Spaak, Jurg W; Baert, Jan M; Baird, Donald J; Eisenhauer, Nico; Maltby, Lorraine; Pomati, Francesco; Radchuk, Viktoriia; Rohr, Jason R; Van den Brink, Paul J; De Laender, Frederik
2017-10-01
There has been considerable focus on the impacts of environmental change on ecosystem function arising from changes in species richness. However, environmental change may affect ecosystem function without affecting richness, most notably by affecting population densities and community composition. Using a theoretical model, we find that, despite invariant richness, (1) small environmental effects may already lead to a collapse of function; (2) competitive strength may be a less important determinant of ecosystem function change than the selectivity of the environmental change driver and (3) effects on ecosystem function increase when effects on composition are larger. We also present a complementary statistical analysis of 13 data sets of phytoplankton and periphyton communities exposed to chemical stressors and show that effects on primary production under invariant richness ranged from -75% to +10%. We conclude that environmental protection goals relying on measures of richness could underestimate ecological impacts of environmental change. © 2017 The Authors Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Human activities cause distinct dissolved organic matter composition across freshwater ecosystems.
Williams, Clayton J; Frost, Paul C; Morales-Williams, Ana M; Larson, James H; Richardson, William B; Chiandet, Aisha S; Xenopoulos, Marguerite A
2016-02-01
Dissolved organic matter (DOM) composition in freshwater ecosystems is influenced by the interactions among physical, chemical, and biological processes that are controlled, at one level, by watershed landscape, hydrology, and their connections. Against this environmental template, humans may strongly influence DOM composition. Yet, we lack a comprehensive understanding of DOM composition variation across freshwater ecosystems differentially affected by human activity. Using optical properties, we described DOM variation across five ecosystem groups of the Laurentian Great Lakes region: large lakes, Kawartha Lakes, Experimental Lakes Area, urban stormwater ponds, and rivers (n = 184 sites). We determined how between ecosystem variation in DOM composition related to watershed size, land use and cover, water quality measures (conductivity, dissolved organic carbon (DOC), nutrient concentration, chlorophyll a), and human population density. The five freshwater ecosystem groups had distinctive DOM composition from each other. These significant differences were not explained completely through differences in watershed size nor spatial autocorrelation. Instead, multivariate partial least squares regression showed that DOM composition was related to differences in human impact across freshwater ecosystems. In particular, urban/developed watersheds with higher human population densities had a unique DOM composition with a clear anthropogenic influence that was distinct from DOM composition in natural land cover and/or agricultural watersheds. This nonagricultural, human developed impact on aquatic DOM was most evident through increased levels of a microbial, humic-like parallel factor analysis component (C6). Lotic and lentic ecosystems with low human population densities had DOM compositions more typical of clear water to humic-rich freshwater ecosystems but C6 was only present at trace to background levels. Consequently, humans are strongly altering the quality of DOM in waters nearby or flowing through highly populated areas, which may alter carbon cycles in anthropogenically disturbed ecosystems at broad scales. © 2015 John Wiley & Sons Ltd.
Human activities cause distinct dissolved organic matter composition across freshwater ecosystems
Williams, Clayton J.; Frost, Paul C.; Morales-Williams, Ana M.; Larson, James H.; Richardson, William B.; Chiandet, Aisha S.; Xenopoulos, Marguerite A.
2016-01-01
Dissolved organic matter (DOM) composition in freshwater ecosystems is influenced by interactions between physical, chemical, and biological processes that are controlled, at one level, by watershed landscape, hydrology, and their connections. Against this environmental template, humans may strongly influence DOM composition. Yet, we lack a comprehensive understanding of DOM composition variation across freshwater ecosystems differentially affected by human activity. Using optical properties, we described DOM variation across five ecosystem groups of the Laurentian Great Lakes Region: large lakes, Kawartha Lakes, Experimental Lakes Area, urban stormwater ponds, and rivers (n = 184 sites). We determined how between ecosystem variation in DOM composition related to watershed size, land use and cover, water quality measures (conductivity, dissolved organic carbon (DOC), nutrient concentration, chlorophyll a), and human population density. The five freshwater ecosystem groups had distinctive DOM composition from each other. These significant differences were not explained completely through differences in watershed size nor spatial autocorrelation. Instead, multivariate partial least squares regression showed that DOM composition was related to differences in human impact across freshwater ecosystems. In particular, urban/developed watersheds with higher human population densities had a unique DOM composition with a clear anthropogenic influence that was distinct from DOM composition in natural land cover and/or agricultural watersheds. This nonagricultural, human developed impact on aquatic DOM was most evident through increased levels of a microbial, humic-like parallel factor analysis component (C6). Lotic and lentic ecosystems with low human population densities had DOM compositions more typical of clear water to humic-rich freshwater ecosystems but C6 was only present at trace to background levels. Consequently, humans are strongly altering the quality of DOM in waters nearby or flowing through highly populated areas, which may alter carbon cycles in anthropogenically disturbed ecosystems at broad scales.
CHAPIN, F. STUART
2003-01-01
Human activities are causing widespread changes in the species composition of natural and managed ecosystems, but the consequences of these changes are poorly understood. This paper presents a conceptual framework for predicting the ecosystem and regional consequences of changes in plant species composition. Changes in species composition have greatest ecological effects when they modify the ecological factors that directly control (and respond to) ecosystem processes. These interactive controls include: functional types of organisms present in the ecosystem; soil resources used by organisms to grow and reproduce; modulators such as microclimate that influence the activity of organisms; disturbance regime; and human activities. Plant traits related to size and growth rate are particularly important because they determine the productive capacity of vegetation and the rates of decomposition and nitrogen mineralization. Because the same plant traits affect most key processes in the cycling of carbon and nutrients, changes in plant traits tend to affect most biogeochemical cycling processes in parallel. Plant traits also have landscape and regional effects through their effects on water and energy exchange and disturbance regime. PMID:12588725
Soil biodiversity and soil community composition determine ecosystem multifunctionality
Wagg, Cameron; Bender, S. Franz; Widmer, Franco; van der Heijden, Marcel G. A.
2014-01-01
Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth’s biodiversity is literally hidden below ground. Whether reductions of biodiversity in soil communities below ground have consequences for the overall performance of an ecosystem remains unresolved. It is important to investigate this in view of recent observations that soil biodiversity is declining and that soil communities are changing upon land use intensification. We established soil communities differing in composition and diversity and tested their impact on eight ecosystem functions in model grassland communities. We show that soil biodiversity loss and simplification of soil community composition impair multiple ecosystem functions, including plant diversity, decomposition, nutrient retention, and nutrient cycling. The average response of all measured ecosystem functions (ecosystem multifunctionality) exhibited a strong positive linear relationship to indicators of soil biodiversity, suggesting that soil community composition is a key factor in regulating ecosystem functioning. Our results indicate that changes in soil communities and the loss of soil biodiversity threaten ecosystem multifunctionality and sustainability. PMID:24639507
Bannar-Martin, Katherine H; Kremer, Colin T; Ernest, S K Morgan; Leibold, Mathew A; Auge, Harald; Chase, Jonathan; Declerck, Steven A J; Eisenhauer, Nico; Harpole, Stanley; Hillebrand, Helmut; Isbell, Forest; Koffel, Thomas; Larsen, Stefano; Narwani, Anita; Petermann, Jana S; Roscher, Christiane; Cabral, Juliano Sarmento; Supp, Sarah R
2018-02-01
The research of a generation of ecologists was catalysed by the recognition that the number and identity of species in communities influences the functioning of ecosystems. The relationship between biodiversity and ecosystem functioning (BEF) is most often examined by controlling species richness and randomising community composition. In natural systems, biodiversity changes are often part of a bigger community assembly dynamic. Therefore, focusing on community assembly and the functioning of ecosystems (CAFE), by integrating both species richness and composition through species gains, losses and changes in abundance, will better reveal how community changes affect ecosystem function. We synthesise the BEF and CAFE perspectives using an ecological application of the Price equation, which partitions the contributions of richness and composition to function. Using empirical examples, we show how the CAFE approach reveals important contributions of composition to function. These examples show how changes in species richness and composition driven by environmental perturbations can work in concert or antagonistically to influence ecosystem function. Considering how communities change in an integrative fashion, rather than focusing on one axis of community structure at a time, will improve our ability to anticipate and predict changes in ecosystem function. © 2017 The Authors. Ecology Letters published by CNRS and John Wiley & Sons Ltd.
Habitat structural effect on squamata fauna of the restinga ecosystem in northeastern Brazil.
Dias, Eduardo J R; Rocha, Carlos F D
2014-03-01
In this work, we surveyed data on richness and composition of squamatan reptiles and habitat structural effect in nine areas of restinga ecosystem in the State of Bahia, northeastern Brazil. The "restinga" ecosystems are coastal sand dune habitats on the coast of Brazil. Our main hypothesis is that the Squamata fauna composition along these restinga areas would be modulated by habitat structural. After 90 days of field sampling we recorded approximately 5% of reptile species known in Brazil. The composition of Squamata assemblages varied mainly based on the presence or absence of lizards of the genera Ameivula and Tropidurus. Our data showed that habitat structure consistently affected the composition of local Squamata fauna, especially lizards.
Melanie Hodel; Martin Schütz; Martijn L. Vandegehuchte; Beat Frey; Matthias Albrecht; Matt D. Busse; Anita C. Risch
2014-01-01
Grassland ecosystems support large communities of aboveground herbivores that can alter ecosystem processes. Thus, grazing by herbivores can directly and indirectly affect belowground properties such as the microbial community structure and diversity. Even though multiple species of functionally different herbivores coexist in grassland ecosystems, most studies have...
Waldrop, Mark P.; Holloway, JoAnn M.; Smith, David; Goldhaber, Martin B.; Drenovsky, R.E.; Scow, K.M.; Dick, R.; Howard, Daniel M.; Wylie, Bruce K.; Grace, James B.
2017-01-01
Soil microbial communities control critical ecosystem processes such as decomposition, nutrient cycling, and soil organic matter formation. Continental scale patterns in the composition and functioning of microbial communities are related to climatic, biotic, and edaphic factors such as temperature and precipitation, plant community composition, and soil carbon, nitrogen, and pH. Although these relationships have been well explored individually, the examination of the factors that may act directly on microbial communities vs. those that may act indirectly through other ecosystem properties has not been well developed. To further such understanding, we utilized structural equation modeling (SEM) to evaluate a set of hypotheses about the direct and indirect effects of climatic, biotic, and edaphic variables on microbial communities across the continental United States. The primary goals of this work were to test our current understanding of the interactions among climate, soils, and plants in affecting microbial community composition, and to examine whether variation in the composition of the microbial community affects potential rates of soil enzymatic activities. A model of interacting factors created through SEM shows several expected patterns. Distal factors such as climate had indirect effects on microbial communities by influencing plant productivity, soil mineralogy, and soil pH, but factors related to soil organic matter chemistry had the most direct influence on community composition. We observed that both plant productivity and soil mineral composition were important indirect influences on community composition at the continental scale, both interacting to affect organic matter content and microbial biomass and ultimately community composition. Although soil hydrolytic enzymes were related to the moisture regime and soil carbon, oxidative enzymes were also affected by community composition, reflected in the abundance of soil fungi. These results highlight that soil microbial communities can be modeled within the context of multiple interacting ecosystem properties acting both directly and indirectly on their composition and function, and this provides a rich and informative context with which to examine communities. This work also highlights that variation in climate, microbial biomass, and microbial community composition can affect maximum rates of soil enzyme activities, potentially influencing rates of decomposition and nutrient mineralization in soils.
Štursová, Martina; Bárta, Jiří; Šantrůčková, Hana; Baldrian, Petr
2016-12-01
Forests are recognised as spatially heterogeneous ecosystems. However, knowledge of the small-scale spatial variation in microbial abundance, community composition and activity is limited. Here, we aimed to describe the heterogeneity of environmental properties, namely vegetation, soil chemical composition, fungal and bacterial abundance and community composition, and enzymatic activity, in the topsoil in a small area (36 m 2 ) of a highly heterogeneous regenerating temperate natural forest, and to explore the relationships among these variables. The results demonstrated a high level of spatial heterogeneity in all properties and revealed differences between litter and soil. Fungal communities had substantially higher beta-diversity than bacterial communities, which were more uniform and less spatially autocorrelated. In litter, fungal communities were affected by vegetation and appeared to be more involved in decomposition. In the soil, chemical composition affected both microbial abundance and the rates of decomposition, whereas the effect of vegetation was small. Importantly, decomposition appeared to be concentrated in hotspots with increased activity of multiple enzymes. Overall, forest topsoil should be considered a spatially heterogeneous environment in which the mean estimates of ecosystem-level processes and microbial community composition may confound the existence of highly specific microenvironments. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Allan, Eric; Manning, Pete; Alt, Fabian; Binkenstein, Julia; Blaser, Stefan; Blüthgen, Nico; Böhm, Stefan; Grassein, Fabrice; Hölzel, Norbert; Klaus, Valentin H; Kleinebecker, Till; Morris, E Kathryn; Oelmann, Yvonne; Prati, Daniel; Renner, Swen C; Rillig, Matthias C; Schaefer, Martin; Schloter, Michael; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Solly, Emily; Sorkau, Elisabeth; Steckel, Juliane; Steffen-Dewenter, Ingolf; Stempfhuber, Barbara; Tschapka, Marco; Weiner, Christiane N; Weisser, Wolfgang W; Werner, Michael; Westphal, Catrin; Wilcke, Wolfgang; Fischer, Markus
2015-08-01
Global change, especially land-use intensification, affects human well-being by impacting the delivery of multiple ecosystem services (multifunctionality). However, whether biodiversity loss is a major component of global change effects on multifunctionality in real-world ecosystems, as in experimental ones, remains unclear. Therefore, we assessed biodiversity, functional composition and 14 ecosystem services on 150 agricultural grasslands differing in land-use intensity. We also introduce five multifunctionality measures in which ecosystem services were weighted according to realistic land-use objectives. We found that indirect land-use effects, i.e. those mediated by biodiversity loss and by changes to functional composition, were as strong as direct effects on average. Their strength varied with land-use objectives and regional context. Biodiversity loss explained indirect effects in a region of intermediate productivity and was most damaging when land-use objectives favoured supporting and cultural services. In contrast, functional composition shifts, towards fast-growing plant species, strongly increased provisioning services in more inherently unproductive grasslands. © 2015 The Authors Ecology Letters published by John Wiley & Sons Ltd and CNRS.
Biocrusts in the context of global change
Reed, Sasha C.; Maestre, Fernando T.; Ochoa-Hueso, Raul; Kuske, Cheryl; Darrouzet-Nardi, Anthony N.; Darby, Brian; Sinsabaugh, Bob; Oliver, Mel; Sancho, Leo; Belnap, Jayne
2016-01-01
A wide range of studies show global environmental change will profoundly affect the structure, function, and dynamics of terrestrial ecosystems. The research synthesized here underscores that biocrust communities are also likely to respond significantly to global change drivers, with a large potential for modification to their abundance, composition, and function. We examine how elevated atmospheric CO2 concentrations, climate change (increased temperature and altered precipitation), and nitrogen deposition affect biocrusts and the ecosystems they inhabit. We integrate experimental and observational data, as well as physiological, community ecology, and biogeochemical perspectives. Taken together, these data highlight the potential for biocrust organisms to respond dramatically to environmental change and show how changes to biocrust community composition translate into effects on ecosystem function (e.g., carbon and nutrient cycling, soil stability, energy balance). Due to the importance of biocrusts in regulating dryland ecosystem processes and the potential for large modifications to biocrust communities, an improved understanding and predictive capacity regarding biocrust responses to environmental change are of scientific and societal relevance.
Tallgrass prairie ants: their species composition, ecological roles, and response to management
USDA-ARS?s Scientific Manuscript database
Ants are highly influential organisms in terrestrial ecosystems, including the tallgrass prairie, one of the most endangered ecosystems in North America. Through their tunneling, ants affect soil properties and resource availability for animals and plants. Ants also have important ecological roles a...
Baert, Jan M; De Laender, Frederik; Sabbe, Koen; Janssen, Colin R
2016-12-01
There is now ample evidence that biodiversity stabilizes aggregated ecosystem functions, such as primary production, in changing environments. In primary producer systems, this stabilizing effect is found to be driven by higher functional resistance (i.e., reduced changes in functions by environmental changes) rather than through higher functional resilience (i.e., rapid recovery following environmental changes) in more diverse systems. The stability of aggregated ecosystem functions directly depends on changes in species composition and by consequence their functional contributions to ecosystem functions. Still, it remains only theoretically explored how biodiversity can stabilize ecosystem functions by affecting compositional stability. Here, we demonstrate how biodiversity effects on compositional stability drive biodiversity effects on functional stability in diatom communities. In a microcosm experiment, we exposed 39 communities of five different levels of species richness (1, 2, 4, 6, and 8 species) to three concentrations of a chemical stressor (0, 25, and 250 μg/L atrazine) for four weeks, after which all communities were transferred to atrazine-free medium for three more weeks. Biodiversity simultaneously increased, increasing functional and compositional resistance, but decreased functional and compositional resilience. These results confirm the theoretically proposed link between biodiversity effects on functional and compositional stability in primary producer systems, and provide a mechanistic underpinning for observed biodiversity-stability relationships. Finally, we discuss how higher compositional stability can be expected to become increasingly important in stabilizing ecosystem functions under field conditions when multiple environmental stressors fluctuate simultaneously. © 2016 by the Ecological Society of America.
USDA-ARS?s Scientific Manuscript database
Colonial, burrowing herbivores can serve as ecosystem engineers in grassland and shrubland ecosystems by creating belowground refugia, modifying vegetation structure and composition, serving as prey, and generating landscape heterogeneity. They can also serve a keystone species role by affecting the...
Maestre, F.T.; Castillo-Monroy, A. P.; Bowker, M.A.; Ochoa-Hueso, R.
2012-01-01
1. Recent studies have suggested that the simultaneous maintenance of multiple ecosystem functions (multifunctionality) is positively supported by species richness. However, little is known regarding the relative importance of other community attributes (e.g. spatial pattern, species evenness) as drivers of multifunctionality. 2. We conducted two microcosm experiments using model biological soil crust communities dominated by lichens to: (i) evaluate the joint effects and relative importance of changes in species composition, spatial pattern (clumped and random distribution of lichens), evenness (maximal and low evenness) and richness (from two to eight species) on soil functions related to nutrient cycling (β-glucosidase, urease and acid phosphatase enzymes, in situ N availability, total N, organic C, and N fixation), and (ii) assess how these community attributes affect multifunctionality. 3. Species richness, composition and spatial pattern affected multiple ecosystem functions (e.g. organic C, total N, N availability, β-glucosidase activity), albeit the magnitude and direction of their effects varied with the particular function, experiment and soil depth considered. Changes in species composition had effects on organic C, total N and the activity of β-glucosidase. Significant species richness × evenness and spatial pattern × evenness interactions were found when analysing functions such as organic C, total N and the activity of phosphatase. 4. The probability of sustaining multiple ecosystem functions increased with species richness, but this effect was largely modulated by attributes such as species evenness, composition and spatial pattern. Overall, we found that model communities with high species richness, random spatial pattern and low evenness increased multifunctionality. 5. Synthesis. Our results illustrate how different community attributes have a diverse impact on ecosystem functions related to nutrient cycling, and provide new experimental evidence illustrating the importance of the spatial pattern of organisms on ecosystem functioning. They also indicate that species richness is not the only biotic driver of multifunctionality, and that particular combinations of community attributes may be required to maximize it.
Soil management shapes ecosystem service provision and trade-offs in agricultural landscapes.
Tamburini, Giovanni; De Simone, Serena; Sigura, Maurizia; Boscutti, Francesco; Marini, Lorenzo
2016-08-31
Agroecosystems are principally managed to maximize food provisioning even if they receive a large array of supporting and regulating ecosystem services (ESs). Hence, comprehensive studies investigating the effects of local management and landscape composition on the provision of and trade-offs between multiple ESs are urgently needed. We explored the effects of conservation tillage, nitrogen fertilization and landscape composition on six ESs (crop production, disease control, soil fertility, water quality regulation, weed and pest control) in winter cereals. Conservation tillage enhanced soil fertility and pest control, decreased water quality regulation and weed control, without affecting crop production and disease control. Fertilization only influenced crop production by increasing grain yield. Landscape intensification reduced the provision of disease and pest control. We also found tillage and landscape composition to interactively affect water quality regulation and weed control. Under N fertilization, conventional tillage resulted in more trade-offs between ESs than conservation tillage. Our results demonstrate that soil management and landscape composition affect the provision of several ESs and that soil management potentially shapes the trade-offs between them. © 2016 The Author(s).
Seidl, Rupert; Rammer, Werner; Spies, Thomas A.
2015-01-01
Disturbances are key drivers of forest ecosystem dynamics, and forests are well adapted to their natural disturbance regimes. However, as a result of climate change, disturbance frequency is expected to increase in the future in many regions. It is not yet clear how such changes might affect forest ecosystems, and which mechanisms contribute to (current and future) disturbance resilience. We studied a 6364-ha landscape in the western Cascades of Oregon, USA, to investigate how patches of remnant old-growth trees (as one important class of biological legacies) affect the resilience of forest ecosystems to disturbance. Using the spatially explicit, individual-based, forest landscape model iLand, we analyzed the effect of three different levels of remnant patches (0%, 12%, and 24% of the landscape) on 500-year recovery trajectories after a large, high-severity wildfire. In addition, we evaluated how three different levels of fire frequency modulate the effects of initial legacies. We found that remnant live trees enhanced the recovery of total ecosystem carbon (TEC) stocks after disturbance, increased structural complexity of forest canopies, and facilitated the recolonization of late-seral species (LSS). Legacy effects were most persistent for indicators of species composition (still significant 500 years after disturbance), while TEC (i.e., a measure of ecosystem functioning) was least affected, with no significant differences among legacy scenarios after 236 years. Compounding disturbances were found to dampen legacy effects on all indicators, and higher initial legacy levels resulted in elevated fire severity in the second half of the study period. Overall, disturbance frequency had a stronger effect on ecosystem properties than the initial level of remnant old-growth trees. A doubling of the historically observed fire frequency to a mean fire return interval of 131 years reduced TEC by 10.5% and lowered the presence of LSS on the landscape by 18.1% on average, demonstrating that an increase in disturbance frequency (a potential climate change effect) may considerably alter the structure, composition, and functioning of forest landscapes. Our results indicate that live tree legacies are an important component of disturbance resilience, underlining the potential of retention forestry to address challenges in ecosystem management. PMID:27053913
Southwestern Avian Community Organization in Exotic Tamarix: Current Patterns and Future Needs
H. A. Walker
2006-01-01
Tamarisk (saltcedar: Tamarix), an invasive exotic tree native to the Eastern Hemisphere, is currently the dominant plant species in most southwestern riparian ecosystems at elevations below 1500 m. Tamarisk alters abiotic conditions and the floral composition of native southwestern riparian ecosystems and, in turn, affects native southwestern animal communities....
Liu, Huiying; Mi, Zhaorong; Lin, Li; Wang, Yonghui; Zhang, Zhenhua; Zhang, Fawei; Wang, Hao; Liu, Lingli; Zhu, Biao; Cao, Guangmin; Zhao, Xinquan; Sanders, Nathan J; Classen, Aimée T; Reich, Peter B; He, Jin-Sheng
2018-04-17
The structure and function of alpine grassland ecosystems, including their extensive soil carbon stocks, are largely shaped by temperature. The Tibetan Plateau in particular has experienced significant warming over the past 50 y, and this warming trend is projected to intensify in the future. Such climate change will likely alter plant species composition and net primary production (NPP). Here we combined 32 y of observations and monitoring with a manipulative experiment of temperature and precipitation to explore the effects of changing climate on plant community structure and ecosystem function. First, long-term climate warming from 1983 to 2014, which occurred without systematic changes in precipitation, led to higher grass abundance and lower sedge abundance, but did not affect aboveground NPP. Second, an experimental warming experiment conducted over 4 y had no effects on any aspect of NPP, whereas drought manipulation (reducing precipitation by 50%), shifted NPP allocation belowground without affecting total NPP. Third, both experimental warming and drought treatments, supported by a meta-analysis at nine sites across the plateau, increased grass abundance at the expense of biomass of sedges and forbs. This shift in functional group composition led to deeper root systems, which may have enabled plant communities to acquire more water and thus stabilize ecosystem primary production even with a changing climate. Overall, our study demonstrates that shifting plant species composition in response to climate change may have stabilized primary production in this high-elevation ecosystem, but it also caused a shift from aboveground to belowground productivity.
Carbon balance of Arctic tundra under increased snow cover mediated by a plant pathogen
NASA Astrophysics Data System (ADS)
Olofsson, Johan; Ericson, Lars; Torp, Mikaela; Stark, Sari; Baxter, Robert
2011-07-01
Climate change is affecting plant community composition and ecosystem structure, with consequences for ecosystem processes such as carbon storage. Climate can affect plants directly by altering growth rates, and indirectly by affecting predators and herbivores, which in turn influence plants. Diseases are also known to be important for the structure and function of food webs. However, the role of plant diseases in modulating ecosystem responses to a changing climate is poorly understood. This is partly because disease outbreaks are relatively rare and spatially variable, such that that their effects can only be captured in long-term experiments. Here we show that, although plant growth was favoured by the insulating effects of increased snow cover in experimental plots in Sweden, plant biomass decreased over the seven-year study. The decline in biomass was caused by an outbreak of a host-specific parasitic fungus, Arwidssonia empetri, which killed the majority of the shoots of the dominant plant species, Empetrum hermaphroditum, after six years of increased snow cover. After the outbreak of the disease, instantaneous measurements of gross photosynthesis and net ecosystem carbon exchange were significantly reduced at midday during the growing season. Our results show that plant diseases can alter and even reverse the effects of a changing climate on tundra carbon balance by altering plant composition.
Hessen, Dag O; Tombre, Ingunn M; van Geest, Gerben; Alfsnes, Kristian
2017-02-01
Migratory connectivity by birds may mutually affect different ecosystems over large distances. Populations of geese overwintering in southern areas while breeding in high-latitude ecosystems have increased strongly over the past decades. The increase is likely due to positive feedbacks caused by climate change at both wintering, stopover sites and breeding grounds, land-use practices at the overwintering grounds and protection from hunting. Here we show how increasing goose populations in temperate regions, and increased breeding success in the Arctic, entail a positive feedback with strong impacts on Arctic freshwater ecosystems in the form of eutrophication. This may again strongly affect community composition and productivity of the ponds, due to increased nutrient loadings or birds serving as vectors for new species.
[Effects of global change on soil fauna diversity: A review].
Wu, Ting-Juan
2013-02-01
Terrestrial ecosystem consists of aboveground and belowground components, whose interaction affects the ecosystem processes and functions. Soil fauna plays an important role in biogeochemical cycles. With the recognizing of the significance of soil fauna in ecosystem processes, increasing evidences demonstrated that global change has profound effects on soil faunima diversity. The alternation of land use type, the increasing temperature, and the changes in precipitation pattern can directly affect soil fauna diversity, while the increase of atmospheric CO2 concentration and nitrogen deposition can indirectly affect the soil fauna diversity by altering plant community composition, diversity, and nutrient contents. The interactions of different environmental factors can co-affect the soil fauna diversity. To understand the effects of different driving factors on soil fauna diversity under the background of climate change would facilitate us better predicting how the soil fauna diversity and related ecological processes changed in the future.
Liu, Huiying; Mi, Zhaorong; Lin, Li; Wang, Yonghui; Zhang, Zhenhua; Zhang, Fawei; Wang, Hao; Liu, Lingli; Zhu, Biao; Cao, Guangmin; Zhao, Xinquan; Sanders, Nathan J.; Reich, Peter B.
2018-01-01
The structure and function of alpine grassland ecosystems, including their extensive soil carbon stocks, are largely shaped by temperature. The Tibetan Plateau in particular has experienced significant warming over the past 50 y, and this warming trend is projected to intensify in the future. Such climate change will likely alter plant species composition and net primary production (NPP). Here we combined 32 y of observations and monitoring with a manipulative experiment of temperature and precipitation to explore the effects of changing climate on plant community structure and ecosystem function. First, long-term climate warming from 1983 to 2014, which occurred without systematic changes in precipitation, led to higher grass abundance and lower sedge abundance, but did not affect aboveground NPP. Second, an experimental warming experiment conducted over 4 y had no effects on any aspect of NPP, whereas drought manipulation (reducing precipitation by 50%), shifted NPP allocation belowground without affecting total NPP. Third, both experimental warming and drought treatments, supported by a meta-analysis at nine sites across the plateau, increased grass abundance at the expense of biomass of sedges and forbs. This shift in functional group composition led to deeper root systems, which may have enabled plant communities to acquire more water and thus stabilize ecosystem primary production even with a changing climate. Overall, our study demonstrates that shifting plant species composition in response to climate change may have stabilized primary production in this high-elevation ecosystem, but it also caused a shift from aboveground to belowground productivity. PMID:29666319
Michael P. Ricketts; Charles E. Flower; Kathleen S. Knight; Miquel A. Gonzalez-Meler
2018-01-01
The spread of the invasive emerald ash borer (EAB) across North America has had enormous impacts on temperate forest ecosystems. The selective removal of ash trees (Fraxinus spp.) has resulted in abnormally large inputs of coarse woody debris and altered forest tree community composition, ultimately affecting a variety of ecosystem processes. The...
Schleuning, Matthias; Farwig, Nina; Peters, Marcell K; Bergsdorf, Thomas; Bleher, Bärbel; Brandl, Roland; Dalitz, Helmut; Fischer, Georg; Freund, Wolfram; Gikungu, Mary W; Hagen, Melanie; Garcia, Francisco Hita; Kagezi, Godfrey H; Kaib, Manfred; Kraemer, Manfred; Lung, Tobias; Naumann, Clas M; Schaab, Gertrud; Templin, Mathias; Uster, Dana; Wägele, J Wolfgang; Böhning-Gaese, Katrin
2011-01-01
Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the functionality of tropical forests can be maintained in moderately disturbed forest fragments. Conservation concepts for tropical forests should thus include not only remaining pristine forests but also functionally viable forest remnants.
Schleuning, Matthias; Farwig, Nina; Peters, Marcell K.; Bergsdorf, Thomas; Bleher, Bärbel; Brandl, Roland; Dalitz, Helmut; Fischer, Georg; Freund, Wolfram; Gikungu, Mary W.; Hagen, Melanie; Garcia, Francisco Hita; Kagezi, Godfrey H.; Kaib, Manfred; Kraemer, Manfred; Lung, Tobias; Schaab, Gertrud; Templin, Mathias; Uster, Dana; Wägele, J. Wolfgang; Böhning-Gaese, Katrin
2011-01-01
Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the functionality of tropical forests can be maintained in moderately disturbed forest fragments. Conservation concepts for tropical forests should thus include not only remaining pristine forests but also functionally viable forest remnants. PMID:22114695
Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality.
Hautier, Yann; Isbell, Forest; Borer, Elizabeth T; Seabloom, Eric W; Harpole, W Stanley; Lind, Eric M; MacDougall, Andrew S; Stevens, Carly J; Adler, Peter B; Alberti, Juan; Bakker, Jonathan D; Brudvig, Lars A; Buckley, Yvonne M; Cadotte, Marc; Caldeira, Maria C; Chaneton, Enrique J; Chu, Chengjin; Daleo, Pedro; Dickman, Christopher R; Dwyer, John M; Eskelinen, Anu; Fay, Philip A; Firn, Jennifer; Hagenah, Nicole; Hillebrand, Helmut; Iribarne, Oscar; Kirkman, Kevin P; Knops, Johannes M H; La Pierre, Kimberly J; McCulley, Rebecca L; Morgan, John W; Pärtel, Meelis; Pascual, Jesus; Price, Jodi N; Prober, Suzanne M; Risch, Anita C; Sankaran, Mahesh; Schuetz, Martin; Standish, Rachel J; Virtanen, Risto; Wardle, Glenda M; Yahdjian, Laura; Hector, Andy
2018-01-01
Biodiversity is declining in many local communities while also becoming increasingly homogenized across space. Experiments show that local plant species loss reduces ecosystem functioning and services, but the role of spatial homogenization of community composition and the potential interaction between diversity at different scales in maintaining ecosystem functioning remains unclear, especially when many functions are considered (ecosystem multifunctionality). We present an analysis of eight ecosystem functions measured in 65 grasslands worldwide. We find that more diverse grasslands-those with both species-rich local communities (α-diversity) and large compositional differences among localities (β-diversity)-had higher levels of multifunctionality. Moreover, α- and β-diversity synergistically affected multifunctionality, with higher levels of diversity at one scale amplifying the contribution to ecological functions at the other scale. The identity of species influencing ecosystem functioning differed among functions and across local communities, explaining why more diverse grasslands maintained greater functionality when more functions and localities were considered. These results were robust to variation in environmental drivers. Our findings reveal that plant diversity, at both local and landscape scales, contributes to the maintenance of multiple ecosystem services provided by grasslands. Preserving ecosystem functioning therefore requires conservation of biodiversity both within and among ecological communities.
Pervasive effects of wildfire on foliar endophyte communities in montane forest trees
Huang, Yu-Ling; Devan, MM Nandi; U'Ren, Jana M.; Furr, Susan H.; Arnold, A. Elizabeth
2015-01-01
Plants in all terrestrial ecosystems form symbioses with endophytic fungi that inhabit their healthy tissues. How these foliar endophytes respond to wildfires has not been studied previously, but is important given the increasing frequency and intensity of severe wildfires in many ecosystems, and because endophytes can influence plant growth and responses to stress. The goal of this study was to examine effects of severe wildfires on endophyte communities in forest trees, with a focus on traditionally fire-dominated, montane ecosystems in the southwestern USA. We evaluated the abundance, diversity, and composition of endophytes in foliage of Juniperus deppeana (Cupressaceae) and Quercus spp. (Fagaceae) collected contemporaneously from areas affected by recent wildfire and paired areas not affected by recent fire. Study sites spanned four mountain ranges in central and southern Arizona. Our results revealed significant effects of fires on endophyte communities, including decreases in isolation frequency, increases in diversity, and shifts in community structure and taxonomic composition among endophytes of trees affected by recent fires. Responses to fire were similar in endophytes of each host in these fire-dominated ecosystems and reflect regional fire-return intervals, with endophytes after fire representing subsets of the regional mycoflora. Together these findings contribute to an emerging perspective on the responses of diverse communities to severe fire, and highlight the importance of considering fire history when estimating endophyte diversity and community structure for focal biomes. PMID:26370111
Pervasive Effects of Wildfire on Foliar Endophyte Communities in Montane Forest Trees.
Huang, Yu-Ling; Devan, M M Nandi; U'Ren, Jana M; Furr, Susan H; Arnold, A Elizabeth
2016-02-01
Plants in all terrestrial ecosystems form symbioses with endophytic fungi that inhabit their healthy tissues. How these foliar endophytes respond to wildfires has not been studied previously, but is important given the increasing frequency and intensity of severe wildfires in many ecosystems, and because endophytes can influence plant growth and responses to stress. The goal of this study was to examine effects of severe wildfires on endophyte communities in forest trees, with a focus on traditionally fire-dominated, montane ecosystems in the southwestern USA. We evaluated the abundance, diversity, and composition of endophytes in foliage of Juniperus deppeana (Cupressaceae) and Quercus spp. (Fagaceae) collected contemporaneously from areas affected by recent wildfire and paired areas not affected by recent fire. Study sites spanned four mountain ranges in central and southern Arizona. Our results revealed significant effects of fires on endophyte communities, including decreases in isolation frequency, increases in diversity, and shifts in community structure and taxonomic composition among endophytes of trees affected by recent fires. Responses to fire were similar in endophytes of each host in these fire-dominated ecosystems and reflect regional fire-return intervals, with endophytes after fire representing subsets of the regional mycoflora. Together, these findings contribute to an emerging perspective on the responses of diverse communities to severe fire, and highlight the importance of considering fire history when estimating endophyte diversity and community structure for focal biomes.
CO2 flux studies of different hemiboreal forest ecosystems
NASA Astrophysics Data System (ADS)
Krasnova, Alisa; Krasnov, Dmitrii; Noe, Steffen M.; Uri, Veiko; Mander, Ülo; Niinemets, Ülo; Soosaar, Kaido
2017-04-01
Hemiboreal zone is a transition between boreal and temperate zones characterized by the combination of climatic and edaphic conditions inherent in both zones. Hemiboreal forests are typically presented by mixed forests types with different ratios of deciduous and conifer tree species. Dominating tree species composition affects the functioning of forest ecosystem and its influence on biogeochemical cycles. We present the result of ecosystem scale CO2 eddy-covariance fluxes research conducted in 4 ecosystems (3 forests sites and 1 clear-cut area) of hemiboreal zone in Estonia. All 4 sites were developing under similar climatic conditions, but different forest management practices resulted in different composition of dominating tree species: pine forest with spruce trees as a second layer (Soontaga site); spruce/birch forest with single alder trees (Liispõllu site); forest presented by sectors of pine, spruce, birch and clearcut areas (SMEAR Estonia site); 5-years old clearcut area (Kõnnu site).
Sources and Practices Contributing to Soil Contamination
A.S. Knox; A.P. Gamerdinger; D.C. Adriano; R.K. Kolka; D.I. Kaplan
1999-01-01
The term soil contamination can have different connotations because anthropogehic sources of contaminants have affected virtually every natural ecosystem in the world; a commonly held view is that contamination occurs when the soil composition deiiates from the normal composition (Adriano et al., 1997). Other specialists have defined soil pollution as the presence of...
Yazdani Foshtomi, Maryam; Leliaert, Frederik; Derycke, Sofie; Willems, Anne; Vincx, Magda
2018-01-01
The presence of large densities of the piston-pumping polychaete Lanice conchilega can have important consequences for the functioning of marine sediments. It is considered both an allogenic and an autogenic ecosystem engineer, affecting spatial and temporal biogeochemical gradients (oxygen concentrations, oxygen penetration depth and nutrient concentrations) and physical properties (grain size) of marine sediments, which could affect functional properties of sediment-inhabiting microbial communities. Here we investigated whether density-dependent effects of L. conchilega affected horizontal (m-scale) and vertical (cm-scale) patterns in the distribution, diversity and composition of the typical nosZ gene in the active denitrifying organisms. This gene plays a major role in N2O reduction in coastal ecosystems as the last step completing the denitrification pathway. We showed that both vertical and horizontal composition and richness of nosZ gene were indeed significantly affected when large densities of the bio-irrigator were present. This could be directly related to allogenic ecosystem engineering effects on the environment, reflected in increased oxygen penetration depth and oxygen concentrations in the upper cm of the sediment in high densities of L. conchilega. A higher diversity (Shannon diversity and inverse Simpson) of nosZ observed in patches with high L. conchilega densities (3,185–3,440 ind. m-2) at deeper sediment layers could suggest a downward transport of NO3− to deeper layers resulting from bio-irrigation as well. Hence, our results show the effect of L. conchilega bio-irrigation activity on denitrifying organisms in L. conchilega reefs. PMID:29408934
USDA-ARS?s Scientific Manuscript database
Climatic changes are leading to differing patterns and timing of precipitation in grassland ecosystems, with the seasonal timing of precipitation affecting plant biomass and plant composition. No previous studies have examined how drought seasonality affects grasshopper performance and the impact of...
Presser, Theresa S.
2013-01-01
Investigating the presence and variability of prey and predator species in demographically open systems such as streams also is key to model outcomes given the overall environmental stressors (for example, general landscape change, food-web disruption, recolonization potential) imposed on the composition of biological communities in coal mining and valley-fill affected watersheds
Pivovaroff, Alexandria L; Santiago, Louis S; Vourlitis, George L; Grantz, David A; Allen, Michael F
2016-07-01
Anthropogenic nitrogen (N) deposition represents a significant N input for many terrestrial ecosystems. N deposition can affect plants on scales ranging from photosynthesis to community composition, yet few studies have investigated how changes in N availability affect plant water relations. We tested the effects of N addition on plant water relations, hydraulic traits, functional traits, gas exchange, and leaf chemistry in a semi-arid ecosystem in Southern California using long-term experimental plots fertilized with N for over a decade. The dominant species were Artemisia california and Salvia mellifera at Santa Margarita Ecological Reserve and Adenostoma fasciculatum and Ceanothus greggii at Sky Oaks Field Station. All species, except Ceanothus, showed increased leaf N concentration, decreased foliar carbon to N ratio, and increased foliar N isotopic composition with fertilization, indicating that added N was taken up by study species, yet each species had a differing physiological response to long-term N addition. Dry season predawn water potentials were less negative with N addition for all species except Adenostoma, but there were no differences in midday water potentials, or wet season water potentials. Artemisia was particularly responsive, as N addition increased stem hydraulic conductivity, stomatal conductance, and leaf carbon isotopic composition, and decreased wood density. The alteration of water relations and drought resistance parameters with N addition in Artemisia, as well as Adenostoma, Ceanothus, and Salvia, indicate that N deposition can affect the ability of native Southern California shrubs to respond to drought.
Matrix Intensification Alters Avian Functional Group Composition in Adjacent Rainforest Fragments
Deikumah, Justus P.; McAlpine, Clive A.; Maron, Martine
2013-01-01
Conversion of farmland land-use matrices to surface mining is an increasing threat to the habitat quality of forest remnants and their constituent biota, with consequences for ecosystem functionality. We evaluated the effects of matrix type on bird community composition and the abundance and evenness within avian functional groups in south-west Ghana. We hypothesized that surface mining near remnants may result in a shift in functional composition of avifaunal communities, potentially disrupting ecological processes within tropical forest ecosystems. Matrix intensification and proximity to the remnant edge strongly influenced the abundance of members of several functional guilds. Obligate frugivores, strict terrestrial insectivores, lower and upper strata birds, and insect gleaners were most negatively affected by adjacent mining matrices, suggesting certain ecosystem processes such as seed dispersal may be disrupted by landscape change in this region. Evenness of these functional guilds was also lower in remnants adjacent to surface mining, regardless of the distance from remnant edge, with the exception of strict terrestrial insectivores. These shifts suggest matrix intensification can influence avian functional group composition and related ecosystem-level processes in adjacent forest remnants. The management of matrix habitat quality near and within mine concessions is important for improving efforts to preserveavian biodiversity in landscapes undergoing intensification such as through increased surface mining. PMID:24058634
Matrix intensification alters avian functional group composition in adjacent rainforest fragments.
Deikumah, Justus P; McAlpine, Clive A; Maron, Martine
2013-01-01
Conversion of farmland land-use matrices to surface mining is an increasing threat to the habitat quality of forest remnants and their constituent biota, with consequences for ecosystem functionality. We evaluated the effects of matrix type on bird community composition and the abundance and evenness within avian functional groups in south-west Ghana. We hypothesized that surface mining near remnants may result in a shift in functional composition of avifaunal communities, potentially disrupting ecological processes within tropical forest ecosystems. Matrix intensification and proximity to the remnant edge strongly influenced the abundance of members of several functional guilds. Obligate frugivores, strict terrestrial insectivores, lower and upper strata birds, and insect gleaners were most negatively affected by adjacent mining matrices, suggesting certain ecosystem processes such as seed dispersal may be disrupted by landscape change in this region. Evenness of these functional guilds was also lower in remnants adjacent to surface mining, regardless of the distance from remnant edge, with the exception of strict terrestrial insectivores. These shifts suggest matrix intensification can influence avian functional group composition and related ecosystem-level processes in adjacent forest remnants. The management of matrix habitat quality near and within mine concessions is important for improving efforts to preserveavian biodiversity in landscapes undergoing intensification such as through increased surface mining.
USDA-ARS?s Scientific Manuscript database
Increasing atmospheric [CO2] and temperature are expected to affect the productivity, species composition, biogeochemistry, and therefore the quantity and quality of forage available to herbivores in rangeland ecosystems. Both elevated CO2 (eCO2) and warming affect plant tissue chemistry through mul...
AVIRIS data and neural networks applied to an urban ecosystem
NASA Technical Reports Server (NTRS)
Ridd, Merrill K.; Ritter, Niles D.; Bryant, Nevin A.; Green, Robert O.
1992-01-01
Urbanization is expanding on every continent. Although urban/industrial areas occupy a small percentage of the total landscape of the earth, their influence extends far beyond their borders, affecting terrestrial, aquatic, and atmospheric systems globally. Yet little has been done to characterize urban ecosystems of their linkages to other systems horizontally or vertically. With remote sensing we now have the tools to characterize, monitor, and model urban landscapes world-wide. However, the remote sensing performed on cities so far has concentrated on land-use patterns as distinct from land-cover or composition. The popular Anderson system is entirely land-use oriented in urban areas. This paper begins with the premise that characterizing the biophysical composition of urban environments is fundamental to understanding urban/industrial ecosystems, and, in turn, supports the modeling of other systems interfacing with urban systems. Further, it is contended that remote sensing is a tool poised to provide the biophysical composition data to characterize urban landscapes.
NASA Astrophysics Data System (ADS)
Liu, Y.; Rollinson, C.; Dietze, M.; McLachlan, J. S.; Poulter, B.; Quaife, T. L.; Raiho, A.; Ricciuto, D. M.; Schaefer, K. M.; Steinkamp, J.; Moore, D. J.
2015-12-01
Over multi-decadal to multi-centennial timescales, ecosystem function and carbon storage is largely influenced by vegetation composition. The predictability of ecosystem responses to climate change thus depends on the understanding of long-term community dynamics. Our study aims to quantify the influence of the most relevant ecological factors that control plant distribution and abundance, in contemporary terrestrial biosphere models and in paleo-records, and constrain the model processes and parameters with paleoecological data. We simulated vegetation changes at 6 sites in the northeastern United States over the past 1160 years using 7 terrestrial biosphere models and variations (CLM4.5-CN, ED2, ED2-LU, JULES-TRIFFID, LINKAGES, LPJ-GUESS, LPJ-wsl) driven by common paleoclimatic drivers. We examined plant growth, recruitment, and mortality (including other carbon turnover) of the plant functional types (PFTs) in the models, attributed the responses to three major factors (climate, competition, and disturbance), and estimated the relative effect of each factor. We assessed the model responses against plant-community theories (bioclimatic limits, niche difference, temporal variation and storage effect, and disturbance). We found that vegetation composition were sensitive to realized niche differences (e.g. differential growth response) among PFTs. Because many models assume unlimited dispersal and sometimes recruitment, the "storage effect" constantly affects community composition. Fire was important in determining the ecosystem composition, yet the vegetation to fire feedback was weak in the models. We also found that vegetation-composition changes in the simulations were driven to a much greater degree by growth as opposed to by turnover/mortality, when compared with those in paleoecological records. Our work suggest that 1) for forecasting slow changes in vegetation composition, we can use paleo-data to better quantify the realized niches of PFTs and associated uncertainties, and 2) for predicting abrupt changes in vegetation composition, we need to better implement processes of dynamic turnover and fire in current ecosystem models.
Woody plant communities along urban, suburban, and rural streams in Louisville, Kentucky, USA
R. Jonathan White; Margaret M. Carreiro; Wayne C. Zipperer
2014-01-01
Anthropogenic changes in land use and cover (LULC) in stream catchments can alter the composition of riparian plant communities, which can affect ecosystem functions of riparian areas and streams from local to landscape scales.We conducted a study to determine if woody plant species composition and abundance along headwater streams were correlated with categorical and...
Heidi M. Anderson; Margeret R. Gale; Martin F. Jurgensen; Carl C. Trettin
2007-01-01
Forested wetlands are important ecosystems valued for their indigenous plant communities, spatial heterogeneity, wildlife habitat, water quality, and timber resources. When harvested for timber, plant composition in these wetlands may change due to alteration in microsite habitats. Harvest severity also may affect plant composition. In this study, a mineral conifer...
USDA-ARS?s Scientific Manuscript database
Increasing atmospheric [CO2] and temperature are expected to affect the productivity, species composition, biogeochemistry, and therefore the quantity and quality of forage available to herbivores in rangeland ecosystems. Both elevated CO2 (eCO2) and warming affect plant tissue chemistry through mul...
Linda T.A. Van Diepen; Erik Lilleskov; Kurt S. Pregitzer
2011-01-01
Our previous investigation found elevated nitrogen deposition caused declines in abundance of arbuscular mycorrhizal fungi (AMF) associated with forest trees, but little is known about how nitrogen affects the AMF community composition and structure within forest ecosystems. We hypothesized that N deposition would lead to significant changes in the AMF community...
Cathryn H. Greenberg; Christopher E. Moorman; Amy L. Raybuck; Chad Sundol; Tara L. Keyser; Janis Bush; Dean M. Simon; Gordon S. Warburton
2016-01-01
Forest restoration efforts commonly employ silvicultural methods that alter light and competition to influence species composition. Changes to forest structure and microclimate may adversely affect some taxa (e.g., terrestrial salamanders), but positively affect others (e.g., early successional birds). Salamanders are cited as indicators of ecosystem health because of...
Escolar, Cristina; Martínez, Isabel; Bowker, Matthew A.; Maestre, Fernando T.
2012-01-01
Biological soil crusts (BSCs) are key biotic components of dryland ecosystems worldwide that control many functional processes, including carbon and nitrogen cycling, soil stabilization and infiltration. Regardless of their ecological importance and prevalence in drylands, very few studies have explicitly evaluated how climate change will affect the structure and composition of BSCs, and the functioning of their constituents. Using a manipulative experiment conducted over 3 years in a semi-arid site from central Spain, we evaluated how the composition, structure and performance of lichen-dominated BSCs respond to a 2.4°C increase in temperature, and to an approximately 30 per cent reduction of total annual rainfall. In areas with well-developed BSCs, warming promoted a significant decrease in the richness and diversity of the whole BSC community. This was accompanied by important compositional changes, as the cover of lichens suffered a substantial decrease with warming (from 70 to 40% on average), while that of mosses increased slightly (from 0.3 to 7% on average). The physiological performance of the BSC community, evaluated using chlorophyll fluorescence, increased with warming during the first year of the experiment, but did not respond to rainfall reduction. Our results indicate that ongoing climate change will strongly affect the diversity and composition of BSC communities, as well as their recovery after disturbances. The expected changes in richness and composition under warming could reduce or even reverse the positive effects of BSCs on important soil processes. Thus, these changes are likely to promote an overall reduction in ecosystem processes that sustain and control nutrient cycling, soil stabilization and water dynamics. PMID:23045707
Zhao, Zhenzhen; Dong, Shikui; Jiang, Xiaoman; Zhao, Jinbo; Liu, Shiliang; Yang, Mingyue; Han, Yuhui; Sha, Wei
2018-06-01
Fencing and grass plantation are two key interventions to preserve the degraded grassland on the Qinghai-Tibetan Plateau (QTP). Climate warming and N deposition have substantially affected the alpine grassland ecosystems. However, molecular composition of soil organic carbon (SOC), the indicator of degradation of SOC, and its responses to climate change are still largely unclear. In this study, we conducted the experiments in three types of land use on the QTP: alpine meadow (AM), alpine steppe (AS), and cultivated grassland (CG) under 2°C climatic warming, 5 levels of nitrogen deposition rates at 8, 24, 40, 56, and 72kg N ha -1 year -1 , as well as a combination of climatic warming and N deposition (8kg N ha -1 year -1 ). Our findings indicate that all three types of land use were dominated by O-alkyl carbon. The alkyl/O-alkyl ratio, aromaticity and hydrophobicity index of the CG were larger than those of the AM and AS, and this difference was generally stable under different treatments. Most of the SOC in the alpine grasslands was derived from fresh plants, and the carbon in the CG was more stable than that in the AM and AS. The compositions of all the alpine ecosystems were stable under short-term climatic changes, suggesting the short-term climate warming and nitrogen deposition likely did not affect the molecular composition of the SOC in the restored grasslands. Copyright © 2017 Elsevier B.V. All rights reserved.
Du, Jingjing; Zhang, Yuyan; Guo, Wei; Li, Ningyun; Gao, Chaoshuai; Cui, Minghui; Lin, Zhongdian; Wei, Mingbao; Zhang, Hongzhong
2018-05-15
Titanium dioxide (TiO 2 ) nanoparticles have been applied in diverse commercial products, which could lead to toxic effects on aquatic microbes and would inhibit some important ecosystem processes. The study aimed to investigate the chronic impacts of TiO 2 nanoparticles with different concentrations (5, 50, and 500 mg L -1 ) on Populus nigra L. leaf decomposition in the freshwater ecosystem. After 50 d of decomposing, a significant decrease in decomposition rates was observed with higher concentrations of TiO 2 nanoparticles. During the period of litter decomposition, exposure of TiO 2 nanoparticles led to decreases in extracellular enzyme activities, which was caused by the reduction of microbial especially fungal biomass. In addition, the diversity and composition of the fungal community associated with litter decomposition were strongly affected by the concentrations of TiO 2 nanoparticles. The diversity and composition of the fungal community associated with litter decomposition was strongly affected. The abundance of Tricladium chaetocladium decreased with the increasing concentrations of TiO 2 nanoparticles, indicating the little contribution of the species to the litter decomposition. In conclusion, this study provided the evidence for the chronic exposure effects of TiO 2 nanoparticles on the litter decomposition and further the functions of freshwater ecosystems. Copyright © 2018 Elsevier B.V. All rights reserved.
Paul Meznarich; Jane Smith; Tara Jennings
2013-01-01
Soil health is fundamental to ecosystem health. Disturbances such as fire and timber harvesting can affect the abundance, activity, and composition of soil microbial communities and thus affect soil productivity. In response to forest managers, scientists with the Pacific Northwest Research Station compared health and productivity indicators between soils disturbed by...
J.S. Kominoski; C.M. Pringle; B.A. Ball; M.A. Bradford; D.C. Coleman; D.B. Hall; M.D. Hunter
2007-01-01
Since species loss is predicted to be nonrandom, it is important to understand the manner in which those species that we anticipate losing interact with other species to affect ecosystem function. We tested whether litter species diversity, measured as richness and composition, affects breakdown dynamics in a detritus-based stream. Using full-factorial analyses of...
NASA Astrophysics Data System (ADS)
Churchill, A. C.; Beers, A.; Grinath, J.; Bowman, W. D.
2017-12-01
Nitrogen cycling across the globe has been fundamentally altered due to regional elevated N deposition and there is a cascade of ecosystem consequences including shifts in species composition, eutrophication, and soil acidification. Making predictions that encompass the factors that drive these ecosystem changes has frequently been limited to single ecosystem types, or areas with fairly homogenous abiotic conditions. The alpine is an ecosystem type that exhibits changes under relatively low levels of N depositions due to short growing seasons and shallow soils limiting N storage. While recent work provided estimates for the magnitude of N associated with ecosystem changes, less is known about the within-site factors that may interact to stabilize or amplify the differential response of N pools under future conditions of resource deposition. To examine numerous potential within-site and regional factors (both biotic and abiotic) affecting ecosystem N pools we examined the relationship between those factors and a suite of ecosystem pools of N followed by model selection procedures and structural equation modelling. Measurements were conducted at Niwot Ridge Long Term Ecological Research site and in Rocky Mountain National Park in three distinct alpine meadow ecosystems (dry, moist, and wet meadows). These meadows span a moisture gradient as well as plant community composition, thereby providing high variability of potential biotic and abiotic drivers across small spatial scales in the alpine. In general, regional scale abiotic factors such as site levels of annual average N deposition or precipitation were poor predictors of seasonal pools of N, while spring soil water pools of N were negatively correlated with elevation. Models containing multiple abiotic and biotic drivers, however, were best at predicting soil and plant pools of N across the two sites. Future analysis will include highlight interactions among with-site factors affecting N pools in the alpine using structural equation modelling to statistically examine the bidirectional relationship between plant communities and soil pools of N.
Lv, Xiaofei; Ma, Bin; Yu, Junbao; Chang, Scott X.; Xu, Jianming; Li, Yunzhao; Wang, Guangmei; Han, Guangxuan; Bo, Guan; Chu, Xiaojing
2016-01-01
Coastal ecosystems play significant ecological and economic roles but are threatened and facing decline. Microbes drive various biogeochemical processes in coastal ecosystems. Tidal flats are critical components of coastal ecosystems; however, the structure and function of microbial communities in tidal flats are poorly understood. Here we investigated the seasonal variations of bacterial communities along a tidal flat series (subtidal, intertidal and supratidal flats) and the factors affecting the variations. Bacterial community composition and diversity were analyzed over four seasons by 16S rRNA genes using the Ion Torrent PGM platform. Bacterial community composition differed significantly along the tidal flat series. Bacterial phylogenetic diversity increased while phylogenetic turnover decreased from subtidal to supratidal flats. Moreover, the bacterial community structure differed seasonally. Canonical correspondence analysis identified salinity as a major environmental factor structuring the microbial community in the sediment along the successional series. Meanwhile, temperature and nitrite concentration were major drivers of seasonal microbial changes. Despite major compositional shifts, nitrogen, methane and energy metabolisms predicted by PICRUSt were inhibited in the winter. Taken together, this study indicates that bacterial community structure changed along the successional tidal flat series and provides new insights on the characteristics of bacterial communities in coastal ecosystems. PMID:27824160
Lv, Xiaofei; Ma, Bin; Yu, Junbao; Chang, Scott X; Xu, Jianming; Li, Yunzhao; Wang, Guangmei; Han, Guangxuan; Bo, Guan; Chu, Xiaojing
2016-11-08
Coastal ecosystems play significant ecological and economic roles but are threatened and facing decline. Microbes drive various biogeochemical processes in coastal ecosystems. Tidal flats are critical components of coastal ecosystems; however, the structure and function of microbial communities in tidal flats are poorly understood. Here we investigated the seasonal variations of bacterial communities along a tidal flat series (subtidal, intertidal and supratidal flats) and the factors affecting the variations. Bacterial community composition and diversity were analyzed over four seasons by 16S rRNA genes using the Ion Torrent PGM platform. Bacterial community composition differed significantly along the tidal flat series. Bacterial phylogenetic diversity increased while phylogenetic turnover decreased from subtidal to supratidal flats. Moreover, the bacterial community structure differed seasonally. Canonical correspondence analysis identified salinity as a major environmental factor structuring the microbial community in the sediment along the successional series. Meanwhile, temperature and nitrite concentration were major drivers of seasonal microbial changes. Despite major compositional shifts, nitrogen, methane and energy metabolisms predicted by PICRUSt were inhibited in the winter. Taken together, this study indicates that bacterial community structure changed along the successional tidal flat series and provides new insights on the characteristics of bacterial communities in coastal ecosystems.
NASA Astrophysics Data System (ADS)
Falk, Julie Maria; Schmidt, Niels Martin; Christensen, Torben R.; Ström, Lena
2015-04-01
Herbivory is an important part of most ecosystems and affects the ecosystems’ carbon balance both directly and indirectly. Little is known about herbivory and its impact on the carbon balance in high arctic mire ecosystems. We hypothesized that trampling and grazing by large herbivores influences the vegetation density and composition and thereby also the carbon balance. In 2010, we established fenced exclosures in high arctic Greenland to prevent muskoxen (Ovibos moschatus) from grazing. During the growing seasons of 2011 to 2013 we measured CO2 and CH4 fluxes in these ungrazed blocks and compared them to blocks subjected to natural grazing. Additionally, we measured depth of the water table and active layer, soil temperature, and in 2011 and 2013 an inventory of the vegetation density and composition were made. In 2013 a significant decrease in total number of vascular plant (33-44%) and Eriophorum scheuchzeri (51-53%) tillers were found in ungrazed plots, the moss-layer and amount of litter had also increased substantially in these plots. This resulted in a significant decrease in net ecosystem uptake of CO2 (47%) and likewise a decrease in CH4 emission (44%) in ungrazed plots in 2013. While the future of the muskoxen in a changing arctic is unknown, this experiment points to a potentially large effect of large herbivores on the carbon balance in natural Arctic ecosystems. It thus sheds light on the importance of grazing mammals, and hence adds to our understanding of natural ecosystem greenhouse gas balance in the past and in the future.
The ups and downs of trophic control in continental shelf ecosystems.
Frank, Kenneth T; Petrie, Brian; Shackell, Nancy L
2007-05-01
Traditionally, marine ecosystem structure was thought to be determined by phytoplankton dynamics. However, an integrated view on the relative roles of top-down (consumer-driven) and bottom-up (resource-driven) forcing in large-scale, exploited marine ecosystems is emerging. Long time series of scientific survey data, underpinning the management of commercially exploited species such as cod, are being used to diagnose mechanisms that could affect the composition and relative abundance of species in marine food webs. By assembling published data from studies in exploited North Atlantic ecosystems, we found pronounced geographical variation in top-down and bottom-up trophic forcing. The data suggest that ecosystem susceptibility to top-down control and their resiliency to exploitation are related to species richness and oceanic temperature conditions. Such knowledge could be used to produce ecosystem guidelines to regulate and manage fisheries in a sustainable fashion.
Assessing diversity of prairie plants using remote sensing
NASA Astrophysics Data System (ADS)
Gamon, J. A.; Wang, R.
2017-12-01
Biodiversity loss endangers ecosystem services and is considered as a global change that may generate unacceptable environmental consequences for the Earth system. Global biodiversity observations are needed to provide a better understanding of biodiversity - ecosystem services relationships and to provide a stronger foundation for conserving the Earth's biodiversity. While remote sensing metrics have been applied to estimate α biodiversity directly through optical diversity, a better understanding of the mechanisms behind the optical diversity-biodiversity relationship is needed. We designed a series of experiments at Cedar Creek Ecosystem Science Reserve, MN, to investigate the scale dependence of optical diversity and explore how species richness, evenness, and composition affect optical diversity. We collected hyperspectral reflectance of 16 prairie species using both a full-range field spectrometer fitted with a leaf clip, and an imaging spectrometer carried by a tram system to simulate plot-level images with different species richness, evenness, and composition. Two indicators of spectral diversity were explored: the coefficient of variation (CV) of spectral reflectance in space, and spectral classification using a Partial Least Squares Discriminant Analysis (PLS-DA). Our results showed that sampling methods (leaf clip-derived data vs. image-derived data) affected the optical diversity estimation. Both optical diversity indices were affected by species richness and evenness (P<0.001 for each case). At fine spatial scales, species composition also had a substantial influence on optical diversity. CV was sensitive to the background soil influence, but the spectral classification method was insensitive to background. These results provide a critical foundation for assessing biodiversity using imaging spectrometry and these findings can be used to guide regional studies of biodiversity estimation using high spatial and spectral resolution remote sensing.
Araújo, Maria Aparecida de Moura; da Rocha, Antônio Elielson Sousa; Miranda, Izildinha de Souza; Barbosa, Reinaldo Imbrozio
2017-01-01
Studies on plant communities in the Amazon have reported that different hydro-edaphic conditions can affect the richness and the species composition of different ecosystems. However, this aspect is poorly known in the different savanna habitats. Understanding how populations and plant communities are distributed in these open vegetation areas is important to improve the knowledge about which environmental variables influence the occurrence and diversity of plants in this type of regional ecosystem. Thus, this study investigated the richness and composition of plant species in two savanna areas of the northern Brazilian Amazonia, using the coverage (%) of the different life forms observed under different hydro-edaphic conditions as a structural reference. We report 128 plant species classified in 34 botanical families distributed in three savanna habitats with different levels of hydro-edaphic restrictions. In this study, the habitats are conceptually presented and they integrate environmental information (edaphic factors and drainage type), which determines differences between floristic composition, species richness and coverage (%) of plant life forms.
Hu, Ziye; Meng, Han; Shi, Jin-Huan; Bu, Nai-Shun; Fang, Chang-Ming; Quan, Zhe-Xue
2014-01-01
Global nitrogen cycling is mainly mediated by the activity of microorganisms. Nitrogen cycle processes are mediated by functional groups of microorganisms that are affected by constantly changing environmental conditions and substrate availability. In this study, we investigated the temporal and spatial patterns of nitrifier and denitrifier communities in an intertidal wetland. Soil samples were collected over four distinct seasons from three locations with different vegetative cover. Multiple environmental factors and process rates were measured and analyzed together with the community size and composition profiles. We observed that the community size and composition of the nitrifiers and denitrifiers are affected significantly by seasonal factors, while vegetative cover affected the community composition. The seasonal impacts on the community size of ammonia oxidizing archaea (AOA) are much higher than that of ammonia oxidizing bacteria (AOB). The seasonal change was a more important indicator for AOA community composition patterns, while vegetation was more important for the AOB community patterns. The microbial process rates were correlated with both the community size and composition. PMID:25101072
Lima-Perim, Julia Elidia; Romagnoli, Emiliana Manesco; Dini-Andreote, Francisco; Durrer, Ademir; Dias, Armando Cavalcante Franco; Andreote, Fernando Dini
2016-01-01
The description of microbiomes as intrinsic fractions of any given ecosystem is an important issue, for instance, by linking their compositions and functions with other biotic and abiotic components of natural systems and hosts. Here we describe the archaeal and bacterial communities from soils of the Atlantic Rainforest in Brazil. Based on the comparison of three areas located along an altitudinal gradient—namely, Santa Virginia, Picinguaba and Restinga—we detected the most abundant groups of Bacteria (Acidobacteria and Proteobacteria) and Archaea (Thaumarchaeota, Crenarchaeota and Euryarchaeota). The particular composition of such communities in each of these areas was first evidenced by PCR-DGGE patterns [determined for Bacteria, Archaea and ammonia-oxidizing organisms—ammonia-oxidizing archaea (AOA) and bacteria (AOB)]. Moreover, sequence-based analysis provided a better resolution of communities, which indicated distinct frequencies of archaeal phyla and bacterial OTUs across areas. We found, as indicated by the Mantel test and multivariate analyses, a potential effect of the flora composition that outpaces the effect of soil characteristics (either physical and chemical) influencing the assembly of these microbial communities in soils. Our results indicate a collective role of the ecosystem underlying observed differences in microbial communities in these soils. Particularly, we posit that rainforest preservation also needs to take into account the maintenance of the soil biodiversity, as this is prompted to influence major processes that affect ecosystem functioning. PMID:26752633
Lima-Perim, Julia Elidia; Romagnoli, Emiliana Manesco; Dini-Andreote, Francisco; Durrer, Ademir; Dias, Armando Cavalcante Franco; Andreote, Fernando Dini
2016-01-01
The description of microbiomes as intrinsic fractions of any given ecosystem is an important issue, for instance, by linking their compositions and functions with other biotic and abiotic components of natural systems and hosts. Here we describe the archaeal and bacterial communities from soils of the Atlantic Rainforest in Brazil. Based on the comparison of three areas located along an altitudinal gradient-namely, Santa Virginia, Picinguaba and Restinga-we detected the most abundant groups of Bacteria (Acidobacteria and Proteobacteria) and Archaea (Thaumarchaeota, Crenarchaeota and Euryarchaeota). The particular composition of such communities in each of these areas was first evidenced by PCR-DGGE patterns [determined for Bacteria, Archaea and ammonia-oxidizing organisms-ammonia-oxidizing archaea (AOA) and bacteria (AOB)]. Moreover, sequence-based analysis provided a better resolution of communities, which indicated distinct frequencies of archaeal phyla and bacterial OTUs across areas. We found, as indicated by the Mantel test and multivariate analyses, a potential effect of the flora composition that outpaces the effect of soil characteristics (either physical and chemical) influencing the assembly of these microbial communities in soils. Our results indicate a collective role of the ecosystem underlying observed differences in microbial communities in these soils. Particularly, we posit that rainforest preservation also needs to take into account the maintenance of the soil biodiversity, as this is prompted to influence major processes that affect ecosystem functioning.
NASA Astrophysics Data System (ADS)
Smith, M. D.; Knapp, A.; Hoover, D. L.; Avolio, M. L.; Felton, A. J.; Slette, I.; Wilcox, K.
2017-12-01
Climate extremes, such as drought, are increasing in frequency and intensity, and the ecological consequences of these extreme events can be substantial and widespread. Yet, little is known about the factors that determine recovery of ecosystem function post-drought. Such knowledge is particularly important because post-drought recovery periods can be protracted depending on drought legacy effects (e.g., loss key plant populations, altered community structure and/or biogeochemical processes). These drought legacies may alter ecosystem function for many years post-drought and may impact future sensitivity to climate extremes. With forecasts of more frequent drought, there is an imperative to understand whether and how post-drought legacies will affect ecosystem response to future drought events. To address this knowledge gap, we experimentally imposed over an eight year period two extreme growing season droughts, each two years in duration followed by a two-year recovery period, in a central US grassland. We found that aboveground net primary productivity (ANPP) declined dramatically with the first drought and was accompanied by a large shift in plant species composition (loss of C3 forb and increase in C4 grasses). This drought legacy - shift in plant composition - persisted two years post-drought. Yet, despite this legacy, ANPP recovered fully. However, we expected that previously-droughted grassland would be less sensitive to a second extreme drought due to the shift in plant composition. Contrary to this expectation, previously droughted grassland experienced a greater loss in ANPP than grassland that had not experienced drought. Furthermore, previously droughted grassland did not fully recover after the second drought. Thus, the legacy of drought - a shift in plant community composition - increased ecosystem sensitivity to a future extreme drought event.
Molofsky, Jane; Keller, Stephen R; Lavergne, Sébastien; Kaproth, Matthew A; Eppinga, Maarten B
2014-04-01
Biological invasions can transform our understanding of how the interplay of historical isolation and contemporary (human-aided) dispersal affects the structure of intraspecific diversity in functional traits, and in turn, how changes in functional traits affect other scales of biological organization such as communities and ecosystems. Because biological invasions frequently involve the admixture of previously isolated lineages as a result of human-aided dispersal, studies of invasive populations can reveal how admixture results in novel genotypes and shifts in functional trait variation within populations. Further, because invasive species can be ecosystem engineers within invaded ecosystems, admixture-induced shifts in the functional traits of invaders can affect the composition of native biodiversity and alter the flow of resources through the system. Thus, invasions represent promising yet under-investigated examples of how the effects of short-term evolutionary changes can cascade across biological scales of diversity. Here, we propose a conceptual framework that admixture between divergent source populations during biological invasions can reorganize the genetic variation underlying key functional traits, leading to shifts in the mean and variance of functional traits within invasive populations. Changes in the mean or variance of key traits can initiate new ecological feedback mechanisms that result in a critical transition from a native ecosystem to a novel invasive ecosystem. We illustrate the application of this framework with reference to a well-studied plant model system in invasion biology and show how a combination of quantitative genetic experiments, functional trait studies, whole ecosystem field studies and modeling can be used to explore the dynamics predicted to trigger these critical transitions.
NASA Astrophysics Data System (ADS)
Esch, E. H.; Lipson, D.; Kim, J. B.; Cleland, E. E.
2014-12-01
Southern California is predicted to face decreasing precipitation with increased interannual variability in the coming century. Native shrublands in this area are increasingly invaded by exotic annual grasses, though invasion dynamics can vary by rainfall scenario, with wet years generally associated with high invasion pressure. Interplay between rainfall and invasion scenarios can influence carbon stocks and community composition. Here we asked how invasion alters ecosystem and community responses in drought versus high rainfall scenarios, as quantified by community identity, biomass production, and the normalized difference vegetation index (NDVI). To do this, we performed a rainfall manipulation experiment with paired plots dominated either by native shrubs or exotic herbaceous species, subjected to treatments of 50%, 100%, or 150% of ambient rainfall. The study site was located in a coastal sage scrub ecosystem, with patches dominated by native shrubs and exotic grasses located in San Diego County, USA. During two growing seasons, we found that native, herbaceous biomass production was significantly affected by rainfall treatment (p<0.05 for both years), though was not affected by dominant community composition. Photosynthetic biomass production of shrub species also varied by treatment (p=0.035). Exotic biomass production showed a significant interaction between dominant community composition and rainfall treatment, and both individual effects (p<0.001 for all). NDVI showed similar results, but also indicated the importance of rainfall timing on overall biomass production between years. Community composition data showed certain species, of both native and exotic identities, segregating by treatment. These results indicate that exotic species are more sensitive to rainfall, and that increased rainfall may promote greater carbon storage in annual dominated communities when compared to shrub dominated communities in high rainfall years, but with drought, this trend is reversed.
Many riparian areas are invaded by alien plant species that negatively affect native species composition, community dynamics and ecosystem properties. We sampled vegetation along reaches of 31 low order streams in eastern Oregon, and characterized species assemblages at patch an...
LAND-COVER CHARACTERIZATION AND CHANGE DETECTION USING MULTI-TEMPORAL MODIS NDIV DATA
Land-cover (LC) composition and conversions are important factors that affect ecosystem condition and function. These data are frequently used as a primary data source to generate landscape-based metrics to assess landscape condition at multiple assessment scales. The use of sate...
Careful logging, partial cutting and the protection of terrestrial and aquatic habitats
Daniel C. Dey
1994-01-01
Stand management activites influence (1) tree growth and quality; (2) stand structure, stocking and composition; (3) wildlife and aquatic habitat quality; and (4) long-term site productivity. The cumulative impacts of stand-level treatments affect ecosystem structure and function at the landscape level.
Anthropogenic impacts on marine ecosystems in Antarctica.
Aronson, Richard B; Thatje, Sven; McClintock, James B; Hughes, Kevin A
2011-03-01
Antarctica is the most isolated continent on Earth, but it has not escaped the negative impacts of human activity. The unique marine ecosystems of Antarctica and their endemic faunas are affected on local and regional scales by overharvesting, pollution, and the introduction of alien species. Global climate change is also having deleterious impacts: rising sea temperatures and ocean acidification already threaten benthic and pelagic food webs. The Antarctic Treaty System can address local- to regional-scale impacts, but it does not have purview over the global problems that impinge on Antarctica, such as emissions of greenhouse gases. Failure to address human impacts simultaneously at all scales will lead to the degradation of Antarctic marine ecosystems and the homogenization of their composition, structure, and processes with marine ecosystems elsewhere. © 2011 New York Academy of Sciences.
Mangels, Jule; Blüthgen, Nico; Frank, Kevin; Grassein, Fabrice; Hilpert, Andrea; Mody, Karsten
2015-01-01
Most forests are exposed to anthropogenic management activities that affect tree species composition and natural ecosystem processes. Changes in ecosystem processes such as herbivory depend on management intensity, and on regional environmental conditions and species pools. Whereas influences of specific forest management measures have already been addressed for different herbivore taxa on a local scale, studies considering effects of different aspects of forest management across different regions are rare. We assessed the influence of tree species composition and intensity of harvesting activities on arthropod herbivores and herbivore-related damage to beech trees, Fagus sylvatica, in 48 forest plots in three regions of Germany. We found that herbivore abundance and damage to beech trees differed between regions and that – despite the regional differences - density of tree-associated arthropod taxa and herbivore damage were consistently affected by tree species composition and harvest intensity. Specifically, overall herbivore damage to beech trees increased with increasing dominance of beech trees – suggesting the action of associational resistance processes – and decreased with harvest intensity. The density of leaf chewers and mines was positively related to leaf damage, and several arthropod groups responded to beech dominance and harvest intensity. The distribution of damage patterns was consistent with a vertical shift of herbivores to higher crown layers during the season and with higher beech dominance. By linking quantitative data on arthropod herbivore abundance and herbivory with tree species composition and harvesting activity in a wide variety of beech forests, our study helps to better understand the influence of forest management on interactions between a naturally dominant deciduous forest tree and arthropod herbivores. PMID:25938417
Effects of Resource Chemistry on the Composition and Function of Stream Hyporheic Biofilms
Hall, E. K.; Besemer, K.; Kohl, L.; Preiler, C.; Riedel, K.; Schneider, T.; Wanek, W.; Battin, T. J.
2012-01-01
Fluvial ecosystems process large quantities of dissolved organic matter as it moves from the headwater streams to the sea. In particular, hyporheic sediments are centers of high biogeochemical reactivity due to their elevated residence time and high microbial biomass and activity. However, the interaction between organic matter and microbial dynamics in the hyporheic zone remains poorly understood. We evaluated how variance in resource chemistry affected the microbial community and its associated activity in experimentally grown hyporheic biofilms. To do this we fed beech leaf leachates that differed in chemical composition to a series of bioreactors filled with sediment from a sub-alpine stream. Differences in resource chemistry resulted in differences in diversity and phylogenetic origin of microbial proteins, enzyme activity, and microbial biomass stoichiometry. Specifically, increased lignin, phenolics, and manganese in a single leachate resulted in increased phenoloxidase and peroxidase activity, elevated microbial biomass carbon:nitrogen ratio, and a greater proportion of proteins of Betaproteobacteria origin. We used this model system to attempt to link microbial form (community composition and metaproteome) with function (enzyme activity) in order to better understand the mechanisms that link resource heterogeneity to ecosystem function in stream ecosystems. PMID:22347877
Effects of resource chemistry on the composition and function of stream hyporheic biofilms.
Hall, E.K.; Besemer, K.; Kohl, L.; Preiler, C.; Reidel, K.; Schneider, T.; Wanek, W.; Battin, T.J.
2012-01-01
Fluvial ecosystems process large quantities of dissolved organic matter as it moves from the headwater streams to the sea. In particular, hyporheic sediments are centers of high biogeochemical reactivity due to their elevated residence time and high microbial biomass and activity. However, the interaction between organic matter and microbial dynamics in the hyporheic zone remains poorly understood. We evaluated how variance in resource chemistry affected the microbial community and its associated activity in experimentally grown hyporheic biofilms. To do this we fed beech leaf leachates that differed in chemical composition to a series of bioreactors filled with sediment from a sub-alpine stream. Differences in resource chemistry resulted in differences in diversity and phylogenetic origin of microbial proteins, enzyme activity, and microbial biomass stoichiometry. Specifically, increased lignin, phenolics, and manganese in a single leachate resulted in increased phenoloxidase and peroxidase activity, elevated microbial biomass carbon:nitrogen ratio, and a greater proportion of proteins of Betaproteobacteria origin. We used this model system to attempt to link microbial form (community composition and metaproteome) with function (enzyme activity) in order to better understand the mechanisms that link resource heterogeneity to ecosystem function in stream ecosystems.
Lü, Xiao-Tao; Reed, Sasha; Yu, Qiang; He, Nian-Peng; Wang, Zheng-Wen; Han, Xing-Guo
2013-01-01
Human activities have significantly altered nitrogen (N) availability in most terrestrial ecosystems, with consequences for community composition and ecosystem functioning. Although studies of how changes in N availability affect biodiversity and community composition are relatively common, much less remains known about the effects of N inputs on the coupled biogeochemical cycling of N and phosphorus (P), and still fewer data exist regarding how increased N inputs affect the internal cycling of these two elements in plants. Nutrient resorption is an important driver of plant nutrient economies and of the quality of litter plants produce. Accordingly, resorption patterns have marked ecological implications for plant population and community fitness, as well as for ecosystem nutrient cycling. In a semiarid grassland in northern China, we studied the effects of a wide range of N inputs on foliar nutrient resorption of two dominant grasses, Leymus chinensis and Stipa grandis. After 4 years of treatments, N and P availability in soil and N and P concentrations in green and senesced grass leaves increased with increasing rates of N addition. Foliar N and P resorption significantly decreased along the N addition gradient, implying a resorption-mediated, positive plant–soil feedback induced by N inputs. Furthermore, N : P resorption ratios were negatively correlated with the rates of N addition, indicating the sensitivity of plant N and P stoichiometry to N inputs. Taken together, the results demonstrate that N additions accelerate ecosystem uptake and turnover of both N and P in the temperate steppe and that N and P cycles are coupled in dynamic ways. The convergence of N and P resorption in response to N inputs emphasizes the importance of nutrient resorption as a pathway by which plants and ecosystems adjust in the face of increasing N availability.
Interaction of fire and community development in chaparral of southern California
Philip J. Riggan; Suzanne Goode; Paula M. Jacks; Robert N. Lockwood
1988-01-01
Fire is an ecosystem property rather than an exogenous force in southern California chaparral, and it interacts with processes of drought-mediated canopy development, production, and mortality to affect stability of community composition. Where species that must reproduce from seed, such as Ceanothus crassifolius or Ceanothus...
William H. McWilliams; Brett J. Butler; Laurence E. Caldwell; Douglas M. Griffith; Michael L. Hoppus; Kenneth M. Laustsen; Andrew J. Lister; Tonya W. Lister; Jacob W. Metzler; Randall S. Morin; Steven A. Sader; Lucretia B. Stewart; James R. Steinman; James, A. Westfall; David A. Williams; Andrew Whitman; Christopher W. Woodall; Christopher W. Woodall
2005-01-01
In 1999, the Maine Forest Service and USDA Forest Service's Forest Inventory and Analysis program implemented a new system for inventorying and monitoring Maine's forests. The effects of the spruce budworm epidemic continue to affect the composition, structure, and distribution of Maine's forested ecosystems. The area of forest land in Maine has remained...
Chapter 11: Integrated Technology for Biobased Composites
Zhiyong Cai; Alan W. Rudie; Theodore H. Wegner
2013-01-01
Forests play a major role in the ecosystem sustainability and general health of our planet. The biomass contained in our forests and other green vegetations affects the carbon cycle, climate change, habitat protection, clean water supplies, and sustainable economy. Exciting new opportunities are emerging for sustainably meeting global energy needs and simultaneously...
Tidal wetlands support important ecosystem functions along the coast of the Pacific Northwest such as primary production and nutrient transformation. Sea-level rise (SLR) and elevated salinity due to climate change may affect the abundance, distribution, and diversity of plants a...
Land-Cover (LC) composition and conversions are important factors that affect ecosystem condition and function. The purpose of this research and development effort is to investigate the feasibility of using MODIS derived Normalized Difference Vegetation Index (NDVI) data to deli...
Effects of air pollution on ecosystems and biological diversity in the eastern United States.
Lovett, Gary M; Tear, Timothy H; Evers, David C; Findlay, Stuart E G; Cosby, B Jack; Dunscomb, Judy K; Driscoll, Charles T; Weathers, Kathleen C
2009-04-01
Conservation organizations have most often focused on land-use change, climate change, and invasive species as prime threats to biodiversity conservation. Although air pollution is an acknowledged widespread problem, it is rarely considered in conservation planning or management. In this synthesis, the state of scientific knowledge on the effects of air pollution on plants and animals in the Northeastern and Mid-Atlantic regions of the United States is summarized. Four air pollutants (sulfur, nitrogen, ozone, and mercury) and eight ecosystem types ranging from estuaries to alpine tundra are considered. Effects of air pollution were identified, with varying levels of certainty, in all the ecosystem types examined. None of these ecosystem types is free of the impacts of air pollution, and most are affected by multiple pollutants. In aquatic ecosystems, effects of acidity, nitrogen, and mercury on organisms and biogeochemical processes are well documented. Air pollution causes or contributes to acidification of lakes, eutrophication of estuaries and coastal waters, and mercury bioaccumulation in aquatic food webs. In terrestrial ecosystems, the effects of air pollution on biogeochemical cycling are also very well documented, but the effects on most organisms and the interaction of air pollution with other stressors are less well understood. Nevertheless, there is strong evidence for effects of nitrogen deposition on plants in grasslands, alpine areas, and bogs, and for nitrogen effects on forest mycorrhizae. Soil acidification is widespread in forest ecosystems across the eastern United States and is likely to affect the composition and function of forests in acid-sensitive areas over the long term. Ozone is known to cause reductions in photosynthesis in many terrestrial plant species. For the most part, the effects of these pollutants are chronic, not acute, at the exposure levels common in the eastern United States. Mortality is often observed only at experimentally elevated exposure levels or in combination with other stresses such as drought, freezing, or pathogens. The notable exceptions are the acid/aluminum effects on aquatic organisms, which can be lethal at levels of acidity observed in many surface waters in the region. Although the effects are often subtle, they are important to biological conservation. Changes in species composition caused by terrestrial or aquatic acidification or eutrophication can propagate throughout the food webs to affect many organisms beyond those that are directly sensitive to the pollution. Likewise, sublethal doses of toxic pollutants may reduce the reproductive success of the affected organisms or make them more susceptible to potentially lethal pathogens. Many serious gaps in knowledge that warrant further research were identified. Among those gaps are the effects of acidification, ozone, and mercury on alpine systems, effects of nitrogen on species composition of forests, effects of mercury in terrestrial food webs, interactive effects of multiple pollutants, and interactions among air pollution and other environmental changes such as climate change and invasive species. These gaps in knowledge, coupled with the strong likelihood of impacts on ecosystems that have not been studied in the region, suggests that current knowledge underestimates the actual impact of air pollutants on biodiversity. Nonetheless, because known or likely impacts of air pollution on the biodiversity and function of natural ecosystems are widespread in the Northeast and Mid-Atlantic regions, the effects of air pollution should be considered in any long-term conservation strategy. It is recommended that ecologically relevant standards, such as "critical loads," be adopted for air pollutants and the importance of long-term monitoring of air pollution and its effects is emphasized.
