Stimulus Selectivity.
Cazé, Romain D; Jarvis, Sarah; Foust, Amanda J; Schultz, Simon R
2017-09-01
Hearing, vision, touch: underlying all of these senses is stimulus selectivity, a robust information processing operation in which cortical neurons respond more to some stimuli than to others. Previous models assume that these neurons receive the highest weighted input from an ensemble encoding the preferred stimulus, but dendrites enable other possibilities. Nonlinear dendritic processing can produce stimulus selectivity based on the spatial distribution of synapses, even if the total preferred stimulus weight does not exceed that of nonpreferred stimuli. Using a multi-subunit nonlinear model, we demonstrate that stimulus selectivity can arise from the spatial distribution of synapses. We propose this as a general mechanism for information processing by neurons possessing dendritic trees. Moreover, we show that this implementation of stimulus selectivity increases the neuron's robustness to synaptic and dendritic failure. Importantly, our model can maintain stimulus selectivity for a larger range of loss of synapses or dendrites than an equivalent linear model. We then use a layer 2/3 biophysical neuron model to show that our implementation is consistent with two recent experimental observations: (1) one can observe a mixture of selectivities in dendrites that can differ from the somatic selectivity, and (2) hyperpolarization can broaden somatic tuning without affecting dendritic tuning. Our model predicts that an initially nonselective neuron can become selective when depolarized. In addition to motivating new experiments, the model's increased robustness to synapses and dendrites loss provides a starting point for fault-resistant neuromorphic chip development.
Cortical dynamics of feature binding and reset: control of visual persistence.
Francis, G; Grossberg, S; Mingolla, E
1994-04-01
An analysis of the reset of visual cortical circuits responsible for the binding or segmentation of visual features into coherent visual forms yields a model that explains properties of visual persistence. The reset mechanisms prevent massive smearing of visual percepts in response to rapidly moving images. The model simulates relationships among psychophysical data showing inverse relations of persistence to flash luminance and duration, greater persistence of illusory contours than real contours, a U-shaped temporal function for persistence of illusory contours, a reduction of persistence due to adaptation with a stimulus of like orientation, an increase of persistence with spatial separation of a masking stimulus. The model suggests that a combination of habituative, opponent, and endstopping mechanisms prevent smearing and limit persistence. Earlier work with the model has analyzed data about boundary formation, texture segregation, shape-from-shading, and figure-ground separation. Thus, several types of data support each model mechanism and new predictions are made.
An Examination of Stimulus Control in Fluency-Based Strategies: SAFMEDS and Generalization
ERIC Educational Resources Information Center
Meindl, James N.; Ivy, Jonathan W.; Miller, Neal; Neef, Nancy A.; Williamson, Robert L.
2013-01-01
Fluency-based strategies such as Say All Fast a Minute Each Day Shuffled (SAFMEDS) effectively promote fluent responding (i.e., high rate and accuracy). It is possible, however, that the stimulus control developed through these activities inhibits stimulus generalization. We investigated this concern in a two-part study with college students.…
Varieties of Stimulus Control in Matching-to-Sample: A Kernel Analysis
ERIC Educational Resources Information Center
Fields, Lanny; Garruto, Michelle; Watanabe, Mari
2010-01-01
Conditional discrimination or matching-to-sample procedures have been used to study a wide range of complex psychological phenomena with infrahuman and human subjects. In most studies, the percentage of trials in which a subject selects the comparison stimulus that is related to the sample stimulus is used to index the control exerted by the…
Parallel and orthogonal stimulus in ultradiluted neural networks
NASA Astrophysics Data System (ADS)
Sobral, G. A., Jr.; Vieira, V. M.; Lyra, M. L.; da Silva, C. R.
2006-10-01
Extending a model due to Derrida, Gardner, and Zippelius, we have studied the recognition ability of an extreme and asymmetrically diluted version of the Hopfield model for associative memory by including the effect of a stimulus in the dynamics of the system. We obtain exact results for the dynamic evolution of the average network superposition. The stimulus field was considered as proportional to the overlapping of the state of the system with a particular stimulated pattern. Two situations were analyzed, namely, the external stimulus acting on the initialization pattern (parallel stimulus) and the external stimulus acting on a pattern orthogonal to the initialization one (orthogonal stimulus). In both cases, we obtained the complete phase diagram in the parameter space composed of the stimulus field, thermal noise, and network capacity. Our results show that the system improves its recognition ability for parallel stimulus. For orthogonal stimulus two recognition phases emerge with the system locking at the initialization or stimulated pattern. We confront our analytical results with numerical simulations for the noiseless case T=0 .
Toward an explicit analysis of generalization: A stimulus control interpretation
Kirby, Kimberly C.; Bickel, Warren K.
1988-01-01
Producing generality of treatment effects to new settings has been a critical concern for applied behavior analysts, but a systematic and reliable means of producing generality has yet to be provided. We argue that the principles of stimulus control and reinforcement underlie the production of most generalized effects; therefore, we suggest interpreting generalization programming in terms of stimulus control. The generalization programming procedures identified by Stokes and Baer (1977) are discussed in terms of both the stimulus control tactics explicitly identified and those that may be operating but are not explicitly identified. Our interpretation clarifies the critical components of Stokes and Baer's procedures and places greater emphasis on planning for generalization as a part of training procedures. PMID:22478006
Stimulus-level interference disrupts repetition benefit during task switching in middle childhood
Karayanidis, Frini; Jamadar, Sharna; Sanday, Dearne
2013-01-01
The task-switching paradigm provides a powerful tool to measure the development of core cognitive control processes. In this study, we use the alternating runs task-switching paradigm to assess preparatory control processes involved in flexibly preparing for a predictable change in task and stimulus-driven control processes involved in controlling stimulus-level interference. We present three experiments that examine behavioral and event-related potential (ERP) measures of task-switching performance in middle childhood and young adulthood under low and high stimulus interference conditions. Experiment 1 confirms that our new child-friendly tasks produce similar behavioral and electrophysiological findings in young adults as those previously reported. Experiment 2 examines task switching with univalent stimuli across a range of preparation intervals in middle childhood. Experiment 3 compares task switching with bivalent stimuli across the same preparation intervals in children and young adults. Children produced a larger RT switch cost than adults with univalent stimuli and a short preparation interval. Both children and adults showed significant reduction in switch cost with increasing preparation interval, but in children this was caused by greater increase in RT for repeat than switch trials. Response-locked ERPs showed intact preparation for univalent, but less efficient preparation for bivalent stimulus conditions. Stimulus-locked ERPs confirmed that children showed greater stimulus-level interference for repeat trials, especially with bivalent stimuli. We conclude that children show greater stimulus-level interference especially for repeat trials under high interference conditions, suggesting weaker mental representation of the current task set. PMID:24367317
Altered predictive capability of the brain network EEG model in schizophrenia during cognition.
Gomez-Pilar, Javier; Poza, Jesús; Gómez, Carlos; Northoff, Georg; Lubeiro, Alba; Cea-Cañas, Benjamín B; Molina, Vicente; Hornero, Roberto
2018-05-12
The study of the mechanisms involved in cognition is of paramount importance for the understanding of the neurobiological substrates in psychiatric disorders. Hence, this research is aimed at exploring the brain network dynamics during a cognitive task. Specifically, we analyze the predictive capability of the pre-stimulus theta activity to ascertain the functional brain dynamics during cognition in both healthy and schizophrenia subjects. Firstly, EEG recordings were acquired during a three-tone oddball task from fifty-one healthy subjects and thirty-five schizophrenia patients. Secondly, phase-based coupling measures were used to generate the time-varying functional network for each subject. Finally, pre-stimulus network connections were iteratively modified according to different models of network reorganization. This adjustment was applied by minimizing the prediction error through recurrent iterations, following the predictive coding approach. Both controls and schizophrenia patients follow a reinforcement of the secondary neural pathways (i.e., pathways between cortical brain regions weakly connected during pre-stimulus) for most of the subjects, though the ratio of controls that exhibited this behavior was statistically significant higher than for patients. These findings suggest that schizophrenia is associated with an impaired ability to modify brain network configuration during cognition. Furthermore, we provide direct evidence that the changes in phase-based brain network parameters from pre-stimulus to cognitive response in the theta band are closely related to the performance in important cognitive domains. Our findings not only contribute to the understanding of healthy brain dynamics, but also shed light on the altered predictive neuronal substrates in schizophrenia. Copyright © 2018 Elsevier B.V. All rights reserved.
Redox-controlled molecular permeability of composite-wall microcapsules
NASA Astrophysics Data System (ADS)
Ma, Yujie; Dong, Wen-Fei; Hempenius, Mark A.; Möhwald, Helmuth; Julius Vancso, G.
2006-09-01
Many smart materials in bioengineering, nanotechnology and medicine allow the storage and release of encapsulated drugs on demand at a specific location by an external stimulus. Owing to their versatility in material selection, polyelectrolyte multilayers are very promising systems in the development of microencapsulation technologies with permeation control governed by variations in the environmental conditions. Here, organometallic polyelectrolyte multilayer capsules, composed of polyanions and polycations of poly(ferrocenylsilane) (PFS), are introduced. Their preparation involved layer-by-layer self-assembly onto colloidal templates followed by core removal. PFS polyelectrolytes feature redox-active ferrocene units in the main chain. Incorporation of PFS into the capsule walls allowed us to explore the effects of a new stimulus, that is, changing the redox state, on capsule wall permeability. The permeability of these capsules could be sensitively tuned via chemical oxidation, resulting in a fast capsule expansion accompanied by a drastic permeability increase in response to a very small trigger. The substantial swelling could be suppressed by the application of an additional coating bearing common redox-inert species of poly(styrene sulfonate) (PSS-) and poly(allylamine hydrochloride) (PAH+) on the outer wall of the capsules. Hence, we obtained a unique capsule system with redox-controlled permeability and swellability with a high application potential in materials as well as in bioscience.
Carbajo, Daniel; Magi, Shigeyuki; Itoh, Masayoshi; Kawaji, Hideya; Lassmann, Timo; Arner, Erik; Forrest, Alistair R R; Carninci, Piero; Hayashizaki, Yoshihide; Daub, Carsten O; Okada-Hatakeyama, Mariko; Mar, Jessica C
2015-01-01
Understanding how cells use complex transcriptional programs to alter their fate in response to specific stimuli is an important question in biology. For the MCF-7 human breast cancer cell line, we applied gene expression trajectory models to identify the genes involved in driving cell fate transitions. We modified trajectory models to account for the scenario where cells were exposed to different stimuli, in this case epidermal growth factor and heregulin, to arrive at different cell fates, i.e. proliferation and differentiation respectively. Using genome-wide CAGE time series data collected from the FANTOM5 consortium, we identified the sets of promoters that were involved in the transition of MCF-7 cells to their specific fates versus those with expression changes that were generic to both stimuli. Of the 1,552 promoters identified, 1,091 had stimulus-specific expression while 461 promoters had generic expression profiles over the time course surveyed. Many of these stimulus-specific promoters mapped to key regulators of the ERK (extracellular signal-regulated kinases) signaling pathway such as FHL2 (four and a half LIM domains 2). We observed that in general, generic promoters peaked in their expression early on in the time course, while stimulus-specific promoters tended to show activation of their expression at a later stage. The genes that mapped to stimulus-specific promoters were enriched for pathways that control focal adhesion, p53 signaling and MAPK signaling while generic promoters were enriched for cell death, transcription and the cell cycle. We identified 162 genes that were controlled by an alternative promoter during the time course where a subset of 37 genes had separate promoters that were classified as stimulus-specific and generic. The results of our study highlighted the degree of complexity involved in regulating a cell fate transition where multiple promoters mapping to the same gene can demonstrate quite divergent expression profiles.
Limits on the generalizability of context-driven control.
Hutcheon, Thomas G; Spieler, Daniel H
2017-07-01
Context-driven control refers to the fast and flexible weighting of stimulus dimensions that may be applied at the onset of a stimulus. Evidence for context-driven control comes from interference tasks in which participants encounter a high proportion of incongruent trials at one location and a high proportion of congruent trials at another location. Since the size of the congruency effect varies as a function of location, this suggests that stimulus dimensions are weighted differently based on the context in which they appear. However, manipulations of condition proportion are often confounded by variations in the frequency with which particular stimuli are encountered. To date, there is limited evidence for the context-driven control in the absence of stimulus frequency confounds. In the current paper, we attempt to replicate and extend one such finding [Crump, M. J. C., & Milliken, B. (2009). The flexibility of context-specific control: Evidence for context-driven generalization of item-specific control settings. The Quarterly Journal of Experimental Psychology, 62, 1523-1532]. Across three experiments we fail to find evidence for context-driven control in the absence of stimulus frequency confounds. Based on these results, we argue that consistency in the informativeness of the irrelevant dimension may be required for context-driven control to emerge.
Generalization of a tactile stimulus in horses.
Dougherty, D M; Lewis, P
1993-01-01
Using horses, we investigated the control of operant behavior by a tactile stimulus (the training stimulus) and the generalization of behavior to six other similar test stimuli. In a stall, the experimenters mounted a response panel in the doorway. Located on this panel were a response lever and a grain dispenser. The experimenters secured a tactile-stimulus belt to the horse's back. The stimulus belt was constructed by mounting seven solenoids along a piece of burlap in a manner that allowed each to provide the delivery of a tactile stimulus, a repetitive light tapping, at different locations (spaced 10.0 cm apart) along the horse's back. Two preliminary steps were necessary before generalization testing: training a measurable response (lip pressing) and training on several reinforcement schedules in the presence of a training stimulus (tapping by one of the solenoids). We then gave each horse two generalization test sessions. Results indicated that the horses' behavior was effectively controlled by the training stimulus. Horses made the greatest number of responses to the training stimulus, and the tendency to respond to the other test stimuli diminished as the stimuli became farther away from the training stimulus. These findings are discussed in the context of behavioral principles and their relevance to the training of horses. PMID:8315368
Generalization of a tactile stimulus in horses.
Dougherty, D M; Lewis, P
1993-05-01
Using horses, we investigated the control of operant behavior by a tactile stimulus (the training stimulus) and the generalization of behavior to six other similar test stimuli. In a stall, the experimenters mounted a response panel in the doorway. Located on this panel were a response lever and a grain dispenser. The experimenters secured a tactile-stimulus belt to the horse's back. The stimulus belt was constructed by mounting seven solenoids along a piece of burlap in a manner that allowed each to provide the delivery of a tactile stimulus, a repetitive light tapping, at different locations (spaced 10.0 cm apart) along the horse's back. Two preliminary steps were necessary before generalization testing: training a measurable response (lip pressing) and training on several reinforcement schedules in the presence of a training stimulus (tapping by one of the solenoids). We then gave each horse two generalization test sessions. Results indicated that the horses' behavior was effectively controlled by the training stimulus. Horses made the greatest number of responses to the training stimulus, and the tendency to respond to the other test stimuli diminished as the stimuli became farther away from the training stimulus. These findings are discussed in the context of behavioral principles and their relevance to the training of horses.
Control effects of stimulus paradigms on characteristic firings of parkinsonism
NASA Astrophysics Data System (ADS)
Zhang, Honghui; Wang, Qingyun; Chen, Guanrong
2014-09-01
Experimental studies have shown that neuron population located in the basal ganglia of parkinsonian primates can exhibit characteristic firings with certain firing rates differing from normal brain activities. Motivated by recent experimental findings, we investigate the effects of various stimulation paradigms on the firing rates of parkinsonism based on the proposed dynamical models. Our results show that the closed-loop deep brain stimulation is superior in ameliorating the firing behaviors of the parkinsonism, and other control strategies have similar effects according to the observation of electrophysiological experiments. In addition, in conformity to physiological experiments, we found that there exists optimal delay of input in the closed-loop GPtrain|M1 paradigm, where more normal behaviors can be obtained. More interestingly, we observed that W-shaped curves of the firing rates always appear as stimulus delay varies. We furthermore verify the robustness of the obtained results by studying three pallidal discharge rates of the parkinsonism based on the conductance-based model, as well as the integrate-and-fire-or-burst model. Finally, we show that short-term plasticity can improve the firing rates and optimize the control effects on parkinsonism. Our conclusions may give more theoretical insight into Parkinson's disease studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sobral, G. A. Jr.; Vieira, V. M.; Lyra, M. L.
Extending a model due to Derrida, Gardner, and Zippelius, we have studied the recognition ability of an extreme and asymmetrically diluted version of the Hopfield model for associative memory by including the effect of a stimulus in the dynamics of the system. We obtain exact results for the dynamic evolution of the average network superposition. The stimulus field was considered as proportional to the overlapping of the state of the system with a particular stimulated pattern. Two situations were analyzed, namely, the external stimulus acting on the initialization pattern (parallel stimulus) and the external stimulus acting on a pattern orthogonalmore » to the initialization one (orthogonal stimulus). In both cases, we obtained the complete phase diagram in the parameter space composed of the stimulus field, thermal noise, and network capacity. Our results show that the system improves its recognition ability for parallel stimulus. For orthogonal stimulus two recognition phases emerge with the system locking at the initialization or stimulated pattern. We confront our analytical results with numerical simulations for the noiseless case T=0.« less
Dynamic Integration of Reward and Stimulus Information in Perceptual Decision-Making
Gao, Juan; Tortell, Rebecca; McClelland, James L.
2011-01-01
In perceptual decision-making, ideal decision-makers should bias their choices toward alternatives associated with larger rewards, and the extent of the bias should decrease as stimulus sensitivity increases. When responses must be made at different times after stimulus onset, stimulus sensitivity grows with time from zero to a final asymptotic level. Are decision makers able to produce responses that are more biased if they are made soon after stimulus onset, but less biased if they are made after more evidence has been accumulated? If so, how close to optimal can they come in doing this, and how might their performance be achieved mechanistically? We report an experiment in which the payoff for each alternative is indicated before stimulus onset. Processing time is controlled by a “go” cue occurring at different times post stimulus onset, requiring a response within msec. Reward bias does start high when processing time is short and decreases as sensitivity increases, leveling off at a non-zero value. However, the degree of bias is sub-optimal for shorter processing times. We present a mechanistic account of participants' performance within the framework of the leaky competing accumulator model [1], in which accumulators for each alternative accumulate noisy information subject to leakage and mutual inhibition. The leveling off of accuracy is attributed to mutual inhibition between the accumulators, allowing the accumulator that gathers the most evidence early in a trial to suppress the alternative. Three ways reward might affect decision making in this framework are considered. One of the three, in which reward affects the starting point of the evidence accumulation process, is consistent with the qualitative pattern of the observed reward bias effect, while the other two are not. Incorporating this assumption into the leaky competing accumulator model, we are able to provide close quantitative fits to individual participant data. PMID:21390225
Dynamic integration of reward and stimulus information in perceptual decision-making.
Gao, Juan; Tortell, Rebecca; McClelland, James L
2011-03-03
In perceptual decision-making, ideal decision-makers should bias their choices toward alternatives associated with larger rewards, and the extent of the bias should decrease as stimulus sensitivity increases. When responses must be made at different times after stimulus onset, stimulus sensitivity grows with time from zero to a final asymptotic level. Are decision makers able to produce responses that are more biased if they are made soon after stimulus onset, but less biased if they are made after more evidence has been accumulated? If so, how close to optimal can they come in doing this, and how might their performance be achieved mechanistically? We report an experiment in which the payoff for each alternative is indicated before stimulus onset. Processing time is controlled by a "go" cue occurring at different times post stimulus onset, requiring a response within msec. Reward bias does start high when processing time is short and decreases as sensitivity increases, leveling off at a non-zero value. However, the degree of bias is sub-optimal for shorter processing times. We present a mechanistic account of participants' performance within the framework of the leaky competing accumulator model [1], in which accumulators for each alternative accumulate noisy information subject to leakage and mutual inhibition. The leveling off of accuracy is attributed to mutual inhibition between the accumulators, allowing the accumulator that gathers the most evidence early in a trial to suppress the alternative. Three ways reward might affect decision making in this framework are considered. One of the three, in which reward affects the starting point of the evidence accumulation process, is consistent with the qualitative pattern of the observed reward bias effect, while the other two are not. Incorporating this assumption into the leaky competing accumulator model, we are able to provide close quantitative fits to individual participant data.
Assembling old tricks for new tasks: a neural model of instructional learning and control.
Huang, Tsung-Ren; Hazy, Thomas E; Herd, Seth A; O'Reilly, Randall C
2013-06-01
We can learn from the wisdom of others to maximize success. However, it is unclear how humans take advice to flexibly adapt behavior. On the basis of data from neuroanatomy, neurophysiology, and neuroimaging, a biologically plausible model is developed to illustrate the neural mechanisms of learning from instructions. The model consists of two complementary learning pathways. The slow-learning parietal pathway carries out simple or habitual stimulus-response (S-R) mappings, whereas the fast-learning hippocampal pathway implements novel S-R rules. Specifically, the hippocampus can rapidly encode arbitrary S-R associations, and stimulus-cued responses are later recalled into the basal ganglia-gated pFC to bias response selection in the premotor and motor cortices. The interactions between the two model learning pathways explain how instructions can override habits and how automaticity can be achieved through motor consolidation.
The paradoxical effect of low reward probabilities in suboptimal choice.
Fortes, Inês; Pinto, Carlos; Machado, Armando; Vasconcelos, Marco
2018-04-01
When offered a choice between 2 alternatives, animals sometimes prefer the option yielding less food. For instance, pigeons and starlings prefer an option that on 20% of the trials presents a stimulus always followed by food, and on the remaining 80% of the trials presents a stimulus never followed by food (the Informative Option), over an option that provides food on 50% of the trials regardless of the stimulus presented (the Noninformative Option). To explain this suboptimal behavior, it has been hypothesized that animals ignore (or do not engage with) the stimulus that is never followed by food in the Informative Option. To assess when pigeons attend to the stimulus usually not followed by food, we increased the probability of reinforcement, p, in the presence of that stimulus. Across 2 experiments, we found that the value of the Informative Option decreased with p. To account for the results, we added to the Reinforcement Rate Model (and also to the Hyperbolic Discounting Model) an engagement function, f(p), that specified the likelihood the animal attends to a stimulus followed by reward with probability p, and then derived the model predictions for 2 forms of f(p), a linear function, and an all-or-none threshold function. Both models predicted the observed findings with a linear engagement function: The higher the probability of reinforcement after a stimulus, the higher the probability of engaging the stimulus, and, surprisingly, the less the value of the option comprising the stimulus. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
The role of within-compound associations in learning about absent cues.
Witnauer, James E; Miller, Ralph R
2011-05-01
When two cues are reinforced together (in compound), most associative models assume that animals learn an associative network that includes direct cue-outcome associations and a within-compound association. All models of associative learning subscribe to the importance of cue-outcome associations, but most models assume that within-compound associations are irrelevant to each cue's subsequent behavioral control. In the present article, we present an extension of Van Hamme and Wasserman's (Learning and Motivation 25:127-151, 1994) model of retrospective revaluation based on learning about absent cues that are retrieved through within-compound associations. The model was compared with a model lacking retrieval through within-compound associations. Simulations showed that within-compound associations are necessary for the model to explain higher-order retrospective revaluation and the observed greater retrospective revaluation after partial reinforcement than after continuous reinforcement alone. These simulations suggest that the associability of an absent stimulus is determined by the extent to which the stimulus is activated through the within-compound association.
The role of within-compound associations in learning about absent cues
Witnauer, James E.
2011-01-01
When two cues are reinforced together (in compound), most associative models assume that animals learn an associative network that includes direct cue–outcome associations and a within-compound association. All models of associative learning subscribe to the importance of cue–outcome associations, but most models assume that within-compound associations are irrelevant to each cue's subsequent behavioral control. In the present article, we present an extension of Van Hamme and Wasserman's (Learning and Motivation 25:127–151, 1994) model of retrospective revaluation based on learning about absent cues that are retrieved through within-compound associations. The model was compared with a model lacking retrieval through within-compound associations. Simulations showed that within-compound associations are necessary for the model to explain higher-order retrospective revaluation and the observed greater retrospective revaluation after partial reinforcement than after continuous reinforcement alone. These simulations suggest that the associability of an absent stimulus is determined by the extent to which the stimulus is activated through the within-compound association. PMID:21264569
NASA Astrophysics Data System (ADS)
Chamakuri, Nagaiah; Engwer, Christian; Kunisch, Karl
2014-09-01
Optimal control for cardiac electrophysiology based on the bidomain equations in conjunction with the Fenton-Karma ionic model is considered. This generic ventricular model approximates well the restitution properties and spiral wave behavior of more complex ionic models of cardiac action potentials. However, it is challenging due to the appearance of state-dependent discontinuities in the source terms. A computational framework for the numerical realization of optimal control problems is presented. Essential ingredients are a shape calculus based treatment of the sensitivities of the discontinuous source terms and a marching cubes algorithm to track iso-surface of excitation wavefronts. Numerical results exhibit successful defibrillation by applying an optimally controlled extracellular stimulus.
Little, Daniel R; Wang, Tony; Nosofsky, Robert M
2016-09-01
Among the most fundamental results in the area of perceptual classification are the "correlated facilitation" and "filtering interference" effects observed in Garner's (1974) speeded categorization tasks: In the case of integral-dimension stimuli, relative to a control task, single-dimension classification is faster when there is correlated variation along a second dimension, but slower when there is orthogonal variation that cannot be filtered out (e.g., by attention). These fundamental effects may result from participants' use of a trial-by-trial bypass strategy in the control and correlated tasks: The observer changes the previous category response whenever the stimulus changes, and maintains responses if the stimulus repeats. Here we conduct modified versions of the Garner tasks that eliminate the availability of a pure bypass strategy. The fundamental facilitation and interference effects remain, but are still largely explainable in terms of pronounced sequential effects in all tasks. We develop sequence-sensitive versions of exemplar-retrieval and decision-bound models aimed at capturing the detailed, trial-by-trial response-time distribution data. The models combine assumptions involving: (i) strengthened perceptual/memory representations of stimuli that repeat across consecutive trials, and (ii) a bias to change category responses on trials in which the stimulus changes. These models can predict our observed effects and provide a more complete account of the underlying bases of performance in our modified Garner tasks. Copyright © 2016 Elsevier Inc. All rights reserved.
Wang, Yuxiang; Baba, Yoshichika; Lumpkin, Ellen A.
2016-01-01
Distinct patterns in neuronal firing are observed between classes of cutaneous afferents. Such differences may be attributed to end-organ morphology, distinct ion-channel complements, and skin microstructure, among other factors. Even for just the slowly adapting type I afferent, the skin's mechanics for a particular specimen might impact the afferent's firing properties, especially given the thickness and elasticity of skin can change dramatically over just days. Here, we show computationally that the skin can reliably convey indentation magnitude, rate, and spatial geometry to the locations of tactile receptors even amid changes in skin's structure. Using finite element analysis and neural dynamics models, we considered the skin properties of six mice that span a representative cohort. Modeling the propagation of the surface stimulus to the interior of the skin demonstrated that there can be large variance in stresses and strains near the locations of tactile receptors, which can lead to large variance in static firing rate. However, variance is significantly reduced when the stimulus tip is controlled by surface pressure and compressive stress is measured near the end organs. This particular transformation affords the least variability in predicted firing rates compared with others derived from displacement, force, strain energy density, or compressive strain. Amid changing skin mechanics, stimulus control by surface pressure may be more naturalistic and optimal and underlie how animals actively explore the tactile environment. PMID:27098029
ERIC Educational Resources Information Center
de Rose, Julio C.; Hidalgo, Matheus; Vasconcellos, Mariliz
2013-01-01
Variation in baseline controlling relations is suggested as one of the factors determining variability in stimulus equivalence outcomes. This study used single- comparison trials attempting to control such controlling relations. Four children learned AB, BC, and CD conditional discriminations, with 2 samples and 2 comparison stimuli. In Condition…
Fitting of dynamic recurrent neural network models to sensory stimulus-response data.
Doruk, R Ozgur; Zhang, Kechen
2018-06-02
We present a theoretical study aiming at model fitting for sensory neurons. Conventional neural network training approaches are not applicable to this problem due to lack of continuous data. Although the stimulus can be considered as a smooth time-dependent variable, the associated response will be a set of neural spike timings (roughly the instants of successive action potential peaks) that have no amplitude information. A recurrent neural network model can be fitted to such a stimulus-response data pair by using the maximum likelihood estimation method where the likelihood function is derived from Poisson statistics of neural spiking. The universal approximation feature of the recurrent dynamical neuron network models allows us to describe excitatory-inhibitory characteristics of an actual sensory neural network with any desired number of neurons. The stimulus data are generated by a phased cosine Fourier series having a fixed amplitude and frequency but a randomly shot phase. Various values of amplitude, stimulus component size, and sample size are applied in order to examine the effect of the stimulus to the identification process. Results are presented in tabular and graphical forms at the end of this text. In addition, to demonstrate the success of this research, a study involving the same model, nominal parameters and stimulus structure, and another study that works on different models are compared to that of this research.
Briley, Paul M; Krumbholz, Katrin
2013-12-01
The neural response to a sensory stimulus tends to be more strongly reduced when the stimulus is preceded by the same, rather than a different, stimulus. This stimulus-specific adaptation (SSA) is ubiquitous across the senses. In hearing, SSA has been suggested to play a role in change detection as indexed by the mismatch negativity. This study sought to test whether SSA, measured in human auditory cortex, is caused by neural fatigue (reduction in neural responsiveness) or by sharpening of neural tuning to the adapting stimulus. For that, we measured event-related cortical potentials to pairs of pure tones with varying frequency separation and stimulus onset asynchrony (SOA). This enabled us to examine the relationship between the degree of specificity of adaptation as a function of frequency separation and the rate of decay of adaptation with increasing SOA. Using simulations of tonotopic neuron populations, we demonstrate that the fatigue model predicts independence of adaptation specificity and decay rate, whereas the sharpening model predicts interdependence. The data showed independence and thus supported the fatigue model. In a second experiment, we measured adaptation specificity after multiple presentations of the adapting stimulus. The multiple adapters produced more adaptation overall, but the effect was more specific to the adapting frequency. Within the context of the fatigue model, the observed increase in adaptation specificity could be explained by assuming a 2.5-fold increase in neural frequency selectivity. We discuss possible bottom-up and top-down mechanisms of this effect.
Smith, Philip L; Sewell, David K; Lilburn, Simon D
2015-11-01
Normalization models of visual sensitivity assume that the response of a visual mechanism is scaled divisively by the sum of the activity in the excitatory and inhibitory mechanisms in its neighborhood. Normalization models of attention assume that the weighting of excitatory and inhibitory mechanisms is modulated by attention. Such models have provided explanations of the effects of attention in both behavioral and single-cell recording studies. We show how normalization models can be obtained as the asymptotic solutions of shunting differential equations, in which stimulus inputs and the activity in the mechanism control growth rates multiplicatively rather than additively. The value of the shunting equation approach is that it characterizes the entire time course of the response, not just its asymptotic strength. We describe two models of attention based on shunting dynamics, the integrated system model of Smith and Ratcliff (2009) and the competitive interaction theory of Smith and Sewell (2013). These models assume that attention, stimulus salience, and the observer's strategy for the task jointly determine the selection of stimuli into visual short-term memory (VSTM) and the way in which stimulus representations are weighted. The quality of the VSTM representation determines the speed and accuracy of the decision. The models provide a unified account of a variety of attentional phenomena found in psychophysical tasks using single-element and multi-element displays. Our results show the generality and utility of the normalization approach to modeling attention. Copyright © 2014 Elsevier B.V. All rights reserved.
Jones, JoAnna; Lerman, Dorothea C; Lechago, Sarah
2014-01-01
We taught social responses to young children with autism using an adult as the recipient of the social interaction and then assessed generalization of performance to adults and peers who had not participated in the training. Although the participants' performance was similar across adults, responding was less consistent with peers, and a subsequent probe suggested that the recipient of the social behavior (adults vs. peers) controlled responding. We then evaluated the effects of having participants observe a video of a peer engaged in the targeted social behavior with another peer who provided reinforcement for the social response. Results suggested that certain irrelevant stimuli (adult vs. peer recipient) were more likely to exert stimulus control over responding than others (setting, materials) and that video viewing was an efficient way to promote generalization to peers. © Society for the Experimental Analysis of Behavior.
Anderson, Britt; Soliman, Sherif; O’Malley, Shannon; Danckert, James; Besner, Derek
2015-01-01
Drawing on theoretical and computational work with the localist dual route reading model and results from behavioral studies, Besner et al. (2011) proposed that the ability to perform tasks that require overriding stimulus-specific defaults (e.g., semantics when naming Arabic numerals, and phonology when evaluating the parity of number words) necessitate the ability to modulate the strength of connections between cognitive modules for lexical representation, semantics, and phonology on a task- and stimulus-specific basis. We used functional magnetic resonance imaging to evaluate this account by assessing changes in functional connectivity while participants performed tasks that did and did not require such stimulus-task default overrides. The occipital region showing the greatest modulation of BOLD signal strength for the two stimulus types was used as the seed region for Granger causality mapping (GCM). Our GCM analysis revealed a region of rostromedial frontal cortex with a crossover interaction. When participants performed tasks that required overriding stimulus type defaults (i.e., parity judgments of number words and naming Arabic numerals) functional connectivity between the occipital region and rostromedial frontal cortex was present. Statistically significant functional connectivity was absent when the tasks were the default for the stimulus type (i.e., parity judgments of Arabic numerals and reading number words). This frontal region (BA 10) has previously been shown to be involved in goal-directed behavior and maintenance of a specific task set. We conclude that overriding stimulus-task defaults requires a modulation of connection strengths between cognitive modules and that the override mechanism predicted from cognitive theory is instantiated by frontal modulation of neural activity of brain regions specialized for sensory processing. PMID:25870571
Helmer, Markus; Kozyrev, Vladislav; Stephan, Valeska; Treue, Stefan; Geisel, Theo; Battaglia, Demian
2016-01-01
Tuning curves are the functions that relate the responses of sensory neurons to various values within one continuous stimulus dimension (such as the orientation of a bar in the visual domain or the frequency of a tone in the auditory domain). They are commonly determined by fitting a model e.g. a Gaussian or other bell-shaped curves to the measured responses to a small subset of discrete stimuli in the relevant dimension. However, as neuronal responses are irregular and experimental measurements noisy, it is often difficult to determine reliably the appropriate model from the data. We illustrate this general problem by fitting diverse models to representative recordings from area MT in rhesus monkey visual cortex during multiple attentional tasks involving complex composite stimuli. We find that all models can be well-fitted, that the best model generally varies between neurons and that statistical comparisons between neuronal responses across different experimental conditions are affected quantitatively and qualitatively by specific model choices. As a robust alternative to an often arbitrary model selection, we introduce a model-free approach, in which features of interest are extracted directly from the measured response data without the need of fitting any model. In our attentional datasets, we demonstrate that data-driven methods provide descriptions of tuning curve features such as preferred stimulus direction or attentional gain modulations which are in agreement with fit-based approaches when a good fit exists. Furthermore, these methods naturally extend to the frequent cases of uncertain model selection. We show that model-free approaches can identify attentional modulation patterns, such as general alterations of the irregular shape of tuning curves, which cannot be captured by fitting stereotyped conventional models. Finally, by comparing datasets across different conditions, we demonstrate effects of attention that are cell- and even stimulus-specific. Based on these proofs-of-concept, we conclude that our data-driven methods can reliably extract relevant tuning information from neuronal recordings, including cells whose seemingly haphazard response curves defy conventional fitting approaches.
Helmer, Markus; Kozyrev, Vladislav; Stephan, Valeska; Treue, Stefan; Geisel, Theo; Battaglia, Demian
2016-01-01
Tuning curves are the functions that relate the responses of sensory neurons to various values within one continuous stimulus dimension (such as the orientation of a bar in the visual domain or the frequency of a tone in the auditory domain). They are commonly determined by fitting a model e.g. a Gaussian or other bell-shaped curves to the measured responses to a small subset of discrete stimuli in the relevant dimension. However, as neuronal responses are irregular and experimental measurements noisy, it is often difficult to determine reliably the appropriate model from the data. We illustrate this general problem by fitting diverse models to representative recordings from area MT in rhesus monkey visual cortex during multiple attentional tasks involving complex composite stimuli. We find that all models can be well-fitted, that the best model generally varies between neurons and that statistical comparisons between neuronal responses across different experimental conditions are affected quantitatively and qualitatively by specific model choices. As a robust alternative to an often arbitrary model selection, we introduce a model-free approach, in which features of interest are extracted directly from the measured response data without the need of fitting any model. In our attentional datasets, we demonstrate that data-driven methods provide descriptions of tuning curve features such as preferred stimulus direction or attentional gain modulations which are in agreement with fit-based approaches when a good fit exists. Furthermore, these methods naturally extend to the frequent cases of uncertain model selection. We show that model-free approaches can identify attentional modulation patterns, such as general alterations of the irregular shape of tuning curves, which cannot be captured by fitting stereotyped conventional models. Finally, by comparing datasets across different conditions, we demonstrate effects of attention that are cell- and even stimulus-specific. Based on these proofs-of-concept, we conclude that our data-driven methods can reliably extract relevant tuning information from neuronal recordings, including cells whose seemingly haphazard response curves defy conventional fitting approaches. PMID:26785378
Stimulus Equivalence, Generalization, and Contextual Stimulus Control in Verbal Classes
Sigurðardóttir, Zuilma Gabriela; Mackay, Harry A; Green, Gina
2012-01-01
Stimulus generalization and contextual control affect the development of equivalence classes. Experiment 1 demonstrated primary stimulus generalization from the members of trained equivalence classes. Adults were taught to match six spoken Icelandic nouns and corresponding printed words and pictures to one another in computerized three-choice matching-to-sample tasks. Tests confirmed that six equivalence classes had formed. Without further training, plural forms of the stimuli were presented in tests for all matching performances. All participants demonstrated virtually errorless performances. In Experiment 2, classifications of the nouns used in Experiment 1 were brought under contextual control. Three nouns were feminine and three were masculine. The match-to-sample training taught participants to select a comparison of the same number as the sample (i.e., singular or plural) in the presence of contextual stimulus A regardless of noun gender. Concurrently, in the presence of contextual stimulus B, participants were taught to select a comparison of the same gender as the sample (i.e., feminine or masculine), regardless of number. Generalization was assessed using a card-sorting test. All participants eventually sorted the cards correctly into gender and number stimulus classes. When printed words used in training were replaced by their picture equivalents, participants demonstrated almost errorless performances. PMID:22754102
Alertness and cognitive control: Testing the early onset hypothesis.
Schneider, Darryl W
2018-05-01
Previous research has revealed a peculiar interaction between alertness and cognitive control in selective-attention tasks: Congruency effects are larger on alert trials (on which an alerting cue is presented briefly in advance of the imperative stimulus) than on no-alert trials, despite shorter response times (RTs) on alert trials. One explanation for this finding is the early onset hypothesis, which is based on the assumptions that increased alertness shortens stimulus-encoding time and that cognitive control involves gradually focusing attention during a trial. The author tested the hypothesis in 3 experiments by manipulating alertness and stimulus quality (which were intended to shorten and lengthen stimulus-encoding time, respectively) in an arrow-based flanker task involving congruent and incongruent stimuli. Replicating past findings, the alerting manipulation led to shorter RTs but larger congruency effects on alert trials than on no-alert trials. The stimulus-quality manipulation led to longer RTs and larger congruency effects for degraded stimuli than for intact stimuli. These results provide mixed support for the early onset hypothesis, but the author discusses how data and theory might be reconciled if stimulus quality affects stimulus-encoding time and the rate of evidence accumulation in the decision process. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Bioinspired Mechano‐Sensitive Macroporous Ceramic Sponge for Logical Drug and Cell Delivery
Xu, Changlu; Wei, Zhihao; Gao, Huajian; Bai, Yanjie; Liu, Huiling; Yang, Huilin
2017-01-01
On‐demand, ultrahigh precision delivery of molecules and cells assisted by scaffold is a pivotal theme in the field of controlled release, but it remains extremely challenging for ceramic‐based macroporous scaffolds that are prevalently used in regenerative medicine. Sea sponges (Phylum Porifera), whose bodies possess hierarchical pores or channels and organic/inorganic composite structures, can delicately control water intake/circulation and therefore achieve high precision mass transportation of food, oxygen, and wastes. Inspired by leuconoid sponge, in this study, the authors design and fabricate a biomimetic macroporous ceramic composite sponge (CCS) for high precision logic delivery of molecules and cells regulated by mechanical stimulus. The CCS reveals unique on‐demand AND logic release behaviors in response to dual‐gates of moisture and pressure (or strain) and, more importantly, 1 cm3 volume of CCS achieves unprecedentedly delivery precision of ≈100 ng per cycle for hydrophobic or hydrophilic molecules and ≈1400 cells per cycle for fibroblasts, respectively. PMID:28638781
Healthy Aging Delays Scalp EEG Sensitivity to Noise in a Face Discrimination Task
Rousselet, Guillaume A.; Gaspar, Carl M.; Pernet, Cyril R.; Husk, Jesse S.; Bennett, Patrick J.; Sekuler, Allison B.
2010-01-01
We used a single-trial ERP approach to quantify age-related changes in the time-course of noise sensitivity. A total of 62 healthy adults, aged between 19 and 98, performed a non-speeded discrimination task between two faces. Stimulus information was controlled by parametrically manipulating the phase spectrum of these faces. Behavioral 75% correct thresholds increased with age. This result may be explained by lower signal-to-noise ratios in older brains. ERP from each subject were entered into a single-trial general linear regression model to identify variations in neural activity statistically associated with changes in image structure. The fit of the model, indexed by R2, was computed at multiple post-stimulus time points. The time-course of the R2 function showed significantly delayed noise sensitivity in older observers. This age effect is reliable, as demonstrated by test–retest in 24 subjects, and started about 120 ms after stimulus onset. Our analyses suggest also a qualitative change from a young to an older pattern of brain activity at around 47 ± 4 years old. PMID:21833194
The Price of Fame: The Impact of Stimulus Familiarity on Proactive Interference Resolution
Prabhakaran, Ranjani; Thompson-Schill, Sharon L.
2013-01-01
Interference from previously learned information, known as proactive interference (PI), limits our memory retrieval abilities. Previous studies of PI resolution have focused on the role of short-term familiarity, or recency, in causing PI. In the present study, we investigated the impact of long-term stimulus familiarity on PI resolution processes. In two behavioral experiments and one event-related fMRI experiment, long-term familiarity was manipulated through the use of famous and nonfamous stimuli, and short-term familiarity was manipulated through the use of recent and nonrecent probe items in an item recognition task. The right middle frontal gyrus demonstrated greater sensitivity to famous stimuli, suggesting that long-term stimulus familiarity plays a role in influencing PI resolution processes. Further examination of the effect of long-term stimulus familiarity on PI resolution revealed a larger behavioral interference effect for famous stimuli, but only under speeded response conditions. Thus, models of memory retrieval—and of the cognitive control mechanisms that guide retrieval processes—should consider the impact of and interactions among sources of familiarity on multiple time scales. PMID:20429858
The price of fame: the impact of stimulus familiarity on proactive interference resolution.
Prabhakaran, Ranjani; Thompson-Schill, Sharon L
2011-04-01
Interference from previously learned information, known as proactive interference (PI), limits our memory retrieval abilities. Previous studies of PI resolution have focused on the role of short-term familiarity, or recency, in causing PI. In the present study, we investigated the impact of long-term stimulus familiarity on PI resolution processes. In two behavioral experiments and one event-related fMRI experiment, long-term familiarity was manipulated through the use of famous and nonfamous stimuli, and short-term familiarity was manipulated through the use of recent and nonrecent probe items in an item recognition task. The right middle frontal gyrus demonstrated greater sensitivity to famous stimuli, suggesting that long-term stimulus familiarity plays a role in influencing PI resolution processes. Further examination of the effect of long-term stimulus familiarity on PI resolution revealed a larger behavioral interference effect for famous stimuli, but only under speeded response conditions. Thus, models of memory retrieval--and of the cognitive control mechanisms that guide retrieval processes--should consider the impact of and interactions among sources of familiarity on multiple time scales.
Using stimulus shaping and fading to establish stimulus control in normal and retarded children.
Smeets, P M; Lancioni, G E; Hoogeveen, F R
1984-09-01
The present study was an effort to investigate whether, in addition to his IQ level, the child's ability to identify all relevant stimulus components would affect the frequency of overselective responding. Children of different IQ levels (i.e. normal, educably retarded, and trainable retarded children) participated. Subjects were trained to learn the meanings of four sets of fictitious words, i.e. two sets containing words printed in Roman letters (Roman words), and two sets containing words printed in Hebrew letters (Hebrew words). All subjects could identify the words of each set. The normal and educably retarded subjects could read aloud the Roman words, whereas the trainable retarded subjects could not. None of the subjects could read the Hebrew words. Two training procedures were used, one requiring transfer of stimulus control (fading), and one which did not (stimulus shaping). The results indicated that, firstly, the discrimination learning of the normal and educably retarded subjects covaried with the IQ level and their ability to read the words. The learning rate was not affected by the training procedures. Secondly, the trainable retarded subjects learned much better through stimulus shaping than through fading. Their acquisition rates were slow and not affected by the types of letters. Thirdly, the training procedures had no effect on the breadth of stimulus control. Instead, it covaried as a function of the IQ level (all groups) and of the child's ability to read the words (normal and educably retarded subjects). Fourthly, the training procedures had, however, considerable effect on which letters controlled the discriminations. When overselective selective responding was evident, the letters that had been associated with the prompts were more often functional than the other letters, but only for the words trained through stimulus shaping.
Kaping, Daniel; Vinck, Martin; Hutchison, R. Matthew; Everling, Stefan; Womelsdorf, Thilo
2011-01-01
Attentional control ensures that neuronal processes prioritize the most relevant stimulus in a given environment. Controlling which stimulus is attended thus originates from neurons encoding the relevance of stimuli, i.e. their expected value, in hand with neurons encoding contextual information about stimulus locations, features, and rules that guide the conditional allocation of attention. Here, we examined how these distinct processes are encoded and integrated in macaque prefrontal cortex (PFC) by mapping their functional topographies at the time of attentional stimulus selection. We find confined clusters of neurons in ventromedial PFC (vmPFC) that predominantly convey stimulus valuation information during attention shifts. These valuation signals were topographically largely separated from neurons predicting the stimulus location to which attention covertly shifted, and which were evident across the complete medial-to-lateral extent of the PFC, encompassing anterior cingulate cortex (ACC), and lateral PFC (LPFC). LPFC responses showed particularly early-onset selectivity and primarily facilitated attention shifts to contralateral targets. Spatial selectivity within ACC was delayed and heterogeneous, with similar proportions of facilitated and suppressed responses during contralateral attention shifts. The integration of spatial and valuation signals about attentional target stimuli was observed in a confined cluster of neurons at the intersection of vmPFC, ACC, and LPFC. These results suggest that valuation processes reflecting stimulus-specific outcome predictions are recruited during covert attentional control. Value predictions and the spatial identification of attentional targets were conveyed by largely separate neuronal populations, but were integrated locally at the intersection of three major prefrontal areas, which may constitute a functional hub within the larger attentional control network. PMID:22215982
Hemisphere-Dependent Holistic Processing of Familiar Faces
ERIC Educational Resources Information Center
Ramon, Meike; Rossion, Bruno
2012-01-01
In two behavioral experiments involving lateralized stimulus presentation, we tested whether one of the most commonly used measures of holistic face processing--the composite face effect--would be more pronounced for stimuli presented to the right as compared to the left hemisphere. In experiment 1, we investigated the composite face effect in a…
The Assessment of Composition Skills. Pre/Post Results: Group I.
ERIC Educational Resources Information Center
Wilson, Morris D.
The initial stimulus for measuring the composition skills of students in the Des Moines (IA) Independent Community School District came in 1980-81 when the school board adopted a goal for the year which stated: "The district should have school programs that improve pupils' competency in written expression." The intent of the original…
Vanegas-Acosta, J C; Garzón-Alvarado, D A; Lancellotti, V
2013-12-01
The insertion of a dental implant activates a sequence of wound healing events ending with bone formation and implant osseointegration. This sequence starts with the blood coagulation process and the formation of a fibrin network that detains spilt blood. Fibrin formation can be simplified as the kinetic reaction between thrombin and fibrinogen preceding the conversion of fibrinogen into fibrin. Based on experimental observations of the electrical properties of these molecules, we present a hypothesis for the mechanism of a static electrical stimulus in controlling the formation of the blood clot. Specifically, the electrical stimulus increases the fibrin network formation in such a way that a preferential region of higher fibrin density is obtained. This hypothesis is validated by means of a numerical model for the blood clot formation at the bone-dental implant interface. Numerical results compare favorably to experimental observations for blood clotting with and without the static electrical stimulus. It is concluded that the density of the fibrin network depends on the strength of the static electrical stimulus, and that the blood clot formation has a preferential direction of formation in the presence of the electrical signal. © 2013 Published by Elsevier Ltd. All rights reserved.
Lowe, Robert; Almér, Alexander; Billing, Erik; Sandamirskaya, Yulia; Balkenius, Christian
2017-12-01
The partial reinforcement extinction effect (PREE) is an experimentally established phenomenon: behavioural response to a given stimulus is more persistent when previously inconsistently rewarded than when consistently rewarded. This phenomenon is, however, controversial in animal/human learning theory. Contradictory findings exist regarding when the PREE occurs. One body of research has found a within-subjects PREE, while another has found a within-subjects reversed PREE (RPREE). These opposing findings constitute what is considered the most important problem of PREE for theoreticians to explain. Here, we provide a neurocomputational account of the PREE, which helps to reconcile these seemingly contradictory findings of within-subjects experimental conditions. The performance of our model demonstrates how omission expectancy, learned according to low probability reward, comes to control response choice following discontinuation of reward presentation (extinction). We find that a PREE will occur when multiple responses become controlled by omission expectation in extinction, but not when only one omission-mediated response is available. Our model exploits the affective states of reward acquisition and reward omission expectancy in order to differentially classify stimuli and differentially mediate response choice. We demonstrate that stimulus-response (retrospective) and stimulus-expectation-response (prospective) routes are required to provide a necessary and sufficient explanation of the PREE versus RPREE data and that Omission representation is key for explaining the nonlinear nature of extinction data.
Reinforcer control by comparison-stimulus color and location in a delayed matching-to-sample task.
Alsop, Brent; Jones, B Max
2008-05-01
Six pigeons were trained in a delayed matching-to-sample task involving bright- and dim-yellow samples on a central key, a five-peck response requirement to either sample, a constant 1.5-s delay, and the presentation of comparison stimuli composed of red on the left key and green on the right key or vice versa. Green-key responses were occasionally reinforced following the dimmer-yellow sample, and red-key responses were occasionally reinforced following the brighter-yellow sample. Reinforcer delivery was controlled such that the distribution of reinforcers across both comparison-stimulus color and comparison-stimulus location could be varied systematically and independently across conditions. Matching accuracy was high throughout. The ratio of left to right side-key responses increased as the ratio of left to right reinforcers increased, the ratio of red to green responses increased as the ratio of red to green reinforcers increased, and there was no interaction between these variables. However, side-key biases were more sensitive to the distribution of reinforcers across key location than were comparison-color biases to the distribution of reinforcers across key color. An extension of Davison and Tustin's (1978) model of DMTS performance fit the data well, but the results were also consistent with an alternative theory of conditional discrimination performance (Jones, 2003) that calls for a conceptually distinct quantitative model.
Pramipexole-induced disruption of behavioral processes fundamental to intertemporal choice.
Johnson, Patrick S; Stein, Jeffrey S; Smits, Rochelle R; Madden, Gregory J
2013-05-01
Evaluating the effects of presession drug administration on intertemporal choice in nonhumans is a useful approach for identifying compounds that promote impulsive behavior in clinical populations, such as those prescribed the dopamine agonist pramipexole (PPX). Based on the results of previous studies, it is unclear whether PPX increases rats' impulsive choice or attenuates aspects of stimulus control. The present study was designed to experimentally isolate behavioral processes fundamental to intertemporal choice and challenge them pharmacologically with PPX administration. In Experiment 1, the hypothesis that PPX increases impulsive choice as a result of enhanced sensitivity to reinforcer delays was tested and disconfirmed. That is, acute PPX diminished delay sensitivity in a manner consistent with disruption of stimulus control whereas repeated PPX had no effect on delay sensitivity. Experiments 2 and 3 elaborated upon this finding by examining the effects of repeated PPX on rats' discrimination of response-reinforcer contingencies and reinforcer amounts, respectively. Accuracy of both discriminations was reduced by PPX. Collectively these results provide no support for past studies that have suggested PPX increases impulsive choice. Instead, PPX impairs stimulus control over choice behavior. The behavioral approach adopted herein could be profitably integrated with genetic and other biobehavioral models to advance our understanding of impulsive behavior associated with drug administration. © Society for the Experimental Analysis of Behavior.
Arriagada, Paulo; Palza, Humberto; Palma, Patricia; Flores, Marcos; Caviedes, Pablo
2018-04-01
Poly(lactic acid) (PLA) is a biodegradable and biocompatible polyester widely used in biomedical applications. Unfortunately, this biomaterial suffers from some shortcomings related with the absence of both bioactivity and antibacterial capacity. In this work, composites of PLA with either graphene oxide (GO) or thermally reduced graphene oxide (TrGO) were prepared by melt mixing to overcome these limitations. PLA composites with both GO and TrGO inhibited the attachment and proliferation of Escherichia coli and Staphylococcus aureus bacteria depending on the kind and amount of filler. Noteworthy, it is shown that by applying an electrical stimulus to the percolated PLA/TrGO, the antibacterial behavior can be dramatically increased. MTT analysis showed that while all the PLA/GO composites were more cytocompatible to osteoblast-like cells (SaOS-2) than pure PLA, only low content of TrGO was able to increase this property. These tendencies were related with changes in the surface properties of the resulting polymer composites, such as polarity and roughness. In this way, the addition of GO and TrGO into a PLA matrix allows the development of multifunctional composites for potential applications in biomedicine. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1051-1060, 2018. © 2017 Wiley Periodicals, Inc.
Chia, E K; Jih, C S
1994-09-01
We examined the effects of stereotyping on impression formation when encountering people dressed to represent a religious faith. We used stimulus photographs of eight male and female models dressed casually and a second photograph of one male and one female model in religious attire that was placed beside the control photos of models dressed causally. From each set of photographs, subjects selected a photo of the person with whom they would associate the various positive personality traits suggested by our stimulus questions. Subjects were students from a U.S. Catholic school, a U.S. public school, and a Malaysian Muslim school. All the subjects attributed more of the positive traits to photos of the models who were religiously attired than to photos of those who were casually dressed, but subjects from U.S. schools attributed more of the positive traits to the photos of religiously dressed models than did the subjects from the Malaysian school.
Winter, J C; Filipink, R A; Timineri, D; Helsley, S E; Rabin, R A
2000-01-01
Stimulus control was established in rats trained to discriminate either 5-methoxy-N,N-dimethyltryptamine (3 mg/kg) or (-)-2,5-dimethoxy-4-methylamphetamine (0.56 mg/kg) from saline. Tests of antagonism of stimulus control were conducted using the 5-HT1A antagonists (+/-)-pindolol and WAY-100635, and the 5-HT2 receptor antagonist pirenperone. In rats trained with 5-MeO-DMT, pindolol and WAY-100635 both produced a significant degree of antagonism of stimulus control, but pirenperone was much less effective. Likewise, the full generalization of 5-MeO-DMT to the selective 5-HT1A agonist [+/-]-8-hydroxy-dipropylaminotetralin was blocked by WAY-100635, but unaffected by pirenperone. In contrast, the partial generalization of 5-MeO-DMT to the 5-HT2 agonist DOM was completely antagonized by pirenperone, but was unaffected by WAY-100635. Similarly, in rats trained with (-)-DOM, pirenperone completely blocked stimulus control, but WAY-100635 was inactive. The results obtained in rats trained with (-)-DOM and tested with 5-MeO-DMT were more complex. Although the intraperitoneal route had been used for both training drugs, a significant degree of generalization of (-)-DOM to 5-MeO-DMT was seen only when the latter drug was administered subcutaneously. Furthermore, when the previously effective dose of pirenperone was given in combination with 5-MeO-DMT (s.c.), complete suppression of responding resulted. However, the combination of pirenperone and WAY-100635 given prior to 5-MeO-DMT restored responding in (-)-DOM-trained rats, and provided evidence of antagonism of the partial substitution of 5-MeO-DMT for (-)-DOM. The present data indicate that 5-MeO-DMT-induced stimulus control is mediated primarily by interactions with 5-HT1A receptors. In addition, however, the present findings suggest that 5-MeO-DMT induces a compound stimulus that includes an element mediated by interactions with a 5-HT2 receptors. The latter component is not essential for 5-MeO-DMT-induced stimulus control, but is revealed in animals tested or trained with a 5-HT2-selective agonist such as (-)-DOM. Based upon the present data, we conclude that 5-MeO-DMT differs from DOM with respect to the serotonergic element that mediates stimulus control in the rat, but that it shares with DOM a functionally significant interaction with 5-HT2 receptors.
Stimulus driver for epilepsy seizure suppression with adaptive loading impedance
NASA Astrophysics Data System (ADS)
Ker, Ming-Dou; Lin, Chun-Yu; Chen, Wei-Ling
2011-10-01
A stimulus driver circuit for a micro-stimulator used in an implantable device is presented in this paper. For epileptic seizure control, the target of the driver was to output 30 µA stimulus currents when the electrode impedance varied between 20 and 200 kΩ. The driver, which consisted of the output stage, control block and adaptor, was integrated in a single chip. The averaged power consumption of the stimulus driver was 0.24-0.56 mW at 800 Hz stimulation rate. Fabricated in a 0.35 µm 3.3 V/24 V CMOS process and applied to a closed-loop epileptic seizure monitoring and controlling system, the proposed design has been successfully verified in the experimental results of Long-Evans rats with epileptic seizures.
Control of preference in children by conditioned positive reinforcement.
Favell, J E; Favell, J E
1972-07-01
A preference measure was employed with children to evaluate the conditioned positive reinforcing function of a stimulus that preceded reinforcement. A match-to-sample procedure was arranged in which subjects could respond to either the form or color dimension of a compound sample stimulus. Intermittent token reinforcement was provided equally for color and form matches. Two stimuli were employed (Stimulus A and Stimulus B), each consisting of a distinctive tone and colored light. One of these stimuli (the paired stimulus) preceded each token delivery, and the other did not (nonpaired stimulus). The paired stimulus was dependent upon each response to one match dimension, and the nonpaired stimulus followed each response to the other dimension. Three of the five subjects responded primarily to the dimension that was followed by the paired stimulus. This effect was obtained regardless of which stimulus (A or B) was paired and on which match dimension (color or form) the paired stimulus was dependent. These results were unaltered by discontinuing the nonpaired stimulus. The other two subjects demonstrated consistent preferences for the form dimension and Stimulus A, respectively.
Common Control by Compound Samples in Conditional Discriminations
ERIC Educational Resources Information Center
Perez-Gonzalez, Luis Antonio; Alonso-Alvarez, Benigno
2008-01-01
We tested whether teaching control by single stimulus samples in conditional discriminations would result in common control of two-stimuli compound samples, and vice versa. In Experiment 1, 5 participants were first taught four single-sample conditional discriminations. The first conditional discrimination was as follows: given sample stimulus P1,…
Verbal Stimulus Control and the Intraverbal Relation
ERIC Educational Resources Information Center
Sundberg, Mark L.
