Sample records for composition coefficient alphax

  1. Performances of the Alpha-X RF gun on the PHIL accelerator at LAL

    NASA Astrophysics Data System (ADS)

    Vinatier, T.; Bruni, C.; Roux, R.; Brossard, J.; Chancé, S.; Cayla, J. N.; Chaumat, V.; Xu, G.; Monard, H.

    2015-10-01

    The Alpha-X RF-gun was designed to produce an ultra-short (<100 fs rms), 100 pC and 6.3 MeV electron beam with a normalized rms transverse emittance of 1π mm mrad for a gun peak accelerating field of 100 MV/m. Such beams will be required by the Alpha-X project, which aims to study a laser-driven plasma accelerator with a short wavelength accelerating medium. It has been demonstrated on PHIL (Photo-Injector at LAL) that the coaxial RF coupling, chosen to preserve the gun field cylindrical symmetry, is perfectly understood and allows reaching the required peak accelerating field of 100 MV/m giving beam energy of 6.3 MeV. Moreover, a quite low beam rms relative energy spread of 0.15% at 3.8 MeV has been measured, completely agreeing with simulations. Dark current, quantum efficiencies and dephasing curves measurements have also been performed. They all show high values of the field enhancement factor β, which can be explained by the preparation of the photocathodes. Finally, measurements on the transverse phase-space have been carried out, with some limitations given by the difficult modelization of one of the PHIL solenoid magnets and by the enlargement of the beam transverse dimensions due to the use of YAG screens. These measurements give a normalized rms transverse emittance around 5π mm mrad, which does not fulfill the requirement for the Alpha-X project.

  2. The mixing length parameter alpha. [in stellar structure calculations

    NASA Technical Reports Server (NTRS)

    Canuto, V. M.

    1990-01-01

    The standard mixing length theory, MLT, treats turbulent eddies as if they were isotropic, while the largest eddies that carry most of the flux are highly anisotropic. Recently, an anisotropic MLT was constructed, and the relevant equations derived. It is shown that these new equations can actually be cast in a form that is formally identical to that of the standard isotropic MLT, provided the mixing length parameter, derived from stellar structure calculations, is interpreted as an intermediate, auxiliary function alpha(x), where x, the degree of anisotropy is given as a function of the thermodynamic variables of the problem. The relation between alpha(x) and the physically relevant alpha(l = Hp) is also given. Once the value alpha is deduced, it is found to be a function of the local thermodynamic quantities, as expected.

  3. Self-diffusion coefficients and shear viscosity of inverse power fluids: from hard- to soft-spheres.

    PubMed

    Heyes, D M; Brańka, A C

    2008-07-21

    Molecular dynamics computer simulation has been used to compute the self-diffusion coefficient, D, and shear viscosity, eta(s), of soft-sphere fluids, in which the particles interact through the soft-sphere or inverse power pair potential, phi(r) = epsilon(sigma/r)(n), where n measures the steepness or stiffness of the potential, and epsilon and sigma are a characteristic energy and distance, respectively. The simulations were carried out on monodisperse systems for a range of n values from the hard-sphere (n --> infinity) limit down to n = 4, and up to densities in excess of the fluid-solid co-existence value. A new analytical procedure is proposed which reproduces the transport coefficients at high densities, and can be used to extrapolate the data to densities higher than accurately accessible by simulation or experiment, and tending to the glass transition. This formula, DX(c-1) proportional, variant A/X + B, where c is an adjustable parameter, and X is either the packing fraction or the pressure, is a development of one proposed by Dymond. In the expression, -A/B is the value of X at the ideal glass transition (i.e., where D and eta(s)(-1) --> 0). Estimated values are presented for the packing fraction and the pressure at the glass transition for n values between the hard and soft particle limits. The above expression is also shown to reproduce the high density viscosity data of supercritical argon, krypton and nitrogen. Fits to the soft-sphere simulation transport coefficients close to solid-fluid co-existence are also made using the analytic form, ln(D) = alpha(X)X, and n-dependence of the alpha(X) is presented (X is either the packing fraction or the pressure).

  4. A Jet Break in the X-ray Light Curve of Short GRB 111020A: Implications for Energetics and Rates

    NASA Technical Reports Server (NTRS)

    Fong, W.; Berger, E.; Margutti, R.; Zauderer, B. A.; Troja, E.; Czekala, I.; Chornock, R.; Gehrels, N.; Sakamoto, T.; Fox, D. B.; hide

    2012-01-01

    We present broadband observations of the afterglow and environment of the short GRB 111020A. An extensive X-ray light curve from Swift/XRT, XMM-Newton, and Chandra, spanning approx.100 s to 10 days after the burst, reveals a significant break at (delta)t approx. = 2 days with pre- and post-break decline rates of (alpha)X,1 approx. = -0.78 and (alpha)X,2 < or approx. 1.7, respectively. Interpreted as a jet break, we infer a collimated outflow with an opening angle of (theta)j approx. = 3deg - 8deg. The resulting beaming-corrected gamma-ray (10-1000 keV band) and blast-wave kinetic energies are (2-3) x 10(exp 48) erg and (0.3-2) x 10(exp 49) erg, respectively, with the range depending on the unknown redshift of the burst. We report a radio afterglow limit of <39 micro-Jy (3(sigma)) from Expanded Very Large Array observations that, along with our finding that v(sub c) < v(sub X), constrains the circumburst density to n(sub 0) approx.0.01 0.1/cu cm. Optical observations provide an afterglow limit of i > or approx.24.4 mag at 18 hr after the burst and reveal a potential host galaxy with i approx. = 24.3 mag. The subarcsecond localization from Chandra provides a precise offset of 0".80+/-0".11 (1(sigma))from this galaxy corresponding to an offset of 5.7 kpc for z = 0.5-1.5. We find a high excess neutral hydrogen column density of (7.5+/-2.0) x 10(exp 21)/sq cm (z = 0). Our observations demonstrate that a growing fraction of short gamma-ray bursts (GRBs) are collimated, which may lead to a true event rate of > or approx.100-1000 Gpc(sup -3)/yr, in good agreement with the NS-NS merger rate of approx. = 200-3000 Gpc(sup -3)/ yr. This consistency is promising for coincident short GRB-gravitational wave searches in the forthcoming era of Advanced LIGO/VIRGO.

  5. Electron-positron pairs, Compton reflection, and the X-ray spectra of active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Ghisellini, Gabriele; George, Ian M.; Fabian, A. C.; Svensson, Roland; Done, Chris

    1990-01-01

    It is shown here that reprocessing of radiation fron nonthermal pair cascades by cold material in the central parts of active galactic nuclei (AGN) gives rise to X-ray and gamma-ray spectra that satisfy current observational constraints. An average 1-30 keV X-ray spectral index alpha(x) of about 0.7 in the compact range 30-300 is obtained for a wide range of Lorentz factors of the injected electrons. The gamma-ray spectra are steep, with alpha(gamma) about two, and satisfy the observational constraints. Radiation from pair cascades exhibits steep power law decreases in soft X-rays similar to those observed in AGN. The overall picture is consistent with AGN having an accretion disk which intercepts and reprocesses a substantial fraction of the nonthermal continuum incident upon it from above and below.

  6. A Comparison of Composite Reliability Estimators: Coefficient Omega Confidence Intervals in the Current Literature

    ERIC Educational Resources Information Center

    Padilla, Miguel A.; Divers, Jasmin

    2016-01-01

    Coefficient omega and alpha are both measures of the composite reliability for a set of items. Unlike coefficient alpha, coefficient omega remains unbiased with congeneric items with uncorrelated errors. Despite this ability, coefficient omega is not as widely used and cited in the literature as coefficient alpha. Reasons for coefficient omega's…

  7. Hybrid Exhaust Component

    NASA Technical Reports Server (NTRS)

    Pelletier, Gerard D. (Inventor); Logan, Charles P. (Inventor); McEnerney, Bryan William (Inventor); Haynes, Jeffrey D. (Inventor)

    2015-01-01

    An exhaust includes a wall that has a first composite material having a first coefficient of thermal expansion and a second composite material having a second coefficient of the thermal expansion that is less than the first coefficient of thermal expansion.

  8. Method of fabricating composite structures

    NASA Technical Reports Server (NTRS)

    Sigur, W. A. (Inventor)

    1990-01-01

    A method of fabricating structures formed from composite materials by positioning the structure about a high coefficient of thermal expansion material, wrapping a graphite fiber overwrap about the structure, and thereafter heating the assembly to expand the high coefficient of thermal expansion material to forcibly compress the composite structure against the restraint provided by the graphite overwrap. The high coefficient of thermal expansion material is disposed about a mandrel with a release system therebetween, and with a release system between the material having the high coefficient of thermal expansion and the composite material, and between the graphite fibers and the composite structure. The heating may occur by inducing heat into the assembly by a magnetic field created by coils disposed about the assembly through which alternating current flows. The method permits structures to be formed without the use of an autoclave.

  9. Method of fabricating composite structures

    NASA Technical Reports Server (NTRS)

    Sigur, Wanda A. (Inventor)

    1992-01-01

    A method of fabricating structures formed from composite materials by positioning the structure about a high coefficient of thermal expansion material, wrapping a graphite fiber overwrap about the structure, and thereafter heating the assembly to expand the high coefficient of thermal expansion material to forcibly compress the composite structure against the restraint provided by the graphite overwrap. The high coefficient of thermal expansion material is disposed about a mandrel with a release system therebetween, and with a release system between the material having the high coefficient of thermal expansion and the composite material, and between the graphite fibers and the composite structure. The heating may occur by inducing heat into the assembly by a magnetic field created by coils disposed about the assembly through which alternating current flows. The method permits structures to be formed without the use of an autoclave.

  10. Giant magnetoelectric effect in negative magnetostrictive/piezoelectric/positive magnetostrictive semiring structure

    NASA Astrophysics Data System (ADS)

    Zeng, Lingyu; Zhou, Minhong; Bi, Ke; Lei, Ming

    2016-01-01

    Magnetoelectric (ME) Ni/PZT/TbFe2 and TbFe2/PZT composites with two semiring structures are prepared. The dependence between ME coupling and magnetostrictive property of the composite is discussed. Because Ni possesses negative magnetostrictive property and TbFe2 shows positive magnetostrictive property, the ME voltage coefficient of Ni/PZT/TbFe2 semiring structure is much larger than that of TbFe2/PZT. In these composites, the ME voltage coefficient increases and the resonance frequency gradually decreases with the increase of the semiring radius, showing that structural parameters are key factors to the composite properties. Due to the strong ME coupling effect, a giant ME voltage coefficient αE = 44.8 V cm-1 Oe-1 is obtained. This approach opens a way for the design of ME composites with giant ME voltage coefficient.

  11. Composition-microstructure-property relationships in dual phase bulk magnetoelectric composite

    NASA Astrophysics Data System (ADS)

    Islam, Rashed Adnan

    The coexistence of coupled electrical and magnetic properties in the "magnetoelectric" material has led to the possibility of developing smarter and smaller electronic components. In order to make this possibility a reality, significant efforts are required to understand the science of magnetoelectric (ME) behavior and apply this understanding to develop higher sensitivity material. The primary aims of this thesis are to identify the role of composition, microstructural variables, composite geometry, texturing, post sintering heat treatment, and nanoscale assembly on ME coefficient. The overall objective is to synthesize, characterize and utilize a high ME coefficient composite. The desired range of ME coefficient in the sintered composite is more than 1.5 V/cm.Oe. At first, a piezoelectric composition in the system of Pb(Zr,Ti)O 3 - Pb[(Zn,Ni)1/3Nb2/3]O3 was designed and synthesized which has high energy density (d.g) parameter of 18456.2 x 10-15m2/N and high g constant of 83.1 V-m/N in order to use it as the matrix in piezoelectric---magnetostrictive composite. Secondly it was found that soft piezoelectric phase shows much better magnetoelectric response. The magnetoelectric coefficient for Pb(Zr 0.52Ti0.48)O3 - 15% Pb(Zn1/3Nb 2/3)O3 [PZT - 15 PZN] - 20% Ni0.8Zn 0.2Fe2O4 was found to be around 186 mV/cm.Oe. Thridly, soft magnetic phase with lower coercivity and higher magnetization was found to be suitable for high ME coefficient. Zinc doped Ni-ferrite has higher resistivity, permeability, magnetization and it was found that with increasing Zn concentration the ME coefficient increases exhibiting maxima near 30 at% Zn (138 mV/cm.Oe). Fourthly, if the connectivity was changed from (0-3) to (2-2) which is a bilayer geometry, improved piezoelectric (d33 ˜ 80 pC/N), ferroelectric (polarization = 60 muC/cm2), magnetization (25 emu/gm) and lower coercive field (2.8 Oe) were measured. The bilayer shows an enhancement of 67% increase in ME coefficient compared to bulk composite. Finally it was found that the electrical, magnetic and magnetoelectric properties of (1-x) Pb(Zr0.52Ti0.48)O3 - xNiFe 1.9Mn0.1O4 (PZT-NFM) composites were enhanced after post-sinter annealing and aging. The thermal treatment relaxed the strain in the matrix as observed by change in PZT lattice constant from (a = 3.87A, c = 4.07 A) to (a = 4.07A, c = 4.09 A). This signifies that strain relaxation helps to enhance the ME coefficient by ˜ 50%. A trilayer composite was synthesized using pressure assisted sintering with soft phase [0.9PZT - 0.1 PZN] having grain size larger than 1mum and soft ferromagnetic phase of composition Ni0.8Cu0.2Zn 0.2Fe2O4 [NCZF]. The composite showed a high ME coefficient of 412 and 494mV/cm.Oe after sintering and annealing respectively. Optimized ferrite to PZT thickness ratio was found to be 5.33, providing ME coefficient of 525mV/cm.Oe. The ME coefficient exhibited orientation dependence with respect to applied magnetic field. Multilayering the PZT layer increased the magnitude of ME coefficient to 782mV/cm.Oe. Piezoelectric grain texturing and nano-particulate assembly techniques were incorporated with the layered geometry. It was found that with moderate texturing, d33 and ME coefficient reached up to 325 pC/N and 878 mV/cm.Oe respectively. Nano-particulate core shell assembly shows the promise for achieving large ME coefficient in the sintered composites. A systematic relationship between composition, microstructure, geometry and properties is presented which will lead towards development of high performance magnetoelectric materials. Using the particulate type ME composite developed in thesis, a high sensitivity magnetic field sensor based on piezoelectric transformer principle was fabricated and characterized. This application demonstrates the advantages of ME composites for magnetic field sensing.

  12. Micromechanical models for textile structural composites

    NASA Technical Reports Server (NTRS)

    Marrey, Ramesh V.; Sankar, Bhavani V.

    1995-01-01

    The objective is to develop micromechanical models for predicting the stiffness and strength properties of textile composite materials. Two models are presented to predict the homogeneous elastic constants and coefficients of thermal expansion of a textile composite. The first model is based on rigorous finite element analysis of the textile composite unit-cell. Periodic boundary conditions are enforced between opposite faces of the unit-cell to simulate deformations accurately. The second model implements the selective averaging method (SAM), which is based on a judicious combination of stiffness and compliance averaging. For thin textile composites, both models can predict the plate stiffness coefficients and plate thermal coefficients. The finite element procedure is extended to compute the thermal residual microstresses, and to estimate the initial failure envelope for textile composites.

  13. Composition Dependence of the Hydrostatic Pressure Coefficients of the Bandgap of ZnSe(1-x)Te(x) Alloys

    NASA Technical Reports Server (NTRS)

    Wu, J.; Yu, K. M.; Walukiewicz, W.; Shan, W.; Ager, J. W., III; Haller, E. E.; Miotkowski, I.; Ramdas, A. K.; Su, Ching-Hua

    2003-01-01

    Optical absorption experiments have been performed using diamond anvil cells to measure the hydrostatic pressure dependence of the fundamental bandgap of ZnSe(sub 1-xTe(sub x) alloys over the entire composition range. The first and second-order pressure coefficients are obtained as a function of composition. Starting from the ZnSe side, the magnitude of both coefficients increases slowly until x approx. 0.7, where the ambient-pressure bandgap reaches a minimum. For larger values of x the coefficients rapidly approach the values of ZnTe. The large deviations of the pressure coefficients from the linear interpolation between ZnSe and ZnTe are explained in terms of the band anticrossing model.

  14. The Effect of Compositional Tailoring on the Thermal Expansion and Tribological Properties of PS300: A Solid Lubricant Composite Coating

    NASA Technical Reports Server (NTRS)

    DellaCorte, C.; Fellenstein, J. A.

    1996-01-01

    This paper describes a research program in which the goal is to alter the thermal expansion coefficient of a composite solid lubricant coating, PS300, by compositional tailoring. PS300 is a plasma sprayed coating consisting of chrome oxide, silver and barium fluoride/calcium fluoride eutectic in NiCr binder. By adjusting the composition, the thermal expansion coefficient can be altered, and hence chosen, to more closely match a selected substrate preventing coating spallation at extreme temperatures. Thermal expansion coefficients (CTE) for a variety of compositions were measured from 25 to 800 C using a commercial dilatometer. The CTE's ranged from 7.0 to 13 x lO(exp -6)/deg C depending on the binder content. Subsequent tribological testing of a modified composition indicated that friction and wear properties were relatively insensitive to compositional tailoring.

  15. Coefficient of friction and wear rate effects of different composite nanolubricant concentrations on Aluminium 2024 plate

    NASA Astrophysics Data System (ADS)

    Zawawi, N. N. M.; Azmi, W. H.; Redhwan, A. A. M.; Sharif, M. Z.

    2017-10-01

    Wear of sliding parts and operational machine consistency enhancement can be avoided with good lubrication. Lubrication reduce wear between two contacting and sliding surfaces and decrease the frictional power losses in compressor. The coefficient of friction and wear rate effects study were carried out to measure the friction and anti-wear abilities of Al2O3-SiO2 composite nanolubricants a new type of compressor lubricant to enhanced the compressor performances. The tribology test rig employing reciprocating test conditions to replicate a piston ring contact in the compressor was used to measure the coefficient of friction and wear rate. Coefficient of friction and wear rate effects of different Al2O3-SiO2/PAG composite nanolubricants of Aluminium 2024 plate for 10-kg load at different speed were investigated. Al2O3 and SiO2 nanoparticles were dispersed in the Polyalkylene Glycol (PAG 46) lubricant using two-steps method of preparation. The result shows that the coefficient friction and wear rate of composite nanolubricants decreased compared to pure lubricant. The maximum reduction achievement for friction of coefficient and wear rate by Al2O3-SiO2 composite nanolubricants by 4.78% and 12.96% with 0.06% volume concentration. Therefore, 0.06% volume concentration is selected as the most enhanced composite nanolubricants with effective coefficient of friction and wear rate reduction compared to other volume concentrations. Thus, it is recommended to be used as the compressor lubrication to enhanced compressor performances.

  16. Electromagnetic absorption behaviour of ferrite loaded three phase carbon fabric composites

    NASA Astrophysics Data System (ADS)

    Jagatheesan, Krishnasamy; Ramasamy, Alagirusamy; Das, Apurba; Basu, Ananjan

    2018-02-01

    This article investigates the electromagnetic absorption behaviours of carbon helical yarn fabric reinforced composites and manganese-zinc (Mn-Zn) ferrite particles loaded 3 phase fabric composites. A carbon helical yarn having stainless steel core was prepared and made into single jersey knitted fabric. The composite was prepared by sandwiching a fabric with polypropylene films and thermal pressed. The absorption values of helical yarn fabric composite was observed to be less in the C band region (4-8 GHz). For improving the absorption coefficients of composite, Mn-Zn ferrite particles were dispersed in the polypropylene (PP) composite. The ferrite loaded PP composites exhibited better permittivity and permeability values, hence the absorption loss of the composite was improved. The helical yarn fabric reinforced with Mn-Zn ferrite/PP composite showed larger absorption coefficients than virgin PP/fabric composite. The change in thermal stability and particle size distribution in the Mn-Zn ferrite/PP composite was also analyzed. At higher ferrite concentration, bimodal particle distribution was observed which increased the conductivity and shielding effectiveness (SE) of the composite. In addition, complex permittivity value was also increased for higher incident frequency (4-8 GHz). As the ferrite content increases, the dielectric loss and magnetic permeability of PP/ferrite increases due to increased magnetic loss. Hence, ferrite loaded PP composite showed the total SE of -14.2 dB with the absorption coefficients of 0.717. The S1C7 fabric composite having ferrite dispersion showed the better absorption loss and lower reflection coefficient of 14.2 dB and 0.345 respectively compared to virgin PP/helical yarn fabric composite. The increasing ferrite content (45 wt%) improved the absorption loss and total SE. Though, ferrite based fabric composite exhibits moderate absorptive shielding, it can be used as shielding panels in the electronic industries.

  17. Size effects on magnetoelectric response of multiferroic composite with inhomogeneities

    NASA Astrophysics Data System (ADS)

    Yue, Y. M.; Xu, K. Y.; Chen, T.; Aifantis, E. C.

    2015-12-01

    This paper investigates the influence of size effects on the magnetoelectric performance of multiferroic composite with inhomogeneities. Based on a simple model of gradient elasticity for multiferroic materials, the governing equations and boundary conditions are obtained from an energy variational principle. The general formulation is applied to consider an anti-plane problem of multiferroic composites with inhomogeneities. This problem is solved analytically and the effective magnetoelectric coefficient is obtained. The influence of the internal length (grain size or particle size) on the effective magnetoelectric coefficients of piezoelectric/piezomagnetic nanoscale fibrous composite is numerically evaluated and analyzed. The results suggest that with the increase of the internal length of piezoelectric matrix (PZT and BaTiO3), the magnetoelectric coefficient increases, but the rate of increase is ratcheting downwards. If the internal length of piezoelectric matrix remains unchanged, the magnetoelectric coefficient will decrease with the increase of internal length scale of piezomagnetic nonfiber (CoFe2O3). In a composite consisiting of a piezomagnetic matrix (CoFe2O3) reinforced with piezoelectric nanofibers (BaTiO3), an increase of the internal length in the piezomagnetic matrix, results to a decrease of the magnetoelectric coefficient, with the rate of decrease diminishing.

  18. PZT/PLZT - elastomer composites with improved piezoelectric voltage coefficient

    NASA Astrophysics Data System (ADS)

    Harikrishnan, K.; Bavbande, D. V.; Mohan, Dhirendra; Manoharan, B.; Prasad, M. R. S.; Kalyanakrishnan, G.

    2018-02-01

    Lead Zirconate Titanate (PZT) and Lanthanum-modified Lead Zirconate Titanate (PLZT) ceramic sensor materials are widely used because of their excellent piezoelectric coefficients. These materials are brittle, high density and have low achievable piezoelectric voltage coefficients. The density of the sintered ceramics shall be reduced by burnable polymeric sponge method. The achievable porosity level in this case is nearly 60 - 90%. However, the porous ceramic structure with 3-3 connectivity produced by this method is very fragile in nature. The strength of the porous structure is improved with Sylgard®-184 (silicone elastomer) by vacuum impregnation method maintaining the dynamic vacuum level in the range of -650 mm Hg. The elastomer Sylgard®-184 is having low density, low dielectric constant and high compliance (as a resultant stiffness of the composites is increased). To obtain a net dipole moment, the impregnated ceramic composites were subjected to poling treatment with varying conditions of D.C. field and temperature. The properties of the poled PZT/PLZT - elastomer composites were characterized with LCR meter for measuring the dielectric constant values (k), d33 meter used for measuring piezo-electric charge coefficient values (d33) and piezo-electric voltage coefficient (g33) values which were derived from d33 values. The voltage coefficient (g33) values of these composites are increased by 10 fold as compared to the conventional solid ceramics demonstrates that it is possible to fabricate a conformable detector.

  19. Sample size planning for composite reliability coefficients: accuracy in parameter estimation via narrow confidence intervals.

    PubMed

    Terry, Leann; Kelley, Ken

    2012-11-01

    Composite measures play an important role in psychology and related disciplines. Composite measures almost always have error. Correspondingly, it is important to understand the reliability of the scores from any particular composite measure. However, the point estimates of the reliability of composite measures are fallible and thus all such point estimates should be accompanied by a confidence interval. When confidence intervals are wide, there is much uncertainty in the population value of the reliability coefficient. Given the importance of reporting confidence intervals for estimates of reliability, coupled with the undesirability of wide confidence intervals, we develop methods that allow researchers to plan sample size in order to obtain narrow confidence intervals for population reliability coefficients. We first discuss composite reliability coefficients and then provide a discussion on confidence interval formation for the corresponding population value. Using the accuracy in parameter estimation approach, we develop two methods to obtain accurate estimates of reliability by planning sample size. The first method provides a way to plan sample size so that the expected confidence interval width for the population reliability coefficient is sufficiently narrow. The second method ensures that the confidence interval width will be sufficiently narrow with some desired degree of assurance (e.g., 99% assurance that the 95% confidence interval for the population reliability coefficient will be less than W units wide). The effectiveness of our methods was verified with Monte Carlo simulation studies. We demonstrate how to easily implement the methods with easy-to-use and freely available software. ©2011 The British Psychological Society.

  20. Computer Modeling of Ceramic Boride Composites

    DTIC Science & Technology

    2014-11-01

    the reinforcer deform elastically, for the theoretical strength of the composite it can be written [46] BBBAAABBAAK EE δεδεσδσδσ +=+= (51) where...coefficients of thermal expansion. Approximately linear expansion coefficient of the composite is determined by the relation [52] EEE BBBAAAk...1 δαδαα ⋅+⋅= , (58) where AE and BE are Young moduli of components, and E – average modulus for composition BBAA EEE δδ

  1. Dependence of equivalent thermal conductivity coefficients of single-wall carbon nanotubes on their chirality

    NASA Astrophysics Data System (ADS)

    Zarubin, V. S.; Sergeeva, E. S.

    2018-04-01

    Composite materials (composites) composed of a matrix and reinforcing components are currently widely used as structural materials for various engineering devices designed to operate under extreme thermal and mechanical loads. By modifying a composite with structure-sensitive inclusions such as single-wall carbon nanotubes, one can significantly improve the thermomechanical properties of the resulting material. The paper presents relationships obtained for the equivalent thermal conductivity coefficients of single-wall carbon nanotubes versus their chirality using a simulation model developed to simulate the heat transfer process through thermal conductivity in a transversely isotropic environment. With these coefficients, one can conventionally substitute a single-wall carbon nanotube with a continuous anisotropic fiber, thus allowing one to estimate the thermal properties of composites reinforced with objects of this sort by using the well-known models developed for fibered composites. The results presented here can be used to estimate the thermal properties of carbon nanotube-reinforced composites.

  2. Correlation between Mechanical Properties with Specific Wear Rate and the Coefficient of Friction of Graphite/Epoxy Composites

    PubMed Central

    Alajmi, Mahdi; Shalwan, Abdullah

    2015-01-01

    The correlation between the mechanical properties of Fillers/Epoxy composites and their tribological behavior was investigated. Tensile, hardness, wear, and friction tests were conducted for Neat Epoxy (NE), Graphite/Epoxy composites (GE), and Data Palm Fiber/Epoxy with or without Graphite composites (GFE and FE). The correlation was made between the tensile strength, the modulus of elasticity, elongation at the break, and the hardness, as an individual or a combined factor, with the specific wear rate (SWR) and coefficient of friction (COF) of composites. In general, graphite as an additive to polymeric composite has had an eclectic effect on mechanical properties, whereas it has led to a positive effect on tribological properties, whilst date palm fibers (DPFs), as reinforcement for polymeric composite, promoted a mechanical performance with a slight improvement to the tribological performance. Statistically, this study reveals that there is no strong confirmation of any marked correlation between the mechanical and the specific wear rate of filler/Epoxy composites. There is, however, a remarkable correlation between the mechanical properties and the friction coefficient of filler/Epoxy composites. PMID:28793431

  3. Correlation between Mechanical Properties with Specific Wear Rate and the Coefficient of Friction of Graphite/Epoxy Composites.

    PubMed

    Alajmi, Mahdi; Shalwan, Abdullah

    2015-07-08

    The correlation between the mechanical properties of Fillers/Epoxy composites and their tribological behavior was investigated. Tensile, hardness, wear, and friction tests were conducted for Neat Epoxy (NE), Graphite/Epoxy composites (GE), and Data Palm Fiber/Epoxy with or without Graphite composites (GFE and FE). The correlation was made between the tensile strength, the modulus of elasticity, elongation at the break, and the hardness, as an individual or a combined factor, with the specific wear rate (SWR) and coefficient of friction (COF) of composites. In general, graphite as an additive to polymeric composite has had an eclectic effect on mechanical properties, whereas it has led to a positive effect on tribological properties, whilst date palm fibers (DPFs), as reinforcement for polymeric composite, promoted a mechanical performance with a slight improvement to the tribological performance. Statistically, this study reveals that there is no strong confirmation of any marked correlation between the mechanical and the specific wear rate of filler/Epoxy composites. There is, however, a remarkable correlation between the mechanical properties and the friction coefficient of filler/Epoxy composites.

  4. The theoretical ultimate magnetoelectric coefficients of magnetoelectric composites by optimization design

    NASA Astrophysics Data System (ADS)

    Wang, H.-L.; Liu, B.

    2014-03-01

    This paper investigates what is the largest magnetoelectric (ME) coefficient of ME composites, and how to realize it. From the standpoint of energy conservation, a theoretical analysis is carried out on an imaginary lever structure consisting of a magnetostrictive phase, a piezoelectric phase, and a rigid lever. This structure is a generalization of various composite layouts for optimization on ME effect. The predicted theoretical ultimate ME coefficient plays a similar role as the efficiency of ideal heat engine in thermodynamics, and is used to evaluate the existing typical ME layouts, such as the parallel sandwiched layout and the serial layout. These two typical layouts exhibit ME coefficient much lower than the theoretical largest values, because in the general analysis the stress amplification ratio and the volume ratio can be optimized independently and freely, but in typical layouts they are dependent or fixed. To overcome this shortcoming and achieve the theoretical largest ME coefficient, a new design is presented. In addition, it is found that the most commonly used electric field ME coefficient can be designed to be infinitely large. We doubt the validity of this coefficient as a reasonable ME effect index and consider three more ME coefficients, namely the electric charge ME coefficient, the voltage ME coefficient, and the static electric energy ME coefficient. We note that the theoretical ultimate value of the static electric energy ME coefficient is finite and might be a more proper measure of ME effect.

  5. The theoretical ultimate magnetoelectric coefficients of magnetoelectric composites by optimization design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, H.-L.; Liu, B., E-mail: liubin@tsinghua.edu.cn

    2014-03-21

    This paper investigates what is the largest magnetoelectric (ME) coefficient of ME composites, and how to realize it. From the standpoint of energy conservation, a theoretical analysis is carried out on an imaginary lever structure consisting of a magnetostrictive phase, a piezoelectric phase, and a rigid lever. This structure is a generalization of various composite layouts for optimization on ME effect. The predicted theoretical ultimate ME coefficient plays a similar role as the efficiency of ideal heat engine in thermodynamics, and is used to evaluate the existing typical ME layouts, such as the parallel sandwiched layout and the serial layout.more » These two typical layouts exhibit ME coefficient much lower than the theoretical largest values, because in the general analysis the stress amplification ratio and the volume ratio can be optimized independently and freely, but in typical layouts they are dependent or fixed. To overcome this shortcoming and achieve the theoretical largest ME coefficient, a new design is presented. In addition, it is found that the most commonly used electric field ME coefficient can be designed to be infinitely large. We doubt the validity of this coefficient as a reasonable ME effect index and consider three more ME coefficients, namely the electric charge ME coefficient, the voltage ME coefficient, and the static electric energy ME coefficient. We note that the theoretical ultimate value of the static electric energy ME coefficient is finite and might be a more proper measure of ME effect.« less

  6. The effect of mineral composition on the sorption of cesium ions on geological formations.

    PubMed

    Kónya, József; Nagy, Noémi M; Nemes, Zoltán

    2005-10-15

    The sorption of cesium-137 on rock samples, mainly on clay rocks, is determined as a function of the mineral composition of the rocks. A relation between the mineral groups (tectosilicates, phyllosilicates, clay minerals, carbonates) and their cesium sorption properties is shown. A linear model is constructed by which the distribution coefficients of the different minerals can be calculated from the mineral composition and the net distribution coefficient of the rock. On the basis of the distribution coefficients of the minerals the cesium sorption properties of other rocks can be predicted.

  7. Method for producing ceramic composition having low friction coefficient at high operating temperatures

    DOEpatents

    Lankford, Jr., James

    1988-01-01

    A method for producing a stable ceramic composition having a surface with a low friction coefficient and high wear resistance at high operating temperatures. A first deposition of a thin film of a metal ion is made upon the surface of the ceramic composition and then a first ion implantation of at least a portion of the metal ion is made into the near surface region of the composition. The implantation mixes the metal ion and the ceramic composition to form a near surface composite. The near surface composite is then oxidized sufficiently at high oxidizing temperatures to form an oxide gradient layer in the surface of the ceramic composition.

  8. Development and evaluation of a reinforced polymeric biomaterial for use as an orthodontic wire

    NASA Astrophysics Data System (ADS)

    Zufall, Scott William

    Composite archwires have the potential to provide esthetic and functional improvements over conventional wires. As part of an ongoing effort to bring these materials into general use, composite wires were fabricated using a photo-pultrusion manufacturing technique, and subsequently coated with a 10 mum layer of poly(chloro-p-xylylene). Coated and uncoated composites were subjected to several different evaluations to assess their ability to perform the functions of an orthodontic archwire. An investigation of the viscoelastic behavior of uncoated composite wires was conducted at a physiological temperature of 37°C using a bend stress relaxation test. Over 90 day testing periods, energy losses increased with decreasing reinforcement levels from to 8% of the initial wire stress. Final viscous losses were 1% for all reinforcement levels. Relaxed elastic moduli for the composite wires were comparable to the reported elastic moduli of conventional orthodontic wires that are typically used for initial and intermediate alignment procedures. Frictional characteristics were evaluated in passive and active configurations for uncoated composite wires against three contemporary orthodontic brackets. Kinetic coefficients of friction were the same for all wire-bracket combinations tested and were slightly lower than the reported coefficients of other initial and intermediate alignment wires. Wear patterns on the wires, which were largely caused by sharp leading edges of the bracket slots, were characteristic of plowing and cutting wear behaviors. This wear caused glass fibers to be released from the surface of the wires, presenting a potential irritant. Coated composite wires were subjected to the same frictional analysis as the uncoated wires. A mathematical model of the archwire-bracket system was derived using engineering mechanics, and used to define a coefficient of binding. The coating increased the frictional coefficients of the wires by 72%, yet the binding coefficient was unchanged. When frictional data for initial and intermediate alignment wires were compared, the coated composites had higher friction than all but one couple. However, binding coefficients were comparable. Glass fibers were contained for all testing conditions, although the coating was often damaged by plowing or cutting wear. Overall, the coating improved the clinical acceptability of the composite wires.

  9. The impact of aerosol composition on the particle to gas partitioning of reactive mercury.

    PubMed

    Rutter, Andrew P; Schauer, James J

    2007-06-01

    A laboratory system was developed to study the gas-particle partitioning of reactive mercury (RM) as a function of aerosol composition in synthetic atmospheric particulate matter. The collection of RM was achieved by filter- and sorbent-based methods. Analyses of the RM collected on the filters and sorbents were performed using thermal extraction combined with cold vapor atomic fluorescence spectroscopy (CVAFS), allowing direct measurement of the RM load on the substrates. Laboratory measurements of the gas-particle partitioning coefficients of RM to atmospheric aerosol particles revealed a strong dependence on aerosol composition, with partitioning coefficients that varied by orders of magnitude depending on the composition of the particles. Particles of sodium nitrate and the chlorides of potassium and sodium had high partitioning coefficients, shifting the RM partitioning toward the particle phase, while ammonium sulfate, levoglucosan, and adipic acid caused the RM to partition toward the gas phase and, therefore, had partitioning coefficients that were lower by orders of magnitude.

  10. Piezoelectric Flexible LCP-PZT Composites for Sensor Applications at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Tolvanen, Jarkko; Hannu, Jari; Juuti, Jari; Jantunen, Heli

    2018-03-01

    In this paper fabrication of piezoelectric ceramic-polymer composites is demonstrated via filament extrusion enabling cost-efficient large-scale production of highly bendable pressure sensors feasible for elevated temperatures. These composites are fabricated by utilizing environmentally resistant and stable liquid crystal polymer matrix with addition of lead zirconate titanate at loading levels of 30 vol%. These composites, of approximately 0.99 mm thick and length of > 50 cm, achieved excellent bendability with minimum bending radius of 6.6 cm. The maximum piezoelectric coefficients d33 and g33 of the composites were > 14 pC/N and > 108 mVm/N at pressure < 10 kPa. In all cases, the piezoelectric charge coefficient (d33) of the composites decreased as a function of pressure. Also, piezoelectric coefficient (d33) further decreased in the case of increased frequency press-release cycle sand pre-stress levels by approximately 37-50%. However, the obtained results provide tools for fabricating novel piezoelectric sensors in highly efficient way for environments with elevated temperatures.

  11. Effect of stacking sequence on the coefficients of mutual influence of composite laminates

    NASA Astrophysics Data System (ADS)

    Dupir (Hudișteanu, I.; Țăranu, N.; Axinte, A.

    2016-11-01

    Fiber reinforced polymeric (FRP) composites are nowadays widely used in engineering applications due to their outstanding features, such as high specific strength and specific stiffness as well as good corrosion resistance. A major advantage of fibrous polymeric composites is that their anisotropy can be controlled through suitable choice of the influencing parameters. The unidirectional fiber reinforced composites provide much higher longitudinal mechanical properties compared to the transverse ones. Therefore, composite laminates are formed by stacking two or more laminas, with different fiber orientations, as to respond to complex states of stresses. These laminates experience the effect of axial-shear coupling, which is caused by applying normal or shear stresses, implying shear or normal strains, respectively. The normal-shear coupling is expressed by the coefficients of mutual influence. They are engineering constants of primary interest for composite laminates, since the mismatch of the material properties between adjacent layers can produce interlaminar stresses and/or plies delamination. The paper presents the variation of the in-plane and flexural coefficients of mutual influence for three types of multi-layered composites, with different stacking sequences. The results are obtained using the Classical Lamination Theory (CLT) and are illustrated graphically in terms of fiber orientations, for asymmetric, antisymmetric and symmetric laminates. Conclusions are formulated on the variation of these coefficients, caused by the stacking sequence.

  12. Magnetic force driven magnetoelectric effect in bi-cantilever composites

    NASA Astrophysics Data System (ADS)

    Zhang, Ru; Wu, Gaojian; Zhang, Ning

    2017-12-01

    The magnetic force driven magnetoelectric (ME) effect in bi-cantilever Mn-Zn-Ferrite /PZT composites is presented. Compared with single cantilever, the ME voltage coefficient in bi-cantilever composite is a little lower and the resonance frequency is higher, but the bi-cantilever structure is advantageous for integration. When the magnetic gap is 3 mm, the ME voltage coefficient can achieve 6.2 Vcm-1Oe-1 at resonance under optimum bias field Hm=1030 Oe; when the magnetic gap is 1.5 mm, the ME voltage coefficient can get the value as high as 4.4 Vcm-1Oe-1 under much lower bias field H=340 Oe. The stable ME effect in bi-cantilever composites has important potential application in the design of new type ME device.

  13. Precision Composite Space Structures

    DTIC Science & Technology

    2007-10-15

    large structures. 15. SUBJECT TERMS Composite materials, dimensional stability, microcracking, thermal expansion , space structures, degradation...Figure 32. Variation of normalized coefficients of thermal expansion α11(n), α22(n), and α33(n) with normalized crack density of an AS4/3501-6...coefficients of thermal expansion α11(n), α22(n), and α33(n) with normalized crack density of an AS4/3501-6 composite lamina with a fiber volume

  14. Thermoelectric properties of (DyNiSn)1-x(DyNiSb)x composite

    NASA Astrophysics Data System (ADS)

    Synoradzki, Karol; Ciesielski, Kamil; Kępiński, Leszek; Kaczorowski, Dariusz

    2018-05-01

    High temperature thermoelectric properties of bulk and ball-milled cold-pressed (DyNiSn)1-x(DyNiSb)x composite materials have been studied. For bulk pure DyNiSn and DyNiSb samples the Seebeck coefficient reaches - 5.5 μV/K at 480 K and 120 μV/K at 540 K, respectively. Composite materials show metallic-like electrical resistivity and positive sign of Seebeck coefficient with values up to 50 times higher than in pure DyNiSn compound at 1000 K. Only for the sample with x = 0.47, the ball-milling drives to increase of Seebeck coefficient of about 37% at 650 K.

  15. Reflection and Transmission Coefficient of Yttrium Iron Garnet Filled Polyvinylidene Fluoride Composite Using Rectangular Waveguide at Microwave Frequencies

    PubMed Central

    Soleimani, Hassan; Abbas, Zulkifly; Yahya, Noorhana; Shameli, Kamyar; Soleimani, Hojjatollah; Shabanzadeh, Parvaneh

    2012-01-01

    The sol-gel method was carried out to synthesize nanosized Yttrium Iron Garnet (YIG). The nanomaterials with ferrite structure were heat-treated at different temperatures from 500 to 1000 °C. The phase identification, morphology and functional groups of the prepared samples were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR), respectively. The YIG ferrite nanopowder was composited with polyvinylidene fluoride (PVDF) by a solution casting method. The magnitudes of reflection and transmission coefficients of PVDF/YIG containing 6, 10 and 13% YIG, respectively, were measured using rectangular waveguide in conjunction with a microwave vector network analyzer (VNA) in X-band frequencies. The results indicate that the presence of YIG in polymer composites causes an increase in reflection coefficient and decrease in transmission coefficient of the polymer. PMID:22942718

  16. Mechanical properties of several neat polymer matrix materials and unidirectional carbon fiber-reinforced composites

    NASA Technical Reports Server (NTRS)

    Coguill, Scott L.; Adams, Donald F.

    1989-01-01

    The mechanical and physical properties of three neat matrix materials, i.e., PEEK (polyetheretherketone) thermoplastic, Hexcel F155 rubber-toughened epoxy and Hercules 8551-7 rubber-toughened epoxy, were experimentally determined. Twelve unidirectional carbon fiber composites, incorporating matrix materials characterized in this or earlier studies (with one exception; the PISO(sub 2)-TPI matrix itself was not characterized), were also tested. These composite systems included AS4/2220-1, AS4/2220-3, T500/R914, IM6/HX1504, T300/4901A (MDA), T700/4901A (MDA), T300/4901B (MPDA), T700/4901B (MPDA), APC2 (AS4/PEEK, ICI), APC2 (AS4/PEEK, Langley Research Center), AS4/8551-7, and AS4/PISO(sub 2)-TPI. For the neat matrix materials, the tensile, shear, fracture toughness, coefficient of thermal expansion, and coefficient of moisture expansion properties were measured as a function of both temperature and moisture content. For the unidirectional composites, axial and transverse tensile, longitudinal shear, coefficient of thermal expansion, and coefficient of moisture expansion properties were determined, at room temperature and 100 C.

  17. Cellulose-based magnetoelectric composites.

    PubMed

    Zong, Yan; Zheng, Tian; Martins, Pedro; Lanceros-Mendez, S; Yue, Zhilian; Higgins, Michael J

    2017-06-28

    Since the first magnetoelectric polymer composites were fabricated more than a decade ago, there has been a reluctance to use piezoelectric polymers other than poly(vinylidene fluoride) and its copolymers due to their well-defined piezoelectric mechanism and high piezoelectric coefficients that lead to superior magnetoelectric coefficients of >1 V cm -1  Oe -1 . This is the current situation despite the potential for other piezoelectric polymers, such as natural biopolymers, to bring unique, added-value properties and functions to magnetoelectric composite devices. Here we demonstrate a cellulose-based magnetoelectric laminate composite that produces considerable magnetoelectric coefficients of ≈1.5 V cm -1  Oe -1 , comprising a Fano resonance that is ubiquitous in the field of physics, such as photonics, though never experimentally observed in magnetoelectric composites. The work successfully demonstrates the concept of exploring new advances in using biopolymers in magnetoelectric composites, particularly cellulose, which is increasingly employed as a renewable, low-cost, easily processable and degradable material.Magnetoelectric materials by converting a magnetic input to a voltage output holds promise in contactless electrodes that find applications from energy harvesting to sensing. Zong et al. report a promising laminate composite that combines a piezoelectric biopolymer, cellulose, and a magnetic material.

  18. Limb Correction of Polar-Orbiting Imagery for the Improved Interpretation of RGB Composites

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Elmer, Nicholas

    2016-01-01

    Red-Green-Blue (RGB) composite imagery combines information from several spectral channels into one image to aid in the operational analysis of atmospheric processes. However, infrared channels are adversely affected by the limb effect, the result of an increase in optical path length of the absorbing atmosphere between the satellite and the earth as viewing zenith angle increases. This paper reviews a newly developed technique to quickly correct for limb effects in both clear and cloudy regions using latitudinally and seasonally varying limb correction coefficients for real-time applications. These limb correction coefficients account for the increase in optical path length in order to produce limb-corrected RGB composites. The improved utility of a limb-corrected Air Mass RGB composite from the application of this approach is demonstrated using Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. However, the limb correction can be applied to any polar-orbiting sensor infrared channels, provided the proper limb correction coefficients are calculated. Corrected RGB composites provide multiple advantages over uncorrected RGB composites, including increased confidence in the interpretation of RGB features, improved situational awareness for operational forecasters, and the ability to use RGB composites from multiple sensors jointly to increase the temporal frequency of observations.

  19. Flexible Dielectric Nanocomposites with Ultrawide Zero-Temperature Coefficient Windows for Electrical Energy Storage and Conversion under Extreme Conditions.

    PubMed

    Shehzad, Khurram; Xu, Yang; Gao, Chao; Li, Hanying; Dang, Zhi-Min; Hasan, Tawfique; Luo, Jack; Duan, Xiangfeng

    2017-03-01

    Polymer dielectrics offer key advantages over their ceramic counterparts such as flexibility, scalability, low cost, and high breakdown voltages. However, a major drawback that limits more widespread application of polymer dielectrics is their temperature-dependent dielectric properties. Achieving dielectric constants with low/zero-temperature coefficient (L/0TC) over a broad temperature range is essential for applications in diverse technologies. Here, we report a hybrid filler strategy to produce polymer composites with an ultrawide L/0TC window of dielectric constant, as well as a significantly enhanced dielectric value, maximum energy storage density, thermal conductivity, and stability. By creating a series of percolative polymer composites, we demonstrated hybrid carbon filler based composites can exhibit a zero-temperature coefficient window of 200 °C (from -50 to 150 °C), the widest 0TC window for all polymer composite dielectrics reported to date. We further show the electric and dielectric temperature coefficient of the composites is highly stable against stretching and bending, even under AC electric field with frequency up to 1 MHz. We envision that our method will push the functional limits of polymer dielectrics for flexible electronics in extreme conditions such as in hybrid vehicles, aerospace, power electronics, and oil/gas exploration.

  20. Tribological behaviors of UHMWPE composites with different counter surface morphologies

    NASA Astrophysics Data System (ADS)

    Wang, Yanzhen; Yin, Zhongwei; Li, Hulin; Gao, Gengyuan

    2017-12-01

    The influence of counter surface morphologies on hybrid glass fiber (GF) and carbon fiber (CF) filled ultrahigh molecular weight polyethylene (UHMWPE) were studied under various contact pressure and sliding speed against GCr15 steel in dry condition. The goals were to investigate the tribological behavior of GF/CF/UHMWPE composite as a kind of water lubricated journal bearing material. The friction and wear behavior of composites were examined using a pin-on-disc tribometer. The morphologies of the worn surface were examined by scanning electron microscopy (SEM) and laser 3D micro-imaging and profile measurement. Generally, the wear rate and friction coefficient of composites increase as the increment of counter surface roughness. The friction coefficient increases firstly and then decrease with an increase in sliding speed and contact pressure for counterface with Ra=0.2 and 3.5 μm, while the friction coefficient decreased for counterface with Ra=0.6 μm.

  1. Thermal Expansion and Diffusion Coefficients of Carbon Nanotube-Polymer Composites

    NASA Technical Reports Server (NTRS)

    Wei, Chengyu; Srivastava, Deepak; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)

    2001-01-01

    Classical molecular dynamics (MD) simulations employing Brenner potential for intra-nanotube interactions and van der Waals forces for polymer-nanotube interface have been used to investigate thermal expansion and diffusion characteristics of carbon nanotube-polyethylene composites. Addition of carbon nanotubes to polymer matrix is found to significantly increase the glass transition temperature Tg, and thermal expansion and diffusion coefficients in the composite above Tg. The increase has been attributed to the temperature dependent increase of the excluded volume for the polymer chains, and the findings could have implications in the composite processing, coating and painting applications.

  2. Simultaneous estimation of diet composition and calibration coefficients with fatty acid signature data

    USGS Publications Warehouse

    Bromaghin, Jeffrey F.; Budge, Suzanne M.; Thiemann, Gregory W.; Rode, Karyn D.

    2017-01-01

    Knowledge of animal diets provides essential insights into their life history and ecology, although diet estimation is challenging and remains an active area of research. Quantitative fatty acid signature analysis (QFASA) has become a popular method of estimating diet composition, especially for marine species. A primary assumption of QFASA is that constants called calibration coefficients, which account for the differential metabolism of individual fatty acids, are known. In practice, however, calibration coefficients are not known, but rather have been estimated in feeding trials with captive animals of a limited number of model species. The impossibility of verifying the accuracy of feeding trial derived calibration coefficients to estimate the diets of wild animals is a foundational problem with QFASA that has generated considerable criticism. We present a new model that allows simultaneous estimation of diet composition and calibration coefficients based only on fatty acid signature samples from wild predators and potential prey. Our model performed almost flawlessly in four tests with constructed examples, estimating both diet proportions and calibration coefficients with essentially no error. We also applied the model to data from Chukchi Sea polar bears, obtaining diet estimates that were more diverse than estimates conditioned on feeding trial calibration coefficients. Our model avoids bias in diet estimates caused by conditioning on inaccurate calibration coefficients, invalidates the primary criticism of QFASA, eliminates the need to conduct feeding trials solely for diet estimation, and consequently expands the utility of fatty acid data to investigate aspects of ecology linked to animal diets.

  3. Tribological behaviour and statistical experimental design of sintered iron-copper based composites

    NASA Astrophysics Data System (ADS)

    Popescu, Ileana Nicoleta; Ghiţă, Constantin; Bratu, Vasile; Palacios Navarro, Guillermo

    2013-11-01

    The sintered iron-copper based composites for automotive brake pads have a complex composite composition and should have good physical, mechanical and tribological characteristics. In this paper, we obtained frictional composites by Powder Metallurgy (P/M) technique and we have characterized them by microstructural and tribological point of view. The morphology of raw powders was determined by SEM and the surfaces of obtained sintered friction materials were analyzed by ESEM, EDS elemental and compo-images analyses. One lot of samples were tested on a "pin-on-disc" type wear machine under dry sliding conditions, at applied load between 3.5 and 11.5 × 10-1 MPa and 12.5 and 16.9 m/s relative speed in braking point at constant temperature. The other lot of samples were tested on an inertial test stand according to a methodology simulating the real conditions of dry friction, at a contact pressure of 2.5-3 MPa, at 300-1200 rpm. The most important characteristics required for sintered friction materials are high and stable friction coefficient during breaking and also, for high durability in service, must have: low wear, high corrosion resistance, high thermal conductivity, mechanical resistance and thermal stability at elevated temperature. Because of the tribological characteristics importance (wear rate and friction coefficient) of sintered iron-copper based composites, we predicted the tribological behaviour through statistical analysis. For the first lot of samples, the response variables Yi (represented by the wear rate and friction coefficient) have been correlated with x1 and x2 (the code value of applied load and relative speed in braking points, respectively) using a linear factorial design approach. We obtained brake friction materials with improved wear resistance characteristics and high and stable friction coefficients. It has been shown, through experimental data and obtained linear regression equations, that the sintered composites wear rate increases with increasing applied load and relative speed, but in the same conditions, the frictional coefficients slowly decrease.

  4. Numerical approach of the injection molding process of fiber-reinforced composite with considering fiber orientation

    NASA Astrophysics Data System (ADS)

    Nguyen Thi, T. B.; Yokoyama, A.; Ota, K.; Kodama, K.; Yamashita, K.; Isogai, Y.; Furuichi, K.; Nonomura, C.

    2014-05-01

    One of the most important challenges in the injection molding process of the short-glass fiber/thermoplastic composite parts is being able to predict the fiber orientation, since it controls the mechanical and the physical properties of the final parts. Folgar and Tucker included into the Jeffery equation a diffusive type of term, which introduces a phenomenological coefficient for modeling the randomizing effect of the mechanical interactions between the fibers, to predict the fiber orientation in concentrated suspensions. Their experiments indicated that this coefficient depends on the fiber volume fraction and aspect ratio. However, a definition of the fiber interaction coefficient, which is very necessary in the fiber orientation simulations, hasn't still been proven yet. Consequently, this study proposed a developed fiber interaction model that has been introduced a fiber dynamics simulation in order to obtain a global fiber interaction coefficient. This supposed that the coefficient is a sum function of the fiber concentration, aspect ratio, and angular velocity. The proposed model was incorporated into a computer aided engineering simulation package C-Mold. Short-glass fiber/polyamide-6 composites were produced in the injection molding with the fiber weight concentration of 30 wt.%, 50 wt.%, and 70 wt.%. The physical properties of these composites were examined, and their fiber orientation distributions were measured by micro-computed-tomography equipment μ-CT. The simulation results showed a good agreement with experiment results.

  5. Ultra-High Sensitive Magnetoelectric Nanocomposite Current Sensors

    DTIC Science & Technology

    2009-12-01

    textured grains. In the sintered composite, PZT -PZN...constant increases by 50% for the moderate degree of texturing . Figure 8 shows the ME coefficient of trilayer with textured PZT – PZN as function of DC...1000 1100 d E /d H ( m V /c m .O e ) Field (Oe) NCZF - PZT - PZN ( textured ) - NCZF Figure 8: ME coefficient of the textured ME composite.

  6. Aligned porous barium titanate/hydroxyapatite composites with high piezoelectric coefficients for bone tissue engineering.

    PubMed

    Zhang, Yan; Chen, Liangjian; Zeng, Jing; Zhou, Kechao; Zhang, Dou

    2014-06-01

    It was proposed that the piezoelectric effect played an important physiological role in bone growth, remodelling and fracture healing. An aligned porous piezoelectric composite scaffold was fabricated by freeze casting hydroxyapatite/barium titanate (HA/BT) suspensions. The highest compressive strength and lowest porosity of 14.5MPa and 57.4% with the best parallelism of the pore channels were achieved in the HA10/BT90 composite. HA30/BT70 and HA10/BT90 composites exhibited piezoelectric coefficient d33 of 1.2 and 2.8pC/N, respectively, both of which were higher than the piezoelectric coefficient of natural bone. Increase of the solid loading of the suspension and solidification velocity led to the improvement of piezoelectric coefficient d33. Meanwhile, double-templates resulted in the coexistence of lamellar pores and aligned macro-pores, exhibiting the ability to produce an oriented long-range ordered architecture. The manipulation flexibility of this method indicated the potential for customized needs in the application of bone substitute. An MTT assay indicated that the obtained scaffolds had no cytotoxic effects on L929 cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Local heat-transfer measurements on a large, scale-model turbine blade airfoil using a composite of a heater element and liquid crystals

    NASA Technical Reports Server (NTRS)

    Hippensteele, S. A.; Russell, L. M.; Torres, F. J.

    1985-01-01

    Local heat transfer coefficients were experimentally mapped along the midchord of a five-time-size turbine blade airfoil in a static cascade operated at room temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a mylar sheet with a layer of cholesteric liquid crystals, that change color with temperature, and a heater sheet made of a carbon-impregnated paper, that produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. The local heat transfer coefficients are presented for Reynolds numbers from 2.8 x 10 to the 5th power to 7.6 x 10 to the 5th power. Comparisons are made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code. Also, a leading edge separation bubble was revealed by thermal and flow visualization.

  8. Thermodynamic Properties and Transport Coefficients of Nitrogen, Hydrogen and Helium Plasma Mixed with Silver Vapor

    NASA Astrophysics Data System (ADS)

    Zhou, Xue; Cui, Xinglei; Chen, Mo; Zhai, Guofu

    2016-05-01

    Species composites of Ag-N2, Ag-H2 and Ag-He plasmas in the temperature range of 3,000-20,000 K and at 1 atmospheric pressure were calculated by using the minimization of Gibbs free energy. Thermodynamic properties and transport coefficients of nitrogen, hydrogen and helium plasmas mixed with a variety of silver vapor were then calculated based on the equilibrium composites and collision integral data. The calculation procedure was verified by comparing the results obtained in this paper with the published transport coefficients on the case of pure nitrogen plasma. The influences of the silver vapor concentration on composites, thermodynamic properties and transport coefficients were finally analyzed and summarized for all the three types of plasmas. Those physical properties were important for theoretical study and numerical calculation on arc plasma generated by silver-based electrodes in those gases in sealed electromagnetic relays and contacts. supported by National Natural Science Foundation of China (Nos. 51277038 and 51307030)

  9. A Simple Geotracer Compositional Correlation Analysis Reveals Oil Charge and Migration Pathways

    NASA Astrophysics Data System (ADS)

    Yang, Yunlai; Arouri, Khaled

    2016-03-01

    A novel approach, based on geotracer compositional correlation analysis is reported, which reveals the oil charge sequence and migration pathways for five oil fields in Saudi Arabia. The geotracers utilised are carbazoles, a family of neutral pyrrolic nitrogen compounds known to occur naturally in crude oils. The approach is based on the concept that closely related fields, with respect to filling sequence, will show a higher carbazole compositional correlation, than those fields that are less related. That is, carbazole compositional correlation coefficients can quantify the charge and filling relationships among different fields. Consequently, oil migration pathways can be defined based on the established filling relationships. The compositional correlation coefficients of isomers of C1 and C2 carbazoles, and benzo[a]carbazole for all different combination pairs of the five fields were found to vary extremely widely (0.28 to 0.94). A wide range of compositional correlation coefficients allows adequate differentiation of separate filling relationships. Based on the established filling relationships, three distinct migration pathways were inferred, with each apparently being charged from a different part of a common source kitchen. The recognition of these charge and migration pathways will greatly aid the search for new accumulations.