NASA Technical Reports Server (NTRS)
Green, Robert O.; Rogez, Francois; Green, Rob; Ungar, Steve; Knox, Robert; Asner, Greg; Muller-Karger, Frank; Bissett, Paul; Chekalyuk, Alex; Dierssen, Heidi;
2007-01-01
This slide presentation reviews the proposed Plant Physiology and Functional Types (PPFT) Mission. The National Academy of Sciences Decadal Survey, placed a critical priority on a Mission to observe distribution and changes in ecosystem functions. The PPFT satellite mission provides the essential measurements needed to assess drivers of change in biodiversity and ecosystem services that affect human welfare. The presentation reviews the science questions that the mission will be designed to answer, the science rationale, the science measurements, the mission concept, the planned instrumentation, the calibration method, and key signal to noise ratios and uniformity requirements.
NASA Astrophysics Data System (ADS)
Moreno, José M.; Parra, Antonio; Dannenmann, Michael; Ramírez, David A.; Diaz-Pines, Eugenio; Tejedor, Javier; Kitzler, Barbara; Karhu, Kristina; Resco, Victor; Povoas, Luciano
2010-05-01
Predicted changes in the seasonality and amount of rainfall under a changing climate have the potential to dramatically alter ecosystem function and species composition. Moreover, in fire-prone ecosystems, the joint effects of fire and increasing aridity may create irreversible changes to the services these ecosystems provide. To understand the effects of increasing drought and fire in a Mediterranean shrubland, we implemented an automated rainfall manipulation system, with rain-out shelters which automatically fold and unfold when conditions are rainy and dry, respectively. In January 2009, we implemented five different treatments, where annual precipitation was reduced by diminishing summer rainfall from the long-term historical average, up to a 40% reduction, following IPCC scenarios. In September 2009, we uninstalled all the shelters to burn the different plots, and reinstalled the shelters immediately afterwards. In this talk, we will present the preliminary results of an integrated experiment which aims at understanding the concomitant effects of fire and different drought intensities on the species composition and greenhouse gas balance (CO2, N2O and CH4) of a Mediterranean shrubland. We observed that plant growth was more severely affected by drought in the more shallow-rooted, malacophyllous shrub (from 116 to -7.2 mg/g/d in Cistus ladanifer), than in a deeper-rooted heather (from 5.5 to 66.9 mg/g/day in Erica arborea). This growth response was mediated by species-specific differences in hydraulics, leaf morphology and photosynthetic gas exchange of each species. Analyses of changes in species composition after fire are currently undergoing. The precipitation reduction treatments exerted drought stress on CH4 oxidizing microorganisms and thus reduced the CH4 sink strength of the ecosystem during the pre-fire period. Furthermore, the net CH4 uptake at the soil-atmosphere interface was reduced by the fire for a period of at least one month. Pedosphere-atmosphere N2O fluxes were mostly close to zero from May 2009 until one month after fire and affected neither by the precipitation manipulation nor by the fire.
Khlifa, Rim; Paquette, Alain; Messier, Christian; Reich, Peter B; Munson, Alison D
2017-10-01
Studies of biodiversity-ecosystem function in treed ecosystems have generally focused on aboveground functions. This study investigates intertrophic links between tree diversity and soil microbial community function and composition. We examined how microbial communities in surface mineral soil responded to experimental gradients of tree species richness (SR), functional diversity (FD), community-weighted mean trait value (CWM), and tree identity. The site was a 4-year-old common garden experiment near Montreal, Canada, consisting of deciduous and evergreen tree species mixtures. Microbial community composition, community-level physiological profiles, and respiration were evaluated using phospholipid fatty acid (PLFA) analysis and the MicroResp ™ system, respectively. The relationship between tree species richness and glucose-induced respiration (GIR), basal respiration (BR), metabolic quotient (qCO 2 ) followed a positive but saturating shape. Microbial communities associated with species mixtures were more active (basal respiration [BR]), with higher biomass (glucose-induced respiration [GIR]), and used a greater number of carbon sources than monocultures. Communities associated with deciduous tree species used a greater number of carbon sources than those associated with evergreen species, suggesting a greater soil carbon storage capacity. There were no differences in microbial composition (PLFA) between monocultures and SR mixtures. The FD and the CWM of several functional traits affected both BR and GIR. In general, the CWM of traits had stronger effects than did FD, suggesting that certain traits of dominant species have more effect on ecosystem processes than does FD. Both the functions of GIR and BR were positively related to aboveground tree community productivity. Both tree diversity (SR) and identity (species and functional identity-leaf habit) affected soil microbial community respiration, biomass, and composition. For the first time, we identified functional traits related to life-history strategy, as well as root traits that influence another trophic level, soil microbial community function, via effects on BR and GIR.
Impacts of Species Interactions on Atmospheric Processes
NASA Astrophysics Data System (ADS)
Lerdau, M.; Wang, B.; Cook, B.; Neu, J. L.; Schimel, D.
2016-12-01
The current fascination with interactions between air quality and ecosystems began over 60 years ago with the discovery by Arie Haagen-Smit and colleagues that organic carbon emissions from plants play a role in ozone formation. In the seven decades since, thanks to biochemical and physiological studies of these emissions, their biosynthetic pathways and short-term flux-regulation mechanisms are now well understood. This `metabolic' approach has been invaluable for developing models of VOC emissions and atmospheric oxidant dynamics that function on local spatial scales over time intervals of minutes to days, but it has been of limited value for predicting emissions across larger spatial and temporal scales. This limited success arises in large part from the species-specific nature of volatile organic carbon production by plants. Each plant species produces certain volatile compounds but not others, so predicting emissions through time requires consideration of plant species composition. As the plant species composition of an ecosystem changes through time, so too do its VOC emissions. When VOC impacts on the atmosphere influence species composition by altering inter-specific interactions, there exists the possibility for feedbacks among emissions, atmospheric chemistry, higher order ecological processes such as competition & pollination, and species composition. For example, previous work has demonstrated that VOC emissions may affect ozone, which, in turn, alters competition among trees species, and current efforts suggest that plant reproductive success may be mediated by ozone impacts on floral signals. These changes in ecological processes alter the species composition and future VOC emissions from ecosystems. We present empirical and simulated data demonstrating that biological diversity may be affected by VOC impacts on the atmosphere and that these diversity changes may, in turn, alter the emissions of VOC's and other photochemically active compounds to the atmosphere. We propose a general framework for considering higher order ecological interactions in models of biosphere/atmosphere exchange and air quality. We also demonstrate that secular trends in the global environment, e.g., anthropogenic warming, may alter these interactions and subsequent VOC emissions.
Genung, Mark A; Bailey, Joseph K; Schweitzer, Jennifer A
2013-01-01
Aboveground-belowground linkages are recognized as divers of community dynamics and ecosystem processes, but the impacts of plant-neighbor interactions on these linkages are virtually unknown. Plant-neighbor interactions are a type of interspecific indirect genetic effect (IIGE) if the focal plant's phenotype is altered by the expression of genes in a neighboring heterospecific plant, and IIGEs could persist after plant senescence to affect ecosystem processes. This perspective can provide insight into how plant-neighbor interactions affect evolution, as IIGEs are capable of altering species interactions and community composition over time. Utilizing genotypes of Solidago altissima and Solidago gigantea, we experimentally tested whether IIGEs that had affected living focal plants would affect litter decomposition rate, as well as nitrogen (N) and phosphorous (P) dynamics after the focal plant senesced. We found that species interactions affected N release and genotype interactions affected P immobilization. From a previous study we knew that neighbor genotype influenced patterns of biomass allocation for focal plants. Here we extend those previous results to show that these changes in biomass allocation altered litter quality, that then altered rates of decomposition and nutrient cycling. Our results provide insights into above- and belowground linkages by showing that, through their effects on plant litter quality (e.g., litter lignin:N), IIGEs can have afterlife effects, tying plant-neighbor interactions to ecosystem processes. This holistic approach advances our understanding of decomposition and nutrient cycling by showing that evolutionary processes (i.e., IIGEs) can influence ecosystem functioning after plant senescence. Because plant traits are determined by the combined effects of genetic and environmental influences, and because these traits are known to affect decomposition and nutrient cycling, we suggest that ecosystem processes can be described as gene-less products of genetic interactions among the species comprising ecological communities.
Genung, Mark A.; Bailey, Joseph K.; Schweitzer, Jennifer A.
2013-01-01
Aboveground-belowground linkages are recognized as divers of community dynamics and ecosystem processes, but the impacts of plant-neighbor interactions on these linkages are virtually unknown. Plant-neighbor interactions are a type of interspecific indirect genetic effect (IIGE) if the focal plant’s phenotype is altered by the expression of genes in a neighboring heterospecific plant, and IIGEs could persist after plant senescence to affect ecosystem processes. This perspective can provide insight into how plant-neighbor interactions affect evolution, as IIGEs are capable of altering species interactions and community composition over time. Utilizing genotypes of Solidago altissima and Solidago gigantea, we experimentally tested whether IIGEs that had affected living focal plants would affect litter decomposition rate, as well as nitrogen (N) and phosphorous (P) dynamics after the focal plant senesced. We found that species interactions affected N release and genotype interactions affected P immobilization. From a previous study we knew that neighbor genotype influenced patterns of biomass allocation for focal plants. Here we extend those previous results to show that these changes in biomass allocation altered litter quality, that then altered rates of decomposition and nutrient cycling. Our results provide insights into above- and belowground linkages by showing that, through their effects on plant litter quality (e.g., litter lignin:N), IIGEs can have afterlife effects, tying plant-neighbor interactions to ecosystem processes. This holistic approach advances our understanding of decomposition and nutrient cycling by showing that evolutionary processes (i.e., IIGEs) can influence ecosystem functioning after plant senescence. Because plant traits are determined by the combined effects of genetic and environmental influences, and because these traits are known to affect decomposition and nutrient cycling, we suggest that ecosystem processes can be described as gene-less products of genetic interactions among the species comprising ecological communities. PMID:23349735
Towards global patterns in the diversity and community structure of ectomycorrhizal fungi.
Tedersoo, Leho; Bahram, Mohammad; Toots, Märt; Diédhiou, Abdala G; Henkel, Terry W; Kjøller, Rasmus; Morris, Melissa H; Nara, Kazuhide; Nouhra, Eduardo; Peay, Kabir G; Põlme, Sergei; Ryberg, Martin; Smith, Matthew E; Kõljalg, Urmas
2012-09-01
Global species richness patterns of soil micro-organisms remain poorly understood compared to macro-organisms. We use a global analysis to disentangle the global determinants of diversity and community composition for ectomycorrhizal (EcM) fungi-microbial symbionts that play key roles in plant nutrition in most temperate and many tropical forest ecosystems. Host plant family has the strongest effect on the phylogenetic community composition of fungi, whereas temperature and precipitation mostly affect EcM fungal richness that peaks in the temperate and boreal forest biomes, contrasting with latitudinal patterns of macro-organisms. Tropical ecosystems experience rapid turnover of organic material and have weak soil stratification, suggesting that poor habitat conditions may contribute to the relatively low richness of EcM fungi, and perhaps other soil biota, in most tropical ecosystems. For EcM fungi, greater evolutionary age and larger total area of EcM host vegetation may also contribute to the higher diversity in temperate ecosystems. Our results provide useful biogeographic and ecological hypotheses for explaining the distribution of fungi that remain to be tested by involving next-generation sequencing techniques and relevant soil metadata. © 2012 Blackwell Publishing Ltd.
Large increases in Arctic biogenic volatile emissions are a direct effect of warming
NASA Astrophysics Data System (ADS)
Kramshøj, Magnus; Vedel-Petersen, Ida; Schollert, Michelle; Rinnan, Åsmund; Nymand, Josephine; Ro-Poulsen, Helge; Rinnan, Riikka
2016-05-01
Biogenic volatile organic compounds are reactive gases that can contribute to atmospheric aerosol formation. Their emission from vegetation is dependent on temperature and light availability. Increasing temperature, changing cloud cover and shifting composition of vegetation communities can be expected to affect emissions in the Arctic, where the ongoing climate changes are particularly severe. Here we present biogenic volatile organic compound emission data from Arctic tundra exposed to six years of experimental warming or reduced sunlight treatment in a randomized block design. By separately assessing the emission response of the whole ecosystem, plant shoots and soil in four measurements covering the growing season, we have identified that warming increased the emissions directly rather than via a change in the plant biomass and species composition. Warming caused a 260% increase in total emission rate for the ecosystem and a 90% increase in emission rates for plants, while having no effect on soil emissions. Compared to the control, reduced sunlight decreased emissions by 69% for the ecosystem, 61-65% for plants and 78% for soil. The detected strong emission response is considerably higher than observed at more southern latitudes, emphasizing the high temperature sensitivity of ecosystem processes in the changing Arctic.
The effects of atmospheric nitrogen deposition on terrestrial and freshwater biodiversity
Baron, Jill S.; Barber, Mary C.; Adams, Mark; Agboola, Julius I.; Allen, Edith B.; Bealey, William J.; Bobbink, Roland; Bobrovsky, Maxim V.; Bowman, William D.; Branquinho, Cristina; Bustamente, Mercedes M. C.; Clark, Christopher M.; Cocking, Edward C.; Cruz, Cristina; Davidson, Eric A.; Denmead, O. Tom; Dias, Teresa; Dise, Nancy B.; Feest, Alan; Galloway, James N.; Geiser, Linda H.; Gilliam, Frank S.; Harrison, Ian J.; Khanina, Larisa G.; Lu, Xiankai; Manrique, Esteban; Ochoa-Hueso, Raul; Ometto, Jean P. H. B.; Payne, Richard; Scheuschner, Thomas; Sheppard, Lucy J.; Simpson, Gavin L.; Singh, Y. V.; Stevens, Carly J.; Strachan, Ian; Sverdrup, Harald; Tokuchi, Naoko; van Dobben, Hans; Woodin, Sarah
2014-01-01
This chapter reports the findings of a Working Group on how atmospheric nitrogen (N) deposition affects both terrestrial and freshwater biodiversity. Regional and global scale impacts on biodiversity are addressed, together with potential indicators. Key conclusions are that: the rates of loss in biodiversity are greatest at the lowest and initial stages of N deposition increase; changes in species compositions are related to the relative amounts of N, carbon (C) and phosphorus (P) in the plant soil system; enhanced N inputs have implications for C cycling; N deposition is known to be having adverse effects on European and North American vegetation composition; very little is known about tropical ecosystem responses, while tropical ecosystems are major biodiversity hotspots and are increasingly recipients of very high N deposition rates; N deposition alters forest fungi and mycorrhyzal relations with plants; the rapid response of forest fungi and arthropods makes them good indicators of change; predictive tools (models) that address ecosystem scale processes are necessary to address complex drivers and responses, including the integration of N deposition, climate change and land use effects; criteria can be identified for projecting sensitivity of terrestrial and aquatic ecosystems to N deposition. Future research and policy-relevant recommendations are identified.
Soil macrofauna webmasters of ecosystem
NASA Astrophysics Data System (ADS)
Frouz, Jan
2015-04-01
The role of plant roots and microflora in shaping many ecosystem processes is generally appreciated in the contrary rho role of soil mcrofauna in this context is assumed to be negligible and rather anecdotic. But more than half of the litter fall is consumed by soil fauna and soil fauna can also consume and or translocation substantial amount of soil. Here we demonstrate on example of post mining chronosequences how site colonization by soil fauna affect composition of whole soil biota community, plant succession and soil formation. Filed and laboratory experiments show that decomposition of fauna feces may be sped up compare to litter at the very beginning but in long term fauna feces decompose slower than litter. This is also supported by micro morphological observation which shows that fauna feces form substantial part of soil. Fauna feces also induce lover or even negative priming effect when introduced in soil in comparison with litter that triggers positive priming effect. Laboratory experiment show that fauna effect is context sensitive and is more pronounced in systems already affected by soil fauna. Soil mixing by soil fauna consequently affect environmental conditions in soils such as water holding capacity or nutrient availability, it also affect composition of decomposer food web including microbial community (fungal bacterial ratio) which feed back in alternation of plant community composition during succession This fauna activity is not constant everywhere the higher effect of fauna activity on litter layer was observed in temperate soils of deciduous forests and with litter having CN between 20-30. In conclusion soil fauna use directly only small proportion of energy in the litter but can substantially affect soil carbon turnover, soil formation, decomposer food web and plant community.
Rodríguez-Lozano, Pablo; Verkaik, Iraima; Rieradevall, Maria; Prat, Narcís
2015-01-01
Top predator loss is a major global problem, with a current trend in biodiversity loss towards high trophic levels that modifies most ecosystems worldwide. Most research in this area is focused on large-bodied predators, despite the high extinction risk of small-bodied freshwater fish that often act as apex consumers. Consequently, it remains unknown if intermittent streams are affected by the consequences of top-predators’ extirpations. The aim of our research was to determine how this global problem affects intermittent streams and, in particular, if the loss of a small-bodied top predator (1) leads to a ‘mesopredator release’, affects primary consumers and changes whole community structures, and (2) triggers a cascade effect modifying the ecosystem function. To address these questions, we studied the top-down effects of a small endangered fish species, Barbus meridionalis (the Mediterranean barbel), conducting an enclosure/exclosure mesocosm experiment in an intermittent stream where B. meridionalis became locally extinct following a wildfire. We found that top predator absence led to ‘mesopredator release’, and also to ‘prey release’ despite intraguild predation, which contrasts with traditional food web theory. In addition, B. meridionalis extirpation changed whole macroinvertebrate community composition and increased total macroinvertebrate density. Regarding ecosystem function, periphyton primary production decreased in apex consumer absence. In this study, the apex consumer was functionally irreplaceable; its local extinction led to the loss of an important functional role that resulted in major changes to the ecosystem’s structure and function. This study evidences that intermittent streams can be affected by the consequences of apex consumers’ extinctions, and that the loss of small-bodied top predators can lead to large ecosystem changes. We recommend the reintroduction of small-bodied apex consumers to systems where they have been extirpated, to restore ecosystem structure and function. PMID:25714337
Coates, T Adam; Chow, Alex T; Hagan, Donald L; Wang, G Geoff; Bridges, William C; Dozier, James H
2017-09-01
The O horizon, or detrital layer, of forest soils is linked to long-term forest productivity and health. Fuel reduction techniques, such as prescribed fire, can alter the thickness and composition of this essential ecosystem component. Developing an understanding of the changes in the chemical composition of forest detritus due to prescribed fire is essential for forest managers and stakeholders seeking sustainable, resilient, and productive ecosystems. In this study, we evaluated fuel quantity, fuel structure, and detrital chemical composition in longleaf pine ( Miller) forests that have been frequently burned for the last 40 yr at the Tom Yawkey Wildlife Center in Georgetown, SC. Our results suggest that frequent prescribed fire reduces forest fuel quantity ( < 0.01) and vertical structure ( = 0.01). Using pyrolysis-gas chromatography/mass spectrometry as a molecular technique to analyze detrital chemical composition, including aromatic compounds and polycyclic aromatic hydrocarbons, we found that the chemical composition of forest detritus was nearly uniform for both unburned and burned detritus. Our burning activities varied in the short term, consisting of annual dormant, annual growing, and biennial dormant season burns. Seasonal distinctions were present for fuel quantity and vertical fuel structure, but these differences were not noted for the benzene/phenol ratio. These results are significant as more managers consider burning existing longleaf stands while determining effective management practices for longleaf stands yet to be established. Managers of such stands can be confident that frequent, low-intensity, low-severity prescribed burns in longleaf pine forests do little to affect the long-term chemical composition of forest detritus. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Waring, Bonnie G; Adams, Rachel; Branco, Sara; Powers, Jennifer S
2016-01-01
Rates of ecosystem nitrogen (N) cycling may be mediated by the presence of ectomycorrhizal fungi, which compete directly with free-living microbes for N. In the regenerating tropical dry forests of Central America, the distribution of ectomycorrhizal trees is affected by succession and soil parent material, both of which may exert independent influence over soil N fluxes. In order to quantify these interacting controls, we used a scale-explicit sampling strategy to examine soil N cycling at scales ranging from the microsite to ecosystem level. We measured fungal community composition, total and inorganic N pools, gross proteolytic rate, net N mineralization and microbial extracellular enzyme activity at multiple locations within 18 permanent plots that span dramatic gradients of soil N concentration, stand age and forest composition. The ratio of inorganic to organic N cycling was correlated with variation in fungal community structure, consistent with a strong influence of ectomycorrhiza on ecosystem-scale N cycling. However, on average, > 61% of the variation in soil biogeochemistry occurred within plots, and the effects of forest composition were mediated by this local-scale heterogeneity in total soil N concentrations. These cross-scale interactions demonstrate the importance of a spatially explicit approach towards an understanding of controls on element cycling. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Effects of fire on major forest ecosystem processes: an overview.
Chen, Zhong
2006-09-01
Fire and fire ecology are among the best-studied topics in contemporary ecosystem ecology. The large body of existing literature on fire and fire ecology indicates an urgent need to synthesize the information on the pattern of fire effects on ecosystem composition, structure, and functions for application in fire and ecosystem management. Understanding fire effects and underlying principles are critical to reduce the risk of uncharacteristic wildfires and for proper use of fire as an effective management tool toward management goals. This overview is a synthesis of current knowledge on major effects of fire on fire-prone ecosystems, particularly those in the boreal and temperate regions of the North America. Four closely related ecosystem processes in vegetation dynamics, nutrient cycling, soil and belowground process and water relations were discussed with emphases on fire as the driving force. Clearly, fire can shape ecosystem composition, structure and functions by selecting fire adapted species and removing other susceptible species, releasing nutrients from the biomass and improving nutrient cycling, affecting soil properties through changing soil microbial activities and water relations, and creating heterogeneous mosaics, which in turn, can further influence fire behavior and ecological processes. Fire as a destructive force can rapidly consume large amount of biomass and cause negative impacts such as post-fire soil erosion and water runoff, and air pollution; however, as a constructive force fire is also responsible for maintaining the health and perpetuity of certain fire-dependent ecosystems. Considering the unique ecological roles of fire in mediating and regulating ecosystems, fire should be incorporated as an integral component of ecosystems and management. However, the effects of fire on an ecosystem depend on the fire regime, vegetation type, climate, physical environments, and the scale of time and space of assessment. More ecosystem-specific studies are needed in future, especially those focusing on temporal and spatial variations of fire effects through long-term experimental monitoring and modeling.
Yang, Haishui; Zang, Yanyan; Yuan, Yongge; Tang, Jianjun; Chen, Xin
2012-04-12
Arbuscular mycorrhizal fungi (AMF) can form obligate symbioses with the vast majority of land plants, and AMF distribution patterns have received increasing attention from researchers. At the local scale, the distribution of AMF is well documented. Studies at large scales, however, are limited because intensive sampling is difficult. Here, we used ITS rDNA sequence metadata obtained from public databases to study the distribution of AMF at continental and global scales. We also used these sequence metadata to investigate whether host plant is the main factor that affects the distribution of AMF at large scales. We defined 305 ITS virtual taxa (ITS-VTs) among all sequences of the Glomeromycota by using a comprehensive maximum likelihood phylogenetic analysis. Each host taxonomic order averaged about 53% specific ITS-VTs, and approximately 60% of the ITS-VTs were host specific. Those ITS-VTs with wide host range showed wide geographic distribution. Most ITS-VTs occurred in only one type of host functional group. The distributions of most ITS-VTs were limited across ecosystem, across continent, across biogeographical realm, and across climatic zone. Non-metric multidimensional scaling analysis (NMDS) showed that AMF community composition differed among functional groups of hosts, and among ecosystem, continent, biogeographical realm, and climatic zone. The Mantel test showed that AMF community composition was significantly correlated with plant community composition among ecosystem, among continent, among biogeographical realm, and among climatic zone. The structural equation modeling (SEM) showed that the effects of ecosystem, continent, biogeographical realm, and climatic zone were mainly indirect on AMF distribution, but plant had strongly direct effects on AMF. The distribution of AMF as indicated by ITS rDNA sequences showed a pattern of high endemism at large scales. This pattern indicates high specificity of AMF for host at different scales (plant taxonomic order and functional group) and high selectivity from host plants for AMF. The effects of ecosystemic, biogeographical, continental and climatic factors on AMF distribution might be mediated by host plants.
Successional change in species composition alters climate sensitivity of grassland productivity.
Shi, Zheng; Lin, Yang; Wilcox, Kevin R; Souza, Lara; Jiang, Lifen; Jiang, Jiang; Jung, Chang Gyo; Xu, Xia; Yuan, Mengting; Guo, Xue; Wu, Liyou; Zhou, Jizhong; Luo, Yiqi
2018-05-31
Succession theory predicts altered sensitivity of ecosystem functions to disturbance (i.e., climate change) due to the temporal shift in plant community composition. However, empirical evidence in global change experiments is lacking to support this prediction. Here, we present findings from an 8-year long-term global change experiment with warming and altered precipitation manipulation (double and halved amount). First, we observed a temporal shift in species composition over 8 years, resulting in a transition from an annual C 3 -dominant plant community to a perennial C 4 -dominant plant community. This successional transition was independent of any experimental treatments. During the successional transition, the response of aboveground net primary productivity (ANPP) to precipitation addition magnified from neutral to +45.3%, while the response to halved precipitation attenuated substantially from -17.6% to neutral. However, warming did not affect ANPP in either state. The findings further reveal that the time-dependent climate sensitivity may be regulated by successional change in species composition, highlighting the importance of vegetation dynamics in regulating the response of ecosystem productivity to precipitation change. © 2018 John Wiley & Sons Ltd.
Araújo, Maria Aparecida de Moura; da Rocha, Antônio Elielson Sousa; Miranda, Izildinha de Souza
2017-01-01
Abstract Background Studies on plant communities in the Amazon have reported that different hydro-edaphic conditions can affect the richness and the species composition of different ecosystems. However, this aspect is poorly known in the different savanna habitats. Understanding how populations and plant communities are distributed in these open vegetation areas is important to improve the knowledge about which environmental variables influence the occurrence and diversity of plants in this type of regional ecosystem. Thus, this study investigated the richness and composition of plant species in two savanna areas of the northern Brazilian Amazonia, using the coverage (%) of the different life forms observed under different hydro-edaphic conditions as a structural reference. New information We report 128 plant species classified in 34 botanical families distributed in three savanna habitats with different levels of hydro-edaphic restrictions. In this study, the habitats are conceptually presented and they integrate environmental information (edaphic factors and drainage type), which determines differences between floristic composition, species richness and coverage (%) of plant life forms. PMID:28848372
United States forest disturbance trends observed with landsat time series
Jeffrey G. Masek; Samuel N. Goward; Robert E. Kennedy; Warren B. Cohen; Gretchen G. Moisen; Karen Schleweiss; Chengquan Huang
2013-01-01
Disturbance events strongly affect the composition, structure, and function of forest ecosystems; however, existing US land management inventories were not designed to monitor disturbance. To begin addressing this gap, the North American Forest Dynamics (NAFD) project has examined a geographic sample of 50 Landsat satellite image time series to assess trends in forest...
Fire regimes and approaches for determining fire history
James K. Agee
1996-01-01
Fire has been an important evolutionary influence in forests, affecting species composition, structure, and functional aspects of forest biology. Restoration of wildland forests of the future will depend in part on restoring fire to an appropriate role in forest ecosystems. This may include the "range of natural variability" or other concepts associated with...
Responses of redwood soil microbial community structure and N transformations to climate change
Damon C. Bradbury; Mary K. Firestone
2012-01-01
Soil microorganisms perform critical ecosystem functions, including decomposition, nitrogen (N) mineralization and nitrification. Soil temperature and water availability can be critical determinants of the rates of these processes as well as microbial community composition and structure. This research examined how changes in climate affect bacterial and fungal...
Patterns in species composition and diversity along intermittent creeks in the Missouri Ozarks
Cindy E. Becker; Stephen G. Pallardy
2003-01-01
The southeast Missouri Ozarks is a rugged, deeply dissected landscape. Intermittent creeks are commonly found throughout the region, yet our understanding of this ecosystem component is poor. Landform features, flooding frequency, and flooding duration are variables known to affect vegetation distribution patterns along perennial systems. We investigated if these...
Nutrient enrichment reduces constraints on material flows in a detritus-based food web
Wyatt F. Cross; Bruce Wallace; Amy D. Rosemond
2007-01-01
Most aquatic and terrestrial ecosystems are experiencing increased nutrient availability, which is affecting their structure and function. By altering community composition and productivity of consumers, enrichment can indirectly cause changes in the pathways and magnitude of material flows in food webs. These changes, in turn, have major consequences for material...
Diets of aquatic birds reflect changes in the Lake Huron ecosystem
Hebert, Craig E.; Weseloh, D.V. Chip; Idrissi, Abode; Arts, Michael T.; Roseman, Edward F.
2009-01-01
Human activities have affected the Lake Huron ecosystem, in part, through alterations in the structure and function of its food webs. Insights into the nature of food web change and its ecological ramifications can be obtained through the monitoring of high trophic level predators such as aquatic birds. Often, food web change involves alterations in the relative abundance of constituent species and/or the introduction of new species (exotic invaders). Diet composition of aquatic birds is influenced, in part, by relative prey availability and therefore is a sensitive measure of food web structure. Using bird diet data to make inferences regarding food web change requires consistent measures of diet composition through time. This can be accomplished by measuring stable chemical and/or biochemical “ecological tracers” in archived avian samples. Such tracers provide insights into pathways of energy and nutrient transfer.In this study, we examine the utility of two groups of naturally-occurring intrinsic tracers (stable isotopes and fatty acids) to provide such information in a predatory seabird, the herring gull (Larus argentatus). Retrospective stable nitrogen and carbon isotope analysis of archived herring gull eggs identified declines in gull trophic position and shifts in food sources in Lake Huron over the last 25 years and changes in gull diet composition were inferred from egg fatty acid patterns. These independent groups of ecological tracers provided corroborating evidence of dietary change in this high trophic level predator. Gull dietary shifts were related to declines in prey fish abundance which suggests large-scale alterations to the Lake Huron ecosystem. Dietary shifts in herring gulls may be contributing to reductions in resources available for egg formation. Further research is required to evaluate how changes in resource availability may affect population sustainability in herring gulls and other waterbird species. Long-term biological monitoring programs are required to identify ecosystem change and evaluate its ecological significance.
Impacts of land-use history on the recovery of ecosystems after agricultural abandonment
NASA Astrophysics Data System (ADS)
Krause, Andreas; Pugh, Thomas A. M.; Bayer, Anita D.; Lindeskog, Mats; Arneth, Almut
2016-09-01
Land-use changes have been shown to have large effects on climate and biogeochemical cycles, but so far most studies have focused on the effects of conversion of natural vegetation to croplands and pastures. By contrast, relatively little is known about the long-term influence of past agriculture on vegetation regrowth and carbon sequestration following land abandonment. We used the LPJ-GUESS dynamic vegetation model to study the legacy effects of different land-use histories (in terms of type and duration) across a range of ecosystems. To this end, we performed six idealized simulations for Europe and Africa in which we made a transition from natural vegetation to either pasture or cropland, followed by a transition back to natural vegetation after 20, 60 or 100 years. The simulations identified substantial differences in recovery trajectories of four key variables (vegetation composition, vegetation carbon, soil carbon, net biome productivity) after agricultural cessation. Vegetation carbon and composition typically recovered faster than soil carbon in subtropical, temperate and boreal regions, and vice versa in the tropics. While the effects of different land-use histories on recovery periods of soil carbon stocks often differed by centuries across our simulations, differences in recovery times across simulations were typically small for net biome productivity (a few decades) and modest for vegetation carbon and composition (several decades). Spatially, we found the greatest sensitivity of recovery times to prior land use in boreal forests and subtropical grasslands, where post-agricultural productivity was strongly affected by prior land management. Our results suggest that land-use history is a relevant factor affecting ecosystems long after agricultural cessation, and it should be considered not only when assessing historical or future changes in simulations of the terrestrial carbon cycle but also when establishing long-term monitoring networks and interpreting data derived therefrom, including analysis of a broad range of ecosystem properties or local climate effects related to land cover changes.
Development of the USGS national land-cover database over two decades
Xian, George Z.; Homer, Collin G.; Yang, Limin; Weng, Qihao
2011-01-01
Land-cover composition and change have profound impacts on terrestrial ecosystems. Land-cover and land-use (LCLU) conditions and their changes can affect social and physical environments by altering ecosystem conditions and services. Information about LCLU change is often used to produce landscape-based metrics and evaluate landscape conditions to monitor LCLU status and trends over a specific time interval (Loveland et al. 2002; Coppin et al. 2004; Lunetta et al. 2006). Continuous, accurate, and up-to-date land-cover data are important for natural resource and ecosystem management and are needed to support consistent monitoring of landscape attributes over time. Large-area land-cover information at regional, national, and global scales is critical for monitoring landscape variations over large areas.
Global environmental change effects on ecosystems: the importance of land-use legacies.
Perring, Michael P; De Frenne, Pieter; Baeten, Lander; Maes, Sybryn L; Depauw, Leen; Blondeel, Haben; Carón, María M; Verheyen, Kris
2016-04-01
One of the major challenges in ecology is to predict how multiple global environmental changes will affect future ecosystem patterns (e.g. plant community composition) and processes (e.g. nutrient cycling). Here, we highlight arguments for the necessary inclusion of land-use legacies in this endeavour. Alterations in resources and conditions engendered by previous land use, together with influences on plant community processes such as dispersal, selection, drift and speciation, have steered communities and ecosystem functions onto trajectories of change. These trajectories may be modulated by contemporary environmental changes such as climate warming and nitrogen deposition. We performed a literature review which suggests that these potential interactions have rarely been investigated. This crucial oversight is potentially due to an assumption that knowledge of the contemporary state allows accurate projection into the future. Lessons from other complex dynamic systems, and the recent recognition of the importance of previous conditions in explaining contemporary and future ecosystem properties, demand the testing of this assumption. Vegetation resurvey databases across gradients of land use and environmental change, complemented by rigorous experiments, offer a means to test for interactions between land-use legacies and multiple environmental changes. Implementing these tests in the context of a trait-based framework will allow biologists to synthesize compositional and functional ecosystem responses. This will further our understanding of the importance of land-use legacies in determining future ecosystem properties, and soundly inform conservation and restoration management actions. © 2015 John Wiley & Sons Ltd.
The Role of Individual Traits and Environmental Factors for Diet Composition of Sheep
Mysterud, Atle; Austrheim, Gunnar
2016-01-01
Large herbivore consumption of forage is known to affect vegetation composition and thereby ecosystem functions. It is thus important to understand how diet composition arises as a mixture of individual variation in preferences and environmental drivers of availability, but few studies have quantified both. Based on 10 years of data on diet composition by aid of microhistological analysis for sheep kept at high and low population density, we analysed how both individual traits (sex, age, body mass, litter size) linked to preference and environmental variation (density, climate proxies) linked to forage availability affected proportional intake of herbs (high quality/low availability) and Avenella flexuosa (lower quality/high availability). Environmental factors affecting current forage availability such as population density and seasonal and annual variation in diet had the most marked impact on diet composition. Previous environment of sheep (switch between high and low population density) had no impact on diet, suggesting a comparably minor role of learning for density dependent diet selection. For individual traits, only the difference between lambs and ewes affected proportion of A. flexuosa, while body mass better predicted proportion of herbs in diet. Neither sex, body mass, litter size, ewe age nor mass of ewe affected diet composition of lambs, and there was no effect of age, body mass or litter size on diet composition of ewes. Our study highlights that diet composition arises from a combination of preferences being predicted by lamb and ewes’ age and/or body mass differences, and the immediate environment in terms of population density and proxies for vegetation development. PMID:26731411
Savage, Candida; Thrush, Simon F.; Lohrer, Andrew M.; Hewitt, Judi E.
2012-01-01
Background Estuaries are highly productive ecosystems that can export organic matter to coastal seas (the ‘outwelling hypothesis’). However the role of this food resource subsidy on coastal ecosystem functioning has not been examined. Methodology/Principal Findings We investigated the influence of estuarine primary production as a resource subsidy and the influence of estuaries on biodiversity and ecosystem functioning in coastal mollusk-dominated sediment communities. Stable isotope values (δ13C, δ15N) demonstrated that estuarine primary production was exported to the adjacent coast and contributed to secondary production up to 4 km from the estuary mouth. Further, isotope signatures of suspension feeding bivalves on the adjacent coast (Dosinia subrosea) closely mirrored the isotope values of the dominant bivalves inside the estuaries (Austrovenus stutchburyi), indicating utilization of similar organic matter sources. However, the food subsidies varied between estuaries; with estuarine suspended particulate organic matter (SPOM) dominant at Tairua estuary, while seagrass and fringing vegetation detritus was proportionately more important at Whangapoua estuary, with lesser contributions of estuarine SPOM. Distance from the estuary mouth and the size and density of large bivalves (Dosinia spp.) had a significant influence on the composition of biological traits in the coastal macrobenthic communities, signaling the potential influence of these spatial subsidies on ecosystem functioning. Conclusions/Significance Our study demonstrated that the locations where ecosystem services like productivity are generated are not necessarily where the services are utilized. Further, we identified indirect positive effects of the nutrient subsidies on biodiversity (the estuarine subsidies influenced the bivalves, which in turn affected the diversity and functional trait composition of the coastal sediment macrofaunal communities). These findings highlight the importance of integrative ecosystem-based management that maintains the connectivity of estuarine and coastal ecosystems. PMID:22880089
NASA Astrophysics Data System (ADS)
Chuvochina, Maria; Sampayo, Eugenia; Welti, Nina; Hayes, Matthew; Lu, Yang; Lovelock, Catherine; Lockington, David
2013-04-01
Coastal wetlands provide a wide variety of important ecosystem services but continue to suffer disturbance, degradation and deforestation. Sediment bacteria are responsible for major nutrient transformation and recycling in these ecosystems. Insight into microbial community composition and the factors that determine them may improve our understanding of biogeochemical processes, food web dynamics, biodegradation processes and, thus, help to develop the management strategies for preserving the ecosystem health and services. Characterizing shifts in community taxa along environmental gradients has been shown to provide a useful tool for determining the major drivers affecting community structure and function. North Stradbroke Island (NSI) in Southern Queensland presents considerable habitat diversity including variety of groundwater dependent ecosystems such as lakes, swamps, sedge-like salt marshes and mangroves. Ecological responses of continuous groundwater extraction for municipal purposes and sand mining operations on NSI are still need to be assessed in order to protect its unique environment. Changes in coastal hydrology due to either climate change or human activity may directly affect microbial populations and, thus, biogeochemical cycles of nutrients. These may result in altering/losing some ecosystem services provided by coastal wetlands. In this study we examine microbial diversity and determine environmental controls on bacterial community structure along a natural transition from freshwater forested wetland (melaleuca woodland), sedge-like salt marsh and into mangroves located at NSI. The study area is characterized by significant groundwater flow, nutrient limitation and sharp transition from one ecosystem type to another. Sediment cores (0-5 cm and 20-25 cm depth) were collected from three representative sites of each zone (mangroves - salt marsh - freshwater wetland) along the salinity gradient in August 2012. Subsamples were set aside for use in chemical analyses, microbiological analysis and for porewater extraction. Microbial community structure and diversity are assessed using denaturing gradient gel electrophoresis (DGGE) of 16S rRNA gene fragments and barcoded pyrosequencing. To evaluate the relationships between microbial communities and environmental variables we use bioinformatical and statistical tools. Physico-chemical parameters included measurements of sediment pH, temperature, salinity and nutrients composition. Background information regarding hydrology and vegetation is incorporated in the study. Sediment bacteria play a vital role in wetland ecological function, and they are very sensitive to environmental changes. Considering coastal wetlands of NSI as a model area, our study may contribute to the knowledge of factors shaping microbial diversity in tropical wetlands, help to gain insight into the microbe-nutrient-plant relationships, and also serve as background for conservation plans to safeguard these ecosystems.
Context dependency and saturating effects of loss of rare soil microbes on plant productivity.
Hol, W H Gera; de Boer, Wietse; de Hollander, Mattias; Kuramae, Eiko E; Meisner, Annelein; van der Putten, Wim H
2015-01-01
Land use intensification is associated with loss of biodiversity and altered ecosystem functioning. Until now most studies on the relationship between biodiversity and ecosystem functioning focused on random loss of species, while loss of rare species that usually are the first to disappear received less attention. Here we test if the effect of rare microbial species loss on plant productivity depends on the origin of the microbial soil community. Soils were sampled from three land use types at two farms. Microbial communities with increasing loss of rare species were created by inoculating sterilized soils with serially diluted soil suspensions. After 8 months of incubation, the effects of the different soil communities on abiotic soil properties, soil processes, microbial community composition, and plant productivity was measured. Dilution treatments resulted in increasing species loss, which was in relation to abundance of bacteria in the original field soil, without affecting most of the other soil parameters and processes. Microbial species loss affected plant biomass positively, negatively or not at all, depending on soil origin, but not on land use history. Even within fields the effects of dilution on plant biomass varied between replicates, suggesting heterogeneity in microbial community composition. The effects of medium and severe species loss on plant biomass were similar, pointing toward a saturating effect of species loss. We conclude that changes in the composition of the soil microbial community, including rare species loss, can affect plant productivity, depending on the composition of the initial microbial community. Future work on the relation between function and species loss effects should address this variation by including multiple sampling origins.
Strecker, Tanja; Barnard, Romain L.; Niklaus, Pascal A.; Scherer-Lorenzen, Michael; Weigelt, Alexandra; Scheu, Stefan; Eisenhauer, Nico
2015-01-01
Background Loss of biodiversity and increased nutrient inputs are two of the most crucial anthropogenic factors driving ecosystem change. Although both received considerable attention in previous studies, information on their interactive effects on ecosystem functioning is scarce. In particular, little is known on how soil biota and their functions are affected by combined changes in plant diversity and fertilization. Methodology/Principal Findings We investigated the effects of plant diversity, functional community composition, and fertilization on the biomass and respiration of soil microbial communities in a long-term biodiversity experiment in semi-natural grassland (Jena Experiment). Plant species richness enhanced microbial basal respiration and microbial biomass, but did not significantly affect microbial specific respiration. In contrast, the presence of legumes and fertilization significantly decreased microbial specific respiration, without altering microbial biomass. The effect of legumes was superimposed by fertilization as indicated by a significant interaction between the presence of legumes and fertilization. Further, changes in microbial stoichiometry (C-to-N ratio) and specific respiration suggest the presence of legumes to reduce N limitation of soil microorganisms and to modify microbial C use efficiency. Conclusions/Significance Our study highlights the role of plant species and functional group diversity as well as interactions between plant community composition and fertilizer application for soil microbial functions. Our results suggest soil microbial stoichiometry to be a powerful indicator of microbial functioning under N limited conditions. Although our results support the notion that plant diversity and fertilizer application independently affect microbial functioning, legume effects on microbial N limitation were superimposed by fertilization, indicating significant interactions between the functional composition of plant communities and nutrient inputs for soil processes. PMID:25938580
Cellulolytic potential under environmental changes in microbial communities from grassland litter
Berlemont, Renaud; Allison, Steven D.; Weihe, Claudia; ...
2014-11-25
We report that in many ecosystems, global changes are likely to profoundly affect microorganisms. In Southern California, changes in precipitation and nitrogen deposition may influence the composition and functional potential of microbial communities and their resulting ability to degrade plant material. To test whether such environmental changes impact the distribution of functional groups involved in leaf litter degradation, we determined how the genomic diversity of microbial communities in a semi-arid grassland ecosystem changed under reduced precipitation or increased N deposition. We monitored communities seasonally over a period of 2 years to place environmental change responses into the context of naturalmore » variation. Fungal and bacterial communities displayed strong seasonal patterns, Fungi being mostly detected during the dry season whereas Bacteria were common during wet periods. Most putative cellulose degraders were associated with 33 bacterial genera and predicted to constitute 18% of the microbial community. Precipitation reduction reduced bacterial abundance and cellulolytic potential whereas nitrogen addition did not affect the cellulolytic potential of the microbial community. Finally, we detected a strong correlation between the frequencies of genera of putative cellulose degraders and cellulase genes. Thus, microbial taxonomic composition was predictive of cellulolytic potential. This work provides a framework for how environmental changes affect microorganisms responsible for plant litter deconstruction.« less
Bernardi Aubry, Fabrizio; Falcieri, Francesco Marcello; Chiggiato, Jacopo; Boldrin, Alfredo; Luna, Gian Marco; Finotto, Stefania; Camatti, Elisa; Acri, Francesco; Sclavo, Mauro; Carniel, Sandro; Bongiorni, Lucia
2018-03-14
Dense waters (DW) formation in shelf areas and their cascading off the shelf break play a major role in ventilating deep waters, thus potentially affecting ecosystem functioning and biogeochemical cycles. However, whether DW flow across shelves may affect the composition and structure of plankton communities down to the seafloor and the particles transport over long distances has not been fully investigated. Following the 2012 north Adriatic Sea cold outbreak, DW masses were intercepted at ca. 460 km south the area of origin and compared to resident ones in term of plankton biomass partitioning (pico to micro size) and phytoplankton species composition. Results indicated a relatively higher contribution of heterotrophs in DW than in deep resident water masses, probably as result of DW-mediated advection of fresh organic matter available to consumers. DWs showed unusual high abundances of Skeletonema sp., a diatom that bloomed in the north Adriatic during DW formation. The Lagrangian numerical model set up on this diatom confirmed that DW flow could be an important mechanism for plankton/particles export to deep waters. We conclude that the predicted climate-induced variability in DW formation events could have the potential to affect the ecosystem functioning of the deeper part of the Mediterranean basin, even at significant distance from generation sites.
Diversity of Riparian Plants among and within Species Shapes River Communities
Jackrel, Sara L.; Wootton, J. Timothy
2015-01-01
Organismal diversity among and within species may affect ecosystem function with effects transmitting across ecosystem boundaries. Whether recipient communities adjust their composition, in turn, to maximize their function in response to changes in donor composition at these two scales of diversity is unknown. We use small stream communities that rely on riparian subsidies as a model system. We used leaf pack experiments to ask how variation in plants growing beside streams in the Olympic Peninsula of Washington State, USA affects stream communities via leaf subsidies. Leaves from red alder (Alnus rubra), vine maple (Acer cinereus), bigleaf maple (Acer macrophyllum) and western hemlock (Tsuga heterophylla) were assembled in leaf packs to contrast low versus high diversity, and deployed in streams to compare local versus non-local leaf sources at the among and within species scales. Leaves from individuals within species decomposed at varying rates; most notably thin leaves decomposed rapidly. Among deciduous species, vine maple decomposed most rapidly, harbored the least algal abundance, and supported the greatest diversity of aquatic invertebrates, while bigleaf maple was at the opposite extreme for these three metrics. Recipient communities decomposed leaves from local species rapidly: leaves from early successional plants decomposed rapidly in stream reaches surrounded by early successional forest and leaves from later successional plants decomposed rapidly adjacent to later successional forest. The species diversity of leaves inconsistently affected decomposition, algal abundance and invertebrate metrics. Intraspecific diversity of leaf packs also did not affect decomposition or invertebrate diversity. However, locally sourced alder leaves decomposed more rapidly and harbored greater levels of algae than leaves sourced from conspecifics growing in other areas on the Olympic Peninsula, but did not harbor greater aquatic invertebrate diversity. In contrast to alder, local intraspecific differences via decomposition, algal or invertebrate metrics were not observed consistently among maples. These results emphasize that biodiversity of riparian subsidies at the within and across species scale have the potential to affect aquatic ecosystems, although there are complex species-specific effects. PMID:26539714
Diversity of Riparian Plants among and within Species Shapes River Communities.
Jackrel, Sara L; Wootton, J Timothy
2015-01-01
Organismal diversity among and within species may affect ecosystem function with effects transmitting across ecosystem boundaries. Whether recipient communities adjust their composition, in turn, to maximize their function in response to changes in donor composition at these two scales of diversity is unknown. We use small stream communities that rely on riparian subsidies as a model system. We used leaf pack experiments to ask how variation in plants growing beside streams in the Olympic Peninsula of Washington State, USA affects stream communities via leaf subsidies. Leaves from red alder (Alnus rubra), vine maple (Acer cinereus), bigleaf maple (Acer macrophyllum) and western hemlock (Tsuga heterophylla) were assembled in leaf packs to contrast low versus high diversity, and deployed in streams to compare local versus non-local leaf sources at the among and within species scales. Leaves from individuals within species decomposed at varying rates; most notably thin leaves decomposed rapidly. Among deciduous species, vine maple decomposed most rapidly, harbored the least algal abundance, and supported the greatest diversity of aquatic invertebrates, while bigleaf maple was at the opposite extreme for these three metrics. Recipient communities decomposed leaves from local species rapidly: leaves from early successional plants decomposed rapidly in stream reaches surrounded by early successional forest and leaves from later successional plants decomposed rapidly adjacent to later successional forest. The species diversity of leaves inconsistently affected decomposition, algal abundance and invertebrate metrics. Intraspecific diversity of leaf packs also did not affect decomposition or invertebrate diversity. However, locally sourced alder leaves decomposed more rapidly and harbored greater levels of algae than leaves sourced from conspecifics growing in other areas on the Olympic Peninsula, but did not harbor greater aquatic invertebrate diversity. In contrast to alder, local intraspecific differences via decomposition, algal or invertebrate metrics were not observed consistently among maples. These results emphasize that biodiversity of riparian subsidies at the within and across species scale have the potential to affect aquatic ecosystems, although there are complex species-specific effects.
Striebel, Maren; Kirchmaier, Leo; Hingsamer, Peter
2014-01-01
Over the past four decades, mesocosm studies have been successfully used for a wide range of applications and have provided a lot of information on trophic interactions and biogeochemical cycling of aquatic ecosystem. However, the setup of such mesocosms (e.g., dimensions and duration of experiments) needs to be adapted to the relevant biological processes being investigated. Mixing of the water column is an important factor to be considered in mesocosm experiments because enclosing water in an artificial chamber always alters the mixing regime. Various approaches have been applied to generate mixing in experimental ecosystems, including pure mechanical mixing (e.g., using a disc), airlifts, bubbling with compressed air, and pumping. In this study, we tested different mixing techniques for outdoor mesocosms and their impact on plankton biomass and community composition. We compared mesocosms mixed with a disc, an airlift-system, and bubbling, and used a nonactively mixed mesocosm as a control. We investigated phytoplankton, ciliate, and zooplankton communities during a 19-d mesocosm experiment. Based on our results, we concluded that mechanical mixing with a disc was the most effective technique due to the undertow produced by lowering and lifting the disc. While no mixing technique affected seston biomass, zooplankton biomass was highest in the treatments mixed with the disc. The airlift treatments had the lowest relative share of small flagellates. However, no further differences in phytoplankton community composition occurred and no differences in zooplankton community composition existed between all actively mixed treatments. PMID:25729335
Megafauna and ecosystem function from the Pleistocene to the Anthropocene
Malhi, Yadvinder; Doughty, Christopher E.; Galetti, Mauro; Smith, Felisa A.; Svenning, Jens-Christian; Terborgh, John W.
2016-01-01
Large herbivores and carnivores (the megafauna) have been in a state of decline and extinction since the Late Pleistocene, both on land and more recently in the oceans. Much has been written on the timing and causes of these declines, but only recently has scientific attention focused on the consequences of these declines for ecosystem function. Here, we review progress in our understanding of how megafauna affect ecosystem physical and trophic structure, species composition, biogeochemistry, and climate, drawing on special features of PNAS and Ecography that have been published as a result of an international workshop on this topic held in Oxford in 2014. Insights emerging from this work have consequences for our understanding of changes in biosphere function since the Late Pleistocene and of the functioning of contemporary ecosystems, as well as offering a rationale and framework for scientifically informed restoration of megafaunal function where possible and appropriate. PMID:26811442
Megafauna and ecosystem function from the Pleistocene to the Anthropocene.
Malhi, Yadvinder; Doughty, Christopher E; Galetti, Mauro; Smith, Felisa A; Svenning, Jens-Christian; Terborgh, John W
2016-01-26
Large herbivores and carnivores (the megafauna) have been in a state of decline and extinction since the Late Pleistocene, both on land and more recently in the oceans. Much has been written on the timing and causes of these declines, but only recently has scientific attention focused on the consequences of these declines for ecosystem function. Here, we review progress in our understanding of how megafauna affect ecosystem physical and trophic structure, species composition, biogeochemistry, and climate, drawing on special features of PNAS and Ecography that have been published as a result of an international workshop on this topic held in Oxford in 2014. Insights emerging from this work have consequences for our understanding of changes in biosphere function since the Late Pleistocene and of the functioning of contemporary ecosystems, as well as offering a rationale and framework for scientifically informed restoration of megafaunal function where possible and appropriate.
Effects of predatory ants within and across ecosystems in bromeliad food webs.
Gonçalves, Ana Z; Srivastava, Diane S; Oliveira, Paulo S; Romero, Gustavo Q
2017-07-01
Predation is one of the most fundamental ecological processes affecting biotic communities. Terrestrial predators that live at ecosystem boundaries may alter the diversity of terrestrial organisms, but they may also have cross-ecosystem cascading effects when they feed on organisms with complex life cycles (i.e. organisms that shift from aquatic juvenile stages to terrestrial adult stages) or inhibit female oviposition in the aquatic environment. The predatory ant Odontomachus hastatus establishes its colonies among roots of Vriesea procera, an epiphytic bromeliad species with water-filled tanks that shelters many terrestrial and aquatic organisms. Ants may impact terrestrial communities and deter adult insects from ovipositing in the water of bromeliads via consumptive and non-consumptive effects. Ants do not forage within the aquatic environment; thus, they may be more efficient predators on terrestrial organisms. Therefore, we predict that ants will have stronger effects on terrestrial than aquatic food webs. However, such effects may also be site contingent and depend on the local composition of food webs. To test our hypothesis, we surveyed bromeliads with and without O. hastatus colonies from three different coastal field sites in the Atlantic Forest of southeast Brazil, and quantified the effect of this predatory ant on the composition, density and richness of aquatic and terrestrial metazoans found in these bromeliads. We found that ants changed the composition and reduced the overall density of aquatic and terrestrial metazoans in bromeliad ecosystems. However, effects of ants on species diversity were contingent on site. In general terms, the effects of the ant on aquatic and terrestrial metazoan communities were similar in strength and magnitude. Ants reduced the density of virtually all aquatic functional groups, especially detritivore insects as well as metazoans that reach bromeliads through phoresy on the skin of terrestrial animals (i.e. Ostracoda and Helobdella sp.). Our results suggest that the cross-ecosystem effect of this terrestrial predator on the aquatic metazoans was at least as strong as its within-ecosystem effect on the terrestrial ecosystem, and demonstrates that the same predator can simultaneously initiate cascades in multiple ecosystems. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Beyond cool: adapting upland streams for climate change using riparian woodlands.
Thomas, Stephen M; Griffiths, Siân W; Ormerod, Steve J
2016-01-01
Managed adaptation could reduce the risks of climate change to the world's ecosystems, but there have been surprisingly few practical evaluations of the options available. For example, riparian woodland is advocated widely as shade to reduce warming in temperate streams, but few studies have considered collateral effects on species composition or ecosystem functions. Here, we use cross-sectional analyses at two scales (region and within streams) to investigate whether four types of riparian management, including those proposed to reduce potential climate change impacts, might also affect the composition, functional character, dynamics and energetic resourcing of macroinvertebrates in upland Welsh streams (UK). Riparian land use across the region had only small effects on invertebrate taxonomic composition, while stable isotope data showed how energetic resources assimilated by macroinvertebrates in all functional guilds were split roughly 50:50 between terrestrial and aquatic origins irrespective of riparian management. Nevertheless, streams draining the most extensive deciduous woodland had the greatest stocks of coarse particulate matter (CPOM) and greater numbers of 'shredding' detritivores. Stream-scale investigations showed that macroinvertebrate biomass in deciduous woodland streams was around twice that in moorland streams, and lowest of all in streams draining non-native conifers. The unexpected absence of contrasting terrestrial signals in the isotopic data implies that factors other than local land use affect the relative incorporation of allochthonous subsidies into riverine food webs. Nevertheless, our results reveal how planting deciduous riparian trees along temperate headwaters as an adaptation to climate change can modify macroinvertebrate function, increase biomass and potentially enhance resilience by increasing basal resources where cover is extensive (>60 m riparian width). We advocate greater urgency in efforts to understand the ecosystem consequences of climate change adaptation to guide future actions. © 2015 John Wiley & Sons Ltd.
Andrew Gray
2008-01-01
Invasions of nonnative plants into new regions have a tremendous impact on many natural and managed ecosystems affecting their composition and function. Nonnative invasive species have a large economic impact through lost or degraded land costs, and are a primary cause of extinction of native species.
Future wildfire trends, impacts, and mitigation options in the Southern United States
Yongqiang Liu; Jeffrey P. Prestemon; Scott L. Goodrick; Thomas P. Holmes; John A. Stanturf; James M. Vose; Ge Sun
2014-01-01
Wildfire is among the most common forest disturbances, affecting the structure, composition, and functions of many ecosystems. The complex role that wildfire plays in shaping forests has been described in terms of vegetation responses, which are characterized as dependent on, sensitive to, independent of, or influenced by fire (Myers 2006). Fire is essential in areas...
Bryan A. Endress; Michael J. Wisdom; Martin Vavra; Catherine G. Parks; Brian L. Dick; Bridgett J. Naylor; Jennifer M. Boyd
2012-01-01
Herbivory by domestic and wild ungulates can dramatically affect vegetation structure, composition and dynamics in nearly every terrestrial ecosystem of the world. These effects are of particular concern in forests of western North America, where intensive herbivory by native and domestic ungulates has the potential to substantially reduce or eliminate deciduous,...
Nonnative invasive plants of Pacific coast forests: a field guide for identification
Andrew N. Gray; Katie Barndt; Sarah H. Reichard
2011-01-01
Nonnative plants affect the composition and function of natural and managed ecosystems and have large economic effects through lost or degraded land use and eradication costs. In spite of their importance, very little comprehensive information on the abundance, distribution, and impact of nonnative invasive plants is available. The objective of this study was to...
Jennifer M. Fraterrigo; Teri C. Balser; Monica g. Turner
2006-01-01
Past land use can impart soil legacies that have important implications for ecosystem function. Although these legacies have been linked with microbially mediated processes, little is known about the long-term influence of land use on soil microbial communities themselves. We examined whether historical land use affected soil microbial community composition (lipid...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veach, Allison M.; Troia, Matthew; Jumpponen, Ari
We report top–down control exerted by macroconsumers can strongly affect lower trophic levels and ecosystem processes. Studies of effects on primary consumers in streams have been focused on algae, and effects on bacteria are largely unknown. We manipulated the density of an omnivorous, grazing minnow, the central stoneroller (Campostoma anomalum), in experimental stream mesocosms (treatments with 0, 1, 2, 3, 4, 5, 6, or 7 individuals) to understand consumer effects on algal and bacterial abundance (chlorophyll a [Chl a] extraction, bacterial cell counts, biomass measurements) and bacterial diversity and community composition (via Illumina MiSeq sequencing of the V4 region ofmore » the 16S ribosomal RNA gene). Increasing C. anomalum density reduced algal biomass until density reached ~2 fish (5 g fish biomass/m 2), and higher fish densities did not affect algal biomass. Fish biomass did not affect bacterial cell counts. Biofilm organic matter decreased with increasing C. anomalum biomass. Bacterial community composition was not affected by fish biomass, but variation in community composition was correlated with shifts in bacterial abundances. Evenness of bacterial operational taxonomic units (OTUs) decreased with increasing C. anomalum biomass, indicating that bacterial communities exhibited a greater degree of OTU dominance when fish biomass was higher. These findings suggest that this grazing fish species reduces algal abundance and organic matter in low-nutrient streams until a threshold of moderate fish abundance is reached and that it reduces evenness of benthic bacterial communities but not bacterial biomass. Finally, given the importance of biofilm bacteria for ecosystem processes and the ubiquity of grazing fishes in streams, future researchers should explore both top–down and bottom–up interactions in alternative environmental contexts and with other grazing fish species.« less
Veach, Allison M.; Troia, Matthew; Jumpponen, Ari; ...
2017-12-21
We report top–down control exerted by macroconsumers can strongly affect lower trophic levels and ecosystem processes. Studies of effects on primary consumers in streams have been focused on algae, and effects on bacteria are largely unknown. We manipulated the density of an omnivorous, grazing minnow, the central stoneroller (Campostoma anomalum), in experimental stream mesocosms (treatments with 0, 1, 2, 3, 4, 5, 6, or 7 individuals) to understand consumer effects on algal and bacterial abundance (chlorophyll a [Chl a] extraction, bacterial cell counts, biomass measurements) and bacterial diversity and community composition (via Illumina MiSeq sequencing of the V4 region ofmore » the 16S ribosomal RNA gene). Increasing C. anomalum density reduced algal biomass until density reached ~2 fish (5 g fish biomass/m 2), and higher fish densities did not affect algal biomass. Fish biomass did not affect bacterial cell counts. Biofilm organic matter decreased with increasing C. anomalum biomass. Bacterial community composition was not affected by fish biomass, but variation in community composition was correlated with shifts in bacterial abundances. Evenness of bacterial operational taxonomic units (OTUs) decreased with increasing C. anomalum biomass, indicating that bacterial communities exhibited a greater degree of OTU dominance when fish biomass was higher. These findings suggest that this grazing fish species reduces algal abundance and organic matter in low-nutrient streams until a threshold of moderate fish abundance is reached and that it reduces evenness of benthic bacterial communities but not bacterial biomass. Finally, given the importance of biofilm bacteria for ecosystem processes and the ubiquity of grazing fishes in streams, future researchers should explore both top–down and bottom–up interactions in alternative environmental contexts and with other grazing fish species.« less
Suppression of savanna ants alters invertebrate composition and influences key ecosystem processes.
Parr, C L; Eggleton, P; Davies, A B; Evans, T A; Holdsworth, S
2016-06-01
In almost every ecosystem, ants (Hymenoptera: Formicidae) are the dominant terrestrial invertebrate group. Their functional value was highlighted by Wilson (1987) who famously declared that invertebrates are the "little things that run the world." However, while it is generally accepted that ants fulfil important functions, few studies have tested these assumptions and demonstrated what happens in their absence. We report on a novel large-scale field experiment in undisturbed savanna habitat where we examined how ants influence the abundance of other invertebrate taxa in the system, and affect the key processes of decomposition and herbivory. Our experiment demonstrated that ants suppressed the abundance and activity of beetles, millipedes, and termites, and also influenced decomposition rates and levels of herbivory. Our study is the first to show that top-down control of termites by ants can have important ecosystem consequences. Further studies are needed to elucidate the effects ant communities have on other aspects of the ecosystem (e.g., soils, nutrient cycling, the microbial community) and how their relative importance for ecosystem function varies among ecosystem types (e.g., savanna vs. forest).
NASA Astrophysics Data System (ADS)
Anderson, C.; Bond-Lamberty, B. P.; Huang, M.; Xu, Y.; Stegen, J.
2016-12-01
Ecosystem composition is a key attribute of terrestrial ecosystems, influencing the fluxes of carbon, water, and energy between the land surface and the atmosphere. The description of current ecosystem composition has traditionally come from relatively few ground-based inventories of the plant canopy, but are spatially limited and do not provide a comprehensive picture of ecosystem composition at regional or global scales. In this analysis, imaging spectrometry measurements, collected as part of the HyspIRI Preparatory Mission, are used to provide spatially-resolved estimates of plant functional type composition providing an important constraint on terrestrial biosphere model predictions of carbon, water and energy fluxes across the heterogeneous landscapes of the Californian Sierras. These landscapes include oak savannas, mid-elevation mixed pines, fir-cedar forests, and high elevation pines. Our results show that imaging spectrometry measurements can be successfully used to estimate regional-scale variation in ecosystem composition and resulting spatial heterogeneity in patterns of carbon, water and energy fluxes and ecosystem dynamics. Simulations at four flux tower sites within the study region yield patterns of seasonal and inter-annual variation in carbon and water fluxes that have comparable accuracy to simulations initialized from ground-based inventory measurements. Finally, results indicate that during the 2012-2015 Californian drought, regional net carbon fluxes fell by 84%, evaporation and transpiration fluxes fell by 53% and 33% respectively, and sensible heat increase by 51%. This study provides a framework for assimilating near-future global satellite imagery estimates of ecosystem composition with terrestrial biosphere models, constraining and improving their predictions of large-scale ecosystem dynamics and functioning.
NASA Astrophysics Data System (ADS)
Antonarakis, A. S.; Bogan, S.; Moorcroft, P. R.
2017-12-01
Ecosystem composition is a key attribute of terrestrial ecosystems, influencing the fluxes of carbon, water, and energy between the land surface and the atmosphere. The description of current ecosystem composition has traditionally come from relatively few ground-based inventories of the plant canopy, but are spatially limited and do not provide a comprehensive picture of ecosystem composition at regional or global scales. In this analysis, imaging spectrometry measurements, collected as part of the HyspIRI Preparatory Mission, are used to provide spatially-resolved estimates of plant functional type composition providing an important constraint on terrestrial biosphere model predictions of carbon, water and energy fluxes across the heterogeneous landscapes of the Californian Sierras. These landscapes include oak savannas, mid-elevation mixed pines, fir-cedar forests, and high elevation pines. Our results show that imaging spectrometry measurements can be successfully used to estimate regional-scale variation in ecosystem composition and resulting spatial heterogeneity in patterns of carbon, water and energy fluxes and ecosystem dynamics. Simulations at four flux tower sites within the study region yield patterns of seasonal and inter-annual variation in carbon and water fluxes that have comparable accuracy to simulations initialized from ground-based inventory measurements. Finally, results indicate that during the 2012-2015 Californian drought, regional net carbon fluxes fell by 84%, evaporation and transpiration fluxes fell by 53% and 33% respectively, and sensible heat increase by 51%. This study provides a framework for assimilating near-future global satellite imagery estimates of ecosystem composition with terrestrial biosphere models, constraining and improving their predictions of large-scale ecosystem dynamics and functioning.
Lindroth, Richard L
2010-01-01
Prominent among the many factors now affecting the sustainability of forest ecosystems are anthropogenically-generated carbon dioxide (CO2) and ozone (O3). CO2 is the substrate for photosynthesis and thus can accelerate tree growth, whereas O3 is a highly reactive oxygen species and interferes with basic physiological functions. This review summarizes the impacts of CO2 and O3 on tree chemical composition and highlights the consequences thereof for trophic interactions and ecosystem dynamics. CO2 and O3 influence phytochemical composition by altering substrate availability and biochemical/physiological processes such as photosynthesis and defense signaling pathways. Growth of trees under enriched CO2 generally leads to an increase in the C/N ratio, due to a decline in foliar nitrogen and concomitant increases in carbohydrates and phenolics. Terpenoid levels generally are not affected by atmospheric CO2 concentration. O3 triggers up-regulation of antioxidant defense pathways, leading to the production of simple phenolics and flavonoids (more so in angiosperms than gymnosperms). Tannins levels generally are unaffected, while terpenoids exhibit variable responses. In combination, CO2 and O3 exert both additive and interactive effects on tree chemical composition. CO2-and O3-mediated changes in plant chemistry influence host selection, individual performance (development, growth, reproduction), and population densities of herbivores (primarily phytophagous insects) and soil invertebrates. These changes can effect shifts in the amount and temporal pattern of forest canopy damage and organic substrate deposition. Decomposition rates of leaf litter produced under elevated CO2 and O3 may or may not be altered, and can respond to both the independent and interactive effects of the pollutants. Overall, however, CO2 and O3 effects on decomposition will be influenced more by their impacts on the quantity, rather than quality, of litter produced. A prominent theme to emerge from this and related reviews is that the effects of elevated CO2 and O3 on plant chemistry and ecological interactions are highly context- and species-specific, thus frustrating attempts to identify general, global patterns. Many of the interactions that govern above- and below-ground community and ecosystem processes are chemically mediated, ultimately influencing terrestrial carbon sequestration and feeding back to influence atmospheric composition. Thus, the discipline of chemical ecology is fundamentally important for elucidating the impacts of humans on the health and sustainability of forest ecosystems. Future research should seek to increase the diversity of natural products, species, and biomes studied; incorporate long-term, multi-factor experiments; and employ a comprehensive “genes to ecosystems” perspective that couples genetic/genomic tools with the approaches of evolutionary and ecosystem ecology.
NASA Astrophysics Data System (ADS)
Yonezaki, Shiroh; Kiyota, Masashi; Okamura, Hiroshi
2015-03-01
Assessment of the current status of marine ecosystems is necessary for the sustainable utilization of ecosystem services through fisheries and other human activities under changing environmental conditions. Understanding of historical changes in marine ecosystems can help us to assess their current status. In this study, we analyzed Japanese commercial fishery catch data and scientific survey data of the diet of northern fur seal (Callorhinus ursinus, NFS) to investigate potential long-term ecosystem changes in the western North Pacific Ocean off northeastern Japan over the past 60 years. Total commercial catches experienced peaks around 1960 and during the 1980s, decreasing to low levels around 1970 and after 1990. Catches were substantively impacted by the Tohoku earthquake and tsunami in 2011. Species composition of the commercial catch changed over time, resulting in changes in the mean trophic level (MTL) of the catches. Trends in observed commercial catches were affected by many factors, including species population fluctuations potentially related to large-scale environmental shifts, migration and distribution patterns of species related to local oceanography, changes in fishing technology, and the introduction of fishery management frameworks. The composition of NFS diet also changed over time: although overall changes were small, MTL derived from NFS stomach contents declined from the early 1970s to the late 1980s. This fall in the MTL of the diet of NFS is suggestive of a shift in pelagic fish fauna from a "mackerel-dominant regime" to a "sardine-dominant regime". Inconsistencies between changes in species composition and MTLs of the commercial catch and NFS diet resulted from differences in commercial fishing targeting and NFS foraging behavior strategies. Although commercial catch is a valuable source of information for investigating historical changes in fisheries, biological resources, and ecosystems, catch data should be interpreted carefully and other relevant information available should also be considered.
Concostrina-Zubiri, L; Huber-Sannwald, E; Martínez, I; Flores Flores, J L; Reyes-Agüero, J A; Escude, A; Belnap, J
Grazing represents one of the most common disturbances in drylands worldwide, affecting both ecosystem structure and functioning. Despite the efforts to understand the nature and magnitude of grazing effects on ecosystem components and processes, contrasting results continue to arise. This is particularly remarkable for the biological soil crust (BSC) communities (i.e., cyanobacteria, lichens, and bryophytes), which play an important role in soil dynamics. Here we evaluated simultaneously the effect of grazing impact on BSC communities (resistance) and recovery after livestock exclusion (resilience) in a semiarid grassland of Central Mexico. In particular, we examined BSC species distribution, species richness, taxonomical group cover (i.e., cyanobacteria, lichen, bryophyte), and composition along a disturbance gradient with different grazing regimes (low, medium, high impact) and along a recovery gradient with differently aged livestock exclosures (short-, medium-, long-term exclusion). Differences in grazing impact and time of recovery from grazing both resulted in slight changes in species richness; however, there were pronounced shifts in species composition and group cover. We found we could distinguish four highly diverse and dynamic BSC species groups: (1) species with high resistance and resilience to grazing, (2) species with high resistance but low resilience, (3) species with low resistance but high resilience, and (4) species with low resistance and resilience. While disturbance resulted in a novel diversity configuration, which may profoundly affect ecosystem functioning, we observed that 10 years of disturbance removal did not lead to the ecosystem structure found after 27 years of recovery. These findings are an important contribution to our understanding of BCS dynamics from a species and community perspective placed in a land use change context.
Concostrina-Zubiri, L.; Huber-Sannwald, E.; Martínez, I.; Flores Flores, J. L.; Reyes-Agüero, J. A.; Escudero, A.; Belnap, Jayne
2014-01-01
Grazing represents one of the most common disturbances in drylands worldwide, affecting both ecosystem structure and functioning. Despite the efforts to understand the nature and magnitude of grazing effects on ecosystem components and processes, contrasting results continue to arise. This is particularly remarkable for the biological soil crust (BSC) communities (i.e., cyanobacteria, lichens, and bryophytes), which play an important role in soil dynamics. Here we evaluated simultaneously the effect of grazing impact on BSC communities (resistance) and recovery after livestock exclusion (resilience) in a semiarid grassland of Central Mexico. In particular, we examined BSC species distribution, species richness, taxonomical group cover (i.e., cyanobacteria, lichen, bryophyte), and composition along a disturbance gradient with different grazing regimes (low, medium, high impact) and along a recovery gradient with differently aged livestock exclosures (short-, medium-, long-term exclusion). Differences in grazing impact and time of recovery from grazing both resulted in slight changes in species richness; however, there were pronounced shifts in species composition and group cover. We found we could distinguish four highly diverse and dynamic BSC species groups: (1) species with high resistance and resilience to grazing, (2) species with high resistance but low resilience, (3) species with low resistance but high resilience, and (4) species with low resistance and resilience. While disturbance resulted in a novel diversity configuration, which may profoundly affect ecosystem functioning, we observed that 10 years of disturbance removal did not lead to the ecosystem structure found after 27 years of recovery. These findings are an important contribution to our understanding of BCS dynamics from a species and community perspective placed in a land use change context.
von Schiller, Daniel; Acuña, Vicenç; Aristi, Ibon; Arroita, Maite; Basaguren, Ana; Bellin, Alberto; Boyero, Luz; Butturini, Andrea; Ginebreda, Antoni; Kalogianni, Eleni; Larrañaga, Aitor; Majone, Bruno; Martínez, Aingeru; Monroy, Silvia; Muñoz, Isabel; Paunović, Momir; Pereda, Olatz; Petrovic, Mira; Pozo, Jesús; Rodríguez-Mozaz, Sara; Rivas, Daniel; Sabater, Sergi; Sabater, Francesc; Skoulikidis, Nikolaos; Solagaistua, Libe; Vardakas, Leonidas; Elosegi, Arturo
2017-10-15
River ecosystems are subject to multiple stressors that affect their structure and functioning. Ecosystem structure refers to characteristics such as channel form, water quality or the composition of biological communities, whereas ecosystem functioning refers to processes such as metabolism, organic matter decomposition or secondary production. Structure and functioning respond in contrasting and complementary ways to environmental stressors. Moreover, assessing the response of ecosystem functioning to stressors is critical to understand the effects on the ecosystem services that produce direct benefits to humans. Yet, there is more information on structural than on functional parameters, and despite the many approaches available to measure river ecosystem processes, structural approaches are more widely used, especially in management. One reason for this discrepancy is the lack of synthetic studies analyzing river ecosystem functioning in a way that is useful for both scientists and managers. Here, we present a synthesis of key river ecosystem processes, which provides a description of the main characteristics of each process, including criteria guiding their measurement as well as their respective sensitivity to stressors. We also discuss the current limitations, potential improvements and future steps that the use of functional measures in rivers needs to face. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
García-Palacios, Pablo; Bowker, Matthew A.; Maestre, Fernando T.; Soliveres, Santiago; Valladares, Fernando; Papadopoulos, Jorge; Escudero, Adrián
2015-01-01
Roadside grasslands undergoing secondary succession are abundant, and represent ecologically meaningful examples of novel, human-created ecosystems. Interactions between plant and soil communities (hereafter plant–soil interactions) are of major importance in understanding the role of biotic control in ecosystem functioning, but little is known about these links in the context of ecosystem restoration and succession. The assessment of the key biotic communities and interactions driving ecosystem development will help practitioners to better allocate the limited resources devoted to roadside grassland restoration. We surveyed roadside grasslands from three successional stages (0–2, 7–9 and > 20 years) in two Mediterranean regions of Spain. Structural equation modeling was used to evaluate how interactions between plants, biological soil crusts [BSCs], and soil microbial functional diversity [soil microorganisms] affect indicators of ecosystem development and restoration: plant similarity to the reference ecosystem, erosion control and soil C storage and N accumulation. Changes in plant community composition along the successional gradient exerted the strongest influence on these indicators. High BSC cover was associated with high soil stability, and high soil microbial functional diversity from late-successional stages was associated with high soil fertility. Contrary to our expectations, the indirect effects of plants, mediated by either BSCs or soil microorganisms, were very weak in both regions, suggesting a minor role for plant–soil interactions upon ecosystem development indicators over long periods. Our results suggest that natural vegetation dynamics effectively improved ecosystem development within a time frame of 20 years in the grasslands evaluated. They also indicate that this time could be shortened if management actions focus on: 1) maintain well-conserved natural areas close to roadsides to enhance plant compositional changes towards late-successional stages, 2) increase BSC cover in areas under strong erosion risk, to avoid soil loss, and 3) enhance soil microbial functional diversity in resource-limited areas, to enhance soil C and N accumulation. PMID:22073661
Garcia-Palacios, P.; Bowker, M.A.; Maestre, F.T.; Soliveres, S.; Valladares, F.; Papadopoulos, J.; Escudero, A.
2011-01-01
Roadside grasslands undergoing secondary succession are abundant, and represent ecologically meaningful examples of novel, human-created ecosystems. Interactions between plant and soil communities (hereafter plant-soil interactions) are of major importance in understanding the role of biotic control in ecosystem functioning, but little is known about these links in the context of ecosystem restoration and succession. The assessment of the key biotic communities and interactions driving ecosystem development will help practitioners to better allocate the limited resources devoted to roadside grassland restoration. We surveyed roadside grasslands from three successional stages (0-2, 7-9, and > 20 years) in two Mediterranean regions of Spain. Structural equation modeling was used to evaluate how interactions between plants, biological soil crusts (BSCs), and soil microbial functional diversity (soil microorganisms) affect indicators of ecosystem development and restoration: plant similarity to the reference ecosystem, erosion control, and soil C storage and N accumulation. Changes in plant community composition along the successional gradient exerted the strongest influence on these indicators. High BSC cover was associated with high soil stability, and high soil microbial functional diversity from late-successional stages was associated with high soil fertility. Contrary to our expectations, the indirect effects of plants, mediated by either BSCs or soil microorganisms, were very weak in both regions, suggesting a minor role for plant-soil interactions upon ecosystem development indicators over long periods. Our results suggest that natural vegetation dynamics effectively improved ecosystem development within a time frame of 20 years in the grasslands evaluated. They also indicate that this time could be shortened if management actions focus on: (1) maintaining wellconserved natural areas close to roadsides to enhance plant compositional changes towards late-successional stages, (2) increasing BSC cover in areas under strong erosion risk, to avoid soil loss, and (3) enhancing soil microbial functional diversity in resource-limited areas, to enhance soil C and N accumulation. ?? 2011 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Zhai, L.
2017-12-01
Plant community can be simultaneously affected by human activities and climate changes, and quantifying and predicting this combined effect on plant community by appropriate model framework which is validated by field data is complex, but very useful to conservation management. Plant communities in the Everglades provide an unique set of conditions to develop and validate this model framework, because they are both experiencing intensive effects of human activities (such as changing hydroperiod by drainage and restoration projects, nutrients from upstream agriculture, prescribed fire, etc.) and climate changes (such as warming, changing precipitation patter, sea level rise, etc.). More importantly, previous research attention focuses on plant communities in slough ecosystem (including ridge, slough and their tree islands), very few studies consider the marl prairie ecosystem. Comparing with slough ecosystem featured by remaining consistently flooded almost year-round, marl prairie has relatively shorter hydroperiod (just in wet-season of one year). Therefore, plant communities of marl prairie may receive more impacts from hydroperiod change. In addition to hydroperiod, fire and nutrients also affect the plant communities in the marl prairie. Therefore, to quantify the combined effects of water level, fire, and nutrients on the composition of the plant communities, we are developing a joint probability method based vegetation dynamic model. Further, the model is being validated by field data about changes of vegetation assemblage along environmental gradients in the marl prairie. Our poster showed preliminary data from our current project.
Daniela F. Cusack; Whendee L. Silver; Margaret S. Torn; Sarah D. Burton; Mary K. Firestone
2011-01-01
Microbial communities and their associated enzyme activities affect the amount and chemical quality of carbon (C) in soils. Increasing nitrogen (N) deposition, particularly in N-rich tropical forests, is likely to change the composition and behavior of microbial communities and feed back on ecosystem structure and function. This study presents a novel assessment of...
William D. Dijak; Brice B. Hanberry; Jacob S. Fraser; Hong S. He; Wen J. Wang; Frank R. Thompson
2017-01-01
Context. Global climate change impacts forest growth and methods of modeling those impacts at the landscape scale are needed to forecast future forest species composition change and abundance. Changes in forest landscapes will affect ecosystem processes and services such as succession and disturbance, wildlife habitat, and production of forest...
A. A. May; G. R. McMeeking; T. Lee; J. W. Taylor; J. S. Craven; I. Burling; A. P. Sullivan; S. Akagi; J. L. Collett; M. Flynn; H. Coe; S. P. Urbanski; J. H. Seinfeld; R. J. Yokelson; S. M. Kreidenweis
2014-01-01
Aerosol emissions from prescribed fires can affect air quality on regional scales. Accurate representation of these emissions in models requires information regarding the amount and composition of the emitted species. We measured a suite of submicron particulate matter species in young plumes emitted from prescribed fires (chaparral and montane ecosystems in California...
Rosenkranz, Maaria; Pugh, Thomas A M; Schnitzler, Jörg-Peter; Arneth, Almut
2015-09-01
Land-use change (LUC) has fundamentally altered the form and function of the terrestrial biosphere. Increasing human population, the drive for higher living standards and the potential challenges of mitigating and adapting to global environmental change mean that further changes in LUC are unavoidable. LUC has direct consequences on climate not only via emissions of greenhouse gases and changing the surface energy balance but also by affecting the emission of biogenic volatile organic compounds (BVOCs). Isoprenoids, which dominate global BVOC emissions, are highly reactive and strongly modify atmospheric composition. The effects of LUC on BVOC emissions and related atmospheric chemistry have been largely ignored so far. However, compared with natural ecosystems, most tree species used in bioenergy plantations are strong BVOC emitters, whereas intensively cultivated crops typically emit less BVOCs. Here, we summarize the current knowledge on LUC-driven BVOC emissions and how these might affect atmospheric composition and climate. We further discuss land management and plant-breeding strategies, which could be taken to move towards climate-friendly BVOC emissions while simultaneously maintaining or improving key ecosystem functions such as crop yield under a changing environment. © 2014 John Wiley & Sons Ltd.
Predicting ecosystem vulnerability to biodiversity loss from community composition.
Heilpern, Sebastian A; Weeks, Brian C; Naeem, Shahid
2018-05-01
Ecosystems vary widely in their responses to biodiversity change, with some losing function dramatically while others are highly resilient. However, generalizations about how species- and community-level properties determine these divergent ecosystem responses have been elusive because potential sources of variation (e.g., trophic structure, compensation, functional trait diversity) are rarely evaluated in conjunction. Ecosystem vulnerability, or the likely change in ecosystem function following biodiversity change, is influenced by two types of species traits: response traits that determine species' individual sensitivities to environmental change, and effect traits that determine a species' contribution to ecosystem function. Here we extend the response-effect trait framework to quantify ecosystem vulnerability and show how trophic structure, within-trait variance, and among-trait covariance affect ecosystem vulnerability by linking extinction order and functional compensation. Using in silico trait-based simulations we found that ecosystem vulnerability increased when response and effect traits positively covaried, but this increase was attenuated by decreasing trait variance. Contrary to expectations, in these communities, both functional diversity and trophic structure increased ecosystem vulnerability. In contrast, ecosystem functions were resilient when response and effect traits covaried negatively, and variance had a positive effect on resiliency. Our results suggest that although biodiversity loss is often associated with decreases in ecosystem functions, such effects are conditional on trophic structure, and the variation within and covariation among response and effect traits. Taken together, these three factors can predict when ecosystems are poised to lose or gain function with ongoing biodiversity change. © 2018 by the Ecological Society of America.
Western Juniper Field Guide: Asking the Right Questions to Select Appropriate Management Actions
Miller, R.F.; Bates, J.D.; Svejcar, T.J.; Pierson, F.B.; Eddleman, L.E.
2007-01-01
Introduction Strong evidence indicates that western juniper has significantly expanded its range since the late 1800s by encroaching into landscapes once dominated by shrubs and herbaceous vegetation (fig. 1). Woodland expansion affects soil resources, plant community structure and composition, water, nutrient and fire cycles, forage production, wildlife habitat, and biodiversity. Goals of juniper management include an attempt to restore ecosystem function and a more balanced plant community that includes shrubs, grasses, and forbs, and to increase ecosystem resilience to disturbances. Developing a management strategy can be a difficult task due to uncertainty about how vegetation, soils, hydrologic function, and wildlife will respond to treatments.