2016-01-01
The importance of the intraverbal relation is missed in most theories of language. Skinner (1957) attributes this to traditional semantic theories of meaning that focus on the nonverbal referents of words and neglect verbal stimuli as separate sources of control for linguistic behavior. An analysis of verbal stimulus control is presented, along…
Comparative Study of SSVEP- and P300-Based Models for the Telepresence Control of Humanoid Robots.
Zhao, Jing; Li, Wei; Li, Mengfan
2015-01-01
In this paper, we evaluate the control performance of SSVEP (steady-state visual evoked potential)- and P300-based models using Cerebot-a mind-controlled humanoid robot platform. Seven subjects with diverse experience participated in experiments concerning the open-loop and closed-loop control of a humanoid robot via brain signals. The visual stimuli of both the SSVEP- and P300- based models were implemented on a LCD computer monitor with a refresh frequency of 60 Hz. Considering the operation safety, we set the classification accuracy of a model over 90.0% as the most important mandatory for the telepresence control of the humanoid robot. The open-loop experiments demonstrated that the SSVEP model with at most four stimulus targets achieved the average accurate rate about 90%, whereas the P300 model with the six or more stimulus targets under five repetitions per trial was able to achieve the accurate rates over 90.0%. Therefore, the four SSVEP stimuli were used to control four types of robot behavior; while the six P300 stimuli were chosen to control six types of robot behavior. Both of the 4-class SSVEP and 6-class P300 models achieved the average success rates of 90.3% and 91.3%, the average response times of 3.65 s and 6.6 s, and the average information transfer rates (ITR) of 24.7 bits/min 18.8 bits/min, respectively. The closed-loop experiments addressed the telepresence control of the robot; the objective was to cause the robot to walk along a white lane marked in an office environment using live video feedback. Comparative studies reveal that the SSVEP model yielded faster response to the subject's mental activity with less reliance on channel selection, whereas the P300 model was found to be suitable for more classifiable targets and required less training. To conclude, we discuss the existing SSVEP and P300 models for the control of humanoid robots, including the models proposed in this paper.
Comparative Study of SSVEP- and P300-Based Models for the Telepresence Control of Humanoid Robots
Li, Mengfan
2015-01-01
In this paper, we evaluate the control performance of SSVEP (steady-state visual evoked potential)- and P300-based models using Cerebot—a mind-controlled humanoid robot platform. Seven subjects with diverse experience participated in experiments concerning the open-loop and closed-loop control of a humanoid robot via brain signals. The visual stimuli of both the SSVEP- and P300- based models were implemented on a LCD computer monitor with a refresh frequency of 60 Hz. Considering the operation safety, we set the classification accuracy of a model over 90.0% as the most important mandatory for the telepresence control of the humanoid robot. The open-loop experiments demonstrated that the SSVEP model with at most four stimulus targets achieved the average accurate rate about 90%, whereas the P300 model with the six or more stimulus targets under five repetitions per trial was able to achieve the accurate rates over 90.0%. Therefore, the four SSVEP stimuli were used to control four types of robot behavior; while the six P300 stimuli were chosen to control six types of robot behavior. Both of the 4-class SSVEP and 6-class P300 models achieved the average success rates of 90.3% and 91.3%, the average response times of 3.65 s and 6.6 s, and the average information transfer rates (ITR) of 24.7 bits/min 18.8 bits/min, respectively. The closed-loop experiments addressed the telepresence control of the robot; the objective was to cause the robot to walk along a white lane marked in an office environment using live video feedback. Comparative studies reveal that the SSVEP model yielded faster response to the subject’s mental activity with less reliance on channel selection, whereas the P300 model was found to be suitable for more classifiable targets and required less training. To conclude, we discuss the existing SSVEP and P300 models for the control of humanoid robots, including the models proposed in this paper. PMID:26562524
Rey-Mermet, Alodie; Gade, Miriam
2016-10-01
It is assumed that we recruit cognitive control (i.e., attentional adjustment and/or inhibition) to resolve 2 conflicts at a time, such as driving toward a red traffic light and taking care of a near-by ambulance car. A few studies have addressed this issue by combining a Simon task (that required responding with left or right key-press to a stimulus presented on the left or right side of the screen) with either a Stroop task (that required identifying the color of color words) or a Flanker task (that required identifying the target character among flankers). In most studies, the results revealed no interaction between the conflict tasks. However, these studies include a small stimulus set, and participants might have learned the stimulus-response mappings for each stimulus. Thus, it is possible that participants have more relied on episodic memory than on cognitive control to perform the task. In 5 experiments, we combined the 3 tasks pairwise, and we increased the stimulus set size to circumvent episodic memory contributions. The results revealed an interaction between the conflict tasks: Irrespective of task combination, the congruency effect of 1 task was smaller when the stimulus was incongruent for the other task. This suggests that when 2 conflicts are presented concurrently, the control processes induced by 1 conflict source can affect the control processes induced by the other conflict source. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Nonlinear and Digital Man-machine Control Systems Modeling
NASA Technical Reports Server (NTRS)
Mekel, R.
1972-01-01
An adaptive modeling technique is examined by which controllers can be synthesized to provide corrective dynamics to a human operator's mathematical model in closed loop control systems. The technique utilizes a class of Liapunov functions formulated for this purpose, Liapunov's stability criterion and a model-reference system configuration. The Liapunov function is formulated to posses variable characteristics to take into consideration the identification dynamics. The time derivative of the Liapunov function generate the identification and control laws for the mathematical model system. These laws permit the realization of a controller which updates the human operator's mathematical model parameters so that model and human operator produce the same response when subjected to the same stimulus. A very useful feature is the development of a digital computer program which is easily implemented and modified concurrent with experimentation. The program permits the modeling process to interact with the experimentation process in a mutually beneficial way.
NASA Astrophysics Data System (ADS)
Gong, Xiaobo; Liu, Liwu; Liu, Yanju; Leng, Jinsong
2016-03-01
Shape memory polymers (SMPs) have the ability to adjust their stiffness, lock a temporary shape, and recover the permanent shape upon imposing an appropriate stimulus. They have found their way into the field of morphing structures. The electrically Joule resistive heating of the conductive composite can be a desirable stimulus to activate the shape memory effect of SMPs without external heating equipment. Electro-induced SMP composites incorporated with carbon fiber felt (CFF) were explored in this work. The CFF is an excellent conductive filler which can easily spread throughout the composite. It has a huge advantage in terms of low cost, simple manufacturing process, and uniform and tunable temperature distribution while heating. A continuous and compact conductive network made of carbon fibers and the overlap joints among them was observed from the microscopy images, and this network contributes to the high conductive properties of the CFF/SMP composites. The CFF/SMP composites can be electrical-heated rapidly and uniformly, and its’ shape recovery effect can be actuated by the electrical resistance Joule heating of the CFF without an external heater. The CFF/SMP composite get higher modulus and higher strength than the pure SMP without losing any strain recovery property. The high dependence of temperature and strain on the electrical resistance also make the composite a good self-sensing material. In general, the CFF/SMP composite shows great prospects as a potential material for the future morphing structures.
Brashier, Nadia M.
2015-01-01
The human brain encodes experience in an integrative fashion by binding together the various features of an event (i.e., stimuli and responses) into memory “event files.” A subsequent reoccurrence of an event feature can then cue the retrieval of the memory file to “prime” cognition and action. Intriguingly, recent behavioral studies indicate that, in addition to linking concrete stimulus and response features, event coding may also incorporate more abstract, “internal” event features such as attentional control states. In the present study, we used fMRI in healthy human volunteers to determine the neural mechanisms supporting this type of holistic event binding. Specifically, we combined fMRI with a task protocol that dissociated the expression of event feature-binding effects pertaining to concrete stimulus and response features, stimulus categories, and attentional control demands. Using multivariate neural pattern classification, we show that the hippocampus and putamen integrate event attributes across all of these levels in conjunction with other regions representing concrete-feature-selective (primarily visual cortex), category-selective (posterior frontal cortex), and control demand-selective (insula, caudate, anterior cingulate, and parietal cortex) event information. Together, these results suggest that the hippocampus and putamen are involved in binding together holistic event memories that link physical stimulus and response characteristics with internal representations of stimulus categories and attentional control states. These bindings then presumably afford shortcuts to adaptive information processing and response selection in the face of recurring events. SIGNIFICANCE STATEMENT Memory binds together the different features of our experience, such as an observed stimulus and concurrent motor responses, into so-called event files. Recent behavioral studies suggest that the observer's internal attentional state might also become integrated into the event memory. Here, we used fMRI to determine the brain areas responsible for binding together event information pertaining to concrete stimulus and response features, stimulus categories, and internal attentional control states. We found that neural signals in the hippocampus and putamen contained information about all of these event attributes and could predict behavioral priming effects stemming from these features. Therefore, medial temporal lobe and dorsal striatum structures appear to be involved in binding internal control states to event memories. PMID:26538657
RULES OF COMPETITIVE STIMULUS SELECTION IN A CHOLINERGIC ISTHMIC NUCLEUS OF THE OWL MIDBRAIN
Asadollahi, Ali; Mysore, Shreesh P.; Knudsen, Eric I.
2011-01-01
In a natural scene, multiple stimuli compete for the control of gaze direction and attention. The nucleus isthmi pars parvocellularis (Ipc) is a cholinergic, midbrain nucleus that is reciprocally interconnected to the optic tectum, a structure known to be involved in the control of gaze and attention. Previous research has shown that the responses of many Ipc units to a visual stimulus presented inside the classical receptive field (RF) can be powerfully inhibited when the strength of a distant, competing stimulus becomes the stronger stimulus. This study investigated further the nature of competitive interactions in the Ipc of owls by employing two complementary protocols: in the first protocol, we measured the effects of a distant stimulus on responses to an RF stimulus located at different positions inside the RF; in the second protocol, we measured the effects of a distant stimulus on responses to RF stimuli of different strengths. The first protocol demonstrated that the effect of a competing stimulus is purely divisive: the competitor caused a proportional reduction in responses to the RF stimulus that did not alter either the location or sharpness of spatial tuning. The second protocol demonstrated that, for most units, the strength of this divisive inhibition is regulated powerfully by the relative strengths of the competing stimuli: inhibition was strong when the competitor was the stronger stimulus and weak when the competitor was the weaker stimulus. The data indicate that competitive interactions in the Ipc depend on feedback and a globally divisive inhibitory network. PMID:21508234
Sensorimotor integration in human postural control
NASA Technical Reports Server (NTRS)
Peterka, R. J.
2002-01-01
It is generally accepted that human bipedal upright stance is achieved by feedback mechanisms that generate an appropriate corrective torque based on body-sway motion detected primarily by visual, vestibular, and proprioceptive sensory systems. Because orientation information from the various senses is not always available (eyes closed) or accurate (compliant support surface), the postural control system must somehow adjust to maintain stance in a wide variety of environmental conditions. This is the sensorimotor integration problem that we investigated by evoking anterior-posterior (AP) body sway using pseudorandom rotation of the visual surround and/or support surface (amplitudes 0.5-8 degrees ) in both normal subjects and subjects with severe bilateral vestibular loss (VL). AP rotation of body center-of-mass (COM) was measured in response to six conditions offering different combinations of available sensory information. Stimulus-response data were analyzed using spectral analysis to compute transfer functions and coherence functions over a frequency range from 0.017 to 2.23 Hz. Stimulus-response data were quite linear for any given condition and amplitude. However, overall behavior in normal subjects was nonlinear because gain decreased and phase functions sometimes changed with increasing stimulus amplitude. "Sensory channel reweighting" could account for this nonlinear behavior with subjects showing increasing reliance on vestibular cues as stimulus amplitudes increased. VL subjects could not perform this reweighting, and their stimulus-response behavior remained quite linear. Transfer function curve fits based on a simple feedback control model provided estimates of postural stiffness, damping, and feedback time delay. There were only small changes in these parameters with increasing visual stimulus amplitude. However, stiffness increased as much as 60% with increasing support surface amplitude. To maintain postural stability and avoid resonant behavior, an increase in stiffness should be accompanied by a corresponding increase in damping. Increased damping was achieved primarily by decreasing the apparent time delay of feedback control rather than by changing the damping coefficient (i.e., corrective torque related to body-sway velocity). In normal subjects, stiffness and damping were highly correlated with body mass and moment of inertia, with stiffness always about 1/3 larger than necessary to resist the destabilizing torque due to gravity. The stiffness parameter in some VL subjects was larger compared with normal subjects, suggesting that they may use increased stiffness to help compensate for their loss. Overall results show that the simple act of standing quietly depends on a remarkably complex sensorimotor control system.
Galizio, Ann; Doughty, Adam H; Williams, Dean C; Saunders, Kathryn J
2017-07-01
Following training with verbal stimulus relations involving A is greater than B and B is greater than C, verbally-competent individuals reliably select A>C when asked "which is greater, A or C?" (i.e., verbal transitive inference). This result is easy to interpret. Nonhuman animals and humans with and without intellectual disabilities have been exposed to nonverbal transitive-inference procedures involving trained arbitrary stimulus relations. Following the training of A+B-, B+C-, C+D-, and D+E-, B reliably is selected over D (i.e., nonverbal transitive inference). Such findings are more challenging to interpret. The present research explored accounts of nonverbal transitive inference based in transitive inference per se, reinforcement, such as value-transfer theory, and operant stimulus control. In Experiment 1, college students selected B>G following the training of A+B-, B+C-, C+D-///E+F-, F+G-, and G+H- (where///signifies the omission of D+E-). In Experiment 2, college students selected B>G following the training of A+B-, B+C-, C+D-///E+F-, F+G-, and G+X- (where X refers to 10 stimuli that alternated across trials). In Experiment 3, college students selected G>B following the training of Y+B-, B+C-, C+D-///E+F-, F+G-, and G+X- (where Y and X refer to 10 stimuli, respectively, that alternated across trials). These findings are discussed in the context of operant stimulus control by offering an approach based in stimulus B typically acquiring only a select stimulus control topography. Copyright © 2017 Elsevier B.V. All rights reserved.
Neuron’s eye view: Inferring features of complex stimuli from neural responses
Chen, Xin; Beck, Jeffrey M.
2017-01-01
Experiments that study neural encoding of stimuli at the level of individual neurons typically choose a small set of features present in the world—contrast and luminance for vision, pitch and intensity for sound—and assemble a stimulus set that systematically varies along these dimensions. Subsequent analysis of neural responses to these stimuli typically focuses on regression models, with experimenter-controlled features as predictors and spike counts or firing rates as responses. Unfortunately, this approach requires knowledge in advance about the relevant features coded by a given population of neurons. For domains as complex as social interaction or natural movement, however, the relevant feature space is poorly understood, and an arbitrary a priori choice of features may give rise to confirmation bias. Here, we present a Bayesian model for exploratory data analysis that is capable of automatically identifying the features present in unstructured stimuli based solely on neuronal responses. Our approach is unique within the class of latent state space models of neural activity in that it assumes that firing rates of neurons are sensitive to multiple discrete time-varying features tied to the stimulus, each of which has Markov (or semi-Markov) dynamics. That is, we are modeling neural activity as driven by multiple simultaneous stimulus features rather than intrinsic neural dynamics. We derive a fast variational Bayesian inference algorithm and show that it correctly recovers hidden features in synthetic data, as well as ground-truth stimulus features in a prototypical neural dataset. To demonstrate the utility of the algorithm, we also apply it to cluster neural responses and demonstrate successful recovery of features corresponding to monkeys and faces in the image set. PMID:28827790
Sensory Prioritization in Rats: Behavioral Performance and Neuronal Correlates.
Lee, Conrad C Y; Diamond, Mathew E; Arabzadeh, Ehsan
2016-03-16
Operating with some finite quantity of processing resources, an animal would benefit from prioritizing the sensory modality expected to provide key information in a particular context. The present study investigated whether rats dedicate attentional resources to the sensory modality in which a near-threshold event is more likely to occur. We manipulated attention by controlling the likelihood with which a stimulus was presented from one of two modalities. In a whisker session, 80% of trials contained a brief vibration stimulus applied to whiskers and the remaining 20% of trials contained a brief change of luminance. These likelihoods were reversed in a visual session. When a stimulus was presented in the high-likelihood context, detection performance increased and was faster compared with the same stimulus presented in the low-likelihood context. Sensory prioritization was also reflected in neuronal activity in the vibrissal area of primary somatosensory cortex: single units responded differentially to the whisker vibration stimulus when presented with higher probability compared with lower probability. Neuronal activity in the vibrissal cortex displayed signatures of multiplicative gain control and enhanced response to vibration stimuli during the whisker session. In conclusion, rats allocate priority to the more likely stimulus modality and the primary sensory cortex may participate in the redistribution of resources. Detection of low-amplitude events is critical to survival; for example, to warn prey of predators. To formulate a response, decision-making systems must extract minute neuronal signals from the sensory modality that provides key information. Here, we identify the behavioral and neuronal correlates of sensory prioritization in rats. Rats were trained to detect whisker vibrations or visual flickers. Stimuli were embedded in two contexts in which either visual or whisker modality was more likely to occur. When a stimulus was presented in the high-likelihood context, detection was faster and more reliable. Neuronal recording from the vibrissal cortex revealed enhanced representation of vibrations in the prioritized context. These results establish the rat as an alternative model organism to primates for studying attention. Copyright © 2016 the authors 0270-6474/16/363243-11$15.00/0.
Rosenblatt, Steven David; Crane, Benjamin Thomas
2015-01-01
A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37) participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s) at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001) and rotation (p<0.001), and arrows (p = 0.02). For the visual motion stimuli, inertial motion perception was shifted in the direction consistent with the visual stimulus. Arrows had a small effect on self-motion perception driven by a minority of subjects. There was no significant effect of illusory motion on self-motion perception for either translation or rotation (p>0.1 for both). Thus, although a true moving visual field can induce self-motion, results of this study show that illusory motion does not.
Proactive Inhibitory Control of Response as the Default State of Executive Control
Criaud, Marion; Wardak, Claire; Ben Hamed, Suliann; Ballanger, Bénédicte; Boulinguez, Philippe
2012-01-01
Refraining from reacting does not only involve reactive inhibitory mechanisms. It was recently found that inhibitory control also relies strongly on proactive mechanisms. However, since most available studies have focused on reactive stopping, little is known about how proactive inhibition of response is implemented. Two behavioral experiments were conducted to identify the temporal dynamics of this executive function. They manipulated respectively the time during which inhibitory control must be sustained until a stimulus occurs, and the time limit allowed to set up inhibition before a stimulus occurs. The results show that inhibitory control is not set up after but before instruction, and is not transient and sporadic but sustained across time. Consistent with our previous neuroimaging findings, these results suggest that proactive inhibition of response is the default mode of executive control. This implies that top-down control of sensorimotor reactivity would consist of a temporary release (up to several seconds), when appropriate (when the environment becomes predictable), of the default locking state. This conclusion is discussed with regard to current anatomo-functional models of inhibitory control, and to methodological features of studies of attention and sensorimotor control. PMID:22403563
Proactive inhibitory control of response as the default state of executive control.
Criaud, Marion; Wardak, Claire; Ben Hamed, Suliann; Ballanger, Bénédicte; Boulinguez, Philippe
2012-01-01
Refraining from reacting does not only involve reactive inhibitory mechanisms. It was recently found that inhibitory control also relies strongly on proactive mechanisms. However, since most available studies have focused on reactive stopping, little is known about how proactive inhibition of response is implemented. Two behavioral experiments were conducted to identify the temporal dynamics of this executive function. They manipulated respectively the time during which inhibitory control must be sustained until a stimulus occurs, and the time limit allowed to set up inhibition before a stimulus occurs. The results show that inhibitory control is not set up after but before instruction, and is not transient and sporadic but sustained across time. Consistent with our previous neuroimaging findings, these results suggest that proactive inhibition of response is the default mode of executive control. This implies that top-down control of sensorimotor reactivity would consist of a temporary release (up to several seconds), when appropriate (when the environment becomes predictable), of the default locking state. This conclusion is discussed with regard to current anatomo-functional models of inhibitory control, and to methodological features of studies of attention and sensorimotor control.
Presentation-order effects for aesthetic stimulus preference.
Englund, Mats P; Hellström, Åke
2012-10-01
For preference comparisons of paired successive musical excerpts, Koh (American Journal of Psychology, 80, 171-185, 1967) found time-order effects (TOEs) that correlated negatively with stimulus valence-the first (vs. the second) of two unpleasant (vs. two pleasant) excerpts tended to be preferred. We present three experiments designed to investigate whether valence-level-dependent order effects for aesthetic preference (a) can be accounted for using Hellström's (e.g., Journal of Experimental Psychology: Human Perception and Performance, 5, 460-477, 1979) sensation-weighting (SW) model, (b) can be generalized to successive and to simultaneous visual stimuli, and (c) vary, in accordance with the stimulus weighting, with interstimulus interval (ISI; for successive stimuli) or stimulus duration (for simultaneous stimuli). Participants compared paired successive jingles (Exp. 1), successive color patterns (Exp. 2), and simultaneous color patterns (Exp. 3), selecting the preferred stimulus. The results were well described by the SW model, which provided a better fit than did two extended versions of the Bradley-Terry-Luce model. Experiments 1 and 2 revealed higher weights for the second stimulus than for the first, and negatively valence-level-dependent TOEs. In Experiment 3, there was no laterality effect on the stimulus weighting and no valence-level-dependent space-order effects (SOEs). In terms of the SW model, the valence-level-dependent TOEs can be explained as a consequence of differential stimulus weighting in combination with stimulus valence varying from low to high, and the absence of valence-level-dependent SOEs as a consequence of the absence of differential weighting. For successive stimuli, there were no important effects of ISI on weightings and TOEs, and, for simultaneous stimuli, duration had only a small effect on the weighting.
Tan, Rose S; Guymer, Robyn H; Luu, Chi D
2018-05-01
To determine the intrasession and intersession test-retest repeatability of retinal sensitivity measurements using a dark-adapted chromatic perimeter (DACP). For intrasession testing, retinal sensitivity within the central 24° for the 505-nm stimulus was measured after 20, 30, and 40 minutes of dark adaptation (DA) and for the 625-nm stimulus was measured after the first and second 505-nm tests. For intersession testing, retinal sensitivity for both stimuli was measured after 30 minutes of DA at baseline and 1 month. The point-wise sensitivity (PWS) difference and coefficient of repeatability (CoR) of each stimulus and group were determined. For intrasession testing, 10 age-related macular degeneration (AMD) and eight control subjects were recruited. The overall CoR for the 505-nm stimulus was 8.4 dB for control subjects and 9.1 dB for AMD cases, and for the 625-nm stimulus was 6.7 dB for control subjects and 9.5 dB for AMD cases. For intersession testing, seven AMD cases and 13 control subjects returned an overall CoR for the 505-nm stimulus of 8.2 dB for the control and 11.7 dB for the AMD group. For the 625-nm stimulus the CoR was 6.2 dB for the control group and 8.4 dB for the AMD group. Approximately 80% of all test points had a PWS difference of ±5 dB between the two intrasession or intersession measurements for both stimuli. The CoR for the DACP is larger than that reported for scotopic perimeters; however, the majority of test points had a PWS difference of ±5 dB between tests. The DACP offers an opportunity to measure static and dynamic rod function at multiple locations with an acceptable reproducibility level.
Induction and modulation of persistent activity in a layer V PFC microcircuit model
Papoutsi, Athanasia; Sidiropoulou, Kyriaki; Cutsuridis, Vassilis; Poirazi, Panayiota
2013-01-01
Working memory refers to the temporary storage of information and is strongly associated with the prefrontal cortex (PFC). Persistent activity of cortical neurons, namely the activity that persists beyond the stimulus presentation, is considered the cellular correlate of working memory. Although past studies suggested that this type of activity is characteristic of large scale networks, recent experimental evidence imply that small, tightly interconnected clusters of neurons in the cortex may support similar functionalities. However, very little is known about the biophysical mechanisms giving rise to persistent activity in small-sized microcircuits in the PFC. Here, we present a detailed biophysically—yet morphologically simplified—microcircuit model of layer V PFC neurons that incorporates connectivity constraints and is validated against a multitude of experimental data. We show that (a) a small-sized network can exhibit persistent activity under realistic stimulus conditions. (b) Its emergence depends strongly on the interplay of dADP, NMDA, and GABAB currents. (c) Although increases in stimulus duration increase the probability of persistent activity induction, variability in the stimulus firing frequency does not consistently influence it. (d) Modulation of ionic conductances (Ih, ID, IsAHP, IcaL, IcaN, IcaR) differentially controls persistent activity properties in a location dependent manner. These findings suggest that modulation of the microcircuit's firing characteristics is achieved primarily through changes in its intrinsic mechanism makeup, supporting the hypothesis of multiple bi-stable units in the PFC. Overall, the model generates a number of experimentally testable predictions that may lead to a better understanding of the biophysical mechanisms of persistent activity induction and modulation in the PFC. PMID:24130519
Changes in stimulus and response AC/A ratio with vision therapy in Convergence Insufficiency.
Singh, Neeraj Kumar; Mani, Revathy; Hussaindeen, Jameel Rizwana
To evaluate the changes in the stimulus and response Accommodative Convergence to Accommodation (AC/A) ratio following vision therapy (VT) in Convergence Insufficiency (CI). Stimulus and response AC/A ratio were measured on twenty five CI participants, pre and post 10 sessions of VT. Stimulus AC/A ratio was measured using the gradient method and response AC/A ratio was calculated using modified Thorington technique with accommodative responses measured using WAM-5500 open-field autorefractor. The gradient stimulus and response AC/A cross-link ratios were compared with thirty age matched controls. Mean age of the CI and control participants were 23.3±5.2 years and 22.7±4.2 years, respectively. The mean stimulus and response AC/A ratio for CI pre therapy was 2.2±0.72 and 6.3±2.0 PD/D that changed to 4.2±0.9 and 8.28±3.31 PD/D respectively post vision therapy and these changes were statistically significant (paired t-test; p<0.001). The mean stimulus and response AC/A ratio for controls was 3.1±0.81 and 8.95±2.5 PD/D respectively. Stimulus and response AC/A ratio increased following VT, accompanied by clinically significant changes in vergence and accommodation parameters in subjects with convergence insufficiency. This represents the plasticity of the AC/A crosslink ratios that could be achieved with vision therapy in CI. Copyright © 2016 Spanish General Council of Optometry. Published by Elsevier España, S.L.U. All rights reserved.
2016-11-28
olivocochlear reflex (MOCR), a feedback mechanism that controls gain of the outer hair cells, is thought to provide protection and enhancement for a listener in...effectively reduce the outer hair cell gain, depending on the stimulus frequency, level, and timing. Human Envelope Following Responses (EFRs
Nakajima, S
2000-03-14
Pigeons were trained with the A+, AB-, ABC+, AD- and ADE+ task where each of stimulus A and stimulus compounds ABC and ADE signalled food (positive trials), and each of stimulus compounds AB and AD signalled no food (negative trials). Stimuli A, B, C and E were small visual figures localised on a response key, and stimulus D was a white noise. Stimulus B was more effective than D as an inhibitor of responding to A during the training. After the birds learned to respond exclusively on the positive trials, effects of B and D on responding to C and E, respectively, were tested by comparing C, BC, E and DE trials. Stimulus B continuously facilitated responding to C on the BC test trials, but D's facilitative effect was observed only on the first DE test trial. Stimulus B also facilitated responding to E on BE test trials. Implications for the Rescorla-Wagner elemental model and the Pearce configural model of Pavlovian conditioning were discussed.
A Comparison of Stimulus Control and Reinforcement Techniques for Weight Reduction.
ERIC Educational Resources Information Center
Harris, Mary B.; Collins, Grace
This study compares three six-week programs for weight control that were followed by several booster sessions and a 15-week followup. Although subjects in all programs showed significant weight losses (an average of 8.1 pounds for the 22 weeks), no significant differences between groups emphasizing stimulus control, reinforcement or general…
Stimulus-dependent Maximum Entropy Models of Neural Population Codes
Segev, Ronen; Schneidman, Elad
2013-01-01
Neural populations encode information about their stimulus in a collective fashion, by joint activity patterns of spiking and silence. A full account of this mapping from stimulus to neural activity is given by the conditional probability distribution over neural codewords given the sensory input. For large populations, direct sampling of these distributions is impossible, and so we must rely on constructing appropriate models. We show here that in a population of 100 retinal ganglion cells in the salamander retina responding to temporal white-noise stimuli, dependencies between cells play an important encoding role. We introduce the stimulus-dependent maximum entropy (SDME) model—a minimal extension of the canonical linear-nonlinear model of a single neuron, to a pairwise-coupled neural population. We find that the SDME model gives a more accurate account of single cell responses and in particular significantly outperforms uncoupled models in reproducing the distributions of population codewords emitted in response to a stimulus. We show how the SDME model, in conjunction with static maximum entropy models of population vocabulary, can be used to estimate information-theoretic quantities like average surprise and information transmission in a neural population. PMID:23516339
Laser-controlled optical transconductance varistor system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Hoang T.; Stuart, Brent C.
2017-07-11
An optical transconductance varistor system having a modulated radiation source configured to provide modulated stimulus, a wavelength converter operably connected to the modulated radiation source to produce a modulated stimulus having a predetermined wavelength, and a wide bandgap semiconductor photoconductive material in contact between two electrodes. The photoconductive material is operably coupled, such as by a beam transport module, to receive the modulated stimulus having the predetermined wavelength to control a current flowing through the photoconductive material when a voltage potential is present across the electrodes.
Streif, Stefan; Oesterhelt, Dieter; Marwan, Wolfgang
2010-03-18
Photo- and chemotaxis of the archaeon Halobacterium salinarum is based on the control of flagellar motor switching through stimulus-specific methyl-accepting transducer proteins that relay the sensory input signal to a two-component system. Certain members of the transducer family function as receptor proteins by directly sensing specific chemical or physical stimuli. Others interact with specific receptor proteins like the phototaxis photoreceptors sensory rhodopsin I and II, or require specific binding proteins as for example some chemotaxis transducers. Receptor activation by light or a change in receptor occupancy by chemical stimuli results in reversible methylation of glutamate residues of the transducer proteins. Both, methylation and demethylation reactions are involved in sensory adaptation and are modulated by the response regulator CheY. By mathematical modeling we infer the kinetic mechanisms of stimulus-induced transducer methylation and adaptation. The model (deterministic and in the form of ordinary differential equations) correctly predicts experimentally observed transducer demethylation (as detected by released methanol) in response to attractant and repellent stimuli of wildtype cells, a cheY deletion mutant, and a mutant in which the stimulated transducer species is methylation-deficient. We provide a kinetic model for signal processing in photo- and chemotaxis in the archaeon H. salinarum suggesting an essential role of receptor cooperativity, antagonistic reversible methylation, and a CheY-dependent feedback on transducer demethylation.
Age Trends in Stimulus Overselectivity
ERIC Educational Resources Information Center
McHugh, Louise; Reed, Phil
2007-01-01
Stimulus overselectivity refers to the phenomenon whereby stimulus control over behavior is exerted only by a limited subset of the total number of stimuli present during discrimination learning. It often is displayed by individuals with autistic spectrum disorders or learning disabilities, but is not exclusive to those groups. The present studies…
Podlesnik, Christopher A; Fleet, James D
2014-09-01
Behavioral momentum theory asserts Pavlovian stimulus-reinforcer relations govern the persistence of operant behavior. Specifically, resistance to conditions of disruption (e.g., extinction, satiation) reflects the relation between discriminative stimuli and the prevailing reinforcement conditions. The present study assessed whether Pavlovian stimulus-reinforcer relations govern resistance to disruption in pigeons by arranging both response-dependent and -independent food reinforcers in two components of a multiple schedule. In one component, discrete-stimulus changes preceded response-independent reinforcers, paralleling methods that reduce Pavlovian conditioned responding to contextual stimuli. Compared to the control component with no added stimuli preceding response-independent reinforcement, response rates increased as discrete-stimulus duration increased (0, 5, 10, and 15 s) across conditions. Although resistance to extinction decreased as stimulus duration increased in the component with the added discrete stimulus, further tests revealed no effect of discrete stimuli, including other disrupters (presession food, intercomponent food, modified extinction) and reinstatement designed to control for generalization decrement. These findings call into question a straightforward conception that the stimulus-reinforcer relations governing resistance to disruption reflect the same processes as Pavlovian conditioning, as asserted by behavioral momentum theory. © Society for the Experimental Analysis of Behavior.
Topographical variations in behavior during autoshaping, automaintenance, and omission training
Eldridge, Gloria D.; Pear, Joseph J.
1987-01-01
Three pigeons were exposed to an autoshaping and automaintenance procedure while a computer-controlled tracking system continuously recorded the position of the bird's head as it moved freely in the experimental chamber. Although only 2 birds pecked the key during the conditional stimulus (red keylight), all 3 birds exhibited stable patterns of approaching the conditional stimulus and withdrawing from the intertrial stimulus (white keylight). Subsequent exposure to an omission procedure, in which pecks on the red key cancelled the presentation of food upon the termination of the red keylight, greatly reduced key pecking, but approaching and pecking in the vicinity of the conditional stimulus were maintained at high levels. When the omission contingency was removed key pecking increased. During all phases the birds withdrew from the area of the white key and engaged in repetitive back-and-forth or circuiting movements during this intertrial stimulus. The data document (a) the strong control the conditional stimulus in autoshaping and automaintenance exerts over approach to the key and pecking motions whether or not the conditional stimulus elicits key pecking at a high level; and (b) withdrawal from the vicinity of the key and the occurrence of stereotypic behavior during the intertrial interval. PMID:16812484
Topographical variations in behavior during autoshaping, automaintenance, and omission training.
Eldridge, G D; Pear, J J
1987-05-01
Three pigeons were exposed to an autoshaping and automaintenance procedure while a computer-controlled tracking system continuously recorded the position of the bird's head as it moved freely in the experimental chamber. Although only 2 birds pecked the key during the conditional stimulus (red keylight), all 3 birds exhibited stable patterns of approaching the conditional stimulus and withdrawing from the intertrial stimulus (white keylight). Subsequent exposure to an omission procedure, in which pecks on the red key cancelled the presentation of food upon the termination of the red keylight, greatly reduced key pecking, but approaching and pecking in the vicinity of the conditional stimulus were maintained at high levels. When the omission contingency was removed key pecking increased. During all phases the birds withdrew from the area of the white key and engaged in repetitive back-and-forth or circuiting movements during this intertrial stimulus. The data document (a) the strong control the conditional stimulus in autoshaping and automaintenance exerts over approach to the key and pecking motions whether or not the conditional stimulus elicits key pecking at a high level; and (b) withdrawal from the vicinity of the key and the occurrence of stereotypic behavior during the intertrial interval.
Development of a mouse test for repetitive, restricted behaviors: relevance to autism.
Moy, Sheryl S; Nadler, Jessica J; Poe, Michele D; Nonneman, Randal J; Young, Nancy B; Koller, Beverly H; Crawley, Jacqueline N; Duncan, Gary E; Bodfish, James W
2008-03-17
Repetitive behavior, a core symptom of autism, encompasses stereotyped responses, restricted interests, and resistance to change. These studies investigated whether different components of the repetitive behavior domain could be modeled in the exploratory hole-board task in mice. Four inbred mouse strains, C57BL/6J, BALB/cByJ, BTBR T+tf/J, and FVB/NJ, and mice with reduced expression of Grin1, leading to NMDA receptor hypofunction (NR1neo/neo mice), were tested for exploration and preference for olfactory stimuli in an activity chamber with a 16-hole floor-board. Reduced exploration and high preference for holes located in the corners of the chamber were observed in BALB/cByJ and BTBR T+tf/J mice. All inbred strains had initial high preference for a familiar olfactory stimulus (clean cage bedding). BTBR T+tf/J was the only strain that did not demonstrate a shift in hole preference towards an appetitive olfactory stimulus (cereal or a chocolate chip), following home cage exposure to the food. The NR1neo/neo mice showed lower hole selectivity and aberrant olfactory stimulus preference, in comparison to wildtype controls. The results indicate that NR1neo/neo mice have repetitive nose poke responses that are less modified by environmental contingencies than responses in wildtype mice. 25-30% of NMDA receptor hypomorphic mice also show self-injurious responses. Findings from the olfactory studies suggest that resistance to change and restricted interests might be modeled in mice by a failure to alter patterns of hole preference following familiarization with an appetitive stimulus, and by high preference persistently demonstrated for one particular olfactory stimulus. Further work is required to determine the characteristics of optimal mouse social stimuli in the olfactory hole-board test.
Selective attention in dairy cattle.
Blackmore, T L; Temple, W; Foster, T M
2016-08-01
In a replication of Reynolds (1961), two cows learned to discriminate between compound stimuli in a forced choice procedure where pushing through a one-way gate marked with a red cross (S+) gave access to food. Pushing through a one-way gate marked with a yellow triangle (S-) gave no access to food. To investigate whether shape or colour was controlling behaviour, probe tests varied either the shape or the colour of the stimuli (e.g., a red vs. a yellow cross, and a red cross vs. a red triangle). Results suggested control by colour rather than shape, as the gate marked with the red stimulus was chosen more than the gate marked with the yellow stimulus regardless of stimulus shape, and when two shapes of the same colour (either red or yellow) were presented, cows chose both equally. Further probe tests with painted red, white, and yellow stimuli showed that the cows had learned to avoid yellow rather than to approach red, suggesting discriminative behaviour was controlled by the colour of the negative stimulus and not by either aspect of the positive stimulus. It is not clear why the negative stimulus was more salient, but it may reflect a tendency for cows to learn to avoid farm handling practices which involve mainly negative stimuli. Copyright © 2016 Elsevier B.V. All rights reserved.
V1 projection zone signals in human macular degeneration depend on task, not stimulus.
Masuda, Yoichiro; Dumoulin, Serge O; Nakadomari, Satoshi; Wandell, Brian A
2008-11-01
We used functional magnetic resonance imaging to assess abnormal cortical signals in humans with juvenile macular degeneration (JMD). These signals have been interpreted as indicating large-scale cortical reorganization. Subjects viewed a stimulus passively or performed a task; the task was either related or unrelated to the stimulus. During passive viewing, or while performing tasks unrelated to the stimulus, there were large unresponsive V1 regions. These regions included the foveal projection zone, and we refer to them as the lesion projection zone (LPZ). In 3 JMD subjects, we observed highly significant responses in the LPZ while they performed stimulus-related judgments. In control subjects, where we presented the stimulus only within the peripheral visual field, there was no V1 response in the foveal projection zone in any condition. The difference between JMD and control responses can be explained by hypotheses that have very different implications for V1 reorganization. In controls retinal afferents carry signals indicating the presence of a uniform (zero-contrast) region of the visual field. Deletion of retinal input may 1) spur the formation of new cortical pathways that carry task-dependent signals (reorganization), or 2) unmask preexisting task-dependent cortical signals that ordinarily are suppressed by the deleted signals (no reorganization).
V1 Projection Zone Signals in Human Macular Degeneration Depend on Task, not Stimulus
Dumoulin, Serge O.; Nakadomari, Satoshi; Wandell, Brian A.
2008-01-01
We used functional magnetic resonance imaging to assess abnormal cortical signals in humans with juvenile macular degeneration (JMD). These signals have been interpreted as indicating large-scale cortical reorganization. Subjects viewed a stimulus passively or performed a task; the task was either related or unrelated to the stimulus. During passive viewing, or while performing tasks unrelated to the stimulus, there were large unresponsive V1 regions. These regions included the foveal projection zone, and we refer to them as the lesion projection zone (LPZ). In 3 JMD subjects, we observed highly significant responses in the LPZ while they performed stimulus-related judgments. In control subjects, where we presented the stimulus only within the peripheral visual field, there was no V1 response in the foveal projection zone in any condition. The difference between JMD and control responses can be explained by hypotheses that have very different implications for V1 reorganization. In controls retinal afferents carry signals indicating the presence of a uniform (zero-contrast) region of the visual field. Deletion of retinal input may 1) spur the formation of new cortical pathways that carry task-dependent signals (reorganization), or 2) unmask preexisting task-dependent cortical signals that ordinarily are suppressed by the deleted signals (no reorganization). PMID:18250083
A Latent Class Unfolding Model for Analyzing Single Stimulus Preference Ratings.
ERIC Educational Resources Information Center
De Soete, Geert; Heiser, Willem J.
1993-01-01
A latent class unfolding model is developed for single stimulus preference ratings. One advantage is the possibility of testing the spatial unfolding model against the unconstrained latent class model for rating data. The model is applied to data about party preferences of members of the Dutch parliament. (SLD)
ERIC Educational Resources Information Center
Ratkos, Thom; Frieder, Jessica E.; Poling, Alan
2016-01-01
Research on joint control has focused on mediational responses, in which simultaneous stimulus control from two sources leads to the emission of a single response, such as choosing a comparison stimulus in delayed matching-to-sample. Most recent studies of joint control examined the role of verbal mediators (i.e., rehearsal) in evoking accurate…
Breen, P P; O'Keeffe, D T; Conway, R; Lyons, G M
2006-03-01
We describe the design of an intelligent drop foot stimulator unit for use in conjunction with a commercial neuromuscular electrical nerve stimulation (NMES) unit, the NT2000. The developed micro-controller unit interfaces to a personal computer (PC) and a graphical user interface (GUI) allows the clinician to graphically specify the shape of the stimulation intensity envelope required for a subject undergoing drop foot correction. The developed unit is based on the ADuC812S micro-controller evaluation board from Analog Devices and uses two force sensitive resistor (FSR) based foot-switches to control application of stimulus. The unit has the ability to display to the clinician how the stimulus intensity envelope is being delivered during walking using a data capture capability. The developed system has a built-in algorithm to dynamically adjust the delivery of stimulus to reflect changes both within the gait cycle and from cycle to cycle. Thus, adaptive control of stimulus intensity is achieved.
Uncovering effects of self-control and stimulus-driven action selection on the sense of agency.
Wang, Yuru; Damen, Tom G E; Aarts, Henk
2017-10-01
The sense of agency refers to feelings of causing one's own action and resulting effect. Previous research indicates that voluntary action selection is an important factor in shaping the sense of agency. Whereas the volitional nature of the sense of agency is well documented, the present study examined whether agency is modulated when action selection shifts from self-control to a more automatic stimulus-driven process. Seventy-two participants performed an auditory Simon task including congruent and incongruent trials to generate automatic stimulus-driven vs. more self-control driven action, respectively. Responses in the Simon task produced a tone and agency was assessed with the intentional binding task - an implicit measure of agency. Results showed a Simon effect and temporal binding effect. However, temporal binding was independent of congruency. These findings suggest that temporal binding, a window to the sense of agency, emerges for both automatic stimulus-driven actions and self-controlled actions. Copyright © 2017 Elsevier Inc. All rights reserved.
Temporal and spectral profiles of stimulus-stimulus and stimulus-response conflict processing.
Wang, Kai; Li, Qi; Zheng, Ya; Wang, Hongbin; Liu, Xun
2014-04-01
The ability to detect and resolve conflict is an essential function of cognitive control. Laboratory studies often use stimulus-response-compatibility (SRC) tasks to examine conflict processing in order to elucidate the mechanism and modular organization of cognitive control. Inspired by two influential theories regarding cognitive control, the conflict monitoring theory (Botvinick, Braver, Barch, Carter, & Cohen, 2001) and dimensional overlap taxonomy (Kornblum, Hasbroucq, & Osman, 1990), we explored the temporal and spectral similarities and differences between processing of stimulus-stimulus (S-S) and stimulus-response (S-R) conflicts with event related potential (ERP) and time-frequency measures. We predicted that processing of S-S conflict starts earlier than that of S-R conflict and that the two types of conflict may involve different frequency bands. Participants were asked to perform two parallel SRC tasks, both combining the Stroop task (involving S-S conflict) and Simon task (involving S-R conflict). ERP results showed pronounced SRC effects (incongruent vs. congruent) on N2 and P3 components for both S-S and S-R conflicts. In both tasks, SRC effects of S-S conflict took place earlier than those of S-R conflict. Time-frequency analysis revealed that both types of SRC effects modulated theta and alpha bands, while S-R conflict effects additionally modulated power in the beta band. These results indicated that although S-S and S-R conflict processing shared considerable ERP and time-frequency properties, they differed in temporal and spectral dynamics. We suggest that the modular organization of cognitive control should take both commonality and distinction of S-S and S-R conflict processing into consideration. Copyright © 2013 Elsevier Inc. All rights reserved.
A Connectionist Model of Stimulus Class Formation with a Yes/No Procedure and Compound Stimuli
ERIC Educational Resources Information Center
Tovar, Angel E.; Chavez, Alvaro Torres
2012-01-01
We analyzed stimulus class formation in a human study and in a connectionist model (CM) with a yes/no procedure, using compound stimuli. In the human study, the participants were six female undergraduate students; the CM was a feed-forward back-propagation network. Two 3-member stimulus classes were trained with a similar procedure in both the…
Dynamic Alignment Models for Neural Coding
Kollmorgen, Sepp; Hahnloser, Richard H. R.
2014-01-01
Recently, there have been remarkable advances in modeling the relationships between the sensory environment, neuronal responses, and behavior. However, most models cannot encompass variable stimulus-response relationships such as varying response latencies and state or context dependence of the neural code. Here, we consider response modeling as a dynamic alignment problem and model stimulus and response jointly by a mixed pair hidden Markov model (MPH). In MPHs, multiple stimulus-response relationships (e.g., receptive fields) are represented by different states or groups of states in a Markov chain. Each stimulus-response relationship features temporal flexibility, allowing modeling of variable response latencies, including noisy ones. We derive algorithms for learning of MPH parameters and for inference of spike response probabilities. We show that some linear-nonlinear Poisson cascade (LNP) models are a special case of MPHs. We demonstrate the efficiency and usefulness of MPHs in simulations of both jittered and switching spike responses to white noise and natural stimuli. Furthermore, we apply MPHs to extracellular single and multi-unit data recorded in cortical brain areas of singing birds to showcase a novel method for estimating response lag distributions. MPHs allow simultaneous estimation of receptive fields, latency statistics, and hidden state dynamics and so can help to uncover complex stimulus response relationships that are subject to variable timing and involve diverse neural codes. PMID:24625448
Bolin, B. Levi; Singleton, Destiny L.; Akins, Chana K.
2014-01-01
Pavlovian drug discrimination (DD) procedures demonstrate that interoceptive drug stimuli may come to control behavior by informing the status of conditional relationships between stimuli and outcomes. This technique may provide insight into processes that contribute to drug-seeking, relapse, and other maladaptive behaviors associated with drug abuse. The purpose of the current research was to establish a model of Pavlovian DD in male Japanese quail. A Pavlovian conditioning procedure was used such that 3.0 mg/kg methamphetamine served as a feature positive stimulus for brief periods of visual access to a female quail and approach behavior was measured. After acquisition training, generalization tests were conducted with cocaine, nicotine, and haloperidol under extinction conditions. SCH 23390 was used to investigate the involvement of the dopamine D1 receptor subtype in the methamphetamine discriminative stimulus. Results showed that cocaine fully substituted for methamphetamine but nicotine only partially substituted for methamphetamine in quail. Haloperidol dose-dependently decreased approach behavior. Pretreatment with SCH 23390 modestly attenuated the methamphetamine discrimination suggesting that the D1 receptor subtype may be involved in the discriminative stimulus effects of methamphetamine. The findings are discussed in relation to drug abuse and associated negative health consequences. PMID:24965811
Switching neuronal state: optimal stimuli revealed using a stochastically-seeded gradient algorithm.
Chang, Joshua; Paydarfar, David
2014-12-01
Inducing a switch in neuronal state using energy optimal stimuli is relevant to a variety of problems in neuroscience. Analytical techniques from optimal control theory can identify such stimuli; however, solutions to the optimization problem using indirect variational approaches can be elusive in models that describe neuronal behavior. Here we develop and apply a direct gradient-based optimization algorithm to find stimulus waveforms that elicit a change in neuronal state while minimizing energy usage. We analyze standard models of neuronal behavior, the Hodgkin-Huxley and FitzHugh-Nagumo models, to show that the gradient-based algorithm: (1) enables automated exploration of a wide solution space, using stochastically generated initial waveforms that converge to multiple locally optimal solutions; and (2) finds optimal stimulus waveforms that achieve a physiological outcome condition, without a priori knowledge of the optimal terminal condition of all state variables. Analysis of biological systems using stochastically-seeded gradient methods can reveal salient dynamical mechanisms underlying the optimal control of system behavior. The gradient algorithm may also have practical applications in future work, for example, finding energy optimal waveforms for therapeutic neural stimulation that minimizes power usage and diminishes off-target effects and damage to neighboring tissue.
Influence of cochlear traveling wave and neural adaptation on auditory brainstem responses.
Junius, Dirk; Dau, Torsten
2005-07-01
The present study investigates the relationship between evoked responses to transient broadband chirps and responses to the same chirps when embedded in longer-duration stimuli. It examines to what extent the responses to the composite stimuli can be explained by a linear superposition of the responses to the single components, as a function of stimulus level. In the first experiment, a single rising chirp was temporally and spectrally embedded in two steady-state tones. In the second experiment, the stimulus consisted of a continuous alternating train of chirps: each rising chirp was followed by the temporally reversed (falling) chirp. In both experiments, the transitions between stimulus components were continuous. For stimulation levels up to approximately 70 dB SPL, the responses to the embedded chirp corresponded to the responses to the single chirp. At high stimulus levels (80-100 dB SPL), disparities occurred between the responses, reflecting a nonlinearity in the processing when neural activity is integrated across frequency. In the third experiment, the effect of within-train rate on wave-V response was investigated. The response to the chirp presented at a within-train rate of 95 Hz exhibited the same amplitude as that to the chirp presented in the traditional single-stimulus paradigm at a rate of 13 Hz. For a corresponding experiment with bandlimited chirps of 4 ms duration, where the within-train rate was 250 Hz, a clear reduction of the response amplitude was observed. This nonlinearity in terms of temporal processing most likely reflects effects of short-term adaptation. Overall, the results of the present study further demonstrate the importance of cochlear processing for the formation of brainstem potentials. The data may provide constraints on future models of peripheral processing in the human auditory system. The findings might also be useful for the development of effective stimulation paradigms in clinical applications.
Band, Leah R.; Wells, Darren M.; Larrieu, Antoine; Sun, Jianyong; Middleton, Alistair M.; French, Andrew P.; Brunoud, Géraldine; Sato, Ethel Mendocilla; Wilson, Michael H.; Péret, Benjamin; Oliva, Marina; Swarup, Ranjan; Sairanen, Ilkka; Parry, Geraint; Ljung, Karin; Beeckman, Tom; Garibaldi, Jonathan M.; Estelle, Mark; Owen, Markus R.; Vissenberg, Kris; Hodgman, T. Charlie; Pridmore, Tony P.; King, John R.; Vernoux, Teva; Bennett, Malcolm J.
2012-01-01
Gravity profoundly influences plant growth and development. Plants respond to changes in orientation by using gravitropic responses to modify their growth. Cholodny and Went hypothesized over 80 years ago that plants bend in response to a gravity stimulus by generating a lateral gradient of a growth regulator at an organ's apex, later found to be auxin. Auxin regulates root growth by targeting Aux/IAA repressor proteins for degradation. We used an Aux/IAA-based reporter, domain II (DII)-VENUS, in conjunction with a mathematical model to quantify auxin redistribution following a gravity stimulus. Our multidisciplinary approach revealed that auxin is rapidly redistributed to the lower side of the root within minutes of a 90° gravity stimulus. Unexpectedly, auxin asymmetry was rapidly lost as bending root tips reached an angle of 40° to the horizontal. We hypothesize roots use a “tipping point” mechanism that operates to reverse the asymmetric auxin flow at the midpoint of root bending. These mechanistic insights illustrate the scientific value of developing quantitative reporters such as DII-VENUS in conjunction with parameterized mathematical models to provide high-resolution kinetics of hormone redistribution. PMID:22393022
Band, Leah R; Wells, Darren M; Larrieu, Antoine; Sun, Jianyong; Middleton, Alistair M; French, Andrew P; Brunoud, Géraldine; Sato, Ethel Mendocilla; Wilson, Michael H; Péret, Benjamin; Oliva, Marina; Swarup, Ranjan; Sairanen, Ilkka; Parry, Geraint; Ljung, Karin; Beeckman, Tom; Garibaldi, Jonathan M; Estelle, Mark; Owen, Markus R; Vissenberg, Kris; Hodgman, T Charlie; Pridmore, Tony P; King, John R; Vernoux, Teva; Bennett, Malcolm J
2012-03-20
Gravity profoundly influences plant growth and development. Plants respond to changes in orientation by using gravitropic responses to modify their growth. Cholodny and Went hypothesized over 80 years ago that plants bend in response to a gravity stimulus by generating a lateral gradient of a growth regulator at an organ's apex, later found to be auxin. Auxin regulates root growth by targeting Aux/IAA repressor proteins for degradation. We used an Aux/IAA-based reporter, domain II (DII)-VENUS, in conjunction with a mathematical model to quantify auxin redistribution following a gravity stimulus. Our multidisciplinary approach revealed that auxin is rapidly redistributed to the lower side of the root within minutes of a 90° gravity stimulus. Unexpectedly, auxin asymmetry was rapidly lost as bending root tips reached an angle of 40° to the horizontal. We hypothesize roots use a "tipping point" mechanism that operates to reverse the asymmetric auxin flow at the midpoint of root bending. These mechanistic insights illustrate the scientific value of developing quantitative reporters such as DII-VENUS in conjunction with parameterized mathematical models to provide high-resolution kinetics of hormone redistribution.
Balanced Cortical Microcircuitry for Spatial Working Memory Based on Corrective Feedback Control
2014-01-01
A hallmark of working memory is the ability to maintain graded representations of both the spatial location and amplitude of a memorized stimulus. Previous work has identified a neural correlate of spatial working memory in the persistent maintenance of spatially specific patterns of neural activity. How such activity is maintained by neocortical circuits remains unknown. Traditional models of working memory maintain analog representations of either the spatial location or the amplitude of a stimulus, but not both. Furthermore, although most previous models require local excitation and lateral inhibition to maintain spatially localized persistent activity stably, the substrate for lateral inhibitory feedback pathways is unclear. Here, we suggest an alternative model for spatial working memory that is capable of maintaining analog representations of both the spatial location and amplitude of a stimulus, and that does not rely on long-range feedback inhibition. The model consists of a functionally columnar network of recurrently connected excitatory and inhibitory neural populations. When excitation and inhibition are balanced in strength but offset in time, drifts in activity trigger spatially specific negative feedback that corrects memory decay. The resulting networks can temporally integrate inputs at any spatial location, are robust against many commonly considered perturbations in network parameters, and, when implemented in a spiking model, generate irregular neural firing characteristic of that observed experimentally during persistent activity. This work suggests balanced excitatory–inhibitory memory circuits implementing corrective negative feedback as a substrate for spatial working memory. PMID:24828633
Dengjel, Jörn; Høyer-Hansen, Maria; Nielsen, Maria O.; Eisenberg, Tobias; Harder, Lea M.; Schandorff, Søren; Farkas, Thomas; Kirkegaard, Thomas; Becker, Andrea C.; Schroeder, Sabrina; Vanselow, Katja; Lundberg, Emma; Nielsen, Mogens M.; Kristensen, Anders R.; Akimov, Vyacheslav; Bunkenborg, Jakob; Madeo, Frank; Jäättelä, Marja; Andersen, Jens S.
2012-01-01
Autophagy is one of the major intracellular catabolic pathways, but little is known about the composition of autophagosomes. To study the associated proteins, we isolated autophagosomes from human breast cancer cells using two different biochemical methods and three stimulus types: amino acid deprivation or rapamycin or concanamycin A treatment. The autophagosome-associated proteins were dependent on stimulus, but a core set of proteins was stimulus-independent. Remarkably, proteasomal proteins were abundant among the stimulus-independent common autophagosome-associated proteins, and the activation of autophagy significantly decreased the cellular proteasome level and activity supporting interplay between the two degradation pathways. A screen of yeast strains defective in the orthologs of the human genes encoding for a common set of autophagosome-associated proteins revealed several regulators of autophagy, including subunits of the retromer complex. The combined spatiotemporal proteomic and genetic data sets presented here provide a basis for further characterization of autophagosome biogenesis and cargo selection. PMID:22311637
Hemispheric resource limitations in comprehending ambiguous pictures.
White, H; Minor, S W
1990-03-01
Ambiguous pictures (Roschach inkblots) were lateralized for 100 msec vs. 200 msec to the right and left hemispheres (RH and LH) of 32 normal right-handed males who determined which of two previously presented words (an accurate or inaccurate one) better described the inkblot. Over the first 32 trials, subjects receiving each stimulus exposure duration were less accurate when the hemisphere receiving the stimulus also controlled the hand used to register a keypress response (RH-left hand and LH-right hand trials) than when hemispheric resources were shared, i.e., when one hemisphere controlled stimulus processing and the other controlled response programming. These differences were eliminated when the 32 trials were repeated.
Multilayer Electroactive Polymer Composite Material
NASA Technical Reports Server (NTRS)
Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Park, Cheol (Inventor); Draughon, Gregory K. (Inventor); Ounaies, Zoubeida (Inventor)
2011-01-01
An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.
Multilayer Electroactive Polymer Composite Material Comprising Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)
2009-01-01
An electroactive material comprises multiple layers of electroactive composite with each layer having unique dielectric, electrical and mechanical properties that define an electromechanical operation thereof when affected by an external stimulus. For example, each layer can be (i) a 2-phase composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation, or (ii) a 3-phase composite having the elements of the 2-phase composite and further including a third component of micro-sized to nano-sized particles of an electroactive ceramic incorporated in the polymer matrix.
Mizunami, Makoto; Unoki, Sae; Mori, Yasuhiro; Hirashima, Daisuke; Hatano, Ai; Matsumoto, Yukihisa
2009-08-04
In insect classical conditioning, octopamine (the invertebrate counterpart of noradrenaline) or dopamine has been suggested to mediate reinforcing properties of appetitive or aversive unconditioned stimulus, respectively. However, the roles of octopaminergic and dopaminergic neurons in memory recall have remained unclear. We studied the roles of octopaminergic and dopaminergic neurons in appetitive and aversive memory recall in olfactory and visual conditioning in crickets. We found that pharmacological blockade of octopamine and dopamine receptors impaired aversive memory recall and appetitive memory recall, respectively, thereby suggesting that activation of octopaminergic and dopaminergic neurons and the resulting release of octopamine and dopamine are needed for appetitive and aversive memory recall, respectively. On the basis of this finding, we propose a new model in which it is assumed that two types of synaptic connections are formed by conditioning and are activated during memory recall, one type being connections from neurons representing conditioned stimulus to neurons inducing conditioned response and the other being connections from neurons representing conditioned stimulus to octopaminergic or dopaminergic neurons representing appetitive or aversive unconditioned stimulus, respectively. The former is called 'stimulus-response connection' and the latter is called 'stimulus-stimulus connection' by theorists studying classical conditioning in higher vertebrates. Our model predicts that pharmacological blockade of octopamine or dopamine receptors during the first stage of second-order conditioning does not impair second-order conditioning, because it impairs the formation of the stimulus-response connection but not the stimulus-stimulus connection. The results of our study with a cross-modal second-order conditioning were in full accordance with this prediction. We suggest that insect classical conditioning involves the formation of two kinds of memory traces, which match to stimulus-stimulus connection and stimulus-response connection. This is the first study to suggest that classical conditioning in insects involves, as does classical conditioning in higher vertebrates, the formation of stimulus-stimulus connection and its activation for memory recall, which are often called cognitive processes.