  10. A Simple Geotracer Compositional Correlation Analysis Reveals Oil Charge and Migration Pathways

    PubMed Central

    Yang, Yunlai; Arouri, Khaled

    2016-01-01

    A novel approach, based on geotracer compositional correlation analysis is reported, which reveals the oil charge sequence and migration pathways for five oil fields in Saudi Arabia. The geotracers utilised are carbazoles, a family of neutral pyrrolic nitrogen compounds known to occur naturally in crude oils. The approach is based on the concept that closely related fields, with respect to filling sequence, will show a higher carbazole compositional correlation, than those fields that are less related. That is, carbazole compositional correlation coefficients can quantify the charge and filling relationships among different fields. Consequently, oil migration pathways can be defined based on the established filling relationships. The compositional correlation coefficients of isomers of C1 and C2 carbazoles, and benzo[a]carbazole for all different combination pairs of the five fields were found to vary extremely widely (0.28 to 0.94). A wide range of compositional correlation coefficients allows adequate differentiation of separate filling relationships. Based on the established filling relationships, three distinct migration pathways were inferred, with each apparently being charged from a different part of a common source kitchen. The recognition of these charge and migration pathways will greatly aid the search for new accumulations. PMID:26965479

  11. A Simple Geotracer Compositional Correlation Analysis Reveals Oil Charge and Migration Pathways.

    PubMed

    Yang, Yunlai; Arouri, Khaled

    2016-03-11

    A novel approach, based on geotracer compositional correlation analysis is reported, which reveals the oil charge sequence and migration pathways for five oil fields in Saudi Arabia. The geotracers utilised are carbazoles, a family of neutral pyrrolic nitrogen compounds known to occur naturally in crude oils. The approach is based on the concept that closely related fields, with respect to filling sequence, will show a higher carbazole compositional correlation, than those fields that are less related. That is, carbazole compositional correlation coefficients can quantify the charge and filling relationships among different fields. Consequently, oil migration pathways can be defined based on the established filling relationships. The compositional correlation coefficients of isomers of C1 and C2 carbazoles, and benzo[a]carbazole for all different combination pairs of the five fields were found to vary extremely widely (0.28 to 0.94). A wide range of compositional correlation coefficients allows adequate differentiation of separate filling relationships. Based on the established filling relationships, three distinct migration pathways were inferred, with each apparently being charged from a different part of a common source kitchen. The recognition of these charge and migration pathways will greatly aid the search for new accumulations.

  12. Lithium-doped hydroxyapatite nano-composites: Synthesis, characterization, gamma attenuation coefficient and dielectric properties

    NASA Astrophysics Data System (ADS)

    Badran, H.; Yahia, I. S.; Hamdy, Mohamed S.; Awwad, N. S.

    2017-01-01

    Lithium-hydroxyapatite (0, 1, 5, 10, 20, 30 and 40 wt% Li-HAp) nano-composites were synthesized by sol-gel technique followed by microwave-hydrothermal treatment. The composites were characterized by X-ray diffraction (XRD), Field emission scanning electron microscope (FE-SEM), energy dispersive spectroscopy (EDS), Fourier transform infrared (FTIR) and Raman techniques. Gamma attenuation coefficient and the dielectric properties for all composites were investigated. The crystallinity degree of Li-doped HAp was higher than that of un-doped HAp. Gamma attenuation coefficient values increased from 0.562 cm-1 for 0 wt% Li-HAp to 2.190 cm-1 for 40 wt% Li-HAp. The alternating current conductivity increased with increasing frequency. The concentration of Li affect the values of dielectric constant where Li doped HAp of low dielectric constant can have an advantage for healing in bone fractures. The calcium to phosphorus ratio decreased from 1.43 to 1.37 with the addition of lithium indicating the Ca deficiency in the studied composites. Our findings lead to the conclusion that Li-HAp is a new nano-composite useful for medical applications and could be doped with gamma shield materials.

  13. The effect of melt composition on the partitioning of trace elements between titanite and silicate melt

    NASA Astrophysics Data System (ADS)

    Prowatke, S.; Klemme, S.

    2003-04-01

    The aim of this study is to systematically investigate the influence of melt composition on the partitioning of trace elements between titanite and different silicate melts. Titanite was chosen because of its important role as an accessory mineral, particularly with regard to intermediate to silicic alkaline and calc-alkaline magmas [e.g. 1] and of its relative constant mineral composition over a wide range of bulk compositions. Experiments at atmospheric pressure were performed at temperatures between 1150°C and 1050°C. Bulk compositions were chosen to represent a basaltic andesite (SH3 - 53% SiO2), a dacite (SH2 - 65 SiO2) and a rhyolite (SH1 - 71% SiO2). Furthermore, two additional experimental series were conducted to investigate the effect of Al-Na and the Na-K ratio of melts on partitioning. Starting materials consisted of glasses that were doped with 23 trace elements including some selected rare earth elements (La, Ce, Pr, Sm, Gd, Lu), high field strength elements (Zr, Hf, Nb, Ta) and large ion lithophile elements (Cs, Rb, Ba) and Th and U. The experimental run products were analysed for trace elements using secondary ion mass spectrometry at Heidelberg University. Preliminary results indicate a strong effect of melt composition on trace element partition coefficients. Partition coefficients for rare-earth elements uniformly show a convex-upward shape [2, 3], since titanite accommodates the middle rare-earth elements more readily than the light rare-earth elements or the heavy rare-earth elements. Partition coefficients for the rare-earth elements follow a parabolic trend when plotted against ionic radius. The shape of the parabola is very similar for all studied bulk compositions, the position of the parabola, however, is strongly dependent on bulk composition. For example, isothermal rare-earth element partition coefficients (such as La) are incompatible (D<1) in alkali-rich silicate melts and strongly compatible (D>>1) in alkali-poor melt compositions. From our experimental data we present an model that combines the influence of the crystal lattice on partitioning with the effect of melt composition on trace element partition coefficients. [1] Nakada, S. (1991) Am. Mineral. 76: 548-560 [2] Green, T.H. and Pearson, N.J. (1986) Chem. Geol. 55: 105-119 [3] Tiepolo, M.; Oberti, R. and Vannucci, R. (2002) Chem. Geol. 191: 105-119

  14. Research on torsional friction behavior and fluid load support of PVA/HA composite hydrogel.

    PubMed

    Chen, Kai; Zhang, Dekun; Yang, Xuehui; Cui, Xiaotong; Zhang, Xin; Wang, Qingliang

    2016-09-01

    Hydrogels have been extensively studied for use as synthetic articular cartilage. This study aimed to investigate (1) the torsional friction contact state and the transformation mechanism of PVA/HA composite hydrogel against CoCrMo femoral head and (2) effects of load and torsional angle on torsional friction behavior. The finite element method was used to study fluid load support of PVA/HA composite hydrogel. Results show fluid loss increases gradually of PVA/HA composite hydrogel with torsional friction time, leading to fluid load support decreases. The contact state changes from full slip state to stick-slip mixed state. As the load increases, friction coefficient and adhesion zone increase gradually. As the torsional angle increases, friction coefficient and slip trend of the contact interface increase, resulting in the increase of the slip zone and the reduction of the adhesion zone. Fluid loss increases of PVA/HA composite hydrogel as the load and the torsional angle increase, which causes the decrease of fluid load support and the increase of friction coefficient. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Identification of aerosol composition from multi-wavelength lidar measurements

    NASA Technical Reports Server (NTRS)

    Wood, S. A.

    1984-01-01

    This paper seeks to develop the potential of lidar for the identification of the chemical composition of atmospheric aerosols. Available numerical computations suggest that aerosols can be identified by the wavelength dependence of aerosol optical properties. Since lidar can derive the volume backscatter coefficient as a function of wavelength, a multi-wavelength lidar system may be able to provide valuable information on the composition of aerosols. This research theoretically investigates the volume backscatter coefficients for the aerosol classes, sea-salts, and sulfates, as a function of wavelength. The results show that these aerosol compositions can be characterized and identified by their backscatter wavelength dependence. A method to utilize multi-wavelength lidar measurements to discriminate between compositionally different thin aerosol layers is discussed.

  16. Prediction of composite thermal behavior made simple

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1981-01-01

    A convenient procedure is described to determine the thermal behavior (thermal expansion coefficients and thermal stresses) of angleplied fiber composites using a pocket calculator. The procedure consists of equations and appropriate graphs for various ( + or - theta) ply combinations. These graphs present reduced stiffness and thermal expansion coefficients as functions of (+ or - theta) in order to simplify and expedite the use of the equations. The procedure is applicable to all types of balanced, symmetric fiber composites including interply and intraply hybrids. The versatility and generality of the procedure is illustrated using several step-by-step numerical examples.

  17. Bismuth-Silicon and Bismuth-Polyurethane Composite Shields for Breast Protection in Chest Computed Tomography Examinations

    PubMed Central

    Mehnati, Parinaz; Arash, Mehran; Akhlaghi, Parisa

    2018-01-01

    The article aims at constructing protective composite shields for breasts in chest computed tomography and investigating the effects of applying these new bismuth composites on dose and image quality. Polyurethane and silicon with 5% of bismuth were fabricated as a protective shield. At first, their efficiency in attenuating the X-ray beam was investigated by calculating the total attenuation coefficients at diagnostic energy range. Then, a physical chest phantom was scanned without and with these shields at tube voltage of 120 kVp, and image parameters together with dose values were studied. The results showed that these two shields have great effects on attenuating the X-ray beam, especially for lower energies (<40 kV), and in average, the attenuation coefficients of bismuth-polyurethane composite are higher in this energy range. The maximum relative differences between the average Hounsfield units (HUs) and noises of images without and with shield for both composites in 13 regions of interest were 4.5% and 15.7%, respectively. Moreover, primary investigation confirmed the ability of both shields (especially polyurethane-bismuth composite) in dose reduction. Comparing these two composites regarding the amount of dose reduction, the changes in HU and noise, and attenuation coefficients in diagnostic energy range, it seems that polyurethane composite is more useful for dose reduction, especially for higher tube voltages. PMID:29628636

  18. Local Displacements and Load Transfer of Shape Memory Alloys in Polymeric Matrices

    DTIC Science & Technology

    1997-01-01

    plane displacements of room temperature cured SMA ribbon composites were obtained using moiré interferometry. Displacements due to thermal expansion ...141 Figure 6.10 Displacement profiles along SMA ribbon or different values of the coefficient of thermal expansion ...greater importance in polymer composites, which can have large coefficients of thermal expansion . Further, there is also a lack of experimental data

  19. Radon diffusion coefficients in 360 waterproof materials of different chemical composition.

    PubMed

    Jiránek, M; Kotrbatá, M

    2011-05-01

    This paper summarises the results of radon diffusion coefficient measurements in 360 common waterproof materials available throughout Europe. The materials were grouped into 26 categories according to their chemical composition. It was found that the diffusion coefficients of materials used for protecting houses against radon vary within eight orders from 10(-15) to 10(-8) m(2) s(-1). The lowest values were obtained for bitumen membranes with an Al carrier film and for ethylene vinyl acetate membranes. The highest radon diffusion coefficient values were discovered for sodium bentonite membranes, rubber membranes made of ethylene propylene diene monomer and polymer cement coatings. The radon diffusion coefficients for waterproofings widely used for protecting houses, i.e. flexible polyvinyl chloride, high-, low-density polyethylene, polypropylene and bitumen membranes, vary in the range from 3 × 10(-12) to 3 × 10(-11) m(2) s(-1). Tests were performed which confirmed that the radon diffusion coefficient is also an effective tool for verifying the air-tightness of joints.

  20. Quantifying Uncertainties in the Thermo-Mechanical Properties of Particulate Reinforced Composites

    NASA Technical Reports Server (NTRS)

    Mital, Subodh K.; Murthy, Pappu L. N.

    1999-01-01

    The present paper reports results from a computational simulation of probabilistic particulate reinforced composite behavior. The approach consists use of simplified micromechanics of particulate reinforced composites together with a Fast Probability Integration (FPI) technique. Sample results are presented for a Al/SiC(sub p)(silicon carbide particles in aluminum matrix) composite. The probability density functions for composite moduli, thermal expansion coefficient and thermal conductivities along with their sensitivity factors are computed. The effect of different assumed distributions and the effect of reducing scatter in constituent properties on the thermal expansion coefficient are also evaluated. The variations in the constituent properties that directly effect these composite properties are accounted for by assumed probabilistic distributions. The results show that the present technique provides valuable information about the scatter in composite properties and sensitivity factors, which are useful to test or design engineers.

  1. Numerical approach of the injection molding process of fiber-reinforced composite with considering fiber orientation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen Thi, T. B., E-mail: thanhbinh.skku@gmail.com, E-mail: yokoyama@kit.ac.jp; Yokoyama, A., E-mail: thanhbinh.skku@gmail.com, E-mail: yokoyama@kit.ac.jp; Ota, K., E-mail: kei-ota@toyobo.jp, E-mail: katsuhiro-kodama@toyobo.jp, E-mail: katsuhisa-yamashita@toyobo.jp, E-mail: yumiko-isogai@toyobo.jp, E-mail: kenji-furuichi@toyobo.jp, E-mail: chisato-nonomura@toyobo.jp

    2014-05-15

    One of the most important challenges in the injection molding process of the short-glass fiber/thermoplastic composite parts is being able to predict the fiber orientation, since it controls the mechanical and the physical properties of the final parts. Folgar and Tucker included into the Jeffery equation a diffusive type of term, which introduces a phenomenological coefficient for modeling the randomizing effect of the mechanical interactions between the fibers, to predict the fiber orientation in concentrated suspensions. Their experiments indicated that this coefficient depends on the fiber volume fraction and aspect ratio. However, a definition of the fiber interaction coefficient, whichmore » is very necessary in the fiber orientation simulations, hasn't still been proven yet. Consequently, this study proposed a developed fiber interaction model that has been introduced a fiber dynamics simulation in order to obtain a global fiber interaction coefficient. This supposed that the coefficient is a sum function of the fiber concentration, aspect ratio, and angular velocity. The proposed model was incorporated into a computer aided engineering simulation package C-Mold. Short-glass fiber/polyamide-6 composites were produced in the injection molding with the fiber weight concentration of 30 wt.%, 50 wt.%, and 70 wt.%. The physical properties of these composites were examined, and their fiber orientation distributions were measured by micro-computed-tomography equipment μ-CT. The simulation results showed a good agreement with experiment results.« less

  2. Dielectric and piezoelectric properties of hydroxyapatite-BaTiO3 composites

    NASA Astrophysics Data System (ADS)

    Bowen, C. R.; Gittings, J.; Turner, I. G.; Baxter, F.; Chaudhuri, J. B.

    2006-09-01

    This letter describes the relationships between the composition and the dielectric and piezoelectric properties of hydroxyapatite-barium titanate composites for polarized bone substitutes. The ac conductivity and permittivity were characterized from 0.1Hzto1MHz, along with measurements of the d33 piezoelectric charge coefficient. The addition of BaTiO3 led to an increase in permittivity and ac conductivity of the material. The increase in both properties was attributed to the presence of the high permittivity ferroelectric phase. The d33 and g33 coefficients decreased rapidly as hydroxyapatite was introduced into BaTiO3 material. Composites below 80% by volume of BaTiO3 exhibited no net piezoelectric effect.

  3. Thermally induced changes in the focal distance of composite mirrors - Composites with a zero coefficient of thermal expansion of the radius of curvature

    NASA Technical Reports Server (NTRS)

    Dolgin, Benjamin P.

    1992-01-01

    Calculations are presented of the coefficient of thermal expansion (CTE) of the radius of curvature of the reflector face sheets made of a quasi-isotropic composite. It is shown that, upon cooling, the change of the CTE of the focal distance of the mirror is equal to that of the radius of the curvature of the reflector face sheet. The CTE of the radius of the curvature of a quasi-isotropic composite face sheet depends on both the in-plane and the out-of-plane CTEs. The zero in-plane CTE of a face sheet does not guarantee mirrors with no focal length changes.

  4. Development of New Generation of Perspireable Skin

    DTIC Science & Technology

    2015-02-20

    Coefficient of Thermal Expansion (CTE) material simulating Reinforced Carbon - Carbon Composites (RCC). These tiles made of different materials...Very low thermal expansion coefficient materials, Annu. Rev. Mater. Sci., 1989, 19, 59-81 3. Mittal, R. and Chaplot S.L., Lattice dynamical...thermal expansion from0.3 to 1050 Kelvin in ZrW2O8, Science, 1996, 272, 90-92 6. G. Savage, Carbon - carbon composites, New York: Chapman & Hall, pp

  5. Studies in Wave-Material Interaction and Design of Composite Materials

    DTIC Science & Technology

    1990-08-10

    to Coating Design In two- and four- flux models of radiative transfer theory, the scattering coefficients or efficiencies of non -emitting media are...0, (5b) rangement of problem 1 acts somewhat like a beam splitter ; with CL and C? being the transmission coefficients. an incident LCP (RCP) plane...This contract supports theoretical research in "Wave Material Interaction and Design of Composite Materials: and is complemented by ongoing

  6. Nanocellulose based polymer composite for acoustical materials

    NASA Astrophysics Data System (ADS)

    Farid, Mohammad; Purniawan, Agung; Susanti, Diah; Priyono, Slamet; Ardhyananta, Hosta; Rahmasita, Mutia E.

    2018-04-01

    Natural fibers are biodegradable materials that are innovatively and widely used for composite reinforcement in automotive components. Nanocellulose derived from natural fibers oil palm empty bunches have properties that are remarkable for use as a composite reinforcement. However, there have not been many investigations related to the use of nanocellulose-based composites for wideband sound absorption materials. The specimens of nanocellulose-based polyester composite were prepared using a spray method. An impedance tube method was used to measure the sound absorption coefficient of this composite material. To reveal the characteristics of the nanocellulose-based polyester composite material, SEM (scanning electron microscope), TEM (Transmission Electron Microscope), FTIR (Fourier Transform Infra Red), TGA (Thermogravimetric Analysis), and density tests were performed. Sound absorption test results showed the average value of sound absorption coefficient of 0.36 to 0,46 for frequency between 500 and 4000 Hz indicating that this nanocellulose-based polyester composite materials had a tendency to wideband sound absorption materials and potentially used as automotive interior materials.

  7. Study on the Tribological Properties of MC Nylon Composites Filled with Hydraulic Oil

    NASA Astrophysics Data System (ADS)

    Yuan, S.; Li, Y.; Wen, J.; Yin, L.; Zhang, Q.

    2018-03-01

    Mechanical parts utilized in machinery, such as nylon slider and pulley, should have certain mechanical properties and good tribological properties, so that equipments’ stability and smoothness can be assured. A kind of MC nylon (monomer cast nylon) composites filled with hydraulic oil was studied in this paper. The addition of hydraulic oil changed nylon’s mechanical properties and tribological properties significantly, and improved the material’s toughness and coefficient of friction. The composites have excellent strength, toughness and relatively low coefficient of friction when the content of the hydraulic oil is 4wt%.

  8. Sliding mechanics of coated composite wires and the development of an engineering model for binding.

    PubMed

    Zufall, S W; Kusy, R P

    2000-02-01

    A tribological (friction and wear) study, which was designed to simulate clinical sliding mechanics, was conducted as part of an effort to determine the suitability of poly(chloro-p-xylylene) coatings for composite orthodontic archwires. Prototype composite wires, having stiffnesses similar to those of current initial and intermediate alignment wires, were tested against stainless steel and ceramic brackets in the passive and active configurations (with and without angulation). Kinetic coefficient of friction values, which were determined to quantify sliding resistances as functions of the normal forces of ligation, had a mean that was 72% greater than uncoated wire couples at 0.43. To improve analysis of the active configuration, a mathematical model was developed that related bracket angulation, bracket width, interbracket distance, wire geometry, and wire elastic modulus to sliding resistance. From this model, kinetic coefficients of binding were determined to quantify sliding resistances as functions of the normal forces of binding. The mean binding coefficient was the same as that of uncoated wire couples at 0.42. Although penetrations through the coating were observed on many specimens, the glass-fiber reinforcement within the composite wires was undamaged for all conditions tested. This finding implies that the risk of glass fiber release during clinical use would be eliminated by the coating. In addition, the frictional and binding coefficients were still within the limits outlined by conventional orthodontic wire-bracket couples. Consequently, the coatings were regarded as an improvement to the clinical acceptability of composite orthodontic archwires.

  9. The Perils of Partition: Difficulties in Retrieving Magma Compositions from Chemically Equilibrated Basaltic Meteorites

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    1996-01-01

    The chemical compositions of magmas can be derived from the compositions of their equilibrium minerals through mineral/magma partition coefficients. This method cannot be applied safely to basaltic rocks, either solidified lavas or cumulates, which have chemically equilibrated or partially equilibrated at subsolidus temperatures, i.e., in the absence of magma. Applying mineral/ melt partition coefficients to mineral compositions from such rocks will typically yield 'magma compositions' that are strongly fractionated and unreasonably enriched in incompatible elements (e.g., REE's). In the absence of magma, incompatible elements must go somewhere; they are forced into minerals (e.g., pyroxenes, plagioclase) at abundance levels far beyond those established during normal mineral/magma equilibria. Further, using mineral/magma partition coefficients with such rocks may suggest that different minerals equilibrated with different magmas, and the fractionation sequence of those melts (i.e., enrichment in incompatible elements) may not be consistent with independent constraints on the order of crystallization. Subsolidus equilibration is a reasonable cause for incompatible- element-enriched minerals in some eucrites, diogenites, and martian meteorites and offers a simple alternative to petrogenetic schemes involving highly fractionated magmas or magma infiltration metasomatism.

  10. Synthesis of Zr2WP2O12/ZrO2 Composites with Adjustable Thermal Expansion.

    PubMed

    Zhang, Zhiping; Sun, Weikang; Liu, Hongfei; Xie, Guanhua; Chen, Xiaobing; Zeng, Xianghua

    2017-01-01

    Zr 2 WP 2 O 12 /ZrO 2 composites were fabricated by solid state reaction with the goal of tailoring the thermal expansion coefficient. XRD, SEM and TMA were used to investigate the composition, microstructure, and thermal expansion behavior of Zr 2 WP 2 O 12 /ZrO 2 composites with different mass ratio. Relative densities of all the resulting Zr 2 WP 2 O 12 /ZrO 2 samples were also tested by Archimedes' methods. The obtained Zr 2 WP 2 O 12 /ZrO 2 composites were comprised of orthorhombic Zr 2 WP 2 O 12 and monoclinic ZrO 2 . As the increase of the Zr 2 WP 2 O 12 , the relative densities of Zr 2 WP 2 O 12 /ZrO 2 ceramic composites increased gradually. The coefficient of thermal expansion of the Zr 2 WP 2 O 12 /ZrO 2 composites can be tailored from 4.1 × 10 -6 K -1 to -3.3 × 10 -6 K -1 by changing the content of Zr 2 WP 2 O 12 . The 2:1 Zr 2 WP 2 O 12 /ZrO 2 specimen shows close to zero thermal expansion from 25 to 700°C with an average linear thermal expansion coefficient of -0.09 × 10 -6 K -1 . These adjustable and near zero expansion ceramic composites will have great potential application in many fields.

  11. Systems and methods for the synthesis of high thermoelectric performance doped-SnTe materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Zhifeng; Zhang, Qian; Chen, Gang

    A thermoelectric composition comprising tin (Sn), tellurium (Te) and at least one dopant that comprises a peak dimensionless figure of merit (ZT) of 1.1 and a Seebeck coefficient of at least 50 .mu.V/K and a method of manufacturing the thermoelectric composition. A plurality of components are disposed in a ball-milling vessel, wherein the plurality of components comprise tin (Sn), tellurium (Te), and at least one dopant such as indium (In). The components are subsequently mechanically and thermally processed, for example, by hot-pressing. In response to the mechanical-thermally processing, a thermoelectric composition is formed, wherein the thermoelectric composition comprises a dimensionlessmore » figure of merit (ZT) of the thermoelectric composition is at least 0.8, and wherein a Seebeck coefficient of the thermoelectric composition is at least 50 .mu.V/K at any temperature.« less

  12. Use of a liquid-crystal, heater-element composite for quantitative, high-resolution heat transfer coefficients on a turbine airfoil, including turbulence and surface roughness effects

    NASA Astrophysics Data System (ADS)

    Hippensteele, Steven A.; Russell, Louis M.; Torres, Felix J.

    1987-05-01

    Local heat transfer coefficients were measured along the midchord of a three-times-size turbine vane airfoil in a static cascade operated at roon temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a Mylar sheet with a layer of cholestric liquid crystals, which change color with temperature, and a heater made of a polyester sheet coated with vapor-deposited gold, which produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. Tests were conducted at two free-stream turbulence intensities: 0.6 percent, which is typical of wind tunnels; and 10 percent, which is typical of real engine conditions. In addition to a smooth airfoil, the effects of local leading-edge sand roughness were also examined for a value greater than the critical roughness. The local heat transfer coefficients are presented for both free-stream turbulence intensities for inlet Reynolds numbers from 1.20 to 5.55 x 10 to the 5th power. Comparisons are also made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code.

  13. Use of a liquid-crystal and heater-element composite for quantitative, high-resolution heat-transfer coefficients on a turbine airfoil including turbulence and surface-roughness effects

    NASA Astrophysics Data System (ADS)

    Hippensteele, S. A.; Russell, L. M.; Torres, F. J.

    Local heat transfer coefficients were measured along the midchord of a three-times-size turbine vane airfoil in a static cascade operated at room temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a Mylar sheet with a layer of cholestric liquid crystals, which change color with temperature, and a heater made of a polyester sheet coated with vapor-deposited gold, which produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. Tests were conducted at two free-stream turbulence intensities: 0.6 percent, which is typical of wind tunnels; and 10 percent, which is typical of real engine conditions. In addition to a smooth airfoil, the effects of local leading-edge sand roughness were also examined for a value greater than the critical roughness. The local heat transfer coefficients are presented for both free-stream turbulence intensities for inlet Reynolds numbers from 1.20 to 5.55 x 10 to the 5th power. Comparisons are also made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code.

  14. Use of a liquid-crystal, heater-element composite for quantitative, high-resolution heat transfer coefficients on a turbine airfoil, including turbulence and surface roughness effects

    NASA Technical Reports Server (NTRS)

    Hippensteele, Steven A.; Russell, Louis M.; Torres, Felix J.

    1987-01-01

    Local heat transfer coefficients were measured along the midchord of a three-times-size turbine vane airfoil in a static cascade operated at roon temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a Mylar sheet with a layer of cholestric liquid crystals, which change color with temperature, and a heater made of a polyester sheet coated with vapor-deposited gold, which produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. Tests were conducted at two free-stream turbulence intensities: 0.6 percent, which is typical of wind tunnels; and 10 percent, which is typical of real engine conditions. In addition to a smooth airfoil, the effects of local leading-edge sand roughness were also examined for a value greater than the critical roughness. The local heat transfer coefficients are presented for both free-stream turbulence intensities for inlet Reynolds numbers from 1.20 to 5.55 x 10 to the 5th power. Comparisons are also made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code.

  15. Thermodynamics of Boron Removal from Silicon Using CaO-MgO-Al2O3-SiO2 Slags

    NASA Astrophysics Data System (ADS)

    Jakobsson, Lars Klemet; Tangstad, Merete

    2018-04-01

    Slag refining is one of few metallurgical methods for removal of boron from silicon. It is important to know the thermodynamic properties of boron in slags to understand the refining process. The relation of the distribution coefficient of boron to the activity of silica, partial pressure of oxygen, and capacity of slags for boron oxide was investigated. The link between these parameters explains why the distribution coefficient of boron does not change much with changing slag composition. In addition, the thermodynamic properties of dilute boron oxide in CaO-MgO-Al2O3-SiO2 slags was determined. The ratio of the activity coefficient of boron oxide and silica was found to be the most important parameter for understanding changes in the distribution coefficient of boron for different slags. Finally, the relation between the activity coefficient of boron oxide and slag structure was investigated. It was found that the structure can explain how the distribution coefficient of boron changes depending on slag composition.

  16. Synthesis and characterization of MoS2/Ti composite coatings on Ti6Al4V prepared by laser cladding

    NASA Astrophysics Data System (ADS)

    Yang, Rongjuan; Liu, Zongde; Wang, Yongtian; Yang, Guang; Li, Hongchuan

    2013-02-01

    The MoS2/Ti composite coating with sub-micron grade structure has been prepared on Ti6Al4V by laser method under argon protection. The morphology, microstructure, microhardness and friction coefficient of the coating were examined. The results indicated that the molybdenum disulfide was decomposed during melting and resolidification. The phase organization of composite coating mainly consisted of ternary element sulfides, molybdenum sulfides and titanium sulfides. The friction coefficient of and the surface roughness the MoS2/Ti coating were lower than those of Ti6Al4V. The composite coating exhibits excellent adhesion to the substrates, less surface roughness, good wear resistance and harder surface.

  17. Composite load spectra for select space propulsion structural components

    NASA Technical Reports Server (NTRS)

    Newell, J. F.; Kurth, R. E.; Ho, H.

    1991-01-01

    The objective of this program is to develop generic load models with multiple levels of progressive sophistication to simulate the composite (combined) load spectra that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades, and liquid oxygen posts and system ducting. The first approach will consist of using state of the art probabilistic methods to describe the individual loading conditions and combinations of these loading conditions to synthesize the composite load spectra simulation. The second approach will consist of developing coupled models for composite load spectra simulation which combine the deterministic models for composite load dynamic, acoustic, high pressure, and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients will then be determined using advanced probabilistic simulation methods with and without strategically selected experimental data.

  18. Tribological Analysis of Copper-Coated Graphite Particle-Reinforced A359 Al/5 wt.% SiC Composites

    NASA Astrophysics Data System (ADS)

    Lin, C. B.; Wang, T. C.; Chang, Z. C.; Chu, H. Y.

    2013-01-01

    Copper-coated graphite particles can be mass-produced by the cementation process using simple equipment. Graphite particulates that were coated with electroless copper and 5 wt.% SiC particulates were introduced into an aluminum alloy by compocasting to make A359 Al/5 wt.% SiC(p) composite that contained 2, 4, 6, and 8 wt.% graphite particulate composite. The effects of SiC particles, quantity of graphite particles, normal loading, sliding speed and wear debris on the coefficient of friction, and the wear rate were investigated. The results thus obtained indicate that the wear properties were improved by adding small amounts of SiC and graphite particles into the A359 Al alloy. The coefficient of friction of the A359 Al/5 wt.% SiC(p) composite that contained 6.0 wt.% graphite particulates was reduced to 0.246 and the amount of graphite film that was released on the worn surface increased with the graphite particulate content. The coefficient of friction and the wear rate were insensitive to the variation in the sliding speed and normal loading.

  19. Friction behaviour of aluminium composites mixed with carbon fibers with different orientations

    NASA Astrophysics Data System (ADS)

    Caliman, R.

    2016-08-01

    The primary goal of this study work it was to distinguish a mixture of materials with enhanced friction and wearing behaviour. The composite materials may be differentiated from alloys; which can contain two more components but are formed naturally through different processes such as casting. The load applied on the specimen during the tests, is playing a very important role regarding friction coefficient and also the wearing speed. Sintered composites are gaining importance because the reinforcement serves to reduce the coefficient of thermal expansion and increase the strength and modulus. The friction tests are carried out, at the room temperature in dry condition, on a pin-on-disc machine. The exponentially decreasing areas form graphs, represented to the curves coefficient of friction, are attributed to the formation of lubricant transfer film and initial polishing surface samples. The influence of the orientation of the carbon fibers on the friction properties in the sintered polymer composites may be studied by the use of both mechanical wear tests by microscopy and through the use of phenomenological models.

  20. Investigation on Rubber-Modified Polybenzoxazine Composites for Lubricating Material Applications

    NASA Astrophysics Data System (ADS)

    Jubsilp, Chanchira; Taewattana, Rapiphan; Takeichi, Tsutomu; Rimdusit, Sarawut

    2015-10-01

    Effects of liquid amine-terminated butadiene-acrylonitrile (ATBN) on the properties of bisphenol-A/aniline-based polybenzoxazine (PBA-a) composites were investigated. Liquid ATBN decreased gel time and lowered curing temperature of the benzoxazine resin (BA-a). The PBA-a/ATBN-based self-lubricating composites resulted in substantial enhancement regarding their tribological, mechanical, and thermal properties. The inclusion of the ATBN at 5% by weight was found decreasing the friction coefficient and improved wear resistance of the PBA-a/ATBN composites. Flexural modulus and glass transition temperature of the PBA-a composite samples added the ATBN was constant within the range of 1-5% by weight. A plausible wear mechanism of the composites is proposed based on their worn surface morphologies. Based on the findings in this work, it seems that the obtained PBA-a/ATBN self-lubricating composites would have high potential to be used for bearing materials where low friction coefficient, high wear resistance, and modulus with good thermal property are required.

  1. Transport coefficients in high-temperature ionized air flows with electronic excitation

    NASA Astrophysics Data System (ADS)

    Istomin, V. A.; Oblapenko, G. P.

    2018-01-01

    Transport coefficients are studied in high-temperature ionized air mixtures using the modified Chapman-Enskog method. The 11-component mixture N2/N2+/N /N+/O2/O2+/O /O+/N O /N O+/e- , taking into account the rotational and vibrational degrees of freedom of molecules and electronic degrees of freedom of both atomic and molecular species, is considered. Using the PAINeT software package, developed by the authors of the paper, in wide temperature range calculations of the thermal conductivity, thermal diffusion, diffusion, and shear viscosity coefficients for an equilibrium ionized air mixture and non-equilibrium flow conditions for mixture compositions, characteristic of those in shock tube experiments and re-entry conditions, are performed. For the equilibrium air case, the computed transport coefficients are compared to those obtained using simplified kinetic theory algorithms. It is shown that neglecting electronic excitation leads to a significant underestimation of the thermal conductivity coefficient at temperatures higher than 25 000 K. For non-equilibrium test cases, it is shown that the thermal diffusion coefficients of neutral species and the self-diffusion coefficients of all species are strongly affected by the mixture composition, while the thermal conductivity coefficient is most strongly influenced by the degree of ionization of the flow. Neglecting electronic excitation causes noticeable underestimation of the thermal conductivity coefficient at temperatures higher than 20 000 K.

  2. Macro-Scale Strength and Microstructure of ZrW2O8 Cementitious Composites with Tunable Low Thermal Expansion

    PubMed Central

    Ouyang, Jianshu; Chen, Bo; Huang, Dahai

    2018-01-01

    Concretes with engineered thermal expansion coefficients, capable of avoiding failure or irreversible destruction of structures or devices, are important for civil engineering applications, such as dams, bridges, and buildings. In natural materials, thermal expansion usually cannot be easily regulated and an extremely low thermal expansion coefficient (TEC) is still uncommon. Here we propose a novel cementitious composite, doped with ZrW2O8, showing a wide range of tunable thermal expansion coefficients, from 8.65 × 10−6 °C−1 to 2.48 × 10−6 °C−1. Macro-scale experiments are implemented to quantify the evolution of the thermal expansion coefficients, compressive and flexural strength over a wide range of temperature. Scanning Electron Microscope (SEM) imaging was conducted to quantify the specimens’ microstructural characteristics including pores ratio and size. It is shown that the TEC of the proposed composites depends on the proportion of ZrW2O8 and the ambient curing temperature. Macro-scale experimental results and microstructures have a good agreement. The TEC and strength gradually decrease as ZrW2O8 increases from 0% to 20%, subsequently fluctuates until 60%. The findings reported here provide a new routine to design cementitious composites with tunable thermal expansion for a wide range of engineering applications. PMID:29735957

  3. Theoretical performance of liquid hydrogen and liquid fluorine as a rocket propellant

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Huff, Vearl N

    1953-01-01

    Theoretical values of performance parameters for liquid hydrogen and liquid fluorine as a rocket propellant were calculated on the assumption of equilibrium composition during the expansion process for a wide range of fuel-oxidant and expansion ratios. The parameters included were specific impulse, combustion-chamber temperature, nozzle-exit temperature, equilibrium composition, mean molecular weight, characteristic velocity, coefficient of thrust, ration of nozzle-exit area to throat area, specific heat at constant pressure, coefficient of viscosity, and coefficient of thermal conductivity. The maximum value of specific impulse was 364.6 pound-seconds per pound for a chamber pressure of 300 pounds per square inch absolute (20.41 atm) and an exit pressure of 1 atmosphere.

  4. Theoretical performance of liquid ammonia and liquid fluorine as a rocket propellant

    NASA Technical Reports Server (NTRS)

    Gordon, Sanford; Huff, Vearl N

    1953-01-01

    Theoretical values of performance parameters for liquid ammonia and liquid fluorine as a rocket propellant were calculated on the assumption of equilibrium composition during the expansion process for a wide range of fuel-oxidant and expansion ratios. The parameters included were specific impulse, combustion chamber temperature, nozzle-exit temperature, equilibrium composition, mean molecular weight, characteristic velocity, coefficient of thrust, ratio of nozzle-exit area to throat area, specific heat at constant pressure, coefficient of viscosity, and coefficient of thermal conductivity. The maximum value of specific impulse was 311.5 pound-seconds per pound for a chamber pressure of 300 pounds per square inch absolute (20.41 atm) and an exit pressure of 1 atmosphere.

  5. Ultra low friction carbon/carbon composites for extreme temperature applications

    DOEpatents

    Erdemir, Ali; Busch, Donald E.; Fenske, George R.; Lee, Sam; Shepherd, Gary; Pruett, Gary J.

    2001-01-01

    A carbon/carbon composite in which a carbon matrix containing a controlled amount of boron or a boron compound is reinforced with carbon fiber exhibits a low coefficient of friction, i.e., on the order of 0.04 to 0.1 at temperatures up to 600.degree. C., which is one of the lowest frictional coefficients for any type of carbonaceous material, including graphite, glassy carbon, diamond, diamond-like carbon and other forms of carbon material. The high degree of slipperiness of the carbon composite renders it particularly adapted for limiting friction and wear at elevated temperatures such as in seals, bearings, shafts, and flexible joints

  6. Correcting Coefficient Alpha for Correlated Errors: Is [alpha][K]a Lower Bound to Reliability?

    ERIC Educational Resources Information Center

    Rae, Gordon

    2006-01-01

    When errors of measurement are positively correlated, coefficient alpha may overestimate the "true" reliability of a composite. To reduce this inflation bias, Komaroff (1997) has proposed an adjusted alpha coefficient, ak. This article shows that ak is only guaranteed to be a lower bound to reliability if the latter does not include correlated…

  7. Ceramic matrix composite turbine engine vane

    NASA Technical Reports Server (NTRS)

    Prill, Lisa A. (Inventor); Schaff, Jeffery R. (Inventor); Shi, Jun (Inventor)

    2012-01-01

    A vane has an airfoil shell and a spar within the shell. The vane has an outboard shroud at an outboard end of the shell and an inboard platform at an inboard end of the shell. The shell includes a region having a depth-wise coefficient of thermal expansion and a second coefficient of thermal expansion transverse thereto, the depth-wise coefficient of thermal expansion being greater than the second coefficient of thermal expansion.

  8. Improved atmospheric density estimation for ANDE-2 satellites using drag coefficients obtained from gas-surface interaction equations

    NASA Astrophysics Data System (ADS)

    Flanagan, Harold Patrick

    A major issue in the process of predicting the future position of satellites in low earth orbit (LEO) is that the drag coefficient of a satellite is generally not precisely known throughout the satellite's lifespan. One reason for this problem is that as a satellite travels through the Earth's thermosphere, variations in the composition of the thermosphere directly affect the drag coefficient of the satellite. The greatest amount of uncertainty in the drag coefficient from these variations in the thermosphere comes from the amount of atomic oxygen that covers the satellites surface as the satellite descends to lower altitudes. This percent surface coverage of atomic oxygen directly affects the interaction between the surface of the satellite and the gas through which it is passing. The work performed in this thesis determines the drag coefficients of the ANDE-2 satellites over their life spans by using satellite laser ranging (SLR) data of the ANDE-2 satellites in unison with gas-surface interaction equations. The fractional coverage of atomic oxygen is determined by using empirically determined data and semi-empirical models that attempt to predict the fractional coverage of oxygen relative to the composition of the atmosphere. These drag coefficients are then used to determine the atmospheric densities experienced by these satellites over various days, so that inaccuracies in the atmospheric models can be observed. The drag coefficients of the ANDE-2 satellites decrease throughout the satellites' life, and vary most due to changes in the temperature and density of the atmosphere. The greatest uncertainty in the atmosphere's composition occurs at lower altitudes at the end of ANDE-2's life.

  9. Thermal resistance, tensile properties, and gamma radiation shielding performance of unsaturated polyester/nanoclay/PbO composites

    NASA Astrophysics Data System (ADS)

    Bagheri, Kobra; Razavi, Seyed Mohammad; Ahmadi, Seyed Javad; Kosari, Mohammadreza; Abolghasemi, Hossein

    2018-05-01

    Composites of unsaturated polyester containing 5 wt% nanoclay and different amounts of lead monoxide particles (0, 10, 20, and 30 wt%) were prepared. XRD patterns showed the exfoliation of nanoclay layers in the polymer. Morphological properties of the composites were studied using SEM micrographs. The prepared composites were investigated for their thermal resistance and mechanical properties using thermogravimetric analysis and tensile testing method, respectively. Addition of lead monoxide to the polymer worsened its thermal resistance and tensile properties, whereas the observed negative effects could be moderated by the clay nanoparticle. Gamma attenuation performance of the composites was evaluated by 192Ir, 137Cs, and 60Co gamma radiation sources. Linear attenuation coefficient and mass attenuation coefficient of the composites were found to be increased with the increase of PbO content. Shielding efficiency of the prepared composites was compared with some conventional shielding materials regarding their half value layer thickness. UP/nanoclay/PbO composites were found to be suitable materials for the low-energy gamma radiation shielding applications.

  10. Synthesis and Characterization of Rare-Earth Tellurides and Their Composites For High-Temperature Thermoelectric Applications

    NASA Astrophysics Data System (ADS)

    Cheikh, Dean

    Radioisotope thermoelectric generators (RTGs) are solid-state energy conversion devices and have been a vital power generation technology for deep space missions conducted by the National Aeronautics and Space Administration (NASA). At the heart of these generators are thermoelectric materials that convert heat given off by a radioisotope decay into electricity through the Seebeck effect. While these systems have demonstrated long-term reliability, the current state-of-practice materials have thermoelectric figures of merit, ZT, near 1, leading to low system level efficiencies of 6.5%. The figure of merit is defined as ZT = sigmaS 2/kappa T where sigma, S, kappa, and T are electrical conductivity, Seebeck coefficient, thermal conductivity, and temperature, respectively. Development of higher ZT materials would enable future NASA missions to perform a greater number of scientific experiments and extend mission lifetimes. Lanthanum telluride (La3-xTe4) is a state-of-the-art n-type high-temperature thermoelectric material, with a ZT of 1.1 at 1275 K. It has been demonstrated that the electrical resistivity and Seebeck coefficient of this material can be decoupled when nickel inclusions are added to form a composite. This new phenomenon, known as composite assisted funneling of electrons (CAFE), allows for the resistivity of the composite to decrease while leaving the Seebeck coefficient unaffected when 12-15 vol% nickel was incorporated. The initial work presented in this dissertation focused on microstructural modifications to La3-xTe4-Ni composites to attain a better understanding of the CAFE mechanism. This investigation was conducted by varying the size of the nickel particles compared to what were used in the previous composite study. A 60% increase in ZT to a value of 1.9 at 1200 K for the composites with the smallest Ni particle size was obtained due to an increased Seebeck coefficient and decreased thermal conductivity. The next study focused on the extension of the CAFE effect in La 3-xTe4 to use inclusions other than nickel. Cobalt of a similar size to the nickel in the initial La3-xTe4-Ni composite work was used. A series of La3-xTe4-Co composites were synthesized and their thermoelectric properties characterized. A gradual decrease in resistivity was observed above 8 vol% cobalt, suggesting the CAFE mechanism was occurring. An 18% increase to the Seebeck coefficient was observed between 5-8 vol% cobalt, likely due to contamination on the cobalt powder, altering the carrier concentration of the matrix. The increase to the Seebeck coefficient allowed for a ZT of 1.5 at 1225 K to be achieved at 5 vol% cobalt. The final investigation in this dissertation focused on the synthesis and thermoelectric characterization of praseodymium telluride (Pr3-x Te4). Density functional theory (DFT) calculations predicted a large peak in the density of states (DOS) of Pr3-xTe4 at its Fermi level compared to La3-xTe4, due to the 4ƒ electrons of praseodymium. This change in the band structure was predicted to increase the Seebeck coefficient of Pr3-xTe4 over La3-xTe4. A series of Pr3-xTe4 with varying vacancy concentrations were mechanochemically synthesized and characterized. A 25% improvement in the Seebeck coefficient and 25% decrease in the thermal conductivity compared to La3-xTe4 was observed. The thermoelectric properties were found to optimize at a composition of Pr2.74Te4, reaching a ZT of 1.7 at 1200 K.

  11. Trace element partitioning between coexisting biotite and muscovite from metamorphic rocks, western Labrador: Structural, compositional and thermal controls

    NASA Astrophysics Data System (ADS)

    Yang, Panseok; Rivers, Toby

    2000-04-01

    Coexisting biotite and muscovite in ten metapelitic and quartzofeldspathic rocks from western Labrador have been analyzed by electron microprobe for major and minor elements and by a laser ablation microprobe coupled to ICP-MS (LAM-ICP-MS) for selected trace elements - Li, Sc, V, Cr, Mn, Co, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Cs, Ba, REE, Hf and Ta. The samples have experienced a single prograde Grenvillian metamorphism ranging from 490 to 680°C and from 7 to 12 kbar. The trace element compositions of coexisting micas in the metamorphic rocks are used to assess the effects of crystal structure, major element composition and temperature on the partitioning of each element between biotite and muscovite. Overall, trace element distributions are systematic across the range of metamorphic grade and bulk composition, suggesting that chemical equilibrium was approached. Most distribution coefficients (biotite/muscovite) show good agreement with published data. However, distribution coefficients for Co and Sr are significantly different from previous determinations, probably because of contamination associated with older data obtained by bulk analysis techniques. The sequence of distribution coefficients is governed mainly by the ionic radii and charges of substituting cations compared to the optimum ionic radius of each crystallographic site in the micas. In particular, distribution coefficients exhibit the sequence Cr 3+ (0.615 Å) > V 3+ (0.64 Å) > Sc 3+ (0.745 Å) in VI-sites, and Ba 2+ (1.61 Å) > Sr 2+ (1.44 Å) and Cs + (1.88 Å) > K + (1.64 Å) > Rb + (1.72 Å) > Na + (1.39 Å) in XII-sites. The distributions of Li, Sc, Sr and Ba appear to be thermally sensitive but are also controlled by major element compositions of micas. V and Zr partitioning is dependent on T and may be used to cross-check thermometry calculations where the latter suffer from retrograde re-equilibration and/or high concentrations of Fe 3+. The ranges and dependence of distribution coefficients on major element compositions provide important constraints on the values that can be used in geochemical modeling.

  12. Energy Finite Element Analysis Developments for Vibration Analysis of Composite Aircraft Structures

    NASA Technical Reports Server (NTRS)

    Vlahopoulos, Nickolas; Schiller, Noah H.

    2011-01-01

    The Energy Finite Element Analysis (EFEA) has been utilized successfully for modeling complex structural-acoustic systems with isotropic structural material properties. In this paper, a formulation for modeling structures made out of composite materials is presented. An approach based on spectral finite element analysis is utilized first for developing the equivalent material properties for the composite material. These equivalent properties are employed in the EFEA governing differential equations for representing the composite materials and deriving the element level matrices. The power transmission characteristics at connections between members made out of non-isotropic composite material are considered for deriving suitable power transmission coefficients at junctions of interconnected members. These coefficients are utilized for computing the joint matrix that is needed to assemble the global system of EFEA equations. The global system of EFEA equations is solved numerically and the vibration levels within the entire system can be computed. The new EFEA formulation for modeling composite laminate structures is validated through comparison to test data collected from a representative composite aircraft fuselage that is made out of a composite outer shell and composite frames and stiffeners. NASA Langley constructed the composite cylinder and conducted the test measurements utilized in this work.

  13. Sb lattice diffusion in Si1-xGex/Si(001) heterostructures: Chemical and stress effects

    NASA Astrophysics Data System (ADS)

    Portavoce, A.; Gas, P.; Berbezier, I.; Ronda, A.; Christensen, J. S.; Kuznetsov, A. Yu.; Svensson, B. G.

    2004-04-01

    The Sb diffusion coefficient in Si1-xGex/Si1-yGey(001) heterostructures grown by molecular beam epitaxy (MBE) was measured for temperatures ranging from 700 to 850 °C, Ge composition from 0 to 20 % and biaxial pressure from -0.8 (tension) to 1.4 GPa (compression). A quantitative separation of composition and biaxial stress effects is made. We show that the Sb lattice diffusion coefficient: (i) increases with Ge concentration in relaxed layers or at constant biaxial pressure and (ii) increases with compressive biaxial stress and decreases with tensile biaxial stress at constant Ge composition. The enhancement of Sb lattice diffusion in Si1-xGex layers in epitaxy on Si(001) is thus due to the cooperative effect of Ge composition and induced compressive biaxial stress. However, the first effect (composition) is predominant. The activation volume of Sb diffusion in Si1-xGex layers is deduced from the variation of the Sb diffusion coefficients with biaxial pressure. This volume is negative. The sign of the activation volume, its absolute value and its variation with temperature confirm the prediction of the thermodynamic model proposed by Aziz, namely, that under a biaxial stress the activation volume is reduced to the relaxation volume.

  14. Study on the repeatability of manufacturing nano-silica (SiO2) reinforced composite laminates

    NASA Astrophysics Data System (ADS)

    Prince Jeya Lal, L.; Ramesh, S.; Natarajan, Elango

    2018-04-01

    Repeatability to manufacture nano-silica reinforced composite laminates with consistent mechanical properties is studied. In this study, composite laminates are manufactured by hand layup and there after mechanical properties of the laminates are evaluated under tensile and flexural loading conditions. Composite laminates are fabricated and tested under equivalent conditions. Plain weave E-Glass fabric and epoxy LY556 are used as reinforcement and matrix. Nano-silica of size 17nm is used as filler. To enhance the reliability of composite characterization, utmost care is taken to avoid defects like voids, surface defects and under-saturations. Homogeneous distribution of nano silica in matrix is analyzed using TEM study. Inconsistencies in mechanical properties are quantified by coefficient of variation. In this study, the coefficient of variation is estimated in terms of break load for tensile test is 4.45 and for flexural test is 2.27 and is well within the limits.

  15. Thermoelectric properties of conducting polyaniline/BaTiO3 nanoparticle composite films

    NASA Astrophysics Data System (ADS)

    Anno, H.; Yamaguchi, K.; Nakabayashi, T.; Kurokawa, H.; Akagi, F.; Hojo, M.; Toshima, N.

    2011-05-01

    Conducting polyaniline (PANI)/BaTiO3 nanoparticle composite films with different molar ratio values R=1, 5, 10, and 100 have been prepared on a quartz substrate by casting the m-cresol solution of PANI, (±)-10-camphorsulfonic acid (CSA) and BaTiO3 nanoparticle with an average diameter of about 20 nm. The CSA-doped PANI/BaTiO3 composite films were characterized by x-ray diffraction, Fourier transform infrared spectroscopy, and UV-Vis transmission spectroscopy. The Seebeck coefficient and the electrical conductivity of the films with different R values, together with CSA-doped PANI films, were measured in the temperature range from room temperature to ~400 K. The relation between the Seebeck coefficient and the electrical conductivity in the composite films are discussed from a comparison of them with those of CSA-doped PANI films and other PANI composite films.

  16. In-situ thermal cycling in SEM of a graphite-aluminum composite

    NASA Technical Reports Server (NTRS)

    Cheong, Y. M.; Marcus, H. L.

    1987-01-01

    In situ SEM observations of a graphite-aluminum composite (unidirectional P100 graphite-fiber-reinforced 6061 aluminum MMC plates) were used to measure displacements within the graphite fiber relative to the interface between the graphite fiber and the aluminum matrix during thermal cycling. Specimens were thermally cycled from room temperature to 300 C or 500 C in a SEM chamber and then cooled to room temperature. The obtained shear strains within the fiber were then related to anomalous values of measured residual stresses and to the impact on the composite coefficient of expansion and potential damage under thermal fatigue loading. The shear mechanism was proposed as a source of temperature limits on the low coefficient of expansion of these composites, as well as a potential source of thermal fatigue degradation.

  17. Surface Texturing of Polyimide Composite by Micro-Ultrasonic Machining

    NASA Astrophysics Data System (ADS)

    Qu, N. S.; Zhang, T.; Chen, X. L.

    2018-03-01

    In this study, micro-dimples were prepared on a polyimide composite surface to obtain the dual benefits of polymer materials and surface texture. Micro-ultrasonic machining is employed for the first time for micro-dimple fabrication on polyimide composite surfaces. Surface textures of simple patterns were fabricated successfully with dimple depths of 150 μm, side lengths of 225-425 μm, and area ratios of 10-30%. The friction coefficient of the micro-dimple surfaces with side lengths of 325 or 425 μm could be increased by up to 100% of that of non-textured surfaces, alongside a significant enhancement of wear resistance. The results show that surface texturing of polyimide composite can be applied successfully to increase the friction coefficient and reduce wear, thereby contributing to a large output torque.

  18. Densities of Pb-Sn alloys during solidification

    NASA Technical Reports Server (NTRS)

    Poirier, D. R.

    1988-01-01

    Data for the densities and expansion coefficients of solid and liquid alloys of the Pb-Sn system are consolidated in this paper. More importantly, the data are analyzed with the purpose of expressing either the density of the solid or of the liquid as a function of its composition and temperature. In particular, the densities of the solid and of the liquid during dendritic solidification are derived. Finally, the solutal and thermal coefficients of volume expansion for the liquid are given as functions of temperature and composition.

  19. Soret motion in non-ionic binary molecular mixtures

    NASA Astrophysics Data System (ADS)

    Leroyer, Yves; Würger, Alois

    2011-08-01

    We study the Soret coefficient of binary molecular mixtures with dispersion forces. Relying on standard transport theory for liquids, we derive explicit expressions for the thermophoretic mobility and the Soret coefficient. Their sign depends on composition, the size ratio of the two species, and the ratio of Hamaker constants. Our results account for several features observed in experiment, such as a linear variation with the composition; they confirm the general rule that small molecules migrate to the warm, and large ones to the cold.

  20. Reduction of thermal stresses in continuous fiber reinforced metal matrix composites with interface layers

    NASA Technical Reports Server (NTRS)

    Jansson, S.; Leckie, F. A.

    1990-01-01

    The potential of using an interface layer to reduce thermal stresses in the matrix of composites with a mismatch in coefficients of thermal expansion of fiber and matrix was investigated. It was found that compliant layers, with properties of readily available materials, do not have the potential to reduce thermal stresses significantly. However, interface layers with high coefficient of thermal expansion can compensate for the mismatch and reduce thermal stresses in the matrix significantly.

  1. Influence of Water on Tribological Properties of Wood-Polymer Composites

    NASA Astrophysics Data System (ADS)

    Mysiukiewicz, Olga; Sterzyński, Tomasz

    2017-08-01

    Utilization of ecological materials for appliances and products is one of the ways to achieve the goal of sustainability.Wood-polymer composites as a cheap, lightweight, durable and esthetic material has gained attention of scientists, engineers and consumers alike. Different kinds of polymeric matrices, plants used as the fillers, chemical of physical modifiers and processing technologies have already been widely studied. Nonetheless, surprisingly few information on Wood-Polymer Composites' tribology can be found. This paper is an attempt to fill this gap. Polypropylene-and poly(lactic acid)-based composites with varying wood flour content have been analyzed. The Brinell's hardness and coefficient of friction of the samples have been determined. In order to evaluate the influence of the moisture content on the tribological and mechanical properties of the composites, the samples have also been aged in water. The investigation revealed that polymeric composites filled with wood flour can present favorable coefficient of friction, compared to the neat resins. The results of our study can establish a good starting point for further investigation.

  2. Comparing Fit and Reliability Estimates of a Psychological Instrument Using Second-Order CFA, Bifactor, and Essentially Tau-Equivalent (Coefficient Alpha) Models via AMOS 22

    ERIC Educational Resources Information Center

    Black, Ryan A.; Yang, Yanyun; Beitra, Danette; McCaffrey, Stacey

    2015-01-01

    Estimation of composite reliability within a hierarchical modeling framework has recently become of particular interest given the growing recognition that the underlying assumptions of coefficient alpha are often untenable. Unfortunately, coefficient alpha remains the prominent estimate of reliability when estimating total scores from a scale with…

  3. Dielectric and varistor properties of rare-earth-doped ZnO and CaCu3Ti4O12 composite ceramics

    NASA Astrophysics Data System (ADS)

    Lu, Huafei; Lin, Yuanhua; Yuan, Jiancong; Nan, Cewen; Chen, Kexin

    2013-02-01

    To investigate the multi-functional ceramics with both high permittivity and large nonlinear coefficient, we have prepared rare-earth Tb-and-Co doped ZnO and TiO2-rich CaCu3Ti4O12 (TCCTO) powders by chemical co-precipitation and sol-gel methods respectively, and then obtained the TCCTO/ZnO composite ceramics, sintered at 1100°C for 3 h in air. Analyzing the composite ceramics of the microstructure and phase composition indicated that the composite ceramics were composed of the main phases of ZnO and CaCu3Ti4O12 (CCTO). Our results revealed that the TCCTO/ZnO composite ceramics showed both high dielectric and good nonlinear electrical behaviors. The composite ceramic of TCCTO: ZnO = 0.3 exhibited a high dielectric constant of 210(1 kHz) with a nonlinear coefficient of 11. The dielectric behavior of TCCTO/ZnO composite could be explained by the mixture rule. With the high dielectric permittivity and tunable varistor behaviors, the composite ceramics has a potential application for the higher voltage transportation devices.

  4. Effect of stress on energy flux deviation of ultrasonic waves in GR/EP composites

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Kriz, R. D.; Fitting, Dale W.

    1990-01-01

    Ultrasonic waves suffer energy flux deviation in graphite/epoxy because of the large anisotropy. The angle of deviation is a function of the elastic coefficients. For nonlinear solids, these coefficients and thus the angle of deviation is a function of stress. Acoustoelastic theory was used to model the effect of stress on flux deviation for unidirectional T300/5208 using previously measured elastic coefficients. Computations were made for uniaxial stress along the x3 axis (fiber axis) and the x1 for waves propagating in the x1x3 plane. These results predict a shift as large as three degrees for the quasi-transverse wave. The shift in energy flux offers a new nondestructive technique of evaluating stress in composites.