Kahmen, Ansgar; Perner, Jörg; Audorff, Volker; Weisser, Wolfgang; Buchmann, Nina
2005-02-01
In the past years, a number of studies have used experimental plant communities to test if biodiversity influences ecosystem functioning such as productivity. It has been argued, however, that the results achieved in experimental studies may have little predictive value for species loss in natural ecosystems. Studies in natural ecosystems have been equivocal, mainly because in natural ecosystems differences in diversity are often confounded with differences in land use history or abiotic parameters. In this study, we investigated the effect of plant diversity on ecosystem functioning in semi-natural grasslands. In an area of 10x20 km, we selected 78 sites and tested the effects of various measures of diversity and plant community composition on productivity. We separated the effects of plant diversity on ecosystem functioning from potentially confounding effects of community composition, management or environmental parameters, using multivariate statistical analyses. In the investigated grasslands, simple measures of biodiversity were insignificant predictors of productivity. However, plant community composition explained productivity very well (R2=0.31) and was a better predictor than environmental variables (soil and site characteristics) or management regime. Thus, complex measures such as community composition and structure are important drivers for ecosystem functions in semi-natural grasslands. Furthermore, our data show that it is difficult to extrapolate results from experimental studies to semi-natural ecosystems, although there is a need to investigate natural ecosystems to fully understand the relationship of biodiversity and ecosystem functioning.
Schneider, Gudrun; Krauss, Jochen; Boetzl, Fabian A; Fritze, Michael-Andreas; Steffan-Dewenter, Ingolf
2016-12-01
Semi-natural grasslands in Europe are insect biodiversity hotspots and important source habitats delivering ecosystem services to adjacent agricultural land by species spillover. However, this spillover might also occur in the opposite direction, affecting the diversity of semi-natural grasslands. This opposite spillover has got little attention in scientific literature even though generalist species penetrating into the grasslands can affect local biotic interactions, community composition and the conservation value of grassland habitats. In this study, we examined spillover effects from two different adjacent habitat types on carabid beetle assemblages in 20 semi-natural calcareous grasslands. The grasslands were either adjacent to a cereal crop field or to a coniferous forest. We found distinct differences in carabid beetle assemblages in calcareous grasslands depending on adjacent habitat type. Species richness and activity density were higher, but the evenness was lower in calcareous grasslands adjacent to crop fields compared with calcareous grasslands adjacent to coniferous forests. Further, we found a strong spillover of carabid beetles from adjacent crop fields after crop harvest, which may result in transiently increased predation pressure and resource competition in calcareous grasslands. Our results highlight that species composition, diversity and presumably ecosystem functions within semi-natural habitats are affected by the type and management of surrounding habitats. This needs to be considered by nature conservation measures, which aim to protect the unique insect communities of semi-natural European grasslands.
Hernández-Hernández, R M; Roldán, A; Caravaca, F; Rodriguez-Caballero, G; Torres, M P; Maestre, F T; Alguacil, M M
2017-01-01
Knowledge of the arbuscular mycorrhizal fungal assemblages in the Trachypogon savanna ecosystems is very important to a better understanding of the ecological processes mediated by this soil microbial group that affects multiple ecosystem functions. Considering the hypothesis that the biocrusts can be linked to vegetation through the arbuscular fungi mycelial network, the objectives proposed in this study were to determine (i) whether there are arbuscular mycorrhizal fungi (AMF) in the biocrusts (ii) whether arbuscular mycorrhizal fungal assemblages are linked to the Trachypogon patches, and (iii) whether the composition of the assemblages is related to soil properties affected by microbiological activity. The community structure of the AMF was investigated in three habitats: rhizospheric soil and roots of Trachypogon vestitus, biological soil crusts, and bare soil. The canonical correspondence analysis showed that two soil properties related to enzymatic activity (protease and β-glucosidase) significantly affected the community composition of the AMF. The biocrusts in the Venezuelan savanna are colonized by an AM fungal community linked to that of the bare soil and significantly different from that hosted by the roots of the surrounding T. vestitus, suggesting that assemblages of AMF in biocrusts might be related more closely to those of annual plant species appearing in favorable conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Plant Identity Influences Decomposition through More Than One Mechanism
McLaren, Jennie R.; Turkington, Roy
2011-01-01
Plant litter decomposition is a critical ecosystem process representing a major pathway for carbon flux, but little is known about how it is affected by changes in plant composition and diversity. Single plant functional groups (graminoids, legumes, non-leguminous forbs) were removed from a grassland in northern Canada to examine the impacts of functional group identity on decomposition. Removals were conducted within two different environmental contexts (fertilization and fungicide application) to examine the context-dependency of these identity effects. We examined two different mechanisms by which the loss of plant functional groups may impact decomposition: effects of the living plant community on the decomposition microenvironment, and changes in the species composition of the decomposing litter, as well as the interaction between these mechanisms. We show that the identity of the plant functional group removed affects decomposition through both mechanisms. Removal of both graminoids and forbs slowed decomposition through changes in the decomposition microenvironment. We found non-additive effects of litter mixing, with both the direction and identity of the functional group responsible depending on year; in 2004 graminoids positively influenced decomposition whereas in 2006 forbs negatively influenced decomposition rate. Although these two mechanisms act independently, their effects may be additive if both mechanisms are considered simultaneously. It is essential to understand the variety of mechanisms through which even a single ecosystem property is affected if we are to predict the future consequences of biodiversity loss. PMID:21858210
Xiao, Chunwang; Zhou, Yong; Su, Jiaqi; Yang, Fan
2017-01-01
Globally, many terrestrial ecosystems are experiencing a rapid loss of biodiversity. Continued improvements in our understanding of interrelationships between plant diversity and soil microbes are critical to address the concern over the consequences of the decline in biodiversity on ecosystem functioning and services. By removing forbs, or grasses, or, to an extreme scenario, both forbs and grasses in a steppe vegetation in Inner Mongolia, we studied how plant functional group (PFG) loss affects soil microbial community composition using phospholipid fatty acid analysis (PLFA) and litter decomposition using a litter-bag method. PFG loss significantly decreased above- and below-ground plant biomass, soil microbial biomass carbon (SMBC) and nitrogen (SMBN), but had no effect on the ratio of SMBC to SMBN. Although the ratio of fungal to bacterial PLFAs remained unaffected, PFG loss significantly reduced the amount of bacterial, fungal, and total PLFAs. PFG loss decreased litter monthly mass loss and decay constant, and such decrease was significant when both forbs and grasses were removed. Our results provide robust evidence that PFG loss in grassland ecosystem can lead to a rapid response of soil microbial activity which may affect litter decomposition and soil nutrient cycling, suggesting that the assessment of plant-microbe interactions in soils is an integral component of ecosystem response to biodiversity loss.
Microbial Potential for Ecosystem N Loss Is Increased by Experimental N Deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freedman, Zachary B.; Upchurch, Rima A.; Zak, Donald R.
Fossil fuel combustion and fertilizer use has increased the amount of biologically available N entering terrestrial ecosystems. Nonetheless, our understanding of how anthropogenic N may alter the physiological mechanisms by which soil microorganisms cycle N in soil is still developing. Here, we applied shotgun metagenomics to a replicated long-term field experiment to determine how two decades of experimental N deposition, at a rate expected by mid-century, has affected the genetic potential of the soil microbial community to cycle N in soils. Experimental N deposition lead to a significant and persistent increase in functional assemblages mediating N cycle transformations associated withmore » ecosystem N loss (i.e., denitrification and nitrification), whereas functional assemblages associated with N input and retention (i.e., N fixation and microbial N assimilation) were less positively affected. Furthermore, the abundance and composition of microbial taxa, as well as functional assemblages involved in housekeeping functions (i.e., DNA replication) were unaffected by experimental N deposition. Here taken together, our results suggest that functional genes and gene pathways associated with ecosystem N loss have been favored by experimental N deposition, which may represent a genetic mechanism fostering increased N loss as anthropogenic N deposition increases in the future.« less
Microbial Potential for Ecosystem N Loss Is Increased by Experimental N Deposition
Freedman, Zachary B.; Upchurch, Rima A.; Zak, Donald R.; ...
2016-10-13
Fossil fuel combustion and fertilizer use has increased the amount of biologically available N entering terrestrial ecosystems. Nonetheless, our understanding of how anthropogenic N may alter the physiological mechanisms by which soil microorganisms cycle N in soil is still developing. Here, we applied shotgun metagenomics to a replicated long-term field experiment to determine how two decades of experimental N deposition, at a rate expected by mid-century, has affected the genetic potential of the soil microbial community to cycle N in soils. Experimental N deposition lead to a significant and persistent increase in functional assemblages mediating N cycle transformations associated withmore » ecosystem N loss (i.e., denitrification and nitrification), whereas functional assemblages associated with N input and retention (i.e., N fixation and microbial N assimilation) were less positively affected. Furthermore, the abundance and composition of microbial taxa, as well as functional assemblages involved in housekeeping functions (i.e., DNA replication) were unaffected by experimental N deposition. Here taken together, our results suggest that functional genes and gene pathways associated with ecosystem N loss have been favored by experimental N deposition, which may represent a genetic mechanism fostering increased N loss as anthropogenic N deposition increases in the future.« less
NASA Astrophysics Data System (ADS)
Michalzik, Beate; Bischoff, Sebastian; Schwarz, Martin; Siemens, Jan; Thieme, Lisa; Wilcke, Wolfgang
2016-04-01
The amount and chemical nature of water-bound organic matter is a prerequisite for advancing our understanding of the C and nutrient cycling and associated ecosystem processes. While many investigations have addressed the nature and dynamics of DOM in terrestrial ecosystems, only a few have investigated the dynamics and composition of water-bound total OM (TOM) including the particulate organic matter fraction (POM; 0.45 μm < POM < 500 μm). Since water-bound element and nutrient concentrations are conventionally measured after 0.45 μm-filtration, the exclusion of the POM fraction results in misleading inferences and budgeting gaps of nutrient and energy fluxes in terrestrial ecosystems. Furthermore, tree species differ in leaf composition (e.g. nutrient, polyphenols content) and leaf litter quality, which in turn affect a variety of ecosystem processes. Nevertheless, the composition and amount of DOM and TOM derived from living plant material via throughfall (TF), stemflow (SF) and its compositional fate traversing the forest floor (FF) are insufficiently understood. In particular we asked: How do tree species and forest types affect the amount of dissolved and particulate C and N in TF and FF solutions and thus the input into the mineral soil? Do functional properties (e.g. aromaticity) of DOM and TOM differ in TF, SF and FF solutions collected in beech and spruce stands and among different beech stands across Germany? To monitor (mineral) soil input fluxes of DOM and POM in different spruce and beech forests, we fortnightly sampled TF and FF solution over three years (2010-2012) in the "Hainich-Dün-Exploratory", Thuringia, Central Germany, which forms part of the DFG SPP 1374 "Exploratories for Large-scale and Long-term Functional Biodiversity Research". To characterize chemical properties of DOM and TOM, we applied solid-state 13C NMR spectroscopy to TF, SF and FF solutions from three European beech regions across Germany and from Norway spruce sites of the Hainich-Dün-Exploratory. Fluxes of POC and PN were highly variable between years and added significantly to the annual budgets of DOC and DN in TF and FF solutions especially in beech forests. The non-consideration of these particle-bound element fluxes remarkable underestimates the TOC input to the soil by 30 to 40% and those of TN by 10 to 20%. We therefore emphasize the imperative to include POC and PN fluxes into C and N budgeting of forest ecosystems. 13C NMR spectroscopy revealed remarkable tree-species related differences in the composition of DOM and TOM. Compared to DOM, TOM generally showed higher intensities for the alkyl C region and lower ones for lignin-derived and aromatic C of the aryl C region resulting in lower aromaticity indices and a diminished degree of humification. Differences in the structural composition of DOM and TOM under beech lessened in the order: throughfall > stemflow > forest floor leachate. Compared to spruce, TF DOM under beech concordantly showed the highest intensities of aromatic and phenolic C and lowest ones of alkyl-C. Phenolic compounds are known for their allelopathic potential successfully impairing competing plants and hence altering ecosystem structure and functions - mechanisms being still imperfectly understood.
Sharp, Elizabeth D; Sullivan, Patrick F; Steltzer, Heidi; Csank, Adam Z; Welker, Jeffrey M
2013-06-01
The Arctic has experienced rapid warming and, although there are uncertainties, increases in precipitation are projected to accompany future warming. Climate changes are expected to affect magnitudes of gross ecosystem photosynthesis (GEP), ecosystem respiration (ER) and the net ecosystem exchange of CO2 (NEE). Furthermore, ecosystem responses to climate change are likely to be characterized by nonlinearities, thresholds and interactions among system components and the driving variables. These complex interactions increase the difficulty of predicting responses to climate change and necessitate the use of manipulative experiments. In 2003, we established a long-term, multi-level and multi-factor climate change experiment in a polar semidesert in northwest Greenland. Two levels of heating (30 and 60 W m(-2) ) were applied and the higher level was combined with supplemental summer rain. We made plot-level measurements of CO2 exchange, plant community composition, foliar nitrogen concentrations, leaf δ(13) C and NDVI to examine responses to our treatments at ecosystem- and leaf-levels. We confronted simple models of GEP and ER with our data to test hypotheses regarding key drivers of CO2 exchange and to estimate growing season CO2 -C budgets. Low-level warming increased the magnitude of the ecosystem C sink. Meanwhile, high-level warming made the ecosystem a source of C to the atmosphere. When high-level warming was combined with increased summer rain, the ecosystem became a C sink of magnitude similar to that observed under low-level warming. Competition among our ER models revealed the importance of soil moisture as a driving variable, likely through its effects on microbial activity and nutrient cycling. Measurements of community composition and proxies for leaf-level physiology suggest GEP responses largely reflect changes in leaf area of Salix arctica, rather than changes in leaf-level physiology. Our findings indicate that the sign and magnitude of the future High Arctic C budget may depend upon changes in summer rain. © 2013 Blackwell Publishing Ltd.
Eric J. Gustafson
2013-01-01
Researchers and natural resource managers need predictions of how multiple global changes (e.g., climate change, rising levels of air pollutants, exotic invasions) will affect landscape composition and ecosystem function. Ecological predictive models used for this purpose are constructed using either a mechanistic (process-based) or a phenomenological (empirical)...
Anthropogenic Litter in Urban Freshwater Ecosystems: Distribution and Microbial Interactions
Hoellein, Timothy; Rojas, Miguel; Pink, Adam; Gasior, Joseph; Kelly, John
2014-01-01
Accumulation of anthropogenic litter (i.e. garbage; AL) and its ecosystem effects in marine environments are well documented. Rivers receive AL from terrestrial habitats and represent a major source of AL to marine environments, but AL is rarely studied within freshwater ecosystems. Our objectives were to 1) quantify AL density in urban freshwaters, 2) compare AL abundance among freshwater, terrestrial, and marine ecosystems, and 3) characterize the activity and composition of AL biofilms in freshwater habitats. We quantified AL from the Chicago River and Chicago's Lake Michigan shoreline, and found that AL abundance in Chicago freshwater ecosystems was comparable to previously reported data for marine and terrestrial ecosystems, although AL density and composition differed among habitats. To assess microbial interactions with AL, we incubated AL and natural substrates in 3 freshwater ecosystems, quantified biofilm metabolism as gross primary production (GPP) and community respiration (CR), and characterized biofilm bacterial community composition via high-throughput sequencing of 16S rRNA genes. The main driver of biofilm community composition was incubation location (e.g., river vs pond), but there were some significant differences in biofilm composition and metabolism among substrates. For example, biofilms on organic substrates (cardboard and leaves) had lower GPP than hard substrates (glass, plastic, aluminum and tiles). In addition, bacterial communities on organic substrates were distinct in composition from those on hard substrates, with higher relative abundances of bacteria associated with cellulose decomposition. Finally, we used our results to develop a conceptual diagram designed to unite the study of AL in terrestrial and freshwater environments with the well-established field of marine debris research. We suggest this broad perspective will be useful for future studies which synthesize AL sources, ecosystem effects, and fate across multiple ecosystem types, and will benefit management and reduction of global AL accumulations. PMID:24955768
Anthropogenic litter in urban freshwater ecosystems: distribution and microbial interactions.
Hoellein, Timothy; Rojas, Miguel; Pink, Adam; Gasior, Joseph; Kelly, John
2014-01-01
Accumulation of anthropogenic litter (i.e. garbage; AL) and its ecosystem effects in marine environments are well documented. Rivers receive AL from terrestrial habitats and represent a major source of AL to marine environments, but AL is rarely studied within freshwater ecosystems. Our objectives were to 1) quantify AL density in urban freshwaters, 2) compare AL abundance among freshwater, terrestrial, and marine ecosystems, and 3) characterize the activity and composition of AL biofilms in freshwater habitats. We quantified AL from the Chicago River and Chicago's Lake Michigan shoreline, and found that AL abundance in Chicago freshwater ecosystems was comparable to previously reported data for marine and terrestrial ecosystems, although AL density and composition differed among habitats. To assess microbial interactions with AL, we incubated AL and natural substrates in 3 freshwater ecosystems, quantified biofilm metabolism as gross primary production (GPP) and community respiration (CR), and characterized biofilm bacterial community composition via high-throughput sequencing of 16S rRNA genes. The main driver of biofilm community composition was incubation location (e.g., river vs pond), but there were some significant differences in biofilm composition and metabolism among substrates. For example, biofilms on organic substrates (cardboard and leaves) had lower GPP than hard substrates (glass, plastic, aluminum and tiles). In addition, bacterial communities on organic substrates were distinct in composition from those on hard substrates, with higher relative abundances of bacteria associated with cellulose decomposition. Finally, we used our results to develop a conceptual diagram designed to unite the study of AL in terrestrial and freshwater environments with the well-established field of marine debris research. We suggest this broad perspective will be useful for future studies which synthesize AL sources, ecosystem effects, and fate across multiple ecosystem types, and will benefit management and reduction of global AL accumulations.
NASA Astrophysics Data System (ADS)
Hall, E.; Fegel, T. S., II; Boot, C. M.
2014-12-01
Aeolian deposition of reactive nitrogen (N) is reaching even the most remote ecosystems. There has been an abundance of research investigating how these subsidies of reactive N may alter fundamental ecosystem characteristics such as soil organic matter (SOM) pool size. Previous studies have reported that additions of reactive N have the potential to both increase and decrease SOM content. While there are a series of different variables that may affect the size of the SOM pool it has been suggested that the lability or recalcitrance of the SOM may be related to its chemical composition (kind and relative abundance of constituent molecules). To address this we sampled 6 experimental plots in a sub-alpine forest in Rocky Mountain National Park (3 control and 3 treated with reactive N for 18 years) during two months in the summers of 2011 and 2012. We found the SOM content of the control plots was greater than that of the experimental plots. To assess lability of each SOM sample we extracted the SOM from each plot with water and incubated the dissolved organic carbon with a common aquatic microbial community from a lake within the watershed. To assess structure of the SOM pool we used ultra performance liquid chromatography (UPLC) coupled with MS of each extract before incubation with the bacterial community. The dissolved component of the SOM showed clear differences in lability both in total quantity and rate of decomposition during incubation with aquatic microorganisms. Principle components analysis indicated season was a stronger driver of DOM composition than fertilization, describing the majority of the variability between July and September 2012. When samples were considered within a season and year there were additional differences in both lability and composition of DOM. Here we evaluate the relative influence of inter- and intra-annual variability and reactive N on both the characteristics and composition of SOM. By linking UPLC-MS with a functional assay of lability we attempt to define chemical characteristics of lability that can be assessed across ecosystems. Doing so will allow us to better understand linked biogeochemical cycles (C and N) across a wide range of soil ecosystems.
Hoeinghaus, David J; Agostinho, Angelo A; Gomes, Luiz C; Pelicice, Fernando M; Okada, Edson K; Latini, João D; Kashiwaqui, Elaine A L; Winemiller, Kirk O
2009-10-01
Applying the ecosystem services concept to conservation initiatives or in managing ecosystem services requires understanding how environmental impacts affect the ecology of key species or functional groups providing the services. We examined effects of river impoundments, one of the leading threats to freshwater biodiversity, on an important ecosystem service provided by large tropical rivers (i.e., artisanal fisheries). The societal and economic importance of this ecosystem service in developing countries may provide leverage to advance conservation agendas where future impoundments are being considered. We assessed impoundment effects on the energetic costs of fisheries production (embodied energy) and commercial market value of the artisanal fishery of the Paraná River, Brazil, before and after formation of Itaipu Reservoir. High-value migratory species that dominated the fishery before the impoundment was built constituted a minor component of the contemporary fishery that is based heavily on reservoir-adapted introduced species. Cascading effects of river impoundment resulted in a mismatch between embodied energy and market value: energetic costs of fisheries production increased, whereas market value decreased. This was partially attributable to changes in species functional composition but also strongly linked to species identities that affected market value as a result of consumer preferences even when species were functionally similar. Similar trends are expected in other large tropical rivers following impoundment. In addition to identifying consequences of a common anthropogenic impact on an important ecosystem service, our assessment provides insight into the sustainability of fisheries production in tropical rivers and priorities for regional biodiversity conservation.
Microbial Mat Compositional and Functional Sensitivity to Environmental Disturbance
Preisner, Eva C.; Fichot, Erin B.; Norman, Robert S.
2016-01-01
The ability of ecosystems to adapt to environmental perturbations depends on the duration and intensity of change and the overall biological diversity of the system. While studies have indicated that rare microbial taxa may provide a biological reservoir that supports long-term ecosystem stability, how this dynamic population is influenced by environmental parameters remains unclear. In this study, a microbial mat ecosystem located on San Salvador Island, The Bahamas was used as a model to examine how environmental disturbance affects the protein synthesis potential (PSP) of rare and abundant archaeal and bacterial communities and how these changes impact potential biogeochemical processes. This ecosystem experienced a large shift in salinity (230 to 65 g kg-1) during 2011–2012 following the landfall of Hurricane Irene on San Salvador Island. High throughput sequencing and analysis of 16S rRNA and rRNA genes from samples before and after the pulse disturbance showed significant changes in the diversity and PSP of abundant and rare taxa, suggesting overall compositional and functional sensitivity to environmental change. In both archaeal and bacterial communities, while the majority of taxa showed low PSP across conditions, the overall community PSP increased post-disturbance, with significant shifts occurring among abundant and rare taxa across and within phyla. Broadly, following the post-disturbance reduction in salinity, taxa within Halobacteria decreased while those within Crenarchaeota, Thaumarchaeota, Thermoplasmata, Cyanobacteria, and Proteobacteria, increased in abundance and PSP. Quantitative PCR of genes and transcripts involved in nitrogen and sulfur cycling showed concomitant shifts in biogeochemical cycling potential. Post-disturbance conditions increased the expression of genes involved in N-fixation, nitrification, denitrification, and sulfate reduction. Together, our findings show complex community adaptation to environmental change and help elucidate factors connecting disturbance, biodiversity, and ecosystem function that may enhance ecosystem models. PMID:27799927
Knoke, Thomas; Paul, Carola; Hildebrandt, Patrick; Calvas, Baltazar; Castro, Luz Maria; Härtl, Fabian; Döllerer, Martin; Hamer, Ute; Windhorst, David; Wiersma, Yolanda F.; Curatola Fernández, Giulia F.; Obermeier, Wolfgang A.; Adams, Julia; Breuer, Lutz; Mosandl, Reinhard; Beck, Erwin; Weber, Michael; Stimm, Bernd; Haber, Wolfgang; Fürst, Christine; Bendix, Jörg
2016-01-01
High landscape diversity is assumed to increase the number and level of ecosystem services. However, the interactions between ecosystem service provision, disturbance and landscape composition are poorly understood. Here we present a novel approach to include uncertainty in the optimization of land allocation for improving the provision of multiple ecosystem services. We refer to the rehabilitation of abandoned agricultural lands in Ecuador including two types of both afforestation and pasture rehabilitation, together with a succession option. Our results show that high compositional landscape diversity supports multiple ecosystem services (multifunction effect). This implicitly provides a buffer against uncertainty. Our work shows that active integration of uncertainty is only important when optimizing single or highly correlated ecosystem services and that the multifunction effect on landscape diversity is stronger than the uncertainty effect. This is an important insight to support a land-use planning based on ecosystem services. PMID:27292766
Knoke, Thomas; Paul, Carola; Hildebrandt, Patrick; Calvas, Baltazar; Castro, Luz Maria; Härtl, Fabian; Döllerer, Martin; Hamer, Ute; Windhorst, David; Wiersma, Yolanda F; Curatola Fernández, Giulia F; Obermeier, Wolfgang A; Adams, Julia; Breuer, Lutz; Mosandl, Reinhard; Beck, Erwin; Weber, Michael; Stimm, Bernd; Haber, Wolfgang; Fürst, Christine; Bendix, Jörg
2016-06-13
High landscape diversity is assumed to increase the number and level of ecosystem services. However, the interactions between ecosystem service provision, disturbance and landscape composition are poorly understood. Here we present a novel approach to include uncertainty in the optimization of land allocation for improving the provision of multiple ecosystem services. We refer to the rehabilitation of abandoned agricultural lands in Ecuador including two types of both afforestation and pasture rehabilitation, together with a succession option. Our results show that high compositional landscape diversity supports multiple ecosystem services (multifunction effect). This implicitly provides a buffer against uncertainty. Our work shows that active integration of uncertainty is only important when optimizing single or highly correlated ecosystem services and that the multifunction effect on landscape diversity is stronger than the uncertainty effect. This is an important insight to support a land-use planning based on ecosystem services.
Small lakes in big landscape: Multi-scale drivers of littoral ecosystem in alpine lakes.
Zaharescu, Dragos G; Burghelea, Carmen I; Hooda, Peter S; Lester, Richard N; Palanca-Soler, Antonio
2016-05-01
In low nutrient alpine lakes, the littoral zone is the most productive part of the ecosystem, and it is a biodiversity hotspot. It is not entirely clear how the scale and physical heterogeneity of surrounding catchment, its ecological composition, and larger landscape gradients work together to sustain littoral communities. A total of 113 alpine lakes from the central Pyrenees were surveyed to evaluate the functional connectivity between littoral zoobenthos and landscape physical and ecological elements at geographical, catchment and local scales, and to ascertain how they affect the formation of littoral communities. At each lake, the zoobenthic composition was assessed together with geolocation, catchment hydrodynamics, geomorphology and topography, riparian vegetation composition, the presence of trout and frogs, water pH and conductivity. Multidimensional fuzzy set models integrating benthic biota and environmental variables revealed that at geographical scale, longitude unexpectedly surpassed altitude and latitude in its effect on littoral ecosystem. This reflects a sharp transition between Atlantic and Mediterranean climates and suggests a potentially high horizontal vulnerability to climate change. Topography (controlling catchment type, snow coverage and lakes connectivity) was the most influential catchment-scale driver, followed by hydrodynamics (waterbody size, type and volume of inflow/outflow). Locally, riparian plant composition significantly related to littoral community structure, richness and diversity. These variables, directly and indirectly, create habitats for aquatic and terrestrial stages of invertebrates, and control nutrient and water cycles. Three benthic associations characterised distinct lakes. Vertebrate predation, water conductivity and pH had no major influence on littoral taxa. This work provides exhaustive information from relatively pristine sites, and unveils a strong connection between littoral ecosystem and catchment heterogeneity at scales beyond the local environment. This underpins the role of alpine lakes as sensors of local and large-scale environmental changes, which can be used in monitoring networks to evaluate further impacts. Copyright © 2016 Elsevier B.V. All rights reserved.
Persisting responses of salt marsh fungal communities to the Deepwater Horizon oil spill.
Lumibao, Candice Y; Formel, Stephen; Elango, Vijaikrishnah; Pardue, John H; Blum, Michael; Van Bael, Sunshine A
2018-06-18
The plant microbiome, composed of diverse interacting microorganisms, is thought to undergird host integrity and well-being. Though it is well understood that environmental perturbations like oil pollution can alter the diversity and composition of microbiomes, remarkably little is known about how disturbance alters plant-fungal associations. Using Next-Generation sequencing of the 18S rDNA internal transcribed spacer (ITS1) region, we examined outcomes of enduring oil exposure on aboveground leaf and belowground endophytic root and rhizosphere fungal communities of Spartina alterniflora, a highly valued ecosystem engineer in southeastern Louisiana marshes affected by the 2010 Deepwater Horizon accident. We found that aboveground foliar fungal communities exhibited site-dependent compositional turnover with consequent loss in diversity according to oiling history. Rhizosphere soil communities also exhibited shifts in community composition associated with oiling history, whereas root endophytic communities did not. Oiling did not increase or decrease similarities among aboveground and belowground communities within an individual host, indicating that host plant characteristics exert stronger control than external factors on fungal community composition. These results show that fungal community responses to oiling vary within tissues of the same host plant, and that differences in the local environment, or alternatively, site-specific differences in residual oil constrain the magnitude of exposure responses. Our study offers novel perspectives on how environmental contaminants and perturbations can influence plant microbiomes, highlighting the importance of assessing long-term ecological outcomes of oil pollution to better understand how shifts in microbial communities influence plant performance and ecosystem function. Our findings are relevant to coastal management programs tasked with responding to oil spills and increasing pressures arising from intensifying development and climate change. Understanding how modification of plant-microbiome associations influences plant performance, particularly of ecosystem engineers like S. alterniflora, can help guide efforts to protect and restore at-risk coastal ecosystems. Copyright © 2018 Elsevier B.V. All rights reserved.
Klarner, Bernhard; Winkelmann, Helge; Krashevska, Valentyna; Maraun, Mark; Widyastuti, Rahayu; Scheu, Stefan
2017-01-01
Conversion of tropical rainforests into plantations fundamentally alters ecological niches of animal species. Generalist predators such as centipedes (Chilopoda) may be able to persist in converted ecosystems due to their ability to adapt and switch to alternative prey populations. We investigated variations in community composition and trophic niches of soil and litter living centipedes in a range of ecosystems including rainforests, jungle rubber agroforests, and rubber and oil palm monocultures in two landscapes in Sumatra, Indonesia. Including information on environmental factors in the soil and litter habitat, we explored drivers shaping ecological niches of soil living invertebrate predators in one of the world's hotspots of rainforest conversion. Conversion of rainforests into agroforests and plantations was associated with a marked change in the composition of centipede communities. However, irrespective of major differences in habitat characteristics, changes in total abundances were small and the overall diversity and biomass of centipedes was similar in each of the systems investigated, suggesting that the number of ecological niches for this group of predators remains unchanged. By using stable isotope analysis (15N and 13C), we investigated trophic niche shifts of the centipede community; lower δ13C values of centipedes in oil palm plantations as compared to other ecosystems suggests that centipedes switch from decomposer prey to other prey, presumably understory associated herbivores, due to reduced availability of litter associated prey species. The results suggest that the ability to utilize alternative prey is a key feature enabling invertebrate predators to persist in ecosystems undergoing major structural changes due to anthropogenic land use change.
Winkelmann, Helge; Krashevska, Valentyna; Maraun, Mark; Widyastuti, Rahayu; Scheu, Stefan
2017-01-01
Conversion of tropical rainforests into plantations fundamentally alters ecological niches of animal species. Generalist predators such as centipedes (Chilopoda) may be able to persist in converted ecosystems due to their ability to adapt and switch to alternative prey populations. We investigated variations in community composition and trophic niches of soil and litter living centipedes in a range of ecosystems including rainforests, jungle rubber agroforests, and rubber and oil palm monocultures in two landscapes in Sumatra, Indonesia. Including information on environmental factors in the soil and litter habitat, we explored drivers shaping ecological niches of soil living invertebrate predators in one of the world’s hotspots of rainforest conversion. Conversion of rainforests into agroforests and plantations was associated with a marked change in the composition of centipede communities. However, irrespective of major differences in habitat characteristics, changes in total abundances were small and the overall diversity and biomass of centipedes was similar in each of the systems investigated, suggesting that the number of ecological niches for this group of predators remains unchanged. By using stable isotope analysis (15N and 13C), we investigated trophic niche shifts of the centipede community; lower δ13C values of centipedes in oil palm plantations as compared to other ecosystems suggests that centipedes switch from decomposer prey to other prey, presumably understory associated herbivores, due to reduced availability of litter associated prey species. The results suggest that the ability to utilize alternative prey is a key feature enabling invertebrate predators to persist in ecosystems undergoing major structural changes due to anthropogenic land use change. PMID:28763453
NASA Astrophysics Data System (ADS)
Pasari, J.; Hernandez, D.; Selmants, P. C.; Keck, D.
2010-12-01
In recent decades, human activities have vastly increased the amount of biologically available nitrogen (N) in the biosphere. The resulting increase in N availability has broadly affected ecosystems through increased productivity, changes in species composition, altered nutrient cycles, and increases in invasion by exotic plant species, especially in systems that were historically low in N. California serpentine grasslands are N-limited ecosystems historically dominated by native species including several threatened and endangered plants and animals. Cattle grazing has emerged as the primary tool for controlling the impact of nitrophilic exotic grasses whose increased abundance has paralleled the regional traffic-derived increase in atmospheric N deposition. We examined the interactive effects of cattle grazing and N deposition on plant community composition, productivity, invasion resistance, and microbial processes in the Bay Area's largest serpentine grassland to determine the efficacy of current management strategies as well as the biogeochemical consequences of exotic species invasion. In the first two years of the study, aboveground net primary productivity decreased in response to grazing and increased in response to nitrogen addition. However, contrary to our hypotheses the change in productivity was not due to an increase in exotic species cover as there was little overall effect of grazing or N addition on species composition. Microbial activity was more responsive to grazing and N. Potential net N mineralization rates increased with N addition, but were not affected by grazing. In contrast, soil respiration rates were inhibited by grazing, but were not affected by N addition; suggesting strong carbon-limitation of soil microbial activity, particularly under grazing. Site differences in soil depth and grazing intensity were often more important than treatment effects. We suspect that the unusually dry conditions in the first two growing seasons inhibited the growth of exotic species and minimized the effects of cattle exclusion and N addition on species composition.
Fry, Ellen L.; Manning, Pete; Allen, David G. P.; Hurst, Alex; Everwand, Georg; Rimmler, Martin; Power, Sally A.
2013-01-01
Temperate grassland ecosystems face a future of precipitation change, which can alter community composition and ecosystem functions through reduced soil moisture and waterlogging. There is evidence that functionally diverse plant communities contain a wider range of water use and resource capture strategies, resulting in greater resistance of ecosystem function to precipitation change. To investigate this interaction between composition and precipitation change we performed a field experiment for three years in successional grassland in southern England. This consisted of two treatments. The first, precipitation change, simulated end of century predictions, and consisted of a summer drought phase alongside winter rainfall addition. The second, functional group identity, divided the plant community into three groups based on their functional traits- broadly described as perennials, caespitose grasses and annuals- and removed these groups in a factorial design. Ecosystem functions related to C, N and water cycling were measured regularly. Effects of functional groupidentity were apparent, with the dominant trend being that process rates were higher under control conditions where a range of perennial species were present. E.g. litter decomposition rates were significantly higher in plots containing several perennial species, the group with the highest average leaf N content. Process rates were also very strongly affected by the precipitation change treatmentwhen perennial plant species were dominant, but not where the community contained a high abundance of annual species and caespitose grasses. This contrasting response could be attributable to differing rooting patterns (shallower structures under annual plants, and deeper roots under perennials) and faster nutrient uptake in annuals compared to perennials. Our results indicate that precipitation change will have a smaller effect on key process rates in grasslandscontaining a range of perennial and annual species, and that maintaining the presence of key functional groups should be a crucial consideration in future grassland management. PMID:23437300
Bastida, Felipe; Torres, Irene F; Andrés-Abellán, Manuela; Baldrian, Petr; López-Mondéjar, Rubén; Větrovský, Tomáš; Richnow, Hans H; Starke, Robert; Ondoño, Sara; García, Carlos; López-Serrano, Francisco R; Jehmlich, Nico
2017-10-01
Climate change will affect semiarid ecosystems through severe droughts that increase the competition for resources in plant and microbial communities. In these habitats, adaptations to climate change may consist of thinning-that reduces competition for resources through a decrease in tree density and the promotion of plant survival. We deciphered the functional and phylogenetic responses of the microbial community to 6 years of drought induced by rainfall exclusion and how forest management affects its resistance to drought, in a semiarid forest ecosystem dominated by Pinus halepensis Mill. A multiOMIC approach was applied to reveal novel, community-based strategies in the face of climate change. The diversity and the composition of the total and active soil microbiome were evaluated by 16S rRNA gene (bacteria) and ITS (fungal) sequencing, and by metaproteomics. The microbial biomass was analyzed by phospholipid fatty acids (PLFAs), and the microbially mediated ecosystem multifunctionality was studied by the integration of soil enzyme activities related to the cycles of C, N, and P. The microbial biomass and ecosystem multifunctionality decreased in drought-plots, as a consequence of the lower soil moisture and poorer plant development, but this decrease was more notable in unthinned plots. The structure and diversity of the total bacterial community was unaffected by drought at phylum and order level, but did so at genus level, and was influenced by seasonality. However, the total fungal community and the active microbial community were more sensitive to drought and were related to ecosystem multifunctionality. Thinning in plots without drought increased the active diversity while the total diversity was not affected. Thinning promoted the resistance of ecosystem multifunctionality to drought through changes in the active microbial community. The integration of total and active microbiome analyses avoids misinterpretations of the links between the soil microbial community and climate change. © 2017 John Wiley & Sons Ltd.
River management impacts on riparian forest vegetation along the Middle Rio Grande: 1935-2014
NASA Astrophysics Data System (ADS)
Petrakis, Roy E.
Riparian ecosystems of the southwestern United States are highly valuable to both the ecological and human communities which surround them. Over the past century, they have been subject to shifting management practices to maximize human use, control, ecosystem service, and conservation. This creates a complex relationship between water policy, management, and the natural ecosystem necessitating research on spatial and temporal dynamics of riparian vegetation. The San Acacia Reach of the Middle Rio Grande, a 60 mile stretch from the San Acacia Diversion Dam to San Marcial, has experienced multiple management and river flow fluctuations over the past 80 years, resulting in threats to riparian and aquatic ecosystems. This research was completed through the use and analysis of multi-source remote sensing data, GIS, and a review of the on-the-ground management decisions to better understand how the location and composition of the riparian vegetation has been affected by these shifting practices. This research focused on four phases, each highlighting different management practices and river flow patterns during the last 80-years. Each of these periods provides a unique opportunity to observe a direct relationship between river management and riparian land cover response and change. Overall, management practices reduced surface river flows and limited overbank flooding and resulted in changes in the composition, density, and spatial patterns of the vegetation, including increased non-native vegetation growth. Restoration efforts over the past few decades have begun to reduce the presence of non-native species. Despite these changes, this ecosystem was shown to be extremely resilient in maintaining its function/service throughout the entire study time frame.
NASA Astrophysics Data System (ADS)
Campbell, P. K. E.; Huemmrich, K. F.; Middleton, E.; Voorhis, S.; Landis, D.
2016-12-01
Spatial heterogeneity and seasonal dynamics in vegetation function contribute significantly to the uncertainties in regional and global CO2 budgets. High spectral resolution imaging spectroscopy ( 10 nm, 400-2500 nm) provides an efficient tool for synoptic evaluation of the factors significantly affecting the ability of the vegetation to sequester carbon and to reflect radiation, due to changes in vegetation chemical and structural composition. EO-1 Hyperion has collected more than 15 years of repeated observations for vegetation studies, and currently Hyperion time series are available for study of vegetation carbon dynamics at a number of FLUX sites. This study presents results from the analysis of EO-1 Hyperion and FLUX seasonal composites for a range of ecosystems across the globe. Spectral differences and seasonal trends were evaluated for each vegetation type and specific phenology. Evaluating the relationships between CO2 flux parameters (e.g., Net ecosystem production - NEP; Gross Ecosystem Exchange - GEE, CO2 flux, μmol m-2 s-1) and spectral parameters for these very different ecosystems, high correlations were established to parameters associated with canopy water and chlorophyll content for deciduous, and photosynthetic function for conifers. Imaging spectrometry provided high spatial resolution maps of CO2 fluxes absorbed by vegetation, and was efficient in tracing seasonal flux dynamics. This study will present examples for key ecosystem tipes to demonstrate the ability of imaging spectrometry and EO-1 Hyperion to map and compare CO2 flux dynamics across the globe.
Increasing aridity reduces soil microbial diversity and abundance in global drylands.
Maestre, Fernando T; Delgado-Baquerizo, Manuel; Jeffries, Thomas C; Eldridge, David J; Ochoa, Victoria; Gozalo, Beatriz; Quero, José Luis; García-Gómez, Miguel; Gallardo, Antonio; Ulrich, Werner; Bowker, Matthew A; Arredondo, Tulio; Barraza-Zepeda, Claudia; Bran, Donaldo; Florentino, Adriana; Gaitán, Juan; Gutiérrez, Julio R; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Mau, Rebecca L; Miriti, Maria; Naseri, Kamal; Ospina, Abelardo; Stavi, Ilan; Wang, Deli; Woods, Natasha N; Yuan, Xia; Zaady, Eli; Singh, Brajesh K
2015-12-22
Soil bacteria and fungi play key roles in the functioning of terrestrial ecosystems, yet our understanding of their responses to climate change lags significantly behind that of other organisms. This gap in our understanding is particularly true for drylands, which occupy ∼41% of Earth´s surface, because no global, systematic assessments of the joint diversity of soil bacteria and fungi have been conducted in these environments to date. Here we present results from a study conducted across 80 dryland sites from all continents, except Antarctica, to assess how changes in aridity affect the composition, abundance, and diversity of soil bacteria and fungi. The diversity and abundance of soil bacteria and fungi was reduced as aridity increased. These results were largely driven by the negative impacts of aridity on soil organic carbon content, which positively affected the abundance and diversity of both bacteria and fungi. Aridity promoted shifts in the composition of soil bacteria, with increases in the relative abundance of Chloroflexi and α-Proteobacteria and decreases in Acidobacteria and Verrucomicrobia. Contrary to what has been reported by previous continental and global-scale studies, soil pH was not a major driver of bacterial diversity, and fungal communities were dominated by Ascomycota. Our results fill a critical gap in our understanding of soil microbial communities in terrestrial ecosystems. They suggest that changes in aridity, such as those predicted by climate-change models, may reduce microbial abundance and diversity, a response that will likely impact the provision of key ecosystem services by global drylands.
Won, Nam-Il; Kim, Ki-Hwan; Kang, Ji Hyoun; Park, Sang Rul; Lee, Hyuk Je
2017-01-01
The coastal ecosystems are considered as one of the most dynamic and vulnerable environments under various anthropogenic developments and the effects of climate change. Variations in the composition and diversity of microbial communities may be a good indicator for determining whether the marine ecosystems are affected by complex forcing stressors. DNA sequence-based metagenomics has recently emerged as a promising tool for analyzing the structure and diversity of microbial communities based on environmental DNA (eDNA). However, few studies have so far been performed using this approach to assess the impacts of human activities on the microbial communities in marine systems. In this study, using metagenomic DNA sequencing (16S ribosomal RNA gene), we analyzed and compared seawater and sediment communities between sand mining and control (natural) sites in southern coastal waters of Korea to assess whether anthropogenic activities have significantly affected the microbial communities. The sand mining sites harbored considerably lower levels of microbial diversities in the surface seawater community during spring compared with control sites. Moreover, the sand mining areas had distinct microbial taxonomic group compositions, particularly during spring season. The microbial groups detected solely in the sediment load/dredging areas (e.g., Marinobacter, Alcanivorax, Novosphingobium) are known to be involved in degradation of toxic chemicals such as hydrocarbon, oil, and aromatic compounds, and they also contain potential pathogens. This study highlights the versatility of metagenomics in monitoring and diagnosing the impacts of human disturbance on the environmental health of marine ecosystems from eDNA. PMID:28134828
Increasing aridity reduces soil microbial diversity and abundance in global drylands
Delgado-Baquerizo, Manuel; Jeffries, Thomas C.; Eldridge, David J.; Ochoa, Victoria; Gozalo, Beatriz; Quero, José Luis; García-Gómez, Miguel; Gallardo, Antonio; Ulrich, Werner; Bowker, Matthew A.; Arredondo, Tulio; Barraza-Zepeda, Claudia; Bran, Donaldo; Florentino, Adriana; Gaitán, Juan; Gutiérrez, Julio R.; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Mau, Rebecca L.; Miriti, Maria; Naseri, Kamal; Ospina, Abelardo; Stavi, Ilan; Wang, Deli; Woods, Natasha N.; Yuan, Xia; Zaady, Eli; Singh, Brajesh K.
2015-01-01
Soil bacteria and fungi play key roles in the functioning of terrestrial ecosystems, yet our understanding of their responses to climate change lags significantly behind that of other organisms. This gap in our understanding is particularly true for drylands, which occupy ∼41% of Earth´s surface, because no global, systematic assessments of the joint diversity of soil bacteria and fungi have been conducted in these environments to date. Here we present results from a study conducted across 80 dryland sites from all continents, except Antarctica, to assess how changes in aridity affect the composition, abundance, and diversity of soil bacteria and fungi. The diversity and abundance of soil bacteria and fungi was reduced as aridity increased. These results were largely driven by the negative impacts of aridity on soil organic carbon content, which positively affected the abundance and diversity of both bacteria and fungi. Aridity promoted shifts in the composition of soil bacteria, with increases in the relative abundance of Chloroflexi and α-Proteobacteria and decreases in Acidobacteria and Verrucomicrobia. Contrary to what has been reported by previous continental and global-scale studies, soil pH was not a major driver of bacterial diversity, and fungal communities were dominated by Ascomycota. Our results fill a critical gap in our understanding of soil microbial communities in terrestrial ecosystems. They suggest that changes in aridity, such as those predicted by climate-change models, may reduce microbial abundance and diversity, a response that will likely impact the provision of key ecosystem services by global drylands. PMID:26647180
Won, Nam-Il; Kim, Ki-Hwan; Kang, Ji Hyoun; Park, Sang Rul; Lee, Hyuk Je
2017-01-27
The coastal ecosystems are considered as one of the most dynamic and vulnerable environments under various anthropogenic developments and the effects of climate change. Variations in the composition and diversity of microbial communities may be a good indicator for determining whether the marine ecosystems are affected by complex forcing stressors. DNA sequence-based metagenomics has recently emerged as a promising tool for analyzing the structure and diversity of microbial communities based on environmental DNA (eDNA). However, few studies have so far been performed using this approach to assess the impacts of human activities on the microbial communities in marine systems. In this study, using metagenomic DNA sequencing (16S ribosomal RNA gene), we analyzed and compared seawater and sediment communities between sand mining and control (natural) sites in southern coastal waters of Korea to assess whether anthropogenic activities have significantly affected the microbial communities. The sand mining sites harbored considerably lower levels of microbial diversities in the surface seawater community during spring compared with control sites. Moreover, the sand mining areas had distinct microbial taxonomic group compositions, particularly during spring season. The microbial groups detected solely in the sediment load/dredging areas (e.g., Marinobacter, Alcanivorax, Novosphingobium) are known to be involved in degradation of toxic chemicals such as hydrocarbon, oil, and aromatic compounds, and they also contain potential pathogens. This study highlights the versatility of metagenomics in monitoring and diagnosing the impacts of human disturbance on the environmental health of marine ecosystems from eDNA.
Climate change and wildlife health: direct and indirect effects
Hofmeister, Erik K.; Moede Rogall, Gail; Wesenberg, Katherine; Abbott, Rachel C.; Work, Thierry M.; Schuler, Krysten; Sleeman, Jonathan M.; Winton, James
2010-01-01
Climate change, habitat destruction and urbanization, the introduction of exotic and invasive species, and pollution—all affect ecosystem and human health. Climate change can also be viewed within the context of other physical and climate cycles, such as the El Niño Southern Oscillation (El Niño), the North Atlantic Oscillation, and cycles in solar radiation that have profound effects on the Earth’s climate. The effects of climate change on wildlife disease are summarized in several areas of scientific study discussed briefly below: geographic range and distribution of wildlife diseases, plant and animal phenology (Walther and others, 2002), and patterns of wildlife disease, community and ecosystem composition, and habitat degradation.
Ecosystem response to removal of exotic riparian shrubs and a transition to upland vegetation
Reynolds, Lindsay V.; Cooper, David J.
2011-01-01
Understanding plant community change over time is essential for managing important ecosystems such as riparian areas. This study analyzed historic vegetation using soil seed banks and the effects of riparian shrub removal treatments and channel incision on ecosystem and plant community dynamics in Canyon de Chelly National Monument, Arizona. We focused on how seeds, nutrients, and ground water influence the floristic composition of post-treatment vegetation and addressed three questions: (1) How does pre-treatment soil seed bank composition reflect post-treatment vegetation composition? (2) How does shrub removal affect post-treatment riparian vegetation composition, seed rain inputs, and ground water dynamics? and (3) Is available soil nitrogen increased near dead Russian olive plants following removal and does this influence post-treatment vegetation? We analyzed seed bank composition across the study area, analyzed differences in vegetation, ground water levels, and seed rain between control, cut-stump and whole-plant removal areas, and compared soil nitrogen and vegetation near removed Russian olive to areas lacking Russian olive. The soil seed bank contained more riparian plants, more native and fewer exotic plants than the extant vegetation. Both shrub removal methods decreased exotic plant cover, decreased tamarisk and Russian olive seed inputs, and increased native plant cover after 2 years. Neither method increased ground water levels. Soil near dead Russian olive trees indicated a short-term increase in soil nitrogen following plant removal but did not influence vegetation composition compared to areas without Russian olive. Following tamarisk and Russian olive removal, our study sites were colonized by upland plant species. Many western North American rivers have tamarisk and Russian olive on floodplains abandoned by channel incision, river regulation or both. Our results are widely applicable to sites where drying has occurred and vegetation establishment following shrub removal is likely to be by upland species.
Warming and top predator loss drive ecosystem multifunctionality.
Antiqueira, Pablo Augusto P; Petchey, Owen L; Romero, Gustavo Quevedo
2018-01-01
Global change affects ecosystem functioning both directly by modifications in physicochemical processes, and indirectly, via changes in biotic metabolism and interactions. Unclear, however, is how multiple anthropogenic drivers affect different components of community structure and the performance of multiple ecosystem functions (ecosystem multifunctionality). We manipulated small natural freshwater ecosystems to investigate how warming and top predator loss affect seven ecosystem functions representing two major dimensions of ecosystem functioning, productivity and metabolism. We investigated their direct and indirect effects on community diversity and standing stock of multitrophic macro and microorganisms. Warming directly increased multifunctional ecosystem productivity and metabolism. In contrast, top predator loss indirectly affected multifunctional ecosystem productivity via changes in the diversity of detritivorous macroinvertebrates, but did not affect ecosystem metabolism. In addition to demonstrating how multiple anthropogenic drivers have different impacts, via different pathways, on ecosystem multifunctionality components, our work should further spur advances in predicting responses of ecosystems to multiple simultaneous environmental changes. © 2017 John Wiley & Sons Ltd/CNRS.
Climate change effects on soil microarthropod abundance and community structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kardol, Paul; Reynolds, W. Nicholas; Norby, Richard J
2011-01-01
Long-term ecosystem responses to climate change strongly depend on how the soil subsystem and its inhabitants respond to these perturbations. Using open-top chambers, we studied the response of soil microarthropods to single and combined effects of ambient and elevated atmospheric [CO{sub 2}], ambient and elevated temperatures and changes in precipitation in constructed old-fields in Tennessee, USA. Microarthropods were assessed five years after treatments were initiated and samples were collected in both November and June. Across treatments, mites and collembola were the most dominant microarthropod groups collected. We did not detect any treatment effects on microarthropod abundance. In November, but notmore » in June, microarthropod richness, however, was affected by the climate change treatments. In November, total microarthropod richness was lower in dry than in wet treatments, and in ambient temperature treatments, richness was higher under elevated [CO{sub 2}] than under ambient [CO{sub 2}]. Differential responses of individual taxa to the climate change treatments resulted in shifts in community composition. In general, the precipitation and warming treatments explained most of the variation in community composition. Across treatments, we found that collembola abundance and richness were positively related to soil moisture content, and that negative relationships between collembola abundance and richness and soil temperature could be explained by temperature-related shifts in soil moisture content. Our data demonstrate how simultaneously acting climate change factors can affect the structure of soil microarthropod communities in old-field ecosystems. Overall, changes in soil moisture content, either as direct effect of changes in precipitation or as indirect effect of warming or elevated [CO{sub 2}], had a larger impact on microarthropod communities than did the direct effects of the warming and elevated [CO{sub 2}] treatments. Moisture-induced shifts in soil microarthropod abundance and community composition may have important impacts on ecosystem functions, such as decomposition, under future climatic change.« less
Breulmann, Marc; Masyutenko, Nina Petrovna; Kogut, Boris Maratovich; Schroll, Reiner; Dörfler, Ulrike; Buscot, François; Schulz, Elke
2014-11-01
The quality, stability and availability of organic carbon (OC) in soil organic matter (SOM) can vary widely between differently managed ecosystems. Several approaches have been developed for isolating SOM fractions to examine their ecological roles, but links between the bioavailability of the OC of size-density fractions and soil microbial communities have not been previously explored. Thus, in the presented laboratory study we investigated the potential bioavailability of OC and the structure of associated microbial communities in different particle-size and density fractions of SOM. For this we used samples from four grassland ecosystems with contrasting management intensity regimes and two soil types: a Haplic Cambisol and a typical Chernozem. A combined size-density fractionation protocol was applied to separate clay-associated SOM fractions (CF1, <1 μm; CF2, 1-2 μm) from light SOM fractions (LF1, <1.8 g cm(-3); LF2, 1.8-2.0 g cm(-3)). These fractions were used as carbon sources in a respiration experiment to determine their potential bioavailability. Measured CO2-release was used as an index of substrate accessibility and linked to the soil microbial community structure, as determined by phospholipid fatty acids (PLFA) analysis. Several key factors controlling decomposition processes, and thus the potential bioavailability of OC, were identified: management intensity and the plant community composition of the grasslands (both of which affect the chemical composition and turnover of OC) and specific properties of individual SOM fractions. The PLFA patterns highlighted differences in the composition of microbial communities associated with the examined grasslands, and SOM fractions, providing the first broad insights into their active microbial communities. From observed interactions between abiotic and biotic factors affecting the decomposition of SOM fractions we demonstrate that increasing management intensity could enhance the potential bioavailability of OC, not only in the active and intermediate SOM pools, but also in the passive pool. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
White, J. C.; Hill, M. J.; Bickerton, M. A.; Wood, P. J.
2017-09-01
The widespread degradation of lotic ecosystems has prompted extensive river restoration efforts globally, but many studies have reported modest ecological responses to rehabilitation practices. The functional properties of biotic communities are rarely examined within post-project appraisals, which would provide more ecological information underpinning ecosystem responses to restoration practices and potentially pinpoint project limitations. This study examines macroinvertebrate community responses to three projects which aimed to physically restore channel morphologies. Taxonomic and functional trait compositions supported by widely occurring lotic habitats (biotopes) were examined across paired restored and non-restored (control) reaches. The multivariate location (average community composition) of taxonomic and functional trait compositions differed marginally between control and restored reaches. However, changes in the amount of multivariate dispersion were more robust and indicated greater ecological heterogeneity within restored reaches, particularly when considering functional trait compositions. Organic biotopes (macrophyte stands and macroalgae) occurred widely across all study sites and supported a high alpha (within-habitat) taxonomic diversity compared to mineralogical biotopes (sand and gravel patches), which were characteristic of restored reaches. However, mineralogical biotopes possessed a higher beta (between-habitat) functional diversity, although this was less pronounced for taxonomic compositions. This study demonstrates that examining the functional and structural properties of taxa across distinct biotopes can provide a greater understanding of biotic responses to river restoration works. Such information could be used to better understand the ecological implications of rehabilitation practices and guide more effective management strategies.
Rapid recovery of soil bacterial communities after wildfire in a Chinese boreal forest
Xiang, Xingjia; Shi, Yu; Yang, Jian; Kong, Jianjian; Lin, Xiangui; Zhang, Huayong; Zeng, Jun; Chu, Haiyan
2014-01-01
Fires affect hundreds of millions of hectares annually. Above-ground community composition and diversity after fire have been studied extensively, but effects of fire on soil bacterial communities remain largely unexamined despite the central role of bacteria in ecosystem recovery and functioning. We investigated responses of bacterial community to forest fire in the Greater Khingan Mountains, China, using tagged pyrosequencing. Fire altered soil bacterial community composition substantially and high-intensity fire significantly decreased bacterial diversity 1-year-after-burn site. Bacterial community composition and diversity returned to similar levels as observed in controls (no fire) after 11 years. The understory vegetation community typically takes 20–100 years to reach pre-fire states in boreal forest, so our results suggest that soil bacteria could recover much faster than plant communities. Finally, soil bacterial community composition significantly co-varied with soil pH, moisture content, NH4+ content and carbon/nitrogen ratio (P < 0.05 in all cases) in wildfire-perturbed soils, suggesting that fire could indirectly affect bacterial communities by altering soil edaphic properties. PMID:24452061
Habitat heterogeneity and connectivity shape microbial communities in South American peatlands.
Oloo, Felix; Valverde, Angel; Quiroga, María Victoria; Vikram, Surendra; Cowan, Don; Mataloni, Gabriela
2016-05-10
Bacteria play critical roles in peatland ecosystems. However, very little is known of how habitat heterogeneity affects the structure of the bacterial communities in these ecosystems. Here, we used amplicon sequencing of the 16S rRNA and nifH genes to investigate phylogenetic diversity and bacterial community composition in three different sub-Antarctic peat bog aquatic habitats: Sphagnum magellanicum interstitial water, and water from vegetated and non-vegetated pools. Total and putative nitrogen-fixing bacterial communities from Sphagnum interstitial water differed significantly from vegetated and non-vegetated pool communities (which were colonized by the same bacterial populations), probably as a result of differences in water chemistry and biotic interactions. Total bacterial communities from pools contained typically aquatic taxa, and were more dissimilar in composition and less species rich than those from Sphagnum interstitial waters (which were enriched in taxa typically from soils), probably reflecting the reduced connectivity between the former habitats. These results show that bacterial communities in peatland water habitats are highly diverse and structured by multiple concurrent factors.
Sean A. Parks; Carol Miller; Cara R. Nelson; Zachary A. Holden
2014-01-01
Wildland fire is an important natural process in many ecosystems. However, fire exclusion has reduced frequency of fire and area burned in many dry forest types, which may affect vegetation structure and composition, and potential fire behavior. In forests of the western U.S., these effects pose a challenge for fire and land managers who seek to restore the ecological...
Zachary E. Kayler; Elizabeth W. Sulzman; William D. Rugh; Alan C. Mix; Barbara J. Bond
2010-01-01
By measuring the isotopic signature of soil respiration, we seek to learn the isotopic composition of the carbon respired in the soil (δ13CR-S) so that we may draw inferences about ecosystem processes. Requisite to this goal is the need to understand how (δ13CR-S) is affected by...
Casolo, Valentino; Beraldo, Paola; Braidot, Enrico; Zancani, Marco; Rixen, Christian
2018-01-01
Enhanced shrub growth and expansion are widespread responses to climate warming in many arctic and alpine ecosystems. Warmer temperatures and shrub expansion could cause major changes in plant community structure, affecting both species composition and diversity. To improve our understanding of the ongoing changes in plant communities in alpine tundra, we studied interrelations among climate, shrub growth, shrub cover and plant diversity, using an elevation gradient as a proxy for climate conditions. Specifically, we analyzed growth of bilberry (Vaccinium myrtillus L.) and its associated plant communities along an elevation gradient of ca. 600 vertical meters in the eastern European Alps. We assessed the ramet age, ring width and shoot length of V. myrtillus, and the shrub cover and plant diversity of the community. At higher elevation, ramets of V. myrtillus were younger, with shorter shoots and narrower growth rings. Shoot length was positively related to shrub cover, but shrub cover did not show a direct relationship with elevation. A greater shrub cover had a negative effect on species richness, also affecting species composition (beta-diversity), but these variables were not influenced by elevation. Our findings suggest that changes in plant diversity are driven directly by shrub cover and only indirectly by climate, here represented by changes in elevation. PMID:29698464
Wagner, Karoline; Besemer, Katharina; Burns, Nancy R.; Battin, Tom J.
2015-01-01
Summary Changes in riparian vegetation or water turbidity and browning in streams alter the local light regime with potential implications for stream biofilms and ecosystem functioning. We experimented with biofilms in microcosms grown under a gradient of light intensities (range: 5–152 μmole photons s−1 m−2) and combined 454‐pyrosequencing and enzymatic activity assays to evaluate the effects of light on biofilm structure and function. We observed a shift in bacterial community composition along the light gradient, whereas there was no apparent change in alpha diversity. Multifunctionality, based on extracellular enzymes, was highest under high light conditions and decoupled from bacterial diversity. Phenol oxidase activity, involved in the degradation of polyphenolic compounds, was twice as high on average under the lowest compared with the highest light condition. This suggests a shift in reliance of microbial heterotrophs on biofilm phototroph‐derived organic matter under high light availability to more complex organic matter under low light. Furthermore, extracellular enzyme activities correlated with nutrient cycling and community respiration, supporting the link between biofilm structure–function and biogeochemical fluxes in streams. Our findings demonstrate that changes in light availability are likely to have significant impacts on biofilm structure and function, potentially affecting stream ecosystem processes. PMID:26013911
Lembrechts, Jonas J; Milbau, Ann; Nijs, Ivan
2014-01-01
Effects of roads on plant communities are not well known in cold-climate mountain ecosystems, where road building and development are expected to increase in future decades. Knowledge of the sensitivity of mountain plant communities to disturbance by roads is however important for future conservation purposes. We investigate the effects of roads on species richness and composition, including the plant strategies that are most affected, along three elevational gradients in a subarctic mountain ecosystem. We also examine whether mountain roads promote the introduction and invasion of alien plant species from the lowlands to the alpine zone. Observations of plant community composition were made together with abiotic, biotic and anthropogenic factors in 60 T-shaped transects. Alpine plant communities reacted differently to road disturbances than their lowland counterparts. On high elevations, the roadside species composition was more similar to that of the local natural communities. Less competitive and ruderal species were present at high compared with lower elevation roadsides. While the effects of roads thus seem to be mitigated in the alpine environment for plant species in general, mountain plant communities are more invasible than lowland communities. More precisely, relatively more alien species present in the roadside were found to invade into the surrounding natural community at high compared to low elevations. We conclude that effects of roads and introduction of alien species in lowlands cannot simply be extrapolated to the alpine and subarctic environment.
Creed, Irena F; Bergström, Ann-Kristin; Trick, Charles G; Grimm, Nancy B; Hessen, Dag O; Karlsson, Jan; Kidd, Karen A; Kritzberg, Emma; McKnight, Diane M; Freeman, Erika C; Senar, Oscar E; Andersson, Agneta; Ask, Jenny; Berggren, Martin; Cherif, Mehdi; Giesler, Reiner; Hotchkiss, Erin R; Kortelainen, Pirkko; Palta, Monica M; Vrede, Tobias; Weyhenmeyer, Gesa A
2018-03-15
Northern ecosystems are experiencing some of the most dramatic impacts of global change on Earth. Rising temperatures, hydrological intensification, changes in atmospheric acid deposition and associated acidification recovery, and changes in vegetative cover are resulting in fundamental changes in terrestrial-aquatic biogeochemical linkages. The effects of global change are readily observed in alterations in the supply of dissolved organic matter (DOM)-the messenger between terrestrial and lake ecosystems-with potentially profound effects on the structure and function of lakes. Northern terrestrial ecosystems contain substantial stores of organic matter and filter or funnel DOM, affecting the timing and magnitude of DOM delivery to surface waters. This terrestrial DOM is processed in streams, rivers, and lakes, ultimately shifting its composition, stoichiometry, and bioavailability. Here, we explore the potential consequences of these global change-driven effects for lake food webs at northern latitudes. Notably, we provide evidence that increased allochthonous DOM supply to lakes is overwhelming increased autochthonous DOM supply that potentially results from earlier ice-out and a longer growing season. Furthermore, we assess the potential implications of this shift for the nutritional quality of autotrophs in terms of their stoichiometry, fatty acid composition, toxin production, and methylmercury concentration, and therefore, contaminant transfer through the food web. We conclude that global change in northern regions leads not only to reduced primary productivity but also to nutritionally poorer lake food webs, with discernible consequences for the trophic web to fish and humans. © 2018 John Wiley & Sons Ltd.
White-Monsant, A C; Clark, G J; Ng Kam Chuen, M A G; Tang, C
2017-10-01
Plant communities in alpine ecosystems worldwide are being altered by climate warming. In the alpine open heathland of the Bogong High Plains, Australia, warming and fire have affected the growth and phenology of plants, and have recently been found to alter soil nutrient availability. We examined the effects of nine years of passive warming by open-top chambers and nine years post-fire on (i) the soluble and extractable nutrients and toxic elements available for plant uptake in the soil and (ii) on the element composition of leaves of seven dominant sub-alpine open heathland plants. Warming increased soil C, soil C:N, and decreased soil δ 13 C, indicating an accumulation of soil organic matter and C sequestration. Warming increased soil δ 15 N, indicating increased N mineralization, which concurred with the increased availability of NH 4 + (measured by ion-exchange membranes). Leaf element composition varied among the plant species in response to changes in soil element availabilities, suggesting the importance of species-specific knowledge. Warming decreased leaf N concentration and increased leaf C:N, generally in the plant community, and specifically in Asterolasia trymalioides, Carex breviculmis, Poa hiemata, and Rytidosperma nudiflorum. Warming increased soil P availability, but did not significantly affect leaf P in any species. Antecedent fire increased soil C:N, and decreased concentrations of Ca and Mg in Celmisia pugioniformis more than in the other species. The results suggest that warming and fire changed the nutrient composition of plants and increased soil C:N, which might lead to progressive N limitation in the alpine ecosystem. Copyright © 2017 Elsevier B.V. All rights reserved.
Zooplankton Distribution and Species Composition Along an Oxygen Gradient in Puget Sound, WA
NASA Astrophysics Data System (ADS)
Keister, J. E.; Essington, T.; Li, L.; Horne, J. K.; Sato, M.; Parker-Stetter, S. L.; Moriarty, P.
2016-02-01
Low dissolved oxygen (hypoxia) is one of the most pronounced, pervasive, and significant disturbances in marine ecosystems, yet our understanding of its effects is incomplete, particularly with respect to impacts on lower trophic levels. As part of a study of how hypoxia affects predator-prey relationships and energy flow through marine food webs, we are studying relationships between ocean chemistry and zooplankton in Puget Sound, Washington—a deep, seasonally hypoxic fjord in the Pacific Northwest that supports a productive and diverse pelagic community. From summer through fall in two years that differed in the timing and intensity of hypoxia, we conducted multi-frequency bioacoustic surveys, CTD casts, and depth-stratified zooplankton sampling to examine changes in distribution and species composition of animals in relation to oxygen concentrations. We exploited a natural gradient in oxygen along the axis of the fjord by sampling at moderately hypoxic and normoxic sites with otherwise similar hydrography and species composition to disentangle the effects of oxygen from changes in other environmental factors. Our results support the hypothesis that zooplankton species composition and vertical distributions are altered by hypoxia, but only when examined at the species and life-stage level. Relatively few taxa showed clear responses to hypoxia, and bioacoustic backscatter data (which was dominated by adult euphausiids and amphipods) indicated that those taxa were not affected by the levels of hypoxia we observed. Examination of net tow data revealed more subtle changes, including behavioral avoidance of low oxygen by some copepods and young euphausiid life stages. Overall, the high species diversity and relatively low susceptibility of many zooplankton to hypoxia in Puget Sound may confer ecosystem resilience to near-future projected changes in this region.
Type of litter determines the formation and properties of charred material during wildfires
NASA Astrophysics Data System (ADS)
Chavez, Bruno; Fonturbel, M. Teresa; Salgado, Josefa; García-Oliva, Felipe; Vega, Jose A.; Merino, Agustin
2014-05-01
Wildfire is one of the most important disturbances all over the World, affecting both the amount and composition of forest floor and mineral soils. In comparison with unburnt areas, wildfire-affected forest floor usually shows lower contents of labile C compounds and higher concentrations of recalcitrant aromatic forms. These changes in composition can have important impact on biogeochemical cycles and therefore ecosystem functions. Although burning of different types of litter can lead to different amount and types of pyrogenic compounds, this aspect has not been evaluated yet. The effect of wildfire on SOM composition and stability were evaluated in five major types of non-wood litter in Mediterranean ecosystems: Pinus nigra, E. arborea, P. pinaster, U. europaeus and Eucalyptus globulus. In each of these ecosystems, forest floor samples from different soil burn severities were sampled. Soil burnt severities were based on visual signs of changes in forest floor and deposition of ash. Pyrogenic carbon quality were analysed using elementary analysis, solid-state 13 C nuclear magnetic resonance spectroscopy, Reflectance Infrared Fourier Transform (FTIR) and thermal analysis (simultaneous DSC-TG). The study showed that the different types of litter influenced the formation and characteristics of charred material. They differed in the temperature at which they start to be formed, the amounts of charred compounds and in their chemical composition. The resulting charred materials from the different litter, showed an important variability in the degree of carbonitation/aromatization. Unlike the biochar obtained through pyrolysis of woody sources, which contains exclusively aromatic structures, in the charred material produced in some litter, lignin, cellulose and even cellulose persist even in the high soil burnt severity. Coinciding with increases in aromatic contents, important decreases in atomic H/C and O/C ratios were recorded. However, the values found in some litters, were higher than 0.5, suggesting that low degree of carbonization/aromatization. Although burning also led to compounds of higher thermal recalcitrance (increases in T50 values), values recorded in some litters were lower than those measured in highly polycondensed aromatic compounds. The differences found among the different forest floor cannot be only attributable to the initial SOM composition of the litter. Other aspects, such as the different thermal sensitivity, flammability and different conditions during wildfire (temperatures, combustion duration, oxygen concentrations) could also have contributed.
Rusch, Adrien; Birkhofer, Klaus; Bommarco, Riccardo; Smith, Henrik G; Ekbom, Barbara
2014-07-01
Agricultural intensification is recognised as a major driver of biodiversity loss in human-modified landscapes. Several agro-environmental measures at different spatial scales have been suggested to mitigate the negative impact of intensification on biodiversity and ecosystem services. The effect of these measures on the functional structure of service-providing communities remains, however, largely unexplored. Using two distinct landscape designs, we examined how the management options of organic farming at the field scale and crop diversification at the landscape level affect the taxonomic and functional structure of generalist predator communities and how these effects vary along a landscape complexity gradient. Organic farming as well as landscapes with longer and more diversified crop rotations enhanced the activity-density of spiders and rove beetles, but not the species richness or evenness. Our results indicate that the two management options affected the functional composition of communities, as they primarily enhanced the activity-density of functionally similar species. The two management options increased the functional similarity between spider species in regards to hunting mode and habitat preference. Organic farming enhanced the functional similarity of rove beetles. Management options at field and landscape levels were generally more important predictors of community structure when compared to landscape complexity. Our study highlights the importance of considering the functional composition of generalist predators in order to understand how agro-environmental measures at various scales shape community assemblages and ecosystem functioning in agricultural landscapes.
Climatic warming strengthens a positive feedback between alpine shrubs and fire.
Camac, James S; Williams, Richard J; Wahren, Carl-Henrik; Hoffmann, Ary A; Vesk, Peter A
2017-08-01
Climate change is expected to increase fire activity and woody plant encroachment in arctic and alpine landscapes. However, the extent to which these increases interact to affect the structure, function and composition of alpine ecosystems is largely unknown. Here we use field surveys and experimental manipulations to examine how warming and fire affect recruitment, seedling growth and seedling survival in four dominant Australian alpine shrubs. We found that fire increased establishment of shrub seedlings by as much as 33-fold. Experimental warming also doubled growth rates of tall shrub seedlings and could potentially increase their survival. By contrast, warming had no effect on shrub recruitment, postfire tussock regeneration, or how tussock grass affected shrub seedling growth and survival. These findings indicate that warming, coupled with more frequent or severe fires, will likely result in an increase in the cover and abundance of evergreen shrubs. Given that shrubs are one of the most flammable components in alpine and tundra environments, warming is likely to strengthen an existing feedback between woody species abundance and fire in these ecosystems. © 2017 John Wiley & Sons Ltd.
Carbon dioxide fluxes from contrasting ecosystems in the Sudanian Savanna in West Africa.
Quansah, Emmanuel; Mauder, Matthias; Balogun, Ahmed A; Amekudzi, Leonard K; Hingerl, Luitpold; Bliefernicht, Jan; Kunstmann, Harald
2015-12-01
The terrestrial land surface in West Africa is made up of several types of savanna ecosystems differing in land use changes which modulate gas exchanges between their vegetation and the overlying atmosphere. This study compares diurnal and seasonal estimates of CO 2 fluxes from three contrasting ecosystems, a grassland, a mixture of fallow and cropland, and nature reserve in the Sudanian Savanna and relate them to water availability and land use characteristics. Over the study period, and for the three study sites, low soil moisture availability, high vapour pressure deficit and low ecosystem respiration were prevalent during the dry season (November to March), but the contrary occurred during the rainy season (May to October). Carbon uptake predominantly took place in the rainy season, while net carbon efflux occurred in the dry season as well as the dry to wet and wet to dry transition periods (AM and ND) respectively. Carbon uptake decreased in the order of the nature reserve, a mixture of fallow and cropland, and grassland. Only the nature reserve ecosystem at the Nazinga Park served as a net sink of CO 2 , mostly by virtue of a several times larger carbon uptake and ecosystem water use efficiency during the rainy season than at the other sites. These differences were influenced by albedo, LAI, EWUE, PPFD and climatology during the period of study. These results suggest that land use characteristics affect plant physiological processes that lead to flux exchanges over the Sudanian Savanna ecosystems. It affects the diurnal, seasonal and annual changes in NEE and its composite signals, GPP and RE. GPP and NEE were generally related as NEE scaled with photosynthesis with higher CO 2 assimilation leading to higher GPP. However, CO 2 effluxes over the study period suggest that besides biomass regrowth, other processes, most likely from the soil might have also contributed to the enhancement of ecosystem respiration.
Qian, Y; Miao, S L; Gu, B; Li, Y C
2009-01-01
Plant ash derived from fire plays an important role in nutrient balance and cycling in ecosystems. Factors that determine the composition and availability of ash nutrients include fire intensity (burn temperature and duration), plant species, habitat nutrient enrichment, and leaf type (live or dead leaf). We used laboratory simulation methods to evaluate temperature effects on nutrient composition and metals in the residual ash of sawgrass (Cladium jamaicense) and cattail (Typha domingensis), particularly on post-fire phosphorus (P) availability in plant ash. Live and dead leaf samples were collected from Water Conservation Area 2A in the northern Everglades along a soil P gradient, where prescribed fire may be used to accelerate recovery of this unique ecosystem. Significant decreases in total carbon and total nitrogen were detected with increasing fire temperature. Organic matter combustion was nearly complete at temperatures > or = 450 degrees C. HCl-extractable P (average, 50% of total P in the ash) and NH(4)Cl-extractable P (average, 33% of total P in the ash) were the predominant P fractions for laboratory-burned ash. Although a low-intensity fire could induce an elevation of P availability, an intense fire generally resulted in decreased water-soluble P. Significant differences in nutrient compositions were observed between species, habitat nutrient status, and leaf types. More labile inorganic P remained in sawgrass ash than in cattail ash; hence, sawgrass ash has a greater potential to release available P than cattail. Fire intensity affected plant ash nutrient composition, particularly P availability, and the effects varied with plant species and leaf type. Therefore, it is important to consider fire intensity and vegetation community when using a prescribed fire for ecosystem management.
Baho, Didier L; Peter, Hannes; Tranvik, Lars J
2012-09-01
Bacteria play fundamental roles for many ecosystem processes; however, little empirical evidence is available on how environmental perturbations affect their composition and function. We investigated how spatial and temporal refuges affect the resistance and resilience of a freshwater bacterioplankton community upon a salinity pulse perturbation in continuous cultures. Attachment to a surface avoided the flushing out of cells and enabled re-colonization of the liquid phase after the perturbation, hence serving as a temporal refuge. A spatial refuge was established by introduction of bacteria from an undisturbed reservoir upstream of the continuous culture vessel, acting analogous to a regional species pool in a metacommunity. The salinity pulse affected bacterial community composition and the rates of respiration and the pattern of potential substrate utilization as well as the correlation between composition and function. Compared with the no-refuge treatment, the temporal refuge shortened return to pre-perturbation conditions, indicating enhanced community resilience. Composition and function were less disturbed in the treatment providing a spatial refuge, suggesting higher resistance. Our results highlight that spatial and temporal dynamics in general and refuges in particular need to be considered for conceptual progress in how microbial metacommunities are shaped by perturbations. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.
Ecological and Evolutionary Effects of Stickleback on Community Structure
Des Roches, Simone; Shurin, Jonathan B.; Schluter, Dolph; Harmon, Luke J.
2013-01-01
Species’ ecology and evolution can have strong effects on communities. Both may change concurrently when species colonize a new ecosystem. We know little, however, about the combined effects of ecological and evolutionary change on community structure. We simultaneously examined the effects of top-predator ecology and evolution on freshwater community parameters using recently evolved generalist and specialist ecotypes of three-spine stickleback (Gasterosteus aculeatus). We used a mesocosm experiment to directly examine the effects of ecological (fish presence and density) and evolutionary (phenotypic diversity and specialization) factors on community structure at lower trophic levels. We evaluated zooplankton biomass and composition, periphyton and phytoplankton chlorophyll-a concentration, and net primary production among treatments containing different densities and diversities of stickleback. Our results showed that both ecological and evolutionary differences in the top-predator affect different aspects of community structure and composition. Community structure, specifically the abundance of organisms at each trophic level, was affected by stickleback presence and density, whereas composition of zooplankton was influenced by stickleback diversity and specialization. Primary productivity, in terms of chlorophyll-a concentration and net primary production was affected by ecological but not evolutionary factors. Our results stress the importance of concurrently evaluating both changes in density and phenotypic diversity on the structure and composition of communities. PMID:23573203
Genung, Mark A; Fox, Jeremy; Williams, Neal M; Kremen, Claire; Ascher, John; Gibbs, Jason; Winfree, Rachael
2017-07-01
The relationship between biodiversity and the stability of ecosystem function is a fundamental question in community ecology, and hundreds of experiments have shown a positive relationship between species richness and the stability of ecosystem function. However, these experiments have rarely accounted for common ecological patterns, most notably skewed species abundance distributions and non-random extinction risks, making it difficult to know whether experimental results can be scaled up to larger, less manipulated systems. In contrast with the prolific body of experimental research, few studies have examined how species richness affects the stability of ecosystem services at more realistic, landscape scales. The paucity of these studies is due in part to a lack of analytical methods that are suitable for the correlative structure of ecological data. A recently developed method, based on the Price equation from evolutionary biology, helps resolve this knowledge gap by partitioning the effect of biodiversity into three components: richness, composition, and abundance. Here, we build on previous work and present the first derivation of the Price equation suitable for analyzing temporal variance of ecosystem services. We applied our new derivation to understand the temporal variance of crop pollination services in two study systems (watermelon and blueberry) in the mid-Atlantic United States. In both systems, but especially in the watermelon system, the stronger driver of temporal variance of ecosystem services was fluctuations in the abundance of common bee species, which were present at nearly all sites regardless of species richness. In contrast, temporal variance of ecosystem services was less affected by differences in species richness, because lost and gained species were rare. Thus, the findings from our more realistic landscapes differ qualitatively from the findings of biodiversity-stability experiments. © 2017 by the Ecological Society of America.
Boonstra, Rudy; Boutin, Stan; Jung, Thomas S; Krebs, Charles J; Taylor, Shawn
2018-03-01
Community and ecosystem changes are happening in the pristine boreal forest ecosystem of the Yukon for 2 reasons. First, climate change is affecting the abiotic environment (temperature, rainfall and growing season) and driving changes in plant productivity and predator-prey interactions. Second, simultaneously change is occurring because of mammal species reintroductions and rewilding. The key ecological question is the impact these faunal changes will have on trophic dynamics. Primary productivity in the boreal forest is increasing because of climatic warming, but plant species composition is unlikely to change significantly during the next 50-100 years. The 9-10-year population cycle of snowshoe hares will persist but could be reduced in amplitude if winter weather increases predator hunting efficiency. Small rodents have increased in abundance because of increased vegetation growth. Arctic ground squirrels have disappeared from the forest because of increased predator hunting efficiency associated with shrub growth. Reintroductions have occurred for 2 reasons: human reintroductions of large ungulates and natural recolonization of mammals and birds extending their geographic ranges. The deliberate rewilding of wood bison (Bison bison) and elk (Cervus canadensis) has changed the trophic structure of this boreal ecosystem very little. The natural range expansion of mountain lions (Puma concolor), mule deer (Odocoileus hemionus) and American marten (Martes americana) should have few ecosystem effects. Understanding potential changes will require long-term monitoring studies and experiments on a scale we rarely deem possible. Ecosystems affected by climate change, species reintroductions and human alteration of habitats cannot remain stable and changes will be critically dependent on food web interactions. © 2017 The Authors. Integrative Zoology published by International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Climate warming, marine protected areas and the ocean-scale integrity of coral reef ecosystems.
Graham, Nicholas A J; McClanahan, Tim R; MacNeil, M Aaron; Wilson, Shaun K; Polunin, Nicholas V C; Jennings, Simon; Chabanet, Pascale; Clark, Susan; Spalding, Mark D; Letourneur, Yves; Bigot, Lionel; Galzin, René; Ohman, Marcus C; Garpe, Kajsa C; Edwards, Alasdair J; Sheppard, Charles R C
2008-08-27
Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change.
Species dispersal rates alter diversity and ecosystem stability in pond metacommunities.
Howeth, Jennifer G; Leibold, Mathew A
2010-09-01
Metacommunity theory suggests that relationships between diversity and ecosystem stability can be determined by the rate of species dispersal among local communities. The predicted relationships, however, may depend upon the relative strength of local environmental processes and disturbance. Here we evaluate the role of dispersal frequency and local predation perturbations in affecting patterns of diversity and stability in pond plankton metacommunities. Pond metacommunities were composed of three mesocosm communities: one of the three communities maintained constant "press" predation from a selective predator, bluegill sunfish (Lepomis macrochirus); the second community maintained "press" conditions without predation; and the third community experienced recurrent "pulsed" predation from bluegill sunfish. The triads of pond communities were connected at either no, low (0.7%/d), or high (20%/d) planktonic dispersal. Richness and composition of zooplankton and stability of plankton biomass and ecosystem productivity were measured at local and regional spatial scales. Dispersal significantly affected diversity such that local and regional biotas at the low dispersal rate maintained the greatest number of species. The unimodal local dispersal-diversity relationship was predator-dependent, however, as selective press predation excluded species regardless of dispersal. Further, there was no effect of dispersal on beta diversity because predation generated local conditions that selected for distinct community assemblages. Spatial and temporal ecosystem stability responded to dispersal frequency but not predation. Low dispersal destabilized the spatial stability of producer biomass but stabilized temporal ecosystem productivity. The results indicate that selective predation can prevent species augmentation from mass effects but has no apparent influence on stability. Dispersal rates, in contrast, can have significant effects on both species diversity and ecosystem stability at multiple spatial scales in metacommunities.
Tank bromeliad water: Similar or distinct environments for research of bacterial bioactives?
Carmo, F.L.; Santos, H.F.; Peixoto, R.S.; Rosado, A.S.; Araujo, F.V.
2014-01-01
The Atlantic Rainforest does not have a uniform physiognomy, its relief determines different environmental conditions that define the composition of its flora and fauna. Within this ecosystem, bromeliads that form tanks with their leaves hold water reservoirs throughout the year, maintaining complex food chains, based mainly on autotrophic and heterotrophic bacteria. Some works concluded that the water held by tank bromeliads concentrate the microbial diversity of their ecosystem. To investigate the bacterial diversity and the potential biotechnology of these ecosystems, tank bromeliads of the Neoregelia cruenta species from the Atlantic Rainforest in Brazil were used as models for this research. Bacteria isolated from these models were tested for production of bioactive compounds. DGGE of the water held by tank bromeliads was performed in different seasons, locations and sun exposure to verify whether these environmental factors affect bacterial communities. The DGGE bands profile showed no grouping of bacterial community by the environmental factors tested. Most of the isolates demonstrated promising activities in the tests performed. Collectively, these results suggest that tank bromeliads of the N. cruenta species provide important habitats for a diverse microbial community, suggesting that each tank forms a distinct micro-habitat. These tanks can be considered excellent sources for the search for new enzymes and/or new bioactive composites of microbial origin. PMID:24948929
Tank bromeliad water: similar or distinct environments for research of bacterial bioactives?