Supèr, Hans; Romeo, August
2012-01-01
A visual stimulus can be made invisible, i.e. masked, by the presentation of a second stimulus. In the sensory cortex, neural responses to a masked stimulus are suppressed, yet how this suppression comes about is still debated. Inhibitory models explain masking by asserting that the mask exerts an inhibitory influence on the responses of a neuron evoked by the target. However, other models argue that the masking interferes with recurrent or reentrant processing. Using computer modeling, we show that surround inhibition evoked by ON and OFF responses to the mask suppresses the responses to a briefly presented stimulus in forward and backward masking paradigms. Our model results resemble several previously described psychophysical and neurophysiological findings in perceptual masking experiments and are in line with earlier theoretical descriptions of masking. We suggest that precise spatiotemporal influence of surround inhibition is relevant for visual detection. PMID:22393370
ERIC Educational Resources Information Center
Rincover, Arnold; Ducharme, Joseph M.
1987-01-01
Three variables (diagnosis, location of cues, and mental age of learners) influencing stimulus control and stimulus overselectivity were assessed with eight autistic children (mean age 12 years) and eight average children matched for mean age. Among results were that autistic subjects tended to respond overselectively only in the extra-stimulus…
Remote activation of a microactuator using a photo-responsive nanoparticle-polymer composite
NASA Astrophysics Data System (ADS)
Zeberoff, Anthony
Stimulus response materials are a class of novel materials that are currently being explored in various technologies, including biomedical devices and components, food packaging, fabrics, energy harvesting and conversion, and other elementary components such as sensors and actuators. Hybrid organic-inorganic materials such as nanoparticle-polymer composites are attractive candidates as their properties can be significantly tuned for particular applications where selectivity and localized responses are critical factors. In this work we developed and optimized a photo-responsive microactuator that can operate selectively to a specific wavelength of light. The photo-responsive microactuator is comprised of monodispersed microspheres that contain gold nanoparticles. Upon irradiation, these microspheres transduce optical energy to thermal energy, driving a localized phase change in the matrix in which they are embedded. Our remotely powered microactuator can be further realized in applications where decoupling the physical connection of the energy/control source from the actuating component is necessary.
Yasui, S; Young, L R
1984-01-01
Smooth pursuit and saccadic components of foveal visual tracking as well as more involuntary ocular movements of optokinetic (o.k.n.) and vestibular nystagmus slow phase components were investigated in man, with particular attention given to their possible input-adaptive or predictive behaviour. Each component in question was isolated from the eye movement records through a computer-aided procedure. The frequency response method was used with sinusoidal (predictable) and pseudo-random (unpredictable) stimuli. When the target motion was pseudo-random, the frequency response of pursuit eye movements revealed a large phase lead (up to about 90 degrees) at low stimulus frequencies. It is possible to interpret this result as a predictive effect, even though the stimulation was pseudo-random and thus 'unpredictable'. The pseudo-random-input frequency response intrinsic to the saccadic system was estimated in an indirect way from the pursuit and composite (pursuit + saccade) frequency response data. The result was fitted well by a servo-mechanism model, which has a simple anticipatory mechanism to compensate for the inherent neuromuscular saccadic delay by utilizing the retinal slip velocity signal. The o.k.n. slow phase also exhibited a predictive effect with sinusoidal inputs; however, pseudo-random stimuli did not produce such phase lead as found in the pursuit case. The vestibular nystagmus slow phase showed no noticeable sign of prediction in the frequency range examined (0 approximately 0.7 Hz), in contrast to the results of the visually driven eye movements (i.e. saccade, pursuit and o.k.n. slow phase) at comparable stimulus frequencies. PMID:6707954
NASA Technical Reports Server (NTRS)
Kiss, J. Z.; Katembe, W. J.; Edelmann, R. E.
1998-01-01
The "starch-statolith" hypothesis has been used by plant physiologists to explain the gravity perception mechanism in higher plants. In order to help resolve some of the controversy associated with ground-based research that has supported this theory, we performed a spaceflight experiment during the January 1997 mission of the Space Shuttle STS-81. Seedlings of wild-type (WT) Arabidopsis, two reduced-starch strains, and a starchless mutant were grown in microgravity and then given a gravity stimulus on a centrifuge. In terms of development in space, germination was greater than 90% for seeds in microgravity, and flight seedlings were smaller (60% in total length) compared to control plants grown on the ground and to control plants on a rotating clinostat. Seedlings grown in space had two structural features that distinguished them from the controls: a greater density of root hairs and an anomalous hypocotyl hook structure. However, the slower growth and morphological changes observed in the flight seedlings may be due to the effects of ethylene present in the spacecraft. Nevertheless, during the flight hypocotyls of WT seedlings responded to a unilateral 60 min stimulus provided by a 1-g centrifuge while those of the starch-deficient strains did not. Thus the strain with the greatest amount of starch responded to the stimulus given in flight and therefore, these data support the starch-statolith model for gravity sensing.
A Behavioral Weight Reduction Model for Moderately Mentally Retarded Adolescents.
ERIC Educational Resources Information Center
Rotatori, Anthony F.; And Others
1980-01-01
A behavioral weight reduction treatment and maintenance program for moderately mentally retarded adolescents which involves six phases from background information collection to followup relies on stimulus control procedures to modify eating behaviors. Data from pilot studies show an average weekly weight loss of .5 to 1 pound per S. (CL)
Custom-made composite scaffolds for segmental defect repair in long bones.
Reichert, Johannes C; Wullschleger, Martin E; Cipitria, Amaia; Lienau, Jasmin; Cheng, Tan K; Schütz, Michael A; Duda, Georg N; Nöth, Ulrich; Eulert, Jochen; Hutmacher, Dietmar W
2011-08-01
Current approaches for segmental bone defect reconstruction are restricted to autografts and allografts which possess osteoconductive, osteoinductive and osteogenic properties, but face significant disadvantages. The objective of this study was to compare the regenerative potential of scaffolds with different material composition but similar mechanical properties to autologous bone graft from the iliac crest in an ovine segmental defect model. After 12 weeks, in vivo specimens were analysed by X-ray imaging, torsion testing, micro-computed tomography and histology to assess amount, strength and structure of the newly formed bone. The highest amounts of bone neoformation with highest torsional moment values were observed in the autograft group and the lowest in the medical grade polycaprolactone and tricalcium phosphate composite group. The study results suggest that scaffolds based on aliphatic polyesters and ceramics, which are considered biologically inactive materials, induce only limited new bone formation but could be an equivalent alternative to autologous bone when combined with a biologically active stimulus such as bone morphogenetic proteins.
Thermomechanical behavior of a two-way shape memory composite actuator
NASA Astrophysics Data System (ADS)
Ge, Qi; Westbrook, Kristofer K.; Mather, Patrick T.; Dunn, Martin L.; Qi, H. Jerry
2013-05-01
Shape memory polymers (SMPs) are a class of smart materials that can fix a temporary shape and recover to their permanent (original) shape in response to an environmental stimulus such as heat, electricity, or irradiation, among others. Most SMPs developed in the past can only demonstrate the so-called one-way shape memory effect; i.e., one programming step can only yield one shape memory cycle. Recently, one of the authors (Mather) developed a SMP that exhibits both one-way shape memory (1W-SM) and two-way shape memory (2W-SM) effects (with the assistance of an external load). This SMP was further used to develop a free-standing composite actuator with a nonlinear reversible actuation under thermal cycling. In this paper, a theoretical model for the PCO SMP based composite actuator was developed to investigate its thermomechanical behavior and the mechanisms for the observed phenomena during the actuation cycles, and to provide insight into how to improve the design.
Defining the Stimulus - A Memoir
Terrace, Herbert
2010-01-01
The eminent psychophysicist, S. S. Stevens, once remarked that, “the basic problem of psychology was the definition of the stimulus” (Stevens, 1951, p. 46). By expanding the traditional definition of the stimulus, the study of animal learning has metamorphosed into animal cognition. The main impetus for that change was the recognition that it is often necessary to postulate a representation between the traditional S and R of learning theory. Representations allow a subject to re-present a stimulus it learned previously that is currently absent. Thus, in delayed-matching-to-sample, one has to assume that a subject responds to a representation of the sample during test if it responds correctly. Other examples, to name but a few, include concept formation, spatial memory, serial memory, learning a numerical rule, imitation and metacognition. Whereas a representation used to be regarded as a mentalistic phenomenon that was unworthy of scientific inquiry, it can now be operationally defined. To accommodate representations, the traditional discriminative stimulus has to be expanded to allow for the role of representations. The resulting composite can account for a significantly larger portion of the variance of performance measures than the exteroceptive stimulus could by itself. PMID:19969047
Encoding properties of haltere neurons enable motion feature detection in a biological gyroscope
Fox, Jessica L.; Fairhall, Adrienne L.; Daniel, Thomas L.
2010-01-01
The halteres of dipteran insects are essential sensory organs for flight control. They are believed to detect Coriolis and other inertial forces associated with body rotation during flight. Flies use this information for rapid flight control. We show that the primary afferent neurons of the haltere’s mechanoreceptors respond selectively with high temporal precision to multiple stimulus features. Although we are able to identify many stimulus features contributing to the response using principal component analysis, predictive models using only two features, common across the cell population, capture most of the cells’ encoding activity. However, different sensitivity to these two features permits each cell to respond to sinusoidal stimuli with a different preferred phase. This feature similarity, combined with diverse phase encoding, allows the haltere to transmit information at a high rate about numerous inertial forces, including Coriolis forces. PMID:20133721
ERIC Educational Resources Information Center
Broomfield, Laura; McHugh, Louise; Reed, Phil
2010-01-01
Stimulus overselectivity occurs when only one of potentially many aspects of the environment controls behavior. Adult participants were trained and tested on a trial-and-error discrimination learning task while engaging in a concurrent load task, and overselectivity emerged. When responding to the overselected stimulus was reduced by reinforcing a…
Dinsmoor, James A.
1995-01-01
The second part of my tutorial stresses the systematic importance of two parameters of discrimination training: (a) the magnitude of the physical difference between the positive and the negative stimulus (disparity) and (b) the magnitude of the difference between the positive stimulus, in particular, and the background stimulation (salience). It then examines the role these variables play in such complex phenomena as blocking and overshadowing, progressive discrimination training, and the transfer of control by fading. It concludes by considering concept formation and imitation, which are important forms of application, and recent work on equivalence relations. PMID:22478222
Speech and Language Therapy Under an Automated Stimulus Control System.
ERIC Educational Resources Information Center
Garrett, Edgar Ray
Programed instruction for speech and language therapy, based upon stimulus control programing and presented by a completely automated teaching machine, was evaluated with 32 mentally retarded children, 20 children with language disorders (childhood aphasia), six adult aphasics, and 60 normal elementary school children. Posttesting with the…
Locus of Control, Self-esteem, Stimulus Appraisal, and Depressive Symptoms in Children
ERIC Educational Resources Information Center
Moyal, Barbara R.
1977-01-01
Variables of self-esteem, locus of control, stimulus appraisal, and depressive symptoms, which are related to depression in adults, were investigated in a sample of nonreferred Grade 5 and Grade 6 children. Grade and sex effects were not significant. All other intervariable correlations were significant. (Author)
Microcomputers and Stimulus Control: From the Laboratory to the Classroom.
ERIC Educational Resources Information Center
LeBlanc, Judith M.; And Others
1985-01-01
The need for developing a technology of teaching that equals current sophistication of microcomputer technology is addressed. The importance of principles of learning and behavior analysis is emphasized. Potential roles of stimulus control and precise error analysis in educational program development and in prescription of specific learning…
The Development of Stimulus and Response Interference Control in Midchildhood
ERIC Educational Resources Information Center
Cragg, Lucy
2016-01-01
Interference control, the ability to overcome distraction from irrelevant information, undergoes considerable improvement during childhood, yet the mechanisms driving these changes remain unclear. The present study investigated the relative influence of interference at the level of the stimulus or the response. Seven-, 10-, and 20-year-olds…
Bugg, Julie M; Crump, Matthew J C
2012-01-01
Cognitive control is by now a large umbrella term referring collectively to multiple processes that plan and coordinate actions to meet task goals. A common feature of paradigms that engage cognitive control is the task requirement to select relevant information despite a habitual tendency (or bias) to select goal-irrelevant information. At least since the 1970s, researchers have employed proportion congruent (PC) manipulations to experimentally establish selection biases and evaluate the mechanisms used to control attention. PC manipulations vary the frequency with which irrelevant information conflicts (i.e., is incongruent) with relevant information. The purpose of this review is to summarize the growing body of literature on PC effects across selective attention paradigms, beginning first with Stroop, and then describing parallel effects in flanker and task-switching paradigms. The review chronologically tracks the expansion of the PC manipulation from its initial implementation at the list-wide level, to more recent implementations at the item-specific and context-specific levels. An important theoretical aim is demonstrating that PC effects at different levels (e.g., list-wide vs. item or context-specific) support a distinction between voluntary forms of cognitive control, which operate based on anticipatory information, and relatively automatic or reflexive forms of cognitive control, which are rapidly triggered by the processing of particular stimuli or stimulus features. A further aim is to highlight those PC manipulations that allow researchers to dissociate stimulus-driven control from other stimulus-driven processes (e.g., S-R responding; episodic retrieval). We conclude by discussing the utility of PC manipulations for exploring the distinction between voluntary control and stimulus-driven control in other relevant paradigms.
Bugg, Julie M.; Crump, Matthew J. C.
2012-01-01
Cognitive control is by now a large umbrella term referring collectively to multiple processes that plan and coordinate actions to meet task goals. A common feature of paradigms that engage cognitive control is the task requirement to select relevant information despite a habitual tendency (or bias) to select goal-irrelevant information. At least since the 1970s, researchers have employed proportion congruent (PC) manipulations to experimentally establish selection biases and evaluate the mechanisms used to control attention. PC manipulations vary the frequency with which irrelevant information conflicts (i.e., is incongruent) with relevant information. The purpose of this review is to summarize the growing body of literature on PC effects across selective attention paradigms, beginning first with Stroop, and then describing parallel effects in flanker and task-switching paradigms. The review chronologically tracks the expansion of the PC manipulation from its initial implementation at the list-wide level, to more recent implementations at the item-specific and context-specific levels. An important theoretical aim is demonstrating that PC effects at different levels (e.g., list-wide vs. item or context-specific) support a distinction between voluntary forms of cognitive control, which operate based on anticipatory information, and relatively automatic or reflexive forms of cognitive control, which are rapidly triggered by the processing of particular stimuli or stimulus features. A further aim is to highlight those PC manipulations that allow researchers to dissociate stimulus-driven control from other stimulus-driven processes (e.g., S-R responding; episodic retrieval). We conclude by discussing the utility of PC manipulations for exploring the distinction between voluntary control and stimulus-driven control in other relevant paradigms. PMID:23060836
Induction and modulation of persistent activity in a layer V PFC microcircuit model.
Papoutsi, Athanasia; Sidiropoulou, Kyriaki; Cutsuridis, Vassilis; Poirazi, Panayiota
2013-01-01
Working memory refers to the temporary storage of information and is strongly associated with the prefrontal cortex (PFC). Persistent activity of cortical neurons, namely the activity that persists beyond the stimulus presentation, is considered the cellular correlate of working memory. Although past studies suggested that this type of activity is characteristic of large scale networks, recent experimental evidence imply that small, tightly interconnected clusters of neurons in the cortex may support similar functionalities. However, very little is known about the biophysical mechanisms giving rise to persistent activity in small-sized microcircuits in the PFC. Here, we present a detailed biophysically-yet morphologically simplified-microcircuit model of layer V PFC neurons that incorporates connectivity constraints and is validated against a multitude of experimental data. We show that (a) a small-sized network can exhibit persistent activity under realistic stimulus conditions. (b) Its emergence depends strongly on the interplay of dADP, NMDA, and GABAB currents. (c) Although increases in stimulus duration increase the probability of persistent activity induction, variability in the stimulus firing frequency does not consistently influence it. (d) Modulation of ionic conductances (I h , I D , I sAHP, I caL, I caN, I caR) differentially controls persistent activity properties in a location dependent manner. These findings suggest that modulation of the microcircuit's firing characteristics is achieved primarily through changes in its intrinsic mechanism makeup, supporting the hypothesis of multiple bi-stable units in the PFC. Overall, the model generates a number of experimentally testable predictions that may lead to a better understanding of the biophysical mechanisms of persistent activity induction and modulation in the PFC.
Molosh, Andre I; Johnson, Philip L; Fitz, Stephanie D; Dimicco, Joseph A; Herman, James P; Shekhar, Anantha
2010-05-01
Panic disorder is a severe anxiety disorder characterized by recurrent panic attacks that can be consistently provoked with intravenous (i.v.) infusions of hypertonic (0.5 M) sodium lactate (NaLac), yet the mechanism/CNS site by which this stimulus triggers panic attacks is unclear. Chronic inhibition of GABAergic synthesis in the dorsomedial hypothalamus/perifornical region (DMH/PeF) of rats induces a vulnerability to panic-like responses after i.v. infusion of 0.5 M NaLac, providing an animal model of panic disorder. Using this panic model, we previously showed that inhibiting the anterior third ventricle region (A3Vr; containing the organum vasculosum lamina terminalis, the median preoptic nucleus, and anteroventral periventricular nucleus) attenuates cardiorespiratory and behavioral responses elicited by i.v. infusions of NaLac. In this study, we show that i.v. infusions of 0.5 M NaLac or sodium chloride, but not iso-osmolar D-mannitol, increased 'anxiety' (decreased social interaction) behaviors, heart rate, and blood pressure responses. Using whole-cell patch-clamp preparations, we also show that bath applications of NaLac (positive control), but not lactic acid (lactate stimulus) or D-mannitol (osmolar stimulus), increases the firing rates of neurons in the A3Vr, which are retrogradely labeled from the DMH/PeF and which are most likely glutamatergic based on a separate study using retrograde tracing from the DMH/PeF in combination with in situ hybridization for vesicular glutamate transporter 2. These data show that hypertonic sodium, but not hyper-osmolarity or changes in lactate, is the key stimulus that provokes panic attacks in panic disorder, and is consistent with human studies.
Spatiotemporal integration for tactile localization during arm movements: a probabilistic approach.
Maij, Femke; Wing, Alan M; Medendorp, W Pieter
2013-12-01
It has been shown that people make systematic errors in the localization of a brief tactile stimulus that is delivered to the index finger while they are making an arm movement. Here we modeled these spatial errors with a probabilistic approach, assuming that they follow from temporal uncertainty about the occurrence of the stimulus. In the model, this temporal uncertainty converts into a spatial likelihood about the external stimulus location, depending on arm velocity. We tested the prediction of the model that the localization errors depend on arm velocity. Participants (n = 8) were instructed to localize a tactile stimulus that was presented to their index finger while they were making either slow- or fast-targeted arm movements. Our results confirm the model's prediction that participants make larger localization errors when making faster arm movements. The model, which was used to fit the errors for both slow and fast arm movements simultaneously, accounted very well for all the characteristics of these data with temporal uncertainty in stimulus processing as the only free parameter. We conclude that spatial errors in dynamic tactile perception stem from the temporal precision with which tactile inputs are processed.
Morey, R A; Dunsmoor, J E; Haswell, C C; Brown, V M; Vora, A; Weiner, J; Stjepanovic, D; Wagner, H R; Brancu, Mira; Marx, Christine E; Naylor, Jennifer C; Van Voorhees, Elizabeth; Taber, Katherine H; Beckham, Jean C; Calhoun, Patrick S; Fairbank, John A; Szabo, Steven T; LaBar, K S
2015-01-01
Fear conditioning is an established model for investigating posttraumatic stress disorder (PTSD). However, symptom triggers may vaguely resemble the initial traumatic event, differing on a variety of sensory and affective dimensions. We extended the fear-conditioning model to assess generalization of conditioned fear on fear processing neurocircuitry in PTSD. Military veterans (n=67) consisting of PTSD (n=32) and trauma-exposed comparison (n=35) groups underwent functional magnetic resonance imaging during fear conditioning to a low fear-expressing face while a neutral face was explicitly unreinforced. Stimuli that varied along a neutral-to-fearful continuum were presented before conditioning to assess baseline responses, and after conditioning to assess experience-dependent changes in neural activity. Compared with trauma-exposed controls, PTSD patients exhibited greater post-study memory distortion of the fear-conditioned stimulus toward the stimulus expressing the highest fear intensity. PTSD patients exhibited biased neural activation toward high-intensity stimuli in fusiform gyrus (P<0.02), insula (P<0.001), primary visual cortex (P<0.05), locus coeruleus (P<0.04), thalamus (P<0.01), and at the trend level in inferior frontal gyrus (P=0.07). All regions except fusiform were moderated by childhood trauma. Amygdala–calcarine (P=0.01) and amygdala–thalamus (P=0.06) functional connectivity selectively increased in PTSD patients for high-intensity stimuli after conditioning. In contrast, amygdala–ventromedial prefrontal cortex (P=0.04) connectivity selectively increased in trauma-exposed controls compared with PTSD patients for low-intensity stimuli after conditioning, representing safety learning. In summary, fear generalization in PTSD is biased toward stimuli with higher emotional intensity than the original conditioned-fear stimulus. Functional brain differences provide a putative neurobiological model for fear generalization whereby PTSD symptoms are triggered by threat cues that merely resemble the index trauma. PMID:26670285
Frontal brain deactivation during a non-verbal cognitive judgement bias test in sheep.
Guldimann, Kathrin; Vögeli, Sabine; Wolf, Martin; Wechsler, Beat; Gygax, Lorenz
2015-02-01
Animal welfare concerns have raised an interest in animal affective states. These states also play an important role in the proximate control of behaviour. Due to their potential to modulate short-term emotional reactions, one specific focus is on long-term affective states, that is, mood. These states can be assessed by using non-verbal cognitive judgement bias paradigms. Here, we conducted a spatial variant of such a test on 24 focal animals that were kept under either unpredictable, stimulus-poor or predictable, stimulus-rich housing conditions to induce differential mood states. Based on functional near-infrared spectroscopy, we measured haemodynamic frontal brain reactions during 10 s in which the sheep could observe the configuration of the cognitive judgement bias trial before indicating their assessment based on the go/no-go reaction. We used (generalised) mixed-effects models to evaluate the data. Sheep from the unpredictable, stimulus-poor housing conditions took longer and were less likely to reach the learning criterion and reacted slightly more optimistically in the cognitive judgement bias test than sheep from the predictable, stimulus-rich housing conditions. A frontal cortical increase in deoxy-haemoglobin [HHb] and a decrease in oxy-haemoglobin [O2Hb] were observed during the visual assessment of the test situation by the sheep, indicating a frontal cortical brain deactivation. This deactivation was more pronounced with the negativity of the test situation, which was reflected by the provenance of the sheep from the unpredictable, stimulus-poor housing conditions, the proximity of the cue to the negatively reinforced cue location, or the absence of a go reaction in the trial. It seems that (1) sheep from the unpredictable, stimulus-poor in comparison to sheep from the predictable, stimulus-rich housing conditions dealt less easily with the test conditions rich in stimuli, that (2) long-term housing conditions seemingly did not influence mood--which may be related to the difficulty of tracking a constant long-term state in the brain--and that (3) visual assessment of an emotional stimulus leads to frontal brain deactivation in sheep, specifically if that stimulus is negative. Copyright © 2014 Elsevier Inc. All rights reserved.
Pérez-Díaz, Francisco; Díaz, Estrella; Sánchez, Natividad; Vargas, Juan Pedro; Pearce, John M; López, Juan Carlos
2017-01-01
Recent studies support the idea that stimulus processing in latent inhibition can vary during the course of preexposure. Controlled attentional mechanisms are said to be important in the early stages of preexposure, while in later stages animals adopt automatic processing of the stimulus to be used for conditioning. Given this distinction, it is possible that both types of processing are governed by different neural systems, affecting differentially the retrieval of information about the stimulus. In the present study we tested if a lesion to the dorso-lateral striatum or to the medial prefrontal cortex has a selective effect on exposure to the future conditioned stimulus (CS). With this aim, animals received different amounts of exposure to the future CS. The results showed that a lesion to the medial prefrontal cortex enhanced latent inhibition in animals receiving limited preexposure to the CS, but had no effect in animals receiving extended preexposure to the CS. The lesion of the dorso-lateral striatum produced a decrease in latent inhibition, but only in animals with an extended exposure to the future conditioned stimulus. These results suggest that the dorsal striatum and medial prefrontal cortex play essential roles in controlled and automatic processes. Automatic attentional processes appear to be impaired by a lesion to the dorso-lateral striatum and facilitated by a lesion to the prefrontal cortex.
Pérez-Díaz, Francisco; Díaz, Estrella; Sánchez, Natividad; Vargas, Juan Pedro; Pearce, John M.
2017-01-01
Recent studies support the idea that stimulus processing in latent inhibition can vary during the course of preexposure. Controlled attentional mechanisms are said to be important in the early stages of preexposure, while in later stages animals adopt automatic processing of the stimulus to be used for conditioning. Given this distinction, it is possible that both types of processing are governed by different neural systems, affecting differentially the retrieval of information about the stimulus. In the present study we tested if a lesion to the dorso-lateral striatum or to the medial prefrontal cortex has a selective effect on exposure to the future conditioned stimulus (CS). With this aim, animals received different amounts of exposure to the future CS. The results showed that a lesion to the medial prefrontal cortex enhanced latent inhibition in animals receiving limited preexposure to the CS, but had no effect in animals receiving extended preexposure to the CS. The lesion of the dorso-lateral striatum produced a decrease in latent inhibition, but only in animals with an extended exposure to the future conditioned stimulus. These results suggest that the dorsal striatum and medial prefrontal cortex play essential roles in controlled and automatic processes. Automatic attentional processes appear to be impaired by a lesion to the dorso-lateral striatum and facilitated by a lesion to the prefrontal cortex. PMID:29240804
Synthesis of polyoxometalate-loaded epoxy composites
Anderson, Benjamin J
2014-10-07
The synthesis of a polyoxometalate-loaded epoxy uses a one-step cure by applying an external stimulus to release the acid from the polyoxometalate and thereby catalyze the cure reaction of the epoxy resin. Such polyoxometalate-loaded epoxy composites afford the cured epoxy unique properties imparted by the intrinsic properties of the polyoxometalate. For example, polyoxometalate-loaded epoxy composites can be used as corrosion resistant epoxy coatings, for encapsulation of electronics with improved dielectric properties, and for structural applications with improved mechanical properties.
The orientating reflex: the "targeting reaction" and "searchlight of attention".
Sokolov, E N; Nezlina, N I; Polyanskii, V B; Evtikhin, D V
2002-01-01
A concept of the orientating reflex is presented, based on the principle of vector coding of cognitive and executive processes. The orientating reflex is a complex of orientating reactions of motor, autonomic, and subjective types, accentuating new and significant stimuli. Two main systems form the orientating reflex: the "targeting reaction" and the "searchlight of attention:" In the visual system, the targeting reaction ensures that the image of the object falls onto the fovea; this is mediated by involvement of premotor neurons which are excited by saccade command neurons in the superior colliculi. The "searchlight of attention" is activated as a result of resonance within the gamma frequency range, selectively enhancing cortical detectors and involving the reticular nucleus of the thalamus. Novelty signals arise in novelty neurons of the hippocampus. The synaptic weightings of neocortical detectors for hippocampal novelty neurons is initially characterized by high efficiency, which assigns a significant level of excitation of these neurons to the new stimulus. During repeated stimulation, the synaptic weightings of all the detectors representing a given stimulus decrease, with the result that the novelty signal becomes weaker. When the stimulus changes, it acts on other detectors, whose weightings for novelty neurons remain high, which strengthens the novelty signal. Decreases in the synaptic weightings on repetition of a standard stimulus form a trace of this stimulus in the novelty neurons - this is the "neural model of the stimulus." The novelty signal is determined by the non-concordance of the new stimulus with this "neural model," which is formed under the influence of the standard stimulus. The greater the difference between the new stimulus and the previously formed neural model, the stronger the novelty signal.
Startle reduces recall of a recently learned internal model.
Wright, Zachary; Patton, James L; Ravichandran, Venn
2011-01-01
Recent work has shown that preplanned motor programs are released early from subcortical areas by the using a startling acoustic stimulus (SAS). Our question is whether this response might also contain a recently learned internal model, which draws on experience to predict and compensate for expected perturbations in a feedforward manner. Studies of adaptation to robotic forces have shown some evidence of this, but were potentially confounded by cocontraction caused by startle. We performed a new adaptation experiment using a visually distorted field that could not be confounded by cocontraction. We found that in all subjects that exhibited startle, the startle stimulus (1) reduced performance of the recently learned task (2) reduced after-effect magnitudes. Because startle reduced but did not eliminate the recall of learned control, we suggest that multiple neural centers (cortical and subcortical) are involved in such learning and adaptation, which can impact training areas such as piloting, teleoperation, sports, and rehabilitation. © 2011 IEEE
Psilocybin-induced stimulus control in the rat.
Winter, J C; Rice, K C; Amorosi, D J; Rabin, R A
2007-10-01
Although psilocybin has been trained in the rat as a discriminative stimulus, little is known of the pharmacological receptors essential for stimulus control. In the present investigation rats were trained with psilocybin and tests were then conducted employing a series of other hallucinogens and presumed antagonists. An intermediate degree of antagonism of psilocybin was observed following treatment with the 5-HT(2A) receptor antagonist, M100907. In contrast, no significant antagonism was observed following treatment with the 5-HT(1A/7) receptor antagonist, WAY-100635, or the DA D(2) antagonist, remoxipride. Psilocybin generalized fully to DOM, LSD, psilocin, and, in the presence of WAY-100635, DMT while partial generalization was seen to 2C-T-7 and mescaline. LSD and MDMA partially generalized to psilocybin and these effects were completely blocked by M-100907; no generalization of PCP to psilocybin was seen. The present data suggest that psilocybin induces a compound stimulus in which activity at the 5-HT(2A) receptor plays a prominent but incomplete role. In addition, psilocybin differs from closely related hallucinogens such as 5-MeO-DMT in that agonism at 5-HT(1A) receptors appears to play no role in psilocybin-induced stimulus control.
Psilocybin-induced stimulus control in the rat
Winter, J.C.; Rice, K.C.; Amorosi, D.J.; Rabin, R.A.
2007-01-01
Although psilocybin has been trained in the rat as a discriminative stimulus, little is known of the pharmacological receptors essential for stimulus control. In the present investigation rats were trained with psilocybin and tests were then conducted employing a series of other hallucinogens and presumed antagonists. An intermediate degree of antagonism of psilocybin was observed following treatment with the 5-HT2A receptor antagonist, M100907. In contrast, no significant antagonism was observed following treatment with the 5-HT1A/7 receptor antagonist, WAY-100635, or the DA D2 antagonist, remoxipride. Psilocybin generalized fully to DOM, LSD, psilocin, and, in the presence of WAY-100635, DMT while partial generalization was seen to 2C-T-7 and mescaline. LSD and MDMA partially generalized to psilocybin and these effects were completely blocked by M-100907; no generalization of PCP to psilocybin was seen. The present data suggest that psilocybin induces a compound stimulus in which activity at the 5-HT2A receptor plays a prominent but incomplete role. In addition, psilocybin differs from closely related hallucinogens such as 5-MeO-DMT in that agonism at 5-HT1A receptors appears to play no role in psilocybin-induced stimulus control. PMID:17688928
Randall, Kayla R; Lambert, Joseph M; Matthews, Mary P; Houchins-Juarez, Nealetta J
2018-05-01
Research has shown that physical aggression is common in individuals with autism spectrum disorder (ASD). Interventions for multiply controlled aggression may be complex and difficult to implement with fidelity. As a result, the probability of treatment efficacy for this class of behavior may suffer. We designed an individualized levels system to reduce the physical aggression of an 11-year-old female with ASD. We then employed a systematic stimulus pairing procedure to facilitate generalization. Results suggest individualized levels systems can suppress multiply controlled aggression and that systematic stimulus pairing is an effective way to transfer treatment effects from trained therapists to caregivers.
Troisi, Joseph R; Craig, Elizabeth M
2015-06-01
Interoceptive states interact with exteroceptive contexts in modulating operant behavior, which is maintained by its consequences. Evaluating discriminative stimulus control by overlapping interoceptive and exteroceptive configurations (gestalts) and the contribution of each modality may be clinically important for understanding aspects of relapsing behavior (e.g., drug abuse). With rats, the current investigation used a completely counterbalanced one-manipulandum operant drug discrimination procedure that established discriminative stimulus control between nicotine (0.3mg/kg) in one exteroceptive context and EtOH (1.0g/kg) in a differing exteroceptive context. One combined interoceptive-exteroceptive condition occasioned sessions of food reinforcement (S(D)) and the other counterbalanced condition occasioned sessions of non-reinforcement (S(Δ)). Each stimulus modality contributed to discriminative control, but to lesser extents than the combined intero-exteroceptive compound configurations (Experiments 1 & 2). In Experiment 1, responding was extinguished in the interoceptive stimulus conditions alone in a neutral exteroceptive context, but then renewed by reconfiguring the drugs with the exteroceptive contexts, and reversed in the opposing exteroceptive contexts. In Experiment 2, responding was extinguished in the interoceptive and exteroceptive contexts separately. Reconfiguration of the full intero-exteroceptive compound configurations did not promote recovery. These results suggest that interoceptive and exteroceptive discriminative control can be methodologically configured in modulating operant behavior during acquisition, extinction, and recovery of behavior; however, configuring interoceptive and exteroceptive discriminative stimuli do not appear to function as unique cues that differ from each stimulus modality alone. Clinical implications are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
A Spatial Model of the Mere Exposure Effect.
ERIC Educational Resources Information Center
Fink, Edward L.; And Others
1989-01-01
Uses a spatial model to examine the relationship between stimulus exposure, cognition, and affect. Notes that this model accounts for cognitive changes that a stimulus may acquire as a result of exposure. Concludes that the spatial model is useful for evaluating the mere exposure effect and that affective change does not require cognitive change.…
Bayesian modeling of flexible cognitive control
Jiang, Jiefeng; Heller, Katherine; Egner, Tobias
2014-01-01
“Cognitive control” describes endogenous guidance of behavior in situations where routine stimulus-response associations are suboptimal for achieving a desired goal. The computational and neural mechanisms underlying this capacity remain poorly understood. We examine recent advances stemming from the application of a Bayesian learner perspective that provides optimal prediction for control processes. In reviewing the application of Bayesian models to cognitive control, we note that an important limitation in current models is a lack of a plausible mechanism for the flexible adjustment of control over conflict levels changing at varying temporal scales. We then show that flexible cognitive control can be achieved by a Bayesian model with a volatility-driven learning mechanism that modulates dynamically the relative dependence on recent and remote experiences in its prediction of future control demand. We conclude that the emergent Bayesian perspective on computational mechanisms of cognitive control holds considerable promise, especially if future studies can identify neural substrates of the variables encoded by these models, and determine the nature (Bayesian or otherwise) of their neural implementation. PMID:24929218
On the Intentional Control of Conditioned Evaluative Responses
ERIC Educational Resources Information Center
Balas, Robert; Gawronski, Bertram
2012-01-01
The evaluative conditioning (EC) effect is defined as a change in the evaluation of a conditioned stimulus (CS) due to its pairing with a valenced unconditioned stimulus (US). The current research investigated the controllability of EC effects by asking participants to either promote or prevent the influence of CS-US pairings before they provided…
Contextual Control by Function and Form of Transfer of Functions
ERIC Educational Resources Information Center
Perkins, David R.; Dougher, Michael J.; Greenway, David E.
2007-01-01
This study investigated conditions leading to contextual control by stimulus topography over transfer of functions. Three 4-member stimulus equivalence classes, each consisting of four (A, B, C, D) topographically distinct visual stimuli, were established for 5 college students. Across classes, designated A stimuli were open-ended linear figures,…
Can Collateral Behavior Account for Transitions in the Stimulus Control of Speech?
ERIC Educational Resources Information Center
Palmer, David C.
2017-01-01
The task of extending Skinner's (1957) interpretation of verbal behavior includes accounting for the moment-to-moment changes in stimulus control as one speaks. A consideration of the behavior of the reader reminds us of the continuous evocative effect of verbal stimuli on readers, listeners, and speakers. Collateral discriminative responses to…
A Preliminary Investigation of Stimulus Control Training for Worry: Effects on Anxiety and Insomnia
ERIC Educational Resources Information Center
McGowan, Sarah Kate; Behar, Evelyn
2013-01-01
For individuals with generalized anxiety disorder, worry becomes associated with numerous aspects of life (e.g., time of day, specific stimuli, environmental cues) and is thus under poor discriminative stimulus control (SC). In addition, excessive worry is associated with anxiety, depressed mood, and sleep difficulties. This investigation sought…
ERIC Educational Resources Information Center
Cohn, Scott I.; Weiss, Stanley J.
2007-01-01
Previous experiments have demonstrated that the simultaneous presentation of independently established discriminative stimuli can control rates of operant responding substantially higher than the rates occasioned by the individual stimuli. This "additive summation" phenomenon has been shown with a variety of different reinforcers (e.g., food,…
Stimulus control in pigeons after extended discriminative training
NASA Technical Reports Server (NTRS)
Yarczower, M.
1972-01-01
The effects of amount of training on conditioned inhibition and on the degree of stimulus control were studied using pigeons. The ability of an S- associated with non-reinforcement of suppress positive reinforced behavior was acquired very rapidly during discriminative training. Increased S+, S- training appeared to weaken this conditioned inhibitory effect while at the same time more S+ training apparently increased the amount of external inhibition (non-conditioned inhibition) of positively reinforced behavior by a novel stimulus. Behavioral contrast and incremental generalization gradients along the S- dimension (inhibitory dimensional control) were absent at all stages of training. Behavioral contrast and inhibitory dimensional control are therefore not necessary concomitants of conditioned inhibition by an S-. A new method of assessing the suppressive effects of stimuli during generalization tests was described.
Cognitive control predicts use of model-based reinforcement learning.
Otto, A Ross; Skatova, Anya; Madlon-Kay, Seth; Daw, Nathaniel D
2015-02-01
Accounts of decision-making and its neural substrates have long posited the operation of separate, competing valuation systems in the control of choice behavior. Recent theoretical and experimental work suggest that this classic distinction between behaviorally and neurally dissociable systems for habitual and goal-directed (or more generally, automatic and controlled) choice may arise from two computational strategies for reinforcement learning (RL), called model-free and model-based RL, but the cognitive or computational processes by which one system may dominate over the other in the control of behavior is a matter of ongoing investigation. To elucidate this question, we leverage the theoretical framework of cognitive control, demonstrating that individual differences in utilization of goal-related contextual information--in the service of overcoming habitual, stimulus-driven responses--in established cognitive control paradigms predict model-based behavior in a separate, sequential choice task. The behavioral correspondence between cognitive control and model-based RL compellingly suggests that a common set of processes may underpin the two behaviors. In particular, computational mechanisms originally proposed to underlie controlled behavior may be applicable to understanding the interactions between model-based and model-free choice behavior.
Flexible strategies for flight control: an active role for the abdomen.
Dyhr, Jonathan P; Morgansen, Kristi A; Daniel, Thomas L; Cowan, Noah J
2013-05-01
Moving animals orchestrate myriad motor systems in response to multimodal sensory inputs. Coordinating movement is particularly challenging in flight control, where animals deal with potential instability and multiple degrees of freedom of movement. Prior studies have focused on wings as the primary flight control structures, for which changes in angle of attack or shape are used to modulate lift and drag forces. However, other actuators that may impact flight performance are reflexively activated during flight. We investigated the visual-abdominal reflex displayed by the hawkmoth Manduca sexta to determine its role in flight control. We measured the open-loop stimulus-response characteristics (measured as a transfer function) between the visual stimulus and abdominal response in tethered moths. The transfer function reveals a 41 ms delay and a high-pass filter behavior with a pass band starting at ~0.5 Hz. We also developed a simplified mathematical model of hovering flight wherein articulation of the thoracic-abdominal joint redirects an average lift force provided by the wings. We show that control of the joint, subject to a high-pass filter, is sufficient to maintain stable hovering, but with a slim stability margin. Our experiments and models suggest a novel mechanism by which articulation of the body or 'airframe' of an animal can be used to redirect lift forces for effective flight control. Furthermore, the small stability margin may increase flight agility by easing the transition from stable flight to a more maneuverable, unstable regime.
Stimulus Predifferentiation and Modification of Children's Racial Attitudes
ERIC Educational Resources Information Center
Katz, Phyllis A.
1973-01-01
The most significant finding is that stimulus-predifferentiation training elicited lower prejudice scores for children on two indices of ethnic attitudes than did a no-label control condition. (Author)
Modeling stimulus variation in three common implicit attitude tasks.
Wolsiefer, Katie; Westfall, Jacob; Judd, Charles M
2017-08-01
We explored the consequences of ignoring the sampling variation due to stimuli in the domain of implicit attitudes. A large literature in psycholinguistics has examined the statistical treatment of random stimulus materials, but the recommendations from this literature have not been applied to the social psychological literature on implicit attitudes. This is partly because of inherent complications in applying crossed random-effect models to some of the most common implicit attitude tasks, and partly because no work to date has demonstrated that random stimulus variation is in fact consequential in implicit attitude measurement. We addressed this problem by laying out statistically appropriate and practically feasible crossed random-effect models for three of the most commonly used implicit attitude measures-the Implicit Association Test, affect misattribution procedure, and evaluative priming task-and then applying these models to large datasets (average N = 3,206) that assess participants' implicit attitudes toward race, politics, and self-esteem. We showed that the test statistics from the traditional analyses are substantially (about 60 %) inflated relative to the more-appropriate analyses that incorporate stimulus variation. Because all three tasks used the same stimulus words and faces, we could also meaningfully compare the relative contributions of stimulus variation across the tasks. In an appendix, we give syntax in R, SAS, and SPSS for fitting the recommended crossed random-effects models to data from all three tasks, as well as instructions on how to structure the data file.
Dopamine and response selection: an Acute Phenylalanine/Tyrosine Depletion study.
Ramdani, Céline; Vidal, Franck; Dagher, Alain; Carbonnell, Laurence; Hasbroucq, Thierry
2018-04-01
The role of dopaminergic system in decision-making is well documented, and evidence suggests that it could play a significant role in response selection processes. The N-40 is a fronto-central event-related potential, generated by the supplementary motor areas (SMAs) and a physiological index of response selection processes. The aim of the present study was to determine whether infraclinical effects of dopamine depletion on response selection processes could be evidenced via alterations of the N-40. We obtained a dopamine depletion in healthy volunteers with the acute phenylalanine and tyrosine depletion (APTD) method which consists in decreasing the availability of dopamine precursors. Subjects realized a Simon task in the APTD condition and in the control condition. When the stimulus was presented on the same side as the required response, the stimulus-response association was congruent and when the stimulus was presented on the opposite side of the required response, the stimulus-response association was incongruent. The N-40 was smaller for congruent associations than for incongruent associations. Moreover, the N-40 was sensitive to the level of dopaminergic activity with a decrease in APTD condition compared to control condition. This modulation of the N-40 by dopaminergic level could not be explained by a global decrease of cerebral electrogenesis, since negativities and positivities indexing the recruitment of the primary motor cortex (anatomically adjacent to the SMA) were unaffected by APTD. The specific sensitivity of N-40 to ATPD supports the model of Keeler et al. (Neuroscience 282:156-175, 2014) according to which the dopaminergic system is involved in response selection.
Schmidt, James R.; Liefooghe, Baptist
2016-01-01
This report presents data from two versions of the task switching procedure in which the separate influence of stimulus repetitions, response key repetitions, conceptual response repetitions, cue repetitions, task repetitions, and congruency are considered. Experiment 1 used a simple alternating runs procedure with parity judgments of digits and consonant/vowel decisions of letters as the two tasks. Results revealed sizable effects of stimulus and response repetitions, and controlling for these effects reduced the switch cost. Experiment 2 was a cued version of the task switch paradigm with parity and magnitude judgments of digits as the two tasks. Results again revealed large effects of stimulus and response repetitions, in addition to cue repetition effects. Controlling for these effects again reduced the switch cost. Congruency did not interact with our novel “unbiased” measure of switch costs. We discuss how the task switch paradigm might be thought of as a more complex version of the feature integration paradigm and propose an episodic learning account of the effect. We further consider to what extent appeals to higher-order control processes might be unnecessary and propose that controls for feature integration biases should be standard practice in task switching experiments. PMID:26964102
Rajah, M Natasha; Ames, Blaine; D'Esposito, Mark
2008-03-07
Neuroimaging studies have reported increased prefrontal cortex (PFC) activity during temporal context retrieval versus recognition memory. However, it remains unclear if these activations reflect PFC contributions to domain-general executive control processes or domain-specific retrieval processes. To gain a better understanding of the functional roles of these various PFC regions during temporal context retrieval we propose it is necessary to examine PFC activity across tasks from different domains, in which parallel manipulations are included targeting specific cognitive processes. In the current fMRI study, we examined domain-general and domain-specific PFC contributions to temporal context retrieval by increasing stimulus (but maintaining response number) and increasing response number (but maintaining stimulus number) across temporal context memory and ordering control tasks, for faces. The control task required subjects to order faces from youngest to oldest. Our behavioral results indicate that the combination of increased stimulus and response numbers significantly increased task difficulty for temporal context retrieval and ordering tasks. Across domains, increasing stimulus number, while maintaining response numbers, caused greater right lateral premotor cortex (BA 6/8) activity; whereas increasing response number, while maintaining stimulus number, caused greater domain-general left DLPFC (BA 9) and VLPFC (BA 44/45) activity. In addition, we found domain-specific right DLPFC (BA 9) activity only during retrieval events. These results highlight the functional heterogeneity of frontal cortex, and suggest its involvement in temporal context retrieval is related to its role in various cognitive control processes.
Graziano, Martin; Sigman, Mariano
2008-05-23
When a stimulus is presented, its sensory trace decays rapidly, lasting for approximately 1000 ms. This brief and labile memory, referred as iconic memory, serves as a buffer before information is transferred to working memory and executive control. Here we explored the effect of different factors--geometric, spatial, and experience--with respect to the access and the maintenance of information in iconic memory and the progressive distortion of this memory. We studied performance in a partial report paradigm, a design wherein recall of only part of a stimulus array is required. Subjects had to report the identity of a letter in a location that was cued in a variable delay after the stimulus onset. Performance decayed exponentially with time, and we studied the different parameters (time constant, zero-delay value, and decay amplitude) as a function of the different factors. We observed that experience (determined by letter frequency) affected the access to iconic memory but not the temporal decay constant. On the contrary, spatial position affected the temporal course of delay. The entropy of the error distribution increased with time reflecting a progressive morphological distortion of the iconic buffer. We discuss our results on the context of a model of information access to executive control and how it is affected by learning and attention.
Bardy, Fabrice; Dillon, Harvey; Van Dun, Bram
2014-04-01
Rapid presentation of stimuli in an evoked response paradigm can lead to overlap of multiple responses and consequently difficulties interpreting waveform morphology. This paper presents a deconvolution method allowing overlapping multiple responses to be disentangled. The deconvolution technique uses a least-squared error approach. A methodology is proposed to optimize the stimulus sequence associated with the deconvolution technique under low-jitter conditions. It controls the condition number of the matrices involved in recovering the responses. Simulations were performed using the proposed deconvolution technique. Multiple overlapping responses can be recovered perfectly in noiseless conditions. In the presence of noise, the amount of error introduced by the technique can be controlled a priori by the condition number of the matrix associated with the used stimulus sequence. The simulation results indicate the need for a minimum amount of jitter, as well as a sufficient number of overlap combinations to obtain optimum results. An aperiodic model is recommended to improve reconstruction. We propose a deconvolution technique allowing multiple overlapping responses to be extracted and a method of choosing the stimulus sequence optimal for response recovery. This technique may allow audiologists, psychologists, and electrophysiologists to optimize their experimental designs involving rapidly presented stimuli, and to recover evoked overlapping responses. Copyright © 2013 International Federation of Clinical Neurophysiology. All rights reserved.
Does overall reinforcer rate affect discrimination of time-based contingencies?
Cowie, Sarah; Davison, Michael; Blumhardt, Luca; Elliffe, Douglas
2016-05-01
Overall reinforcer rate appears to affect choice. The mechanism for such an effect is uncertain, but may relate to reinforcer rate changing the discrimination of the relation between stimuli and reinforcers. We assessed whether a quantitative model based on a stimulus-control approach could be used to account for the effects of overall reinforcer rate on choice under changing time-based contingencies. On a two-key concurrent schedule, the likely availability of a reinforcer reversed when a fixed time had elapsed since the last reinforcer, and the overall reinforcer rate was varied across conditions. Changes in the overall reinforcer rate produced a change in response bias, and some indication of a change in discrimination. These changes in bias and discrimination always occurred quickly, usually within the first session of a condition. The stimulus-control approach provided an excellent account of the data, suggesting that changes in overall reinforcer rate affect choice because they alter the frequency of reinforcers obtained at different times, or in different stimulus contexts, and thus change the discriminated relation between stimuli and reinforcers. These findings support the notion that temporal and spatial discriminations can be understood in terms of discrimination of reinforcers across time and space. © 2016 Society for the Experimental Analysis of Behavior.
A Dynamic Stimulus-Driven Model of Signal Detection
ERIC Educational Resources Information Center
Turner, Brandon M.; Van Zandt, Trisha; Brown, Scott
2011-01-01
Signal detection theory forms the core of many current models of cognition, including memory, choice, and categorization. However, the classic signal detection model presumes the a priori existence of fixed stimulus representations--usually Gaussian distributions--even when the observer has no experience with the task. Furthermore, the classic…
Performance improvement of IPMC flow sensors with a biologically-inspired cupula structure
NASA Astrophysics Data System (ADS)
Lei, Hong; Sharif, Montassar Aidi; Paley, Derek A.; McHenry, Matthew J.; Tan, Xiaobo
2016-04-01
Ionic polymer-metal composites (IPMCs) have inherent underwater sensing and actuation properties. They can be used as sensors to collect flow information. Inspired by the hair-cell mediated receptor in the lateral line system of fish, the impact of a flexible, cupula-like structure on the performance of IPMC flow sensors is experimentally explored. The fabrication method to create a silicone-capped IPMC sensor is reported. Experiments are conducted to compare the sensing performance of the IPMC flow sensor before and after the PDMS coating under the periodic flow stimulus generated by a dipole source in still water and the laminar flow stimulus generated in a flow tank. Experimental results show that the performance of IPMC flow sensors is significantly improved under the stimulus of both periodic flow and laminar flow by the proposed silicone-capping.
ERIC Educational Resources Information Center
Byrne, Brittany L.; Rehfeldt, Ruth Anne; Aguirre, Angelica A.
2014-01-01
The stimulus pairing observation procedure (SPOP) combined with multiple exemplar instruction (MEI) has been shown to be effective with typically developing preschoolers in establishing the joint stimulus control required for the development of naming. The purpose of the current investigation was to evaluate the effectiveness and efficiency of the…
Rational-emotive behavior therapy and the formation of stimulus equivalence classes.
Plaud, J J; Gaither, G A; Weller, L A; Bigwood, S J; Barth, J; von Duvillard, S P
1998-08-01
Stimulus equivalence is a behavioral approach to analyzing the "meaning" of stimulus sets and has an implication for clinical psychology. The formation of three-member (A --> B --> C) stimulus equivalence classes was used to investigate the effects of three different sets of sample and comparison stimuli on emergent behavior. The three stimulus sets were composed of Rational-Emotive Behavior Therapy (REBT)-related words, non-REBT emotionally charged words, and a third category of neutral words composed of flower labels. Sixty-two women and men participated in a modified matching-to-sample experiment. Using a mixed cross-over design, and controlling for serial order effects, participants received conditional training and emergent relationship training in the three stimulus set conditions. Results revealed a significant interaction between the formation of stimulus equivalence classes and stimulus meaning, indicating consistently biased responding in favor of reaching criterion responding more slowly for REBT-related and non-REBT emotionally charged words. Results were examined in the context of an analysis of the importance of stimulus meaning on behavior and the relation of stimulus meaning to behavioral and cognitive theories, with special appraisal given to the influence of fear-related discriminative stimuli on behavior.
Ageing differentially affects neural processing of different conflict types-an fMRI study.
Korsch, Margarethe; Frühholz, Sascha; Herrmann, Manfred
2014-01-01
Interference control and conflict resolution is affected by ageing. There is increasing evidence that ageing does not compromise interference control in general but rather shows distinctive effects on different components of interference control. Different conflict types, [e.g., stimulus-stimulus (S-S) or stimulus-response (S-R) conflicts] trigger different cognitive processes and thus activate different neural networks. In the present functional magnetic resonance imaging (fMRI) study, we used a combined Flanker and Stimulus Response Conflict (SRC) task to investigate the effect of ageing on S-S and S-R conflicts. Behavioral data analysis revealed larger SRC effects in elderly. fMRI Results show that both age groups recruited similar regions [caudate nucleus, cingulate gyrus and middle occipital gyrus (MOG)] during Flanker conflict processing. Furthermore, elderly show an additional activation pattern in parietal and frontal areas. In contrast, no common activation of both age groups was found in response to the SRC. These data suggest that ageing has distinctive effects on S-S and S-R conflicts.
Antonietti, Alberto; Casellato, Claudia; D'Angelo, Egidio; Pedrocchi, Alessandra
The cerebellum plays a critical role in sensorimotor control. However, how the specific circuits and plastic mechanisms of the cerebellum are engaged in closed-loop processing is still unclear. We developed an artificial sensorimotor control system embedding a detailed spiking cerebellar microcircuit with three bidirectional plasticity sites. This proved able to reproduce a cerebellar-driven associative paradigm, the eyeblink classical conditioning (EBCC), in which a precise time relationship between an unconditioned stimulus (US) and a conditioned stimulus (CS) is established. We challenged the spiking model to fit an experimental data set from human subjects. Two subsequent sessions of EBCC acquisition and extinction were recorded and transcranial magnetic stimulation (TMS) was applied on the cerebellum to alter circuit function and plasticity. Evolutionary algorithms were used to find the near-optimal model parameters to reproduce the behaviors of subjects in the different sessions of the protocol. The main finding is that the optimized cerebellar model was able to learn to anticipate (predict) conditioned responses with accurate timing and success rate, demonstrating fast acquisition, memory stabilization, rapid extinction, and faster reacquisition as in EBCC in humans. The firing of Purkinje cells (PCs) and deep cerebellar nuclei (DCN) changed during learning under the control of synaptic plasticity, which evolved at different rates, with a faster acquisition in the cerebellar cortex than in DCN synapses. Eventually, a reduced PC activity released DCN discharge just after the CS, precisely anticipating the US and causing the eyeblink. Moreover, a specific alteration in cortical plasticity explained the EBCC changes induced by cerebellar TMS in humans. In this paper, for the first time, it is shown how closed-loop simulations, using detailed cerebellar microcircuit models, can be successfully used to fit real experimental data sets. Thus, the changes of the model parameters in the different sessions of the protocol unveil how implicit microcircuit mechanisms can generate normal and altered associative behaviors.The cerebellum plays a critical role in sensorimotor control. However, how the specific circuits and plastic mechanisms of the cerebellum are engaged in closed-loop processing is still unclear. We developed an artificial sensorimotor control system embedding a detailed spiking cerebellar microcircuit with three bidirectional plasticity sites. This proved able to reproduce a cerebellar-driven associative paradigm, the eyeblink classical conditioning (EBCC), in which a precise time relationship between an unconditioned stimulus (US) and a conditioned stimulus (CS) is established. We challenged the spiking model to fit an experimental data set from human subjects. Two subsequent sessions of EBCC acquisition and extinction were recorded and transcranial magnetic stimulation (TMS) was applied on the cerebellum to alter circuit function and plasticity. Evolutionary algorithms were used to find the near-optimal model parameters to reproduce the behaviors of subjects in the different sessions of the protocol. The main finding is that the optimized cerebellar model was able to learn to anticipate (predict) conditioned responses with accurate timing and success rate, demonstrating fast acquisition, memory stabilization, rapid extinction, and faster reacquisition as in EBCC in humans. The firing of Purkinje cells (PCs) and deep cerebellar nuclei (DCN) changed during learning under the control of synaptic plasticity, which evolved at different rates, with a faster acquisition in the cerebellar cortex than in DCN synapses. Eventually, a reduced PC activity released DCN discharge just after the CS, precisely anticipating the US and causing the eyeblink. Moreover, a specific alteration in cortical plasticity explained the EBCC changes induced by cerebellar TMS in humans. In this paper, for the first time, it is shown how closed-loop simulations, using detailed cerebellar microcircuit models, can be successfully used to fit real experimental data sets. Thus, the changes of the model parameters in the different sessions of the protocol unveil how implicit microcircuit mechanisms can generate normal and altered associative behaviors.
Balcarras, Matthew; Ardid, Salva; Kaping, Daniel; Everling, Stefan; Womelsdorf, Thilo
2016-02-01
Attention includes processes that evaluate stimuli relevance, select the most relevant stimulus against less relevant stimuli, and bias choice behavior toward the selected information. It is not clear how these processes interact. Here, we captured these processes in a reinforcement learning framework applied to a feature-based attention task that required macaques to learn and update the value of stimulus features while ignoring nonrelevant sensory features, locations, and action plans. We found that value-based reinforcement learning mechanisms could account for feature-based attentional selection and choice behavior but required a value-independent stickiness selection process to explain selection errors while at asymptotic behavior. By comparing different reinforcement learning schemes, we found that trial-by-trial selections were best predicted by a model that only represents expected values for the task-relevant feature dimension, with nonrelevant stimulus features and action plans having only a marginal influence on covert selections. These findings show that attentional control subprocesses can be described by (1) the reinforcement learning of feature values within a restricted feature space that excludes irrelevant feature dimensions, (2) a stochastic selection process on feature-specific value representations, and (3) value-independent stickiness toward previous feature selections akin to perseveration in the motor domain. We speculate that these three mechanisms are implemented by distinct but interacting brain circuits and that the proposed formal account of feature-based stimulus selection will be important to understand how attentional subprocesses are implemented in primate brain networks.
Predictive Ensemble Decoding of Acoustical Features Explains Context-Dependent Receptive Fields.
Yildiz, Izzet B; Mesgarani, Nima; Deneve, Sophie
2016-12-07
A primary goal of auditory neuroscience is to identify the sound features extracted and represented by auditory neurons. Linear encoding models, which describe neural responses as a function of the stimulus, have been primarily used for this purpose. Here, we provide theoretical arguments and experimental evidence in support of an alternative approach, based on decoding the stimulus from the neural response. We used a Bayesian normative approach to predict the responses of neurons detecting relevant auditory features, despite ambiguities and noise. We compared the model predictions to recordings from the primary auditory cortex of ferrets and found that: (1) the decoding filters of auditory neurons resemble the filters learned from the statistics of speech sounds; (2) the decoding model captures the dynamics of responses better than a linear encoding model of similar complexity; and (3) the decoding model accounts for the accuracy with which the stimulus is represented in neural activity, whereas linear encoding model performs very poorly. Most importantly, our model predicts that neuronal responses are fundamentally shaped by "explaining away," a divisive competition between alternative interpretations of the auditory scene. Neural responses in the auditory cortex are dynamic, nonlinear, and hard to predict. Traditionally, encoding models have been used to describe neural responses as a function of the stimulus. However, in addition to external stimulation, neural activity is strongly modulated by the responses of other neurons in the network. We hypothesized that auditory neurons aim to collectively decode their stimulus. In particular, a stimulus feature that is decoded (or explained away) by one neuron is not explained by another. We demonstrated that this novel Bayesian decoding model is better at capturing the dynamic responses of cortical neurons in ferrets. Whereas the linear encoding model poorly reflects selectivity of neurons, the decoding model can account for the strong nonlinearities observed in neural data. Copyright © 2016 Yildiz et al.