  5. Variable percolation threshold of composites with fiber fillers under compression

    NASA Astrophysics Data System (ADS)

    Lin, Chuan; Wang, Hongtao; Yang, Wei

    2010-07-01

    The piezoresistant effect in conducting fiber-filled composites has been studied by a continuum percolation model. Simulation was performed by a Monte Carlo method that took into account both the deformation-induced fiber bending and rotation. The percolation threshold was found to rise with the compression strain, which explains the observed positive piezoresistive coefficients in such composites. The simulations unveiled the effect of the microstructure evolution during deformation. The fibers are found to align perpendicularly to the compression direction. As the fiber is bended, the effective length in making a conductive network is shortened. Both effects contribute to a larger percolation threshold and imply a positive piezoresistive coefficient according the universal power law.

  6. Tribological Properties of AlSi12-Al₂O₃ Interpenetrating Composite Layers in Comparison with Unreinforced Matrix Alloy.

    PubMed

    Dolata, Anna Janina

    2017-09-06

    Alumina-Aluminum composites with interpenetrating network structures are a new class of advanced materials with potentially better properties than composites reinforced by particles or fibers. Local casting reinforcement was proposed to take into account problems with the machinability of this type of materials and the shaping of the finished products. The centrifugal infiltration process fabricated composite castings in the form of locally reinforced shafts. The main objective of the research presented in this work was to compare the tribological properties (friction coefficient, wear resistance) of AlSi12/Al₂O₃ interpenetrating composite layers with unreinforced AlSi12 matrix areas. Profilometric tests enabled both quantitative and qualitative analyses of the wear trace that formed on investigated surfaces. It has been shown that interpenetrating composite layers are characterized by lower and more stable coefficients of friction (μ), as well as higher wear resistance than unreinforced matrix areas. At the present stage, the study confirmed that the tribological properties of the composite layers depend on the spatial structure of the ceramic reinforcement, and primarily the volume and size of alumina foam cells.

  7. Permeability of boric acid across lipid bilayers and factors affecting it.

    PubMed

    Dordas, C; Brown, P H

    2000-05-15

    Boron enters plant roots as undissociated boric acid (H(3)BO(3)). Significant differences in B uptake are frequently observed even when plants are grown under identical conditions. It has been theorized that these differences reflect species differences in permeability coefficient of H(3)BO(3) across plasma membrane. The permeability coefficient of boric acid however, has not been experimentally determined across any artificial or plant membrane. In the experiments described here the permeability coefficient of boric acid in liposomes made of phosphatidylcholine was 4.9x10(-6) cm sec(-1), which is in good agreement with the theoretical value. The permeability coefficient varied from 7x10(-6) to 9.5x10(-9) cm sec(-1) with changes in sterols (cholesterol), the type of phospholipid head group, the length of the fatty acyl chain, and the pH of the medium. In this study we also used Arabidopsis thaliana mutants which differ in lipid composition to study the effect of lipid composition on B uptake. The chs1-1 mutant which has lower proportion of sterols shows 30% higher B uptake compared with the wild type, while the act1-1 mutant which has an increased percentage of longer fatty acids, exhibited 35% lower uptake than the wild type. Lipid composition changes in each of the remaining mutants influenced B uptake to various extents. These data suggest that lipid composition of the plasma membrane can affect total B uptake.

  8. Autofrettage to Counteract Coefficient of Thermal Expansion Mismatch in Cryogenic Pressurized Pipes with Metallic Liners

    NASA Technical Reports Server (NTRS)

    Wen, Ed; Barbero, Ever; Tygielski, Phlip; Turner, James E. (Technical Monitor)

    2001-01-01

    Composite feedlines with metal liners have the potential to reduce weight/cost while providing the same level of permeation resistance and material compatibility of all-metal feedlines carrying cryogenic propellants in spacecraft. The major technical challenges are the large difference in Coefficient of Thermal Expansion between the liner and the composite, and the manufacturing method required to make a very thin liner with the required strength and dimensional tolerance. This study investigates the use of autofrettage (compressive preload) to counteract Coefficient of Thermal Expansion when pre-pressurization procedures cannot be used to solve this problem. Promising materials (aluminum 2219, Inconel 718, nickel, nickel alloy) and manufacturing techniques (chemical milling, electroplating) are evaluated to determine the best liner candidates. Robust, autofrettaged feedlines with a low Coefficient of Thermal Expansion liner (Inconel 718 or nickel alloy) are shown to successfully counteract mismatch at LOX temperature. A new concept, autofrettage by temperature, is introduced for high Coefficient of Thermal Expansion materials (aluminum and pure nickel) where pressure cannot be used to add compressive preload.

  9. Evaluation of elastic properties and study on water absorption behavior of alumina filled jute-epoxy composites

    NASA Astrophysics Data System (ADS)

    Santosh, D. N.; Ravikumar, B. N.; Mahesh, B.; Vijayalaxmi, S. P.; Srinivas, Y. V.

    2018-04-01

    In this paper, the effect of filler content is studied on elastic properties and water absorption behavior for jute epoxy composite. For reinforcement the plain woven jute fabric is used. The bonding system consists of resin-epoxy and Hardener in the ratio 10:1 by weight. Alumina (average grain size of 30 µm) is used as filler. The effect of filler content on elastic properties and water absorption behavior studied by varying the filler content from 5%, 10%, 15% with respect to weight of epoxy. The open mould method used to fabricate the alumina filled jute-epoxy composite laminates. Tests were conducted according to ASTM standards. The evaluation assesment of elastic properties of alumina filled jute-epoxy composite materials have been analyzed by theoretically and experimentally. The speculated values are analyzed with those obtained from experimental to validate the calculated theoretically with rule of mixture procedure. Young's modulus and shear modulus were found to increase with the increase in the filler content upto 10 wt%, beyond which the modulii showed decreasing trend. Poisson's ratio was found to be continuously decreasing with the increase in the alumina filler content of jute-eposy composite. It was clearly observed that unfilled specimen has the highest saturated moisture content and 15% filled specimen has lowest value. As alumina filler content increases resistance to moisture absorption also increases. The water diffusion coefficient of composite was calculated using the diffusion coefficient equation. As filler content increases diffusion co-efficient decreases for alumina filled jute-epoxy composite.

  10. Na/K-interdiffusion in alkali feldspar: new data on diffusion anisotropy and composition dependence

    NASA Astrophysics Data System (ADS)

    Schaeffer, Anne-Kathrin; Petrishcheva, Elena; Habler, Gerlinde; Abart, Rainer; Rhede, Dieter

    2013-04-01

    Exchange experiments between gem-quality alkali feldspar with an initial XOr of 0.85 or 0.72 and Na/K-salt melts have been conducted at temperatures between 800° and 1000° C. The crystals were prepared as crystallographically oriented plates, the polished surfaces corresponding to the (010) or (001) plane of the feldspar. The composition of the melts was varied systematically to induce a controlled shift of the feldspar towards more Na-rich or K-rich compositions (XOr 0.5 to 1). A molar excess of cations by a factor of 40 in the melt ensured constant concentration boundary conditions for cation exchange. Different geometries of diffusion profiles can be observed depending on the direction of the composition shift. For a shift towards more K-rich compositions the diffusion profile exhibits two plateaus corresponding to an exchanged rim in equilibrium with the melt and a completely unexchanged core, respectively. Between these plateaus an exchange front develops with an inflection point that progresses into the crystal with t1-2. The width of this diffusion front varies greatly with the extent of chemical shift and crystallographic direction. The narrowest profiles are always found in the direction normal to (010), i.e. b, marking the slowest direction of interdiffusion. A shift towards more Na-rich composition leads to the development of a crack system due to the composition strain associated with the substitution of the larger K+ion with the smaller Na+ion. The exchange front developing in this case lacks the inflection point observed for shifts towards more K-rich compositions. The observed geometry of the diffusion fronts can be explained by a composition dependence of the interdiffusion coefficient. We used the Boltzmann transformation to calculate the interdiffusion coefficient in dependence of composition from our data in a range between XOr 0.5 and 1 for profiles normal to both (010) and (001) and for different temperatures. As indicated by the different widths of the front a marked anisotropy in interdiffusion is apparent; it is about 10 times faster perpendicular to (001) than normal to (010). This is in good accordance with results of earlier studies. However, the composition dependence deviates from what is expected from theoretical calculations using the Manning relation for interdiffusion. For profiles normal to (001) the interdiffusion coefficient is nearly constant at 0.3 x 10-15m2s-1over the composition range XOr 0.50 to 0.95 and then rises steeply to values of 2.5 x 10-15m2s-1. Normal to (010) the interdiffusion coefficient is nearly constant at 0.03 x 10-15m2s-1over the composition range XOr 0.50 to 0.97 before, too, rising steeply at higher XOr. Interdiffusion coefficients calculated by Christoffersen et al. (1983) for this composition range also showed this rise but much less localized and steep. The activation energy also shows an anisotropy and slight composition dependence. Normal to (001) it is about 340 kJ/mole while it is 250 kJ/mole normal to (010). In the range between XOr0.94 to 1 it shows a slight rise by about 20 kJ/mole for both directions. ___ References Christoffersen et al. (1983): Interdiffusion of K and Na in alkali feldspar: diffusion couple experiments, -American Mineralogist, Vol. 68, pp. 1126-1133

  11. Carbon Black - Polyethylene Composites for PTC (Positive Temperature Coefficient) Thermistor Applications

    DTIC Science & Technology

    1987-12-01

    triphasic composite. Addition of the third filler yielded two effects. First, the filler provided sufficient mechanical stabilization of the composite...2000C. The stabilization was accomplished without diminishing the magnitude of the PTC effect. The triphasic composites also displayed equivalent or...differences in conductor and insulator --.-+icle size lead to the formation of quasi-compo- -s, resulting in a 3(0-3)-0 connectivity. Triphasic composites

  12. Fabrication and thermophysical property characterization of UN/U 3Si 2 composite fuel forms

    DOE PAGES

    White, Joshua Taylor; Travis, Austin William; Dunwoody, John Tyler; ...

    2017-09-21

    High uranium density composite fuels composed of UN and U 3Si 2 have been fabricated using a liquid phase sintering route at temperatures between 1873 K and 1973 K and spanning compositions of 10 vol% to 40 vol% U 3Si 2. Microstructural analysis and phase characterization revealed the formation of an U-Si-N phase of unknown structure. Microcracking was observed in the U-Si portion of the composite microstructure that likely originates from the mismatched coefficient of thermal expansion between the UN and U 3Si 2 leading to stresses on heating and cooling of the composite. Thermal expansion coefficient, thermal diffusivity, andmore » thermal conductivity were characterized for each of the compositions as a function of temperature to 1673 K. Hysteresis is observed in the thermal diffusivity for the 20 vol% through 40 vol% specimens between room temperature and 1273 K, which is attributed to the microcracking in the U-Si phase. Thermal conductivity of the composites was modeled using the MOOSE framework based on the collected microstructure data. In conclusion, the impact of irradiation on thermal conductivity was also simulated for this class of composite materials.« less

  13. Fabrication and thermophysical property characterization of UN/U 3Si 2 composite fuel forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Joshua Taylor; Travis, Austin William; Dunwoody, John Tyler

    High uranium density composite fuels composed of UN and U 3Si 2 have been fabricated using a liquid phase sintering route at temperatures between 1873 K and 1973 K and spanning compositions of 10 vol% to 40 vol% U 3Si 2. Microstructural analysis and phase characterization revealed the formation of an U-Si-N phase of unknown structure. Microcracking was observed in the U-Si portion of the composite microstructure that likely originates from the mismatched coefficient of thermal expansion between the UN and U 3Si 2 leading to stresses on heating and cooling of the composite. Thermal expansion coefficient, thermal diffusivity, andmore » thermal conductivity were characterized for each of the compositions as a function of temperature to 1673 K. Hysteresis is observed in the thermal diffusivity for the 20 vol% through 40 vol% specimens between room temperature and 1273 K, which is attributed to the microcracking in the U-Si phase. Thermal conductivity of the composites was modeled using the MOOSE framework based on the collected microstructure data. In conclusion, the impact of irradiation on thermal conductivity was also simulated for this class of composite materials.« less

  14. Scattering and Absorption Properties of Biomaterials for Dental Restorative Applications

    NASA Astrophysics Data System (ADS)

    Fernandez-Oliveras, A.; Rubiño, M.; Pérez, M. M.

    2013-08-01

    The physical understanding of the optical properties of dental biomaterials is mandatory for their final success in restorative applications.Light propagation in biological media is characterized by the absorption coefficient, the scattering coefficient, the scattering phase function,the refractive index, and the surface conditions (roughness). We have employed the inverse adding-doubling (IAD) method to combine transmittance and reflectance measurements performed using an integrating-sphere setup with the results of the previous scattering-anisotropygoniometric measurements. This has led to the determination of the absorption and the scattering coefficients. The aim was to optically characterize two different dental-resin composites (nanocomposite and hybrid) and one type of zirconia ceramic, and comparatively study them. The experimental procedure was conducted under repeatability conditions of measurement in order to determine the uncertainty associated to the optical properties of the biomaterials. Spectral variations of the refraction index and the scattering anisotropy factor were also considered. The whole experimental procedure fulfilled all the necessary requirements to provide optical-property values with lower associated uncertainties. The effective transport coefficient presented a similar spectral behavior for the two composites but completely different for the zirconia ceramic. The results demonstrated that the scattering anisotropy exerted a clearly distinct impact on the optical properties of the zirconia ceramic compared with those of the dental-resin composites.

  15. Ceramic sealants prepared by polymer pyrolysis

    NASA Astrophysics Data System (ADS)

    Hong, Sung Jin; Kim, Deug Joong; Yoo, Young Sung

    2011-02-01

    The formation and properties of ceramic seals for SOFC applications prepared by polymer pyrolysis are investigated. A mixture with polymethylsiloxane and fillers are pyrolyzed in a N2 atmosphere. The coefficient of thermal expansion of the ceramic composites was controlled by fillers with a high coefficient of thermal expansion such as AlCo. The morphology of the ceramic composites derived from the mixture with polymethylsiloxane and fillers is composed of fillers embedded in a Si-O-C glass matrix. The thermal expansion behavior and sealing characteristics are measured and discussed

  16. Composite fastener for use in high temperature environments

    NASA Technical Reports Server (NTRS)

    Miller, Robert J. (Inventor); Palusis, Mark E. (Inventor); Jarmon, David C. (Inventor)

    2000-01-01

    A fastener includes a composite body and a metal coupling attached to the body. The metal coupling includes an attachment structure to connect the fastener to an external structure. An assembly of components includes a first metallic component having a first coefficient of thermal expansion, a second non-metallic component having a second coefficient of thermal expansion different from the first thermal expansion and having a groove that receives a fastener that extends between the groove and the second component, the fastener slidably engaging the groove to accommodate relative expansion between the components.

  17. Influence of Metal-Coated Graphite Powders on Microstructure and Properties of the Bronze-Matrix/Graphite Composites

    NASA Astrophysics Data System (ADS)

    Zhao, Jian-hua; Li, Pu; Tang, Qi; Zhang, Yan-qing; He, Jian-sheng; He, Ke

    2017-02-01

    In this study, the bronze-matrix/x-graphite (x = 0, 1, 3 and 5%) composites were fabricated by powder metallurgy route by using Cu-coated graphite, Ni-coated graphite and pure graphite, respectively. The microstructure, mechanical properties and corrosive behaviors of bronze/Cu-coated-graphite (BCG), bronze/Ni-coated-graphite (BNG) and bronze/pure-graphite (BPG) were characterized and investigated. Results show that the Cu-coated and Ni-coated graphite could definitely increase the bonding quality between the bronze matrix and graphite. In general, with the increase in graphite content in bronze-matrix/graphite composites, the friction coefficients, ultimate density and wear rates of BPG, BCG and BNG composites all went down. However, the Vickers microhardness of the BNG composite would increase as the graphite content increased, which was contrary to the BPG and BCG composites. When the graphite content was 3%, the friction coefficient of BNG composite was more stable than that of BCG and BPG composites, indicating that BNG composite had a better tribological performance than the others. Under all the values of applied loads (10, 20, 40 and 60N), the BCG and BNG composites exhibited a lower wear rate than BPG composite. What is more, the existence of nickel in graphite powders could effectively improve the corrosion resistance of the BNG composite.

  18. The reliability of multidimensional neuropsychological measures: from alpha to omega.

    PubMed

    Watkins, Marley W

    To demonstrate that Coefficient omega, a model-based estimate, is more a more appropriate index of reliability than coefficient alpha for the multidimensional scales that are commonly employed by neuropsychologists. As an illustration, a structural model of an overarching general factor and four first-order factors for the WAIS-IV based on the standardization sample of 2200 participants was identified and omega coefficients were subsequently computed for WAIS-IV composite scores. Alpha coefficients were ≥ .90 and omega coefficients ranged from .75 to .88 for WAIS-IV factor index scores, indicating that the blend of general and group factor variance in each index score created a reliable multidimensional composite. However, the amalgam of variance from general and group factors did not allow the precision of Full Scale IQ (FSIQ) and factor index scores to be disentangled. In contrast, omega hierarchical coefficients were low for all four factor index scores (.10-.41), indicating that most of the reliable variance of each factor index score was due to the general intelligence factor. In contrast, the omega hierarchical coefficient for the FSIQ score was .84. Meaningful interpretation of WAIS-IV factor index scores as unambiguous indicators of group factors is imprecise, thereby fostering unreliable identification of neurocognitive strengths and weaknesses, whereas the WAIS-IV FSIQ score can be interpreted as a reliable measure of general intelligence. It was concluded that neuropsychologists should base their clinical decisions on reliable scores as indexed by coefficient omega.

  19. An Application of the Theory of Moments to Euclidean Relativistic Quantum Mechanical Scattering

    NASA Astrophysics Data System (ADS)

    Aiello, Gordon J.

    One recipe for mathematically formulating a relativistic quantum mechanical scattering theory utilizes a two-Hilbert space approach, denoted by H and H0, upon each of which a unitary representation of the Poincare Lie group is given. Physically speaking, H models a complicated interacting system of particles one wishes to understand, and H 0 an associated simpler (i.e., free/noninteracting) structure one uses to construct "asymptotic boundary conditions" on so-called scattering states in H. Simply put, H 0 is an attempted idealization of H one hopes to realize in the large time limits t → +/-infinity. The above considerations lead to the study of the existence of strong limits of operators of the form eiHtJeiH 0t, where H and H0 are self-adjoint generators of the time translation subgroup of the unitary representations of the Poincare group on H and H0, and J is a contrived mapping from H0 into H that provides the internal structure of the scattering asymptotes. The existence of said limits in the context of Euclidean quantum theories (satisfying precepts known as the Osterwalder-Schrader axioms) depends on the choice of J and leads to a marvelous connection between this formalism and a beautiful area of classical mathematical analysis known as the Stieltjes moment problem, which concerns the relationship between numerical sequences {mun}n=0infinity and the existence/uniqueness of measures alpha(x) on the half-line satisfying (n/a).

  20. Effect of Stress on Energy Flux Deviation of Ultrasonic Waves in Ultrasonic Waves in GR/EP Composites

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Kriz, R. D.; Fitting, Dale W.

    1990-01-01

    Ultrasonic waves suffer energy flux deviation in graphite/epoxy because of the large anisotropy. The angle of deviation is a function of the elastic coefficients. For nonlinear solids, these coefficients and thus the angle of deviation is a function of stress. Acoustoelastic theory was used to model the effect of stress on flux deviation for unidirectional T300/5208 using previously measured elastic coefficients. Computations were made for uniaxial stress along the x3 axis fiber axis) and the x1 axis for waves propagating in the x1x3 plane. These results predict a shift as large as three degrees for the quasi-transverse wave. The shift in energy flux offers new nondestructive technique of evaluating stress in composites.

  1. Temperature gradient measurements by using thermoelectric effect in CNTs-silicone adhesive composite.

    PubMed

    Chani, Muhammad Tariq Saeed; Karimov, Kh S; Asiri, Abdullah M; Ahmed, Nisar; Bashir, Muhammad Mehran; Khan, Sher Bahadar; Rub, Malik Abdul; Azum, Naved

    2014-01-01

    This work presents the fabrication and investigation of thermoelectric cells based on composite of carbon nanotubes (CNT) and silicone adhesive. The composite contains CNT and silicon adhesive 1∶1 by weight. The current-voltage characteristics and dependences of voltage, current and Seebeck coefficient on the temperature gradient of cell were studied. It was observed that with increase in temperature gradient the open circuit voltage, short circuit current and the Seebeck coefficient of the cells increase. Approximately 7 times increase in temperature gradient increases the open circuit voltage and short circuit current up to 40 and 5 times, respectively. The simulation of experimental results is also carried out; the simulated results are well matched with experimental results.

  2. Temperature Gradient Measurements by Using Thermoelectric Effect in CNTs-Silicone Adhesive Composite

    PubMed Central

    Chani, Muhammad Tariq Saeed; Karimov, Kh. S.; Asiri, Abdullah M.; Ahmed, Nisar; Bashir, Muhammad Mehran; Khan, Sher Bahadar; Rub, Malik Abdul; Azum, Naved

    2014-01-01

    This work presents the fabrication and investigation of thermoelectric cells based on composite of carbon nanotubes (CNT) and silicone adhesive. The composite contains CNT and silicon adhesive 1∶1 by weight. The current-voltage characteristics and dependences of voltage, current and Seebeck coefficient on the temperature gradient of cell were studied. It was observed that with increase in temperature gradient the open circuit voltage, short circuit current and the Seebeck coefficient of the cells increase. Approximately 7 times increase in temperature gradient increases the open circuit voltage and short circuit current up to 40 and 5 times, respectively. The simulation of experimental results is also carried out; the simulated results are well matched with experimental results. PMID:24748375

  3. Pyroelectric response in crystalline hafnium zirconium oxide (Hf 1- x Zr x O 2 ) thin films

    DOE PAGES

    Smith, S. W.; Kitahara, A. R.; Rodriguez, M. A.; ...

    2017-02-13

    Pyroelectric coefficients were measured for 20 nm thick crystalline hafnium zirconium oxide (Hf 1-xZr xO 2) thin films across a composition range of 0 ≤ x ≤ 1. Pyroelectric currents were collected near room temperature under zero applied bias and a sinusoidal oscillating temperature profile to separate the influence of non-pyroelectric currents. The pyroelectric coefficient was observed to correlate with zirconium content, increased orthorhombic/tetragonal phase content, and maximum polarization response. The largest measured absolute value was 48 μCm -2K -1 for a composition with x = 0.64, while no pyroelectric response was measured for compositions which displayed no remanent polarizationmore » (x = 0, 0.91, 1).« less

  4. Metal/Silicate Partitioning of P, Ga, and W at High Pressures and Temperatures: Dependence on Silicate Melt Composition

    NASA Technical Reports Server (NTRS)

    Bailey, Edward; Drake, Michael J.

    2004-01-01

    The distinctive pattern of element concentrations in the upper mantle provides essential evidence in our attempts to understand the accretion and differentiation of the Earth (e.g., Drake and Righter, 2002; Jones and Drake, 1986; Righter et al., 1997; Wanke 1981). Core formation is best investigated through use of metal/silicate partition coefficients for siderophile elements. The variables influencing partition coefficients are temperature, pressure, the major element compositions of the silicate and metal phases, and oxygen fugacity. Examples of studies investigating the effects of these variables on partitioning behavior are: composition of the metal phase by Capobianco et al. (1999) and Righter et al. (1997); silicate melt composition by Watson (1976), Walter and Thibault (1995), Hillgren et al. (1996), Jana and Walker (1997), and Jaeger and Drake (2000); and oxygen fugacity by Capobianco et al. (1999), and Walter and Thibault (1995). Here we address the relative influences of silicate melt composition, pressure and temperature.

  5. Optimization of tribological behaviour on Al- coconut shell ash composite at elevated temperature

    NASA Astrophysics Data System (ADS)

    Siva Sankara Raju, R.; Panigrahi, M. K.; Ganguly, R. I.; Srinivasa Rao, G.

    2018-02-01

    In this study, determine the tribological behaviour of composite at elevated temperature i.e. 50 - 150 °C. The aluminium matrix composite (AMC) are prepared with compo casting route by volume of reinforcement of coconut shell ash (CSA) such as 5, 10 and 15%. Mechanical properties of composite has enhances with increasing volume of CSA. This study details to optimization of wear behaviour of composite at elevated temperatures. The influencing parameters such as temperature, sliding velocity and sliding distance are considered. The outcome response is wear rate (mm3/m) and coefficient of friction. The experiments are designed based on Taguchi [L9] array. All the experiments are considered as constant load of 10N. Analysis of variance (ANOVA) revealed that temperature is highest influencing factor followed by sliding velocity and sliding distance. Similarly, sliding velocity is most influencing factor followed by temperature and distance on coefficient of friction (COF). Finally, corroborates analytical and regression equation values by confirmation test.

  6. Molecular dynamics simulations of AP/HMX composite with a modified force field.

    PubMed

    Zhu, Wei; Wang, Xijun; Xiao, Jijun; Zhu, Weihua; Sun, Huai; Xiao, Heming

    2009-08-15

    An all-atom force field for ammonium perchlorate (AP) is developed with the framework of pcff force field. The structural parameters of AP obtained with the modified force field are in good agreement with experimental values. Molecular dynamics (MD) simulations have been performed to investigate AP/HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane) composite at different temperatures. The binding energies, thermal expansion coefficient, and the trigger bond lengths of HMX in the AP/HMX composite have been obtained. The binding energies of the system increase slightly with temperature increasing, peak at 245K, and then gradually decrease. The volume thermal expansion coefficient of the AP/HMX composite has been derived from the volume variation with temperature. As the temperature rises, the maximal lengths of the trigger bond N-NO(2) of HMX increase gradually. The simulated results indicate that the maximal length of trigger bond can be used as a criterion for judging the sensitivity of energetic composite.

  7. Progressive Failure Analysis of Advanced Composites

    DTIC Science & Technology

    2008-07-25

    Fracture angle. αii Coefficients of thermal expansion . βii Coefficients of hygroscopic expansion . β Shear response factor. ηL Coefficient of... thermal expansion in the longitudinal and transverse direc- tions. To enable the calculation of the thermal stresses, the user should define in the...development of this second VUMAT subroutine was planned for the second year of this project). 4.2 Input into Abaqus explicit 4.2.1 Shell elements

  8. Determination of the second virial coefficient of bovine serum albumin under varying pH and ionic strength by composition-gradient multi-angle static light scattering.

    PubMed

    Ma, Yingfang; Acosta, Diana M; Whitney, Jon R; Podgornik, Rudolf; Steinmetz, Nicole F; French, Roger H; Parsegian, V Adrian

    2015-01-01

    Composition-gradient multi-angle static light scattering (CG-MALS) is an emerging technique for the determination of intermolecular interactions via the second virial coefficient B22. With CG-MALS, detailed studies of the second virial coefficient can be carried out more accurately and effectively than with traditional methods. In addition, automated mixing, delivery and measurement enable high speed, continuous, fluctuation-free sample delivery and accurate results. Using CG-MALS we measure the second virial coefficient of bovine serum albumin (BSA) in aqueous solutions at various values of pH and ionic strength of a univalent salt (NaCl). The systematic variation of the second virial coefficient as a function of pH and NaCl strength reveals the net charge change and the isoelectric point of BSA under different solution conditions. The magnitude of the second virial coefficient decreases to 1.13 x 10(-5) ml*mol/g(2) near the isoelectric point of pH 4.6 and 25 mM NaCl. These results illuminate the role of fundamental long-range electrostatic and van der Waals forces in protein-protein interactions, specifically their dependence on pH and ionic strength.

  9. Interdiffusion and stress development in single-crystalline Pd/Ag bilayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noah, Martin A., E-mail: m.noah@is.mpg.de; Flötotto, David; Wang, Zumin

    Interdiffusion and stress evolution in single-crystalline Pd/single-crystalline Ag thin films were investigated by Auger electron spectroscopy sputter-depth profiling and in-situ X-ray diffraction, respectively. The concentration-dependent chemical diffusion coefficient, as well as the impurity diffusion coefficient of Ag in Pd could be determined in the low temperature range of 356 °C–455 °C. As a consequence of the similarity of the strong concentration-dependences of the intrinsic diffusion coefficients, the chemical diffusion coefficient varies only over three orders of magnitude over the whole composition range, despite the large difference of six orders of magnitude of the self-diffusion coefficients of Ag in Ag and Pd inmore » Pd. It is shown that the Darken-Manning treatment should be adopted for interpretation of the experimental data; the Nernst-Planck treatment yielded physically unreasonable results. Apart from the development of compressive thermal stress, the development of stress in both sublayers separately could be ascribed to compositional stress (tensile in the Ag sublayer and compressive in the Pd sublayer) and dominant relaxation processes, especially in the Ag sublayer. The effect of these internal stresses on the values determined for the diffusion coefficients is shown to be negligible.« less

  10. Seamless metal-clad fiber-reinforced organic matrix composite structures and process for their manufacture

    NASA Technical Reports Server (NTRS)

    Bluck, Raymond M. (Inventor); Bush, Harold G. (Inventor); Johnson, Robert R. (Inventor)

    1990-01-01

    A metallic outer sleeve is provided which is capable of enveloping a hollow metallic inner member having continuous reinforcing fibers attached to the distal end thereof. The inner member is then introduced into outer sleeve until inner member is completely enveloped by outer sleeve. A liquid matrix member is then injected into space between inner member and outer sleeve. A pressurized heat transfer medium is flowed through the inside of inner member, thereby forming a fiber reinforced matrix composite material. The wall thicknesses of both inner member and outer sleeve are then reduced to the appropriate size by chemical etching, to adjust the thermal expansion coefficient of the metal-clad composite structure to the desired value. thereby forming a fiber reinforced matrix composite material. The wall thicknesses of both inner member and outer sleeve are then reduced to the appropriate size by chemical etching, to adjust the thermal expansion coefficient of the metal-clad composite structure to the desired value. The novelty of this invention resides in the development of a efficient method of producing seamless metal clad fiber reinforced organic matrix composite structures.

  11. Magnetoelectric Interactions in Lead-Based and Lead-Free Composites.

    PubMed

    Bichurin, Mirza; Petrov, Vladimir; Zakharov, Anatoly; Kovalenko, Denis; Yang, Su Chul; Maurya, Deepam; Bedekar, Vishwas; Priya, Shashank

    2011-04-06

    Magnetoelectric (ME) composites that simultaneously exhibit ferroelectricity and ferromagnetism have recently gained significant attention as evident by the increasing number of publications. These research activities are direct results of the fact that multiferroic magnetoelectrics offer significant technological promise for multiple devices. Appropriate choice of phases with co-firing capability, magnetostriction and piezoelectric coefficient, such as Ni-PZT and NZFO-PZT, has resulted in fabrication of prototype components that promise transition. In this manuscript, we report the properties of Ni-PZT and NZFO-PZT composites in terms of ME voltage coefficients as a function of frequency and magnetic DC bias. In order to overcome the problem of toxicity of lead, we have conducted experiments with Pb-free piezoelectric compositions. Results are presented on the magnetoelectric performance of Ni-NKN, Ni-NBTBT and NZFO-NKN, NZFO-NBTBT systems illustrating their importance as an environmentally friendly alternative.

  12. Prediction of crosslink density of solid propellant binders. [curing of elastomers

    NASA Technical Reports Server (NTRS)

    Marsh, H. E., Jr.

    1976-01-01

    A quantitative theory is outlined which allows calculation of crosslink density of solid propellant binders from a small number of predetermined parameters such as the binder composition, the functionality distributions of the ingredients, and the extent of the curing reaction. The parameter which is partly dependent on process conditions is the extent of reaction. The proposed theoretical model is verified by independent measurement of effective chain concentration and sol and gel fractions in simple compositions prepared from model compounds. The model is shown to correlate tensile data with composition in the case of urethane-cured polyether and certain solid propellants. A formula for the branching coefficient is provided according to which if one knows the functionality distributions of the ingredients and the corresponding equivalent weights and can measure or predict the extent of reaction, he can calculate the branching coefficient of such a system for any desired composition.

  13. Sensitivity of Dielectric Properties to Wear Process on Carbon Nanofiber/High-Density Polyethylene Composites.

    PubMed

    Liu, Tian; Wood, Weston; Zhong, Wei-Hong

    2011-12-01

    We examined the correlation of wear effects with dielectric properties of carbon nanofibers (CNFs; untreated and organosilane-treated)-reinforced high-density polyethylene (HDPE) composites. Wear testing for the nanocomposites over up to 120 h was carried out, and then, dielectric permittivity and dielectric loss factor of the polymer composites with the increased wear time were studied. Scanning electron microscope and optical microscope observations were made to analyze the microstructure features of the nanocomposites. The results reveal that there exist approximate linear relationships of permittivity with wear coefficient for the nanocomposites. Composites containing silanized CNFs with the sufficiently thick coating exhibited high wear resistance. The change in permittivity was more sensitive to the increased wear coefficient for the nanocomposites with lower wear resistance. This work provides potential for further research on the application of dielectric signals to detect the effects of wear process on lifetime of polymeric materials.

  14. Magnetoelectric Interactions in Lead-Based and Lead-Free Composites

    PubMed Central

    Bichurin, Mirza; Petrov, Vladimir; Zakharov, Anatoly; Kovalenko, Denis; Yang, Su Chul; Maurya, Deepam; Bedekar, Vishwas; Priya, Shashank

    2011-01-01

    Magnetoelectric (ME) composites that simultaneously exhibit ferroelectricity and ferromagnetism have recently gained significant attention as evident by the increasing number of publications. These research activities are direct results of the fact that multiferroic magnetoelectrics offer significant technological promise for multiple devices. Appropriate choice of phases with co-firing capability, magnetostriction and piezoelectric coefficient, such as Ni-PZT and NZFO-PZT, has resulted in fabrication of prototype components that promise transition. In this manuscript, we report the properties of Ni-PZT and NZFO-PZT composites in terms of ME voltage coefficients as a function of frequency and magnetic DC bias. In order to overcome the problem of toxicity of lead, we have conducted experiments with Pb-free piezoelectric compositions. Results are presented on the magnetoelectric performance of Ni-NKN, Ni-NBTBT and NZFO-NKN, NZFO-NBTBT systems illustrating their importance as an environmentally friendly alternative. PMID:28879946

  15. Electrodeposition and Characterization of Ni-Al2O3 Nanocomposite Coatings on Steel

    NASA Astrophysics Data System (ADS)

    Akhtar, Khalida; Khan, Zia Ullah; Gul, Muhammad; Zubair, Naila; Shah, Syed Sajjad Ali

    2018-05-01

    Monodispersed alumina particles were synthesized by the homogeneous precipitation under reflux boiling. The particles were employed as reinforcement additives in the electrodeposited Ni-Al2O3 composite coatings on steel. The deposited pure Ni and Ni-Al2O3 composite coatings were analyzed by SEM, XRD, and microhardness tester. The wear resistance and friction coefficient of the coated samples were determined by using a ball-on-disk tribometer. Furthermore, XRD analysis showed that coating temperature and the presence of particles in the deposited coatings had a noticeable effect on the preferred orientation of the crystalline faces of the nickel grains. Significant differences were noted in the texture coefficient of the pure Ni and Ni-Al2O3 composite coatings produced at different temperatures. These differences were attributed to the changes in the microstructure of the matrix caused by the embedded Al2O3 particles. Results revealed that wear resistance and the friction coefficient were turned out to be higher and smaller, respectively, for the composite coatings as compared to pure Ni coating at a given sliding distance. It was noted that the corrosion resistance of these specimens increased in the following order: bare substrate < pure Ni coating < Ni-Al2O3 nanocomposite coatings.

  16. Study of xCo0.8Ni0.2Fe2O4+(1-x) Pb0.99625 La0.0025Zr0.55Ti0.45O3 magnetoelectric composites

    NASA Astrophysics Data System (ADS)

    Dipti; Singh, Sangeeta; Juneja, J. K.; Raina, K. K.; Kotnala, R. K.; Prakash, Chandra

    2016-06-01

    We are reporting here, the studies of the structural, dielectric, ferroelectric and magnetic properties of magnetoelectric composites of La modified lead zirconate titanate (PLZT) and Ni modified cobalt ferrite (CNFO) with compositional formula xCo0.8Ni0.2Fe2O4+(1-x) Pb0.99625La0.0025Zr0.55Ti0.45O3 (x=0.00, 0.05, 0.10, 0.15 and 1.00 by weight) prepared by the solid state reaction method. Coexistence of both the phases in composites was confirmed by X-Ray diffraction technique. The microstructure and average grain size were determined from Scanning Electron Micrograph (SEM) in backscattered mode. Both the phases could be observed clearly. The variations of dielectric properties with frequency and temperature were also studied. P-E and M-H hysteresis measurements were carried. Magnetoelectric coupling (ME) coefficient for samples with x=0.05 and 0.10 were measured as a function of DC magnetic field. Maximum value of ME coefficient (1.2 mV/cm Oe) and piezoelectric coefficient (96 pC/N) for x=0.05 were observed.

  17. Unexpectedly high piezoelectricity of Sm-doped lead zirconate titanate in the Curie point region.

    PubMed

    Seshadri, Shruti B; Nolan, Michelle M; Tutuncu, Goknur; Forrester, Jennifer S; Sapper, Eva; Esteves, Giovanni; Granzow, Torsten; Thomas, Pam A; Nino, Juan C; Rojac, Tadej; Jones, Jacob L

    2018-03-07

    Large piezoelectric coefficients in polycrystalline lead zirconate titanate (PZT) are traditionally achieved through compositional design using a combination of chemical substitution with a donor dopant and adjustment of the zirconium to titanium compositional ratio to meet the morphotropic phase boundary (MPB). In this work, a different route to large piezoelectricity is demonstrated. Results reveal unexpectedly high piezoelectric coefficients at elevated temperatures and compositions far from the MPB. At temperatures near the Curie point, doping with 2 at% Sm results in exceptionally large piezoelectric coefficients of up to 915 pm/V. This value is approximately twice those of other donor dopants (e.g., 477 pm/V for Nb and 435 pm/V for La). Structural changes during the phase transitions of Sm-doped PZT show a pseudo-cubic phase forming ≈50 °C below the Curie temperature. Possible origins of these effects are discussed and the high piezoelectricity is posited to be due to extrinsic effects. The enhancement of the mechanism at elevated temperatures is attributed to the coexistence of tetragonal and pseudo-cubic phases, which enables strain accommodation during electromechanical deformation and interphase boundary motion. This work provides insight into possible routes for designing high performance piezoelectrics which are alternatives to traditional methods relying on MPB compositions.

  18. Comparison of W-VC-C composites against Co-60, Se-75 and Sb-125 for gamma radioisotope sources

    NASA Astrophysics Data System (ADS)

    Demir, Ertugrul; Tugrul, A. Beril; Buyuk, Bulent; Yilmaz, Ozan; Ovecoglu, Lutfi

    2018-02-01

    Tungsten based materials are considered to be the promising materials for nuclear applications due to the good properties. The tungsten composite materials have so many advantages in nuclear technological applications especially fusion reactor systems. In this paper, Tungsten-Vanadium carbide-Graphite (W-VC-C) which include 93% tungsten (W), 6% vanadium carbide (VC) and 1% graphite (C) also which has three different alloying time (6-12-24 hours) were produced by mechanical alloying method. Co-60, Se-75 and Sb-125 gamma radioisotopeswere used as a gamma sources in order to determine behavior of gamma attenuation properties of the composite materials. The experimental results were compared with each other to clarify effects of varying gamma energies on the tungsten based composite materials. The mass attenuation coefficients of the samples were obtained by using XCOM computer code and compared with experimental data. The gamma linear attenuation, the mass attenuation coefficients and half value thickness (HVL) of the samples were evaluated and compared with Co-60, Se-75 and Sb-125 for gamma radioisotopes. Results showed that gamma attenuation coefficients of the samples depend on gamma energies and mechanical alloying time has negatively effect on the gamma shielding properties for the all studied W-VC-C.

  19. Tribological Properties of AlSi12-Al2O3 Interpenetrating Composite Layers in Comparison with Unreinforced Matrix Alloy

    PubMed Central

    Dolata, Anna Janina

    2017-01-01

    Alumina–Aluminum composites with interpenetrating network structures are a new class of advanced materials with potentially better properties than composites reinforced by particles or fibers. Local casting reinforcement was proposed to take into account problems with the machinability of this type of materials and the shaping of the finished products. The centrifugal infiltration process fabricated composite castings in the form of locally reinforced shafts. The main objective of the research presented in this work was to compare the tribological properties (friction coefficient, wear resistance) of AlSi12/Al2O3 interpenetrating composite layers with unreinforced AlSi12 matrix areas. Profilometric tests enabled both quantitative and qualitative analyses of the wear trace that formed on investigated surfaces. It has been shown that interpenetrating composite layers are characterized by lower and more stable coefficients of friction (μ), as well as higher wear resistance than unreinforced matrix areas. At the present stage, the study confirmed that the tribological properties of the composite layers depend on the spatial structure of the ceramic reinforcement, and primarily the volume and size of alumina foam cells. PMID:28878162

  20. Glass Transition Temperature- and Specific Volume- Composition Models for Tellurite Glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riley, Brian J.; Vienna, John D.

    This report provides models for predicting composition-properties for tellurite glasses, namely specific gravity and glass transition temperature. Included are the partial specific coefficients for each model, the component validity ranges, and model fit parameters.

  1. Molecular-dynamics simulation of mutual diffusion in nonideal liquid mixtures

    NASA Astrophysics Data System (ADS)

    Rowley, R. L.; Stoker, J. M.; Giles, N. F.

    1991-05-01

    The mutual-diffusion coefficients, D 12, of n-hexane, n-heptane, and n-octane in chloroform were modeled using equilibrium molecular-dynamics (MD) simulations of simple Lennard-Jones (LJ) fluids. Pure-component LJ parameters were obtained by comparison of simulations to experimental self-diffusion coefficients. While values of “effective” LJ parameters are not expected to simulate accurately diverse thermophysical properties over a wide range of conditions, it was recently shown that effective parameters obtained from pure self-diffusion coefficients can accurately model mutual diffusion in ideal, liquid mixtures. In this work, similar simulations are used to model diffusion in nonideal mixtures. The same combining rules used in the previous study for the cross-interaction parameters were found to be adequate to represent the composition dependence of D 12. The effect of alkane chain length on D 12 is also correctly predicted by the simulations. A commonly used assumption in empirical correlations of D 12, that its kinetic portion is a simple, compositional average of the intradiffusion coefficients, is inconsistent with the simulation results. In fact, the value of the kinetic portion of D 12 was often outside the range of values bracketed by the two intradiffusion coefficients for the nonideal system modeled here.

  2. Thermodynamic properties and transport coefficients of two-temperature helium thermal plasmas

    NASA Astrophysics Data System (ADS)

    Guo, Xiaoxue; Murphy, Anthony B.; Li, Xingwen

    2017-03-01

    Helium thermal plasmas are in widespread use in arc welding and many other industrial applications. Simulation of these processes relies on accurate plasma property data, such as plasma composition, thermodynamic properties and transport coefficients. Departures from LTE (local thermodynamic equilibrium) generally occur in some regions of helium plasmas. In this paper, properties are calculated allowing for different values of the electron temperature, T e, and heavy-species temperature, T h, at atmospheric pressure from 300 K to 30 000 K. The plasma composition is first calculated using the mass action law, and the two-temperature thermodynamic properties are then derived. The viscosity, diffusion coefficients, electrical conductivity and thermal conductivity of the two-temperature helium thermal plasma are obtained using a recently-developed method that retains coupling between electrons and heavy species by including the electron-heavy-species collision term in the heavy-species Boltzmann equation. It is shown that the viscosity and the diffusion coefficients strongly depend on non-equilibrium ratio θ (θ ={{T}\\text{e}}/{{T}\\text{h}} ), through the plasma composition and the collision integrals. The electrical conductivity, which depends on the electron number density and ordinary diffusion coefficients, and the thermal conductivity have similar dependencies. The choice of definition of the Debye length is shown to affect the electrical conductivity significantly for θ  >  1. By comparing with literature data, it is shown that the coupling between electrons and heavy species has a significant influence on the electrical conductivity, but not on the viscosity. Plasma properties are tabulated in the supplementary data.

  3. Wear resistance of Ti/TiB composites produced by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Ozerov, M.; Stepanov, N.; Zherebtsov, S.

    2017-12-01

    The tribological characteristics of Ti/TiB composites were studied in as-sintered condition and after isothermal multiaxial forging. A mixture of commercially pure Ti and TiB2 powders was used to produce Ti/TiB composites with 8.5 and 17 vol % of TiB via in-situ Ti+TiB2→Ti+TiB reactions during spark plasma sintering at 1000°C. During isothermal multiaxial forging (MAF), the material was exposed to successive compressions along three orthogonal directions at a temperature of 700°C and strain rate of 10-3 s-1 to cumulative strains e = 5.2. The microstructure of the as-sintered composites consisted of TiB whiskers nonuniformly distributed within the Ti matrix. In the forged composites, intensive shortening of TiB whiskers occurred. The hardness of the composites increased greatly compared to that of commercially pure Ti; the hardness also increased with increasing the TiB fraction. The hardness in the forged composites decreased by ˜20% for both composite states. Tribological tests using a standard ball-on-disk geometry showed that the friction coefficient of the Ti/TiB composites increased in comparison with Ti. Increasing the TiB fraction in the composites increased the friction coefficient and decreased the wear factor. It was shown that the tribological characteristics after isothermal multiaxial forging were changed but slightly.

  4. Comparison of Methods for Characterizing Nonideal Solute Self-Association by Sedimentation Equilibrium

    PubMed Central

    Scott, David J.; Winzor, Donald J.

    2009-01-01

    Abstract We have examined in detail analytical solutions of expressions for sedimentation equilibrium in the analytical ultracentrifuge to describe self-association under nonideal conditions. We find that those containing the radial dependence of total solute concentration that incorporate the Adams-Fujita assumption for composition-dependence of activity coefficients reveal potential shortcomings for characterizing such systems. Similar deficiencies are shown in the use of the NONLIN software incorporating the same assumption about the interrelationship between activity coefficients for monomer and polymer species. These difficulties can be overcome by iterative analyses incorporating expressions for the composition-dependence of activity coefficients predicted by excluded volume considerations. A recommendation is therefore made for the replacement of current software packages by programs that incorporate rigorous statistical-mechanical allowance for thermodynamic nonideality in sedimentation equilibrium distributions reflecting solute self-association. PMID:19651047

  5. Impact damage of composite plates

    NASA Technical Reports Server (NTRS)

    Lal, K. M.; Goglia, G. L.

    1983-01-01

    A simple model to study low velocity transverse impact of thin plates made of fiber-reinforced composite material, in particular T300/5208 graphite-epoxy was discussed. This model predicts the coefficient of restitution, which is a measure of the energy absorbed by the target during an impact event. The model is constructed on the assumption that the plate is inextensible in the fiber direction and that the material is incompressible in the z-direction. Such a plate essentially deforms by shear, hence this model neglects bending deformations of the plate. The coefficient of restitution is predicted to increase with large interlaminar shear strength and low transverse shear modulus of the laminate. Predictions are compared with the test results of impacted circular and rectangular clamped plates. Experimentally measured values of the coefficient of restitution are found to agree with the predicted values within a reasonable error.

  6. Microstructure, Mechanical and Tribological Properties of Ag/Bi2Sr2CaCu2O x Self-lubricating Composites

    NASA Astrophysics Data System (ADS)

    Tang, Hua; Zhang, Du; Wang, Yuqi; Zhang, Yi; Ji, Xiaorui; Song, Haojie; Li, Changsheng

    2014-01-01

    Ag/Bi2Sr2CaCu2O x self-lubricating composites were successfully fabricated by a facile powder metallurgy method. The structure and morphology of the as-synthesized composites and the worn surface after tribometer testing are characterized by using X-ray diffraction and scanning electron microscopy together with energy dispersive spectrometry. The results indicated that self-lubricating composites are composed of superconductor phase and Ag phase. Moreover, the effects of Ag on mechanical and tribological properties of the novel composites were investigated. The friction test results showed that the friction coefficient of the pure Bi2212 against stainless steel is about 0.40 at ambient temperature and abruptly decreases to about 0.17 when the temperature is cooled to 77 K. The friction coefficients of the composites from room temperature to high temperature were lower and more stable than those of pure Bi2Sr2CaCu2O x . When the content of Ag is 10 wt.%, the Ag/Bi2Sr2CaCu2O x composites exhibited excellent tribological performance, the improved tribological properties are attributed to the formation of soft metallic Ag films at the contacted zone of the composites.

  7. Fabrication, polarization, and characterization of PVDF matrix composites for integrated structural load sensing

    NASA Astrophysics Data System (ADS)

    Haghiashtiani, Ghazaleh; Greminger, Michael A.

    2015-04-01

    The focus of this work is to evaluate a new carbon fiber reinforced composite structure with integrated sensing capabilities. In this composite structure, the typical matrix material used for carbon fiber reinforced composites is replaced with the thermoplastic polyvinylidene difluoride (PVDF). Since PVDF has piezoelectric properties, it enables the structure to be used for integrated load sensing. In addition, the electrical conductivity property of the carbon fabric is harnessed to form the electrodes of the integrated sensor. In order to prevent the carbon fiber electrodes from shorting to each other, a thin Kevlar fabric layer is placed between the two carbon fiber electrode layers as a dielectric. The optimal polarization parameters were determined using a design of experiments approach. Once polarized, the samples were then used in compression and tensile tests to determine the effective d33 and d31 piezoelectric coefficients. The degree of polarization of the PVDF material was determined by relating the effective d33 coefficient of the composite to the achieved d33 of the PVDF component of the composite using a closed form expression. Using this approach, it was shown that optimal polarization of the composite material results in a PVDF component d33 of 3.2 pC N-1. Moreover, the Young’s modulus of the composite structure has been characterized.

  8. Mass attenuation coefficients of X-rays in different barite concrete used in radiation protection as shielding against ionizing radiation

    NASA Astrophysics Data System (ADS)

    Almeida Junior, T. Airton; Nogueira, M. S.; Vivolo, V.; Potiens, M. P. A.; Campos, L. L.

    2017-11-01

    The probability of a photon interacting in a particular way with a given material, per unit path length, is usually called the linear attenuation coefficient (μ), and it is of great importance in radiation shielding. Plates of barite concrete with different thickness were fabricated in order to determining their mass attenuation coefficients at different energies. The plates were irradiated with ISO X-ray beams (N60, N80, N110 and N150), generated by Pantak HF320 X-ray equipment, at the IPEN laboratory. The mass attenuation coefficients of barite concrete have been measured using X-ray attenuation for different thicknesses of barite concrete qualities of the ISO. The attenuator material issued from different regions of Brazil. The experimental procedure in this research was validated by comparison between the experimental measurements of mass attenuation coefficients and coefficients determined by the same atomic composition, using as a tool to XCOM. The highest value of (μ/ρ) found experimentally was in the energy of 48 keV, in ISO 60 N quality, being 1.32(±0.49) for purple barite; 1.47(±0.41) for white barite and 1.75(±0.41) for cream barite. The determination of the chemical composition of the barite samples was of fundamental importance for the characterization of these materials. It can be seen that both calculated and measured data for the linear attenuation coefficients increase with the increasing materials density, as it is expected. It can be concluded that the photon attenuation coefficients depends on the photon energy and the materials density is the main contribution to the photon attenuation coefficients, which is important for radiation shielding.

  9. Composite material bend-twist coupling for wind turbine blade applications

    NASA Astrophysics Data System (ADS)

    Walsh, Justin M.

    Current efforts in wind turbine blade design seek to employ bend-twist coupling of composite materials for passive power control by twisting blades to feather. Past efforts in this area of study have proved to be problematic, especially in formulation of the bend-twist coupling coefficient alpha. Kevlar/epoxy, carbon/epoxy and glass/epoxy specimens were manufactured to study bend-twist coupling, from which numerical and analytical models could be verified. Finite element analysis was implemented to evaluate fiber orientation and material property effects on coupling magnitude. An analytical/empirical model was then derived to describe numerical results and serve as a replacement for the commonly used coupling coefficient alpha. Through the results from numerical and analytical models, a foundation for aeroelastic design of wind turbines blades utilizing biased composite materials is provided.

  10. A case study of highly time-resolved evolution of aerosol chemical composition and optical properties during severe haze pollution in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Cheng, Z.; Lou, S.

    2017-12-01

    Despite of extensive efforts into characterization of the sources in severe haze pollution periods in the megacity of Shanghai, the study of aerosol composition, mass-size distribution and optical properties to PM1 in the pollution periods remain poorly understood. Here we conducted a 47days real-time measurement of submicron aerosol (PM1) composition and size distribution by a High-Resolution Time-of-Flight Aerosol Mass spectrometer (HR-TOF-AMS), particle light scattering by a Cavity Attenuated Phase Shift ALBedo monitor (CAPS-ALB) and Photoacoustic Extinctionmeter (PAX) in Shanghai, China, from November 28, 2016 to January 12, 2017. The average PM1 concentration was 85.9(±14.7) μg/m3 during the pollution period, which was nearly 4 times higher than that of clean period. Increased scattering coefficient during EP was associated with higher secondary inorganic aerosols and organics. We also observed organics mass size distribution for different pollution extents showing different distribution characteristics. There were no obvious differences for ammonium nitrate and ammonium sulfate among the pollution periods, which represented single peak distributions, and peaks ranged at 650-700nm and 700nm, respectively. A strong relationship can be expected between PM1 compounds mass concentration size distribution and scattering coefficient, suggesting that chemical composition, size distribution of the particles and their variations could also contribute to the extinction coefficients. Organics and secondary inorganic species to particle light scattering were quantified. The results showed that organics and ammonium nitrate were the largest contribution to scattering coefficients of PM1. The contribution of (NH4)2SO4 to the light scattering exceeded that of NH4NO3 during clean period due to the enhanced sulfate concentrations. Our results elucidate substantial changes of aerosol composition, formation mechanisms, size distribution and optical properties due to local emissions, region transports and meteorological changes in the pollution period.

  11. Nanocomposite Interphases for Improved Transparent Polymer Composite Materials

    DTIC Science & Technology

    2008-08-01

    intensity of the incident light, A is the attenuation coefficient , and t is the part thickness. The intensity attenuation coefficient is a function of...index that is fairly close to that of fused silica. Most importantly, it has a high thermo- optic coefficient , dn/dt, which results in a large change in...35765K164, McMaster -Carr, Robbinsville, NJ) were attached on the outer side of both aluminum plates as shown, and the temperature was controlled

  12. The rate of equilibration of viscous aerosol particles

    NASA Astrophysics Data System (ADS)

    O'Meara, Simon; Topping, David O.; McFiggans, Gordon

    2016-04-01

    The proximity of atmospheric aerosol particles to equilibrium with their surrounding condensable vapours can substantially impact their transformations, fate and impacts and is the subject of vibrant research activity. In this study we first compare equilibration timescales estimated by three different models for diffusion through aerosol particles to assess any sensitivity to choice of model framework. Equilibration times for diffusion coefficients with varying dependencies on composition are compared for the first time. We show that even under large changes in the saturation ratio of a semi-volatile component (es) of 1-90 % predicted equilibration timescales are in agreement, including when diffusion coefficients vary with composition. For condensing water and a diffusion coefficient dependent on composition, a plasticising effect is observed, leading to a decreased estimated equilibration time with increasing final es. Above 60 % final es maximum equilibration times of around 1 s are estimated for comparatively large particles (10 µm) containing a relatively low diffusivity component (1 × 10-25 m2 s-1 in pure form). This, as well as other results here, questions whether particle-phase diffusion through water-soluble particles can limit hygroscopic growth in the ambient atmosphere. In the second part of this study, we explore sensitivities associated with the use of particle radius measurements to infer diffusion coefficient dependencies on composition using a diffusion model. Given quantified similarities between models used in this study, our results confirm considerations that must be taken into account when designing such experiments. Although quantitative agreement of equilibration timescales between models is found, further work is necessary to determine their suitability for assessing atmospheric impacts, such as their inclusion in polydisperse aerosol simulations.

  13. Harmonic regression of Landsat time series for modeling attributes from national forest inventory data

    NASA Astrophysics Data System (ADS)

    Wilson, Barry T.; Knight, Joseph F.; McRoberts, Ronald E.

    2018-03-01

    Imagery from the Landsat Program has been used frequently as a source of auxiliary data for modeling land cover, as well as a variety of attributes associated with tree cover. With ready access to all scenes in the archive since 2008 due to the USGS Landsat Data Policy, new approaches to deriving such auxiliary data from dense Landsat time series are required. Several methods have previously been developed for use with finer temporal resolution imagery (e.g. AVHRR and MODIS), including image compositing and harmonic regression using Fourier series. The manuscript presents a study, using Minnesota, USA during the years 2009-2013 as the study area and timeframe. The study examined the relative predictive power of land cover models, in particular those related to tree cover, using predictor variables based solely on composite imagery versus those using estimated harmonic regression coefficients. The study used two common non-parametric modeling approaches (i.e. k-nearest neighbors and random forests) for fitting classification and regression models of multiple attributes measured on USFS Forest Inventory and Analysis plots using all available Landsat imagery for the study area and timeframe. The estimated Fourier coefficients developed by harmonic regression of tasseled cap transformation time series data were shown to be correlated with land cover, including tree cover. Regression models using estimated Fourier coefficients as predictor variables showed a two- to threefold increase in explained variance for a small set of continuous response variables, relative to comparable models using monthly image composites. Similarly, the overall accuracies of classification models using the estimated Fourier coefficients were approximately 10-20 percentage points higher than the models using the image composites, with corresponding individual class accuracies between six and 45 percentage points higher.

  14. Electromagnetic interference shielding effectiveness of polypropylene/conducting fiber composites

    NASA Astrophysics Data System (ADS)

    Lee, Pyoung-Chan; Kim, Bo-Ram; Jeoung, Sun Kyoung; Kim, Yeung Keun

    2016-03-01

    Electromagnetic released from the automotive electronic parts is harmful to human body. Electromagnetic interference (EMT) shielding refers to the reflection and/or adsorption of electromagnetic radiation by a material, which thereby acts as a shield against the penetration of the radiation through the shield. Polypropylene (PP)/conductive micro fiber composites containing various fiber contents and fiber length were injection-molded. The effect of fiber content and length on electrical properties of the composites was studied by electrical resistivity and EMT shielding measurements. The through-plane electrical conductivity and dielectric permittivity were obtained by measuring dielectric properties. The EMT shielding effectiveness (SE) was investigated by using S-parameter in the range of 100 ~ 1500 MHz. Reflection, absorption and multiple-reflection are the EMT attenuation mechanisms. From the measurement of S-Parameters, the absorption coefficient, reflection coefficient, and the shielding efficiency of the materials were calculated. The EMT SE of PP/conducing fiber composites is 40 dB over a wide frequency range up to 1.5 GHz, which is higher than that of PP/talc composite used automotive parts, viz. 0 dB.