Carmo, F L; Santos, H F; Peixoto, R S; Rosado, A S; Araujo, F V
2014-01-01
The Atlantic Rainforest does not have a uniform physiognomy, its relief determines different environmental conditions that define the composition of its flora and fauna. Within this ecosystem, bromeliads that form tanks with their leaves hold water reservoirs throughout the year, maintaining complex food chains, based mainly on autotrophic and heterotrophic bacteria. Some works concluded that the water held by tank bromeliads concentrate the microbial diversity of their ecosystem. To investigate the bacterial diversity and the potential biotechnology of these ecosystems, tank bromeliads of the Neoregelia cruenta species from the Atlantic Rainforest in Brazil were used as models for this research. Bacteria isolated from these models were tested for production of bioactive compounds. DGGE of the water held by tank bromeliads was performed in different seasons, locations and sun exposure to verify whether these environmental factors affect bacterial communities. The DGGE bands profile showed no grouping of bacterial community by the environmental factors tested. Most of the isolates demonstrated promising activities in the tests performed. Collectively, these results suggest that tank bromeliads of the N. cruenta species provide important habitats for a diverse microbial community, suggesting that each tank forms a distinct micro-habitat. These tanks can be considered excellent sources for the search for new enzymes and/or new bioactive composites of microbial origin.
Using organic matter gradients to predict mercury cycling following environmental changes
NASA Astrophysics Data System (ADS)
Bjorn, E.; Bravo, A. G.; Jonsson, S.; Seelen, E.; Skrobonja, A.; Skyllberg, U.; Soerensen, A.; Zhu, W.
2017-12-01
The biogeochemical cycling of mercury (Hg) includes redox and methylation transformation reactions, largely mediated by microorganisms. These reactions are decisive for mobility and bioavailability of Hg in ecosystems. Organic matter (OM) plays several critical roles in these important transformation reactions. In many aquatic systems, the composition of OM is naturally diverse and dynamic, and subject to further alternations due to ecosystem changes induced by climate, eutrophication, land use, and industrial activities. We will present recent findings on how changing characteristics of OM along natural salinity and carbon gradients control Hg methylation and reduction reactions, as well as bioaccumulation processes. We will further discuss potential changes to Hg cycling, primarily in coastal seas, following ecosystem perturbations which alter the amount and characteristics of OM. The presentation will focus on recent research advancements describing how: (i) the binding of Hg to thiol functional groups in OM controls the chemical speciation of Hg, and thereby its availability for chemical reactions and uptake in biota, (ii) the composition of OM is a primary controlling factor for methylation and reduction rates of divalent Hg by electron donation and shuttling processes, (iii) the amount and characteristics of dissolved OM affect the structure and productivity of the pelagic food web, and thereby the biomagnification of methylmercury.
Level III Ecoregions of the Mississippi Alluvial Plain
Ecoregions for the Mississippi Alluvial Plain were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. By recognizing the spatial differences in the capacities and potentials of ecosystems, ecoregions stratify the environment by its probable response to disturbance (Bryce and others, 1999). These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and non-government organizations that are responsible for different types of resources within the same geographical areas (Omernik and others, 2000). The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of the spatial patterns and the composition of biotic and abiotic phenomena that affect or reflect differences in ecosystem quality and integrity (Wiken, 1986; Omernik, 1987, 1995). These phenomena include geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another regardless of the hierarchical level. A Roman numeral hierarchical scheme has been adopted for different levels for
Level IV Ecoregions of the Mississippi Alluvial Plain
Ecoregions for the Mississippi Alluvial Plain were extracted from the seamless national shapefile. Ecoregions denote areas of general similarity in ecosystems and in the type, quality, and quantity of environmental resources. They are designed to serve as a spatial framework for the research, assessment, management, and monitoring of ecosystems and ecosystem components. By recognizing the spatial differences in the capacities and potentials of ecosystems, ecoregions stratify the environment by its probable response to disturbance (Bryce and others, 1999). These general purpose regions are critical for structuring and implementing ecosystem management strategies across federal agencies, state agencies, and non-government organizations that are responsible for different types of resources within the same geographical areas (Omernik and others, 2000). The approach used to compile this map is based on the premise that ecological regions can be identified through the analysis of the spatial patterns and the composition of biotic and abiotic phenomena that affect or reflect differences in ecosystem quality and integrity (Wiken, 1986; Omernik, 1987, 1995). These phenomena include geology, physiography, vegetation, climate, soils, land use, wildlife, and hydrology. The relative importance of each characteristic varies from one ecological region to another regardless of the hierarchical level. A Roman numeral hierarchical scheme has been adopted for different levels for
Suseela, Vidya; Tharayil, Nishanth
2018-04-01
Decomposition of plant litter is a fundamental ecosystem process that can act as a feedback to climate change by simultaneously influencing both the productivity of ecosystems and the flux of carbon dioxide from the soil. The influence of climate on decomposition from a postsenescence perspective is relatively well known; in particular, climate is known to regulate the rate of litter decomposition via its direct influence on the reaction kinetics and microbial physiology on processes downstream of tissue senescence. Climate can alter plant metabolism during the formative stage of tissues and could shape the final chemical composition of plant litter that is available for decomposition, and thus indirectly influence decomposition; however, these indirect effects are relatively poorly understood. Climatic stress disrupts cellular homeostasis in plants and results in the reprogramming of primary and secondary metabolic pathways, which leads to changes in the quantity, composition, and organization of small molecules and recalcitrant heteropolymers, including lignins, tannins, suberins, and cuticle within the plant tissue matrix. Furthermore, by regulating metabolism during tissue senescence, climate influences the resorption of nutrients from senescing tissues. Thus, the final chemical composition of plant litter that forms the substrate of decomposition is a combined product of presenescence physiological processes through the production and resorption of metabolites. The changes in quantity, composition, and localization of the molecular construct of the litter could enhance or hinder tissue decomposition and soil nutrient cycling by altering the recalcitrance of the lignocellulose matrix, the composition of microbial communities, and the activity of microbial exo-enzymes via various complexation reactions. Also, the climate-induced changes in the molecular composition of litter could differentially influence litter decomposition and soil nutrient cycling. Compared with temperate ecosystems, the indirect effects of climate on litter decomposition in the tropics are not well understood, which underscores the need to conduct additional studies in tropical biomes. We also emphasize the need to focus on how climatic stress affects the root chemistry as roots contribute significantly to biogeochemical cycling, and on utilizing more robust analytical approaches to capture the molecular composition of tissue matrix that fuel microbial metabolism. © 2017 John Wiley & Sons Ltd.
Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being.
Pecl, Gretta T; Araújo, Miguel B; Bell, Johann D; Blanchard, Julia; Bonebrake, Timothy C; Chen, I-Ching; Clark, Timothy D; Colwell, Robert K; Danielsen, Finn; Evengård, Birgitta; Falconi, Lorena; Ferrier, Simon; Frusher, Stewart; Garcia, Raquel A; Griffis, Roger B; Hobday, Alistair J; Janion-Scheepers, Charlene; Jarzyna, Marta A; Jennings, Sarah; Lenoir, Jonathan; Linnetved, Hlif I; Martin, Victoria Y; McCormack, Phillipa C; McDonald, Jan; Mitchell, Nicola J; Mustonen, Tero; Pandolfi, John M; Pettorelli, Nathalie; Popova, Ekaterina; Robinson, Sharon A; Scheffers, Brett R; Shaw, Justine D; Sorte, Cascade J B; Strugnell, Jan M; Sunday, Jennifer M; Tuanmu, Mao-Ning; Vergés, Adriana; Villanueva, Cecilia; Wernberg, Thomas; Wapstra, Erik; Williams, Stephen E
2017-03-31
Distributions of Earth's species are changing at accelerating rates, increasingly driven by human-mediated climate change. Such changes are already altering the composition of ecological communities, but beyond conservation of natural systems, how and why does this matter? We review evidence that climate-driven species redistribution at regional to global scales affects ecosystem functioning, human well-being, and the dynamics of climate change itself. Production of natural resources required for food security, patterns of disease transmission, and processes of carbon sequestration are all altered by changes in species distribution. Consideration of these effects of biodiversity redistribution is critical yet lacking in most mitigation and adaptation strategies, including the United Nation's Sustainable Development Goals. Copyright © 2017, American Association for the Advancement of Science.
[Understory effects on overstory trees: A review.
Du, Zhong; Cai, Xiao Hu; Bao, Wei Kai; Chen, Huai; Pan, Hong Li
2016-03-01
Plant-plant interactions play a key role in regulating the composition and structure of communities and ecosystems. Studies of plant-plant interactions in forest ecosystems have traditionally concentrated on either tree-tree interactions or overstory species' impacts on understory plants. The possible effects of understory species on overstory trees have received less attention. We summarized the effects of understory species on soil physiological properties, soil fauna activities, leaf litter decomposition, and ecophysiology and growth of the overstory species. Then the effects of distur-bance on understory-overstory interactions were discussed. Finally, an ecophysiology-based concept model of understory effects on overstory trees was proposed. Understory removal experiments showed that the study area, overstory species age, soil fertility and understory species could significantly affect the understory-overstory interactions.
Hicks, Natalie; Bulling, Mark T; Solan, Martin; Raffaelli, Dave; White, Piran C L; Paterson, David M
2011-02-14
Understanding the effects of anthropogenically-driven changes in global temperature, atmospheric carbon dioxide and biodiversity on the functionality of marine ecosystems is crucial for predicting and managing the associated impacts. Coastal ecosystems are important sources of carbon (primary production) to shelf waters and play a vital role in global nutrient cycling. These systems are especially vulnerable to the effects of human activities and will be the first areas impacted by rising sea levels. Within these coastal ecosystems, microalgal assemblages (microphytobenthos: MPB) are vital for autochthonous carbon fixation. The level of in situ production by MPB mediates the net carbon cycling of transitional ecosystems between net heterotrophic or autotrophic metabolism. In this study, we examine the interactive effects of elevated atmospheric CO(2) concentrations (370, 600, and 1000 ppmv), temperature (6°C, 12°C, and 18°C) and invertebrate biodiversity on MPB biomass in experimental systems. We assembled communities of three common grazing invertebrates (Hydrobia ulvae, Corophium volutator and Hediste diversicolor) in monoculture and in all possible multispecies combinations. This experimental design specifically addresses interactions between the selected climate change variables and any ecological consequences caused by changes in species composition or richness. The effects of elevated CO(2) concentration, temperature and invertebrate diversity were not additive, rather they interacted to determine MPB biomass, and overall this effect was negative. Diversity effects were underpinned by strong species composition effects, illustrating the importance of individual species identity. Overall, our findings suggest that in natural systems, the complex interactions between changing environmental conditions and any associated changes in invertebrate assemblage structure are likely to reduce MPB biomass. Furthermore, these effects would be sufficient to affect the net metabolic balance of the coastal ecosystem, with important implications for system ecology and sustainable exploitation.
The carbon isotopic composition of ecosystem breath
NASA Astrophysics Data System (ADS)
Ehleringer, J.
2008-05-01
At the global scale, there are repeatable annual fluctuations in the concentration and isotopic composition of atmospheric carbon dioxide, sometimes referred to as the "breathing of the planet". Vegetation components within ecosystems fix carbon dioxide through photosynthesis into stable organic compounds; simultaneously both vegetation and heterotrophic components of the ecosystem release previously fixed carbon as respiration. These two-way fluxes influencing carbon dioxide exchange between the biosphere and the atmosphere impact both the concentration and isotopic composition of carbon dioxide within the convective boundary layer. Over space, the compounding effects of gas exchange activities from ecosystems become reflected in both regional and global changes in the concentration and isotopic composition of atmospheric carbon dioxide. When these two parameters are plotted against each other, there are significant linear relationships between the carbon isotopic composition and inverse concentration of atmospheric carbon dioxide. At the ecosystem scale, these "Keeling plots" intercepts of C3-dominated ecosystems describe the carbon isotope ratio of biospheric gas exchange. Using Farquhar's model, these carbon isotope values can be translated into quantitative measures of the drought-dependent control of photosynthesis by stomata as water availability changes through time. This approach is useful in aggregating the influences of drought across regional landscapes as it provides a quantitative measure of stomatal influence on photosynthetic gas exchange at the ecosystem-to-region scales. Multi-year analyses of the drought-dependent trends across terrestrial ecosystems show a repeated pattern with water stress in all but one C3-ecosystem type. Ecosystems that are dominated by ring-porous trees appear not to exhibit a dynamic stomatal response to water stress and therefore, there is little dependence of the carbon isotope ratio of gas exchange on site water balance. The mechanistic basis for this pattern is defined; the implications of climate change on ring-porous versus diffuse-porous vegetation and therefore on future atmospheric carbon dioxide isotope-concentration patterns is discussed.
Guo, Xiaohong; Gong, Jun
2014-02-01
Arbuscular mycorrhizal fungi (AMF) were investigated in roots of 18 host plant species in a salinized south coastal plain of Laizhou Bay, China. From 18 clone libraries of 18S rRNA genes, all of the 22 AMF phylotypes were identified into Glomus, of which 18 and 4 were classified in group A and B in the phylogenetic tree, respectively. The phylotypes related to morphologically defined Glomus species occurred generally in soil with higher salinity. AMF phylotype richness, Shannon index, and evenness were not significantly different between root samples from halophytes vs. non-halophytes, invades vs. natives, or annuals vs. perennials. However, AMF diversity estimates frequently differed along the saline gradient or among locations, but not among pH gradients. Moreover, UniFrac tests showed that both plant traits (salt tolerance, life style or origin) and abiotic factors (salinity, pH, or location) significantly affected the community composition of AMF colonizers. Redundancy and variation partitioning analyses revealed that soil salinity and pH, which respectively explained 6.9 and 4.2 % of the variation, were the most influential abiotic variables in shaping the AMF community structure. The presented data indicate that salt tolerance, life style, and origin traits of host species may not significantly affect the AMF diversity in roots, but do influence the community composition in this salinized ecosystem. The findings also highlight the importance of soil salinity and pH in driving the distribution of AMF in plant and soil systems.
Gidoin, Cynthia; Babin, Régis; Bagny Beilhe, Leïla; Cilas, Christian; ten Hoopen, Gerben Martijn; Bieng, Marie Ange Ngo
2014-01-01
Combining crop plants with other plant species in agro-ecosystems is one way to enhance ecological pest and disease regulation mechanisms. Resource availability and microclimatic variation mechanisms affect processes related to pest and pathogen life cycles. These mechanisms are supported both by empirical research and by epidemiological models, yet their relative importance in a real complex agro-ecosystem is still not known. Our aim was thus to assess the independent effects and the relative importance of different variables related to resource availability and microclimatic variation that explain pest and disease occurrence at the plot scale in real complex agro-ecosystems. The study was conducted in cacao (Theobroma cacao) agroforests in Cameroon, where cocoa production is mainly impacted by the mirid bug, Sahlbergella singularis, and black pod disease, caused by Phytophthora megakarya. Vegetation composition and spatial structure, resource availability and pest and disease occurrence were characterized in 20 real agroforest plots. Hierarchical partitioning was used to identify the causal variables that explain mirid density and black pod prevalence. The results of this study show that cacao agroforests can be differentiated on the basis of vegetation composition and spatial structure. This original approach revealed that mirid density decreased when a minimum number of randomly distributed forest trees were present compared with the aggregated distribution of forest trees, or when forest tree density was low. Moreover, a decrease in mirid density was also related to decreased availability of sensitive tissue, independently of the effect of forest tree structure. Contrary to expectations, black pod prevalence decreased with increasing cacao tree abundance. By revealing the effects of vegetation composition and spatial structure on mirids and black pod, this study opens new perspectives for the joint agro-ecological management of cacao pests and diseases at the plot scale, through the optimization of the spatial structure and composition of the vegetation.
Gidoin, Cynthia; Babin, Régis; Bagny Beilhe, Leïla; Cilas, Christian; ten Hoopen, Gerben Martijn; Bieng, Marie Ange Ngo
2014-01-01
Combining crop plants with other plant species in agro-ecosystems is one way to enhance ecological pest and disease regulation mechanisms. Resource availability and microclimatic variation mechanisms affect processes related to pest and pathogen life cycles. These mechanisms are supported both by empirical research and by epidemiological models, yet their relative importance in a real complex agro-ecosystem is still not known. Our aim was thus to assess the independent effects and the relative importance of different variables related to resource availability and microclimatic variation that explain pest and disease occurrence at the plot scale in real complex agro-ecosystems. The study was conducted in cacao (Theobroma cacao) agroforests in Cameroon, where cocoa production is mainly impacted by the mirid bug, Sahlbergella singularis, and black pod disease, caused by Phytophthora megakarya. Vegetation composition and spatial structure, resource availability and pest and disease occurrence were characterized in 20 real agroforest plots. Hierarchical partitioning was used to identify the causal variables that explain mirid density and black pod prevalence. The results of this study show that cacao agroforests can be differentiated on the basis of vegetation composition and spatial structure. This original approach revealed that mirid density decreased when a minimum number of randomly distributed forest trees were present compared with the aggregated distribution of forest trees, or when forest tree density was low. Moreover, a decrease in mirid density was also related to decreased availability of sensitive tissue, independently of the effect of forest tree structure. Contrary to expectations, black pod prevalence decreased with increasing cacao tree abundance. By revealing the effects of vegetation composition and spatial structure on mirids and black pod, this study opens new perspectives for the joint agro-ecological management of cacao pests and diseases at the plot scale, through the optimization of the spatial structure and composition of the vegetation. PMID:25313514
Flandroy, Lucette; Poutahidis, Theofilos; Berg, Gabriele; Clarke, Gerard; Dao, Maria-Carlota; Decaestecker, Ellen; Furman, Eeva; Haahtela, Tari; Massart, Sébastien; Plovier, Hubert; Sanz, Yolanda; Rook, Graham
2018-06-15
Plants, animals and humans, are colonized by microorganisms (microbiota) and transiently exposed to countless others. The microbiota affects the development and function of essentially all organ systems, and contributes to adaptation and evolution, while protecting against pathogenic microorganisms and toxins. Genetics and lifestyle factors, including diet, antibiotics and other drugs, and exposure to the natural environment, affect the composition of the microbiota, which influences host health through modulation of interrelated physiological systems. These include immune system development and regulation, metabolic and endocrine pathways, brain function and epigenetic modification of the genome. Importantly, parental microbiotas have transgenerational impacts on the health of progeny. Humans, animals and plants share similar relationships with microbes. Research paradigms from humans and other mammals, amphibians, insects, planktonic crustaceans and plants demonstrate the influence of environmental microbial ecosystems on the microbiota and health of organisms, and indicate links between environmental and internal microbial diversity and good health. Therefore, overlapping compositions, and interconnected roles of microbes in human, animal and plant health should be considered within the broader context of terrestrial and aquatic microbial ecosystems that are challenged by the human lifestyle and by agricultural and industrial activities. Here, we propose research priorities and organizational, educational and administrative measures that will help to identify safe microbe-associated health-promoting modalities and practices. In the spirit of an expanding version of "One health" that includes environmental health and its relation to human cultures and habits (EcoHealth), we urge that the lifestyle-microbiota-human health nexus be taken into account in societal decision making. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Vowles, Tage; Lindwall, Frida; Ekblad, Alf; Bahram, Mohammad; Furneaux, Brendan R; Ryberg, Martin; Björk, Robert G
2018-01-01
Mycorrhizal associations are widespread in high-latitude ecosystems and are potentially of great importance for global carbon dynamics. Although large herbivores play a key part in shaping subarctic plant communities, their impact on mycorrhizal dynamics is largely unknown. We measured extramatrical mycelial (EMM) biomass during one growing season in 16-year-old herbivore exclosures and unenclosed control plots (ambient), at three mountain birch forests and two shrub heath sites, in the Scandes forest-tundra ecotone. We also used high-throughput amplicon sequencing for taxonomic identification to investigate differences in fungal species composition. At the birch forest sites, EMM biomass was significantly higher in exclosures (1.36 ± 0.43 g C/m 2 ) than in ambient conditions (0.66 ± 0.17 g C/m 2 ) and was positively influenced by soil thawing degree-days. At the shrub heath sites, there was no significant effect on EMM biomass (exclosures: 0.72 ± 0.09 g C/m 2 ; ambient plots: 1.43 ± 0.94). However, EMM biomass was negatively related to Betula nana abundance, which was greater in exclosures, suggesting that grazing affected EMM biomass positively. We found no significant treatment effects on fungal diversity but the most abundant ectomycorrhizal lineage/cortinarius, showed a near-significant positive effect of herbivore exclusion ( p = .08), indicating that herbivory also affects fungal community composition. These results suggest that herbivory can influence fungal biomass in highly context-dependent ways in subarctic ecosystems. Considering the importance of root-associated fungi for ecosystem carbon balance, these findings could have far-reaching implications.
Impacts of Climate Change on Forest Isoprene Emission: Diversity Matters
NASA Astrophysics Data System (ADS)
Wang, B.; Shugart, H. H., Jr.; Lerdau, M.
2016-12-01
Many abiotic and biotic factors influence volatile organic compound (VOC) production and emission by plants; for example, climate warming is widely projected to enhance VOC emissions by stimulating their biosynthesis. The species-dependent nature of VOC production by plants indicates that changes in species abundances may play an important role in determining VOC production and emission at the ecosystem scale. To date, however, the role of species abundances in affecting VOC emissions has not been well studied. We examine the role of forest systems as sources of VOC's in terms of how species diversity and abundance influence isoprene emission under climate warming by using an individual-based forest VOC emission model—UVAFME-VOC 1.0—that can explicitly simulate forest compositional and structural change and VOC production/emission at the individual and canopy scales. We simulate isoprene emissions under two warming scenarios (warming by 2 and 4 °C) for temperate deciduous forests of the southeastern United States, where the dominant isoprene-emitting species are oaks (Quercus). The simulations show that, contrary to previous expectations, a warming by 2 °C does not affect isoprene emissions, while a further warming by 4 °C causes a large reduction of isoprene emissions. Interestingly, climate warming can directly enhance isoprene emission and simultaneously indirectly reduce it by lowering the abundance of isoprene-emitting species. Under gradual continuous warming, the indirect effect outweighs the direct effect, thus reducing overall forest isoprene emission. This modelling study shows that climate warming does not necessarily stimulate ecosystem VOC emissions and, more generally, that ecosystem diversity and composition can play a significant role in determining vegetation VOC emission capacity. Future earth system models and climate-chemistry models should better represent species diversity in projecting climate-air quality feedbacks and making management policy recommendations.
Consumer-driven nutrient dynamics in freshwater ecosystems: from individuals to ecosystems.
Atkinson, Carla L; Capps, Krista A; Rugenski, Amanda T; Vanni, Michael J
2017-11-01
The role of animals in modulating nutrient cycling [hereafter, consumer-driven nutrient dynamics (CND)] has been accepted as an important influence on both community structure and ecosystem function in aquatic systems. Yet there is great variability in the influence of CND across species and ecosystems, and the causes of this variation are not well understood. Here, we review and synthesize the mechanisms behind CND in fresh waters. We reviewed 131 articles on CND published between 1973 and 1 June 2015. The rate of new publications in CND has increased from 1.4 papers per year during 1973-2002 to 7.3 per year during 2003-2015. The majority of investigations are in North America with many concentrating on fish. More recent studies have focused on animal-mediated nutrient excretion rates relative to nutrient demand and indirect impacts (e.g. decomposition). We identified several mechanisms that influence CND across levels of biological organization. Factors affecting the stoichiometric plasticity of consumers, including body size, feeding history and ontogeny, play an important role in determining the impact of individual consumers on nutrient dynamics and underlie the stoichiometry of CND across time and space. The abiotic characteristics of an ecosystem affect the net impact of consumers on ecosystem processes by influencing consumer metabolic processes (e.g. consumption and excretion/egestion rates), non-CND supply of nutrients and ecosystem nutrient demand. Furthermore, the transformation and transport of elements by populations and communities of consumers also influences the flow of energy and nutrients across ecosystem boundaries. This review highlights that shifts in community composition or biomass of consumers and eco-evolutionary underpinnings can have strong effects on the functional role of consumers in ecosystem processes, yet these are relatively unexplored aspects of CND. Future research should evaluate the value of using species traits and abiotic conditions to predict and understand the effects of consumers on ecosystem-level nutrient dynamics across temporal and spatial scales. Moreover, new work in CND should strive to integrate knowledge from disparate fields of ecology and environmental science, such as physiology and ecosystem ecology, to develop a comprehensive and mechanistic understanding of the functional role of consumers. Comparative and experimental studies that develop testable hypotheses to challenge the current assumptions of CND, including consumer stoichiometric homeostasis, are needed to assess the significance of CND among species and across freshwater ecosystems. © 2016 Cambridge Philosophical Society.
Aranguren-Riaño, Nelson J; Guisande, Cástor; Shurin, Jonathan B; Jones, Natalie T; Barreiro, Aldo; Duque, Santiago R
2018-07-01
Variation in resource use among species determines their potential for competition and co-existence, as well as their impact on ecosystem processes. Planktonic crustaceans consume a range of micro-organisms that vary among habitats and species, but these differences in resource consumption are difficult to characterize due to the small size of the organisms. Consumers acquire amino acids from their diet, and the composition of tissues reflects both the use of different resources and their assimilation in proteins. We examined the amino acid composition of common crustacean zooplankton from 14 tropical lakes in Colombia in three regions (the Amazon floodplain, the eastern range of the Andes, and the Caribbean coast). Amino acid composition varied significantly among taxonomic groups and the three regions. Functional richness in amino acid space was greatest in the Amazon, the most productive region, and tended to be positively related to lake trophic status, suggesting the niche breadth of the community could increase with ecosystem productivity. Functional evenness increased with lake trophic status, indicating that species were more regularly distributed within community-wide niche space in more productive lakes. These results show that zooplankton resource use in tropical lakes varies with both habitat and taxonomy, and that lake productivity may affect community functional diversity and the distribution of species within niche space.
Interactive effects of three pervasive marine stressors in a post-disturbance coral reef
NASA Astrophysics Data System (ADS)
Gil, Michael A.; Goldenberg, Silvan U.; Ly Thai Bach, Anne; Mills, Suzanne C.; Claudet, Joachim
2016-12-01
Ecosystems are commonly affected by natural, episodic disturbances that can abruptly and drastically alter communities. Although it has been shown that resilient ecosystems can eventually recover to pre-disturbed states, the extent to which communities in early stages of recovery could be affected by multiple anthropogenic stressors is poorly understood. Pervasive and rising anthropogenic stressors in coastal marine systems that could interactively affect the recovery of these systems following natural disturbances include high sedimentation, nutrient enrichment, and overfishing. Using a 6-month field experiment, we examined the effects of all combinations of these three stressors on key functional groups in the benthic community growing on simulated, post-disturbance reef patches within a system recovering from large-scale natural disturbances (corallivorous seastar outbreak and cyclone). Our study revealed that sedimentation, nutrient enrichment, and overfishing (simulated using exclusion cages) interactively affected coral survival and algal growth, with taxon-specific effects at multiple scales. First, our treatments affected corals and algae differently, with sedimentation being more detrimental to macroalgal growth but less detrimental to coral ( Porites rus) survival in caged plots, driving significant interactions between sedimentation and caging for both taxa. We also observed distinct responses between coral species and between algal functional groups, with the most extensive responses from algal turf biomass, for which sedimentation suppressed the synergistic (positive) combined effect of nutrient enrichment and caging. Our findings suggest that different combinations of ubiquitous anthropogenic stressors, related to either sea- or land-based activities, interactively influence community recovery from disturbance and may alter species compositions in the resulting community. Our findings further suggest that anthropogenic stressors could promote further degradation of coral reefs following natural disturbances by inhibiting recovery to coral-dominated states that provide vital ecosystem services to coastal populations worldwide.
Metagenomic Insights of Microbial Feedbacks to Elevated CO2 (Invited)
NASA Astrophysics Data System (ADS)
Zhou, J.; Tu, Q.; Wu, L.; He, Z.; Deng, Y.; Van Nostrand, J. D.
2013-12-01
Understanding the responses of biological communities to elevated CO2 (eCO2) is a central issue in ecology and global change biology, but its impacts on the diversity, composition, structure, function, interactions and dynamics of soil microbial communities remain elusive. In this study, we first examined microbial responses to eCO2 among six FACE sites/ecosystems using a comprehensive functional gene microarray (GeoChip), and then focused on details of metagenome sequencing analysis in one particular site. GeoChip is a comprehensive functional gene array for examining the relationships between microbial community structure and ecosystem functioning and is a very powerful technology for biogeochemical, ecological and environmental studies. The current version of GeoChip (GeoChip 5.0) contains approximately 162,000 probes from 378,000 genes involved in C, N, S and P cycling, organic contaminant degradation, metal resistance, antibiotic resistance, stress responses, metal homeostasis, virulence, pigment production, bacterial phage-mediated lysis, soil beneficial microorganisms, and specific probes for viruses, protists, and fungi. Our experimental results revealed that both ecosystem and CO2 significantly (p < 0.05) affected the functional composition, structure and metabolic potential of soil microbial communities with the ecosystem having much greater influence (~47%) than CO2 (~1.3%) or CO2 and ecosystem (~4.1%). On one hand, microbial responses to eCO2 shared some common patterns among different ecosystems, such as increased abundances for key functional genes involved in nitrogen fixation, carbon fixation and degradation, and denitrification. On the other hand, more ecosystem-specific microbial responses were identified in each individual ecosystem. Such changes in the soil microbial community structure were closely correlated with geographic distance, soil NO3-N, NH4-N and C/N ratio. Further metagenome sequencing analysis of soil microbial communities in one particular site showed eCO2 altered the overall structure of soil microbial communities with ambient CO2 samples retaining a higher functional gene diversity than eCO2 samples. Also the taxonomic diversity of functional genes decreased at eCO2. Random matrix theory (RMT)-based network analysis showed that the identified networks under ambient and elevated CO2 were substantially different in terms of overall network topology, network composition, node overlap, module preservation, module-based higher order organization (meta-modules), topological roles of individual nodes, and network hubs, indicating that elevated CO2 dramatically altered the network interactions among different phylogenetic and functional groups/populations. In addition, the changes in network structure were significantly correlated with soil carbon and nitrogen content, indicating the potential importance of network interactions in ecosystem functioning. Taken together, this study indicates that eCO2 may decrease the overall functional and taxonomic diversity of soil microbial communities, but such effects appeared to be ecosystem-specific, which makes it more challenging for predicting global or regional terrestrial ecosystems responses to eCO2.
NASA Astrophysics Data System (ADS)
Cable, J. M.; Ogle, K.; Cable, B.; Welker, J. M.
2010-12-01
The interior Alaskan boreal forest ecosystem is underlain by permafrost and thus has complex soil moisture and soil thermal properties, and this complexity is further amplified by its dry climate with low snow in winter and minimal summer rain. This combination of climate, cryosphere, and hydrology characteristics impact vegetation ecophysiological and ecohydrological processes, such as the distribution of plant-available water sources and the temporal dynamics of evapotranspiration (ET). As a major component of ET, plant transpiration is typically sustained throughout a variety of climatic conditions. The water sources (rain, thawing ground ice, etc) supporting plant transpiration are relatively unquantified, particularly on a seasonal time scale. In this study, we ask: what are the seasonal dynamics of plant water use in the boreal forest, and how are the trends at the plant scale translated into ecosystem-level water fluxes? Thus, the objective of this study was to characterize the spatial and temporal dynamics of boreal plant water use and water flux throughout the growing season. To do this, we measured the stable isotope (δ18O and δD) composition of water from precipitation, ground ice, soils, plants, and vapor from 5 heights in the ecosystem during the growing season in a boreal system near Fairbanks, Alaska underlain by permafrost. We analyzed the plant water, soil water, and vapor isotope data in a Bayesian framework to quantify the plant water uptake profiles and to explore the implications of shifting water sources for ecosystem ET. The vapor isotope data (across all heights) ranged from -216 to -190 ‰ (δD) and -27 to -21 ‰ (δ18O) in late July to slightly more depleted in late August, with values ranging from -232 to -203 ‰ (δD) and -29 to -20 ‰ (δ18O). Diurnal trends are such that the isotope composition of vapor became more enriched over the day as ET rates increased, and vapor at the 0.25 m height was generally more enriched relative to the 6 m height. Plant and soil isotope sampling from prior years shows that dwarf birch (B. nana, the dominant shrub in the ecosystem sampled by the vapor analyzer) gets about 50% of its water from surface, rain-fed soil layers and 50% of its water from deeper soil layers (fed by thawing ground ice). This is one of the first studies to show the patterns of boreal ecosystem water isotopes at diurnal (vapor) and seasonal (plant) scales. Understanding the isotopic composition of water vapor from northern ecosystems is paramount to advancing estimates of biosphere-atmosphere interactions and the nature of ecohydrologic feedbacks to the changing state of the North.
Soil ecosystem functioning under climate change: plant species and community effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kardol, Paul; Cregger, Melissa; Campany, Courtney E
2010-01-01
Feedbacks of terrestrial ecosystems to climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the microbial communities that feed on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and water availability. Specifically, we collected soils at the plot level (plant community soils), and beneathmore » dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: 1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activities, and soil nematodes. Multiple climate change factors can interact to shape ecosystems, but in this case, those interactions were largely driven by changes in water availability. 2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning and this impact was not obvious when looking at plant community soils. Climate change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. In sum, these results indicate that accurate assessments of climate change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate change-induced shifts in plant community composition will likely modify or counteract the direct impact of climate change on soil ecosystem functioning, and hence, these indirect effects should be taken into account when predicting how climate change will alter ecosystem functioning.« less
Soil ecosystem functioning under climate change: plant species and community effects.
Kardol, Paul; Cregger, Melissa A; Campany, Courtney E; Classen, Aimee T
2010-03-01
Feedbacks of terrestrial ecosystems to atmospheric and climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the soil communities that depend on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and precipitation in Tennessee (USA). Specifically, we collected soils at the plot level (plant community soils) and beneath dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: (1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activity, and soil nematodes. Multiple climate-change factors can interact to shape ecosystems, but in our study, those interactions were largely driven by changes in water. (2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning, and this impact was not obvious when looking at plant community soils. Climate-change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. These results indicate that accurate assessments of climate-change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate-change-induced shifts in plant community composition will likely modify or counteract the direct impact of atmospheric and climate change on soil ecosystem functioning, and hence, these indirect effects should be taken into account when predicting the manner in which global change will alter ecosystem functioning.
Fjøsne, Trine; Myromslien, Frøydis D; Wilson, Robert C; Rudi, Knut
2018-05-01
Soil represents one of the most complex microbial ecosystems on earth. It is well-known that invertebrates such as earthworms have a major impact on transformations of organic material in soil, while their effect on the soil microbiota remains largely unknown. The aim of our work was therefore to investigate the association of earthworms with temporal stability, composition and diversity in two soil microbiota experimental series. We found that earthworms were consistently associated with an increase in subgroups of Gammaproteobacteria, despite major differences in microbiota composition and temporal stability across the experimental series. Our results therefore suggest that earthworms can affect subpopulation dynamics in the soil microbiota, irrespective of the total microbiota composition. If the soil microbiota is comprised of independent microbiota components, this can contribute to our general understanding of the complexity of the soil microbiota.
Yoo, Keunje; Lee, Tae Kwon; Choi, Eun Joo; Yang, Jihoon; Shukla, Sudheer Kumar; Hwang, Sang-Il; Park, Joonhong
2017-01-01
Bioaerosols significantly affect atmospheric processes while they undergo long-range vertical and horizontal transport and influence atmospheric chemistry and physics and climate change. Accumulating evidence suggests that exposure to bioaerosols may cause adverse health effects, including severe disease. Studies of bioaerosols have primarily focused on their chemical composition and largely neglected their biological composition and the negative effects of biological composition on ecosystems and human health. Here, current molecular methods for the identification, quantification, and distribution of bioaerosol agents are reviewed. Modern developments in environmental microbiology technology would be favorable in elucidation of microbial temporal and spatial distribution in the atmosphere at high resolution. In addition, these provide additional supports for growing evidence that microbial diversity or composition in the bioaerosol is an indispensable environmental aspect linking with public health. Copyright © 2016. Published by Elsevier B.V.
Modeling the effect of photosynthetic vegetation properties on the NDVI--LAI relationship.
Steltzer, Heidi; Welker, Jeffrey M
2006-11-01
Developing a relationship between the normalized difference vegetation index (NDVI) and the leaf area index (LAI) is essential to describe the pattern of spatial or temporal variation in LAI that controls carbon, water, and energy exchange in many ecosystem process models. Photosynthetic vegetation (PV) properties can affect the estimation of LAI, but no models integrate the effects of multiple species. We developed four alternative NDVI-LAI models, three of which integrate PV effects: no PV effects, leaf-level effects, canopy-level effects, and effects at both levels. The models were fit to data across the natural range of variation in NDVI for a widespread High Arctic ecosystem. The weight of evidence supported the canopy-level model (Akaike weight, wr = 0.98), which includes species-specific canopy coefficients that primarily scale fractional PV cover to LAI by accounting for the area of unexposed PV. Modeling the canopy-level effects improved prediction of LAI (R2 = 0.82) over the model with no PV effect (R2 = 0.71) across the natural range of variation in NDVI but did not affect the site-level estimate of LAI. Satellite-based methods to estimate species composition, a variable in the model, will need to be developed. We expect that including the effects of PV properties in NDVI-LAI models will improve prediction of LAI where species composition varies across space or changes over time.
Landscape-scale processes influence riparian plant composition along a regulated river
Palmquist, Emily C.; Ralston, Barbara; Merritt, David M.; Shafroth, Patrick B.
2018-01-01
Hierarchical frameworks are useful constructs when exploring landscape- and local-scale factors affecting patterns of vegetation in riparian areas. In drylands, which have steep environmental gradients and high habitat heterogeneity, landscape-scale variables, such as climate, can change rapidly along a river's course, affecting the relative influence of environmental variables at different scales. To assess how landscape-scale factors change the structure of riparian vegetation, we measured riparian vegetation composition along the Colorado River through Grand Canyon, determined which factors best explain observed changes, identified how richness and functional diversity vary, and described the implications of our results for river management. Cluster analysis identified three divergent floristic groups that are distributed longitudinally along the river. These groups were distributed along gradients of elevation, temperature and seasonal precipitation, but were not associated with annual precipitation or local-scale factors. Species richness and functional diversity decreased as a function of distance downstream showing that changing landscape-scale factors result in changes to ecosystem characteristics. Species composition and distribution remain closely linked to seasonal precipitation and temperature. These patterns in floristic composition in a semiarid system inform management and provide insights into potential future changes as a result of shifts in climate and changes in flow management.
Visser, Jenneke M.; Duke-Sylvester, Scott M.; Carter, Jacoby; Broussard, Whitney P.
2013-01-01
The coastal wetlands of Louisiana are a unique ecosystem that supports a diversity of wildlife as well as a diverse community of commercial interests of both local and national importance. The state of Louisiana has established a 5-year cycle of scientific investigation to provide up-to-date information to guide future legislation and regulation aimed at preserving this critical ecosystem. Here we report on a model that projects changes in plant community distribution and composition in response to environmental conditions. This model is linked to a suite of other models and requires input from those that simulate the hydrology and morphology of coastal Louisiana. Collectively, these models are used to assess how alternative management plans may affect the wetland ecosystem through explicit spatial modeling of the physical and biological processes affected by proposed modifications to the ecosystem. We have also taken the opportunity to advance the state-of-the-art in wetland plant community modeling by using a model that is more species-based in its description of plant communities instead of one based on aggregated community types such as brackish marsh and saline marsh. The resulting model provides an increased level of ecological detail about how wetland communities are expected to respond. In addition, the output from this model provides critical inputs for estimating the effects of management on higher trophic level species though a more complete description of the shifts in habitat.
Understanding the biological underpinnings of ecohydrological processes
NASA Astrophysics Data System (ADS)
Huxman, T. E.; Scott, R. L.; Barron-Gafford, G. A.; Hamerlynck, E. P.; Jenerette, D.; Tissue, D. T.; Breshears, D. D.; Saleska, S. R.
2012-12-01
Climate change presents a challenge for predicting ecosystem response, as multiple factors drive both the physical and life processes happening on the land surface and their interactions result in a complex, evolving coupled system. For example, changes in surface temperature and precipitation influence near-surface hydrology through impacts on system energy balance, affecting a range of physical processes. These changes in the salient features of the environment affect biological processes and elicit responses along the hierarchy of life (biochemistry to community composition). Many of these structural or process changes can alter patterns of soil water-use and influence land surface characteristics that affect local climate. Of the many features that affect our ability to predict the future dynamics of ecosystems, it is this hierarchical response of life that creates substantial complexity. Advances in the ability to predict or understand aspects of demography help describe thresholds in coupled ecohydrological system. Disentangling the physical and biological features that underlie land surface dynamics following disturbance are allowing a better understanding of the partitioning of water in the time-course of recovery. Better predicting the timing of phenology and key seasonal events allow for a more accurate description of the full functional response of the land surface to climate. In addition, explicitly considering the hierarchical structural features of life are helping to describe complex time-dependent behavior in ecosystems. However, despite this progress, we have yet to build an ability to fully account for the generalization of the main features of living systems into models that can describe ecohydrological processes, especially acclimation, assembly and adaptation. This is unfortunate, given that many key ecosystem services are functions of these coupled co-evolutionary processes. To date, both the lack of controlled measurements and experimentation has precluded determination of sufficient theoretical development. Understanding the land-surface response and feedback to climate change requires a mechanistic understanding of the coupling of ecological and hydrological processes and an expansion of theory from the life sciences to appropriately contribute to the broader Earth system science goal.
Zhang, Tao; Yang, Xue; Guo, Rui; Guo, Jixun
2016-01-01
To examine the influence of elevated temperature and nitrogen (N) addition on species composition and development of arbuscular mycorrhizal fungi (AMF) and the effect of AMF on plant community structure and aboveground productivity, we conducted a 5-year field experiment in a temperate meadow in northeast China and a subsequent greenhouse experiment. In the field experiment, N addition reduced spore population diversity and richness of AMF and suppressed the spore density and the hyphal length density (HLD). Elevated temperature decreased spore density and diameter and increased the HLD, but did not affect AMF spore population composition. In the greenhouse experiment, AMF altered plant community composition and increased total aboveground biomass in both elevated temperature and N addition treatments; additionally, AMF also increased the relative abundance and aboveground biomass of the grasses Leymus chinensis (Poaceae) and Setaria viridis (Gramineae) and significantly reduced the relative abundance and aboveground biomass of the Suaeda corniculata (Chenopodiaceae). Although elevated temperature and N addition can affect species composition or suppress the development of AMF, AMF are likely to play a vital role in increasing plant diversity and productivity. Notably, AMF might reduce the threat of climate change induced degradation of temperate meadow ecosystems. PMID:27098761
NASA Astrophysics Data System (ADS)
Zhang, Tao; Yang, Xue; Guo, Rui; Guo, Jixun
2016-04-01
To examine the influence of elevated temperature and nitrogen (N) addition on species composition and development of arbuscular mycorrhizal fungi (AMF) and the effect of AMF on plant community structure and aboveground productivity, we conducted a 5-year field experiment in a temperate meadow in northeast China and a subsequent greenhouse experiment. In the field experiment, N addition reduced spore population diversity and richness of AMF and suppressed the spore density and the hyphal length density (HLD). Elevated temperature decreased spore density and diameter and increased the HLD, but did not affect AMF spore population composition. In the greenhouse experiment, AMF altered plant community composition and increased total aboveground biomass in both elevated temperature and N addition treatments; additionally, AMF also increased the relative abundance and aboveground biomass of the grasses Leymus chinensis (Poaceae) and Setaria viridis (Gramineae) and significantly reduced the relative abundance and aboveground biomass of the Suaeda corniculata (Chenopodiaceae). Although elevated temperature and N addition can affect species composition or suppress the development of AMF, AMF are likely to play a vital role in increasing plant diversity and productivity. Notably, AMF might reduce the threat of climate change induced degradation of temperate meadow ecosystems.
Microbial Ecology along the Gastrointestinal Tract
Hillman, Ethan T.; Lu, Hang; Yao, Tianming; Nakatsu, Cindy H.
2017-01-01
The ecosystem of the human gastrointestinal (GI) tract traverses a number of environmental, chemical, and physical conditions because it runs from the oral cavity to the anus. These differences in conditions along with food or other ingested substrates affect the composition and density of the microbiota as well as their functional roles by selecting those that are the most suitable for that environment. Previous studies have mostly focused on Bacteria, with the number of studies conducted on Archaea, Eukarya, and Viruses being limited despite their important roles in this ecosystem. Furthermore, due to the challenges associated with collecting samples directly from the inside of humans, many studies are still exploratory, with a primary focus on the composition of microbiomes. Thus, mechanistic studies to investigate functions are conducted using animal models. However, differences in physiology and microbiomes need to be clarified in order to aid in the translation of animal model findings into the context of humans. This review will highlight Bacteria, Archaea, Fungi, and Viruses, discuss differences along the GI tract of healthy humans, and perform comparisons with three common animal models: rats, mice, and pigs. PMID:29129876
Habitat heterogeneity and connectivity shape microbial communities in South American peatlands
Oloo, Felix; Valverde, Angel; Quiroga, María Victoria; Vikram, Surendra; Cowan, Don; Mataloni, Gabriela
2016-01-01
Bacteria play critical roles in peatland ecosystems. However, very little is known of how habitat heterogeneity affects the structure of the bacterial communities in these ecosystems. Here, we used amplicon sequencing of the 16S rRNA and nifH genes to investigate phylogenetic diversity and bacterial community composition in three different sub-Antarctic peat bog aquatic habitats: Sphagnum magellanicum interstitial water, and water from vegetated and non-vegetated pools. Total and putative nitrogen-fixing bacterial communities from Sphagnum interstitial water differed significantly from vegetated and non-vegetated pool communities (which were colonized by the same bacterial populations), probably as a result of differences in water chemistry and biotic interactions. Total bacterial communities from pools contained typically aquatic taxa, and were more dissimilar in composition and less species rich than those from Sphagnum interstitial waters (which were enriched in taxa typically from soils), probably reflecting the reduced connectivity between the former habitats. These results show that bacterial communities in peatland water habitats are highly diverse and structured by multiple concurrent factors. PMID:27162086
Ecosystem engineering by a colonial mammal: how prairie dogs structure rodent communities.
VanNimwegen, Ron E; Kretzer, Justin; Cully, Jack F
2008-12-01
As ecosystem engineers, prairie dogs (Cynomys spp.) physically alter their environment, but the mechanism by which these alterations affect associated faunal composition is not well known. We examined how rodent and vegetation communities responded to prairie dog colonies and landcover at the Cimarron National Grassland in southwest Kansas, USA. We trapped rodents and measured vegetation structure on and off colonies in 2000 and 2003. We plotted two separate ordinations of trapping grids: one based on rodent counts and a second based on vegetation variables. We regressed three factors on each ordination: (1) colony (on-colony and off-colony), (2) cover (shortgrass and sandsage), and (3) habitat (factorial cross of colony x cover). Rodent communities differed by colony but not cover. Vegetation differed across both gradients. Rodent responses to habitat reflected those of colony and cover, but vegetation was found to differ across cover only in the sandsage prairie. This interaction suggested that rodent composition responded to prairie dog colonies, but independently of vegetation differences. We conclude that burrowing and soil disturbance are more important than vegetation cropping in structuring rodent communities.
Determining the mechanism by which fish diversity influences production.
Carey, Michael P; Wahl, David H
2011-09-01
Understanding the ability of biodiversity to govern ecosystem function is essential with current pressures on natural communities from species invasions and extirpations. Changes in fish communities can be a major determinant of food web dynamics, and even small shifts in species composition or richness can translate into large effects on ecosystems. In addition, there is a large information gap in extrapolating results of small-scale biodiversity-ecosystem function experiments to natural systems with realistic environmental complexity. Thus, we tested the key mechanisms (resource complementarity and selection effect) for biodiversity to influence fish production in mesocosms and ponds. Fish diversity treatments were created by replicating species richness and species composition within each richness level. In mesocosms, increasing richness had a positive effect on fish biomass with an overyielding pattern indicating species mixtures were more productive than any individual species. Additive partitioning confirmed a positive net effect of biodiversity driven by a complementarity effect. Productivity was less affected by species diversity when species were more similar. Thus, the primary mechanism driving fish production in the mesocosms was resource complementarity. In the ponds, the mechanism driving fish production changed through time. The key mechanism was initially resource complementarity until production was influenced by the selection effect. Varying strength of intraspecific interactions resulting from differences in resource levels and heterogeneity likely caused differences in mechanisms between the mesocosm and pond experiments, as well as changes through time in the ponds. Understanding the mechanisms by which fish diversity governs ecosystem function and how environmental complexity and resource levels alter these relationships can be used to improve predictions for natural systems.
Lee, Mark A; Manning, Pete; Walker, Catherine S; Power, Sally A
2014-12-01
Grasslands provide many ecosystem services including carbon storage, biodiversity preservation and livestock forage production. These ecosystem services will change in the future in response to multiple global environmental changes, including climate change and increased nitrogen inputs. We conducted an experimental study over 3 years in a mesotrophic grassland ecosystem in southern England. We aimed to expose plots to rainfall manipulation that simulated IPCC 4th Assessment projections for 2100 (+15% winter rainfall and -30% summer rainfall) or ambient climate, achieving +15% winter rainfall and -39% summer rainfall in rainfall-manipulated plots. Nitrogen (40 kg ha(-1) year(-1)) was also added to half of the experimental plots in factorial combination. Plant species composition and above ground biomass were not affected by rainfall in the first 2 years and the plant community did not respond to nitrogen enrichment throughout the experiment. In the third year, above-ground plant biomass declined in rainfall-manipulated plots, driven by a decline in the abundances of grass species characteristic of moist soils. Declining plant biomass was also associated with changes to arthropod communities, with lower abundances of plant-feeding Auchenorrhyncha and carnivorous Araneae indicating multi-trophic responses to rainfall manipulation. Plant and arthropod community composition and plant biomass responses to rainfall manipulation were not modified by nitrogen enrichment, which was not expected, but may have resulted from prior nitrogen saturation and/or phosphorus limitation. Overall, our study demonstrates that climate change may in future influence plant productivity and induce multi-trophic responses in grasslands.
Zhang, Li; Wang, Shengrui; Xu, Yisheng; Shi, Quan; Zhao, Haichao; Jiang, Bin; Yang, Jiachun
2016-12-01
The compositional properties of water-extractable organic nitrogen (WEON) affect its behavior in lake ecosystems. This work is the first comprehensive study using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) for the characterization of the molecular composition of WEON in lake sediment. In sediments of Erhai Lake in China, this study found complex WEON species, with N-containing compounds in the northern, central, and southern regions contributing 34.47%, 42.44%, and 40.6%, respectively, of total compounds. Additionally, a van Krevelen diagram revealed that lignin components were dominant in sediment WEON structures (68% of the total), suggesting terrestrial sources. Furthermore, this study applied ESI-FT-ICR-MS to the examination of the environmental processes of lake sediment WEON on a molecular level. The results indicated that sediment depth impacted WEON composition and geochemical processes. Compared with other ecosystems, the double bond equivalent (DBE) value was apparently lower in Erhai sediment, indicating the presence of relatively fewer and smaller aromatic compounds. In addition, the presence of a large number of N-containing species and abundant oxidized nitrogen functional compounds that were likely to biodegrade may have further increased the potential releasing risk of WEON from Erhai sediment under certain environmental conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Meltwater export of prokaryotic cells from the Greenland ice sheet.
Cameron, Karen A; Stibal, Marek; Hawkings, Jon R; Mikkelsen, Andreas B; Telling, Jon; Kohler, Tyler J; Gözdereliler, Erkin; Zarsky, Jakub D; Wadham, Jemma L; Jacobsen, Carsten S
2017-02-01
Microorganisms are flushed from the Greenland Ice Sheet (GrIS) where they may contribute towards the nutrient cycling and community compositions of downstream ecosystems. We investigate meltwater microbial assemblages as they exit the GrIS from a large outlet glacier, and as they enter a downstream river delta during the record melt year of 2012. Prokaryotic abundance, flux and community composition was studied, and factors affecting community structures were statistically considered. The mean concentration of cells exiting the ice sheet was 8.30 × 10 4 cells mL -1 and we estimate that ∼1.02 × 10 21 cells were transported to the downstream fjord in 2012, equivalent to 30.95 Mg of carbon. Prokaryotic microbial assemblages were dominated by Proteobacteria, Bacteroidetes, and Actinobacteria. Cell concentrations and community compositions were stable throughout the sample period, and were statistically similar at both sample sites. Based on our observations, we argue that the subglacial environment is the primary source of the river-transported microbiota, and that cell export from the GrIS is dependent on discharge. We hypothesise that the release of subglacial microbiota to downstream ecosystems will increase as freshwater flux from the GrIS rises in a warming world. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
Cusack, Daniela F; Silver, Whendee L; Torn, Margaret S; Burton, Sarah D; Firestone, Mary K
2011-03-01
Microbial communities and their associated enzyme activities affect the amount and chemical quality of carbon (C) in soils. Increasing nitrogen (N) deposition, particularly in N-rich tropical forests, is likely to change the composition and behavior of microbial communities and feed back on ecosystem structure and function. This study presents a novel assessment of mechanistic links between microbial responses to N deposition and shifts in soil organic matter (SOM) quality and quantity. We used phospholipid fatty acid (PLFA) analysis and microbial enzyme assays in soils to assess microbial community responses to long-term N additions in two distinct tropical rain forests. We used soil density fractionation and 13C nuclear magnetic resonance (NMR) spectroscopy to measure related changes in SOM pool sizes and chemical quality. Microbial biomass increased in response to N fertilization in both tropical forests and corresponded to declines in pools of low-density SOM. The chemical quality of this soil C pool reflected ecosystem-specific changes in microbial community composition. In the lower-elevation forest, there was an increase in gram-negative bacteria PLFA biomass, and there were significant losses of labile C chemical groups (O-alkyls). In contrast, the upper-elevation tropical forest had an increase in fungal PLFAs with N additions and declines in C groups associated with increased soil C storage (alkyls). The dynamics of microbial enzymatic activities with N addition provided a functional link between changes in microbial community structure and SOM chemistry. Ecosystem-specific changes in microbial community composition are likely to have far-reaching effects on soil carbon storage and cycling. This study indicates that microbial communities in N-rich tropical forests can be sensitive to added N, but we can expect significant variability in how ecosystem structure and function respond to N deposition among tropical forest types.
Plant species and functional group combinations affect green roof ecosystem functions.
Lundholm, Jeremy; Macivor, J Scott; Macdougall, Zachary; Ranalli, Melissa
2010-03-12
Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms governing biodiversity-ecosystem functioning relationships in green roof ecosystems.
Responses of coastal ecosystems to environmental variability in emerging countries from the Americas
NASA Astrophysics Data System (ADS)
Muniz, Pablo; Calliari, Danilo; Giménez, Luis; Defeo, Omar
2015-12-01
Coastal ecosystems supply critical ecological services and benefits to human society (Barbier et al., 2011). Nearly 38% of the global monetary value of annual ecosystem services arises from estuaries, seagrass and algal beds, coral reefs and shelf ecosystems (Costanza et al., 1997). However, these ecosystems are being increasingly affected by multiple drivers acting simultaneously at several spatial and temporal scales (Lotze et al., 2006; Hoegh-Guldberg and Bruno, 2010). Climate change (temperature increase, sea level rise, ocean acidification), human activities (e.g. land use/cover change, pollution, overexploitation, translocation of species), and extreme natural events (storms, floods, droughts) are the most important drivers degrading the resilience of coastal systems. Such factors operate on individual level processes, leading organisms away from their niches (Steinberg, 2013) or modifying rates and phenology (Giménez, 2011; Mackas et al., 2012, Deutsch et al., 2015). All of these influence ecosystem level processes, causing changes in species composition, diversity losses and deterioration of ecosystem functions (Worm et al., 2006; Defeo et al., 2009; Doney et al., 2011; Dornelas et al., 2014). The rate of change in habitats, species distributions and whole ecosystems has accelerated over the past decades as shown, for example, in the increase in the frequency of events of coastal hypoxia (Diaz and Rosenberg, 2008,Vaquer-Sunyer and Duarte, 2008), extensive translocation of species by global shipping (Seebens et al., 2013), and in ecosystem regime shifts (Möllmann et al., 2015 and references therein). Some coastal areas have been transformed into novel ecosystems with physical and biological characteristics outside their natural range of variability (Cloern et al., 2015) while others are likely to become sink areas, limiting the migration of marine species away from warming habitats (Burrows et al., 2014).
Ecosystem engineering effects on species diversity across ecosystems: a meta-analysis.
Romero, Gustavo Q; Gonçalves-Souza, Thiago; Vieira, Camila; Koricheva, Julia
2015-08-01
Ecosystem engineering is increasingly recognized as a relevant ecological driver of diversity and community composition. Although engineering impacts on the biota can vary from negative to positive, and from trivial to enormous, patterns and causes of variation in the magnitude of engineering effects across ecosystems and engineer types remain largely unknown. To elucidate the above patterns, we conducted a meta-analysis of 122 studies which explored effects of animal ecosystem engineers on species richness of other organisms in the community. The analysis revealed that the overall effect of ecosystem engineers on diversity is positive and corresponds to a 25% increase in species richness, indicating that ecosystem engineering is a facilitative process globally. Engineering effects were stronger in the tropics than at higher latitudes, likely because new or modified habitats provided by engineers in the tropics may help minimize competition and predation pressures on resident species. Within aquatic environments, engineering impacts were stronger in marine ecosystems (rocky shores) than in streams. In terrestrial ecosystems, engineers displayed stronger positive effects in arid environments (e.g. deserts). Ecosystem engineers that create new habitats or microhabitats had stronger effects than those that modify habitats or cause bioturbation. Invertebrate engineers and those with lower engineering persistence (<1 year) affected species richness more than vertebrate engineers which persisted for >1 year. Invertebrate species richness was particularly responsive to engineering impacts. This study is the first attempt to build an integrative framework of engineering effects on species diversity; it highlights the importance of considering latitude, habitat, engineering functional group, taxon and persistence of their effects in future theoretical and empirical studies. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.
Plant Species and Functional Group Combinations Affect Green Roof Ecosystem Functions
Lundholm, Jeremy; MacIvor, J. Scott; MacDougall, Zachary; Ranalli, Melissa
2010-01-01
Background Green roofs perform ecosystem services such as summer roof temperature reduction and stormwater capture that directly contribute to lower building energy use and potential economic savings. These services are in turn related to ecosystem functions performed by the vegetation layer such as radiation reflection and transpiration, but little work has examined the role of plant species composition and diversity in improving these functions. Methodology/Principal Findings We used a replicated modular extensive (shallow growing- medium) green roof system planted with monocultures or mixtures containing one, three or five life-forms, to quantify two ecosystem services: summer roof cooling and water capture. We also measured the related ecosystem properties/processes of albedo, evapotranspiration, and the mean and temporal variability of aboveground biomass over four months. Mixtures containing three or five life-form groups, simultaneously optimized several green roof ecosystem functions, outperforming monocultures and single life-form groups, but there was much variation in performance depending on which life-forms were present in the three life-form mixtures. Some mixtures outperformed the best monocultures for water capture, evapotranspiration, and an index combining both water capture and temperature reductions. Combinations of tall forbs, grasses and succulents simultaneously optimized a range of ecosystem performance measures, thus the main benefit of including all three groups was not to maximize any single process but to perform a variety of functions well. Conclusions/Significance Ecosystem services from green roofs can be improved by planting certain life-form groups in combination, directly contributing to climate change mitigation and adaptation strategies. The strong performance by certain mixtures of life-forms, especially tall forbs, grasses and succulents, warrants further investigation into niche complementarity or facilitation as mechanisms governing biodiversity-ecosystem functioning relationships in green roof ecosystems. PMID:20300196
Jordan, Nicholas R.; Aldrich-Wolfe, Laura; Huerd, Sheri C.; Larson, Diane L.; Muehlbauer, Gary
2012-01-01
Diversified grasslands that contain native plant species can produce biofuels, support sustainable grazing systems, and produce other ecosystem services. However, ecosystem service production can be disrupted by invasion of exotic perennial plants, and these plants can have soil-microbial “legacies” that may interfere with establishment and maintenance of diversified grasslands even after effective management of the invasive species. The nature of such legacies is not well understood, but may involve suppression of mutualisms between native species and soil microbes. In this study, we tested the hypotheses that legacy effects of invasive species change colonization rates, diversity, and composition of arbuscular-mycorrhizal fungi (AMF) associated with seedlings of co-occurring invasive and native grassland species. In a glasshouse, experimental soils were conditioned by cultivating three invasive grassland perennials, three native grassland perennials, and a native perennial mixture. Each was grown separately through three cycles of growth, after which we used T-RFLP analysis to characterize AMF associations of seedlings of six native perennial and six invasive perennial species grown in these soils. Legacy effects of soil conditioning by invasive species did not affect AMF richness in seedling roots, but did affect AMF colonization rates and the taxonomic composition of mycorrhizal associations in seedling roots. Moreover, native species were more heavily colonized by AMF and roots of native species had greater AMF richness (number of AMF operational taxonomic units per seedling) than did invasive species. The invasive species used to condition soil in this experiment have been shown to have legacy effects on biomass of native seedlings, reducing their growth in this and a previous similar experiment. Therefore, our results suggest that successful plant invaders can have legacies that affect soil-microbial associations of native plants and that these effects can inhibit growth of native plant species in invaded communities.
NASA Astrophysics Data System (ADS)
Palagushkina, O. V.; Zaripova, N. R.; Mingazova, N. M.; Yarutkin, T. O.
2018-01-01
The ecosystem of Lake Bolshoye Goluboe had undergone a strong anthropogenic impact in 2013 as a result of the implementation of the dam reconstruction project. Studies in 2014 have shown that the implementation of the project for the reconstruction of the Bolshoye Goluboe dam has negatively affected on the species richness of macrophytes. The total species composition of the lake and species richness of the water core decreased twofold, Hippuris vulgaris L., Zannichellia palustris L, Ceratophyllum demersum L., and the species listed in the Red Book of the Republic of Tatarstan - Batrachium circinatum (Sibth.) Spach disappeared from the species composition. The area occupied by macrophyte communities has decreased by 55%.
Kleindienst, Sara; Paul, John H; Joye, Samantha B
2015-06-01
Dispersants are globally and routinely applied as an emergency response to oil spills in marine ecosystems with the goal of chemically enhancing the dissolution of oil into water, which is assumed to stimulate microbially mediated oil biodegradation. However, little is known about how dispersants affect the composition of microbial communities or their biodegradation activities. The published findings are controversial, probably owing to variations in laboratory methods, the selected model organisms and the chemistry of different dispersant-oil mixtures. Here, we argue that an in-depth assessment of the impacts of dispersants on microorganisms is needed to evaluate the planning and use of dispersants during future responses to oil spills.
Hirota, Mitsuru; Zhang, Pengcheng; Gu, Song; Shen, Haihua; Kuriyama, Takeo; Li, Yingnian; Tang, Yanhong
2010-07-01
Characterizing the spatial variation in the CO2 flux at both large and small scales is essential for precise estimation of an ecosystem's CO2 sink strength. However, little is known about small-scale CO2 flux variations in an ecosystem. We explored these variations in a Kobresia meadow ecosystem on the Qinghai-Tibetan plateau in relation to spatial variability in species composition and biomass. We established 14 points and measured net ecosystem production (NEP), gross primary production (GPP), and ecosystem respiration (Re) in relation to vegetation biomass, species richness, and environmental variables at each point, using an automated chamber system during the 2005 growing season. Mean light-saturated NEP and GPP were 30.3 and 40.5 micromol CO2 m(-2) s(-1) [coefficient of variation (CV), 42.7 and 29.4], respectively. Mean Re at 20 degrees C soil temperature, Re(20), was -10.9 micromol CO2 m(-2) s(-1) (CV, 27.3). Re(20) was positively correlated with vegetation biomass. GPP(max) was positively correlated with species richness, but 2 of the 14 points were outliers. Vegetation biomass was the main determinant of spatial variation of Re, whereas species richness mainly affected that of GPP, probably reflecting the complexity of canopy structure and light partitioning in this small grassland patch.
NASA Astrophysics Data System (ADS)
Nehr, Sascha; Franzen-Reuter, Isabelle; Kucejko, Catharina
2017-10-01
Man-made activities have caused unexampled changes of our environment during the last two centuries. Due to emissions of a vast number of pollutants the composition of the Earth's atmosphere is continuously changing, and the consequences for humans and for ecosystems are only partly understood at present. Once released to the atmosphere, the emitted substances undergo physical and chemical degradation. Many of the substances detected in ambient air are toxic or carcinogenic and might cause respiratory and cardiovascular diseases. Furthermore, air pollutants are influencing acidification, eutrophication, global warming, and biodiversity. Therefore soil quality, water quality, air quality, ecosystem exposure to pollutant deposition, biodiversity, and climate change are coupled problems (Schlesinger, 1997; Steffen et al., 2005; Ehlers et al., 2006; Rockström et al., 2009).
A meta-analysis of zooplankton functional traits influencing ecosystem function.
Hébert, Marie-Pier; Beisner, Beatrix E; Maranger, Roxane
2016-04-01
The use of functional traits to characterize community composition has been proposed as a more effective way to link community structure to ecosystem functioning. Organismal morphology, body stoichiometry, and physiology can be readily linked to large-scale ecosystem processes through functional traits that inform on interspecific and species-environment interactions; yet such effect traits are still poorly included in trait-based approaches. Given their key trophic position in aquatic ecosystems, individual zooplankton affect energy fluxes and elemental processing. We compiled a large database of zooplankton traits contributing to carbon, nitrogen, and phosphorus cycling and examined the effect of classification and habitat (marine vs. freshwater) on trait relationships. Respiration and nutrient excretion rates followed mass-dependent scaling in both habitats, with exponents ranging from 0.70 to 0.90. Our analyses revealed surprising differences in allometry and respiration between habitats, with freshwater species having lower length-specific mass and three times higher mass-specific respiration rates. These differences in traits point to implications for ecological strategies as well as overall carbon storage and fluxes based on habitat type. Our synthesis quantifies multiple trait relationships and links organisms to ecosystem processes they influence, enabling a more complete integration of aquatic community ecology and biogeochemistry through the promising use of effect traits.
Warming alters community size structure and ecosystem functioning
Dossena, Matteo; Yvon-Durocher, Gabriel; Grey, Jonathan; Montoya, José M.; Perkins, Daniel M.; Trimmer, Mark; Woodward, Guy
2012-01-01
Global warming can affect all levels of biological complexity, though we currently understand least about its potential impact on communities and ecosystems. At the ecosystem level, warming has the capacity to alter the structure of communities and the rates of key ecosystem processes they mediate. Here we assessed the effects of a 4°C rise in temperature on the size structure and taxonomic composition of benthic communities in aquatic mesocosms, and the rates of detrital decomposition they mediated. Warming had no effect on biodiversity, but altered community size structure in two ways. In spring, warmer systems exhibited steeper size spectra driven by declines in total community biomass and the proportion of large organisms. By contrast, in autumn, warmer systems had shallower size spectra driven by elevated total community biomass and a greater proportion of large organisms. Community-level shifts were mirrored by changes in decomposition rates. Temperature-corrected microbial and macrofaunal decomposition rates reflected the shifts in community structure and were strongly correlated with biomass across mesocosms. Our study demonstrates that the 4°C rise in temperature expected by the end of the century has the potential to alter the structure and functioning of aquatic ecosystems profoundly, as well as the intimate linkages between these levels of ecological organization. PMID:22496185
Nitrogen Critical Loads for an Alpine Meadow Ecosystem on the Tibetan Plateau.
Zong, Ning; Shi, Peili; Song, Minghua; Zhang, Xianzhou; Jiang, Jing; Chai, Xi
2016-03-01
Increasing atmospheric nitrogen (N) deposition has the potential to alter plant diversity and thus the function and stability of terrestrial ecosystems. N-limited alpine ecosystems are expected to be particularly susceptible to increasing N deposition. However, little is known about the critical loads and saturation thresholds of ecosystem responses to increasing N deposition on the Tibetan Plateau, despite its importance to ecosystem management. To evaluate the N critical loads and N saturation thresholds in an alpine ecosystem, in 2010, we treated an alpine meadow with five levels of N addition (0, 10, 20, 40, and 80 kg N ha(-1) year(-1)) and characterized plant and soil responses. The results showed that plant species richness and diversity index did not statistically vary with N addition treatments, but they both changed with years. N addition affected plant cover and aboveground productivity, especially for grasses, and soil chemical features. The N critical loads and saturation thresholds, in terms of plant cover and biomass change at the community level, were 8.8-12.7 and 50 kg N ha(-1) year(-1) (including the ambient N deposition rate), respectively. However, pronounced changes in soil inorganic N and net N mineralization occurred under the 20 and 40 kg N ha(-1) year(-1) treatments. Our results indicate that plant community cover and biomass are more sensitive than soil to increasing N inputs. The plant community composition in alpine ecosystems on the Qinghai-Tibetan Plateau may change under increasing N deposition in the future.
Regional zooplankton dispersal provides spatial insurance for ecosystem function.
Symons, Celia C; Arnott, Shelley E
2013-05-01
Changing environmental conditions are affecting diversity and ecosystem function globally. Theory suggests that dispersal from a regional species pool may buffer against changes in local community diversity and ecosystem function after a disturbance through the establishment of functionally redundant tolerant species. The spatial insurance provided by dispersal may decrease through time after environmental change as the local community monopolizes resources and reduces community invasibility. To test for evidence of the spatial insurance hypothesis and to determine the role dispersal timing plays in this response we conducted a field experiment using crustacean zooplankton communities in a subarctic region that is expected to be highly impacted by climate change - Churchill, Canada. Three experiments were conducted where nutrients, salt, and dispersal were manipulated. The three experiments differed in time-since-disturbance that the dispersers were added. We found that coarse measures of diversity (i.e. species richness, evenness, and Shannon-Weiner diversity) were generally resistant to large magnitude disturbances, and that dispersal had the most impact on diversity when dispersers were added shortly after disturbance. Ecosystem functioning (chl-a) was degraded in disturbed communities, but dispersal recovered ecosystem function to undisturbed levels. This spatial insurance for ecosystem function was mediated through changes in community composition and the relative abundance of functional groups. Results suggest that regional diversity and habitat connectivity will be important in the future to maintain ecosystem function by introducing functionally redundant species to promote compensatory dynamics. © 2012 Blackwell Publishing Ltd.
Huerta, Belinda; Marti, Elisabet; Gros, Meritxell; López, Pilar; Pompêo, Marcelo; Armengol, Joan; Barceló, Damià; Balcázar, Jose Luis; Rodríguez-Mozaz, Sara; Marcé, Rafael
2013-07-01
Antibiotic resistance represents a growing global health concern due to the overuse and misuse of antibiotics. There is, however, little information about how the selective pressure of clinical antibiotic usage can affect environmental communities in aquatic ecosystems and which bacterial groups might be responsible for dissemination of antibiotic resistance genes (ARGs) into the environment. In this study, chemical and biological characterization of water and sediments from three water supply reservoirs subjected to a wide pollution gradient allowed to draw an accurate picture of the concentration of antibiotics and prevalence of ARGs, in order to evaluate the potential role of ARGs in shaping bacterial communities, and to identify the bacterial groups most probably carrying and disseminating ARGs. Results showed significant correlation between the presence of ARG conferring resistance to macrolides and the composition of bacterial communities, suggesting that antibiotic pollution and the spreading of ARG might play a role in the conformation of bacterial communities in reservoirs. Results also pointed out the bacterial groups Actinobacteria and Firmicutes as the ones probably carrying and disseminating ARGs. The potential effect of antibiotic pollution and the presence of ARGs on the composition of bacterial communities in lacustrine ecosystems prompt the fundamental question about potential effects on bacterial-related ecosystem services supplied by lakes and reservoirs. Copyright © 2013 Elsevier B.V. All rights reserved.
Ecosystem services as a common language for coastal ecosystem-based management.
Granek, Elise F; Polasky, Stephen; Kappel, Carrie V; Reed, Denise J; Stoms, David M; Koch, Evamaria W; Kennedy, Chris J; Cramer, Lori A; Hacker, Sally D; Barbier, Edward B; Aswani, Shankar; Ruckelshaus, Mary; Perillo, Gerardo M E; Silliman, Brian R; Muthiga, Nyawira; Bael, David; Wolanski, Eric
2010-02-01
Ecosystem-based management is logistically and politically challenging because ecosystems are inherently complex and management decisions affect a multitude of groups. Coastal ecosystems, which lie at the interface between marine and terrestrial ecosystems and provide an array of ecosystem services to different groups, aptly illustrate these challenges. Successful ecosystem-based management of coastal ecosystems requires incorporating scientific information and the knowledge and views of interested parties into the decision-making process. Estimating the provision of ecosystem services under alternative management schemes offers a systematic way to incorporate biogeophysical and socioeconomic information and the views of individuals and groups in the policy and management process. Employing ecosystem services as a common language to improve the process of ecosystem-based management presents both benefits and difficulties. Benefits include a transparent method for assessing trade-offs associated with management alternatives, a common set of facts and common currency on which to base negotiations, and improved communication among groups with competing interests or differing worldviews. Yet challenges to this approach remain, including predicting how human interventions will affect ecosystems, how such changes will affect the provision of ecosystem services, and how changes in service provision will affect the welfare of different groups in society. In a case study from Puget Sound, Washington, we illustrate the potential of applying ecosystem services as a common language for ecosystem-based management.
Criterion 3: Maintenance of forest ecosystem health and vitality
Stephen R. Shifley; Francisco X. Aguilar; Nianfu Song; Susan I. Stewart; David J. Nowak; Dale D. Gormanson; W. Keith Moser; Sherri Wormstead; Eric J. Greenfield
2012-01-01
Forest ecosystem health depends on stable forest composition and structure and on sustainable ecosystem processes. Forest disturbances that push an ecosystem beyond the range of conditions considered normal can upset the balance among processes, exacerbate forest health problems, and increase mortality beyond historical norms. Sometimes forest ecosystems respond to...
NASA Astrophysics Data System (ADS)
Riebe, C. S.; Callahan, R. P.; Goulden, M.; Pasquet, S.; Flinchum, B. A.; Taylor, N. J.; Holbrook, W. S.
2017-12-01
The availability of water and nutrients in soil and weathered rock influences the distribution of Earth's terrestrial life and regulates ecosystem vulnerability to land use and climate change. We explored these relationships by combining geochemical and geophysical measurements at three mid-elevation sites in the Sierra Nevada, California. Forest cover correlates strongly with bedrock composition across the sites, implying strong lithologic control on the ecosystem. We evaluated two hypotheses about bedrock-ecosystem connections: 1) that bedrock composition influences vegetation by moderating plant-essential nutrient supply; and 2) that bedrock composition influences the degree of subsurface weathering, which influences vegetation by controlling subsurface water-storage capacity. To quantify subsurface water-holding capacity, we used seismic refraction surveys to infer gradients in P and S-wave velocity structure, which reveal variations in porosity when coupled together in a Hertz-Mindlin rock-physics model. We combined the geophysical data on porosity with bedrock bulk geochemistry measured in previous work to evaluate the influence of water-holding capacity and nutrient supply on ecosystem productivity, which we quantified using remote sensing. Our results show that more than 80% of the variance in ecosystem productivity can be explained by differences in bedrock phosphorus concentration and subsurface porosity, with phosphorus content being the dominant explanatory variable. This suggests that bedrock composition exerts a strong bottom-up control on ecosystem productivity through its influence on nutrient supply and weathering susceptibility, which in turn influences porosity. We show that vegetation vulnerability to drought stress and mortality can be explained in part by variations in subsurface water-holding capacity and rock-derived nutrient supply.
Intra- and interspecific tree growth across a long altitudinal gradient in the Peruvian Andes.
Rapp, Joshua M; Silman, Miles R; Clark, James S; Girardin, Cecile A J; Galiano, Darcy; Tito, Richard
2012-09-01
Tree growth response across environmental gradients is fundamental to understanding species distributional ecology and forest ecosystem ecology and to predict future ecosystem services. Cross-sectional patterns of ecosystem properties with respect to climatic gradients are often used to predict ecosystem responses to global change. Across sites in the tropics, primary productivity increases with temperature, suggesting that forest ecosystems will become more productive as temperature rises. However, this trend is confounded with a shift in species composition and so may not reflect the response of in situ forests to warming. In this study, we simultaneously studied tree diameter growth across the altitudinal ranges of species within a single genus across a geographically compact temperature gradient, to separate the direct effect of temperature on tree growth from that of species compositional turnover. Using a Bayesian state space modeling framework we combined data from repeated diameter censuses and dendrometer measurements from across a 1700-m altitudinal gradient collected over six years on over 2400 trees in Weinmannia, a dominant and widespread genus of cloud forest trees in the Andes. Within species, growth showed no consistent trend with altitude, but higher-elevation species had lower growth rates than lower-elevation species, suggesting that species turnover is largely responsible for the positive correlation between productivity and temperature in tropical forests. Our results may indicate a significant difference in how low- and high-latitude forests will respond to climate change, since temperate and boreal tree species are consistently observed to have a positive relationship between growth and temperature. If our results hold for other tropical species, a positive response in ecosystem productivity to increasing temperatures in the Andes will depend on the altitudinal migration of tree species. The rapid pace of climate change, and slow observed rates of migration, suggest a slow, or even initially negative response of ecosystem productivity to warming. Finally, this study shows how the observed scale of biological organization can affect conclusions drawn from studies of ecological phenomena across environmental gradients, and calls into question the common practice in tropical ecology of lumping species at higher taxonomic levels.
Biological soil crusts: a fundamental organizing agent in global drylands
NASA Astrophysics Data System (ADS)
Belnap, J.; Zhang, Y.
2013-12-01
Ecosystem function is profoundly affected by plant community composition, which is ultimately determined by factors that govern seed retention. Dryland ecosystems constitute ~35% of terrestrial surfaces, with most soils in these regions covered by biological soil crusts (biocrusts), a community whose autotrophs are dominated by cyanobacteria, lichens, and mosses. Studies at 550 sites revealed that plant community composition was controlled by the interaction among biocrust type, disturbance regime, and external morphology of seeds. In bare soils (due to disturbance), all seed types were present in the seedbank and plant community. As biocrusts became better developed (i.e., the cover of lichens and mosses increased), they more strongly filtered out seeds with appendages. Thus, soils under late successional biocrusts contained seedbanks dominated by smooth seeds and vascular plants growing in late successional biocrusts were dominated by those with smooth seeds. Therefore, the tension between the removal of biocrusts by soil surface disturbance and their recovery creates a shifting mosaic of plant patch types in both space and time. Because changes in vascular plant communities reverberate throughout both below ground and above ground food webs and thus affect multiple trophic levels, we propose that biocrusts are a fundamental organizing agent in drylands worldwide. Future increased demand for resources will intensify land use both temporally and spatially, resulting in an increased rate of biocrust loss across larger areas. As a result, we can expect shifts in the composition and distribution of plant communities, accompanied by concomitant changes in many aspects of dryland ecosystems. Conceptual model of shifting dryland plant mosaics through space and time. Within the large circles, soil surface type changes with time in the same space, going from bare uncrusted soil (B) to cyanobacterial biocrust (C) to lichen/moss (L/M) biocrust. Disturbance (D) drives the cycle back towards U, and recovery (R) drives it towards L/M. Larger disturbances and dispersal of biocrust organisms among the larger circles result in mosaics that shift in space as well. The bar chart shows the proportion of smooth (left side) and rough (right side) seeds under different crust types.
Species richness and trophic diversity increase decomposition in a co-evolved food web.
Baiser, Benjamin; Ardeshiri, Roxanne S; Ellison, Aaron M
2011-01-01
Ecological communities show great variation in species richness, composition and food web structure across similar and diverse ecosystems. Knowledge of how this biodiversity relates to ecosystem functioning is important for understanding the maintenance of diversity and the potential effects of species losses and gains on ecosystems. While research often focuses on how variation in species richness influences ecosystem processes, assessing species richness in a food web context can provide further insight into the relationship between diversity and ecosystem functioning and elucidate potential mechanisms underpinning this relationship. Here, we assessed how species richness and trophic diversity affect decomposition rates in a complete aquatic food web: the five trophic level web that occurs within water-filled leaves of the northern pitcher plant, Sarracenia purpurea. We identified a trophic cascade in which top-predators--larvae of the pitcher-plant mosquito--indirectly increased bacterial decomposition by preying on bactivorous protozoa. Our data also revealed a facultative relationship in which larvae of the pitcher-plant midge increased bacterial decomposition by shredding detritus. These important interactions occur only in food webs with high trophic diversity, which in turn only occur in food webs with high species richness. We show that species richness and trophic diversity underlie strong linkages between food web structure and dynamics that influence ecosystem functioning. The importance of trophic diversity and species interactions in determining how biodiversity relates to ecosystem functioning suggests that simply focusing on species richness does not give a complete picture as to how ecosystems may change with the loss or gain of species.
Species Richness and Trophic Diversity Increase Decomposition in a Co-Evolved Food Web
Baiser, Benjamin; Ardeshiri, Roxanne S.; Ellison, Aaron M.
2011-01-01
Ecological communities show great variation in species richness, composition and food web structure across similar and diverse ecosystems. Knowledge of how this biodiversity relates to ecosystem functioning is important for understanding the maintenance of diversity and the potential effects of species losses and gains on ecosystems. While research often focuses on how variation in species richness influences ecosystem processes, assessing species richness in a food web context can provide further insight into the relationship between diversity and ecosystem functioning and elucidate potential mechanisms underpinning this relationship. Here, we assessed how species richness and trophic diversity affect decomposition rates in a complete aquatic food web: the five trophic level web that occurs within water-filled leaves of the northern pitcher plant, Sarracenia purpurea. We identified a trophic cascade in which top-predators — larvae of the pitcher-plant mosquito — indirectly increased bacterial decomposition by preying on bactivorous protozoa. Our data also revealed a facultative relationship in which larvae of the pitcher-plant midge increased bacterial decomposition by shredding detritus. These important interactions occur only in food webs with high trophic diversity, which in turn only occur in food webs with high species richness. We show that species richness and trophic diversity underlie strong linkages between food web structure and dynamics that influence ecosystem functioning. The importance of trophic diversity and species interactions in determining how biodiversity relates to ecosystem functioning suggests that simply focusing on species richness does not give a complete picture as to how ecosystems may change with the loss or gain of species. PMID:21673992
The nitrogen isotopic composition in soils and plants: Its use in environmental studies (A Review)
NASA Astrophysics Data System (ADS)
Makarov, M. I.
2009-12-01
The results of studying the isotopic composition of the nitrogen in soils and plants and its use for characterizing the nitrogen cycle in ecosystems, the transformation of nitrogen compounds in soils, the sources of nitrogen nutrition for plants, and the assessment of the symbiotic nitrogen fixation’s contribution to the nitrogen budget of ecosystems were considered for a wide variety of natural and agricultural ecosystems.
Trade-off between taxon diversity and functional diversity in European lake ecosystems.
Grossmann, Lars; Beisser, Daniela; Bock, Christina; Chatzinotas, Antonis; Jensen, Manfred; Preisfeld, Angelika; Psenner, Roland; Rahmann, Sven; Wodniok, Sabina; Boenigk, Jens
2016-12-01
Inferring ecosystem functioning and ecosystem services through inspections of the species inventory is a major aspect of ecological field studies. Ecosystem functions are often stable despite considerable species turnover. Using metatranscriptome analyses, we analyse a thus-far unparalleled freshwater data set which comprises 21 mainland European freshwater lakes from the Sierra Nevada (Spain) to the Carpathian Mountains (Romania) and from northern Germany to the Apennines (Italy) and covers an altitudinal range from 38 m above sea level (a.s.l) to 3110 m a.s.l. The dominant taxa were Chlorophyta and streptophytic algae, Ciliophora, Bacillariophyta and Chrysophyta. Metatranscriptomics provided insights into differences in community composition and into functional diversity via the relative share of taxa to the overall read abundance of distinct functional genes on the ecosystem level. The dominant metabolic pathways in terms of the fraction of expressed sequences in the cDNA libraries were affiliated with primary metabolism, specifically oxidative phosphorylation, photosynthesis and the TCA cycle. Our analyses indicate that community composition is a good first proxy for the analysis of ecosystem functions. However, differential gene regulation modifies the relative importance of taxa in distinct pathways. Whereas taxon composition varies considerably between lakes, the relative importance of distinct metabolic pathways is much more stable, indicating that ecosystem functioning is buffered against shifts in community composition through a functional redundancy of taxa. © 2016 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.