Balanced cortical microcircuitry for spatial working memory based on corrective feedback control.
Lim, Sukbin; Goldman, Mark S
2014-05-14
A hallmark of working memory is the ability to maintain graded representations of both the spatial location and amplitude of a memorized stimulus. Previous work has identified a neural correlate of spatial working memory in the persistent maintenance of spatially specific patterns of neural activity. How such activity is maintained by neocortical circuits remains unknown. Traditional models of working memory maintain analog representations of either the spatial location or the amplitude of a stimulus, but not both. Furthermore, although most previous models require local excitation and lateral inhibition to maintain spatially localized persistent activity stably, the substrate for lateral inhibitory feedback pathways is unclear. Here, we suggest an alternative model for spatial working memory that is capable of maintaining analog representations of both the spatial location and amplitude of a stimulus, and that does not rely on long-range feedback inhibition. The model consists of a functionally columnar network of recurrently connected excitatory and inhibitory neural populations. When excitation and inhibition are balanced in strength but offset in time, drifts in activity trigger spatially specific negative feedback that corrects memory decay. The resulting networks can temporally integrate inputs at any spatial location, are robust against many commonly considered perturbations in network parameters, and, when implemented in a spiking model, generate irregular neural firing characteristic of that observed experimentally during persistent activity. This work suggests balanced excitatory-inhibitory memory circuits implementing corrective negative feedback as a substrate for spatial working memory. Copyright © 2014 the authors 0270-6474/14/346790-17$15.00/0.
Magnetic hyperthermia controlled drug release in the GI tract: solving the problem of detection.
Bear, Joseph C; Patrick, P Stephen; Casson, Alfred; Southern, Paul; Lin, Fang-Yu; Powell, Michael J; Pankhurst, Quentin A; Kalber, Tammy; Lythgoe, Mark; Parkin, Ivan P; Mayes, Andrew G
2016-09-27
Drug delivery to the gastrointestinal (GI) tract is highly challenging due to the harsh environments any drug- delivery vehicle must experience before it releases it's drug payload. Effective targeted drug delivery systems often rely on external stimuli to effect release, therefore knowing the exact location of the capsule and when to apply an external stimulus is paramount. We present a drug delivery system for the GI tract based on coating standard gelatin drug capsules with a model eicosane- superparamagnetic iron oxide nanoparticle composite coating, which is activated using magnetic hyperthermia as an on-demand release mechanism to heat and melt the coating. We also show that the capsules can be readily detected via rapid X-ray computed tomography (CT) and magnetic resonance imaging (MRI), vital for progressing such a system towards clinical applications. This also offers the opportunity to image the dispersion of the drug payload post release. These imaging techniques also influenced capsule content and design and the delivered dosage form. The ability to easily change design demonstrates the versatility of this system, a vital advantage for modern, patient-specific medicine.
Stimulus generalization, discrimination learning, and peak shift in horses.
Dougherty, D M; Lewis, P
1991-01-01
Using horses, we investigated three aspects of the stimulus control of lever-pressing behavior: stimulus generalization, discrimination learning, and peak shift. Nine solid black circles, ranging in size from 0.5 in. to 4.5 in. (1.3 cm to 11.4 cm) served as stimuli. Each horse was shaped, using successive approximations, to press a rat lever with its lip in the presence of a positive stimulus, the 2.5-in. (6.4-cm) circle. Shaping proceeded quickly and was comparable to that of other laboratory organisms. After responding was maintained on a variable-interval 30-s schedule, stimulus generalization gradients were collected from 2 horses prior to discrimination training. During discrimination training, grain followed lever presses in the presence of a positive stimulus (a 2.5-in circle) and never followed lever presses in the presence of a negative stimulus (a 1.5-in. [3.8-cm] circle). Three horses met a criterion of zero responses to the negative stimulus in fewer than 15 sessions. Horses given stimulus generalization testing prior to discrimination training produced symmetrical gradients; horses given discrimination training prior to generalization testing produced asymmetrical gradients. The peak of these gradients shifted away from the negative stimulus. These results are consistent with discrimination, stimulus generalization, and peak-shift phenomena observed in other organisms. PMID:1940765
Hippocampal lesions, contextual retrieval, and autoshaping in pigeons.
Richmond, Jenny; Colombo, Michael
2002-02-22
Both pigeons and rats with damage to the hippocampus are slow to acquire an autoshaped response and emit fewer overall responses than control animals. Experiment 1 explored the possibility that the autoshaping deficit was due to an impairment in contextual retrieval. Pigeons were trained for 14 days on an autoshaping task in which a red stimulus was followed by reinforcement in context A, and a green stimulus was followed by reinforcement in context B. On day 15, the subjects were given a context test in which the red and green stimuli were presented simultaneously in context A and then later in context B. Both control and hippocampal animals showed context specificity, that is, they responded more to the red stimulus in context A and to the green stimulus in context B. In Experiment 2 we video-recorded the control and hippocampal animals performing the autoshaping task. Hippocampal animals tended to miss-peck the key more often than control animals. In addition, the number of missed pecks increased across days for hippocampal animals but not for control animals, suggesting that while the control animals increased their pecking accuracy, the hippocampal animals actually decreased their pecking accuracy. Our findings suggest that impairments in moving through space may underlie the hippocampal autoshaping deficit.
Pelosin, Elisa; Bisio, Ambra; Pozzo, Thierry; Lagravinese, Giovanna; Crisafulli, Oscar; Marchese, Roberta; Abbruzzese, Giovanni; Avanzino, Laura
2018-01-01
Postural reactions can be influenced by concomitant tasks or different contexts and are modulated by a higher order motor control. Recent studies investigated postural changes determined by motor contagion induced by action observation (chameleon effect) showing that observing a model in postural disequilibrium induces an increase in healthy subjects’ body sway. Parkinson’s disease (PD) is associated with postural instability and impairments in cognitively controlled balance tasks. However, no studies investigated if viewing postural imbalance might influence postural stability in PD and if patients are able to inhibit a visual postural perturbation. In this study, an action observation paradigm for assessing postural reaction to motor contagion in PD subjects and healthy older adults was used. Postural stability changes were measured during the observation of a static stimulus (control condition) and during a point-light display of a gymnast balancing on a rope (biological stimulus). Our results showed that, during the observation of the biological stimulus, sway area and antero-posterior and medio-lateral displacements of center of pressure significantly increased only in PD participants, whereas correct stabilization reactions were present in elderly subjects. These results demonstrate that PD leads to a decreased capacity to control automatic imitative tendencies induced by motor contagion. This behavior could be the consequence either of an inability to inhibit automatic imitative tendencies or of the cognitive load requested by the task. Whatever the case, the issue about the ability to inhibit automatic imitative tendencies could be crucial for PD patients since it might increase falls risk and injuries. PMID:29545771
NASA Technical Reports Server (NTRS)
Parker, D. E.; Reschke, M. F.
1988-01-01
An effort to develop preflight adaptation training (PAT) apparatus and procedures to adapt astronauts to the stimulus rearrangement of weightless spaceflight is being pursued. Based on the otolith tilt-translation reinterpretation model of sensory adaptation to weightlessness, two prototype preflight adaptation trainers (PAT) have been developed. These trainers couple pitch movement of the subject with translation of the visual surround. Subjects were exposed to this stimulus rearrangement for periods of 30 m. The hypothesis is that exposure to the rearrangement would attenuate vertical eye movements was supported by two experiments using the Miami University Seesaw (MUS) PAT prototype. The Dynamic Environment Simulator (DES) prototype failed to support this hypothesis; this result is attributed to a pecularity of the DES apparatus. A final experiment demonstrated that changes in vertical eye movements were not a consequence of fixation on an external target during exposure to a control condition. Together these experiments support the view that preflight adaptation training can alter eye movements in a manner consistent with adaptation to weightlessness. Following these initial studies, concepts for development of operational preflight trainers were proposed. The trainers are intended to: demonstrate the stimulus rearrangement of weightlessness; allow astronauts to train in altered sensory environment; modify sensory motor reflexes; and reduce/eliminate space motion sickness symptoms.
Shen, Feng; Pompano, Rebecca R; Kastrup, Christian J; Ismagilov, Rustem F
2009-10-21
This study shows that environmental confinement strongly affects the activation of nonlinear reaction networks, such as blood coagulation (clotting), by small quantities of activators. Blood coagulation is sensitive to the local concentration of soluble activators, initiating only when the activators surpass a threshold concentration, and therefore is regulated by mass transport phenomena such as flow and diffusion. Here, diffusion was limited by decreasing the size of microfluidic chambers, and it was found that microparticles carrying either the classical stimulus, tissue factor, or a bacterial stimulus, Bacillus cereus, initiated coagulation of human platelet-poor plasma only when confined. A simple analytical argument and numerical model were used to describe the mechanism for this phenomenon: confinement causes diffusible activators to accumulate locally and surpass the threshold concentration. To interpret the results, a dimensionless confinement number, Cn, was used to describe whether a stimulus was confined, and a Damköhler number, Da(2), was used to describe whether a subthreshold stimulus could initiate coagulation. In the context of initiation of coagulation by bacteria, this mechanism can be thought of as "diffusion acting", which is distinct from "diffusion sensing". The ability of confinement and diffusion acting to change the outcome of coagulation suggests that confinement should also regulate other biological "on" and "off" processes that are controlled by thresholds.
Brown, H A; Allison, J D; Samonds, J M; Bonds, A B
2003-01-01
A stimulus located outside the classic receptive field (CRF) of a striate cortical neuron can markedly influence its behavior. To study this phenomenon, we recorded from two cortical sites, recorded and peripheral, with separate electrodes in cats anesthetized with Propofol and nitrous oxide. The receptive fields of each site were discrete (2-7.3 deg between centers). A control orientation tuning (OT) curve was measured for a single recorded cell with a drifting grating. The OT curve was then remeasured while stimulating simultaneously the cell's CRF as well as the peripheral site with a stimulus optimized for that location. For 22/60 cells, the peripheral stimulus suppressed the peak response and/or shifted the center of mass of the OT curve. For 19 of these 22 cells, we then reversibly blocked stimulus-driven activity at the peripheral site by iontophoretic application of GABA (0.5 M). For 6/19 cells, the response returned to control levels, implying that for these cells the inhibitory influence arose from the blocked site. The responses of nine cells remained reduced during inactivation of the peripheral site, suggesting that influence was generated outside the region of local block in area 17. This is consistent with earlier findings suggesting that modulatory influences can originate from higher cortical areas. Three cells had mixed results, suggesting multiple origins of influence. The response of each cell returned to suppressed levels after dissipation of the GABA and returned to baseline values when the peripheral stimulus was removed. These findings support a cortical model in which a cell's response is modulated by an inhibitory network originating from beyond the receptive field that supplants convergence of excitatory lateral geniculate neurons. The existence of cells that exhibit no change in peripherally inhibited responses during the GABA application suggests that peripheral influences may arise from outside area 17, presumably from other cortical areas (e.g. area 18).
Relationship of extinction to perceptual thresholds for single stimuli.
Meador, K J; Ray, P G; Day, L J; Loring, D W
2001-04-24
To demonstrate the effects of target stimulus intensity on extinction to double simultaneous stimuli. Attentional deficits contribute to extinction in patients with brain lesions, but extinction (i.e., masking) can also be produced in healthy subjects. The relationship of extinction to perceptual thresholds for single stimuli remains uncertain. Brief electrical pulses were applied simultaneously to the left and right index fingers of 16 healthy volunteers (8 young and 8 elderly adults) and 4 patients with right brain stroke (RBS). The stimulus to be perceived (i.e., target stimulus) was given at the lowest perceptual threshold to perceive any single stimulus (i.e., Minimal) and at the threshold to perceive 100% of single stimuli. The mask stimulus (i.e., stimulus given to block the target) was applied to the contralateral hand at intensities just below discomfort. Extinction was less for target stimuli at 100% than Minimal threshold for healthy subjects. Extinction of left targets was greater in patients with RBS than elderly control subjects. Left targets were extinguished less than right in healthy subjects. In contrast, the majority of left targets were extinguished in patients with RBS even when right mask intensity was reduced below right 100% threshold for single stimuli. RBS patients had less extinction for right targets despite having greater left mask - threshold difference than control subjects. In patients with RBS, right "targets" at 100% threshold extinguished left "masks" (20%) almost as frequently as left masks extinguished right targets (32%). Subtle changes in target intensity affect extinction in healthy adults. Asymmetries in mask and target intensities (relative to single-stimulus perceptual thresholds) affect extinction in RBS patients less for left targets but more for right targets as compared with control subjects.
Leenaars, Cathalijn H C; Joosten, Ruud N J M A; Zwart, Allard; Sandberg, Hans; Ruimschotel, Emma; Hanegraaf, Maaike A J; Dematteis, Maurice; Feenstra, Matthijs G P; van Someren, Eus J W
2012-02-01
Task-switching is an executive function involving the prefrontal cortex. Switching temporarily attenuates the speed and/or accuracy of performance, phenomena referred to as switch costs. In accordance with the idea that prefrontal function is particularly sensitive to sleep loss, switch-costs increase during prolonged waking in humans. It has been difficult to investigate the underlying neurobiological mechanisms because of the lack of a suitable animal model. Here, we introduce the first switch-task for rats and report the effects of sleep deprivation and inactivation of the medial prefrontal cortex. Rats were trained to repeatedly switch between 2 stimulus-response associations, indicated by the presentation of a visual or an auditory stimulus. These stimulus-response associations were offered in blocks, and performance was compared for the first and fifth trials of each block. Performance was tested after exposure to 12 h of total sleep deprivation, sleep fragmentation, and their respective movement control conditions. Finally, it was tested after pharmacological inactivation of the medial prefrontal cortex. Controlled laboratory settings. 15 male Wistar rats. Both accuracy and latency showed switch-costs at baseline. Twelve hours of total sleep deprivation, but not sleep fragmentation, impaired accuracy selectively on the switch-trials. Inactivation of the medial prefrontal cortex by local neuronal inactivation resulted in an overall decrease in accuracy. We developed and validated a switch-task that is sensitive to sleep deprivation. This introduces the possibility for in-depth investigations on the neurobiological mechanisms underlying executive impairments after sleep disturbance in a rat model.
Parr, Evelyn B; Coffey, Vernon G; Cato, Louise E; Phillips, Stuart M; Burke, Louise M; Hawley, John A
2016-05-01
This study determined the effects of 16-week high-dairy-protein, variable-carbohydrate (CHO) diets and exercise training (EXT) on body composition in men and women with overweight/obesity. One hundred and eleven participants (age 47 ± 6 years, body mass 90.9 ± 11.7 kg, BMI 33 ± 4 kg/m(2) , values mean ± SD) were randomly stratified to diets with either: high dairy protein, moderate CHO (40% CHO: 30% protein: 30% fat; ∼4 dairy servings); high dairy protein, high CHO (55%: 30%: 15%; ∼4 dairy servings); or control (55%: 15%: 30%; ∼1 dairy serving). Energy restriction (500 kcal/day) was achieved through diet (∼250 kcal/day) and EXT (∼250 kcal/day). Body composition was measured using dual-energy X-ray absorptiometry before, midway, and upon completion of the intervention. Eighty-nine (25 M/64 F) of 115 participants completed the 16-week intervention, losing 7.7 ± 3.2 kg fat mass (P < 0.001) and gaining 0.50 ± 1.75 kg lean mass (P < 0.01). There was no difference in the changes in body composition (fat mass or lean mass) between groups. Compared to a healthy control diet, energy-restricted high-protein diets containing different proportions of fat and CHO confer no advantage to weight loss or change in body composition in the presence of an appropriate exercise stimulus. © 2016 The Obesity Society.
ERIC Educational Resources Information Center
Torelli, Jessica N.; Lloyd, Blair P.; Diekman, Claire A.; Wehby, Joseph H.
2017-01-01
In elementary school classrooms, students commonly recruit teacher attention at inappropriately high rates or at inappropriate times. Multiple schedule interventions have been used to teach stimulus control by signaling to students when reinforcement is and is not available contingent on an appropriate response. The purpose of the current study…
Effects of Operant Discrimination Training on the Vocalizations of Nonverbal Children with Autism
ERIC Educational Resources Information Center
Lepper, Tracy L.; Petursdottir, Anna Ingeborg; Esch, Barbara E.
2013-01-01
We evaluated the effects of operant discrimination training (ODT) on the vocalizations of 3 boys with autism. We compared ODT to a stimulus-stimulus pairing (SSP) condition and a control condition in an adapted alternating-treatments design. ODT increased the target vocalizations of all participants compared to the control condition, and its…
Barriers to Engagement in Sleep Restriction and Stimulus Control in Chronic Insomnia
ERIC Educational Resources Information Center
Vincent, Norah; Lewycky, Samantha; Finnegan, Heather
2008-01-01
Sleep restriction (SRT) and stimulus control (SC) have been found to be effective interventions for chronic insomnia (Morgenthaler et al., 2006), and yet adherence to SRT and SC varies widely. The objective of this study was to investigate correlates to adherence to SC/SRT among 40 outpatients with primary or comorbid insomnia using a…
ERIC Educational Resources Information Center
Eikeseth, Svein; Smith, Dean P.
2013-01-01
A common characteristic of the language deficits experienced by children with autism (and other developmental disorders) is their failure to acquire a complex intraverbal repertoire. The difficulties with learning intraverbal behaviors may, in part, be related to the fact that the stimulus control for such behaviors usually involves highly complex…
Use of a Differential Observing Response to Expand Restricted Stimulus Control
ERIC Educational Resources Information Center
Walpole, Carrie Wallace; Roscoe, Eileen M.; Dube, William V.
2007-01-01
This study extends previous work on the use of differential observing responses (DOR) to remediate atypically restricted stimulus control. A participant with autism had high matching-to-sample accuracy scores with printed words that had no letters in common (e.g., "cat," "lid," "bug") but poor accuracy with words that had two letters in common…
ERIC Educational Resources Information Center
Lotfizadeh, Amin D.; Edwards, Timothy L.; Redner, Ryan; Poling, Alan
2012-01-01
Several recent studies have explored what Michael (e.g., 1982) termed the "value-altering" effect and the "behavior-altering" effect of motivating operations. One aspect of the behavior-altering effect that has garnered no recent attention involves changes in stimulus control produced by motivating operations. To call attention to this aspect of…
Stimulus Sensitivity of a Spiking Neural Network Model
NASA Astrophysics Data System (ADS)
Chevallier, Julien
2018-02-01
Some recent papers relate the criticality of complex systems to their maximal capacity of information processing. In the present paper, we consider high dimensional point processes, known as age-dependent Hawkes processes, which have been used to model spiking neural networks. Using mean-field approximation, the response of the network to a stimulus is computed and we provide a notion of stimulus sensitivity. It appears that the maximal sensitivity is achieved in the sub-critical regime, yet almost critical for a range of biologically relevant parameters.
Soria Bauser, Denise A; Schriewer, Elisabeth; Suchan, Boris
2015-08-01
Several studies have reported similarities between perceptual processes underlying face and body perception, particularly emphasizing the importance of configural processes. Differences between the perception of faces and the perception of bodies were observed by means of a manipulation targeting a specific subtype of configural processing: the composite illusion. The composite face illusion describes the fact that two identical top halves of a face are perceived as being different if they are presented with different bottom parts. This effect disappears, if both halves are laterally shifted. Crucially, the effect of misalignment is not observed for bodies. This study aimed to further explore differences in the time course of face and body perception by using the composite effect. The present results replicated behavioural effects illustrating that misalignment affects the perception of faces but not bodies. Thus, face but not body perception relies on holistic processing. However, differences in the time course of the processing of both stimulus categories emerged at the N170 and P200. The pattern of the behavioural data seemed to be related to the P200. Thus, the present data indicate that holistic processes associated with the effect of misalignment might occur 200 ms after stimulus onset. © 2014 The British Psychological Society.
A Protein Turnover Signaling Motif Controls the Stimulus-Sensitivity of Stress Response Pathways
Loriaux, Paul Michael; Hoffmann, Alexander
2013-01-01
Stimulus-induced perturbations from the steady state are a hallmark of signal transduction. In some signaling modules, the steady state is characterized by rapid synthesis and degradation of signaling proteins. Conspicuous among these are the p53 tumor suppressor, its negative regulator Mdm2, and the negative feedback regulator of NFκB, IκBα. We investigated the physiological importance of this turnover, or flux, using a computational method that allows flux to be systematically altered independently of the steady state protein abundances. Applying our method to a prototypical signaling module, we show that flux can precisely control the dynamic response to perturbation. Next, we applied our method to experimentally validated models of p53 and NFκB signaling. We find that high p53 flux is required for oscillations in response to a saturating dose of ionizing radiation (IR). In contrast, high flux of Mdm2 is not required for oscillations but preserves p53 sensitivity to sub-saturating doses of IR. In the NFκB system, degradation of NFκB-bound IκB by the IκB kinase (IKK) is required for activation in response to TNF, while high IKK-independent degradation prevents spurious activation in response to metabolic stress or low doses of TNF. Our work identifies flux pairs with opposing functional effects as a signaling motif that controls the stimulus-sensitivity of the p53 and NFκB stress-response pathways, and may constitute a general design principle in signaling pathways. PMID:23468615
Role of discriminative stimuli in modulating drug action. [Pigeons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laties, V.G.
1975-08-01
Behavior reinforced in the presence of a stimulus comes under the control of the stimulus. A drug can then modify that control and, therefore, modify the behavior itself. Studies over the past 2 decades have shown that the nature of the controlling (or discriminative) stimulus can govern the degree to which drugs change performance. These experiments usually have compared behavior on various schedules of reinforcement with and withoout added discriminative stimuli. For instance, pigeons that had been trained on a fixed-interval schedule showed great changes in response distribution after amphetamine and scopolamine. The same birds, when performing on a fixed-intervalmore » schedule to which time-correlated discriminative stimuli had been added, showed smaller changes in response distribution. Other pigeons were trained to make a minimum number of consecutive responses on one key before a peck on a second key would be reinforced; d-amphetamine and scopolamine led to pronounced increases in premature switching. Adding a discriminative stimulus when the response requirement was fulfilled increased the likelihood that a switch would occur only after the appropriate number of pecks had been emitted. It also attenuated the effects of the drugs. The presence of discriminative stimuli did not make as large a difference in performance in either of these experiments when chlorpromazine and promazine were studied. In general, work with other schedules of reinforcement supports the conclusion that behavior under strong external stimulus controls is less apt to be readily affected by many drugs. Addition of the discriminative stimulus can also ''improve'' the behavior of pigeons that have been given enouth methylmercury to increase greatly the variability of their performance. (auth)« less
Top-Down Beta Enhances Bottom-Up Gamma
Thompson, William H.
2017-01-01
Several recent studies have demonstrated that the bottom-up signaling of a visual stimulus is subserved by interareal gamma-band synchronization, whereas top-down influences are mediated by alpha-beta band synchronization. These processes may implement top-down control of stimulus processing if top-down and bottom-up mediating rhythms are coupled via cross-frequency interaction. To test this possibility, we investigated Granger-causal influences among awake macaque primary visual area V1, higher visual area V4, and parietal control area 7a during attentional task performance. Top-down 7a-to-V1 beta-band influences enhanced visually driven V1-to-V4 gamma-band influences. This enhancement was spatially specific and largest when beta-band activity preceded gamma-band activity by ∼0.1 s, suggesting a causal effect of top-down processes on bottom-up processes. We propose that this cross-frequency interaction mechanistically subserves the attentional control of stimulus selection. SIGNIFICANCE STATEMENT Contemporary research indicates that the alpha-beta frequency band underlies top-down control, whereas the gamma-band mediates bottom-up stimulus processing. This arrangement inspires an attractive hypothesis, which posits that top-down beta-band influences directly modulate bottom-up gamma band influences via cross-frequency interaction. We evaluate this hypothesis determining that beta-band top-down influences from parietal area 7a to visual area V1 are correlated with bottom-up gamma frequency influences from V1 to area V4, in a spatially specific manner, and that this correlation is maximal when top-down activity precedes bottom-up activity. These results show that for top-down processes such as spatial attention, elevated top-down beta-band influences directly enhance feedforward stimulus-induced gamma-band processing, leading to enhancement of the selected stimulus. PMID:28592697
Gottschalk, Caroline; Fischer, Rico
2017-03-01
Different contexts with high versus low conflict frequencies require a specific attentional control involvement, i.e., strong attentional control for high conflict contexts and less attentional control for low conflict contexts. While it is assumed that the corresponding control set can be activated upon stimulus presentation at the respective context (e.g., upper versus lower location), the actual features that trigger control set activation are to date not described. Here, we ask whether the perceptual priming of the location context by an abrupt onset of irrelevant stimuli is sufficient in activating the context-specific attentional control set. For example, the mere onset of a stimulus might disambiguate the relevant location context and thus, serve as a low-level perceptual trigger mechanism that activates the context-specific attentional control set. In Experiment 1 and 2, the onsets of task-relevant and task-irrelevant (distracter) stimuli were manipulated at each context location to compete for triggering the activation of the appropriate control set. In Experiment 3, a prior training session enabled distracter stimuli to establish contextual control associations of their own before entering the test session. Results consistently showed that the mere onset of a task-irrelevant stimulus (with or without a context-control association) is not sufficient to activate the context-associated attentional control set by disambiguating the relevant context location. Instead, we argue that the identification of the relevant stimulus at the respective context is a precondition to trigger the activation of the context-associated attentional control set.
Attention and predictions: control of spatial attention beyond the endogenous-exogenous dichotomy
Macaluso, Emiliano; Doricchi, Fabrizio
2013-01-01
The mechanisms of attention control have been extensively studied with a variety of methodologies in animals and in humans. Human studies using non-invasive imaging techniques highlighted a remarkable difference between the pattern of responses in dorsal fronto-parietal regions vs. ventral fronto-parietal (vFP) regions, primarily lateralized to the right hemisphere. Initially, this distinction at the neuro-physiological level has been related to the distinction between cognitive processes associated with strategic/endogenous vs. stimulus-driven/exogenous of attention control. Nonetheless, quite soon it has become evident that, in almost any situation, attention control entails a complex combination of factors related to both the current sensory input and endogenous aspects associated with the experimental context. Here, we review several of these aspects first discussing the joint contribution of endogenous and stimulus-driven factors during spatial orienting in complex environments and, then, turning to the role of expectations and predictions in spatial re-orienting. We emphasize that strategic factors play a pivotal role for the activation of the ventral system during stimulus-driven control, and that the dorsal system makes use of stimulus-driven signals for top-down control. We conclude that both the dorsal and the vFP networks integrate endogenous and exogenous signals during spatial attention control and that future investigations should manipulate both these factors concurrently, so as to reveal to full extent of these interactions. PMID:24155707
Comparing different stimulus configurations for population receptive field mapping in human fMRI
Alvarez, Ivan; de Haas, Benjamin; Clark, Chris A.; Rees, Geraint; Schwarzkopf, D. Samuel
2015-01-01
Population receptive field (pRF) mapping is a widely used approach to measuring aggregate human visual receptive field properties by recording non-invasive signals using functional MRI. Despite growing interest, no study to date has systematically investigated the effects of different stimulus configurations on pRF estimates from human visual cortex. Here we compared the effects of three different stimulus configurations on a model-based approach to pRF estimation: size-invariant bars and eccentricity-scaled bars defined in Cartesian coordinates and traveling along the cardinal axes, and a novel simultaneous “wedge and ring” stimulus defined in polar coordinates, systematically covering polar and eccentricity axes. We found that the presence or absence of eccentricity scaling had a significant effect on goodness of fit and pRF size estimates. Further, variability in pRF size estimates was directly influenced by stimulus configuration, particularly for higher visual areas including V5/MT+. Finally, we compared eccentricity estimation between phase-encoded and model-based pRF approaches. We observed a tendency for more peripheral eccentricity estimates using phase-encoded methods, independent of stimulus size. We conclude that both eccentricity scaling and polar rather than Cartesian stimulus configuration are important considerations for optimal experimental design in pRF mapping. While all stimulus configurations produce adequate estimates, simultaneous wedge and ring stimulation produced higher fit reliability, with a significant advantage in reduced acquisition time. PMID:25750620
Kallenberger, Stefan M.; Beaudouin, Joël; Claus, Juliane; Fischer, Carmen; Sorger, Peter K.; Legewie, Stefan; Eils, Roland
2014-01-01
Apoptosis in response to the ligand CD95L (also known as Fas ligand) is initiated by caspase-8, which is activated by dimerization and self-cleavage at death-inducing signaling complexes (DISCs). Previous work indicated that the degree of substrate cleavage by caspase-8 determines whether a cell dies or survives in response to a death stimulus. To determine how a death ligand stimulus is effectively translated into caspase-8 activity, we assessed this activity over time in single cells with compartmentalized probes that are cleaved by caspase-8, and used multiscale modeling to simultaneously describe single-cell and population data with an ensemble of single-cell models. We derived and experimentally validated a minimal model in which cleavage of caspase-8 in the enzymatic domain occurs in an interdimeric manner through interaction between DISCs, whereas prodomain cleavage sites are cleaved in an intradimeric manner within DISCs. Modeling indicated that sustained membrane-bound caspase-8 activity is followed by transient cytosolic activity, which can be interpreted as a molecular timer mechanism reflected by a limited lifetime of active caspase-8. The activation of caspase-8 by combined intra- and interdimeric cleavage ensures weak signaling at low concentrations of CD95L and strongly accelerated activation at higher ligand concentrations, thereby contributing to precise control of apoptosis. PMID:24619646
Adaptive method with intercessory feedback control for an intelligent agent
Goldsmith, Steven Y.
2004-06-22
An adaptive architecture method with feedback control for an intelligent agent provides for adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. An adaptive architecture method with feedback control for multiple intelligent agents provides for coordinating and adaptively integrating reflexive and deliberative responses to a stimulus according to a goal. Re-programming of the adaptive architecture is through a nexus which coordinates reflexive and deliberator components.
Decoupling Stimulus Duration from Brightness in Metacontrast Masking: Data and Models
ERIC Educational Resources Information Center
Di Lollo, Vincent; Muhlenen, Adrian von; Enns, James T.; Bridgeman, Bruce
2004-01-01
A brief target that is visible when displayed alone can be rendered invisible by a trailing stimulus (metacontrast masking). It has been difficult to determine the temporal dynamics of masking to date because increments in stimulus duration have been invariably confounded with apparent brightness (Bloch's law). In the research reported here,…
The Effects of Televised Political Advertisements on Voter Perceptions about Candidates.
ERIC Educational Resources Information Center
Baskin, Otis Wayne
This study investigated whether candidate images could be designated as primarily either stimulus- or perceiver-determined and if a multiple regression model could be constructed to predict candidate image ratings from pre-stimulus perceptions of the candidate's party and post-stimulus ratings of the advertisement. One hundred twenty subjects were…
PAN, FEI; SWANSON, WILLIAM H.; DUL, MITCHELL W.
2006-01-01
Purpose. The purpose of this study is to model perimetric defect and variability and identify stimulus conditions that can reduce variability while retaining good ability to detect glaucomatous defects. Methods. The two-stage neural model of Swanson et al.1 was extended to explore relations among perimetric defect, response variability, and heterogeneous glaucomatous ganglion cell damage. Predictions of the model were evaluated by testing patients with glaucoma using a standard luminance increment 0.43° in diameter and two innovative stimuli designed to tap cortical mechanisms tuned to low spatial frequencies. The innovative stimuli were a luminance-modulated Gabor stimulus (0.5 c/deg) and circular equiluminant red-green chromatic stimuli whose sizes were close to normal Ricco’s areas for the chromatic mechanism. Seventeen patients with glaucoma were each tested twice within a 2-week period. Sensitivities were measured at eight locations at eccentricities from 10° to 21° selected in terms of the retinal nerve fiber bundle patterns. Defect depth and response (test-retest) variability were compared for the innovative stimuli and the standard stimulus. Results. The model predicted that response variability in defective areas would be lower for our innovative stimuli than for the conventional perimetric stimulus with similar defect depths if detection of the chromatic and Gabor stimuli was mediated by spatial mechanisms tuned to low spatial frequencies. Experimental data were consistent with these predictions. Depth of defect was similar for all three stimuli (F = 1.67, p > 0.19). Mean response variability was lower for the chromatic stimulus than for the other stimuli (F = 5.58, p < 0.005) and was lower for the Gabor stimulus than for the standard stimulus in areas with more severe defects (t = 2.68, p < 0.005). Variability increased with defect depth for the standard and Gabor stimuli (p < 0.005) but not for the chromatic stimulus (slope less than zero). Conclusions. Use of large perimetric stimuli detected by cortical mechanisms tuned to low spatial frequencies can make it possible to lower response variability without comprising the ability to detect glaucomatous defect. PMID:16840874
Pan, Fei; Swanson, William H; Dul, Mitchell W
2006-07-01
The purpose of this study is to model perimetric defect and variability and identify stimulus conditions that can reduce variability while retaining good ability to detect glaucomatous defects. The two-stage neural model of Swanson et al. was extended to explore relations among perimetric defect, response variability, and heterogeneous glaucomatous ganglion cell damage. Predictions of the model were evaluated by testing patients with glaucoma using a standard luminance increment 0.43 degrees in diameter and two innovative stimuli designed to tap cortical mechanisms tuned to low spatial frequencies. The innovative stimuli were a luminance-modulated Gabor stimulus (0.5 c/deg) and circular equiluminant red-green chromatic stimuli whose sizes were close to normal Ricco's areas for the chromatic mechanism. Seventeen patients with glaucoma were each tested twice within a 2-week period. Sensitivities were measured at eight locations at eccentricities from 10 degrees to 21 degrees selected in terms of the retinal nerve fiber bundle patterns. Defect depth and response (test-retest) variability were compared for the innovative stimuli and the standard stimulus. The model predicted that response variability in defective areas would be lower for our innovative stimuli than for the conventional perimetric stimulus with similar defect depths if detection of the chromatic and Gabor stimuli was mediated by spatial mechanisms tuned to low spatial frequencies. Experimental data were consistent with these predictions. Depth of defect was similar for all three stimuli (F = 1.67, p > 0.19). Mean response variability was lower for the chromatic stimulus than for the other stimuli (F = 5.58, p < 0.005) and was lower for the Gabor stimulus than for the standard stimulus in areas with more severe defects (t = 2.68, p < 0.005). Variability increased with defect depth for the standard and Gabor stimuli (p < 0.005) but not for the chromatic stimulus (slope less than zero). Use of large perimetric stimuli detected by cortical mechanisms tuned to low spatial frequencies can make it possible to lower response variability without comprising the ability to detect glaucomatous defect.
Scopolamine effects on visual discrimination: modifications related to stimulus control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, H.L.
1975-01-01
Stumptail monkeys (Macaca arctoides) performed a discrete trial, three-choice visual discrimination. The discrimination behavior was controlled by the shape of the visual stimuli. Strength of the stimuli in controlling behavior was systematically related to a physical property of the stimuli, luminance. Low luminance provided weak control, resulting in a low accuracy of discrimination, a low response probability and maximal sensitivity to scopolamine (7.5-60 ..mu..g/kg). In contrast, high luminance provided strong control of behavior and attenuated the effects of scopolamine. Methylscopolamine had no effect in doses of 30 to 90 ..mu..g/kg. Scopolamine effects resembled the effects of reducing stimulus control inmore » undrugged monkeys. Since behavior under weak control seems to be especially sensitive to drugs, manipulations of stimulus control may be particularly useful whenever determination of the minimally-effective dose is important, as in behavioral toxicology. Present results are interpreted as specific visual effects of the drug, since nonsensory factors such as base-line response rate, reinforcement schedule, training history, motor performance and motivation were controlled. Implications for state-dependent effects of drugs are discussed.« less
Stimulus Configuration, Classical Conditioning, and Hippocampal Function.
ERIC Educational Resources Information Center
Schmajuk, Nestor A.; DiCarlo, James J.
1991-01-01
The participation of the hippocampus in classical conditioning is described in terms of a multilayer network portraying stimulus configuration. A model of hippocampal function is presented, and computer simulations are used to study neural activity in the various brain areas mapped according to the model. (SLD)
The heuristic basis of remembering and classification: fluency, generation, and resemblance.
Whittlesea, B W; Leboe, J P
2000-03-01
People use 3 heuristics (fluency, generation, and resemblance) in remembering a prior experience of a stimulus. The authors demonstrate that people use the same 3 heuristics in classifying a stimulus as a member of a category and interpret this as support for the idea that people have a unitary memory system that operates by the same fundamental principles in both remembering and nonremembering tasks. The authors argue that the fundamental functions of memory are the production of specific mental events, under the control of the stimulus, task, and context, and the evaluation of the coherence of those events, which controls the subjective experience accompanying performance.
The effect of chromatic and luminance information on reaction times.
O'Donell, Beatriz M; Barraza, Jose F; Colombo, Elisa M
2010-07-01
We present a series of experiments exploring the effect of chromaticity on reaction time (RT) for a variety of stimulus conditions, including chromatic and luminance contrast, luminance, and size. The chromaticity of these stimuli was varied along a series of vectors in color space that included the two chromatic-opponent-cone axes, a red-green (L-M) axis and a blue-yellow [S - (L + M)] axis, and intermediate noncardinal orientations, as well as the luminance axis (L + M). For Weber luminance contrasts above 10-20%, RTs tend to the same asymptote, irrespective of chromatic direction. At lower luminance contrast, the addition of chromatic information shortens the RT. RTs are strongly influenced by stimulus size when the chromatic stimulus is modulated along the [S - (L + M)] pathway and by stimulus size and adaptation luminance for the (L-M) pathway. RTs are independent of stimulus size for stimuli larger than 0.5 deg. Data are modeled with a modified version of Pieron's formula with an exponent close to 2, in which the stimulus intensity term is replaced by a factor that considers the relative effects of chromatic and achromatic information, as indexed by the RMS (square-root of the cone contrast) value at isoluminance and the Weber luminance contrast, respectively. The parameters of the model reveal how RT is linked to stimulus size, chromatic channels, and adaptation luminance and how they can be interpreted in terms of two chromatic mechanisms. This equation predicts that, for isoluminance, RTs for a stimulus lying on the S-cone pathway are higher than those for a stimulus lying on the L-M-cone pathway, for a given RMS cone contrast. The equation also predicts an asymptotic trend to the RT for an achromatic stimulus when the luminance contrast is sufficiently large.
Wynn, Jonathan K.; Green, Michael F.; Sprock, Joyce; Light, Gregory A.; Widmark, Clifford; Reist, Christopher; Erhart, Stephen; Marder, Stephen R.; Mintz, Jim; Braff, David L.
2009-01-01
Prepulse inhibition (PPI), whereby the startle eyeblink response is inhibited by a relatively weak non-startling stimulus preceding the powerful startle eliciting stimulus, is a measure of sensorimotor gating and has been shown to be deficient in schizophrenia patients. There is considerable interest in whether conventional and/or atypical antipsychotic medications can “normalize” PPI deficits in schizophrenia patients. 51 schizophrenia patients participated in a randomized, double-blind controlled trial on the effects of three commonly-prescribed antipsychotic medications (risperidone, olanzapine, or haloperidol) on PPI, startle habituation, and startle reactivity. Patients were tested at baseline, Week 4 and Week 8. Mixed model regression analyses revealed that olanzapine significantly improved PPI from Week 4 to Week 8, and that at Week 8 patients receiving olanzapine produced significantly greater PPI than those receiving risperidone, but not haloperidol. There were no effects of medication on startle habituation or startle reactivity. These results support the conclusion that olanzapine effectively increased PPI in schizophrenia patients, but that risperidone and haloperidol had no such effects. The results are discussed in terms of animal models, neural substrates, and treatment implications. PMID:17662577
Dunlop, Rebecca A; Noad, Michael J; Cato, Douglas H; Kniest, Eric; Miller, Patrick J O; Smith, Joshua N; Stokes, M Dale
2013-03-01
The behavioural response study (BRS) is an experimental design used by field biologists to determine the function and/or behavioural effects of conspecific, heterospecific or anthropogenic stimuli. When carrying out these studies in marine mammals it is difficult to make basic observations and achieve sufficient samples sizes because of the high cost and logistical difficulties. Rarely are other factors such as social context or the physical environment considered in the analysis because of these difficulties. This paper presents results of a BRS carried out in humpback whales to test the response of groups to one recording of conspecific social sounds and an artificially generated tone stimulus. Experiments were carried out in September/October 2004 and 2008 during the humpback whale southward migration along the east coast of Australia. In total, 13 'tone' experiments, 15 'social sound' experiments (using one recording of social sounds) and three silent controls were carried out over two field seasons. The results (using a mixed model statistical analysis) suggested that humpback whales responded differently to the two stimuli, measured by changes in course travelled and dive behaviour. Although the response to 'tones' was consistent, in that groups moved offshore and surfaced more often (suggesting an aversion to the stimulus), the response to 'social sounds' was highly variable and dependent upon the composition of the social group. The change in course and dive behaviour in response to 'tones' was found to be related to proximity to the source, the received signal level and signal-to-noise ratio (SNR). This study demonstrates that the behavioural responses of marine mammals to acoustic stimuli are complex. In order to tease out such multifaceted interactions, the number of replicates and factors measured must be sufficient for multivariate analysis.
Dunlop, Rebecca A.; Noad, Michael J.; Cato, Douglas H.; Kniest, Eric; Miller, Patrick J. O.; Smith, Joshua N.; Stokes, M. Dale
2013-01-01
SUMMARY The behavioural response study (BRS) is an experimental design used by field biologists to determine the function and/or behavioural effects of conspecific, heterospecific or anthropogenic stimuli. When carrying out these studies in marine mammals it is difficult to make basic observations and achieve sufficient samples sizes because of the high cost and logistical difficulties. Rarely are other factors such as social context or the physical environment considered in the analysis because of these difficulties. This paper presents results of a BRS carried out in humpback whales to test the response of groups to one recording of conspecific social sounds and an artificially generated tone stimulus. Experiments were carried out in September/October 2004 and 2008 during the humpback whale southward migration along the east coast of Australia. In total, 13 ‘tone’ experiments, 15 ‘social sound’ experiments (using one recording of social sounds) and three silent controls were carried out over two field seasons. The results (using a mixed model statistical analysis) suggested that humpback whales responded differently to the two stimuli, measured by changes in course travelled and dive behaviour. Although the response to ‘tones’ was consistent, in that groups moved offshore and surfaced more often (suggesting an aversion to the stimulus), the response to ‘social sounds’ was highly variable and dependent upon the composition of the social group. The change in course and dive behaviour in response to ‘tones’ was found to be related to proximity to the source, the received signal level and signal-to-noise ratio (SNR). This study demonstrates that the behavioural responses of marine mammals to acoustic stimuli are complex. In order to tease out such multifaceted interactions, the number of replicates and factors measured must be sufficient for multivariate analysis. PMID:23155085
The Adaptation of the Moth Pheromone Receptor Neuron to its Natural Stimulus
NASA Astrophysics Data System (ADS)
Kostal, Lubomir; Lansky, Petr; Rospars, Jean-Pierre
2008-07-01
We analyze the first phase of information transduction in the model of the olfactory receptor neuron of the male moth Antheraea polyphemus. We predict such stimulus characteristics that enable the system to perform optimally, i.e., to transfer as much information as possible. Few a priori constraints on the nature of stimulus and stimulus-to-signal transduction are assumed. The results are given in terms of stimulus distributions and intermittency factors which makes direct comparison with experimental data possible. Optimal stimulus is approximatelly described by exponential or log-normal probability density function which is in agreement with experiment and the predicted intermittency factors fall within the lowest range of observed values. The results are discussed with respect to electroantennogram measurements and behavioral observations.
ERIC Educational Resources Information Center
Ingvarsson, Einar T.; Kramer, Rachel L.; Carp, Charlotte L.; Pétursdóttir, Anna I.; Macias, Heather
2016-01-01
We evaluated the use of a blocked-trials procedure to establish complex stimulus control over intraverbal responses. The participants were four young boys with a diagnosis of autism who had struggled to master intraverbals. The blocked-trials procedures involved presentation of stimuli in separate trial blocks. The trial blocks gradually reduced…
Are Stimulus-Response Rules Represented Phonologically for Task-Set Preparation and Maintenance?
ERIC Educational Resources Information Center
van 't Wout, Félice; Lavric, Aureliu; Monsell, Stephen
2013-01-01
Accounts of task-set control generally assume that the current task's stimulus-response (S-R) rules must be elevated to a privileged state of activation. How are they represented in this state? In 3 task-cuing experiments, we tested the hypothesis that phonological working memory is used to represent S-R rules for task-set control by getting…
ERIC Educational Resources Information Center
Horner, Robert H.
Upright walking posture was successfully trained, maintained, and transferred to a new setting in a 28-year-old profoundly retarded adult. An apparatus in the S's cap and vest provided reinforcement (radio) when the S's head was up. The first four phases of the study demonstrated stimulus control in the training setting, while the next nine phases…
Attention control in mood and anxiety disorders: evidence from the antisaccade task.
Ainsworth, Ben; Garner, Matthew
2013-05-01
The antisaccade task (in which participants must suppress a reflexive saccade towards a sudden, peripheral stimulus and generate a volitional saccade in the opposite direction) is considered a measure of cognitive inhibition. The task has been used to examine cognitive control deficits in several neuropsychiatric conditions, most notably schizophrenia. This commentary summarizes recent evidence from antisaccade tasks in mood and anxiety disorders, with reference to neuropsychological models and psychopharmacological mechanisms. Copyright © 2013 John Wiley & Sons, Ltd.
Visual awareness suppression by pre-stimulus brain stimulation; a neural effect.
Jacobs, Christianne; Goebel, Rainer; Sack, Alexander T
2012-01-02
Transcranial magnetic stimulation (TMS) has established the functional relevance of early visual cortex (EVC) for visual awareness with great temporal specificity non-invasively in conscious human volunteers. Many studies have found a suppressive effect when TMS was applied over EVC 80-100 ms after the onset of the visual stimulus (post-stimulus TMS time window). Yet, few studies found task performance to also suffer when TMS was applied even before visual stimulus presentation (pre-stimulus TMS time window). This pre-stimulus TMS effect, however, remains controversially debated and its origin had mainly been ascribed to TMS-induced eye-blinking artifacts. Here, we applied chronometric TMS over EVC during the execution of a visual discrimination task, covering an exhaustive range of visual stimulus-locked TMS time windows ranging from -80 pre-stimulus to 300 ms post-stimulus onset. Electrooculographical (EoG) recordings, sham TMS stimulation, and vertex TMS stimulation controlled for different types of non-neural TMS effects. Our findings clearly reveal TMS-induced masking effects for both pre- and post-stimulus time windows, and for both objective visual discrimination performance and subjective visibility. Importantly, all effects proved to be still present after post hoc removal of eye blink trials, suggesting a neural origin for the pre-stimulus TMS suppression effect on visual awareness. We speculate based on our data that TMS exerts its pre-stimulus effect via generation of a neural state which interacts with subsequent visual input. Copyright © 2011 Elsevier Inc. All rights reserved.
Whitson, Lisa R; Karayanidis, Frini; Fulham, Ross; Provost, Alexander; Michie, Patricia T; Heathcote, Andrew; Hsieh, Shulan
2014-01-01
In task-switching paradigms, performance is better when repeating the same task than when alternating between tasks (switch cost) and when repeating a task alone rather than intermixed with another task (mixing cost). These costs remain even after extensive practice and when task cues enable advanced preparation (residual costs). Moreover, residual reaction time mixing cost has been consistently shown to increase with age. Residual switch and mixing costs modulate the amplitude of the stimulus-locked P3b. This mixing effect is disproportionately larger in older adults who also prepare more for and respond more cautiously on these "mixed" repeat trials (Karayanidis et al., 2011). In this paper, we analyze stimulus-locked and response-locked P3 and lateralized readiness potentials to identify whether residual switch and mixing cost arise from the need to control interference at the level of stimulus processing or response processing. Residual mixing cost was associated with control of stimulus-level interference, whereas residual switch cost was also associated with a delay in response selection. In older adults, the disproportionate increase in mixing cost was associated with greater interference at the level of decision-response mapping and response programming for repeat trials in mixed-task blocks. These findings suggest that older adults strategically recruit greater proactive and reactive control to overcome increased susceptibility to post-stimulus interference. This interpretation is consistent with recruitment of compensatory strategies to compensate for reduced repetition benefit rather than an overall decline on cognitive flexibility.
Whitson, Lisa R.; Karayanidis, Frini; Fulham, Ross; Provost, Alexander; Michie, Patricia T.; Heathcote, Andrew; Hsieh, Shulan
2014-01-01
In task-switching paradigms, performance is better when repeating the same task than when alternating between tasks (switch cost) and when repeating a task alone rather than intermixed with another task (mixing cost). These costs remain even after extensive practice and when task cues enable advanced preparation (residual costs). Moreover, residual reaction time mixing cost has been consistently shown to increase with age. Residual switch and mixing costs modulate the amplitude of the stimulus-locked P3b. This mixing effect is disproportionately larger in older adults who also prepare more for and respond more cautiously on these “mixed” repeat trials (Karayanidis et al., 2011). In this paper, we analyze stimulus-locked and response-locked P3 and lateralized readiness potentials to identify whether residual switch and mixing cost arise from the need to control interference at the level of stimulus processing or response processing. Residual mixing cost was associated with control of stimulus-level interference, whereas residual switch cost was also associated with a delay in response selection. In older adults, the disproportionate increase in mixing cost was associated with greater interference at the level of decision-response mapping and response programming for repeat trials in mixed-task blocks. These findings suggest that older adults strategically recruit greater proactive and reactive control to overcome increased susceptibility to post-stimulus interference. This interpretation is consistent with recruitment of compensatory strategies to compensate for reduced repetition benefit rather than an overall decline on cognitive flexibility. PMID:24817859
Momentary Conscious Pairing Eliminates Unconscious-Stimulus Influences on Task Selection
Zhou, Fanzhi Anita; Davis, Greg
2012-01-01
Task selection, previously thought to operate only under conscious, voluntary control, can be activated by unconsciously-perceived stimuli. In most cases, such activation is observed for unconscious stimuli that closely resemble other conscious, task-relevant stimuli and hence may simply reflect perceptual activation of consciously established stimulus-task associations. However, other studies have reported ‘direct’ unconscious-stimulus influences on task selection in the absence of any conscious, voluntary association between that stimulus and task (e.g., Zhou and Davis, 2012). In new experiments, described here, these latter influences on cued- and free-choice task selection appear robust and long-lived, yet, paradoxically, are suppressed to undetectable levels following momentary conscious prime-task pairing. Assessing, and rejecting, three intuitive explanations for such suppressive effects, we conclude that conscious prime-task pairing minimizes non-strategic influences of unconscious stimuli on task selection, insulating endogenous choice mechanisms from maladaptive external control. PMID:23050012
Transcranial electric and magnetic stimulation: technique and paradigms.
Paulus, Walter; Peterchev, Angel V; Ridding, Michael
2013-01-01
Transcranial electrical and magnetic stimulation techniques encompass a broad physical variety of stimuli, ranging from static magnetic fields or direct current stimulation to pulsed magnetic or alternating current stimulation with an almost infinite number of possible stimulus parameters. These techniques are continuously refined by new device developments, including coil or electrode design and flexible control of the stimulus waveforms. They allow us to influence brain function acutely and/or by inducing transient plastic after-effects in a range from minutes to days. Manipulation of stimulus parameters such as pulse shape, intensity, duration, and frequency, and location, size, and orientation of the electrodes or coils enables control of the immediate effects and after-effects. Physiological aspects such as stimulation at rest or during attention or activation may alter effects dramatically, as does neuropharmacological drug co-application. Non-linear relationships between stimulus parameters and physiological effects have to be taken into account. © 2013 Elsevier B.V. All rights reserved.
Overlearned responses hinder S-R binding.
Moeller, Birte; Frings, Christian
2017-01-01
Two mechanisms that are important for human action control are the integration of individual action plans (see Hommel, Müsseler, Aschersleben, & Prinz, 2001) and the automatization of overlearned actions to familiar stimuli (see Logan, 1988). In the present study, we analyzed the influence of automatization on action plan integration. Integration with pronunciation responses were compared for response incompatible word and nonword stimuli. Stimulus-response binding effects were observed for nonwords. In contrast, words that automatically triggered an overlearned pronunciation response were not integrated with pronunciation of a different word. That is, automatized response retrieval hindered binding effects regarding the retrieving stimulus and a new response. The results are a first indication of the way that binding and learning processes interact, and might also be a first step to understanding the more complex interdependency of the processes responsible for stimulus-response binding in action control and stimulus-response associations in learning research. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Sensing/actuating materials made from carbon nanotube polymer composites and methods for making same
NASA Technical Reports Server (NTRS)
Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)
2008-01-01
An electroactive sensing or actuating material comprises a composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation of the composite when such composite is affected by an external stimulus. In another embodiment, the composite comprises a third component of micro-sized to nano-sized particles of an electroactive ceramic that is also incorporated in the polymer matrix. The method for making the three-phase composite comprises either incorporating the carbon nanotubes in the polymer matrix before incorporation of the particles of ceramic or mixing the carbon nanotubes and particles of ceramic together in a solution before incorporation in the polymer matrix.
Method of Making an Electroactive Sensing/Actuating Material for Carbon Nanotube Polymer Composite
NASA Technical Reports Server (NTRS)
Ounaies, Zoubeida (Inventor); Park, Cheol (Inventor); Harrison, Joycelyn S. (Inventor); Holloway, Nancy M. (Inventor); Draughon, Gregory K. (Inventor)
2009-01-01
An electroactive sensing or actuating material comprises a composite made from a polymer with polarizable moieties and an effective amount of carbon nanotubes incorporated in the polymer for a predetermined electromechanical operation of the composite when such composite is affected by an external stimulus. In another embodiment, the composite comprises a, third component of micro -sized to nano-sized particles of an electroactive ceramic that is also incorporated in the polymer matrix. The method for making the three-phase composite comprises either incorporating the carbon nanotubes in the polymer matrix before incorporation of the particles of ceramic or mixing the carbon nanotubes and particles of ceramic together in a solution before incorporation in the polymer matrix.
Wendt, Mike; Kiesel, Andrea; Geringswald, Franziska; Purmann, Sascha; Fischer, Rico
2014-01-01
Current models of cognitive control assume gradual adjustment of processing selectivity to the strength of conflict evoked by distractor stimuli. Using a flanker task, we varied conflict strength by manipulating target and distractor onset. Replicating previous findings, flanker interference effects were larger on trials associated with advance presentation of the flankers compared to simultaneous presentation. Controlling for stimulus and response sequence effects by excluding trials with feature repetitions from stimulus administration (Experiment 1) or from the statistical analyses (Experiment 2), we found a reduction of the flanker interference effect after high-conflict predecessor trials (i.e., trials associated with advance presentation of the flankers) but not after low-conflict predecessor trials (i.e., trials associated with simultaneous presentation of target and flankers). This result supports the assumption of conflict-strength-dependent adjustment of visual attention. The selective adaptation effect after high-conflict trials was associated with an increase in prestimulus pupil diameter, possibly reflecting increased cognitive effort of focusing attention.
Degraded expression of learned feedforward control in movements released by startle.
Wright, Zachary A; Carlsen, Anthony N; MacKinnon, Colum D; Patton, James L
2015-08-01
Recent work has shown that preplanned motor programs can be rapidly released via fast conducting pathways using a startling acoustic stimulus. Our question was whether the startle-elicited response might also release a recently learned internal model, which draws on experience to predict and compensate for expected perturbations in a feedforward manner. Our initial investigation using adaptation to robotically produced forces showed some evidence of this, but the results were potentially confounded by co-contraction caused by startle. In this study, we eliminated this confound by asking subjects to make reaching movements in the presence of a visual distortion. Results show that a startle stimulus (1) decreased performance of the recently learned task and (2) reduced after-effect magnitude. Since the recall of learned control was reduced, but not eliminated during startle trials, we suggest that multiple neural centers (cortical and subcortical) are involved in such learning and adaptation. These findings have implications for motor training in areas such as piloting, teleoperation, sports, and rehabilitation.
Gimenez-Pinto, Vianney; Ye, Fangfu; Mbanga, Badel; Selinger, Jonathan V.; Selinger, Robin L. B.
2017-01-01
Various experimental and theoretical studies demonstrate that complex stimulus-responsive out-of-plane distortions such as twist of different chirality, emergence of cones, simple and anticlastic bending can be engineered and pre-programmed in a liquid crystalline rubbery material given a well-controlled director microstructure. Via 3-d finite element simulation studies, we demonstrate director-encoded chiral shape actuation in thin-film nematic polymer networks under external stimulus. Furthermore, we design two complex director fields with twisted nematic domains and nematic disclinations that encode a pattern of folds for an auto-origami box. This actuator will be flat at a reference nematic state and form four well-controlled bend distortions as orientational order changes. Device fabrication is applicable via current experimental techniques. These results are in qualitative agreement with theoretical predictions, provide insight into experimental observations, and demonstrate the value of finite element methods at the continuum level for designing and engineering liquid crystal polymeric devices. PMID:28349949
An electroejaculator for the collection of semen from the domestic cat.
Dooley, M P; Murase, K; Pineda, M H
1983-09-01
An electroejaculator for the collection of cat semen and for the evaluation of electroejaculation protocols is described. The electroejaculator contains an adjustable signal generator and allows for the precise control and monitoring of the electrical stimulus to the animal. The electroejaculator incorporates controls for the selection of the frequency, potential and waveform of the electrical stimulus and controls for either manual or automatic delivery of stimuli of specified characteristics to the rectal probe. In the automatic mode, the operator may also preset the rate and duration of stimulus application and the interval between successive stimuli. The electroejaculator output to the probe is controlled with an on-off foot-switch which allows for the collection of semen from an anesthetized cat by one operator. Diagrams of the functional block, the component circuits of the electroejaculator, and the accessories which facilitate the collection of cat semen are provided.
Task-dependent V1 responses in human retinitis pigmentosa.
Masuda, Yoichiro; Horiguchi, Hiroshi; Dumoulin, Serge O; Furuta, Ayumu; Miyauchi, Satoru; Nakadomari, Satoshi; Wandell, Brian A
2010-10-01
During measurement with functional MRI (fMRI) during passive viewing, subjects with macular degeneration (MD) have a large unresponsive lesion projection zone (LPZ) in V1. fMRI responses can be evoked from the LPZ when subjects engage in a stimulus-related task. The authors report fMRI measurements on a different class of subjects, those with retinitis pigmentosa (RP), who have intact foveal vision but peripheral visual field loss. The authors measured three RP subjects and two control subjects. fMRI was performed while the subjects viewed drifting contrast pattern stimuli. The subjects passively viewed the stimuli or performed a stimulus-related task. During passive viewing, the BOLD response in the posterior calcarine cortex of all RP subjects was in phase with the stimulus. A bordering, anterior LPZ could be identified by responses that were in opposite phase to the stimulus. When the RP subjects made stimulus-related judgments, however, the LPZ responses changed: the responses modulated in phase with the stimulus and task. In control subjects, the responses in a simulated V1 LPZ were unchanged between the passive and the stimulus-related judgment conditions. Task-dependent LPZ responses are present in RP subjects, similar to responses measured in MD subjects. The results are consistent with the hypothesis that deleting the retinal input to the LPZ unmasks preexisting extrastriate feedback signals that are present across V1. The authors discuss the implications of this hypothesis for visual therapy designed to replace the missing V1 LPZ inputs and to restore vision.