  15. Electric Properties of Pb(Sb1/2Nb1/2)O3 PbTiO3 PbZrO3 Ceramics

    NASA Astrophysics Data System (ADS)

    Kawamura, Yasushi; Ohuchi, Hiromu

    1994-09-01

    Solid-solution ceramics of ternary system xPb(Sb1/2Nb1/2)O3 yPbTiO3 zPbZrO3 were prepared by the solid-state reaction of powder materials. Ceramic, electric, dielectric and piezoelectric properties and crystal structures of the system were studied. Sintering of the system xPb(Sb1/2Nb1/2)O3 yPbTiO3 zPbZrO3 is much easier than that of each end composition, and well-sintered high-density ceramics were obtained for the compositions near the morphotropic transformation. Piezoelectric ceramics with high relative dielectric constants, high radial coupling coefficient and low resonant resistance were obtained for the composition near the morphotropic transformation. The composition Pb(Sb1/2Nb1/2)0.075Ti0.45Zr0.475O3 showed the highest dielectric constant (ɛr=1690), and the composition Pb(Sb1/2Nb1/2)0.05Ti0.45Zr0.5O3 showed the highest radial coupling coefficient (kp=64%).

  16. Is the Reaction Equilibrium Composition in Non-ideal Mixtures Uniquely Determined by the Initial Composition?

    NASA Astrophysics Data System (ADS)

    Sefcik, Jan

    1998-05-01

    Reaction equilibrium can be mathematically described by the equilibrium equation and the reaction equilibrium composition can be calculated by solving this equation. It can be proved by non-elementary thermodynamic arguments that for a generic system with given initial composition, temperature and pressure there is a unique stable equilibrium state corresponding to the global minimum of the Gibbs free energy function. However, when the concept of equilibrium is introduced in undergraduate chemistry and chemical engineering courses, such arguments are generally not accessible. When there is a single reaction equilibrium among mixture components and the components form an ideal mixture, it has been demonstrated by a simple, elegant mathematical argument that there is a unique composition satisfying the equilibrium equation. It has been also suggested that this particular argument extends to non-ideal mixtures by simply incorporating activity coefficients. We show that the argument extension to non-ideal systems is not generally valid. Increasing non-ideality can result in non-monotonicity of the function crucial for the simple uniqueness argument, and only later it leads to non-uniqueness and hence phase separation. The main feature responsible for this is a composition dependence of activity coefficients in non-ideal mixtures.

  17. Partitioning of Ni, Co and V between Spinel-Structured Oxides and Silicate Melts: Importance of Spinel Composition

    NASA Technical Reports Server (NTRS)

    Righter, K.; Leeman, W. P.; Hervig, R. L.

    2006-01-01

    Partitioning of Ni, Co and V between Cr-rich spinels and basaltic melt has been studied experimentally between 1150 and 1325 C, and at controlled oxygen fugacity from the Co-CoO buffer to slightly above the hematite magnetite buffer. These new results, together with new Ni, Co and V analyses of experimental run products from Leeman [Leeman, W.P., 1974. Experimental determination of the partitioning of divalent cations between olivine and basaltic liquid, Pt. II. PhD thesis, Univ. Oregon, 231 - 337.], show that experimentally determined spinel melt partition coefficients (D) are dependent upon temperature (T), oxygen fugacity (fO2) and spinel composition. In particular, partition coefficients determined on doped systems are higher than those in natural (undoped) systems, perhaps due to changing activity coefficients over the composition range defined by the experimental data. Using our new results and published runs (n =85), we obtain a multilinear regression equation that predicts experimental D(V) values as a function of T, fO2, concentration of V in melt and spinel composition. This equation allows prediction of D(V) spinel/melt values for natural mafic liquids at relevant crystallization conditions. Similarly, D(Ni) and D(Co) values can be inferred from our experiments at redox conditions approaching the QFM buffer, temperatures of 1150 to 1250 C and spinel composition (early Cr-bearing and later Ti-magnetite) appropriate for basic magma differentiation. When coupled with major element modelling of liquid lines of descent, these values (D(Ni) sp/melt=10 and D(Co) sp/melt=5) closely reproduce the compositional variation observed in komatiite, mid-ocean ridge basalt (MORB), ocean island basalt (OIB) and basalt to rhyolite suites.

  18. The coefficient of friction, particularly of ice

    NASA Astrophysics Data System (ADS)

    Mills, Allan

    2008-07-01

    The static and dynamic coefficients of friction are defined, and values from 0.3 to 0.6 are quoted for common materials. These drop to about 0.15 when oil is added as a lubricant. Water ice at temperatures not far below 0 °C is remarkable for low coefficients of around 0.05 for static friction and 0.04-0.02 for dynamic friction, but these figures increase as the temperature diminishes. Reasons for the slipperiness of ice are summarized, but they are still not entirely clear. One hypothesis suggests that it is related to the transient formation of a lubricating film of liquid water produced by frictional heating. If this is the case, some composition melting a little above ambient temperatures might provide a skating rink that did not require expensive refrigeration. Various compositions have been tested, but an entirely satisfactory material has yet to be found.

  19. Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure.

    PubMed

    Ran, Zengling; Liu, Shan; Liu, Qin; Huang, Ya; Bao, Haihong; Wang, Yanjun; Luo, Shucheng; Yang, Huiqin; Rao, Yunjiang

    2014-08-07

    Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  20. Two cation exchange models for direct and inverse modelling of solution major cation composition in equilibrium with illite surfaces

    NASA Astrophysics Data System (ADS)

    Tournassat, Christophe; Gailhanou, Hélène; Crouzet, Catherine; Braibant, Gilles; Gautier, Anne; Lassin, Arnault; Blanc, Philippe; Gaucher, Eric C.

    2007-03-01

    Na/K, Na/Ca and Na/Mg exchange isotherms were performed on the fine fraction (<2 μm) of Imt-2 illite samples at a total normality of about 0.005 mol/L in anionic chloride medium. The derived selectivity coefficients for Na/K, Na/Ca and Na/Mg were found to vary as a function of the exchanger composition and compared well with the data collected in the literature for similar experimental conditions. Two models were built to reproduce the data: the first was a multi(2)-site model with constant Gaines and Thomas selectivity coefficients; the second was a one-site model taking into account surface species activity coefficients. The results of the models were in rather good agreement with both our data and literature data. The multi-site model proved to be efficient in predicting the exchanger composition as a function of the Na/Ca/Mg/K concentrations in solution, whereas the one-site model proved to be a better approach to derive the Na/Ca/Mg/K concentrations in solution based on the knowledge of the exchanger composition and the total normality of the solution. The interest of this approach is illustrated by the need for major cation solute concentration predictions in compacted clay for the characterization of nuclear deep disposal host rock repositories.

  1. Metal-silicate Partitioning and Its Role in Core Formation and Composition on Super-Earths

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, Laura; Petaev, M. I.; Sasselov, Dimitar D.

    We use a thermodynamic framework for silicate-metal partitioning to determine the possible compositions of metallic cores on super-Earths. We compare results using literature values of the partition coefficients of Si and Ni, as well as new partition coefficients calculated using results from laser shock-induced melting of powdered metal-dunite targets at pressures up to 276 GPa, which approaches those found within the deep mantles of super-Earths. We find that larger planets may have little to no light elements in their cores because the Si partition coefficient decreases at high pressures. The planet mass at which this occurs will depend on themore » metal-silicate equilibration depth. We also extrapolate the equations of state (EOS) of FeO and FeSi alloys to high pressures, and present mass–radius diagrams using self-consistent planet compositions assuming equilibrated mantles and cores. We confirm the results of previous studies that the distribution of elements between mantle and core will not be detectable from mass and radius measurements alone. While observations may be insensitive to interior structure, further modeling is sensitive to compositionally dependent properties, such as mantle viscosity and core freeze-out properties. We therefore emphasize the need for additional high pressure measurements of partitioning as well as EOSs, and highlight the utility of the Sandia Z-facilities for this type of work.« less

  2. Statistical analysis of solid waste composition data: Arithmetic mean, standard deviation and correlation coefficients.

    PubMed

    Edjabou, Maklawe Essonanawe; Martín-Fernández, Josep Antoni; Scheutz, Charlotte; Astrup, Thomas Fruergaard

    2017-11-01

    Data for fractional solid waste composition provide relative magnitudes of individual waste fractions, the percentages of which always sum to 100, thereby connecting them intrinsically. Due to this sum constraint, waste composition data represent closed data, and their interpretation and analysis require statistical methods, other than classical statistics that are suitable only for non-constrained data such as absolute values. However, the closed characteristics of waste composition data are often ignored when analysed. The results of this study showed, for example, that unavoidable animal-derived food waste amounted to 2.21±3.12% with a confidence interval of (-4.03; 8.45), which highlights the problem of the biased negative proportions. A Pearson's correlation test, applied to waste fraction generation (kg mass), indicated a positive correlation between avoidable vegetable food waste and plastic packaging. However, correlation tests applied to waste fraction compositions (percentage values) showed a negative association in this regard, thus demonstrating that statistical analyses applied to compositional waste fraction data, without addressing the closed characteristics of these data, have the potential to generate spurious or misleading results. Therefore, ¨compositional data should be transformed adequately prior to any statistical analysis, such as computing mean, standard deviation and correlation coefficients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Mechanical properties of neat polymer matrix materials and their unidirectional carbon fiber-reinforced composites

    NASA Technical Reports Server (NTRS)

    Zimmerman, Richard S.; Adams, Donald F.

    1988-01-01

    The mechanical properties of two neat resin systems for use in carbon fiber epoxy composites were characterized. This included tensile and shear stiffness and strengths, coefficients of thermal and moisture expansion, and fracture toughness. Tests were conducted on specimens in the dry and moisture-saturated states, at temperatures of 23, 82 and 121 C. The neat resins tested were American Cyanamid 1806 and Union Carbide ERX-4901B(MPDA). Results were compared to previously tested neat resins. Four unidirectional carbon fiber reinforced composites were mechanically characterized. Axial and transverse tension and in-plane shear strengths and stiffness were measured, as well as transverse coefficients of thermal and moisture expansion. Tests were conducted on dry specimens only at 23 and 100 C. The materials tested were AS4/3502, AS6/5245-C, T300/BP907, and C6000/1806 unidirectional composites. Scanning electron microscopic examination of fracture surfaces was performed to permit the correlation of observed failure modes with the environmental test conditions.

  4. Combined micromechanical and fabrication process optimization for metal-matrix composites

    NASA Technical Reports Server (NTRS)

    Morel, M.; Saravanos, D. A.; Chamis, C. C.

    1991-01-01

    A method is presented to minimize the residual matrix stresses in metal matrix composites. Fabrication parameters such as temperature and consolidation pressure are optimized concurrently with the characteristics (i.e., modulus, coefficient of thermal expansion, strength, and interphase thickness) of a fiber-matrix interphase. By including the interphase properties in the fabrication process, lower residual stresses are achievable. Results for an ultra-high modulus graphite (P100)/copper composite show a reduction of 21 percent for the maximum matrix microstress when optimizing the fabrication process alone. Concurrent optimization of the fabrication process and interphase properties show a 41 percent decrease in the maximum microstress. Therefore, this optimization method demonstrates the capability of reducing residual microstresses by altering the temperature and consolidation pressure histories and tailoring the interphase properties for an improved composite material. In addition, the results indicate that the consolidation pressures are the most important fabrication parameters, and the coefficient of thermal expansion is the most critical interphase property.

  5. Through-transmission laser welding of glass fibre composite: Experimental light scattering identification

    NASA Astrophysics Data System (ADS)

    Cosson, Benoit; Asséko, André Chateau Akué; Dauphin, Myriam

    2018-05-01

    The purpose of this paper is to develop a cost-effective, efficient and quick to implement experimental optical method in order to predict the optical properties (extinction coefficient) of semi-transparent polymer composites. The extinction coefficient takes into account the effects due to the absorption and the scattering phenomena in a semi-transparent component during the laser processes, i.e. TTLW (through-transmission laser welding). The present method used a laser as light source and a reflex camera equipped with a macro lens as a measurement device and is based on the light transmission measurement through different thickness samples. The interaction between the incident laser beam and the semi-transparent composite is exanimated. The results are presented for the case of a semi-transparent composite reinforced with the unidirectional glass fiber (UD). A numerical method, ray tracing, is used to validate the experimental results. The ray tracing method is appropriate to characterize the light-scattering phenomenon in semi-transparent materials.

  6. Concurrent micromechanical tailoring and fabrication process optimization for metal-matrix composites

    NASA Technical Reports Server (NTRS)

    Morel, M.; Saravanos, D. A.; Chamis, Christos C.

    1990-01-01

    A method is presented to minimize the residual matrix stresses in metal matrix composites. Fabrication parameters such as temperature and consolidation pressure are optimized concurrently with the characteristics (i.e., modulus, coefficient of thermal expansion, strength, and interphase thickness) of a fiber-matrix interphase. By including the interphase properties in the fabrication process, lower residual stresses are achievable. Results for an ultra-high modulus graphite (P100)/copper composite show a reduction of 21 percent for the maximum matrix microstress when optimizing the fabrication process alone. Concurrent optimization of the fabrication process and interphase properties show a 41 percent decrease in the maximum microstress. Therefore, this optimization method demonstrates the capability of reducing residual microstresses by altering the temperature and consolidation pressure histories and tailoring the interphase properties for an improved composite material. In addition, the results indicate that the consolidation pressures are the most important fabrication parameters, and the coefficient of thermal expansion is the most critical interphase property.

  7. Monitoring on internal temperature of composite insulator with embedding fiber Bragg grating for early diagnosis

    NASA Astrophysics Data System (ADS)

    Chen, Wen; Tang, Ming

    2017-04-01

    The abnormal temperature rise is the precursor of the defective composite insulator in power transmission line. However no consolidated techniques or methodologies can on line monitor its internal temperature now. Thus a new method using embedding fiber Bragg grating (FBG) in fiber reinforced polymer (FRP) rod is adopted to monitor its internal temperature. To correctly demodulate the internal temperature of FRP rod from the Bragg wavelength shift of FBG, the conversion coefficient between them is deduced theoretically based on comprehensive investigation on the thermal stresses of the metal-composite joint, as well as its material and structural properties. Theoretical model shows that the conversion coefficients of FBG embedded in different positions will be different because of non-uniform thermal stress distribution, which is verified by an experiment. This work lays the theoretical foundation of monitoring the internal temperature of composite insulator with embedding FBG, which is of great importance to its health structural monitoring, especially early diagnosis.

  8. Gas-particle partitioning of semi-volatile organics on organic aerosols using a predictive activity coefficient model: analysis of the effects of parameter choices on model performance

    NASA Astrophysics Data System (ADS)

    Chandramouli, Bharadwaj; Jang, Myoseon; Kamens, Richard M.

    The partitioning of a diverse set of semivolatile organic compounds (SOCs) on a variety of organic aerosols was studied using smog chamber experimental data. Existing data on the partitioning of SOCs on aerosols from wood combustion, diesel combustion, and the α-pinene-O 3 reaction was augmented by carrying out smog chamber partitioning experiments on aerosols from meat cooking, and catalyzed and uncatalyzed gasoline engine exhaust. Model compositions for aerosols from meat cooking and gasoline combustion emissions were used to calculate activity coefficients for the SOCs in the organic aerosols and the Pankow absorptive gas/particle partitioning model was used to calculate the partitioning coefficient Kp and quantitate the predictive improvements of using the activity coefficient. The slope of the log K p vs. log p L0 correlation for partitioning on aerosols from meat cooking improved from -0.81 to -0.94 after incorporation of activity coefficients iγ om. A stepwise regression analysis of the partitioning model revealed that for the data set used in this study, partitioning predictions on α-pinene-O 3 secondary aerosol and wood combustion aerosol showed statistically significant improvement after incorporation of iγ om, which can be attributed to their overall polarity. The partitioning model was sensitive to changes in aerosol composition when updated compositions for α-pinene-O 3 aerosol and wood combustion aerosol were used. The octanol-air partitioning coefficient's ( KOA) effectiveness as a partitioning correlator over a variety of aerosol types was evaluated. The slope of the log K p- log K OA correlation was not constant over the aerosol types and SOCs used in the study and the use of KOA for partitioning correlations can potentially lead to significant deviations, especially for polar aerosols.

  9. A tribological and biomimetic study of potential bone joint repair materials

    NASA Astrophysics Data System (ADS)

    Ribeiro, Rahul

    This research investigates materials for bone-joint failure repair using tribological and biomimicking approaches. The materials investigated represent three different repairing strategies. Refractory metals with and without treatment are candidates for total joint replacements due to their mechanical strength, high corrosion resistance and biocompatibility. A composite of biodegradable polytrimethylene carbonate, hydroxyl apatite, and nanotubes was investigated for application as a tissue engineering scaffold. Non-biodegradable polymer polyimide combined with various concentrations of nanotubes was investigated as a cartilage replacement material. A series of experimental approaches were used in this research. These include analysis of material surfaces and debris using high-resolution techniques and tribological experiments, as well as evaluation of nanomechanical properties. Specifically, the surface structure and wear mechanisms were investigated using a scanning electron microscope and an atomic force microscope. Debris morphology and structure was investigated using a transmission electron microscope. The debris composition was analyzed using an X-ray diffractometer. Nanoindentation was incorporated to investigate the surface nanomechanical properties. Polytrimythelene carbonate combined with hydroxyapatite and nanotubes exhibited a friction coefficient lower than UHMWPE. The nanoindentation response mimicked cartilage more closely than UHMWPE. A composite formed with PI and nanotubes showed a varying friction coefficient and varying nanoindentation response with variation in nanotube concentration. Low friction coefficients corresponded with low modulus values. A theory was proposed to explain this behavior based on surface interactions between nanotubes and between nanotubes and PI. A model was developed to simulate the modulus as a function of nanotube concentration. The boronized refractory metals exhibited brittleness and cracking. Higher friction coefficients were associated with the formation of amorphous debris. The friction coefficient for boronized Cr (˜0.06) under simulated body fluid conditions was in the range found in natural joints.

  10. Excellent vacuum tribological properties of Pb/PbS film deposited by RF magnetron sputtering and ion sulfurizing.

    PubMed

    Guozheng, Ma; Binshi, Xu; Haidou, Wang; Shuying, Chen; Zhiguo, Xing

    2014-01-08

    Soft metal Pb film of 3 μm in thickness was deposited on AISI 440C steel by RF magnetron sputtering, and then some of the Pb film samples were treated by low-temperature ion sulfurizing (LTIS) and formed Pb/PbS composite film. Tribological properties of the Pb and Pb/PbS films were tested contrastively in vacuum and air condition using a self-developed tribometer (model of MSTS-1). Scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were adopted to analyze the microstructure and chemical construction of the films and their worn surfaces. The results show that a mass of Pb was changed to PbS during the process of LTIS. In air condition, owing to the severe oxidation effect, pure Pb film showed relatively high friction coefficients (0.6), and Pb/PbS composite film also lost its friction-reduction property after sliding for a short time. In a vacuum, the average friction coefficients of Pb film were about 0.1, but the friction coefficient curve fluctuated obviously. And the Pb/PbS composite film exhibited excellent tribological properties in vacuum condition. Its friction coefficients keep stable at a low value of about 0.07 for a long time. If takes the value of friction coefficients exceeding 0.2 continuously as a criterion of lubrication failure, the sliding friction life of Pb/PbS film was as long as 3.2 × 10(5) r, which is 8 times of that of the Pb film. It can be concluded that the Pb/PbS film has excellent vacuum tribological properties and important foreground for applying in space solid lubrication related fields.

  11. Effect of Test Parameters on the Friction Behaviour of Anodized Aluminium Alloy

    PubMed Central

    Khalladi, A.; Elleuch, K.; De-Petris Wery, M.; Ayedi, H. F.

    2014-01-01

    The tribological behaviour of anodic oxide layer formed on Al5754, used in automotive applications, was investigated against test parameters. The friction coefficient under different normal loads, sliding speeds, and oxide thicknesses was studied using a pin on disc tribometer. Results show that the increase of load and sliding speed increase the friction coefficient. The rise of contact pressure and temperature seems to cause changes in wear mechanism. Glow-discharge optical emission spectroscopy (GDOES) was used to investigate the chemical composition of the oxide layer. Morphology and composition of the wear tracks were analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). On the basis of these characterization techniques, a wear mechanism was proposed. The observed mechanical properties can be related to the morphology and the chemical composition of the layer. PMID:27437452

  12. Prediction of coefficients of thermal expansion for unidirectional composites

    NASA Technical Reports Server (NTRS)

    Bowles, David E.; Tompkins, Stephen S.

    1989-01-01

    Several analyses for predicting the longitudinal, alpha(1), and transverse, alpha(2), coefficients of thermal expansion of unidirectional composites were compared with each other, and with experimental data on different graphite fiber reinforced resin, metal, and ceramic matrix composites. Analytical and numerical analyses that accurately accounted for Poisson restraining effects in the transverse direction were in consistently better agreement with experimental data for alpha(2), than the less rigorous analyses. All of the analyses predicted similar values of alpha(1), and were in good agreement with the experimental data. A sensitivity analysis was conducted to determine the relative influence of constituent properties on the predicted values of alpha(1), and alpha(2). As would be expected, the prediction of alpha(1) was most sensitive to longitudinal fiber properties and the prediction of alpha(2) was most sensitive to matrix properties.

  13. Giant flexoelectricity in Ba0.6Sr0.4TiO3/Ni0.8Zn0.2Fe2O4 composite

    NASA Astrophysics Data System (ADS)

    Li, Yong; Shu, Longlong; Huang, Wenbin; Jiang, Xiaoning; Wang, Hong

    2014-10-01

    Enhanced flexoelectricity in perovskite ceramics and single crystals has been reported before. In this letter, 3-3 ceramic-ceramic Ba0.6Sr0.4TiO3/Ni0.8Zn0.2Fe2O4 composite with a colossal permittivity was employed in the conventional pure bending experiment in order to examine the transverse flexoelectric response. The measured flexoelectric coefficient at 30 Hz is 128 μC/m and varies to 16 μC/m with the frequency increasing from 30 Hz to 120 Hz, mainly due to the inverse correlation between the permittivity and the frequency. This result reveals the permittivity dependence of flexoelectric coefficient in the frequency dispersion materials, suggesting that the giant permittivity composites can be good flexoelectric materials.

  14. Composite Load Spectra for Select Space Propulsion Structural Components

    NASA Technical Reports Server (NTRS)

    Ho, Hing W.; Newell, James F.

    1994-01-01

    Generic load models are described with multiple levels of progressive sophistication to simulate the composite (combined) load spectra (CLS) that are induced in space propulsion system components, representative of Space Shuttle Main Engines (SSME), such as transfer ducts, turbine blades and liquid oxygen (LOX) posts. These generic (coupled) models combine the deterministic models for composite load dynamic, acoustic, high-pressure and high rotational speed, etc., load simulation using statistically varying coefficients. These coefficients are then determined using advanced probabilistic simulation methods with and without strategically selected experimental data. The entire simulation process is included in a CLS computer code. Applications of the computer code to various components in conjunction with the PSAM (Probabilistic Structural Analysis Method) to perform probabilistic load evaluation and life prediction evaluations are also described to illustrate the effectiveness of the coupled model approach.

  15. Tribological properties of the babbit B83-based composite materials fabricated by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Kalashnikov, I. E.; Bolotova, L. K.; Bykov, P. A.; Kobeleva, L. I.; Katin, I. V.; Mikheev, R. S.; Kobernik, N. V.

    2016-07-01

    Technological processes are developed to fabricate composite materials based on B83 babbit using hot pressing of a mixture of powders in the presence of a liquid phase. As a result, the structure of the matrix B83 alloy is dispersed, the morphology of intermetallic phases is changed, and reinforcing micro- and nanosized fillers are introduced and uniformly distributed in the matrix. The tribological properties of the synthesized materials are studied. The friction of the B83 babbit + 0.5 wt % MSR + 3 wt % SiC (MSR is modified schungite rock) composite material at high loads is characterized by an increase in the stability coefficient, and the wear resistance of the material increases by a factor of 1.8 as compared to the as-cast alloy at comparable friction coefficients.

  16. A dynamic Monte Carlo model for predicting radiant exposure distribution in dental composites: model development and verifications

    NASA Astrophysics Data System (ADS)

    Chen, Yin-Chu; Ferracane, Jack L.; Prahl, Scott A.

    2005-03-01

    Photo-cured dental composites are widely used in dental practices to restore teeth due to the esthetic appearance of the composites and the ability to cure in situ. However, their complex optical characteristics make it difficult to understand the light transport within the composites and to predict the depth of cure. Our previous work showed that the absorption and scattering coefficients of the composite changed after the composite was cured. The static Monte Carlo simulation showed that the penetration of radiant exposures differed significantly for cured and uncured optical properties. This means that a dynamic model is required for accurate prediction of radiant exposure in the composites. The purpose of this study was to develop and verify a dynamic Monte Carlo (DMC) model simulating light propagation in dental composites that have dynamic optical properties while photons are absorbed. The composite was divided into many small cubes, each of which had its own scattering and absorption coefficients. As light passed through the composite, the light was scattered and absorbed. The amount of light absorbed in each cube was calculated using Beer's Law and was used to determine the next optical properties in that cube. Finally, the predicted total reflectance and transmittance as well as the optical property during curing were verified numerically and experimentally. Our results showed that the model predicted values agreed with the theoretical values within 1% difference. The DMC model results are comparable with experimental results within 5% differences.

  17. Effect of mesh distortion on the accuracy of transverse shear stresses and their sensitivity coefficients in multilayered composites

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Kim, Yong H.

    1995-01-01

    A study is made of the effect of mesh distortion on the accuracy of transverse shear stresses and their first-order and second-order sensitivity coefficients in multilayered composite panels subjected to mechanical and thermal loads. The panels are discretized by using a two-field degenerate solid element, with the fundamental unknowns consisting of both displacement and strain components, and the displacement components having a linear variation throughout the thickness of the laminate. A two-step computational procedure is used for evaluating the transverse shear stresses. In the first step, the in-plane stresses in the different layers are calculated at the numerical quadrature points for each element. In the second step, the transverse shear stresses are evaluated by using piecewise integration, in the thickness direction, of the three-dimensional equilibrium equations. The same procedure is used for evaluating the sensitivity coefficients of transverse shear stresses. Numerical results are presented showing no noticeable degradation in the accuracy of the in-plane stresses and their sensitivity coefficients with mesh distortion. However, such degradation is observed for the transverse shear stresses and their sensitivity coefficients. The standard of comparison is taken to be the exact solution of the three-dimensional thermoelasticity equations of the panel.

  18. Versatile composite resins simplifying the practice of restorative dentistry.

    PubMed

    Margeas, Robert

    2014-01-01

    After decades of technical development and refinement, composite resins continue to simplify the practice of restorative dentistry, offering clinicians versatility, predictability, and enhanced physical properties. With a wide range of products available today, composite resins are a reliable, conservative, multi-functional restorative material option. As manufacturers strive to improve such properties as compression strength, flexural strength, elastic modulus, coefficient of thermal expansion, water sorption, and wear resistance, several classification systems of composite resins have been developed.

  19. Effect of space exposure of some epoxy matrix composites on their thermal expansion and mechanical properties (A0138-8)

    NASA Technical Reports Server (NTRS)

    Jabs, Heinrich

    1992-01-01

    Assessments of the behavior of the carbon/epoxy composites in space conditions are described. After an exposure of five years, the mechanical characteristics and the coefficient of thermal expansion are measured and compared to reference values.

  20. Micromechanical Prediction of the Effective Behavior of Fully Coupled Electro-Magneto-Thermo-Elastic Multiphase Composites

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob

    2000-01-01

    The micromechanical generalized method of cells model is employed for the prediction of the effective moduli of electro-magneto-thermo-elastic composites. These include the effective elastic, piezoelectric, piezomagnetic, dielectric, magnetic permeability, electromagnetic coupling moduli, as well as the effective thermal expansion coefficients and the associated pyroelectric and pyromagnetic constants. Results are given for fibrous and periodically bilaminated composites.

  1. Dependence of Seebeck coefficient on a load resistance and energy conversion efficiency in a thermoelectric composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamashita, Osamu; Odahara, Hirotaka; Ochi, Takahiro

    2007-10-02

    The thermo-emf {delta}V and current {delta}I generated by imposing the alternating temperature gradients (ATG) at a period of T and the steady temperature gradient (STG) on a thermoelectric (TE) composite were measured as a function of t, where t is the lapsed time and T was varied from 60 to or {infinity} s. The STG and ATG were produced by imposing steadily and alternatively a source voltage V in the range from 1.0 to 4.0 V on two Peltier modules sandwiching a composite. {delta}T, {delta}V, {delta}I and V{sub P} oscillate at a period T and their waveforms vary significantly withmore » a change of T, where {delta}V and V{sub P} are the voltage drops in a load resistance R{sub L} and in resistance R{sub P} of two modules. The resultant Seebeck coefficient |{alpha}| = |{delta}V|/{delta}T of a composite under the STG was found to be expressed as |{alpha}| = |{alpha}{sub 0}|(1 - R{sub comp}/R{sub T}), where R{sub T} is the total resistance of a circuit for measuring the output signals and R{sub comp} is the resistance of a composite. The effective generating power {delta}W{sub eff} has a local maximum at T = 960 s for the p-type composite and at T = 480 s for the n-type one. The maximum energy conversion efficiency {eta} of the p- and n-type composites under the ATG produced by imposing a voltage of 4.0 V at an optimum period were 0.22 and 0.23% at {delta}T{sub eff} = 50 K, respectively, which are 42 and 43% higher than those at {delta}T = 42 K under the STG. These maximum {eta} for a TE composite sandwiched between two Peltier modules, were found to be expressed theoretically in terms of R{sub P}, R{sub T}, R{sub L}, {alpha}{sub P} and {alpha}, where {alpha}{sub P} and {alpha} are the resultant Seebeck coefficients of Peltier modules and a TE composite.« less

  2. Differential Thermal Analysis of Hg(1-x)Mn(x)Te Alloys in the X=0 to 0.3 Range

    NASA Technical Reports Server (NTRS)

    Price, M. W.; Scripa, R. N.; Szofran, F. R.; Lehoczky, S. L.; Su, C-H

    1998-01-01

    Understanding the experimental conditions necessary for the development of radial and axial compositional homogeneity in directionally solidified Hg(0.89)Mn(0.11)Te(MMT) crystals has been difficult due to the lack of segregation coefficient data on the Hg(1-x)Mn(x)Te alloy system in the X = 0 to 0.3 composition range. Determining segregation coefficient data from the available Hg(1-x)Mn(x)Te alloy phase equilibria data is not practical due to discrepancies in the shape of the reported solidus and liquidus curves in the X = 0 to 0.3 range. To resolve these discrepancies and to obtain segregation coefficient data which can be used to understand homogeneity in directionally solidified MMT crystals, the solidus and liquidus temperatures of seven Hg(1-x)Mn(x)Te alloys in the X = 0 to 0.3 range were determined using differential thermal analysis (DTA). The Hg(1-x)Mn(x)Te phase diagram constructed for the X = 0 to 0.3 range of this alloy system from the DTA measurements clarifies the shape of the solidus and liquidus curves in this range. The segregation coefficient for the Hg(1-x)Mn(x)Te system was found to vary from 5 to 4.4 as the solidus composition increased from 0-30 atomic percent MnTe. This information will be useful in the analysis of axial and radial homogeneity of directionally solidified MMT crystals.

  3. Fatigue damage prognosis of internal delamination in composite plates under cyclic compression loadings using affine arithmetic as uncertainty propagation tool

    NASA Astrophysics Data System (ADS)

    Gbaguidi, Audrey J.-M.

    Structural health monitoring (SHM) has become indispensable for reducing maintenance costs and increasing the in-service capacity of a structure. The increased use of lightweight composite materials in aircraft structures drastically increased the effects of fatigue induced damage on their critical structural components and thus the necessity to predict the remaining life of those components. Damage prognosis, one of the least investigated fields in SHM, uses the current damage state of the system to forecast its future performance by estimating the expected loading environments. A successful damage prediction model requires the integration of technologies in areas like measurements, materials science, mechanics of materials, and probability theories, but most importantly the quantification of uncertainty in all these areas. In this study, Affine Arithmetic is used as a method for incorporating the uncertainties due to the material properties into the fatigue life prognosis of composite plates subjected to cyclic compressive loadings. When loadings are compressive in nature, the composite plates undergo repeated buckling-unloading of the delaminated layer which induces mixed modes I and II states of stress at the tip of the delamination in the plates. The Kardomateas model-based prediction law is used to predict the growth of the delamination, while the integration of the effects of the uncertainties for modes I and II coefficients in the fatigue life prediction model is handled using Affine arithmetic. The Mode I and Mode II interlaminar fracture toughness and fatigue characterization of the composite plates are first experimentally studied to obtain the material coefficients and fracture toughness, respectively. Next, these obtained coefficients are used in the Kardomateas law to predict the delamination lengths in the composite plates while using Affine Arithmetic to handle their uncertainties. At last, the fatigue characterization of the composite plates during compressive-buckling loadings is experimentally studied, and the delamination lengths obtained are compared with the predicted values to check the performance of Affine Arithmetic as an uncertainty propagation tool.

  4. Effect of aggregate graining compositions on skid resistance of Exposed Aggregate Concrete pavement

    NASA Astrophysics Data System (ADS)

    Wasilewska, Marta; Gardziejczyk, Wladysław; Gierasimiuk, Pawel

    2018-05-01

    The paper presents the evaluation of skid resistance of EAC (Exposed Aggregate Concrete) pavements which differ in aggregate graining compositions. The tests were carried out on concrete mixes with a maximum aggregate size of 8 mm. Three types of coarse aggregates were selected depending on their resistance to polishing which was determined on the basis of the PSV (Polished Stone Value). Basalt (PSV 48), gabbro (PSV 50) and trachybasalt (PSV 52) aggregates were chosen. For each type of aggregate three graining compositions were designed, which differed in the content of coarse aggregate > 4mm. Their content for each series was as follows: A - 38%, B - 50% and C - 68%. Evaluation of the skid resistance has been performed using the FAP (Friction After Polishing) test equipment also known as the Wehner/Schulze machine. Laboratory method enables to compare the skid resistance of different types of wearing course under specified conditions simulating polishing processes. In addition, macrotexture measurements were made on the surface of each specimen using the Elatexure laser profile. Analysis of variance showed that at significance level α = 0.05, aggregate graining compositions as well as the PSV have a significant influence on the obtained values of the friction coefficient μm of the tested EAC pavements. The highest values of the μm have been obtained for EAC with the lowest amount of coarse aggregates (compositions A). In these cases the resistance to polishing of the aggregate does not significantly affect the friction coefficients. This is related to the large areas of cement mortar between the exposed coarse grains. Based on the analysis of microscope images, it was observed that the coarse aggregates were not sufficiently exposed. It has been proved that PSV significantly affected the coefficient of friction in the case of compositions B and C. This is caused by large areas of exposed coarse aggregate. The best parameters were achieved for the EAC pavements with graining composition B and C and trachybasalt aggregate.

  5. Nonlinear effects on composite laminate thermal expansion

    NASA Technical Reports Server (NTRS)

    Hashin, Z.; Rosen, B. W.; Pipes, R. B.

    1979-01-01

    Analyses of Graphite/Polyimide laminates shown that the thermomechanical strains cannot be separated into mechanical strain and free thermal expansion strain. Elastic properties and thermal expansion coefficients of unidirectional Graphite/Polyimide specimens were measured as a function of temperature to provide inputs for the analysis. The + or - 45 degrees symmetric Graphite/Polyimide laminates were tested to obtain free thermal expansion coefficients and thermal expansion coefficients under various uniaxial loads. The experimental results demonstrated the effects predicted by the analysis, namely dependence of thermal expansion coefficients on load, and anisotropy of thermal expansion under load. The significance of time dependence on thermal expansion was demonstrated by comparison of measured laminate free expansion coefficients with and without 15 day delay at intermediate temperature.

  6. Aerodynamic characteristics of the 10-percent-thick NASA supercritical airfoil 33 designed for a normal-force coefficient of 0.7

    NASA Technical Reports Server (NTRS)

    Harris, C. D.

    1975-01-01

    A 10-percent-thick supercritical airfoil based on an off-design sonic-pressure plateau criterion was developed and experimental aerodynamic characteristics measured. The airfoil had a design normal-force coefficient of 0.7 and was identified as supercritical airfoil 33. Results show the airfoil to have good drag rise characteristics over a wide range of normal-force coefficients with no measurable shock losses up to the Mach numbers at which drag divergence occurred for normal-force coefficients up to 0.7. Comparisons of experimental and theoretical characteristics were made and composite drag rise characteristics were derived for normal-force coefficients of 0.5 and 0.7 and a Reynolds number of 40 million.

  7. Activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag and their application to the recycling of Ni-Co-Fe-based end-of-life superalloys via remelting

    NASA Astrophysics Data System (ADS)

    Lu, Xin; Miki, Takahiro; Nagasaka, Tetsuya

    2017-01-01

    To design optimal pyrometallurgical processes for nickel and cobalt recycling, and more particularly for the end-of-life process of Ni-Co-Fe-based end-of-life (EoL) superalloys, knowledge of their activity coefficients in slags is essential. In this study, the activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag, a candidate slag used for the EoL superalloy remelting process, were measured using gas/slag/metal equilibrium experiments. These activity coefficients were then used to consider the recycling efficiency of nickel and cobalt by remelting EoL superalloys using CaO-Al2O3-SiO2 slag. The activity coefficients of NiO and CoO in CaO-Al2O3-SiO2 slag both show a positive deviation from Raoult's law, with values that vary from 1 to 5 depending on the change in basicity. The activity coefficients of NiO and CoO peak in the slag with a composition near B = (%CaO)/(%SiO2) = 1, where B is the basicity. We observed that controlling the slag composition at approximately B = 1 effectively reduces the cobalt and nickel oxidation losses and promotes the oxidation removal of iron during the remelting process of EoL superalloys.

  8. Systematic approach to preparing ceramic-glass composites with high translucency for dental restorations.

    PubMed

    Yoshimura, Humberto N; Chimanski, Afonso; Cesar, Paulo F

    2015-10-01

    Ceramic composites are promising materials for dental restorations. However, it is difficult to prepare highly translucent composites due to the light scattering that occurs in multiphase ceramics. The objective of this work was to verify the effectiveness of a systematic approach in designing specific glass compositions with target properties in order to prepare glass infiltrated ceramic composites with high translucency. First it was necessary to calculate from literature data the viscosity of glass at the infiltration temperature using the SciGlass software. Then, a glass composition was designed for targeted viscosity and refractive index. The glass of the system SiO2-B2O3-Al2O3-La2O3-TiO2 prepared by melting the oxide raw materials was spontaneously infiltrated into porous alumina preforms at 1200°C. The optical properties were evaluated using a refractometer and a spectrophotometer. The absorption and scattering coefficients were calculated using the Kubelka-Munk model. The light transmittance of prepared composite was significantly higher than a commercial ceramic-glass composite, due to the matching of glass and preform refractive indexes which decreased the scattering, and also to the decrease in absorption coefficient. The proposed systematic approach was efficient for development of glass infiltrated ceramic composites with high translucency, which benefits include the better aesthetic performance of the final prosthesis. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Parametric studies to determine the effect of compliant layers on metal matrix composite systems

    NASA Technical Reports Server (NTRS)

    Caruso, J. J.; Chamis, C. C.; Brown, H. C.

    1990-01-01

    Computational simulation studies are conducted to identify compliant layers to reduce matrix stresses which result from the coefficient of thermal expansion mismatch and the large temperature range over which the current metal matrix composites will be used. The present study includes variations of compliant layers and their properties to determine their influence on unidirectional composite and constituent response. Two simulation methods are used for these studies. The first approach is based on a three-dimensional linear finite element analysis of a 9 fiber unidirectional composite system. The second approach is a micromechanics based nonlinear computer code developed to determine the behavior of metal matrix composite system for thermal and mechanical loads. The results show that an effective compliant layer for the SCS 6 (SiC)/Ti-24Al-11Nb (Ti3Al + Nb) and SCS 6 (SiC)/Ti-15V-3Cr-3Sn-3Al (Ti-15-3) composite systems should have modulus 15 percent that of the matrix and a coefficient of thermal expansion of the compliant layer roughly equal to that of the composite system without the CL. The matrix stress in the longitudinal and the transverse tangent (loop) direction are tensile for the Ti3Al + Nb and Ti-15-3 composite systems upon cool down from fabrication. The fiber longitudinal stress is compressive from fabrication cool down. Addition of a recommended compliant layer will result in a reduction in the composite modulus.

  10. [Thermodynamic forecasting of reagents composition for soils decontamination].

    PubMed

    Nikolaev, V P; Nikolaevskiĭ, V B; Chirkina, I V; Shcheglov, M Iu

    2009-01-01

    Based on thermodynamic studies, the authors conducted laboratory experiments on searching optimal composition of leaching reagents solution for soils decontamination, when contaminated with Cs-137, of activity coefficient for caesium sulfate microquantities in macrocomponents solutions. The method could be used for modelling the radionuclides phase equillibrium and relocations in soils.

  11. REAL-TIME MEASUREMENTS OF THE CHEMICAL COMPOSITION OF SIZE-RESOLVED PARTICLES DURING A SANTA ANA WIND EPISODE, CALIFORNIA USA. (R826240)

    EPA Science Inventory

    Size-resolved particle composition, mass and number concentrations, aerosol scattering coefficients, and prevailing meteorological conditions were measured at the Ellen Browning Scripps Memorial Pier located in La Jolla, California on 15 December 1998. Aerosol particles were s...

  12. LDEF-space environmental effects on materials: Composites and silicone coatings

    NASA Technical Reports Server (NTRS)

    Petrie, Brian C.

    1992-01-01

    The effects of long term low Earth orbit environments on thermal control coatings and organic matrix/fiber reinforced composites are discussed. Two diverse categories are reported here: silicone coatings and composites. For composites physical and structural properties were analyzed; results are reported on mass/dimensional loss, microcracking, short beam shear, coefficient of thermal expansion (CTE), and flexural properties. The changes in thermal control properties, mass, and surface chemistry and morphology are reported and analyzed for the silicone coatings.

  13. Nonlinear Stochastic Flutter of a Cantilever Wing with Joint Relaxation and Random Loading

    DTIC Science & Technology

    2008-02-21

    coordinate system and B-frame is the coordinate system on the wing body and is moving with the wing. The leading segment of the vortex loop is located...composite laminates, Composite Structures, 72(1): 58-68. 38 36. Bickford, J. H. (1995). An introduction to the design and behavior of bolted joints, Third ...composite, Wear, 257(3- 4):395-407 51. Schon, J. (2004). Coefficient of friction for aluminum in contact with a carbon fiber epoxy composite. Tribology

  14. Temperature and composition dependencies of trace element partitioning - Olivine/melt and low-Ca pyroxene/melt

    NASA Technical Reports Server (NTRS)

    Colson, R. O.; Mckay, G. A.; Taylor, L. A.

    1988-01-01

    This paper presents a systematic thermodynamic analysis of the effects of temperature and composition on olivine/melt and low-Ca pyroxene/melt partitioning. Experiments were conducted in several synthetic basalts with a wide range of Fe/Mg, determining partition coefficients for Eu, Ca, Mn, Fe, Ni, Sm, Cd, Y, Yb, Sc, Al, Zr, and Ti and modeling accurately the changes in free energy for trace element exchange between crystal and melt as functions of the trace element size and charge. On the basis of this model, partition coefficients for olivine/melt and low-Ca pyroxene/melt can be predicted for a wide range of elements over a variety of basaltic bulk compositions and temperatures. Moreover, variations in partition coeffeicients during crystallization or melting can be modeled on the basis of changes in temperature and major element chemistry.

  15. Inter-Diffusion in the Presence of Free Convection

    NASA Technical Reports Server (NTRS)

    Gupta, Prabhat K.

    1999-01-01

    Because of their technological importance, establishment of the precise values of interdiffusion coefficients is important in multicomponent fluid systems. Such values are not available because diffusion is influenced by free convection due to compositionally induced density variations. In this project, earth based diffusion experiments are being performed in a viscous fluid system PbO-SiO2 at temperatures between 500-1000 C. This system is chosen because it shows a large variation in density with small changes in composition and is expected to show a large free convection effect. Infinite diffusion couples at different temperatures and times are being studied with different orientations with respect to gravity. Composition fields will be measured using an Electron Microprobe Analyzer and will be compared with the results of a complementary modeling study to extract the values of the true diffusion coefficient from the measured diffusion profiles.

  16. Compositional disorder and its effect on the thermoelectric performance of Zn₃P₂ nanowire-copper nanoparticle composites.

    PubMed

    Brockway, Lance; Vasiraju, Venkata; Vaddiraju, Sreeram

    2014-03-28

    Recent studies indicated that nanowire format of materials is ideal for enhancing the thermoelectric performance of materials. Most of these studies were performed using individual nanowires as the test elements. It is not currently clear whether bulk assemblies of nanowires replicate this enhanced thermoelectric performance of individual nanowires. Therefore, it is imperative to understand whether enhanced thermoelectric performance exhibited by individual nanowires can be extended to bulk assemblies of nanowires. It is also imperative to know whether the addition of metal nanoparticle to semiconductor nanowires can be employed for enhancing their thermoelectric performance further. Specifically, it is important to understand the effect of microstructure and composition on the thermoelectric performance on bulk compound semiconductor nanowire-metal nanoparticle composites. In this study, bulk composites composed of mixtures of copper nanoparticles with either unfunctionalized or 1,4-benzenedithiol (BDT) functionalized Zn₃P₂ nanowires were fabricated and analyzed for their thermoelectric performance. The results indicated that use of BDT functionalized nanowires for the fabrication of composites leads to interface-engineered composites that have uniform composition all across their cross-section. The interface engineering allows for increasing their Seebeck coefficients and electrical conductivities, relative to the Zn₃P₂ nanowire pellets. In contrast, the use of unfunctionalized Zn₃P₂ nanowires for the fabrication of composite leads to the formation of composites that are non-uniform in composition across their cross-section. Ultimately, the composites were found to have Zn₃P₂ nanowires interspersed with metal alloy nanoparticles. Such non-uniform composites exhibited very high electrical conductivities, but slightly lower Seebeck coefficients, relative to Zn₃P₂ nanowire pellets. These composites were found to show a very high zT of 0.23 at 770 K, orders of magnitude higher than either interface-engineered composites or Zn₃P₂ nanowire pellets. The results indicate that microstructural composition of semiconductor nanowire-metal nanoparticle composites plays a major role in determining their thermoelectric performance, and such composites exhibit enhanced thermoelectric performance.

  17. Electromagnetic interference shielding effectiveness of polypropylene/conducting fiber composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Pyoung-Chan, E-mail: pclee@katech.re.kr; Kim, Bo-Ram; Jeoung, Sun Kyoung

    Electromagnetic released from the automotive electronic parts is harmful to human body. Electromagnetic interference (EMT) shielding refers to the reflection and/or adsorption of electromagnetic radiation by a material, which thereby acts as a shield against the penetration of the radiation through the shield. Polypropylene (PP)/conductive micro fiber composites containing various fiber contents and fiber length were injection-molded. The effect of fiber content and length on electrical properties of the composites was studied by electrical resistivity and EMT shielding measurements. The through-plane electrical conductivity and dielectric permittivity were obtained by measuring dielectric properties. The EMT shielding effectiveness (SE) was investigated bymore » using S-parameter in the range of 100 ~ 1500 MHz. Reflection, absorption and multiple-reflection are the EMT attenuation mechanisms. From the measurement of S-Parameters, the absorption coefficient, reflection coefficient, and the shielding efficiency of the materials were calculated. The EMT SE of PP/conducing fiber composites is 40 dB over a wide frequency range up to 1.5 GHz, which is higher than that of PP/talc composite used automotive parts, viz. 0 dB.« less

  18. Influence of SiO2 Addition on Properties of PTFE/TiO2 Microwave Composites

    NASA Astrophysics Data System (ADS)

    Yuan, Ying; Wang, Jie; Yao, Minghao; Tang, Bin; Li, Enzhu; Zhang, Shuren

    2018-01-01

    Composite substrates for microwave circuit applications have been fabricated by filling polytetrafluoroethylene (PTFE) polymer matrix with ceramic powder consisting of rutile TiO2 ( D 50 ≈ 5 μm) partially substituted with fused amorphous SiO2 ( D 50 ≈ 8 μm) with composition x vol.% SiO2 + (50 - x) vol.% TiO2 ( x = 0, 3, 6, 9, 12), and the effects of SiO2 addition on characteristics such as the density, moisture absorption, microwave dielectric properties, and thermal properties systematically investigated. The results show that the filler was well distributed throughout the matrix. High dielectric constant ( ɛ r > 7.19) and extremely low moisture absorption (<0.02%) were obtained, resulting from the relatively high density of the composites. The ceramic particles served as barriers and improved the thermal stability of the PTFE polymer, retarding its decomposition. The temperature coefficient of dielectric constant ( τ ɛ ) of the composites shifted toward the positive direction (from - 309 ppm/°C to - 179 ppm/°C) as the SiO2 content was increased, while the coefficient of thermal expansion remained almost unchanged (˜ 35 ppm/°C).

  19. Estimating rock and slag wool fiber dissolution rate from composition.

    PubMed

    Eastes, W; Potter, R M; Hadley, J G

    2000-12-01

    A method was tested for calculating the dissolution rate constant in the lung for a wide variety of synthetic vitreous silicate fibers from the oxide composition in weight percent. It is based upon expressing the logarithm of the dissolution rate as a linear function of the composition and using a different set of coefficients for different types of fibers. The method was applied to 29 fiber compositions including rock and slag fibers as well as refractory ceramic and special-purpose, thin E-glass fibers and borosilicate glass fibers for which in vivo measurements have been carried out. These fibers had dissolution rates that ranged over a factor of about 400, and the calculated dissolution rates agreed with the in vivo values typically within a factor of 4. The method presented here is similar to one developed previously for borosilicate glass fibers that was accurate to a factor of 1.25. The present coefficients work over a much broader range of composition than the borosilicate ones but with less accuracy. The dissolution rate constant of a fiber may be used to estimate whether disease would occur in animal inhalation or intraperitoneal injection studies of that fiber.

  20. Understanding the effect of compositions on electronegativity, atomic radius and thermal stability of Mg-Ni-Y amorphous alloy

    NASA Astrophysics Data System (ADS)

    Deshmukh, A. A.; Kuthe, S. A.; Palikundwar, U. A.

    2018-05-01

    In the present paper, the consequences of variation in compositions on the electronegativity (ΔX), atomic radius difference (δ) and the thermal stability (ΔTx) of Mg-Ni-Y bulk metallic glasses (BMGs) are evaluated. In order to understand the effect of variation in compositions on ΔX, δ and ΔTx, regression analysis is performed on the experimentally available data. A linear correlation between both δ and ΔX with regression coefficient 0.93 is observed. Further, compositional variation is performed with δ and then it is correlated to the ΔTx by deriving subsequent equations. It is observed that concentration of Mg, Ni and Y are directly proportional to the δ with regression coefficients 0.93, 0.93 and 0.50 respectively. The positive slope of Ni and Y stated that ΔTx will increase if it has more contribution from both Ni and Y. On the other hand negative slope stated that composition of Mg should be selected in such a way that it will have more stability with Ni and Y. The results obtained from mathematical calculations are also tested by regression analysis of ΔTx with the compositions of individual elements in the alloy. These results conclude that there is a strong dependence of ΔTx of the alloy on the compositions of the constituting elements in the alloy.

  1. Results from Radio Tracking the Rosetta Spacecraft: Gravity, Internal Structure and Nucleus Composition of 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Hahn, M.; Andert, T.; Asmar, S.; Bird, M. K.; Häusler, B.; Peter, K.; Tellmann, S.; Weissman, P. R.; Barriot, J. P.; Sierks, H.

    2017-12-01

    When Rosetta arrived at its target comet 67P/Churyumov-Gerasimenko it first performed a series of distant flybys (100 - 30 km). During this mission phase the mass of the comets nucleus could be determined by analyzing the RSI radio tracking data. In combination with the volume from images of the OSIRIS camera this resulted in a precise bulk density determination. That already gave first insights into the comets interior structure. The nucleus appears to be a low-density, highly porous dusty body. From bound orbits with distances below 30 km the low degree and order gravity field coefficients could be derived. The gravity field coefficients strongly depend on the nucleus irregular shape and on the interior mass distribution. The shape is very well reconstructed from of the OSIRIS camera images. Various models of the interior nucleus structure and density distributions are used to compute simulated values of the gravity field coefficients. A comparison with the observed coefficients yields the feasibility of the theoretical interior structure. Thus, the gravity field helps constraining models of the internal structure, the composition and also of the origin and formation of the comets nucleus.

  2. The calculation of thermophysical properties of nickel plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Apfelbaum, E. M.

    2015-09-15

    The thermophysical properties of Nickel plasma have been calculated for the temperatures 10–60 kK and densities less than 1 g/cm{sup 3}. These properties are the pressure, internal energy, heat capacity, and the electronic transport coefficients (electrical conductivity, thermal conductivity, and thermal power). The thermodynamic values have been calculated by means of the chemical model, which also allows one to obtain the ionic composition of considered plasma. The composition has been used to calculate the electronic transport coefficients within the relaxation time approximation. The results of the present investigation have been compared with the calculations of other researchers and available data ofmore » measurements.« less

  3. Transport properties of nonelectrolyte liquid mixtures—V. Viscosity coefficients for binary mixtures of benzene plus alkanes at saturation pressure from 283 to 393 K

    NASA Astrophysics Data System (ADS)

    Dymond, J. H.; Young, K. J.

    1981-09-01

    Viscosity coefficient measurements at saturation pressure are reported for benzene + n-hexane, benzene + n-octane, benzene + n-decane, benzene + n-dodecane, benzene + n-hexadecane, and benzene + cyclohexane at temperatures from 283 to 393 K. The characteristic parameter G in the Grunberg and Nissan equation 10765_2004_Article_BF00504187_TeX2GIFE1.gif ell nη = x_1 ell nη _1 + x_2 ell nη _2 + x_1 x_2 G is found to be both composition and temperature dependent for benzene + n-alkane mixtures, but it is independent of composition for the system benzene + cyclohexane.

  4. Numerical Simulation of Wear in a C/C Composite Multidisk Clutch (Preprint)

    DTIC Science & Technology

    2009-04-01

    subroutine FRIC, in the commercial finite element software ( ABAQUS , 6.5-1, Pawtucket, RI) [25], to calculate the local wear depth increment (decrease in...temperature continuity and the heat balance conditions must be satisfied. The subroutine FRIC in ABAQUS code [25] is called only when the contact point is...0.33, thermal expansion coefficients αr = 0.31x10-6/K, αz = 0.29x10-6/K, friction coefficient µ = 0.20, heat convection coefficient h = 100 W/m2K

  5. Piezoelectric properties of nonstoichiometric Sr1-xBi2+2x/3Ta2O9 ceramics

    NASA Astrophysics Data System (ADS)

    Jain, Rajni; Chauhan, Arun Kumar Singh; Gupta, Vinay; Sreenivas, K.

    2005-06-01

    The effect of poling on the structural, dielectric, and piezoelectric properties has been investigated for sol-gel-derived strontium bismuth tantalate (SBT) [Sr1-xBi2+2x/3Ta2O9] ceramics with x =0.0,0.15,0.30,0.45. The dielectric and ferroelectric properties are found to improve with increase in x up to 0.3. Beyond x >0.3 the properties are found to degrade due to the limited solid solubility and the presence of a mixed phase of bismuth tantalate (BiTaO4) is detected with x =0.45. Poling treatment reduces the dielectric dispersion and dielectric loss in the frequency range (0.1-100kHz). The resonance and antiresonance frequencies increase with increase in x (x=0-0.30), and the corresponding minimum impedance decreases. The measured coupling coefficients (kp) are small (0.0967-0.1) for x =0-0.30, and the electromechanical quality factor (Qm=915) is a maximum for the Sr0.7Bi2.2Ta2O9 composition (x=0.30). The estimated piezoelectric charge coefficient (d31) and piezoelectric voltage coefficient (g31) are 5.2pC/N and 5.8×10-3Vm/N, respectively. The positive values of d31 and g31 and the low dielectric permittivity of SBT yield a high value for the hydrostatic coefficients, despite the low charge coefficient of d33=24pC/N. The maximum values of charge coefficient (dh=34pC/N) and voltage coefficient (gh=39×10-3Vm/N) are obtained for Sr0.7Bi2.2Ta2O9 composition, and the estimated hydrostatic figure of merit (dhgh×10-15=1215m2/N) is high.

  6. A parameterization scheme for the x-ray linear attenuation coefficient and energy absorption coefficient.

    PubMed

    Midgley, S M

    2004-01-21

    A novel parameterization of x-ray interaction cross-sections is developed, and employed to describe the x-ray linear attenuation coefficient and mass energy absorption coefficient for both elements and mixtures. The new parameterization scheme addresses the Z-dependence of elemental cross-sections (per electron) using a simple function of atomic number, Z. This obviates the need for a complicated mathematical formalism. Energy dependent coefficients describe the Z-direction curvature of the cross-sections. The composition dependent quantities are the electron density and statistical moments describing the elemental distribution. We show that it is possible to describe elemental cross-sections for the entire periodic table and at energies above the K-edge (from 6 keV to 125 MeV), with an accuracy of better than 2% using a parameterization containing not more than five coefficients. For the biologically important elements 1 < or = Z < or = 20, and the energy range 30-150 keV, the parameterization utilizes four coefficients. At higher energies, the parameterization uses fewer coefficients with only two coefficients needed at megavoltage energies.

  7. On the effect of polarization direction on the converse magnetoelectric response of multiferroic composite rings

    NASA Astrophysics Data System (ADS)

    Youssef, George; Lopez, Mario; Newacheck, Scott

    2017-03-01

    The application domain of composite multiferroic materials with magnetoelectric coupling has been widening on the nano-, micro- and macro-scales. Generally, a composite multiferroic material consists of two, or more, layers of a piezoelectric material and a magnetostrictive material. In turn, the proliferation of multiferroics in more applications is accompanied by a keen focus on understanding the effect of material phases, geometry, bonding interface and arrangement of phases by performing theoretical, numerical and experimental studies to fundamentally elucidate the response. In this experimental study, a focus is given to exploit the effect of the polarization direction of the piezoelectric phase on the overall converse magnetoelectric (CME) response of a composite concentric PZT/Terfenol-D structure. Specifically, radially and axially polarized PZT rings were concentrically bonded to the outer surface of two Terfenol-D rings, respectively. It was found that the maximum, near resonance, CME coefficient of the axially-poled configuration is 443 mG V-1 when tested at 34 kHz, 80 kV m-1 electric field and 784 Oe bias magnetic field. On the other hand, the near resonance CME value for the radially-poled configuration remained nearly constant at 281.9 ± 5.3 mG V-1 between bias magnetic fields of 532 Oe and 1524 Oe at AC electric field of 80 kV m-1 with a frequency of 36 kHz. Interestingly, the CME coefficient of radially-poled composite structure exhibits a saturation behavior, while the CME coefficient for axially-poled structure is distinguished by a single peak. The difference in the response is attributed to the amount strain transduction due to the polarization direction.