Rofner, Carina; Peter, Hannes; Catalán, Núria; Drewes, Fabian; Sommaruga, Ruben; Pérez, María Teresa
2017-06-01
Lakes at high altitude and latitude are typically unproductive ecosystems where external factors outweigh the relative importance of in-lake processes, making them ideal sentinels of climate change. Climate change is inducing upward vegetation shifts at high altitude and latitude regions that translate into changes in the pools of soil organic matter. Upon mobilization, this allochthonous organic matter may rapidly alter the composition and function of lake bacterial communities. Here, we experimentally simulate this potential climate-change effect by exposing bacterioplankton of two lakes located above the treeline, one in the Alps and one in the subarctic region, to soil organic matter from below and above the treeline. Changes in bacterial community composition, diversity and function were followed for 72 h. In the subarctic lake, soil organic matter from below the treeline reduced bulk and taxon-specific phosphorus uptake, indicating that bacterial phosphorus limitation was alleviated compared to organic matter from above the treeline. These effects were less pronounced in the alpine lake, suggesting that soil properties (phosphorus and dissolved organic carbon availability) and water temperature further shaped the magnitude of response. The rapid bacterial succession observed in both lakes indicates that certain taxa directly benefited from soil sources. Accordingly, the substrate uptake profiles of initially rare bacteria (copiotrophs) indicated that they are one of the main actors cycling soil-derived carbon and phosphorus. Our work suggests that climate-induced changes in soil characteristics affect bacterioplankton community structure and function, and in turn, the cycling of carbon and phosphorus in high altitude and latitude aquatic ecosystems. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
Bradford, Mark A; Wood, Stephen A; Bardgett, Richard D; Black, Helaina I J; Bonkowski, Michael; Eggers, Till; Grayston, Susan J; Kandeler, Ellen; Manning, Peter; Setälä, Heikki; Jones, T Hefin
2014-10-07
Ecosystem management policies increasingly emphasize provision of multiple, as opposed to single, ecosystem services. Management for such "multifunctionality" has stimulated research into the role that biodiversity plays in providing desired rates of multiple ecosystem processes. Positive effects of biodiversity on indices of multifunctionality are consistently found, primarily because species that are redundant for one ecosystem process under a given set of environmental conditions play a distinct role under different conditions or in the provision of another ecosystem process. Here we show that the positive effects of diversity (specifically community composition) on multifunctionality indices can also arise from a statistical fallacy analogous to Simpson's paradox (where aggregating data obscures causal relationships). We manipulated soil faunal community composition in combination with nitrogen fertilization of model grassland ecosystems and repeatedly measured five ecosystem processes related to plant productivity, carbon storage, and nutrient turnover. We calculated three common multifunctionality indices based on these processes and found that the functional complexity of the soil communities had a consistent positive effect on the indices. However, only two of the five ecosystem processes also responded positively to increasing complexity, whereas the other three responded neutrally or negatively. Furthermore, none of the individual processes responded to both the complexity and the nitrogen manipulations in a manner consistent with the indices. Our data show that multifunctionality indices can obscure relationships that exist between communities and key ecosystem processes, leading us to question their use in advancing theoretical understanding--and in management decisions--about how biodiversity is related to the provision of multiple ecosystem services.
Bradford, Mark A.; Wood, Stephen A.; Bardgett, Richard D.; Black, Helaina I. J.; Bonkowski, Michael; Eggers, Till; Grayston, Susan J.; Kandeler, Ellen; Manning, Peter; Setälä, Heikki; Jones, T. Hefin
2014-01-01
Ecosystem management policies increasingly emphasize provision of multiple, as opposed to single, ecosystem services. Management for such “multifunctionality” has stimulated research into the role that biodiversity plays in providing desired rates of multiple ecosystem processes. Positive effects of biodiversity on indices of multifunctionality are consistently found, primarily because species that are redundant for one ecosystem process under a given set of environmental conditions play a distinct role under different conditions or in the provision of another ecosystem process. Here we show that the positive effects of diversity (specifically community composition) on multifunctionality indices can also arise from a statistical fallacy analogous to Simpson’s paradox (where aggregating data obscures causal relationships). We manipulated soil faunal community composition in combination with nitrogen fertilization of model grassland ecosystems and repeatedly measured five ecosystem processes related to plant productivity, carbon storage, and nutrient turnover. We calculated three common multifunctionality indices based on these processes and found that the functional complexity of the soil communities had a consistent positive effect on the indices. However, only two of the five ecosystem processes also responded positively to increasing complexity, whereas the other three responded neutrally or negatively. Furthermore, none of the individual processes responded to both the complexity and the nitrogen manipulations in a manner consistent with the indices. Our data show that multifunctionality indices can obscure relationships that exist between communities and key ecosystem processes, leading us to question their use in advancing theoretical understanding—and in management decisions—about how biodiversity is related to the provision of multiple ecosystem services. PMID:25246582
Waldrop, M.P.; Firestone, M.K.
2006-01-01
Soil microbial communities are closely associated with aboveground plant communities, with multiple potential drivers of this relationship. Plants can affect available soil carbon, temperature, and water content, which each have the potential to affect microbial community composition and function. These same variables change seasonally, and thus plant control on microbial community composition may be modulated or overshadowed by annual climatic patterns. We examined microbial community composition, C cycling processes, and environmental data in California annual grassland soils from beneath oak canopies and in open grassland areas to distinguish factors controlling microbial community composition and function seasonally and in association with the two plant overstory communities. Every 3 months for up to 2 years, we monitored microbial community composition using phospholipid fatty acid (PLFA) analysis, microbial biomass, respiration rates, microbial enzyme activities, and the activity of microbial groups using isotope labeling of PLFA biomarkers (13C-PLFA) . Distinct microbial communities were associated with oak canopy soils and open grassland soils and microbial communities displayed seasonal patterns from year to year. The effects of plant species and seasonal climate on microbial community composition were similar in magnitude. In this Mediterranean ecosystem, plant control of microbial community composition was primarily due to effects on soil water content, whereas the changes in microbial community composition seasonally appeared to be due, in large part, to soil temperature. Available soil carbon was not a significant control on microbial community composition. Microbial community composition (PLFA) and 13C-PLFA ordination values were strongly related to intra-annual variability in soil enzyme activities and soil respiration, but microbial biomass was not. In this Mediterranean climate, soil microclimate appeared to be the master variable controlling microbial community composition and function. ?? 2006 Springer Science+Business Media, Inc.
Divergent environmental filters drive functional segregation of European peatlands
NASA Astrophysics Data System (ADS)
Robroek, B.; Jassey, V.; Bragazza, L.; Buttler, A.
2015-12-01
Plant communities are largely shaped by prevailing climatic conditions. As a result, environmental change is expected to alter the (functional) composition in plant communities. Because plants, and particularly the composition of plant species, play an important role in driving ecosystem processes, it is crucial that we improve our understanding on which environmental factors are most important in shaping plant communities. Here we presnt the results for a cross-Eurpean study, were we assessed the role of environmnetal conditions on plant community composition in 56 peatlands. We show that plant species richness and diversity are relatively stable across the main environmental gradients. Nevertheless, we observe large changes in the plant community structure. In other words, species turnover increased with increasing differences in environmental viariables. Such turnover in the community composition is largely associated to gradients temperature and precipitation, whilst nutrients -often reported as major driver for changes in peatland ecosystems- were only important at the end of the gradient of current deposition levels in Europe. Using a combination of species distribution modelling and species co-occurence patterns, we identified two spatially non-exclusive groups of plant species. Species within a distinct group responded similarly to bioclimatic variables and nutrient deposition levels, whilst between group response was mirrored. These results suggest that these two groups of plants are subjected to divergent environmental filters. Additionally, European peatlands aggregate into two distinct clusters based on plant functional trait composition. Each cluster was dominated by plant species from either one of the two co-response groups. Overall, our results demonstrate that environmental change results in a gradual replacement of plant species from two divergent groups, consequently affecting the functional trait composition in peatlands.
Taking Root: Enduring Effect of Rhizosphere Bacterial Colonization in Mangroves
Pinto, Fernando N.; Egas, Conceição; Almeida, Adelaide; Cunha, Angela; Mendonça-Hagler, Leda C. S.; Smalla, Kornelia
2010-01-01
Background Mangrove forests are of global ecological and economic importance, but are also one of the world's most threatened ecosystems. Here we present a case study examining the influence of the rhizosphere on the structural composition and diversity of mangrove bacterial communities and the implications for mangrove reforestation approaches using nursery-raised plants. Methodology/Principal Findings A barcoded pyrosequencing approach was used to assess bacterial diversity in the rhizosphere of plants in a nursery setting, nursery-raised transplants and native (non-transplanted) plants in the same mangrove habitat. In addition to this, we also assessed bacterial composition in the bulk sediment in order to ascertain if the roots of mangrove plants affect sediment bacterial composition. We found that mangrove roots appear to influence bacterial abundance and composition in the rhizosphere. Due to the sheer abundance of roots in mangrove habitat, such an effect can have an important impact on the maintenance of bacterial guilds involved in nutrient cycling and other key ecosystem functions. Surprisingly, we also noted a marked impact of initial nursery conditions on the rhizosphere bacterial composition of replanted mangrove trees. This result is intriguing because mangroves are periodically inundated with seawater and represent a highly dynamic environment compared to the more controlled nursery environment. Conclusions/Significance In as far as microbial diversity and composition influences plant growth and health, this study indicates that nursery conditions and early microbial colonization patterns of the replants are key factors that should be considered during reforestation projects. In addition to this, our results provide information on the role of the mangrove rhizosphere as a habitat for bacteria from estuarine sediments. PMID:21124923
Pohlon, Elisabeth; Ochoa Fandino, Adriana; Marxsen, Jürgen
2013-01-01
Droughts are among the most important disturbance events for stream ecosystems; they not only affect stream hydrology but also the stream biota. Although desiccation of streams is common in Mediterranean regions, phases of dryness in headwaters have been observed more often and for longer periods in extended temperate regions, including Central Europe, reflecting global climate change and enhanced water withdrawal. The effects of desiccation and rewetting on the bacterial community composition and extracellular enzyme activity, a key process in the carbon flow of streams and rivers, were investigated in a typical Central European stream, the Breitenbach (Hesse, Germany). Wet streambed sediment is an important habitat in streams. It was sampled and exposed in the laboratory to different drying scenarios (fast, intermediate, slow) for 13 weeks, followed by rewetting of the sediment from the fast drying scenario via a sediment core perfusion technique for 2 weeks. Bacterial community structure was analyzed using CARD-FISH and TGGE, and extracellular enzyme activity was assessed using fluorogenic model substrates. During desiccation the bacterial community composition shifted toward composition in soil, exhibiting increasing proportions of Actinobacteria and Alphaproteobacteria and decreasing proportions of Bacteroidetes and Betaproteobacteria. Simultaneously the activities of extracellular enzymes decreased, most pronounced with aminopeptidases and less pronounced with enzymes involved in the degradation of polymeric carbohydrates. After rewetting, the general ecosystem functioning, with respect to extracellular enzyme activity, recovered after 10 to 14 days. However, the bacterial community composition had not yet achieved its original composition as in unaffected sediments within this time. Thus, whether the bacterial community eventually recovers completely after these events remains unknown. Perhaps this community undergoes permanent changes, especially after harsh desiccation, followed by loss of the specialized functions of specific groups of bacteria. PMID:24386188
Weber, Carolyn F.; King, Gary M.; Aho, Ken
2015-01-01
Nonnative Bromus tectorum (cheatgrass) is decimating sagebrush steppe, one of the largest ecosystems in the Western United States, and is causing regional-scale shifts in the predominant plant-fungal interactions. Sagebrush, a native perennial, hosts arbuscular mycorrhizal fungi (AMF), whereas cheatgrass, a winter annual, is a relatively poor host of AMF. This shift is likely intertwined with decreased carbon (C)-sequestration in cheatgrass-invaded soils and alterations in overall soil fungal community composition and structure, but the latter remain unresolved. We examined soil fungal communities using high throughput amplicon sequencing (ribosomal large subunit gene) in the 0–4 cm and 4–8 cm depth intervals of six cores from cheatgrass- and six cores from sagebrush-dominated soils. Sagebrush core surfaces (0–4 cm) contained higher nitrogen and total C than cheatgrass core surfaces; these differences mirrored the presence of glomalin related soil proteins (GRSP), which has been associated with AMF activity and increased C-sequestration. Fungal richness was not significantly affected by vegetation type, depth or an interaction of the two factors. However, the relative abundance of seven taxonomic orders was significantly affected by vegetation type or the interaction between vegetation type and depth. Teloschistales, Spizellomycetales, Pezizales and Cantharellales were more abundant in sagebrush libraries and contain mycorrhizal, lichenized and basal lineages of fungi. Only two orders (Coniochaetales and Sordariales), which contain numerous economically important pathogens and opportunistic saprotrophs, were more abundant in cheatgrass libraries. Pleosporales, Agaricales, Helotiales and Hypocreales were most abundant across all libraries, but the number of genera detected within these orders was as much as 29 times lower in cheatgrass relative to sagebrush libraries. These compositional differences between fungal communities associated with cheatgrass- and sagebrush-dominated soils warrant future research to examine soil fungal community composition across more sites and time points as well as in association with native grass species that also occupy cheatgrass- invaded ecosystems. PMID:25629158
Do predator-prey relationships on the river bed affect fine sediment ingress?
NASA Astrophysics Data System (ADS)
Mathers, Kate; Rice, Stephen; Wood, Paul
2016-04-01
Ecosystem engineers are organisms that alter their physical environment and thereby influence the flow of resources through ecosystems. In rivers, several ecosystem engineers are also important geomorphological agents that modify fluvial sediment dynamics. By altering channel morphology and bed material characteristics, such modifications can affect the availability of habitats for other organisms, with implications for ecosystem health and wider community composition. In this way geomorphological and ecological systems are intimately interconnected. This paper focuses on one element of this intricate abiotic-biotic coupling: the interaction between fine sediment ingress into the river bed and the predator-prey relationships of aquatic organisms living on and in the river bed. Signal crayfish (Pacifastacus leniusculus) have been shown to modify fine sediment fluxes in rivers, but their effect on fine sediment ingress into riverbeds remains unclear. Many macroinvertebrate taxa have adapted avoidance strategies to avoid predation by crayfish, with one example being the freshwater shrimp (Gammarus pulex) which relies on open interstitial spaces within subsurface sediments as a refuge from crayfish predation. Fine sedimentation that fills gravelly frameworks may preclude access to those spaces, therefore leaving freshwater shrimp susceptible to predation. Ex-situ experiments were conducted which sought to examine: i) if freshwater shrimps and signal crayfish, alone and in combination, influenced fine sediment infiltration rates; and ii) whether modifications to substratum composition, specifically the introduction of fine sediment, modified predator-prey interactions. The results demonstrate that crayfish are significant geomorphic agents and that fine sediment ingress rates were significantly enhanced in their presence compared to control conditions or the presence of only freshwater shrimps. The combination of both organisms (i.e. allowing the interaction between predator and prey) resulted in intermediate fine sediment infiltration rates. The results suggest that reductions in prey availability may enhance crayfish foraging behaviour and therefore their impact on fine sediment ingress into river beds. Consequently, as invading species become more established and prey resources are depleted, the implications of invasive crayfish on fine sediment dynamics may become more prominent. These experiments demonstrate the importance of abiotic-biotic coupling in fluvial systems for both geomorphological and ecological understanding.
NASA Astrophysics Data System (ADS)
Wang, Qiufeng; Tian, Jing; Yu, Guirui
2014-05-01
Patterns in the spatial distribution of organisms provide important information about mechanisms that regulate the diversity and complexity of soil ecosystems. Therefore, information on spatial distribution of microbial community composition and functional diversity is urgently necessary. The spatial variability on a 26×36 m plot and vertical distribution (0-10 cm and 10-20 cm) of soil microbial community composition and functional diversity were studied in a natural broad-leaved Korean pine (Pinus koraiensis) mixed forest soil in Changbai Mountain. The phospholipid fatty acid (PLFA) pattern was used to characterize the soil microbial community composition and was compared with the community substrate utilization pattern using Biolog. Bacterial biomass dominated and showed higher variability than fungal biomass at all scales examined. The microbial biomass decreased with soil depths increased and showed less variability in lower 10-20 cm soil layer. The Shannon-Weaver index value for microbial functional diversity showed higher variability in upper 0-10 cm than lower 10-20 cm soil layer. Carbohydrates, carboxylic acids, polymers and amino acids are the main carbon sources possessing higher utilization efficiency or utilization intensity. At the same time, the four carbon source types contributed to the differentiation of soil microbial communities. This study suggests the higher diversity and complexity for this mix forest ecosystem. To determine the driving factors that affect this spatial variability of microorganism is the next step for our study.
Dell, Emily A; Bowman, Daniel; Rufty, Thomas; Shi, Wei
2008-07-01
Turfgrass is a highly managed ecosystem subject to frequent fertilization, mowing, irrigation, and application of pesticides. Turf management practices may create a perturbed environment for ammonia oxidizers, a key microbial group responsible for nitrification. To elucidate the long-term effects of turf management on these bacteria, we assessed the composition of betaproteobacterial ammonia oxidizers in a chronosequence of turfgrass systems (i.e., 1, 6, 23, and 95 years old) and the adjacent native pines by using both 16S rRNA and amoA gene fragments specific to ammonia oxidizers. Based on the Shannon-Wiener diversity index of denaturing gradient gel electrophoresis patterns and the rarefaction curves of amoA clones, turf management did not change the relative diversity and richness of ammonia oxidizers in turf soils as compared to native pine soils. Ammonia oxidizers in turfgrass systems comprised a suite of phylogenetic clusters common to other terrestrial ecosystems. Nitrosospira clusters 0, 2, 3, and 4; Nitrosospira sp. Nsp65-like sequences; and Nitrosomonas clusters 6 and 7 were detected in the turfgrass chronosequence with Nitrosospira clusters 3 and 4 being dominant. However, both turf age and land change (pine to turf) effected minor changes in ammonia oxidizer composition. Nitrosospira cluster 0 was observed only in older turfgrass systems (i.e., 23 and 95 years old); fine-scale differences within Nitrosospira cluster 3 were seen between native pines and turf. Further investigations are needed to elucidate the ecological implications of the compositional differences.
NASA Astrophysics Data System (ADS)
Carey, C.; Eviner, V.; Beman, M.; Hart, S. C.
2013-12-01
Since western colonization, the ecology of California has seen marked transformations. In particular, invasion of terrestrial ecosystems by exotic plants has altered plant community composition, disturbances, soil hydrologic regimes, and nutrient cycling. In addition, as a result of fertilization and combustion of fossil fuels, California experiences some of the highest nitrogen (N) deposition rates in the country. Land use has also changed with the introduction of domestic livestock grazing about 250 years ago. Currently, approximately 32% of land in California experiences grazing pressure. These ecological changes likely affect the ecosystems of California simultaneously. However, with multifactor global change experiments in their infancy, little is known about potential interactive effects on ecosystem structure and function. Our study measured the response of soil N dynamics to a unique combination of treatments: invasion by exotic plants (Aegilops triuncialis and Taeniatherum caput-medusae), elevated N additions, and simulated cattle grazing (aboveground vegetation removal). In addition, we quantified the abundance of key functional genes involved in nitrification (amoA) and denitrification (nirS/nirK) in order to gain a mechanistic insight into changes in ecosystem functioning. We found that, while responses of soil N pools and processes to global change factors tend to be dominated by main effects, interactions among factors can substantially alter the overall response of the ecosystem. For instance, N additions increased potential nitrification and pools of total inorganic N (TIN; NH4+ and NO3-); when N additions and grazing were combined, however, nitrification potentials and TIN decreased to those of ambient N (control) levels. Additionally, neither N additions nor simulated grazing independently affected soil microbial biomass of invaded plots; yet, when combined, the microbial biomass increased significantly. Our results help to provide a better understanding of the regulatory role of the soil microbial community in terrestrial N cycling and also help to improve our understanding of the controls on global change-induced shifts in ecosystem functioning.
Prescribed fire and its impacts on ecosystem services in the UK.
Harper, Ashleigh R; Doerr, Stefan H; Santin, Cristina; Froyd, Cynthia A; Sinnadurai, Paul
2018-05-15
The impacts of vegetation fires on ecosystems are complex and varied affecting a range of important ecosystem services. Fire has the potential to affect the physicochemical and ecological status of water systems, alter several aspects of the carbon cycle (e.g. above- and below-ground carbon storage) and trigger changes in vegetation type and structure. Globally, fire is an essential part of land management in fire-prone regions in, e.g. Australia, the USA and some Mediterranean countries to mitigate the likelihood of catastrophic wildfires and sustain healthy ecosystems. In the less-fire prone UK, fire has a long history of usage in management for enhancing the productivity of heather, red grouse and sheep. This distinctly different socioeconomic tradition of burning underlies some of the controversy in recent decades in the UK around the use of fire. Negative public opinion and opposition from popular media have highlighted concerns around the detrimental impacts burning can have on the health and diversity of upland habitats. It is evident there are many gaps in the current knowledge around the environmental impacts of prescribed burning in less fire-prone regions (e.g. UK). Land owners and managers require a greater level of certainty on the advantages and disadvantages of prescribed burning in comparison to other techniques to better inform management practices. This paper addresses this gap by providing a critical review of published work and future research directions related to the impacts of prescribed fire on three key aspects of ecosystem services: (i) water quality, (ii) carbon dynamics and (iii) habitat composition and structure (biodiversity). Its overall aims are to provide guidance based on the current state-of-the-art for researchers, land owners, managers and policy makers on the potential effects of the use of burning and to inform the wider debate about the place of fire in modern conservation and land management in humid temperate ecosystems. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Microbial Community Dynamics in Soil Depth Profiles Over 120,000 Years of Ecosystem Development
Turner, Stephanie; Mikutta, Robert; Meyer-Stüve, Sandra; Guggenberger, Georg; Schaarschmidt, Frank; Lazar, Cassandre S.; Dohrmann, Reiner; Schippers, Axel
2017-01-01
Along a long-term ecosystem development gradient, soil nutrient contents and mineralogical properties change, therefore probably altering soil microbial communities. However, knowledge about the dynamics of soil microbial communities during long-term ecosystem development including progressive and retrogressive stages is limited, especially in mineral soils. Therefore, microbial abundances (quantitative PCR) and community composition (pyrosequencing) as well as their controlling soil properties were investigated in soil depth profiles along the 120,000 years old Franz Josef chronosequence (New Zealand). Additionally, in a microcosm incubation experiment the effects of particular soil properties, i.e., soil age, soil organic matter fraction (mineral-associated vs. particulate), O2 status, and carbon and phosphorus additions, on microbial abundances (quantitative PCR) and community patterns (T-RFLP) were analyzed. The archaeal to bacterial abundance ratio not only increased with soil depth but also with soil age along the chronosequence, coinciding with mineralogical changes and increasing phosphorus limitation. Results of the incubation experiment indicated that archaeal abundances were less impacted by the tested soil parameters compared to Bacteria suggesting that Archaea may better cope with mineral-induced substrate restrictions in subsoils and older soils. Instead, archaeal communities showed a soil age-related compositional shift with the Bathyarchaeota, that were frequently detected in nutrient-poor, low-energy environments, being dominant at the oldest site. However, bacterial communities remained stable with ongoing soil development. In contrast to the abundances, the archaeal compositional shift was associated with the mineralogical gradient. Our study revealed, that archaeal and bacterial communities in whole soil profiles are differently affected by long-term soil development with archaeal communities probably being better adapted to subsoil conditions, especially in nutrient-depleted old soils. PMID:28579976
NASA Astrophysics Data System (ADS)
Bischoff, S.; Schwarz, M. T.; Siemens, J.; Thieme, L.; Wilcke, W.; Michalzik, B.
2015-05-01
We present the first investigation of the composition of dissolved organic matter (DOM) compared to total organic matter (TOM, consisting of DOM, < 0.45 μm and particulate organic matter 0.45 μm < POM < 500 μm) in throughfall, stemflow and forest floor leachate of common beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) H. Karst.) forests using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. We hypothesized that the composition and properties of organic matter (OM) in forest ecosystem water samples differ between DOM and TOM and between the two tree species. The 13C NMR results, derived from 21 samples, point to pronounced differences in the composition of DOM and TOM in throughfall solution at the beech sites, with TOM exhibiting higher relative intensities for the alkyl C region, which represents aliphatic C from less decomposed organic material compared to DOM. Furthermore, TOM shows lower intensities for lignin-derived and aromatic C of the aryl C region resulting in lower aromaticity indices and a diminished degree of humification. Across the ecosystem compartments, differences in the structural composition of DOM and TOM under beech lessened in the following order: throughfall > stemflow ≈ forest floor leachate. In contrast to the broadleaved sites, differences between DOM and TOM in throughfall solution under spruce were less pronounced and spectra were, overall, dominated by the alkyl C region, representing aliphatic C. Explanations of the reported results might be substantiated in differences in tree species-specific structural effects, leaching characteristics or differences in the microbial community of the tree species' phyllosphere and cortisphere. However, the fact that throughfall DOM under beech showed the highest intensities of recalcitrant aromatic and phenolic C among all samples analysed likely points to a high allelopathic potential of beech trees negatively affecting other organisms and hence ecosystem processes and functions.
Waldrop, M.P.; Zak, D.R.
2006-01-01
Recent evidence suggests that atmospheric nitrate (NO3- ) deposition can alter soil carbon (C) storage by directly affecting the activity of lignin-degrading soil fungi. In a laboratory experiment, we studied the direct influence of increasing soil NO 3- concentration on microbial C cycling in three different ecosystems: black oak-white oak (BOWO), sugar maple-red oak (SMRO), and sugar maple-basswood (SMBW). These ecosystems span a broad range of litter biochemistry and recalcitrance; the BOWO ecosystem contains the highest litter lignin content, SMRO had intermediate lignin content, and SMBW leaf litter has the lowest lignin content. We hypothesized that increasing soil solution NO 3- would reduce lignolytic activity in the BOWO ecosystem, due to a high abundance of white-rot fungi and lignin-rich leaf litter. Due to the low lignin content of litter in the SMBW, we further reasoned that the NO3- repression of lignolytic activity would be less dramatic due to a lower relative abundance of white-rot basidiomycetes; the response in the SMRO ecosystem should be intermediate. We increased soil solution NO3- concentrations in a 73-day laboratory incubation and measured microbial respiration and soil solution dissolved organic carbon (DOC) and phenolics concentrations. At the end of the incubation, we measured the activity of ??-glucosidase, N-acetyl-glucosaminidase, phenol oxidase, and peroxidase, which are extracellular enzymes involved with cellulose and lignin degradation. We quantified the fungal biomass, and we also used fungal ribosomal intergenic spacer analysis (RISA) to gain insight into fungal community composition. In the BOWO ecosystem, increasing NO 3- significantly decreased oxidative enzyme activities (-30% to -54%) and increased DOC (+32% upper limit) and phenolic (+77% upper limit) concentrations. In the SMRO ecosystem, we observed a significant decrease in phenol oxidase activity (-73% lower limit) and an increase in soluble phenolic concentrations (+57% upper limit) in response to increasing NO 3- in soil solution, but there was no significant change in DOC concentration. In contrast to these patterns, increasing soil solution NO3- in the SMBW soil resulted in significantly greater phenol oxidase activity (+700% upper limit) and a trend toward lower DOC production (-52% lower limit). Nitrate concentration had no effect on microbial respiration or ??-glucosidase or N-acetyl-glucosaminidase activities. Fungal abundance and basidiomycete diversity tended to be highest in the BOWO soil and lowest in the SMBW, but neither displayed a consistent response to NO 3- additions. Taken together, our results demonstrate that oxidative enzyme production by microbial communities responds directly to NO3- deposition, controlling extracellular enzyme activity and DOC flux. The regulation of oxidative enzymes by different microbial communities in response to NO3- deposition highlights the fact that the composition and function of soil microbial communities directly control ecosystem-level responses to environmental change. ?? 2006 Springer Science+Business Media, Inc.
Moya, D; González-De Vega, S; García-Orenes, F; Morugán-Coronado, A; Arcenegui, V; Mataix-Solera, J; Lucas-Borja, M E; De Las Heras, J
2018-05-28
Despite Mediterranean ecosystems' high resilience to fire, both climate and land use change, and alterations in fire regimes increase their vulnerability to fire by affecting the long-term natural recovery of ecosystem services. The objective of this work is to study the effects of fire severity on biochemical soil indicators, such as chemical composition or enzymatic activity, related to time after fire and natural vegetation recovery (soil-plant interphase). Soil samples from three wildfires occurring 3, 15 and 21 years ago were taken in the south-eastern Iberian Peninsula (semiarid climate). Sampling included three fire severity levels in naturally regenerated (and changing to shrublands) Pinus halepensis Mill. forests. In the short-term post-fire period, phosphorus concentration, electrical conductivity and urease activity were positively linked to fire severity, and also influenced β-glucosidade activity in a negative relationship. During the 15-21-year post-fire period, the effects related to medium-high fire severity were negligible and soil quality indicators were linked to natural regeneration success. The results showed that most soil properties recovered in the long term after fire (21 years). These outcomes will help managers and stakeholders to implement management tools to stabilise soils and to restore burned ecosystems affected by medium-high fire severity. Such knowledge can be considered in adaptive forest management to reduce the negative effects of wildfires and desertification, and to improve the resilience of vulnerable ecosystems in a global change scenario. Copyright © 2018 Elsevier B.V. All rights reserved.
Disturbance and temporal partitioning of the activated sludge metacommunity
Vuono, David C; Benecke, Jan; Henkel, Jochen; Navidi, William C; Cath, Tzahi Y; Munakata-Marr, Junko; Spear, John R; Drewes, Jörg E
2015-01-01
The resilience of microbial communities to press disturbances and whether ecosystem function is governed by microbial composition or by the environment have not been empirically tested. To address these issues, a whole-ecosystem manipulation was performed in a full-scale activated sludge wastewater treatment plant. The parameter solids retention time (SRT) was used to manipulate microbial composition, which started at 30 days, then decreased to 12 and 3 days, before operation was restored to starting conditions (30-day SRT). Activated sludge samples were collected throughout the 313-day time series in parallel with bioreactor performance (‘ecosystem function'). Bacterial small subunit (SSU) rRNA genes were surveyed from sludge samples resulting in a sequence library of >417 000 SSU rRNA genes. A shift in community composition was observed for 12- and 3-day SRTs. The composition was altered such that r-strategists were enriched in the system during the 3-day SRT, whereas K-strategists were only present at SRTs⩾12 days. This shift corresponded to loss of ecosystem functions (nitrification, denitrification and biological phosphorus removal) for SRTs⩽12 days. Upon return to a 30-day SRT, complete recovery of the bioreactor performance was observed after 54 days despite an incomplete recovery of bacterial diversity. In addition, a different, yet phylogenetically related, community with fewer of its original rare members displaced the pre-disturbance community. Our results support the hypothesis that microbial ecosystems harbor functionally redundant phylotypes with regard to general ecosystem functions (carbon oxidation, nitrification, denitrification and phosphorus accumulation). However, the impacts of decreased rare phylotype membership on ecosystem stability and micropollutant removal remain unknown. PMID:25126758
NASA Astrophysics Data System (ADS)
Wei, Z.; Lee, X.; Wen, X.; Xiao, W.
2017-12-01
Quantification of the contribution of transpiration (T) to evapotranspiration (ET) is a requirement for understanding changes in carbon assimilation and water cycling in a changing environment. So far, few studies have examined seasonal variability of T/ET and compared different ET partitioning methods under natural conditions across diverse agro-ecosystems. In this study, we apply a two-source model to partition ET for three agro-ecosystems (rice, wheat and corn). The model-estimated T/ET ranges from 0 to 1, with a near continuous increase over time in the early growing season when leaf area index (LAI) is less than 2.5 and then convergence towards a stable value beyond LAI of 2.5. The seasonal change in T/ET can be described well as a function of LAI, implying that LAI is a first-order factor affecting ET partitioning. The two-source model results show that the growing-season (May - September for rice, April - June for wheat and June to September for corn) T/ET is 0.50, 0.84 and 0.64, while an isotopic approach shows that T/ET is 0.74, 0.93 and 0.81 for rice, wheat and maize, respectively. The two-source model results are supported by soil lysimeter and eddy covariance measurements made during the same time period for wheat (0.87). Uncertainty analysis suggests that further improvements to the Craig-Gordon model prediction of the evaporation isotope composition and to measurement of the isotopic composition of ET are necessary to achieve accurate flux partitioning at the ecosystem scale using water isotopes as tracers.
NASA Astrophysics Data System (ADS)
Olsen, N.; Counts, A.; Quistorff, C.; Ohr, C. A.; Toner, C.
2017-12-01
Increasing wildfire frequency and severity has emphasized the importance of post-wildfire recovery efforts in southern Idaho's sagebrush ecosystems. These changing fire regimes favor invasive grass species while hindering native sagebrush habitat regeneration, causing a positive feedback cycle of invasive growth - wildfires - invasive growth. Due to this undesirable process and anthropogenic influences, the sagebrush ecosystem is one of the most endangered in the US. In this project the NASA DEVELOP group of Pocatello, Idaho partnered with the Bureau of Land Management, Idaho Department of Fish and Game, and the US Department of Agriculture to characterize ecosystem recovery following the Crystal (2006), Henry Creek (2016), Jefferson (2010), and Soda (2015) wildfires. Determining vegetation cover heterogeneity and density can be time consuming and the factors affecting ecosystem recovery can be complex. In addition, restoration success is difficult to determine as vegetation composition is not often known prior to wildfire events and monitoring vegetation composition after restoration efforts can be resource intensive. These wildfires temporal monitoring consisted of 2001 to 2017 using NASA Earth observations such as Landsat 5 Thermal Mapper (TM), Landsat 8 Operational Land Imager (OLI), Terra Moderate Resolution Imaging Spectroradiometer (MODIS), and Shuttle Radar Topography Mission (SRTM) to determine the most significant factors of wildfire recovery and the influence targeted grazing could have for recovery. In addition, this project will include monitoring of invasive species propagation and whether spatial patterns or extents of the wildfire contribute to propagation. Understanding the key variables that made reseeding and natural recovery work in some areas, assessing why they failed in others, and identifying factors that made non-native propagation ideal are important issues for land managers in this region.
Nitrate is an important nitrogen source for Arctic tundra plants.
Liu, Xue-Yan; Koba, Keisuke; Koyama, Lina A; Hobbie, Sarah E; Weiss, Marissa S; Inagaki, Yoshiyuki; Shaver, Gaius R; Giblin, Anne E; Hobara, Satoru; Nadelhoffer, Knute J; Sommerkorn, Martin; Rastetter, Edward B; Kling, George W; Laundre, James A; Yano, Yuriko; Makabe, Akiko; Yano, Midori; Liu, Cong-Qiang
2018-03-27
Plant nitrogen (N) use is a key component of the N cycle in terrestrial ecosystems. The supply of N to plants affects community species composition and ecosystem processes such as photosynthesis and carbon (C) accumulation. However, the availabilities and relative importance of different N forms to plants are not well understood. While nitrate (NO 3 - ) is a major N form used by plants worldwide, it is discounted as a N source for Arctic tundra plants because of extremely low NO 3 - concentrations in Arctic tundra soils, undetectable soil nitrification, and plant-tissue NO 3 - that is typically below detection limits. Here we reexamine NO 3 - use by tundra plants using a sensitive denitrifier method to analyze plant-tissue NO 3 - Soil-derived NO 3 - was detected in tundra plant tissues, and tundra plants took up soil NO 3 - at comparable rates to plants from relatively NO 3 - -rich ecosystems in other biomes. Nitrate assimilation determined by 15 N enrichments of leaf NO 3 - relative to soil NO 3 - accounted for 4 to 52% (as estimated by a Bayesian isotope-mixing model) of species-specific total leaf N of Alaskan tundra plants. Our finding that in situ soil NO 3 - availability for tundra plants is high has important implications for Arctic ecosystems, not only in determining species compositions, but also in determining the loss of N from soils via leaching and denitrification. Plant N uptake and soil N losses can strongly influence C uptake and accumulation in tundra soils. Accordingly, this evidence of NO 3 - availability in tundra soils is crucial for predicting C storage in tundra. Copyright © 2018 the Author(s). Published by PNAS.
Nitrate is an important nitrogen source for Arctic tundra plants
Liu, Xue-Yan; Koyama, Lina A.; Weiss, Marissa S.; Inagaki, Yoshiyuki; Shaver, Gaius R.; Giblin, Anne E.; Hobara, Satoru; Nadelhoffer, Knute J.; Sommerkorn, Martin; Rastetter, Edward B.; Kling, George W.; Laundre, James A.; Yano, Yuriko; Makabe, Akiko; Yano, Midori; Liu, Cong-Qiang
2018-01-01
Plant nitrogen (N) use is a key component of the N cycle in terrestrial ecosystems. The supply of N to plants affects community species composition and ecosystem processes such as photosynthesis and carbon (C) accumulation. However, the availabilities and relative importance of different N forms to plants are not well understood. While nitrate (NO3−) is a major N form used by plants worldwide, it is discounted as a N source for Arctic tundra plants because of extremely low NO3− concentrations in Arctic tundra soils, undetectable soil nitrification, and plant-tissue NO3− that is typically below detection limits. Here we reexamine NO3− use by tundra plants using a sensitive denitrifier method to analyze plant-tissue NO3−. Soil-derived NO3− was detected in tundra plant tissues, and tundra plants took up soil NO3− at comparable rates to plants from relatively NO3−-rich ecosystems in other biomes. Nitrate assimilation determined by 15N enrichments of leaf NO3− relative to soil NO3− accounted for 4 to 52% (as estimated by a Bayesian isotope-mixing model) of species-specific total leaf N of Alaskan tundra plants. Our finding that in situ soil NO3− availability for tundra plants is high has important implications for Arctic ecosystems, not only in determining species compositions, but also in determining the loss of N from soils via leaching and denitrification. Plant N uptake and soil N losses can strongly influence C uptake and accumulation in tundra soils. Accordingly, this evidence of NO3− availability in tundra soils is crucial for predicting C storage in tundra. PMID:29540568
González, Ezequiel; Salvo, Adriana; Valladares, Graciela
2015-02-01
Loss and fragmentation of natural ecosystems are widely recognized as the most important threats to biodiversity conservation, with Neotropical dry forests among the most endangered ecosystems. Area and edge effects are major factors in fragmented landscapes. Here, we examine area and edge effects and their interaction, on ensembles of arthropods associated to native vegetation in a fragmented Chaco Serrano forest. We analyzed family richness and community composition of herbivores, predators, and parasitoids on three native plant species in 12 fragments of varying size and at edge/interior positions. We also looked for indicator families by using Indicator Species Analysis. Loss of family richness with the reduction of forest fragment area was observed for the three functional groups, with similar magnitude. Herbivores were richer at the edges without interaction between edge and area effects, whereas predators were not affected by edge/interior position and parasitoid richness showed an interaction between area and position, with a steeper area slope at the edges. Family composition of herbivore, predator, and parasitoid assemblages was also affected by forest area and/or edge/interior situation. We found three indicator families for large remnants and five for edges. Our results support the key role of forest area for conservation of arthropods taxonomic and functional diversity in a highly threatened region, and emphasize the need to understand the interactions between area and edge effects on such diversity. © 2014 Institute of Zoology, Chinese Academy of Sciences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McHugh, Theresa A.; Morrissey, Ember M.; Mueller, Rebecca C.
Nitrogen (N) deposition affects myriad aspects of terrestrial ecosystem structure and function, and microbial communities may be particularly sensitive to anthropogenic N inputs. However, our understanding of N deposition effects on microbial communities is far from complete, especially for drylands where data are comparatively rare. To address the need for an improved understanding of dryland biological responses to N deposition, we conducted a two-year fertilization experiment in a semiarid grassland on the Colorado Plateau in the southwestern United States. We evaluated effects of varied levels of N inputs on archaeal, bacterial, fungal and chlorophyte community composition within three microhabitats: biologicalmore » soil crusts (biocrusts), soil below biocrusts, and the plant rhizosphere. Surprisingly, N addition did not affect the community composition or diversity of any of these microbial groups; however, microbial community composition varied significantly among sampling microhabitats. Further, while plant richness, diversity, and cover showed no response to N addition, there were strong linkages between plant properties and microbial community structure. Overall, these findings highlight the potential for some dryland communities to have limited biotic ability to retain augmented N inputs, possibly leading to large N losses to the atmosphere and to aquatic systems.« less
McHugh, Theresa A.; Morrissey, Ember M.; Mueller, Rebecca C.; ...
2017-03-13
Nitrogen (N) deposition affects myriad aspects of terrestrial ecosystem structure and function, and microbial communities may be particularly sensitive to anthropogenic N inputs. However, our understanding of N deposition effects on microbial communities is far from complete, especially for drylands where data are comparatively rare. To address the need for an improved understanding of dryland biological responses to N deposition, we conducted a two-year fertilization experiment in a semiarid grassland on the Colorado Plateau in the southwestern United States. We evaluated effects of varied levels of N inputs on archaeal, bacterial, fungal and chlorophyte community composition within three microhabitats: biologicalmore » soil crusts (biocrusts), soil below biocrusts, and the plant rhizosphere. Surprisingly, N addition did not affect the community composition or diversity of any of these microbial groups; however, microbial community composition varied significantly among sampling microhabitats. Further, while plant richness, diversity, and cover showed no response to N addition, there were strong linkages between plant properties and microbial community structure. Overall, these findings highlight the potential for some dryland communities to have limited biotic ability to retain augmented N inputs, possibly leading to large N losses to the atmosphere and to aquatic systems.« less
McHugh, Theresa A.; Morrissey, Ember M.; Mueller, Rebecca C.; Gallegos-Graves, La Verne; Kuske, Cheryl R.; Reed, Sasha C.
2017-01-01
Nitrogen (N) deposition affects myriad aspects of terrestrial ecosystem structure and function, and microbial communities may be particularly sensitive to anthropogenic N inputs. However, our understanding of N deposition effects on microbial communities is far from complete, especially for drylands where data are comparatively rare. To address the need for an improved understanding of dryland biological responses to N deposition, we conducted a two-year fertilization experiment in a semiarid grassland on the Colorado Plateau in the southwestern United States. We evaluated effects of varied levels of N inputs on archaeal, bacterial, fungal and chlorophyte community composition within three microhabitats: biological soil crusts (biocrusts), soil below biocrusts, and the plant rhizosphere. Surprisingly, N addition did not affect the community composition or diversity of any of these microbial groups; however, microbial community composition varied significantly among sampling microhabitats. Further, while plant richness, diversity, and cover showed no response to N addition, there were strong linkages between plant properties and microbial community structure. Overall, these findings highlight the potential for some dryland communities to have limited biotic ability to retain augmented N inputs, possibly leading to large N losses to the atmosphere and to aquatic systems.
NASA Astrophysics Data System (ADS)
Li, R.; Arora, V. K.
2011-06-01
Energy and carbon balance implications of representing vegetation using a composite or mosaic approach in a land surface scheme are investigated. In the composite approach the attributes of different plant functional types (PFTs) present in a grid cell are aggregated in some fashion for energy and water balance calculations. The resulting physical environmental conditions (including net radiation, soil moisture and soil temperature) are common to all PFTs and affect their ecosystem processes. In the mosaic approach energy and water balance calculations are performed separately for each PFT tile using its own vegetation attributes, so each PFT "sees" different physical environmental conditions and its carbon balance evolves somewhat differently from that in the composite approach. Simulations are performed at selected boreal, temperate and tropical locations to illustrate the differences caused by using the composite versus the mosaic approaches of representing vegetation. Differences in grid averaged primary energy fluxes are generally less than 5 % between the two approaches. Grid-averaged carbon fluxes and pool sizes can, however, differ by as much as 46 %. Simulation results suggest that differences in carbon balance between the two approaches arise primarily through differences in net radiation which directly affects net primary productivity, and thus leaf area index and vegetation biomass.
Transitions and coexistence along a grazing gradient in the Eurasian steppe
NASA Astrophysics Data System (ADS)
Ren, Haiyan; Taube, Friedelm; Zhang, Yingjun; Bai, Yongfei; Hu, Shuijin
2017-04-01
Ecological resilience theory has often been applied to explain species coexistence and range condition assessment of various community states and to explicate the dynamics of ecosystems. Grazing is a primary disturbance that can alter rangeland resilience by causing hard-to-reverse transitions in grasslands. Yet, how grazing affects the coexistence of plant functional group (PFG) and transition remains unclear. We conducted a six-year grazing experiment in a typical steppe of Inner Mongolia, using seven grazing intensities (0, 1.5, 3.0, 4.5, 6.0, 7.5 and 9.0 sheep/ hectare) and two grazing systems (i.e. a continuous annual grazing as in the traditional grazing system, and a mixed grazing system combining grazing and haymaking), to examine grazing effects on plant functional group shifts and species coexistence in the semi-arid grassland system. Our results indicate that the relative richness of dominant bunchgrasses and forbs had a compensatory coexistence at all grazing intensities, and the richness of rhizomatous grasses fluctuated but was persistent. The relative productivity of dominant bunchgrasses and rhizomatous grasses had compensatory interactions with grazing intensity and grazing system. Dominant bunchgrasses and rhizomatous grasses resist grazing effects by using their dominant species functional traits: high specific leaf area and low leaf nitrogen content. Our results suggest that: 1. Stabilizing mechanisms beyond grazing management are more important in determining plant functional group coexistence and ecological resilience. 2. Plant functional group composition is more important in influencing ecosystem functioning than diversity. 3. Ecosystem resilience at a given level is related to the biomass of dominant PFG, which is determined by a balanced shift between dominant species biomass. The relatively even ecosystem resilience along the grazing gradient is attributed to the compensatory interactions of dominant species in their biomass variations. Community stability may rely on constantly regulating internal PFGs composition to maintain functional stability in grassland ecosystems. In the semi-arid grassland system, environmental factors mediate grazing effects on PFG transition, leading to homogeneous grassland dominated by bunchgrass.
2011-01-01
Background Understanding the effects of anthropogenically-driven changes in global temperature, atmospheric carbon dioxide and biodiversity on the functionality of marine ecosystems is crucial for predicting and managing the associated impacts. Coastal ecosystems are important sources of carbon (primary production) to shelf waters and play a vital role in global nutrient cycling. These systems are especially vulnerable to the effects of human activities and will be the first areas impacted by rising sea levels. Within these coastal ecosystems, microalgal assemblages (microphytobenthos: MPB) are vital for autochthonous carbon fixation. The level of in situ production by MPB mediates the net carbon cycling of transitional ecosystems between net heterotrophic or autotrophic metabolism. In this study, we examine the interactive effects of elevated atmospheric CO2 concentrations (370, 600, and 1000 ppmv), temperature (6°C, 12°C, and 18°C) and invertebrate biodiversity on MPB biomass in experimental systems. We assembled communities of three common grazing invertebrates (Hydrobia ulvae, Corophium volutator and Hediste diversicolor) in monoculture and in all possible multispecies combinations. This experimental design specifically addresses interactions between the selected climate change variables and any ecological consequences caused by changes in species composition or richness. Results The effects of elevated CO2 concentration, temperature and invertebrate diversity were not additive, rather they interacted to determine MPB biomass, and overall this effect was negative. Diversity effects were underpinned by strong species composition effects, illustrating the importance of individual species identity. Conclusions Overall, our findings suggest that in natural systems, the complex interactions between changing environmental conditions and any associated changes in invertebrate assemblage structure are likely to reduce MPB biomass. Furthermore, these effects would be sufficient to affect the net metabolic balance of the coastal ecosystem, with important implications for system ecology and sustainable exploitation. PMID:21320339
Dencker, Tim Spaanheden; Pecuchet, Laurene; Beukhof, Esther; Richardson, Katherine; Payne, Mark R; Lindegren, Martin
2017-01-01
Biodiversity is a multifaceted concept, yet most biodiversity studies have taken a taxonomic approach, implying that all species are equally important. However, species do not contribute equally to ecosystem processes and differ markedly in their responses to changing environments. This recognition has led to the exploration of other components of biodiversity, notably the diversity of ecologically important traits. Recent studies taking into account both taxonomic and trait diversity have revealed that the two biodiversity components may exhibit pronounced temporal and spatial differences. These apparent incongruences indicate that the two components may respond differently to environmental drivers and that changes in one component might not affect the other. Such incongruences may provide insight into the structuring of communities through community assembly processes, and the resilience of ecosystems to change. Here we examine temporal and spatial patterns and drivers of multiple marine biodiversity indicators using the North Sea fish community as a case study. Based on long-term spatially resolved survey data on fish species occurrences and biomasses from 1983 to 2014 and an extensive trait dataset we: (i) investigate temporal and spatial incongruences between taxonomy and trait-based indicators of both richness and evenness; (ii) examine the underlying environmental drivers and, (iii) interpret the results in the context of assembly rules acting on community composition. Our study shows that taxonomy and trait-based biodiversity indicators differ in time and space and that these differences are correlated to natural and anthropogenic drivers, notably temperature, depth and substrate richness. Our findings show that trait-based biodiversity indicators add information regarding community composition and ecosystem structure compared to and in conjunction with taxonomy-based indicators. These results emphasize the importance of examining and monitoring multiple indicators of biodiversity in ecological studies as well as for conservation and ecosystem-based management purposes.
Pecuchet, Laurene; Beukhof, Esther; Richardson, Katherine; Payne, Mark R.; Lindegren, Martin
2017-01-01
Biodiversity is a multifaceted concept, yet most biodiversity studies have taken a taxonomic approach, implying that all species are equally important. However, species do not contribute equally to ecosystem processes and differ markedly in their responses to changing environments. This recognition has led to the exploration of other components of biodiversity, notably the diversity of ecologically important traits. Recent studies taking into account both taxonomic and trait diversity have revealed that the two biodiversity components may exhibit pronounced temporal and spatial differences. These apparent incongruences indicate that the two components may respond differently to environmental drivers and that changes in one component might not affect the other. Such incongruences may provide insight into the structuring of communities through community assembly processes, and the resilience of ecosystems to change. Here we examine temporal and spatial patterns and drivers of multiple marine biodiversity indicators using the North Sea fish community as a case study. Based on long-term spatially resolved survey data on fish species occurrences and biomasses from 1983 to 2014 and an extensive trait dataset we: (i) investigate temporal and spatial incongruences between taxonomy and trait-based indicators of both richness and evenness; (ii) examine the underlying environmental drivers and, (iii) interpret the results in the context of assembly rules acting on community composition. Our study shows that taxonomy and trait-based biodiversity indicators differ in time and space and that these differences are correlated to natural and anthropogenic drivers, notably temperature, depth and substrate richness. Our findings show that trait-based biodiversity indicators add information regarding community composition and ecosystem structure compared to and in conjunction with taxonomy-based indicators. These results emphasize the importance of examining and monitoring multiple indicators of biodiversity in ecological studies as well as for conservation and ecosystem-based management purposes. PMID:29253876
NASA Astrophysics Data System (ADS)
Osland, M. J.; Enwright, N.; Day, R. H.; Gabler, C. A.; Stagg, C. L.; From, A. S.
2014-12-01
Across the globe, macroclimatic drivers greatly influence coastal wetland ecosystem structure and function. However, changing macroclimatic conditions are rarely incorporated into coastal wetland vulnerability assessments. Here, we quantify the influence of macroclimatic drivers upon coastal wetland ecosystems along the Northern Gulf of Mexico (NGOM) coast. From a global perspective, the NGOM coast provides several excellent opportunities to examine the effects of climate change upon coastal wetlands. The abundant coastal wetland ecosystems in the region span two major climatic gradients: (1) a winter temperature gradient that crosses temperate to tropical climatic zones; and (2) a precipitation gradient that crosses humid to semi-arid zones. We present analyses where we used geospatial data (historical climate, hydrology, and coastal wetland coverage) and field data (soil, elevation, and plant community composition and structure) to quantify climate-mediated ecological transitions. We identified winter climate and precipitation-based thresholds that separate mangrove forests from salt marshes and vegetated wetlands from unvegetated wetlands, respectively. We used simple distribution and abundance models to evaluate the potential ecological effects of alternative future climate change scenarios. Our results illustrate and quantify the importance of macroclimatic drivers and indicate that climate change could result in landscape-scale changes in coastal wetland ecosystem structure and function. These macroclimate-mediated ecological changes could affect the supply of some ecosystem goods and services as well as the resilience of these ecosystems to stressors, including accelerated sea level rise. Collectively, our findings highlight the importance of incorporating macroclimatic drivers within future-focused coastal wetland vulnerability assessments.
Microbial eukaryotic distributions and diversity patterns in a deep-sea methane seep ecosystem.
Pasulka, Alexis L; Levin, Lisa A; Steele, Josh A; Case, David H; Landry, Michael R; Orphan, Victoria J
2016-09-01
Although chemosynthetic ecosystems are known to support diverse assemblages of microorganisms, the ecological and environmental factors that structure microbial eukaryotes (heterotrophic protists and fungi) are poorly characterized. In this study, we examined the geographic, geochemical and ecological factors that influence microbial eukaryotic composition and distribution patterns within Hydrate Ridge, a methane seep ecosystem off the coast of Oregon using a combination of high-throughput 18S rRNA tag sequencing, terminal restriction fragment length polymorphism fingerprinting, and cloning and sequencing of full-length 18S rRNA genes. Microbial eukaryotic composition and diversity varied as a function of substrate (carbonate versus sediment), activity (low activity versus active seep sites), sulfide concentration, and region (North versus South Hydrate Ridge). Sulfide concentration was correlated with changes in microbial eukaryotic composition and richness. This work also revealed the influence of oxygen content in the overlying water column and water depth on microbial eukaryotic composition and diversity, and identified distinct patterns from those previously observed for bacteria, archaea and macrofauna in methane seep ecosystems. Characterizing the structure of microbial eukaryotic communities in response to environmental variability is a key step towards understanding if and how microbial eukaryotes influence seep ecosystem structure and function. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Fan, S.; Yu, S.; Lai, B.; Gao, Y.
2017-12-01
Iron is a limiting micronutrient element critical for the marine ecosystem. In the extensive high-nutrient low-chlorophyll (HNLC) regions of the Southern Ocean, the activities of phytoplankton are partly controlled by iron (Fe) from different sources, including atmospheric deposition. Among important properties of atmospheric Fe are the elemental composition and Fe oxidation state of Fe-containing aerosol particles, as these properties affect aerosol Fe solubility. To explore these issues, aerosol samples were collected at Palmer Station in West Antarctic Peninsula. Samples were analyzed by submicron synchrotron-based X-ray fluorescence (XRF) and X-ray absorption near edge structure (XANES) spectroscopy for the Fe oxidation state and elemental composition of aerosol particles. The morphological information of aerosol particles was also observed by the high-resolution fluorescence microscopy, revealing possible sources and formation processes of iron-containing particles. More detailed results will be discussed in this presentation.
Wang, Xuexia; Dong, Shikui; Yang, Bing; Li, Yuanyuan; Su, Xukun
2014-10-01
A 3-year survey was conducted to explore the relationships among plant composition, productivity, and soil fertility characterizing four different degradation stages of an alpine meadow in the source region of the Yangtze and Yellow Rivers, China. Results showed that plant species diversity, productivity, and soil fertility of the top 30-cm soil layer significantly declined with degradation stages of alpine meadow over the study period. The productivity of forbs significantly increased with degradation stages, and the soil potassium stock was not affected by grassland degradation. The vegetation composition gradually shifted from perennial graminoids (grasses and sedges) to annual forbs along the degradation gradient. The abrupt change of response in plant diversity, plant productivity, and soil nutrients was demonstrated after heavy grassland degradation. Moreover, degradation can indicate plant species diversity and productivity through changing soil fertility. However, the clear relationships are difficult to establish. In conclusion, degradation influenced ecosystem function and services, such as plant species diversity, productivity, and soil carbon and nitrogen stocks. Additionally, both plant species diversity and soil nutrients were important predictors in different degradation stages of alpine meadows. To this end, heavy degradation grade was shown to cause shift of plant community in alpine meadow, which provided an important basis for sustaining ecosystem function, manipulating the vegetation composition of the area and restoring the degraded alpine grassland.
NASA Astrophysics Data System (ADS)
Hundera, Kitessa; Aerts, Raf; Fontaine, Alexandre; Van Mechelen, Maarten; Gijbels, Pieter; Honnay, Olivier; Muys, Bart
2013-03-01
The effect of arabica coffee management intensity on composition, structure, and regeneration of moist evergreen Afromontane forests was studied in three traditional coffee-management systems of southwest Ethiopia: semiplantation coffee, semiforest coffee, and forest coffee. Vegetation and environmental data were collected in 84 plots from forests varying in intensity of coffee management. After controlling for environmental variation (altitude, aspect, slope, soil nutrient availability, and soil depth), differences in woody species composition, forest structure, and regeneration potential among management systems were compared using one way analysis of variance. The study showed that intensification of forest coffee cultivation to maximize coffee production negatively affects diversity and structure of Ethiopian moist evergreen Afromontane forests. Intensification of coffee productivity starts with the conversion of forest coffee to semiforest coffee, which has significant negative effects on tree seedling abundance. Further intensification leads to the conversion of semiforest to semiplantation coffee, causing significant diversity losses and the collapse of forest structure (decrease of stem density, basal area, crown closure, crown cover, and dominant tree height). Our study underlines the need for shade certification schemes to include variables other than canopy cover and that the loss of species diversity in intensively managed coffee systems may jeopardize the sustainability of coffee production itself through the decrease of ecosystem resilience and disruption of ecosystem services related to coffee yield, such as pollination and pest control.
Responses of stream microbes to multiple anthropogenic stressors in a mesocosm study.
Nuy, Julia K; Lange, Anja; Beermann, Arne J; Jensen, Manfred; Elbrecht, Vasco; Röhl, Oliver; Peršoh, Derek; Begerow, Dominik; Leese, Florian; Boenigk, Jens
2018-08-15
Stream ecosystems are affected by multiple anthropogenic stressors worldwide. Even though effects of many single stressors are comparatively well studied, the effects of multiple stressors are difficult to predict. In particular bacteria and protists, which are responsible for the majority of ecosystem respiration and element flows, are infrequently studied with respect to multiple stressors responses. We conducted a stream mesocosm experiment to characterize the responses of single and multiple stressors on microbiota. Two functionally important stream habitats, leaf litter and benthic phototrophic rock biofilms, were exposed to three stressors in a full factorial design: fine sediment deposition, increased chloride concentration (salinization) and reduced flow velocity. We analyzed the microbial composition in the two habitat types of the mesocosms using an amplicon sequencing approach. Community analysis on different taxonomic levels as well as principle component analyses (PCoAs) based on realtive abundances of operational taxonomic units (OTUs) showed treatment specific shifts in the eukaryotic biofilm community. Analysis of variance (ANOVA) revealed that Bacillariophyta responded positively salinity and sediment increase, while the relative read abundance of chlorophyte taxa decreased. The combined effects of multiple stressors were mainly antagonistic. Therefore, the community composition in multiply stressed environments resembled the composition of the unstressed control community in terms of OTU occurrence and relative abundances. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Trial by fire: Restoration of Middle Rio Grande upland ecosystems
Samuel R. Loftin
1999-01-01
The majority of upland ecosystems (desert scrub, grassland, pinyon-juniper, ponderosa pine and higher elevation conifer forests) in the Middle Rio Grande Basin were historically dependent on periodic fire to maintain their composition, productivity, and distribution. The cultural practices of European man have altered the function, structure, and composition of...
Rebecca L. MacDonald; Han Y.H. Chen; Samuel F. Bartels; Brian J. Palik; Ellie E. Prepas; Frank Gilliam
2015-01-01
Questions: Understanding factors that contribute to the stability of an ecosystem following harvesting is central to predicting responses of boreal ecosystems to increasing human disturbances.While the response of understorey vegetation to harvesting is well understood for upland sites, little is known about compositional stability of riparian understorey vegetation....
Structure and composition of historical longleaf pine ccosystems in Mississippi, USA
Brice B. Hanberry; Keith Coursey; John S. Kush
2018-01-01
Longleaf pine (Pinus palustris) historically was a widespread ecosystem composed of a simple tree canopy and grasslands ground layer. After widespread loss of this ecosystem due to logging and fire exclusion, little quantitative information exists about historical structure for restoration goals. We identified composition in De Soto National Forest and Pearl River...
Bakker, Elisabeth S.; Gill, Jacquelyn L.; Johnson, Christopher N.; Vera, Frans W. M.; Sandom, Christopher J.; Asner, Gregory P.; Svenning, Jens-Christian
2016-01-01
Until recently in Earth history, very large herbivores (mammoths, ground sloths, diprotodons, and many others) occurred in most of the World’s terrestrial ecosystems, but the majority have gone extinct as part of the late-Quaternary extinctions. How has this large-scale removal of large herbivores affected landscape structure and ecosystem functioning? In this review, we combine paleo-data with information from modern exclosure experiments to assess the impact of large herbivores (and their disappearance) on woody species, landscape structure, and ecosystem functions. In modern landscapes characterized by intense herbivory, woody plants can persist by defending themselves or by association with defended species, can persist by growing in places that are physically inaccessible to herbivores, or can persist where high predator activity limits foraging by herbivores. At the landscape scale, different herbivore densities and assemblages may result in dynamic gradients in woody cover. The late-Quaternary extinctions were natural experiments in large-herbivore removal; the paleoecological record shows evidence of widespread changes in community composition and ecosystem structure and function, consistent with modern exclosure experiments. We propose a conceptual framework that describes the impact of large herbivores on woody plant abundance mediated by herbivore diversity and density, predicting that herbivore suppression of woody plants is strongest where herbivore diversity is high. We conclude that the decline of large herbivores induces major alterations in landscape structure and ecosystem functions. PMID:26504223
Bakker, Elisabeth S; Gill, Jacquelyn L; Johnson, Christopher N; Vera, Frans W M; Sandom, Christopher J; Asner, Gregory P; Svenning, Jens-Christian
2016-01-26
Until recently in Earth history, very large herbivores (mammoths, ground sloths, diprotodons, and many others) occurred in most of the World's terrestrial ecosystems, but the majority have gone extinct as part of the late-Quaternary extinctions. How has this large-scale removal of large herbivores affected landscape structure and ecosystem functioning? In this review, we combine paleo-data with information from modern exclosure experiments to assess the impact of large herbivores (and their disappearance) on woody species, landscape structure, and ecosystem functions. In modern landscapes characterized by intense herbivory, woody plants can persist by defending themselves or by association with defended species, can persist by growing in places that are physically inaccessible to herbivores, or can persist where high predator activity limits foraging by herbivores. At the landscape scale, different herbivore densities and assemblages may result in dynamic gradients in woody cover. The late-Quaternary extinctions were natural experiments in large-herbivore removal; the paleoecological record shows evidence of widespread changes in community composition and ecosystem structure and function, consistent with modern exclosure experiments. We propose a conceptual framework that describes the impact of large herbivores on woody plant abundance mediated by herbivore diversity and density, predicting that herbivore suppression of woody plants is strongest where herbivore diversity is high. We conclude that the decline of large herbivores induces major alterations in landscape structure and ecosystem functions.
Stearns, M.; Tindall, J.A.; Cronin, G.; Friedel, M.J.; Bergquist, E.
2005-01-01
Coal-bed methane (CBM) co-produced discharge waters in the Powder River Basin of Wyoming, resulting from extraction of methane from coal seams, have become a priority for chemical, hydrological and biological research during the last few years. Soil and vegetation samples were taken from affected and reference sites (upland elevations and wetted gully) in Juniper Draw to investigate the effects of CBM discharge waters on soil physical and chemical properties and on native and introduced vegetation density and diversity. Results indicate an increase of salinity and sodicity within local soil ecosystems at sites directly exposed to CBM discharge waters. Elevated concentrations of sodium in the soil are correlated with consistent exposure to CBM waters. Clay-loam soils in the study area have a much larger specific surface area than the sandy soils and facilitate a greater sodium adsorption. However, there was no significant relation between increasing water sodium adsorption ratio (SAR) values and increasing sediment SAR values downstream; however, soils exposed to the CBM water ranged from the moderate to severe SAR hazard index. Native vegetation species density was highest at the reference (upland and gully) and CBM affected upland sites. The affected gully had the greatest percent composition of introduced vegetation species. Salt-tolerant species had the greatest richness at the affected gully, implying a potential threat of invasion and competition to established native vegetation. These findings suggest that CBM waters could affect agricultural production operations and long-term water quality. ?? Springer 2005.
NASA Astrophysics Data System (ADS)
Medvigy, D.; Levy, J.; Xu, X.; Batterman, S. A.; Hedin, L.
2013-12-01
Ecosystems, by definition, involve a community of organisms. These communities generally exhibit heterogeneity in their structure and composition as a result of local variations in climate, soil, topography, disturbance history, and other factors. Climate-driven shifts in ecosystems will likely include an internal re-organization of community structure and composition and as well as the introduction of novel species. In terms of vegetation, this ecosystem heterogeneity can occur at relatively small scales, sometimes of the order of tens of meters or even less. Because this heterogeneous landscape generally has a variable and nonlinear response to environmental perturbations, it is necessary to carefully aggregate the local competitive dynamics between individual plants to the large scales of tens or hundreds of kilometers represented in climate models. Accomplishing this aggregation in a computationally efficient way has proven to be an extremely challenging task. To meet this challenge, the Ecosystem Demography 2 (ED2) model statistically characterizes a distribution of local resource environments, and then simulates the competition between individuals of different sizes and species (or functional groupings). Within this framework, it is possible to explicitly simulate the impacts of climate change on ecosystem structure and composition, including both internal re-organization and the introduction of novel species or functional groups. This presentation will include several illustrative applications of the evolution of ecosystem structure and composition under climate change. One application pertains to the role of nitrogen-fixing species in tropical forests. Will increasing CO2 concentrations increase the demand for nutrients and perhaps give a competitive edge to nitrogen-fixing species? Will potentially warmer and drier conditions make some tropical forests more water-limited, reducing the demand for nitrogen, thereby giving a competitive advantage to non-nitrogen-fixing species? Will the response of nitrogen-fixing species to climate change be sensitive to local disturbance histories?
Winfree, Rachael; Fox, Jeremy W; Williams, Neal M; Reilly, James R; Cariveau, Daniel P
2015-07-01
Biodiversity-ecosystem functioning experiments have established that species richness and composition are both important determinants of ecosystem function in an experimental context. Determining whether this result holds for real-world ecosystem services has remained elusive, however, largely due to the lack of analytical methods appropriate for large-scale, associational data. Here, we use a novel analytical approach, the Price equation, to partition the contribution to ecosystem services made by species richness, composition and abundance in four large-scale data sets on crop pollination by native bees. We found that abundance fluctuations of dominant species drove ecosystem service delivery, whereas richness changes were relatively unimportant because they primarily involved rare species that contributed little to function. Thus, the mechanism behind our results was the skewed species-abundance distribution. Our finding that a few common species, not species richness, drive ecosystem service delivery could have broad generality given the ubiquity of skewed species-abundance distributions in nature. © 2015 John Wiley & Sons Ltd/CNRS.
Vieira, Joana; Matos, Paula; Mexia, Teresa; Silva, Patrícia; Lopes, Nuno; Freitas, Catarina; Correia, Otília; Santos-Reis, Margarida; Branquinho, Cristina; Pinho, Pedro
2018-01-01
The growing human population concentrated in urban areas lead to the increase of road traffic and artificial areas, consequently enhancing air pollution and urban heat island effects, among others. These environmental changes affect citizen's health, causing a high number of premature deaths, with considerable social and economic costs. Nature-based solutions are essential to ameliorate those impacts in urban areas. While the mere presence of urban green spaces is pointed as an overarching solution, the relative importance of specific vegetation structure, composition and management to improve the ecosystem services of air purification and climate regulation are overlooked. This avoids the establishment of optimized planning and management procedures for urban green spaces with high spatial resolution and detail. Our aim was to understand the relative contribution of vegetation structure, composition and management for the provision of ecosystem services of air purification and climate regulation in urban green spaces, in particular the case of urban parks. This work was done in a large urban park with different types of vegetation surrounded by urban areas. As indicators of microclimatic effects and of air pollution levels we selected different metrics: lichen diversity and pollutants accumulation in lichens. Among lichen diversity, functional traits related to nutrient and water requirements were used as surrogates of the capacity of vegetation to filter air pollution and to regulate climate, and provide air purification and climate regulation ecosystem services, respectively. This was also obtained with very high spatial resolution which allows detailed spatial planning for optimization of ecosystem services. We found that vegetation type characterized by a more complex structure (trees, shrubs and herbaceous layers) and by the absence of management (pruning, irrigation and fertilization) had a higher capacity to provide the ecosystems services of air purification and climate regulation. By contrast, lawns, which have a less complex structure and are highly managed, were associated to a lower capacity to provide these services. Tree plantations showed an intermediate effect between the other two types of vegetation. Thus, vegetation structure, composition and management are important to optimize green spaces capacity to purify air and regulate climate. Taking this into account green spaces can be managed at high spatial resolutions to optimize these ecosystem services in urban areas and contribute to improve human well-being. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Classen, Aimée T.; Sundqvist, Maja K.; Henning, Jeremiah A.; ...
2015-08-07
Global change is altering species distributions and thus interactions among organisms. Organisms live in concert with thousands of other species, some beneficial, some pathogenic, some which have little to no effect in complex communities. Since natural communities are composed of organisms with very different life history traits and dispersal ability it is unlikely they will all respond to climatic change in a similar way. Disjuncts in plant-pollinator and plant-herbivore interactions under global change have been relatively well described, but plant-soil microorganism and soil microbe-microbe relationships have received less attention. Since soil microorganisms regulate nutrient transformations, provide plants with nutrients, allowmore » co-existence among neighbors, and control plant populations, changes in soil microorganism-plant interactions could have significant ramifications for plant community composition and ecosystem function. Finally, in this paper we explore how climatic change affects soil microbes and soil microbe-plant interactions directly and indirectly, discuss what we see as emerging and exciting questions and areas for future research, and discuss what ramifications changes in these interactions may have on the composition and function of ecosystems.« less
Microplastics alter composition of fungal communities in aquatic ecosystems.
Kettner, Marie Therese; Rojas-Jimenez, Keilor; Oberbeckmann, Sonja; Labrenz, Matthias; Grossart, Hans-Peter
2017-11-01
Despite increasing concerns about microplastic (MP) pollution in aquatic ecosystems, there is insufficient knowledge on how MP affect fungal communities. In this study, we explored the diversity and community composition of fungi attached to polyethylene (PE) and polystyrene (PS) particles incubated in different aquatic systems in north-east Germany: the Baltic Sea, the River Warnow and a wastewater treatment plant. Based on next generation 18S rRNA gene sequencing, 347 different operational taxonomic units assigned to 81 fungal taxa were identified on PE and PS. The MP-associated communities were distinct from fungal communities in the surrounding water and on the natural substrate wood. They also differed significantly among sampling locations, pointing towards a substrate and location specific fungal colonization. Members of Chytridiomycota, Cryptomycota and Ascomycota dominated the fungal assemblages, suggesting that both parasitic and saprophytic fungi thrive in MP biofilms. Thus, considering the worldwide increasing accumulation of plastic particles as well as the substantial vector potential of MP, especially these fungal taxa might benefit from MP pollution in the aquatic environment with yet unknown impacts on their worldwide distribution, as well as biodiversity and food web dynamics at large. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.
Potato-associated arbuscular mycorrhizal fungal communities in the Peruvian Andes.
Senés-Guerrero, Carolina; Torres-Cortés, Gloria; Pfeiffer, Stefan; Rojas, Mercy; Schüßler, Arthur
2014-08-01
The world's fourth largest food crop, potato, originates in the Andes. Here, the community composition of arbuscular mycorrhizal fungi (AMF) associated with potato in Andean ecosystems is described for the first time. AMF were studied in potato roots and rhizosphere soil at four different altitudes from 2,658 to 4,075 m above mean sea level (mamsl) and in three plant growth stages (emergence, flowering, and senescence). AMF species were distinguished by sequencing an approx. 1,500 bp nuclear rDNA region. Twenty species of AMF were identified, of which 12 came from potato roots and 15 from rhizosphere soil. Seven species were found in both roots and soil. Interestingly, altitude affected species composition with the highest altitude exhibiting the greatest species diversity. The three most common colonizers of potato roots detected were Funneliformis mosseae, an unknown Claroideoglomus sp., and Rhizophagus irregularis. Notably, the potato-associated AMF diversity observed in this Andean region is much higher than that reported for potato in other ecosystems. Potato plants were colonized by diverse species from 8 of the 11 Glomeromycota families. Identification of the AMF species is important for their potential use in sustainable management practices to improve potato production in the Andean region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Classen, Aimée T.; Sundqvist, Maja K.; Henning, Jeremiah A.
Global change is altering species distributions and thus interactions among organisms. Organisms live in concert with thousands of other species, some beneficial, some pathogenic, some which have little to no effect in complex communities. Since natural communities are composed of organisms with very different life history traits and dispersal ability it is unlikely they will all respond to climatic change in a similar way. Disjuncts in plant-pollinator and plant-herbivore interactions under global change have been relatively well described, but plant-soil microorganism and soil microbe-microbe relationships have received less attention. Since soil microorganisms regulate nutrient transformations, provide plants with nutrients, allowmore » co-existence among neighbors, and control plant populations, changes in soil microorganism-plant interactions could have significant ramifications for plant community composition and ecosystem function. Finally, in this paper we explore how climatic change affects soil microbes and soil microbe-plant interactions directly and indirectly, discuss what we see as emerging and exciting questions and areas for future research, and discuss what ramifications changes in these interactions may have on the composition and function of ecosystems.« less
Neotropical Amphibian Declines Affect Stream Ecosystem Properties
NASA Astrophysics Data System (ADS)
Connelly, S.; Pringle, C. M.; Bixby, R. J.; Whiles, M. R.; Lips, K. R.; Brenes, R.; Colon-Gaud, J. C.; Kilham, S.; Hunte-Brown, M.
2005-05-01
Global declines of amphibians are well documented, yet effects of these dramatic losses on ecosystem structure and function are poorly understood. As part of a larger collaborative project, we compared two upland Panamanian streams. Both streams are biologically and geologically similar; however, one stream (Fortuna) has recently experienced almost complete extirpation of stream-dwelling frogs, while the other (Cope) still has intact populations. We experimentally excluded tadpoles from localized areas in each stream. We then compared chlorophyll a, algal community composition, ash-free dry mass (AFDM), inorganic matter, and insect assemblages in control and exclusion areas. Additionally, we sampled the natural substrate of both streams monthly for chlorophyll a, algal community composition, AFDM, and inorganic matter. At Cope, chlorophyll a, AFDM, and inorganic matter were greater in areas where tadpoles were excluded than in their presence. Numbers of dominant algal species (e.g., Nupela praecipua and Eunotia siolii) were greater in the exclusion versus control treatments. Monthly sampling of natural substrate indicated higher chlorophyll a and AFDM at Cope compared to Fortuna. Our data suggest that stream-dwelling anuran larvae have significant impacts on algal communities. These results also have implications for predicting the relevance of short-term experimental manipulations to long-term, whole-stream processes.
Trave, Claudia; Sheaves, Marcus
2014-01-01
The frequent transit of vehicles (recreational or not) through saltpans and saltmarsh fields has been recorded as one of the major causes of physical and ecological damage for these environments. While several studies have been carried out to assess the consequence of this anthropogenic activity on the different local plant species, little is known on its long-term impact on the faunal community. Invertebrates, such as crabs, provide several essential ecological services, and their presence and abundance are tightly connected to that of the saltmarsh plants. Decrease of vegetative cover due to vehicle transit is likely to cause alterations in the morphology and the composition of the saltmarsh ecosystem. In this study we evaluate presence and distribution of the main crustacean species in several impacted sites in Townsville area (Queensland, Australia), to determine possible correlation between vehicle tracks alterations and crab distribution, as well as investigate any possible habitat shift in the mid- and long-term. Results indicate that reduction of plant cover affects species composition and distribution, with different effects based on the unique characteristics of each crab species analysed, resulting in an overall alteration of the assemblage structure.
Gavazov, Konstantin; Albrecht, Remy; Buttler, Alexandre; Dorrepaal, Ellen; Garnett, Mark H; Gogo, Sebastien; Hagedorn, Frank; Mills, Robert T E; Robroek, Bjorn J M; Bragazza, Luca
2018-03-23
Climate change can alter peatland plant community composition by promoting the growth of vascular plants. How such vegetation change affects peatland carbon dynamics remains, however, unclear. In order to assess the effect of vegetation change on carbon uptake and release, we performed a vascular plant-removal experiment in two Sphagnum-dominated peatlands that represent contrasting stages of natural vegetation succession along a climatic gradient. Periodic measurements of net ecosystem CO 2 exchange revealed that vascular plants play a crucial role in assuring the potential for net carbon uptake, particularly with a warmer climate. The presence of vascular plants, however, also increased ecosystem respiration, and by using the seasonal variation of respired CO 2 radiocarbon (bomb- 14 C) signature we demonstrate an enhanced heterotrophic decomposition of peat carbon due to rhizosphere priming. The observed rhizosphere priming of peat carbon decomposition was matched by more advanced humification of dissolved organic matter, which remained apparent beyond the plant growing season. Our results underline the relevance of rhizosphere priming in peatlands, especially when assessing the future carbon sink function of peatlands undergoing a shift in vegetation community composition in association with climate change. © 2018 John Wiley & Sons Ltd.
Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic ecosystems
NASA Astrophysics Data System (ADS)
Vonk, J. E.; Tank, S. E.; Bowden, W. B.; Laurion, I.; Vincent, W. F.; Alekseychik, P.; Amyot, M.; Billet, M. F.; Canário, J.; Cory, R. M.; Deshpande, B. N.; Helbig, M.; Jammet, M.; Karlsson, J.; Larouche, J.; MacMillan, G.; Rautio, M.; Anthony, K. M. Walter; Wickland, K. P.
2015-12-01
The Arctic is a water-rich region, with freshwater systems covering about 16 % of the northern permafrost landscape. Permafrost thaw creates new freshwater ecosystems, while at the same time modifying the existing lakes, streams, and rivers that are impacted by thaw. Here, we describe the current state of knowledge regarding how permafrost thaw affects lentic (still) and lotic (moving) systems, exploring the effects of both thermokarst (thawing and collapse of ice-rich permafrost) and deepening of the active layer (the surface soil layer that thaws and refreezes each year). Within thermokarst, we further differentiate between the effects of thermokarst in lowland areas vs. that on hillslopes. For almost all of the processes that we explore, the effects of thaw vary regionally, and between lake and stream systems. Much of this regional variation is caused by differences in ground ice content, topography, soil type, and permafrost coverage. Together, these modifying factors determine (i) the degree to which permafrost thaw manifests as thermokarst, (ii) whether thermokarst leads to slumping or the formation of thermokarst lakes, and (iii) the manner in which constituent delivery to freshwater systems is altered by thaw. Differences in thaw-enabled constituent delivery can be considerable, with these modifying factors determining, for example, the balance between delivery of particulate vs. dissolved constituents, and inorganic vs. organic materials. Changes in the composition of thaw-impacted waters, coupled with changes in lake morphology, can strongly affect the physical and optical properties of thermokarst lakes. The ecology of thaw-impacted lakes and streams is also likely to change; these systems have unique microbiological communities, and show differences in respiration, primary production, and food web structure that are largely driven by differences in sediment, dissolved organic matter, and nutrient delivery. The degree to which thaw enables the delivery of dissolved vs. particulate organic matter, coupled with the composition of that organic matter and the morphology and stratification characteristics of recipient systems will play an important role in determining the balance between the release of organic matter as greenhouse gases (CO2 and CH4), its burial in sediments, and its loss downstream. The magnitude of thaw impacts on northern aquatic ecosystems is increasing, as is the prevalence of thaw-impacted lakes and streams. There is therefore an urgent need to quantify how permafrost thaw is affecting aquatic ecosystems across diverse Arctic landscapes, and the implications of this change for further climate warming.
Le Roux, X; Bardy, M; Loiseau, P; Louault, F
2003-11-01
Stimulation of nitrification and denitrification by long term (from years to decades) grazing has commonly been reported in different grassland ecosystems. However, grazing generally induces important changes in plant species composition, and whether changes in nitrification and denitrification are primarily due to changes in vegetation composition has never been tested. We compared soil nitrification- and denitrification-enzyme activities (NEA and DEA, respectively) between semi-natural grassland sites experiencing intensive (IG) and light (LG) grazing/mowing regimes for 13 years. Mean NEA and DEA (i.e. observed from random soil sampling) were higher in IG than LG sites. The NEA/DEA ratio was higher in IG than LG sites, indicating a higher stimulation of nitrification. Marked changes in plant species composition were observed in response to the grazing/mowing regime. In particular, the specific phytomass volume of Elymus repens was lower in IG than LG sites, whereas the specific volume of Lolium perenne was higher in IG than LG sites. In contrast, the specific volume of Holcus lanatus, Poa trivialis and Arrhenatherum elatius were not significantly different between treatments. Soils sampled beneath grass tussocks of the last three species exhibited higher DEA, NEA and NEA/DEA ratio in IG than LG sites. For a given grazing regime, plant species did not affect significantly soil DEA, NEA and NEA/DEA ratio. The modification of plant species composition is thus not the primary factor driving changes in nitrification and denitrification in semi-natural grassland ecosystems experiencing long term intensive grazing. Factors such as trampling, N returned in animal excreta, and/or modification of N uptake and C exudation by frequently defoliated plants could be responsible for the enhanced microbial activities.
Using Landscape Hierarchies To Guide Restoration Of Disturbed Ecosystems
Brian J. Palik; Charles P. Goebel; Katherine L. Kirkman; Larry West
2000-01-01
Reestablishing native plant communities is an important focus of ecosystem restoration. In complex landscapes containing a diversity of ecosystem types, restoration requires a set of reference vegetation conditions for the ecosystems of concern, and a predictive model to relate plant community composition to physical variables. Restoration also requires an approach for...
Remote sensing the vulnerability of vegetation in natural terrestrial ecosystems
Alistair M. S. Smith; Crystal A. Kolden; Wade T. Tinkham; Alan F. Talhelm; John D. Marshall; Andrew T. Hudak; Luigi Boschetti; Michael J. Falkowski; Jonathan A. Greenberg; John W. Anderson; Andrew Kliskey; Lilian Alessa; Robert F. Keefe; James R. Gosz
2014-01-01
Climate change is altering the species composition, structure, and function of vegetation in natural terrestrial ecosystems. These changes can also impact the essential ecosystem goods and services derived from these ecosystems. Following disturbances, remote-sensing datasets have been used to monitor the disturbance and describe antecedent conditions as a means of...
Rupert Seidl; Thomas A. Spies; David L. Peterson; Scott L. Stephens; Jeffrey A. Hicke
2015-01-01
Summary 1. The provisioning of ecosystem services to society is increasingly under pressure from global change. Changing disturbance regimes are of particular concern in this context due to their high potential impact on ecosystem structure, function and composition. Resiliencebased stewardship is advocated to address these changes in ecosystem management,...
Assessing the risk of nitrogen deposition to natural resources in the Four Corners area
Reed, Sasha C.; Belnap, Jayne; Floyd-Hanna, Lisa; Crews, Tim; Herring, Jack; Hanna, Dave; Miller, Mark E.; Duniway, Michael C.; Roybal, Carla M.
2013-01-01
Nitrogen (N) deposition in the western U.S. is on the rise and is already dramatically affecting terrestrial ecosystems. For example, N deposition has repeatedly been shown to lower air and water quality, increase greenhouse gas emissions, alter plant community composition, and significantly modify fire regimes. Accordingly, the effects of N deposition represent one of our largest environmental challenges and make difficult the National Park Service’s (NPS) important mission to “preserve the scenery and the natural and historic objects and the wildlife… unimpaired for the enjoyment of future generations”. Due to increased population growth and energy development (e.g., natural gas wells), the Four Corners region has become a notable ‘hotspot’ for N deposition. However, our understanding of how increased N deposition will affect these unique ecosystems, as well as how much deposition is actually occurring, remains notably poor. Here we used a multi-disciplinary approach to gathering information in an effort to help NPS safeguard the Four Corners national parks, both now and into the future. We applied modeling, field, and laboratory techniques to clarify current N deposition gradients and to help elucidate the ecosystem consequences of N deposition to the national parks of the Four Corners area. Our results suggest that NOx deposition does indeed represent a significant source of N to Mesa Verde National Park and, as expected, N deposition significantly affects coupled biogeochemical cycling (N, carbon, and phosphorus) of these landscapes. We also found some surprising results. For example, perhaps due to the low nutrient availability in these (and other) dryland ecosystems, although most other research suggests that adding N reduces N fixation rates, N additions did not consistently reduce natural N inputs via biological N2 fixation at our dryland sites. While the timeline of this pilot project is too brief to elucidate all the potential insight from the approach utilized here (e.g., we have fertilization plots to explore how N deposition affects Bromus tectorum invasion that will surely yield provoking results), we plan to continue this exciting line of questioning and expect further insight to be forthcoming.