Some logical functions of joint control.
Lowenkron, B
1998-01-01
Constructing a behavioral account of the language-related performances that characterize responding to logical and symbolic relations between stimuli is commonly viewed as a problem for the area of stimulus control. In response to this problem, the notion of joint control is presented here, and its ability to provide an interpretative account of these kinds of performances is explored. Joint control occurs when the currently rehearsed topography of a verbal operant, as evoked by one stimulus, is simultaneously evoked by another stimulus. This event, the onset of joint stimulus control by two stimuli over a common response topography, then sets the occasion for a response appropriate to this special relation between the stimuli. Although the mechanism described is simple, it seems to have broad explanatory properties. In what follows, these properties are applied to provide a behavioral interpretation of two sorts of fundamental, putatively cognitive, performances: those based on logical relations and those based on semantic relations. The first includes responding to generalized conceptual relations such as identity, order, relative size, distance, and orientation. The second includes responding to relations usually ascribed to word meaning. These include relations between words and objects, the specification of objects by words, name-object bidirectionality, and the recognition of objects from their description. Finally, as a preview of some further possibilities, the role of joint control in goal-oriented behavior is considered briefly. PMID:9599452
The potential of composite cognitive scores for tracking progression in Huntington's disease.
Jones, Rebecca; Stout, Julie C; Labuschagne, Izelle; Say, Miranda; Justo, Damian; Coleman, Allison; Dumas, Eve M; Hart, Ellen; Owen, Gail; Durr, Alexandra; Leavitt, Blair R; Roos, Raymund; O'Regan, Alison; Langbehn, Doug; Tabrizi, Sarah J; Frost, Chris
2014-01-01
Composite scores derived from joint statistical modelling of individual risk factors are widely used to identify individuals who are at increased risk of developing disease or of faster disease progression. We investigated the ability of composite measures developed using statistical models to differentiate progressive cognitive deterioration in Huntington's disease (HD) from natural decline in healthy controls. Using longitudinal data from TRACK-HD, the optimal combinations of quantitative cognitive measures to differentiate premanifest and early stage HD individuals respectively from controls was determined using logistic regression. Composite scores were calculated from the parameters of each statistical model. Linear regression models were used to calculate effect sizes (ES) quantifying the difference in longitudinal change over 24 months between premanifest and early stage HD groups respectively and controls. ES for the composites were compared with ES for individual cognitive outcomes and other measures used in HD research. The 0.632 bootstrap was used to eliminate biases which result from developing and testing models in the same sample. In early HD, the composite score from the HD change prediction model produced an ES for difference in rate of 24-month change relative to controls of 1.14 (95% CI: 0.90 to 1.39), larger than the ES for any individual cognitive outcome and UHDRS Total Motor Score and Total Functional Capacity. In addition, this composite gave a statistically significant difference in rate of change in premanifest HD compared to controls over 24-months (ES: 0.24; 95% CI: 0.04 to 0.44), even though none of the individual cognitive outcomes produced statistically significant ES over this period. Composite scores developed using appropriate statistical modelling techniques have the potential to materially reduce required sample sizes for randomised controlled trials.
Dodge, Kenneth A
2008-01-01
Berkowitz (this issue) makes a cogent case for his cognitive neo-associationist (CNA) model that some aggressive behaviors occur automatically, emotionally, and through conditioned association with other stimuli. He also proposes that they can occur without "processing," that is, without meaning. He contrasts his position with that of social information processing (SIP) models, which he casts as positing only controlled processing mechanisms for aggressive behavior. However, both CNA and SIP models posit automatic as well as controlled processes in aggressive behavior. Most aggressive behaviors occur through automatic processes, which are nonetheless rule governed. SIP models differ from the CNA model in asserting the essential role of meaning (often through nonconscious, automatic, and emotional processes) in mediating the link between a stimulus and an angry aggressive behavioral response. Copyright 2008 Wiley-Liss, Inc.
Coupling of fingertip somatosensory information to head and body sway
NASA Technical Reports Server (NTRS)
Jeka, J. J.; Schoner, G.; Dijkstra, T.; Ribeiro, P.; Lackner, J. R.
1997-01-01
Light touch contact of a fingertip with a stationary surface can provide orientation information that enhances control of upright stance. Slight changes in contact force at the fingertip provide sensory cues about the direction of body sway, allowing attenuation of sway. In the present study, we asked to which extent somatosensory cues are part of the postural control system, that is, which sensory signal supports this coupling? We investigated postural control not only when the contact surface was stationary, but also when it was moving rhythmically (from 0.1 to 0.5 Hz). In doing so, we brought somatosensory cues from the hand into conflict with other parts of the postural control system. Our focus was the temporal relationship between body sway and the contact surface. Postural sway was highly coherent with contact surface motion. Head and body sway assumed the frequency of the moving contact surface at all test frequencies. To account for these results, a simple model was formulated by approximating the postural control system as a second-order linear dynamical system. The influence of the touch stimulus was captured as the difference between the velocity of the contact surface and the velocity of body sway, multiplied by a coupling constant. Comparison of empirical results (relative phase, coherence, and gain) with model predictions supports the hypothesis of coupling between body sway and touch cues through the velocity of the somatosensory stimulus at the fingertip. One subject, who perceived movement of the touch surface, demonstrated weaker coupling than other subjects, suggesting that cognitive mechanisms introduce flexibility into the postural control scheme.
The Influence of Sex of Peer on the Social Behavior of Preschool Children
ERIC Educational Resources Information Center
Langlois, Judith H.; And Others
1973-01-01
Study suggests that an important social stimulus is the sex of the child's peers. Peer sex and changes in the sex composition of dyads affect the frequency of occurrence in several categories of social behavior. (Authors/CB)
Compositional Models of Glass/Melt Properties and their Use for Glass Formulation
Vienna, John D.; USA, Richland Washington
2014-12-18
Nuclear waste glasses must simultaneously meet a number of criteria related to their processability, product quality, and cost factors. The properties that must be controlled in glass formulation and waste vitrification plant operation tend to vary smoothly with composition allowing for glass property-composition models to be developed and used. Models have been fit to the key glass properties. The properties are transformed so that simple functions of composition (e.g., linear, polynomial, or component ratios) can be used as model forms. The model forms are fit to experimental data designed statistically to efficiently cover the composition space of interest. Examples ofmore » these models are found in literature. The glass property-composition models, their uncertainty definitions, property constraints, and optimality criteria are combined to formulate optimal glass compositions, control composition in vitrification plants, and to qualify waste glasses for disposal. An overview of current glass property-composition modeling techniques is summarized in this paper along with an example of how those models are applied to glass formulation and product qualification at the planned Hanford high-level waste vitrification plant.« less
Murphy, P J; Morgan, P B; Patel, S; Marshall, J
1999-05-01
The non-contact corneal aesthesiometer (NCCA) assesses corneal sensitivity by using a controlled pulse of air, directed at the corneal surface. The purpose of this paper was to investigate whether corneal surface temperature change was a component in the mode of stimulation. Thermocouple experiment: A simple model corneal surface was developed that was composed of a moistened circle of filter paper placed on a thermocouple and mounted on a glass slide. The temperature change produced by different stimulus pressures was measured for five different ambient temperatures. Thermal camera experiment: Using a thermal camera, the corneal surface temperature change was measured in nine young, healthy subjects after exposure to different stimulus air pulses. Pulse duration was set at 0.9 s but was varied in pressure from 0.5 to 3.5 millibars. Thermocouple experiment: An immediate drop in temperature was detected by the thermocouple as soon as the air flow was incident on the filter paper. A greater temperature change was produced by increasing the pressure of the incident air flow. A relationship was found and a calibration curve plotted. Thermal camera experiment: For each subject, a drop in surface temperature was detected at each stimulus pressure. Furthermore, as the stimulus pressure increased, the induced reduction in temperature also increased. A relationship was found and a calibration curve plotted. The NCCA air-pulse stimulus was capable of producing a localized temperature change on the corneal surface. The principal mode of corneal nerve stimulation, by the NCCA air pulse, was the rate of temperature change of the corneal surface.
Feedback and feedforward control of frequency tuning to naturalistic stimuli.
Chacron, Maurice J; Maler, Leonard; Bastian, Joseph
2005-06-08
Sensory neurons must respond to a wide variety of natural stimuli that can have very different spatiotemporal characteristics. Optimal responsiveness to subsets of these stimuli can be achieved by devoting specialized neural circuitry to different stimulus categories, or, alternatively, this circuitry can be modulated or tuned to optimize responsiveness to current stimulus conditions. This study explores the mechanisms that enable neurons within the initial processing station of the electrosensory system of weakly electric fish to shift their tuning properties based on the spatial extent of the stimulus. These neurons are tuned to low frequencies when the stimulus is restricted to a small region within the receptive field center but are tuned to higher frequencies when the stimulus impinges on large regions of the sensory epithelium. Through a combination of modeling and in vivo electrophysiology, we reveal the respective contributions of the filtering characteristics of extended dendritic structures and feedback circuitry to this shift in tuning. Our results show that low-frequency tuning can result from the cable properties of an extended dendrite that conveys receptor-afferent information to the cell body. The shift from low- to high-frequency tuning, seen in response to spatially extensive stimuli, results from increased wide-band input attributable to activation of larger populations of receptor afferents, as well as the activation of parallel fiber feedback from the cerebellum. This feedback provides a cancellation signal with low-pass characteristics that selectively attenuates low-frequency responsiveness. Thus, with spatially extensive stimuli, these cells preferentially respond to the higher-frequency components of the receptor-afferent input.
Autonomous stimulus triggered self-healing in smart structural composites
NASA Astrophysics Data System (ADS)
Norris, C. J.; White, J. A. P.; McCombe, G.; Chatterjee, P.; Bond, I. P.; Trask, R. S.
2012-09-01
Inspired by the ability of biological systems to sense and autonomously heal damage, this research has successfully demonstrated the first autonomous, stimulus triggered, self-healing system in a structural composite material. Both the sensing and healing mechanisms are reliant on microvascular channels incorporated within a laminated composite material. For the triggering mechanism, a single air filled vessel was pressurized, sealed and monitored. Upon drop weight impact (10 J), delamination and microcrack connectivity between the pressurized vessel and those open to ambient led to a pressure loss which, with the use of a suitable sensor, triggered a pump to deliver a healing agent to the damage zone. Using this autonomous healing approach, near full recovery of post-impact compression strength was achieved (94% on average). A simplified alternative system with healing agent continuously flowing through the vessels, akin to blood flow, was found to offer 100% recovery of the material’s virgin strength. Optical microscopy and ultrasonic C-scanning provided further evidence of large-scale infusion of matrix damage with the healing agent. The successful implementation of this bioinspired technology could substantially enhance the integrity and reliability of aerospace structures, whilst offering benefits through improved performance/weight ratios and extended lifetimes.
Cognitive Control Predicts Use of Model-Based Reinforcement-Learning
Otto, A. Ross; Skatova, Anya; Madlon-Kay, Seth; Daw, Nathaniel D.
2015-01-01
Accounts of decision-making and its neural substrates have long posited the operation of separate, competing valuation systems in the control of choice behavior. Recent theoretical and experimental work suggest that this classic distinction between behaviorally and neurally dissociable systems for habitual and goal-directed (or more generally, automatic and controlled) choice may arise from two computational strategies for reinforcement learning (RL), called model-free and model-based RL, but the cognitive or computational processes by which one system may dominate over the other in the control of behavior is a matter of ongoing investigation. To elucidate this question, we leverage the theoretical framework of cognitive control, demonstrating that individual differences in utilization of goal-related contextual information—in the service of overcoming habitual, stimulus-driven responses—in established cognitive control paradigms predict model-based behavior in a separate, sequential choice task. The behavioral correspondence between cognitive control and model-based RL compellingly suggests that a common set of processes may underpin the two behaviors. In particular, computational mechanisms originally proposed to underlie controlled behavior may be applicable to understanding the interactions between model-based and model-free choice behavior. PMID:25170791
Rammsayer, Thomas H; Verner, Martin
2016-05-01
Perceived duration has been shown to be positively related to task-irrelevant, nontemporal stimulus magnitude. To account for this finding, Walsh's (2003) A Theory of Magnitude (ATOM) model suggests that magnitude of time is not differentiated from magnitude of other nontemporal stimulus characteristics and collectively processed by a generalized magnitude system. In Experiment 1, we investigated the combined effects of stimulus size and numerical quantity, as two nontemporal stimulus dimensions covered by the ATOM model, on duration judgments. Participants were required to reproduce the duration of target intervals marked by Arabic digits varying in physical size and numerical value. While the effect of stimulus size was effectively moderated by target duration, the effect of numerical value appeared to require attentional resources directed to the numerical value in order to become effective. Experiment 2 was designed to further elucidate the mediating influence of attention on the effect of numerical value on duration judgments. An effect of numerical value was only observed when participants' attention was directed to digit value, but not when participants were required to pay special attention to digit parity. While the ATOM model implies a common metrics and generalized magnitude processing for time, size, and quantity, the present findings provided converging evidence for the notion of two qualitatively different mechanisms underlying the effects of nontemporal stimulus size and numerical value on duration judgments. Furthermore, our data challenge the implicit common assumption that the effect of numerical value on duration judgments represents a continuously increasing function of digit magnitude.
von Stengel, S; Kemmler, W; Engelke, K; Kalender, W A
2012-02-01
We examined whether the effect of multipurpose exercise can be enhanced by whole-body vibration (WBV). One hundred and fifty-one post-menopausal women (68.5 ± 3.1 years) were randomly assigned to three groups: (1) a training group (TG); (2) training including vibration (VTG); and (3) a wellness control group (CG). TG and VTG performed the same training program twice weekly (60 min), consisting of aerobic and strength exercises, with the only difference that leg strength exercises (15 min) were performed with (VTG) or without (TG) vibration. CG performed a low-intensity "wellness" program. At baseline and after 18 months, body composition was determined using dual-X-ray-absorptiometry. Maximum isometric strength was determined for the legs and the trunk region. Leg power was measured by countermovement jumps using a force-measuring plate. In the TG lean body mass, total body fat, and abdominal fat were favorably affected, but no additive effects were generated by the vibration stimulus. However, concerning muscle strength and power, there was a tendency in favor of the VTG. Only vibration training resulted in a significant increase of leg and trunk flexion strength compared with CG. In summary, WBV embedded in a multipurpose exercise program showed minor additive effects on body composition and neuromuscular performance. © 2010 John Wiley & Sons A/S.
Normal composite face effects in developmental prosopagnosia.
Biotti, Federica; Wu, Esther; Yang, Hua; Jiahui, Guo; Duchaine, Bradley; Cook, Richard
2017-10-01
Upright face perception is thought to involve holistic processing, whereby local features are integrated into a unified whole. Consistent with this view, the top half of one face appears to fuse perceptually with the bottom half of another, when aligned spatially and presented upright. This 'composite face effect' reveals a tendency to integrate information from disparate regions when faces are presented canonically. In recent years, the relationship between susceptibility to the composite effect and face recognition ability has received extensive attention both in participants with normal face recognition and participants with developmental prosopagnosia. Previous results suggest that individuals with developmental prosopagnosia may show reduced susceptibility to the effect suggestive of diminished holistic face processing. Here we describe two studies that examine whether developmental prosopagnosia is associated with reduced composite face effects. Despite using independent samples of developmental prosopagnosics and different composite procedures, we find no evidence for reduced composite face effects. The experiments yielded similar results; highly significant composite effects in both prosopagnosic groups that were similar in magnitude to the effects found in participants with normal face processing. The composite face effects exhibited by both samples and the controls were greatly diminished when stimulus arrangements were inverted. Our finding that the whole-face binding process indexed by the composite effect is intact in developmental prosopagnosia indicates that other factors are responsible for developmental prosopagnosia. These results are also inconsistent with suggestions that susceptibility to the composite face effect and face recognition ability are tightly linked. While the holistic process revealed by the composite face effect may be necessary for typical face perception, it is not sufficient; individual differences in face recognition ability likely reflect variability in multiple sequential processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
Grau-Moya, Jordi; Ortega, Pedro A.; Braun, Daniel A.
2016-01-01
A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects’ choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects’ choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain. PMID:27124723
Grau-Moya, Jordi; Ortega, Pedro A; Braun, Daniel A
2016-01-01
A number of recent studies have investigated differences in human choice behavior depending on task framing, especially comparing economic decision-making to choice behavior in equivalent sensorimotor tasks. Here we test whether decision-making under ambiguity exhibits effects of task framing in motor vs. non-motor context. In a first experiment, we designed an experience-based urn task with varying degrees of ambiguity and an equivalent motor task where subjects chose between hitting partially occluded targets. In a second experiment, we controlled for the different stimulus design in the two tasks by introducing an urn task with bar stimuli matching those in the motor task. We found ambiguity attitudes to be mainly influenced by stimulus design. In particular, we found that the same subjects tended to be ambiguity-preferring when choosing between ambiguous bar stimuli, but ambiguity-avoiding when choosing between ambiguous urn sample stimuli. In contrast, subjects' choice pattern was not affected by changing from a target hitting task to a non-motor context when keeping the stimulus design unchanged. In both tasks subjects' choice behavior was continuously modulated by the degree of ambiguity. We show that this modulation of behavior can be explained by an information-theoretic model of ambiguity that generalizes Bayes-optimal decision-making by combining Bayesian inference with robust decision-making under model uncertainty. Our results demonstrate the benefits of information-theoretic models of decision-making under varying degrees of ambiguity for a given context, but also demonstrate the sensitivity of ambiguity attitudes across contexts that theoretical models struggle to explain.
Meier, Matt E.; Kane, Michael J.
2015-01-01
Three experiments examined the relation between working memory capacity (WMC) and two different forms of cognitive conflict: stimulus-stimulus (S-S) and stimulus-response (SR) interference. Our goal was to test whether WMC’s relation to conflict-task performance is mediated by stimulus-identification processes (captured by S-S conflict), response-selection processes (captured by S-R conflict), or both. In Experiment 1, subjects completed a single task presenting both S-S and S-R conflict trials, plus trials that combined the two conflict types. We limited ostensible goal-maintenance contributions to performance by requiring the same goal for all trial types and by presenting frequent conflict trials that reinforced the goal. WMC predicted resolution of S-S conflict as expected: Higher-WMC subjects showed reduced response time interference. Although WMC also predicted S-R interference, here, higher-WMC subjects showed increased error interference. Experiment 2A replicated these results in a version of the conflict task without combined S-S/S-R trials. Experiment 2B increased the proportion of congruent (non-conflict) trials to promote reliance on goal-maintenance processes. Here, higher-WMC subjects resolved both S-S and S-R conflict more successfully than did lower-WMC subjects. The results were consistent with Kane and Engle’s (2003) two-factor theory of cognitive control, according to which WMC predicts executive-task performance through goal-maintenance and conflict-resolution processes. However, the present results add specificity to the account by suggesting that higher-WMC subjects better resolve cognitive conflict because they more efficiently select relevant stimulus features against irrelevant, distracting ones. PMID:26120774
Meier, Matt E; Kane, Michael J
2015-11-01
Three experiments examined the relation between working memory capacity (WMC) and 2 different forms of cognitive conflict: stimulus-stimulus (S-S) and stimulus-response (S-R) interference. Our goal was to test whether WMC's relation to conflict-task performance is mediated by stimulus-identification processes (captured by S-S conflict), response-selection processes (captured by S-R conflict), or both. In Experiment 1, subjects completed a single task presenting both S-S and S-R conflict trials, plus trials that combined the 2 conflict types. We limited ostensible goal-maintenance contributions to performance by requiring the same goal for all trial types and by presenting frequent conflict trials that reinforced the goal. WMC predicted resolution of S-S conflict as expected: Higher WMC subjects showed reduced response time interference. Although WMC also predicted S-R interference, here, higher WMC subjects showed increased error interference. Experiment 2A replicated these results in a version of the conflict task without combined S-S/S-R trials. Experiment 2B increased the proportion of congruent (nonconflict) trials to promote reliance on goal-maintenance processes. Here, higher WMC subjects resolved both S-S and S-R conflict more successfully than did lower WMC subjects. The results were consistent with Kane and Engle's (2003) 2-factor theory of cognitive control, according to which WMC predicts executive-task performance through goal-maintenance and conflict-resolution processes. However, the present results add specificity to the account by suggesting that higher WMC subjects better resolve cognitive conflict because they more efficiently select relevant stimulus features against irrelevant, distracting ones. (c) 2015 APA, all rights reserved).
Utility-based early modulation of processing distracting stimulus information.
Wendt, Mike; Luna-Rodriguez, Aquiles; Jacobsen, Thomas
2014-12-10
Humans are selective information processors who efficiently prevent goal-inappropriate stimulus information to gain control over their actions. Nonetheless, stimuli, which are both unnecessary for solving a current task and liable to cue an incorrect response (i.e., "distractors"), frequently modulate task performance, even when consistently paired with a physical feature that makes them easily discernible from target stimuli. Current models of cognitive control assume adjustment of the processing of distractor information based on the overall distractor utility (e.g., predictive value regarding the appropriate response, likelihood to elicit conflict with target processing). Although studies on distractor interference have supported the notion of utility-based processing adjustment, previous evidence is inconclusive regarding the specificity of this adjustment for distractor information and the stage(s) of processing affected. To assess the processing of distractors during sensory-perceptual phases we applied EEG recording in a stimulus identification task, involving successive distractor-target presentation, and manipulated the overall distractor utility. Behavioral measures replicated previously found utility modulations of distractor interference. Crucially, distractor-evoked visual potentials (i.e., posterior N1) were more pronounced in high-utility than low-utility conditions. This effect generalized to distractors unrelated to the utility manipulation, providing evidence for item-unspecific adjustment of early distractor processing to the experienced utility of distractor information. Copyright © 2014 the authors 0270-6474/14/3416720-06$15.00/0.
Villarrasa-Sapiña, Israel; Álvarez-Pitti, Julio; Cabeza-Ruiz, Ruth; Redón, Pau; Lurbe, Empar; García-Massó, Xavier
2018-02-01
Excess body weight during childhood causes reduced motor functionality and problems in postural control, a negative influence which has been reported in the literature. Nevertheless, no information regarding the effect of body composition on the postural control of overweight and obese children is available. The objective of this study was therefore to establish these relationships. A cross-sectional design was used to establish relationships between body composition and postural control variables obtained in bipedal eyes-open and eyes-closed conditions in twenty-two children. Centre of pressure signals were analysed in the temporal and frequency domains. Pearson correlations were applied to establish relationships between variables. Principal component analysis was applied to the body composition variables to avoid potential multicollinearity in the regression models. These principal components were used to perform a multiple linear regression analysis, from which regression models were obtained to predict postural control. Height and leg mass were the body composition variables that showed the highest correlation with postural control. Multiple regression models were also obtained and several of these models showed a higher correlation coefficient in predicting postural control than simple correlations. These models revealed that leg and trunk mass were good predictors of postural control. More equations were found in the eyes-open than eyes-closed condition. Body weight and height are negatively correlated with postural control. However, leg and trunk mass are better postural control predictors than arm or body mass. Finally, body composition variables are more useful in predicting postural control when the eyes are open. Copyright © 2017 Elsevier Ltd. All rights reserved.
Does sensitivity in binary choice tasks depend on response modality?
Szumska, Izabela; van der Lubbe, Rob H J; Grzeczkowski, Lukasz; Herzog, Michael H
2016-07-01
In most models of vision, a stimulus is processed in a series of dedicated visual areas, leading to categorization of this stimulus, and possible decision, which subsequently may be mapped onto a motor-response. In these models, stimulus processing is thought to be independent of the response modality. However, in theories of event coding, common coding, and sensorimotor contingency, stimuli may be very specifically mapped onto certain motor-responses. Here, we compared performance in a shape localization task and used three different response modalities: manual, saccadic, and verbal. Meta-contrast masking was employed at various inter-stimulus intervals (ISI) to manipulate target visibility. Although we found major differences in reaction times for the three response modalities, accuracy remained at the same level for each response modality (and all ISIs). Our results support the view that stimulus-response (S-R) associations exist only for specific instances, such as reflexes or skills, but not for arbitrary S-R pairings. Copyright © 2016 Elsevier Inc. All rights reserved.
Demanet, Jelle; Verbruggen, Frederick; Liefooghe, Baptist; Vandierendonck, André
2010-06-01
The present study investigated the relative contribution of bottom-up and top-down control to task selection in the voluntary task-switching (VTS) procedure. In order to manipulate the efficiency of top-down control, a concurrent working memory load was imposed during VTS. In three experiments, bottom-up factors, such as stimulus repetitions, repetition of irrelevant information, and stimulus-task associations, were introduced in order to investigate their influence on task selection. We observed that the tendency to repeat tasks was stronger under load, suggesting that top-down control counteracts the automatic tendency to repeat tasks. The results also indicated that task selection can be guided by several elements in the environment, but that only the influence of stimulus repetitions depends on the efficiency of top-down control. The theoretical implications of these findings are discussed within the interplay between top-down and bottom-up control that underlies the voluntary selection of tasks.
Design of novel non-contact multimedia controller for disability by using visual stimulus.
Pan, Jeng-Shyang; Lo, Chi-Chun; Tsai, Shang-Ho; Lin, Bor-Shyh
2015-12-01
The design of a novel non-contact multimedia controller is proposed in this study. Nowadays, multimedia controllers are generally used by patients and nursing assistants in the hospital. Conventional multimedia controllers usually involve in manual operation or other physical movements. However, it is more difficult for the disabled patients to operate the conventional multimedia controller by themselves; they might totally depend on others. Different from other multimedia controllers, the proposed system provides a novel concept of controlling multimedia via visual stimuli, without manual operation. The disabled patients can easily operate the proposed multimedia system by focusing on the control icons of a visual stimulus device, where a commercial tablet is used as the visual stimulus device. Moreover, a wearable and wireless electroencephalogram (EEG) acquisition device is also designed and implemented to easily monitor the user's EEG signals in daily life. Finally, the proposed system has been validated. The experimental result shows that the proposed system can effectively measure and extract the EEG feature related to visual stimuli, and its information transfer rate is also good. Therefore, the proposed non-contact multimedia controller exactly provides a good prototype of novel multimedia controlling scheme. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Lerner, Itamar; Bentin, Shlomo; Shriki, Oren
2014-01-01
Semantic priming has long been recognized to reflect, along with automatic semantic mechanisms, the contribution of controlled strategies. However, previous theories of controlled priming were mostly qualitative, lacking common grounds with modern mathematical models of automatic priming based on neural networks. Recently, we have introduced a novel attractor network model of automatic semantic priming with latching dynamics. Here, we extend this work to show how the same model can also account for important findings regarding controlled processes. Assuming the rate of semantic transitions in the network can be adapted using simple reinforcement learning, we show how basic findings attributed to controlled processes in priming can be achieved, including their dependency on stimulus onset asynchrony and relatedness proportion and their unique effect on associative, category-exemplar, mediated and backward prime-target relations. We discuss how our mechanism relates to the classic expectancy theory and how it can be further extended in future developments of the model. PMID:24890261
Shen, Feng; Pompano, Rebecca R.; Kastrup, Christian J.; Ismagilov, Rustem F.
2009-01-01
Abstract This study shows that environmental confinement strongly affects the activation of nonlinear reaction networks, such as blood coagulation (clotting), by small quantities of activators. Blood coagulation is sensitive to the local concentration of soluble activators, initiating only when the activators surpass a threshold concentration, and therefore is regulated by mass transport phenomena such as flow and diffusion. Here, diffusion was limited by decreasing the size of microfluidic chambers, and it was found that microparticles carrying either the classical stimulus, tissue factor, or a bacterial stimulus, Bacillus cereus, initiated coagulation of human platelet-poor plasma only when confined. A simple analytical argument and numerical model were used to describe the mechanism for this phenomenon: confinement causes diffusible activators to accumulate locally and surpass the threshold concentration. To interpret the results, a dimensionless confinement number, Cn, was used to describe whether a stimulus was confined, and a Damköhler number, Da2, was used to describe whether a subthreshold stimulus could initiate coagulation. In the context of initiation of coagulation by bacteria, this mechanism can be thought of as “diffusion acting”, which is distinct from “diffusion sensing”. The ability of confinement and diffusion acting to change the outcome of coagulation suggests that confinement should also regulate other biological “on” and “off” processes that are controlled by thresholds. PMID:19843446
Some Implications of Learning Theories on a Theory of Reading and Reading Instruction.
ERIC Educational Resources Information Center
Parsons, James B.
While stimulus-response theories of learning maintain the reality and importance of the stimulus outside the perception of the person, a cognitive-field learning theory insists that, in order to make meaning, a person must perceive and react with the stimulus. Holding to this or any learning model has implications for the following: a definition…
Pontual, I; Amaral, G V; Esmerino, E A; Pimentel, T C; Freitas, M Q; Fukuda, R K; Sant'Ana, I L; Silva, L G; Cruz, A G
2017-04-01
The word association (WA) technique was used to investigate the perception of two groups of consumers (72 celiac and 78 non-celiac individuals; 150 in total) to pizza dough (thick or thin) and the raw material used at the manufacture (cassava flour or rice flour). Different perceptions of the four stimuli were detected by Chi-square test (X 2 =314.393, p<0.0001) for both groups. Seven categories were used for both groups: food/composition, health, doubt/uncertainty, novelty, negative feelings, positive feelings, and sensory aspects. The stimulus 'pizza dough made with cassava flour' was associated with the category "food/composition" and the stimuli 'pizza made with rice flour', 'pizza made with cassava flour' and 'thin dough' were associated with "positive feelings". The stimulus 'thick dough' was related only to the category "negative feelings". WA indicated that gluten-free pizza should have thin dough and us cassava flour or rice flour as the raw material. Copyright © 2017 Elsevier Ltd. All rights reserved.
Motion direction discrimination training reduces perceived motion repulsion.
Jia, Ke; Li, Sheng
2017-04-01
Participants often exaggerate the perceived angular separation between two simultaneously presented motion stimuli, which is referred to as motion repulsion. The overestimation helps participants differentiate between the two superimposed motion directions, yet it causes the impairment of direction perception. Since direction perception can be refined through perceptual training, we here attempted to investigate whether the training of a direction discrimination task changes the amount of motion repulsion. Our results showed a direction-specific learning effect, which was accompanied by a reduced amount of motion repulsion both for the trained and the untrained directions. The reduction of the motion repulsion disappeared when the participants were trained on a luminance discrimination task (control experiment 1) or a speed discrimination task (control experiment 2), ruling out any possible interpretation in terms of adaptation or training-induced attentional bias. Furthermore, training with a direction discrimination task along a direction 150° away from both directions in the transparent stimulus (control experiment 3) also had little effect on the amount of motion repulsion, ruling out the contribution of task learning. The changed motion repulsion observed in the main experiment was consistent with the prediction of the recurrent model of perceptual learning. Therefore, our findings demonstrate that training in direction discrimination can benefit the precise direction perception of the transparent stimulus and provide new evidence for the recurrent model of perceptual learning.
A method to establish stimulus control and compliance with instructions.
Borgen, John G; Charles Mace, F; Cavanaugh, Brenna M; Shamlian, Kenneth; Lit, Keith R; Wilson, Jillian B; Trauschke, Stephanie L
2017-10-01
We evaluated a unique procedure to establish compliance with instructions in four young children diagnosed with autism spectrum disorder (ASD) who had low levels of compliance. Our procedure included methods to establish a novel therapist as a source of positive reinforcement, reliably evoke orienting responses to the therapist, increase the number of exposures to instruction-compliance-reinforcer contingencies, and minimize the number of exposures to instruction-noncompliance-no reinforcer contingencies. We further alternated between instructions with a high probability of compliance (high-p instructions) with instructions that had a prior low probability of compliance (low-p instructions) as soon as low-p instructions lost stimulus control. The intervention is discussed in relation to the conditions necessary for the development of stimulus control and as an example of a variation of translational research. © 2017 Society for the Experimental Analysis of Behavior.
The role of the right superior temporal gyrus in stimulus-centered spatial processing.
Shah-Basak, Priyanka P; Chen, Peii; Caulfield, Kevin; Medina, Jared; Hamilton, Roy H
2018-05-01
Although emerging neuropsychological evidence supports the involvement of temporal areas, and in particular the right superior temporal gyrus (STG), in allocentric neglect deficits, the role of STG in healthy spatial processing remains elusive. While several functional brain imaging studies have demonstrated involvement of the STG in tasks involving explicit stimulus-centered judgments, prior rTMS studies targeting the right STG did not find the expected neglect-like rightward bias in size judgments using the conventional landmark task. The objective of the current study was to investigate whether disruption of the right STG using inhibitory repetitive transcranial magnetic stimulation (rTMS) could impact stimulus-centered, allocentric spatial processing in healthy individuals. A lateralized version of the landmark task was developed to accentuate the dissociation between viewer-centered and stimulus-centered reference frames. We predicted that inhibiting activity in the right STG would decrease accuracy because of induced rightward bias centered on the line stimulus irrespective of its viewer-centered or egocentric locations. Eleven healthy, right-handed adults underwent the lateralized landmark task. After viewing each stimulus, participants had to judge whether the line was bisected, or whether the left (left-long trials) or the right segment (right-long trials) of the line was longer. Participants repeated the task before (pre-rTMS) and after (post-rTMS) receiving 20 min of 1 Hz rTMS over the right STG, the right supramarginal gyrus (SMG), and the vertex (a control site) during three separate visits. Linear mixed models for binomial data were generated with either accuracy or judgment errors as dependent variables, to compare 1) performance across trial types (bisection, non-bisection), and 2) pre- vs. post-rTMS performance between the vertex and the STG and the vertex and the SMG. Line eccentricity (z = 4.31, p < 0.0001) and line bisection (z = 5.49, p < 0.0001) were significant predictors of accuracy. In the models comparing the effects of rTMS, a significant two-way interaction with STG (z = -3.09, p = 0.002) revealed a decrease in accuracy of 9.5% and an increase in errors of the right-long type by 10.7% on bisection trials, in both left and right viewer-centered locations. No significant changes in leftward errors were found. These findings suggested an induced stimulus-centered rightward bias in our participants after STG stimulation. Notably, accuracy or errors were not influenced by SMG stimulation compared to vertex. In line with our predictions, the findings provide compelling evidence for right STG's involvement in healthy stimulus-centered spatial processing. Copyright © 2018 Elsevier Ltd. All rights reserved.
McIlvane, William J; Kledaras, Joanne B; Gerard, Christophe J; Wilde, Lorin; Smelson, David
2018-07-01
A few noteworthy exceptions notwithstanding, quantitative analyses of relational learning are most often simple descriptive measures of study outcomes. For example, studies of stimulus equivalence have made much progress using measures such as percentage consistent with equivalence relations, discrimination ratio, and response latency. Although procedures may have ad hoc variations, they remain fairly similar across studies. Comparison studies of training variables that lead to different outcomes are few. Yet to be developed are tools designed specifically for dynamic and/or parametric analyses of relational learning processes. This paper will focus on recent studies to develop (1) quality computer-based programmed instruction for supporting relational learning in children with autism spectrum disorders and intellectual disabilities and (2) formal algorithms that permit ongoing, dynamic assessment of learner performance and procedure changes to optimize instructional efficacy and efficiency. Because these algorithms have a strong basis in evidence and in theories of stimulus control, they may have utility also for basic and translational research. We present an overview of the research program, details of algorithm features, and summary results that illustrate their possible benefits. It also presents arguments that such algorithm development may encourage parametric research, help in integrating new research findings, and support in-depth quantitative analyses of stimulus control processes in relational learning. Such algorithms may also serve to model control of basic behavioral processes that is important to the design of effective programmed instruction for human learners with and without functional disabilities. Copyright © 2018 Elsevier B.V. All rights reserved.
Stimulus control and affect in dietary behaviours. An intensive longitudinal study.
Schüz, Benjamin; Bower, Jodie; Ferguson, Stuart G
2015-04-01
Dietary behaviours are substantially influenced by environmental and internal stimuli, such as mood, social situation, and food availability. However, little is known about the role of stimulus control for eating in non-clinical populations, and no studies so far have looked at eating and drinking behaviour simultaneously. 53 individuals from the general population took part in an intensive longitudinal study with repeated, real-time assessments of eating and drinking using Ecological Momentary Assessment. Eating was assessed as main meals and snacks, drinks assessments were separated along alcoholic and non-alcoholic drinks. Situational and internal stimuli were assessed during both eating and drinking events, and during randomly selected non-eating occasions. Hierarchical multinomial logistic random effects models were used to analyse data, comparing dietary events to non-eating occasions. Several situational and affective antecedents of dietary behaviours could be identified. Meals were significantly associated with having food available and observing others eat. Snacking was associated with negative affect, having food available, and observing others eat. Engaging in activities and being with others decreased the likelihood of eating behaviours. Non-alcoholic drinks were associated with observing others eat, and less activities and company. Alcoholic drinks were associated with less negative affect and arousal, and with observing others eat. RESULTS support the role of stimulus control in dietary behaviours, with support for both internal and external, in particular availability and social stimuli. The findings for negative affect support the idea of comfort eating, and results point to the formation of eating habits via cue-behaviour associations. Copyright © 2015 Elsevier Ltd. All rights reserved.
1977-12-01
Interpretation Conditions) Two techniques available to the Q!;)? inl~erpreter that can effect both stimulus and response variables are data 1bwIre preparation and...material included: 2-16 o Textual data composition for each training block, o Viewgraph construction, o AN/AAD-5 imagery annotation, "mock-up," and...o Construction of instruction Block Training Packets 2.2.2.1. Textual Data Composition Each training block of instruction was researched and writ-ten
S100B protein in benzodiazepine overdose.
Ambrozic, J; Bunc, M; Osredkar, J; Brvar, M
2008-02-01
Severe benzodiazepine overdose can result in coma and respiratory depression that might cause brain hypoxia, necrosis and delayed post-anoxic leucoencephalopathy with permanent neurological sequelae. The aim of this study was to assess the possible role of S100B, a structural protein of astroglial cells, as a biochemical marker of brain injury in acute benzodiazepine overdose. Serum S100B determination was performed in 38 consecutive patients admitted to the emergency department (ED) in Ljubljana with benzodiazepine overdose. The level of consciousness and respiratory insufficiency on the scene were assessed by responsiveness to a verbal stimulus and pulse oximetry. Blood samples were taken immediately after arrival at the ED and S100B concentrations were measured with a commercial immunoluminometric assay. 20 healthy sex- and age-matched volunteers formed a control group. There were significant differences in S100B levels between the control group and the patients with benzodiazepine overdose according to their responsiveness to a verbal stimulus. Post hoc test results showed that S100B levels in patients with benzodiazepine overdose who were unresponsive to a verbal stimulus were significantly higher than those in patients responsive to a verbal stimulus (median 0.31 vs 0.11 microg/l; p = 0.001). Both groups of patients with benzodiazepine overdose had significantly higher S100B levels than the control group (median 0.07 microg/; both p = 0.001). Arterial oxygen saturation of patients with benzodiazepine overdose unresponsive to a verbal stimulus was significantly lower than in patients responsive to a verbal stimulus (median 83% vs 94%; p = 0.001). There was no significant difference in the systolic blood pressure of patients with benzodiazepine overdose responsive or unresponsive to a verbal stimulus. Raised levels of S100B protein are associated with depressed levels of consciousness and respiratory insufficiency in patients with benzodiazepine overdose.
Login, Hande; Håglin, Sofia; Berghard, Anna; Bohm, Staffan
2015-10-07
Stimulus-dependent expression of the retinoic acid-inactivating enzyme Cyp26B1 in olfactory sensory neurons (OSNs) forms a dorsomedial (DM)-ventrolateral (VL) gradient in the mouse olfactory epithelium. The gradient correlates spatially with different rates of OSN turnover, as well as the functional organization of the olfactory sensory map, into overlapping zones of OSNs that express different odorant receptors (ORs). Here, we analyze transgenic mice that, instead of a stimulus-dependent Cyp26B1 gradient, have constitutive Cyp26B1 levels in all OSNs. Starting postnatally, OSN differentiation is decreased and progenitor proliferation is increased. Initially, these effects are selective to the VL-most zone and correlate with reduced ATF5 expression and accumulation of OSNs that do not express ORs. Transcription factor ATF5 is known to stabilize OR gene choice via onset of the stimulus-transducing enzyme adenylyl cyclase type 3. During further postnatal development of Cyp26B1 mice, an anomalous DM(high)-VL(low) expression gradient of adenylyl cyclase type 3 appears, which coincides with altered OR frequencies and OR zones. All OR zones expand ventrolaterally except for the VL-most zone, which contracts. The expansion results in an increased zonal overlap that is also evident in the innervation pattern of OSN axon terminals in olfactory bulbs. These findings together identify a mechanism by which postnatal sensory-stimulated vitamin A metabolism modifies the generation of spatially specified neurons and their precise topographic connectivity. The distributed patterns of vitamin A-metabolizing enzymes in the nervous system suggest the possibility that the mechanism may also regulate neuroplasticity in circuits other than the olfactory sensory map. The mouse olfactory sensory map is functionally wired according to precise axonal projections of spatially organized classes of olfactory sensory neurons in the nose. The genetically controlled mechanisms that regulate the development of the olfactory sensory map are beginning to be elucidated. Little is known about mechanisms by which sensory stimuli shape the organization of the map after birth. We show that a stimulus-dependent gradient of a retinoic acid-inactivating enzyme Cyp26B1 modifies the composition, localization, and axonal projections of olfactory sensory neuron classes. The mechanism is novel and suggests the interesting possibility that local vitamin A metabolism could also be a mediator of stimulus-dependent modifications of precise spatial connectivity in other parts of the nervous system. Copyright © 2015 the authors 0270-6474/15/3513807-12$15.00/0.
Stimulus control by 5methoxy-N,N-dimethyltryptamine in wild-type and CYP2D6-humanized mice
Winter, J. C.; Amorosi, D. J.; Rice, Kenner C.; Cheng, Kejun; Yu, Ai-Ming
2011-01-01
In previous studies we have observed that, in comparison with wild type mice, Tg-CYP2D6 mice have increased serum levels of bufotenine [5-hydroxy-N,N-dimethyltryptamine] following the administration of 5-MeO-DMT. Furthermore, following the injection of 5-MeO-DMT, harmaline was observed to increase serum levels of bufotenine and 5-MeO-DMT in both wild-type and Tg-CYP2D6 mice. In the present investigation, 5-MeO-DMT-induced stimulus control was established in wild-type and Tg-CYP2D6 mice. The two groups did not differ in their rate of acquisition of stimulus control. When tested with bufotenine, no 5-MeO-DMT-appropriate responding was observed. In contrast, the more lipid soluble analog of bufotenine, acetylbufotenine, was followed by an intermediate level of responding. The combination of harmaline with 5-MeO-DMT yielded a statistically significant increase in 5-MeO-DMT-appropriate responding in Tg-CYP2D6 mice; a comparable increase occurred in wild-type mice. In addition, it was noted that harmaline alone was followed by a significant degree of 5-MeO-DMT-appropriate responding in Tg-CYP2D6 mice. It is concluded that wild-type and Tg-CYPD2D6 mice do not differ in terms of acquisition of stimulus control by 5-MeO-DMT or in their response to bufotenine and acetylbufotenine. In both groups of mice, harmaline was found to enhance the stimulus effects of 5-MeO-DMT. PMID:21624387
Hake, D F; Campbell, R L
1980-01-01
During three experiments with squirrel monkeys, stimulus and shock pairings were given in the presence of a bite tube. Experiments 1 and 2 used a conditioned-suppression procedure in which bar pressing was reinforced with food. A transparent shield prevented biting of the bar. When the stimulus was paired with shock, bar pressing decreased (conditioned suppression) and tube biting increased during the stimulus (classically conditioned aggression). When the bite tube was removed on alternate sessions in Experiment 2, there was more suppression when the tube was present, thus suggesting that biting competed with bar pressing. However, this simple competing-response interpretation was complicated by the findings of Experiment 3 where, with naive monkeys, bar pressing was never reinforced with food, yet bar pressing was induced during the stimulus and was highest when the bite tube was absent. The fact that stimulus-induced bar pressing developed inciated that bar pressing in conditioned-suppression procedures, suppressed or not, may be maintained by two types of control--the food reinforcer and induced CS control. The higher rate of induced bar pressing during the stimulus with the bite tube absent confounds a simple competing response interpretation of conditioned suppression. It suggests that shock-induced responses during conditioned suppression could be both contributing to and competing with responding maintained by food, with the net effect depending on specific but ill-defined features of the situation. PMID:7190996
Retrospective revaluation and its neural circuit in rats.
San-Galli, Aurore; Marchand, Alain R; Decorte, Laurence; Di Scala, Georges
2011-10-01
Contingency learning is essential for establishing predictive or causal judgements. Retrospective revaluation captures essential aspects of the updating of this knowledge, according to new experience. In the present study, retrospective revaluation and its neural substrate was investigated in a rat conditioned magazine approach. One element of a previously food-reinforced Tone-Light compound stimulus was either further reinforced (inflation) or extinguished (extinction). These treatments affected the predictive value of the alternate stimulus (target), but only when the target was a weakly salient stimulus such as a Light, and the inflation/extinction procedure concerned the more salient element, that is the Tone. As the predictive value of the Light was decreased in comparison with a relevant control group, this revaluation was interpreted as backward blocking, and not unovershadowing. This observation challenges retrospective revaluation models focused on acquisition and prediction error detection, and is better accounted for by retrieval-based associative theories such as the comparator model (Miller and Matzel) [5]. Immunohistochemical detection of the Fos protein after the test phase revealed activation of the orbitofrontal and infralimbic cortices as well as nucleus accumbens core and shell, in rats that exhibited retrospective revaluation. Our results suggest that rats integrate successive experiences at the retrieval stage of retrospective revaluation, and that prefronto-accumbal interactions are involved in this function. Copyright © 2011 Elsevier B.V. All rights reserved.
Shinohe, Yutaka; Higuchi, Satomi; Sasaki, Makoto; Sato, Masahito; Noda, Mamoru; Joh, Shigeharu; Satoh, Kenichi
2016-12-07
Conscious sedation with propofol sometimes causes amnesia while keeping the patient awake. However, it remains unknown how propofol compromises the memory function. Therefore, we investigated the changes in brain activation induced by visual stimulation during and after conscious sedation with propofol using serial functional MRI. Healthy volunteers received a target-controlled infusion of propofol, and underwent functional MRI scans with a block-design paradigm of visual stimulus before, during, and after conscious sedation. Random-effect model analyses were performed using Statistical Parametric Mapping software. Among the areas showing significant activation in response to the visual stimulus, the visual cortex and fusiform gyrus were significantly suppressed in the sedation session and tended to recover in the early-recovery session of ∼20 min (P<0.001, uncorrected). In contrast, decreased activations of the hippocampus, thalamus, inferior frontal cortex (ventrolateral prefrontal cortex), and cerebellum were maintained during the sedation and early-recovery sessions (P<0.001, uncorrected) and were recovered in the late-recovery session of ∼40 min. Temporal changes in the signals from these areas varied in a manner comparable to that described by the random-effect model analysis (P<0.05, corrected). In conclusion, conscious sedation with propofol may cause prolonged suppression of the activation of memory-related structures, such as the hippocampus, during the early-recovery period, which may lead to transient amnesia.
The effect of stimulus strength on the speed and accuracy of a perceptual decision.
Palmer, John; Huk, Alexander C; Shadlen, Michael N
2005-05-02
Both the speed and the accuracy of a perceptual judgment depend on the strength of the sensory stimulation. When stimulus strength is high, accuracy is high and response time is fast; when stimulus strength is low, accuracy is low and response time is slow. Although the psychometric function is well established as a tool for analyzing the relationship between accuracy and stimulus strength, the corresponding chronometric function for the relationship between response time and stimulus strength has not received as much consideration. In this article, we describe a theory of perceptual decision making based on a diffusion model. In it, a decision is based on the additive accumulation of sensory evidence over time to a bound. Combined with simple scaling assumptions, the proportional-rate and power-rate diffusion models predict simple analytic expressions for both the chronometric and psychometric functions. In a series of psychophysical experiments, we show that this theory accounts for response time and accuracy as a function of both stimulus strength and speed-accuracy instructions. In particular, the results demonstrate a close coupling between response time and accuracy. The theory is also shown to subsume the predictions of Piéron's Law, a power function dependence of response time on stimulus strength. The theory's analytic chronometric function allows one to extend theories of accuracy to response time.
Differences in salivary habituation to palatable foods in bulimia nervosa patients and controls.
Wisniewski, L; Epstein, L H; Marcus, M D; Kaye, W
1997-01-01
Bulimia nervosa (BN) patients have been shown to experience anomalous responses to food and food cues. We investigated the response to food over time by presenting repeated food cues and measuring changes in physiological (ie, salivation) and subjective responses. Subjects were 18 BN women and 18 matched control women. Two palatable food stimuli, regular or frozen yogurt, that varied in macronutrient composition but had similar sensory characteristics, were presented to subjects repeatedly during a laboratory session. After two baseline salivation measures, subjects were presented with eight trials of one of the two yogurts. On Trial 9 a lemon juice dishabituator was presented, with the yogurt stimulus presented again at Trial 10. We found that control subjects had decreased salivation after repeated food presentations. In comparison, BN subjects failed to show a decrease in salivation. The desire to binge increased over trials for the BN subjects, but remained stable for normals. These data suggest that salivary habituation may be abnormal in BN patients.
Hummingbirds control hovering flight by stabilizing visual motion.
Goller, Benjamin; Altshuler, Douglas L
2014-12-23
Relatively little is known about how sensory information is used for controlling flight in birds. A powerful method is to immerse an animal in a dynamic virtual reality environment to examine behavioral responses. Here, we investigated the role of vision during free-flight hovering in hummingbirds to determine how optic flow--image movement across the retina--is used to control body position. We filmed hummingbirds hovering in front of a projection screen with the prediction that projecting moving patterns would disrupt hovering stability but stationary patterns would allow the hummingbird to stabilize position. When hovering in the presence of moving gratings and spirals, hummingbirds lost positional stability and responded to the specific orientation of the moving visual stimulus. There was no loss of stability with stationary versions of the same stimulus patterns. When exposed to a single stimulus many times or to a weakened stimulus that combined a moving spiral with a stationary checkerboard, the response to looming motion declined. However, even minimal visual motion was sufficient to cause a loss of positional stability despite prominent stationary features. Collectively, these experiments demonstrate that hummingbirds control hovering position by stabilizing motions in their visual field. The high sensitivity and persistence of this disruptive response is surprising, given that the hummingbird brain is highly specialized for sensory processing and spatial mapping, providing other potential mechanisms for controlling position.
Lidierth, Malcolm
2005-02-15
This paper describes software that runs in the Spike2 for Windows environment and provides a versatile tool for generating stimuli during data acquisition from the 1401 family of interfaces (CED, UK). A graphical user interface (GUI) is used to provide dynamic control of stimulus timing. Both single stimuli and trains of stimuli can be generated. The pulse generation routines make use of programmable variables within the interface and allow these to be rapidly changed during an experiment. The routines therefore provide the ease-of-use associated with external, stand-alone pulse generators. Complex stimulus protocols can be loaded from an external text file and facilities are included to create these files through the GUI. The software consists of a Spike2 script that runs in the host PC, and accompanying routines written in the 1401 sequencer control code, that run in the 1401 interface. Handshaking between the PC and the interface card are built into the routines and provides for full integration of sampling, analysis and stimulus generation during an experiment. Control of the 1401 digital-to-analogue converters is also provided; this allows control of stimulus amplitude as well as timing and also provides a sample-hold feature that may be used to remove DC offsets and drift from recorded data.
Emergent Stimulus Relations Depend on Stimulus Correlation and Not on Reinforcement Contingencies
Minster, Sara Tepaeru; Elliffe, Douglas; Muthukumaraswamy, Suresh D
2011-01-01
We aimed to investigate whether novel stimulus relations would emerge from stimulus correlations when those relations explicitly conflicted with reinforced relations. In a symbolic matching-to-sample task using kanji characters as stimuli, we arranged class-specific incorrect comparison stimuli in each of three classes. After presenting either Ax or Cx stimuli as samples, choices of Bx were reinforced and choices of Gx or Hx were not. Tests for symmetry, and combined symmetry and transitivity, showed the emergence of three 3-member (AxBxCx) stimulus classes in 5 of 5 human participants. Subsequent tests for all possible emergent relations between Ax, Bx, Cx and the class-specific incorrect comparisons Gx and Hx showed that these relations emerged for 4 of 5 the participants after extended overtraining of the baseline relations. These emergent relations must have been based on stimulus–stimulus correlations, and were not properties of the trained discriminated operants, because they required control by relations explicitly extinguished during training. This result supports theoretical accounts of emergent relations that emphasize stimulus correlation over operant contingencies. PMID:21547070
ERIC Educational Resources Information Center
Kyllingsbaek, Soren; Markussen, Bo; Bundesen, Claus
2012-01-01
The authors propose and test a simple model of the time course of visual identification of briefly presented, mutually confusable single stimuli in pure accuracy tasks. The model implies that during stimulus analysis, tentative categorizations that stimulus i belongs to category j are made at a constant Poisson rate, v(i, j). The analysis is…
Monsalve, Irene F.; Pérez, Alejandro; Molinaro, Nicola
2014-01-01
During language comprehension, semantic contextual information is used to generate expectations about upcoming items. This has been commonly studied through the N400 event-related potential (ERP), as a measure of facilitated lexical retrieval. However, the associative relationships in multi-word expressions (MWE) may enable the generation of a categorical expectation, leading to lexical retrieval before target word onset. Processing of the target word would thus reflect a target-identification mechanism, possibly indexed by a P3 ERP component. However, given their time overlap (200–500 ms post-stimulus onset), differentiating between N400/P3 ERP responses (averaged over multiple linguistically variable trials) is problematic. In the present study, we analyzed EEG data from a previous experiment, which compared ERP responses to highly expected words that were placed either in a MWE or a regular non-fixed compositional context, and to low predictability controls. We focused on oscillatory dynamics and regression analyses, in order to dissociate between the two contexts by modeling the electrophysiological response as a function of item-level parameters. A significant interaction between word position and condition was found in the regression model for power in a theta range (~7–9 Hz), providing evidence for the presence of qualitative differences between conditions. Power levels within this band were lower for MWE than compositional contexts when the target word appeared later on in the sentence, confirming that in the former lexical retrieval would have taken place before word onset. On the other hand, gamma-power (~50–70 Hz) was also modulated by predictability of the item in all conditions, which is interpreted as an index of a similar “matching” sub-step for both types of contexts, binding an expected representation and the external input. PMID:25161630
Fuzzy Modal Control Applied to Smart Composite Structure
NASA Astrophysics Data System (ADS)
Koroishi, E. H.; Faria, A. W.; Lara-Molina, F. A.; Steffen, V., Jr.
2015-07-01
This paper proposes an active vibration control technique, which is based on Fuzzy Modal Control, as applied to a piezoelectric actuator bonded to a composite structure forming a so-called smart composite structure. Fuzzy Modal Controllers were found to be well adapted for controlling structures with nonlinear behavior, whose characteristics change considerably with respect to time. The smart composite structure was modelled by using a so called mixed theory. This theory uses a single equivalent layer for the discretization of the mechanical displacement field and a layerwise representation of the electrical field. Temperature effects are neglected. Due to numerical reasons it was necessary to reduce the size of the model of the smart composite structure so that the design of the controllers and the estimator could be performed. The role of the Kalman Estimator in the present contribution is to estimate the modal states of the system, which are used by the Fuzzy Modal controllers. Simulation results illustrate the effectiveness of the proposed vibration control methodology for composite structures.
Change of short-term memory effect in acute ischemic ventricular myocardium: a computational study.
Mei, Xi; Wang, Jing; Zhang, Hong; Liu, Zhi-cheng; Zhang, Zhen-xi
2014-02-01
The ionic mechanism of change in short-term memory (STM) during acute myocardial ischemia has not been well understood. In this paper, an advanced guinea pig ventricular model developed by Luo and Rudy was used to investigate STM property of ischemic ventricular myocardium. STM response was calculated by testing the time to reach steady-state action potential duration (APD) after an abrupt shortening of basic cycling length (BCL) in the pacing protocol. Electrical restitution curves (RCs), which can simultaneously visualize multiple aspects of APD restitution and STM, were obtained from dynamic and local S1S2 restitution portrait (RP), which consist of a longer interval stimulus (S1) and a shorter interval stimulus (S2). The angle between dynamic RC and local S1S2 RC reflects the amount of STM. Our results indicated that compared with control (normal) condition, time constant of STM response in the ischemic condition decreased significantly. Meanwhile the angle which reflects STM amount is less in ischemic model than that in control model. By tracking the effect of ischemia on intracellular ion concentration and membrane currents, we declared that changes in membrane currents caused by ischemia exert subtle influences on STM; it is only the decline of intracellular calcium concentration that give rise to the most decrement of STM. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Stimulus Dependence of Correlated Variability across Cortical Areas
Cohen, Marlene R.