  8. A numerical model for boiling heat transfer coefficient of zeotropic mixtures

    NASA Astrophysics Data System (ADS)

    Barraza Vicencio, Rodrigo; Caviedes Aedo, Eduardo

    2017-12-01

    Zeotropic mixtures never have the same liquid and vapor composition in the liquid-vapor equilibrium. Also, the bubble and the dew point are separated; this gap is called glide temperature (Tglide). Those characteristics have made these mixtures suitable for cryogenics Joule-Thomson (JT) refrigeration cycles. Zeotropic mixtures as working fluid in JT cycles improve their performance in an order of magnitude. Optimization of JT cycles have earned substantial importance for cryogenics applications (e.g, gas liquefaction, cryosurgery probes, cooling of infrared sensors, cryopreservation, and biomedical samples). Heat exchangers design on those cycles is a critical point; consequently, heat transfer coefficient and pressure drop of two-phase zeotropic mixtures are relevant. In this work, it will be applied a methodology in order to calculate the local convective heat transfer coefficients based on the law of the wall approach for turbulent flows. The flow and heat transfer characteristics of zeotropic mixtures in a heated horizontal tube are investigated numerically. The temperature profile and heat transfer coefficient for zeotropic mixtures of different bulk compositions are analysed. The numerical model has been developed and locally applied in a fully developed, constant temperature wall, and two-phase annular flow in a duct. Numerical results have been obtained using this model taking into account continuity, momentum, and energy equations. Local heat transfer coefficient results are compared with available experimental data published by Barraza et al. (2016), and they have shown good agreement.

  9. Three FORTRAN programs for finite-difference solutions to binary diffusion in one and two phases with composition-and time-dependent diffusion coefficients

    USGS Publications Warehouse

    Sanford, R.F.

    1982-01-01

    Geological examples of binary diffusion are numerous. They are potential indicators of the duration and rates of geological processes. Analytical solutions to the diffusion equations generally do not allow for variable diffusion coefficients, changing boundary conditions, and impingement of diffusion fields. The three programs presented here are based on Crank-Nicholson finite-difference approximations, which can take into account these complicating factors. Program 1 describes the diffusion of a component into an initially homogeneous phase that has a constant surface composition. Specifically it is written for Fe-Mg exchange in olivine at oxygen fugacities appropriate for the lunar crust, but other components, phases, or fugacities may be substituted by changing the values of the diffusion coefficient. Program 2 simulates the growth of exsolution lamellae. Program 3 describes the growth of reaction rims. These two programs are written for pseudobinary Ca-(Mg, Fe) exchange in pyroxenes. In all three programs, the diffusion coefficients and boundary conditions can be varied systematically with time. To enable users to employ widely different numerical values for diffusion coefficients and diffusion distance, the grid spacing in the space dimension and the increment by which the grid spacing in the time dimension is increased at each time step are input constants that can be varied each time the programs are run to yield a solution of the desired accuracy. ?? 1982.

  10. Synthesis and wear behavior of aluminum 6061 alloy reinforced with carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Khalil, Abdullah

    In the present work, Al6061 alloy was uniformly reinforced with 0.5, 0.75, 1 and 2 wt. % Carbon Nanotubes (CNTs) using two way dispersion method. For consolidation, Spark Plasma Sintering (SPS) was used which resulted in very high densification for the matrix as well as composite. Results showed that addition of CNTs lead to increased hardness of the material and maximum hardness was found for 1 wt. % CNTs. So this composition was selected for detailed wear analysis. Pin-on-disk wear tests were conducted for the monolithic Al6061 and the composite at a constant speed of 0.5 m/s with varying load from 5 N to 30 N under dry sliding conditions using AISI 4140 steel disk as a counterface. The composite displayed lower wear rate and friction coefficient at lower levels of applied stress (0.175 to 0.525 MPa). Under higher stresses (0.700 to 1.050 MPa), the increased brittleness and porosity of the composite caused severe fracturing and delamination resulting in excessive wear rate and friction coefficient for the composite as compared to monolithic Al6061. The transition from mild to severe wear regime in composite occurred also at lower stress as compared to monolith. Analysis of the worn surfaces revealed abrasion as the dominant wear mechanism for both the materials at lower stresses. At higher stress levels, adhesion was found to be dominant in monolithic Al6061 whereas in composite, excessive sub-surface fracturing and delamination was mainly observed.

  11. Self-assembly of multiferroic core-shell particulate nanocomposites through DNA-DNA hybridization and magnetic field directed assembly of superstructures

    NASA Astrophysics Data System (ADS)

    Sreenivasulu, Gollapudi; Lochbiler, Thomas A.; Panda, Manashi; Srinivasan, Gopalan; Chavez, Ferman A.

    2016-04-01

    Multiferroic composites of ferromagnetic and ferroelectric phases are of importance for studies on mechanical strain mediated coupling between the magnetic and electric subsystems. This work is on DNA-assisted self-assembly of superstructures of such composites with nanometer periodicity. The synthesis involved oligomeric DNA-functionalized ferroelectric and ferromagnetic nanoparticles, 600 nm BaTiO3 (BTO) and 200 nm NiFe2O4 (NFO), respectively. Mixing BTO and NFO particles, possessing complementary DNA sequences, resulted in the formation of ordered core-shell heteronanocomposites held together by DNA hybridization. The composites were imaged by scanning electron microscopy and scanning microwave microscopy. The presence of heteroassemblies along with core-shell architecture is clearly observed. The reversible nature of the DNA hybridization allows for restructuring the composites into mm-long linear chains and 2D-arrays in the presence of a static magnetic field and ring-like structures in a rotating-magnetic field. Strong magneto-electric (ME) coupling in as-assembled composites is evident from static magnetic field H induced polarization and low-frequency magnetoelectric voltage coefficient measurements. Upon annealing the nanocomposites at high temperatures, evidence for the formation of bulk composites with excellent cross-coupling between the electric and magnetic subsystems is obtained by H-induced polarization and low-frequency ME voltage coefficient. The ME coupling strength in the self-assembled composites is measured to be much stronger than in bulk composites with randomly distributed NFO and BTO prepared by direct mixing and sintering.

  12. Molybdenum sealing glass-ceramic composition

    DOEpatents

    Eagan, Robert J.

    1976-01-01

    The invention relates to a glass-ceramic composition having low hydrogen and helium permeability properties, along with high fracture strength, a thermal coefficient of expansion similar to that of molybdenum, and adaptable for hermetically sealing to molybdenum at temperatures of between about 900.degree. and about 950.degree.C. to form a hermatically sealed insulator body.

  13. Iridescent cellulose nanocrystal/polyethylene oxide composite films with low coefficient of thermal expansion

    Treesearch

    Jairo A. Diaz; Julia L. Braun; Robert J. Moon; Jeffrey P. Youngblood

    2015-01-01

    Simultaneous control over optical and thermal properties is particularly challenging and highly desired in fields like organic electronics. Here we incorporated cellulose nanocrystals (CNCs) into polyethylene oxide (PEO) in an attempt to preserve the iridescent CNC optical reflection given by their chiral nematic organisation, while reducing the composite thermal...

  14. Micromechanical Prediction of the Effective Coefficients of Thermo-Piezoelectric Multiphase Composites

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob

    1998-01-01

    The micromechanical generalized method of cells model is employed for the prediction of the effective elastic, piezoelectric, dielectric, pyroelectric and thermal-expansion constants of multiphase composites with embedded piezoelectric materials. The predicted effective constants are compared with other micromechanical methods available in the literature and good agreements are obtained.

  15. Analysis of the Light Transmission Ability of Reinforcing Glass Fibers Used in Polymer Composites.

    PubMed

    Hegedűs, Gergely; Sarkadi, Tamás; Czigány, Tibor

    2017-06-10

    This goal of our research was to show that E-glass fiber bundles used for reinforcing composites can be enabled to transmit light in a common resin without any special preparation (without removing the sizing). The power of the transmitted light was measured and the attenuation coefficient, which characterizes the fiber bundle, was determined. Although the attenuation coefficient depends on temperature and the wavelength of the light, it is independent of the power of incident light, the quality of coupling, and the length of the specimen. The refractive index of commercially available transparent resins was measured and it was proved that a resin with a refractive index lower than that of the fiber can be used to make a composite whose fibers are capable of transmitting light. The effects of temperature, compression of the fibers, and the shape of fiber ends on the power of transmitted light were examined. The measurement of emitted light can provide information about the health of the fibers. This can be the basis of a simple health monitoring system in the case of general-purpose composite structures.

  16. Analysis of the Light Transmission Ability of Reinforcing Glass Fibers Used in Polymer Composites

    PubMed Central

    Hegedűs, Gergely; Sarkadi, Tamás; Czigány, Tibor

    2017-01-01

    This goal of our research was to show that E-glass fiber bundles used for reinforcing composites can be enabled to transmit light in a common resin without any special preparation (without removing the sizing). The power of the transmitted light was measured and the attenuation coefficient, which characterizes the fiber bundle, was determined. Although the attenuation coefficient depends on temperature and the wavelength of the light, it is independent of the power of incident light, the quality of coupling, and the length of the specimen. The refractive index of commercially available transparent resins was measured and it was proved that a resin with a refractive index lower than that of the fiber can be used to make a composite whose fibers are capable of transmitting light. The effects of temperature, compression of the fibers, and the shape of fiber ends on the power of transmitted light were examined. The measurement of emitted light can provide information about the health of the fibers. This can be the basis of a simple health monitoring system in the case of general-purpose composite structures. PMID:28772996

  17. Elastohydrodynamic lubrication in point contact on the surfaces of particle-reinforced composite

    NASA Astrophysics Data System (ADS)

    Chen, Keying; Zeng, Liangcai; Wu, Zhenpeng; Zheng, Feilong

    2018-04-01

    Appreciable friction and serious wear are common challenges in the operation of advanced manufacturing equipment, and friction pairs may be susceptible to damage even with oil lubrication when point contact exists. In this study, a type of particle-reinforced composite material is introduced for one of the components of a heavy-load contact pair, and the performance improvement of elastohydrodynamic lubrication (EHL) is analyzed considering the rheological properties of non-Newtonian fluids. The Ree-Eyring EHL model is used considering the surface of the particle-reinforced composite, in which the film thickness includes the particle-induced elastic deformation. The problem of inclusions with different eigenstrains is solved by using Galerkin vectors. The influences of particle properties, size, burial depth, and interparticle distance on point-contact EHL are investigated. Furthermore, using several cases, the structural parameters of the particles in the composites are optimized, and an appropriate parameter range is obtained with the goal of reducing friction. Finally, the results for the EHL traction coefficient demonstrate that appropriate particle properties, size, burial depth, and interparticle distance can effectively reduce the traction coefficient in heavy-load contact.

  18. Effect of space exposure of some epoxy matrix composites on their thermal expansion and mechanical properties (A0138-8)

    NASA Technical Reports Server (NTRS)

    Elberg, R.

    1984-01-01

    This experiment has three objectives. The first and main objective is to detect a possible variation in the coefficient of thermal expansion of composite samples during a 1-year exposure to the near-Earth orbital environment. A second objective is to detect a possible change in the mechanical integrity of composite products, both simple elements and honeycomb sandwich assemblies. A third objective is to compare the behavior of two epoxy resins commonly used in space structural production. The experimental approach is to passively expose samples of epoxy matrix composite materials to the space environment and to compare preflight and postflight measurements of mechanical properties. The experiment will be located in one of the three FRECOPA (French cooperative payload) boxes in a 12-in.-deep peripheral tray that contains nine other experiments from France. The FRECOPA box will protect the samples from contamination during the launch and reentry phases of the mission. The coefficients of thermal expansion are measured on Earth before and after space exposure.

  19. Influence of the powder mixture composition on the deposition coefficient and the properties of NI+B4C CGDS coatings

    NASA Astrophysics Data System (ADS)

    Kosarev, V. F.; Polukhin, A. A.; Ryashin, N. S.; Fomin, V. M.; Shikalov, V. S.

    2017-07-01

    The cold gas dynamic spray (CGDS) method used to form composite Ni+B4C coatings from mechanical powder mixture with various content of abrasive components is investigated, and the surface and microstructure of these coatings are considered. An experimental dependence of the deposition coefficient on the abrasive content in the mechanical powder mixture is obtained. The coatings are studied by interference profilometry, optical microscopy, and microindentation methods. The dependence of the bulk and mass B4C content in the sprayed material on the abrasive content in the sprayed powder mixture is obtained. The bulk B4C content in the coating c V ≈ 0.27 is attained. The dependence of the microhardness of composite CGDS coatings on the boron carbide content in them is investigated. The results of this paper demonstrate that the powder mixture composition significantly affects the CGDS coating growth and the properties of these coatings and can be used to control the properties of the CGDS cermet materials.

  20. Fabrication of Wood-Rubber Composites Using Rubber Compound as a Bonding Agent Instead of Adhesives

    PubMed Central

    Shao, Dongwei; Xu, Min; Cai, Liping; Shi, Sheldon Q.

    2016-01-01

    Differing from the hot-pressing method in the manufacturing of traditional wood-rubber composites (WRCs), this study was aimed at fabricating WRCs using rubber processing to improve water resistance and mechanical properties. Three steps were used to make WRCs, namely, fiber-rubber mixing, tabletting, and the vulcanization molding process. Ninety-six WRC panels were made with wood fiber contents of 0%–50% at rotor rotational speeds of 15–45 rpm and filled coefficients of 0.55–0.75. Four regression equations, i.e., the tensile strength (Ts), elongation at break (Eb), hardness (Ha) and rebound resilience (Rr) as functions of fiber contents, rotational speed and filled coefficient, were derived and a nonlinear programming model were developed to obtain the optimum composite properties. Although the Ts, Eb and Rr of the panels were reduced, Ha was considerably increased by 17%–58% because of the wood fiber addition. Scanning electron microscope images indicated that fibers were well embedded in rubber matrix. The 24 h water absorption was only 1%–3%, which was much lower than commercial wood-based composites. PMID:28773591

  1. Combining phase-field crystal methods with a Cahn-Hilliard model for binary alloys

    NASA Astrophysics Data System (ADS)

    Balakrishna, Ananya Renuka; Carter, W. Craig

    2018-04-01

    Diffusion-induced phase transitions typically change the lattice symmetry of the host material. In battery electrodes, for example, Li ions (diffusing species) are inserted between layers in a crystalline electrode material (host). This diffusion induces lattice distortions and defect formations in the electrode. The structural changes to the lattice symmetry affect the host material's properties. Here, we propose a 2D theoretical framework that couples a Cahn-Hilliard (CH) model, which describes the composition field of a diffusing species, with a phase-field crystal (PFC) model, which describes the host-material lattice symmetry. We couple the two continuum models via coordinate transformation coefficients. We introduce the transformation coefficients in the PFC method to describe affine lattice deformations. These transformation coefficients are modeled as functions of the composition field. Using this coupled approach, we explore the effects of coarse-grained lattice symmetry and distortions on a diffusion-induced phase transition process. In this paper, we demonstrate the working of the CH-PFC model through three representative examples: First, we describe base cases with hexagonal and square symmetries for two composition fields. Next, we illustrate how the CH-PFC method interpolates lattice symmetry across a diffuse phase boundary. Finally, we compute a Cahn-Hilliard type of diffusion and model the accompanying changes to lattice symmetry during a phase transition process.

  2. Crystal-chemistry and partitioning of REE in whitlockite

    NASA Technical Reports Server (NTRS)

    Colson, R. O.; Jolliff, B. L.

    1993-01-01

    Partitioning of Rare Earth Elements (REE) in whitlockite is complicated by the fact that two or more charge-balancing substitutions are involved and by the fact that concentrations of REE in natural whitlockites are sufficiently high such that simple partition coefficients are not expected to be constant even if mixing in the system is completely ideal. The present study combines preexisting REE partitioning data in whitlockites with new experiments in the same compositional system and at the same temperature (approximately 1030 C) to place additional constraints on the complex variations of REE partition coefficients and to test theoretical models for how REE partitioning should vary with REE concentration and other compositional variables. With this data set, and by combining crystallographic and thermochemical constraints with a SAS simultaneous-equation best-fitting routine, it is possible to infer answers to the following questions: what is the speciation on the individual sites Ca(B), Mg, and Ca(IIA) (where the ideal structural formula is Ca(B)18 Mg2Ca(IIA)2P14O56); how are REE's charge-balanced in the crystal; and is mixing of REE in whitlockite ideal or non-ideal. This understanding is necessary in order to extrapolate derived partition coefficients to other compositional systems and provides a broadened understanding of the crystal chemistry of whitlockite.

  3. Explicit formulas for effective piezoelectric coefficients of ferroelectric 0-3 composites based on effective medium theory

    NASA Astrophysics Data System (ADS)

    Wong, C. K.; Poon, Y. M.; Shin, F. G.

    2003-01-01

    Explicit formulas were derived for the effective piezoelectric stress coefficients of a 0-3 composite of ferroelectric spherical particles in a ferroelectric matrix which were then combined to give the more commonly used strain coefficients. Assuming that the elastic stiffness of the inclusion phase is sufficiently larger than that of the matrix phase, the previously derived explicit expressions for the case of a low volume concentration of inclusion particles [C. K. Wong, Y. M. Poon, and F. G. Shin, Ferroelectrics 264, 39 (2001); J. Appl. Phys. 90, 4690 (2001)] were "transformed" analytically by an effective medium theory (EMT) with appropriate approximations, to suit the case of a more concentrated suspension. Predictions of the EMT expressions were compared with the experimental values of composites of lead zirconate titanate ceramic particles dispersed in polyvinylidene fluoride and polyvinylidene fluoride-trifluoroethylene copolymer, reported by Furukawa [IEEE Trans. Electr. Insul. 24, 375 (1989)] and by Ng et al. [IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47, 1308 (2000)] respectively. Fairly good agreement was obtained. Comparisons with other predictions, including the predictions given by numerically solving the EMT scheme, were also made. It was found that the analytic and numeric EMT schemes agreed with each other very well for an inclusion of volume fraction not exceeding 60%.

  4. Methods of automatic nucleotide-sequence analysis. Multicomponent spectrophotometric analysis of mixtures of nucleic acid components by a least-squares procedure

    PubMed Central

    Lee, Sheila; McMullen, D.; Brown, G. L.; Stokes, A. R.

    1965-01-01

    1. A theoretical analysis of the errors in multicomponent spectrophotometric analysis of nucleoside mixtures, by a least-squares procedure, has been made to obtain an expression for the error coefficient, relating the error in calculated concentration to the error in extinction measurements. 2. The error coefficients, which depend only on the `library' of spectra used to fit the experimental curves, have been computed for a number of `libraries' containing the following nucleosides found in s-RNA: adenosine, guanosine, cytidine, uridine, 5-ribosyluracil, 7-methylguanosine, 6-dimethylaminopurine riboside, 6-methylaminopurine riboside and thymine riboside. 3. The error coefficients have been used to determine the best conditions for maximum accuracy in the determination of the compositions of nucleoside mixtures. 4. Experimental determinations of the compositions of nucleoside mixtures have been made and the errors found to be consistent with those predicted by the theoretical analysis. 5. It has been demonstrated that, with certain precautions, the multicomponent spectrophotometric method described is suitable as a basis for automatic nucleotide-composition analysis of oligonucleotides containing nine nucleotides. Used in conjunction with continuous chromatography and flow chemical techniques, this method can be applied to the study of the sequence of s-RNA. PMID:14346087

  5. Quantifying Grain-Size Variability of Metal Pollutants in Road-Deposited Sediments Using the Coefficient of Variation

    PubMed Central

    Wang, Xiaoxue; Li, Xuyong

    2017-01-01

    Particle grain size is an important indicator for the variability in physical characteristics and pollutants composition of road-deposited sediments (RDS). Quantitative assessment of the grain-size variability in RDS amount, metal concentration, metal load and GSFLoad is essential to elimination of the uncertainty it causes in estimation of RDS emission load and formulation of control strategies. In this study, grain-size variability was explored and quantified using the coefficient of variation (Cv) of the particle size compositions, metal concentrations, metal loads, and GSFLoad values in RDS. Several trends in grain-size variability of RDS were identified: (i) the medium class (105–450 µm) variability in terms of particle size composition, metal loads, and GSFLoad values in RDS was smaller than the fine (<105 µm) and coarse (450–2000 µm) class; (ii) The grain-size variability in terms of metal concentrations increased as the particle size increased, while the metal concentrations decreased; (iii) When compared to the Lorenz coefficient (Lc), the Cv was similarly effective at describing the grain-size variability, whereas it is simpler to calculate because it did not require the data to be pre-processed. The results of this study will facilitate identification of the uncertainty in modelling RDS caused by grain-size class variability. PMID:28788078

  6. Structural and water diffusion of poly(acryl amide)/poly(vinyl alcohol) blend films: Experiment and molecular dynamics simulations.

    PubMed

    Wang, Yanen; Wei, Qinghua; Wang, Shuzhi; Chai, Weihong; Zhang, Yingfeng

    2017-01-01

    To study the effects of composition ratios and temperature on the diffusion of water molecules in PVA/PAM blend films, five simulation models of PVA/PAM with ten water molecules at different composition ratios (4/0, 3/1, 2/2, 1/3, 0/4) were constructed and simulated by using a molecular dynamics (MD) simulation. The diffusion behavior of water molecules in blends were investigated from the aspects of the diffusion coefficient, free volume, pair correlation function (PCF) and trajectories of water molecules, respectively. And the hydrophilicity of blend composite was studied based on the contact angle and equilibrium water content (EWC) of the blend films. The simulation results show that the diffusion coefficient of water molecules and fractional free volume (FFV) of blend membranes increase with the addition of PAM, and a higher temperature can also improve the diffusion of water molecules. Additionally, the analysis of PCFs reveals the main reason why the diffusion coefficient of water in blend system increases with the addition of PAM. The measurement results of contact angle and EWC of blend films indicate that the hydrophilicity of blend films decreases with the addition of PAM, but the EWC of blends increases with the addition of PAM. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Electromagnetic Spectroscopy of Normal Breast Tissue Specimens Obtained From Reduction Surgeries: Comparison of Optical and Microwave Properties

    PubMed Central

    Lazebnik, Mariya; Zhu, Changfang; Palmer, Gregory M.; Harter, Josephine; Sewall, Sarah; Ramanujam, Nirmala; Hagness, Susan C.

    2009-01-01

    Techniques utilizing electromagnetic energy at microwave and optical frequencies have been shown to be promising for breast cancer detection and diagnosis. Since different biophysical mechanisms are exploited at these frequencies to discriminate between healthy and diseased tissue, combining these two modalities may result in a more powerful approach for breast cancer detection and diagnosis. Toward this end, we performed microwave dielectric spectroscopy and optical diffuse reflectance spectroscopy measurements at the same sites on freshly-excised normal breast tissues obtained from reduction surgeries at the University of Wisconsin Hospital, using microwave and optical probes with very similar sensing volumes. We found that the microwave dielectric constant and effective conductivity are correlated with tissue composition across the entire measurement frequency range (|r|~0.5–0.6, p<0.01), and that the optical absorption coefficient at 460 nm and optical scattering coefficient are correlated with tissue composition (|r|~ 0.4–0.6, p<0.02). Finally, we found that the optical absorption coefficient at 460 nm is correlated with the microwave dielectric constant and effective conductivity (r=−0.55, p<0.01). Our results suggest that combining optical and microwave modalities for analyzing breast tissue samples may serve as a crosscheck and provide complementary information about tissue composition. PMID:18838370

  8. Electromagnetic spectroscopy of normal breast tissue specimens obtained from reduction surgeries: comparison of optical and microwave properties.

    PubMed

    Lazebnik, Mariya; Zhu, Changfang; Palmer, Gregory M; Harter, Josephine; Sewall, Sarah; Ramanujam, Nirmala; Hagness, Susan C

    2008-10-01

    Techniques utilizing electromagnetic energy at microwave and optical frequencies have been shown to be promising for breast cancer detection and diagnosis. Since different biophysical mechanisms are exploited at these frequencies to discriminate between healthy and diseased tissue, combining these two modalities may result in a more powerful approach for breast cancer detection and diagnosis. Toward this end, we performed microwave dielectric spectroscopy and optical diffuse reflectance spectroscopy measurements at the same sites on freshly excised normal breast tissues obtained from reduction surgeries at the University of Wisconsin Hospital, using microwave and optical probes with very similar sensing volumes. We found that the microwave dielectric constant and effective conductivity are correlated with tissue composition across the entire measurement frequency range (|r| approximately 0.5-0.6, p<0.01) and that the optical absorption coefficient at 460 nm and optical scattering coefficient are correlated with tissue composition (|r| approximately 0.4-0.6, p<0.02). Finally, we found that the optical absorption coefficient at 460 nm is correlated with the microwave dielectric constant and effective conductivity (r=-0.55, p<0.01). Our results suggest that combining optical and microwave modalities for analyzing breast tissue samples may serve as a crosscheck and provide complementary information about tissue composition.

  9. Understand Centrifugal Compressor stage curves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stadler, E.L.

    1986-08-01

    Multistage Centrifugal Compressor Performance is generally presented in the form of a composite curve showing discharge pressure and bhp plotted as a function of capacity. This composite curve represents the cumulative performance of each stage performance curve. A simple yet quite accurate means of measuring compressor total performance is to test each stage as a single-stage compressor, usually on air with atmospheric inlets. Stage curves are then generated from the test data and three important variables are plotted: head coefficient, work coefficient and adiabatic efficiency. These variables are plotted against a normalized flow coefficient, Q/N, which is inlet volume flowmore » (cfm) divided by impeller speed (rpm). The nomenclature used to define these stage variables changes from manufacturer to manufacturer; however, the parameters presented are the same. An understanding of each parameter's theoretical derivation and determination from test data will help the engineer reviewing test curves to be more cognizant of the interrelationships between these variables; specifically, how they affect overall machine pressure rise and power consumption.« less

  10. Compaction trends of full stiffness tensor and fluid permeability in artificial shales

    NASA Astrophysics Data System (ADS)

    Beloborodov, Roman; Pervukhina, Marina; Lebedev, Maxim

    2018-03-01

    We present a methodology and describe a set-up that allows simultaneous acquisition of all five elastic coefficients of a transversely isotropic (TI) medium and its permeability in the direction parallel to the symmetry axis during mechanical compaction experiments. We apply the approach to synthetic shale samples and investigate the role of composition and applied stress on their elastic and transport properties. Compaction trends for the five elastic coefficients that fully characterize TI anisotropy of artificial shales are obtained for a porosity range from 40 per cent to 15 per cent. A linear increase of elastic coefficients with decreasing porosity is observed. The permeability acquired with the pressure-oscillation technique exhibits exponential decrease with decreasing porosity. Strong correlations are observed between an axial fluid permeability and seismic attributes, namely, VP/VS ratio and acoustic impedance, measured in the same direction. These correlations might be used to derive permeability of shales from seismic data given that their mineralogical composition is known.

  11. Reciprocal relations for transmission coefficients - Theory and application

    NASA Technical Reports Server (NTRS)

    Qu, Jianmin; Achenbach, Jan D.; Roberts, Ronald A.

    1989-01-01

    The authors present a rigorous proof of certain intuitively plausible reciprocal relations for time harmonic plane-wave transmission and reflection at the interface between a fluid and an anisotropic elastic solid. Precise forms of the reciprocity relations for the transmission coefficients and for the transmitted energy fluxes are derived, based on the reciprocity theorem of elastodynamics. It is shown that the reciprocity relations can be used in conjunction with measured values of peak amplitudes for transmission through a slab of the solid (water-solid-water) to obtain the water-solid coefficients. Experiments were performed for a slab of a unidirectional fiber-reinforced composite. Good agreement of the experimentally measured transmission coefficients with theoretical values was obtained.

  12. Effect of Strain, Region, and Tissue Composition on Glucose Partitioning in Meniscus Fibrocartilage.

    PubMed

    Kleinhans, Kelsey L; Jackson, Alicia R

    2017-03-01

    A nearly avascular tissue, the knee meniscus relies on diffusive transport for nutritional supply to cells. Nutrient transport depends on solute partitioning in the tissue, which governs the amount of nutrients that can enter a tissue. The purpose of the present study was to investigate the effects of mechanical strain, tissue region, and tissue composition on the partition coefficient of glucose in meniscus fibrocartilage. A simple partitioning experiment was employed to measure glucose partitioning in porcine meniscus tissues from two regions (horn and central), from both meniscal components (medial and lateral), and at three levels of compression (0%, 10%, and 20%). Partition coefficient values were correlated to strain level, water volume fraction, and glycosaminoglycan (GAG) content of tissue specimens. Partition coefficient values ranged from 0.47 to 0.91 (n = 48). Results show that glucose partition coefficient is significantly (p < 0.001) affected by compression, decreasing with increasing strain. Furthermore, we did not find a statistically significant effect of tissue when comparing medial versus lateral (p = 0.181) or when comparing central and horn regions (p = 0.837). There were significant positive correlations between tissue water volume fraction and glucose partitioning for all groups. However, the correlation between GAG content and partitioning was only significant in the lateral horn group. Determining how glucose partitioning is affected by tissue composition and loading is necessary for understanding nutrient availability and related tissue health and/or degeneration. Therefore, this study is important for better understanding the transport and nutrition-related mechanisms of meniscal degeneration.

  13. Calculation of optical properties of dental composites as a basis for determining color impression and penetration depth of laser light

    NASA Astrophysics Data System (ADS)

    Weniger, Kirsten K.; Muller, Gerhard J.

    2005-03-01

    In order to achieve esthetic dental restorations, there should be no visible difference between restorative material and treated teeth. This requires a match of the optical properties of both restorative material and natural teeth. These optical properties are determined by absorption and scattering of light emerging not only on the surface but also inside the material. Investigating different dental composites in several shades, a method has been developed to calculate the optical parameters absorption coefficient μa, scattering coefficient μs, anisotropy factor g and reduced scattering coefficient μs'. The method includes sample preparation and measurements of transmittance and reflectance in an integrating sphere spectrometer, followed by inverse Monte Carlo simulations. Determination of optical properties is more precise and comprehensive than with the previously used Kubelka Munk theory because scattering can be looked at separated into pure scattering with the scattering coefficient μs and its direction with the anisotropy factor g. Moreover the use of the inverse Monte Carlo simulation not only minimizes systematic errors and considers the scattering phase function, but also takes into account the measuring geometry. The compilation of a data pool of optical parameters now enables the application of further calculation models as a basis for optimization of the composition of new materials. For example, a prediction of the general color impression for multiple layers can be carried out as well as the calculation of the wavelength dependent penetration depths of light with regard to photo polymerization. Further applications are possible in the area of laser ablation.

  14. Transverse thermal expansion of carbon fiber/epoxy matrix composites

    NASA Technical Reports Server (NTRS)

    Helmer, J. F.; Diefendorf, R. J.

    1983-01-01

    Thermal expansion coefficients and moduli of elasticity have been determined experimentally for a series of epoxy-matrix composites reinforced with carbon and Kevlar fibers. It is found that in the transverse direction the difference between the properties of the fiber and the matrix is not as pronounced as in the longitudinal direction, where the composite properties are fiber-dominated. Therefore, the pattern of fiber packing tends to affect transverse composite properties. The transverse properties of the composites tested are examined from the standpoint of the concept of homogeneity defined as the variation of packing (or lack thereof) throughout a sample.

  15. MOLTEN FLUORIDE NUCLEAR REACTOR FUEL

    DOEpatents

    Barton, C.J.; Grimes, W.R.

    1960-01-01

    Molten-salt reactor fuel compositions consisting of mixtures of fluoride salts are reported. In its broadest form, the composition contains an alkali fluoride such as sodium fluoride, zirconium tetrafluoride, and a uranium fluoride, the latter being the tetrafluoride or trifluoride or a mixture of the two. An outstanding property of these fuel compositions is a high coeffieient of thermal expansion which provides a negative temperature coefficient of reactivity in reactors in which they are used.

  16. Diamond-Dispersed Fiber-Reinforced Composite for Superior Friction and Wear Properties in Extreme Environments and Method for Fabricating the Same

    NASA Technical Reports Server (NTRS)

    Voronov, Oleg A (Inventor); Street, Kenneth (Inventor); Kear, Bernard H (Inventor)

    2017-01-01

    Systems, methods, and articles of manufacture related to composite materials are discussed herein. These materials can be based on a mixture of diamond particles with a matrix and fibers or fabrics. The matrix can be formed into the composite material through optional pressurization and via heat treatment. These materials display exceptionally low friction coefficient and superior wear resistance in extreme environments.

  17. A simple method of obtaining concentration depth-profiles from X-ray diffraction

    NASA Technical Reports Server (NTRS)

    Wiedemann, K. E.; Unnam, J.

    1984-01-01

    The construction of composition profiles from X-ray intensity bands was investigated. The intensity band-to-composition profile transformation utilizes a solution which can be easily evaluated. The technique can be applied to thin films and thick speciments for which the variation of lattice parameters, linear absorption coefficient, and reflectivity with composition are known. A deconvolution scheme with corrections for the instrumental broadening and ak-alfadoublet is discussed.

  18. Water absorption behaviour of hybrid interwoven cellulosic fibre composites

    NASA Astrophysics Data System (ADS)

    Maslinda, A. B.; Majid, M. S. Abdul; Ridzuan, M. J. M.; Syayuthi, AR. A.

    2017-10-01

    The present paper investigated the water absorption behaviour of hybrid interwoven cellulosic fibre composites. Hybrid composites consisting of interwoven kenaf/jute and kenaf/hemp yarns were prepared by an infusion manufacturing technique that used epoxy as the polymer matrix. Water absorption test was conducted as elucidated in ASTM D570 standard by immersing the composite samples in tap water at room temperature until reaching their water content saturation point. For each composite type, average from five samples was recorded and the percentage of water uptake against the square root of time was plotted. As the effect of hybridization, the water uptake, diffusion and permeability coefficient of the hybrid composites were lesser than the individual woven composites.

  19. Compositions, thermodynamic properties, and transport coefficients of high-temperature C5F10O mixed with CO2 and O2 as substitutes for SF6 to reduce global warming potential

    NASA Astrophysics Data System (ADS)

    Zhong, Linlin; Rong, Mingzhe; Wang, Xiaohua; Wu, Junhui; Han, Guiquan; Han, Guohui; Lu, Yanhui; Yang, Aijun; Wu, Yi

    2017-07-01

    C5F10O has recently been found to be a very promising alternative to SF6. This paper is devoted to the investigation of compositions, thermodynamic properties, and transport coefficients of high-temperature C5F10O mixed with CO2 and O2. Firstly, the partition functions and enthalpies of formation for a few molecules (CxFy and CxFyO) which are likely to exist in the mixtures, are calculated based on the G4(MP2) theory. The isomers of the above molecules are selected according to their Gibbs energy. The compositions of C5F10O-CO2-O2 mixtures are then determined using the minimization of the Gibbs free energy. Next, the thermodynamic properties (mass density, specific enthalpy, and specific heat) are derived from the previously calculated compositions. Lastly, the transport coefficients (electrical conductivity, viscosity, and thermal conductivity) are calculated based on Chapman-Enskog method. It is found that, as an arc quenching gas, C5F10O could not recombine into itself with the temperature decreasing down to room temperature after the arc extinction. Besides, the key species at room temperature are always CF4, CO2, and C4F6 if graphite is not considered. When taken into account, graphite will replace C4F6 as one of the dominate particles. The mixing of CO2 with C5F10O plasma significantly affects the thermodynamic properties (e.g. vanishing and/or shifting of the peaks in specific heat) and transport coefficients (e.g. reducing viscosity and changing the number of peaks in thermal conductivity), while the addition of O2 with C5F10O-CO2 mixtures has no remarkable influence on both thermodynamic and transport properties.

  20. Longitudinal Trend in Lipid Profile of Incident Peritoneal Dialysis Patients is Not Influenced by the Use of Biocompatible Solutions

    PubMed Central

    Cho, Yeoungjee; Büchel, Janine; Steppan, Sonja; Passlick-Deetjen, Jutta; Hawley, Carmel M.; Dimeski, Goce; Clarke, Margaret; Johnson, David W.

    2016-01-01

    ♦ Background: The longitudinal trends of lipid parameters and the impact of biocompatible peritoneal dialysis (PD) solutions on these levels remain to be fully defined. The present study aimed to a) evaluate the influence of neutral pH, low glucose degradation product (GDP) PD solutions on serum lipid parameters, and b) explore the capacity of lipid parameters (total cholesterol [TC], triglyceride [TG], high density lipoprotein [HDL], TC/HDL, low density lipoprotein [LDL], very low density lipoprotein [VLDL]) to predict cardiovascular events (CVE) and mortality in PD patients. ♦ Methods: The study included 175 incident participants from the balANZ trial with at least 1 stored serum sample. A composite CVE score was used as a primary clinical outcome measure. Multilevel linear regression and Poisson regression models were fitted to describe the trend of lipid parameters over time and its ability to predict composite CVE, respectively. ♦ Results: Small but statistically significant increases in serum TG (coefficient 0.006, p < 0.001), TC/HDL (coefficient 0.004, p = 0.001), and VLDL cholesterol (coefficient 0.005, p = 0.001) levels and a decrease in the serum HDL cholesterol levels (coefficient −0.004, p = 0.009) were observed with longer time on PD, whilst the type of PD solution (biocompatible vs standard) received had no significant effect on these levels. Peritoneal dialysis glucose exposure was significantly associated with trends in TG, TC/HDL, HDL and VLDL levels. Baseline lipid parameter levels were not predictive of composite CVEs or all-cause mortality. ♦ Conclusion: Serum TG, TC/HDL, and VLDL levels increased and the serum HDL levels decreased with increasing PD duration. None of the lipid parameters were significantly modified by biocompatible PD solution use over the time period studied or predictive of composite CVE or mortality. PMID:26429421

  1. The influence of melt composition on the partitioning of REEs, Y, Sc, Zr and Al between forsterite and melt in the system CMAS

    NASA Astrophysics Data System (ADS)

    Evans, Thomas M.; O'Neill, Hugh St. C.; Tuff, James

    2008-12-01

    Partition coefficients for a range of Rare Earth Elements (REEs), Y, Sc, Al and Zr were determined between forsteritic olivine (nearly end-member Mg 2SiO 4) and ten melt compositions in the system CaO-MgO-Al 2O 3-SiO 2 (CMAS) at 1 bar and 1400 °C, with concentrations of the trace elements in the olivine and the melt measured by laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The REEs and Sc were added at levels sufficient to ensure that concentrations in the olivine were well above the detection limits. The REE partition coefficients (DREEol/melt) decrease with increasing silica in the melt, indicating strong bonding between REEO 1.5 and SiO 2 in the melt. The variation of DREEol/melt as a function of ionic radius is well described by the Brice equation for each composition, although a small proportion of this variation is due to the increase in the strength of the REEO 1.5-SiO 2 interactions in the melt with ionic radius. Scandium behaves very similarly to the REEs, but a global fit of the data from all ten melt compositions suggests that DScol/melt deviates somewhat from the parabolas established by the REE and Y, implying that Sc may substitute into olivine differently to that of the REEs. In contrast to the behaviour of the large trivalent cations, the concentration of Al in olivine is proportional to the square root of its concentration in the melt, indicating a coupled substitution in olivine with a high degree of short-range order. The lack of any correlation of REE partition coefficients with Al in olivine or melt suggests that the REE substitution in olivine is charge-balanced by cation vacancies. The partition coefficient of the tetravalent trace element Zr, which is highly incompatible in olivine, depends on the CaO content of the melt.

  2. Multiscale modeling of PVDF matrix carbon fiber composites

    NASA Astrophysics Data System (ADS)

    Greminger, Michael; Haghiashtiani, Ghazaleh

    2017-06-01

    Self-sensing carbon fiber reinforced composites have the potential to enable structural health monitoring that is inherent to the composite material rather than requiring external or embedded sensors. It has been demonstrated that a self-sensing carbon fiber reinforced polymer composite can be created by using the piezoelectric polymer polyvinylidene difluoride (PVDF) as the matrix material and using a Kevlar layer to separate two carbon fiber layers. In this configuration, the electrically conductive carbon fiber layers act as electrodes and the Kevlar layer acts as a dielectric to prevent the electrical shorting of the carbon fiber layers. This composite material has been characterized experimentally for its effective d 33 and d 31 piezoelectric coefficients. However, for design purposes, it is desirable to obtain a predictive model of the effective piezoelectric coefficients for the final smart composite material. Also, the inverse problem can be solved to determine the degree of polarization obtained in the PVDF material during polarization by comparing the effective d 33 and d 31 values obtained in experiment to those predicted by the finite element model. In this study, a multiscale micromechanics and coupled piezoelectric-mechanical finite element modeling approach is introduced to predict the mechanical and piezoelectric performance of a plain weave carbon fiber reinforced PVDF composite. The modeling results show good agreement with the experimental results for the mechanical and electrical properties of the composite. In addition, the degree of polarization of the PVDF component of the composite is predicted using this multiscale modeling approach and shows that there is opportunity to drastically improve the smart composite’s performance by improving the polarization procedure.

  3. A Stress Gradient Failure Theory for Textile Structural Composites

    DTIC Science & Technology

    2006-05-01

    additional element failures occur. Incorporation of thermal stresses and investigation of the coefficient of thermal expansion is another potential...avenue for further development of the failure modeling. Due to mismatches between the coefficient of thermal expansion of constituent materials...directly from ABAQUS software, which yields element volumes as outputs, thus the volume of all matrix elements can be compared to the volume of all

  4. Multiscale Modeling and Multifunctional Composites

    DTIC Science & Technology

    2013-07-17

    dλ α µ α= − − = +E Eθ θ (9) 6 where α is the coefficient of thermal expansion , and ,e d...longitudinal and transverse coefficient of thermal expansion , respectively. The piezoelectric constants are related by (Bahei-El-Din, 2009) 31 31 33 33 31...is coded into the user defined subroutine UEXPAN of the ABAQUS finite element program. This serves as the interface between the global finite element

  5. The influence of the surface composition of mixed monolayer films on the evaporation coefficient of water.

    PubMed

    Miles, Rachael E H; Davies, James F; Reid, Jonathan P

    2016-07-20

    We explore the dependence of the evaporation coefficient of water from aqueous droplets on the composition of a surface film, considering in particular the influence of monolayer mixed component films on the evaporative mass flux. Measurements with binary component films formed from long chain alcohols, specifically tridecanol (C13H27OH) and pentadecanol (C15H31OH), and tetradecanol (C14H29OH) and hexadecanol (C16H33OH), show that the evaporation coefficient is dependent on the mole fractions of the two components forming the monolayer film. Immediately at the point of film formation and commensurate reduction in droplet evaporation rate, the evaporation coefficient is equal to a mole fraction weighted average of the evaporation coefficients through the equivalent single component films. As a droplet continues to diminish in surface area with continued loss of water, the more-soluble, shorter alkyl chain component preferentially partitions into the droplet bulk with the evaporation coefficient tending towards that through a single component film formed simply from the less-soluble, longer chain alcohol. We also show that the addition of a long chain alcohol to an aqueous-sucrose droplet can facilitate control over the degree of dehydration achieved during evaporation. After undergoing rapid gas-phase diffusion limited water evaporation, binary aqueous-sucrose droplets show a continued slow evaporative flux that is limited by slow diffusional mass transport within the particle bulk due to the rapidly increasing particle viscosity and strong concentration gradients that are established. The addition of a long chain alcohol to the droplet is shown to slow the initial rate of water loss, leading to a droplet composition that remains more homogeneous for a longer period of time. When the sucrose concentration has achieved a sufficiently high value, and the diffusion constant of water has decreased accordingly so that bulk phase diffusion arrest occurs in the monolayer coated particle, the droplet is found to have lost a greater proportion of its initial water content. A greater degree of slowing in the evaporative flux can be achieved by increasing the chain length of the surface active alcohol, leading to a greater degree of dehydration.

  6. Thermal-Mechanical and Thermal Behavior of High-Temperature Structural Materials.

    DTIC Science & Technology

    1979-12-31

    on feveroe side If neceseary at d identify by block number) Absorption coefficient; composites (A1203-BN, BeG-SiC, glass-Ni, ZrC-graphite); crack...Diffusivity of Glass-Ni Composites ’ V1 ’ P H -" ng ._T F,_J’" --Becher and K.S. Mazdiyasn4, -"Aalysis of the Resistance of High-E, Low-E Brittle Composites ...J .S r.PH..-iaeselman, W.M. Su, J.A. Rubin and R. Palicka, r’ ?Dbservations on the Nature of Micro-Cracking in Brittle Composites ,- ..X.L..--K

  7. Tribological properties of graphite-fiber-reinforced, partially fluorinated polyimide composites

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.; Hady, W. F.

    1985-01-01

    Graphite-fiber-reinforced polyimide (GFRPI) composites were formulated from three new partially fluorinated polyimides and three types of graphite fiber. Nine composites were molded into pins and evaluated in a pin-on-disk tribometer. Friction coefficients, wear rates, pin wear surface morphology, and transfer film formation were assessed at 25 and 300 C. Also assessed was the effect of sliding speed on friction. Wear was up to two orders of magnitude lower at 25 C and up to one order of magnitude lower at 300 C than with previously formulated NASA GFRPI composites.

  8. High-resolution Fourier transform measurements of air-induced broadening and shift coefficients in the 0002-0000 main isotopologue band of nitrous oxide

    NASA Astrophysics Data System (ADS)

    Werwein, Viktor; Li, Gang; Serdyukov, Anton; Brunzendorf, Jens; Werhahn, Olav; Ebert, Volker

    2018-06-01

    In the present study, we report highly accurate air-induced broadening and shift coefficients for the nitrous oxide (N2O) 0002-0000 band at 2.26 μm of the main isotopologue retrieved from high-resolution Fourier transform infrared (FTIR) measurements with metrologically determined pressure, temperature, absorption path length and chemical composition. Most of our retrieved air-broadening coefficients agree with previously generated datasets within the expanded (confidence interval of 95%) uncertainties. For the air-shift coefficients our results suggest a different rotational dependence compared to literature. The present study benefits from improved measurement conditions and a detailed metrological uncertainty description. Comparing to literature, the uncertainties of the previous broadening and shift coefficients are improved by a factor of up to 39 and up to 22, respectively.

  9. Transport properties of nonelectrolyte liquid mixtures. VIII. Viscosity coefficients for toluene and for three mixtures of toluene + hexane from 25 to 100°C at pressures up to 500 MPa

    NASA Astrophysics Data System (ADS)

    Dymond, J. H.; Awan, M. A.; Glen, N. F.; Isdale, J. D.

    1991-03-01

    Viscosity coefficients measured using a two-coil self-centering falling-body viscometer are reported for toluene and three binary mixtures of toluene + n-hexane at 25, 50, 75, and 100°C at pressures up to 500 MPa. The data for a given composition at different temperatures and pressures are correlated very satisfactorily by a plot of reduced viscosity η * versus log V', where V'= V· V 0(TR)/V0(T) and V 0 represents a characteristic volume. The binary mixture data are well represented by the Grunberg and Nissan equation with a mixing parameter which is pressure dependent but composition and temperature independent.

  10. Simulation of L-band and HH microwave backscattering from coniferous forest stands - A comparison with SIR-B data

    NASA Technical Reports Server (NTRS)

    Sun, Guo-Qing; Simonett, David S.

    1988-01-01

    SIR-B images of the Mt. Shasta region of northern California are used to evaluate a composite L-band HH backscattering model of coniferous forest stands. It is found that both SIR-B and simulated backscattering coefficients for eight stands studied have similar trends and relations to average tree height and average number of trees per pixel. Also, the dispersion and distribution of simulated backscattering coefficients from each stand broadly match SIR-B data from the same stand. Although the limited quality and quantity of experimental data makes it difficult to draw any strong conclusions, the comparisons indicate that a stand-based L-band HH composite model seems promising for explaining backscattering features.

  11. Mechanics of Carbon Nanotubes and their Polymer Composites

    NASA Technical Reports Server (NTRS)

    Wei, Chenyu; Cho, K. J.; Srivastava, Deepak; Tang, Harry (Technical Monitor)

    2002-01-01

    Contents include the folloving: carbon nanotube (CNT): structures, application of carbon nanotubes, simulation method, Elastic properties of carbon nanotubes, yield strain of CNT, yielding under tensile stress, yielding: strain-rate and temperature dependence, yield strain under tension, yielding at realistic conditions, nano fibers, polymer CNT composite, force field, density dependency on temperature, diffusion coefficients, young modulus, and conclusions.

  12. Estimating the Reliability of a Test Battery Composite or a Test Score Based on Weighted Item Scoring

    ERIC Educational Resources Information Center

    Feldt, Leonard S.

    2004-01-01

    In some settings, the validity of a battery composite or a test score is enhanced by weighting some parts or items more heavily than others in the total score. This article describes methods of estimating the total score reliability coefficient when differential weights are used with items or parts.

  13. Directional Solidification and Characterization of Hg(0.89) Mn(0.11)Te

    NASA Technical Reports Server (NTRS)

    Price, M. W.; Scripa, R. N.; Lehoczky. S. L.; Szofran, F. R.; Su, C.-H.

    1998-01-01

    Two boules of Hg(0.89)Mn(0.11)Te(MMT) were solidified using the vertical Bridgman-Stockbarger method. Translation rates of 0.09 and 0. 18 microns/s were used. The influence of growth rate on axial compositional homogeneity in the MMT boules was evaluated experimentally by conducting precision density measurements on radial slices taken from each boule. In addition, Plane Front Solidification theory and segregation coefficient (k) data for the Hg(1-x)Mn(x)Te system were used to fit theoretical composition profiles to the measured MMT axial composition profiles. The strong correlation between the measured and calculated MMT axial composition profiles indicates diffusion dominated axial solute redistribution in the boules under the applied growth conditions. The analysis of the MMT axial composition profiles by Plane Front Solidification theory allowed the calculation of the effective diffusion coefficient (D(eff) = 3.5 x l0(exp -5) sq cm/s). The k-values for the Hg(1-x)Mn(x)Te system and the D(sub eff) - value were then used to verify that both boules were solidified under conditions which did not exceed the Constitutional Supercooling Criteria under ideal conditions. Finally, a preliminary examination of the radial compositional variation in each MMT was made using Fourier Transform Infra-Red Spectroscopy (FTIR). The radial homogeneity in the MMT boules was found to be comparable for both translation rates.

  14. Current and Future Constraints on Higgs Couplings in the Nonlinear Effective Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Blas, Jorge; Eberhardt, Otto; Krause, Claudius

    We perform a Bayesian statistical analysis of the constraints on the nonlinear Effective Theory given by the Higgs electroweak chiral Lagrangian. We obtain bounds on the effective coefficients entering in Higgs observables at the leading order, using all available Higgs-boson signal strengths from the LHC runs 1 and 2. Using a prior dependence study of the solutions, we discuss the results within the context of natural-sized Wilson coefficients. We further study the expected sensitivities to the different Wilson coefficients at various possible future colliders. Finally, we interpret our results in terms of some minimal composite Higgs models.

  15. Nonlinear Finite Element Analysis of Metals and Metal Matrix Composites: A Local-Global Investigation

    DTIC Science & Technology

    1992-10-01

    and SiC/Al [47] possess good chemical bonding and experience mechanical clamping due to the differences in thermal expansion coefficients between...Coefficient of Thermal 2.70 x 10.6 *F-1 4.09 x 10-6 *C-1 Expansion (ca) Poisson’s Ratio (v) 0.25 0.25 Fiber Diameter (d) 0.0056 in 0.014224 cm...Properties of the matrix (as fabricated) Coefficient of Thermal 5.4 x 10-6 "F1 9.72 x 10-6 "C-1 Expansion (a) Poisson’s Ratio (v) 0.351 0.351 Longitudinal

  16. Adhesive Wear Performance of CFRP Multilayered Polyester Composites Under Dry/wet Contact Conditions

    NASA Astrophysics Data System (ADS)

    Danaelan, D.; Yousif, B. F.

    The tribo-performance of a new engineering composite material based on coconut fibers was investigated. In this work, coconut fibers reinforced polyester (CFRP) composites were developed. The tribo-experiments were conducted by using pin-on-disc machine under dry and wet sliding contact condition against smooth stainless steel counterface. Worn surfaces were observed using optical microscope. Friction coefficient and specific wear rate were presented as a function of sliding distance (0-0.6 km) at different sliding velocities (0.1-0.28 m/s). The effect of applied load and sliding velocity was evaluated. The results showed that all test parameters have significant influence on friction and wear characteristics of the composites. Moreover, friction coefficient increased as the normal load and speed increased, the values were about 0.7-0.9 under dry contact condition. Meanwhile, under wet contact condition, there was a great reduction in the friction coefficient, i.e. the values were about 0.1-0.2. Furthermore, the specific wear rates were found to be around 2-4 (10-3) mm3/Nm under dry contact condition and highly reduced under wet condition. In other words, the presence of water as cleaner and polisher assisted to enhance the adhesive wear performance of CFRP by about 10%. The images from optical microscope showed evidence of adhesive wear mode with transition to abrasive wear mode at higher sliding velocities due to third body abrasion. On the other hand, optical images for wet condition showed less adhesive wear and smooth surfaces.

  17. Wear Behaviour of Al-6061/SiC Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Mishra, Ashok Kumar; Srivastava, Rajesh Kumar

    2017-04-01

    Aluminium Al-6061 base composites, reinforced with SiC particles having mesh size of 150 and 600, which is fabricated by stir casting method and their wear resistance and coefficient of friction has been investigated in the present study as a function of applied load and weight fraction of SiC varying from 5, 10, 15, 20, 25, 30, 35 and 40 %. The dry sliding wear properties of composites were investigated by using Pin-on-disk testing machine at sliding velocity of 2 m/s and sliding distance of 2000 m over a various loads of 10, 20 and 30 N. The result shows that the reinforcement of the metal matrix with SiC particulates up to weight percentage of 35 % reduces the wear rate. The result also show that the wear of the test specimens increases with the increasing load and sliding distance. The coefficient of friction slightly decreases with increasing weight percentage of reinforcements. The wear surfaces are examined by optical microscopy which shows that the large grooved regions and cavities with ceramic particles are found on the worn surface of the composite alloy. This indicates an abrasive wear mechanism, which is essentially a result of hard ceramic particles exposed on the worn surfaces. Further, it was found from the experimentation that the wear rate decreases linearly with increasing weight fraction of SiC and average coefficient of friction decreases linearly with increasing applied load, weight fraction of SiC and mesh size of SiC. The best result has been obtained at 35 % weight fraction and 600 mesh size of SiC.

  18. Effect of Nano-TiC Dispersed Particles and Electro-Codeposition Parameters on Morphology and Structure of Hybrid Ni/TiC Nanocomposite Layers.

    PubMed

    Benea, Lidia; Celis, Jean-Pierre

    2016-04-06

    This research work describes the effect of dispersed titanium carbide (TiC) nanoparticles into nickel plating bath on Ni/TiC nanostructured composite layers obtained by electro-codeposition. The surface morphology of Ni/TiC nanostructured composite layers was characterized by scanning electron microscopy (SEM). The composition of coatings and the incorporation percentage of TiC nanoparticles into Ni matrix were studied and estimated by using energy dispersive X-ray analysis (EDX). X-ray diffractometer (XRD) has been applied in order to investigate the phase structure as well as the corresponding relative texture coefficients of the composite layers. The results show that the concentration of nano-TiC particles added in the nickel electrolyte affects the inclusion percentage of TiC into Ni/TiC nano strucured layers, as well as the corresponding morphology, relative texture coefficients and thickness indicating an increasing tendency with the increasing concentration of nano-TiC concentration. By increasing the amount of TiC nanoparticles in the electrolyte, their incorporation into nickel matrix also increases. The hybrid Ni/nano-TiC composite layers obtained revealed a higher roughness and higher hardness; therefore, these layers are promising superhydrophobic surfaces for special application and could be more resistant to wear than the pure Ni layers.

  19. The effect of incorporated self-lubricated BN(h) particles on the tribological properties of Ni-P/BN(h) composite coatings

    NASA Astrophysics Data System (ADS)

    Hsu, Chih-I.; Hou, Kung-Hsu; Ger, Ming-Der; Wang, Gao-Liang

    2015-12-01

    Ni-P/BN(h) composite coatings are prepared by means of the conventional electroless plating from the bath containing up to 10.0 g/l of hexagonal boron nitride particles with size 0.5 μm. The Ni-P coating is also prepared as a comparison. Cationic surfactant cetyltrimethylammonium bromide (CTAB) is used to stabilize the electrolyte, and the optimum CTAB concentration resulting in a nonagglomerated dispersion of particles is obtained using a dispersion stability analyzer. Morphology of the coatings and the effect of incorporated particles on coating structure and composition are investigated via scanning electron microscopy, field emission electron probe micro-analyzer and X-ray diffraction analysis. Hardness, roughness, friction coefficient and wear resistance of the coatings are also evaluated using Vickers microhardness tester, atomic force microscopy and ball-on disk machine. The presence of CTAB in the depositing bath has a positive effect on the surface roughness and performance of Ni-P/BN(h) composite coatings. The friction and wear tests results show that incorporation of 14.5 vol% BN(h) particles into the Ni-P coating lowers the coating friction coefficient by about 75% and the wear resistance of the Ni-P composites is approximately 10 times higher than Ni-P coating.

  20. Composite films of highly ordered Si nanowires embedded in SiGe0.3 for thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Kikuchi, Akiou; Yao, Akifumi; Mori, Isamu; Ono, Takahito; Samukawa, Seiji

    2017-10-01

    We fabricated a high-density array of silicon nanowires (SiNWs) with a diameter of 10 nm embedded in silicon germanium (SiGe0.3) to give a composite thin film for thermoelectric device applications. The SiNW array was first fabricated by bio-template mask and neutral beam etching techniques. The SiNW array was then embedded in SiGe0.3 by thermal chemical vapor deposition. The cross-plane thermal conductivity of the SiNW-SiGe0.3 composite film with a thickness of 100 nm was 3.5 ± 0.3 W/mK in the temperature range of 300-350 K. Moreover, the temperature dependences of the in-plane electrical conductivity and in-plane Seebeck coefficient of the SiNW-SiGe0.3 composite were evaluated. The fabricated SiNW-SiGe0.3 composite film displayed a maximum power factor of 1 × 103 W/m K2 (a Seebeck coefficient of 4.8 × 103 μV/K and an electrical conductivity of 4.4 × 103 S/m) at 873 K. The present high-density SiNW array structure represents a new route to realize practical thermoelectric devices using mature Si processes without any rare metals.