Zheng, Jingming; Jiang, Fengqi; Zeng, Dehui
2003-06-01
To realize the sustainable management of forest ecosystems, we should explicitly clarify the types and differences of the ecosystem services provided by different ecosystems under different conditions, with rethinking about the value of forest ecosystems; then solid management strategies and measurements will be enacted and applied to achieve the objects. The broad-leaved Korean pine forest (BLKPF) in Changbai Mountain is a unique and important forest type in China, owing to its many important ecosystem services such as preventing soil erosion, regulating climates, nutrient cycling, providing wood and non-timber forest products, etc. This paper is a preliminary study on the management strategy of BLKPF on the basis of analyzing the characters of the ecosystems and the relative importance of services they provided in this region. Based on the latest research of ecosystem services of BLKPF in Changbai Mountain, an idea of eco-value level (EVL) was introduced, and accordingly, management strategies were summarized by adopting the advanced theories in ecosystem management science and by analyzing field survey data. EVL means the relative amount of the value of ecosystem services provided by certain ecosystem, which can indicate the difference between services in given objects. The EVL classification of BLKPF implies the relative amount of the eco-value of different ecosystems including virgin forest, secondary forest, forest with human disturbance, and man-made forest in the clear-cutting sites. Analytical Hierarchical Processing method was used to formulate the equation for EVL index. Eight factors, namely, slope, soil depth, stability of soil maternal material, coverage of above-ground canopy, species diversity, regeneration rate of the stand, life span of dominant tree species, and intensity of human disturbance were chosen to build the formula. These factors belonged to three aspects affecting ecosystem services including the physical environment, community, and disturbance regime, and their selection and scaling were based on the previous studies on the BLKPF. The equation of EVL index (EI) was expressed as: EI = 0.542A1 + 0.171A2 + 0.072A3 + 0.067B1 + 0.043B2 + 0.014B3 + 0.010B4 + 0.081C1. According to the range of EI, ecosystems were classified into three types: low EVL type with EI from 1.000 to 1.874, medium EVL type with EI 1.874-2.749, and high EVL type with EI 2.749-3.623. Typical plots were surveyed and scaled with EI, and the predominant characters of each EVL type were summarized. Most forests of high EVL type were those in sites at high risk of soil erosion and hard to recover after disrupted. Forests of medium EVL type were those with worse community structure and composition, and were disturbed by human activities in relative steep sites. Forest of low EVL type were those in plane site with serious disruption or some young man-made stands. Based on the analyses of the characters of these three types, different management strategies were put forward. For high EVL type forest, strictly protection is most important to maintain the forest in natural succession and its eco-services. For medium EVL type forest, the key points of management are restoring their health and vigor by regulating their composition and structure in a seminatural way. For low EVL type forest, some area could be used to extensive exploration for economic benefits, and the rests should be reconstructed towards the original stand in composition and structure, based on the 'shadow ecosystem' in a close-to-nature way to promote the capacity of providing more eco-services.
NASA Astrophysics Data System (ADS)
Wanthongchai, Dr.; Bauhus, Prof.; Goldammer, Prof.
2009-04-01
Anthropogenic burning in dry dipterocarp forests (DDF) has become a common phenomenon throughout Thailand. It is feared that too frequent fires may affect vegetation structure and composition and thus impact on ecosystem productivity. The aim of this study was to quantify the effects of prescribed fires on sites with different past burning regimes on vegetation structure and composition in the Huay Kha Khaeng Wildlife Sanctuary (HKK), Thailand. Fire frequency was determined from satellite images and ranged from frequent, infrequent, rare and unburned with fire occurrences of 7, 2, 1 and 0 out of the past 10 years, respectively. The pre-burn fuel loads, the overstorey and understorey vegetation structure and composition were determined to investigate the effects of the contrasting past burning regimes. The burning experiment was carried out, applying a three-strip head-fire burning technique. The vegetation structure and composition were sampled again one year after the fire to assess the fire impacts. Aboveground fine fuel loads increased with the length of fire-free interval. The woody plant structures of the frequently burned stand differed from those of the other less frequently burned stands. The species composition of the overstorey on the frequently burned site, in particular that of small sized trees (4.5-10 cm dbh), also differed significantly from that of the other sites. Whilst the ground vegetation including shrubs and herbs did not differ between the past burning regimes, frequent burning obviously promoted the proliferation of graminoid vegetation. There was no clear evidence showing that the prescribed fires affected the mortality of trees (dbh> 4.5 cm) on the sites of the different past burning regimes. The effects of prescribed burning on the understorey vegetation structures varied between the past burning regimes and the understorey vegetation type. Therefore, it is recommended that the DDF at HKK should be subjected to a prescribed fire frequency not shorter than every 6-7 years, or 1-2 fires per decade, to maintain ecosystem structure and function. Variation in time and space in this way, the biodiversity of the landscape may be maintained for the long-term. Keywords: Prescribed burning, burning history, burning frequency, plant species, vegetation structure, dry dipterocarp forest, Huay Kha Khaeng wildlife Sanctuary
Two-dimensional NMR spectroscopy strongly enhances soil organic matter composition analysis
NASA Astrophysics Data System (ADS)
Soucemarianadin, Laure; Erhagen, Björn; Öquist, Mats; Nilsson, Mats; Hedenström, Mattias; Schleucher, Jürgen
2016-04-01
Soil organic matter (SOM) is the largest terrestrial carbon pool and strongly affects soil properties. With climate change, understanding SOM processes and turnover and how they could be affected by increasing temperatures becomes critical. This is particularly key for organic soils as they represent a huge carbon pool in very sensitive ecosystems, like boreal ecosystems and peatlands. Nevertheless, characterization of SOM molecular composition, which is essential to elucidate soil carbon processes, is not easily achieved, and further advancements in that area are greatly needed. Solid-state one-dimensional (1D) 13C nuclear magnetic resonance (NMR) spectroscopy is often used to characterize its molecular composition, but only provides data on a few major functional groups, which regroup many different molecular fragments. For instance, in the carbohydrates region, signals of all monosaccharides present in many different polymers overlap. This overlap thwarts attempts to identify molecular moieties, resulting in insufficient information to characterize SOM composition. Here we show that two-dimensional (2D) liquid-state 1H-13C NMR spectra provided much richer data on the composition of boreal plant litter and organic surface soil. The 2D spectra indeed resolved overlaps observed in 1D 13C spectra and displayed signals from hundreds of identifiable molecular groups. For example, in the aromatics region, signals from individual lignin units could be recognized. It was hence possible to follow the fate of specific structural moieties in soils. We observed differences between litter and soil samples, and were able to relate them to the decomposition of identifiable moieties. Sample preparation and data acquisition were both simple and fast. Further, using multivariate data analysis, we aimed at linking the detailed chemical fingerprints of SOM to turnover rates in a soil incubation experiment. With the multivariate models, we were able to identify specific molecular moieties correlated to variability in the temperature response of organic matter decomposition, as assessed by Q10. Thus, 2D NMR methods, and their combination with multivariate analysis, can greatly improve analysis of litter and SOM composition, thereby facilitating elucidation of their roles in biogeochemical and ecological processes that are so critical to foresee associated feedback mechanisms on SOM turnover as a result of global environmental change.
Debby K. Fantz; Rochelle B. Renken
1997-01-01
We conducted a capture-recapture study on northeast-facing slopes to determine the pre-treatment landscape-scale effect of even- and uneven-aged silvicultural treatments upon the species composition, species richness, and relative abundance of small mammals on Missouri Ozark Forest Ecosystem Project (MOFEP) sites. Similarity indices of species composition between sites...
Environmental proteomics reveals taxonomic and functional changes in an enriched aquatic ecosystem.
Northrop, Amanda C; Brooks, Rachel; Ellison, Aaron M; Gotelli, Nicholas J; Ballif, Bryan A
2017-10-01
Aquatic ecosystem enrichment can lead to distinct and irreversible changes to undesirable states. Understanding changes in active microbial community function and composition following organic-matter loading in enriched ecosystems can help identify biomarkers of such state changes. In a field experiment, we enriched replicate aquatic ecosystems in the pitchers of the northern pitcher plant, Sarracenia purpurea . Shotgun metaproteomics using a custom metagenomic database identified proteins, molecular pathways, and contributing microbial taxa that differentiated control ecosystems from those that were enriched. The number of microbial taxa contributing to protein expression was comparable between treatments; however, taxonomic evenness was higher in controls. Functionally active bacterial composition differed significantly among treatments and was more divergent in control pitchers than enriched pitchers. Aerobic and facultative anaerobic bacteria contributed most to identified proteins in control and enriched ecosystems, respectively. The molecular pathways and contributing taxa in enriched pitcher ecosystems were similar to those found in larger enriched aquatic ecosystems and are consistent with microbial processes occurring at the base of detrital food webs. Detectable differences between protein profiles of enriched and control ecosystems suggest that a time series of environmental proteomics data may identify protein biomarkers of impending state changes to enriched states.
NASA Astrophysics Data System (ADS)
Voss, Britta M.; Wickland, Kimberly P.; Aiken, George R.; Striegl, Robert G.
2017-08-01
Riverine ecosystems receive organic matter (OM) from terrestrial sources, internally produce new OM, and biogeochemically cycle and modify organic and inorganic carbon. Major gaps remain in the understanding of the relationships between carbon sources and processing in river systems. Here we synthesize isotopic, elemental, and molecular properties of dissolved organic carbon (DOC), particulate organic carbon (POC), and dissolved inorganic carbon (DIC) in the Upper Mississippi River (UMR) system above Wabasha, MN, including the main stem Mississippi River and its four major tributaries (Minnesota, upper Mississippi, St. Croix, and Chippewa Rivers). Our goal was to elucidate how biological processing modifies the chemical and isotopic composition of aquatic carbon pools during transport downstream in a large river system with natural and man-made impoundments. Relationships between land cover and DOC carbon-isotope composition, absorbance, and hydrophobic acid content indicate that DOC retains terrestrial carbon source information, while the terrestrial POC signal is largely replaced by autochthonous organic matter, and DIC integrates the influence of in-stream photosynthesis and respiration of organic matter. The UMR is slightly heterotrophic throughout the year, but pools formed by low-head navigation dams and natural impoundments promote a shift toward autotrophic conditions, altering aquatic ecosystem dynamics and POC and DIC compositions. Such changes likely occur in all major river systems affected by low-head dams and need to be incorporated into our understanding of inland water carbon dynamics and processes controlling CO2 emissions from rivers, as new navigation and flood control systems are planned for future river and water resources management.
Voss, Britta; Wickland, Kimberly P.; Aiken, George R.; Striegl, Robert G.
2017-01-01
Riverine ecosystems receive organic matter (OM) from terrestrial sources, internally produce new OM, and biogeochemically cycle and modify organic and inorganic carbon. Major gaps remain in the understanding of the relationships between carbon sources and processing in river systems. Here we synthesize isotopic, elemental, and molecular properties of dissolved organic carbon (DOC), particulate organic carbon (POC), and dissolved inorganic carbon (DIC) in the Upper Mississippi River (UMR) system above Wabasha, MN, including the main stem Mississippi River and its four major tributaries (Minnesota, upper Mississippi, St. Croix, and Chippewa Rivers). Our goal was to elucidate how biological processing modifies the chemical and isotopic composition of aquatic carbon pools during transport downstream in a large river system with natural and man-made impoundments. Relationships between land cover and DOC carbon-isotope composition, absorbance, and hydrophobic acid content indicate that DOC retains terrestrial carbon source information, while the terrestrial POC signal is largely replaced by autochthonous organic matter, and DIC integrates the influence of in-stream photosynthesis and respiration of organic matter. The UMR is slightly heterotrophic throughout the year, but pools formed by low-head navigation dams and natural impoundments promote a shift towards autotrophic conditions, altering aquatic ecosystem dynamics and POC and DIC composition. Such changes likely occur in all major river systems affected by low-head dams and need to be incorporated into our understanding of inland water carbon dynamics and processes controlling CO2 emissions from rivers, as new navigation and flood control systems are planned for future river and water resources management.
Landscape Context Mediates Avian Habitat Choice in Tropical Forest Restoration
Reid, J. Leighton; Mendenhall, Chase D.; Rosales, J. Abel; Zahawi, Rakan A.; Holl, Karen D.
2014-01-01
Birds both promote and prosper from forest restoration. The ecosystem functions birds perform can increase the pace of forest regeneration and, correspondingly, increase the available habitat for birds and other forest-dependent species. The aim of this study was to learn how tropical forest restoration treatments interact with landscape tree cover to affect the structure and composition of a diverse bird assemblage. We sampled bird communities over two years in 13 restoration sites and two old-growth forests in southern Costa Rica. Restoration sites were established on degraded farmlands in a variety of landscape contexts, and each included a 0.25-ha plantation, island treatment (trees planted in patches), and unplanted control. We analyzed four attributes of bird communities including frugivore abundance, nectarivore abundance, migrant insectivore richness, and compositional similarity of bird communities in restoration plots to bird communities in old-growth forests. All four bird community variables were greater in plantations and/or islands than in control treatments. Frugivore and nectarivore abundance decreased with increasing tree cover in the landscape surrounding restoration plots, whereas compositional similarity to old-growth forests was greatest in plantations embedded in landscapes with high tree cover. Migrant insectivore richness was unaffected by landscape tree cover. Our results agree with previous studies showing that increasing levels of investment in active restoration are positively related to bird richness and abundance, but differences in the effects of landscape tree cover on foraging guilds and community composition suggest that trade-offs between biodiversity conservation and bird-mediated ecosystem functioning may be important for prioritizing restoration sites. PMID:24595233
Goldstein, Harland L.; Breit, George N.; Yount, James C.; Reynolds, Richard L.; Reheis, Marith C.; Skipp, Gary L.; Fisher, Eric M.; Lamothe, Paul J.
2011-01-01
This report presents data and describes the methods used to determine the physical attributes, as well as the chemical and mineralogical composition of surficial deposits; groundwater levels; and water composition in the area of Franklin Lake playa and Ash Meadows, California and Nevada. The results support studies that examine (1) the interaction between groundwater and the ground surface, and the transport of solutes through the unsaturated zone; (2) the potential for the accumulation of metals and metalloids in surface crusts; (3) emission of dust from metal-rich salt crust; and (4) the effects of metal-rich dusts on human and ecosystem health. The evaporation of shallow (<3 to 4 m) groundwater in saline, arid environments commonly results in the accumulation of salt in the subsurface and (or) the formation of salt crusts at the ground surface. Ground-surface characteristics such as hardness, electrical conductivity, and mineralogy depend on the types and forms of these salt crusts. In the study area, salt crusts range from hard and bedded to soft and loose (Reynolds and others, 2009). Depending on various factors such as the depth and composition of groundwater and sediment characteristics of the unsaturated zone, salt crusts may accumulate relatively high contents of trace elements. Soft, loose salt crusts are highly vulnerable to wind erosion and transport. These vulnerable crusts, which may contain high contents of potentially toxic trace elements, can travel as atmospheric dust and affect human and ecosystem health at local to regional scales.
Impacts of insect disturbance on the structure, composition, and functioning of oak-pine forests
NASA Astrophysics Data System (ADS)
Medvigy, D.; Schafer, K. V.; Clark, K. L.
2011-12-01
Episodic disturbance is an essential feature of terrestrial ecosystems, and strongly modulates their structure, composition, and functioning. However, dynamic global vegetation models that are commonly used to make ecosystem and terrestrial carbon budget predictions rarely have an explicit representation of disturbance. One reason why disturbance is seldom included is that disturbance tends to operate on spatial scales that are much smaller than typical model resolutions. In response to this problem, the Ecosystem Demography model 2 (ED2) was developed as a way of tracking the fine-scale heterogeneity arising from disturbances. In this study, we used ED2 to simulate an oak-pine forest that experiences episodic defoliation by gypsy moth (Lymantria dispar L). The model was carefully calibrated against site-level data, and then used to simulate changes in ecosystem composition, structure, and functioning on century time scales. Compared to simulations that include gypsy moth defoliation, we show that simulations that ignore defoliation events lead to much larger ecosystem carbon stores and a larger fraction of deciduous trees relative to evergreen trees. Furthermore, we find that it is essential to preserve the fine-scale nature of the disturbance. Attempts to "smooth out" the defoliation event over an entire grid cells led to large biases in ecosystem structure and functioning.
NASA Astrophysics Data System (ADS)
Cavender-Bares, J.; Schweiger, A. K.; Madritch, M. D.; Gamon, J. A.; Hobbie, S. E.; Montgomery, R.; Townsend, P. A.
2017-12-01
Above-and below-ground plant traits are important for substrate input to the rhizosphere. The substrate composition of the rhizosphere, in turn, affects the diversity of soil organisms, influences soil biochemistry, and water content, and resource availability for plant growth. This has substantial consequences for ecosystem functions, such as above-ground productivity and stability. Above-ground plant chemical and structural traits can be linked to the characteristics of other plant organs, including roots. Airborne imaging spectroscopy has been successfully used to model and predict chemical and structural traits of the above-ground vegetation. However, remotely sensed images capture, almost exclusively, signals from the top of the canopy, providing limited direct information about understory vegetation. Here, we use a data set collected in a savanna ecosystem consisting of spectral measurements gathered at the leaf, the whole plant, and vegetation canopy level to test for hypothesized linkages between above- and below-ground processes that influence root biomass, soil biochemistry, and the diversity of the soil community. In this environment, consisting of herbaceous vegetation intermixed with shrubs and trees growing at variable densities, we investigate the contribution of different vegetation strata to soil characteristics and test the ability of imaging spectroscopy to detect these in plant communities with contrasting vertical structure.
Grazers structure the bacterial and algal diversity of aquatic metacommunities.
Birtel, Julia; Matthews, Blake
2016-12-01
Consumers can have strong effects on the biotic and abiotic dynamics of spatially-structured ecosystems. In metacommunities, dispersing consumers can alter local assembly dynamics either directly through trophic interactions or indirectly by modifying local environmental conditions. In aquatic systems, very little is known about how key grazers, such as Daphnia, structure the microbial diversity of metacommunities and influence bacterial-mediated ecosystem functions. In an outdoor mesocosm experiment with replicate metacommunities (two 300 L mesocosms), we tested how the presence and absence of Daphnia and the initial density of the microbial community (manipulated via dilution) influenced the diversity and community structure of algae and bacteria, and several ecosystem properties (e.g., pH, dissolved substances) and functions (e.g., enzyme activity, respiration). We found that Daphnia strongly affected the local and regional diversity of both phytoplankton and bacteria, the taxonomic composition of bacterial communities, the biomass of algae, and ecosystem metabolism (i.e., respiration). Diluting the microbial inoculum (0.2-5 μm size fraction) to the metacommunities increased local phytoplankton diversity, decreased bacteria beta-diversity, and changed the relative abundance of bacterial classes. Changes in the rank abundance of different bacterial groups exhibited phylogenetic signal, implying that closely related bacteria species might share similar responses to the presence of Daphnia. © 2016 by the Ecological Society of America.
Environmental metabolomics with data science for investigating ecosystem homeostasis.
Kikuchi, Jun; Ito, Kengo; Date, Yasuhiro
2018-02-01
A natural ecosystem can be viewed as the interconnections between complex metabolic reactions and environments. Humans, a part of these ecosystems, and their activities strongly affect the environments. To account for human effects within ecosystems, understanding what benefits humans receive by facilitating the maintenance of environmental homeostasis is important. This review describes recent applications of several NMR approaches to the evaluation of environmental homeostasis by metabolic profiling and data science. The basic NMR strategy used to evaluate homeostasis using big data collection is similar to that used in human health studies. Sophisticated metabolomic approaches (metabolic profiling) are widely reported in the literature. Further challenges include the analysis of complex macromolecular structures, and of the compositions and interactions of plant biomass, soil humic substances, and aqueous particulate organic matter. To support the study of these topics, we also discuss sample preparation techniques and solid-state NMR approaches. Because NMR approaches can produce a number of data with high reproducibility and inter-institution compatibility, further analysis of such data using machine learning approaches is often worthwhile. We also describe methods for data pretreatment in solid-state NMR and for environmental feature extraction from heterogeneously-measured spectroscopic data by machine learning approaches. Copyright © 2017. Published by Elsevier B.V.
Ecological role of the giant root-rat (Tachyoryctes macrocephalus) in the Afroalpine ecosystem.
Šklíba, Jan; Vlasatá, Tereza; Lövy, Matěj; Hrouzková, Ema; Meheretu, Yonas; Sillero-Zubiri, Claudio; Šumbera, Radim
2017-07-01
Rodents with prevailing subterranean activity usually play an important role in the ecosystems of which they are a part due to the combined effect of herbivory and soil perturbation. This is the case for the giant root-rat Tachyoryctes macrocephalus endemic to the Afroalpine ecosystem of the Bale Mountains, Ethiopia. We studied the impact of root-rats on various ecosystem features within a 3.5-ha study locality dominated by Alchemilla pasture, which represents an optimal habitat for this species, in 2 periods of a year. The root-rats altered plant species composition, reducing the dominant forb, Alchemilla abyssinica, while enhancing Salvia merjame and a few other species, and reduced vegetation cover, but not the fresh plant biomass. Where burrows were abandoned by root-rats, other rodents took them over and A. abyssinica increased again. Root-rat burrowing created small-scale heterogeneity in soil compactness due to the backfilling of some unused burrow segments. Less compacted soil tended to be rich in nutrients, including carbon, nitrogen and phosphorus, which likely affected the plant growth on sites where the vegetation has been reduced as a result of root-rat foraging and burrowing. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
How Does Tree Density Affect Water Loss of Peatlands? A Mesocosm Experiment
Limpens, Juul; Holmgren, Milena; Jacobs, Cor M. J.; Van der Zee, Sjoerd E. A. T. M.; Karofeld, Edgar; Berendse, Frank
2014-01-01
Raised bogs have accumulated more atmospheric carbon than any other terrestrial ecosystem on Earth. Climate-induced expansion of trees and shrubs may turn these ecosystems from net carbon sinks into sources when associated with reduced water tables. Increasing water loss through tree evapotranspiration could potentially deepen water tables, thus stimulating peat decomposition and carbon release. Bridging the gap between modelling and field studies, we conducted a three-year mesocosm experiment subjecting natural bog vegetation to three birch tree densities, and studied the changes in subsurface temperature, water balance components, leaf area index and vegetation composition. We found the deepest water table in mesocosms with low tree density. Mesocosms with high tree density remained wettest (i.e. highest water tables) whereas the control treatment without trees had intermediate water tables. These differences are attributed mostly to differences in evapotranspiration. Although our mesocosm results cannot be directly scaled up to ecosystem level, the systematic effect of tree density suggests that as bogs become colonized by trees, the effect of trees on ecosystem water loss changes with time, with tree transpiration effects of drying becoming increasingly offset by shading effects during the later phases of tree encroachment. These density-dependent effects of trees on water loss have important implications for the structure and functioning of peatbogs. PMID:24632565
Changes in future fire regimes under climate change
NASA Astrophysics Data System (ADS)
Thonicke, Kirsten; von Bloh, Werner; Lutz, Julia; Knorr, Wolfgang; Wu, Minchao; Arneth, Almut
2013-04-01
Fires are expected to change under future climate change, climatic fire is is increasing due to increase in droughts and heat waves affecting vegetation productivity and ecosystem function. Vegetation productivity influences fuel production, but can also limit fire spread. Vegetation-fire models allow investigating the interaction between wildfires and vegetation dynamics, thus non-linear effects between changes in fuel composition and production on fire as well as changes in fire regimes on fire-related plant mortality and fuel combustion. Here we present results from simulation experiments, where the vegetation-fire models LPJmL-SPITFIRE and LPJ-GUESS are applied to future climate change scenarios from regional climate models in Europe and Northern Africa. Climate change impacts on fire regimes, vegetation dynamics and carbon fluxes are quantified and presented. New fire-prone regions are mapped and changes in fire regimes of ecosystems with a long-fire history are analyzed. Fuel limitation is likely to increase in Mediterranean-type ecosystems, indicating non-linear connection between increasing fire risk and fuel production. Increased warming in temperate ecosystems in Eastern Europe and continued fuel production leads to increases not only in climatic fire risk, but also area burnt and biomass burnt. This has implications for fire management, where adaptive capacity to this new vulnerability might be limited.
Earthquake-caused coastal uplift and its effects on rocky intertidal kelp communities.
Castilla, J C
1988-10-21
The coastal uplift(approximately 40 to 60 centimeters) associated with the Chilean earthquake of 3 March 1985 caused extensive mortality of intertidal organisms at the Estación Costera de Investigaciones Marinas, Las Cruces. The kelp belt of the laminarian Lessonia nigrescens was particularly affected. Most of the primary space liberated at the upper border of this belt was invaded by species of barnacles, which showed an opportunistic colonization strategy. Drastic modifications in the environment such as coastal uplift, subsidence, or the effects of the El Niño phenomenon are characteristic of the southern Pacific. Modifications in the marine ecosystem that generate catastrophic and widespread mortalities of intertidal organisms can affect species composition, diversity, or local biogeography.
Water quality assessment in the Mexican Caribbean: Impacts on the coastal ecosystem
NASA Astrophysics Data System (ADS)
Hernández-Terrones, Laura M.; Null, Kimberly A.; Ortega-Camacho, Daniela; Paytan, Adina
2015-07-01
Coastal zones are dominated by economically important ecosystems, and excessive urban, industrial, agricultural, and tourism activities can lead to rapid degradation of those habitats and resources. Groundwater in the Eastern Yucatan Peninsula coastal aquifer discharges directly into the coastal ocean affecting the coral reefs, which are part of the Mesoamerican Coral Reef System. The composition and impacts of groundwater were studied at different coastal environments around Akumal (SE Yucatan Peninsula). Radium isotopes and salinity were used to quantify fresh groundwater and recirculated seawater contributions to the coastal zone. Excess Ra distribution suggests spatially variable discharge rates of submarine groundwater. High NO3- levels and high coliform bacteria densities indicate that groundwater is polluted at some sites. Dissolved phosphorous content is elevated in the winter and during the high tourism season, likely released from untreated sewage discharge and from aquifer sediments under reducing conditions.
Soil CO2 dynamics and fluxes as affected by tree harvest in an experimental sand ecosystem.
C.K. Keller; T.M. White; R. O' Brien; J.L. Smith
2006-01-01
Soil CO2 production is a key process in ecosystem C exchange, and global change predictions require understanding of how ecosystem disturbance affects this process. We monitored CO2 levels in soil gas and as bicarbonate in drainage from an experimental red pine ecosystem, for 1 year before and 3 years after its aboveground...
Gomà, Joan; Prat, Narcís
2018-01-01
This study aims to contribute to the understanding of the impact of Didymosphenia geminata massive growths upon river ecosystem communities’ composition and functioning. This is the first study to jointly consider the taxonomic composition and functional structure of diatom and macroinvertebrate assemblages in order to determine changes in community structure, and the food web alterations associated with this invasive alga. This study was carried out in the Lumbreras River (Ebro Basin, La Rioja, Northern Spain), which has been affected by a considerable massive growth of D. geminata since 2011. The study shows a profound alteration in both the river community composition and in the food web structure at the sites affected by the massive growth, which is primarily due to the alteration of the environmental conditions, thus demonstrating that D. geminata has an important role as an ecosystem engineer in the river. Thick filamentous mats impede the movement of large invertebrates—especially those that move and feed up on it—and favor small, opportunistic, herbivorous organisms, mainly chironomids, that are capable of moving between filaments and are aided by the absence of large trophic competitors and predators -prey release effect-. Only small predators, such as hydra, are capable of surviving in the new environment, as they are favored by the increase in chironomids, a source of food, and by the reduction in both their own predators and other midge predators -mesopredator release-. This change in the top-down control affects the diatom community, since chironomids may feed on large diatoms, increasing the proportion of small diatoms in the substrate. The survival of small and fast-growing pioneer diatoms is also favored by the mesh of filaments, which offers them a new habitat for colonization. Simultaneously, D. geminata causes a significant reduction in the number of diatoms with similar ecological requirements (those attached to the substrate). Overall, D. geminata creates a community dominated by small organisms that is clearly different from the existing communities in the same stream where there is an absence of massive growths. PMID:29494699
Leaf-trait plasticity and species vulnerability to climate change in a Mongolian steppe.
Liancourt, Pierre; Boldgiv, Bazartseren; Song, Daniel S; Spence, Laura A; Helliker, Brent R; Petraitis, Peter S; Casper, Brenda B
2015-09-01
Climate change is expected to modify plant assemblages in ways that will have major consequences for ecosystem functions. How climate change will affect community composition will depend on how individual species respond, which is likely related to interspecific differences in functional traits. The extraordinary plasticity of some plant traits is typically neglected in assessing how climate change will affect different species. In the Mongolian steppe, we examined whether leaf functional traits under ambient conditions and whether plasticity in these traits under altered climate could explain climate-induced biomass responses in 12 co-occurring plant species. We experimentally created three probable climate change scenarios and used a model selection procedure to determine the set of baseline traits or plasticity values that best explained biomass response. Under all climate change scenarios, plasticity for at least one leaf trait correlated with change in species performance, while functional leaf-trait values in ambient conditions did not. We demonstrate that trait plasticity could play a critical role in vulnerability of species to a rapidly changing environment. Plasticity should be considered when examining how climate change will affect plant performance, species' niche spaces, and ecological processes that depend on plant community composition. © 2015 John Wiley & Sons Ltd.
[Research progress on the degradation mechanisms and restoration of riparian ecosystem].
Huang, Kai; Guo, Huai-cheng; Liu, Yong; Yu, Ya-juan; Zhou, Feng
2007-06-01
Restoration and reconstruction of degraded riparian ecosystem caused by natural and anthropogenic disturbances is one of the important issues in restoration ecology and watershed ecology. The disturbances on riparian ecosystem include flow regime alteration, direct modification and watershed disturbance, which have different affecting mechanisms. Flow regime alteration affects riparian ecosystem by changing riparian soil humidity, oxidation-reduction potential, biotaliving environment, and sediment transfer; direct modification affects riparian vegetation diversity through human activities and exotic plants invasion; and watershed disturbance mainly manifests in the channel degradation, aggradation or widening, the lowering of groundwater table, and the modification in fluvial process. The assessment objects of riparian restoration are riparian ecosystem components, and the assessment indicators are shifted from ecological to synthetic indices. Riparian restoration should be based on the detailed understanding of the biological and physical processes which affect riparian ecosystem, and implemented by vegetation restoration and hydrological adjustment at watershed or landscape scale. To extend the research scales and objects and to apply interdisciplinary approaches should be the key points in the further studies on the degradation mechanisms and restoration of riparian ecosystem.
Eucalypts face increasing climate stress
Butt, Nathalie; Pollock, Laura J; McAlpine, Clive A
2013-01-01
Global climate change is already impacting species and ecosystems across the planet. Trees, although long-lived, are sensitive to changes in climate, including climate extremes. Shifts in tree species' distributions will influence biodiversity and ecosystem function at scales ranging from local to landscape; dry and hot regions will be especially vulnerable. The Australian continent has been especially susceptible to climate change with extreme heat waves, droughts, and flooding in recent years, and this climate trajectory is expected to continue. We sought to understand how climate change may impact Australian ecosystems by modeling distributional changes in eucalypt species, which dominate or codominate most forested ecosystems across Australia. We modeled a representative sample of Eucalyptus and Corymbia species (n = 108, or 14% of all species) using newly available Representative Concentration Pathway (RCP) scenarios developed for the 5th Assessment Report of the IPCC, and bioclimatic and substrate predictor variables. We compared current, 2025, 2055, and 2085 distributions. Overall, Eucalyptus and Corymbia species in the central desert and open woodland regions will be the most affected, losing 20% of their climate space under the mid-range climate scenario and twice that under the extreme scenario. The least affected species, in eastern Australia, are likely to lose 10% of their climate space under the mid-range climate scenario and twice that under the extreme scenario. Range shifts will be lateral as well as polewards, and these east–west transitions will be more significant, reflecting the strong influence of precipitation rather than temperature changes in subtropical and midlatitudes. These net losses, and the direction of shifts and contractions in range, suggest that many species in the eastern and southern seaboards will be pushed toward the continental limit and that large tracts of currently treed landscapes, especially in the continental interior, will change dramatically in terms of species composition and ecosystem structure. PMID:24455132
Plant ecology. Anthropogenic environmental changes affect ecosystem stability via biodiversity.
Hautier, Yann; Tilman, David; Isbell, Forest; Seabloom, Eric W; Borer, Elizabeth T; Reich, Peter B
2015-04-17
Human-driven environmental changes may simultaneously affect the biodiversity, productivity, and stability of Earth's ecosystems, but there is no consensus on the causal relationships linking these variables. Data from 12 multiyear experiments that manipulate important anthropogenic drivers, including plant diversity, nitrogen, carbon dioxide, fire, herbivory, and water, show that each driver influences ecosystem productivity. However, the stability of ecosystem productivity is only changed by those drivers that alter biodiversity, with a given decrease in plant species numbers leading to a quantitatively similar decrease in ecosystem stability regardless of which driver caused the biodiversity loss. These results suggest that changes in biodiversity caused by drivers of environmental change may be a major factor determining how global environmental changes affect ecosystem stability. Copyright © 2015, American Association for the Advancement of Science.
The need for simultaneous evaluation of ecosystem services and land use change
Euliss, Ned H.; Smith, Loren M.; Liu, Shu-Guang; Feng, Min; Mushet, David M.; Auch, Roger F.; Loveland, Thomas R.
2010-01-01
We are living in a period of massive global change. This rate of change may be almost without precedent in geologic history (1). Even the most remote areas of the planet are influenced by human activities. Modern landscapes have been highly modified to accommodate a growing human population that the United Nations has forecast to peak at 9.1 billion by 2050. Over this past century, reliance on services from ecosystems has increased significantly and, over past decades, sustainability of our modern, intensively managed ecosystems has been a topic of serious international concern (1). Numerous papers addressing a particular land-use change effect on specific ecosystem services have recently been published. For example, there is currently great interest in increasing biofuel production to achieve energy inde- pendence goals and recent papers have independently focused attention on impacts of land-use change on single ecosystem services such as carbon sequestration (2) and many others (e.g., water availability, biodiversity, pollination). However, land-use change clearly affects myriad ecosystem services simultaneously. Hence, a broader perspective and context is needed to evaluate and understand interrelated affects on multiple ecosystem services, especially as we strive for the goal of sustainably managing global ecosystems. Similarly, land uses affect ecosystem services synergistically; single land-use evaluations may be misleading because the overall impact on an ecosystem is not evaluated. A more holistic approach would provide a means and framework to characterize how land-use change affects provisioning of goods and services of complete ecosystems.
NASA Astrophysics Data System (ADS)
Jimenez, J. R.; Raub, H. D.; Jong, E. L.; Muscarella, C. R.; Smith, W. K.; Gallery, R. E.
2017-12-01
Extracellular enzyme activities (EEA) of soil microorganisms can act as important proxies for nutrient limitation and turnover in soil and provide insight into the biochemical requirements of microbes in terrestrial ecosystems. In semi-arid ecosystems, microbial activity is influenced by topography, disturbances such as fire, and seasonality from monsoon rains. Previous studies from forest ecosystems show that microbial communities shift to similar compositions after severe fires despite different initial conditions. In semi-arid ecosystems with high spatial heterogeniety, we ask does fire lead to patch intensification or patch homogenization and how do monsoon rains influence the successional trajectories of microbial responses? We analyzed microbial activity and soil biogeochemistry throughout the monsoon season in paired burned and unburned sites in the Santa Rita Experimental Range, AZ. Surface soil (5cm) from bare-ground patches, bole, canopy drip line, and nearby grass patches for 5 mesquite trees per site allowed tests of spatiotemporal responses to fire and monsoon rain. Microbial activity was low during the pre-monsoon season and did not differ between the burned and unburned sites. We found greater activity near mesquite trees that reflects soil water and nutrient availability. Fire increased soil alkalinity, though soils near mesquite trees were less affected. Soil water content was significantly higher in the burned sites post-monsoon, potentially reflecting greater hydrophobicity of burned soils. Considering the effects of fire in these semi-arid ecosystems is especially important in the context of the projected changing climate regime in this region. Assessing microbial community recovery pre-, during, and post-monsoon is important for testing predictions about whether successional pathways post-fire lead to recovery or novel trajectories of communities and ecosystem function.
Consequences of declining snow accumulation for water balance of mid-latitude dry regions
Schlaepfer, Daniel R.; Lauenroth, William K.; Bradford, John B.
2012-01-01
Widespread documentation of positive winter temperature anomalies, declining snowpack and earlier snow melt in the Northern Hemisphere have raised concerns about the consequences for regional water resources as well as wildfire. A topic that has not been addressed with respect to declining snowpack is effects on ecosystem water balance. Changes in water balance dynamics will be particularly pronounced at low elevations of mid-latitude dry regions because these areas will be the first to be affected by declining snow as a result of rising temperatures. As a model system, we used simulation experiments to investigate big sagebrush ecosystems that dominate a large fraction of the semiarid western United States. Our results suggest that effects on future ecosystem water balance will increase along a climatic gradient from dry, warm and snow-poor to wet, cold and snow-rich. Beyond a threshold within this climatic gradient, predicted consequences for vegetation switched from no change to increasing transpiration. Responses were sensitive to uncertainties in climatic prediction; particularly, a shift of precipitation to the colder season could reduce impacts of a warmer and snow-poorer future, depending on the degree to which ecosystem phenology tracks precipitation changes. Our results suggest that big sagebrush and other similar semiarid ecosystems could decrease in viability or disappear in dry to medium areas and likely increase only in the snow-richest areas, i.e. higher elevations and higher latitudes. Unlike cold locations at high elevations or in the arctic, ecosystems at low elevations respond in a different and complex way to future conditions because of opposing effects of increasing water-limitation and a longer snow-free season. Outcomes of such nonlinear interactions for future ecosystems will likely include changes in plant composition and productivity, dynamics of water balance, and availability of water resources.
Aerosols in atmospheric chemistry and biogeochemical cycles of nutrients
NASA Astrophysics Data System (ADS)
Kanakidou, Maria; Myriokefalitakis, Stelios; Tsigaridis, Kostas
2018-06-01
Atmospheric aerosols have complex and variable compositions and properties. While scientific interest is centered on the health and climatic effects of atmospheric aerosols, insufficient attention is given to their involvement in multiphase chemistry that alters their contribution as carriers of nutrients in ecosystems. However, there is experimental proof that the nutrient equilibria of both land and marine ecosystems have been disturbed during the Anthropocene period. This review study first summarizes our current understanding of aerosol chemical processing in the atmosphere as relevant to biogeochemical cycles. Then it binds together results of recent modeling studies based on laboratory and field experiments, focusing on the organic and dust components of aerosols that account for multiphase chemistry, aerosol ageing in the atmosphere, nutrient (N, P, Fe) emissions, atmospheric transport, transformation and deposition. The human-driven contribution to atmospheric deposition of these nutrients, derived by global simulations using past and future anthropogenic emissions of pollutants, is put into perspective with regard to potential changes in nutrient limitations and biodiversity. Atmospheric deposition of nutrients has been suggested to result in human-induced ecosystem limitations with regard to specific nutrients. Such modifications favor the development of certain species against others and affect the overall functioning of ecosystems. Organic forms of nutrients are found to contribute to the atmospheric deposition of the nutrients N, P and Fe by 20%–40%, 35%–45% and 7%–18%, respectively. These have the potential to be key components of the biogeochemical cycles since there is initial proof of their bioavailability to ecosystems. Bioaerosols have been found to make a significant contribution to atmospheric sources of N and P, indicating potentially significant interactions between terrestrial and marine ecosystems. These results deserve further experimental and modeling studies to reduce uncertainties and understand the feedbacks induced by atmospheric deposition of nutrients to ecosystems.
Fire patterns of South Eastern Queensland in a global context: A review
Philip Le C. F. Stewart; Patrick T. Moss
2015-01-01
Fire is an important driver in ecosystem evolution, composition, structure and distribution, and is vital for maintaining ecosystems of the Great Sandy Region (GSR). Charcoal records for the area dating back over 40, 000 years provide evidence of the great changes in vegetation composition, distribution and abundance in the region over time as a result of fire. Fires...
Remote Sensing of a Manipulated Prairie Grassland Experiment to Predict Belowground Processes
NASA Astrophysics Data System (ADS)
Cavender-Bares, J.; Schweiger, A. K.; Hobbie, S. E.; Madritch, M. D.; Wang, Z.; Couture, J. J.; Gamon, J. A.; Townsend, P. A.
2017-12-01
Given the importance of plant biodiversity for providing the ecosystem functions and services on which humans depend, rapid and remote methods of monitoring plant biodiversity across large spatial extents and biological scales are increasingly critical. In North American prairie systems, the ecosystem benefits of diversity are a subject of ongoing investigation and relevance to policy. However, detecting belowground components of ecosystem biodiversity, composition and associated functions are not possible directly through remote sensing. Nevertheless, belowground components of diversity may be linked to aboveground components allowing indirect inferences. Here we test a series of hypotheses about how aboveground functional and chemical diversity and composition of plant communities drive belowground functions, including N mineralization, enzyme activity and microbial biomass, as well as microbial diversity and composition. We hypothesize that the quantity and chemical composition of aboveground inputs to soil drive belowground processes, including decomposition and microbial enzyme activity. We use plant spectra (400 nm to 2500 nm) measured at the leaf and airborne level to determine chemical and functional composition of leaves and canopies in a long-term grassland experiment where diversity is manipulated at the Cedar Creek Ecosystem Science Reserve. We then assess the extent to which belowground chemistry, microbial diversity and composition are predicted from aboveground plant diversity, biomass and chemical composition. We find strong associations between aboveground inputs and belowground enzyme activity and microbial biomass but only weak linkages between aboveground diversity and belowground diversity. We discuss the potential for such approaches and the caveats related to the spatial scale of measurements and spatial resolution of airborne detection.
Zeglin, Lydia H.
2015-01-01
The importance of microbial activity to ecosystem function in aquatic ecosystems is well established, but microbial diversity has been less frequently addressed. This review and synthesis of 100s of published studies on stream microbial diversity shows that factors known to drive ecosystem processes, such as nutrient availability, hydrology, metal contamination, contrasting land-use and temperature, also cause heterogeneity in bacterial diversity. Temporal heterogeneity in stream bacterial diversity was frequently observed, reflecting the dynamic nature of both stream ecosystems and microbial community composition. However, within-stream spatial differences in stream bacterial diversity were more commonly observed, driven specifically by different organic matter (OM) compartments. Bacterial phyla showed similar patterns in relative abundance with regard to compartment type across different streams. For example, surface water contained the highest relative abundance of Actinobacteria, while epilithon contained the highest relative abundance of Cyanobacteria and Bacteroidetes. This suggests that contrasting physical and/or nutritional habitats characterized by different stream OM compartment types may select for certain bacterial lineages. When comparing the prevalence of physicochemical effects on stream bacterial diversity, effects of changing metal concentrations were most, while effects of differences in nutrient concentrations were least frequently observed. This may indicate that although changing nutrient concentrations do tend to affect microbial diversity, other environmental factors are more likely to alter stream microbial diversity and function. The common observation of connections between ecosystem process drivers and microbial diversity suggests that microbial taxonomic turnover could mediate ecosystem-scale responses to changing environmental conditions, including both microbial habitat distribution and physicochemical factors. PMID:26042102
Persistent and pervasive compositional shifts of western boreal forest plots in Canada.
Searle, Eric B; Chen, Han Y H
2017-02-01
Species compositional shifts have important consequences to biodiversity and ecosystem function and services to humanity. In boreal forests, compositional shifts from late-successional conifers to early-successional conifers and deciduous broadleaves have been postulated based on increased fire frequency associated with climate change truncating stand age-dependent succession. However, little is known about how climate change has affected forest composition in the background between successive catastrophic fires in boreal forests. Using 1797 permanent sample plots from western boreal forests of Canada measured from 1958 to 2013, we show that after accounting for stand age-dependent succession, the relative abundances of early-successional deciduous broadleaves and early-successional conifers have increased at the expense of late-successional conifers with climate change. These background compositional shifts are persistent temporally, consistent across all forest stand ages and pervasive spatially across the region. Rising atmospheric CO 2 promoted early-successional conifers and deciduous broadleaves, and warming increased early-successional conifers at the expense of late-successional conifers, but compositional shifts were not associated with climate moisture index. Our results emphasize the importance of climate change on background compositional shifts in the boreal forest and suggest further compositional shifts as rising CO 2 and warming will continue in the 21st century. © 2016 John Wiley & Sons Ltd.
Environmental Impacts of the Use of Ecosystem Services: Case Study of Birdwatching
NASA Astrophysics Data System (ADS)
Kronenberg, Jakub
2014-09-01
The main reason for promoting the concept of ecosystem services lies in its potential to contribute to environmental conservation. Highlighting the benefits derived from ecosystems fosters an understanding of humans' dependence on nature, as users of ecosystem services. However, the act of using ecosystem services may not be environmentally neutral. As with the use of products and services generated within an economy, the use of ecosystem services may lead to unintended environmental consequences throughout the `ecosystem services supply chain.' This article puts forward a framework for analyzing environmental impacts related to the use of ecosystem services, indicating five categories of impact: (1) direct impacts (directly limiting the service's future availability); and four categories of indirect impacts, i.e., on broader ecosystem structures and processes, which can ultimately also affect the initial service: (2) impacts related to managing ecosystems to maximize the delivery of selected services (affecting ecosystems' capacity to provide other services); (3) impacts associated with accessing ecosystems to use their services (affecting other ecosystem components); (4) additional consumption of products, infrastructure or services required to use a selected ecosystem service, and their life-cycle environmental impacts; and (5) broader impacts on the society as a whole (environmental awareness of ecosystem service users and other stakeholders). To test the usefulness of this framework, the article uses the case study of birdwatching, which demonstrates all of the above categories of impacts. The article justifies the need for a broader consideration of environmental impacts related to the use of ecosystem services.
Shifts in tree functional composition amplify the response of forest biomass to climate
NASA Astrophysics Data System (ADS)
Zhang, Tao; Niinemets, Ülo; Sheffield, Justin; Lichstein, Jeremy W.
2018-04-01
Forests have a key role in global ecosystems, hosting much of the world’s terrestrial biodiversity and acting as a net sink for atmospheric carbon. These and other ecosystem services that are provided by forests may be sensitive to climate change as well as climate variability on shorter time scales (for example, annual to decadal). Previous studies have documented responses of forest ecosystems to climate change and climate variability, including drought-induced increases in tree mortality rates. However, relationships between forest biomass, tree species composition and climate variability have not been quantified across a large region using systematically sampled data. Here we use systematic forest inventories from the 1980s and 2000s across the eastern USA to show that forest biomass responds to decadal-scale changes in water deficit, and that this biomass response is amplified by concurrent changes in community-mean drought tolerance, a functionally important aspect of tree species composition. The amplification of the direct effects of water stress on biomass occurs because water stress tends to induce a shift in tree species composition towards species that are more tolerant to drought but are slower growing. These results demonstrate concurrent changes in forest species composition and biomass carbon storage across a large, systematically sampled region, and highlight the potential for climate-induced changes in forest ecosystems across the world, resulting from both direct effects of climate on forest biomass and indirect effects mediated by shifts in species composition.
Shifts in tree functional composition amplify the response of forest biomass to climate.
Zhang, Tao; Niinemets, Ülo; Sheffield, Justin; Lichstein, Jeremy W
2018-04-05
Forests have a key role in global ecosystems, hosting much of the world's terrestrial biodiversity and acting as a net sink for atmospheric carbon. These and other ecosystem services that are provided by forests may be sensitive to climate change as well as climate variability on shorter time scales (for example, annual to decadal). Previous studies have documented responses of forest ecosystems to climate change and climate variability, including drought-induced increases in tree mortality rates. However, relationships between forest biomass, tree species composition and climate variability have not been quantified across a large region using systematically sampled data. Here we use systematic forest inventories from the 1980s and 2000s across the eastern USA to show that forest biomass responds to decadal-scale changes in water deficit, and that this biomass response is amplified by concurrent changes in community-mean drought tolerance, a functionally important aspect of tree species composition. The amplification of the direct effects of water stress on biomass occurs because water stress tends to induce a shift in tree species composition towards species that are more tolerant to drought but are slower growing. These results demonstrate concurrent changes in forest species composition and biomass carbon storage across a large, systematically sampled region, and highlight the potential for climate-induced changes in forest ecosystems across the world, resulting from both direct effects of climate on forest biomass and indirect effects mediated by shifts in species composition.
NASA Astrophysics Data System (ADS)
Kholis, N.; Patria, M. P.; Soedjiarti, T.
2017-07-01
Research of composition and diversity of fish species in seagrass bed ecosystem at Muara Binuangeun, Lebak, Banten, had been conducted in May and November 2015. Catch per Unit of Effort (CPUE) was used as a method with push net and boat net as fishing gear. Fishing was conducted during low tide. Collected samples were preserved with 10 % Formalin Solution and then being identified in the laboratory. In total, 286 fishes were collected from 17 families and 38 species. Moolgarda sp. was the most relative abundant species (17,13 %) and Istiblennius edentulus was a fish species with the highest relative frequency. Diversity index value of seagrass bed ecosystem was 2,973. Different sampling time showed the different composition of fish, in an example of Arothron immaculatus.
Predicting wading bird and aquatic faunal responses to ecosystem restoration scenarios
Beerens, James M.; Trexler, Joel C.; Catano, Christopher P.
2017-01-01
In large-scale conservation decisions, scenario planning identifies key uncertainties of ecosystem function linked to ecological drivers affected by management, incorporates ecological feedbacks, and scales up to answer questions robust to alternative futures. Wetland restoration planning requires an understanding of how proposed changes in surface hydrology, water storage, and landscape connectivity affect aquatic animal composition, productivity, and food-web function. In the Florida Everglades, reintroduction of historical hydrologic patterns is expected to increase productivity of all trophic levels. Highly mobile indicator species such as wading birds integrate secondary productivity from aquatic prey (small fishes and crayfish) over the landscape. To evaluate how fish, crayfish, and wading birds may respond to alternative hydrologic restoration plans, we compared predicted small fish density, crayfish density and biomass, and wading bird occurrence for existing conditions to four restoration scenarios that varied water storage and removal of levees and canals (i.e. decompartmentalization). Densities of small fish and occurrence of wading birds are predicted to increase throughout most of the Everglades under all restoration options because of increased flows and connectivity. Full decompartmentalization goes furthest toward recreating hypothesized historical patterns of fish density by draining excess water ponded by levees and hydrating areas that are currently drier than in the past. In contrast, crayfish density declined and species composition shifted under all restoration options because of lengthened hydroperiods (i.e. time of inundation). Under full decompartmentalization, the distribution of increased prey available for wading birds shifted south, closer to historical locations of nesting activity in Everglades National Park.
Massad, Tara Joy; Balch, Jennifer K; Mews, Cândida Lahís; Porto, Pábio; Marimon Junior, Ben Hur; Quintino, Raimundo Mota; Brando, P M; Vieira, Simone A; Trumbore, Susan E
2015-07-01
Understanding tropical forest diversity is a long-standing challenge in ecology. With global change, it has become increasingly important to understand how anthropogenic and natural factors interact to determine diversity. Anthropogenic increases in fire frequency are among the global change variables affecting forest diversity and functioning, and seasonally dry forest of the southern Amazon is among the ecosystems most affected by such pressures. Studying how fire will impact forests in this region is therefore important for understanding ecosystem functioning and for designing effective conservation action. We report the results of an experiment in which we manipulated fire, nutrient availability, and herbivory. We measured the effects of these interacting factors on the regenerative capacity of the ecotone between humid Amazon forest and Brazilian savanna. Regeneration density, diversity, and community composition were severely altered by fire. Additions of P and N + P reduced losses of density and richness in the first year post-fire. Herbivory was most important just after germination. Diversity was positively correlated with herbivory in unburned forest, likely because fire reduced the number of reproductive individuals. This contrasts with earlier results from the same study system in which herbivory was related to increased diversity after fire. We documented a significant effect of fire frequency; diversity in triennially burned forest was more similar to that in unburned than in annually burned forest, and the community composition of triennially burned forest was intermediate between unburned and annually burned areas. Preventing frequent fires will therefore help reduce losses in diversity in the southern Amazon's matrix of human-altered landscapes.
Invasive species: an increasing threat to marine ecosystems under climate change?
NASA Astrophysics Data System (ADS)
Artioli, Yuri; Galienne, Chris; Holt, Jason; Wakelin, Sarah; Butenschön, Momme; Schrum, Corinna; Daewel, Ute; Pushpadas, Dhania; Cannaby, Heather; Salihoglu, Baris; Zavatarelli, Marco; Clementi, Emanuela; Olenin, Sergej; Allen, Icarus
2013-04-01
Planktonic Non-Indigenous Species (NIS) are a potential threat to marine ecosystems: a successful invasion of such organisms can alter significantly the ecosystem structure with shift in species composition that can affect different levels of the trophic network and also with local extinction of native species in the more extreme cases. Such changes will also impact some ecosystem functions like primary and secondary production or nutrient cycling, and services, like fishery, aquaculture or carbon sequestration. Understanding how climate change influences the susceptibility of a marine ecosystem to invasion is challenging as the success and the impact of an invasion depend on many different factors all tightly interconnected (e.g. time of the invasion, location, state of the ecosystem…). Here we present DivERSEM, a new version of the biogeochemical model ERSEM modified in order to account for phytoplankton diversity. With such a model, we are able to simulate invasion from phytoplankton NIS, to assess the likelihood of success of such an invasion and to estimate the potential impact on ecosystem structure, using indicator like the Biopollution index. In the MEECE project (www.meece.eu), the model has been coupled to a 1D water column model (GOTM) in two different climate scenarios (present day and the IPCC SRES A1B scenario for 2100) in 4 different European shelf seas (North Sea, Baltic Sea, Black Sea and Adriatic Sea). The model has been forced with atmospheric data coming from the IPSL climate model, and nutrient concentration extracted from a set of 3D biogeochemical models running under the same climate scenario. The response of the ecosystem susceptibility to invasion to climate change has been analysed comparing the successfulness of invasions in the two time slices and its impact on community structure and ecosystem functions. At the same time, the comparison among the different basins allowed to highlight some of the characteristics that make the ecosystems more vulnerable to NIS.
NASA Astrophysics Data System (ADS)
Li, R.; Arora, V. K.
2012-01-01
Energy and carbon balance implications of representing vegetation using a composite or mosaic approach in a land surface scheme are investigated. In the composite approach the attributes of different plant functional types (PFTs) present in a grid cell are aggregated in some fashion for energy and water balance calculations. The resulting physical environmental conditions (including net radiation, soil moisture and soil temperature) are common to all PFTs and affect their ecosystem processes. In the mosaic approach energy and water balance calculations are performed separately for each PFT tile using its own vegetation attributes, so each PFT "sees" different physical environmental conditions and its carbon balance evolves somewhat differently from that in the composite approach. Simulations are performed at selected boreal, temperate and tropical locations to illustrate the differences caused by using the composite versus mosaic approaches of representing vegetation. These idealized simulations use 50% fractional coverage for each of the two dominant PFTs in a grid cell. Differences in simulated grid averaged primary energy fluxes at selected sites are generally less than 5% between the two approaches. Simulated grid-averaged carbon fluxes and pool sizes at these sites can, however, differ by as much as 46%. Simulation results suggest that differences in carbon balance between the two approaches arise primarily through differences in net radiation which directly affects net primary productivity, and thus leaf area index and vegetation biomass.
Kivlin, Stephanie N; Hawkes, Christine V
2016-01-01
The high diversity of tree species has traditionally been considered an important controller of belowground processes in tropical rainforests. However, soil water availability and resources are also primary regulators of soil bacteria in many ecosystems. Separating the effects of these biotic and abiotic factors in the tropics is challenging because of their high spatial and temporal heterogeneity. To determine the drivers of tropical soil bacteria, we examined tree species effects using experimental tree monocultures and secondary forests at La Selva Biological Station in Costa Rica. A randomized block design captured spatial variation and we sampled at four dates across two years to assess temporal variation. We measured bacteria richness, phylogenetic diversity, community composition, biomass, and functional potential. All bacteria parameters varied significantly across dates. In addition, bacteria richness and phylogenetic diversity were affected by the interaction of vegetation type and date, whereas bacteria community composition was affected by the interaction of vegetation type and block. Shifts in bacteria community richness and composition were unrelated to shifts in enzyme function, suggesting physiological overlap among taxa. Based on the observed temporal and spatial heterogeneity, our understanding of tropical soil bacteria will benefit from additional work to determine the optimal temporal and spatial scales for sampling. Understanding spatial and temporal variation will facilitate prediction of how tropical soil microbes will respond to future environmental change. PMID:27391450
Kivlin, Stephanie N; Hawkes, Christine V
2016-01-01
The high diversity of tree species has traditionally been considered an important controller of belowground processes in tropical rainforests. However, soil water availability and resources are also primary regulators of soil bacteria in many ecosystems. Separating the effects of these biotic and abiotic factors in the tropics is challenging because of their high spatial and temporal heterogeneity. To determine the drivers of tropical soil bacteria, we examined tree species effects using experimental tree monocultures and secondary forests at La Selva Biological Station in Costa Rica. A randomized block design captured spatial variation and we sampled at four dates across two years to assess temporal variation. We measured bacteria richness, phylogenetic diversity, community composition, biomass, and functional potential. All bacteria parameters varied significantly across dates. In addition, bacteria richness and phylogenetic diversity were affected by the interaction of vegetation type and date, whereas bacteria community composition was affected by the interaction of vegetation type and block. Shifts in bacteria community richness and composition were unrelated to shifts in enzyme function, suggesting physiological overlap among taxa. Based on the observed temporal and spatial heterogeneity, our understanding of tropical soil bacteria will benefit from additional work to determine the optimal temporal and spatial scales for sampling. Understanding spatial and temporal variation will facilitate prediction of how tropical soil microbes will respond to future environmental change.
NASA Astrophysics Data System (ADS)
Becker, Joscha; Pabst, Holger; Mnyonga, James; Kuzyakov, Yakov
2014-05-01
One of the major pathways that connect above- and belowground nutrient and carbon stocks in forest ecosystems is litterfall. Depending on climate, tree species composition and stand structure it varies considerably between different ecosystems. Another driving factor that is known to affect ecosystem cycles is the level of anthropogenic disturbance such as land use. In case of tropical regions this is often present as the transformation from rainforests to plantation economy and sustainable agroforestry. The objective of this study was to quantify and determine patterns of carbon and nutrient deposition via tree litterfall in natural and anthropogenically affected forest ecosystems along an elevation gradient of Mt. Kilimanjaro. Tree litter of three natural (lower montane forest), two sustainably used (home gardens) and one intensively managed (shaded coffee plantation) ecosystem was collected on a biweekly basis from May 2012 to July 2013. Samples were separated into leaves, branches and remaining residues, dried and weighted. Carbon and nutrient content were measured in leave samples. We found that the overall annual pattern of litterfall was closely related to rainfall exhibiting a large peak during the dry season. Albeit visible on all plots, this characteristic decreased with elevation. No consistent patterns were found for other components than leaves. Total annual litter mainly consisted of leaf litter and ranges from 4639 kg/ha to 10673 kg/ha for all vegetation types. Flowers, fruits, etc. make up roughly 20% of total litter. Highest and lowest values occurred at home gardens and could not be significantly related to land use or elevation levels. Chemistry though differed between natural and used forest plots. N, P and K contents increased significantly with usage intensity while Mn decreased and C is more or less unaffected. We conclude that on the southern slope of Mt. Kilimanjaro, short term variations in litterfall are related to seasonal climatic conditions whereas the total annual sum is not climatically dependent. Nutrient cycles of Kilimanjaro forest ecosystems are significantly altered by land use and the associated changes of dominant tree species.
Almeida, C S; Cristaldo, P F; Florencio, D F; Ribeiro, E J M; Cruz, N G; Silva, E A; Costa, D A; Araújo, A P A
2017-01-01
Habitat fragmentation is considered to be one of the biggest threats to tropical ecosystem functioning. In this region, termites perform an important ecological role as decomposers and ecosystem engineers. In the present study, we tested whether termite community is negatively affected by edge effects on three fragments of Brazilian Atlantic Rainforest. Termite abundance and vegetation structure were sampled in 10 transects (15 × 2 m), while termite richness, activity, and soil litter biomass were measured in 16 quadrants (5 × 2 m) at forest edge and interior of each fragment. Habitat structure (i.e. number of tree, diameter at breast height and soil litter biomass) did not differ between forest edge and interior of fragments. Termite richness, abundance and activity were not affected by edge effect. However, differences were observed in the β diversity between forest edge and interior as well as in the fragments sampled. The β diversity partitioning indicates that species turnover is the determinant process of termite community composition under edge effect. Our results suggest that conservation strategies should be based on the selection of several distinct sites instead of few rich sites (e.g. nesting).
Mika, Agnieszka; Van Treuren, Will; González, Antonio; Herrera, Jonathan J.; Knight, Rob; Fleshner, Monika
2015-01-01
The mammalian intestine harbors a complex microbial ecosystem that influences many aspects of host physiology. Exposure to specific microbes early in development affects host metabolism, immune function, and behavior across the lifespan. Just as the physiology of the developing organism undergoes a period of plasticity, the developing microbial ecosystem is characterized by instability and may also be more sensitive to change. Early life thus presents a window of opportunity for manipulations that produce adaptive changes in microbial composition. Recent insights have revealed that increasing physical activity can increase the abundance of beneficial microbial species. We therefore investigated whether six weeks of wheel running initiated in the juvenile period (postnatal day 24) would produce more robust and stable changes in microbial communities versus exercise initiated in adulthood (postnatal day 70) in male F344 rats. 16S rRNA gene sequencing was used to characterize the microbial composition of juvenile versus adult runners and their sedentary counterparts across multiple time points during exercise and following exercise cessation. Alpha diversity measures revealed that the microbial communities of young runners were less even and diverse, a community structure that reflects volatility and malleability. Juvenile onset exercise altered several phyla and, notably, increased Bacteroidetes and decreased Firmicutes, a configuration associated with leanness. At the genus level of taxonomy, exercise altered more genera in juveniles than in the adults and produced patterns associated with adaptive metabolic consequences. Given the potential of these changes to contribute to a lean phenotype, we examined body composition in juvenile versus adult runners. Interestingly, exercise produced persistent increases in lean body mass in juvenile but not adult runners. Taken together, these results indicate that the impact of exercise on gut microbiota composition as well as body composition may depend on the developmental stage during which exercise is initiated. PMID:26016739
NASA Astrophysics Data System (ADS)
Packard, N. R.; Cotton, J. M.; Smiley, T. M.; Terry, R. C.
2017-12-01
Landscape, land-use, and climate change are important factors in determining ecosystem change over a range of spatio-temporal scales. For example, within small-mammal communities, the spread of agriculture, rapid urbanization, and deforestation have been shown to alter species composition and diet, thus potentially disrupting ecological interactions and reshaping ecosystems. Small mammals integrate the isotopic composition of their diet and drinking water into their hair and therefore serve as useful proxies for vegetation and water resources in their habitat. To better understand how forest loss and land-cover change influence small-mammal ecology in the Pacific Northwest (PNW), we analyzed the hydrogen (H) and oxygen (O) isotopic composition of hair from historical Peromyscus maniculatus (North American deer mouse) specimens housed in natural history museums across the country. While deforestation along the east coast occurred hundreds of years ago, the loss of forests on the west coast occurred more recently, beginning around 1930. We use early 20th century specimens of this widespread and abundant generalist species to better understand ecosystem changes that occurred over the past 100 years of local and regional deforestation. Changing forest composition and structure during deforestation can influence both broad-scale hydrological cycling and local ecosystems. Variation in O and H isotopic composition corresponds to changes in the hydrological cycle, such as changes in the source and amount of precipitation, and changes in the moisture conditions in local ecosystems. We will present this spatial and temporal variability in the form of isoscapes, or δ18O and δD isotope landscape models, of P. maniculatus hair in the western forests of the PNW through time. Investigating isotopic signatures in small mammals can help us better understand ecosystem response to anthropogenic land-use and climate change.
Novel techniques and findings in the study of plant microbiota: search for plant probiotics.
Berlec, Aleš
2012-09-01
Plants live in intimate relationships with numerous microorganisms present inside or outside plant tissues. The plant exterior provides two distinct ecosystems, the rhizosphere (below ground) and the phyllosphere (above ground), both populated by microbial communities. Most studies on plant microbiota deal with pathogens or mutualists. This review focuses on plant commensal bacteria, which could represent a rich source of bacteria beneficial to plants, alternatively termed plant probiotics. Plant commensal bacteria have been addressed only recently with culture-independent studies. These use next-generation sequencing, DNA microarray technologies and proteomics to decipher microbial community composition and function. Diverse bacterial populations are described in both rhizosphere and phyllosphere of different plants. The microorganisms can emerge from neighboring environmental ecosystems at random; however their survival is regulated by the plant. Influences from the environment, such as pesticides, farming practice and atmosphere, also affect the composition of microbial communities. Apart from community composition studies, some functional studies have also been performed. These include identification of broad-substrate surface receptors and methanol utilization enzymes by the proteomic approach, as well as identification of bacterial species that are important mediators of disease-suppressive soil phenomenon. Experience from more advanced human microbial studies could provide useful information and is discussed in the context of methodology and common trends. Administration of microbial mixtures of whole communities, rather than individual species, is highlighted and should be considered in future agricultural applications. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Tara L. E. Trammell; Margaret M. Carreiro
2011-01-01
Urban forests adjacent to interstate corridors are understudied ecosystems across cities. Despite their small area, these forests may be strategically located to provide large ecosystem services due to their ability to act as a barrier against air pollutants and noise as well as to provide flood control. The woody vegetation composition and structure of forests...
Parasitism and the biodiversity-functioning relationship
Frainer, André; McKie, Brendan G.; Amundsen, Per-Arne; Knudsen, Rune; Lafferty, Kevin D.
2018-01-01
Biodiversity affects ecosystem functioning.Biodiversity may decrease or increase parasitism.Parasites impair individual hosts and affect their role in the ecosystem.Parasitism, in common with competition, facilitation, and predation, could regulate BD-EF relationships.Parasitism affects host phenotypes, including changes to host morphology, behavior, and physiology, which might increase intra- and interspecific functional diversity.The effects of parasitism on host abundance and phenotypes, and on interactions between hosts and the remaining community, all have potential to alter community structure and BD-EF relationships.Global change could facilitate the spread of invasive parasites, and alter the existing dynamics between parasites, communities, and ecosystems.Species interactions can influence ecosystem functioning by enhancing or suppressing the activities of species that drive ecosystem processes, or by causing changes in biodiversity. However, one important class of species interactions – parasitism – has been little considered in biodiversity and ecosystem functioning (BD-EF) research. Parasites might increase or decrease ecosystem processes by reducing host abundance. Parasites could also increase trait diversity by suppressing dominant species or by increasing within-host trait diversity. These different mechanisms by which parasites might affect ecosystem function pose challenges in predicting their net effects. Nonetheless, given the ubiquity of parasites, we propose that parasite–host interactions should be incorporated into the BD-EF framework.
Galloway, Aaron W. E.; Winder, Monika
2015-01-01
Essential fatty acids (EFA), which are primarily generated by phytoplankton, limit growth and reproduction in diverse heterotrophs. The biochemical composition of phytoplankton is well-known to be governed both by phylogeny and environmental conditions. Nutrients, light, salinity, and temperature all affect both phytoplankton growth and fatty acid composition. However, the relative importance of taxonomy and environment on algal fatty acid content has yet to be comparatively quantified, thus inhibiting predictions of changes to phytoplankton food quality in response to global environmental change. We compiled 1145 published marine and freshwater phytoplankton fatty acid profiles, consisting of 208 species from six major taxonomic groups, cultured in a wide range of environmental conditions, and used a multivariate distance-based linear model to quantify the total variation explained by each variable. Our results show that taxonomic group accounts for 3-4 times more variation in phytoplankton fatty acids than the most important growth condition variables. The results underscore that environmental conditions clearly affect phytoplankton fatty acid profiles, but also show that conditions account for relatively low variation compared to phylogeny. This suggests that the underlying mechanism determining basal food quality in aquatic habitats is primarily phytoplankton community composition, and allows for prediction of environmental-scale EFA dynamics based on phytoplankton community data. We used the compiled dataset to calculate seasonal dynamics of long-chain EFA (LCEFA; ≥C20 ɷ-3 and ɷ-6 polyunsaturated fatty acid) concentrations and ɷ-3:ɷ-6 EFA ratios in Lake Washington using a multi-decadal phytoplankton community time series. These analyses quantify temporal dynamics of algal-derived LCEFA and food quality in a freshwater ecosystem that has undergone large community changes as a result of shifting resource management practices, highlighting diatoms, cryptophytes and dinoflagellates as key sources of LCEFA. Moreover, the analyses indicate that future shifts towards cyanobacteria-dominated communities will result in lower LCEFA content in aquatic ecosystems. PMID:26076015
Kohl, Lukas; Philben, Michael; Edwards, Kate A; Podrebarac, Frances A; Warren, Jamie; Ziegler, Susan E
2018-02-01
Warmer climates have been associated with reduced bioreactivity of soil organic matter (SOM) typically attributed to increased diagenesis; the combined biological and physiochemical transformation of SOM. In addition, cross-site studies have indicated that ecosystem regime shifts, associated with long-term climate warming, can affect SOM properties through changes in vegetation and plant litter production thereby altering the composition of soil inputs. The relative importance of these two controls, diagenesis and inputs, on SOM properties as ecosystems experience climate warming, however, remains poorly understood. To address this issue we characterized the elemental, chemical (nuclear magnetic resonance spectroscopy and total hydrolysable amino acids analysis), and isotopic composition of plant litter and SOM across a well-constrained mesic boreal forest latitudinal transect in Atlantic Canada. Results across forest sites within each of three climate regions indicated that (1) climate history and diagenesis affect distinct parameters of SOM chemistry, (2) increases in SOM bioreactivity with latitude were associated with elevated proportions of carbohydrates relative to plant waxes and lignin, and (3) despite the common forest type across regions, differences in SOM chemistry by climate region were associated with chemically distinct litter inputs and not different degrees of diagenesis. The observed climate effects on vascular plant litter chemistry, however, explained only part of the regional differences in SOM chemistry, most notably the higher protein content of SOM from warmer regions. Greater proportions of lignin and aliphatic compounds and smaller proportions of carbohydrates in warmer sites' soils were explained by the higher proportion of vascular plant relative to moss litter in the warmer relative to cooler forests. These results indicate that climate change induced decreases in the proportion of moss inputs not only impacts SOM chemistry but also increases the resistance of SOM to decomposition, thus significantly altering SOM cycling in these boreal forest soils. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Alegre, Ana; Bertrand, Arnaud; Espino, Marco; Espinoza, Pepe; Dioses, Teobaldo; Ñiquen, Miguel; Navarro, Iván; Simier, Monique; Ménard, Frédéric
2015-09-01
Jack mackerel Trachurus murphyi (JM) and chub mackerel Scomber japonicus (CM) are medium size pelagic fish predators and highly exploited resources. Here we investigated the spatiotemporal patterns of JM and CM diet composition using a large dataset of stomach samples collected from 1973 to 2013 along the Peruvian coast. In total 47,535 stomachs (18,377 CM and 29,158 JM) were analysed, of which 23,570 (12,476 CM and 11,094 JM) were non-empty. Results show that both species are opportunistic and present a trophic overlap. However, despite their smaller maximal size, CM consumed more fish than JM. Both diets presented high spatiotemporal variability. Spatially, the shelf break appears as a strong biogeographical barrier affecting prey species distribution and thus CM and JM diet. Opportunistic foragers are often considered as actual indicators of ecosystem changes; we show here that diet composition of CM and JM reveal ecosystem changes but is not always a good indicator of changes in prey biomass as prey accessibility and energy content can also play an important role. In addition we found that El Niño events have a surprisingly weak effect on stomach fullness and diet. Finally our results show that the classic paradigm of positive correlation between diversity and temperature is unlikely to occur in the Humboldt Current system where productivity seems to be the main driver. We show how energy content of forage species and the strength of the oxygen minimum zone most likely play an important role prey diversity and accessibility, and thus in fish foraging behaviour.
COMPARISON OF ANOVA AND KRIGING IN DETECTING ANT RESPONSES TO ENVIRONMENTAL STRESSORS
In an ecosystems, ants effect ecosystem functions such as water infiltration, soil nutrient distribution and composition of the soil seed bank. Ants have also been used as indicators of ecosystems health. In a study, we hypothesized that some ant species would respond to changes ...
Impacts of feral horse use on riparian vegetation within the sagebrush steppe
USDA-ARS?s Scientific Manuscript database
Feral horses inhabit rangeland ecosystems around the world, but their impacts on riparian ecosystems are poorly understood. We characterized impacts of a free-ranging horse population on the structure and composition of riparian plant communities in the sagebrush steppe ecosystem in the western US....
Ecosystem Succession and Nutrient Retention: A Hypothesis
ERIC Educational Resources Information Center
Vitousek, Peter M.; Reiners, William A.
1975-01-01
A hypothesis is presented for the regulation of elemental losses from terrestrial ecosystems. Losses of elements are controlled by the net increment of biomass growth and the elemental composition of this net increment. According to this hypothesis, loss rates are highest in early succession and in steady state ecosystems. (Author/EB)
Martínez-García, Laura B; Richardson, Sarah J; Tylianakis, Jason M; Peltzer, Duane A; Dickie, Ian A
2015-03-01
Little is known about the response of arbuscular mycorrhizal fungal communities to ecosystem development. We use a long-term soil chronosequence that includes ecosystem progression and retrogression to quantify the importance of host plant identity as a factor driving fungal community composition during ecosystem development. We identified arbuscular mycorrhizal fungi and plant species from 50 individual roots from each of 10 sites spanning 5-120 000 yr of ecosystem age using terminal restriction fragment length polymorphism (T-RFLP), Sanger sequencing and pyrosequencing. Arbuscular mycorrhizal fungal communities were highly structured by ecosystem age. There was strong niche differentiation, with different groups of operational taxonomic units (OTUs) being characteristic of early succession, ecosystem progression and ecosystem retrogression. Fungal alpha diversity decreased with ecosystem age, whereas beta diversity was high at early stages and lower in subsequent stages. A total of 39% of the variance in fungal communities was explained by host plant and site age, 29% of which was attributed to host and the interaction between host and site (24% and 5%, respectively). The strong response of arbuscular mycorrhizal fungi to ecosystem development appears to be largely driven by plant host identity, supporting the concept that plant and fungal communities are tightly coupled rather than independently responding to habitat. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Biodiversity and ecosystem functioning in dynamic landscapes
Brose, Ulrich; Hillebrand, Helmut
2016-01-01
The relationship between biodiversity and ecosystem functioning (BEF) and its consequence for ecosystem services has predominantly been studied by controlled, short-term and small-scale experiments under standardized environmental conditions and constant community compositions. However, changes in biodiversity occur in real-world ecosystems with varying environments and a dynamic community composition. In this theme issue, we present novel research on BEF in such dynamic communities. The contributions are organized in three sections on BEF relationships in (i) multi-trophic diversity, (ii) non-equilibrium biodiversity under disturbance and varying environmental conditions, and (iii) large spatial and long temporal scales. The first section shows that multi-trophic BEF relationships often appear idiosyncratic, while accounting for species traits enables a predictive understanding. Future BEF research on complex communities needs to include ecological theory that is based on first principles of species-averaged body masses, stoichiometry and effects of environmental conditions such as temperature. The second section illustrates that disturbance and varying environments have direct as well as indirect (via changes in species richness, community composition and species' traits) effects on BEF relationships. Fluctuations in biodiversity (species richness, community composition and also trait dominance within species) can severely modify BEF relationships. The third section demonstrates that BEF at larger spatial scales is driven by different variables. While species richness per se and community biomass are most important, species identity effects and community composition are less important than at small scales. Across long temporal scales, mass extinctions represent severe changes in biodiversity with mixed effects on ecosystem functions. Together, the contributions of this theme issue identify new research frontiers and answer some open questions on BEF relationships in dynamic communities of real-world landscapes. PMID:27114570
NASA Astrophysics Data System (ADS)
McLauchlan, K. K.; Nelson, D. M.; Perakis, S.; Marcotte, A. L.
2017-12-01
Fire frequency is crucial for maintaining savannas in the transition between forests and grasslands. In general, increasing fire frequency has two effects: it increases herbaceous plant cover more than woody plant cover, and it lowers soil organic matter stocks. These effects have been demonstrated at a long-term prescribed fire experiment in an oak savanna ecosystem at Cedar Creek Ecosystem Science Reserve, Minnesota, U.S.A. The fire experiment began in 1964 and oak savannas are burned at various frequencies ranging from every year to not at all. This has led to changes in vegetation ranging from almost 100% grassland to 100% oak forest. Additionally, nitrogen stocks almost doubled in the sites that were not burned, as it accumulated in the trees, leaf litter, and soil. We addressed additional soil changes taking place at this experiment by asking the question: How have fire and oak-grass balance affected soil nutrients, specifically nitrogen and base cations? Surface soils were collected from 12 plots on the oak savanna burn experiment. Soils were collected in increments to 100 cm depth, from under grass-dominated vegetation and from under tree-dominated vegetation. We non-destructively estimated soil base cations by measuring elemental concentrations of dried soil subsamples with a handheld x-ray fluorescence analyzer. We also measured carbon and nitrogen concentrations and isotopic composition of the soil samples. Soils in plots with high fire frequency had higher concentrations of calcium than soils in unburned plots (low fire frequency). Similar trends were seen for soil potassium, magnesium, and phosphorus concentrations. In contrast, soils in plots with high fire frequency had dramatically lowered nitrogen cycling rates and stocks across the oak savanna. The contrast between the responses of different nutrients to changing fire frequency has important implications for the consequences of fire and tree-grass composition on nutrient cycling dynamics.
Fabian, Jenny; Zlatanović, Sanja; Mutz, Michael; Grossart, Hans-Peter; van Geldern, Robert; Ulrich, Andreas; Gleixner, Gerd; Premke, Katrin
2018-01-01
In aquatic ecosystems, light availability can significantly influence microbial turnover of terrestrial organic matter through associated metabolic interactions between phototrophic and heterotrophic communities. However, particularly in streams, microbial functions vary significantly with the structure of the streambed, that is the distribution and spatial arrangement of sediment grains in the streambed. It is therefore essential to elucidate how environmental factors synergistically define the microbial turnover of terrestrial organic matter in order to better understand the ecological role of photo-heterotrophic interactions in stream ecosystem processes. In outdoor experimental streams, we examined how the structure of streambeds modifies the influence of light availability on microbial turnover of leaf carbon (C). Furthermore, we investigated whether the studied relationships of microbial leaf C turnover to environmental conditions are affected by flow intermittency commonly occurring in streams. We applied leaves enriched with a 13C-stable isotope tracer and combined quantitative and isotope analyses. We thereby elucidated whether treatment induced changes in C turnover were associated with altered use of leaf C within the microbial food web. Moreover, isotope analyses were combined with measurements of microbial community composition to determine whether changes in community function were associated with a change in community composition. In this study, we present evidence, that environmental factors interactively determine how phototrophs and heterotrophs contribute to leaf C turnover. Light availability promoted the utilization of leaf C within the microbial food web, which was likely associated with a promoted availability of highly bioavailable metabolites of phototrophic origin. However, our results additionally confirm that the structure of the streambed modifies light-related changes in microbial C turnover. From our observations, we conclude that the streambed structure influences the strength of photo-heterotrophic interactions by defining the spatial availability of algal metabolites in the streambed and the composition of microbial communities. Collectively, our multifactorial approach provides valuable insights into environmental controls on the functioning of stream ecosystems.
Effects of a Major Tree Invader on Urban Woodland Arthropods.
Buchholz, Sascha; Tietze, Hedwig; Kowarik, Ingo; Schirmel, Jens
2015-01-01
Biological invasions are a major threat to biodiversity; however, the degree of impact can vary depending on the ecosystem and taxa. Here, we test whether a top invader at a global scale, the tree Robinia pseudoacacia (black locust or false acacia), which is known to profoundly change site conditions, significantly affects urban animal diversity. As a first multi-taxon study of this kind, we analyzed the effects of Robinia dominance on 18 arthropod taxa by pairwise comparisons of woodlands in Berlin, Germany, that were dominated by R. pseudoacacia or the native pioneer tree Betula pendula. As a negative effect, abundances of five arthropod taxa decreased (Chilopoda, Formicidae, Diptera, Heteroptera, Hymenoptera); 13 others were not affected. Woodland type affected species composition of carabids and functional groups in spiders, but surprisingly did not decrease alpha and beta diversity of carabid and spider assemblages or the number of endangered species. Tree invasion thus did not induce biotic homogenization at the habitat scale. We detected no positive effects of alien dominance. Our results illustrate that invasions by a major tree invader can induce species turnover in ground-dwelling arthropods, but do not necessarily reduce arthropod species abundances or diversity and might thus contribute to the conservation of epigeal invertebrates in urban settings. Considering the context of invasion impacts thus helps to set priorities in managing biological invasions and can illustrate the potential of novel ecosystems to maintain urban biodiversity.
Effects of a Major Tree Invader on Urban Woodland Arthropods
2015-01-01
Biological invasions are a major threat to biodiversity; however, the degree of impact can vary depending on the ecosystem and taxa. Here, we test whether a top invader at a global scale, the tree Robinia pseudoacacia (black locust or false acacia), which is known to profoundly change site conditions, significantly affects urban animal diversity. As a first multi-taxon study of this kind, we analyzed the effects of Robinia dominance on 18 arthropod taxa by pairwise comparisons of woodlands in Berlin, Germany, that were dominated by R. pseudoacacia or the native pioneer tree Betula pendula. As a negative effect, abundances of five arthropod taxa decreased (Chilopoda, Formicidae, Diptera, Heteroptera, Hymenoptera); 13 others were not affected. Woodland type affected species composition of carabids and functional groups in spiders, but surprisingly did not decrease alpha and beta diversity of carabid and spider assemblages or the number of endangered species. Tree invasion thus did not induce biotic homogenization at the habitat scale. We detected no positive effects of alien dominance. Our results illustrate that invasions by a major tree invader can induce species turnover in ground-dwelling arthropods, but do not necessarily reduce arthropod species abundances or diversity and might thus contribute to the conservation of epigeal invertebrates in urban settings. Considering the context of invasion impacts thus helps to set priorities in managing biological invasions and can illustrate the potential of novel ecosystems to maintain urban biodiversity. PMID:26359665
Rainfall changes affect the algae dominance in tank bromeliad ecosystems.
Pires, Aliny Patricia Flauzino; Leal, Juliana da Silva; Peeters, Edwin T H M
2017-01-01
Climate change and biodiversity loss have been reported as major disturbances in the biosphere which can trigger changes in the structure and functioning of natural ecosystems. Nonetheless, empirical studies demonstrating how both factors interact to affect shifts in aquatic ecosystems are still unexplored. Here, we experimentally test how changes in rainfall distribution and litter diversity affect the occurrence of the algae-dominated condition in tank bromeliad ecosystems. Tank bromeliads are miniature aquatic ecosystems shaped by the rainwater and allochthonous detritus accumulated in the bases of their leaves. Here, we demonstrated that changes in the rainfall distribution were able to reduce the chlorophyll-a concentration in the water of bromeliad tanks affecting significantly the occurrence of algae-dominated conditions. On the other hand, litter diversity did not affect the algae dominance irrespective to the rainfall scenario. We suggest that rainfall changes may compromise important self-reinforcing mechanisms responsible for maintaining high levels of algae on tank bromeliads ecosystems. We summarized these results into a theoretical model which suggests that tank bromeliads may show two different regimes, determined by the bromeliad ability in taking up nutrients from the water and by the total amount of light entering the tank. We concluded that predicted climate changes might promote regime shifts in tropical aquatic ecosystems by shaping their structure and the relative importance of other regulating factors.
Rainfall changes affect the algae dominance in tank bromeliad ecosystems
Pires, Aliny Patricia Flauzino; Leal, Juliana da Silva; Peeters, Edwin T. H. M.