2016-01-01
The way that correlated trial-to-trial variability between pairs of neurons in the same brain area (termed spike count or noise correlation, rSC) depends on stimulus or task conditions can constrain models of cortical circuits and of the computations performed by networks of neurons (Cohen and Kohn, 2011). In visual cortex, rSC tends not to depend on stimulus properties (Kohn and Smith, 2005; Huang and Lisberger, 2009) but does depend on cognitive factors like visual attention (Cohen and Maunsell, 2009; Mitchell et al., 2009). However, neurons across visual areas respond to any visual stimulus or contribute to any perceptual decision, and the way that information from multiple areas is combined to guide perception is unknown. To gain insight into these issues, we recorded simultaneously from neurons in two areas of visual cortex (primary visual cortex, V1, and the middle temporal area, MT) while rhesus monkeys viewed different visual stimuli in different attention conditions. We found that correlations between neurons in different areas depend on stimulus and attention conditions in very different ways than do correlations within an area. Correlations across, but not within, areas depend on stimulus direction and the presence of a second stimulus, and attention has opposite effects on correlations within and across areas. This observed pattern of cross-area correlations is predicted by a normalization model where MT units sum V1 inputs that are passed through a divisive nonlinearity. Together, our results provide insight into how neurons in different areas interact and constrain models of the neural computations performed across cortical areas. SIGNIFICANCE STATEMENT Correlations in the responses of pairs of neurons within the same cortical area have been a subject of growing interest in systems neuroscience. However, correlated variability between different cortical areas is likely just as important. We recorded simultaneously from neurons in primary visual cortex and the middle temporal area while rhesus monkeys viewed different visual stimuli in different attention conditions. We found that correlations between neurons in different areas depend on stimulus and attention conditions in very different ways than do correlations within an area. The observed pattern of cross-area correlations was predicted by a simple normalization model. Our results provide insight into how neurons in different areas interact and constrain models of the neural computations performed across cortical areas. PMID:27413163
Bendor, Daniel
2015-01-01
In auditory cortex, temporal information within a sound is represented by two complementary neural codes: a temporal representation based on stimulus-locked firing and a rate representation, where discharge rate co-varies with the timing between acoustic events but lacks a stimulus-synchronized response. Using a computational neuronal model, we find that stimulus-locked responses are generated when sound-evoked excitation is combined with strong, delayed inhibition. In contrast to this, a non-synchronized rate representation is generated when the net excitation evoked by the sound is weak, which occurs when excitation is coincident and balanced with inhibition. Using single-unit recordings from awake marmosets (Callithrix jacchus), we validate several model predictions, including differences in the temporal fidelity, discharge rates and temporal dynamics of stimulus-evoked responses between neurons with rate and temporal representations. Together these data suggest that feedforward inhibition provides a parsimonious explanation of the neural coding dichotomy observed in auditory cortex. PMID:25879843
McKone, Elinor; Davies, Anne Aimola; Darke, Hayley; Crookes, Kate; Wickramariyaratne, Tushara; Zappia, Stephanie; Fiorentini, Chiara; Favelle, Simone; Broughton, Mary; Fernando, Dinusha
2013-01-01
Holistic coding for faces is shown in several illusions that demonstrate integration of the percept across the entire face. The illusions occur upright but, crucially, not inverted. Converting the illusions into experimental tasks that measure their strength – and thus index degree of holistic coding – is often considered straightforward yet in fact relies on a hidden assumption, namely that there is no contribution to the experimental measure from secondary cognitive factors. For the composite effect, a relevant secondary factor is size of the “spotlight” of visuospatial attention. The composite task assumes this spotlight can be easily restricted to the target half (e.g., top-half) of the compound face stimulus. Yet, if this assumption were not true then a large spotlight, in the absence of holistic perception, could produce a false composite effect, present even for inverted faces and contributing partially to the score for upright faces. We review evidence that various factors can influence spotlight size: race/culture (Asians often prefer a more global distribution of attention than Caucasians); sex (females can be more global); appearance of the join or gap between face halves; and location of the eyes, which typically attract attention. Results from five experiments then show inverted faces can sometimes produce large false composite effects, and imply that whether this happens or not depends on complex interactions between causal factors. We also report, for both identity and expression, that only top-half face targets (containing eyes) produce valid composite measures. A sixth experiment demonstrates an example of a false inverted part-whole effect, where encoding-specificity is the secondary cognitive factor. We conclude the inverted face control should be tested in all composite and part-whole studies, and an effect for upright faces should be interpreted as a pure measure of holistic processing only when the experimental design produces no effect inverted. PMID:23382725
FAMILIARITY TRANSFER AS AN EXPLANATION OF THE DÉJÀ VU EFFECT.
Małecki, M
2015-06-01
Déjà vu is often explained in terms of an unconscious transfer of familiarity between a familiar object or objects and accompanying new objects. However, empirical research tests more the priming effectiveness than such a transfer. This paper reviews the main explanations of déjà vu, proposes a cognitive model of the phenomenon, and tests its six major assumptions. The model states that a sense of familiarity can be felt toward an objectively new stimulus (point 1) and that it can be transferred from a known stimulus to a novel one (point 2) in a situation where the person is unaware of such a transfer (point 3). The criteria for déjà vu are that the known and the novel stimuli may have graphical or semantic similarity, but differences exclude priming explanations (point 4); the familiarity measure should be of an non-rational nature (sense of familiarity rather than recognition; point 5); and that the feeling of familiarity toward a novel stimuli produces a conflict, which could be measured by means of increased reaction (point 6). 119 participants were tested in three experiments. The participants were to assess the novel stimuli in terms of their sense of familiarity. The novel stimuli were primed or were not primed by the known stimulus (Exp. 1) or primed by the known vs a novel stimulus (Exp. 2 and 3). The priming was subliminal in all the experiments. Reaction times were measured in Exps. 2 and 3. The participants assessed the novel stimuli as more familiar when they were preceded by a known stimulus than when they were not (Exp. 1) or when they were preceded by a novel stimulus (Exps. 2 and 3). Reaction times were longer for assessments preceded by known stimulus than for assessments preceded by a novel stimulus, which contradicts the priming explanations. The results seem to support all six points of the proposed model of the mechanisms underlying the déjà vu experience.
de Graaf, Tom A; Cornelsen, Sonja; Jacobs, Christianne; Sack, Alexander T
2011-12-01
Transcranial magnetic stimulation (TMS) can be used to mask visual stimuli, disrupting visual task performance or preventing visual awareness. While TMS masking studies generally fix stimulation intensity, we hypothesized that varying the intensity of TMS pulses in a masking paradigm might inform several ongoing debates concerning TMS disruption of vision as measured subjectively versus objectively, and pre-stimulus (forward) versus post-stimulus (backward) TMS masking. We here show that both pre-stimulus TMS pulses and post-stimulus TMS pulses could strongly mask visual stimuli. We found no dissociations between TMS effects on the subjective and objective measures of vision for any masking window or intensity, ruling out the option that TMS intensity levels determine whether dissociations between subjective and objective vision are obtained. For the post-stimulus time window particularly, we suggest that these data provide new constraints for (e.g. recurrent) models of vision and visual awareness. Finally, our data are in line with the idea that pre-stimulus masking operates differently from conventional post-stimulus masking. Copyright © 2011 Elsevier Inc. All rights reserved.
Tanaka, Shingo; Oguchi, Mineki; Sakagami, Masamichi
2016-11-01
To behave appropriately in a complex and uncertain world, the brain makes use of several distinct learning systems. One such system is called the "model-free process", via which conditioning allows the association between a stimulus or response and a given reward to be learned. Another system is called the "model-based process". Via this process, the state transition between a stimulus and a response is learned so that the brain is able to plan actions prior to their execution. Several studies have tried to relate the difference between model-based and model-free processes to the difference in functions of the lateral prefrontal cortex (LPFC) and the striatum. Here, we describe a series of studies that demonstrate the ability of LPFC neurons to categorize visual stimuli by their associated behavioral responses and to generate abstract information. If LPFC neurons utilize abstract code to associate a stimulus with a reward, they should be able to infer similar relationships between other stimuli of the same category and their rewards without direct experience of these stimulus-reward contingencies. We propose that this ability of LPFC neurons to utilize abstract information can contribute to the model-based learning process.
Generalization of value in reinforcement learning by humans
Wimmer, G. Elliott; Daw, Nathaniel D.; Shohamy, Daphna
2012-01-01
Research in decision making has focused on the role of dopamine and its striatal targets in guiding choices via learned stimulus-reward or stimulus-response associations, behavior that is well-described by reinforcement learning (RL) theories. However, basic RL is relatively limited in scope and does not explain how learning about stimulus regularities or relations may guide decision making. A candidate mechanism for this type of learning comes from the domain of memory, which has highlighted a role for the hippocampus in learning of stimulus-stimulus relations, typically dissociated from the role of the striatum in stimulus-response learning. Here, we used fMRI and computational model-based analyses to examine the joint contributions of these mechanisms to RL. Humans performed an RL task with added relational structure, modeled after tasks used to isolate hippocampal contributions to memory. On each trial participants chose one of four options, but the reward probabilities for pairs of options were correlated across trials. This (uninstructed) relationship between pairs of options potentially enabled an observer to learn about options’ values based on experience with the other options and to generalize across them. We observed BOLD activity related to learning in the striatum and also in the hippocampus. By comparing a basic RL model to one augmented to allow feedback to generalize between correlated options, we tested whether choice behavior and BOLD activity were influenced by the opportunity to generalize across correlated options. Although such generalization goes beyond standard computational accounts of RL and striatal BOLD, both choices and striatal BOLD were better explained by the augmented model. Consistent with the hypothesized role for the hippocampus in this generalization, functional connectivity between the ventral striatum and hippocampus was modulated, across participants, by the ability of the augmented model to capture participants’ choice. Our results thus point toward an interactive model in which striatal RL systems may employ relational representations typically associated with the hippocampus. PMID:22487039
Statistical context shapes stimulus-specific adaptation in human auditory cortex
Henry, Molly J.; Fromboluti, Elisa Kim; McAuley, J. Devin
2015-01-01
Stimulus-specific adaptation is the phenomenon whereby neural response magnitude decreases with repeated stimulation. Inconsistencies between recent nonhuman animal recordings and computational modeling suggest dynamic influences on stimulus-specific adaptation. The present human electroencephalography (EEG) study investigates the potential role of statistical context in dynamically modulating stimulus-specific adaptation by examining the auditory cortex-generated N1 and P2 components. As in previous studies of stimulus-specific adaptation, listeners were presented with oddball sequences in which the presentation of a repeated tone was infrequently interrupted by rare spectral changes taking on three different magnitudes. Critically, the statistical context varied with respect to the probability of small versus large spectral changes within oddball sequences (half of the time a small change was most probable; in the other half a large change was most probable). We observed larger N1 and P2 amplitudes (i.e., release from adaptation) for all spectral changes in the small-change compared with the large-change statistical context. The increase in response magnitude also held for responses to tones presented with high probability, indicating that statistical adaptation can overrule stimulus probability per se in its influence on neural responses. Computational modeling showed that the degree of coadaptation in auditory cortex changed depending on the statistical context, which in turn affected stimulus-specific adaptation. Thus the present data demonstrate that stimulus-specific adaptation in human auditory cortex critically depends on statistical context. Finally, the present results challenge the implicit assumption of stationarity of neural response magnitudes that governs the practice of isolating established deviant-detection responses such as the mismatch negativity. PMID:25652920
Stimulus probability effects in absolute identification.
Kent, Christopher; Lamberts, Koen
2016-05-01
This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Kiani, Roozbeh; Hanks, Timothy D; Shadlen, Michael N
2008-03-19
Decisions about sensory stimuli are often based on an accumulation of evidence in time. When subjects control stimulus duration, the decision terminates when the accumulated evidence reaches a criterion level. Under many natural circumstances and in many laboratory settings, the environment, rather than the subject, controls the stimulus duration. In these settings, it is generally assumed that subjects commit to a choice at the end of the stimulus stream. Indeed, failure to benefit from the full stream of information is interpreted as a sign of imperfect accumulation or memory leak. Contrary to these assumptions, we show that monkeys performing a direction discrimination task commit to a choice when the accumulated evidence reaches a threshold level (or bound), sometimes long before the end of stimulus. This bounded accumulation of evidence is reflected in the activity of neurons in the lateral intraparietal cortex. Thus, the readout of visual cortex embraces a termination rule to limit processing even when potentially useful information is available.
Liao, Hsin-I; Yeh, Su-Ling
2013-11-01
Attentional orienting can be involuntarily directed to task-irrelevant stimuli, but it remains unsolved whether such attentional capture is contingent on top-down settings or could be purely stimulus-driven. We propose that attentional capture depends on the stimulus property because transient and static features are processed differently; thus, they might be modulated differently by top-down controls. To test this hybrid account, we adopted a spatial cuing paradigm in which a noninformative onset or color cue preceded an onset or color target with various stimulus onset asynchronies (SOAs). Results showed that the onset cue captured attention regardless of target type at short-but not long-SOAs. In contrast, the color cue captured attention at short and long SOAs, but only with a color target. The overall pattern of results corroborates our hypothesis, suggesting that different mechanisms are at work for stimulus-driven capture (by onset) and contingent capture (by color). Stimulus-driven capture elicits reflexive involuntary orienting, and contingent capture elicits voluntary feature-based enhancement.
Bentley, Paul; Driver, Jon; Dolan, Ray J
2008-02-01
Visuo-attentional deficits occur early in Alzheimer's disease (AD) and are considered more responsive to pro-cholinergic therapy than characteristic memory disturbances. We hypothesised that neural responses in AD during visuo-attentional processing would be impaired relative to controls, yet partially susceptible to improvement with the cholinesterase inhibitor physostigmine. We studied 16 mild AD patients and 17 age-matched healthy controls, using fMRI-scanning to enable within-subject placebo-controlled comparisons of effects of physostigmine on stimulus- and attention- related brain activations, plus between-group comparisons for these. Subjects viewed face or building stimuli while performing a shallow judgement (colour of image) or a deep judgement (young/old age of depicted face or building). Behaviourally, AD subjects performed slower than controls in both tasks, while physostigmine benefited the patients for the more demanding age-judgement task. Stimulus-selective (face minus building, and vice versa) BOLD signals in precuneus and posterior parahippocampal cortex were attenuated in patients relative to controls, but increased following physostigmine. By contrast, face-selective responses in fusiform cortex were not impaired in AD and showed decreases following physostigmine for both groups. Task-dependent responses in right parietal and prefrontal cortices were diminished in AD but improved following physostigmine. A similar pattern of group and treatment effects was observed in two extrastriate cortical regions that showed physostigmine-induced enhancement of stimulus-selectivity for the deep versus shallow task. Finally, for the healthy group, physostigmine decreased stimulus and task-dependent effects, partly due to an exaggeration of selectivity during the shallow relative to deep task. The differences in brain activations between groups and treatments were not attributable merely to performance (reaction time) differences. Our results demonstrate that physostigmine can improve both stimulus- and attention-dependent responses in functionally affected extrastriate and frontoparietal regions in AD, while perturbing the normal pattern of responses in many of the same regions in healthy controls.
van Ruitenbeek, P; Sambeth, A; Vermeeren, A; Young, SN; Riedel, WJ
2009-01-01
Background and purpose: Animal studies show that histamine plays a role in cognitive functioning and that histamine H3-receptor antagonists, which increase histaminergic function through presynaptic receptors, improve cognitive performance in models of clinical cognitive deficits. In order to test such new drugs in humans, a model for cognitive impairments induced by low histaminergic functions would be useful. Studies with histamine H1-receptor antagonists have shown limitations as a model. Here we evaluated whether depletion of L-histidine, the precursor of histamine, was effective in altering measures associated with histamine in humans and the behavioural and electrophysiological (event-related-potentials) effects. Experimental approach: Seventeen healthy volunteers completed a three-way, double-blind, crossover study with L-histidine depletion, L-tyrosine/L-phenylalanine depletion (active control) and placebo as treatments. Interactions with task manipulations in a choice reaction time task were studied. Task demands were increased using visual stimulus degradation and increased response complexity. In addition, subjective and objective measures of sedation and critical tracking task performance were assessed. Key results: Measures of sedation and critical tracking task performance were not affected by treatment. L-histidine depletion was effective and enlarged the effect of response complexity as measured with the response-locked lateralized readiness potential onset latency. Conclusions and implications: L-histidine depletion affected response- but not stimulus-related processes, in contrast to the effects of H1-receptor antagonists which were previously found to affect primarily stimulus-related processes. L-histidine depletion is promising as a model for histamine-based cognitive impairment. However, these effects need to be confirmed by further studies. PMID:19413574
Stimulus selection and tracking during urination: autoshaping directed behavior with toilet targets.
Siegel, R K
1977-01-01
A simple procedure is described for investigating stimuli selected as targets during urination in the commode. Ten normal males preferred a floating target that could be tracked to a series of stationary targets. This technique was used to bring misdirected urinations in a severely retarded male under rapid stimulus control of a floating target in the commode. The float stimulus was also evaluated with nine institionalized, moderately retarded males and results indicated rapid autoshaping of directed urination without the use of verbal instructions or conventional toilet training. The technique can be applied in training children to control misdirected urinations in institution for the retarded, in psychiatric wards with regressed populations, and in certain male school dormitories. PMID:885828
Stimulus selection and tracking during urination: autoshaping directed behavior with toilet targets.
Siegel, R K
1977-01-01
A simple procedure is described for investigating stimuli selected as targets during urination in the commode. Ten normal males preferred a floating target that could be tracked to a series of stationary targets. This technique was used to bring misdirected urinations in a severely retarded male under rapid stimulus control of a floating target in the commode. The float stimulus was also evaluated with nine institionalized, moderately retarded males and results indicated rapid autoshaping of directed urination without the use of verbal instructions or conventional toilet training. The technique can be applied in training children to control misdirected urinations in institution for the retarded, in psychiatric wards with regressed populations, and in certain male school dormitories.
Computational model of soft tissues in the human upper airway.
Pelteret, J-P V; Reddy, B D
2012-01-01
This paper presents a three-dimensional finite element model of the tongue and surrounding soft tissues with potential application to the study of sleep apnoea and of linguistics and speech therapy. The anatomical data was obtained from the Visible Human Project, and the underlying histological data was also extracted and incorporated into the model. Hyperelastic constitutive models were used to describe the material behaviour, and material incompressibility was accounted for. An active Hill three-element muscle model was used to represent the muscular tissue of the tongue. The neural stimulus for each muscle group was determined through the use of a genetic algorithm-based neural control model. The fundamental behaviour of the tongue under gravitational and breathing-induced loading is investigated. It is demonstrated that, when a time-dependent loading is applied to the tongue, the neural model is able to control the position of the tongue and produce a physiologically realistic response for the genioglossus.
Crago, Patrick E; Makowski, Nathaniel S
2014-10-01
Stimulation of peripheral nerves is often superimposed on ongoing motor and sensory activity in the same axons, without a quantitative model of the net action potential train at the axon endpoint. We develop a model of action potential patterns elicited by superimposing constant frequency axonal stimulation on the action potentials arriving from a physiologically activated neural source. The model includes interactions due to collision block, resetting of the neural impulse generator, and the refractory period of the axon at the point of stimulation. Both the mean endpoint firing rate and the probability distribution of the action potential firing periods depend strongly on the relative firing rates of the two sources and the intersite conduction time between them. When the stimulus rate exceeds the neural rate, neural action potentials do not reach the endpoint and the rate of endpoint action potentials is the same as the stimulus rate, regardless of the intersite conduction time. However, when the stimulus rate is less than the neural rate, and the intersite conduction time is short, the two rates partially sum. Increases in stimulus rate produce non-monotonic increases in endpoint rate and continuously increasing block of neurally generated action potentials. Rate summation is reduced and more neural action potentials are blocked as the intersite conduction time increases. At long intersite conduction times, the endpoint rate simplifies to being the maximum of either the neural or the stimulus rate. This study highlights the potential of increasing the endpoint action potential rate and preserving neural information transmission by low rate stimulation with short intersite conduction times. Intersite conduction times can be decreased with proximal stimulation sites for muscles and distal stimulation sites for sensory endings. The model provides a basis for optimizing experiments and designing neuroprosthetic interventions involving motor or sensory stimulation.
Vestibulospinal adaptation to microgravity
NASA Technical Reports Server (NTRS)
Paloski, W. H.
1998-01-01
Human balance control is known to be transiently disrupted after spaceflight; however, the mechanisms responsible for postflight postural ataxia are still under investigation. In this report, we propose a conceptual model of vestibulospinal adaptation based on theoretical adaptive control concepts and supported by the results from a comprehensive study of balance control recovery after spaceflight. The conceptual model predicts that immediately after spaceflight the balance control system of a returning astronaut does not expect to receive gravity-induced afferent inputs and that descending vestibulospinal control of balance is disrupted until the central nervous system is able to cope with the newly available vestibular otolith information. Predictions of the model are tested using data from a study of the neurosensory control of balance in astronauts immediately after landing. In that study, the mechanisms of sensorimotor balance control were assessed under normal, reduced, and/or altered (sway-referenced) visual and somatosensory input conditions. We conclude that the adaptive control model accurately describes the neurobehavioral responses to spaceflight and that similar models of altered sensory, motor, or environmental constraints are needed clinically to predict responses that patients with sensorimotor pathologies may have to various visual-vestibular or changing stimulus environments.
Remote radio control of insect flight.
Sato, Hirotaka; Berry, Christopher W; Peeri, Yoav; Baghoomian, Emen; Casey, Brendan E; Lavella, Gabriel; Vandenbrooks, John M; Harrison, Jon F; Maharbiz, Michel M
2009-01-01
We demonstrated the remote control of insects in free flight via an implantable radio-equipped miniature neural stimulating system. The pronotum mounted system consisted of neural stimulators, muscular stimulators, a radio transceiver-equipped microcontroller and a microbattery. Flight initiation, cessation and elevation control were accomplished through neural stimulus of the brain which elicited, suppressed or modulated wing oscillation. Turns were triggered through the direct muscular stimulus of either of the basalar muscles. We characterized the response times, success rates, and free-flight trajectories elicited by our neural control systems in remotely controlled beetles. We believe this type of technology will open the door to in-flight perturbation and recording of insect flight responses.
Ginsburg, Brett C; Lamb, R J
2013-04-01
Longer periods of recovery reduce the likelihood of relapse, which may be due to a reduced ability of various stimuli to occasion alcohol or drug seeking. However, this hypothesis remains largely uninvestigated. Here we assessed the ability of intermediate stimuli to occasion responding for ethanol in rats trained to discriminate an 8 kHz tone signaling a food fixed-ratio (FR) of 5 and an ethanol FR5, from a 16 kHz tone signaling a food FR150 and ethanol FR5. In the presence of the 8 kHz tone responding for food predominates, and in the presence of the 16 kHz tone, responding for ethanol predominates. In the context of alternation between these conditions, varying the tone from 8 to 16 kHz produces a graded increase in ethanol (versus food) responding, consistent with a stimulus generalization function. A recent history of responding under food-predominant choice conditions, either during the test session or in the four sessions that precede it shifts the generalization function downwards. Extending this history to nine sessions shifts the curve further downwards. The stimulus generalization function was similar in a separate group, trained with different relative ratios for food and ethanol, but with similar behavioral allocation under each discriminative stimulus. Finally, withholding access to food and ethanol for 4 or 16 sessions did not affect the stimulus generalization gradient. These results suggest that longer histories of reinforced alternative behavior might reduce the likelihood of relapse by decreasing the control exerted over alcohol- or drug-seeking by stimuli similar to those that previously occasioned alcohol- or drug-seeking. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Additive and Interactive Effects of Stimulus Degradation: No Challenge for CDP+
ERIC Educational Resources Information Center
Ziegler, Johannes C.; Perry, Conrad; Zorzi, Marco
2009-01-01
S. O'Malley and D. Besner (2008) showed that additive effects of stimulus degradation and word frequency in reading aloud occur in the presence of nonwords but not in pure word lists. They argued that this dissociation presents a major challenge to interactive computational models of reading aloud and claimed that no currently implemented model is…
Schlund, M W
2000-10-01
Bedside hearing screenings are routinely conducted by speech and language pathologists for brain injury survivors during rehabilitation. Cognitive deficits resulting from brain injury, however, may interfere with obtaining estimates of auditory thresholds. Poor comprehension or attention deficits often compromise patient abilities to follow procedural instructions. This article describes the effects of jointly applying behavioral methods and psychophysical methods to improve two severely brain-injured survivors' attending and reporting on auditory test stimuli presentation. Treatment consisted of stimulus control training that involved differentially reinforcing responding in the presence and absence of an auditory test tone. Subsequent hearing screenings were conducted with novel auditory test tones and a common titration procedure. Results showed that prior stimulus control training improved attending and reporting such that hearing screenings were conducted and estimates of auditory thresholds were obtained.
Roca, Reyes; Esteban, Pablo; Zapater, Pedro; Inda, María-Del-Mar; Conte, Anna Lucia; Gómez-Escolar, Laura; Martínez, Helena; Horga, José F; Palazon, José M; Peiró, Ana M
2018-06-01
The present study was designed to investigate the functional status of β2 adrenoceptors (β2AR) in two models of chronic inflammatory disease: liver cirrhosis (LC) and osteoarthritis (OA). The β2AR gene contains three single nucleotide polymorphisms at amino acid positions 16, 27 and 164. The aim of the present study was to investigate the potential influence of lymphocyte β2AR receptor functionality and genotype in LC and OA patients. Blood samples from cirrhotic patients (n=52, hepatic venous pressure gradient 13±4 mmHg, CHILD 7±2 and MELD 11±4 scores), OA patients (n=30, 84% Kellgren‑Lawrence severity 4 grade, 14% knee replacement joint) and healthy volunteers as control group (n=26) were analyzed. Peripheral blood mononuclear cells (PBMC) were isolated from whole blood and basal and isoproterenol induced adenylate cyclase activity (isoproterenol stimulus from 10‑9 to 10‑4 mM), and β2AR allelic variants (rs1042713, rs1042714, rs1800888) were determined. β2AR functionality was decreased in the two different models of chronic inflammatory disease studied, OA (50% vs. control) and LC (85% vs. control). In these patients, the strength of the β2AR response to adrenergic stimulation was very limited. Adrenergic modulation of PBMC function through the β2AR stimulus is decreased in chronic inflammatory processes including LC and OA, suggesting that the adrenergic system may be important in the development of these processes.
A two-phase model of resource allocation in visual working memory.
Ye, Chaoxiong; Hu, Zhonghua; Li, Hong; Ristaniemi, Tapani; Liu, Qiang; Liu, Taosheng
2017-10-01
Two broad theories of visual working memory (VWM) storage have emerged from current research, a discrete slot-based theory and a continuous resource theory. However, neither the discrete slot-based theory or continuous resource theory clearly stipulates how the mental commodity for VWM (discrete slot or continuous resource) is allocated. Allocation may be based on the number of items via stimulus-driven factors, or it may be based on task demands via voluntary control. Previous studies have obtained conflicting results regarding the automaticity versus controllability of such allocation. In the current study, we propose a two-phase allocation model, in which the mental commodity could be allocated only by stimulus-driven factors in the early consolidation phase. However, when there is sufficient time to complete the early phase, allocation can enter the late consolidation phase, where it can be flexibly and voluntarily controlled according to task demands. In an orientation recall task, we instructed participants to store either fewer items at high-precision or more items at low-precision. In 3 experiments, we systematically manipulated memory set size and exposure duration. We did not find an effect of task demands when the set size was high and exposure duration was short. However, when we either decreased the set size or increased the exposure duration, we found a trade-off between the number and precision of VWM representations. These results can be explained by a two-phase model, which can also account for previous conflicting findings in the literature. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Weber, Douglas J.; London, Brian M.; Hokanson, James A.; Ayers, Christopher A.; Gaunt, Robert A.; Torres, Ricardo R.; Zaaimi, Boubker; Miller, Lee E.
2013-01-01
A major issue to be addressed in the development of neural interfaces for prosthetic control is the need for somatosensory feedback. Here, we investigate two possible strategies: electrical stimulation of either dorsal root ganglia (DRG) or primary somatosensory cortex (S1). In each approach, we must determine a model that reflects the representation of limb state in terms of neural discharge. This model can then be used to design stimuli that artificially activate the nervous system to convey information about limb state to the subject. Electrically activating DRG neurons using naturalistic stimulus patterns, modeled on recordings made during passive limb movement, evoked activity in S1 that was similar to that of the original movement. We also found that S1 neural populations could accurately discriminate different patterns of DRG stimulation across a wide range of stimulus pulse-rates. In studying the neural coding of limb-state in S1, we also decoded the kinematics of active limb movement using multi-electrode recordings in the monkey. Neurons having both proprioceptive and cutaneous receptive fields contributed equally to this decoding. Some neurons were most informative of limb state in the recent past, but many others appeared to signal upcoming movements suggesting that they also were modulated by an efference copy signal. Finally, we show that a monkey was able to detect stimulation through a large percentage of electrodes implanted in area 2. We discuss the design of appropriate stimulus paradigms for conveying time-varying limb state information, and the relative merits and limitations of central and peripheral approaches. PMID:21878419
Fisher, Joseph A
2016-06-01
Cerebrovascular reactivity (CVR) studies have elucidated the physiology and pathophysiology of cerebral blood flow regulation. A non-invasive, high spatial resolution approach uses carbon dioxide (CO2) as the vasoactive stimulus and magnetic resonance techniques to estimate the cerebral blood flow response. CVR is assessed as the ratio response change to stimulus change. Precise control of the stimulus is sought to minimize CVR variability between tests, and show functional differences. Computerized methods targeting end-tidal CO2 partial pressures are precise, but expensive. Simpler, improvised methods that fix the inspired CO2 concentrations have been recommended as less expensive, and so more widely accessible. However, these methods have drawbacks that have not been previously presented by those that advocate their use, or those that employ them in their studies. As one of the developers of a computerized method, I provide my perspective on the trade-offs between these two methods. The main concern is that declaring the precision of fixed inspired concentration of CO2 is misleading: it does not, as implied, translate to precise control of the actual vasoactive stimulus - the arterial partial pressure of CO2 The inherent test-to-test, and therefore subject-to-subject variability, precludes clinical application of findings. Moreover, improvised methods imply widespread duplication of development, assembly time and costs, yet lack uniformity and quality control. A tabular comparison between approaches is provided. © The Author(s) 2016.
Race, Elizabeth A; Shanker, Shanti; Wagner, Anthony D
2009-09-01
Past experience is hypothesized to reduce computational demands in PFC by providing bottom-up predictive information that informs subsequent stimulus-action mapping. The present fMRI study measured cortical activity reductions ("neural priming"/"repetition suppression") during repeated stimulus classification to investigate the mechanisms through which learning from the past decreases demands on the prefrontal executive system. Manipulation of learning at three levels of representation-stimulus, decision, and response-revealed dissociable neural priming effects in distinct frontotemporal regions, supporting a multiprocess model of neural priming. Critically, three distinct patterns of neural priming were identified in lateral frontal cortex, indicating that frontal computational demands are reduced by three forms of learning: (a) cortical tuning of stimulus-specific representations, (b) retrieval of learned stimulus-decision mappings, and (c) retrieval of learned stimulus-response mappings. The topographic distribution of these neural priming effects suggests a rostrocaudal organization of executive function in lateral frontal cortex.
Graded effects in hierarchical figure-ground organization: reply to Peterson (1999).
Vecera, S P; O'Reilly, R C
2000-06-01
An important issue in vision research concerns the order of visual processing. S. P. Vecera and R. C. O'Reilly (1998) presented an interactive, hierarchical model that placed figure-ground segregation prior to object recognition. M. A. Peterson (1999) critiqued this model, arguing that because it used ambiguous stimulus displays, figure-ground processing did not precede object processing. In the current article, the authors respond to Peterson's (1999) interpretation of ambiguity in the model and her interpretation of what it means for figure-ground processing to come before object recognition. The authors argue that complete stimulus ambiguity is not critical to the model and that figure-ground precedes object recognition architecturally in the model. The arguments are supported with additional simulation results and an experiment, demonstrating that top-down inputs can influence figure-ground organization in displays that contain stimulus cues.
Some considerations of two alleged kinds of selective attention.
Keren, G
1976-12-01
The present article deals with selective attention phenomena and elaborates on a stimulus material classification, "stimulus set" versus "response set," proposed by Broadbent (1970, 1971)9 Stimulus set is defined by some distinct and conspicuous physical properties that are inherent in the stimulus. Response set is characterized by the meaning it conveys, and thus its properties are determined by cognitive processing on the part of the organism. Broadbent's framework is related to Neisser's (1967) distinction between two perceptual-cognitive processes, namely, preattentive control and focal attention. Three experiments are reported. A before-after paradigm was employed in Experiment 1, together with a sptial arrangement manipulation of relevant versus irrelevant stimuli (being grouped or mixed). The results indicated that before-after instruction had a stronger effect under stimulus set than under response set conditions. Spatial arrangement, on the other hand, affected performances under response set but not under stimulus set conditions. These results were interpreted as supporting the idea that stimulus set material, which is handled by preattentive mechanisms, may be processed in parallel, while response set material requires focal attention that is probably serial in nature. Experiment 2 used a search task with different levels of noise elements. Although subjects were not able to avoid completely the processing of noise elements, they had much more control under stimulus set than under response set conditions. Experiment 3 dealt with memory functions and suggests differential levels of perceptual processing depending on the nature of the stimulus material. This extends the memory framework suggested by Craik and Lockhart (1972). The results of these experiments, together with evidence from other behavioral and physiological studies, lend strong support to the proposed theory. At the theoretical level, it is suggested that the distinction between stimulus and response set, and the corresponding one between preattentive mechanisms and focal attention, are on a continuum rather than being an all-or-none classification. Thus, it permits greater congnitive flexibility on the part of the organism, which is reflected through the assumption that both preattentive mechanisms and focal attention may operate simultaneously and differ only in the salience of their functioning. From a methodological point of view, the distinction between stimulus material and organismic processes is emphasized. It is argued that researchers have not given sufficient attention to the properties of the stimulus materials that they have used, and as a consequence have reached unwarranted conclusions, as exemplified by a few studies that are briefly discussed.
Integration of auditory and vibrotactile stimuli: Effects of frequency
Wilson, E. Courtenay; Reed, Charlotte M.; Braida, Louis D.
2010-01-01
Perceptual integration of vibrotactile and auditory sinusoidal tone pulses was studied in detection experiments as a function of stimulation frequency. Vibrotactile stimuli were delivered through a single channel vibrator to the left middle fingertip. Auditory stimuli were presented diotically through headphones in a background of 50 dB sound pressure level broadband noise. Detection performance for combined auditory-tactile presentations was measured using stimulus levels that yielded 63% to 77% correct unimodal performance. In Experiment 1, the vibrotactile stimulus was 250 Hz and the auditory stimulus varied between 125 and 2000 Hz. In Experiment 2, the auditory stimulus was 250 Hz and the tactile stimulus varied between 50 and 400 Hz. In Experiment 3, the auditory and tactile stimuli were always equal in frequency and ranged from 50 to 400 Hz. The highest rates of detection for the combined-modality stimulus were obtained when stimulating frequencies in the two modalities were equal or closely spaced (and within the Pacinian range). Combined-modality detection for closely spaced frequencies was generally consistent with an algebraic sum model of perceptual integration; wider-frequency spacings were generally better fit by a Pythagorean sum model. Thus, perceptual integration of auditory and tactile stimuli at near-threshold levels appears to depend both on absolute frequency and relative frequency of stimulation within each modality. PMID:21117754
Rio, Daniel E.; Rawlings, Robert R.; Woltz, Lawrence A.; Gilman, Jodi; Hommer, Daniel W.
2013-01-01
A linear time-invariant model based on statistical time series analysis in the Fourier domain for single subjects is further developed and applied to functional MRI (fMRI) blood-oxygen level-dependent (BOLD) multivariate data. This methodology was originally developed to analyze multiple stimulus input evoked response BOLD data. However, to analyze clinical data generated using a repeated measures experimental design, the model has been extended to handle multivariate time series data and demonstrated on control and alcoholic subjects taken from data previously analyzed in the temporal domain. Analysis of BOLD data is typically carried out in the time domain where the data has a high temporal correlation. These analyses generally employ parametric models of the hemodynamic response function (HRF) where prewhitening of the data is attempted using autoregressive (AR) models for the noise. However, this data can be analyzed in the Fourier domain. Here, assumptions made on the noise structure are less restrictive, and hypothesis tests can be constructed based on voxel-specific nonparametric estimates of the hemodynamic transfer function (HRF in the Fourier domain). This is especially important for experimental designs involving multiple states (either stimulus or drug induced) that may alter the form of the response function. PMID:23840281
Rio, Daniel E; Rawlings, Robert R; Woltz, Lawrence A; Gilman, Jodi; Hommer, Daniel W
2013-01-01
A linear time-invariant model based on statistical time series analysis in the Fourier domain for single subjects is further developed and applied to functional MRI (fMRI) blood-oxygen level-dependent (BOLD) multivariate data. This methodology was originally developed to analyze multiple stimulus input evoked response BOLD data. However, to analyze clinical data generated using a repeated measures experimental design, the model has been extended to handle multivariate time series data and demonstrated on control and alcoholic subjects taken from data previously analyzed in the temporal domain. Analysis of BOLD data is typically carried out in the time domain where the data has a high temporal correlation. These analyses generally employ parametric models of the hemodynamic response function (HRF) where prewhitening of the data is attempted using autoregressive (AR) models for the noise. However, this data can be analyzed in the Fourier domain. Here, assumptions made on the noise structure are less restrictive, and hypothesis tests can be constructed based on voxel-specific nonparametric estimates of the hemodynamic transfer function (HRF in the Fourier domain). This is especially important for experimental designs involving multiple states (either stimulus or drug induced) that may alter the form of the response function.
The narcoleptic cognitive pupillary response.
O'Neill, W D; Trick, K P
2001-09-01
It has been reported that narcoleptics exhibit deficits in short-term memory, list recall, and stimulus frequency estimation compared with control subjects. It is also well-known that pupil dilation during cognitive tasks is a measure of subject attention state. Here we present results from six narcoleptics and six controls, a total of 360 experimental records in which pupillograms were made during cognitive tests, which indicate that narcoleptics begin pupillary dilations at a smaller diameter, begin dilating earlier poststimulus, attain higher pupillary diameter velocities, yet achieve the same equilibrium dilation diameter as controls. These findings are derived from statistical tests performed on the parameters of a nonlinear regression model of pupillary cognitive dilation as a function of time. In our experiments, the standard 1-s interdigit time between cognitive stimuli was increased to 2.3 s, which yielded pupillographic time records showing that the process of short-term memory overload sets in gradually at about four memory digits for controls and three memory digits for narcoleptics. We suggest our results can be partially explained by a narcoleptic stimulus-encoding deficit, which limits the time available for subjects to rehearse cognitive tasks. However, we also report the unexpected finding that the inferred encoding deficit is a transient one in that repeated tasks at the same memory load elicit a near normal naroleptic pupillary dilation.
Modeling the Afferent Dynamics of the Baroreflex Control System
Mahdi, Adam; Sturdy, Jacob; Ottesen, Johnny T.; Olufsen, Mette S.
2013-01-01
In this study we develop a modeling framework for predicting baroreceptor firing rate as a function of blood pressure. We test models within this framework both quantitatively and qualitatively using data from rats. The models describe three components: arterial wall deformation, stimulation of mechanoreceptors located in the BR nerve-endings, and modulation of the action potential frequency. The three sub-systems are modeled individually following well-established biological principles. The first submodel, predicting arterial wall deformation, uses blood pressure as an input and outputs circumferential strain. The mechanoreceptor stimulation model, uses circumferential strain as an input, predicting receptor deformation as an output. Finally, the neural model takes receptor deformation as an input predicting the BR firing rate as an output. Our results show that nonlinear dependence of firing rate on pressure can be accounted for by taking into account the nonlinear elastic properties of the artery wall. This was observed when testing the models using multiple experiments with a single set of parameters. We find that to model the response to a square pressure stimulus, giving rise to post-excitatory depression, it is necessary to include an integrate-and-fire model, which allows the firing rate to cease when the stimulus falls below a given threshold. We show that our modeling framework in combination with sensitivity analysis and parameter estimation can be used to test and compare models. Finally, we demonstrate that our preferred model can exhibit all known dynamics and that it is advantageous to combine qualitative and quantitative analysis methods. PMID:24348231
Li, Qi; Yang, Guochun; Li, Zhenghan; Qi, Yanyan; Cole, Michael W; Liu, Xun
2017-12-01
Cognitive control can be activated by stimulus-stimulus (S-S) and stimulus-response (S-R) conflicts. However, whether cognitive control is domain-general or domain-specific remains unclear. To deepen the understanding of the functional organization of cognitive control networks, we conducted activation likelihood estimation (ALE) from 111 neuroimaging studies to examine brain activation in conflict-related tasks. We observed that fronto-parietal and cingulo-opercular networks were commonly engaged by S-S and S-R conflicts, showing a domain-general pattern. In addition, S-S conflicts specifically activated distinct brain regions to a greater degree. These regions were implicated in the processing of the semantic-relevant attribute, including the inferior frontal cortex (IFC), superior parietal cortex (SPC), superior occipital cortex (SOC), and right anterior cingulate cortex (ACC). By contrast, S-R conflicts specifically activated the left thalamus, middle frontal cortex (MFC), and right SPC, which were associated with detecting response conflict and orienting spatial attention. These findings suggest that conflict detection and resolution involve a combination of domain-general and domain-specific cognitive control mechanisms. Copyright © 2017 Elsevier Ltd. All rights reserved.
Classic conditioning of the ventilatory responses in rats.
Nsegbe, E; Vardon, G; Perruchet, P; Gallego, J
1997-10-01
Recent authors have stressed the role of conditioning in the control of breathing, but experimental evidence of this role is still sparse and contradictory. To establish that classic conditioning of the ventilatory responses can occur in rats, we performed a controlled experiment in which a 1-min tone [conditioned stimulus (CS)] was paired with a hypercapnic stimulus [8.5% CO2, unconditioned stimulus (US)]. The experimental group (n = 9) received five paired CS-US presentations, followed by one CS alone to test conditioning. This sequence was repeated six times. The control group (n = 7) received the same number of CS and US, but each US was delivered 3 min after the CS. We observed that after the CS alone, breath duration was significantly longer in the experimental than in the control group and mean ventilation was significantly lower, thus showing inhibitory conditioning. This conditioning may have resulted from the association between the CS and the inhibitory and aversive effects of CO2. The present results confirmed the high sensitivity of the respiratory controller to conditioning processes.
Selective attention to visual compound stimuli in squirrel monkeys (Saimiri sciureus).
Ploog, Bertram O
2011-05-01
Five squirrel monkeys served under a simultaneous discrimination paradigm with visual compound stimuli that allowed measurement of excitatory and inhibitory control exerted by individual stimulus components (form and luminance/"color"), which could not be presented in isolation (i.e., form could not be presented without color). After performance exceeded a criterion of 75% correct during training, unreinforced test trials with stimuli comprising recombined training stimulus components were interspersed while the overall reinforcement rate remained constant for training and testing. The training-testing series was then repeated with reversed reinforcement contingencies. The findings were that color acquired greater excitatory control than form under the original condition, that no such difference was found for the reversal condition or for inhibitory control under either condition, and that overall inhibitory control was less pronounced than excitatory control. The remarkably accurate performance throughout suggested that a forced 4-s delay between the stimulus presentation and the opportunity to respond was effective in reducing "impulsive" responding, which has implications for suppressing impulsive responding in children with autism and with attention deficit disorder. Copyright © 2011 Elsevier B.V. All rights reserved.
Xiao, Xiao; Dupuis-Roy, Nicolas; Jiang, Jun; Du, Xue; Zhang, Mingmin; Zhang, Qinglin
2018-02-21
The functional magnetic resonance imaging (fMRI) technique was used to investigate brain activations related to conflict control in a taste-visual cross-modal pairing task. On each trial, participants had to decide whether the taste of a gustatory stimulus matched or did not match the expected taste of the food item depicted in an image. There were four conditions: Negative match (NM; sour gustatory stimulus and image of sour food), negative mismatch (NMM; sour gustatory stimulus and image of sweet food), positive match (PM; sweet gustatory stimulus and image of sweet food), positive mismatch (PMM; sweet gustatory stimulus and image of sour food). Blood oxygenation level-dependent (BOLD) contrasts between the NMM and the NM conditions revealed an increased activity in the middle frontal gyrus (MFG) (BA 6), the lingual gyrus (LG) (BA 18), and the postcentral gyrus. Furthermore, the NMM minus NM BOLD differences observed in the MFG were correlated with the NMM minus NM differences in response time. These activations were specifically associated with conflict control during the aversive gustatory stimulation. BOLD contrasts between the PMM and the PM condition revealed no significant positive activation, which supported the hypothesis that the human brain is especially sensitive to aversive stimuli. Altogether, these results suggest that the MFG is associated with the taste-visual cross-modal conflict control. A possible role of the LG as an information conflict detector at an early perceptual stage is further discussed, along with a possible involvement of the postcentral gyrus in the processing of the taste-visual cross-modal sensory contrast. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Stimulus control by 5-methoxy-N,N-dimethyltryptamine in wild-type and CYP2D6-humanized mice.
Winter, J C; Amorosi, D J; Rice, Kenner C; Cheng, Kejun; Yu, Ai-Ming
2011-09-01
In previous studies we have observed that, in comparison with wild type mice, Tg-CYP2D6 mice have increased serum levels of bufotenine [5-hydroxy-N,N-dimethyltryptamine] following the administration of 5-MeO-DMT. Furthermore, following the injection of 5-MeO-DMT, harmaline was observed to increase serum levels of bufotenine and 5-MeO-DMT in both wild-type and Tg-CYP2D6 mice. In the present investigation, 5-MeO-DMT-induced stimulus control was established in wild-type and Tg-CYP2D6 mice. The two groups did not differ in their rate of acquisition of stimulus control. When tested with bufotenine, no 5-MeO-DMT-appropriate responding was observed. In contrast, the more lipid soluble analog of bufotenine, acetylbufotenine, was followed by an intermediate level of responding. The combination of harmaline with 5-MeO-DMT yielded a statistically significant increase in 5-MeO-DMT-appropriate responding in Tg-CYP2D6 mice; a comparable increase occurred in wild-type mice. In addition, it was noted that harmaline alone was followed by a significant degree of 5-MeO-DMT-appropriate responding in Tg-CYP2D6 mice. It is concluded that wild-type and Tg-CYPD2D6 mice do not differ in terms of acquisition of stimulus control by 5-MeO-DMT or in their response to bufotenine and acetylbufotenine. In both groups of mice, harmaline was found to enhance the stimulus effects of 5-MeO-DMT. Copyright © 2011 Elsevier Inc. All rights reserved.
Dynamical Characteristics Common to Neuronal Competition Models
Shpiro, Asya; Curtu, Rodica; Rinzel, John; Rubin, Nava
2009-01-01
Models implementing neuronal competition by reciprocally inhibitory populations are widely used to characterize bistable phenomena such as binocular rivalry. We find common dynamical behavior in several models of this general type, which differ in their architecture in the form of their gain functions, and in how they implement the slow process that underlies alternating dominance. We focus on examining the effect of the input strength on the rate (and existence) of oscillations. In spite of their differences, all considered models possess similar qualitative features, some of which we report here for the first time. Experimentally, dominance durations have been reported to decrease monotonically with increasing stimulus strength (such as Levelt's “Proposition IV”). The models predict this behavior; however, they also predict that at a lower range of input strength dominance durations increase with increasing stimulus strength. The nonmonotonic dependency of duration on stimulus strength is common to both deterministic and stochastic models. We conclude that additional experimental tests of Levelt's Proposition IV are needed to reconcile models and perception. PMID:17065254
Optimal channel efficiency in a sensory network
NASA Astrophysics Data System (ADS)
Mosqueiro, Thiago S.; Maia, Leonardo P.
2013-07-01
Spontaneous neural activity has been increasingly recognized as a subject of key relevance in neuroscience. It exhibits nontrivial spatiotemporal structure reflecting the organization of the underlying neural network and has proved to be closely intertwined with stimulus-induced activity patterns. As an additional contribution in this regard, we report computational studies that strongly suggest that a stimulus-free feature rules the behavior of an important psychophysical measure of the sensibility of a sensory system to a stimulus, the so-called dynamic range. Indeed in this paper we show that the entropy of the distribution of avalanche lifetimes (information efficiency, since it can be interpreted as the efficiency of the network seen as a communication channel) always accompanies the dynamic range in the benchmark model for sensory systems. Specifically, by simulating the Kinouchi-Copelli (KC) model on two broad families of model networks, we generically observed that both quantities always increase or decrease together as functions of the average branching ratio (the control parameter of the KC model) and that the information efficiency typically exhibits critical optimization jointly with the dynamic range (i.e., both quantities are optimized at the same value of that control parameter, that turns out to be the critical point of a nonequilibrium phase transition). In contrast with the practice of taking power laws to identify critical points in most studies describing measured neuronal avalanches, we rely on data collapses as more robust signatures of criticality to claim that critical optimization may happen even when the distribution of avalanche lifetimes is not a power law, as suggested by a recent experiment. Finally, we note that the entropy of the size distribution of avalanches (information capacity) does not always follow the dynamic range and the information efficiency when they are critically optimized, despite being more widely used than the latter to describe the computational capabilities of a neural network. This strongly suggests that dynamical rules allowing a proper temporal matching of the states of the interacting neurons is the key for achieving good performance in information processing, rather than increasing the number of available units.
Bult, Johannes H F; van Putten, Bram; Schifferstein, Hendrik N J; Roozen, Jacques P; Voragen, Alphons G J; Kroeze, Jan H A
2004-10-01
In continuous vigilance tasks, the number of coincident panel responses to stimuli provides an index of stimulus detectability. To determine whether this number is due to chance, panel noise levels have been approximated by the maximum coincidence level obtained in stimulus-free conditions. This study proposes an alternative method by which to assess noise levels, derived from queuing system theory (QST). Instead of critical coincidence levels, QST modeling estimates the duration of coinciding responses in the absence of stimuli. The proposed method has the advantage over previous approaches that it yields more reliable noise estimates and allows for statistical testing. The method was applied in an olfactory detection experiment using 16 panelists in stimulus-present and stimulus-free conditions. We propose that QST may be used as an alternative to signal detection theory for analyzing data from continuous vigilance tasks.
Readily releasable pool of synaptic vesicles measured at single synaptic contacts.
Trigo, Federico F; Sakaba, Takeshi; Ogden, David; Marty, Alain
2012-10-30
To distinguish between different models of vesicular release in brain synapses, it is necessary to know the number of vesicles of transmitter that can be released immediately at individual synapses by a high-calcium stimulus, the readily releasable pool (RRP). We used direct stimulation by calcium uncaging at identified, single-site inhibitory synapses to investigate the statistics of vesicular release and the size of the RRP. Vesicular release, detected as quantal responses in the postsynaptic neuron, showed an unexpected stochastic variation in the number of quanta from stimulus to stimulus at high intracellular calcium, with a mean of 1.9 per stimulus and a maximum of three or four. The results provide direct measurement of the RRP at single synaptic sites. They are consistent with models in which release proceeds from a small number of vesicle docking sites with an average occupancy around 0.7.
Mergner, T; Schweigart, G; Maurer, C; Blümle, A
2005-12-01
The role of visual orientation cues for human control of upright stance is still not well understood. We, therefore, investigated stance control during motion of a visual scene as stimulus, varying the stimulus parameters and the contribution from other senses (vestibular and leg proprioceptive cues present or absent). Eight normal subjects and three patients with chronic bilateral loss of vestibular function participated. They stood on a motion platform inside a cabin with an optokinetic pattern on its interior walls. The cabin was sinusoidally rotated in anterior-posterior (a-p) direction with the horizontal rotation axis through the ankle joints (f=0.05-0.4 Hz; A (max)=0.25 degrees -4 degrees ; v (max)=0.08-10 degrees /s). The subjects' centre of mass (COM) angular position was calculated from opto-electronically measured body sway parameters. The platform was either kept stationary or moved by coupling its position 1:1 to a-p hip position ('body sway referenced', BSR, platform condition), by which proprioceptive feedback of ankle joint angle became inactivated. The visual stimulus evoked in-phase COM excursions (visual responses) in all subjects. (1) In normal subjects on a stationary platform, the visual responses showed saturation with both increasing velocity and displacement of the visual stimulus. The saturation showed up abruptly when visually evoked COM velocity and displacement reached approximately 0.1 degrees /s and 0.1 degrees , respectively. (2) In normal subjects on a BSR platform (proprioceptive feedback disabled), the visual responses showed similar saturation characteristics, but at clearly higher COM velocity and displacement values ( approximately 1 degrees /s and 1 degrees , respectively). (3) In patients on a stationary platform (no vestibular cues), the visual responses were basically similar to those of the normal subjects, apart from somewhat higher gain values and less-pronounced saturation effects. (4) In patients on a BSR platform (no vestibular and proprioceptive cues, presumably only somatosensory graviceptive and visual cues), the visual responses showed an abnormal increase in gain with increasing stimulus frequency in addition to a displacement saturation. On the normal subjects we performed additional experiments in which we varied the gain of the visual response by using a 'virtual reality' visual stimulus or by applying small lateral platform tilts. This did not affect the saturation characteristics of the visual response to a considerable degree. We compared the present results to previous psychophysical findings on motion perception, noting similarities of the saturation characteristics in (1) with leg proprioceptive detection thresholds of approximately 0.1 degrees /s and 0.1 degrees and those in (2) with vestibular detection thresholds of 1 degrees /s and 1 degrees , respectively. From the psychophysical data one might hypothesise that a proprioceptive postural mechanism limits the visually evoked body excursions if these excursions exceed 0.1 degrees /s and 0.1 degrees in condition (1) and that a vestibular mechanism is doing so at 1 degrees /s and 1 degrees in (2). To better understand this, we performed computer simulations using a posture control model with multiple sensory feedbacks. We had recently designed the model to describe postural responses to body pull and platform tilt stimuli. Here, we added a visual input and adjusted its gain to fit the simulated data to the experimental data. The saturation characteristics of the visual responses of the normals were well mimicked by the simulations. They were caused by central thresholds of proprioceptive, vestibular and somatosensory signals in the model, which, however, differed from the psychophysical thresholds. Yet, we demonstrate in a theoretical approach that for condition (1) the model can be made monomodal proprioceptive with the psychophysical 0.1 degrees /s and 0.1 degrees thresholds, and for (2) monomodal vestibular with the psychophysical 1 degrees /s and 1 degrees thresholds, and still shows the corresponding saturation characteristics (whereas our original model covers both conditions without adjustments). The model simulations also predicted the almost normal visual responses of patients on a stationary platform and their clearly abnormal responses on a BSR platform.
Psychophysical and perceptual performance in a simulated-scotoma model of human eye injury
NASA Astrophysics Data System (ADS)
Brandeis, R.; Egoz, I.; Peri, D.; Sapiens, N.; Turetz, J.
2008-02-01
Macular scotomas, affecting visual functioning, characterize many eye and neurological diseases like AMD, diabetes mellitus, multiple sclerosis, and macular hole. In this work, foveal visual field defects were modeled, and their effects were evaluated on spatial contrast sensitivity and a task of stimulus detection and aiming. The modeled occluding scotomas, of different size, were superimposed on the stimuli presented on the computer display, and were stabilized on the retina using a mono Purkinje Eye-Tracker. Spatial contrast sensitivity was evaluated using square-wave grating stimuli, whose contrast thresholds were measured using the method of constant stimuli with "catch trials". The detection task consisted of a triple conjunctive visual search display of: size (in visual angle), contrast and background (simple, low-level features vs. complex, high-level features). Search/aiming accuracy as well as R.T. measures used for performance evaluation. Artificially generated scotomas suppressed spatial contrast sensitivity in a size dependent manner, similar to previous studies. Deprivation effect was dependent on spatial frequency, consistent with retinal inhomogeneity models. Stimulus detection time was slowed in complex background search situation more than in simple background. Detection speed was dependent on scotoma size and size of stimulus. In contrast, visually guided aiming was more sensitive to scotoma effect in simple background search situation than in complex background. Both stimulus aiming R.T. and accuracy (precision targeting) were impaired, as a function of scotoma size and size of stimulus. The data can be explained by models distinguishing between saliency-based, parallel and serial search processes, guiding visual attention, which are supported by underlying retinal as well as neural mechanisms.
The effect of changes in stimulus level on electrically evoked cortical auditory potentials.
Kim, Jae-Ryong; Brown, Carolyn J; Abbas, Paul J; Etler, Christine P; O'Brien, Sara
2009-06-01
The purpose of this study was to determine whether the electrically evoked acoustic change complex (EACC) could be used to assess sensitivity to changes in stimulus level in cochlear implant (CI) recipients and to investigate the relationship between EACC amplitude and rate of growth of the N1-P2 onset response with increases in stimulus level. Twelve postlingually deafened adults using Nucleus CI24 CIs participated in this study. Nucleus Implant Communicator (NIC) routines were used to bypass the speech processor and to control the stimulation of the implant directly. The stimulus consisted of an 800 msec burst of a 1000 pps biphasic pulse train. A change in the stimulus level was introduced 400 msec after stimulus onset. Band-pass filtering (1 to 100 Hz) was used to minimize stimulus artifact. Four to six recordings of 50 sweeps were obtained for each condition, and averaged responses were analyzed in the time domain using standard peak picking procedures. Cortical auditory change potentials were recorded from CI users in response to both increases and decreases in stimulation level. The amplitude of the EACC was found to be dependent on the magnitude of the stimulus change. Increases in stimulus level elicited more robust EACC responses than decreases in stimulus level. Also, EACC amplitudes were significantly correlated with the slope of the growth of the onset response. This work describes the effect of change in stimulus level on electrically evoked auditory change potentials in CI users. The amplitude of the EACC was found to be related both to the magnitude of the stimulus change introduced and to the rate of growth of the N1-P2 onset response. To the extent that the EACC reflects processing of stimulus change, it could potentially be a valuable tool for assessing neural processing of the kinds of stimulation patterns produced by a CI. Further studies are needed, however, to determine the relationships between the EACC and psychophysical measures of intensity discrimination in CI recipients.
The development and present status of the SOP model of associative learning.
Vogel, Edgar H; Ponce, Fernando P; Wagner, Allan R
2018-05-01
The Sometimes Opponent Processes (SOP) model in its original form was especially calculated to address how expected unconditioned stimulus (US) and conditioned stimulus (CS) are rendered less effective than their novel counterparts in Pavlovian conditioning. Its several elaborations embracing the essential notion have extended the scope of the model to integrate a much greater number of phenomena of Pavlovian conditioning. Here, we trace the development of the model and add further thoughts about its extension and refinement.
Escape from rich-to-lean transitions: Stimulus change and timeout.
Retzlaff, Billie J; Parthum, Elizabeth T P; Pitts, Raymond C; Hughes, Christine E
2017-01-01
Extended pausing during discriminable transitions from rich-to-lean conditions can be viewed as escape (i.e., rich-to-lean transitions function aversively). In the current experiments, pigeons' key pecking was maintained by a multiple fixed-ratio fixed-ratio schedule of rich or lean reinforcers. Pigeons then were provided with another, explicit, mechanism of escape by changing the stimulus from the transition-specific stimulus used in the multiple schedule to a mixed-schedule stimulus (Experiment 1) or by producing a period of timeout in which the stimulus was turned off and the schedule was suspended (Experiment 2). Overall, escape was under joint control of past and upcoming reinforcer magnitudes, such that responses on the escape key were most likely during rich-to-lean transitions, and second-most likely during lean-to-lean transitions. Even though pigeons pecked the escape key, they paused before doing so, and the latency to begin the fixed ratio (i.e., the pause) remained extended during rich-to-lean transitions. These findings suggest that although the stimulus associated with rich-to-lean transitions functioned aversively, pausing is more than simply escape responding from the stimulus. © 2017 Society for the Experimental Analysis of Behavior.
Verbruggen, Frederick; Logan, Gordon D.
2008-01-01
In five experiments, the authors examined the development of automatic response inhibition in the go/no-go paradigm and a modified version of the stop-signal paradigm. They hypothesized that automatic response inhibition may develop over practice when stimuli are consistently associated with stopping. All five experiments consisted of a training phase and a test phase in which the stimulus mapping was reversed for a subset of the stimuli. Consistent with the automatic-inhibition hypothesis, the authors found that responding in the test phase was slowed when the stimulus had been consistently associated with stopping in the training phase. In addition, they found that response inhibition benefited from consistent stimulus-stop associations. These findings suggest that response inhibition may rely on the retrieval of stimulus-stop associations after practice with consistent stimulus-stop mappings. Stimulus-stop mapping is typically consistent in the go/no-go paradigm, so automatic inhibition is likely to occur. However, stimulus-stop mapping is typically inconsistent in the stop-signal paradigm, so automatic inhibition is unlikely to occur. Thus, the results suggest that the two paradigms are not equivalent because they allow different kinds of response inhibition. PMID:18999358
Gestalt perception modulates early visual processing.