  1. Calculation of thermal expansion coefficient of glasses based on topological constraint theory

    NASA Astrophysics Data System (ADS)

    Zeng, Huidan; Ye, Feng; Li, Xiang; Wang, Ling; Yang, Bin; Chen, Jianding; Zhang, Xianghua; Sun, Luyi

    2016-10-01

    In this work, the thermal expansion behavior and the structure configuration evolution of glasses were studied. Degree of freedom based on the topological constraint theory is correlated with configuration evolution; considering the chemical composition and the configuration change, the analytical equation for calculating the thermal expansion coefficient of glasses from degree of freedom was derived. The thermal expansion of typical silicate and chalcogenide glasses was examined by calculating their thermal expansion coefficients (TEC) using the approach stated above. The results showed that this approach was energetically favorable for glass materials and revealed the corresponding underlying essence from viewpoint of configuration entropy. This work establishes a configuration-based methodology to calculate the thermal expansion coefficient of glasses that, lack periodic order.

  2. Prediction of moisture and temperature changes in composites during atmospheric exposure

    NASA Technical Reports Server (NTRS)

    Tompkins, S. S.; Tenney, D. R.; Unnan, J.

    1978-01-01

    The effects of variations in diffusion coefficients, surface properties of the composite, panel tilt, ground reflection, and geographical location on the moisture concentration profiles and average moisture content of composite laminates were studied analytically. A heat balance which included heat input due to direct and sky diffuse solar radiation, ground reflection, and heat loss due to reradiation and convection was used to determine the temperature of composites during atmospheric exposure. The equilibrium moisture content was assumed proportional to the relative humidity of the air in the boundary layer of the composite. Condensation on the surface was neglected. Histograms of composite temperatures were determined and compared with those for the ambient environment.

  3. Self-assembly of multiferroic core-shell particulate nanocomposites through DNA-DNA hybridization and magnetic field directed assembly of superstructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sreenivasulu, Gollapudi; Srinivasan, Gopalan, E-mail: srinivas@oakland.edu, E-mail: chavez@oakland.edu; Lochbiler, Thomas A.

    Multiferroic composites of ferromagnetic and ferroelectric phases are of importance for studies on mechanical strain mediated coupling between the magnetic and electric subsystems. This work is on DNA-assisted self-assembly of superstructures of such composites with nanometer periodicity. The synthesis involved oligomeric DNA-functionalized ferroelectric and ferromagnetic nanoparticles, 600 nm BaTiO{sub 3} (BTO) and 200 nm NiFe{sub 2}O{sub 4} (NFO), respectively. Mixing BTO and NFO particles, possessing complementary DNA sequences, resulted in the formation of ordered core-shell heteronanocomposites held together by DNA hybridization. The composites were imaged by scanning electron microscopy and scanning microwave microscopy. The presence of heteroassemblies along with core-shellmore » architecture is clearly observed. The reversible nature of the DNA hybridization allows for restructuring the composites into mm-long linear chains and 2D-arrays in the presence of a static magnetic field and ring-like structures in a rotating-magnetic field. Strong magneto-electric (ME) coupling in as-assembled composites is evident from static magnetic field H induced polarization and low-frequency magnetoelectric voltage coefficient measurements. Upon annealing the nanocomposites at high temperatures, evidence for the formation of bulk composites with excellent cross-coupling between the electric and magnetic subsystems is obtained by H-induced polarization and low-frequency ME voltage coefficient. The ME coupling strength in the self-assembled composites is measured to be much stronger than in bulk composites with randomly distributed NFO and BTO prepared by direct mixing and sintering.« less

  4. Tribo-performance of epoxy hybrid composites reinforced with carbon fibers and potassium titanate whiskers

    NASA Astrophysics Data System (ADS)

    Suresha, B.; Harshavardhan, B.; Ravishankar, R.

    2018-04-01

    The present investigation deals with the fabrication and characterization of epoxy reinforced with bidirectional carbon fiber mat (CF/Ep) and filled with 2.5, 5 and 7.5 wt% potassium titanate whiskers (PTw) composites. The effect of PTw loading on hardness, tensile properties and dry sliding wear behaviour of CF/Ep composite were carefully investigated in expectation of providing valuable information for the application of hybrid CF/Ep composites. Results indicated that the incorporation of PTw actually improved the hardness, tensile strength and tensile modulus of CF/Ep composites. Meanwhile, the specific wear rate of CF/Ep filled by 5 wt % PTw reached to 6.3× 10-14 m3/N-m, which is 41% lower than that of CF/Ep composite at the same dry sliding condition. It also seen that the fiber and filler worked synergistically to enhance the wear resistance. Further, for all composites the friction coefficient increases with increase in load and sliding velocity. However, PTw reinforced CF/Ep exhibited considerably higher coefficient of friction compared to unfilled ones, while PTw filler loading of 5 wt% was effective in reducing the specific wear rate of CF/Ep composite. The carbon fiber carried the applied load between the contact surfaces and protected the epoxy from severe abrasion of the counterface. At the same time, the exposed PTw out of the epoxy matrix around the fiber inhibited the direct scraping between the fiber and counterface so that the fibers could be less directly impacted during the subsequent wear process and they were protected from severe damage.

  5. Quantum size and magnesium composition effects on the optical absorption in the MgxZn(1-x)O/ZnO quantum well

    NASA Astrophysics Data System (ADS)

    Dakhlaoui, Hassen ben Bechir; Mouna, Nefzi

    2018-02-01

    In this work, we investigated the effects of polarizations and structural parameters on the optical absorption coefficient (OAC) and the intersubband transition between the three lowest energy levels E1,E2 , and E3 in the MgxZn(1-x)O/ZnO single quantum well. The energy of the electron in each level and its respective wavefunction are calculated by the numerical solution of Schrödinger and Poisson equations self-consistently using an effective mass approximation. Our findings exhibit that the intersubband transitions, ΔE12 and ΔE13 , can be altered and controlled by varying the quantum well width and the magnesium composition, x. Moreover, our results suggest that the optical absorption coefficients, α12 and α13 , can be modulated principally by adjusting the quantum well width, especially the optical absorption coefficient (α12), which presents a red shift by raising the quantum well thickness. Contrary to α12 , the optical absorption coefficient, α13 , can present either a red or a blue shift by increasing the quantum well width. The process responsible for this behavior, which can be suitable for optoelectronic device applications, is discussed here in detail.

  6. Differentiating the Bishop ash bed and related tephra layers by elemental-based similarity coefficients of volcanic glass shards using solution inductively coupled plasma-mass spectrometry (S-ICP-MS)

    USGS Publications Warehouse

    Knott, J.R.; Sarna-Wojcicki, A. M.; Montanez, I.P.; Wan, E.

    2007-01-01

    Volcanic glass samples from the same volcanic center (intra-source) often have a similar major-element composition. Thus, it can be difficult to distinguish between individual tephra layers, particularly when using similarity coefficients calculated from electron microprobe major-element measurements. Minor/trace element concentrations in glass can be determined by solution inductively coupled plasma mass spectrometry (S-ICP-MS), but have not been shown as suitable for use in large tephrochronologic databases. Here, we present minor/trace-element concentrations measured by S-ICP-MS and compare these data by similarity coefficients, the method commonly used in large databases. Trial samples from the Bishop Tuff, the upper and lower tuffs of Glass Mountain and the tuffs of Mesquite Spring suites from eastern California, USA, which have an indistinguishable major-element composition, were analyzed using S-ICP-MS. The resulting minor/trace element similarity coefficients clearly separated the suites of tephra layers and, in most cases, individual tephra layers within each suite. Comparisons with previous instrumental neutron activation analysis (INAA) elemental measurements were marginally successful. This is important step toward quantitative correlation in large tephrochronologic databases to achieve definitive identification of volcanic glass samples and for high-resolution age determinations. ?? 2007 Elsevier Ltd and INQUA.

  7. Enhancing thermoelectric properties of organic composites through hierarchical nanostructures

    PubMed Central

    Zhang, Kun; Zhang, Yue; Wang, Shiren

    2013-01-01

    Organic thermoelectric (TE) materials are very attractive due to easy processing, material abundance, and environmentally-benign characteristics, but their potential is significantly restricted by the inferior thermoelectric properties. In this work, noncovalently functionalized graphene with fullerene by π-π stacking in a liquid-liquid interface was integrated into poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate). Graphene helps to improve electrical conductivity while fullerene enhances the Seebeck coefficient and hinders thermal conductivity, resulting in the synergistic effect on enhancing thermoelectric properties. With the integration of nanohybrids, the electrical conductivity increased from ~10000 to ~70000 S/m, the thermal conductivity changed from 0.2 to 2 W·K−1m−1 while the Seebeck coefficient was enhanced by around 4-fold. As a result, nanohybrids-based polymer composites demonstrated the figure of merit (ZT) as high as 6.7 × 10−2, indicating an enhancement of more than one order of magnitude in comparison to single-phase filler-based polymer composites with ZT at the level of 10−3. PMID:24336319

  8. Advanced methods for preparation and characterization of infrared detector materials. [mercury cadmium tellurides

    NASA Technical Reports Server (NTRS)

    Lehoczky, S. L.; Szofran, F. R.; Martin, B. G.

    1980-01-01

    Mercury cadmium telluride crystals were prepared by the Bridgman method with a wide range of crystal growth rates and temperature gradients adequate to prevent constitutional supercooling under diffusion-limited, steady state, growth conditions. The longitudinal compositional gradients for different growth conditions and alloy compositions were calculated and compared with experimental data to develop a quantitative model of the crystal growth kinetics for the Hg(i-x)CdxTe alloys, and measurements were performed to ascertain the effect of growth conditions on radial compositional gradients. The pseudobinary HgTe-CdTe constitutional phase diagram was determined by precision differential thermal analysis measurements and used to calculate the segregation coefficient of Cd as a function of x and interface temperature. Computer algorithms specific to Hg(1-x)CdxTe were developed for calculations of the charge carrier concentrations, charge carrier mobilities, Hall coefficient, optical absorptance, and Fermi energy as functions of x, temperature, ionized donor and acceptor concentrations, and neutral defect concentrations.

  9. Numerical simulation of fiber interaction in short-fiber injection-molded composite using different cavity geometries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thi, Thanh Binh Nguyen, E-mail: nttbinh@kit.ac.jp; Yokoyama, Atsushi, E-mail: yokoyama@kit.ac.jp; Hamanaka, Senji

    The theoretical fiber-interaction model for calculating the fiber orientation in the injection molded short fiber/thermoplastic composite parts was proposed. The proposed model included the fiber dynamics simulation in order to obtain an equation of the global interaction coefficient and accurate estimate of the fiber interacts at all orientation states. The steps to derive the equation for this coefficient in short fiber suspension as a function of the fiber aspect ratio, volume fraction and general shear rate are delineated. Simultaneously, the high-resolution 3D X-ray computed tomography system XVA-160α was used to observe fiber distribution of short-glass-fiber-reinforced polyamide specimens using different cavitymore » geometries. The fiber orientation tensor components are then calculated. Experimental orientation measurements of short-glass-fiber-reinforced polyamide is used to check the ability of present theory for predicting orientation. The experiments and predictions show a quantitative agreement and confirm the basic understanding of fiber orientation in injection-molded composites.« less

  10. ON THE DEGREE OF CONVERSION AND COEFFICIENT OF THERMAL EXPANSION OF A SINGLE FIBER COMPOSITE USING A FBG SENSOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, M.; Botsis, J.; Coric, D.

    2008-08-28

    The increasing needs of extending the lifetime in high-technology fields, such as space and aerospace, rail transport and naval systems, require quality enhancing of the composite materials either from a processing standing point or in the sense of resistance to service conditions. It is well accepted that the final quality of composite materials and structures is strongly influenced by processing parameters like curing and post-curing temperatures, rate of heating and cooling, applied vacuum, etc. To optimize manufacturing cycles, residual strains evolution due to chemical shrinkage and other physical parameters of the constituent materials must be characterized in situ. Such knowledgemore » can lead to a sensible reduction in defects and to improved physical and mechanical properties of final products. In this context continuous monitoring of strains distribution developed during processing is important in understanding and retrieving components' and materials' characteristics such as local strains gradients, degree of curing, coefficient of thermal expansion, moisture absorption, etc.« less

  11. Thermal expansion coefficient prediction of fuel-cell seal materials from silica sand

    NASA Astrophysics Data System (ADS)

    Hidayat, Nurul; Triwikantoro, Baqiya, Malik A.; Pratapa, Suminar

    2013-09-01

    This study is focused on the prediction of coefficient of thermal expansion (CTE) of silica-sand-based fuel-cell seal materials (FcSMs) which in principle require a CTE value in the range of 9.5-12 ppm/°C. A semi-quantitative theoretical method to predict the CTE value is proposed by applying the analyzed phase compositions from XRD data and characterized density-porosity behavior. A typical silica sand was milled at 150 rpm for 1 hour followed by heating at 1000 °C for another hour. The sand and heated samples were characterized by means of XRD to perceive the phase composition correlation between them. Rietveld refinement was executed to investigate the weight fraction of the phase contained in the samples, and then converted to volume fraction for composite CTE calculations. The result was applied to predict their potential physical properties for FcSM. Porosity was taken into account in the calculation after which it was directly measured by the Archimedes method.

  12. Numerical simulation of fiber interaction in short-fiber injection-molded composite using different cavity geometries

    NASA Astrophysics Data System (ADS)

    Thi, Thanh Binh Nguyen; Yokoyama, Atsushi; Hamanaka, Senji; Yamashita, Katsuhisa; Nonomura, Chisato

    2016-03-01

    The theoretical fiber-interaction model for calculating the fiber orientation in the injection molded short fiber/thermoplastic composite parts was proposed. The proposed model included the fiber dynamics simulation in order to obtain an equation of the global interaction coefficient and accurate estimate of the fiber interacts at all orientation states. The steps to derive the equation for this coefficient in short fiber suspension as a function of the fiber aspect ratio, volume fraction and general shear rate are delineated. Simultaneously, the high-resolution 3D X-ray computed tomography system XVA-160α was used to observe fiber distribution of short-glass-fiber-reinforced polyamide specimens using different cavity geometries. The fiber orientation tensor components are then calculated. Experimental orientation measurements of short-glass-fiber-reinforced polyamide is used to check the ability of present theory for predicting orientation. The experiments and predictions show a quantitative agreement and confirm the basic understanding of fiber orientation in injection-molded composites.

  13. Influence of the composition and high shear stresses on the structure and properties of hybrid materials based on starch and synthetic copolymer.

    PubMed

    Burmistrov, V A; Lipatova, I M; Losev, N V; Rodicheva, J A; Koifman, O I

    2018-09-15

    The method of mechanical activation in the rotor-stator device was used to combine the starch hydrogel and the latex of the synthetic copolymer. The compatibility of the components was found to improve consistently by the preliminary mechanoactivation of the starch gel and the joint activation of the mixturs. The joint activation was shown to promote the crystallization of starch and the amorphous phase ordering of the composite. An increase in the starch content and co-activation were found to result in rise in the Young's modulus and tensile strength, but joint activation ensures an increase in the elasticity of the samples. The kinetic parameters of moisture transfer through composite films were estimated. A distinct compensative effect was found, consisted in a significant increase in the sorption coefficient and a decrease in the diffusion coefficient with increasing starch content. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Exploring the piezoelectric performance of PZT particulate-epoxy composites loaded in shear

    NASA Astrophysics Data System (ADS)

    Van Loock, F.; Deutz, D. B.; van der Zwaag, S.; Groen, W. A.

    2016-08-01

    The active and passive piezoelectric response of lead zirconium titanate (PZT)-epoxy particulate composites loaded in shear is studied using analytical models, a finite element model and by experiments. The response is compared to that of the same composites when loaded in simple tension. Analogously to bulk PZT, particulate PZT-polymer composites loaded in shear show higher piezoelectric charge coefficient (d 15) and energy density figure of merit (FOM15) values compared to simple tension (d 33) and (FOM33). This outcome demonstrates the as-yet barely explored potential of piezoelectric particulate composites for optimal strain energy harvesting when activated in shear.

  15. Ion pair and solvation dynamics of [Bmim][BF4 ] + water system.

    PubMed

    Cascão, João; Silva, Wagner; Ferreira, Ana S D; Cabrita, Eurico J

    2018-02-01

    In this work, 1-butyl-3-methylimidazolium tetrafluoroborate/water mixtures were analysed over the whole water composition (x w ) in order to study the rotational and translational behaviour of the ions. We employed a multinuclear NMR approach to determine anion/cation/water diffusion coefficients and longitudinal relaxation rates at different water content. In neat ionic liquids (IL), the cation diffuses faster than the anion, and at low x w , anions and cations share almost the same diffusion coefficient, but above a critical water concentration, the anion begins to diffuse faster than the cation. We identified this composition as approximately 10% x w where the ions share the same diffusion coefficient. We found that the water at this composition seems to have a much more dramatic effect in the rotational diffusion of the anion that decreases substantially and approaches that of the anion in the diluted IL. Translational and rotational dynamics of the ions suggest that water is first incorporated in pockets in the nanostructure of the IL allowing the ions to maintain most of the cation/anion interactions present in neat IL but already disrupting some anion/cation interactions due to preferential interaction with the anion. HOESY and NOESY data show that water displays contacts both with the cation and the anion in a positive NOE regime in contrary to the negative regime found for the cation/anion and cation/cation cross-relaxation. This is in accordance with the high relative diffusion coefficient of water and suggests that water molecules can exchange between preferential location sites that allow water to maintain contacts both with the anion and cation. Copyright © 2017 John Wiley & Sons, Ltd.

  16. The Pittsburgh Sleep Quality Index: validation of the Urdu translation.

    PubMed

    Hashmi, Ali Madeeh; Khawaja, Imran Shuja; Butt, Zeeshan; Umair, Muhammad; Naqvi, Suhaib Haider; Jawad-Ul-Haq

    2014-02-01

    To translate and validate the Pittsburgh Sleep Quality Index (PSQI), a standardized self-administered questionnaire for the assessment of subjective sleep quality into the Urdu language. Validation study. Mayo Hospital, Lahore, from March to April 2012. The PSQI was translated into Urdu following standard guidelines. The final Urdu version (PSQI-U) was administered to 200 healthy volunteers comprising medical students, nursing staff and doctors. Inter-item correlation was assessed by calculating Cronbach alpha. Correlation of component scores with global score was assessed by calculating Spearman correlation coefficient. Correlation between global PSQI-U scores at baseline with global scores for each PSQI-U and PSQI-E at 4-week interval was evaluated by calculating Spearman correlation coefficient. Moreover, scores on individual items of the scale at baseline were compared with respective scores after 4-week by t-test. One hundred and eighty five (185) participants completed the PSQI-U at baseline. The Cronbach alpha for PSQI-U was 0.56. Scores on individual components of the PSQI-U and composite scores were all highly correlated with each other (all p-values < 0.01). Composite scores for PSQI-U at baseline and PSQI-E at 4-week interval were also highly correlated with each other (Spearman correlation coefficient 0.74, p-value < 0.01) indicating good linguistic interchangeability. Composite scores for PSQI-U at baseline and at 4-week interval were positively correlated with each other (Spearman correlation coefficient 0.70, p < 0.01) indicating good test-retest reliability. The PSQI-U is a valid and reliable instrument for the assessment of sleep quality. It shows good linguistic interchangeability and test-retest reliability in comparison to the original English version when applied to individuals who speak the Urdu language. The PSQI-U can be a tool either for clinical management or research.

  17. NASA technology utilization survey on composite materials

    NASA Technical Reports Server (NTRS)

    Leeds, M. A.; Schwartz, S.; Holm, G. J.; Krainess, A. M.; Wykes, D. M.; Delzell, M. T.; Veazie, W. H., Jr.

    1972-01-01

    NASA and NASA-funded contractor contributions to the field of composite materials are surveyed. Existing and potential non-aerospace applications of the newer composite materials are emphasized. Economic factors for selection of a composite for a particular application are weight savings, performance (high strength, high elastic modulus, low coefficient of expansion, heat resistance, corrosion resistance,), longer service life, and reduced maintenance. Applications for composites in agriculture, chemical and petrochemical industries, construction, consumer goods, machinery, power generation and distribution, transportation, biomedicine, and safety are presented. With the continuing trend toward further cost reductions, composites warrant consideration in a wide range of non-aerospace applications. Composite materials discussed include filamentary reinforced materials, laminates, multiphase alloys, solid multiphase lubricants, and multiphase ceramics. New processes developed to aid in fabrication of composites are given.

  18. Integrin expression and integrin-mediated adhesion in vitro of human multipotent stromal cells (MSCs) to endothelial cells from various blood vessels.

    PubMed

    Semon, Julie A; Nagy, Lauren H; Llamas, Claire B; Tucker, H Alan; Lee, Ryang Hwa; Prockop, Darwin J

    2010-07-01

    Multipotent mesenchymal stromal cells (MSCs) home to damaged tissue by processes partly regulated by integrins. Integrin subunits expressed by MSCs were identified by flow cytometry (FC), immunocytochemistry (IC), and a panel of integrin-binding antibodies. In subconfluent cultures, over 80% of MSCs expressed integrin subunits beta1, beta2, and alpha3, 20%-55% expressed alpha1, alpha2, alpha4, alpha5, alpha6, and alphaV, and about 10% expressed beta3 when assayed by FC. None of the cells expressed significant levels of 13 other integrins as assayed by FC, but seven of the 13 integrins were detected by IC: beta5, alpha7, alpha8, alpha9, alpha11, alphaX, and alphaD. Expression of some integrins changed with MSC confluency: integrins beta3, alpha1, alpha3, alpha5, and alphaV increased, and alpha6 decreased. Furthermore, alpha4 was the only integrin to vary among preparations of MSCs from different donors. The results resolved some discrepancies in the literature concerning integrin expression by MSCs. We also investigated the role of specific integrins in MSC adhesion to endothelial cells (ECs) from the pulmonary artery (HPAEC), cardiac-derived microvasculature (HMVEC-C), and umbilical veins (HUVEC). In experiments with blocking antibodies to beta integrins, anti-beta5 reduced MSC adhesion to all types of ECs, anti-beta1 to both HUVEC and HPAEC, anti-beta3 to HUVEC, and anti-beta2 to HMVEC-C. With blocking antibodies to alpha integrins, anti-alphaX reduced adhesion to HPAEC and HMVEC-C, anti-alphaV to HPAEC, and both anti-alpha7 and anti-alphaD to HMVEC-C. Thus, MSCs use diverse integrins to adhere to EC from various blood vessels in vitro.

  19. Dynamic Magnetostriction of CoFe2 O4 and Its Role in Magnetoelectric Composites

    NASA Astrophysics Data System (ADS)

    Aubert, A.; Loyau, V.; Pascal, Y.; Mazaleyrat, F.; LoBue, M.

    2018-04-01

    Applications of magnetostrictive materials commonly involve the use of the dynamic deformation, i.e., the piezomagnetic effect. Usually, this effect is described by the strain derivative ∂λ /∂H , which is deduced from the quasistatic magnetostrictive curve. However, the strain derivative might not be accurate to describe dynamic deformation in semihard materials as cobalt ferrite (CFO). To highlight this issue, dynamic magnetostriction measurements of cobalt ferrite are performed and compared with the strain derivative. The experiment shows that measured piezomagnetic coefficients are much lower than the strain derivative. To point out the direct application of this effect, low-frequency magnetoelectric (ME) measurements are also conducted on bilayers CFO /Pb (Zr ,Ti )O3 . The experimental data are compared with calculated magnetoelectric coefficients which include a measured dynamic coefficient and result in very low relative error (<5 %), highlighting the relevance of using a piezomagnetic coefficient derived from dynamic magnetostriction instead of a strain derivative coefficient to model ME composites. The magnetoelectric effect is then measured for several amplitudes of the alternating field Hac, and a nonlinear response is revealed. Based on these results, a trilayer CFO/Pb (Zr ,Ti )O3 /CFO is made exhibiting a high magnetoelectric coefficient of 578 mV /A (approximately 460 mV /cm Oe ) in an ac field of 38.2 kA /m (about 48 mT) at low frequency, which is 3 times higher than the measured value at 0.8 kA /m (approximately 1 mT). We discuss the viability of using semihard materials like cobalt ferrite for dynamic magnetostrictive applications such as the magnetoelectric effect.

  20. Fundamental aspects of polyimide dry film and composite lubrication: A review

    NASA Technical Reports Server (NTRS)

    Fusaro, R. L.

    1982-01-01

    The tribological properties of polyimide dry films and composites are reviewed. Friction coefficients, wear rates, transfer film characteristics, wear surface morphology, and possible wear mechanisms of several different polyimide films, polyimide-bonded solid lubricants, polyimide solid bodies, and polyimide composites are discussed. Such parameters as temperature, type of atmosphere, load, contact stress, and specimen configuration are investigated. Data from an accelerated test device (Pin-on-Disk) are compared to similar data obtained from an end use application test device (plain spherical bearing).

  1. Composite Riflescope

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Bushnell Division of Bausch & Lomb's Armor-Sight riflescope combines the company's world-renowned optics with a graphite composite (Graphlon VI) developed for space applications. The riflescope is 10 percent lighter than aluminum scopes, and, because its thermal expansion coefficient is near zero, optical distortion from heat and cold extremes is eliminated. It is fogproof and waterproof; advanced multicoated optics provide maximum light transmission to brighten target ranges. Bushnell was assisted by NIAC/USC in searching for technical information on graphic composites and in overcoming difficulties with bonding and porosity.

  2. Determination of the Effects of Medium Composition on the Monochloramine Disinfection Kinetics of Nitrosomonas europaea by the Propidium Monoazide Quantitative PCR and Live/Dead BacLight Methods

    EPA Science Inventory

    Various media compositions (phosphate 1-50 mM; ionic strength 2.8-150 meq/L) significantly affected Nitrosomonas europaea monochloramine disinfection kinetics determined by Live/Dead BacLight (LD) and propidium monoazide quantitative PCR (PMA-qPCR) methods (lag coefficient 37-490...

  3. Development of Thermally Actuated, High-Temperature Composite Morphing Concepts

    DTIC Science & Technology

    2016-05-11

    Thermally Actuated, High- Temperature Composite Morphing Concepts 5a. CONTRACT NUMBER EOARD 14-0063 5b. GRANT NUMBER FA9550-14-1-0063 5c...mismatched thermal expansion coefficients. However, current bimorphs are generally limited to benign temperatures and linear temperature displacement... temperature morphing structures. Successful application of this work may yield morphing hot structures in extreme environments. A particularly appealing

  4. Development of Thermally Actuated, High Temperature Composite Morphing Concepts

    DTIC Science & Technology

    2016-03-31

    Thermally Actuated, High- Temperature Composite Morphing Concepts 5a. CONTRACT NUMBER EOARD 14-0063 5b. GRANT NUMBER FA9550-14-1-0063 5c...mismatched thermal expansion coefficients. However, current bimorphs are generally limited to benign temperatures and linear temperature displacement... temperature morphing structures. Successful application of this work may yield morphing hot structures in extreme environments. A particularly appealing

  5. Elasto-plastic analysis of interface layers for fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Doghri, I.; Leckie, F. A.

    1991-01-01

    The mismatch in coefficients of thermal expansion (CTE) of fiber and matrix in metal matrix composites reinforced with ceramic fibers induces high thermal stresses in the matrix. Elasto-plastic analyses - with different degrees of simplification and modelization - show that an interface layer with a sufficiently high CTE can reduce the tensile hoop stress in the matrix substantially.

  6. Effects of polishing on surface roughness, gloss, and color of resin composites.

    PubMed

    Hosoya, Yumiko; Shiraishi, Takanobu; Odatsu, Tetsuro; Nagafuji, Junichi; Kotaku, Mayumi; Miyazaki, Masashi; Powers, John M

    2011-09-01

    This study evaluated the effects of polishing on surface roughness, gloss, and color of regular, opaque, and enamel shades for each of three resin composites. Two-mm-thick resin disks made with Estelite Σ Quick, Clearfil Majesty, and Beautifil II were final polished with 180-, 1000-, and 3000-grit silicon carbide paper. Surface roughness, gloss, and color were measured one week after curing. Estelite Σ Quick had significantly lower roughness values and significantly higher gloss values as compared with Clearfil Majesty and Beautifil II. The effects of surface roughness and gloss on color (L*a*b*) differed among resin composites and by shade. Correlation coefficients between surface roughness and L*a*b* color factors were generally high for Clearfil Majesty, partially high (i.e., between roughness and L*) for Beautifil II, and low for Estelite Σ Quick. Correlation coefficients between gloss and L*a*b* color parameters were generally high for Beautifil II and low for Estelite Σ Quick and Clearfil Majesty. However, for all resin composites, the values of the color differences between 3000-grit and 180-grit polishing groups for all shades were imperceptible by the naked eye.

  7. Alkali elemental and potassium isotopic compositions of Semarkona chondrules

    USGS Publications Warehouse

    Alexander, C.M. O'D.; Grossman, J.N.

    2005-01-01

    We report measurements of K isotope ratios in 28 Semarkona chondrules with a wide range of petrologic types and bulk compositions as well as the compositions of CPX-mesostasis pairs in 17 type I Semarkona chondrules, including two chondrules with radial alkali zonation and 19 type II chondrules. Despite the wide range in K/Al ratios, no systematic variations in K isotopic compositions were found. Semarkona chondrules do not record a simple history of Rayleigh-type loss of K. Experimentally determined evaporation rates suggest that considerable alkali evaporation would have occurred during chondrule formation. Nevertheless, based on Na CPX-mesostasis distribution coefficients, the alkali contents of the cores of most chondrules in Semarkona were probably established at the time of final crystallization. However, Na CPX-mesostasis distribution coefficients also show that alkali zonation in type I Semarkona chondrules was produced by entry of alkalis after solidification, probably during parent body alteration. This alkali metasomatism may have gone to completion in some chondrules. Our preferred explanation for the lack of systematic isotopic enrichments, even in alkali depleted type I chondrule cores, is that they exchanged with the ambient gas as they cooled. ?? The Meteoritical Society, 2005.

  8. Fabrication and tribological response of aluminium 6061 hybrid composite reinforced with bamboo char and boron carbide micro-fillers

    NASA Astrophysics Data System (ADS)

    Chethan, K. N.; Pai, Anand; Keni, Laxmikant G.; Singhal, Ashish; Sinha, Shubham

    2018-02-01

    Metal matrix composites (MMCs) have a wide scope of industrial applications and triumph over conventional materials due to their light weight, higher specific strength, good wear resistance and lower coefficient of thermal expansion. The present study aims at establishing the feasibility of using Bamboo charcoal particulate and boron carbide as reinforcements in Al-6061 alloy matrix and to investigate their effect on the wear of composites taking into consideration the interfacial adhesion of the reinforcements in the alloy. Al-6061 alloy was chosen as a base metallic alloy matrix. Sun-dried bamboo canes were used for charcoal preparation with the aid of a muffle furnace. The carbon content in the charcoal samples was determined by EDS (energy dispersive spectroscopy). In present study, stir casting technique was used to prepare the samples with 1%, 2%, and 3% weight of bamboo charcoal and boron carbide with Al-6061. The fabricated composites were homogenised at 570°C for 6 hours and cooled at room temperature. Wear studies were carried out on the specimens with different speed and loads. It was found that wear rate and coefficient of friction decreased with increase in the reinforcement content.

  9. Role of interfacial charge in the piezoelectric properties of ferroelectric 0-3 composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, C.K.; Shin, F.G.; Department of Applied Physics, Materials Research Center and Center for Smart Materials, Hong Kong Polytechnic University, Hong Kong

    2005-02-01

    We investigated the effects of compensating charges (at the inclusion-matrix interface) on the piezoelectric properties of ferroelectric 0-3 composites. Our previously developed model [C. K. Wong, Y. M. Poon, and F. G. Shin, J. Appl. Phys. 90, 4690 (2001)] has been extended to include the additional contribution from the deformation of the inclusion particles due to the applied stress in the piezoelectric measurement. The relative significance of this contribution is mainly determined by the amount of compensating interfacial charge, which is significantly governed by the degrees of poling of the constituent materials in the composite sample. This model provides anmore » explanation to an anomaly in the piezoelectric coefficients of 0-3 composite samples with the matrix and inclusion phases polarized in opposite directions. Explicit expressions in closed form have been derived for the effective d{sub 33}, d{sub 31}, and d{sub h} coefficients. After taking into consideration the degree of poling of the constituents and the effects of the compensating interfacial charges, theoretical predictions show good agreement with published experimental data. Goodness of fit is not limited to low volume concentration of inclusions.« less

  10. Tribological and Mechanical Behaviors of Polyamide 6/Glass Fiber Composite Filled with Various Solid Lubricants

    PubMed Central

    Li, Duxin; Xie, Ying; Li, Wenjuan; You, Yilan; Deng, Xin

    2013-01-01

    The effects of polytetrafluoroethylene (PTFE), graphite, ultrahigh molecular weight polyethylene (UHMWPE), and their compounds on mechanical and tribological properties of glass-fiber-reinforced polyamide 6 (PA6/GF) were studied. The polymeric materials were blended using twin-screw extruder and subsequently injection molded for test samples. Mechanical properties were investigated in terms of hardness, tensile strength, and impact strength. Friction and wear experiments were run under ambient conditions at a rotating speed of 200 rpm and load of 100 N. The morphologies of the worn surfaces were also observed with scanning electron microscope. The results showed that graphite could increase the tensile strength of PA6/GF-15 composite, but the material became soft. Graphite/UHMWPE complex solid lubricants were effective in increasing the already high impact strength of PA6/GF-15 composite. 5% PTFE gave the maximum reduction in the coefficient of friction. However, PTFE/UHMWPE complex solid lubricants were the best choice for improving both friction and wear behaviors due to the lower friction coefficient and mass wear rate. Moreover, the worn surface of PA6 composites revealed that adhesive wear, abrasive wear, and fatigue wear occurred in this study. PMID:23766687

  11. Fabrication of Wood-Rubber Composites Using Rubber Compound as a Bonding Agent Instead of Adhesives.

    PubMed

    Shao, Dongwei; Xu, Min; Cai, Liping; Shi, Sheldon Q

    2016-06-14

    Differing from the hot-pressing method in the manufacturing of traditional wood-rubber composites (WRCs), this study was aimed at fabricating WRCs using rubber processing to improve water resistance and mechanical properties. Three steps were used to make WRCs, namely, fiber-rubber mixing, tabletting, and the vulcanization molding process. Ninety-six WRC panels were made with wood fiber contents of 0%-50% at rotor rotational speeds of 15-45 rpm and filled coefficients of 0.55-0.75. Four regression equations, i.e. , the tensile strength ( T s), elongation at break ( E b), hardness ( H a) and rebound resilience ( R r) as functions of fiber contents, rotational speed and filled coefficient, were derived and a nonlinear programming model were developed to obtain the optimum composite properties. Although the T s, E b and R r of the panels were reduced, H a was considerably increased by 17%-58% because of the wood fiber addition. Scanning electron microscope images indicated that fibers were well embedded in rubber matrix. The 24 h water absorption was only 1%-3%, which was much lower than commercial wood-based composites.

  12. Vertically aligned CNT-Cu nano-composite material for stacked through-silicon-via interconnects.

    PubMed

    Sun, Shuangxi; Mu, Wei; Edwards, Michael; Mencarelli, Davide; Pierantoni, Luca; Fu, Yifeng; Jeppson, Kjell; Liu, Johan

    2016-08-19

    For future miniaturization of electronic systems using 3D chip stacking, new fine-pitch materials for through-silicon-via (TSV) applications are likely required. In this paper, we propose a novel carbon nanotube (CNT)/copper nanocomposite material consisting of high aspect ratio, vertically aligned CNT bundles coated with copper. These bundles, consisting of hundreds of tiny CNTs, were uniformly coated by copper through electroplating, and aspect ratios as high as 300:1 were obtained. The resistivity of this nanomaterial was found to be as low as ∼10(-8) Ω m, which is of the same order of magnitude as the resistivity of copper, and its temperature coefficient was found to be only half of that of pure copper. The main advantage of the composite TSV nanomaterial is that its coefficient of thermal expansion (CTE) is similar to that of silicon, a key reliability factor. A finite element model was set up to demonstrate the reliability of this composite material and thermal cycle simulations predicted very promising results. In conclusion, this composite nanomaterial appears to be a very promising material for future 3D TSV applications offering both a low resistivity and a low CTE similar to that of silicon.

  13. Ultrasonic Non Linearity Characterization of the Stainless Steel Wire Reinforced Aluminium Composite

    NASA Astrophysics Data System (ADS)

    Kim, C. S.; Park, T. S.; Park, I. K.; Hyun, C. Y.

    2009-03-01

    The effectiveness of the ultrasonic nonlinearity measurement for nearly closed cracks was demonstrated for hot pressing and extrusion of stainless steel 304 short wire reinforced aluminum composite. Aluminum based composites show considerable potential in the aerospace industry and the automotive industry due to their high specific strength and low thermal expansion coefficient. The ultrasonic nonlinearity (β/β0) increased with the volume fraction of SSF and aging heat treatment because of the generation of microvoids resulted from localized SSF and matrix precipitation. This study demonstrates the potential for characterization of reinforced composite materials fabricated by the powder metallurgy technique.

  14. Measurements of print-through in graphite fiber epoxy composites

    NASA Technical Reports Server (NTRS)

    Jaworske, Donald A.; Jeunnette, Timothy T.; Anzic, Judith M.

    1989-01-01

    High-reflectance accurate-contour mirrors are needed for solar dynamic space power systems. Graphite fiber epoxy composites are attractive candidates for such applications owing to their high modulus, near-zero coefficient of thermal expansion, and low mass. However, mirrors prepared from graphite fiber epoxy composite substrates often exhibit print-through, a distortion of the surface, which causes a loss in solar specular reflectance. Efforts to develop mirror substrates without print-through distortion require a means of quantifying print-through. Methods have been developed to quantify the degree of print-through in graphite fiber epoxy composite specimens using surface profilometry.

  15. New limb-darkening coefficients for modeling binary star light curves

    NASA Technical Reports Server (NTRS)

    Van Hamme, W.

    1993-01-01

    We present monochromatic, passband-specific, and bolometric limb-darkening coefficients for a linear as well as nonlinear logarithmic and square root limb-darkening laws. These coefficients, including the bolometric ones, are needed when modeling binary star light curves with the latest version of the Wilson-Devinney light curve progam. We base our calculations on the most recent ATLAS stellar atmosphere models for solar chemical composition stars with a wide range of effective temperatures and surface gravitites. We examine how well various limb-darkening approximations represent the variation of the emerging specific intensity across a stellar surface as computed according to the model. For binary star light curve modeling purposes, we propose the use of a logarithmic or a square root law. We design our tables in such a manner that the relative quality of either law with respect to another can be easily compared. Since the computation of bolometric limb-darkening coefficients first requires monochromatic coefficients, we also offer tables of these coefficients (at 1221 wavelength values between 9.09 nm and 160 micrometer) and tables of passband-specific coefficients for commonly used photometric filters.

  16. [Correlation of molecular weight and nanofiltration mass transfer coefficient of phenolic acid composition from Salvia miltiorrhiza].

    PubMed

    Li, Cun-Yu; Wu, Xin; Gu, Jia-Mei; Li, Hong-Yang; Peng, Guo-Ping

    2018-04-01

    Based on the molecular sieving and solution-diffusion effect in nanofiltration separation, the correlation between initial concentration and mass transfer coefficient of three typical phenolic acids from Salvia miltiorrhiza was fitted to analyze the relationship among mass transfer coefficient, molecular weight and concentration. The experiment showed a linear relationship between operation pressure and membrane flux. Meanwhile, the membrane flux was gradually decayed with the increase of solute concentration. On the basis of the molecular sieving and solution-diffusion effect, the mass transfer coefficient and initial concentration of three phenolic acids showed a power function relationship, and the regression coefficients were all greater than 0.9. The mass transfer coefficient and molecular weight of three phenolic acids were negatively correlated with each other, and the order from high to low is protocatechualdehyde >rosmarinic acid> salvianolic acid B. The separation mechanism of nanofiltration for phenolic acids was further clarified through the analysis of the correlation of molecular weight and nanofiltration mass transfer coefficient. The findings provide references for nanofiltration separation, especially for traditional Chinese medicine with phenolic acids. Copyright© by the Chinese Pharmaceutical Association.

  17. Predicting cyclohexane/water distribution coefficients for the SAMPL5 challenge using MOSCED and the SMD solvation model.

    PubMed

    Diaz-Rodriguez, Sebastian; Bozada, Samantha M; Phifer, Jeremy R; Paluch, Andrew S

    2016-11-01

    We present blind predictions using the solubility parameter based method MOSCED submitted for the SAMPL5 challenge on calculating cyclohexane/water distribution coefficients at 298 K. Reference data to parameterize MOSCED was generated with knowledge only of chemical structure by performing solvation free energy calculations using electronic structure calculations in the SMD continuum solvent. To maintain simplicity and use only a single method, we approximate the distribution coefficient with the partition coefficient of the neutral species. Over the final SAMPL5 set of 53 compounds, we achieved an average unsigned error of [Formula: see text] log units (ranking 15 out of 62 entries), the correlation coefficient (R) was [Formula: see text] (ranking 35), and [Formula: see text] of the predictions had the correct sign (ranking 30). While used here to predict cyclohexane/water distribution coefficients at 298 K, MOSCED is broadly applicable, allowing one to predict temperature dependent infinite dilution activity coefficients in any solvent for which parameters exist, and provides a means by which an excess Gibbs free energy model may be parameterized to predict composition dependent phase-equilibrium.

  18. Reliability, Risk and Cost Trade-Offs for Composite Designs

    NASA Technical Reports Server (NTRS)

    Shiao, Michael C.; Singhal, Surendra N.; Chamis, Christos C.

    1996-01-01

    Risk and cost trade-offs have been simulated using a probabilistic method. The probabilistic method accounts for all naturally-occurring uncertainties including those in constituent material properties, fabrication variables, structure geometry and loading conditions. The probability density function of first buckling load for a set of uncertain variables is computed. The probabilistic sensitivity factors of uncertain variables to the first buckling load is calculated. The reliability-based cost for a composite fuselage panel is defined and minimized with respect to requisite design parameters. The optimization is achieved by solving a system of nonlinear algebraic equations whose coefficients are functions of probabilistic sensitivity factors. With optimum design parameters such as the mean and coefficient of variation (representing range of scatter) of uncertain variables, the most efficient and economical manufacturing procedure can be selected. In this paper, optimum values of the requisite design parameters for a predetermined cost due to failure occurrence are computationally determined. The results for the fuselage panel analysis show that the higher the cost due to failure occurrence, the smaller the optimum coefficient of variation of fiber modulus (design parameter) in longitudinal direction.

  19. Thermodynamic properties and transport coefficients of air thermal plasmas mixed with ablated vapors of Cu and polytetrafluoroethylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, JunMin, E-mail: jmzhang@buaa.edu.cn, E-mail: guanyg@tsinghua.edu.cn; Lu, ChunRong; Guan, YongGang, E-mail: jmzhang@buaa.edu.cn, E-mail: guanyg@tsinghua.edu.cn

    2015-10-15

    Because the fault arc in aircraft electrical system often causes a fire, it is particularly important to analyze its energy and transfer for aircraft safety. The calculation of arc energy requires the basic parameters of the arc. This paper is mainly devoted to the calculations of equilibrium composition, thermodynamic properties (density, molar weight, enthalpy, and specific heat at constant pressure) and transport coefficients (thermal conductivity, electrical conductivity, and viscosity) of plasmas produced by a mixture of air, Cu, and polytetrafluoroethylene under the condition of local thermodynamic equilibrium. The equilibrium composition is determined by solving a system of equations around themore » number densities of each species. The thermodynamic properties are obtained according to the standard thermodynamic relationships. The transport coefficients are calculated using the Chapman-Enskog approximations. Results are presented in the temperature range from 3000 to 30 000 K for pressures of 0.08 and 0.1 MPa, respectively. The results are more accurate and are reliable reference data for theoretical analysis and computational simulation of the behavior of fault arc.« less

  20. Comparison of culture media, simplate, and petrifilm for enumeration of yeasts and molds in food.

    PubMed

    Taniwaki, M H; Silva, N; Banhe, A A; Iamanaka, B T

    2001-10-01

    The efficacy of three culture media, dichloran rose bengal chloramphenicol (DRBC), dichloran 18% glycerol agar (DG18), and potato dextrose agar (PDA) supplemented with two antibiotics, were compared with the Simplate and Petrifilm techniques for mold and yeast enumeration. The following foods were analyzed: corn meal, wheat flour, cassava flour, bread crumbs, whole meal, sliced bread, ground peanuts, mozzarella cheese, grated parmesan cheese, cheese rolls, orange juice, pineapple pulp, pineapple cake, and mushroom in conserve. Correlation coefficients of DRBC versus PDA and DG18 for recovering total mold and yeast counts from the composite of 14 foods indicated that the three media were generally equivalent. Correlation coefficients for Petrifilm versus culture media were acceptable, although not as good as between culture media. Correlation coefficients of Simplate versus DRBC, DG18, PDA, and Petrifilm for recovering total yeasts and molds from a composite of 11 foods demonstrated that there was no equivalence between the counts obtained by Simplate and other culture media and Petrifilm, with significant differences observed for the most foods analyzed.

  1. A composite approach boosts transduction coefficients of piezoceramics for energy harvesting

    NASA Astrophysics Data System (ADS)

    Yu, Xiaole; Hou, Yudong; Zheng, Mupeng; Zhao, Haiyan; Zhu, Mankang

    2018-03-01

    Piezoelectric energy harvesting is a hotspot in the field of new energy, the core goal of which is to prepare piezoceramics with a high transduction coefficient (d33×g33). The traditional solid-solution design strategy usually causes the same variation trend of d33 and ɛr, resulting in a low d33×g33 value. In this work, a composite design strategy was proposed that uses PZN-PZT/ZnAl2O4 as an example. By introducing ZnAl2O4, which is nonferroelectric with low ɛr, to the PZN-PZT piezoelectric matrix, ɛr decreased rapidly while d33 remained relatively stable. This behavior was ascribed to the increase of Q33 caused by an interfacial effect facilitating the formation of micro-domain structure.

  2. FIBER AND INTEGRAL OPTICS: Mode composition of radiation in graded-index waveguides with random microbending of the axis

    NASA Astrophysics Data System (ADS)

    Valyaev, A. B.; Krivoshlykov, S. G.

    1989-06-01

    It is shown that the problem of investigating the mode composition of a partly coherent radiation beam in a randomly inhomogeneous medium can be reduced to a study of evolution of the energy of individual modes and of the coefficients of correlations between the modes. General expressions are obtained for the coupling coefficients of modes in a parabolic waveguide with a random microbending of the axis and an analysis is made of their evolution as a function of the excitation conditions. An estimate is obtained of the distance in which a steady-state energy distribution between the modes is established. Explicit expressions are obtained for the correlation function in the case when a waveguide is excited by off-axial Gaussian beams or Gauss-Hermite modes.

  3. Effect of damage on elastically tailored composite laminates

    NASA Technical Reports Server (NTRS)

    Armanios, Erian; Badir, Ashraf; Berdichevsky, Victor

    1991-01-01

    A variationally consistent theory is derived in order to predict the response of anisotropic thin-walled closed sections subjected to axial load, torsion and bending. The theory is valid for arbitrary cross-sections made of laminated composite materials with variable thickness and stiffness. Closed form expressions for the stiffness coefficients are provided as integrals in terms of lay-ups parameters and cross-sectional geometry. A comparison of stiffness coefficients and response with finite element predictions and a closed form solution is performed. The theory is applied to the investigation of the effect of damage on the extension-twist coupling in a thin-walled closed section beam. The damage is simulated as a progressive ply-by-ply failure. Results show that damage can have a significant effect on the extension-twist coupling.

  4. Dependence of particle volume fraction on sound velocity and attenuation of EPDM composites.

    PubMed

    Kim, K S; Lee, K I; Kim, H Y; Yoon, S W; Hong, S H

    2007-05-01

    The sound velocity and the attenuation coefficient of EPDM (Ethylene-propylene Diene Monomer) composites incorporated with Silicon Carbide particles (SiCp's) of various volume fractions (0-40%) were experimentally and theoretically investigated. For the experiment a through-transmission technique was used. For the theoretical prediction, some mechanical property models such as Reuss model and Coherent Potential Approximation (CPA) model etc. were employed. The experimental results showed that the sound velocity decreased with the increase of the SiCp volume fraction up to 30% and then increased with the 40 vol% specimen. The attenuation coefficient was increased with the increasing SiCp volume fractions. The modified Reuss model with a longitudinal elastic modulus predicted most well the experimental sound velocity and elastic modulus results.

  5. The virial coefficients of hard hypersphere binary mixtures

    NASA Astrophysics Data System (ADS)

    Enciso, E.; Almarza, N. G.; Gonzalez, M. A.; Bermejo, F. J.

    The third, fourth and fifth virial coefficients of hard hypersphere binary mixtures with dimensionality d = 4, 5 have been calculated for size ratios R ≥0.1, R ı σ22 / σ11 , where σ ii is the diameter of component i . The composition independent partial virial coefficients have been evaluated by Monte Carlo integration of the corresponding Mayer modified star diagrams. The results are compared with the predictions of Santos, S., Yuste, S. B., and Lopez de Haro, M., 1999, Molec. Phys ., 96 , 1 of the equation of state of a multicomponent mixture of hard hyperspheres, and the good agreement gives strong support to the validity of that recipe.

  6. High temperature XRD of Cu2.1Zn0.9SnSe4

    NASA Astrophysics Data System (ADS)

    Chetty, Raju; Mallik, Ramesh Chandra

    2014-04-01

    Quaternary compound with chemical composition Cu2.1Zn0.9SnSe4 is prepared by solid state synthesis. High temperature XRD (X-Ray Diffraction) of this compound is used in studying the effect of temperature on lattice parameters and thermal expansion coefficients. Thermal expansion coefficient is one of the important quantities in evaluating the Grüneisen parameter which further useful in determining the lattice thermal conductivity of the material. The high temperature XRD of the material revealed that the lattice parameters as well as thermal expansion coefficients of the material increased with increase in temperature which confirms the presence of anharmonicty.

  7. Oxygen chemical diffusion in hypo-stoichiometric MOX

    NASA Astrophysics Data System (ADS)

    Kato, Masato; Morimoto, Kyoichi; Tamura, Tetsuya; Sunaoshi, Takeo; Konashi, Kenji; Aono, Shigenori; Kashimura, Motoaki

    2009-06-01

    Kinetics of the oxygen-to-metal ratio change in (U 0.8Pu 0.2)O 2-x and (U 0.7Pu 0.3)O 2-x was evaluated in the temperature range of 1523-1623 K using a thermo-gravimetric technique. The oxygen chemical diffusion coefficients were decided as a function of temperature from the kinetics of the reduction process under a hypo-stoichiometric composition. The diffusion coefficient of (U 0.7Pu 0.3)O 2-x was smaller than that of (U 0.8Pu 0.2)O 2-x. No strong dependence was observed for the diffusion coefficient on the O/M variation of samples.

  8. Influence of Hybridizing Flax and Hemp-Agave Fibers with Glass Fiber as Reinforcement in a Polyurethane Composite

    PubMed Central

    Pandey, Pankaj; Bajwa, Dilpreet; Ulven, Chad; Bajwa, Sreekala

    2016-01-01

    In this study, six combinations of flax, hemp, and glass fiber were investigated for a hybrid reinforcement system in a polyurethane (PU) composite. The natural fibers were combined with glass fibers in a PU composite in order to achieve a better mechanical reinforcement in the composite material. The effect of fiber hybridization in PU composites was evaluated through physical and mechanical properties such as water absorption (WA), specific gravity (SG), coefficient of linear thermal expansion (CLTE), flexural and compression properties, and hardness. The mechanical properties of hybridized samples showed mixed trends compared to the unhybridized samples, but hybridization with glass fiber reduced water absorption by 37% and 43% for flax and hemp-agave PU composites respectively. PMID:28773512

  9. Tribological Behavior of Al-Cr Coating Obtained by Dgpsm and IIP Composite Technology

    NASA Astrophysics Data System (ADS)

    Luo, Xixi; Yao, Zhengjun; Zhang, Pingze; Zhou, Keyin; Chen, Yu; Tao, Xuewei

    An Al-Cr composite alloyed layer composed of an Al enriched layer, a Cr enriched layer and a transition layer from the surface to the bulk along the cross-section was deposited on a 45# steel substrate by composite technology, where Cr was deposited using double glow plasma surface metallurgy (DGPSM), and Al was then implanted by ion implantation (IIP) to achieve higher micro-hardness and excellent abrasive resistance. The composite alloyed layer is approximately 5μm, and as metallurgical adherence to the substrate. The phases are Al8Cr5, Fe2AlCr, Cr23C6, Cr (Al) and Fe (Cr, Al) solid solution. The wear resistance tests were performed under various rotational speed (i.e. 280, 560 and 840r/min) with silicon nitride balls as the counterface material at ambient temperature. The Al-Cr composite alloyed layer exhibits excellent wear resistance when the speed is 280r/min with a friction coefficient as low as 0.3, which is attributed to Al8Cr5 in the Al implanted layer that withstands abrasive wear. Better wear resistance (friction coefficient: 0.254) at 560r/min is resulted from the formation of a high micro-hardness zone, and an oxidation layer with lubrication capacity. In addition, the composite alloyed layer suffers severe oxidative wear and adhesive wear at 840r/min due to the increment of the frictional heating. When compared to the 45# steel substrate, the enhanced wear resistance of the Al-Cr composite alloyed layer demonstrates the viable method developed in this work.

  10. Theoretical Development of an Orthotropic Elasto-Plastic Generalized Composite Material Model

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert K.; Carney, Kelly S.; DuBois, Paul; Hoffarth, Canio; Harrington, Joseph; Subramanian, Rajan; Blankenhorn, Gunther

    2014-01-01

    The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within LS-DYNA (Registered), there are several features that have been identified that could improve the predictive capability of a composite model. To address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed and is being implemented into LS-DYNA as MAT_213. A key feature of the improved material model is the use of tabulated stress-strain data in a variety of coordinate directions to fully define the stress-strain response of the material. To date, the model development efforts have focused on creating the plasticity portion of the model. The Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic material model with a non-associative flow rule. The coefficients of the yield function, and the stresses to be used in both the yield function and the flow rule, are computed based on the input stress-strain curves using the effective plastic strain as the tracking variable. The coefficients in the flow rule are computed based on the obtained stress-strain data. The developed material model is suitable for implementation within LS-DYNA for use in analyzing the nonlinear response of polymer composites.

  11. Theoretical Development of an Orthotropic Elasto-Plastic Generalized Composite Material Model

    NASA Technical Reports Server (NTRS)

    Goldberg, Robert; Carney, Kelly; DuBois, Paul; Hoffarth, Canio; Harrington, Joseph; Rajan, Subramaniam; Blankenhorn, Gunther

    2014-01-01

    The need for accurate material models to simulate the deformation, damage and failure of polymer matrix composites is becoming critical as these materials are gaining increased usage in the aerospace and automotive industries. While there are several composite material models currently available within LSDYNA (Livermore Software Technology Corporation), there are several features that have been identified that could improve the predictive capability of a composite model. To address these needs, a combined plasticity and damage model suitable for use with both solid and shell elements is being developed and is being implemented into LS-DYNA as MAT_213. A key feature of the improved material model is the use of tabulated stress-strain data in a variety of coordinate directions to fully define the stress-strain response of the material. To date, the model development efforts have focused on creating the plasticity portion of the model. The Tsai-Wu composite failure model has been generalized and extended to a strain-hardening based orthotropic yield function with a nonassociative flow rule. The coefficients of the yield function, and the stresses to be used in both the yield function and the flow rule, are computed based on the input stress-strain curves using the effective plastic strain as the tracking variable. The coefficients in the flow rule are computed based on the obtained stress-strain data. The developed material model is suitable for implementation within LS-DYNA for use in analyzing the nonlinear response of polymer composites.

  12. Copper desorption from Gelidium algal biomass.

    PubMed

    Vilar, Vítor J P; Botelho, Cidália M S; Boaventura, Rui A R

    2007-04-01

    Desorption of divalent copper from marine algae Gelidium sesquipedale, an algal waste (from agar extraction industry) and a composite material (the algal waste immobilized in polyacrylonitrile) was studied in a batch system. Copper ions were first adsorbed until saturation and then desorbed by HNO(3) and Na(2)EDTA solutions. Elution efficiency using HNO(3) increases as pH decreases. At pH=1, for a solid to liquid ratio S/L=4gl(-1), elution efficiency was 97%, 95% and 88%, the stoichiometric coefficient for the ionic exchange, 0.70+/-0.02, 0.73+/-0.05 and 0.76+/-0.06 and the selectivity coefficient, 0.93+/-0.07, 1.0+/-0.3 and 1.1+/-0.3, respectively, for algae Gelidium, algal waste and composite material. Complexation of copper ions by EDTA occurs in a molar proportion of 1:1 and the elution efficiency increases with EDTA concentration. For concentrations of 1.4, 0.88 and 0.57 mmoll(-1), the elution efficiency for S/L=4gl(-1), was 91%, 86% and 78%, respectively, for algae Gelidium, algal waste and composite material. The S/L ratio, in the range 1-20gl(-1), has little influence on copper recovery by using 0.1M HNO(3). Desorption kinetics was very fast for all biosorbents. Kinetic data using HNO(3) as eluant were well described by the mass transfer model, considering the average metal concentration in the solid phase and the equilibrium relationship given by the mass action law. The homogeneous diffusion coefficient varied between 1.0 x 10(-7)cm(2)s(-1) for algae Gelidium and 3.0 x 10(-7)cm(2)s(-1) for the composite material.

  13. Transport properties of nonelectrolyte liquid mixtures—II. Viscosity coefficients for the n-hexane + n-hexadecane system at temperatures from 25 to 100‡C at pressures up to the freezing pressure or 500 MPa

    NASA Astrophysics Data System (ADS)

    Dymond, J. H.; Young, K. J.; Isdale, J. D.

    1980-12-01

    Viscosity coefficients measured with an estimated accuracy of 2% using a self-centering falling body viscometer are reported for n-hexane, n-hexadecane, and four binary mixtures at 25, 50, 75, and 100‡C at pressures up to the freezing pressure or 500 MPa. The data for a given composition at different temperatures and pressures are very satisfactorily correlated by a plot of Ή, defined as 104 ηV 2/3/( MT)1/2 in the cgs system of units, or generally, 9.118×107 η V 2/3/( MRT)1/2, versus log V', as suggested by the hard-sphere theories, where V' = V · V 0( T R)/ V 0( T) and V 0 represents the close-packed volume at temperature T and reference temperature T R . The experimental results for all compositions are fitted, generally well within the estimated uncertainty, by the equation 1 10765_2004_Article_BF00516563_TeX2GIFE1.gif ln η ' = {text{ - 1}}{text{.0 + }}{BV_0 }/{V - V_0 } where B and V 0 are temperature and composition dependent. Values of B and V 0 for the mixtures are simply related to values for the pure liquids, and viscosity coefficients calculated on the basis of this equation have an estimated accuracy of 3%. The effectiveness of the recently recommended empirical Grunberg and Nissan equation is investigated. It is found that the parameter G is pressure dependent, as well as composition dependent, but is practically temperature independent.