2017-01-01
Climate change and biodiversity loss have been reported as major disturbances in the biosphere which can trigger changes in the structure and functioning of natural ecosystems. Nonetheless, empirical studies demonstrating how both factors interact to affect shifts in aquatic ecosystems are still unexplored. Here, we experimentally test how changes in rainfall distribution and litter diversity affect the occurrence of the algae-dominated condition in tank bromeliad ecosystems. Tank bromeliads are miniature aquatic ecosystems shaped by the rainwater and allochthonous detritus accumulated in the bases of their leaves. Here, we demonstrated that changes in the rainfall distribution were able to reduce the chlorophyll-a concentration in the water of bromeliad tanks affecting significantly the occurrence of algae-dominated conditions. On the other hand, litter diversity did not affect the algae dominance irrespective to the rainfall scenario. We suggest that rainfall changes may compromise important self-reinforcing mechanisms responsible for maintaining high levels of algae on tank bromeliads ecosystems. We summarized these results into a theoretical model which suggests that tank bromeliads may show two different regimes, determined by the bromeliad ability in taking up nutrients from the water and by the total amount of light entering the tank. We concluded that predicted climate changes might promote regime shifts in tropical aquatic ecosystems by shaping their structure and the relative importance of other regulating factors. PMID:28422988
Environmental Regulation of Microbial Community Structure
NASA Technical Reports Server (NTRS)
Bebout, Leslie; DesMarais, D.; Heyenga, G.; Nelson, F.; DeVincenzi, D. (Technical Monitor)
2002-01-01
Most naturally occurring microbes live in complex microbial communities consisting of thousands of phylotypes of microorganisms living in close proximity. Each of these draws nutrients from the environment and releases metabolic waste products, which may in turn serve as substrates for other microbial groups. Gross environmental changes, such as irradiance level, hydrodynamic flow regime, temperature or water chemistry can directly affect the productivity of some community members, which in turn will affect other dependent microbial populations and rate processes. As a first step towards the development of "standard" natural communities of microorganisms for a variety of potential NASA applications, we are measuring biogeochemical cycling in artificially structured communities of microorganisms, created using natural microbial mat communities as inoculum. The responses of these artificially assembled communities of microorganisms to controlled shifts in ecosystem incubation conditions is being determined. This research requires close linking of environmental monitoring, with community composition in a closed and controlled incubation setting. We are developing new incubation chamber designs to allow for this integrated approach to examine the interplay between environmental conditions, microbial community composition and biogeochemical processes.
Carrara, Francesco; Rinaldo, Andrea; Giometto, Andrea; Altermatt, Florian
2014-01-01
Habitat fragmentation and land use changes are causing major biodiversity losses. Connectivity of the landscape or environmental conditions alone can shape biodiversity patterns. In nature, however, local habitat characteristics are often intrinsically linked to a specific connectivity. Such a link is evident in riverine ecosystems, where hierarchical dendritic structures command related scaling on habitat capacity. We experimentally disentangled the effect of local habitat capacity (i.e., the patch size) and dendritic connectivity on biodiversity in aquatic microcosm metacommunities by suitably arranging patch sizes within river-like networks. Overall, more connected communities that occupy a central position in the network exhibited higher species richness, irrespective of patch size arrangement. High regional evenness in community composition was found only in landscapes preserving geomorphological scaling properties of patch sizes. In these landscapes, some of the rarer species sustained regionally more abundant populations better tracking their own niche requirements compared to landscapes with homogeneous patch size or landscapes with spatially uncorrelated patch size. Our analysis suggests that altering the natural link between dendritic connectivity and patch size strongly affects community composition and population persistence at multiple scales. The experimental results are demonstrating a principle that can be tested in theoretical metacommunity models and eventually be projected to real riverine ecosystems.
Competition from below for light and nutrients shifts productivity among tropical species.
Ewel, John J; Mazzarino, María Julia
2008-12-02
Chance events such as seed dispersal determine the potential composition of plant communities, but the eventual assemblage is determined in large part by subsequent interactions among species. Postcolonization sorting also affects the ultimate composition of communities assembled by people for restoration, horticulture, or conservation. Thus, knowledge of the mechanisms controlling interspecific interactions in plant communities is important for explaining patterns observed in nature and predicting success or failure of utilitarian combinations. Relationships among species, especially those from studies of biological diversity and ecosystem functioning, are largely based on studies of short-lived, temperate-zone plants. Extrapolation to perennial plants in the humid tropics is risky because functional relationships among large-stature species change with time. Shifts in competitive relationships among 3 life forms--trees, palms, and perennial herbs--occurred during 13 yr in experimental tropical ecosystems. In 2 cases the novel competitive mechanism responsible for the shift was reduction in crown volume, and therefore light-capturing capability, of overtopping deciduous trees by intrusive growth from below a palm. In a third case, complementary resource use developed between 2 evergreen life forms (overstory tree and palm), probably because of differential nutrient acquisition. Species-level traits and adequate time for shifts in interspecific relationships to emerge are crucial for predicting community trajectories.
Rubio, K S; Ajemian, M; Stunz, G W; Palmer, T A; Lebreton, B; Beseres Pollack, J
2018-06-22
The Baffin Bay estuary is a hypersaline system in the Gulf of Mexico that supports an important recreational and commercial fishery for black drum Pogonias cromis, a benthic predator. Seasonal measurements of water quality variables, benthic macrofauna densities and biomass, and determination of P. cromis food sources using stomach-content and stable-isotope analyses were carried out to determine how P. cromis food sources change with water quality and how this may affect P. cromis diet. Gut-content analysis indicated P. cromis selectively consumed bivalves Mulinia lateralis and Anomalocardia auberiana. Isotope compositions demonstrated that P. cromis relied on these benthic food resources produced in the Baffin Bay estuary year-round. Biomass and densities of these bivalves were influenced by changes in water quality variables, particularly salinity and dissolved oxygen. Thus, this paper demonstrates the relationship between water quality variables, benthic macrofauna, and their use as food resources by a carnivorous fish species, and emphasizes the need for integrated assessments when studying the effects of water quality on ecosystem function. Holistic approaches such as these can provide important information for management and conservation of fishery resources and can improve predictions of ecosystem response to climate variability. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Introduced predators transform subarctic islands from grassland to tundra
Croll, D.A.; Maron, J.L.; Estes, J.A.; Danner, E.M.; Byrd, G.V.
2005-01-01
Top predators often have powerful direct effects on prey populations, but whether these direct effects propagate to the base of terrestrial food webs is debated. There are few examples of trophic cascades strong enough to alter the abundance and composition of entire plant communities. We show that the introduction of arctic foxes (Alopex lagopus) to the Aleutian archipelago induced strong shifts in plant productivity and community structure via a previously unknown pathway. By preying on seabirds, foxes reduced nutrient transport from ocean to land, affecting soil fertility and transforming grasslands to dwarf shrub/forb-dominated ecosystems.
Impairment of the Bacterial Biofilm Stability by Triclosan
Hubas, Cédric; Behrens, Sebastian; Ricciardi, Francesco; Paterson, David M.
2012-01-01
The accumulation of the widely-used antibacterial and antifungal compound triclosan (TCS) in freshwaters raises concerns about the impact of this harmful chemical on the biofilms that are the dominant life style of microorganisms in aquatic systems. However, investigations to-date rarely go beyond effects at the cellular, physiological or morphological level. The present paper focuses on bacterial biofilms addressing the possible chemical impairment of their functionality, while also examining their substratum stabilization potential as one example of an important ecosystem service. The development of a bacterial assemblage of natural composition – isolated from sediments of the Eden Estuary (Scotland, UK) – on non-cohesive glass beads (<63 µm) and exposed to a range of triclosan concentrations (control, 2 – 100 µg L−1) was monitored over time by Magnetic Particle Induction (MagPI). In parallel, bacterial cell numbers, division rate, community composition (DGGE) and EPS (extracellular polymeric substances: carbohydrates and proteins) secretion were determined. While the triclosan exposure did not prevent bacterial settlement, biofilm development was increasingly inhibited by increasing TCS levels. The surface binding capacity (MagPI) of the assemblages was positively correlated to the microbial secreted EPS matrix. The EPS concentrations and composition (quantity and quality) were closely linked to bacterial growth, which was affected by enhanced TCS exposure. Furthermore, TCS induced significant changes in bacterial community composition as well as a significant decrease in bacterial diversity. The impairment of the stabilization potential of bacterial biofilm under even low, environmentally relevant TCS levels is of concern since the resistance of sediments to erosive forces has large implications for the dynamics of sediments and associated pollutant dispersal. In addition, the surface adhesive capacity of the biofilm acts as a sensitive measure of ecosystem effects. PMID:22523534
van Geel, Maarten; Ceustermans, An; van Hemelrijck, Wendy; Lievens, Bart; Honnay, Olivier
2015-02-01
Understanding which factors drive the diversity and community composition of arbuscular mycorrhizal fungi (AMF) is important due to the role of these soil micro-organisms in ecosystem functioning and current environmental threats to AMF biodiversity. Additionally, in agro-ecosystems, this knowledge may help to evaluate their use in making agriculture more sustainable. Here, we used 454-pyrosequencing of small subunit rRNA gene amplicons to quantify AMF diversity and community composition in the roots of cultivated apple trees across 24 orchards in central Belgium. We aimed at identifying the factors (soil chemical variables, organic vs. conventional farming, and geographical location) that affect AMF diversity and community composition. In total, 110 AMF OTUs were detected, of which the majority belonged to the Glomeraceae (73%) and the Claroideoglomeraceae (19%). We show that soil characteristics and farming system, rather than the geographical location of the orchards, shape AMF communities on apple trees. Particularly, plant-available P content of the soil was associated with lower AMF diversity. In orchards with a lower plant-available P content of the soil (P < 100 mg/kg soil), we also found a significantly higher AMF diversity in organically managed orchards as compared to conventionally managed orchards. Finally, the degree of nestedness of the AMF communities was related to plant-available P and N content of the soil, pointing at a progressive loss of AMF taxa with increasing fertilization. Overall, we conclude that a combination of organic orchard management and moderate fertilization may preserve diverse AMF communities on apple trees and that AMF in the roots of apple trees appear not to be dispersal limited at the scale of central Belgium. © 2015 John Wiley & Sons Ltd.
Forest ecosystem services: Carbon and air quality
David J. Nowak; Neelam C. Poudyal; Steve G. McNulty
2017-01-01
Forests provide various ecosystem services related to air quality that can provide substantial value to society. Through tree growth and alteration of their local environment, trees and forests both directly and indirectly affect air quality. Though forests affect air quality in numerous ways, this chapter will focus on five main ecosystem services or disservices...
NASA Astrophysics Data System (ADS)
Albano, Paolo G.; Tomašových, Adam; Stachowitsch, Michael; Zuschin, Martin
2015-04-01
Nearly every modern marine ecosystem has experienced major changes due to anthropogenic stressors such as habitat modification, pollution, overexploitation and climate change. However, our knowledge of ecosystem dynamics in a historical time-frame (decades to few centuries) is restricted by the lack of direct, recorded human observations: properly designed ecological surveys have been conducted for comparatively short durations in the last few decades only, and in merely a few localities, poorly representative of large-scale phenomena. A unique but under-exploited source of information is hidden in death assemblages (DAs), the taxonomically identifiable, dead or discarded organic remains in a seabed. Due to the slow degradation of hard skeletal parts such as shells in the sea, DAs represent archives that accumulate information on species composition and community states over time and are inert to recent changes. Assessing the degree in compositional and ecological similarity between living (LAs) and death assemblages can be used to reconstruct the degree of recent community disturbances. Previous studies have shown that live-dead (LD) agreement tends to be poorer in anthropogenically disturbed settings, because LAs respond faster than DAs to pressures, thus increasing the LD disagreement in composition. As a complementary approach, age dating of shells (using radiocarbon calibrated amino acid racemization) allows identifying the timing of ecosystem change. These approaches help recognize community shifts in time, overcoming the lack of direct observation. As a case study, we present the results of applying these techniques to the impacts of oil platforms on the benthic assemblages in the Persian (Arabian) Gulf. This semi-enclosed basin originated 12,500 years ago and currently hosts the highest concentration of infrastructures for oil and gas extraction in the world. Moreover, it has been affected by major oil spills. Contaminants show a weak gradient within each of two oilfields, which does not explain the variation in taxonomic composition and abundance of the LA. Therefore, we would expect the LD agreement to be mainly determined by time-averaging, inducing an increase in species richness and in evenness in the DA. In contrast to this expectation, rarefied species richness and evenness were not higher in the DA. However, this finding was largely determined by the dominance in the DA of a single bivalve species, Ervilia purpurea, which represented 40% of the whole DA, but was totally absent from the LA. The removal of E. purpurea from the dataset led to results in accordance with expectations. The reasons for the absence in the LA of E. purpurea are currently being investigated with dating techniques to determine the age of the youngest specimens and its relation to the history of the basin and the age of the major pollution events.
NASA Technical Reports Server (NTRS)
Green, R. O.; Roberts, D. A.
1994-01-01
Plant species composition and plant architectural attributes are critical parameters required for the measuring, monitoring and modeling of terrestrial ecosystems. Remote sensing is commonly cited as an important tool for deriving vegetation properties at an appropriate scale for ecosystem studies, ranging from local, to regional and even synoptic scales (e.g. Wessman 1992).
NASA Astrophysics Data System (ADS)
Wohlgemuth, Daniel; Solan, Martin; Godbold, Jasmin A.
2016-12-01
The ecological consequences of species loss are widely studied, but represent an end point of environmental forcing that is not always realised. Changes in species evenness and the rank order of dominant species are more widespread responses to directional forcing. However, despite the repercussions for ecosystem functioning such changes have received little attention. Here, we experimentally assess how the rearrangement of species dominance structure within specific levels of evenness, rather than changes in species richness and composition, affect invertebrate particle reworking and burrow ventilation behaviour - important moderators of microbial-mediated remineralisation processes in benthic environments - and associated levels of sediment nutrient release. We find that the most dominant species exert a disproportionate influence on functioning at low levels of evenness, but that changes in biomass distribution and a change in emphasis in species-environmental interactions become more important in governing system functionality as evenness increases. Our study highlights the need to consider the functional significance of alterations to community attributes, rather than to solely focus on the attainment of particular levels of diversity when safeguarding biodiversity and ecosystems that provide essential services to society.
NASA Astrophysics Data System (ADS)
Matharasi, K.; Goswami, S.; Gamon, J.; Vargas, S.; Marin, R.; Lin, D.; Tweedie, C. E.
2008-12-01
All objects on the Earth's surface absorb and reflect portions of the electromagnetic spectrum. Depending on the composition of the material, every material has its characteristic spectral profile. The characteristic spectral profile for vegetation is often used to study how vegetation patterns at large spatial scales affect ecosystem structure and function. Analysis of spectroscopic data from the laboratory, and from various other platforms like aircraft or spacecraft, requires a knowledge base that consists of different characteristic spectral profiles for known different materials. This study reports on establishment of an online and searchable spectral library for a range of plant species and landcover types in the Arctic, Anatarctic and Chihuahuan desert ecosystems. Field data were collected from Arctic Alaska, the Antarctic Peninsula and the Chihuahuan desert in the visible to near infrared (IR) range using a handheld portable spectrometer. The data have been archived in a database created using postgre sql with have been made publicly available on a plone web-interface. This poster describes the data collected in more detail and offers instruction to users who wish to make use of this free online resource.
Landscape moderation of biodiversity patterns and processes - eight hypotheses.
Tscharntke, Teja; Tylianakis, Jason M; Rand, Tatyana A; Didham, Raphael K; Fahrig, Lenore; Batáry, Péter; Bengtsson, Janne; Clough, Yann; Crist, Thomas O; Dormann, Carsten F; Ewers, Robert M; Fründ, Jochen; Holt, Robert D; Holzschuh, Andrea; Klein, Alexandra M; Kleijn, David; Kremen, Claire; Landis, Doug A; Laurance, William; Lindenmayer, David; Scherber, Christoph; Sodhi, Navjot; Steffan-Dewenter, Ingolf; Thies, Carsten; van der Putten, Wim H; Westphal, Catrin
2012-08-01
Understanding how landscape characteristics affect biodiversity patterns and ecological processes at local and landscape scales is critical for mitigating effects of global environmental change. In this review, we use knowledge gained from human-modified landscapes to suggest eight hypotheses, which we hope will encourage more systematic research on the role of landscape composition and configuration in determining the structure of ecological communities, ecosystem functioning and services. We organize the eight hypotheses under four overarching themes. Section A: 'landscape moderation of biodiversity patterns' includes (1) the landscape species pool hypothesis-the size of the landscape-wide species pool moderates local (alpha) biodiversity, and (2) the dominance of beta diversity hypothesis-landscape-moderated dissimilarity of local communities determines landscape-wide biodiversity and overrides negative local effects of habitat fragmentation on biodiversity. Section B: 'landscape moderation of population dynamics' includes (3) the cross-habitat spillover hypothesis-landscape-moderated spillover of energy, resources and organisms across habitats, including between managed and natural ecosystems, influences landscape-wide community structure and associated processes and (4) the landscape-moderated concentration and dilution hypothesis-spatial and temporal changes in landscape composition can cause transient concentration or dilution of populations with functional consequences. Section C: 'landscape moderation of functional trait selection' includes (5) the landscape-moderated functional trait selection hypothesis-landscape moderation of species trait selection shapes the functional role and trajectory of community assembly, and (6) the landscape-moderated insurance hypothesis-landscape complexity provides spatial and temporal insurance, i.e. high resilience and stability of ecological processes in changing environments. Section D: 'landscape constraints on conservation management' includes (7) the intermediate landscape-complexity hypothesis-landscape-moderated effectiveness of local conservation management is highest in structurally simple, rather than in cleared (i.e. extremely simplified) or in complex landscapes, and (8) the landscape-moderated biodiversity versus ecosystem service management hypothesis-landscape-moderated biodiversity conservation to optimize functional diversity and related ecosystem services will not protect endangered species. Shifting our research focus from local to landscape-moderated effects on biodiversity will be critical to developing solutions for future biodiversity and ecosystem service management. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.
Huo, Hong; Feng, Qi; Su, Yong-hong
2014-01-01
Understanding the factors that influence the distribution of understory vegetation is important for biological conservation and forest management. We compared understory species composition by multi-response permutation procedure and indicator species analysis between plots dominated by Qinghai spruce (Picea crassifolia Kom.) and Qilian juniper (Sabina przewalskii Kom.) in coniferous forests of the Qilian Mountains, northwestern China. Understory species composition differed markedly between the forest types. Many heliophilous species were significantly associated with juniper forest, while only one species was indicative of spruce forest. Using constrained ordination and the variation partitioning model, we quantitatively assessed the relative effects of two sets of explanatory variables on understory species composition. The results showed that topographic variables had higher explanatory power than did site conditions for understory plant distributions. However, a large amount of the variation in understory species composition remained unexplained. Forward selection revealed that understory species distributions were primarily affected by elevation and aspect. Juniper forest had higher species richness and α-diversity and lower β-diversity in the herb layer of the understory plant community than spruce forest, suggesting that the former may be more important in maintaining understory biodiversity and community stability in alpine coniferous forest ecosystems.
NASA Astrophysics Data System (ADS)
Abdelhamid, A.; Stark, H.; Worsnop, D. R.; Nowak, J. B.; Kuang, C.; Bullard, R.; Browne, E. C.
2017-12-01
Atmospheric ions control the electrical properties of the atmosphere, influence chemical composition via ion-molecule and/or ion-catalyzed reactions, and affect new particle formation. Understanding the role of ions in these processes requires knowledge of ionic chemical composition. Due to the low concentration of ions, chemical composition measurements have historically been challenging. Recent advances in mass spectrometry, such as the atmospheric pressure interface time-of-flight mass spectrometer (APi-TOF), are now making these measurements more feasible. Here, we present measurements of ambient cations during the HISCALE II field campaign (August- September 2016) in Lamont, OK. We discuss how the chemical composition of cations varies over the course of the campaign including before, during, and after new particle formation events. We specifically focus on the composition of organic nitrogen ions due to the potential importance of these compounds in atmospheric nucleation. We compare our results to measurements of neutral organic nitrogen compounds in order to gain insight into how organic nitrogen is chemically transformed in the atmosphere and how this influences new particle formation.
Delgado-Baquerizo, Manuel; Eldridge, David J; Ochoa, Victoria; Gozalo, Beatriz; Singh, Brajesh K; Maestre, Fernando T
2017-10-01
The relationship between soil microbial communities and the resistance of multiple ecosystem functions linked to C, N and P cycling (multifunctionality resistance) to global change has never been assessed globally in natural ecosystems. We collected soils from 59 dryland ecosystems worldwide to investigate the importance of microbial communities as predictor of multifunctionality resistance to climate change and nitrogen fertilisation. Multifunctionality had a lower resistance to wetting-drying cycles than to warming or N deposition. Multifunctionality resistance was regulated by changes in microbial composition (relative abundance of phylotypes) but not by richness, total abundance of fungi and bacteria or the fungal: bacterial ratio. Our results suggest that positive effects of particular microbial taxa on multifunctionality resistance could potentially be controlled by altering soil pH. Together, our work demonstrates strong links between microbial community composition and multifunctionality resistance in dryland soils from six continents, and provides insights into the importance of microbial community composition for buffering effects of global change in drylands worldwide. © 2017 John Wiley & Sons Ltd/CNRS.
Consequences of Increasing Hypoxic Disturbance on Benthic Communities and Ecosystem Functioning
Villnäs, Anna; Norkko, Joanna; Lukkari, Kaarina; Hewitt, Judi; Norkko, Alf
2012-01-01
Disturbance-mediated species loss has prompted research considering how ecosystem functions are changed when biota is impaired. However, there is still limited empirical evidence from natural environments evaluating the direct and indirect (i.e. via biota) effects of disturbance on ecosystem functioning. Oxygen deficiency is a widespread threat to coastal and estuarine communities. While the negative impacts of hypoxia on benthic communities are well known, few studies have assessed in situ how benthic communities subjected to different degrees of hypoxic stress alter their contribution to ecosystem functioning. We studied changes in sediment ecosystem function (i.e. oxygen and nutrient fluxes across the sediment water-interface) by artificially inducing hypoxia of different durations (0, 3, 7 and 48 days) in a subtidal sandy habitat. Benthic chamber incubations were used for measuring responses in sediment oxygen and nutrient fluxes. Changes in benthic species richness, structure and traits were quantified, while stress-induced behavioral changes were documented by observing bivalve reburial rates. The initial change in faunal behavior was followed by non-linear degradation in benthic parameters (abundance, biomass, bioturbation potential), gradually impairing the structural and functional composition of the benthic community. In terms of ecosystem function, the increasing duration of hypoxia altered sediment oxygen consumption and enhanced sediment effluxes of NH4 + and dissolved Si. Although effluxes of PO4 3− were not altered significantly, changes were observed in sediment PO4 3− sorption capability. The duration of hypoxia (i.e. number of days of stress) explained a minor part of the changes in ecosystem function. Instead, the benthic community and disturbance-driven changes within the benthos explained a larger proportion of the variability in sediment oxygen- and nutrient fluxes. Our results emphasize that the level of stress to the benthic habitat matters, and that the link between biodiversity and ecosystem function is likely to be affected by a range of factors in complex, natural environments. PMID:23091592
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Erika C.; Gido, Keith B.; Bello, Nora
Stream fish can regulate their environment through direct and indirect pathways, and the relative influence of communities with different taxonomic and functional richness on ecosystem properties likely depends on habitat structure. Given this complexity, it is not surprising that observational studies of how stream fish communities influence ecosystems have shown mixed results. In this study, we evaluated the effect of an observed gradient of taxonomic (zero, one, two or three species) and functional (zero, one or two groups) richness of fishes on several key ecosystem properties in experimental stream mesocosms. Our study simulated small (less than two metres wide) headwatermore » prairie streams with a succession of three pool-riffle structures (upstream, middle and downstream) per mesocosm. Additionally, ecosystem responses included chlorophyll a from floating algal mats and benthic algae, benthic organic matter, macroinvertebrates (all as mass per unit area), algal filament length and stream metabolism (photosynthesis and respiration rate). Ecosystem responses were analysed individually using general linear mixed models. Significant treatment (taxonomic and functional richness) by habitat (pools and riffles) interactions were found for all but one ecosystem response variable. After accounting for location (upstream, middle and downstream) effects, the presence of one or two grazers resulted in shorter mean algal filament lengths in pools compared to no-fish controls. These observations suggest grazers can maintain short algal filaments in pools, which may inhibit long filaments from reaching the surface. Accordingly, floating algal mats decreased in mid- and downstream locations in grazer treatment relative to no-fish controls. At the scale of the entire reach, gross primary productivity and respiration were greater in treatments with two grazer species compared to mixed grazer/insectivore or control treatments. Lastly, the distribution of stream resources across habitat types and locations within a reach can therefore be influenced by the taxonomic and functional composition of fishes in small prairie streams. Thus, disturbances that alter diversity of these systems might have unexpected ecosystem-level consequences.« less
Martin, Erika C.; Gido, Keith B.; Bello, Nora; ...
2016-04-06
Stream fish can regulate their environment through direct and indirect pathways, and the relative influence of communities with different taxonomic and functional richness on ecosystem properties likely depends on habitat structure. Given this complexity, it is not surprising that observational studies of how stream fish communities influence ecosystems have shown mixed results. In this study, we evaluated the effect of an observed gradient of taxonomic (zero, one, two or three species) and functional (zero, one or two groups) richness of fishes on several key ecosystem properties in experimental stream mesocosms. Our study simulated small (less than two metres wide) headwatermore » prairie streams with a succession of three pool-riffle structures (upstream, middle and downstream) per mesocosm. Additionally, ecosystem responses included chlorophyll a from floating algal mats and benthic algae, benthic organic matter, macroinvertebrates (all as mass per unit area), algal filament length and stream metabolism (photosynthesis and respiration rate). Ecosystem responses were analysed individually using general linear mixed models. Significant treatment (taxonomic and functional richness) by habitat (pools and riffles) interactions were found for all but one ecosystem response variable. After accounting for location (upstream, middle and downstream) effects, the presence of one or two grazers resulted in shorter mean algal filament lengths in pools compared to no-fish controls. These observations suggest grazers can maintain short algal filaments in pools, which may inhibit long filaments from reaching the surface. Accordingly, floating algal mats decreased in mid- and downstream locations in grazer treatment relative to no-fish controls. At the scale of the entire reach, gross primary productivity and respiration were greater in treatments with two grazer species compared to mixed grazer/insectivore or control treatments. Lastly, the distribution of stream resources across habitat types and locations within a reach can therefore be influenced by the taxonomic and functional composition of fishes in small prairie streams. Thus, disturbances that alter diversity of these systems might have unexpected ecosystem-level consequences.« less
González-De Vega, S; De Las Heras, J; Moya, D
2016-12-15
In recent decades, the fire regime of the Mediterranean Basin has been disturbed by various factors: climate change; forest management policies; land cover; changed landscape. Size and severity have notably increased, which in turn have increased large fires events with >500ha burned (high severity). In spite of Mediterranean ecosystems' high resilience to fire, these changes have implied more vulnerability and reduced natural recovery with irreparable long-term negative effects. Knowledge of the response of ecosystems to increasing severity, mainly in semiarid areas, is still lacking, which is needed to rehabilitate and restore burned areas. Our approach assessed the resilience concept by focusing on the recovery of ecosystem functions and services, measured as changes in the composition and diversity of plant community vegetation and structure. This will be validated in the long term as a model of ecosystem response. Also, depending on the pre-fire characteristics of vegetation, fire severity and the post-fire management, this approach will lead to tools that can be applied to implement post-fire restoration efforts in order to help decision making in planning activities. Regarding Mediterranean ecosystems' ability to recover after wildfires, this study concludes that pre-fire communities are resilient in these fire-prone areas, but the window for natural recovery in semiarid areas of Aleppo pine forest in SE Iberian Peninsula varied from 3 to 15 post-fire years. Fire severity was also key for effects on the ecosystem: the vegetation types of areas burned with low and medium severity recovered naturally, while those areas with a high-severity burn induced shrublands. We concluded that very strong regeneration activity exists in the short term, and that the negative effects of medium- and high-severity fire are evidenced in the mid and long term, which affect natural recovery. Adaptive forest management to rehabilitate and restore burned Mediterranean ecosystems should be implemented. Copyright © 2016 Elsevier B.V. All rights reserved.
Elevated CO2 induces changes in the ecohydrological functions of forests - from mechanisms to models
NASA Astrophysics Data System (ADS)
Pötzelsberger, Elisabeth; Warren, Jeffrey M.; Wullschleger, Stan D.; Thornton, Peter E.; Norby, Richard J.; Hasenauer, Hubert
2010-05-01
Forests are known to considerably influence ecosystem water balance as a result of the many dynamic interactions between the plant physiology, morphology, phenology and other biophysical properties and environmental conditions. A changing climate will exert a new environmental setting for the forests and the biological feedbacks will be considerable. With the mechanistic ecosystem model Biome-BGC the dense net of cause-response relationships among carbon, nitrogen, water and energy cycles at a free-air CO2 enrichment (FACE) site in a North American deciduous broadleaved forest can be represented. At the Oak Ridge National Laboratory (ORNL) closed canopy sweetgum plantation elevated CO2 caused a decrease in stomatal conductance, and concurrent changes in daily transpiration were observed. This is in agreement with data from other FACE experiments. At the ORNL FACE site average transpiration reduction in a growing season was 10-16%, with 7-16% during mid summer, depending on the year. After parameterization of the model for this ecosystem the observed transpiration patterns could be well represented. Most importantly, the complete water budget at the site could be described and increased outflow could be observed (~15%). This yields crucial information for broader scale future water budget simulations. Changes in the water balance of deciduous forests will affect a wide range of ecosystem functions, from decomposition, over carbon and nutrient cycling to plant-plant competition and species composition.
Pajares, Silvia; Bonilla-Rosso, German; Travisano, Michael; Eguiarte, Luis E; Souza, Valeria
2012-08-01
Microbial communities are responsible for important ecosystem processes, and their activities are regulated by environmental factors such as temperature and solar ultraviolet radiation. Here we investigate changes in aquatic microbial community structure, diversity, and evenness in response to changes in temperature and UV radiation. For this purpose, 15 mesocosms were seeded with both microbial mat communities and plankton from natural pools within the Cuatro Cienegas Basin (Mexico). Clone libraries (16S rRNA) were obtained from water samples at the beginning and at the end of the experiment (40 days). Phylogenetic analysis indicated substantial changes in aquatic community composition and structure in response to temperature and UV radiation. Extreme treatments with elevation in temperature or UV radiation reduced diversity in relation to the Control treatments, causing a reduction in richness and increase in dominance, with a proliferation of a few resistant operational taxonomic units. Each phylum was affected differentially by the new conditions, which translates in a differential modification of ecosystem functioning. This suggests that the impact of environmental stress, at least at short term, will reshape the aquatic bacterial communities of this unique ecosystem. This work also demonstrates the possibility of designing manageable synthetic microbial community ecosystems where controlled environmental variables can be manipulated. Therefore, microbial model systems offer a complementary approach to field and laboratory studies of global research problems associated with the environment.
da Costa, Andréa Pereira; Costa, Francisco Borges; Soares, Herbert Sousa; Ramirez, Diego Garcia; de Carvalho Araújo, Andreina; da Silva Ferreira, Juliana Isabel Giuli; Tonhosolo, Renata; Dias, Ricardo Augusto; Gennari, Solange Maria; Marcili, Arlei
2015-12-01
Environment influences the composition, distribution, and behavior of the vectors and mammalian hosts involved in the transmission of visceral leishmaniasis (VL), affecting the epidemiology of the disease. In Brazil, the urbanization process and canine cases of VL are indicators for local health authorities. This study aimed to investigate the occurrence of the canine visceral leishmaniasis (CVL) in Maranhão State, Brazil. Blood samples collected from 960 dogs from six municipalities and six different ecosystems (Baixada Maranhense, Mangue, Mata dos Cocais, Amazônia, Cerrado, and Restinga) to serological tests (enzyme-linked immunosorbent assay [ELISA], indirect fluorescence antibody test [IFAT], and chromatographic immunoassay methods [Dual Path Platform technology, DPP(®)]) and parasitological diagnosis. From serological tests, 11.14% (107) of the dogs were positive for CVL, with 59.16% (568), 14.5% (148), and 131% (126) positives to ELISA, DPP, and IFAT tests, respectively. Only seven animals (0.73%) were positive in a parasitological test. We also performed parasite isolation and phylogenetic characterization. All isolates of dogs obtained from Maranhão were grouped in a single branch with Leishmania infantum chagasi from Brazil. The ecosystem Amazonia presented the highest positivity rates to CVL in serological and parasitological tests. Brazilian biomes/ecosystems suffer large degradation and may favor, depending on climatic conditions, the installation of new diseases. In the case of VL, dogs are reservoirs of parasites and sentinels for human infection.
NASA Astrophysics Data System (ADS)
Kinsman-Costello, L. E.; Dick, G.; Sheik, C.; Burton, G. A.; Sheldon, N. D.
2015-12-01
Submerged groundwater seeps in Lake Huron establish ecosystems with distinctive geochemical conditions. In the Middle Island Sinkhole (MIS), a 23-m deep seep, groundwater seepage establishes low O2 (< 4 mg L-1), high sulfate (6 mM) conditions, in which a purple cyanobacteria-dominated mat thrives. The mat is capable of anoxygenic photosynthesis, oxygenic photosynthesis, and chemosynthesis. Within the top 3 cm of the mat-water interface, hydrogen sulfide concentrations increase to 1-7 mM. Little is known about the structure and function of microbes within organic-rich, high-sulfide sediments beneath the mat. Using pore water and sediment geochemical characterization along with microbial community analysis, we elucidated relationships between microbial community structure and ecosystem function along vertical gradients. In sediment pore waters, biologically reactive solutes (SO42-, NH4+, PO43-, and CH4) displayed steep vertical gradients, reflecting biological and geochemical functioning. In contrast, more conservative ions (Ca+2, Mg+2, Na+, and Cl-), did not change significantly with depth in MIS sediments, indicating groundwater influence in the sediment profile. MIS sediments contained more organic matter than typical Lake Huron sediments, and were generally higher in nutrients, metals, and sulfur (acid volatile sulfide). Using the Illumina MiSeq platform we detected 14,127 unique operational taxonomic units across sediment and surface mat samples. Microbial community composition in the MIS was distinctly different from non-groundwater affected areas at similar depth nearby in Lake Huron (ANOSIM, R= 0.74, p=0.002). MIS sediment communities were more diverse that MIS surface mat communities and changed with depth into sediments. MIS sediment community composition was related to several geochemical variables, including organic matter and multiple indicators of phosphorus availability. Elucidating the structure and function of microbial consortia in MIS, a highly unique and environmentally vulnerable ecosystem, provides a rare opportunity to understand relationships between microbial species and their environment and may provide insights into the evolution of life under ancient low-oxygen, high-sulfur conditions.
Green infrastructure and ecosystem services – is the devil in the detail?
Cameron, Ross W. F.; Blanuša, Tijana
2016-01-01
Background Green infrastructure is a strategic network of green spaces designed to deliver ecosystem services to human communities. Green infrastructure is a convenient concept for urban policy makers, but the term is used too generically and with limited understanding of the relative values or benefits of different types of green space and how these complement one another. At a finer scale/more practical level, little consideration is given to the composition of the plant communities, yet this is what ultimately defines the extent of service provision. This paper calls for greater attention to be paid to urban plantings with respect to ecosystem service delivery and for plant science to engage more fully in identifying those plants that promote various services. Scope Many urban plantings are designed based on aesthetics alone, with limited thought on how plant choice/composition provides other ecosystem services. Research is beginning to demonstrate, however, that landscape plants provide a range of important services, such as helping mitigate floods and alleviating heat islands, but that not all species are equally effective. The paper reviews a number of important services and demonstrates how genotype choice radically affects service delivery. Conclusions Although research is in its infancy, data are being generated that relate plant traits to specific services, thereby helping identify genotypes that optimize service delivery. The urban environment, however, will become exceedingly bland if future planting is simply restricted to monocultures of a few ‘functional’ genotypes. Therefore, further information is required on how to design plant communities where the plants identified (1) provide more than a single benefit (multifunctionality), (B) complement each other in maximizing the range of benefits that can be delivered in one location, and (3) continue to maintain public acceptance through diversity. The identification/development of functional landscape plants is an exciting and potentially high-impact arena for plant science. PMID:27443302
Johnston, Eric R.; Rodriguez-R, Luis M.; Luo, Chengwei; ...
2016-04-25
How soil microbial communities contrast with respect to taxonomic and functional composition within and between ecosystems remains an unresolved question that is central to predicting how global anthropogenic change will affect soil functioning and services. In particular, it remains unclear how small-scale observations of soil communities based on the typical volume sampled (1-2 g) are generalizable to ecosystem-scale responses and processes. This is especially relevant for remote, northern latitude soils, which are challenging to sample and are also thought to be more vulnerable to climate change compared to temperate soils. Here, we employed well-replicated shotgun metagenome and 16S rRNA genemore » amplicon sequencing to characterize community composition and metabolic potential in Alaskan tundra soils, combining our own datasets with those publically available from distant tundra and temperate grassland and agriculture habitats. We found that the abundance of many taxa and metabolic functions differed substantially between tundra soil metagenomes relative to those from temperate soils, and that a high degree of OTU-sharing exists between tundra locations. Tundra soils were an order of magnitude less complex than their temperate counterparts, allowing for near-complete coverage of microbial community richness (~92% breadth) by sequencing, and the recovery of 27 high-quality, almost complete ( > 80% completeness) population bins. These population bins, collectively, made up to ~10% of the metagenomic datasets, and represented diverse taxonomic groups and metabolic lifestyles tuned toward sulfur cycling, hydrogen metabolism, methanotrophy, and organic matter oxidation. Several population bins, including members of Acidobacteria, Actinobacteria, and Proteobacteria, were also present in geographically distant (~100-530 km apart) tundra habitats (full genome representation and up to 99.6% genome-derived average nucleotide identity). Collectively, our results revealed that Alaska tundra microbial communities are less diverse and more homogenous across spatial scales than previously anticipated, and provided DNA sequences of abundant populations and genes that would be relevant for future studies of the effects of environmental change on tundra ecosystems.« less
Modeling mechanisms of vegetation change due to fire in a semi-arid ecosystem
White, J.D.; Gutzwiller, K.J.; Barrow, W.C.; Randall, L.J.; Swint, P.
2008-01-01
Vegetation growth and community composition in semi-arid environments is determined by water availability and carbon assimilation mechanisms specific to different plant types. Disturbance also impacts vegetation productivity and composition dependent on area affected, intensity, and frequency factors. In this study, a new spatially explicit ecosystem model is presented for the purpose of simulating vegetation cover type changes associated with fire disturbance in the northern Chihuahuan Desert region. The model is called the Landscape and Fire Simulator (LAFS) and represents physiological activity of six functional plant types incorporating site climate, fire, and seed dispersal routines for individual grid cells. We applied this model for Big Bend National Park, Texas, by assessing the impact of wildfire on the trajectory of vegetation communities over time. The model was initialized and calibrated based on landcover maps derived from Landsat-5 Thematic Mapper data acquired in 1986 and 1999 coupled with plant biomass measurements collected in the field during 2000. Initial vegetation cover change analysis from satellite data showed shrub encroachment during this time period that was captured in the simulated results. A synthetic 50-year climate record was derived from historical meteorological data to assess system response based on initial landcover conditions. This simulation showed that shrublands increased to the detriment of grass and yucca-ocotillo vegetation cover types indicating an ecosystem-level trajectory for shrub encroachment. Our analysis of simulated fires also showed that fires significantly reduced site biomass components including leaf area, stem, and seed biomass in this semi-arid ecosystem. In contrast to other landscape simulation models, this new model incorporates detailed physiological responses of functional plant types that will allow us to simulated the impact of increased atmospheric CO2 occurring with climate change coupled with fire disturbance. Simulations generated from this model are expected to be the subject of subsequent studies on landscape dynamics with specific regard to prediction of wildlife distributions associated with fire management and climate change.
Green infrastructure and ecosystem services - is the devil in the detail?
Cameron, Ross W F; Blanuša, Tijana
2016-09-01
Green infrastructure is a strategic network of green spaces designed to deliver ecosystem services to human communities. Green infrastructure is a convenient concept for urban policy makers, but the term is used too generically and with limited understanding of the relative values or benefits of different types of green space and how these complement one another. At a finer scale/more practical level, little consideration is given to the composition of the plant communities, yet this is what ultimately defines the extent of service provision. This paper calls for greater attention to be paid to urban plantings with respect to ecosystem service delivery and for plant science to engage more fully in identifying those plants that promote various services. Many urban plantings are designed based on aesthetics alone, with limited thought on how plant choice/composition provides other ecosystem services. Research is beginning to demonstrate, however, that landscape plants provide a range of important services, such as helping mitigate floods and alleviating heat islands, but that not all species are equally effective. The paper reviews a number of important services and demonstrates how genotype choice radically affects service delivery. Although research is in its infancy, data are being generated that relate plant traits to specific services, thereby helping identify genotypes that optimize service delivery. The urban environment, however, will become exceedingly bland if future planting is simply restricted to monocultures of a few 'functional' genotypes. Therefore, further information is required on how to design plant communities where the plants identified (1) provide more than a single benefit (multifunctionality), (B) complement each other in maximizing the range of benefits that can be delivered in one location, and (3) continue to maintain public acceptance through diversity. The identification/development of functional landscape plants is an exciting and potentially high-impact arena for plant science. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Johnston, Eric R; Rodriguez-R, Luis M; Luo, Chengwei; Yuan, Mengting M; Wu, Liyou; He, Zhili; Schuur, Edward A G; Luo, Yiqi; Tiedje, James M; Zhou, Jizhong; Konstantinidis, Konstantinos T
2016-01-01
How soil microbial communities contrast with respect to taxonomic and functional composition within and between ecosystems remains an unresolved question that is central to predicting how global anthropogenic change will affect soil functioning and services. In particular, it remains unclear how small-scale observations of soil communities based on the typical volume sampled (1-2 g) are generalizable to ecosystem-scale responses and processes. This is especially relevant for remote, northern latitude soils, which are challenging to sample and are also thought to be more vulnerable to climate change compared to temperate soils. Here, we employed well-replicated shotgun metagenome and 16S rRNA gene amplicon sequencing to characterize community composition and metabolic potential in Alaskan tundra soils, combining our own datasets with those publically available from distant tundra and temperate grassland and agriculture habitats. We found that the abundance of many taxa and metabolic functions differed substantially between tundra soil metagenomes relative to those from temperate soils, and that a high degree of OTU-sharing exists between tundra locations. Tundra soils were an order of magnitude less complex than their temperate counterparts, allowing for near-complete coverage of microbial community richness (~92% breadth) by sequencing, and the recovery of 27 high-quality, almost complete (>80% completeness) population bins. These population bins, collectively, made up to ~10% of the metagenomic datasets, and represented diverse taxonomic groups and metabolic lifestyles tuned toward sulfur cycling, hydrogen metabolism, methanotrophy, and organic matter oxidation. Several population bins, including members of Acidobacteria, Actinobacteria, and Proteobacteria, were also present in geographically distant (~100-530 km apart) tundra habitats (full genome representation and up to 99.6% genome-derived average nucleotide identity). Collectively, our results revealed that Alaska tundra microbial communities are less diverse and more homogenous across spatial scales than previously anticipated, and provided DNA sequences of abundant populations and genes that would be relevant for future studies of the effects of environmental change on tundra ecosystems.
Johnston, Eric R.; Rodriguez-R, Luis M.; Luo, Chengwei; Yuan, Mengting M.; Wu, Liyou; He, Zhili; Schuur, Edward A. G.; Luo, Yiqi; Tiedje, James M.; Zhou, Jizhong; Konstantinidis, Konstantinos T.
2016-01-01
How soil microbial communities contrast with respect to taxonomic and functional composition within and between ecosystems remains an unresolved question that is central to predicting how global anthropogenic change will affect soil functioning and services. In particular, it remains unclear how small-scale observations of soil communities based on the typical volume sampled (1–2 g) are generalizable to ecosystem-scale responses and processes. This is especially relevant for remote, northern latitude soils, which are challenging to sample and are also thought to be more vulnerable to climate change compared to temperate soils. Here, we employed well-replicated shotgun metagenome and 16S rRNA gene amplicon sequencing to characterize community composition and metabolic potential in Alaskan tundra soils, combining our own datasets with those publically available from distant tundra and temperate grassland and agriculture habitats. We found that the abundance of many taxa and metabolic functions differed substantially between tundra soil metagenomes relative to those from temperate soils, and that a high degree of OTU-sharing exists between tundra locations. Tundra soils were an order of magnitude less complex than their temperate counterparts, allowing for near-complete coverage of microbial community richness (~92% breadth) by sequencing, and the recovery of 27 high-quality, almost complete (>80% completeness) population bins. These population bins, collectively, made up to ~10% of the metagenomic datasets, and represented diverse taxonomic groups and metabolic lifestyles tuned toward sulfur cycling, hydrogen metabolism, methanotrophy, and organic matter oxidation. Several population bins, including members of Acidobacteria, Actinobacteria, and Proteobacteria, were also present in geographically distant (~100–530 km apart) tundra habitats (full genome representation and up to 99.6% genome-derived average nucleotide identity). Collectively, our results revealed that Alaska tundra microbial communities are less diverse and more homogenous across spatial scales than previously anticipated, and provided DNA sequences of abundant populations and genes that would be relevant for future studies of the effects of environmental change on tundra ecosystems. PMID:27199914
Cheatgrass - native plant community interactions in an invaded southwestern forest
Christopher M. McGlone
2010-01-01
Invasions by nonnative plant species such as cheatgrass (Bromus tectorum) are a major concern in many ecosystems worldwide. When invasive nonnative species dominate a new ecosystem, they can alter biodiversity, species composition, nutrient cycles, disturbance regimes, and other ecosystem functions and processes. In 2003, cheatgrass rapidly spread through the Mt....
Levy, Michael A; Cumming, Jonathan R
2014-11-01
Surface mining followed by reclamation to pasture is a major driver of land use and cover change in Appalachia. Prior research suggests that many aspects of ecosystem recovery are either slow or incomplete. We examined ecosystem structure-including soil physical and chemical properties, arbuscular mycorrhizal fungal (AMF) infectivity and community composition, and plant diversity and community composition-on a chronosequence of pasture-reclaimed surface mines and a non-mined pasture in northern West Virginia. Surface mining and reclamation dramatically altered ecosystem structure. Some aspects of ecosystem structure, including many measures of soil chemistry and infectivity of AMF, returned rapidly to levels found on the non-mined reference site. Other aspects of ecosystem structure, notably soil physical properties and AMF and plant communities, showed incomplete or no recovery over the short-to-medium term. In addition, invasive plants were prevalent on reclaimed mine sites. The results point to the need for investigation on how reclamation practices could minimize establishment of exotic invasive plant species and reduce the long-term impacts of mining on ecosystem structure and function.
Carrillo, Uara; Díaz-Villanueva, Verónica; Modenutti, Beatriz
2018-04-15
Volcanic eruptions are extreme perturbations that affect ecosystems. These events can also produce persistent effects in the environment for several years after the eruption, with increased concentrations of suspended particles and the introduction of elements in the water column. On 4th June 2011, the Puyehue-Cordón Caulle Volcanic Complex (40.59°S-72.11°W, 2200m.a.s.l.) erupted explosively in southern Chile. The area affected by the volcano was devastated; a thick layer of volcanic ash (up to 30cm) was deposited in areas 50 km east of the volcano towards Argentina. The aim of the present study was to evaluate the effect of volcanic ash deposits on stream ecosystems four years after the eruption, comparing biofilm stoichiometry, alkaline phosphatase activity, and primary producer's assemblage in streams which were severely affected by the volcano with unaffected streams. We confirmed in the laboratory that ash deposited in the catchment of affected streams still leach phosphorus (P) into the water four years after eruption. Results indicate that affected streams still receive volcanic particles and that these particles release P, thus stream water exhibits high P concentration. Biofilm P content was higher and the C:P ratio lower in affected streams compared to unaffected streams. As a consequence of less P in unaffected streams, the alkaline phosphatase activity was higher compared to affected streams. Cyanobacteria increased their abundances (99.9% of total algal biovolume) in the affected streams suggesting that the increase in P may positively affect this group. On the contrary, unaffected streams contained a diatom dominant biofilm. In this way, local heterogeneity was created between sub-catchments located within 30 km of each other. These types of events should be seen as opportunities to gather valuable ecological information about how severe disturbances, like volcanic eruptions, shape landscapes and lotic systems for several years after the event. Copyright © 2017 Elsevier B.V. All rights reserved.
Ecosystem-Vegetation Dynamics in sub-arctic Stordalen Mire, Sweden
NASA Astrophysics Data System (ADS)
Mugnani, M. P.; Varner, R. K.; Steele, K.; Frey, S. D.; Crill, P. M.
2012-12-01
Increased global temperatures have contributed to the thaw of permafrost and a subsequent atmospheric release of stored methane (CH4) from sub-arctic ecosystems. Palsas, small frost uplifted mounds that support specialized dry-tolerant vegetation species, degrade when permafrost thaws, allowing other species such a Sphagnum and Eriophorum to encroach on the microhabitats and outcompete other species, altering the carbon feedback into the thin arctic soil. Other climate change-related events including increased precipitation, seasonal temperature abnormalities and changes in humidity and nutrient availability may alter vegetation dynamics in terms of diversity and abundance in sub-arctic regions. During July 2012, measurements of vegetation composition and species abundance estimates were made in Stordalen Mire (68° 21' N, 19° 03' E), Abisko Sweden, two hundred kilometers north of the Arctic Circle. The mire is an area of discontinuous permafrost populated by micro-ecosystems that vary in vegetation species and abundance depending on growth conditions. All ecosystems provide beneficial services to support a range of life forms including rodents, birds, insects and reindeer. Five representative ecosystems of the mire were chosen to conduct studies on vegetation diversity and percent cover-based abundance: palsa, Eriophorum-dominated fen, Sphagnum-dominated peatland, lakeshore edge and lakeside heath. In each ecosystem vegetation species were recorded in six transects with quadrats along with a corresponding percent cover estimation and scale number based on the Braun-Blanquet percent cover method. To determine nutrient dynamics between ecosystems, soil peat samples were also taken at random from all ecosystem transects. These were analyzed for carbon and inorganic nitrogen as well as ammonium and nitrate. In the vegetation data analysis, the Shannon-Wiener Diversity Index showed that the lakeside heath ecosystem was the most diverse and even in species distribution followed by lakeshore edge, palsa, Sphagnum and Eriophorum fen. These results, in addition to species composition data, suggested correlations between ecosystem dynamics and species diversity that could be used to extrapolate predictions about future mire ecosystem status and vegetation composition as climate change and permafrost thaw continues.
Wallenstein, Matthew D.; Hall, Edward K.
2012-01-01
As the earth system changes in response to human activities, a critical objective is to predict how biogeochemical process rates (e.g. nitrification, decomposition) and ecosystem function (e.g. net ecosystem productivity) will change under future conditions. A particular challenge is that the microbial communities that drive many of these processes are capable of adapting to environmental change in ways that alter ecosystem functioning. Despite evidence that microbes can adapt to temperature, precipitation regimes, and redox fluctuations, microbial communities are typically not optimally adapted to their local environment. For example, temperature optima for growth and enzyme activity are often greater than in situ temperatures in their environment. Here we discuss fundamental constraints on microbial adaptation and suggest specific environments where microbial adaptation to climate change (or lack thereof) is most likely to alter ecosystem functioning. Our framework is based on two principal assumptions. First, there are fundamental ecological trade-offs in microbial community traits that occur across environmental gradients (in time and space). These trade-offs result in shifting of microbial function (e.g. ability to take up resources at low temperature) in response to adaptation of another trait (e.g. limiting maintenance respiration at high temperature). Second, the mechanism and level of microbial community adaptation to changing environmental parameters is a function of the potential rate of change in community composition relative to the rate of environmental change. Together, this framework provides a basis for developing testable predictions about how the rate and degree of microbial adaptation to climate change will alter biogeochemical processes in aquatic and terrestrial ecosystems across the planet.
Ecohydrology and biogeochemistry of seasonally-dry ecosystems
NASA Astrophysics Data System (ADS)
Feng, X.; Porporato, A. M.
2010-12-01
The composition and the dynamic in various types of seasonally dry ecosystems are largely determined by rainfall seasonality and distribution. The intermittency of rainfall in these ecosystems has played a dominant role in the life cycle of native plants such that phenological events such as growth or reproduction have oftentimes become synchronized with the onset of the dry or the wet season. Characteristic amongst such types of ecosystems are the tropical dry and Mediterranean ecosystems, both of which receive similar amount of precipitation yet are markedly distinct in their synchronization of rainfall fluctuations and temperature. Seasonally dry ecosystems cover more than 16 million square kilometers in the tropics, with short but intense wet seasons followed by long dry seasons and elevated temperature throughout the year. Native vegetation grows during the wet season and adopts dormancy or seasonal deciduousness to cope with the dry season. In the Mediterranean climates, precipitations and temperature are out of phase, with wet temperate winters and hot dry summers. Dimorphic root systems are prevalent, where deep rooted plants exploit the winter recharge while the shallow rooted species take advantage of the infrequent summer rains. Using a stochastic soil moisture model we analyze how temporal shifts, or the lack thereof, in temperature and precipitation patterns affect the development of water stress during the dry season and its feedbacks on soil-plant biogeochemistry. We especially focus on the role of differences in temperature and seasonal potential evapotranspiration between tropical dry and Mediterranean climates. We also compare irrigation needs and the effects of projected climatic conditions in those regions. Understanding how plants adopt different water use strategies in the context of shifted climatic patterns will shed light on how these regions of high biodiversity may cope with rapidly-changing climatic conditions.
Zhang, Tao; Guo, Rui; Gao, Song; Guo, Jixun; Sun, Wei
2015-01-01
Climate change has profound influences on plant community composition and ecosystem functions. However, its effects on plant community composition and biomass production are not well understood. A four-year field experiment was conducted to examine the effects of warming, nitrogen (N) addition, and their interactions on plant community composition and biomass production in a temperate meadow ecosystem in northeast China. Experimental warming had no significant effect on plant species richness, evenness, and diversity, while N addition highly reduced the species richness and diversity. Warming tended to reduce the importance value of graminoid species but increased the value of forbs, while N addition had the opposite effect. Warming tended to increase the belowground biomass, but had an opposite tendency to decrease the aboveground biomass. The influences of warming on aboveground production were dependent upon precipitation. Experimental warming had little effect on aboveground biomass in the years with higher precipitation, but significantly suppressed aboveground biomass in dry years. Our results suggest that warming had indirect effects on plant production via its effect on the water availability. Nitrogen addition significantly increased above- and below-ground production, suggesting that N is one of the most important limiting factors determining plant productivity in the studied meadow steppe. Significant interactive effects of warming plus N addition on belowground biomass were also detected. Our observations revealed that environmental changes (warming and N deposition) play significant roles in regulating plant community composition and biomass production in temperate meadow steppe ecosystem in northeast China.
Indicators of ecosystem function identify alternate states in the sagebrush steppe.
Kachergis, Emily; Rocca, Monique E; Fernandez-Gimenez, Maria E
2011-10-01
Models of ecosystem change that incorporate nonlinear dynamics and thresholds, such as state-and-transition models (STMs), are increasingly popular tools for land management decision-making. However, few models are based on systematic collection and documentation of ecological data, and of these, most rely solely on structural indicators (species composition) to identify states and transitions. As STMs are adopted as an assessment framework throughout the United States, finding effective and efficient ways to create data-driven models that integrate ecosystem function and structure is vital. This study aims to (1) evaluate the utility of functional indicators (indicators of rangeland health, IRH) as proxies for more difficult ecosystem function measurements and (2) create a data-driven STM for the sagebrush steppe of Colorado, USA, that incorporates both ecosystem structure and function. We sampled soils, plant communities, and IRH at 41 plots with similar clayey soils but different site histories to identify potential states and infer the effects of management practices and disturbances on transitions. We found that many IRH were correlated with quantitative measures of functional indicators, suggesting that the IRH can be used to approximate ecosystem function. In addition to a reference state that functions as expected for this soil type, we identified four biotically and functionally distinct potential states, consistent with the theoretical concept of alternate states. Three potential states were related to management practices (chemical and mechanical shrub treatments and seeding history) while one was related only to ecosystem processes (erosion). IRH and potential states were also related to environmental variation (slope, soil texture), suggesting that there are environmental factors within areas with similar soils that affect ecosystem dynamics and should be noted within STMs. Our approach generated an objective, data-driven model of ecosystem dynamics for rangeland management. Our findings suggest that the IRH approximate ecosystem processes and can distinguish between alternate states and communities and identify transitions when building data-driven STMs. Functional indicators are a simple, efficient way to create data-driven models that are consistent with alternate state theory. Managers can use them to improve current model-building methods and thus apply state-and-transition models more broadly for land management decision-making.
Hydromorphological restoration stimulates river ecosystem metabolism
NASA Astrophysics Data System (ADS)
Kupilas, Benjamin; Hering, Daniel; Lorenz, Armin W.; Knuth, Christoph; Gücker, Björn
2017-04-01
Both ecosystem structure and functioning determine ecosystem status and are important for the provision of goods and services to society. However, there is a paucity of research that couples functional measures with assessments of ecosystem structure. In mid-sized and large rivers, effects of restoration on key ecosystem processes, such as ecosystem metabolism, have rarely been addressed and remain poorly understood. We compared three reaches of the third-order, gravel-bed river Ruhr in Germany: two reaches restored with moderate (R1) and substantial effort (R2) and one upstream degraded reach (D). Hydromorphology, habitat composition, and hydrodynamics were assessed. We estimated gross primary production (GPP) and ecosystem respiration (ER) using the one-station open-channel diel dissolved oxygen change method over a 50-day period at the end of each reach. Moreover, we estimated metabolic rates of the combined restored reaches (R1 + R2) using the two-station open-channel method. Values for hydromorphological variables increased with restoration intensity (D < R1 < R2). Restored reaches had lower current velocity, higher longitudinal dispersion and larger transient storage zones. However, fractions of median travel time due to transient storage were highest in R1 and lowest in R2, with intermediate values in D. The share of macrophyte cover of total wetted area was highest in R2 and lowest in R1, with intermediate values in D. Station R2 had higher average GPP and ER than R1 and D. The combined restored reaches R1 + R2 also exhibited higher GPP and ER than the degraded upstream river (station D). Restoration increased river autotrophy, as indicated by elevated GPP : ER, and net ecosystem production (NEP) of restored reaches. Temporal patterns of ER closely mirrored those of GPP, pointing to the importance of autochthonous production for ecosystem functioning. In conclusion, high reach-scale restoration effort had considerable effects on river hydrodynamics and ecosystem functioning, which were mainly related to massive stands of macrophytes. High rates of metabolism and the occurrence of dense macrophyte stands may increase the assimilation of dissolved nutrients and the sedimentation of particulate nutrients, thereby positively affecting water quality.
BOREAS TGB-3 Plant Species Composition Data over the NSA Fen
NASA Technical Reports Server (NTRS)
Bubier, Jill L.; Hall, Forrest G. (Editor); Conrad, Sara K. (Editor)
2000-01-01
The BOReal Ecosystem-Atmosphere Study Trace Gas Biogeochemistry (BOREAS TGB-3) team collected several data sets that contributed to understanding the measured trace gas fluxes over sites in the Northern Study Area (NSA). This data set contains information about the composition of plant species that were within the collars used to measure Net Ecosystem Exchange of CO2 (NEE). The species composition was identified to understand the differences in NEE among the various plant communities in the NSA fen. The data were collected in July of 1994 and 1996. The data are contained in comma-delimited, ASCII files.
Plant controls on Late Quaternary whole ecosystem structure and function.
Jeffers, Elizabeth S; Whitehouse, Nicki J; Lister, Adrian; Plunkett, Gill; Barratt, Phil; Smyth, Emma; Lamb, Philip; Dee, Michael W; Brooks, Stephen J; Willis, Katherine J; Froyd, Cynthia A; Watson, Jenny E; Bonsall, Michael B
2018-06-01
Plants and animals influence biomass production and nutrient cycling in terrestrial ecosystems; however, their relative importance remains unclear. We assessed the extent to which mega-herbivore species controlled plant community composition and nutrient cycling, relative to other factors during and after the Late Quaternary extinction event in Britain and Ireland, when two-thirds of the region's mega-herbivore species went extinct. Warmer temperatures, plant-soil and plant-plant interactions, and reduced burning contributed to the expansion of woody plants and declining nitrogen availability in our five study ecosystems. Shrub biomass was consistently one of the strongest predictors of ecosystem change, equalling or exceeding the effects of other biotic and abiotic factors. In contrast, there was relatively little evidence for mega-herbivore control on plant community composition and nitrogen availability. The ability of plants to determine the fate of terrestrial ecosystems during periods of global environmental change may therefore be greater than previously thought. © 2018 John Wiley & Sons Ltd/CNRS.
Pendleton, Richard M.; Hoeinghaus, David J.; Gomes, Luiz C.; Agostinho, Angelo A.
2014-01-01
Experiments with realistic scenarios of species loss from multitrophic ecosystems may improve insight into how biodiversity affects ecosystem functioning. Using 1000 L mesocoms, we examined effects of nonrandom species loss on community structure and ecosystem functioning of experimental food webs based on multitrophic tropical floodplain lagoon ecosystems. Realistic biodiversity scenarios were developed based on long-term field surveys, and experimental assemblages replicated sequential loss of rare species which occurred across all trophic levels of these complex food webs. Response variables represented multiple components of ecosystem functioning, including nutrient cycling, primary and secondary production, organic matter accumulation and whole ecosystem metabolism. Species richness significantly affected ecosystem function, even after statistically controlling for potentially confounding factors such as total biomass and direct trophic interactions. Overall, loss of rare species was generally associated with lower nutrient concentrations, phytoplankton and zooplankton densities, and whole ecosystem metabolism when compared with more diverse assemblages. This pattern was also observed for overall ecosystem multifunctionality, a combined metric representing the ability of an ecosystem to simultaneously maintain multiple functions. One key exception was attributed to time-dependent effects of intraguild predation, which initially increased values for most ecosystem response variables, but resulted in decreases over time likely due to reduced nutrient remineralization by surviving predators. At the same time, loss of species did not result in strong trophic cascades, possibly a result of compensation and complexity of these multitrophic ecosystems along with a dominance of bottom-up effects. Our results indicate that although rare species may comprise minor components of communities, their loss can have profound ecosystem consequences across multiple trophic levels due to a combination of direct and indirect effects in diverse multitrophic ecosystems. PMID:24416246
NASA Astrophysics Data System (ADS)
Straková, P.; Niemi, R. M.; Freeman, C.; Peltoniemi, K.; Toberman, H.; Heiskanen, I.; Fritze, H.; Laiho, R.
2011-02-01
Peatlands are carbon (C) storage ecosystems sustained by a high water level (WL). High WL creates anoxic conditions that suppress the activity of aerobic decomposers and provide conditions for peat accumulation. Peatland function can be dramatically affected by WL drawdown caused by land-use and/or climate change. Aerobic decomposers are directly affected by WL drawdown through environmental factors such as increased oxygenation and nutrient availability. Additionally, they are indirectly affected via changes in plant community composition and litter quality. We studied the relative importance of direct and indirect effects of WL drawdown on aerobic decomposer activity in plant litter. We did this by profiling 11 extracellular enzymes involved in the mineralization of organic C, nitrogen, phosphorus and sulphur. Our study sites represented a three-stage chronosequence from pristine (undrained) to short-term (years) and long-term (decades) WL drawdown conditions under two nutrient regimes. The litter types included reflected the prevalent vegetation, i.e., Sphagnum mosses, graminoids, shrubs and trees. WL drawdown had a direct and positive effect on microbial activity. Enzyme allocation shifted towards C acquisition, which caused an increase in the rate of decomposition. However, litter type overruled the direct effects of WL drawdown and was the main factor shaping microbial activity patterns. Our results imply that changes in plant community composition in response to persistent WL drawdown will strongly affect the C dynamics of peatlands.
NASA Astrophysics Data System (ADS)
White, A. B.; Springer, E. P.; Vivoni, E. R.
2008-12-01
An extended, severe drought in the southwestern U.S. from 2000 to 2003 was accompanied by increased temperatures and bark beetle infestations, inducing the large-scale mortality of woody overstory (Pinus edulis). The consequential redistribution of water, radiation, and nutrient availability modified the ecosystem phenology, species composition, and forced the ecosystem to transition into a new state. We hypothesize that the hydrological processes in the ecosystem were also altered due to the mortality. Thus, our objective is to investigate changes in the soil-vegetation-atmosphere continuum across the plot, watershed, and ecoregion scales. The plot site is located near Los Alamos in Northern New Mexico (1.5 hectare), the watershed is the Rio Ojo Caliente Basin (1,050 km2), a subbasin of the Upper Rio Grande, and the ecoregion consists of Pinus edulis, or piñon, across the Four Corners Region of Arizona, Colorado, New Mexico, and Utah (245,000 km2). These sites are chosen because a significant portion of the woodland ecosystem (piñon-juniper) was affected during the mortality event. Examining a remotely-sensed vegetation index (1-km AVHRR NDVI from 1989 to 2007), there is an increasing trend in the NDVI from 1989 to 1998 (pre-drought period), a decreasing trend from 1999 to 2003 (drought period), and a dramatic increasing trend from 2004 to 2007 (post-drought period) in which the NDVI rebounds to nearly pre-drought magnitudes. This pattern exists across the three spatial scales and signifies a profound alteration in the ecosystem, for while the vegetation composition was altered to a great degree, the system rapidly recovered photosynthetically during the post-drought period. This may be attributable to the decrease in the less- responsive overstory (pinñon mortality) and increase in the more-responsive understory (grasses and shrubs exploiting newly available resources). In order to examine hydrological changes, temporal patterns in gauge-based precipitation (frozen and unfrozen) and air temperature, and spatial-temporal patterns in PRISM precipitation, air temperature, and a soil moisture index are compared to the NDVI. The aim of this research is to explore the consequences of a severe drought married with elevated temperatures on vegetation and water resources. As the intensity and frequency of droughts are expected to increase in the southwestern U.S. with rising temperatures (IPCC 2007), this research contributes to our knowledge of ecosystem and hydrologic response to the changing climate.
Yang, Li-Lin; Mao, Ren-Zhao; Liu, Jun-Jie; Liu, Xiao-Jing
2011-11-01
A comparative study was conducted to determine nitrification potentials and ammonia-oxidizing bacterial (AOB) community composition in 0-20 cm soil depth in adjacent native forest,natural grassland, and cropland soils on the Tibetan Plateau, by incubation experiment and by denaturing gradient gel electrophoresis (DGGE) of 16S rDNA, respectively. Cropland has the highest nitrification potential and nitrate concentration among the three land-use types (LUT), approximately 9 folds and more than 11 folds than that of the forests and grasslands, respectively. NO3(-) -N accounted for 70%-90% of inorganic N in cropland soil, while NH4(+) -N was the main form of inorganic N in forest and grassland soils. Nitrification potentials and nitrate concentrations showed no significant difference between native forest and grassland soils. The native forest showed the lowest nitrification potentials and the lowest AOB diversity and community composition among the three LUT. Conversions from natural grasslands to croplands remarkably decreased the AOB diversity and composition, but croplands remain high similarity in AOB community composition compared with grasslands. The minimal and the lowest diversity of AOB in native forests directly resulted to the lowest nitrification potentials compared to natural grasslands and croplands. From the fact of the highest nitrification potentials and nitrate concentrations in croplands indicated that there were the most substantial AOB with higher activity and priority. The results provide evidence that changes of land-use type can affect both soil nitrogen internal cycling process, the diversity, community and activity of AOB, which further affect soil environment quality and the long-term sustainability of ecosystems.
Erhagen, Björn; Öquist, Mats; Sparrman, Tobias; Haei, Mahsa; Ilstedt, Ulrik; Hedenström, Mattias; Schleucher, Jürgen; Nilsson, Mats B
2013-12-01
The global soil carbon pool is approximately three times larger than the contemporary atmospheric pool, therefore even minor changes to its integrity may have major implications for atmospheric CO2 concentrations. While theory predicts that the chemical composition of organic matter should constitute a master control on the temperature response of its decomposition, this relationship has not yet been fully demonstrated. We used laboratory incubations of forest soil organic matter (SOM) and fresh litter material together with NMR spectroscopy to make this connection between organic chemical composition and temperature sensitivity of decomposition. Temperature response of decomposition in both fresh litter and SOM was directly related to the chemical composition of the constituent organic matter, explaining 90% and 70% of the variance in Q10 in litter and SOM, respectively. The Q10 of litter decreased with increasing proportions of aromatic and O-aromatic compounds, and increased with increased contents of alkyl- and O-alkyl carbons. In contrast, in SOM, decomposition was affected only by carbonyl compounds. To reveal why a certain group of organic chemical compounds affected the temperature sensitivity of organic matter decomposition in litter and SOM, a more detailed characterization of the (13) C aromatic region using Heteronuclear Single Quantum Coherence (HSQC) was conducted. The results revealed considerable differences in the aromatic region between litter and SOM. This suggests that the correlation between chemical composition of organic matter and the temperature response of decomposition differed between litter and SOM. The temperature response of soil decomposition processes can thus be described by the chemical composition of its constituent organic matter, this paves the way for improved ecosystem modeling of biosphere feedbacks under a changing climate. © 2013 John Wiley & Sons Ltd.
Aerts, Raf; Ewald, Michael; Nicolas, Manuel; Piat, Jérôme; Skowronek, Sandra; Lenoir, Jonathan; Hattab, Tarek; Garzón-López, Carol X.; Feilhauer, Hannes; Schmidtlein, Sebastian; Rocchini, Duccio; Decocq, Guillaume; Somers, Ben; Van De Kerchove, Ruben; Denef, Karolien; Honnay, Olivier
2017-01-01
Alien invasive species can affect large areas, often with wide-ranging impacts on ecosystem structure, function, and services. Prunus serotina is a widespread invader of European temperate forests, where it tends to form homogeneous stands and limits recruitment of indigenous trees. We hypotesized that invasion by P. serotina would be reflected in the nutrient contents of the native species' leaves and in the respiration of invaded plots as efficient resource uptake and changes in nutrient cycling by P. serotina probably underly its aggressive invasiveness. We combined data from 48 field plots in the forest of Compiègne, France, and data from an experiment using 96 microcosms derived from those field plots. We used general linear models to separate effects of invasion by P. serotina on heterotrophic soil and litter respiration rates and on canopy foliar nutrient content from effects of soil chemical properties, litter quantity, litter species composition, and tree species composition. In invaded stands, average respiration rates were 5.6% higher for soil (without litter) and 32% higher for soil and litter combined. Compared to indigenous tree species, P. serotina exhibited higher foliar N (+24.0%), foliar P (+50.7%), and lower foliar C:N (−22.4%) and N:P (−10.1%) ratios. P. serotina affected foliar nutrient contents of co-occuring indigenous tree species leading to decreased foliar N (−8.7 %) and increased C:N ratio (+9.5%) in Fagus sylvatica, decreased foliar N:P ratio in Carpinus betulus (−13.5%) and F. sylvatica (−11.8%), and increased foliar P in Pinus sylvestris (+12.3%) in invaded vs. uninvaded stands. Our results suggest that P. serotina is changing nitrogen, phosphorus, and carbon cycles to its own advantage, hereby increasing carbon turnover via labile litter, affecting the relative nutrient contents in the overstory leaves, and potentially altering the photosynthetic capacity of the long-lived indigenous broadleaved species. Uncontrolled invasion of European temperate forests by P. serotina may affect the climate change mitigation potential of these forests in the long term, through additive effects on local nutrient cycles. PMID:28261238
Alele, Peter O; Sheil, Douglas; Surget-Groba, Yann; Lingling, Shi; Cannon, Charles H
2014-01-01
Uganda's forests are globally important for their conservation values but are under pressure from increasing human population and consumption. In this study, we examine how conversion of natural forest affects soil bacterial and fungal communities. Comparisons in paired natural forest and human-converted sites among four locations indicated that natural forest soils consistently had higher pH, organic carbon, nitrogen, and calcium, although variation among sites was large. Despite these differences, no effect on the diversity of dominant taxa for either bacterial or fungal communities was detected, using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Composition of fungal communities did generally appear different in converted sites, but surprisingly, we did not observe a consistent pattern among sites. The spatial distribution of some taxa and community composition was associated with soil pH, organic carbon, phosphorus and sodium, suggesting that changes in soil communities were nuanced and require more robust metagenomic methods to understand the various components of the community. Given the close geographic proximity of the paired sampling sites, the similarity between natural and converted sites might be due to continued dispersal between treatments. Fungal communities showed greater environmental differentiation than bacterial communities, particularly according to soil pH. We detected biotic homogenization in converted ecosystems and substantial contribution of β-diversity to total diversity, indicating considerable geographic structure in soil biota in these forest communities. Overall, our results suggest that soil microbial communities are relatively resilient to forest conversion and despite a substantial and consistent change in the soil environment, the effects of conversion differed widely among sites. The substantial difference in soil chemistry, with generally lower nutrient quantity in converted sites, does bring into question, how long this resilience will last.
NASA Astrophysics Data System (ADS)
Kohl, L.; Philben, M. J.; Edwards, K. A.; Podrebarac, F. A.; Jamie, W.; Ziegler, S. E.
2017-12-01
Warmer climates have been associated with reduced soil organic matter (SOM) bioreactivity, lower respiration rates at a given temperature, which is typically attributed to the presence of more decomposed SOM. Cross site studies, however, indicate that ecosystem regime shifts associated with long-term climate warming can affect SOM properties through changes in vegetation and plant litter inputs to soils. The relative importance of these two controls, diagenesis and inputs, on SOM properties as ecosystems experience climate warming remains poorly understood. To address this, we characterized the elemental, chemical (nuclear magnetic resonance spectroscopy and total hydrolysable amino acids), and isotopic composition of plant litter and SOM across a well-constrained mesic boreal forest latitudinal transect in Atlantic Canada. Results across forest sites within each of three climate regions indicated that (1) climate history and diagenesis affect distinct parameters of SOM chemistry, (2) increases in SOM bioreactivity with latitude were associated with elevated proportions of carbohydrates relative to plant waxes and lignin, and (3) despite the common forest type across regions, differences in SOM chemistry by climate region were associated with chemically distinct litter inputs and not different degrees of diagenesis. Climate effects on vascular plant litter chemistry explained only part of the regional differences in SOM chemistry, most notably the higher protein content of SOM from warmer regions. Greater proportions of lignin and aliphatic compounds and smaller proportions of carbohydrates in warmer sites' soils were explained by the higher proportion of vascular plant relative to moss litter in the warmer forests. These results indicate that a climate induced decrease in the proportion of moss inputs will not only impact SOM chemistry but also increase the resistance of SOM to decomposition, thus significantly altering SOM cycling in these boreal forest soils.
Alele, Peter O.; Sheil, Douglas; Surget-Groba, Yann; Lingling, Shi; Cannon, Charles H.
2014-01-01
Uganda's forests are globally important for their conservation values but are under pressure from increasing human population and consumption. In this study, we examine how conversion of natural forest affects soil bacterial and fungal communities. Comparisons in paired natural forest and human-converted sites among four locations indicated that natural forest soils consistently had higher pH, organic carbon, nitrogen, and calcium, although variation among sites was large. Despite these differences, no effect on the diversity of dominant taxa for either bacterial or fungal communities was detected, using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE). Composition of fungal communities did generally appear different in converted sites, but surprisingly, we did not observe a consistent pattern among sites. The spatial distribution of some taxa and community composition was associated with soil pH, organic carbon, phosphorus and sodium, suggesting that changes in soil communities were nuanced and require more robust metagenomic methods to understand the various components of the community. Given the close geographic proximity of the paired sampling sites, the similarity between natural and converted sites might be due to continued dispersal between treatments. Fungal communities showed greater environmental differentiation than bacterial communities, particularly according to soil pH. We detected biotic homogenization in converted ecosystems and substantial contribution of β-diversity to total diversity, indicating considerable geographic structure in soil biota in these forest communities. Overall, our results suggest that soil microbial communities are relatively resilient to forest conversion and despite a substantial and consistent change in the soil environment, the effects of conversion differed widely among sites. The substantial difference in soil chemistry, with generally lower nutrient quantity in converted sites, does bring into question, how long this resilience will last. PMID:25118069
Lange, Markus; Habekost, Maike; Eisenhauer, Nico; Roscher, Christiane; Bessler, Holger; Engels, Christof; Oelmann, Yvonne; Scheu, Stefan; Wilcke, Wolfgang; Schulze, Ernst-Detlef; Gleixner, Gerd
2014-01-01
Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities. PMID:24816860
Hixson, Stefanie M; Arts, Michael T
2016-08-01
Phytoplankton are the main source of energy and omega-3 (n-3) long-chain essential fatty acids (EFA) in aquatic ecosystems. Their growth and biochemical composition are affected by surrounding environmental conditions, including temperature, which continues to increase as a result of climate warming. Increasing water temperatures may negatively impact the production of EFA by phytoplankton through the process of homeoviscous adaptation. To investigate this, we conducted an exploratory data synthesis with 952 fatty acid (FA) profiles from six major groups of marine and freshwater phytoplankton. Temperature was strongly correlated with a decrease in the proportion of n-3 long-chain polyunsaturated FA (LC-PUFA) and an increase in omega-6 FA and saturated FA. Based on linear regression models, we predict that global n-3 LC-PUFA production will be reduced by 8.2% for eicosapentaenoic acid (EPA) and 27.8% for docosahexaenoic acid (DHA) with an increase in water temperature of 2.5 °C. Using a previously published estimate of the global production of EPA by diatoms, which contribute to most of the world's supply of EPA, we predict a loss of 14.2 Mt of EPA annually as a result of ocean warming. The n-3 LC-PUFA are vitally important for an array of key physiological functions in aquatic and terrestrial organisms, and these FA are mainly produced by phytoplankton. Therefore, reduced production of these EFA, as a consequence of climate warming, is predicted to negatively affect species that depend on these compounds for optimum physiological function. Such profound changes in the biochemical composition of phytoplankton cell membranes can lead to cascading effects throughout the world's ecosystems. © 2016 John Wiley & Sons Ltd.
Local disease-ecosystem-livelihood dynamics: reflections from comparative case studies in Africa.
Leach, Melissa; Bett, Bernard; Said, M; Bukachi, Salome; Sang, Rosemary; Anderson, Neil; Machila, Noreen; Kuleszo, Joanna; Schaten, Kathryn; Dzingirai, Vupenyu; Mangwanya, Lindiwe; Ntiamoa-Baidu, Yaa; Lawson, Elaine; Amponsah-Mensah, Kofi; Moses, Lina M; Wilkinson, Annie; Grant, Donald S; Koninga, James
2017-07-19
This article explores the implications for human health of local interactions between disease, ecosystems and livelihoods. Five interdisciplinary case studies addressed zoonotic diseases in African settings: Rift Valley fever (RVF) in Kenya, human African trypanosomiasis in Zambia and Zimbabwe, Lassa fever in Sierra Leone and henipaviruses in Ghana. Each explored how ecological changes and human-ecosystem interactions affect pathogen dynamics and hence the likelihood of zoonotic spillover and transmission, and how socially differentiated peoples' interactions with ecosystems and animals affect their exposure to disease. Cross-case analysis highlights how these dynamics vary by ecosystem type, across a range from humid forest to semi-arid savannah; the significance of interacting temporal and spatial scales; and the importance of mosaic and patch dynamics. Ecosystem interactions and services central to different people's livelihoods and well-being include pastoralism and agro-pastoralism, commercial and subsistence crop farming, hunting, collecting food, fuelwood and medicines, and cultural practices. There are synergies, but also tensions and trade-offs, between ecosystem changes that benefit livelihoods and affect disease. Understanding these can inform 'One Health' approaches towards managing ecosystems in ways that reduce disease risks and burdens.This article is part of the themed issue 'One Health for a changing world: zoonoses, ecosystems and human well-being'. © 2017 The Authors.
Risk and markets for ecosystem services.
Bendor, Todd K; Riggsbee, J Adam; Doyle, Martin
2011-12-15
Market-based environmental regulations (e.g., cap and trade, "payments for ecosystem services") are increasingly common. However, few detailed studies of operating ecosystem markets have lent understanding to how such policies affect incentive structures for improving environmental quality. The largest U.S. market stems from the Clean Water Act provisions requiring ecosystem restoration to offset aquatic ecosystems damaged during development. We describe and test how variations in the rules governing this ecosystem market shift risk between regulators and entrepreneurs to promote ecological restoration. We analyze extensive national scale data to assess how two critical aspects of market structure - (a) the geographic scale of markets and (b) policies dictating the release of credits - affect the willingness of entrepreneurs to enter specific markets and produce credits. We find no discernible relationship between policies attempting to ease market entry and either the number of individual producers or total credits produced. Rather, market entry is primarily related to regional geography (the prevalence of aquatic ecosystems) and regional economic growth. Any improvements to policies governing ecosystem markets require explicit evaluation of the interplay between policy and risk elements affecting both regulators and entrepreneurial credit providers. Our findings extend to emerging, regulated ecosystem markets, including proposed carbon offset mechanisms, biodiversity banking, and water quality trading programs.
Eduardo, Anderson A
2016-09-07
The positive influence of biodiversity on ecosystem processes was the focus of intense debate in ecology throughout the recent decades, becoming accepted and treated as a new paradigm in contemporary ecology. However, the available literature in this research field extensively explores species richness as an unidimensional measure for biodiversity. The present study explores how different components of biological diversity (number of genotypes, species, and functional groups) can influence an ecosystem process (biomass fixation). A mathematical model was employed and the simulation results showed that species richness per se does not affect the ecosystem productivity. Genotypic richness affected positively the ecosystem, but only if the genotypes are functionally complementary. The functional groups richness always affected positively the simulated ecosystem process. When together, richness at the different components of biological diversity showed stronger effect on ecosystem, and the scenarios with high species, genotypes and functional groups richness were the most productive ones. The results also allowed to observe that the ecosystems which are diverse in terms of functional groups and genotypes can be less susceptible to species loss. Finally, it is argued that a multiple dimension approach to biodiversity is relevant to advance the current knowledge on the relation between biodiversity and ecosystem functioning. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ojima, D. S.; Togtohyn, C.; Qi, J.; Galvin, K.
2011-12-01
Dramatic changes due to climate and land use dynamics in the Mongolian Plateau are affecting ecosystem services and agro-pastoral livelihoods in Mongolia and China. Recently, evaluation of pastoral systems, where humans depend on livestock and grassland ecosystem services, have demonstrated the vulnerability of the social-ecological system to climate change. Current social-ecological changes in ecosystem services are affecting land productivity and carrying capacity, land-atmosphere interactions, water resources, and livelihood strategies. Regional dust events, changes in hydrological cycle, and land use changes contribute to changing interactions between ecosystem and landscape processes which then affect social-ecological systems. The general trend involves greater intensification of resource exploitation at the expense of traditional patterns of extensive range utilization. Thus we expect climate-land use-land cover relationships to be crucially modified by the socio-economic forces. The analysis incorporates information of the socio-economic transitions taking place in the region which affect land-use, food security, and ecosystem dynamics. The region of study extends from the Mongolian plateau in Mongolia and China to the fertile northeast China plain. Sustainability of agro-pastoral systems in the region needs to integrate the impact of climate change on ecosystem services with socio-economic changes shaping the livelihood strategies of pastoral systems in the region. Adaptation strategies which incorporate landscape management provides a potential framework to link ecosystem services across space and time more effectively to meet the needs of agro-pastoral land use, herd quality, and herder's living standards. Under appropriate adaptation strategies agro-pastoralists will have the opportunity to utilize seasonal resources and enhance their ability to process and manufacture products from the available ecosystem services in these dynamic social-ecological systems.
NASA Astrophysics Data System (ADS)
Bristol, E. M.; Dabrowski, J. S.; Jimmie, J. A.; Peter, D. L.; Holmes, R. M.; Mann, P. J.; Natali, S.; Schade, J. D.
2017-12-01
The Yukon-Kuskokwim Delta in southwest, Alaska is characterized by discontinuous permafrost, which is vulnerable to thaw induced by climate change. Recent fires in the delta have caused dramatic changes in the landscape, likely changing carbon dynamics, and potentially altering dissolved organic carbon (DOC) composition and DOC concentrations in aquatic ecosystems. These changes, in turn, likely affect microbial respiration and hydrologic C export from watersheds in the delta. In this study, we investigated how landscape position and fire history drive changes in DOC composition and reactivity in aquatic ecosystems. We surveyed soil pore waters, ponds, fens, and streams at varying landscape positions in burned and unburned landscapes. We also conducted a laboratory experiment to compare the role of photooxidation, photodegradation, and microbial respiration in altering DOC composition and concentration. Surface waters in burned regions were higher in temperature and inorganic nitrogen concentrations. Higher conductivity in burned areas suggests that fire is deepening the water table, causing water to flow through a more mineral soil horizon. While DOC concentrations did not vary significantly by landscape position or fire history, optical properties of DOC suggest that DOC molecular weight is lower in burned regions and decreases along flow paths. Similarly, our incubation experiment indicated that changes in DOC composition are driven by exposure to light more than bacterial respiration, and that photochemical reactivity declines along flow paths. Percent DOC loss was greatest in waters exposed to both light and bacterial, and percent DOC loss from burned watershed waters was correlated with optical properties. Based on our findings, we predict that the combination of increased surface water temperatures, increased inorganic nitrogen concentrations, and lower molecular weight DOC will increase bacterial respiration of DOC in watersheds burned by wildfire. Further research is needed to better understand the changing hydrology in burned tundra, and the relationship between photooxidation and biological mineralization of DOC.