Herrmann, C S; Bosch, V
2001-04-17
We examined whether early visual processing reflects perceptual properties of a stimulus in addition to physical features. We recorded event-related potentials (ERPs) of 13 subjects in a visual classification task. We used four different stimuli which were all composed of four identical elements. One of the stimuli constituted an illusory Kanizsa square, another was composed of the same number of collinear line segments but the elements did not form a Gestalt. In addition, a target and a control stimulus were used which were arranged differently. These stimuli allow us to differentiate the processing of colinear line elements (stimulus features) and illusory figures (perceptual properties). The visual N170 in response to the illusory figure was significantly larger as compared to the other collinear stimulus. This is taken to indicate that the visual N170 reflects cognitive processes of Gestalt perception in addition to attentional processes and physical stimulus properties.
Sissons, Heather T.; Urcelay, Gonzalo P.; Miller, Ralph R.
2009-01-01
The present experiments examined the role of within-compound associations in the interaction of the overshadowing procedure with conditioned stimulus (CS) duration, using a conditioned suppression procedure with rats. Experiment 1 found that, with elemental reinforced training, conditioned suppression to the target stimulus decreased as CS duration increased (i.e., the CS-duration effect), whereas with compound reinforced training (i.e., the overshadowing procedure) conditioned suppression to the target stimulus increased as CS duration increased. Subsequent experiments replicated these findings in sensory preconditioning and demonstrated that extinction of the overshadowing stimulus results in retrospective revaluation with short CSs and mediated extinction with long CSs. These results highlight the role of the duration of the stimulus in behavioral control. Moreover, these results illuminate one cause (the CS duration) of whether retrospective revaluation or mediated extinction will be observed. PMID:19542092
Statistical context shapes stimulus-specific adaptation in human auditory cortex.
Herrmann, Björn; Henry, Molly J; Fromboluti, Elisa Kim; McAuley, J Devin; Obleser, Jonas
2015-04-01
Stimulus-specific adaptation is the phenomenon whereby neural response magnitude decreases with repeated stimulation. Inconsistencies between recent nonhuman animal recordings and computational modeling suggest dynamic influences on stimulus-specific adaptation. The present human electroencephalography (EEG) study investigates the potential role of statistical context in dynamically modulating stimulus-specific adaptation by examining the auditory cortex-generated N1 and P2 components. As in previous studies of stimulus-specific adaptation, listeners were presented with oddball sequences in which the presentation of a repeated tone was infrequently interrupted by rare spectral changes taking on three different magnitudes. Critically, the statistical context varied with respect to the probability of small versus large spectral changes within oddball sequences (half of the time a small change was most probable; in the other half a large change was most probable). We observed larger N1 and P2 amplitudes (i.e., release from adaptation) for all spectral changes in the small-change compared with the large-change statistical context. The increase in response magnitude also held for responses to tones presented with high probability, indicating that statistical adaptation can overrule stimulus probability per se in its influence on neural responses. Computational modeling showed that the degree of coadaptation in auditory cortex changed depending on the statistical context, which in turn affected stimulus-specific adaptation. Thus the present data demonstrate that stimulus-specific adaptation in human auditory cortex critically depends on statistical context. Finally, the present results challenge the implicit assumption of stationarity of neural response magnitudes that governs the practice of isolating established deviant-detection responses such as the mismatch negativity. Copyright © 2015 the American Physiological Society.
A Recurrent Network Model of Somatosensory Parametric Working Memory in the Prefrontal Cortex
Miller, Paul; Brody, Carlos D; Romo, Ranulfo; Wang, Xiao-Jing
2015-01-01
A parametric working memory network stores the information of an analog stimulus in the form of persistent neural activity that is monotonically tuned to the stimulus. The family of persistent firing patterns with a continuous range of firing rates must all be realizable under exactly the same external conditions (during the delay when the transient stimulus is withdrawn). How this can be accomplished by neural mechanisms remains an unresolved question. Here we present a recurrent cortical network model of irregularly spiking neurons that was designed to simulate a somatosensory working memory experiment with behaving monkeys. Our model reproduces the observed positively and negatively monotonic persistent activity, and heterogeneous tuning curves of memory activity. We show that fine-tuning mathematically corresponds to a precise alignment of cusps in the bifurcation diagram of the network. Moreover, we show that the fine-tuned network can integrate stimulus inputs over several seconds. Assuming that such time integration occurs in neural populations downstream from a tonically persistent neural population, our model is able to account for the slow ramping-up and ramping-down behaviors of neurons observed in prefrontal cortex. PMID:14576212
Do former preterm infants remember and respond to neonatal intensive care unit noise?
Barreto, Edwin D; Morris, Brenda H; Philbin, M Kathleen; Gray, Lincoln C; Lasky, Robert E
2006-11-01
Previous studies have shown that 4-month-old infants have a decrease in heart rate, a component of the orienting reflex, in response to interesting auditory stimuli and an increase in heart rate to aversive auditory stimuli. To compare the heart rate responses of former preterm and term infants at 4-5 months corrected age to a recording of NICU noises. 13 former preterm infants and 17 full-term infants were presented NICU noise and another noise of similar level and frequency content in random order. Heart rate 10s prior to the stimulus and for 20s during the stimulus was analyzed. Group differences in second by second heart rate changes in response to the two noise stimuli were compared by analysis of covariance. Both the preterm and term newborns responded similarly to the NICU noise and the control noise. The preterm infants did not alter their heart rate in response to either stimulus. In contrast, the term infants displayed an orienting response to the second stimulus presented regardless of whether it was the NICU or control noise. Former preterm infants at 4-5 months corrected age have reduced responsiveness to auditory stimulation in comparison to 4- to 5-month-old term infants. Furthermore, they did not respond to the NICU noise as an aversive stimulus.
Defever, Emmy; Reynvoet, Bert; Gebuis, Titia
2013-10-01
Researchers investigating numerosity processing manipulate the visual stimulus properties (e.g., surface). This is done to control for the confound between numerosity and its visual properties and should allow the examination of pure number processes. Nevertheless, several studies have shown that, despite different visual controls, visual cues remained to exert their influence on numerosity judgments. This study, therefore, investigated whether the impact of the visual stimulus manipulations on numerosity judgments is dependent on the task at hand (comparison task vs. same-different task) and whether this impact changes throughout development. In addition, we examined whether the influence of visual stimulus manipulations on numerosity judgments plays a role in the relation between performance on numerosity tasks and mathematics achievement. Our findings confirmed that the visual stimulus manipulations affect numerosity judgments; more important, we found that these influences changed with increasing age and differed between the comparison and the same-different tasks. Consequently, direct comparisons between numerosity studies using different tasks and age groups are difficult. No meaningful relationship between the performance on the comparison and same-different tasks and mathematics achievement was found in typically developing children, nor did we find consistent differences between children with and without mathematical learning disability (MLD). Copyright © 2013 Elsevier Inc. All rights reserved.
Decoding and reconstructing color from responses in human visual cortex.
Brouwer, Gijs Joost; Heeger, David J
2009-11-04
How is color represented by spatially distributed patterns of activity in visual cortex? Functional magnetic resonance imaging responses to several stimulus colors were analyzed with multivariate techniques: conventional pattern classification, a forward model of idealized color tuning, and principal component analysis (PCA). Stimulus color was accurately decoded from activity in V1, V2, V3, V4, and VO1 but not LO1, LO2, V3A/B, or MT+. The conventional classifier and forward model yielded similar accuracies, but the forward model (unlike the classifier) also reliably reconstructed novel stimulus colors not used to train (specify parameters of) the model. The mean responses, averaged across voxels in each visual area, were not reliably distinguishable for the different stimulus colors. Hence, each stimulus color was associated with a unique spatially distributed pattern of activity, presumably reflecting the color selectivity of cortical neurons. Using PCA, a color space was derived from the covariation, across voxels, in the responses to different colors. In V4 and VO1, the first two principal component scores (main source of variation) of the responses revealed a progression through perceptual color space, with perceptually similar colors evoking the most similar responses. This was not the case for any of the other visual cortical areas, including V1, although decoding was most accurate in V1. This dissociation implies a transformation from the color representation in V1 to reflect perceptual color space in V4 and VO1.
Kim, Young Kwan; Kameo, Yoshitaka; Tanaka, Sakae; Adachi, Taiji
2017-10-01
To understand Wolff's law, bone adaptation by remodeling at the cellular and tissue levels has been discussed extensively through experimental and simulation studies. For the clinical application of a bone remodeling simulation, it is significant to establish a macroscopic model that incorporates clarified microscopic mechanisms. In this study, we proposed novel macroscopic models based on the microscopic mechanism of osteocytic mechanosensing, in which the flow of fluid in the lacuno-canalicular porosity generated by fluid pressure gradients plays an important role, and theoretically evaluated the proposed models, taking biological rationales of bone adaptation into account. The proposed models were categorized into two groups according to whether the remodeling equilibrium state was defined globally or locally, i.e., the global or local uniformity models. Each remodeling stimulus in the proposed models was quantitatively evaluated through image-based finite element analyses of a swine cancellous bone, according to two introduced criteria associated with the trabecular volume and orientation at remodeling equilibrium based on biological rationales. The evaluation suggested that nonuniformity of the mean stress gradient in the local uniformity model, one of the proposed stimuli, has high validity. Furthermore, the adaptive potential of each stimulus was discussed based on spatial distribution of a remodeling stimulus on the trabecular surface. The theoretical consideration of a remodeling stimulus based on biological rationales of bone adaptation would contribute to the establishment of a clinically applicable and reliable simulation model of bone remodeling.
Diagnostic Ability of Automated Pupillography in Glaucoma.
Rao, Harsha L; Kadambi, Sujatha V; Mehta, Pooja; Dasari, Srilakshmi; Puttaiah, Narendra K; Pradhan, Zia S; Rao, Dhanraj A S; Shetty, Rohit
2017-05-01
To evaluate the diagnostic ability of automated pupillography measurements in glaucoma and study the effect of inter-eye asymmetry in glaucomatous damage on the diagnostic ability. In an observational, cross-sectional study, 47 glaucoma patients and 42 control subjects underwent automated pupillography using a commercially available device. Diagnostic abilities of the pupillary response measurements were evaluated using area under receiver operating characteristic (ROC) curves (AUC) and sensitivities at fixed specificities. Influence of inter-eye asymmetry in glaucoma [inter-eye mean deviation (MD) difference on visual fields (VF)] on the diagnostic ability of pupillography parameters was evaluated by ROC regression approach. The AUCs of automated pupillography parameters ranged from 0.60 (amplitude score with peripheral blue stimulus) to 0.82 (amplitude score with full field white stimulus, Amp-FF-W). Sensitivity at 95% specificity ranged between 5% (amplitude score with full field blue stimulus) and 45% (amplitude score with full field green stimulus). Inter-eye MD difference significantly affected the diagnostic performance of automated pupillography parameters (p < 0.05). AUCs of Amp-FF-W at inter-eye MD difference of 0 dB, 5 dB, 10 dB and 15 dB were 0.71, 0.80, 0.87 and 0.93, respectively, according to the regression model. The corresponding sensitivities at 95% specificity were 20%, 34%, 50% and 66%, respectively. The diagnostic abilities of even the best automated pupillography parameters were only moderate in glaucoma. The performance of these pupillography measurements in detecting glaucoma significantly increased with greater inter-eye asymmetry in the glaucomatous damage.
Eye Velocity Gain Fields in MSTd During Optokinetic Stimulation
Brostek, Lukas; Büttner, Ulrich; Mustari, Michael J.; Glasauer, Stefan
2015-01-01
Lesion studies argue for an involvement of cortical area dorsal medial superior temporal area (MSTd) in the control of optokinetic response (OKR) eye movements to planar visual stimulation. Neural recordings during OKR suggested that MSTd neurons directly encode stimulus velocity. On the other hand, studies using radial visual flow together with voluntary smooth pursuit eye movements showed that visual motion responses were modulated by eye movement-related signals. Here, we investigated neural responses in MSTd during continuous optokinetic stimulation using an information-theoretic approach for characterizing neural tuning with high resolution. We show that the majority of MSTd neurons exhibit gain-field-like tuning functions rather than directly encoding one variable. Neural responses showed a large diversity of tuning to combinations of retinal and extraretinal input. Eye velocity-related activity was observed prior to the actual eye movements, reflecting an efference copy. The observed tuning functions resembled those emerging in a network model trained to perform summation of 2 population-coded signals. Together, our findings support the hypothesis that MSTd implements the visuomotor transformation from retinal to head-centered stimulus velocity signals for the control of OKR. PMID:24557636
Generalization of conditioned fear along a dimension of increasing fear intensity
Dunsmoor, Joseph E.; Mitroff, Stephen R.; LaBar, Kevin S.
2009-01-01
The present study investigated the extent to which fear generalization in humans is determined by the amount of fear intensity in nonconditioned stimuli relative to a perceptually similar conditioned stimulus. Stimuli consisted of graded emotionally expressive faces of the same identity morphed between neutral and fearful endpoints. Two experimental groups underwent discriminative fear conditioning between a face stimulus of 55% fear intensity (conditioned stimulus, CS+), reinforced with an electric shock, and a second stimulus that was unreinforced (CS−). In Experiment 1 the CS− was a relatively neutral face stimulus, while in Experiment 2 the CS− was the most fear-intense stimulus. Before and following fear conditioning, skin conductance responses (SCR) were recorded to different morph values along the neutral-to-fear dimension. Both experimental groups showed gradients of generalization following fear conditioning that increased with the fear intensity of the stimulus. In Experiment 1 a peak shift in SCRs extended to the most fear-intense stimulus. In contrast, generalization to the most fear-intense stimulus was reduced in Experiment 2, suggesting that discriminative fear learning procedures can attenuate fear generalization. Together, the findings indicate that fear generalization is broadly tuned and sensitive to the amount of fear intensity in nonconditioned stimuli, but that fear generalization can come under stimulus control. These results reveal a novel form of fear generalization in humans that is not merely based on physical similarity to a conditioned exemplar, and may have implications for understanding generalization processes in anxiety disorders characterized by heightened sensitivity to nonthreatening stimuli. PMID:19553384
A theory of drug tolerance and dependence II: the mathematical model.
Peper, Abraham
2004-08-21
The preceding paper presented a model of drug tolerance and dependence. The model assumes the development of tolerance to a repeatedly administered drug to be the result of a regulated adaptive process. The oral detection and analysis of exogenous substances is proposed to be the primary stimulus for the mechanism of drug tolerance. Anticipation and environmental cues are in the model considered secondary stimuli, becoming primary in dependence and addiction or when the drug administration bypasses the natural-oral-route, as is the case when drugs are administered intravenously. The model considers adaptation to the effect of a drug and adaptation to the interval between drug taking autonomous tolerance processes. Simulations with the mathematical model demonstrate the model's behaviour to be consistent with important characteristics of the development of tolerance to repeatedly administered drugs: the gradual decrease in drug effect when tolerance develops, the high sensitivity to small changes in drug dose, the rebound phenomenon and the large reactions following withdrawal in dependence. The present paper discusses the mathematical model in terms of its design. The model is a nonlinear, learning feedback system, fully satisfying control theoretical principles. It accepts any form of the stimulus-the drug intake-and describes how the physiological processes involved affect the distribution of the drug through the body and the stability of the regulation loop. The mathematical model verifies the proposed theory and provides a basis for the implementation of mathematical models of specific physiological processes.
Reconstruction of neuronal input through modeling single-neuron dynamics and computations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Qing; Wang, Jiang; Yu, Haitao
Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-spacemore » method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.« less
Williamson, Ross S.; Sahani, Maneesh; Pillow, Jonathan W.
2015-01-01
Stimulus dimensionality-reduction methods in neuroscience seek to identify a low-dimensional space of stimulus features that affect a neuron’s probability of spiking. One popular method, known as maximally informative dimensions (MID), uses an information-theoretic quantity known as “single-spike information” to identify this space. Here we examine MID from a model-based perspective. We show that MID is a maximum-likelihood estimator for the parameters of a linear-nonlinear-Poisson (LNP) model, and that the empirical single-spike information corresponds to the normalized log-likelihood under a Poisson model. This equivalence implies that MID does not necessarily find maximally informative stimulus dimensions when spiking is not well described as Poisson. We provide several examples to illustrate this shortcoming, and derive a lower bound on the information lost when spiking is Bernoulli in discrete time bins. To overcome this limitation, we introduce model-based dimensionality reduction methods for neurons with non-Poisson firing statistics, and show that they can be framed equivalently in likelihood-based or information-theoretic terms. Finally, we show how to overcome practical limitations on the number of stimulus dimensions that MID can estimate by constraining the form of the non-parametric nonlinearity in an LNP model. We illustrate these methods with simulations and data from primate visual cortex. PMID:25831448
Reconstruction of neuronal input through modeling single-neuron dynamics and computations
NASA Astrophysics Data System (ADS)
Qin, Qing; Wang, Jiang; Yu, Haitao; Deng, Bin; Chan, Wai-lok
2016-06-01
Mathematical models provide a mathematical description of neuron activity, which can better understand and quantify neural computations and corresponding biophysical mechanisms evoked by stimulus. In this paper, based on the output spike train evoked by the acupuncture mechanical stimulus, we present two different levels of models to describe the input-output system to achieve the reconstruction of neuronal input. The reconstruction process is divided into two steps: First, considering the neuronal spiking event as a Gamma stochastic process. The scale parameter and the shape parameter of Gamma process are, respectively, defined as two spiking characteristics, which are estimated by a state-space method. Then, leaky integrate-and-fire (LIF) model is used to mimic the response system and the estimated spiking characteristics are transformed into two temporal input parameters of LIF model, through two conversion formulas. We test this reconstruction method by three different groups of simulation data. All three groups of estimates reconstruct input parameters with fairly high accuracy. We then use this reconstruction method to estimate the non-measurable acupuncture input parameters. Results show that under three different frequencies of acupuncture stimulus conditions, estimated input parameters have an obvious difference. The higher the frequency of the acupuncture stimulus is, the higher the accuracy of reconstruction is.
76 FR 68366 - Airworthiness Directives; The Boeing Company Model 777-200 and -300 Series Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-04
...-induced currents and subsequent damage to composite structures, hydraulic tubes, and actuator control... and could subsequently damage composite structures, hydraulic tubes, and actuator control electronics... subsequent damage to composite structures, hydraulic tubes, and actuator control electronics. In the event of...
Rational metareasoning and the plasticity of cognitive control.
Lieder, Falk; Shenhav, Amitai; Musslick, Sebastian; Griffiths, Thomas L
2018-04-01
The human brain has the impressive capacity to adapt how it processes information to high-level goals. While it is known that these cognitive control skills are malleable and can be improved through training, the underlying plasticity mechanisms are not well understood. Here, we develop and evaluate a model of how people learn when to exert cognitive control, which controlled process to use, and how much effort to exert. We derive this model from a general theory according to which the function of cognitive control is to select and configure neural pathways so as to make optimal use of finite time and limited computational resources. The central idea of our Learned Value of Control model is that people use reinforcement learning to predict the value of candidate control signals of different types and intensities based on stimulus features. This model correctly predicts the learning and transfer effects underlying the adaptive control-demanding behavior observed in an experiment on visual attention and four experiments on interference control in Stroop and Flanker paradigms. Moreover, our model explained these findings significantly better than an associative learning model and a Win-Stay Lose-Shift model. Our findings elucidate how learning and experience might shape people's ability and propensity to adaptively control their minds and behavior. We conclude by predicting under which circumstances these learning mechanisms might lead to self-control failure.
Rational metareasoning and the plasticity of cognitive control
Shenhav, Amitai; Musslick, Sebastian; Griffiths, Thomas L.
2018-01-01
The human brain has the impressive capacity to adapt how it processes information to high-level goals. While it is known that these cognitive control skills are malleable and can be improved through training, the underlying plasticity mechanisms are not well understood. Here, we develop and evaluate a model of how people learn when to exert cognitive control, which controlled process to use, and how much effort to exert. We derive this model from a general theory according to which the function of cognitive control is to select and configure neural pathways so as to make optimal use of finite time and limited computational resources. The central idea of our Learned Value of Control model is that people use reinforcement learning to predict the value of candidate control signals of different types and intensities based on stimulus features. This model correctly predicts the learning and transfer effects underlying the adaptive control-demanding behavior observed in an experiment on visual attention and four experiments on interference control in Stroop and Flanker paradigms. Moreover, our model explained these findings significantly better than an associative learning model and a Win-Stay Lose-Shift model. Our findings elucidate how learning and experience might shape people’s ability and propensity to adaptively control their minds and behavior. We conclude by predicting under which circumstances these learning mechanisms might lead to self-control failure. PMID:29694347
Naber, Marnix; Vedder, Anneke; Brown, Stephen B R E; Nieuwenhuis, Sander
2016-01-01
The Stroop task is a popular neuropsychological test that measures executive control. Strong Stroop interference is commonly interpreted in neuropsychology as a diagnostic marker of impairment in executive control, possibly reflecting executive dysfunction. However, popular models of the Stroop task indicate that several other aspects of color and word processing may also account for individual differences in the Stroop task, independent of executive control. Here we use new approaches to investigate the degree to which individual differences in Stroop interference correlate with the relative processing speed of word and color stimuli, and the lateral inhibition between visual stimuli. We conducted an electrophysiological and behavioral experiment to measure (1) how quickly an individual's brain processes words and colors presented in isolation (P3 latency), and (2) the strength of an individual's lateral inhibition between visual representations with a visual illusion. Both measures explained at least 40% of the variance in Stroop interference across individuals. As these measures were obtained in contexts not requiring any executive control, we conclude that the Stroop effect also measures an individual's pre-set way of processing visual features such as words and colors. This study highlights the important contributions of stimulus processing speed and lateral inhibition to individual differences in Stroop interference, and challenges the general view that the Stroop task primarily assesses executive control.
Rubin, Mark
2018-01-01
Terror management theory (TMT) proposes that thoughts of death trigger a concern about self-annihilation that motivates the defense of cultural worldviews. In contrast, uncertainty theorists propose that thoughts of death trigger feelings of uncertainty that motivate worldview defense. University students (N = 414) completed measures of the chronic fear of self-annihilation and existential uncertainty as well as the need for closure. They then evaluated either a meaning threat stimulus or a control stimulus. Consistent with TMT, participants with a high fear of self-annihilation and a high need for closure showed the greatest dislike of the meaning threat stimulus, even after controlling for their existential uncertainty. Contrary to the uncertainty perspective, fear of existential uncertainty showed no significant effects.
NASA Technical Reports Server (NTRS)
Gregory, Irene M.; Gadient, ROss; Lavretsky, Eugene
2011-01-01
This paper presents flight test results of a robust linear baseline controller with and without composite adaptive control augmentation. The flight testing was conducted using the NASA Generic Transport Model as part of the Airborne Subscale Transport Aircraft Research system at NASA Langley Research Center.
Criaud, Marion; Longcamp, Marieke; Anton, Jean-Luc; Nazarian, Bruno; Roth, Muriel; Sescousse, Guillaume; Strafella, Antonio P; Ballanger, Bénédicte; Boulinguez, Philippe
2017-08-30
The neural mechanisms underlying response inhibition and related disorders are unclear and controversial for several reasons. First, it is a major challenge to assess the psychological bases of behaviour, and ultimately brain-behaviour relationships, of a function which is precisely intended to suppress overt measurable behaviours. Second, response inhibition is difficult to disentangle from other parallel processes involved in more general aspects of cognitive control. Consequently, different psychological and anatomo-functional models coexist, which often appear in conflict with each other even though they are not necessarily mutually exclusive. The standard model of response inhibition in go/no-go tasks assumes that inhibitory processes are reactively and selectively triggered by the stimulus that participants must refrain from reacting to. Recent alternative models suggest that action restraint could instead rely on reactive but non-selective mechanisms (all automatic responses are automatically inhibited in uncertain contexts) or on proactive and non-selective mechanisms (a gating function by which reaction to any stimulus is prevented in anticipation of stimulation when the situation is unpredictable). Here, we assessed the physiological plausibility of these different models by testing their respective predictions regarding event-related BOLD modulations (forward inference using fMRI). We set up a single fMRI design which allowed for us to record simultaneously the different possible forms of inhibition while limiting confounds between response inhibition and parallel cognitive processes. We found BOLD dynamics consistent with non-selective models. These results provide new theoretical and methodological lines of inquiry for the study of basic functions involved in behavioural control and related disorders. Copyright © 2017 Elsevier B.V. All rights reserved.
Shared Processing of Language and Music.
Atherton, Ryan P; Chrobak, Quin M; Rauscher, Frances H; Karst, Aaron T; Hanson, Matt D; Steinert, Steven W; Bowe, Kyra L
2018-01-01
The present study sought to explore whether musical information is processed by the phonological loop component of the working memory model of immediate memory. Original instantiations of this model primarily focused on the processing of linguistic information. However, the model was less clear about how acoustic information lacking phonological qualities is actively processed. Although previous research has generally supported shared processing of phonological and musical information, these studies were limited as a result of a number of methodological concerns (e.g., the use of simple tones as musical stimuli). In order to further investigate this issue, an auditory interference task was employed. Specifically, participants heard an initial stimulus (musical or linguistic) followed by an intervening stimulus (musical, linguistic, or silence) and were then asked to indicate whether a final test stimulus was the same as or different from the initial stimulus. Results indicated that mismatched interference conditions (i.e., musical - linguistic; linguistic - musical) resulted in greater interference than silence conditions, with matched interference conditions producing the greatest interference. Overall, these results suggest that processing of linguistic and musical information draws on at least some of the same cognitive resources.
Carrieroa, A; Pereirab, A F; Wilson, A J; Castagno, S; Javaheri, B; Pitsillides, A A; Marenzana, M; Shefelbine, S J
2018-06-01
Bone is a dynamic tissue and adapts its architecture in response to biological and mechanical factors. Here we investigate how cortical bone formation is spatially controlled by the local mechanical environment in the murine tibia axial loading model (C57BL/6). We obtained 3D locations of new bone formation by performing 'slice and view' 3D fluorochrome mapping of the entire bone and compared these sites with the regions of high fluid velocity or strain energy density estimated using a finite element model, validated with ex-vivo bone surface strain map acquired ex-vivo using digital image correlation. For the comparison, 2D maps of the average bone formation and peak mechanical stimulus on the tibial endosteal and periosteal surface across the entire cortical surface were created. Results showed that bone formed on the periosteal and endosteal surface in regions of high fluid flow. Peak strain energy density predicted only the formation of bone periosteally. Understanding how the mechanical stimuli spatially relates with regions of cortical bone formation in response to loading will eventually guide loading regime therapies to maintain or restore bone mass in specific sites in skeletal pathologies.
Four-dimensional Printing of Liquid Crystal Elastomers.
Ambulo, Cedric P; Burroughs, Julia J; Boothby, Jennifer M; Kim, Hyun; Shankar, M Ravi; Ware, Taylor H
2017-10-25
Three-dimensional structures capable of reversible changes in shape, i.e., four-dimensional-printed structures, may enable new generations of soft robotics, implantable medical devices, and consumer products. Here, thermally responsive liquid crystal elastomers (LCEs) are direct-write printed into 3D structures with a controlled molecular order. Molecular order is locally programmed by controlling the print path used to build the 3D object, and this order controls the stimulus response. Each aligned LCE filament undergoes 40% reversible contraction along the print direction on heating. By printing objects with controlled geometry and stimulus response, magnified shape transformations, for example, volumetric contractions or rapid, repetitive snap-through transitions, are realized.
Dissociation of binding and learning processes.
Moeller, Birte; Frings, Christian
2017-11-01
A single encounter of a stimulus together with a response can result in a short-lived association between the stimulus and the response [sometimes called an event file, see Hommel, Müsseler, Aschersleben, & Prinz, (2001) Behavioral and Brain Sciences, 24, 910-926]. The repetition of stimulus-response pairings typically results in longer lasting learning effects indicating stimulus-response associations (e.g., Logan & Etherton, (1994) Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 1022-1050]. An important question is whether or not what has been described as stimulus-response binding in action control research is actually identical with an early stage of incidental learning (e.g., binding might be seen as single-trial learning). Here, we present evidence that short-lived binding effects can be distinguished from learning of longer lasting stimulus-response associations. In two experiments, participants always responded to centrally presented target letters that were flanked by response irrelevant distractor letters. Experiment 1 varied whether distractors flanked targets on the horizontal or vertical axis. Binding effects were larger for a horizontal than for a vertical distractor-target configuration, while stimulus configuration did not influence incidental learning of longer lasting stimulus-response associations. In Experiment 2, the duration of the interval between response n - 1 and presentation of display n (500 ms vs. 2000 ms) had opposing influences on binding and learning effects. Both experiments indicate that modulating factors influence stimulus-response binding and incidental learning effects in different ways. We conclude that distinct underlying processes should be assumed for binding and incidental learning effects.
Bentley, P.; Driver, J.; Dolan, R.J.
2008-01-01
Visuo-attentional deficits occur early in Alzheimer's disease (AD) and are considered more responsive to pro-cholinergic therapy than characteristic memory disturbances. We hypothesised that neural responses in AD during visual attentional processing would be impaired relative to controls, yet partially susceptible to improvement with cholinesterase inhibition. We studied 16 mild AD patients and 17 age-matched healthy controls, using fMRI-scanning to enable within-subject placebo-controlled comparisons of the effects of physostigmine on stimulus- and attention-related brain activations, and to allow between-group comparisons for these. Subjects viewed stimuli comprising faces or buildings while performing a shallow judgement (colour of image) or a deep judgement (young/old age of depicted face or building). Behaviourally, AD subjects performed poorer than controls in both tasks, while physostigmine benefited AD patients for the more demanding age-judgement task. Stimulus-selective (face minus building, and vice versa) BOLD signals in precuneus and posterior parahippocampal cortex were attenuated in AD relative to controls but increased following physostigmine. By contrast, face-selective responses in fusiform cortex were not impaired in AD and showed decreases following physostigmine for both groups. Task-dependent responses in right parietal and prefrontal cortices were diminished in AD but improved following physostigmine. A similar pattern of group and treatment effects was observed in two extrastriate cortical regions that showed enhanced stimulus-selectivity for the deep versus shallow task. Finally, for the healthy group, physostigmine decreased task-dependent effects, partly due to an exaggeration of selectivity during the shallow relative to deep task. Our results demonstrate cholinergic-mediated improvements for both stimulus- and attention-dependent responses in functionally affected extrastriate and frontoparietal regions for AD. We also show that normal stimulus- and task-dependent activity patterns can be perturbed in the healthy brain by cholinergic stimulation. PMID:18077465
Feature-Selective Attentional Modulations in Human Frontoparietal Cortex.
Ester, Edward F; Sutterer, David W; Serences, John T; Awh, Edward
2016-08-03
Control over visual selection has long been framed in terms of a dichotomy between "source" and "site," where top-down feedback signals originating in frontoparietal cortical areas modulate or bias sensory processing in posterior visual areas. This distinction is motivated in part by observations that frontoparietal cortical areas encode task-level variables (e.g., what stimulus is currently relevant or what motor outputs are appropriate), while posterior sensory areas encode continuous or analog feature representations. Here, we present evidence that challenges this distinction. We used fMRI, a roving searchlight analysis, and an inverted encoding model to examine representations of an elementary feature property (orientation) across the entire human cortical sheet while participants attended either the orientation or luminance of a peripheral grating. Orientation-selective representations were present in a multitude of visual, parietal, and prefrontal cortical areas, including portions of the medial occipital cortex, the lateral parietal cortex, and the superior precentral sulcus (thought to contain the human homolog of the macaque frontal eye fields). Additionally, representations in many-but not all-of these regions were stronger when participants were instructed to attend orientation relative to luminance. Collectively, these findings challenge models that posit a strict segregation between sources and sites of attentional control on the basis of representational properties by demonstrating that simple feature values are encoded by cortical regions throughout the visual processing hierarchy, and that representations in many of these areas are modulated by attention. Influential models of visual attention posit a distinction between top-down control and bottom-up sensory processing networks. These models are motivated in part by demonstrations showing that frontoparietal cortical areas associated with top-down control represent abstract or categorical stimulus information, while visual areas encode parametric feature information. Here, we show that multivariate activity in human visual, parietal, and frontal cortical areas encode representations of a simple feature property (orientation). Moreover, representations in several (though not all) of these areas were modulated by feature-based attention in a similar fashion. These results provide an important challenge to models that posit dissociable top-down control and sensory processing networks on the basis of representational properties. Copyright © 2016 the authors 0270-6474/16/368188-12$15.00/0.
Role of amygdala central nucleus in feature negative discriminations
Holland, Peter C.
2012-01-01
Consistent with a popular theory of associative learning, the Pearce-Hall (1980) model, the surprising omission of expected events enhances cue associability (the ease with which a cue may enter into new associations), across a wide variety of behavioral training procedures. Furthermore, previous experiments from this laboratory showed that these enhancements are absent in rats with impaired function of the amygdala central nucleus (CeA). A notable exception to these assertions is found in feature negative (FN) discrimination learning, in which a “target” stimulus is reinforced when it is presented alone but nonreinforced when it is presented in compound with another, “feature” stimulus. According to the Pearce-Hall model, reinforcer omission on compound trials should enhance the associability of the feature relative to control training conditions. However, prior experiments have shown no evidence that CeA lesions affect FN discrimination learning. Here we explored this apparent contradiction by evaluating the hypothesis that the surprising omission of an event confers enhanced associability on a cue only if that cue itself generates the disconfirmed prediction. Thus, in a FN discrimination, the surprising omission of the reinforcer on compound trials would enhance the associability of the target stimulus but not that of the feature. Our data confirmed this hypothesis, and showed this enhancement to depend on intact CeA function, as in other procedures. The results are consistent with modern reformulations of both cue and reward processing theories that assign roles for both individual and aggregate error terms in associative learning. PMID:22889308
A Unifying Motif for Spatial and Directional Surround Suppression.
Liu, Liu D; Miller, Kenneth D; Pack, Christopher C
2018-01-24
In the visual system, the response to a stimulus in a neuron's receptive field can be modulated by stimulus context, and the strength of these contextual influences vary with stimulus intensity. Recent work has shown how a theoretical model, the stabilized supralinear network (SSN), can account for such modulatory influences, using a small set of computational mechanisms. Although the predictions of the SSN have been confirmed in primary visual cortex (V1), its computational principles apply with equal validity to any cortical structure. We have therefore tested the generality of the SSN by examining modulatory influences in the middle temporal area (MT) of the macaque visual cortex, using electrophysiological recordings and pharmacological manipulations. We developed a novel stimulus that can be adjusted parametrically to be larger or smaller in the space of all possible motion directions. We found, as predicted by the SSN, that MT neurons integrate across motion directions for low-contrast stimuli, but that they exhibit suppression by the same stimuli when they are high in contrast. These results are analogous to those found in visual cortex when stimulus size is varied in the space domain. We further tested the mechanisms of inhibition using pharmacological manipulations of inhibitory efficacy. As predicted by the SSN, local manipulation of inhibitory strength altered firing rates, but did not change the strength of surround suppression. These results are consistent with the idea that the SSN can account for modulatory influences along different stimulus dimensions and in different cortical areas. SIGNIFICANCE STATEMENT Visual neurons are selective for specific stimulus features in a region of visual space known as the receptive field, but can be modulated by stimuli outside of the receptive field. The SSN model has been proposed to account for these and other modulatory influences, and tested in V1. As this model is not specific to any particular stimulus feature or brain region, we wondered whether similar modulatory influences might be observed for other stimulus dimensions and other regions. We tested for specific patterns of modulatory influences in the domain of motion direction, using electrophysiological recordings from MT. Our data confirm the predictions of the SSN in MT, suggesting that the SSN computations might be a generic feature of sensory cortex. Copyright © 2018 the authors 0270-6474/18/380989-11$15.00/0.
Theory, Solution Methods, and Implementation of the HERMES Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reaugh, John E.; White, Bradley W.; Curtis, John P.
The HERMES (high explosive response to mechanical stimulus) model was developed over the past decade to enable computer simulation of the mechanical and subsequent energetic response of explosives and propellants to mechanical insults such as impacts, perforations, drops, and falls. The model is embedded in computer simulation programs that solve the non-linear, large deformation equations of compressible solid and fluid flow in space and time. It is implemented as a user-defined model, which returns the updated stress tensor and composition that result from the simulation supplied strain tensor change. Although it is multi-phase, in that gas and solid species aremore » present, it is single-velocity, in that the gas does not flow through the porous solid. More than 70 time-dependent variables are made available for additional analyses and plotting. The model encompasses a broad range of possible responses: mechanical damage with no energetic response, and a continuous spectrum of degrees of violence including delayed and prompt detonation. This paper describes the basic workings of the model.« less
Photomontage: A New Task to Change Speaking into Talking Classrooms
ERIC Educational Resources Information Center
Hassaskhah, Jaleh; Asli, Shohreh Rahimizadeh
2015-01-01
This study introduces photomontage as a task to facilitate talking in English as a Foreign Language classrooms. Thirty-three undergraduate English major students studying at the University of Guilan were assigned to design a composite photographic image by combining images from separate photographic sources, and use it as the stimulus to initiate…
ERIC Educational Resources Information Center
Jones, Lyle V.; Wepman, Joseph M.
This word count is a composite listing of the different words spoken by a selected sample of 54 English-speaking adults and the frequency with which each of the different words was used in a particular test. The stimulus situation was identical for each subject and consisted of 20 cards of the Thematic Apperception Test. Although most word counts…
Are stimulus-response rules represented phonologically for task-set preparation and maintenance?
van 't Wout, Félice; Lavric, Aureliu; Monsell, Stephen
2013-09-01
Accounts of task-set control generally assume that the current task's stimulus-response (S-R) rules must be elevated to a privileged state of activation. How are they represented in this state? In 3 task-cuing experiments, we tested the hypothesis that phonological working memory is used to represent S-R rules for task-set control by getting participants to switch between 2 sets of arbitrary S-R rules and manipulating the articulatory duration (Experiment 1) or phonological similarity (Experiments 2 and 3) of the names of the stimulus terms. The task cue specified which of 2 objects (Experiment 1) or consonants (Experiment 2) in a display to identify with a key press. In Experiment 3, participants switched between identifying an object/consonant and its color/visual texture. After practice, neither the duration nor the similarity of the stimulus terms had detectable effects on overall performance, task-switch cost, or its reduction with preparation. Only in the initial single-task training blocks was phonological similarity a significant handicap. Hence, beyond a very transient role, there is no evidence that (declarative) phonological working memory makes a functional contribution to representing S-R rules for task-set control, arguably because once learned, they are represented in nonlinguistic procedural working memory. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Does air gas aesthesiometry generate a true mechanical stimulus for corneal sensitivity measurement?
Nosch, Daniela S; Pult, Heiko; Albon, Julie; Purslow, Christine; Murphy, Paul J
2018-03-01
Belmonte Ocular Pain Meter (OPM) air jet aesthesiometry overcomes some of the limitations of the Cochet-Bonnet aesthesiometer. However, for true mechanical corneal sensitivity measurement, the airflow stimulus temperature of the aesthesiometer must equal ocular surface temperature (OST), to avoid additional response from temperature-sensitive nerves. The aim of this study was to determine: (A) the stimulus temperature inducing no or least change in OST; and (B) to evaluate if OST remains unchanged with different stimulus durations and airflow rates. A total of 14 subjects (mean age 25.14 ± 2.18 years; seven women) participated in this clinical cohort study: (A) OST was recorded using an infrared camera (FLIR A310) during the presentation of airflow stimuli, at five temperatures, ambient temperature (AT) +5°C, +10°C, +15°C, +20°C and +30°C, using the OPM aesthesiometer (duration three seconds; over a four millimetre distance; airflow rate 60 ml/min); and (B) OST measurements were repeated with two stimulus temperatures (AT +10°C and +15°C) while varying stimulus durations (three seconds and five seconds) and airflow rates (30, 60, 80 and 100 ml/min). Inclusion criteria were age <40 years, no contact lens wear, absence of ocular disease including dry eye, and no use of artificial tears. Repeated measures (analysis of variance) and appropriate post-hoc t-tests were applied. (A) Stimulus temperatures of AT +10°C and +15°C induced the least changes in OST (-0.20 ± 0.13°C and 0.08 ± 0.05°C). (B) OST changes were statistically significant with both stimulus temperatures and increased with increasing airflow rates (p < 0.001), and were more marked with stimulus temperature AT +10°C. A true mechanical threshold for corneal sensitivity cannot be established with the air stimulus of the Belmonte OPM because its air jet stimulus with mechanical setting is likely to have a thermal component. Appropriate stimulus selection for an air jet aesthesiometer must incorporate stimulus temperature control that can vary with stimulus duration and airflow rate. © 2017 Optometry Australia.
An improved P300 pattern in BCI to catch user’s attention
NASA Astrophysics Data System (ADS)
Jin, Jing; Zhang, Hanhan; Daly, Ian; Wang, Xingyu; Cichocki, Andrzej
2017-06-01
Objective. Brain-computer interfaces (BCIs) can help patients who have lost control over most muscles but are still conscious and able to communicate or interact with the environment. One of the most popular types of BCI is the P300-based BCI. With this BCI, users are asked to count the number of appearances of target stimuli in an experiment. To date, the majority of visual P300-based BCI systems developed have used the same character or picture as the target for every stimulus presentation, which can bore users. Consequently, users attention may decrease or be negatively affected by adjacent stimuli. Approach. In this study, a new stimulus is presented to increase user concentration. Honeycomb-shaped figures with 1-3 red dots were used as stimuli. The number and the positions of the red dots in the honeycomb-shaped figure were randomly changed during BCI control. The user was asked to count the number of the dots presented in each flash instead of the number of times they flashed. To assess the performance of this new stimulus, another honeycomb-shaped stimulus, without red dots, was used as a control condition. Main results. The results showed that the honeycomb-shaped stimuli with red dots obtained significantly higher classification accuracies and information transfer rates (p < 0.05) compared to the honeycomb-shaped stimulus without red dots. Significance. The results indicate that this proposed method can be a promising approach to improve the performance of the BCI system and can be an efficient method in daily application.
Time frequency analysis of olfactory induced EEG-power change.
Schriever, Valentin Alexander; Han, Pengfei; Weise, Stefanie; Hösel, Franziska; Pellegrino, Robert; Hummel, Thomas
2017-01-01
The objective of the present study was to investigate the usefulness of time-frequency analysis (TFA) of olfactory-induced EEG change with a low-cost, portable olfactometer in the clinical investigation of smell function. A total of 78 volunteers participated. The study was composed of three parts where olfactory stimuli were presented using a custom-built olfactometer. Part I was designed to optimize the stimulus as well as the recording conditions. In part II EEG-power changes after olfactory/trigeminal stimulation were compared between healthy participants and patients with olfactory impairment. In Part III the test-retest reliability of the method was evaluated in healthy subjects. Part I indicated that the most effective paradigm for stimulus presentation was cued stimulus, with an interstimulus interval of 18-20s at a stimulus duration of 1000ms with each stimulus quality presented 60 times in blocks of 20 stimuli each. In Part II we found that central processing of olfactory stimuli analyzed by TFA differed significantly between healthy controls and patients even when controlling for age. It was possible to reliably distinguish patients with olfactory impairment from healthy individuals at a high degree of accuracy (healthy controls vs anosmic patients: sensitivity 75%; specificity 89%). In addition we could show a good test-retest reliability of TFA of chemosensory induced EEG-power changes in Part III. Central processing of olfactory stimuli analyzed by TFA reliably distinguishes patients with olfactory impairment from healthy individuals at a high degree of accuracy. Importantly this can be achieved with a simple olfactometer.
An improved P300 pattern in BCI to catch user's attention.
Jin, Jing; Zhang, Hanhan; Daly, Ian; Wang, Xingyu; Cichocki, Andrzej
2017-06-01
Brain-computer interfaces (BCIs) can help patients who have lost control over most muscles but are still conscious and able to communicate or interact with the environment. One of the most popular types of BCI is the P300-based BCI. With this BCI, users are asked to count the number of appearances of target stimuli in an experiment. To date, the majority of visual P300-based BCI systems developed have used the same character or picture as the target for every stimulus presentation, which can bore users. Consequently, users attention may decrease or be negatively affected by adjacent stimuli. In this study, a new stimulus is presented to increase user concentration. Honeycomb-shaped figures with 1-3 red dots were used as stimuli. The number and the positions of the red dots in the honeycomb-shaped figure were randomly changed during BCI control. The user was asked to count the number of the dots presented in each flash instead of the number of times they flashed. To assess the performance of this new stimulus, another honeycomb-shaped stimulus, without red dots, was used as a control condition. The results showed that the honeycomb-shaped stimuli with red dots obtained significantly higher classification accuracies and information transfer rates (p < 0.05) compared to the honeycomb-shaped stimulus without red dots. The results indicate that this proposed method can be a promising approach to improve the performance of the BCI system and can be an efficient method in daily application.
The Effect of Cognitive Control on Different Types of Auditory Distraction.
Bell, Raoul; Röer, Jan P; Marsh, John E; Storch, Dunja; Buchner, Axel
2017-09-01
Deviant as well as changing auditory distractors interfere with short-term memory. According to the duplex model of auditory distraction, the deviation effect is caused by a shift of attention while the changing-state effect is due to obligatory order processing. This theory predicts that foreknowledge should reduce the deviation effect, but should have no effect on the changing-state effect. We compared the effect of foreknowledge on the two phenomena directly within the same experiment. In a pilot study, specific foreknowledge was impotent in reducing either the changing-state effect or the deviation effect, but it reduced disruption by sentential speech, suggesting that the effects of foreknowledge on auditory distraction may increase with the complexity of the stimulus material. Given the unexpected nature of this finding, we tested whether the same finding would be obtained in (a) a direct preregistered replication in Germany and (b) an additional replication with translated stimulus materials in Sweden.
THE POSITIVITY OFFSET THEORY OF ANHEDONIA IN SCHIZOPHRENIA.
Strauss, Gregory P; Frost, Katherine H; Lee, Bern G; Gold, James M
2017-03-01
Prior studies have concluded that schizophrenia patients are not anhedonic because they do not report reduced experience of positive emotion to pleasant stimuli. The current study challenged this view by applying quantitative methods validated in the Evaluative Space Model of emotional experience to test the hypothesis that schizophrenia patients evidence a reduction in the normative "positivity offset" (i.e., the tendency to experience higher levels of positive than negative emotional output when stimulus input is absent or weak). Participants included 76 schizophrenia patients and 60 healthy controls who completed an emotional experience task that required reporting the level of positive emotion, negative emotion, and arousal to photographs. Results indicated that although schizophrenia patients evidenced intact capacity to experience positive emotion at high levels of stimulus input, they displayed a diminished positivity offset. Reductions in the positivity offset may underlie volitional disturbance, limiting approach behaviors toward novel stimuli in neutral environments.
THE POSITIVITY OFFSET THEORY OF ANHEDONIA IN SCHIZOPHRENIA
Strauss, Gregory P.; Frost, Katherine H.; Lee, Bern G.; Gold, James M.
2016-01-01
Prior studies have concluded that schizophrenia patients are not anhedonic because they do not report reduced experience of positive emotion to pleasant stimuli. The current study challenged this view by applying quantitative methods validated in the Evaluative Space Model of emotional experience to test the hypothesis that schizophrenia patients evidence a reduction in the normative “positivity offset” (i.e., the tendency to experience higher levels of positive than negative emotional output when stimulus input is absent or weak). Participants included 76 schizophrenia patients and 60 healthy controls who completed an emotional experience task that required reporting the level of positive emotion, negative emotion, and arousal to photographs. Results indicated that although schizophrenia patients evidenced intact capacity to experience positive emotion at high levels of stimulus input, they displayed a diminished positivity offset. Reductions in the positivity offset may underlie volitional disturbance, limiting approach behaviors toward novel stimuli in neutral environments. PMID:28497008
A microfluidic device to study neuronal and motor responses to acute chemical stimuli in zebrafish.
Candelier, Raphaël; Murmu, Meena Sriti; Romano, Sebastián Alejo; Jouary, Adrien; Debrégeas, Georges; Sumbre, Germán
2015-07-21
Zebrafish larva is a unique model for whole-brain functional imaging and to study sensory-motor integration in the vertebrate brain. To take full advantage of this system, one needs to design sensory environments that can mimic the complex spatiotemporal stimulus patterns experienced by the animal in natural conditions. We report on a novel open-ended microfluidic device that delivers pulses of chemical stimuli to agarose-restrained larvae with near-millisecond switching rate and unprecedented spatial and concentration accuracy and reproducibility. In combination with two-photon calcium imaging and recordings of tail movements, we found that stimuli of opposite hedonic values induced different circuit activity patterns. Moreover, by precisely controlling the duration of the stimulus (50-500 ms), we found that the probability of generating a gustatory-induced behavior is encoded by the number of neurons activated. This device may open new ways to dissect the neural-circuit principles underlying chemosensory perception.
ERIC Educational Resources Information Center
Vallila-Rohter, Sofia; Kiran, Swathi
2013-01-01
Purpose: The purpose of the current study was to explore nonlinguistic learning ability in individuals with aphasia, examining the impact of stimulus typicality and feedback on success with learning. Method: Eighteen individuals with aphasia and 8 nonaphasic controls participated in this study. All participants completed 4 computerized,…
Reduced Sensitivity to Minimum-Jerk Biological Motion in Autism Spectrum Conditions
ERIC Educational Resources Information Center
Cook, Jennifer; Saygin, Ayse Pinar; Swain, Rachel; Blakemore, Sarah-Jayne
2009-01-01
We compared psychophysical thresholds for biological and non-biological motion detection in adults with autism spectrum conditions (ASCs) and controls. Participants watched animations of a biological stimulus (a moving hand) or a non-biological stimulus (a falling tennis ball). The velocity profile of the movement was varied between 100% natural…
Visuomotor Binding in Older Adults
ERIC Educational Resources Information Center
Bloesch, Emily K.; Abrams, Richard A.
2010-01-01
Action integration is the process through which actions performed on a stimulus and perceptual aspects of the stimulus become bound as a unitary object. This process appears to be controlled by the dopaminergic system in the prefrontal cortex, an area that is known to decrease in volume and dopamine functioning in older adults. Although the…
"Tunnel Vision": A Possible Keystone Stimulus Control Deficit in Autistic Children.
ERIC Educational Resources Information Center
Rincover, Arnold; And Others
1986-01-01
Three autistic boys (ages 9-13) were trained to select a card containing a stimulus array comprised of three visual cues. Decreased distance between cues resulted in responses to more cues, increased distance to fewer cues. Distances did not affect the responding of children matched for mental and chronological age. (Author/JW)
System identification of perilymphatic fistula in an animal model
NASA Technical Reports Server (NTRS)
Wall, C. 3rd; Casselbrant, M. L.
1992-01-01
An acute animal model has been developed in the chinchilla for the study of perilymphatic fistulas. Micropunctures were made in three sites to simulate bony, round window, and oval window fistulas. The eye movements in response to pressure applied to the external auditory canal were recorded after micropuncture induction and in preoperative controls. The main pressure stimulus was a pseudorandom binary sequence (PRBS) that rapidly changed between plus and minus 200 mm of water. The PRBS stimulus, with its wide frequency bandwidth, produced responses clearly above the preoperative baseline in 78 percent of the runs. The response was better between 0.5 and 3.3 Hz than it was below 0.5 Hz. The direction of horizontal eye movement was toward the side of the fistula with positive pressure applied in 92 percent of the runs. Vertical eye movements were also observed. The ratio of vertical eye displacement to horizontal eye displacement depended upon the site of the micropuncture induction. Thus, such a ratio measurement may be clinically useful in the noninvasive localization of perilymphatic fistulas in humans.
Composition and analysis of a model waste for a CELSS (Controlled Ecological Life Support System)
NASA Technical Reports Server (NTRS)
Wydeven, T. J.
1983-01-01
A model waste based on a modest vegetarian diet is given, including composition and elemental analysis. Its use is recommended for evaluation of candidate waste treatment processes for a Controlled Ecological Life Support System (CELSS).
Generalization of value in reinforcement learning by humans.
Wimmer, G Elliott; Daw, Nathaniel D; Shohamy, Daphna
2012-04-01
Research in decision-making has focused on the role of dopamine and its striatal targets in guiding choices via learned stimulus-reward or stimulus-response associations, behavior that is well described by reinforcement learning theories. However, basic reinforcement learning is relatively limited in scope and does not explain how learning about stimulus regularities or relations may guide decision-making. A candidate mechanism for this type of learning comes from the domain of memory, which has highlighted a role for the hippocampus in learning of stimulus-stimulus relations, typically dissociated from the role of the striatum in stimulus-response learning. Here, we used functional magnetic resonance imaging and computational model-based analyses to examine the joint contributions of these mechanisms to reinforcement learning. Humans performed a reinforcement learning task with added relational structure, modeled after tasks used to isolate hippocampal contributions to memory. On each trial participants chose one of four options, but the reward probabilities for pairs of options were correlated across trials. This (uninstructed) relationship between pairs of options potentially enabled an observer to learn about option values based on experience with the other options and to generalize across them. We observed blood oxygen level-dependent (BOLD) activity related to learning in the striatum and also in the hippocampus. By comparing a basic reinforcement learning model to one augmented to allow feedback to generalize between correlated options, we tested whether choice behavior and BOLD activity were influenced by the opportunity to generalize across correlated options. Although such generalization goes beyond standard computational accounts of reinforcement learning and striatal BOLD, both choices and striatal BOLD activity were better explained by the augmented model. Consistent with the hypothesized role for the hippocampus in this generalization, functional connectivity between the ventral striatum and hippocampus was modulated, across participants, by the ability of the augmented model to capture participants' choice. Our results thus point toward an interactive model in which striatal reinforcement learning systems may employ relational representations typically associated with the hippocampus. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Fortes, Inês; Machado, Armando; Vasconcelos, Marco
2017-11-01
In the natural environment, when an animal encounters a stimulus that signals the absence of food-a 'bad-news' stimulus-it will most likely redirect its search to another patch or prey. Because the animal does not pay the opportunity cost of waiting in the presence of a bad-news stimulus, the properties of the stimulus (e.g., its duration and probability) may have little impact in the evolution of the decision processes deployed in these circumstances. Hence, in the laboratory, when animals are forced to experience a bad-news stimulus they seem to ignore its duration, even though they pay the cost of waiting. Under certain circumstances, this insensitivity to the opportunity cost can lead to suboptimal preferences, such as a preference for an option yielding a low rather than a high rate of reinforcement. In 2 experiments, we tested Vasconcelos, Monteiro, and Kacelnik's (2015) assumption that, if given the opportunity, animals will escape the bad-news stimulus. To predict when an escape response should occur, we incorporated ideas from the prey choice model into Vasconcelos et al. (2015) model and made 2 novel predictions. Namely, both longer intertrial intervals and longer durations of signals predicting food or no food should lead to higher proportions of escape responses. The results of 2 experiments with pigeons supported these predictions. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Griffeth, Valerie E M; Simon, Aaron B; Buxton, Richard B
2015-01-01
Quantitative functional MRI (fMRI) experiments to measure blood flow and oxygen metabolism coupling in the brain typically rely on simple repetitive stimuli. Here we compared such stimuli with a more naturalistic stimulus. Previous work on the primary visual cortex showed that direct attentional modulation evokes a blood flow (CBF) response with a relatively large oxygen metabolism (CMRO2) response in comparison to an unattended stimulus, which evokes a much smaller metabolic response relative to the flow response. We hypothesized that a similar effect would be associated with a more engaging stimulus, and tested this by measuring the primary human visual cortex response to two contrast levels of a radial flickering checkerboard in comparison to the response to free viewing of brief movie clips. We did not find a significant difference in the blood flow-metabolism coupling (n=%ΔCBF/%ΔCMRO2) between the movie stimulus and the flickering checkerboards employing two different analysis methods: a standard analysis using the Davis model and a new analysis using a heuristic model dependent only on measured quantities. This finding suggests that in the primary visual cortex a naturalistic stimulus (in comparison to a simple repetitive stimulus) is either not sufficient to provoke a change in flow-metabolism coupling by attentional modulation as hypothesized, that the experimental design disrupted the cognitive processes underlying the response to a more natural stimulus, or that the technique used is not sensitive enough to detect a small difference. Copyright © 2014 Elsevier Inc. All rights reserved.
Garske, Luke A; Lal, Ravin; Stewart, Ian B; Morris, Norman R; Cross, Troy J; Adams, Lewis
2017-05-01
Chest wall strapping has been used to assess mechanisms of dyspnea with restrictive lung disease. This study examined the hypothesis that dyspnea with restriction depends principally on the degree of reflex ventilatory stimulation. We compared dyspnea at the same (iso)ventilation when added dead space provided a component of the ventilatory stimulus during exercise. Eleven healthy men undertook a randomized controlled crossover trial that compared four constant work exercise conditions: 1 ) control (CTRL): unrestricted breathing at 90% gas exchange threshold (GET); 2 ) CTRL+dead space (DS): unrestricted breathing with 0.6-l dead space, at isoventilation to CTRL due to reduced exercise intensity; 3 ) CWS: chest wall strapping at 90% GET; and 4 ) CWS+DS: chest strapping with 0.6-l dead space, at isoventilation to CWS with reduced exercise intensity. Chest strapping reduced forced vital capacity by 30.4 ± 2.2% (mean ± SE). Dyspnea at isoventilation was unchanged with CTRL+DS compared with CTRL (1.93 ± 0.49 and 2.17 ± 0.43, 0-10 numeric rating scale, respectively; P = 0.244). Dyspnea was lower with CWS+DS compared with CWS (3.40 ± 0.52 and 4.51 ± 0.53, respectively; P = 0.003). Perceived leg fatigue was reduced with CTRL+DS compared with CTRL (2.36 ± 0.48 and 2.86 ± 0.59, respectively; P = 0.049) and lower with CWS+DS compared with CWS (1.86 ± 0.30 and 4.00 ± 0.79, respectively; P = 0.006). With unrestricted breathing, dead space did not change dyspnea at isoventilation, suggesting that dyspnea does not depend on the mode of reflex ventilatory stimulation in healthy individuals. With chest strapping, dead space presented a less potent stimulus to dyspnea, raising the possibility that leg muscle work contributes to dyspnea perception independent of the ventilatory stimulus. NEW & NOTEWORTHY Chest wall strapping was applied to healthy humans to simulate restrictive lung disease. With chest wall strapping, dyspnea was reduced when dead space substituted for part of a constant exercise stimulus to ventilation. Dyspnea associated with chest wall strapping depended on the contribution of leg muscle work to ventilatory stimulation. Chest wall strapping might not be a clinically relevant model to determine whether an alternative reflex ventilatory stimulus mimics the intensity of exertional dyspnea. Copyright © 2017 the American Physiological Society.
Effects of a social stimulus on gene expression in a mouse model of fragile X syndrome.