  14. A Large-scale Finite Element Model on Micromechanical Damage and Failure of Carbon Fiber/Epoxy Composites Including Thermal Residual Stress

    NASA Astrophysics Data System (ADS)

    Liu, P. F.; Li, X. K.

    2018-06-01

    The purpose of this paper is to study micromechanical progressive failure properties of carbon fiber/epoxy composites with thermal residual stress by finite element analysis (FEA). Composite microstructures with hexagonal fiber distribution are used for the representative volume element (RVE), where an initial fiber breakage is assumed. Fiber breakage with random fiber strength is predicted using Monte Carlo simulation, progressive matrix damage is predicted by proposing a continuum damage mechanics model and interface failure is simulated using Xu and Needleman's cohesive model. Temperature dependent thermal expansion coefficients for epoxy matrix are used. FEA by developing numerical codes using ANSYS finite element software is divided into two steps: 1. Thermal residual stresses due to mismatch between fiber and matrix are calculated; 2. Longitudinal tensile load is further exerted on the RVE to perform progressive failure analysis of carbon fiber/epoxy composites. Numerical convergence is solved by introducing the viscous damping effect properly. The extended Mori-Tanaka method that considers interface debonding is used to get homogenized mechanical responses of composites. Three main results by FEA are obtained: 1. the real-time matrix cracking, fiber breakage and interface debonding with increasing tensile strain is simulated. 2. the stress concentration coefficients on neighbouring fibers near the initial broken fiber and the axial fiber stress distribution along the broken fiber are predicted, compared with the results using the global and local load-sharing models based on the shear-lag theory. 3. the tensile strength of composite by FEA is compared with those by the shear-lag theory and experiments. Finally, the tensile stress-strain curve of composites by FEA is applied to the progressive failure analysis of composite pressure vessel.

  15. A Large-scale Finite Element Model on Micromechanical Damage and Failure of Carbon Fiber/Epoxy Composites Including Thermal Residual Stress

    NASA Astrophysics Data System (ADS)

    Liu, P. F.; Li, X. K.

    2017-09-01

    The purpose of this paper is to study micromechanical progressive failure properties of carbon fiber/epoxy composites with thermal residual stress by finite element analysis (FEA). Composite microstructures with hexagonal fiber distribution are used for the representative volume element (RVE), where an initial fiber breakage is assumed. Fiber breakage with random fiber strength is predicted using Monte Carlo simulation, progressive matrix damage is predicted by proposing a continuum damage mechanics model and interface failure is simulated using Xu and Needleman's cohesive model. Temperature dependent thermal expansion coefficients for epoxy matrix are used. FEA by developing numerical codes using ANSYS finite element software is divided into two steps: 1. Thermal residual stresses due to mismatch between fiber and matrix are calculated; 2. Longitudinal tensile load is further exerted on the RVE to perform progressive failure analysis of carbon fiber/epoxy composites. Numerical convergence is solved by introducing the viscous damping effect properly. The extended Mori-Tanaka method that considers interface debonding is used to get homogenized mechanical responses of composites. Three main results by FEA are obtained: 1. the real-time matrix cracking, fiber breakage and interface debonding with increasing tensile strain is simulated. 2. the stress concentration coefficients on neighbouring fibers near the initial broken fiber and the axial fiber stress distribution along the broken fiber are predicted, compared with the results using the global and local load-sharing models based on the shear-lag theory. 3. the tensile strength of composite by FEA is compared with those by the shear-lag theory and experiments. Finally, the tensile stress-strain curve of composites by FEA is applied to the progressive failure analysis of composite pressure vessel.

  16. Thermal properties and dynamic mechanical properties of ceramic fillers filled epoxy composites

    NASA Astrophysics Data System (ADS)

    Saidina, D. S.; Mariatti, M.; Juliewatty, J.

    2015-07-01

    This present study is aimed to enhance the thermal and dynamic mechanical properties of ceramic fillers such as Calcium Copper Titanate, CaCu3Ti4O12 (CCTO) and Barium Titanate (BaTiO3) filled epoxy thin film composites. As can be seen from the results, 20 vol% BaTiO3/epoxy thin film composite showed the lowest coefficient of thermal expansion (CTE) value, the highest decomposition temperature (T5 and Tonset) and weight of residue among the composites as the filler has low CTE value, distributed homogeneously throughout the composite and less voids can be seen between epoxy resin and BaTiO3 filler.

  17. A Direct Method for Obtaining Approximate Standard Error and Confidence Interval of Maximal Reliability for Composites with Congeneric Measures

    ERIC Educational Resources Information Center

    Raykov, Tenko; Penev, Spiridon

    2006-01-01

    Unlike a substantial part of reliability literature in the past, this article is concerned with weighted combinations of a given set of congeneric measures with uncorrelated errors. The relationship between maximal coefficient alpha and maximal reliability for such composites is initially dealt with, and it is shown that the former is a lower…

  18. Refractory ceramic compositions and method for preparing same

    DOEpatents

    Holcombe, Jr., Cressie E.; Morrow, Margaret K.

    1976-07-13

    This invention relates to ceramic compositions of tungsten and tantalum oxides including 0 to 33 1/3 mole percent of a metal oxide such as hafnia. These ceramics are characterized by melting points greater than about 1400.degree.C and selectively controlled coefficients of thermal expansion of essentially zero to a negative value in the temperature range of 20.degree. to 1000.degree.C.

  19. The Parent Magmas of the Cumulate Eucrites: A Mass Balance Approach

    NASA Technical Reports Server (NTRS)

    Treiman, Allan H.

    1996-01-01

    The cumulate eucrite meteorites are gabbros that are related to the eucrite basalt meteorites. The eucrite basalts are relatively primitive (nearly flat REE patterns with La approx. 8-30 x CI), but the parent magmas of the cumulate eucrites have been inferred as extremely evolved (La to greater than 100 x CI). This inference has been based on mineral/magma partitioning, and on mass balance considering the cumulate eucrites as adcumulates of plagioclase + pigeonite only; both approaches have been criticized as inappropriate. Here, mass balance including magma + equilibrium pigeonite + equilibrium plagiociase is used to test a simple model for the cumulate eucrites: that they formed from known eucritic magma types, that they consisted only of magma + crystals in chemical equilibrium with the magma, and that they were closed to chemical exchange after the accumulation of crystals. This model is tested for major and Rare Earth Elements (REE). The cumulate eucrites Serra de Mage and Moore County are consistent, in both REE and major elements, with formation by this simple model from a eucrite magma with a composition similar to the Nuevo Laredo meteorite: Serra de Mage as 14% magma, 47.5% pigeonite, and 38.5% plagioclase; Moore County as 35% magma, 37.5% pigeonite, and 27.5% plagioclase. These results are insensitive to the choice of mineral/magma partition coefficients. Results for the Moama cumulate eucrite are strongly dependent on choice of partition coefficients; for one reasonable choice, Moama's composition can be modeled as 4% Nuevo Laredo magma, 60% pigeonite, and 36% plagioclase. Selection of parent magma composition relies heavily on major elements; the REE cannot uniquely indicate a parent magma among the eucrite basalts. The major element composition of Y-791195 can be fit adequately as a simple cumulate from any basaltic eucrite composition. However, Y-791195 has LREE abundances and La/Lu too low to be accommodated within the model using any basaltic eucrite composition and any reasonable partition coefficients. Postcumulus loss of incompatible elements seems possible. It is intriguing that Serra de Mage, Moore County, and Moama are consistent with the same parental magma; could they be from the same igneous body on the eucrite parent asteroid (4 Vesta)?

  20. Effect of Nano-TiC Dispersed Particles and Electro-Codeposition Parameters on Morphology and Structure of Hybrid Ni/TiC Nanocomposite Layers

    PubMed Central

    Benea, Lidia; Celis, Jean-Pierre

    2016-01-01

    This research work describes the effect of dispersed titanium carbide (TiC) nanoparticles into nickel plating bath on Ni/TiC nanostructured composite layers obtained by electro-codeposition. The surface morphology of Ni/TiC nanostructured composite layers was characterized by scanning electron microscopy (SEM). The composition of coatings and the incorporation percentage of TiC nanoparticles into Ni matrix were studied and estimated by using energy dispersive X-ray analysis (EDX). X-ray diffractometer (XRD) has been applied in order to investigate the phase structure as well as the corresponding relative texture coefficients of the composite layers. The results show that the concentration of nano-TiC particles added in the nickel electrolyte affects the inclusion percentage of TiC into Ni/TiC nano strucured layers, as well as the corresponding morphology, relative texture coefficients and thickness indicating an increasing tendency with the increasing concentration of nano-TiC concentration. By increasing the amount of TiC nanoparticles in the electrolyte, their incorporation into nickel matrix also increases. The hybrid Ni/nano-TiC composite layers obtained revealed a higher roughness and higher hardness; therefore, these layers are promising superhydrophobic surfaces for special application and could be more resistant to wear than the pure Ni layers. PMID:28773395

  1. Photovoltaic Properties of Selenized CuGa/In Films with Varied Compositions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzzillo, Christopher P.; Mansfield, Lorelle M.; Ramanathan, Kannan

    2016-11-21

    Thin CuGa/In films with varied compositions were deposited by co-evaporation and then selenized in situ with evaporated selenium. The selenized Cu(In, Ga)Se2 absorbers were used to fabricate 390 solar cells. Cu/(Ga+In) and Ga/(Ga+In) (Cu/III and Ga/III) were independently varied, and photovoltaic performance was optimal at Cu/III of 77-92% for all Ga/III compositions studied (Ga/III ~ 30, 50, and 70%). The best absorbers at each Ga/III composition were characterized with time-resolved photoluminescence, scanning electron microscopy, and secondary ion mass spectrometry, and devices were studied with temperature-dependent current density-voltage, light and electrical biased quantum efficiency, and capacitance-voltage. The best cells with Ga/IIImore » ~ 30, 50, and 70% had efficiencies of 14.5, 14.4, and 12.2% and maximum power temperature coefficients of -0.496, -0.452, and -0.413%/degrees C, respectively. This resulted in the Ga/III ~ 50% champion having the highest efficiency at temperatures greater than 40 degrees C, making it the optimal composition for practical purposes. This optimum is understood as a result of the absorber's band gap grading- where minimum band gap dominates short-circuit current density, maximum space charge region band gap dominates open-circuit voltage, and average absorber band gap dominates maximum power temperature coefficient.« less

  2. Tensile Stress Rupture Behavior of a Woven Ceramic Matrix Composite in Humid Environments at Intermediate Temperature

    DTIC Science & Technology

    2005-03-01

    Reference Strength as a Function of Temperature ........................... Figure 77: Exponent of Reference Strength as a Function of Temperature...relationship in terms of moisture content for the coefficient and/or the exponent in the 104 area fraction of embrittlement equation developed by Morscher...appears in almost all of the terms of Equations 35 and 37 either as a coefficient, an exponent , or both. This variable is a fitting parameter that

  3. Correlation and prediction of gaseous diffusion coefficients.

    NASA Technical Reports Server (NTRS)

    Marrero, T. R.; Mason, E. A.

    1973-01-01

    A new correlation method for binary gaseous diffusion coefficients from very low temperatures to 10,000 K is proposed based on an extended principle of corresponding states, and having greater range and accuracy than previous correlations. There are two correlation parameters that are related to other physical quantities and that are predictable in the absence of diffusion measurements. Quantum effects and composition dependence are included, but high-pressure effects are not. The results are directly applicable to multicomponent mixtures.

  4. Partitioning of lysolipids, fatty acids and their mixtures in aqueous lipid bilayers: solute concentration/composition effects.

    PubMed

    Singh, Jasmeet; Lai, Amy Jo; Alaee, Yasmin; Ranganathan, Radha

    2014-01-01

    Distributions of lysopalmitoylphosphatidylcholine (LPPC), palmitic acid (PA) and their 1:1 mixtures between water and dipalmitoylphosphatidylcholine (DPPC) bilayer were determined using a fluorescence probe that selectively detects only the solutes in water. Water solute concentrations were obtained at each of several lipid concentrations. Dynamic Light Scattering experiments confirmed that the lipid/solute aggregates were vesicles in the concentration range investigated. Lipid concentration dependence of the solute component in water was fit to a thermodynamic model of solute distribution between two coexisting solvents. Water/bilayer partition coefficient and the free energy of transfer, for each of these solutes were determined from the fit. Main findings are: (1) Water/bilayer partition coefficient of solute is greater for 2 to 10% solute mole fraction than for 0 to 2%, signaling solute induced bilayer perturbation that increases bilayer solubility, beginning at 2% solute mole fraction. (2) Partition coefficients are in the order LPPC

  5. Partitioning of Lysolipids, Fatty Acids and Their Mixtures in Aqueous Lipid Bilayers: Solute Concentration / Composition Effects

    PubMed Central

    Singh, Jasmeet; Lai, Amy Jo; Alaee, Yasmin; Ranganathan, Radha

    2013-01-01

    Distribution of lysopalmitoylphosphatidylcholine (LPPC), Palmitic acid (PA) and their 1:1 mixtures between water and dipalmitoylphosphatidylcholine (DPPC) bilayer were determined using a fluorescence probe that selectively detects only the solutes in water. Water solute concentrations were obtained at each of several lipid concentrations. Dynamic Light Scattering experiments confirmed that the lipid/solute aggregates were vesicles in the concentration range investigated. Lipid concentration dependence of the solute component in water was fit to a thermodynamic model of solute distribution between two coexisting solvents. Water/bilayer partition coefficient and the free energy of transfer, for each of these solutes were determined from the fit. Main findings are: (1) Water/bilayer partition coefficient of solute is greater for 2 to 10 % solute mole fraction than for 0 to 2 %, signaling solute induced bilayer perturbation that increases bilayer solubility, beginning at 2 % solute mole fraction. (2) Partition coefficients are in the order LPPC

  6. Mutual diffusion of binary liquid mixtures containing methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guevara-Carrion, Gabriela; Janzen, Tatjana; Muñoz-Muñoz, Y. Mauricio

    Mutual diffusion coefficients of all 20 binary liquid mixtures that can be formed out of methanol, ethanol, acetone, benzene, cyclohexane, toluene, and carbon tetrachloride without a miscibility gap are studied at ambient conditions of temperature and pressure in the entire composition range. The considered mixtures show a varying mixing behavior from almost ideal to strongly non-ideal. Predictive molecular dynamics simulations employing the Green-Kubo formalism are carried out. Radial distribution functions are analyzed to gain an understanding of the liquid structure influencing the diffusion processes. It is shown that cluster formation in mixtures containing one alcoholic component has a significant impactmore » on the diffusion process. The estimation of the thermodynamic factor from experimental vapor-liquid equilibrium data is investigated, considering three excess Gibbs energy models, i.e., Wilson, NRTL, and UNIQUAC. It is found that the Wilson model yields the thermodynamic factor that best suits the simulation results for the prediction of the Fick diffusion coefficient. Four semi-empirical methods for the prediction of the self-diffusion coefficients and nine predictive equations for the Fick diffusion coefficient are assessed and it is found that methods based on local composition models are more reliable. Finally, the shear viscosity and thermal conductivity are predicted and in most cases favorably compared with experimental literature values.« less

  7. [Near ultraviolet absorption spectral properties of chromophoric dissolved organic matter in the north area of Yellow Sea].

    PubMed

    Wang, Lin; Zhao, Dong-Zhi; Yang, Jian-Hong; Chen, Yan-Long

    2010-12-01

    Chromophoric dissolved organic matter (CDOM) near ultraviolet absorption spectra contains CDOM molecular structure, composition and other important physical and chemical information. Based on the measured data of CDOM absorption coefficient in March 2009 in the north area of Yellow Sea, the present paper analyzed near ultraviolet absorption spectral properties of CDOM. The results showed that due to the impact of near-shore terrigenous input, the composition of CDOM is quite different in the north area of Yellow Sea, and this area is a typical case II water; fitted slope with specific range of spectral band and absorption coefficient at specific band can indicate the relative size of CDOM molecular weight, correlation between spectral slope of the Sg,275-300), Sg,300-350, Sg,350-400 and Sg,250-275 and the relative size of CDOM molecular weight indicative parameter M increases in turn and the highest is up to 0.95. Correlation between a(g)(lambda) and M value increases gradually with the increase in wavelength, and the highest is up to 0.92 at 400 nm; being correlated or not between spectral slope and absorption coefficient is decided by the fitting-band wavelength range for the spectra slope and the wavelength for absorption coefficient. Correlation between Sg,275-300 and a(g)(400) is the largest, up to 0.87.

  8. Designing mid-wave infrared (MWIR) thermo-optic coefficient (dn/dT) in chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Gleason, Benn; Sisken, Laura; Smith, Charmayne; Richardson, Kathleen

    2016-05-01

    Seventeen infrared-transmitting GeAsSe chalcogenide glasses were fabricated to determine the role of chemistry and structure on mid-wave infrared (MWIR) optical properties. The refractive index and thermoptic coefficients of samples were measured at λ = 4.515 μm using an IR-modified Metricon prism coupler, located at University of Central Florida. Thermo-optic coefficient (dn/dT) values were shown to range from approximately -40 ppm/°C to +65 ppm/°C, and refractive index was shown to vary between approximately 2.5000 and 2.8000. Trends in refractive index and dn/dT were found to be related to the atomic structures present within the glassy network, as opposed to the atomic percentage of any individual constituent. A linear correlation was found between the quantity (n-3•dn/dT) and the coefficient of thermal expansion (CTE) of the glass, suggesting the ability to compositionally design chalcogenide glass compositions with zero dn/dT, regardless of refractive index or dispersion performance. The tunability of these novel glasses offer increased thermal and mechanical stability as compared to the current commercial zero dn/dT options such as AMTIR-5 from Amorphous Materials Inc. For IR imaging systems designed to achieve passive athermalization, utilizing chalcogenide glasses with their tunable ranges of dn/dT (including zero) can be key to addressing system size, weight, and power (SWaP) limitations.

  9. Self-diffusion of electrolyte species in model battery electrodes using Magic Angle Spinning and Pulsed Field Gradient Nuclear Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Tambio, Sacris Jeru; Deschamps, Michaël; Sarou-Kanian, Vincent; Etiemble, Aurélien; Douillard, Thierry; Maire, Eric; Lestriez, Bernard

    2017-09-01

    Lithium-ion batteries are electrochemical storage devices using the electrochemical activity of the lithium ion in relation to intercalation compounds owing to mass transport phenomena through diffusion. Diffusion of the lithium ion in the electrode pores has been poorly understood due to the lack of experimental techniques for measuring its self-diffusion coefficient in porous media. Magic-Angle Spinning, Pulsed Field Gradient, Stimulated-Echo Nuclear Magnetic Resonance (MAS-PFG-STE NMR) was used here for the first time to measure the self-diffusion coefficients of the electrolyte species in the LP30 battery electrolyte (i.e. a 1 M solution of LiPF6 dissolved in 1:1 Ethylene Carbonate - Dimethyl Carbonate) in model composites. These composite electrodes were made of alumina, carbon black and PVdF-HFP. Alumina's magnetic susceptibility is close to the measured magnetic susceptibility of the LP30 electrolyte thereby limiting undesirable internal field gradients. Interestingly, the self-diffusion coefficient of lithium ions decreases with increasing carbon content. FIB-SEM was used to describe the 3D geometry of the samples. The comparison between the reduction of self-diffusion coefficients as measured by PFG-NMR and as geometrically derived from FIB/SEM tortuosity values highlights the contribution of specific interactions at the material/electrolyte interface on the lithium transport properties.

  10. Low expansion superalloy with improved toughness

    DOEpatents

    Smith, Darrell F.; Stein, Larry I.; Hwang, Il S.

    1995-01-01

    A high strength, low coefficient of thermal expansion superalloy exhibiting improved toughness over a broad temperature range down to about 4.degree. K. The composition is adapted for use with wrought superconducting sheathing.

  11. Method for hygromechanical characterization of graphite/epoxy composite

    NASA Technical Reports Server (NTRS)

    Yaniv, Gershon; Peimanidis, Gus; Daniel, Isaac M.

    1987-01-01

    An experimental method is described for measuring hygroscopic swelling strains and mechanical strains of moisture-conditioned composite specimens. The method consists of embedding encapsulated strain gages in the midplane of the composite laminate; thus it does not interfere with normal moisture diffusion. It is particularly suited for measuring moisture swelling coefficients and for mechanical testing of moisture-conditioned specimens at high strain rates. Results obtained by the embedded gage method were shown to be more reliable and reproducible than those obtained by surface gages, dial gages, or extensometers.

  12. Optical properties of YbF3-CaF2 composite thin films deposited by electron-beam evaporation

    NASA Astrophysics Data System (ADS)

    Wang, Songlin; Mi, Gaoyuan; Zhang, Jianfu; Yang, Chongmin

    2018-03-01

    We studied electron-beam evaporated YbF3-CaF2 composite films on ZnS substrate at different deposition parameters. The optical properties of films have been fitted, the surface roughness have been measured by AFM. The results of experiments indicated that increased the refractive indices, extinction coefficients, and surface roughness at higher deposition rate. The refractive index of composite film deposited by electron-beam evaporation with assisted-ion source was obviously higher than it without assisted-ion source.

  13. MoS2-Filled PEEK Composite as a Self-Lubricating Material for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Theiler, Geraldine; Gradt, Thomas

    2010-01-01

    At BAM, several projects were conducted in the past years dealing with the tribological properties of friction couples at cryogenic temperature and in vacuum environment. Promising candidates for vacuum application are MoS2-filled PEEK/PTFE composites, which showed a friction coefficient as low as 0.03 in high vacuum. To complete the tribological profile of these composites, further tests were performed in ultra-high vacuum (UHV) at room temperature. In this paper, friction and stick slip behavior, as well as outgassing characteristics during the test are presented.

  14. Thermal Expansion Behavior of Hot-Pressed Engineered Matrices

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2016-01-01

    Advanced engineered matrix composites (EMCs) require that the coefficient of thermal expansion (CTE) of the engineered matrix (EM) matches those of the fiber reinforcements as closely as possible in order to reduce thermal compatibility strains during heating and cooling of the composites. The present paper proposes a general concept for designing suitable matrices for long fiber reinforced composites using a rule of mixtures (ROM) approach to minimize the global differences in the thermal expansion mismatches between the fibers and the engineered matrix. Proof-of-concept studies were conducted to demonstrate the validity of the concept.

  15. Nanostructure of tetrafunctional epoxy resins and composites: Correlation to moisture absorption properties

    NASA Astrophysics Data System (ADS)

    Bolan, Brett Andrew

    The effect that changes in network topology, while maintaining a constant network polarity (i.e. thermodynamic driving force was kept constant), had upon the moisture absorption properties of an aerospace grade tetrafunctional epoxy (TGMDA) cured with multifunctional amines were investigated. Utilizing Positron Annihilation Lifetime Spectroscopy (PALS) to characterize the nanoscale structure of these epoxies, it was found that as the "static" hole volume (a measurement of packing defects at 0K) increased so did the equilibrium uptake. PALS studies of one of these resins cured to varying extents, found that this static amount increased with degree of cure indicating that the network becomes more open as a direct consequence of crosslinking. Polar groups, which are the attractive force for diffusion, are in the vicinity of these crosslinks, therefore it is believed that the increase in static hole volume results in exposing more polar groups for absorption. The diffusion coefficient, which is representative of the kinetic aspect of diffusion, was also investigated. It was discovered that the amount of nanohole volume in the polymer; whether the total, the static, or dynamic (i.e. thermally activated) does not correlate to the diffusion coefficient in anyway. Furthermore, at an isotherm the diffusion coefficients for all these materials were relatively constant. From this it is hypothesized that it is the similar sub-Tsb{g} motions of these resins which is the rate limiting step in diffusion. This was bolstered by the fact that the activation energy for diffusion and for the sub-Tsb{g} motions for these epoxies are of the same order of magnitude. The nanostructure of fiber reinforced epoxy composites (i.e. a boron/epoxy and a graphite/epoxy) were probed with the bulk PALS technique as well. It was observed that for the graphite/epoxy composite and its flash (i.e. no fibers present) cured under identical conditions, that the nanoholes in the composite were larger than those present in the flash at temperatures below the epoxy's Tsb{g}. Curiously the boron/epoxy composite and its flash showed an opposite trend. Several potential explanations were examined. The only viable explanation for the observed nanostructural differences between the flash and the resin in these composites utilizes a micromechanics approach involving the CTE mismatch between the fibers and the matrix material. In this approach it is proposed that the fibers in the composite act as a constraint, preventing the nanohole from freely contracting (upon cooling through Tsb{g}) in the axial direction, while Poisson's ratio forces the holes to contract more in the transverse direction than the unrestrained hole in the flash. Therefore the resultant nanoholes in the composite maybe elongated in the fiber direction and shortened in the transverse direction when below the curing temperature. When the PALS technique probed these elongated holes it averaged their dimensions (but weighted the shortest dimension more heavily), thereby yielding the observed results. Despite slightly smaller static holes in the boron/epoxy composite than its flash, no difference in equilibrium uptake was noticed. The diffusion coefficient for the epoxy resin in this composite was found to be an order of magnitude higher than its flash. Nanostructure is not believed to be the cause of this but rather the glass fiber scrim cloth utilized in the processing of the prepreg.

  16. Low expansion superalloy with improved toughness

    DOEpatents

    Smith, D.F.; Stein, L.I.; Hwang, I.S.

    1995-06-20

    A high strength, low coefficient of thermal expansion superalloy exhibiting improved toughness over a broad temperature range down to about 4 K is disclosed. The composition is adapted for use with wrought superconducting sheathing.

  17. Dry Sliding Tribological Studies of AA6061-B4C-Gr Hybrid Composites

    NASA Astrophysics Data System (ADS)

    Monikandan, V. V.; Joseph, M. A.; Rajendrakumar, P. K.

    2016-10-01

    The dry sliding behavior of stir-cast AA6061-10 wt.% B4C composites containing 2.5, 5 and 7.5 wt.% graphite particles was studied as a function of applied load, sliding speed and sliding distance on a pin-on-disk tribotester. The wear rate and friction coefficient increased with increase in applied load and sliding distance. The increase in graphite addition reduced the increase in wear rate and friction coefficient in the sliding speed range 2-2.5 m/s. Scanning electron microscopy of the worn pin revealed a graphite tribolayer, and transmission electron microscopy revealed overlapping deformation bands under 30 N applied load. Upon increasing the applied load to 40 N, welded region with fine crystalline structure was formed due to dynamic recrystallization of AA6061 alloy matrix.

  18. Corrosion and tribological properties of basalt fiber reinforced composite materials

    NASA Astrophysics Data System (ADS)

    Ha, Jin Cheol; Kim, Yun-Hae; Lee, Myeong-Hoon; Moon, Kyung-Man; Park, Se-Ho

    2015-03-01

    This experiment has examined the corrosion and tribological properties of basalt fiber reinforced composite materials. There were slight changes of weight after the occurring of corrosion based on time and H2SO4 concentration, but in general, the weight increased. It is assumed that this happens due to the basalt fiber precipitate. Prior to the corrosion, friction-wear behavior showed irregular patterns compared to metallic materials, and when it was compared with the behavior after the corrosion, the coefficient of friction was 2 to 3 times greater. The coefficient of friction of all test specimen ranged from 0.1 to 0.2. Such a result has proven that the basalt fiber, similar to the resin rubber, shows regular patterns regardless of time and H2SO4 concentration because of the space made between resins and reinforced materials.

  19. Numerical study of surface plasmon enhanced nonlinear absorption and refraction.

    PubMed

    Kohlgraf-Owens, Dana C; Kik, Pieter G

    2008-07-07

    Maxwell Garnett effective medium theory is used to study the influence of silver nanoparticle induced field enhancement on the nonlinear response of a Kerr-type nonlinear host. We show that the composite nonlinear absorption coefficient, beta(c), can be enhanced relative to the host nonlinear absorption coefficient near the surface plasmon resonance of silver nanoparticles. This enhancement is not due to a resonant enhancement of the host nonlinear absorption, but rather due to a phase shifted enhancement of the host nonlinear refractive response. The enhancement occurs at the expense of introducing linear absorption, alpha(c), which leads to an overall reduced figure of merit beta(c)/alpha(c) for nonlinear absorption. For thin (< 1 microm) composites, the use of surface plasmons is found to result in an increased nonlinear absorption response compared to that of the host material.

  20. Giant energy density in [001]-textured Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 piezoelectric ceramics

    NASA Astrophysics Data System (ADS)

    Yan, Yongke; Cho, Kyung-Hoon; Maurya, Deepam; Kumar, Amit; Kalinin, Sergei; Khachaturyan, Armen; Priya, Shashank

    2013-01-01

    Pb(Zr,Ti)O3 (PZT) based compositions have been challenging to texture or grow in a single crystal form due to the incongruent melting point of ZrO2. Here we demonstrate the method for achieving 90% textured PZT-based ceramics and further show that it can provide highest known energy density in piezoelectric materials through enhancement of piezoelectric charge and voltage coefficients (d and g). Our method provides more than ˜5× increase in the ratio d(textured)/d(random). A giant magnitude of d.g coefficient with value of 59 000 × 10-15 m2 N-1 (comparable to that of the single crystal counterpart and 359% higher than that of the best commercial compositions) was obtained.

  1. Chemical compositions and reconstructed light extinction coefficients of particulate matter in a mega-city in the western Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Shen, Guofeng; Xue, Miao; Yuan, Siyu; Zhang, Jie; Zhao, Qiuyue; Li, Bing; Wu, Haisuo; Ding, Aijun

    2014-02-01

    Ambient particulate matter was collected in a megacity, Nanjing in western YRD during the spring and summer periods. Chemical compositions of fine PM including organic carbon, elemental carbon, elements and water soluble ions were analyzed. The light extinction coefficients were reconstructed following the IMPROVE formula. Organic matter was the most abundant composition in PM2.5 (20-25% of total mass), followed by the inorganic ions. During the spring time, geological materials contributed 25% of the total PM2.5. Estimated light extinction coefficient ranged from 133 to 560 Mm-1 with the deciview haze index value of 26-40 dv, indicating strong light extinction by PM and subsequently low visibility in the city. Reconstructed ammonium sulfate, ammonium nitrate, organic matter and light absorption carbon in fine PM contributed significantly (37 ± 10, 16 ± 6, 15 ± 4 and 10 ± 3%, respectively) to the total light extinction of PM, while soil (5-7%) and sea salt fractions (2-4%) in fine PM and coarse PM (6-11%) had relatively minor influences. The results of backward air trajectory showed that the site was strongly influenced by the air from the eastern (39%) and southeastern (29%) areas during the sampling period. Air plumes from the Southeastern had both high PM mass pollution and large light extinction, while the air mass originating from the Northwestern resulted in high PM mass loading but relatively lower light extinction.

  2. A novel damage index for damage identification using guided waves with application in laminated composites

    NASA Astrophysics Data System (ADS)

    Torkamani, Shahab; Roy, Samit; Barkey, Mark E.; Sazonov, Edward; Burkett, Susan; Kotru, Sushma

    2014-09-01

    In the current investigation, an innovative time-domain damage index is introduced for the first time which is based on local statistical features of the waveform. This damage index is called the ‘normalized correlation moment’ (NCM) and is composed of the nth moment of the cross-correlation of the baseline and comparison waves. The performance of this novel damage index is compared for some synthetic signals with that of an existing damage index based on the Pearson correlation coefficient (signal difference coefficient, SDC). The proposed damage index is shown to have significant advantages over the SDC, including sensitivity to the attenuation of the signal and lower sensitivity to the signal’s noise level. Numerical simulations using Abaqus finite element (FE) software show that this novel damage index is not only capable of detecting the delamination type of damage, but also exhibits a good ability in the assessment of this type of damage in laminated composite structures. The NCM damage index is also validated using experimental data for identification of delamination in composites.

  3. Advanced methods for preparation and characterization of infrared detector materials

    NASA Technical Reports Server (NTRS)

    Broerman, J. G.; Morris, B. J.; Meschter, P. J.

    1983-01-01

    Crystals were prepared by the Bridgman-Stockbarger method with a wide range of crystal growth rates and temperature gradients adequate to prevent constitutional supercooling under diffusion-limited, steady-state, growth conditions. The longitudinal compositional gradients for different growth conditions and alloy compositions were calculated and compared with experimental data to develop a quantitative model of solute redistribution during the crystal growth of the alloys. Measurements were performed to ascertain the effect of growth conditions on radial compositional gradients. The pseudobinary HgTe-CdTe constitutional phase diagram was determined by precision differential-thermal-analysis measurements and used to calculate the segregation coefficient of Cd as a function of x and interface temperature. Experiments were conducted to determine the ternary phase equilibria in selected regions of the Hg-Cd-Te constitutional phase diagram. Electron and hole mobilities as functions of temperature were analyzed to establish charge-carrier scattering probabilities. Computer algorithms specific to Hg(1-x)CdxTe were developed for calculations of the charge-carrier concentration, charge-carrier mobilities, Hall coefficient, and Dermi Fermi energy as functions of x, temperature, ionized donor and acceptor concentrations, and neutral defect concentrations.

  4. Temperature-dependent tensile and shear response of graphite/aluminum

    NASA Technical Reports Server (NTRS)

    Fujita, T.; Pindera, M. J.; Herakovich, C. T.

    1987-01-01

    The thermo-mechanical response of unidirectional P100 graphite fiber/6061 aluminum matrix composites was investigated at four temperatures:-150, +75, +250, and +500 F. Two types of tests, off-axis tension and losipescu shear, were used to obtain the desired properties. Good experimental-theoretical correlation was obtained for Exx, vxy, and G12. It is shown that E11 is temperature independent, but E22, v12, and G12 generally decrease with increasing temperature. Compared with rather high longitudinal strength, very low transverse strength was obtained for the graphite/aluminum. The poor transverse strength is believed to be due to the low interfacial bond strength in this material. The strength decrease significantly with increasing temperature. The tensile response at various temperatures is greatly affected by the residual stresses caused by the mismatch in the coefficients of thermal expansion of fibers and matrix. The degradation of the aluminum matrix properties at higher temperatures has a deleterious effect on composite properties. The composite has a very low coefficient of thermal expansion in the fiber direction.

  5. Influence of convection on microstructure

    NASA Technical Reports Server (NTRS)

    Wilcox, William R.; Caram, Rubens; Mohanty, A. P.; Seth, Jayshree

    1990-01-01

    The mechanism responsible for the difference in microstructure caused by solidifying the MnBi-Bi eutectic in space is sought. The objectives for the three year period are as follows: (1) completion of the following theoretical analyses - determination of the influence of the Soret effect on the average solid composition versus distance of off-eutectic mixtures directionally solidified in the absence of convection, determination of the influence of convection on the microstructure of off-eutectic mixtures using a linear velocity profile in the adjacent melt, determination of the influence of volumetric changes during solidification on microconvection near the freezing interface and on microstructure, and determination of the influence of convection on microstructure when the MnBi fibers project out in front of the bismuth matrix; (2) search for patterns in the effect of microgravity on different eutectics (for example, eutectic composition, eutectic temperature, usual microstructure, densities of pure constituents, and density changes upon solidification); and (3) determination of the Soret coefficient and the diffusion coefficient for Mn-Bi melts near the eutectic composition, both through laboratory experiements to be performed here and from data from Shuttle experiments.

  6. Study of tribological properties of natural rubber containing carbon nanotubes and carbon black as hybrid fillers

    NASA Astrophysics Data System (ADS)

    Harea, Evghenii; Stoček, Radek; Storozhuk, Liudmyla; Sementsov, Yurii; Kartel, Nikolai

    2018-04-01

    Dry friction and wear properties of natural rubber (NR), containing multi-walled carbon nanotubes (MWCNT) and carbon black (CB), were investigated. Natural rubber (NR)-based composites containing all common additives and curatives, and a fixed amount (30 phr—parts per 100 rubber by weight) of hybrid fillers (MWCNT x + CB30-x ) were prepared by simple mixing procedure and tested. The main goal was to study the behaviours of composites at different tribological testing conditions, such as friction speed and normal load. It was found that with an increase of concentration of MWCNT from x = 0 phr to x = 5 phr in studied composites, there was a decrease in the coefficient of friction (COF) with no significant change in wear in the framework of each used combination of testing parameters. Generally, higher friction speed at certain normal force led to the increase of COF of all the samples and wear reflected deliberate value fluctuation. Also, it was established that considerable growth of wear and unexpected reducing of friction coefficient ensued from increasing of applied load for every fixed sliding speed.

  7. Petrogenesis of KREEP

    NASA Technical Reports Server (NTRS)

    Mckay, G. A.; Weill, D. F.

    1975-01-01

    Solid/liquid distribution coefficients (weight basis) were experimentally determined for a number of trace elements for olivine, orthopyroxene, plagioclase and ilmenite. Values of distribution coefficients were measured at 1200 C and a f sub O2 of 10 to the -13.0 power for liquids similar in composition to the olivine-opx-plagioclase peritectic in the pseudoternary system (Fe,Mg)2SiO4-CaAl2Si2O8-SiO2. Values were also measured at 1140 C and a f sub O2 of 10 to the -12.8 power for liquids similar in composition to high-Ti mare basalts. Major and trace element partitioning and relevant phase equilibria were used to investigate possible parent-daughter relationships between a number of highland samples and highly evolved KREEP-rich materials. Out of about 80 highlands samples tested, 33 were found to be possible parents to the KREEP-rich materials. The average composition of these samples is very similar to that of the Low-K Fra Mauro basalt (LKFM). A model is proposed to explain the production of LKFM-type material and more evolved members of the KREEP suite.

  8. Evaluation of thermal expansion coefficient of carbon fiber reinforced composites using electronic speckle interferometry.

    PubMed

    Dong, Chengzhi; Li, Kai; Jiang, Yuxi; Arola, Dwayne; Zhang, Dongsheng

    2018-01-08

    An optical system for measuring the coefficient of thermal expansion (CTE) of materials has been developed based on electronic speckle interferometry. In this system, the temperature can be varied from -60°C to 180°C with a Peltier device. A specific specimen geometry and an optical arrangement based on the Michelson interferometer are proposed to measure the deformation along two orthogonal axes due to temperature changes. The advantages of the system include its high sensitivity and stability over the whole range of measurement. The experimental setup and approach for estimating the CTE was validated using an Aluminum alloy. Following this validation, the system was applied for characterizing the CTE of carbon fiber reinforced composite (CFRP) laminates. For the unidirectional fiber reinforced composites, the CTE varied with fiber orientation and exhibits anisotropic behavior. By stacking the plies with specific angles and order, the CTE of a specific CFRP was constrained to a low level with minimum variation temperature. The optical system developed in this study can be applied to CTE measurement for engineering and natural materials with high accuracy.

  9. PMN-PT based quaternary piezoceramics with enhanced piezoelectricity and temperature stability

    NASA Astrophysics Data System (ADS)

    Luo, Nengneng; Zhang, Shujun; Li, Qiang; Yan, Qingfeng; He, Wenhui; Zhang, Yiling; Shrout, Thomas R.

    2014-05-01

    The phase structure, piezoelectric, dielectric, and ferroelectric properties of (0.80 - x)PMN-0.10PFN-0.10PZ-xPT were investigated systematically. The morphotropic phase boundary (MPB) was confirmed to be 0.30 < x < 0.34. Both MPB compositions of x = 0.32 and x = 0.33 exhibit high piezoelectric coefficients d33 = 640 pC/N and 580 pC/N, electromechanical couplings kp of 0.53 and 0.52, respectively. Of particular importance is that the composition with x = 0.33 was found to process high field-induced piezoelectric strain coefficient d33* of 680 pm/V, exhibiting a minimal temperature-dependent behavior, being less than 8% in the temperature range of 25-165 °C, which can be further confirmed by d31, with a variation of less than 9%. The temperature-insensitive d33* values can be explained by the counterbalance of the ascending dielectric permittivity and descending polarization with increasing temperature. These features make the PMN-PT based quaternary MPB compositions promising for actuator applications demanding high temperature stability.

  10. Study of optical properties of vacuum evaporated carbon nanotube containing Se80Te16Cu4 thin films

    NASA Astrophysics Data System (ADS)

    Upadhyay, A. N.; Tiwari, R. S.; Singh, Kedar

    2016-08-01

    Thin films of Se80Te16Cu4 glassy alloy and 3 wt.% of carbon nanotubes (CNTs) containing Se80Te16Cu4 glassy composite were deposited on clean glass substrate by thermal evaporation technique. The scanning electron microscope and energy dispersive x-ray analysis were performed to investigate the surface morphology and elemental composition of as synthesised samples. The reflectance and transmittance spectra of as-deposited thin films were recorded (200-1100 nm) by using UV/VIS/NIR spectrophotometer. The optical band gap and optical constants such as absorption coefficient (α), refractive index (n) and extinction coefficient (k) of Se80Te16Cu4 and 3 wt.% CNTs-Se80Te16Cu4 glassy composite thin films were calculated. It is observed that optical properties alter due to CNTs incorporation in Se80Te16Cu4 glassy alloy. Effect on optical properties due to CNTs incorporation can be explained in terms of concentration of unsaturated bonds/defects in the localised states.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, H.; Chang, C.; Cheng, H. H., E-mail: hhcheng@ntu.edu.tw

    We report an investigation on the absorption mechanism of a GeSn photodetector with 2.4% Sn composition in the active region. Responsivity is measured and absorption coefficient is calculated. Square root of absorption coefficient linearly depends on photon energy indicating an indirect transition. However, the absorption coefficient is found to be at least one order of magnitude higher than that of most other indirect materials, suggesting that the indirect optical absorption transition cannot be assisted only by phonon. Our analysis of absorption measurements by other groups on the same material system showed the values of absorption coefficient on the same ordermore » of magnitude. Our study reveals that the strong enhancement of absorption for the indirect optical transition is the result of alloy disorder from the incorporation of the much larger Sn atoms into the Ge lattice that are randomly distributed.« less

  12. Manufacturing Technology of Composite Materials—Principles of Modification of Polymer Composite Materials Technology Based on Polytetrafluoroethylene

    PubMed Central

    Panda, Anton; Dyadyura, Kostiantyn; Valíček, Jan; Harničárová, Marta; Zajac, Jozef; Modrák, Vladimír; Pandová, Iveta; Vrábel, Peter; Nováková-Marcinčínová, Ema; Pavelek, Zdeněk

    2017-01-01

    The results of the investigations into the technological formation of new wear-resistant polymer composites based on polytetrafluoroethylene (PTFE) filled with disperse synthetic and natural compounds are presented. The efficiency of using PTFE composites reinforced with carbon fibers depends on many factors, which influence the significant improvement of physicomechanical characteristics. The results of this research allow stating that interfacial and surface phenomena of the polymer–solid interface and composition play a decisive role in PTFE composites properties. Fillers hinder the relative movement of the PTFE molecules past one another and, in this way, reduce creep or deformation of the parts, reducing the wear rate of parts used in dynamic applications as well as the coefficient of thermal expansion. The necessary structural parameters of such polymer composites are provided by regimes of process equipment. PMID:28772733

  13. Composite materials research and education program: The NASA-Virginia Tech composites program

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.

    1980-01-01

    Major areas of study include: (1) edge effects in finite width laminated composites subjected to mechanical, thermal and hygroscopic loading with temperature dependent material properties and the influence of edge effects on the initiation of failure; (2) shear and compression testing of composite materials at room and elevated temperatures; (3) optical techniques for precise measurement of coefficients of thermal expansion of composites; (4) models for the nonlinear behavior of composites including material nonlinearity and damage accumulation and verification of the models under biaxial loading; (5) compressive failure of graphite/epoxy plates with circular holes and the buckling of composite cylinders under combined compression and torsion; (6) nonlinear mechanical properties of borsic/aluminum, graphite/polyimide and boron/aluminum; (7) the strength characteristics of spliced sandwich panels; and (8) curved graphite/epoxy panels subjected to internal pressure.

  14. Polymer matrix composites on LDEF experiments M0003-9 and M0003-10

    NASA Technical Reports Server (NTRS)

    Steckel, Gary L.; Cookson, Thomas; Blair, Christopher

    1992-01-01

    Over 250 polymer matrix composites were exposed to the natural space environment on Long Duration Exposure Facility (LDEF) experiments M0003-9 and 10. The experiments included a wide variety of epoxy, thermoplastic, polyimide, and bismalimide matrix composites reinforced with graphite, glass, or organic fibers. A review of the significant observations and test results obtained to date is presented. Estimated recession depths from atomic oxygen exposure are reported and the resulting surface morphologies are discussed. The effects of the LDEF exposure on the flexural strength and modulus, short beam shear strength, and coefficient of thermal expansion of several classes of bare and coated composites are reviewed. Lap shear data are presented for composite-to-composite and composite-to-aluminum alloy samples that were prepared using different bonding techniques and subsequently flown on LDEF.

  15. Manufacturing Technology of Composite Materials-Principles of Modification of Polymer Composite Materials Technology Based on Polytetrafluoroethylene.

    PubMed

    Panda, Anton; Dyadyura, Kostiantyn; Valíček, Jan; Harničárová, Marta; Zajac, Jozef; Modrák, Vladimír; Pandová, Iveta; Vrábel, Peter; Nováková-Marcinčínová, Ema; Pavelek, Zdeněk

    2017-03-31

    The results of the investigations into the technological formation of new wear-resistant polymer composites based on polytetrafluoroethylene (PTFE) filled with disperse synthetic and natural compounds are presented. The efficiency of using PTFE composites reinforced with carbon fibers depends on many factors, which influence the significant improvement of physicomechanical characteristics. The results of this research allow stating that interfacial and surface phenomena of the polymer-solid interface and composition play a decisive role in PTFE composites properties. Fillers hinder the relative movement of the PTFE molecules past one another and, in this way, reduce creep or deformation of the parts, reducing the wear rate of parts used in dynamic applications as well as the coefficient of thermal expansion. The necessary structural parameters of such polymer composites are provided by regimes of process equipment.

  16. Mechanical and tribological property of single layer graphene oxide reinforced titanium matrix composite coating

    NASA Astrophysics Data System (ADS)

    Hu, Zengrong; Li, Yue; Fan, Xueliang; Chen, Feng; Xu, Jiale

    2018-04-01

    Single layer grapheme oxide Nano sheets and Nano titanium powder were dispersed in deionized water by ultrasonic dispersion. Then the mixed solution was pre-coating on AISI4140 substrate. Using laser sintering process to fabricated grapheme oxide and Ti composite coating. Microstructures and composition of the composite coating was studied by Scanning Electron Microscopy (SEM), x-ray diffract meter (XRD) and Raman spectroscopy. Raman spectrum, XRD pattern and SEM results proved that grapheme oxide sheets were dispersed in the composite coating. The composite coating had much higher average Vickers hardness values than that of pure Ti coating. The tribological performance of the composite coatings became better while the suitable GO content was selected. For the 2.5wt. % GO content coating, the friction coefficient was reduced to near 0.1.

  17. Prediction of the partitioning behaviour of proteins in aqueous two-phase systems using only their amino acid composition.

    PubMed

    Salgado, J Cristian; Andrews, Barbara A; Ortuzar, Maria Fernanda; Asenjo, Juan A

    2008-01-18

    The prediction of the partition behaviour of proteins in aqueous two-phase systems (ATPS) using mathematical models based on their amino acid composition was investigated. The predictive models are based on the average surface hydrophobicity (ASH). The ASH was estimated by means of models that use the three-dimensional structure of proteins and by models that use only the amino acid composition of proteins. These models were evaluated for a set of 11 proteins with known experimental partition coefficient in four-phase systems: polyethylene glycol (PEG) 4000/phosphate, sulfate, citrate and dextran and considering three levels of NaCl concentration (0.0% w/w, 0.6% w/w and 8.8% w/w). The results indicate that such prediction is feasible even though the quality of the prediction depends strongly on the ATPS and its operational conditions such as the NaCl concentration. The ATPS 0 model which use the three-dimensional structure obtains similar results to those given by previous models based on variables measured in the laboratory. In addition it maintains the main characteristics of the hydrophobic resolution and intrinsic hydrophobicity reported before. Three mathematical models, ATPS I-III, based only on the amino acid composition were evaluated. The best results were obtained by the ATPS I model which assumes that all of the amino acids are completely exposed. The performance of the ATPS I model follows the behaviour reported previously, i.e. its correlation coefficients improve as the NaCl concentration increases in the system and, therefore, the effect of the protein hydrophobicity prevails over other effects such as charge or size. Its best predictive performance was obtained for the PEG/dextran system at high NaCl concentration. An increase in the predictive capacity of at least 54.4% with respect to the models which use the three-dimensional structure of the protein was obtained for that system. In addition, the ATPS I model exhibits high correlation coefficients in that system being higher than 0.88 on average. The ATPS I model exhibited correlation coefficients higher than 0.67 for the rest of the ATPS at high NaCl concentration. Finally, we tested our best model, the ATPS I model, on the prediction of the partition coefficient of the protein invertase. We found that the predictive capacities of the ATPS I model are better in PEG/dextran systems, where the relative error of the prediction with respect to the experimental value is 15.6%.

  18. [Job retention and nursing practice environment of hospital nurses in Japan applying the Japanese version of the Practice Environment Scale of the Nursing Work Index (PES-NWI)].

    PubMed

    Ogata, Yasuko; Nagano, Midori; Fukuda, Takashi; Hashimoto, Michio

    2011-06-01

    The purpose of this study was to examine how the nursing practice environment affects job retention and the turnover rate among hospital nurses. The Practice Environment Scale of the Nursing Work Index (PES-NWI) was applied to investigate the nurse working environment from the viewpoint of hospital nurses in Japan. Methods A postal mail survey was conducted using the PES-NWI questionnaire targeting 2,211 nurses who were working at 91 wards in 5 hospitals situated in the Tokyo metropolitan area from February to March in 2008. In the questionnaire, hospital nurses were asked about characteristics such as sex, age and work experience as a nurse, whether they would work at the same hospital in the next year, the 31 items of the PES-NWI and job satisfaction. Nurse managers were asked to provide staff numbers to calculate the turnover rate of each ward. Logistic regression analyses were carried out, with "intention to retain or leave the workplace next year" as the dependent variable, with composite and 5 sub-scale scores of the PES-NWI and nurse characteristics as independent variables. Correlation coefficients were calculated to investigate the relationship between nurse turnover rates and nursing practice environments. A total of 1,067 full-time nurses (48.3%) from 5 hospitals responded. Almost all of them were men (95.9%), with an average age of 29.2 years old. They had an average of 7.0 years total work experience in hospitals and 5.8 years of experience at their current hospital. Cronbach's alpha coefficients were 0.75 for composite of the PES-NWI, and 0.77-0.85 for the sub-scales. All correlation coefficients between PES-NWI and job satisfaction were significant (P < 0.01). In the logistic regression analysis, a composite of PES-NWI, "Nurse Manager's Ability, Leadership, and Support of Nurses" and "Staffing and Resource Adequacy" among the 5 sub-scales correlated with the intention of nurses to stay on (P < 0.05). The means for turnover rate were 10.4% for nurses and 17.6% for newly hired nurses. These rates were significantly correlated to the composite and some sub-scales of the PES-NWI. The working environment for nurses is important in retaining nurses working at hospitals. We confirmed the reliability and the validity of the PES-NWI scale based on the magnitude of the Cronbach's alpha coefficient and correlation coefficient between the PES-NWI scale and job satisfaction in this study.

  19. Predicting cyclohexane/water distribution coefficients for the SAMPL5 challenge using MOSCED and the SMD solvation model

    NASA Astrophysics Data System (ADS)

    Diaz-Rodriguez, Sebastian; Bozada, Samantha M.; Phifer, Jeremy R.; Paluch, Andrew S.

    2016-11-01

    We present blind predictions using the solubility parameter based method MOSCED submitted for the SAMPL5 challenge on calculating cyclohexane/water distribution coefficients at 298 K. Reference data to parameterize MOSCED was generated with knowledge only of chemical structure by performing solvation free energy calculations using electronic structure calculations in the SMD continuum solvent. To maintain simplicity and use only a single method, we approximate the distribution coefficient with the partition coefficient of the neutral species. Over the final SAMPL5 set of 53 compounds, we achieved an average unsigned error of 2.2± 0.2 log units (ranking 15 out of 62 entries), the correlation coefficient ( R) was 0.6± 0.1 (ranking 35), and 72± 6 % of the predictions had the correct sign (ranking 30). While used here to predict cyclohexane/water distribution coefficients at 298 K, MOSCED is broadly applicable, allowing one to predict temperature dependent infinite dilution activity coefficients in any solvent for which parameters exist, and provides a means by which an excess Gibbs free energy model may be parameterized to predict composition dependent phase-equilibrium.

  20. Products of composite operators in the exact renormalization group formalism

    NASA Astrophysics Data System (ADS)

    Pagani, C.; Sonoda, H.

    2018-02-01

    We discuss a general method of constructing the products of composite operators using the exact renormalization group formalism. Considering mainly the Wilson action at a generic fixed point of the renormalization group, we give an argument for the validity of short-distance expansions of operator products. We show how to compute the expansion coefficients by solving differential equations, and test our method with some simple examples.

  1. Weight estimation techniques for composite airplanes in general aviation industry

    NASA Technical Reports Server (NTRS)

    Paramasivam, T.; Horn, W. J.; Ritter, J.

    1986-01-01

    Currently available weight estimation methods for general aviation airplanes were investigated. New equations with explicit material properties were developed for the weight estimation of aircraft components such as wing, fuselage and empennage. Regression analysis was applied to the basic equations for a data base of twelve airplanes to determine the coefficients. The resulting equations can be used to predict the component weights of either metallic or composite airplanes.

  2. Microscale determination of the spectral characteristics and carbon-isotopic compositions of porphyrins

    NASA Technical Reports Server (NTRS)

    Popp, B. N.; Hayes, J. M.; Boreham, C. J.

    1993-01-01

    Molar extinction coefficients for band III of Ni porphyrins are calculated from results of spectrophotometric and manometric analyses of individual etioporphyrins, DPEP, cyclic, and diDPEP porphyrins known to initially be pure from mass spectrometry, 1H NMR, and analytical HPLC studies. A method for determining carbon-isotopic compositions and purity of micromolar quantities of individual porphyrins using combined spectrophotometric and manometric techniques is presented.

  3. Conceptual design of a self-deployable, high performance parabolic concentrator for advanced solar-dynamic power systems

    NASA Astrophysics Data System (ADS)

    Dehne, Hans J.

    1991-05-01

    NASA has initiated technology development programs to develop advanced solar dynamic power systems and components for space applications beyond 2000. Conceptual design work that was performed is described. The main efforts were the: (1) conceptual design of self-deploying, high-performance parabolic concentrator; and (2) materials selection for a lightweight, shape-stable concentrator. The deployment concept utilizes rigid gore-shaped reflective panels. The assembled concentrator takes an annular shape with a void in the center. This deployable concentrator concept is applicable to a range of solar dynamic power systems of 25 kW sub e to in excess of 75 kW sub e. The concept allows for a family of power system sizes all using the same packaging and deployment technique. The primary structural material selected for the concentrator is a polyethyl ethylketone/carbon fiber composite also referred to as APC-2 or Vitrex. This composite has a nearly neutral coefficient of thermal expansion which leads to shape stable characteristics under thermal gradient conditions. Substantial efforts were undertaken to produce a highly specular surface on the composite. The overall coefficient of thermal expansion of the composite laminate is near zero, but thermally induced stresses due to micro-movement of the fibers and matrix in relation to each other cause the surface to become nonspecular.

  4. Compositionally driven giant strain and electrostrictive co-efficient in lead free NBT-BT-BFO system

    NASA Astrophysics Data System (ADS)

    Duraisamy, Dhayanithi; Venkatesan, Giridharan Nambi

    2018-01-01

    As lead free alternatives, bismuth based ferroelectric ceramics are currently under intense investigation. Here, the authors report on the development of a lead free (1-2x)Na0.5Bi0.5TiO3-xBaTiO3-xBiFeO3: NBT-BT-BFO [x = 0.01, 0.03, 0.05, 0.07, and 0.09] ceramic. Rietveld analysis of the powder diffraction data reveals the existence of compositionally driven single and two phase combinations. The compositions corresponding to x = 0.01 and 0.03 are found to be crystallized in a monoclinic (Cc) system, whereas the compositions corresponding to x =0.05, 0.07, and 0.09 are found to have the coexistence of [monoclinic (Cc) + Cubic (pm-3m)] and [Tetragonal (P4bm) + Cubic (pm-3m)] phases. A high electric field induced strain has been obtained for x = 0.07, which can be attributed to the polarization extension mechanism at the proximity of the phase boundary between polar and nonpolar phases. Further, the manufactured ceramic is characterized by Smax/Emax of 858 pm/V and an electrostrictive co-efficient (Q33) of 0.045 m4 C-2 much higher than the values of well-established Pb(Zr,Ti)O3 and other lead free ceramics.

  5. Conceptual design of a self-deployable, high performance parabolic concentrator for advanced solar-dynamic power systems

    NASA Technical Reports Server (NTRS)

    Dehne, Hans J.

    1991-01-01

    NASA has initiated technology development programs to develop advanced solar dynamic power systems and components for space applications beyond 2000. Conceptual design work that was performed is described. The main efforts were the: (1) conceptual design of self-deploying, high-performance parabolic concentrator; and (2) materials selection for a lightweight, shape-stable concentrator. The deployment concept utilizes rigid gore-shaped reflective panels. The assembled concentrator takes an annular shape with a void in the center. This deployable concentrator concept is applicable to a range of solar dynamic power systems of 25 kW sub e to in excess of 75 kW sub e. The concept allows for a family of power system sizes all using the same packaging and deployment technique. The primary structural material selected for the concentrator is a polyethyl ethylketone/carbon fiber composite also referred to as APC-2 or Vitrex. This composite has a nearly neutral coefficient of thermal expansion which leads to shape stable characteristics under thermal gradient conditions. Substantial efforts were undertaken to produce a highly specular surface on the composite. The overall coefficient of thermal expansion of the composite laminate is near zero, but thermally induced stresses due to micro-movement of the fibers and matrix in relation to each other cause the surface to become nonspecular.

  6. Association between Body Composition and Motor Performance in Preschool Children

    PubMed Central

    Kakebeeke, Tanja H.; Lanzi, Stefano; Zysset, Annina E.; Arhab, Amar; Messerli-Bürgy, Nadine; Stuelb, Kerstin; Leeger-Aschmann, Claudia S.; Schmutz, Einat A.; Meyer, Andrea H.; Kriemler, Susi; Munsch, Simone; Jenni, Oskar G.; Puder, Jardena J.