NASA Astrophysics Data System (ADS)
De Cesare, Fabrizio; Di Mattia, Elena; Macagnano, Antonella
2017-04-01
Global and local environmental changes are exerting significant pressures on organisms living in ecosystems. In the terrestrial ecosystem, plant, soil and microorganisms mutually interact in the rhizosphere, i.e. the volume of soil surrounding roots that is affected by the release of rhizodeposition (root exudates, root debris, volatiles and gases) by plants. Such interactions can be beneficial, neutral or harmful for organisms, depending on the stimulatory or inhibitory (or null) effect resulting from these relationships. Soil organisms are sensitive indicators of environmental alterations. Effects induced by climate changes (e.g. global warming and elevated CO2), land-use (e.g. forest vs. agrosystems, and conventional vs. conservation agriculture) and pollution (e.g. agrochemicals, and industrial and urban wastes) can affect the attitudes, composition, physiology, metabolism and morphology of organisms in the rhizosphere and their interactions. Plenty of studies published to date has been devoted to analysing the effects of a multitude of factors on the rhizosphere ecosystems (e.g. root exudate amount and composition, microbial community dynamics, populations of soil animals) and their biogeochemical properties (enzyme activities). Accordingly, a lot of markers, protocols and techniques have been created on purpose and used for such analyses until now. In this study, a new approach based on the creation of a nanostructured support mimicking the rhizosphere environment and its main features is proposed. Sketching them out: i) solid materials (grain-shaped minerals and fibrous and crumble-like organic matter) distributed in a 3D space; ii) release of nutritive substrates. This nanorhizosphere is composed of both micro-beads and nano-to-micro fibres of organic polymer approximately mimicking the soil structure. A biodegradable organic polymer has been selected on purpose. The nanostructure was created employing a nanotechnology named electrospinning, which typically generates nanofibres, but also beads, by deposition under an electric field and onto a collector. Root exudates, previously collected from crop plants, were supplied to microbial cultures either by a proper solution or by an agar medium containing these compounds or finally by the organic nanoframework itself, where the exudates had been loaded by mixing with polymer solution before the electrospinning process. Microbial species (Actynomycetes, Pseudomonads or Lactobacilli), previously isolated from the rhizosphere of various plants, were used as model microorganisms to recreate a proper rhizosphere ecosystem. Pure and mixed cultures were tested. Heavy metals were used as model soil pollutants to generate an environmental pressure on either the generation of a new rhizosphere ecosystem or on an already settled one. Metabolic, physiological and morphological traits were analysed after a fixed period. Results of this artificial nanorhizosphere are discussed.
Selonen, Salla; Setälä, Heikki
2015-06-15
The effects of shooting-derived lead (Pb) on the structure and functioning of a forest ecosystem, and the recovery of the ecosystem after range abandonment were studied at an active shotgun shooting range, an abandoned shooting range where shooting ceased 20 years earlier and an uncontaminated control site. Despite numerous lead-induced changes in the soil food web, soil processes were only weakly related to soil food web composition. However, decomposition of Scots pine (Pinus sylvestris) needle litter was retarded at the active shooting range, and microbial activity, microbial biomass and the rate of decomposition of Pb-contaminated grass litter decreased with increasing soil Pb concentrations. Tree (P. sylvestris) radial growth was suppressed at the active shooting range right after shooting activities started. In contrast, the growth of pines improved at the abandoned shooting range after the cessation of shooting, despite reduced nitrogen and phosphorus contents of the needles. Higher litter degradation rates and lower Pb concentrations in the topmost soil layer at the abandoned shooting range suggest gradual recovery after range abandonment. Our findings suggest that functions in lead-contaminated coniferous forest ecosystems depend on the successional stage of the forest as well as the time since the contamination source has been eliminated, which affects, e.g., the vertical distribution of the contaminant in the soil. However, despite multiple lead-induced changes throughout the ecosystem, the effects were rather weak, indicating high resistance of coniferous forest ecosystems to this type of stress. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Troost, Karin
2010-10-01
Since the 1960's, the Pacific oyster Crassostrea gigas has been introduced for mariculture at several locations within NW Europe. The oyster established itself everywhere and expanded rapidly throughout the receiving ecosystems, forming extensive and dense reef structures. It became clear that the Pacific oyster induced major changes in NW European estuaries. This paper reviews the causes of the Pacific oyster's remarkably successful establishment and spread in The Netherlands and neighbouring countries, and includes a comprehensive review of consequences for the receiving communities. Ecosystem engineering by C. gigas and a relative lack of natural enemies in receiving ecosystems are identified as the most important characteristics facilitating the invader's successful establishment and expansion. The Pacific oyster's large filtration capacity and eco-engineering characteristics induced many changes in receiving ecosystems. Different estuaries are affected differently; in the Dutch Oosterschelde estuary expanding stocks saturate the carrying capacity whereas in the Wadden Sea no such problems exist. In general, the Pacific oyster seems to fit well within continental NW European estuarine ecosystems and there is no evidence that the invader outcompetes native bivalves. C. gigas induces changes in plankton composition, habitat heterogeneity and biodiversity, carrying capacity, food webs and parasite life cycles. The case of the Pacific oyster in NW European estuaries is only one example in an increasing series of biological invasions mediated by human activities. This case-study will contribute to further elucidating general mechanisms in marine invasions; invasions that sometimes appear a threat, but can also contribute to ecological complexity.
Blackbird Creek Monitoring Program to Study the impact of Climate Change and Land Use
NASA Astrophysics Data System (ADS)
Ozbay, G.; Chintapenta, L. K.; Roeske, K. P.; Stone, M.; Phalen, L.
2014-12-01
The Blackbird Creek Monitoring Program at Delaware State University continues to utilize various perspectives to study the dynamics of one of Delaware's most pristine ecosystems. The water quality of Blackbird Creek has been constantly monitored for 3 years and correlated with the rain and storm events. Soil nutrients composition has been studied by extracting the water associated with soil aggregates and analyzing the levels of different nutrients. Soil quality is also assessed for heavy metals to identify potential human impact that may affect the health of ecosystem. Within the Blackbird Creek there is a threat to native plant communities from invasive plant species as they alter the ecosystem dynamics. Saltmarsh cord grass (Spartina alterniflora) and common reed (Phragmites australius) are the common wetland plants. Aerial mapping of the creek has been conducted to determine the area covered by invasive plant species. The microbial community structure plays a key role in soil carbon and nitrogen cycles in the ecosystem. Molecular analysis has been performed to study the microbial diversity with respect to the type of marsh grasses. This program has also incorporated the use of diatoms as biological indicators to assess the health of ecosystem and correlate that data with physical and chemical water quality data. The abundance and diversity of macro fauna such as blue crabs, fish and other significant species has also been studied. Stable isotopic analysis of these macro fauna has also been performed to study the food web. The results from this program will be helpful in addressing environmental challenges and designing management strategies.
Moreno Navas, Juan; Miller, Peter I; Miller, Peter L; Henry, Lea-Anne; Hennige, Sebastian J; Roberts, J Murray
2014-01-01
Ecohydrodynamics investigates the hydrodynamic constraints on ecosystems across different temporal and spatial scales. Ecohydrodynamics play a pivotal role in the structure and functioning of marine ecosystems, however the lack of integrated complex flow models for deep-water ecosystems beyond the coastal zone prevents further synthesis in these settings. We present a hydrodynamic model for one of Earth's most biologically diverse deep-water ecosystems, cold-water coral reefs. The Mingulay Reef Complex (western Scotland) is an inshore seascape of cold-water coral reefs formed by the scleractinian coral Lophelia pertusa. We applied single-image edge detection and composite front maps using satellite remote sensing, to detect oceanographic fronts and peaks of chlorophyll a values that likely affect food supply to corals and other suspension-feeding fauna. We also present a high resolution 3D ocean model to incorporate salient aspects of the regional and local oceanography. Model validation using in situ current speed, direction and sea elevation data confirmed the model's realistic representation of spatial and temporal aspects of circulation at the reef complex including a tidally driven current regime, eddies, and downwelling phenomena. This novel combination of 3D hydrodynamic modelling and remote sensing in deep-water ecosystems improves our understanding of the temporal and spatial scales of ecological processes occurring in marine systems. The modelled information has been integrated into a 3D GIS, providing a user interface for visualization and interrogation of results that allows wider ecological application of the model and that can provide valuable input for marine biodiversity and conservation applications.
Navas, Juan Moreno; Miller, Peter L.; Henry, Lea-Anne; Hennige, Sebastian J.; Roberts, J. Murray
2014-01-01
Ecohydrodynamics investigates the hydrodynamic constraints on ecosystems across different temporal and spatial scales. Ecohydrodynamics play a pivotal role in the structure and functioning of marine ecosystems, however the lack of integrated complex flow models for deep-water ecosystems beyond the coastal zone prevents further synthesis in these settings. We present a hydrodynamic model for one of Earth's most biologically diverse deep-water ecosystems, cold-water coral reefs. The Mingulay Reef Complex (western Scotland) is an inshore seascape of cold-water coral reefs formed by the scleractinian coral Lophelia pertusa. We applied single-image edge detection and composite front maps using satellite remote sensing, to detect oceanographic fronts and peaks of chlorophyll a values that likely affect food supply to corals and other suspension-feeding fauna. We also present a high resolution 3D ocean model to incorporate salient aspects of the regional and local oceanography. Model validation using in situ current speed, direction and sea elevation data confirmed the model's realistic representation of spatial and temporal aspects of circulation at the reef complex including a tidally driven current regime, eddies, and downwelling phenomena. This novel combination of 3D hydrodynamic modelling and remote sensing in deep-water ecosystems improves our understanding of the temporal and spatial scales of ecological processes occurring in marine systems. The modelled information has been integrated into a 3D GIS, providing a user interface for visualization and interrogation of results that allows wider ecological application of the model and that can provide valuable input for marine biodiversity and conservation applications. PMID:24873971
Fungal role in post-fire ecosystem recovery in Sierra Nevada National Park (Spain)
NASA Astrophysics Data System (ADS)
Bárcenas-Moreno, Gema; Jiménez-Morillo, Nicasio T.; Mataix-Beneyto, Jorge; Martín Sánchez, Ines
2016-04-01
Fire effect on soil microorganisms has been studies for decades in several ecosystems and different microbial response can be found in the bibliography depending on numerous intrinsic and extrinsic soil factors. These factors will determine preliminary soil microbial community composition, subsequent pos-fire initial colonizers and even post-fire growth media characteristics that microbial community will find to start recolonisation. Fire-induced soil bacterial proliferation is a common pattern found after fire, usually related to pH and C availability increased. But when original soil pH is not altered by fire in acid soils, microbial response can be different and fungal response can be crucial to ecosystem recovery. In this study we have compile data related to high mountain soil from Sierra Nevada National park which was affected by a wildfire in 2006 and data obtained by laboratory heating experiment, trying to elucidate the ecological role of fungi in this fragile ecosystem. On the one hand we can observe fire-induced fungal abundance proliferation estimated by plate count method 8 and 32 months after wildfire and even in a short-term (21 d) after laboratory heating at 300 °C. Six years after fire, fungal abundance was similar between samples collected in burnt and unburnt-control area but we found higher proportion of species capable to degrade PAHs (lacase activity) in burnt soil than I the unburnt one. This finding evidences the crucial role of fungal enzymatic capacities to detoxify burnt soils when fire-induced recalcitrant and even toxic carbon compounds could be partially limiting total ecosystem recovery.
Stable isotope analysis as an early monitoring tool for community-scale effects of rat eradication
Nigro, Katherine M.; Hathaway, Stacie A.; Wegmann, Alex; Miller-ter Kuile, Ana; Fisher, Robert N.; Young, Hillary S.
2017-01-01
Invasive rats have colonized most of the islands of the world, resulting in strong negative impacts on native biodiversity and on ecosystem functions. As prolific omnivores, invasive rats can cause local extirpation of a wide range of native species, with cascading consequences that can reshape communities and ecosystems. Eradication of rats on islands is now becoming a widespread approach to restore ecosystems, and many native island species show strong numerical responses to rat eradication. However, the effect of rat eradication on other consumers can extend beyond direct numerical effects, to changes in behavior, dietary composition, and other ecological parameters. These behavioral and trophic effects may have strong cascading impacts on the ecology of restored ecosystems, but they have rarely been examined. In this study, we explore how rat eradication has affected the trophic ecology of native land crab communities. Using stable isotope analysis of rats and crabs, we demonstrate that the diet or trophic position of most crabs changed subsequent to rat eradication. Combined with the numerical recovery of two carnivorous land crab species (Geograpsus spp.), this led to a dramatic widening of the crab trophic niche following rat eradication. Given the established importance of land crabs in structuring island communities, particularly plants, this suggests an unappreciated mechanism by which rat eradication may alter island ecology. This study also demonstrates the potential for stable isotope analysis as a complementary monitoring tool to traditional techniques, with the potential to provide more nuanced assessments of the community- and ecosystem-wide effects of restoration.
NASA Astrophysics Data System (ADS)
Street, L. E.; Burns, N. R.; Woodin, S. J.
2012-04-01
We re-visit a unique field manipulation study in Svalbard to assess the long-term recovery of plant species composition, leaf tissue chemistry and total ecosystem carbon storage from nutrient enrichment. The experiment was established in 1991. The original aim was to quantify the 'critical load' of nitrogen (N) for tundra; that is, the minimum rate of N deposition affecting ecosystem structure and function. Dissolved N was applied to heath vegetation, both alone and in combination with phosphorous (P), during the growing season over three years. The rates of N addition were lower than in most other nutrient manipulation studies, and were designed to represent typical rates of deposition in the Scottish highlands (50 kg N ha-1 yr-1) and maximum deposition rates experienced in the Arctic (10 kg N ha-1 yr-1). Significant changes in shrub cover, the greenness and N content of the moss layer, and the extent of ecosystem N saturation had occurred by the end of the treatment period. After 18 years of recovery without further treatment, we assessed primary productivity using CO2 flux measurements, and the 'greenness' of vegetation using the Normalised Difference Vegetation Index. We made destructive measurements of above- and below-ground carbon and nutrient stocks, quantified species composition and sampled leaf tissue for chemical analysis. Total carbon storage in organic soils and vegetation was c. 40 % lower in the plots treated with 50 kg N ha-1 yr-1 compared to controls. Species composition in N treated plots also differed significantly, but there was no clear treatment effect on primary productivity. Where 50 kg N ha-1 yr-1 was applied in combination with P (at 5 kg P ha-1 yr-1 ), organic carbon storage was c. 70 % greater than controls, the vegetation was greener, and primary productivity higher. Effects of the treatments were also still clearly apparent in moss tissue nutrient status, even at the lower nitrogen application rate. Our results imply that the effects of nutrient enrichment on High Arctic ecosystems are not readily reversible, and that short-term addition of N can result in long-term carbon losses. We show that mosses perform an important role in retaining deposited N aboveground. Our results also highlight the importance of P in mediating carbon cycle responses to increased N availability.
Hammill, Edward; Booth, David J.; Madin, Elizabeth M. P.; Hinchliffe, Charles; Harborne, Alastair R.; Lovelock, Catherine E.; Macreadie, Peter I.; Atwood, Trisha B.
2018-01-01
Benthic fauna play a crucial role in organic matter decomposition and nutrient cycling at the sediment-water boundary in aquatic ecosystems. In terrestrial systems, grazing herbivores have been shown to influence below-ground communities through alterations to plant distribution and composition, however whether similar cascading effects occur in aquatic systems is unknown. Here, we assess the relationship between benthic invertebrates and above-ground fish grazing across the ‘grazing halos’ of Heron Island lagoon, Australia. Grazing halos, which occur around patch reefs globally, are caused by removal of seagrass or benthic macroalgae by herbivorous fish that results in distinct bands of unvegetated sediments surrounding patch reefs. We found that benthic algal canopy height significantly increased with distance from patch reef, and that algal canopy height was positively correlated with the abundances of only one invertebrate taxon (Nematoda). Both sediment carbon to nitrogen ratios (C:N) and mean sediment particle size (μm) demonstrated a positive correlation with Nematoda and Arthropoda (predominantly copepod) abundances, respectively. These positive correlations indicate that environmental conditions are a major contributor to benthic invertebrate community distribution, acting on benthic communities in conjunction with the cascading effects of above-ground algal grazing. These results suggest that benthic communities, and the ecosystem functions they perform in this system, may be less responsive to changes in above-ground herbivorous processes than those previously studied in terrestrial systems. Understanding how above-ground organisms, and processes, affect their benthic invertebrate counterparts can shed light on how changes in aquatic communities may affect ecosystem function in previously unknown ways. PMID:29513746
Ollivier, Quinn R; Hammill, Edward; Booth, David J; Madin, Elizabeth M P; Hinchliffe, Charles; Harborne, Alastair R; Lovelock, Catherine E; Macreadie, Peter I; Atwood, Trisha B
2018-01-01
Benthic fauna play a crucial role in organic matter decomposition and nutrient cycling at the sediment-water boundary in aquatic ecosystems. In terrestrial systems, grazing herbivores have been shown to influence below-ground communities through alterations to plant distribution and composition, however whether similar cascading effects occur in aquatic systems is unknown. Here, we assess the relationship between benthic invertebrates and above-ground fish grazing across the 'grazing halos' of Heron Island lagoon, Australia. Grazing halos, which occur around patch reefs globally, are caused by removal of seagrass or benthic macroalgae by herbivorous fish that results in distinct bands of unvegetated sediments surrounding patch reefs. We found that benthic algal canopy height significantly increased with distance from patch reef, and that algal canopy height was positively correlated with the abundances of only one invertebrate taxon (Nematoda). Both sediment carbon to nitrogen ratios (C:N) and mean sediment particle size (μm) demonstrated a positive correlation with Nematoda and Arthropoda (predominantly copepod) abundances, respectively. These positive correlations indicate that environmental conditions are a major contributor to benthic invertebrate community distribution, acting on benthic communities in conjunction with the cascading effects of above-ground algal grazing. These results suggest that benthic communities, and the ecosystem functions they perform in this system, may be less responsive to changes in above-ground herbivorous processes than those previously studied in terrestrial systems. Understanding how above-ground organisms, and processes, affect their benthic invertebrate counterparts can shed light on how changes in aquatic communities may affect ecosystem function in previously unknown ways.
Coelho, Francisco J R C; Cleary, Daniel F R; Rocha, Rui J M; Calado, Ricardo; Castanheira, José M; Rocha, Sílvia M; Silva, Artur M S; Simões, Mário M Q; Oliveira, Vanessa; Lillebø, Ana I; Almeida, Adelaide; Cunha, Ângela; Lopes, Isabel; Ribeiro, Rui; Moreira-Santos, Matilde; Marques, Catarina R; Costa, Rodrigo; Pereira, Ruth; Gomes, Newton C M
2015-05-01
There is growing concern that modifications to the global environment such as ocean acidification and increased ultraviolet radiation may interact with anthropogenic pollutants to adversely affect the future marine environment. Despite this, little is known about the nature of the potential risks posed by such interactions. Here, we performed a multifactorial microcosm experiment to assess the impact of ocean acidification, ultraviolet B (UV-B) radiation and oil hydrocarbon contamination on sediment chemistry, the microbial community (composition and function) and biochemical marker response of selected indicator species. We found that increased ocean acidification and oil contamination in the absence of UV-B will significantly alter bacterial composition by, among other things, greatly reducing the relative abundance of Desulfobacterales, known to be important oil hydrocarbon degraders. Along with changes in bacterial composition, we identified concomitant shifts in the composition of oil hydrocarbons in the sediment and an increase in oxidative stress effects on our indicator species. Interestingly, our study identifies UV-B as a critical component in the interaction between these factors, as its presence alleviates harmful effects caused by the combination of reduced pH and oil pollution. The model system used here shows that the interactive effect of reduced pH and oil contamination can adversely affect the structure and functioning of sediment benthic communities, with the potential to exacerbate the toxicity of oil hydrocarbons in marine ecosystems. © 2014 John Wiley & Sons Ltd.
Pre-industrial baseline variation of upper midwestern forests in the United States
NASA Astrophysics Data System (ADS)
Dawson, A.; Paciorek, C. J.; Goring, S. J.; Williams, J. W.; Jackson, S. T.; McLachlan, J. S.
2016-12-01
Terrestrial ecosystems play an important role in Earth systems processes, yet we still do not understand how they respond to changes in climate. While it has been argued that terrestrial ecosystems were fairly stable (by Quaternary standards) in the millennia before major anthropogenic disruption, others have emphasized vegetation response to environmental variability during this time. These competing perspectives are not necessarily in conflict, but argue for a quantitative assessment of forest ecosystem variability over the last several millennia. Here we reconstruct maps of forest composition for the last two millenia, with uncertainty. To do this, we use a network of fossil pollen records - the most reliable paleoecological proxy for forest composition. We link the fossil pollen records to public land survey forest composition using a Bayesian hierarchical model which accounts for key processes including pollen production and dispersal. The model is calibrated using data from the pre-settlement time with the hope of minimizing anthropogenic impacts. Process parameters are estimated in the calibration phase, and are subsequently used in the prediction phase to generate spatially explicit maps of relative species composition across the upper Midwestern US over the last 2000 years, with robust uncertainty estimates. Estimates of forest composition and uncertainty show many previously noted vegetation shifts, three of which we discuss here. First, we see expansion of the hemlock range into western Wisconsin. Second, we see changes along the prairie-forest ecotone. Third, we see significant increases in elm at approximately 500 YBP in the region known as the Minnesota Big Woods. These changes are significant in both a statistical and ecological sense, but the scale of these changes is small relative to changes in the early holocene. Our novel spatio-temporal composition estimates will be used to improve the forecasting capabilities of ecosystem models.
How lichens impact on terrestrial community and ecosystem properties.
Asplund, Johan; Wardle, David A
2017-08-01
Lichens occur in most terrestrial ecosystems; they are often present as minor contributors, but in some forests, drylands and tundras they can make up most of the ground layer biomass. As such, lichens dominate approximately 8% of the Earth's land surface. Despite their potential importance in driving ecosystem biogeochemistry, the influence of lichens on community processes and ecosystem functioning have attracted relatively little attention. Here, we review the role of lichens in terrestrial ecosystems and draw attention to the important, but often overlooked role of lichens as determinants of ecological processes. We start by assessing characteristics that vary among lichens and that may be important in determining their ecological role; these include their growth form, the types of photobionts that they contain, their key functional traits, their water-holding capacity, their colour, and the levels of secondary compounds in their thalli. We then assess how these differences among lichens influence their impacts on ecosystem and community processes. As such, we consider the consequences of these differences for determining the impacts of lichens on ecosystem nutrient inputs and fluxes, on the loss of mass and nutrients during lichen thallus decomposition, and on the role of lichenivorous invertebrates in moderating decomposition. We then consider how differences among lichens impact on their interactions with consumer organisms that utilize lichen thalli, and that range in size from microfauna (for which the primary role of lichens is habitat provision) to large mammals (for which lichens are primarily a food source). We then address how differences among lichens impact on plants, through for example increasing nutrient inputs and availability during primary succession, and serving as a filter for plant seedling establishment. Finally we identify areas in need of further work for better understanding the role of lichens in terrestrial ecosystems. These include understanding how the high intraspecific trait variation that characterizes many lichens impacts on community assembly processes and ecosystem functioning, how multiple species mixtures of lichens affect the key community- and ecosystem-level processes that they drive, the extent to which lichens in early succession influence vascular plant succession and ecosystem development in the longer term, and how global change drivers may impact on ecosystem functioning through altering the functional composition of lichen communities. © 2016 Cambridge Philosophical Society.
Canedo-Júnior, Ernesto de Oliveira; Cuissi, Rafael Gonçalves; Nelson Henrique de Almeida, Curi; Demetrio, Guilherme Ramos; Lasmar, Chaim José; Malves, Kira
2016-03-01
Fire occurrences are a common perturbation in Cerrado ecosystems, and may differently impact the local biodiversity. Arthropods are one of the taxa affected by fires, and among them, ants are known as good bioindicators. We aimed to evaluate the effect of anthropic fires on epigaeic and hypogaeic ant communities (species richness and composition) in Cerrado areas with different post-fire event recovery periods. We conducted the study in four Cerrado areas during two weeks of 2012 dry season: one unburned and three at different post-fire times (one month, one and two years). We sampled ants with pitfall traps in epigaeic and hypogaeic microhabitats. We collected 71 ant morpho-species from 25 genera. In the epigaeic microhabitat we sampled 56 morpho-species and 42 in the hypogaeic microhabitat. The area with the shortest recovery time presented lower epigaeic ant species richness (4.3 ± 2.00) in comparison to the other areas (8.1 ± 2.68 species on one year area; 10.3 ± 2.66 species on two years area; 10.4 ± 2.31 species on control area), but recovery time did not affect hypogaeic ant species richness. Regarding ant species composition, fire did not directly affect hypogaeic ant species, which remained the same even one month after fire event. However, two years were not enough to reestablish ant species composition in both microhabitats in relation to our control group samples. Our study is the first to assess anthropic fire effects upon epigaeic and hypogaeic ants communities; highlighting the importance of evaluating different microhabitats, to more accurately detect the effects of anthropic disturbances in biological communities. We concluded that ant communities are just partially affected by fire occurrences, and epigaeic assemblages are the most affected ones in comparison to hypogaeic ants. Furthermore the study provides knowledge to aid in the creation of vegetation management programs that allow Cerrado conservation.
Chronic human disturbance affects plant trait distribution in a seasonally dry tropical forest
NASA Astrophysics Data System (ADS)
Sfair, Julia C.; de Bello, Francesco; de França, Thaysa Q.; Baldauf, Cristina; Tabarelli, Marcelo
2018-02-01
The effects of human disturbance on biodiversity can be mediated by environmental conditions, such as water availability, climate and nutrients. In general, disturbed, dry or nutrient-depleted soils areas tend to have lower taxonomic diversity. However, little is known about how these environmental conditions affect functional composition and intraspecific variability in tropical dry forests. We studied a seasonally dry tropical forest (SDTF) under chronic anthropogenic disturbance (CAD) along rainfall and soil nutrient gradients to understand how these factors influence the taxonomic and functional composition. Specifically we evaluated two aspects of CAD, wood extraction and livestock pressure (goat and cattle grazing), along soil fertility and rainfall gradients on shrub and tree traits, considering species turnover and intraspecific variability. In addition, we also tested how the traits of eight populations of the most frequent species are affected by wood extraction, livestock pressure, rainfall and soil fertility. In general, although CAD and environmental gradients affected each trait of the most widespread species differently, the most abundant species also had a greater variation of traits. Considering species turnover, wood extraction is associated with species with a smaller leaf area and lower investment in leaf mass, probably due to the indirect effects of this disturbance type on the vegetation, i.e. the removal of branches and woody debris clears the vegetation, favouring species that minimize water loss. Livestock pressure, on the other hand, affected intraspecific variation: the herbivory caused by goats and cattle promoted individuals which invest more in wood density and leaf mass. In this case, the change of functional composition observed is a direct effect of the disturbance, such as the decrease of palatable plant abundance by goat and cattle herbivory. In synthesis, CAD, rainfall and soil fertility can affect trait distribution at community and species levels, which can have significant implications for the ecosystem functioning of SDTF under increasing levels of disturbance, climate change and soil nutrient depletion.
USDA-ARS?s Scientific Manuscript database
Leafing out phenology affects a wide variety of ecosystem processes and ecological interactions, and it affects how natural and artificial ecosystems respond to different weather conditions in the spring. There is, however, relatively little information available on the factors affecting species dif...
Controlling species richness in spin-glass model ecosystems
NASA Astrophysics Data System (ADS)
Poderoso, Fábio C.; Fontanari, José F.
2006-11-01
Within the framework of the random replicator model of ecosystems, we use equilibrium statistical mechanics tools to study the effect of manipulating the ecosystem so as to guarantee that a fixed fraction of the surviving species at equilibrium display a predefined set of characters (e.g., characters of economic value). Provided that the intraspecies competition is not too weak, we find that the consequence of such intervention on the ecosystem composition is a significant increase on the number of species that become extinct, and so the impoverishment of the ecosystem.
García, Gregorio; Muñoz-Vera, Ana
2015-11-15
Coastal lagoons are ecosystems that are relatively enclosed water bodies under the influence of both the terrestrial and the marine environment, being vulnerable to human impacts. Human activities, such as mining extraction, are significant anthropogenic coastal stressors that can negatively affect ecosystems and communities. In light of the above, the objective of this research is to examine the influence of metal mining activities on the composition of sediments of a Mediterranean coastal lagoon, named Mar Menor. This paper presents a comprehensive characterization for grain size, mineralogy, geochemistry and organic matter of sediments of this coastal lagoon, investigating their variation along space and time. Sedimentation dynamics are ruling clearly the grain size predominant in each area of the Mar Menor coastal lagoon, determining the existence of entrainment, transport and sedimentation areas. For minerals, elements and organic matter, sedimentation dynamics are also determining their distribution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Matyssek, R; Wieser, G; Calfapietra, C; de Vries, W; Dizengremel, P; Ernst, D; Jolivet, Y; Mikkelsen, T N; Mohren, G M J; Le Thiec, D; Tuovinen, J-P; Weatherall, A; Paoletti, E
2012-01-01
Forests in Europe face significant changes in climate, which in interaction with air quality changes, may significantly affect forest productivity, stand composition and carbon sequestration in both vegetation and soils. Identified knowledge gaps and research needs include: (i) interaction between changes in air quality (trace gas concentrations), climate and other site factors on forest ecosystem response, (ii) significance of biotic processes in system response, (iii) tools for mechanistic and diagnostic understanding and upscaling, and (iv) the need for unifying modelling and empirical research for synthesis. This position paper highlights the above focuses, including the global dimension of air pollution as part of climate change and the need for knowledge transfer to enable reliable risk assessment. A new type of research site in forest ecosystems ("supersites") will be conducive to addressing these gaps by enabling integration of experimentation and modelling within the soil-plant-atmosphere interface, as well as further model development. Copyright © 2011 Elsevier Ltd. All rights reserved.
Navarro-Barranco, Carlos; Hughes, Lauren Elizabeth
2015-05-15
Light pollution from coastal urban development is a widespread and increasing threat to biodiversity. Many amphipod species migrate between the benthos and the pelagic environment and light seems is a main ecological factor which regulates migration. We explore the effect of artificial lighting on amphipod assemblages using two kind of lights, LED and halogen, and control traps in shallow waters of the Great Barrier Reef. Both types of artificial light traps showed a significantly higher abundance of individuals for all species in comparison to control traps. LED lights showed a stronger effect over the amphipod assemblages, with these traps collecting a higher number of individuals and differing species composition, with some species showing a specific attraction to LED light. As emergent amphipods are a key ecological group in the shallow water environment, the impact of artificial light can affect the broader functioning of the ecosystem. Copyright © 2015 Elsevier Ltd. All rights reserved.
Oates, Lawrence G.; Read, Harry W.; Gutknecht, Jessica L. M.; Duncan, David S.; Balser, Teri B.; Jackson, Randall D.
2017-01-01
Microbial communities are important drivers and regulators of ecosystem processes. To understand how management of ecosystems may affect microbial communities, a relatively precise but effort-intensive technique to assay microbial community composition is phospholipid fatty acid (PLFA) analysis. PLFA was developed to analyze phospholipid biomarkers, which can be used as indicators of microbial biomass and the composition of broad functional groups of fungi and bacteria. It has commonly been used to compare soils under alternative plant communities, ecology, and management regimes. The PLFA method has been shown to be sensitive to detecting shifts in microbial community composition. An alternative method, fatty acid methyl ester extraction and analysis (MIDI-FA) was developed for rapid extraction of total lipids, without separation of the phospholipid fraction, from pure cultures as a microbial identification technique. This method is rapid but is less suited for soil samples because it lacks an initial step separating soil particles and begins instead with a saponification reaction that likely produces artifacts from the background organic matter in the soil. This article describes a method that increases throughput while balancing effort and accuracy for extraction of lipids from the cell membranes of microorganisms for use in characterizing both total lipids and the relative abundance of indicator lipids to determine soil microbial community structure in studies with many samples. The method combines the accuracy achieved through PLFA profiling by extracting and concentrating soil lipids as a first step, and a reduction in effort by saponifying the organic material extracted and processing with the MIDI-FA method as a second step. PMID:28745639
Hao, Yi; Ma, Chuanxin; Zhang, Zetian; Song, Youhong; Cao, Weidong; Guo, Jing; Zhou, Guopeng; Rui, Yukui; Liu, Liming; Xing, Baoshan
2018-01-01
The aim of this study was to compare the toxicity effects of carbon nanomaterials (CNMs), namely fullerene (C 60 ), reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs), on a mini-ecosystem of rice grown in a loamy potted soil. We measured plant physiological and biochemical parameters and examined bacterial community composition in the CNMs-treated plant-soil system. After 30 days of exposure, all the three CNMs negatively affected the shoot height and root length of rice, significantly decreased root cortical cells diameter and resulted in shrinkage and deformation of cells, regardless of exposure doses (50 or 500 mg/kg). Additionally, at the high exposure dose of CNM, the concentrations of four phytohormones, including auxin, indoleacetic acid, brassinosteroid and gibberellin acid 4 in rice roots significantly increased as compared to the control. At the high exposure dose of MWCNTs and C 60 , activities of the antioxidant enzymes superoxide dismutase (SOD) and peroxidase (POD) in roots increased significantly. High-throughput sequencing showed that three typical CNMs had little effect on shifting the predominant soil bacterial species, but the presence of CNMs significantly altered the composition of the bacterial community. Our results indicate that different CNMs indeed resulted in environmental toxicity to rice and soil bacterial community in the rhizosphere and suggest that CNMs themselves and their incorporated products should be reasonably used to control their release/discharge into the environment to prevent their toxic effects on living organisms and the potential risks to food safety. Copyright © 2017 Elsevier Ltd. All rights reserved.
Djukic, Ika; Zehetner, Franz; Watzinger, Andrea; Horacek, Micha; Gerzabek, Martin H
2013-01-01
Litter decomposition represents one of the largest fluxes in the global terrestrial carbon cycle. The aim of this study was to improve our understanding of the factors governing decomposition in alpine ecosystems and how their responses to changing environmental conditions change over time. Our study area stretches over an elevation gradient of 1000 m on the Hochschwab massif in the Northern Limestone Alps of Austria. We used high-to-low elevation soil translocation to simulate the combined effects of changing climatic conditions, shifting vegetation zones, and altered snow cover regimes. In original and translocated soils, we conducted in situ decomposition experiments with maize litter and studied carbon turnover dynamics as well as temporal response patterns of the pathways of carbon during microbial decomposition over a 2-year incubation period. A simulated mean annual soil warming (through down-slope translocation) of 1.5 and 2.7 °C, respectively, resulted in a significantly accelerated turnover of added maize carbon. Changes in substrate quantity and quality in the course of the decomposition appeared to have less influence on the microbial community composition and its substrate utilization than the prevailing environmental/site conditions, to which the microbial community adapted quickly upon change. In general, microbial community composition and function significantly affected substrate decomposition rates only in the later stage of decomposition when the differentiation in substrate use among the microbial groups became more evident. Our study demonstrated that rising temperatures in alpine ecosystems may accelerate decomposition of litter carbon and also lead to a rapid adaptation of the microbial communities to the new environmental conditions. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Rousk, Johannes; Smith, Andrew R; Jones, Davey L
2013-12-01
We investigated how the legacy of warming and summer drought affected microbial communities in five different replicated long-term (>10 years) field experiments across Europe (EU-FP7 INCREASE infrastructure). To focus explicitly on legacy effects (i.e., indirect rather than direct effects of the environmental factors), we measured microbial variables under the same moisture and temperature in a brief screening, and following a pre-incubation at stable conditions. Specifically, we investigated the size and composition of the soil microbial community (PLFA) alongside measurements of bacterial (leucine incorporation) and fungal (acetate in ergosterol incorporation) growth rates, previously shown to be highly responsive to changes in environmental factors, and microbial respiration. We found no legacy effects on the microbial community size, composition, growth rates, or basal respiration rates at the effect sizes used in our experimental setup (0.6 °C, about 30% precipitation reduction). Our findings support previous reports from single short-term ecosystem studies thereby providing a clear evidence base to allow long-term, broad-scale generalizations to be made. The implication of our study is that warming and summer drought will not result in legacy effects on the microbial community and their processes within the effect sizes here studied. While legacy effects on microbial processes during perturbation cycles, such as drying-rewetting, and on tolerance to drought and warming remain to be studied, our results suggest that any effects on overall ecosystem processes will be rather limited. Thus, the legacies of warming and drought should not be prioritized factors to consider when modeling contemporary rates of biogeochemical processes in soil. © 2013 John Wiley & Sons Ltd.
Body and diet composition of sympatric black and grizzly bears in the Greater Yellowstone Ecosystem
Schwartz, Charles C.; Fortin, Jennifer K.; Teisberg, Justin E.; Haroldson, Mark A.; Servheen, Christopher; Robbins, Charles T.; van Manen, Frank T.
2013-01-01
The Greater Yellowstone Ecosystem (GYE) has experienced changes in the distribution and availability of grizzly bear (Ursus arctos) food resources in recent decades. The decline of ungulates, fish, and whitebark pine seeds (Pinus albicaulis) has prompted questions regarding their ability to adapt. We examined body composition and diet of grizzly bears using bioelectrical impedance and stable isotopes to determine if 1) we can detect a change in diet quality associated with the decline in either ungulates or whitebark pine, and 2) the combined decline in ungulates, fish, and pine seeds resulted in a change in grizzly bear carrying capacity in the GYE. We contrasted body fat and mass in grizzly bears with a potential competitor, the American black bear (Ursus americanus), to address these questions. Grizzly bears assimilated more meat into their diet and were in better body condition than black bears throughout the study period, indicating the decline in ungulate resources did not affect grizzly bears more than black bears. We also found no difference in autumn fat levels in grizzly bears in years of good or poor pine seed production, and stable isotope analyses revealed this was primarily a function of switching to meat resources during poor seed-producing years. This dietary plasticity was consistent over the course of our study. We did not detect an overall downward trend in either body mass or the fraction of meat assimilated into the diet by grizzly bears over the past decade, but we did detect a downward trend in percent body fat in adult female grizzly bears after 2006. Whether this decline is an artifact of small sample size or due to the population reaching the ecological carrying capacity of the Yellowstone ecosystem warrants further investigation.
NASA Astrophysics Data System (ADS)
Mills, A. L.; Ford, R. M.; Vallino, J. J.; Herman, J. S.; Hornberger, G. M.
2001-12-01
Restoration of high-quality groundwater has been an elusive engineering goal. Consequently, natural microbially-mediated reactions are increasingly relied upon to degrade organic contaminants, including hydrocarbons and many synthetic compounds. Of concern is how the introduction of an organic chemical contaminant affects the indigenous microbial communities, the geochemistry of the aquifer, and the function of the ecosystem. The presence of functional redundancy in microbial communities suggests that recovery of the community after a disturbance such as a contamination event could easily result in a community that is similar in function to that which existed prior to the contamination, but which is compositionally quite different. To investigate the relationship between community structure and function we observed the response of a diverse microbial community obtained from raw sewage to a dynamic redox environment using an aerobic/anaerobic/aerobic cycle. To evaluate changes in community function CO2, pH, ammonium and nitrate levels were monitored. A phylogenetically-based DNA technique (tRFLP) was used to assess changes in microbial community structure. Principal component analysis of the tRFLP data revealed significant changes in the composition of the microbial community that correlated well with changes in community function. Results from our experiments will be discussed in the context of a metabolic model based the biogeochemistry of the system. The governing philosophy of this thermodynamically constrained metabolic model is that living systems synthesize and allocate cellular machinery in such a way as to "optimally" utilize available resources in the environment. The robustness of this optimization-based approach provides a powerful tool for studying relationships between microbial diversity and ecosystem function.
Spatial variation in the flux of atmospheric deposition and its ecological effects in arid Asia
NASA Astrophysics Data System (ADS)
Jiao, Linlin; Wang, Xunming; Li, Danfeng
2018-06-01
Atmospheric deposition is one of the key land surface processes, and plays important roles in regional ecosystems and global climate change. Previous studies have focused on the magnitude of and the temporal and spatial variations in the flux of atmospheric deposition, and the composition of atmospheric deposition on a local scale. However, there have been no comprehensive studies of atmospheric deposition on a regional scale and its ecological effects in arid Asia. The temporal and spatial patterns, composition of atmospheric deposition, and its potential effects on regional ecosystems in arid Asia are investigated in this study. The results show that the annual deposition flux is high on the Turan Plain, Aral Sea Desert, and Tarim Basin. The seasonal deposition flux also varies remarkably among different regions. The Tarim Basin shows higher deposition flux in both spring and summer, southern Mongolian Plateau has a higher deposition flux in spring, and the deposition flux of Iran Plateau is higher in summer. Multiple sources of elements in deposited particles are identified. Calcium, iron, aluminum, and magnesium are mainly derived from remote regions, while zinc, copper and lead have predominantly anthropogenic sources. Atmospheric deposition can provide abundant nutrients to vegetation and consequently play a role in the succession of regional ecosystems by affecting the structure, function, diversity, and primary production of the vegetation, especially the exotic or short-lived opportunistic species in arid Asia. Nevertheless, there is not much evidence of the ecological effects of atmospheric deposition on the regional and local scale. The present results may help in further understanding the mechanism of atmospheric deposition as well as providing a motivation for the protection of the ecological environment in arid Asia.
Effects of biodiversity on ecosystem functioning: a consensus of current knowledge
Hooper, D.U.; Chapin, F. S.; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; Schmid, B.; SetSlS, H.; Symstad, A.J.; Vandermeer, J.; Wardle, D.A.
2005-01-01
Humans are altering the composition of biological communities through a variety of activities that increase rates of species invasions and species extinctions, at all scales, from local to global. These changes in components of the Earth's biodiversity cause concern for ethical and aesthetic reasons, but they also have a strong potential to alter ecosystem properties and the goods and services they provide to humanity. Ecological experiments, observations, and theoretical developments show that ecosystem properties depend greatly on biodiversity in terms of the functional characteristics of organisms present in the ecosystem and the distribution and abundance of those organisms over space and time. Species effects act in concert with the effects of climate, resource availability, and disturbance regimes in influencing ecosystem properties. Human activities can modify all of the above factors; here we focus on modification of these biotic controls.The scientific community has come to a broad consensus on many aspects of the relationship between biodiversity and ecosystem functioning, including many points relevant to management of ecosystems. Further progress will require integration of knowledge about biotic and abiotic controls on ecosystem properties, how ecological communities are structured, and the forces driving species extinctions and invasions. To strengthen links to policy and management, we also need to integrate our ecological knowledge with understanding of the social and economic constraints of potential management practices. Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.Based on our review of the scientific literature, we are certain of the following conclusions:1) Species' functional characteristics strongly influence ecosystem properties. Functional characteristics operate in a variety of contexts, including effects of dominant species, keystone species, ecological engineers, and interactions among species (e.g., competition, facilitation, mutualism, disease, and predation). Relative abundance alone is not always a good predictor of the ecosystem-level importance of a species, as even relatively rare species (e.g., a keystone predator) can strongly influence pathways of energy and material flows.2) Alteration of biota in ecosystems via species invasions and extinctions caused by human activities has altered ecosystem goods and services in many well-documented cases. Many of these changes are difficult, expensive, or impossible to reverse or fix with technological solutions.3) The effects of species loss or changes in composition, and the mechanisms by which the effects manifest themselves, can differ among ecosystem properties, ecosystem types, and pathways of potential community change.4) Some ecosystem properties are initially insensitive to species loss because (a) ecosystems may have multiple species that carry out similar functional roles, (b) some species may contribute relatively little to ecosystem properties, or (c) properties may be primarily controlled by abiotic environmental conditions.5) More species are needed to insure a stable supply of ecosystem goods and services as spatial and temporal variability increases, which typically occurs as longer time periods and larger areas are considered.We have high confidence in the following conclusions:1) Certain combinations of species are complementary in their patterns of resource use and can increase average rates of productivity and nutrient retention. At the same time, environmental conditions can influence the importance of complementarity in structuring communities. Identification of which and how many species act in a complementary way in complex communities is just beginning.2) Susceptibility to invasion by exotic species is strongly influenced by species composition and, under similar environmental conditions, generally decreases with increasing species richness. However, several other factors, such as propagule pressure, disturbance regime, and resource availability also strongly influence invasion success and often override effects of species richness in comparisons across different sites or ecosystems.3) Having a range of species that respond differently to different environmental perturbations can stabilize ecosystem process rates in response to disturbances and variation in abiotic conditions. Using practices that maintain a diversity of organisms of different functional effect and functional response types will help preserve a range of management options.Uncertainties remain and further research is necessary in the following areas:1) Further resolution of the relationships among taxonomic diversity, functional diversity, and community structure is important for identifying mechanisms of biodiversity effects.2) Multiple trophic levels are common to ecosystems but have been understudied in biodiversity/ecosystem functioning research. The response of ecosystem properties to varying composition and diversity of consumer organisms is much more complex than responses seen in experiments that vary only the diversity of primary producers.3) Theoretical work on stability has outpaced experimental work, especially field research. We need long-term experiments to be able to assess temporal stability, as well as experimental perturbations to assess response to and recovery from a variety of disturbances. Design and analysis of such experiments must account for several factors that covary with species diversity.4) Because biodiversity both responds to and influences ecosystem properties, understanding the feedbacks involved is necessary to integrate results from experimental communities with patterns seen at broader scales. Likely patterns of extinction and invasion need to be linked to different drivers of global change, the forces that structure communities, and controls on ecosystem properties for the development of effective management and conservation strategies.5) This paper focuses primarily on terrestrial systems, with some coverage of freshwater systems, because that is where most empirical and theoretical study has focused. While the fundamental principles described here should apply to marine systems, further study of that realm is necessary.Despite some uncertainties about the mechanisms and circumstances under which diversity influences ecosystem properties, incorporating diversity effects into policy and management is essential, especially in making decisions involving large temporal and spatial scales. Sacrificing those aspects of ecosystems that are difficult or impossible to reconstruct, such as diversity, simply because we are not yet certain about the extent and mechanisms by which they affect ecosystem properties, will restrict future management options even further. It is incumbent upon ecologists to communicate this need, and the values that can derive from such a perspective, to those charged with economic and policy decision-making.
Barnes, Andrew D; Weigelt, Patrick; Jochum, Malte; Ott, David; Hodapp, Dorothee; Haneda, Noor Farikhah; Brose, Ulrich
2016-05-19
Predicting ecosystem functioning at large spatial scales rests on our ability to scale up from local plots to landscapes, but this is highly contingent on our understanding of how functioning varies through space. Such an understanding has been hampered by a strong experimental focus of biodiversity-ecosystem functioning research restricted to small spatial scales. To address this limitation, we investigate the drivers of spatial variation in multitrophic energy flux-a measure of ecosystem functioning in complex communities-at the landscape scale. We use a structural equation modelling framework based on distance matrices to test how spatial and environmental distances drive variation in community energy flux via four mechanisms: species composition, species richness, niche complementarity and biomass. We found that in both a tropical and a temperate study region, geographical and environmental distance indirectly influence species richness and biomass, with clear evidence that these are the dominant mechanisms explaining variability in community energy flux over spatial and environmental gradients. Our results reveal that species composition and trait variability may become redundant in predicting ecosystem functioning at the landscape scale. Instead, we demonstrate that species richness and total biomass may best predict rates of ecosystem functioning at larger spatial scales. © 2016 The Author(s).
Cabrol, Lea; Marone, Antonella; Tapia-Venegas, Estela; Steyer, Jean-Philippe; Ruiz-Filippi, Gonzalo; Trably, Eric
2017-03-01
One of the most important biotechnological challenges is to develop environment friendly technologies to produce new sources of energy. Microbial production of biohydrogen through dark fermentation, by conversion of residual biomass, is an attractive solution for short-term development of bioH2 producing processes. Efficient biohydrogen production relies on complex mixed communities working in tight interaction. Species composition and functional traits are of crucial importance to maintain the ecosystem service. The analysis of microbial community revealed a wide phylogenetic diversity that contributes in different-and still mostly unclear-ways to hydrogen production. Bridging this gap of knowledge between microbial ecology features and ecosystem functionality is essential to optimize the bioprocess and develop strategies toward a maximization of the efficiency and stability of substrate conversion. The aim of this review is to provide a comprehensive overview of the most up-to-date biodata available and discuss the main microbial community features of biohydrogen engineered ecosystems, with a special emphasis on the crucial role of interactions and the relationships between species composition and ecosystem service. The elucidation of intricate relationships between community structure and ecosystem function would make possible to drive ecosystems toward an improved functionality on the basis of microbial ecology principles. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Global patterns of the isotopic composition of soil and plant nitrogen
Amundson, Ronald; Austin, A.T.; Schuur, E.A.G.; Yoo, K.; Matzek, V.; Kendall, C.; Uebersax, A.; Brenner, D.; Baisden, W.T.
2003-01-01
We compiled new and published data on the natural abundance N isotope composition (??15N values) of soil and plant organic matter from around the world. Across a broad range of climate and ecosystem types, we found that soil and plant ??15N values systematically decreased with increasing mean annual precipitation (MAP) and decreasing mean annual temperature (MAT). Because most undisturbed soils are near N steady state, the observations suggest that an increasing fraction of ecosystem N losses are 15N-depleted forms (NO3, N2O, etc.) with decreasing MAP and increasing MAT. Wetter and colder ecosystems appear to be more efficient in conserving and recycling mineral N. Globally, plant ??15N values are more negative than soils, but the difference Nitrogen isotopes reflect time integrated measures of the controls on N storage that are critical for predictions of how these ecosystems will respond to human-mediated disturbances of the global N cycle.
Groundwater Ecosystems Vary with Land Use across a Mixed Agricultural Landscape.
Korbel, K L; Hancock, P J; Serov, P; Lim, R P; Hose, G C
2013-01-01
Changes in surface land use may threaten groundwater quality and ecosystem integrity, particularly in shallow aquifers where links between groundwater and surface activities are most intimate. In this study we examine the response of groundwater ecosystem to agricultural land uses in the shallow alluvial aquifer of the Gwydir River valley, New South Wales, Australia. We compared groundwater quality and microbial and stygofauna assemblages among sites under irrigated cropping, non-irrigated cropping and grazing land uses. Stygofauna abundance and richness was greatest at irrigated sites, with the composition of the assemblage suggestive of disturbance. Microbial assemblages and water quality also varied with land use. Our study demonstrates significant differences in the composition of groundwater ecosystems in areas with different surface land use, and highlights the utility of groundwater biota for biomonitoring, particularly in agricultural landscapes. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
Experimental evidence that livestock grazing intensity affects the activity of a generalist predator
NASA Astrophysics Data System (ADS)
Villar, Nacho; Lambin, Xavier; Evans, Darren; Pakeman, Robin; Redpath, Steve
2013-05-01
Grazing by domestic ungulates has substantial impacts on ecosystem structure and composition. In grasslands of the northern hemisphere, livestock grazing limits populations of small mammals, which are a main food source for a variety of vertebrate predators. However, no experimental studies have described the impact of livestock grazing on vertebrate predators. We experimentally manipulated sheep and cattle grazing intensity in the Scottish uplands to test its impact on a relatively abundant small mammal, the field vole (Microtus agrestis), and its archetypal generalist predator, the red fox (Vulpes vulpes). We demonstrate that ungulate grazing had a strong consistent negative impact on both vole densities and indices of fox activity. Ungulate grazing did not substantially affect the relationship between fox activity and vole densities. However, the data suggested that, as grazing intensity increased i) fox activity indices tended to be higher when vole densities were low, and ii) the relationship between fox activity and vole density was weaker. All these patterns are surprising given the relative small scale of our experiment compared to large red fox territories in upland habitats of Britain, and suggest that domestic grazing intensity causes a strong response in the activity of generalist predators important for their conservation in grassland ecosystems.
Li, Shuangshuang; Peng, Chengrong; Wang, Chun; Zheng, Jiaoli; Hu, Yao; Li, Dunhai
2017-01-01
Biofilms play important roles in nutrients and energy cycling in aquatic ecosystems. We hypothesized that as eutrophication could change phytoplankton community and decrease phytoplankton diversity, ambient inorganic nitrogen level will affect the microbial community and diversity of biofilms and the roles of biofilms in nutrient cycling. Biofilms were cultured using a flow incubator either with replete inorganic nitrogen (N-rep) or without exogenous inorganic nitrogen supply (N-def). The results showed that the biomass and nitrogen and phosphorous accumulation of biofilms were limited by N deficiency; however, as expected, the N-def biofilms had significantly higher microbial diversity than that of N-rep biofilms. The microbial community of biofilms shifted in composition and abundance in response to ambient inorganic nitrogen level. For example, as compared between the N-def and the N-rep biofilms, the former consisted of more diazotrophs, while the latter consisted of more denitrifying bacteria. As a result of the shift of the functional microbial community, the N concentration of N-rep medium kept decreasing, while that of N-def medium showed an increasing trend in the late stage. This indicates that biofilms can serve as the source or the sink of nitrogen in aquatic ecosystems, and it depends on the inorganic nitrogen availability.
Bell-Dereske, Lukas; Takacs-Vesbach, Cristina; Kivlin, Stephanie N.; Emery, Sarah M.; Rudgers, Jennifer A.
2017-01-01
Abstract Understanding interactions between above- and belowground components of ecosystems is an important next step in community ecology. These interactions may be fundamental to predicting ecological responses to global change because indirect effects occurring through altered species interactions can outweigh or interact with the direct effects of environmental drivers. In a multiyear field experiment (2010–2015), we tested how experimental addition of a mutualistic leaf endophyte (Epichloë amarillans) associated with American beachgrass (Ammophila breviligulata) interacted with an altered precipitation regime (±30%) to affect the belowground microbial community. Epichloë addition increased host root biomass at the plot scale, but reduced the length of extraradical arbuscular mycorrhizal (AM) fungal hyphae in the soil. Under ambient precipitation alone, the addition of Epichloë increased root biomass per aboveground tiller and reduced the diversity of AM fungi in A. breviligulata roots. Furthermore, with Epichloë added, the diversity of root-associated bacteria declined with higher soil moisture, whereas in its absence, bacterial diversity increased with higher soil moisture. Thus, the aboveground fungal mutualist not only altered the abundance and composition of belowground microbial communities but also affected how belowground communities responded to climate, suggesting that aboveground microbes have potential for cascading influences on community dynamics and ecosystem processes that occur belowground. PMID:28334408
The response of arid soil communities to climate change: Chapter 8
Steven, Blaire; McHugh, Theresa Ann; Reed, Sasha C.
2017-01-01
Arid and semiarid ecosystems cover approximately 40% of Earth’s terrestrial surface and are present on each of the planet’s continents [1]. Drylands are characterized by their aridity, but there is substantial geographic, edaphic, and climatic variability among these vast ecosystems, and these differences underscore substantial variation in dryland soil microbial communities, as well as in the future climates predicted among arid and semiarid systems globally. Furthermore, arid ecosystems are commonly patchy at a variety of spatial scales [2,3]. Vascular plants are widely interspersed in drylands and bare soil, or soil that is covered with biological soil crusts, fill these spaces. The variability acts to further enhance spatial heterogeneity, as these different zones within dryland ecosystems differ in characteristics such as water retention, albedo, and nutrient cycling [4–6]. Importantly, the various soil patches of an arid landscape may be differentially sensitive to climate change. Soil communities are only active when enough moisture is available, and drylands show large spatial variability in soil moisture, with potentially long dry periods followed by pulses of moisture. The pulse dynamics associated with this wetting and drying affect the composition, structure, and function of dryland soil communities, and integrate biotic and abiotic processes via pulse-driven exchanges, interactions, transitions, and transfers. Climate change will likely alter the size, frequency, and intensity of future precipitation pulses, as well as influence non-rainfall sources of soil moisture, and aridland ecosystems are known to be highly sensitive to such climate variability. Despite great heterogeneity, arid ecosystems are united by a key parameter: a limitation in water availability. This characteristic may help to uncover unifying aspects of dryland soil responses to global change. The dryness of an ecosystem can be described by its aridity index (AI). Several AIs have been proposed, but the most widely used metrics determine the difference between average precipitation and potential evapotranspiration, where evapotranspiration is the sum of evaporation and plant transpiration, both of which move water from the ecosystem to the atmosphere [7–9]. Because evapotranspiration can be affected by various environmental factors such as temperature and incident radiation (Fig. 10.1), regions that receive the same average precipitation may have significantly different AI values [10,11]. Multiple studies have documented that mean annual precipitation, and thus AI, is highly correlated with biological diversity and net primary productivity [12–15]. Accordingly, AI is considered to be a central regulator of the diversity, structure, and productivity of an ecosystem, playing an especially influential role in arid ecosystems. Thus, the climate parameters that drive alterations in the AI of a region are likely to play an disproportionate role in shaping the response of arid soil communities to a changing climate. In this chapter we consider climate parameters that have been shown to be altered through climate change, with a focus on how these parameters are likely to affect dryland soil communities, including microorganisms and invertebrates. In particular, our goal is to highlight dryland soil community structure and function in the context of climate change, and we will focus on community relationships with increased atmospheric CO2 concentrations (a primary driver of climate change), temperature, and sources of soil moisture.
Gacura, Matthew D; Sprockett, Daniel D; Heidenreich, Bess; Blackwood, Christopher B
2016-04-01
Fungi have developed a wide assortment of enzymes to break down pectin, a prevalent polymer in plant cell walls that is important in plant defense and structure. One enzyme family used to degrade pectin is the glycosyl hydrolase family 28 (GH28). In this study we developed primers for the amplification of GH28 coding genes from a database of 293 GH28 sequences from 40 fungal genomes. The primers were used to successfully amplify GH28 pectinases from all Ascomycota cultures tested, but only three out of seven Basidiomycota cultures. In addition, we further tested the primers in PCRs on metagenomic DNA extracted from senesced tree leaves from different forest ecosystems, followed by cloning and sequencing. Taxonomic specificity for Ascomycota GH28 genes was tested by comparing GH28 composition in leaves to internal transcribed spacer (ITS) amplicon composition using pyrosequencing. All sequences obtained from GH28 primers were classified as Ascomycota; in contrast, ITS sequences indicated that fungal communities were up to 39% Basidiomycetes. Analysis of leaf samples indicated that both forest stand and ecosystem type were important in structuring fungal communities. However, site played the prominent role in explaining GH28 composition, whereas ecosystem type was more important for ITS composition, indicating possible genetic drift between populations of fungi. Overall, these primers will have utility in understanding relationships between fungal community composition and ecosystem processes, as well as detection of potentially pathogenic Ascomycetes. Copyright © 2016 Elsevier B.V. All rights reserved.
Gao, Song; Guo, Jixun; Sun, Wei
2015-01-01
Climate change has profound influences on plant community composition and ecosystem functions. However, its effects on plant community composition and biomass production are not well understood. A four-year field experiment was conducted to examine the effects of warming, nitrogen (N) addition, and their interactions on plant community composition and biomass production in a temperate meadow ecosystem in northeast China. Experimental warming had no significant effect on plant species richness, evenness, and diversity, while N addition highly reduced the species richness and diversity. Warming tended to reduce the importance value of graminoid species but increased the value of forbs, while N addition had the opposite effect. Warming tended to increase the belowground biomass, but had an opposite tendency to decrease the aboveground biomass. The influences of warming on aboveground production were dependent upon precipitation. Experimental warming had little effect on aboveground biomass in the years with higher precipitation, but significantly suppressed aboveground biomass in dry years. Our results suggest that warming had indirect effects on plant production via its effect on the water availability. Nitrogen addition significantly increased above- and below-ground production, suggesting that N is one of the most important limiting factors determining plant productivity in the studied meadow steppe. Significant interactive effects of warming plus N addition on belowground biomass were also detected. Our observations revealed that environmental changes (warming and N deposition) play significant roles in regulating plant community composition and biomass production in temperate meadow steppe ecosystem in northeast China. PMID:25874975
Resilience of benthic deep-sea fauna to mining activities.
Gollner, Sabine; Kaiser, Stefanie; Menzel, Lena; Jones, Daniel O B; Brown, Alastair; Mestre, Nelia C; van Oevelen, Dick; Menot, Lenaick; Colaço, Ana; Canals, Miquel; Cuvelier, Daphne; Durden, Jennifer M; Gebruk, Andrey; Egho, Great A; Haeckel, Matthias; Marcon, Yann; Mevenkamp, Lisa; Morato, Telmo; Pham, Christopher K; Purser, Autun; Sanchez-Vidal, Anna; Vanreusel, Ann; Vink, Annemiek; Martinez Arbizu, Pedro
2017-08-01
With increasing demand for mineral resources, extraction of polymetallic sulphides at hydrothermal vents, cobalt-rich ferromanganese crusts at seamounts, and polymetallic nodules on abyssal plains may be imminent. Here, we shortly introduce ecosystem characteristics of mining areas, report on recent mining developments, and identify potential stress and disturbances created by mining. We analyze species' potential resistance to future mining and perform meta-analyses on population density and diversity recovery after disturbances most similar to mining: volcanic eruptions at vents, fisheries on seamounts, and experiments that mimic nodule mining on abyssal plains. We report wide variation in recovery rates among taxa, size, and mobility of fauna. While densities and diversities of some taxa can recover to or even exceed pre-disturbance levels, community composition remains affected after decades. The loss of hard substrata or alteration of substrata composition may cause substantial community shifts that persist over geological timescales at mined sites. Copyright © 2017 Elsevier Ltd. All rights reserved.
David S. Ellsworth
1999-01-01
Sugar maple-dominated forest ecosystems in the northeastern U.S. have been receiving precipitation nitrogen (N) inputs of 15 -20 kg N ha1 year1 since at least the mid 1980s sustained chronic N inputs of this magnitude into nutrient-poor forest ecosystems may cause eutrophication and affect ecosystem functioning as well as...
Gregory K. Dillon; Zachery A. Holden; Penelope Morgan; Michael A. Crimmins; Emily K. Heyerdahl; Charles H. Luce
2011-01-01
Fire is a keystone process in many ecosystems of western North America. Severe fires kill and consume large amounts of above- and belowground biomass and affect soils, resulting in long-lasting consequences for vegetation, aquatic ecosystem productivity and diversity, and other ecosystem properties. We analyzed the occurrence of, and trends in, satellite-derived burn...
Complex Effects of Ecosystem Engineer Loss on Benthic Ecosystem Response to Detrital Macroalgae.
Rossi, Francesca; Gribsholt, Britta; Gazeau, Frederic; Di Santo, Valentina; Middelburg, Jack J
2013-01-01
Ecosystem engineers change abiotic conditions, community assembly and ecosystem functioning. Consequently, their loss may modify thresholds of ecosystem response to disturbance and undermine ecosystem stability. This study investigates how loss of the bioturbating lugworm Arenicola marina modifies the response to macroalgal detrital enrichment of sediment biogeochemical properties, microphytobenthos and macrofauna assemblages. A field manipulative experiment was done on an intertidal sandflat (Oosterschelde estuary, The Netherlands). Lugworms were deliberately excluded from 1× m sediment plots and different amounts of detrital Ulva (0, 200 or 600 g Wet Weight) were added twice. Sediment biogeochemistry changes were evaluated through benthic respiration, sediment organic carbon content and porewater inorganic carbon as well as detrital macroalgae remaining in the sediment one month after enrichment. Microalgal biomass and macrofauna composition were measured at the same time. Macroalgal carbon mineralization and transfer to the benthic consumers were also investigated during decomposition at low enrichment level (200 g WW). The interaction between lugworm exclusion and detrital enrichment did not modify sediment organic carbon or benthic respiration. Weak but significant changes were instead found for porewater inorganic carbon and microalgal biomass. Lugworm exclusion caused an increase of porewater carbon and a decrease of microalgal biomass, while detrital enrichment drove these values back to values typical of lugworm-dominated sediments. Lugworm exclusion also decreased the amount of macroalgae remaining into the sediment and accelerated detrital carbon mineralization and CO2 release to the water column. Eventually, the interaction between lugworm exclusion and detrital enrichment affected macrofauna abundance and diversity, which collapsed at high level of enrichment only when the lugworms were present. This study reveals that in nature the role of this ecosystem engineer may be variable and sometimes have no or even negative effects on stability, conversely to what it should be expected based on current research knowledge.
Yan, Junhua; Zhang, Deqiang; Liu, Juxiu; Zhou, Guoyi
2014-07-01
Carbon dioxide (CO2 ) enhancement (eCO2 ) and N addition (aN) have been shown to increase net primary production (NPP) and to affect water-use efficiency (WUE) for many temperate ecosystems, but few studies have been made on subtropical tree species. This study compared the responses of NPP and WUE from a mesocosm composing five subtropical tree species to eCO2 (700 ppm), aN (10 g N m(-2) yr(-1) ) and eCO2 × aN using open-top chambers. Our results showed that mean annual ecosystem NPP did not changed significantly under eCO2 , increased by 56% under aN and 64% under eCO2 × aN. Ecosystem WUE increased by 14%, 55%, and 61% under eCO2 , aN and eCO2 × aN, respectively. We found that the observed responses of ecosystem WUE were largely driven by the responses of ecosystem NPP. Statistical analysis showed that there was no significant interactions between eCO2 and aN on ecosystem NPP (P = 0.731) or WUE (P = 0.442). Our results showed that increasing N deposition was likely to have much stronger effects on ecosystem NPP and WUE than increasing CO2 concentration for the subtropical forests. However, different tree species responded quite differently. aN significantly increased annual NPP of the fast-growing species (Schima superba). Nitrogen-fixing species (Ormosia pinnata) grew significantly faster only under eCO2 × aN. eCO2 had no effects on annual NPP of those two species but significantly increased annual NPP of other two species (Castanopsis hystrix and Acmena acuminatissima). Differential responses of the NPP among different tree species to eCO2 and aN will likely have significant implications on the species composition of subtropical forests under future global change. © 2013 John Wiley & Sons Ltd.
When parasites become prey: ecological and epidemiological significance of eating parasites
Johnson, Pieter T.J.; Dobson, Andrew P.; Lafferty, Kevin D.; Marcogliese, David J.; Memmott, Jane; Orlofske, Sarah A.; Poulin, Robert; Thieltges, David W.
2010-01-01
Recent efforts to include parasites in food webs have drawn attention to a previously ignored facet of foraging ecology: parasites commonly function as prey within ecosystems. Because of the high productivity of parasites, their unique nutritional composition and their pathogenicity in hosts, their consumption affects both food-web topology and disease risk in humans and wildlife. Here, we evaluate the ecological, evolutionary and epidemiological significance of feeding on parasites, including concomitant predation, grooming, predation on free-living stages and intraguild predation. Combining empirical data and theoretical models, we show that consumption of parasites is neither rare nor accidental, and that it can sharply affect parasite transmission and food web properties. Broader consideration of predation on parasites will enhance our understanding of disease control, food web structure and energy transfer, and the evolution of complex life cycles.
Digestive physiology comparisons of aquatic invertebrates in the Upper Mississippi River Basin
Sauey, Blake W.; Amberg, Jon J.; Cooper, Scott T.; Grunwald, Sandra K.; Haro, Roger J.; Gaikowski, Mark
2016-01-01
Limited information is available on the composition of digestive enzymes present in unionid mussels and the zebra mussel, Dreissena polymorpha. Available information is nearly exclusive to species used for culture purposes. A commercially available enzyme assay kit was used to examine the effect of habitat within an ecosystem, season, and species on the activities of several digestive enzymes. We used Amblema plicata to represent native unionids, D. polymorpha, and also Hydropsyche orris as an outgroup to compare differences between mussels and other macroinvertebrates. The data indicated that neither location nor time affect the activities of the digestive enzymes tested; species was the only factor to affect the activity. Differences were found mostly between four enzymes: naphthol-AS-BI-phosphohydrolase, acid phosphatase, alkaline phosphatase, and β-galactosidase.
Presettlement fire regime and vegetation mapping in Southeastern Coastal Plain forest ecosystems
Andrew D. Bailey; Robert Mickler; Cecil Frost
2007-01-01
Fire-adapted forest ecosystems make up 95 percent of the historic Coastal Plain vegetation types in the Southeastern United States. Fire suppression over the last century has altered the species composition of these ecosystems, increased fuel loads, and increased wildfire risk. Prescribed fire is one management tool used to reduce fuel loading and restore fire-adapted...
Calcium inputs and transport in a base-poor forest ecosystem as interpreted by Sr isotopes
Scott W. Bailey; James W. Hornbeck; Charles T. Driscoll; Henri E. Gaudette
1996-01-01
Depletion of Ca in forests and its effects on forest health are poorly quantified. Depletion has been difficult to document due to limitations in determining rates at which Ca becomes available for ecosystem processes through weathering, and difficulty in determining changes in ecosystem storage. We coupled a detailed analysis of Sr isotopic composition with a mass...
T.N. Hollingsworth
2008-01-01
In this overview, I present extensive studies looking at the structure and function of the black spruce (Picea mariana) ecosystem of the boreal region of interior Alaska. One of the studies provides a classification of black spruce communities, the most abundant forest type in the region. Other studies examine large-scale processes that drive this...
Habitat structure mediates biodiversity effects on ecosystem properties
Godbold, J. A.; Bulling, M. T.; Solan, M.
2011-01-01
Much of what we know about the role of biodiversity in mediating ecosystem processes and function stems from manipulative experiments, which have largely been performed in isolated, homogeneous environments that do not incorporate habitat structure or allow natural community dynamics to develop. Here, we use a range of habitat configurations in a model marine benthic system to investigate the effects of species composition, resource heterogeneity and patch connectivity on ecosystem properties at both the patch (bioturbation intensity) and multi-patch (nutrient concentration) scale. We show that allowing fauna to move and preferentially select patches alters local species composition and density distributions, which has negative effects on ecosystem processes (bioturbation intensity) at the patch scale, but overall positive effects on ecosystem functioning (nutrient concentration) at the multi-patch scale. Our findings provide important evidence that community dynamics alter in response to localized resource heterogeneity and that these small-scale variations in habitat structure influence species contributions to ecosystem properties at larger scales. We conclude that habitat complexity forms an important buffer against disturbance and that contemporary estimates of the level of biodiversity required for maintaining future multi-functional systems may need to be revised. PMID:21227969
Habitat structure mediates biodiversity effects on ecosystem properties.
Godbold, J A; Bulling, M T; Solan, M
2011-08-22
Much of what we know about the role of biodiversity in mediating ecosystem processes and function stems from manipulative experiments, which have largely been performed in isolated, homogeneous environments that do not incorporate habitat structure or allow natural community dynamics to develop. Here, we use a range of habitat configurations in a model marine benthic system to investigate the effects of species composition, resource heterogeneity and patch connectivity on ecosystem properties at both the patch (bioturbation intensity) and multi-patch (nutrient concentration) scale. We show that allowing fauna to move and preferentially select patches alters local species composition and density distributions, which has negative effects on ecosystem processes (bioturbation intensity) at the patch scale, but overall positive effects on ecosystem functioning (nutrient concentration) at the multi-patch scale. Our findings provide important evidence that community dynamics alter in response to localized resource heterogeneity and that these small-scale variations in habitat structure influence species contributions to ecosystem properties at larger scales. We conclude that habitat complexity forms an important buffer against disturbance and that contemporary estimates of the level of biodiversity required for maintaining future multi-functional systems may need to be revised.
Subalpine Forest Carbon Cycling Short- and Long-Term Influence ofClimate and Species
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kueppers, L.; Harte, J.
2005-08-23
Ecosystem carbon cycle feedbacks to climate change comprise one of the largest remaining sources of uncertainty in global model predictions of future climate. Both direct climate effects on carbon cycling and indirect effects via climate-induced shifts in species composition may alter ecosystem carbon balance over the long term. In the short term, climate effects on carbon cycling may be mediated by ecosystem species composition. We used an elevational climate and tree species composition gradient in Rocky Mountain subalpine forest to quantify the sensitivity of all major ecosystem carbon stocks and fluxes to these factors. The climate sensitivities of carbon fluxesmore » were species-specific in the cases of relative above ground productivity and litter decomposition, whereas the climate sensitivity of dead wood decay did not differ between species, and total annual soil CO2 flux showed no strong climate trend. Lodge pole pine relative productivity increased with warmer temperatures and earlier snowmelt, while Engelmann spruce relative productivity was insensitive to climate variables. Engelmann spruce needle decomposition decreased linearly with increasing temperature(decreasing litter moisture), while lodgepole pine and subalpine fir needle decay showed a hump-shaped temperature response. We also found that total ecosystem carbon declined by 50 percent with a 2.88C increase in mean annual temperature and a concurrent 63 percent decrease ingrowing season soil moisture, primarily due to large declines in mineral soil and dead wood carbon. We detected no independent effect of species composition on ecosystem C stocks. Overall, our carbon flux results suggest that, in the short term, any change in subalpine forest net carbon balance will depend on the specific climate scenario and spatial distribution of tree species. Over the long term, our carbon stock results suggest that with regional warming and drying, Rocky Mountain subalpine forest will be a net source of carbon to the atmosphere.« less
Steep spatial gradients of volcanic and marine sulfur in Hawaiian rainfall and ecosystems.
Bern, Carleton R; Chadwick, Oliver A; Kendall, Carol; Pribil, Michael J
2015-05-01
Sulfur, a nutrient required by terrestrial ecosystems, is likely to be regulated by atmospheric processes in well-drained, upland settings because of its low concentration in most bedrock and generally poor retention by inorganic reactions within soils. Environmental controls on sulfur sources in unpolluted ecosystems have seldom been investigated in detail, even though the possibility of sulfur limiting primary production is much greater where atmospheric deposition of anthropogenic sulfur is low. Here we measure sulfur isotopic compositions of soils, vegetation and bulk atmospheric deposition from the Hawaiian Islands for the purpose of tracing sources of ecosystem sulfur. Hawaiian lava has a mantle-derived sulfur isotopic composition (δ(34)S VCDT) of -0.8‰. Bulk deposition on the island of Maui had a δ(34)S VCDT that varied temporally, spanned a range from +8.2 to +19.7‰, and reflected isotopic mixing from three sources: sea-salt (+21.1‰), marine biogenic emissions (+15.6‰), and volcanic emissions from active vents on Kilauea Volcano (+0.8‰). A straightforward, weathering-driven transition in ecosystem sulfur sources could be interpreted in the shift from relatively low (0.0 to +2.7‰) to relatively high (+17.8 to +19.3‰) soil δ(34)S values along a 0.3 to 4100 ka soil age-gradient, and similar patterns in associated vegetation. However, sub-kilometer scale spatial variation in soil sulfur isotopic composition was found along soil transects assumed by age and mass balance to be dominated by atmospheric sulfur inputs. Soil sulfur isotopic compositions ranged from +8.1 to +20.3‰ and generally decreased with increasing elevation (0-2000 m), distance from the coast (0-12 km), and annual rainfall (180-5000 mm). Such trends reflect the spatial variation in marine versus volcanic inputs from atmospheric deposition. Broadly, these results illustrate how the sources and magnitude of atmospheric deposition can exert controls over ecosystem sulfur biogeochemistry across relatively small spatial scales. Published by Elsevier B.V.
Effects of repeated fires on ecosystem C and N stocks along a fire induced forest/grassland gradient
NASA Astrophysics Data System (ADS)
Cheng, Chih-Hsin; Chen, Yung-Sheng; Huang, Yu-Hsuan; Chiou, Chyi-Rong; Lin, Chau-Chih; Menyailo, Oleg V.
2013-03-01
Repeated fires might have different effect on ecosystem carbon storage than a single fire event, but information on repeated fires and their effects on forest ecosystems and carbon storage is scarce. However, changes in climate, vegetation composition, and human activities are expected to make forests more susceptible to fires that recur with relatively high frequency. In this study, the effects of repeated fires on ecosystem carbon and nitrogen stocks were examined along a fire-induced forest/grassland gradient wherein the fire events varied from an unburned forest to repeatedly burned grassland. Results from the study show repeated fires drastically decreased ecosystem carbon and nitrogen stocks along the forest/grassland gradient. The reduction began with the disappearance of living tree biomass, and followed by the loss of soil carbon and nitrogen. Within 4 years of the onset of repeated fires on the unburned forest, the original ecosystem carbon and nitrogen stocks were reduced by 42% and 21%, respectively. Subsequent fires caused cumulative reductions in ecosystem carbon and nitrogen stocks by 68% and 44% from the original ecosystem carbon and nitrogen stocks, respectively. The analyses of carbon budgets calculated by vegetation composition and stable isotopic δ13C values indicate that 84% of forest-derived carbon is lost at grassland, whereas the gain of grass-derived carbon only compensates 18% for this loss. Such significant losses in ecosystem carbon and nitrogen stocks suggest that the effects of repeated fires have substantial impacts on ecosystem and soil carbon and nitrogen cycling.
Decreased carbon limitation of litter respiration in a mortality-affected pinon-juniper woodland
Erin Berryman; John D. Marshall; Thom Rahn; Marcie Litvak; John Butnor
2013-01-01
Microbial respiration depends on microclimatic variables and carbon (C) substrate availability, all of which are altered when ecosystems experience major disturbance. Widespread tree mortality, currently affecting pinon-juniper ecosystems in southwestern North America, may affect C substrate availability in several ways, for example, via litterfall pulses and loss of...
Liversage, Kiran; Nurkse, Kristiina; Kotta, Jonne; Järv, Leili
2017-12-01
Spatiotemporal environmental variation affects fish feeding behaviour and capacity for piscivorous control of prey populations, which is important for management when prey include invasive species causing ecosystem impacts. We assessed gut-contents of an important piscivore (European perch Perca fluviatilis) over two years, and analysed variables affecting initiation and amounts of feeding, focusing on an important invasive prey species, round goby (Neogobius melanostomus). We show that predation is primarily controlled by variation of physical and habitat characteristics surrounding perch. Fish prey began being incorporated in diets of perch that were >150 mm, with temperature conditions controlling initiation of their feeding. Total amounts of fish in perch diets, and amounts of round goby individually, were strongly affected by macrophyte cover; seldom were fish present in perch stomachs when macrophyte cover was >40%. Environmental densities of round goby were related to multivariate diet composition in ways that suggest predation of some native species may be relaxed in areas of dense round goby populations. There was evidence that perch predation is unlikely to limit populations of the invader, as there was only a weak relationship between round goby densities and amounts in gut contents. The results have ecosystem management implications, because some variables found to be important could be manipulated to control round goby or other similar invaders e.g. fisheries management of native piscivore stock-density and body-size, or modification of benthic environment structure. Copyright © 2017 Elsevier Ltd. All rights reserved.
Birch, Anne P.; Brenner, Jorge; Gordon, Doria R.
2015-01-01
The Sea Level Affecting Marshes Model (SLAMM) was applied at six major estuaries along Florida’s Gulf Coast (Pensacola Bay, St. Andrews/Choctawhatchee Bays, Apalachicola Bay, Southern Big Bend, Tampa Bay and Charlotte Harbor) to provide quantitative and spatial information on how coastal ecosystems may change with sea level rise (SLR) and to identify how this information can be used to inform adaption planning. High resolution LiDAR-derived elevation data was utilized under three SLR scenarios: 0.7 m, 1 m and 2 m through the year 2100 and uncertainty analyses were conducted on selected input parameters at three sites. Results indicate that the extent, spatial orientation and relative composition of coastal ecosystems at the study areas may substantially change with SLR. Under the 1 m SLR scenario, total predicted impacts for all study areas indicate that coastal forest (-69,308 ha; -18%), undeveloped dry land (-28,444 ha; -2%) and tidal flat (-25,556 ha; -47%) will likely face the greatest loss in cover by the year 2100. The largest potential gains in cover were predicted for saltmarsh (+32,922 ha; +88%), transitional saltmarsh (+23,645 ha; na) and mangrove forest (+12,583 ha; +40%). The Charlotte Harbor and Tampa Bay study areas were predicted to experience the greatest net loss in coastal wetlands The uncertainty analyses revealed low to moderate changes in results when some numerical SLAMM input parameters were varied highlighting the value of collecting long-term sedimentation, accretion and erosion data to improve SLAMM precision. The changes predicted by SLAMM will affect exposure of adjacent human communities to coastal hazards and ecosystem functions potentially resulting in impacts to property values, infrastructure investment and insurance rates. The results and process presented here can be used as a guide for communities vulnerable to SLR to identify and prioritize adaptation strategies that slow and/or accommodate the changes underway. PMID:26207914
Geselbracht, Laura L; Freeman, Kathleen; Birch, Anne P; Brenner, Jorge; Gordon, Doria R
2015-01-01
The Sea Level Affecting Marshes Model (SLAMM) was applied at six major estuaries along Florida's Gulf Coast (Pensacola Bay, St. Andrews/Choctawhatchee Bays, Apalachicola Bay, Southern Big Bend, Tampa Bay and Charlotte Harbor) to provide quantitative and spatial information on how coastal ecosystems may change with sea level rise (SLR) and to identify how this information can be used to inform adaption planning. High resolution LiDAR-derived elevation data was utilized under three SLR scenarios: 0.7 m, 1 m and 2 m through the year 2100 and uncertainty analyses were conducted on selected input parameters at three sites. Results indicate that the extent, spatial orientation and relative composition of coastal ecosystems at the study areas may substantially change with SLR. Under the 1 m SLR scenario, total predicted impacts for all study areas indicate that coastal forest (-69,308 ha; -18%), undeveloped dry land (-28,444 ha; -2%) and tidal flat (-25,556 ha; -47%) will likely face the greatest loss in cover by the year 2100. The largest potential gains in cover were predicted for saltmarsh (+32,922 ha; +88%), transitional saltmarsh (+23,645 ha; na) and mangrove forest (+12,583 ha; +40%). The Charlotte Harbor and Tampa Bay study areas were predicted to experience the greatest net loss in coastal wetlands The uncertainty analyses revealed low to moderate changes in results when some numerical SLAMM input parameters were varied highlighting the value of collecting long-term sedimentation, accretion and erosion data to improve SLAMM precision. The changes predicted by SLAMM will affect exposure of adjacent human communities to coastal hazards and ecosystem functions potentially resulting in impacts to property values, infrastructure investment and insurance rates. The results and process presented here can be used as a guide for communities vulnerable to SLR to identify and prioritize adaptation strategies that slow and/or accommodate the changes underway.
NASA Astrophysics Data System (ADS)
Bastida, Felipe; Andrés, Manuela; Torres, Irene; García, Carlos; Ruiz Navarro, Antonio; Moreno, Francisco R.; López Serrano, Francisco R.
2017-04-01
Arid and semiarid ecosystems will be severely affected by drought derived from climate change. Forest management can promote the adaptations of plant and microbial communities to drought. For instance, thinning reduces competition for resources through a decrease in tree density and the promotion of plant survival. The resistance of soil microbial communities must be strongly related to the soil quality. However, in order to evaluate these properties, the active (and not only the total) microbial community should be carefully assessed. Here, we studied the functional and phylogenetic responses of the microbial community to six years of drought induced by rainfall exclusion and how thinning shapes its resistance to drought, in a semiarid ecosystem dominated by Pinus halepensis Mill. A multiOMIC approach was applied to reveal novel strategies against drought. The diversity and the composition of the total and active soil microbial communities were evaluated by 16S rRNA gene (bacteria) and ITS (fungal) sequencing, and by metaproteomics. The microbial biomass was analyzed by phospholipid fatty acids (PLFAs), and the microbially-mediated ecosystem multifunctionality was studied by the evaluation of enzyme activities related to C, N, and P dynamics. The microbial biomass and ecosystem multifunctionality decreased in plots subjected to drought, but this decrease was greater in unthinned plots. The diversity of the total bacterial and fungal communities were resistant to drought but were shaped by seasonal dynamics. However, the active community was more sensitive to drought and related to multifunctionality. Thinning in plots without drought increased the active diversity while the total diversity was not affected. Thinning promoted the resistance of multifunctionality to drought by changes in the active microbiome. Protein-based phylogeny was a better predictor of the impacts of drought and the adaptations of microbial communities. We highlight that the resistance of the microbial community and the active microbial community are ecological concepts strongly related to the concept of soil quality in the face of climate change.
Eisenbies, Mark H.; Hughes, W. Brian
2000-01-01
Hydrologic process are the main determinants of the type of wetland located on a site. Precipitation, groundwater, or flooding interact with soil properties and geomorphic setting to yield a complex matrix of conditions that control groundwater flux, water storage and discharge, water chemistry, biotic productivity, biodiversity, and biogeochemical cycling. Hydroperiod affects many abiotic factors that in turn determine plant and animal species composition, biodiversity, primary and secondary productivity, accumulation, of organic matter, and nutrient cycling. Because the hydrologic regime has a major influence on wetland functioning, understanding how hydrologic changes influence ecosystem processes is essential, especially in light of the pressures placed on remaining wetlands by society's demands for water resources and by potential global changes in climate.