Rogers, Tiffany D; Anacker, Allison M J; Kerr, Travis M; Forsberg, C Gunnar; Wang, Jing; Zhang, Bing; Veenstra-VanderWeele, Jeremy
2017-01-01
People with fragile X syndrome (FXS) often have deficits in social behavior, and a substantial portion meet criteria for autism spectrum disorder. Though the genetic cause of FXS is known to be due to the silencing of FMR1 , and the Fmr1 null mouse model representing this lesion has been extensively studied, the contributions of this gene and its protein product, FMRP, to social behavior are not well understood. Fmr1 null mice and wildtype littermates were exposed to a social or non-social stimulus. In one experiment, subjects were assessed for expression of the inducible transcription factor c-Fos in response to the stimulus, to detect brain regions with social-specific activity. In a separate experiment, tissue was taken from those brain regions showing differential activity, and RNA sequencing was performed. Immunohistochemistry revealed a significantly greater number of c-Fos-positive cells in the lateral amygdala and medial amygdala in the brains of mice exposed to a social stimulus, compared to a non-social stimulus. In the prelimbic cortex, there was no significant effect of social stimulus; although the number of c-Fos-positive cells was lower in the social condition compared to the non-social condition, and negatively correlated with c-Fos in the amygdala. RNA sequencing revealed differentially expressed genes enriched for molecules known to interact with FMRP and also for autism-related genes identified in the Simons Foundation Autism Research Initiative gene database. Ingenuity Pathway Analysis detected enrichment of differentially expressed genes in networks and pathways related to neuronal development, intracellular signaling, and inflammatory response. Using the Fmr1 null mouse model of fragile X syndrome, we have identified brain regions, gene networks, and molecular pathways responsive to a social stimulus. These findings, and future experiments following up on the role of specific gene networks, may shed light on the neural mechanisms underlying dysregulated social behaviors in fragile X syndrome and more broadly.
The Neural Correlates of Implicit Sequence Learning in Schizophrenia
Marvel, Cherie L.; Turner, Beth M.; O’Leary, Daniel S.; Johnson, Hans J.; Pierson, Ronald K.; Boles Ponto, Laura L.; Andreasen, Nancy C.
2009-01-01
Twenty-seven schizophrenia spectrum patients and 25 healthy controls performed a probabilistic version of the serial reaction time task (SRT) that included sequence trials embedded within random trials. Patients showed diminished, yet measurable, sequence learning. Postexperimental analyses revealed that a group of patients performed above chance when generating short spans of the sequence. This high-generation group showed SRT learning that was similar in magnitude to that of controls. Their learning was evident from the very 1st block; however, unlike controls, learning did not develop further with continued testing. A subset of 12 patients and 11 controls performed the SRT in conjunction with positron emission tomography. High-generation performance, which corresponded to SRT learning in patients, correlated to activity in the premotor cortex and parahippocampus. These areas have been associated with stimulus-driven visuospatial processing. Taken together, these results suggest that a subset of patients who showed moderate success on the SRT used an explicit stimulus-driven strategy to process the sequential stimuli. This adaptive strategy facilitated sequence learning but may have interfered with conventional implicit learning of the overall stimulus pattern. PMID:17983290
Coincidence timing of a soccer pass: effects of stimulus velocity and movement distance.
Williams, L R
2000-08-01
The effect of stimulus velocity and movement extent on coincidence timing and spatial accuracy of a soccer pass was investigated. A Bassin anticipation timer provided light stimulus velocities of 1.79 or 2.68 m/sec. (designated as "Low" and "High", respectively), and subjects were required to kick a stationary soccer ball so that it struck a target in coincidence with the arrival of the light stimulus at the end of the runway. Two kick types were used. The "Short" condition began with the subject 70 cm from the ball and required a single forward step with the nonkicking leg before making the kick. The "Long" condition began 140 cm from the ball and required two steps before the kick. Twenty male subjects were given 16 trials under each of the four combinations of stimulus velocity and kick type. The expectation that the faster stimulus velocity would be associated with lower coincidence timing scores for both absolute error (AE) and variable error (VE) and with late responding for constant error (CEO) was upheld with the exception that for the Long Kick-High Velocity condition, AE was highest. The index of preprogramming (IP) was used to test the hypothesis that a two-stage control process would characterise coincidence anticipation performance involving whole-body movements. Results showed that the preparatory phase of responding produced zero-order IPs signifying reliance on feedback control. Also, while the striking phase produced high IP and suggested reliance on preprogrammed control, the possibility that the High Velocity conditions may have limited the responses was recognised. As a consequence, the role of open-loop processes remained equivocal. The findings are, however, in agreement with the view that the sensorimotor and movement-execution phases of responding require a process that is characterised by adaptability to regulatory features of the environment via closed loop mechanisms involving perception-action coupling.
Chow, Stephanie S.; Romo, Ranulfo; Brody, Carlos D.
2010-01-01
In a complex world, a sensory cue may prompt different actions in different contexts. A laboratory example of context-dependent sensory processing is the two-stimulus-interval discrimination task. In each trial, a first stimulus (f1) must be stored in short-term memory and later compared with a second stimulus (f2), for the animal to come to a binary decision. Prefrontal cortex (PFC) neurons need to interpret the f1 information in one way (perhaps with a positive weight) and the f2 information in an opposite way (perhaps with a negative weight), although they come from the very same secondary somatosensory cortex (S2) neurons; therefore, a functional sign inversion is required. This task thus provides a clear example of context-dependent processing. Here we develop a biologically plausible model of a context-dependent signal transformation of the stimulus encoding from S2 to PFC. To ground our model in experimental neurophysiology, we use neurophysiological data recorded by R. Romo’s laboratory from both cortical area S2 and PFC in monkeys performing the task. Our main goal is to use experimentally observed context-dependent modulations of firing rates in cortical area S2 as the basis for a model that achieves a context-dependent inversion of the sign of S2 to PFC connections. This is done without requiring any changes in connectivity (Salinas, 2004b). We (1) characterize the experimentally observed context-dependent firing rate modulation in area S2, (2) construct a model that results in the sign transformation, and (3) characterize the robustness and consequent biological plausibility of the model. PMID:19494146
Birznieks, Ingvars; Redmond, Stephen J.
2015-01-01
Dexterous manipulation is not possible without sensory information about object properties and manipulative forces. Fundamental neuroscience has been unable to demonstrate how information about multiple stimulus parameters may be continuously extracted, concurrently, from a population of tactile afferents. This is the first study to demonstrate this, using spike trains recorded from tactile afferents innervating the monkey fingerpad. A multiple-regression model, requiring no a priori knowledge of stimulus-onset times or stimulus combination, was developed to obtain continuous estimates of instantaneous force and torque. The stimuli consisted of a normal-force ramp (to a plateau of 1.8, 2.2, or 2.5 N), on top of which −3.5, −2.0, 0, +2.0, or +3.5 mNm torque was applied about the normal to the skin surface. The model inputs were sliding windows of binned spike counts recorded from each afferent. Models were trained and tested by 15-fold cross-validation to estimate instantaneous normal force and torque over the entire stimulation period. With the use of the spike trains from 58 slow-adapting type I and 25 fast-adapting type I afferents, the instantaneous normal force and torque could be estimated with small error. This study demonstrated that instantaneous force and torque parameters could be reliably extracted from a small number of tactile afferent responses in a real-time fashion with stimulus combinations that the model had not been exposed to during training. Analysis of the model weights may reveal how interactions between stimulus parameters could be disentangled for complex population responses and could be used to test neurophysiologically relevant hypotheses about encoding mechanisms. PMID:25948866
Uncertainty during pain anticipation: the adaptive value of preparatory processes.
Seidel, Eva-Maria; Pfabigan, Daniela M; Hahn, Andreas; Sladky, Ronald; Grahl, Arvina; Paul, Katharina; Kraus, Christoph; Küblböck, Martin; Kranz, Georg S; Hummer, Allan; Lanzenberger, Rupert; Windischberger, Christian; Lamm, Claus
2015-02-01
Anticipatory processes prepare the organism for upcoming experiences. The aim of this study was to investigate neural responses related to anticipation and processing of painful stimuli occurring with different levels of uncertainty. Twenty-five participants (13 females) took part in an electroencephalography and functional magnetic resonance imaging (fMRI) experiment at separate times. A visual cue announced the occurrence of an electrical painful or nonpainful stimulus, delivered with certainty or uncertainty (50% chance), at some point during the following 15 s. During the first 2 s of the anticipation phase, a strong effect of uncertainty was reflected in a pronounced frontal stimulus-preceding negativity (SPN) and increased fMRI activation in higher visual processing areas. In the last 2 s before stimulus delivery, we observed stimulus-specific preparatory processes indicated by a centroparietal SPN and posterior insula activation that was most pronounced for the certain pain condition. Uncertain anticipation was associated with attentional control processes. During stimulation, the results revealed that unexpected painful stimuli produced the strongest activation in the affective pain processing network and a more pronounced offset-P2. Our results reflect that during early anticipation uncertainty is strongly associated with affective mechanisms and seems to be a more salient event compared to certain anticipation. During the last 2 s before stimulation, attentional control mechanisms are initiated related to the increased salience of uncertainty. Furthermore, stimulus-specific preparatory mechanisms during certain anticipation also shaped the response to stimulation, underlining the adaptive value of stimulus-targeted preparatory activity which is less likely when facing an uncertain event. © 2014 Wiley Periodicals, Inc.
Constitutive modeling and control of 1D smart composite structures
NASA Astrophysics Data System (ADS)
Briggs, Jonathan P.; Ostrowski, James P.; Ponte-Castaneda, Pedro
1998-07-01
Homogenization techniques for determining effective properties of composite materials may provide advantages for control of stiffness and strain in systems using hysteretic smart actuators embedded in a soft matrix. In this paper, a homogenized model of a 1D composite structure comprised of shape memory alloys and a rubber-like matrix is presented. With proportional and proportional/integral feedback, using current as the input state and global strain as an error state, implementation scenarios include the use of tractions on the boundaries and a nonlinear constitutive law for the matrix. The result is a simple model which captures the nonlinear behavior of the smart composite material system and is amenable to experiments with various control paradigms. The success of this approach in the context of the 1D model suggests that the homogenization method may prove useful in investigating control of more general smart structures. Applications of such materials could include active rehabilitation aids, e.g. wrist braces, as well as swimming/undulating robots, or adaptive molds for manufacturing processes.
Adaptive effort investment in cognitive and physical tasks: a neurocomputational model
Verguts, Tom; Vassena, Eliana; Silvetti, Massimo
2015-01-01
Despite its importance in everyday life, the computational nature of effort investment remains poorly understood. We propose an effort model obtained from optimality considerations, and a neurocomputational approximation to the optimal model. Both are couched in the framework of reinforcement learning. It is shown that choosing when or when not to exert effort can be adaptively learned, depending on rewards, costs, and task difficulty. In the neurocomputational model, the limbic loop comprising anterior cingulate cortex (ACC) and ventral striatum in the basal ganglia allocates effort to cortical stimulus-action pathways whenever this is valuable. We demonstrate that the model approximates optimality. Next, we consider two hallmark effects from the cognitive control literature, namely proportion congruency and sequential congruency effects. It is shown that the model exerts both proactive and reactive cognitive control. Then, we simulate two physical effort tasks. In line with empirical work, impairing the model's dopaminergic pathway leads to apathetic behavior. Thus, we conceptually unify the exertion of cognitive and physical effort, studied across a variety of literatures (e.g., motivation and cognitive control) and animal species. PMID:25805978
Increasing food deprivation relative to baseline influences D-amphetamine dose-response gradients.
Lotfizadeh, Amin D; Zimmermann, Zachary J; Watkins, Erin E; Edwards, Timothy L; Poling, Alan
2014-10-01
Several studies using non-pharmacological discriminative stimuli have found that stimulus control, as evident in generalization gradients, changes when motivation for (i.e., deprivation of) the relevant reinforcer is altered. Drug-discrimination studies, however, have not consistently revealed such an effect. A procedural detail that may account for the lack of a reliable effect in drug-discrimination studies is that motivation was characteristically reduced relative to the training condition in these studies. The present experiment examined how substantially increasing motivation affects D-amphetamine discrimination. Rats initially were trained to discriminate D-amphetamine (1.0 mg/kg) from vehicle (0 mg/kg) injections under 22-h food deprivation conditions. Dose-response gradients were then obtained under 22-h and 46-h deprivation levels. The ED50 was significantly higher with greater deprivation. This finding suggests that increasing motivation relative to the training condition may reduce stimulus control by drugs, while decreasing it may sharpen stimulus control. Copyright © 2014. Published by Elsevier Inc.
Closed head injury and perceptual processing in dual-task situations.
Hein, G; Schubert, T; von Cramon, D Y
2005-01-01
Using a classical psychological refractory period (PRP) paradigm we investigated whether increased interference between dual-task input processes is one possible source of dual-task deficits in patients with closed-head injury (CHI). Patients and age-matched controls were asked to give speeded motor reactions to an auditory and a visual stimulus. The perceptual difficulty of the visual stimulus was manipulated by varying its intensity. The results of Experiment 1 showed that CHI patients suffer from increased interference between dual-task input processes, which is related to the salience of the visual stimulus. A second experiment indicated that this input interference may be specific to brain damage following CHI. It is not evident in other groups of neurological patients like Parkinson's disease patients. We conclude that the non-interfering processing of input stages in dual-tasks requires cognitive control. A decline in the control of input processes should be considered as one source of dual-task deficits in CHI patients.
Task by stimulus interactions in brain responses during Chinese character processing.
Yang, Jianfeng; Wang, Xiaojuan; Shu, Hua; Zevin, Jason D
2012-04-02
In the visual word recognition literature, it is well understood that various stimulus effects interact with behavioral task. For example, effects of word frequency are exaggerated and effects of spelling-to-sound regularity are reduced in the lexical decision task, relative to reading aloud. Neuroimaging studies of reading often examine effects of task and stimulus properties on brain activity independently, but potential interactions between task demands and stimulus effects have not been extensively explored. To address this issue, we conducted lexical decision and symbol detection tasks using stimuli that varied parametrically in their word-likeness, and tested for task by stimulus class interactions. Interactions were found throughout the reading system, such that stimulus selectivity was observed during the lexical decision task, but not during the symbol detection task. Further, the pattern of stimulus selectivity was directly related to task difficulty, so that the strongest brain activity was observed to the most word-like stimuli that required "no" responses, whereas brain activity to words, which elicit rapid and accurate "yes" responses were relatively weak. This is in line with models that argue for task-dependent specialization of brain regions, and contrasts with the notion of task-independent stimulus selectivity in the reading system. Copyright © 2012 Elsevier Inc. All rights reserved.
12 days of altitude exposure at 1800 m does not increase resting metabolic rate in elite rowers.
Woods, Amy L; Garvican-Lewis, Laura A; Rice, Anthony; Thompson, Kevin G
2017-06-01
Four elite rowers completed a 12-day altitude training camp living at 1800 m, and training at 1800 m and 915 m, to assess changes in resting metabolic rate (RMR). RMR and body composition were assessed pre- and postcamp. Downward trends in RMR and body composition were observed postaltitude: absolute RMR (percent change: -5.2%), relative RMR (-4.6%), body mass (-1.2%), and fat mass (-4.1%). These variations are likely related to the hypoxic stimulus and an imbalance between training load and energy intake.
Lin, Alexander J; Ponticorvo, Adrien; Durkin, Anthony J; Venugopalan, Vasan; Choi, Bernard; Tromberg, Bruce J
2015-10-01
Baseline optical properties are typically assumed in calculating the differential pathlength factor (DPF) of mouse brains, a value used in the modified Beer-Lambert law to characterize an evoked stimulus response. We used spatial frequency domain imaging to measure in vivo baseline optical properties in 20-month-old control ([Formula: see text]) and triple transgenic APP/PS1/tau (3xTg-AD) ([Formula: see text]) mouse brains. Average [Formula: see text] for control and 3xTg-AD mice was [Formula: see text] and [Formula: see text], respectively, at 460 nm; and [Formula: see text] and [Formula: see text], respectively, at 530 nm. Average [Formula: see text] for control and 3xTg-AD mice was [Formula: see text] and [Formula: see text], respectively, at 460 nm; and [Formula: see text] and [Formula: see text], respectively, at 530 nm. The calculated DPF for control and 3xTg-AD mice was [Formula: see text] and [Formula: see text] OD mm, respectively, at 460 nm; and [Formula: see text] and [Formula: see text] OD mm, respectively, at 530 nm. In hindpaw stimulation experiments, the hemodynamic increase in brain tissue concentration of oxyhemoglobin was threefold larger and two times longer in the control mice compared to 3xTg-AD mice. Furthermore, the washout of deoxyhemoglobin from increased brain perfusion was seven times larger in controls compared to 3xTg-AD mice ([Formula: see text]).
Satterfield, Brieann C; Hinson, John M; Whitney, Paul; Schmidt, Michelle A; Wisor, Jonathan P; Van Dongen, Hans P A
2018-02-01
Adaptive decision making is profoundly impaired by total sleep deprivation (TSD). This suggests that TSD impacts fronto-striatal pathways involved in cognitive control, where dopamine is a key neuromodulator. In the prefrontal cortex (PFC), dopamine is catabolized by the enzyme catechol-O-methyltransferase (COMT). A functional polymorphism (Val158Met) influences COMT's enzymatic activity, resulting in markedly different levels of prefrontal dopamine. We investigated the effect of this polymorphism on adaptive decision making during TSD. Sixty-six healthy young adults participated in one of two in-laboratory studies. After a baseline day, subjects were randomized to either a TSD group (n = 32) with 38 h or 62 h of extended wakefulness or a well-rested control group (n = 34) with 10 h nighttime sleep opportunities. Subjects performed a go/no-go reversal learning (GNGr) task at well-rested baseline and again during TSD or equivalent control. During the task, subjects were required to learn stimulus-response relationships from accuracy feedback. The stimulus-response relationships were reversed halfway through the task, which required subjects to learn the new stimulus-response relationships from accuracy feedback. Performance on the GNGr task was quantified by discriminability (d') between go and no-go stimuli before and after the stimulus-response reversal. GNGr performance did not differ between COMT genotypes when subjects were well-rested. However, TSD exposed a significant vulnerability to adaptive decision making impairment in subjects with the Val allele. Our results indicate that sleep deprivation degrades cognitive control through a fronto-striatal, dopaminergic mechanism. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tracking the location of visuospatial attention in a contingent capture paradigm.
Leblanc, Emilie; Prime, David J; Jolicoeur, Pierre
2008-04-01
Currently, there is considerable controversy regarding the degree to which top-down control can affect attentional capture by salient events. According to the contingent capture hypothesis, attentional capture by a salient stimulus is contingent on a match between the properties of the stimulus and top-down attentional control settings. In contrast, bottom-up saliency accounts argue that the initial capture of attention is determined solely by the relative salience of the stimulus, and the effect of top-down attentional control is limited to effects on the duration of attentional engagement on the capturing stimulus. In the present study, we tested these competing accounts by utilizing the N2pc event-related potential component to track the locus of attention during an attentional capture task. The results were completely consistent with the contingent capture hypothesis: An N2pc wave was elicited only by distractors that possessed the target-defining attribute. In a second experiment, we expanded upon this finding by exploring the effect of target-distractor similarity on the duration that attention dwells at the distractor location. In this experiment, only distractors possessing the target-defining attribute (color) captured visuospatial attention to their location and the N2pc increased in duration and in magnitude when the capture distractor also shared a second target attribute (category membership). Finally, in three additional control experiments, we replicated the finding of an N2pc generated by distractors, only if they shared the target-defining attribute. Thus, our results demonstrate that attentional control settings influence both which stimuli attract attention and to what extent they are processed.
The contribution of stimulus frequency and recency to set-size effects.
van 't Wout, Félice
2018-06-01
Hick's law describes the increase in choice reaction time (RT) with the number of stimulus-response (S-R) mappings. However, in choice RT experiments, set-size is typically confounded with stimulus recency and frequency: With a smaller set-size, each stimulus occurs on average more frequently and more recently than with a larger set-size. To determine to what extent stimulus recency and frequency contribute to the set-size effect, stimulus set-size was manipulated independently of stimulus recency and frequency, by keeping recency and frequency constant for a subset of the stimuli. Although this substantially reduced the set-size effect (by approximately two-thirds for these stimuli), it did not eliminate it. Thus, the time required to retrieve an S-R mapping from memory is (at least in part) determined by the number of alternatives. In contrast, a recent task switching study (Van 't Wout et al. in Journal of Experimental Psychology: Learning, Memory & Cognition., 41, 363-376, 2015) using the same manipulation found that the time required to retrieve a task-set from memory is not influenced by the number of alternatives per se. Hence, this experiment further supports a distinction between two levels of representation in task-set control: The level of task-sets, and the level of S-R mappings.
Federici, Lauren M.; Roth, Sarah Dorsey; Krier, Connie; Fitz, Stephanie D.; Skaar, Todd; Shekhar, Anantha; Carpenter, Janet S.; Johnson, Philip L.
2016-01-01
Objective Since longitudinal studies determined that anxiety is a strong risk factor for hot flashes, we hypothesized that an anxiogenic stimulus that signals air hunger (hypercapnic, normoxic gas) would trigger an exacerbated hot flash-associated increase in tail skin temperature (TST) in a rat ovariectomy (OVEX) model of surgical menopause and hot flashes in symptomatic menopausal women. We also assessed TST responses in OVEX serotonin transporter (SERT)+/− rats that models a common polymorphism that is associated with increased climacteric symptoms in menopausal women and increases in anxiety traits. Methods OVEX and sham-OVEX rats (initial experiment) and wildtype and SERT+/− OVEX rats (subsequent experiment) were exposed to a 5 min infusion of 20%CO2 normoxic gas while measuring TST. Menopausal women were given brief 20% and 35%CO2 challenges, and hot flashes were self-reported and objectively verified. Results Compared to controls, OVEX rats had exacerbated increases in TST, and SERT+/− OVEX rats had prolonged TST increases following CO2. Most women reported mild/moderate hot flashes after CO2 challenges, and the hot flash severity to CO2 was positively correlated with daily hot flash frequency. Conclusions The studies demonstrate that this anxiogenic stimulus is capable of inducing cutaneous vasomotor responses in OVEX rats, and eliciting hot flashes in menopausal women. In rats, the severity of the response was mediated by loss of ovarian function and increased anxiety traits (SERT+/−), and, in women, by daily hot flash frequency. These findings may provide insights into anxiety related triggers and genetic risk factors for hot flashes in thermoneutral environments. PMID:27465717
Yang, Huan; Meijer, Hil G E; Buitenweg, Jan R; van Gils, Stephan A
2016-01-01
Healthy or pathological states of nociceptive subsystems determine different stimulus-response relations measured from quantitative sensory testing. In turn, stimulus-response measurements may be used to assess these states. In a recently developed computational model, six model parameters characterize activation of nerve endings and spinal neurons. However, both model nonlinearity and limited information in yes-no detection responses to electrocutaneous stimuli challenge to estimate model parameters. Here, we address the question whether and how one can overcome these difficulties for reliable parameter estimation. First, we fit the computational model to experimental stimulus-response pairs by maximizing the likelihood. To evaluate the balance between model fit and complexity, i.e., the number of model parameters, we evaluate the Bayesian Information Criterion. We find that the computational model is better than a conventional logistic model regarding the balance. Second, our theoretical analysis suggests to vary the pulse width among applied stimuli as a necessary condition to prevent structural non-identifiability. In addition, the numerically implemented profile likelihood approach reveals structural and practical non-identifiability. Our model-based approach with integration of psychophysical measurements can be useful for a reliable assessment of states of the nociceptive system.
Aggregate Load Controllers and Associated Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chassin, David P.
Aggregate load controllers and associated methods are described. According to one aspect, a method of operating an aggregate load controller includes using an aggregate load controller having an initial state, applying a stimulus to a plurality of thermostatic controllers which are configured to control a plurality of respective thermostatic loads which receive electrical energy from an electrical utility to operate in a plurality of different operational modes, accessing data regarding a response of the thermostatic loads as a result of the applied stimulus, using the data regarding the response, determining a value of at least one design parameter of themore » aggregate load controller, and using the determined value of the at least one design parameter, configuring the aggregate load controller to control amounts of the electrical energy which are utilized by the thermostatic loads.« less
Expectation and Surprise Determine Neural Population Responses in the Ventral Visual Stream
Egner, Tobias; Monti, Jim M.; Summerfield, Christopher
2014-01-01
Visual cortex is traditionally viewed as a hierarchy of neural feature detectors, with neural population responses being driven by bottom-up stimulus features. Conversely, “predictive coding” models propose that each stage of the visual hierarchy harbors two computationally distinct classes of processing unit: representational units that encode the conditional probability of a stimulus and provide predictions to the next lower level; and error units that encode the mismatch between predictions and bottom-up evidence, and forward prediction error to the next higher level. Predictive coding therefore suggests that neural population responses in category-selective visual regions, like the fusiform face area (FFA), reflect a summation of activity related to prediction (“face expectation”) and prediction error (“face surprise”), rather than a homogenous feature detection response. We tested the rival hypotheses of the feature detection and predictive coding models by collecting functional magnetic resonance imaging data from the FFA while independently varying both stimulus features (faces vs houses) and subjects’ perceptual expectations regarding those features (low vs medium vs high face expectation). The effects of stimulus and expectation factors interacted, whereby FFA activity elicited by face and house stimuli was indistinguishable under high face expectation and maximally differentiated under low face expectation. Using computational modeling, we show that these data can be explained by predictive coding but not by feature detection models, even when the latter are augmented with attentional mechanisms. Thus, population responses in the ventral visual stream appear to be determined by feature expectation and surprise rather than by stimulus features per se. PMID:21147999
Limit-cycle-based control of the myogenic wingbeat rhythm in the fruit fly Drosophila
Bartussek, Jan; Mutlu, A. Kadir; Zapotocky, Martin; Fry, Steven N.
2013-01-01
In many animals, rhythmic motor activity is governed by neural limit cycle oscillations under the control of sensory feedback. In the fruit fly Drosophila melanogaster, the wingbeat rhythm is generated myogenically by stretch-activated muscles and hence independently from direct neural input. In this study, we explored if generation and cycle-by-cycle control of Drosophila's wingbeat are functionally separated, or if the steering muscles instead couple into the myogenic rhythm as a weak forcing of a limit cycle oscillator. We behaviourally tested tethered flying flies for characteristic properties of limit cycle oscillators. To this end, we mechanically stimulated the fly's ‘gyroscopic’ organs, the halteres, and determined the phase relationship between the wing motion and stimulus. The flies synchronized with the stimulus for specific ranges of stimulus amplitude and frequency, revealing the characteristic Arnol'd tongues of a forced limit cycle oscillator. Rapid periodic modulation of the wingbeat frequency prior to locking demonstrates the involvement of the fast steering muscles in the observed control of the wingbeat frequency. We propose that the mechanical forcing of a myogenic limit cycle oscillator permits flies to avoid the comparatively slow control based on a neural central pattern generator. PMID:23282849
Does conflict control occur without awareness? Evidence from an ERP study.
Wang, Baoxi; Xiang, Ling; Li, Juan
2013-01-15
The relationship between conflict control and awareness has attracted extensive interest. Although researchers have investigated the relationship between response conflict and awareness, it still remains unclear whether stimulus conflict can occur outside of awareness. In addition, previous studies on the role of awareness in conflict control have ignored the fact that conflict control includes both conflict detection and resolution. A modified version of the flanker task was used to manipulate stimulus and response conflicts under both masked and unmasked conditions. The masked condition elicited a sequence of distinct event-related potential components that were also observed in the unmasked condition. N2 amplitudes presented the following pattern: incongruent-eligible>incongruent-ineligible>congruent, they did not show any difference under the masked and unmasked conditions, suggesting that detection of stimulus-related conflict revealed by the comparison between incongruent-ineligible and congruent trials, and response-related conflict revealed by the comparison between incongruent-eligible and incongruent-ineligible trials can occur in the absence of awareness, and unconscious conflict detection might involve the same neural network employed for conscious conflict detection. Late positive component (LPC) amplitudes also presented as incongruent-eligible>incongruent-ineligible>congruent at CPz and Pz, irrespective of conscious awareness. However, LPC amplitudes under the masked condition were markedly reduced compared to unmasked trials. These LPC findings suggest that stimulus- and response-related conflict resolution can occur in the absence of awareness; furthermore, unconscious conflict resolution might involve a weaker cognitive control network compared to conscious conflict resolution. These findings have important implications for the theories concerning the relationship between cognitive control and awareness. Copyright © 2012 Elsevier B.V. All rights reserved.
Crago, Patrick E; Makowski, Nathan S
2014-01-01
Objective Stimulation of peripheral nerves is often superimposed on ongoing motor and sensory activity in the same axons, without a quantitative model of the net action potential train at the axon endpoint. Approach We develop a model of action potential patterns elicited by superimposing constant frequency axonal stimulation on the action potentials arriving from a physiologically activated neural source. The model includes interactions due to collision block, resetting of the neural impulse generator, and the refractory period of the axon at the point of stimulation. Main Results Both the mean endpoint firing rate and the probability distribution of the action potential firing periods depend strongly on the relative firing rates of the two sources and the intersite conduction time between them. When the stimulus rate exceeds the neural rate, neural action potentials do not reach the endpoint and the rate of endpoint action potentials is the same as the stimulus rate, regardless of the intersite conduction time. However, when the stimulus rate is less than the neural rate, and the intersite conduction time is short, the two rates partially sum. Increases in stimulus rate produce non-monotonic increases in endpoint rate and continuously increasing block of neurally generated action potentials. Rate summation is reduced and more neural action potentials are blocked as the intersite conduction time increases.. At long intersite conduction times, the endpoint rate simplifies to being the maximum of either the neural or the stimulus rate. Significance This study highlights the potential of increasing the endpoint action potential rate and preserving neural information transmission by low rate stimulation with short intersite conduction times. Intersite conduction times can be decreased with proximal stimulation sites for muscles and distal stimulation sites for sensory endings. The model provides a basis for optimizing experiments and designing neuroprosthetic interventions involving motor or sensory stimulation. PMID:25161163
NASA Astrophysics Data System (ADS)
Crago, Patrick E.; Makowski, Nathaniel S.
2014-10-01
Objective. Stimulation of peripheral nerves is often superimposed on ongoing motor and sensory activity in the same axons, without a quantitative model of the net action potential train at the axon endpoint. Approach. We develop a model of action potential patterns elicited by superimposing constant frequency axonal stimulation on the action potentials arriving from a physiologically activated neural source. The model includes interactions due to collision block, resetting of the neural impulse generator, and the refractory period of the axon at the point of stimulation. Main results. Both the mean endpoint firing rate and the probability distribution of the action potential firing periods depend strongly on the relative firing rates of the two sources and the intersite conduction time between them. When the stimulus rate exceeds the neural rate, neural action potentials do not reach the endpoint and the rate of endpoint action potentials is the same as the stimulus rate, regardless of the intersite conduction time. However, when the stimulus rate is less than the neural rate, and the intersite conduction time is short, the two rates partially sum. Increases in stimulus rate produce non-monotonic increases in endpoint rate and continuously increasing block of neurally generated action potentials. Rate summation is reduced and more neural action potentials are blocked as the intersite conduction time increases. At long intersite conduction times, the endpoint rate simplifies to being the maximum of either the neural or the stimulus rate. Significance. This study highlights the potential of increasing the endpoint action potential rate and preserving neural information transmission by low rate stimulation with short intersite conduction times. Intersite conduction times can be decreased with proximal stimulation sites for muscles and distal stimulation sites for sensory endings. The model provides a basis for optimizing experiments and designing neuroprosthetic interventions involving motor or sensory stimulation.
Van Ombergen, Angelique; Lubeck, Astrid J; Van Rompaey, Vincent; Maes, Leen K; Stins, John F; Van de Heyning, Paul H; Wuyts, Floris L; Bos, Jelte E
2016-01-01
Vestibular patients occasionally report aggravation or triggering of their symptoms by visual stimuli, which is called visual vestibular mismatch (VVM). These patients therefore experience discomfort, disorientation, dizziness and postural unsteadiness. Firstly, we aimed to get a better insight in the underlying mechanism of VVM by examining perceptual and postural symptoms. Secondly, we wanted to investigate whether roll-motion is a necessary trait to evoke these symptoms or whether a complex but stationary visual pattern equally provokes them. Nine VVM patients and healthy matched control group were examined by exposing both groups to a stationary stimulus as well as an optokinetic stimulus rotating around the naso-occipital axis for a prolonged period of time. Subjective visual vertical (SVV) measurements, posturography and relevant questionnaires were assessed. No significant differences between both groups were found for SVV measurements. Patients always swayed more and reported more symptoms than healthy controls. Prolonged exposure to roll-motion caused in patients and controls an increase in postural sway and symptoms. However, only VVM patients reported significantly more symptoms after prolonged exposure to the optokinetic stimulus compared to scores after exposure to a stationary stimulus. VVM patients differ from healthy controls in postural and subjective symptoms and motion is a crucial factor in provoking these symptoms. A possible explanation could be a central visual-vestibular integration deficit, which has implications for diagnostics and clinical rehabilitation purposes. Future research should focus on the underlying central mechanism of VVM and the effectiveness of optokinetic stimulation in resolving it.
Speech Prosody Across Stimulus Types for Individuals with Parkinson's Disease.
K-Y Ma, Joan; Schneider, Christine B; Hoffmann, Rüdiger; Storch, Alexander
2015-01-01
Up to 89% of the individuals with Parkinson's disease (PD) experience speech problem over the course of the disease. Speech prosody and intelligibility are two of the most affected areas in hypokinetic dysarthria. However, assessment of these areas could potentially be problematic as speech prosody and intelligibility could be affected by the type of speech materials employed. To comparatively explore the effects of different types of speech stimulus on speech prosody and intelligibility in PD speakers. Speech prosody and intelligibility of two groups of individuals with varying degree of dysarthria resulting from PD was compared to that of a group of control speakers using sentence reading, passage reading and monologue. Acoustic analysis including measures on fundamental frequency (F0), intensity and speech rate was used to form a prosodic profile for each individual. Speech intelligibility was measured for the speakers with dysarthria using direct magnitude estimation. Difference in F0 variability between the speakers with dysarthria and control speakers was only observed in sentence reading task. Difference in the average intensity level was observed for speakers with mild dysarthria to that of the control speakers. Additionally, there were stimulus effect on both intelligibility and prosodic profile. The prosodic profile of PD speakers was different from that of the control speakers in the more structured task, and lower intelligibility was found in less structured task. This highlighted the value of both structured and natural stimulus to evaluate speech production in PD speakers.
Top-down modulation: Bridging selective attention and working memory
Gazzaley, Adam; Nobre, Anna C.
2012-01-01
Selective attention, the ability to focus our cognitive resources on information relevant to our goals, influences working memory (WM) performance. Indeed, attention and working memory are increasingly viewed as overlapping constructs. Here, we review recent evidence from human neurophysiological studies demonstrating that top-down modulation serves as a common neural mechanism underlying these two cognitive operations. The core features include activity modulation in stimulus-selective sensory cortices with concurrent engagement of prefrontal and parietal control regions that function as sources of top-down signals. Notably, top-down modulation is engaged during both stimulus-present and stimulus-absent stages of WM tasks, i.e., expectation of an ensuing stimulus to be remembered, selection and encoding of stimuli, maintenance of relevant information in mind and memory retrieval. PMID:22209601
Seno, Takeharu; Fukuda, Haruaki
2012-01-01
Over the last 100 years, numerous studies have examined the effective visual stimulus properties for inducing illusory self-motion (known as vection). This vection is often experienced more strongly in daily life than under controlled experimental conditions. One well-known example of vection in real life is the so-called 'train illusion'. In the present study, we showed that this train illusion can also be generated in the laboratory using virtual computer graphics-based motion stimuli. We also demonstrated that this vection can be modified by altering the meaning of the visual stimuli (i.e., top down effects). Importantly, we show that the semantic meaning of a stimulus can inhibit or facilitate vection, even when there is no physical change to the stimulus.
Fischmeister, Florian Ph.S.; Leodolter, Ulrich; Windischberger, Christian; Kasess, Christian H.; Schöpf, Veronika; Moser, Ewald; Bauer, Herbert
2010-01-01
Throughout recent years there has been an increasing interest in studying unconscious visual processes. Such conditions of unawareness are typically achieved by either a sufficient reduction of the stimulus presentation time or visual masking. However, there are growing concerns about the reliability of the presentation devices used. As all these devices show great variability in presentation parameters, the processing of visual stimuli becomes dependent on the display-device, e.g. minimal changes in the physical stimulus properties may have an enormous impact on stimulus processing by the sensory system and on the actual experience of the stimulus. Here we present a custom-built three-way LC-shutter-tachistoscope which allows experimental setups with both, precise and reliable stimulus delivery, and millisecond resolution. This tachistoscope consists of three LCD-projectors equipped with zoom lenses to enable stimulus presentation via a built-in mirror-system onto a back projection screen from an adjacent room. Two high-speed liquid crystal shutters are mounted serially in front of each projector to control the stimulus duration. To verify the intended properties empirically, different sequences of presentation times were performed while changes in optical power were measured using a photoreceiver. The obtained results demonstrate that interfering variabilities in stimulus parameters and stimulus rendering are markedly reduced. Together with the possibility to collect external signals and to send trigger-signals to other devices, this tachistoscope represents a highly flexible and easy to set up research tool not only for the study of unconscious processing in the brain but for vision research in general. PMID:20122963
Shape control of NITINOL-reinforced composite beams
NASA Astrophysics Data System (ADS)
Baz, Amr M.; Chen, Tung-Huei; Ro, Jeng-Jong
1994-05-01
The shape of composite beams is controlled by sets of flat strips of a shape memory nickel-titanium alloy (NITINOL). A mathematical model is developed to describe the behavior of this class of SMART composites. The model describes the interaction between the elastic characteristics of the composite beams and the thermally- induced shape memory effect of the NITINOL strips. The effect of various activation strategies of the NITINOL strips on the shape of the composite beams is determined. The theoretical predictions of the model are validated experimentally using a fiberglass composite beam made of 8 plies of unidirectional BASF 5216 prepregs which are 9.75-cm wide and 21.20 cm long. The beams are provided with four NITINOL-55 strips which are 1.2 mm thick and 1.25 cm wide. The time response characteristics of the beam are monitored and compared with the corresponding theoretical characteristics. Close agreement is obtained between the theoretical predictions and the experimental results. The obtained results suggest the potential of the NITINOL strips in controlling the shape of composite beams without compromising their structural stiffness.
Caberlotto, Elisa; Ruiz, Laetitia; Miller, Zane; Poletti, Mickael; Tadlock, Lauri
2017-01-01
Mechanical and geometrical cues influence cell behaviour. At the tissue level, almost all organs exhibit immediate mechanical responsiveness, in particular by increasing their stiffness in direct proportion to an applied mechanical stress. It was recently shown in cultured-cell models, in particular with fibroblasts, that the frequency of the applied stress is a fundamental stimulating parameter. However, the influence of the stimulus frequency at the tissue level has remained elusive. Using a device to deliver an oscillating torque that generates cyclic strain at different frequencies, we studied the effect(s) of mild skin massage in an ex vivo model and in vivo. Skin explants were maintained ex vivo for 10 days and massaged twice daily for one minute at various frequencies within the range of 65-85 Hz. Biopsies were analysed at D0, D5 and D10 and processed for immuno-histological staining specific to various dermal proteins. As compared to untreated skin explants, the massaging procedure clearly led to higher rates of expression, in particular for decorin, fibrillin, tropoelastin, and procollagen-1. The mechanical stimulus thus evoked an anti-aging response. Strikingly, the expression was found to depend on the stimulus frequency with maximum expression at 75Hz. We then tested whether this mechanical stimulus had an anti-aging effect in vivo. Twenty Caucasian women (aged 65-75y) applied a commercial anti-aging cream to the face and neck, followed by daily treatments using the anti-aging massage device for 8 weeks. A control group of twenty-two women, with similar ages to the first group, applied the cream alone. At W0, W4 and W8, a blinded evaluator assessed the global facial wrinkles, skin texture, lip area, cheek wrinkles, neck sagging and neck texture using a clinical grading scale. We found that combining the massaging device with a skin anti-aging formulation amplified the beneficial effects of the cream.
Caberlotto, Elisa; Ruiz, Laetitia; Miller, Zane; Poletti, Mickael; Tadlock, Lauri
2017-01-01
Mechanical and geometrical cues influence cell behaviour. At the tissue level, almost all organs exhibit immediate mechanical responsiveness, in particular by increasing their stiffness in direct proportion to an applied mechanical stress. It was recently shown in cultured-cell models, in particular with fibroblasts, that the frequency of the applied stress is a fundamental stimulating parameter. However, the influence of the stimulus frequency at the tissue level has remained elusive. Using a device to deliver an oscillating torque that generates cyclic strain at different frequencies, we studied the effect(s) of mild skin massage in an ex vivo model and in vivo. Skin explants were maintained ex vivo for 10 days and massaged twice daily for one minute at various frequencies within the range of 65–85 Hz. Biopsies were analysed at D0, D5 and D10 and processed for immuno-histological staining specific to various dermal proteins. As compared to untreated skin explants, the massaging procedure clearly led to higher rates of expression, in particular for decorin, fibrillin, tropoelastin, and procollagen-1. The mechanical stimulus thus evoked an anti-aging response. Strikingly, the expression was found to depend on the stimulus frequency with maximum expression at 75Hz. We then tested whether this mechanical stimulus had an anti-aging effect in vivo. Twenty Caucasian women (aged 65-75y) applied a commercial anti-aging cream to the face and neck, followed by daily treatments using the anti-aging massage device for 8 weeks. A control group of twenty-two women, with similar ages to the first group, applied the cream alone. At W0, W4 and W8, a blinded evaluator assessed the global facial wrinkles, skin texture, lip area, cheek wrinkles, neck sagging and neck texture using a clinical grading scale. We found that combining the massaging device with a skin anti-aging formulation amplified the beneficial effects of the cream. PMID:28249037
How pigeons discriminate the relative frequency of events.
Keen, R; Machado, A
1999-09-01
This study examined how pigeons discriminate the relative frequencies of events when the events occur serially. In a discrete-trials procedure, 6 pigeons were shown one light nf times and then another nl times. Next, they received food for choosing the light that had occurred the least number of times during the sample. At issue were (a) how the discrimination was related to two variables, the difference between the frequencies of the two lights, D = nf - nl, and the total number of lights in the sample, T = nf + nl; and (b) whether a simple mathematical model of the discrimination process could account for the data. In contrast with models that assume that pigeons count the stimulus lights, engage in mental arithmetic on numerons, or remember the number of stimuli, the present model assumed only that the influence of a sample stimulus on choice increases linearly when the stimulus is presented, but decays exponentially when the stimulus is absent. The results showed that, overall, the pigeons discriminated the relative frequencies well. Their accuracy always increased with the absolute value of the difference D and, for D > 0, it decreased with T. Performance also showed clear recency, primacy, and contextual effects. The model accounted well for the major trends in the data.
Allan, R W; Zeigler, H P
1994-01-01
The pigeon's key-pecking response is experimentally dissociable into transport (head movement) and gape (jaw movement) components. During conditioning of the key-pecking response, both components come under the control of the conditioned stimulus. To study the acquisition of gape conditioned responses and to clarify the contribution of unconditioned stimulus (reinforcer) variables to the form of the response, gape and key-contact responses were recorded during an autoshaping procedure and reinforcer properties were systematically varied. One group of 8 pigeons was food deprived and subgroups of 2 birds each were exposed to four different pellet sizes as reinforcers, each reinforcer signaled by a keylight conditioned stimulus. A second group was water deprived and received water reinforcers paired with the conditioned stimulus. Water- or food-deprived control groups received appropriate water or food reinforcers that were randomly delivered with respect to the keylight stimulus. Acquisition of the conditioned gape response frequently preceded key-contact responses, and gape conditioned responses were generally elicited at higher rates than were key contacts. The form of the conditioned gape was similar to, but not identical with, the form of the unconditioned gape. The gape component is a critical topographical feature of the conditioned key peck, a sensitive measure of conditioning during autoshaping, and an important source of the observed similarities in the form of conditioned and consummatory responses. PMID:7964365
Allan, R W; Zeigler, H P
1994-09-01
The pigeon's key-pecking response is experimentally dissociable into transport (head movement) and gape (jaw movement) components. During conditioning of the key-pecking response, both components come under the control of the conditioned stimulus. To study the acquisition of gape conditioned responses and to clarify the contribution of unconditioned stimulus (reinforcer) variables to the form of the response, gape and key-contact responses were recorded during an autoshaping procedure and reinforcer properties were systematically varied. One group of 8 pigeons was food deprived and subgroups of 2 birds each were exposed to four different pellet sizes as reinforcers, each reinforcer signaled by a keylight conditioned stimulus. A second group was water deprived and received water reinforcers paired with the conditioned stimulus. Water- or food-deprived control groups received appropriate water or food reinforcers that were randomly delivered with respect to the keylight stimulus. Acquisition of the conditioned gape response frequently preceded key-contact responses, and gape conditioned responses were generally elicited at higher rates than were key contacts. The form of the conditioned gape was similar to, but not identical with, the form of the unconditioned gape. The gape component is a critical topographical feature of the conditioned key peck, a sensitive measure of conditioning during autoshaping, and an important source of the observed similarities in the form of conditioned and consummatory responses.
Attention-related changes in correlated neuronal activity arise from normalization mechanisms
Verhoef, Bram-Ernst; Maunsell, John H.R.
2017-01-01
Attention is believed to enhance perception by altering the correlations between pairs of neurons. How attention changes neuronal correlations is unknown. Using multi-electrodes in primate visual cortex, we measured spike-count correlations when single or multiple stimuli were presented, and stimuli were attended or unattended. When stimuli were unattended, adding a suppressive, non-preferred, stimulus beside a preferred stimulus increased spike-count correlations between pairs of similarly-tuned neurons, but decreased spike-count correlations between pairs of oppositely-tuned neurons. These changes are explained by a stochastic normalization model containing populations of oppositely-tuned, mutually-suppressive neurons. Importantly, this model also explains why attention decreased (attend preferred stimulus) or increased (attend non-preferred stimulus) correlations: as an indirect consequence of attention-related changes in the inputs to normalization mechanisms. Our findings link normalization mechanisms to correlated neuronal activity and attention, showing that normalization mechanisms shape response correlations and that these correlations change when attention biases normalization mechanisms. PMID:28553943
Testing sensory evidence against mnemonic templates
Myers, Nicholas E; Rohenkohl, Gustavo; Wyart, Valentin; Woolrich, Mark W; Nobre, Anna C; Stokes, Mark G
2015-01-01
Most perceptual decisions require comparisons between current input and an internal template. Classic studies propose that templates are encoded in sustained activity of sensory neurons. However, stimulus encoding is itself dynamic, tracing a complex trajectory through activity space. Which part of this trajectory is pre-activated to reflect the template? Here we recorded magneto- and electroencephalography during a visual target-detection task, and used pattern analyses to decode template, stimulus, and decision-variable representation. Our findings ran counter to the dominant model of sustained pre-activation. Instead, template information emerged transiently around stimulus onset and quickly subsided. Cross-generalization between stimulus and template coding, indicating a shared neural representation, occurred only briefly. Our results are compatible with the proposal that template representation relies on a matched filter, transforming input into task-appropriate output. This proposal was consistent with a signed difference response at the perceptual decision stage, which can be explained by a simple neural model. DOI: http://dx.doi.org/10.7554/eLife.09000.001 PMID:26653854
Coactivation of response initiation processes with redundant signals.
Maslovat, Dana; Hajj, Joëlle; Carlsen, Anthony N
2018-05-14
During reaction time (RT) tasks, participants respond faster to multiple stimuli from different modalities as compared to a single stimulus, a phenomenon known as the redundant signal effect (RSE). Explanations for this effect typically include coactivation arising from the multiple stimuli, which results in enhanced processing of one or more response production stages. The current study compared empirical RT data with the predictions of a model in which initiation-related activation arising from each stimulus is additive. Participants performed a simple wrist extension RT task following either a visual go-signal, an auditory go-signal, or both stimuli with the auditory stimulus delayed between 0 and 125 ms relative to the visual stimulus. Results showed statistical equivalence between the predictions of an additive initiation model and the observed RT data, providing novel evidence that the RSE can be explained via a coactivation of initiation-related processes. It is speculated that activation summation occurs at the thalamus, leading to the observed facilitation of response initiation. Copyright © 2018 Elsevier B.V. All rights reserved.
Tracking the Sensory Environment: An ERP Study of Probability and Context Updating in ASD
ERIC Educational Resources Information Center
Westerfield, Marissa A.; Zinni, Marla; Vo, Khang; Townsend, Jeanne
2015-01-01
We recorded visual event-related brain potentials from 32 adult male participants (16 high-functioning participants diagnosed with autism spectrum disorder (ASD) and 16 control participants, ranging in age from 18 to 53 years) during a three-stimulus oddball paradigm. Target and non-target stimulus probability was varied across three probability…
Stimulus Disparity and Punisher Control of Human Signal-Detection Performance
ERIC Educational Resources Information Center
Lie, Celia; Alsop, Brent
2010-01-01
The present experiment examined the effects of varying stimulus disparity and relative punisher frequencies on signal detection by humans. Participants were placed into one of two groups. Group 3 participants were presented with 1:3 and 3:1 punisher frequency ratios, while Group 11 participants were presented with 1:11 and 11:1 punisher frequency…
ERIC Educational Resources Information Center
Koolen, Sophieke; Vissers, Constance Th. W. M.; Egger, Jos I. M.; Verhoeven, Ludo
2014-01-01
The present study examined whether individuals with autism spectrum disorder (ASD) are able to update and monitor working memory representations of visual input, and whether performance is influenced by stimulus and task complexity. 15 high-functioning adults with ASD and 15 controls were asked to allocate either elements of abstract figures or…
ERIC Educational Resources Information Center
Critchfield, Thomas S.; Reed, Derek D.
2016-01-01
Participants first became familiar with an image showing moderate symptoms of the skin cancer melanoma. In a generalization test, they indicated whether images showing more and less pronounced symptoms were "like the original." Some groups (cancer context) were told that the images depicted melanoma and that the disease is deadly unless…
ERIC Educational Resources Information Center
Reed, Phil; Altweck, Laura; Broomfield, Laura; Simpson, Anna; McHugh, Louise
2012-01-01
Stimulus overselectivity occurs when one aspect of the environment controls behavior at the expense of other equally salient aspects. Stimulus overselectivity can be reduced for some individuals with learning disabilities, if they engage in an observing response in which they point to, touch, or name each of the stimuli prior to selecting the one…
Extinction of cue-evoked drug-seeking relies on degrading hierarchical instrumental expectancies
Hogarth, Lee; Retzler, Chris; Munafò, Marcus R.; Tran, Dominic M.D.; Troisi, Joseph R.; Rose, Abigail K.; Jones, Andrew; Field, Matt
2014-01-01
There has long been need for a behavioural intervention that attenuates cue-evoked drug-seeking, but the optimal method remains obscure. To address this, we report three approaches to extinguish cue-evoked drug-seeking measured in a Pavlovian to instrumental transfer design, in non-treatment seeking adult smokers and alcohol drinkers. The results showed that the ability of a drug stimulus to transfer control over a separately trained drug-seeking response was not affected by the stimulus undergoing Pavlovian extinction training in experiment 1, but was abolished by the stimulus undergoing discriminative extinction training in experiment 2, and was abolished by explicit verbal instructions stating that the stimulus did not signal a more effective response-drug contingency in experiment 3. These data suggest that cue-evoked drug-seeking is mediated by a propositional hierarchical instrumental expectancy that the drug-seeking response is more likely to be rewarded in that stimulus. Methods which degraded this hierarchical expectancy were effective in the laboratory, and so may have therapeutic potential. PMID:25011113
Retrospective Attention Interacts with Stimulus Strength to Shape Working Memory Performance.
Wildegger, Theresa; Humphreys, Glyn; Nobre, Anna C
2016-01-01
Orienting attention retrospectively to selective contents in working memory (WM) influences performance. A separate line of research has shown that stimulus strength shapes perceptual representations. There is little research on how stimulus strength during encoding shapes WM performance, and how effects of retrospective orienting might vary with changes in stimulus strength. We explore these questions in three experiments using a continuous-recall WM task. In Experiment 1 we show that benefits of cueing spatial attention retrospectively during WM maintenance (retrocueing) varies according to stimulus contrast during encoding. Retrocueing effects emerge for supraliminal but not sub-threshold stimuli. However, once stimuli are supraliminal, performance is no longer influenced by stimulus contrast. In Experiments 2 and 3 we used a mixture-model approach to examine how different sources of error in WM are affected by contrast and retrocueing. For high-contrast stimuli (Experiment 2), retrocues increased the precision of successfully remembered items. For low-contrast stimuli (Experiment 3), retrocues decreased the probability of mistaking a target with distracters. These results suggest that the processes by which retrospective attentional orienting shape WM performance are dependent on the quality of WM representations, which in turn depends on stimulus strength during encoding.
Issa, Mohamad; Bisconti, Silvia; Kovelman, Ioulia; Kileny, Paul
2016-01-01
Tinnitus is the phantom perception of sound in the absence of an acoustic stimulus. To date, the purported neural correlates of tinnitus from animal models have not been adequately characterized with translational technology in the human brain. The aim of the present study was to measure changes in oxy-hemoglobin concentration from regions of interest (ROI; auditory cortex) and non-ROI (adjacent nonauditory cortices) during auditory stimulation and silence in participants with subjective tinnitus appreciated equally in both ears and in nontinnitus controls using functional near-infrared spectroscopy (fNIRS). Control and tinnitus participants with normal/near-normal hearing were tested during a passive auditory task. Hemodynamic activity was monitored over ROI and non-ROI under episodic periods of auditory stimulation with 750 or 8000 Hz tones, broadband noise, and silence. During periods of silence, tinnitus participants maintained increased hemodynamic responses in ROI, while a significant deactivation was seen in controls. Interestingly, non-ROI activity was also increased in the tinnitus group as compared to controls during silence. The present results demonstrate that both auditory and select nonauditory cortices have elevated hemodynamic activity in participants with tinnitus in the absence of an external auditory stimulus, a finding that may reflect basic science neural correlates of tinnitus that ultimately contribute to phantom sound perception. PMID:27042360
Leenaars, Cathalijn H.C.; Joosten, Ruud N.J.M.A.; Zwart, Allard; Sandberg, Hans; Ruimschotel, Emma; Hanegraaf, Maaike A.J.; Dematteis, Maurice; Feenstra, Matthijs G.P.; van Someren, Eus J.W.
2012-01-01
Study Objectives: Task-switching is an executive function involving the prefrontal cortex. Switching temporarily attenuates the speed and/or accuracy of performance, phenomena referred to as switch costs. In accordance with the idea that prefrontal function is particularly sensitive to sleep loss, switch-costs increase during prolonged waking in humans. It has been difficult to investigate the underlying neurobiological mechanisms because of the lack of a suitable animal model. Here, we introduce the first switch-task for rats and report the effects of sleep deprivation and inactivation of the medial prefrontal cortex. Design: Rats were trained to repeatedly switch between 2 stimulus-response associations, indicated by the presentation of a visual or an auditory stimulus. These stimulus-response associations were offered in blocks, and performance was compared for the first and fifth trials of each block. Performance was tested after exposure to 12 h of total sleep deprivation, sleep fragmentation, and their respective movement control conditions. Finally, it was tested after pharmacological inactivation of the medial prefrontal cortex. Settings: Controlled laboratory settings. Participants: 15 male Wistar rats. Measurements & Results: Both accuracy and latency showed switch-costs at baseline. Twelve hours of total sleep deprivation, but not sleep fragmentation, impaired accuracy selectively on the switch-trials. Inactivation of the medial prefrontal cortex by local neuronal inactivation resulted in an overall decrease in accuracy. Conclusions: We developed and validated a switch-task that is sensitive to sleep deprivation. This introduces the possibility for in-depth investigations on the neurobiological mechanisms underlying executive impairments after sleep disturbance in a rat model. Citation: Leenaars CHC; Joosten RNJMA; Zwart A; Sandberg H; Ruimschotel E; Hanegraaf MAJ; Dematteis M; Feenstra MGP; van Someren EJW. Switch-task performance in rats is disturbed by 12 h of sleep deprivation but not by 12 h of sleep fragmentation. SLEEP 2012;35(2):211-221. PMID:22294811
Compositos CNTs/bioceramico para a estimulacao eletrica ossea in situ
NASA Astrophysics Data System (ADS)
Mata, Diogo Miguel Rodrigues Marinho da
The present thesis aims to develop a biocompatible and electroconductor bone graft containing carbon nanotubes (CNTs) that allows the in situ regeneration of bone cells by applying pulsed external electrical stimuli. The CNTs were produced by chemical vapor deposition (CVD) by a semi-continuous method with a yield of 500 mg/day. The deposition parameters were optimised to obtain high pure CNTs 99.96% with controlled morphologies, fundamental requisites for the biomedical application under study. The chemical functionalisation of CNTs was also optimised to maximise their processability and biocompatibility. The CNTs were functionalised by the Diels-Alder cycloaddition of 1,3-butadiene. The biological behaviour of the functionalised CNTs was evaluated in vitro with the osteoblastic cells line MG63 and in vivo, by subcutaneous implantation in rats. The materials did not induce an expressed inflammatory response, but the functionalised CNTs showed a superior in vitro and in vivo biocompatibility than the non-functionalised ones. Composites of ceramic matrix, of bioglass (Glass) and hydroxyapatite (HA), reinforced with carbon nanotubes (CNT/Glass/HA) were processed by a wet approach. The incorporation of just 4.4 vol% of CNTs allowed the increase of 10 orders of magnitude of the electrical conductivity of the matrix. In vitro studies with MG63 cells show that the CNT/Glass/HA composites guarantee the adhesion and proliferation of bone cells, and stimulate their phenotype expression, namely the alkaline phosphate (ALP). The interactions between the composite materials and the culture medium (α-MEM), under an applied electrical external field, were studied by scanning vibrating electrode technique. An increase of the culture medium electrical conductivity and the electrical field confinement in the presence of the conductive samples submerged in the medium was demonstrated. The in vitro electrical stimulation of MG63 cells on the conductive composites promotes the increase of the cell metabolic activity and DNA content by 130% and 60%, relatively to the non-stimulated condition, after only 3 days of daily stimulation of 15 μA for 15 min. Moreover, the osteoblastic gene expression for Runx2, osteocalcin (OC) and ALP was enhanced by 80%, 50% and 25%, after 5 days of stimulation. Instead, for dielectric materials, the stimulus delivering was less efficient, giving an equal or lower cellular response than the non-stimulated condition. The proposed electroconductive bone grafts offer exciting possibilities in bone regeneration strategies by delivering in situ electrical stimulus to cells and consequent control of the new bone tissue formation rate. It is expected that conductive smart biomaterials might turn the selective bone electrotherapy of clinical relevance by decreasing the postoperative healing times.
Tinnitus. I: Auditory mechanisms: a model for tinnitus and hearing impairment.
Hazell, J W; Jastreboff, P J
1990-02-01
A model is proposed for tinnitus and sensorineural hearing loss involving cochlear pathology. As tinnitus is defined as a cortical perception of sound in the absence of an appropriate external stimulus it must result from a generator in the auditory system which undergoes extensive auditory processing before it is perceived. The concept of spatial nonlinearity in the cochlea is presented as a cause of tinnitus generation controlled by the efferents. Various clinical presentations of tinnitus and the way in which they respond to changes in the environment are discussed with respect to this control mechanism. The concept of auditory retraining as part of the habituation process, and interaction with the prefrontal cortex and limbic system is presented as a central model which emphasizes the importance of the emotional significance and meaning of tinnitus.
ERIC Educational Resources Information Center
Gordon-Hickey, Susan; Moore, Robert E.; Estis, Julie M.
2012-01-01
Purpose: To evaluate the effect of different speech conditions on background noise acceptance. A total of 23 stimulus pairings, differing in primary talker gender (female, male, conventional), number of background talkers (1, 4, 12), and gender composition of the background noise (female, male, mixed) were used to evaluate background noise…