    2017-01-01

    Objective Being overweight makes physical movement more difficult. Our aim was to investigate the association between body composition and motor performance in preschool children. Methods A total of 476 predominantly normal-weight preschool children (age 3.9 ± 0.7 years; m/f: 251/225; BMI 16.0 ± 1.4 kg/m2) participated in the Swiss Preschoolers' Health Study (SPLASHY). Body composition assessments included skinfold thickness, waist circumference (WC), and BMI. The Zurich Neuromotor Assessment (ZNA) was used to assess gross and fine motor tasks. Results After adjustment for age, sex, socioeconomic status, sociocultural characteristics, and physical activity (assessed with accelerometers), skinfold thickness and WC were both inversely correlated with jumping sideward (gross motor task β-coefficient −1.92, p = 0.027; and −3.34, p = 0.014, respectively), while BMI was positively correlated with running performance (gross motor task β-coefficient 9.12, p = 0.001). No significant associations were found between body composition measures and fine motor tasks. Conclusion The inverse associations between skinfold thickness or WC and jumping sideward indicates that children with high fat mass may be less proficient in certain gross motor tasks. The positive association between BMI and running suggests that BMI might be an indicator of fat-free (i.e., muscle) mass in predominately normal-weight preschool children. PMID:28934745

  7. High temperature XRD of Cu{sub 2.1}Zn{sub 0.9}SnSe{sub 4}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chetty, Raju, E-mail: rcmallik@physics.iisc.ernet.in; Mallik, Ramesh Chandra, E-mail: rcmallik@physics.iisc.ernet.in

    2014-04-24

    Quaternary compound with chemical composition Cu{sub 2.1}Zn{sub 0.9}SnSe{sub 4} is prepared by solid state synthesis. High temperature XRD (X-Ray Diffraction) of this compound is used in studying the effect of temperature on lattice parameters and thermal expansion coefficients. Thermal expansion coefficient is one of the important quantities in evaluating the Grüneisen parameter which further useful in determining the lattice thermal conductivity of the material. The high temperature XRD of the material revealed that the lattice parameters as well as thermal expansion coefficients of the material increased with increase in temperature which confirms the presence of anharmonicty.

  8. Study of a high performance evaporative heat transfer surface

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.; Hamasaki, R. H.

    1977-01-01

    An evaporative surface is described for heat pipes and other two-phase heat transfer applications that consists of a hybrid composition of V-grooves and capillary wicking. Characteristics of the surface include both a high heat transfer coefficient and high heat flux capability relative to conventional open-faced screw thread surfaces. With a groove density of 12.6 cm/1 and ammonia working fluid, heat transfer coefficients in the range of 1 to 2 W/sq cm have been measured along with maximum heat flux densities in excess of 20 W/sq cm. A peak heat transfer coefficient in excess of 2.3 W/sq cm was measured with a 37.8 cm/1 hybrid surface.

  9. Calculation of the Ionization Coefficient in the Townsend Discharge in the Mixture of Argon and Mercury Vapors with Temperature-Dependent Composition

    NASA Astrophysics Data System (ADS)

    Bondarenko, G. G.; Dubinina, M. S.; Fisher, M. R.; Kristya, V. I.

    2018-04-01

    For a hybrid model of the low-current discharge considering, along with direct ionization of the mixture components by electrons, the Penning ionization of mercury atoms by metastable argon atoms, the ionization coefficient in the argon-mercury mixture used in illuminating lamps is calculated. The analytical approximation formula describing the dependence of the ionization coefficient of the mixture on the reduced electric field strength and temperature is obtained for sufficiently wide ranges of their variations, and its accuracy is estimated. It is demonstrated that the discharge ignition voltage calculated using this formula is in agreement with the results of simulation and the available experimental data.

  10. Wear and Friction Behavior of Metal Impregnated Microporous Carbon Composites

    NASA Technical Reports Server (NTRS)

    Goller, Gultekin; Koty, D. P.; Tewari, S. N.; Singh, M.; Tekin, A.

    1996-01-01

    Metal-matrix composites have been prepared by pressure-infiltration casting of copper-base alloy melts into microporous carbon preforms. The carbon preforms contained varying proportions of amorphous carbon and graphite. Load dependence of the wear and friction behavior of the composite pins has been examined under ambient conditions against cast-iron plates, using a pin-on-plate reciprocating wear tester. The wear resistance of the composite is significantly improved, as compared with the base alloy. Contrary to the normally expected behavior, the addition of graphite to the amorphous carbon does not reduce the friction coefficient, especially at high loads. The wear and friction behavior of the composites is very sensitive to the size and distribution of the microstructural constituents.

  11. Squid pen-inspired chitinous functional materials: Hierarchical chitin fibers by centrifugal jet-spinning and transparent chitin fiber-reinforced composite

    NASA Astrophysics Data System (ADS)

    Jeong, Seung-Hwan; Kim, Joong-Kwon; Lim, Young-Woo; Hwang, Hyun-Bin; Kwon, Hee-Young; Bae, Byeong-Soo; Jin, Jungho

    2018-01-01

    Here, inspired by the fibrous composite structure of a squid pen, we introduce hierarchical chitin fibers (herein, termed "Chiber") and their transparent composites and demonstrate the potential of these chitinous functional materials as a sustainable separation-membrane and reinforcing filler for composites. We employ a centrifugal jet-spinning process to fabricate Chiber with aligned chitin nanofibrillar architectures, for which we discuss the processing-morphology relationship. A nonwoven fiber-mat made of Chiber exhibits excellent adsorbing performance for a toxic ionic dye (Congo Red), and has a low coefficient of thermal expansion comparable to that of glass fibers. Finally, we demonstrate a squid pen-mimetic transparent composite using Chiber and investigate its optical property.

  12. Development of a novel test-setup for identifying the frictional characteristics of carbon fibre reinforced polymer composites at high surface pressure

    NASA Astrophysics Data System (ADS)

    Saxena, Prateek; Schinzel, Marie; Andrich, Manuela; Modler, Niels

    2016-09-01

    Carbon fibre reinforced polymer composites are extensively used in industrial applications. They are light in weight and have excellent load bearing properties. To understand this material's behaviour when carrying loads at high pressure, a tensile-friction test device was developed that can apply a contact surface pressure between composite and counterpart of 50-300 MPa. A tribological investigation of carbon fibre reinforced epoxy composites was carried out, in which the influence of the surface morphology was investigated by using grinding and sandblasting techniques. The friction coefficient of the polymer composite was measured at 100 MPa surface pressure against uncoated and Diamond-Like Carbon coated stainless steel counterparts.

  13. Phononic glass: a robust acoustic-absorption material.

    PubMed

    Jiang, Heng; Wang, Yuren

    2012-08-01

    In order to achieve strong wide band acoustic absorption under high hydrostatic pressure, an interpenetrating network structure is introduced into the locally resonant phononic crystal to fabricate a type of phononic composite material called "phononic glass." Underwater acoustic absorption coefficient measurements show that the material owns high underwater sound absorption coefficients over 0.9 in 12-30 kHz. Moreover, the quasi-static compressive behavior shows that the phononic glass has a compressive strength over 5 MPa which is crucial for underwater applications.

  14. Calculation of electronic transport coefficients of Ag and Au plasma.

    PubMed

    Apfelbaum, E M

    2011-12-01

    The thermoelectric transport coefficients of silver and gold plasma have been calculated within the relaxation-time approximation. We considered temperatures of 10-100 kK and densities of ρ

  15. Aerodynamic Characteristics of a 14-Percent-Thick NASA Supercritical Airfoil Designed for a Normal-Force Coefficient of 0.7

    NASA Technical Reports Server (NTRS)

    Harris, C. D.

    1975-01-01

    This report documents the experimental aerodynamic characteristics of a 14 percent thick supercritical airfoil based on an off design sonic pressure plateau criterion. The design normal force coefficient was 0.7. The results are compared with those of the family related 10 percent thick supercritical airfoil 33. Comparisons are also made between experimental and theoretical characteristics and composite drag rise characteristics derived for a full scale Reynolds number of 40 million.

  16. Simulation of photon attenuation coefficients for high effective shielding material Lead-Boron Polyethyene

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Jia, M. C.; Gong, J. J.; Xia, W. M.

    2017-12-01

    The mass attenuation coefficient of various Lead-Boron Polyethylene samples which can be used as the photon shielding materials in marine reactor, have been simulated using the MCNP-5 code, and compared with the theoretical values at the photon energy range 0.001MeV—20MeV. A good agreement has been observed. The variations of mass attenuation coefficient, linear attenuation coefficient and mean free path with photon energy between 0.001MeV to 100MeV have been plotted. The result shows that all the coefficients strongly depends on the photon energy, material atomic composition and density. The dose transmission factors for source Cesium-137 and Cobalt-60 have been worked out and their variations with the thickness of various sample materials have also been plotted. The variations show that with the increase of materials thickness the dose transmission factors decrease continuously. The results of this paper can provide some reference for the use of the high effective shielding material Lead-Boron Polyethyene.

  17. Sensor-Based Vibration Signal Feature Extraction Using an Improved Composite Dictionary Matching Pursuit Algorithm

    PubMed Central

    Cui, Lingli; Wu, Na; Wang, Wenjing; Kang, Chenhui

    2014-01-01

    This paper presents a new method for a composite dictionary matching pursuit algorithm, which is applied to vibration sensor signal feature extraction and fault diagnosis of a gearbox. Three advantages are highlighted in the new method. First, the composite dictionary in the algorithm has been changed from multi-atom matching to single-atom matching. Compared to non-composite dictionary single-atom matching, the original composite dictionary multi-atom matching pursuit (CD-MaMP) algorithm can achieve noise reduction in the reconstruction stage, but it cannot dramatically reduce the computational cost and improve the efficiency in the decomposition stage. Therefore, the optimized composite dictionary single-atom matching algorithm (CD-SaMP) is proposed. Second, the termination condition of iteration based on the attenuation coefficient is put forward to improve the sparsity and efficiency of the algorithm, which adjusts the parameters of the termination condition constantly in the process of decomposition to avoid noise. Third, composite dictionaries are enriched with the modulation dictionary, which is one of the important structural characteristics of gear fault signals. Meanwhile, the termination condition of iteration settings, sub-feature dictionary selections and operation efficiency between CD-MaMP and CD-SaMP are discussed, aiming at gear simulation vibration signals with noise. The simulation sensor-based vibration signal results show that the termination condition of iteration based on the attenuation coefficient enhances decomposition sparsity greatly and achieves a good effect of noise reduction. Furthermore, the modulation dictionary achieves a better matching effect compared to the Fourier dictionary, and CD-SaMP has a great advantage of sparsity and efficiency compared with the CD-MaMP. The sensor-based vibration signals measured from practical engineering gearbox analyses have further shown that the CD-SaMP decomposition and reconstruction algorithm is feasible and effective. PMID:25207870

  18. Sensor-based vibration signal feature extraction using an improved composite dictionary matching pursuit algorithm.

    PubMed

    Cui, Lingli; Wu, Na; Wang, Wenjing; Kang, Chenhui

    2014-09-09

    This paper presents a new method for a composite dictionary matching pursuit algorithm, which is applied to vibration sensor signal feature extraction and fault diagnosis of a gearbox. Three advantages are highlighted in the new method. First, the composite dictionary in the algorithm has been changed from multi-atom matching to single-atom matching. Compared to non-composite dictionary single-atom matching, the original composite dictionary multi-atom matching pursuit (CD-MaMP) algorithm can achieve noise reduction in the reconstruction stage, but it cannot dramatically reduce the computational cost and improve the efficiency in the decomposition stage. Therefore, the optimized composite dictionary single-atom matching algorithm (CD-SaMP) is proposed. Second, the termination condition of iteration based on the attenuation coefficient is put forward to improve the sparsity and efficiency of the algorithm, which adjusts the parameters of the termination condition constantly in the process of decomposition to avoid noise. Third, composite dictionaries are enriched with the modulation dictionary, which is one of the important structural characteristics of gear fault signals. Meanwhile, the termination condition of iteration settings, sub-feature dictionary selections and operation efficiency between CD-MaMP and CD-SaMP are discussed, aiming at gear simulation vibration signals with noise. The simulation sensor-based vibration signal results show that the termination condition of iteration based on the attenuation coefficient enhances decomposition sparsity greatly and achieves a good effect of noise reduction. Furthermore, the modulation dictionary achieves a better matching effect compared to the Fourier dictionary, and CD-SaMP has a great advantage of sparsity and efficiency compared with the CD-MaMP. The sensor-based vibration signals measured from practical engineering gearbox analyses have further shown that the CD-SaMP decomposition and reconstruction algorithm is feasible and effective.

  19. Reflection and transmission for layered composite materials

    NASA Technical Reports Server (NTRS)

    Graglia, Roberto D.; Uslenghi, Piergiorgio L. E.

    1991-01-01

    A layered planar structure consisting of different bianisotropic materials separated by jump-immittance sheets is considered. Reflection and transmission coefficients are determined via a chain-matrix algorithm. Applications are important for radomes and radar-absorbing materials.

  20. Species-area curves indicate the importance of habitats' contributions to regional biodiversity

    USGS Publications Warehouse

    Chong, G.W.; Stohlgren, T.J.

    2007-01-01

    We examined species-area curves, species composition and similarity (Jaccard's coefficients), and species richness in 17 vegetation types to develop a composite index of a vegetation type's contribution to regional species richness. We collected data from 1 to 1000 m2 scales in 147 nested plots in Rocky Mountain National Park, Colorado, USA to compare three species-area curve models' abilities to estimate the number of species observed in each vegetation type. The log(species)-log(area) curve had the largest adjusted coefficients of determination (r2 values) in 12 of the 17 types, followed by the species-log(area) curve with five of the highest values. When the slopes of the curves were corrected for species overlap among plots with Jaccard's coefficients, the species-log(area) curves estimated values closest to those observed. We combined information from species-area curves and measures of heterogeneity with information on the area covered by each vegetation type and found that the types making the greatest contributions to regional biodiversity covered the smallest areas. This approach may provide an accurate and relatively rapid way to rank hotspots of plant diversity within regions of interest.

  1. Molecular dimensions and surface diffusion assisted mechanically robust slippery perfluoropolyether impregnated mesoporous alumina interfaces

    NASA Astrophysics Data System (ADS)

    Rowthu, Sriharitha; Balic, Edin E.; Hoffmann, Patrik

    2017-12-01

    Accomplishing mechanically robust omniphobic surfaces is a long-existing challenge, and can potentially find applications in bioengineering, tribology and paint industries. Slippery liquid impregnated mesoporous α-Al2O3 interfaces are achieved with water, alkanes, water based and oil based high viscosity acrylic paints. Incredibly high abrasion-resistance (wear coefficients ≤10-8 mm3 N-1 m-1) and ultra-low friction coefficients (≥0.025) are attained, attributing to the hard alumina matrix and continuous replenishment of perfluoropolyether aided by capillarity and surface diffusion processes. A variety of impregnating liquids employed suggest that large molecules, faster surface diffusion and lowest evaporation rate generate the rare combination of high wear-resistance and omniphobicity. It is noteworthy that these novel liquid impregnated Al2O3 composites exhibit outstanding load bearing capacity up to 350 MPa; three orders of magnitude higher than achievable by the state of the art omniphobic surfaces. Further, our developed thermodynamic calculations suggest that the relative thermodynamic stability of liquid impregnated composites is linearly proportional to the spreading coefficient (S) of the impregnating liquid with the matrix material and is an important tool for the selection of an appropriate matrix material for a given liquid.

  2. The efficiency of photodissociation for molecules in interstellar ices

    NASA Astrophysics Data System (ADS)

    Kalvāns, J.

    2018-05-01

    Processing by interstellar photons affects the composition of the icy mantles on interstellar grains. The rate of photodissociation in solids differs from that of molecules in the gas phase. The aim of this work was to determine an average, general ratio between photodissociation coefficients for molecules in ice and gas. A 1D astrochemical model was utilized to simulate the chemical composition for a line of sight through a collapsing interstellar cloud core, whose interstellar extinction changes with time. At different extinctions, the calculated column densities of icy carbon oxides and ammonia (relative to water ice) were compared to observations. The latter were taken from literature data of background stars sampling ices in molecular clouds. The best-fit value for the solid/gas photodissociation coefficient ratio was found to be ≈0.3. In other words, gas-phase photodissociation rate coefficients have to be reduced by a factor of 0.3 before applying them to icy species. A crucial part of the model is a proper inclusion of cosmic-ray induced desorption. Observations sampling gas with total extinctions in excess of ≈22 mag were found to be uncorrelated to modelling results, possibly because of grains being covered with non-polar molecules.

  3. Preparation and optical properties of TeO2-BaO-ZnO-ZnF2 fluoro-tellurite glass for mid-infrared fiber Raman laser applications

    NASA Astrophysics Data System (ADS)

    Li, Jie; Xiao, Xusheng; Gu, Shaoxuan; Xu, Yantao; Zhou, Zhiguang; Guo, Haitao

    2017-04-01

    A serial of novel fluoro-tellurite glasses with compositions of 60TeO2-20BaO-(20-x)ZnO-xZnF2 (x = 0, 2, 4, 5 and 6 mol%) were prepared. The compositional dependences of glass structural evaluation, Raman gain coefficient, UV-Vis transmission spectrum, IR transmission spectrum, linear refractive index and third-order nonlinearity were analyzed. The results showed that the addition of 6 mol% ZnF2 can further improve the Raman gain coefficient to as well as 52 × 10-11 cm/W and effectively decrease around 73% and 57% absorption coefficients respectively caused by free Osbnd H groups (@3.3 μm) and hydrogen-bonded Osbnd H groups (@4.5 μm) in glass. Addition of ZnF2 does not change the UV-Vis absorption edge, optical band gap energy and infrared region cut-off edge almost, while the linear refraction index and ultrafast third-nonlinearity show unmonotonic changes. These novel fluoro-tellurite glasses may be suitable candidates for using in mid-infrared Raman fiber laser and/or amplifier.

  4. Role of chemically and thermally induced crystal lattice distortion in enhancing the Seebeck coefficient in complex tellurides

    DOE PAGES

    Levin, E. M.; Iowa State Univ., Ames, IA; Kramer, M. J.; ...

    2016-07-14

    Composition and crystal structure of complex materials can significantly change the Seebeck effect, i.e., heat to electrical energy conversion, which is utilized in thermoelectric materials. Despite decades of studies of various thermoelectric materials and their application, the fundamental understanding of this effect still is limited. One of the most efficient groups of thermoelectric materials is based on GeTe, where Ge is replaced by [Ag + Sb], i.e., Ag xSb xGe 50-2xTe 50 alloys, traditionally shown as (GeTe) m(AgSbTe 2) 100-m (TAGS-m series). Here, in this article, we report on the discovery of two unique phenomena in TAGS materials attributed tomore » the effects from [Ag + Sb] atoms: (i) a linear relation between the Seebeck coefficient and rhombohedral lattice distortion, and (ii) resonance-like temperature-induced behavior of the contribution to the Seebeck coefficient produced by [Ag + Sb] atoms. Finally, our findings show that heat to electrical energy conversion strongly depends on the temperature- and compositionally-induced rhombohedral to cubic transformation where [Ag + Sb] atoms play a crucial mediating role.« less

  5. Verification and Validation of Residual Stresses in Bi-Material Composite Rings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Stacy Michelle; Hanson, Alexander Anthony; Briggs, Timothy

    Process-induced residual stresses commonly occur in composite structures composed of dissimilar materials. These residual stresses form due to differences in the composite materials’ coefficients of thermal expansion and the shrinkage upon cure exhibited by polymer matrix materials. Depending upon the specific geometric details of the composite structure and the materials’ curing parameters, it is possible that these residual stresses could result in interlaminar delamination or fracture within the composite. Therefore, the consideration of potential residual stresses is important when designing composite parts and their manufacturing processes. However, the experimental determination of residual stresses in prototype parts can be time andmore » cost prohibitive. As an alternative to physical measurement, it is possible for computational tools to be used to quantify potential residual stresses in composite prototype parts. Therefore, the objectives of the presented work are to demonstrate a simplistic method for simulating residual stresses in composite parts, as well as the potential value of sensitivity and uncertainty quantification techniques during analyses for which material property parameters are unknown. Specifically, a simplified residual stress modeling approach, which accounts for coefficient of thermal expansion mismatch and polymer shrinkage, is implemented within the Sandia National Laboratories’ developed SIERRA/SolidMechanics code. Concurrent with the model development, two simple, bi-material structures composed of a carbon fiber/epoxy composite and aluminum, a flat plate and a cylinder, are fabricated and the residual stresses are quantified through the measurement of deformation. Then, in the process of validating the developed modeling approach with the experimental residual stress data, manufacturing process simulations of the two simple structures are developed and undergo a formal verification and validation process, including a mesh convergence study, sensitivity analysis, and uncertainty quantification. The simulations’ final results show adequate agreement with the experimental measurements, indicating the validity of a simple modeling approach, as well as a necessity for the inclusion of material parameter uncertainty in the final residual stress predictions.« less

  6. Determination of partition coefficients of biomolecules in a microfluidic aqueous two phase system platform using fluorescence microscopy.

    PubMed

    Silva, D F C; Azevedo, A M; Fernandes, P; Chu, V; Conde, J P; Aires-Barros, M R

    2017-03-03

    Aqueous two phase systems (ATPS) offer great potential for selective separation of a wide range of biomolecules by exploring differences in molecular solubility in each of the two immiscible phases. However, ATPS use has been limited due to the difficulty in predicting the behavior of a given biomolecule in the partition environment together with the empirical and time-consuming techniques that are used for the determination of partition and extraction parameters. In this work, a fast and novel technique based on a microfluidic platform and using fluorescence microscopy was developed to determine the partition coefficients of biomolecules in different ATPS. This method consists of using a microfluidic device with a single microchannel and three inlets. In two of the inlets, solutions containing the ATPS forming components were loaded while the third inlet was fed with the FITC tagged biomolecule of interest prepared in milli-Q water. Using fluorescence microscopy, it was possible to follow the location of the FITC-tagged biomolecule and, by simply varying the pumping rates of the solutions, to quickly test a wide variety of ATPS compositions. The ATPS system is allowed 4min for stabilization and fluorescence micrographs are used to determine the partition coefficient.The partition coefficients obtained were shown to be consistent with results from macroscale ATPS partition. This process allows for faster screening of partition coefficients using only a few microliters of material for each ATPS composition and is amenable to automation. The partitioning behavior of several biomolecules with molecular weights (MW) ranging from 5.8 to 150kDa, and isoelectric points (pI) ranging from 4.7 to 6.4 was investigated, as well as the effect of the molecular weight of the polymer ATPS component. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Interdiffusion and reaction between U and Zr

    NASA Astrophysics Data System (ADS)

    Park, Y.; Newell, R.; Mehta, A.; Keiser, D. D.; Sohn, Y. H.

    2018-04-01

    The microstructural development and diffusion kinetics were examined for the binary U vs. Zr system using solid-to-solid diffusion couples, U vs. Zr, annealed at 580 °C for 960 h, 650 °C for 480 h, 680 °C for 240 h, and 710 °C for 96 h. Scanning and transmission electron microscopies with X-ray energy dispersive spectroscopy were employed for detailed microstructural and compositional analyses. Interdiffusion and reaction in U vs. Zr diffusion couples primarily produced: δ-UZr2 solid solution (hP3) and α‧-U at 580 °C; and (γU,βZr) solid solution (cI2) and α‧-U at 650°, 680° and 710 °C. The α‧-phase was confirmed as a reduced variant of the α-U orthorhombic structure with lattice parameters, a × b × c = 2.65 × 5.40 × 4.75 (Å) with a negligible solubility for Zr at room temperature. Concentration profiles were examined to determine interdiffusion coefficients, integrated interdiffusion coefficients, and intrinsic diffusion coefficients using Boltzmann-Matano, Wagner, and Heumann analyses, respectively. Composition-dependence of interdiffusion coefficients were documented for α-U, δ-UZr2 (at 580 °C) and (γU,βZr) solid solution (at 650°, 680° and 710 °C). U was determined to intrinsically diffuse faster than Zr, approximately by an order of magnitude, in the δ-UZr2 at 580 °C, and (γU,βZr) phases at 650°, 680° and 710 °C. Based on Darken's approach, thermodynamic data available in literature were coupled to estimate the tracer diffusion coefficients and atomic mobilities of U and Zr.

  8. Dissolution of multi-component LNAPL gasolines: The effects of weathering and composition

    NASA Astrophysics Data System (ADS)

    Lekmine, Greg; Bastow, Trevor P.; Johnston, Colin D.; Davis, Greg B.

    2014-05-01

    The composition of light non-aqueous phase liquid (LNAPL) gasoline and other petroleum products changes profoundly over their life once released into aquifers. However limited attention has been given to how such changes affect key parameters such as the activity coefficients which control partitioning of components of petroleum fuel into groundwater and are used to predict long-term risk from fuel releases. Laboratory experiments were conducted on a range of fresh, weathered and synthetic gasoline mixtures designed to mimic the expected changes in composition in an aquifer. Weathered gasoline created under controlled evaporation and water washing, and naturally weathered gasoline, were investigated. Equilibrium concentrations in water and molar fractions in the gasoline mixtures were compared with equilibrium concentrations predicted by Raoult's law assuming ideal behaviour of the solutions. The experiments carried out allowed the relative sensitivity of the activity coefficients of key risk drivers such as benzene, toluene, ethylbenzene and xylene (BTEX) compounds to be quantified with respect to the presence of other types of compounds and where the source LNAPL had undergone different types of weathering. Results differed for the mixtures examined but in some cases higher than predicted dissolved equilibrium concentrations showed non-ideal behaviour for toluene, benzene and xylenes. Comparison of the activity coefficients showed that the naturally weathered gasoline and a 50% evaporated unleaded gasoline present a similar range of values varying between 1.0 and 1.2, suggesting close to ideal partitioning between the LNAPL and water. The fresh and water-washed gasoline had higher values for the activity coefficient, from 1.2 to 1.4, indicating non-ideal partitioning. Results from synthetic mixtures demonstrated that these differences could be due to the different molar fractions of the nC5 and nC6 aliphatic hydrocarbons acting on the molecular interactions, while differences in molar volumes seemed to have less of an influence on ideality.

  9. Effective diffusion coefficients of gas mixture in heavy oil under constant-pressure conditions

    NASA Astrophysics Data System (ADS)

    Li, Huazhou Andy; Sun, Huijuan; Yang, Daoyong

    2017-05-01

    We develop a method to determine the effective diffusion coefficient for each individual component of a gas mixture in a non-volatile liquid (e.g., heavy oil) at high pressures with compositional analysis. Theoretically, a multi-component one-way diffusion model is coupled with the volume-translated Peng-Robinson equation of state to quantify the mass transfer between gas and liquid (e.g., heavy oil). Experimentally, the diffusion tests have been conducted with a PVT setup for one pure CO2-heavy oil system and one C3H8-CO2-heavy oil system under constant temperature and pressure, respectively. Both the gas-phase volume and liquid-phase swelling effect are simultaneously recorded during the measurement. As for the C3H8-CO2-heavy oil system, the gas chromatography method is employed to measure compositions of the gas phase at the beginning and end of the diffusion measurement, respectively. The effective diffusion coefficients are then determined by minimizing the discrepancy between the measured and calculated gas-phase composition at the end of diffusion measurement. The newly developed technique can quantify the contributions of each component of mixture to the bulk mass transfer from gas into liquid. The effective diffusion coefficient of C3H8 in the C3H8-CO2 mixture at 3945 ± 20 kPa and 293.85 K, i.e., 18.19 × 10^{ - 10} {{m}}^{ 2} / {{s}}, is found to be much higher than CO2 at 3950 ± 18 kPa and 293.85 K, i.e., 8.68 × 10^{ - 10} {{m}}^{ 2} / {{s}}. In comparison with pure CO2, the presence of C3H8 in the C3H8-CO2 mixture contributes to a faster diffusion of CO2 from the gas phase into heavy oil and consequently a larger swelling factor of heavy oil.

  10. Controlling coupled bending-twisting vibrations of anisotropic composite wing

    NASA Astrophysics Data System (ADS)

    Ryabov, Victor; Yartsev, Boris

    2018-05-01

    The paper discusses the possibility to control coupled bending-twisting vibrations of anisotropic composite wing by means of the monoclinic structures in the reinforcement of the plating. Decomposing the potential straining energy and kinetic energy of natural vibration modes into interacting and non-interacting parts, it became possible to introduce the two coefficients that integrally consider the effect of geometry and reinforcement structure upon the dynamic response parameters of the wing. The first of these coefficients describes the elastic coupling of the natural vibration modes, the second coefficient describes the inertial one. The paper describes the numerical studies showing how the orientation of considerably anisotropic CRP layers in the plating affects natural frequencies, loss factors, coefficients of elastic and inertial coupling for several lower tones of natural bending-twisting vibrations of the wing. Besides, for each vibration mode, partial values of the above mentioned dynamic response parameters were determined by means of the relationships for orthotropic structures where instead of "free" shearing modulus in the reinforcement plant, "pure" shearing modulus is used. Joint analysis of the obtained results has shown that each pair of bending-twisting vibration modes has its orientation angle ranges of the reinforcing layers where the inertial coupling caused by asymmetry of the cross-section profile with respect to the main axes of inertia decreases, down to the complete extinction, due to the generation of the elastic coupling in the plating material. These ranges are characterized by the two main features: 1) the difference in the natural frequencies of the investigated pair of bending-twisting vibration modes is the minimum and 2) natural frequencies of bending-twisting vibrations belong to a stretch restricted by corresponding partial natural frequencies of the investigated pair of vibration modes. This result is of practical importance because it enables approximate analysis of real composite wings with complex geometry in the existing commercial software packages.

  11. Effects of cocoa butter triacylglycerides and minor compounds on oil migration.

    PubMed

    Wang, Hao; Maleky, Farnaz

    2018-04-01

    In a multi-component chocolate product, oil migration, from high oil content filling into chocolate, is one of the major contributors to the product quality loss. Among various parameters influencing oil diffusivity, cocoa butter is studied intensively. Studies have shown that the rate of oil transportion in cocoa butter is affected by its composition, the way that it is crystallized, and also the storage conditions. To model and study effects of cocoa butter type and processing conditions on oil migration, five different cocoa butter samples were studied in this work. Samples' chemical compositions in addition to their structural properties were analyzed to understand and compare oil migrations in the networks. Crystallized cocoa butter samples were placed in contact with a cream as a source of liquid oil. Using Magnetic Resonance Imaging, the movement of liquid oil into samples was investigated. The effects of minor differences in the cocoa butter chemical compositions on oil migrations rate are shown clearly. The highest effective diffusion coefficient was observed in the sample with the higher unsaturated fatty acids and phospholipids content. Although shearing at 250s -1 delayed oil migration in all the samples and a significantly lower diffusion coefficient was observed in the dynamic samples, the effects of chemical composition were still dominant. This study successfully highlighted that even minor differences in cocoa butter composition affect the network mass transfer phenomenon dramatically and that it is not easy to diminish these possessions by just crystallization processes. Published by Elsevier Ltd.

  12. Three Cs in measurement models: causal indicators, composite indicators, and covariates.

    PubMed

    Bollen, Kenneth A; Bauldry, Shawn

    2011-09-01

    In the last 2 decades attention to causal (and formative) indicators has grown. Accompanying this growth has been the belief that one can classify indicators into 2 categories: effect (reflective) indicators and causal (formative) indicators. We argue that the dichotomous view is too simple. Instead, there are effect indicators and 3 types of variables on which a latent variable depends: causal indicators, composite (formative) indicators, and covariates (the "Three Cs"). Causal indicators have conceptual unity, and their effects on latent variables are structural. Covariates are not concept measures, but are variables to control to avoid bias in estimating the relations between measures and latent variables. Composite (formative) indicators form exact linear combinations of variables that need not share a concept. Their coefficients are weights rather than structural effects, and composites are a matter of convenience. The failure to distinguish the Three Cs has led to confusion and questions, such as, Are causal and formative indicators different names for the same indicator type? Should an equation with causal or formative indicators have an error term? Are the coefficients of causal indicators less stable than effect indicators? Distinguishing between causal and composite indicators and covariates goes a long way toward eliminating this confusion. We emphasize the key role that subject matter expertise plays in making these distinctions. We provide new guidelines for working with these variable types, including identification of models, scaling latent variables, parameter estimation, and validity assessment. A running empirical example on self-perceived health illustrates our major points.

  13. Effects of heat treatment on microstructure and mechanical properties of Ni60/h-BN self-lubricating anti-wear composite coatings on 304 stainless steel by laser cladding

    NASA Astrophysics Data System (ADS)

    Lu, Xiao-Long; Liu, Xiu-Bo; Yu, Peng-Cheng; Zhai, Yong-Jie; Qiao, Shi-Jie; Wang, Ming-Di; Wang, Yong-Guang; Chen, Yao

    2015-11-01

    Laser clad Ni60/h-BN self-lubricating anti-wear composite coating on 304 stainless steel were heat treated at 600 °C (stress relief annealing) for 1 h and 2 h, respectively. Effects of the phase compositions, microstructure, microhardness, nano-indentation and tribological properties of the composite coatings with and without heat treatment had been investigated systemically. Results indicated that three coatings mainly consist of the matrix γ-(Ni, Fe) solid solution, the CrB ceramic phases and the h-BN lubricating phases. The maximum microhardness of the coatings was first increased from 667.7 HV0.5 to 765.0 HV0.5 after heat treatment for 1 h, and then decreased to 698.3 HV0.5 after heat treatment for 2 h. The hardness of γ-(Ni, Fe) solid solution without heat treatment and after heat treatment 1 h and 2 h were 5.09 GPa, 7.20 GPa and 3.77 GPa, respectively. Compared with the coating without heat treatment, the friction coefficients of the coating after heat treatment were decreased obviously. Effects of the heat treatment time on friction coefficient were negligible, but were significant on wear volume loss. Comparatively speaking, the laser clad self-lubricating anti-wear composite coating after heat treatment for 1 h presented the best anti-wear and friction reduction properties.

  14. Experimental assessment of the influence of welding process parameters on Lamb wave transmission across ultrasonically welded thermoplastic composite joints

    NASA Astrophysics Data System (ADS)

    Ochôa, Pedro; Fernandez Villegas, Irene; Groves, Roger M.; Benedictus, Rinze

    2018-01-01

    One of the advantages of thermoplastic composites relative to their thermoset counterparts is the possibility of assembling components through welding. Ultrasonic welding in particular is very promising for industrialization. However, uncertainty in the fatigue and fracture behaviour of composites is still an obstacle to the full utilisation of these materials. Health monitoring is then of vital importance, and Lamb wave techniques have been widely recognised as some of the most promising approaches for that end. This paper presents the first experimental study about the influence of welding travel on the transmission of Lamb waves across ultrasonically welded thermoplastic composite joints in single-lap configuration. The main aim of this research is to start to understand how guided waves interact with the internal structure of ultrasonic welds, so that benign, manufacturing-related structural features can be distinguished from damaging ones in signal interpretation. The power transmission coefficient and the correlation coefficient proved to be suitable for analysing the wave propagation phenomena, allowing quantitative identification of small variations of weld-line thickness and intermolecular diffusion at the weld interface. The conclusions are used to develop a tentative damage detection criterion which can later on assist the design of a Lamb wave based structural health monitoring system for thermoplastic composite structures. The Lamb wave test results are backed up by phased-array inspections, which also provide some extra insight on the internal structure of ultrasonic welds.

  15. Early warning of critical transitions in biodiversity from compositional disorder.

    PubMed

    Doncaster, C Patrick; Alonso Chávez, Vasthi; Viguier, Clément; Wang, Rong; Zhang, Enlou; Dong, Xuhui; Dearing, John A; Langdon, Peter G; Dyke, James G

    2016-11-01

    Global environmental change presents a clear need for improved leading indicators of critical transitions, especially those that can be generated from compositional data and that work in empirical cases. Ecological theory of community dynamics under environmental forcing predicts an early replacement of slowly replicating and weakly competitive "canary" species by slowly replicating but strongly competitive "keystone" species. Further forcing leads to the eventual collapse of the keystone species as they are replaced by weakly competitive but fast-replicating "weedy" species in a critical transition to a significantly different state. We identify a diagnostic signal of these changes in the coefficients of a correlation between compositional disorder and biodiversity. Compositional disorder measures unpredictability in the composition of a community, while biodiversity measures the amount of species in the community. In a stochastic simulation, sequential correlations over time switch from positive to negative as keystones prevail over canaries, and back to positive with domination of weedy species. The model finds support in empirical tests on multi-decadal time series of fossil diatom and chironomid communities from lakes in China. The characteristic switch from positive to negative correlation coefficients occurs for both communities up to three decades preceding a critical transition to a sustained alternate state. This signal is robust to unequal time increments that beset the identification of early-warning signals from other metrics. © 2016 The Authors. Ecology, published by Wiley Periodicals, Inc., on behalf of the Ecological Society of America.

  16. Versatile Micromechanics Model for Multiscale Analysis of Composite Structures

    NASA Astrophysics Data System (ADS)

    Kwon, Y. W.; Park, M. S.

    2013-08-01

    A general-purpose micromechanics model was developed so that the model could be applied to various composite materials such as reinforced by particles, long fibers and short fibers as well as those containing micro voids. Additionally, the model can be used with hierarchical composite materials. The micromechanics model can be used to compute effective material properties like elastic moduli, shear moduli, Poisson's ratios, and coefficients of thermal expansion for the various composite materials. The model can also calculate the strains and stresses at the constituent material level such as fibers, particles, and whiskers from the composite level stresses and strains. The model was implemented into ABAQUS using the UMAT option for multiscale analysis. An extensive set of examples are presented to demonstrate the reliability and accuracy of the developed micromechanics model for different kinds of composite materials. Another set of examples is provided to study the multiscale analysis of composite structures.

  17. Calculation of open and closed system elastic coefficients for multicomponent solids

    NASA Astrophysics Data System (ADS)

    Mishin, Y.

    2015-06-01

    Thermodynamic equilibrium in multicomponent solids subject to mechanical stresses is a complex nonlinear problem whose exact solution requires extensive computations. A few decades ago, Larché and Cahn proposed a linearized solution of the mechanochemical equilibrium problem by introducing the concept of open system elastic coefficients [Acta Metall. 21, 1051 (1973), 10.1016/0001-6160(73)90021-7]. Using the Ni-Al solid solution as a model system, we demonstrate that open system elastic coefficients can be readily computed by semigrand canonical Monte Carlo simulations in conjunction with the shape fluctuation approach. Such coefficients can be derived from a single simulation run, together with other thermodynamic properties needed for prediction of compositional fields in solid solutions containing defects. The proposed calculation approach enables streamlined solutions of mechanochemical equilibrium problems in complex alloys. Second order corrections to the linear theory are extended to multicomponent systems.

  18. Neon transport in selected organic composites. [stopping power of Kapton and polyethylene

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.; Bidasaria, H. B.

    1984-01-01

    An energy-dependent, perturbation expansion solution for heavy-ion transport in one dimension was used to calculate the dose from Ne-20 beams at incident kinetic energies of 350, 670, and 2000 MeV/amu onto selected organic composites. Transport coefficients, applicable to arbitrary ion beams over a broad range of energies, are presented. Polyethylene and Kapton were tested as constituents of multilayered shielding for spacecraft and astronauts.

  19. Decentralization and the Composition of Public Expenditures

    DTIC Science & Technology

    2012-01-01

    decentralized governance and expenditure composition by means of a distance-sensitive representative agent model. Then we estimate the impact of fiscal...countries with regards to population age structure. We are not certain of what effects that may have in our estimates , but previous studies have found find...variables to estimate a scalar value for g(xβ), which then is multiplied to each variables coefficient. For this, we choose the mean values of the

  20. Diamond-Reinforced Matrix Composites

    DTIC Science & Technology

    1993-05-10

    by chemical vapor deposition ( CVD ). 14 While preferable, scratching and oil- coating of substrate filaments 15 may not be absolutely necessary. For...composites. 25 13 Docket No.: N.C. 72,578 PATENT APPLICATION Inventor’s Name: Natishan et al. 1 4) Anti -oxidation coatings such as refractory oxides or 2...the mismatch in the 5 coefficients of thermal expansion (CTE). By coating the 6 reinforcement with diamond prior to the final 7 anti -oxidant coating

  1. Temperature dependent thermoelectric property of reduced graphene oxide-polyaniline composite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitra, Mousumi, E-mail: mousumimitrabesu@gmail.com; Banerjee, Dipali, E-mail: dipalibanerjeebesu@gmail.com; Kargupta, Kajari, E-mail: karguptakajari2010@gmail.com

    2016-05-06

    A composite material of reduced graphene oxide (rG) nanosheets with polyaniline (PANI) protonated by 5-sulfosalicylic acid has been synthesized via in situ oxidative polymerization method. The morphological and spectral characterizations have been done using FESEM and XRD measurements. The thermoelectric (TE) properties of the reduced graphene oxide-polyaniline composite (rG-P) has been studied in the temperature range from 300-400 K. The electrical conductivity and the Seebeck coefficient of rG-P is higher than the of pure PANI, while the thermal conductivity of the composite still keeps much low value ensuing an increase in the dimensionless figure of merit (ZT) in the wholemore » temperature range.« less

  2. Finite element analysis of Al 2024/Cu-Al-Ni shape memory alloy composites with defects/cracks

    NASA Astrophysics Data System (ADS)

    Kotresh, M.; Benal, M. M., Dr; Siddalinga Swamy, N. H., Dr

    2018-02-01

    In this work, a numerical approach to predict the stress field behaviour of defect/crack in shape memory alloy (SMA) particles reinforced composite known as the adaptive composite is presented. Simulation is based on the finite element method. The critical stress field approach was used to determine the stresses around defect/crack. Thereby stress amplification issue is being resolved. In this paper, the effect volume % of shape memory alloy and shape memory effect of reinforcement for as-cast and SME trained composites are examined and discussed. Shape memory effect known as training is achieved by pre-straining of reinforcement particles by equivalent changes in their expansion coefficients.

  3. Evaluation of a method for heat transfer measurements and thermal visualization using a composite of a heater element and liquid crystals. [thermal performance of turbine blade cooling configurations

    NASA Technical Reports Server (NTRS)

    Hippensteele, S. A.; Russell, L. M.; Stepka, F. S.

    1981-01-01

    Commercially available elements of a composite consisting of a plastic sheet coated with liquid crystal, another sheet with a thin layer of a conducting material (gold or carbon), and copper bus bar strips were evaluated and found to provide a simple, convenient, accurate, and low-cost measuring device for use in heat transfer research. The particular feature of the composite is its ability to obtain local heat transfer coefficients and isotherm patterns that provide visual evaluation of the thermal performances of turbine blade cooling configurations. Examples of the use of the composite are presented.

  4. The multimodal magnetoelectric effect in the ring-shaped magnetostrictive-piezoelectric bulk composites

    NASA Astrophysics Data System (ADS)

    Radchenko, G. S.; Filippov, D. A.; Laletin, V. M.

    2015-11-01

    The theoretical and experimental investigation of the direct magnetoelectric effect in the ring-type structures made of the bulk magnetostrictive-piezoelectric composites has been presented. The analytical expression for the magnetoelectric voltage coefficient has been obtained using the effective parameters method. The frequency dependence of this parameter is also analyzed. The dependence of the resonant frequency and the amplitude of this effect of the geometrical parameters of the ring for the first and second oscillation modes are presented. The experimental investigation of the direct magnetoelectric effect for the ring-type composite specimens consisting of the nickel ferrite spinel-PZT bulk composite is done. The obtained experimental data are in good agreement with the theoretical predictions.

  5. Improvement of acoustical characteristics : wideband bamboo based polymer composite

    NASA Astrophysics Data System (ADS)

    Farid, M.; Purniawan, A.; Rasyida, A.; Ramadhani, M.; Komariyah, S.

    2017-07-01

    Environmental friendly and comfortable materials are desirable for applications in the automobile interior. The objective of this research was to examine and develop bamboo based polymer composites applied to the sound absorption materials of automobile door panels. Morphological analysis of the polyurethane/bamboo powder composite materials was carried out using scanning electron microscope to reveal the microscopic material behavior and followed by the FTIR and TGA testing. The finding demonstrated that this acoustical polymer composite materials provided a potential wideband sound absorption material. The range of frequency can be controlled between 500 and 4000 Hz with an average of sound absorption coefficient around 0.411 and it met to the door panels criteria.

  6. Achieving high thermoelectric performance of Cu1.8S composites with WSe2 nanoparticles.

    PubMed

    Qin, Peng; Ge, Zhen-Hua; Chen, Yue-Xing; Chong, Xiaoyu; Feng, Jing; He, Jiaqing

    2018-08-24

    Polycrystalline p-type Cu 1.8 S composites with WSe 2 nanoparticles were fabricated by the mechanical alloying method combined with the spark plasma sintering technique. The Seebeck coefficient was significantly enhanced by the optimized carrier concentration, while the thermal conductivity was simultaneously decreased due to the refined grain and WSe 2 nanoparticles. An enhanced Seebeck coefficient of 110 μV K -1 and a reduced thermal conductivity of 0.68 W m -1 K -1 were obtained for the Cu 1.8 S + 1 wt% WSe 2 sample at 773 K, resulting in a remarkably enhanced peak ZT of 1.22 at 773 K, which is 2.5 times higher than that (0.49 at 773 K) of a pristine Cu 1.8 S sample. The cheap and environmentally friendly Cu 1.8 S-based materials with enhanced properties may find promising applications in thermoelectric devices.

  7. Multilayer Article Characterized by Low Coefficient of Thermal Expansion Outer Layer

    NASA Technical Reports Server (NTRS)

    Lee, Kang N. (Inventor)

    2004-01-01

    A multilayer article comprises a substrate comprising a ceramic or a silicon-containing metal alloy. The ceramic is a Si-containing ceramic or an oxide ceramic with or without silicon. An outer layer overlies the substrate and at least one intermediate layer is located between the outer layer and thc substrate. An optional bond layer is disposed between thc 1 least one intermediate layer and thc substrate. The at least one intermediate layer may comprise an optional chemical barrier layer adjacent the outer layer, a mullite-containing layer and an optional chemical barrier layer adjacent to the bond layer or substrate. The outer layer comprises a compound having a low coefficient of thermal expansion selected from one of the following systems: rare earth (RE) silicates; at least one of hafnia and hafnia-containing composite oxides; zirconia-containing composite oxides and combinations thereof.

  8. Thermal properties of Pr2/3Sr1/3MnO3 manganites:PdO composites

    NASA Astrophysics Data System (ADS)

    Rao, Ashok; Manjunatha, S. O.; Bhatt, Ramesh Chandra; Awana, V. P. S.; Lin, C. F.; Kuo, Y. K.; Poornesh, P.

    2017-10-01

    In the present communication the results on thermal conductivity, Seebeck coefficient and specific heat of Pr2/3Sr1/3MnO3:PdO composites are reported. All the samples exhibit a pronounced anomaly in thermal conductivity (κ) at their respective Curie temperatures, TC of the samples. It is also observed that the overall magnitude of κ decreases with increasing Pd content. The observed reduction of the total k(T) is discussed with various thermal scattering mechanisms. The temperature-dependent Seebeck coefficient data S(T) in the high temperature region is analyzed within the framework of Mott's polaron hopping model. The analysis of low-temperature S(T) data reveals that the electron-magnon scattering contribution dominates the thermoelectric transport at low temperatures. The magnetic contribution for the CP and change in entropy (ΔS) during the magnetic phase transition is also evaluated.

  9. Edge geometry effects on resonance response of electroplated cylindrical Ni/PZT/Ni magnetoelectric composites

    NASA Astrophysics Data System (ADS)

    Yakubov, Vladislav; Xu, Lirong; Volinsky, Alex A.; Qiao, Lijie; Pan, De'an

    2017-08-01

    Trilayer Ni/PZT/Ni cylindrical magnetoelectric (ME) composites were prepared by electrodeposition, a process, which creates sub-millimeter raised edges due to current concentration near sharp points. The ME response in both axial and vertical modes was measured with the edges, with only outer edges removed, and with both outer and inner edges removed. The ME voltage coefficient improved at resonance by 40% and 147% without the edges in the vertical and axial modes, respectively. The observed improvements in three different samples were only present at the ME resonance and no changes were detected outside of the ME resonance. Mechanical quality factor at resonance also improved with no effect on the resonant frequency. Experimentally demonstrated minor geometry changes resulted in substantial ME improvement at resonant frequency. This study demonstrates device performance optimization. The observed effects have been attributed to improved vibrations in terms of decreased damping coefficient and enhanced vibration amplitude at resonance.

  10. Piezoelectric nanoparticle-polymer composite foams.

    PubMed

    McCall, William R; Kim, Kanguk; Heath, Cory; La Pierre, Gina; Sirbuly, Donald J

    2014-11-26

    Piezoelectric polymer composite foams are synthesized using different sugar-templating strategies. By incorporating sugar grains directly into polydimethylsiloxane mixtures containing barium titanate nanoparticles and carbon nanotubes, followed by removal of the sugar after polymer curing, highly compliant materials with excellent piezoelectric properties can be fabricated. Porosities and elasticity are tuned by simply adjusting the sugar/polymer mass ratio which gave an upper bound on the porosity of 73% and a lower bound on the elastic coefficient of 32 kPa. The electrical performance of the foams showed a direct relationship between porosity and the piezoelectric outputs, giving piezoelectric coefficient values of ∼112 pC/N and a power output of ∼18 mW/cm3 under a load of 10 N for the highest porosity samples. These novel materials should find exciting use in a variety of applications including energy scavenging platforms, biosensors, and acoustic actuators.

  11. Friction and wear behavior of aluminum and composite airplane skins

    NASA Technical Reports Server (NTRS)

    Jackson, K. E.

    1984-01-01

    Friction and wear behavior was determined for small skin specimens under abrasive loading conditions typical of those occurring on the underside of a transport airplane during emergency belly landing. A test apparatus consisting of a standard belt sander provided the sliding surface. Small test specimens constructed of aluminum, standard graphite-epoxy composite, aramid-epoxy composite, and toughened-resin composites were tested undar a range of pressures, belt velocities, and belt-surface textures. The effects of these test variables on the wear rate and the coefficient of friction are discussed and comparisons are made between the composite materials and aluminum. The effect of fiber orientation in the composite materials on wear rate was also investigated. In addition, tests were performed in which thermocouples were imbedded into the various test specimens to obtain temperature-time histories during abrasion.

  12. Analysis of thermal mechanical fatigue in titanium matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. Steven; Mirdamadi, Massoud

    1993-01-01

    Titanium metal matrix composites are being evaluated for structural applications on advanced hypersonic vehicles. These composites are reinforced with ceramic fibers such as silicon carbide, SCS-6. This combination of matrix and fiber results in a high stiffness, high strength composite that has good retention of properties even at elevated temperatures. However, significant thermal stresses are developed within the composite between the fiber and the matrix due to the difference in their respective coefficients of thermal expansion. In addition to the internal stresses that are generated due to thermal cycling, the overall laminate will be subjected to considerable mechanical loads during the thermal cycling. In order to develop life prediction methodology, one must be able to predict the stresses and strains that occur in the composite's constituents during the complex loading. Thus the purpose is to describe such an analytical tool, VISCOPLY.

  13. Analytical prediction of moisture absorption/desorption in resin matrix composites exposed to aircraft environments

    NASA Technical Reports Server (NTRS)

    Unnam, J.; Tenney, D. R.

    1977-01-01

    The moisture absorption/desorption behavior of resin matrix composites was mathematically modeled by classical diffusion theory using an effective diffusion coefficient. Good agreement was found between calculated moisture content and published data for T300/5208 graphite fiber reinforced epoxy matrix composite. Weather Bureau data for Langley Air Force Base and Norfolk, Va., were used to calculate the amount of moisture a T300/5208 composite panel would contain if exposed outdoors. Results obtained by using average monthly weather data for several high aircraft usage locations around the world suggest that, except for desert areas, geographical locations should have only minimal effect on the moisture absorption level reached in composites. Solar radiation data together with cloud and wind information were included in the analysis to estimate an effective temperature of the composite panel during ground exposure.

  14. Experimental Investigation on Thermal Physical Properties of an Advanced Glass Fiber Composite Material

    NASA Astrophysics Data System (ADS)

    Guangfa, Gao; Yongchi, Li; Zheng, Jing; Shujie, Yuan

    Fiber reinforced composite materials were applied widely in aircraft and space vehicles engineering. Aimed to an advanced glass fiber reinforced composite material, a series of experiments for measuring thermal physical properties of this material were conducted, and the corresponding performance curves were obtained through statistic analyzing. The experimental results showed good consistency. And then the thermal physical parameters such as thermal expansion coefficient, engineering specific heat and sublimation heat were solved and calculated. This investigation provides an important foundation for the further research on the heat resistance and thermodynamic performance of this material.

  15. Glass ceramic seals to inconel

    DOEpatents

    McCollister, Howard L.; Reed, Scott T.

    1983-11-08

    A glass ceramic composition prepared by subjecting a glass composition comprising, by weight, 65-80% SiO.sub.2, 8-16%, Li.sub.2 O, 2-8% , Al.sub.2 O.sub.3, 1-8% K.sub.2 O, 1-5% P.sub.2 O.sub.5 and 1.5-7% B.sub.2 O.sub.3, to the following processing steps of heating the glass composition to a temperature sufficient to crystallize lithium metasilicate therein, holding the glass composition at a temperature and for a time period sufficient to dissolve the lithium metasilicate therein thereby creating cristobalite nucleii, cooling the glass composition and maintaining the composition at a temperature and for a time period sufficient to recrystallize lithium metasilicate therein, and thermally treating the glass composition at a temperature and for a time period sufficient to cause growth of cristobalite and further crystallization of lithium metasilicate producing a glass ceramic composition having a specific thermal expansion coefficient and products containing said composition.

  16. Local viscoelastic response of direct and indirect dental restorative composites measured by AFM.

    PubMed

    Grattarola, Laura; Derchi, Giacomo; Diaspro, Alberto; Gambaro, Carla; Salerno, Marco

    2018-06-08

    We investigated the viscoelastic response of direct and indirect dental restorative composites by the novel technique of AM-FM atomic force microscopy. We selected four composites for direct restorations (Adonis, Optifil, EPH, CME) and three composites for indirect restorations (Gradia, Estenia, Signum). Scanning electron microscopy with micro-analysis was also used to support the results. The mean storage modulus of all composites was in the range of 10.2-15.2 GPa. EPH was the stiffest (p<0.05 vs. all other composites but Adonis and Estenia), while no significant difference was observed between direct and indirect group (p≥0.05). For the loss tangent, Gradia had the highest value (~0.3), different (p<0.05) from Optifil (~0.01) and EPH (~0.04) despite the large coefficient of variation (24%), and the direct composites showed higher loss tangent (p<0.01) than the indirect composites. All composites exhibited minor contrast at the edge of fillers, showing that these are pre-polymerized, as confirmed by EDS.

  17. Piezoelectric and mechanical properties of fatigue resistant, self-healing PZT-ionomer composites

    NASA Astrophysics Data System (ADS)

    James, N. K.; Lafont, U.; van der Zwaag, S.; Groen, W. A.

    2014-05-01

    Piezoelectric ceramic-polymer composites with 0-3 connectivity were fabricated using lead zirconium titanate (PZT) powder dispersed in an ionomer (Zn ionomer) and its reference ethylene methacrylic acid copolymer (EMAA) polymer matrix. The PZT-Zn ionomer and PZT-EMAA composites were prepared by melt extrusion followed by hot pressing. The effects of poling conditions such as temperature, time and electric field on the piezoelectric properties of the composites were investigated. The experimentally observed piezoelectric charge coefficient and dielectric constant of the composites were compared with theoretical models. The results show that PZT-Zn ionomer composites have better piezoelectric properties compared to PZT-EMAA composites. The static and fatigue properties of the composites were investigated. The PZT-Zn ionomer composites were found to have excellent fatigue resistance even at strain levels of 4%. Due to the self-healing capabilities of the ionomer matrix, the loss of piezoelectric properties after high strain tensile cyclic loading could be partially recovered by thermal healing.

  18. Glass ceramic-to-metal seals

    DOEpatents

    Not Available

    1982-04-19

    A glass ceramic composition prepared by subjecting a glass composition comprising, by weight, 65 to 80% SiO/sub 2/, 8 to 16% Li/sub 2/O, 2 to 8% Al/sub 2/O/sub 3/, 1 to 8% K/sub 2/O, 1 to 5% P/sub 2/O/sub 5/ and 1.5 to 7% B/sub 2/O/sub 3/, to the following processing steps of heating the glass composition to a temperature sufficient to crystallize lithium metasilicate therein, holding the glass composition at a temperature and for a time period sufficient to dissolve the lithium metasilicate therein thereby creating cristobalite nucleii, cooling the glass composition and maintaining the composition at a temperature and for a time period sufficient to recrystallize lithium metasilicate therein, and thermally treating the glass composition at a temperature and for a time period sufficient to caus growth of cristobalite and further crystallization of lithium metasilicate producing a glass ceramic composition having a specific thermal expansion coefficient and products containing said composition.

  19. Anomalous behavior of poly(ethylene glycol) p-tert-octylphenyl ether (Triton X-100) in the water-cyclohexane system

    NASA Astrophysics Data System (ADS)

    Chernysheva, M. G.; Tyasto, Z. A.; Badun, G. A.

    2009-02-01

    The distribution of Triton X-100 nonionic surfactant in the water-cyclohexane system was investigated by the scintillating phase method. It was shown that an increase in the distribution coefficient as the volume ratio between the aqueous and organic phases grew was explained by the presence in Triton X-100 of homologues with different numbers of ethoxyethyl groups and with the distribution coefficients between the phases different by many times. For the real composition of Triton X-100, distribution coefficients of components of the surfactant were estimated, and the behavior of the surfactant in the system under consideration was simulated; the results were in close agreement with the experimental data.

  20. Thermoelectric properties of non-stoichiometric lanthanum sulfides

    NASA Technical Reports Server (NTRS)

    Shapiro, E.; Danielson, L. R.

    1983-01-01

    The lanthanum sulfides are promising candidate materials for high-efficiency thermoelectric applications at temperatures up to 1300 C. The non-stoichiometric lanthanum sulfides (LaS(x), where x is in the range 1.33-1.50) appear to possess the most favorable thermoelectric properties. The Seebeck coefficient and resistivity vary significantly with composition, so that an optimum value of alpha sq/rho (where alpha is the Seebeck coefficient and rho is the resistivity) can be chosen. The thermal conductivity remains approximately constant with stoichiometry, so a material with an optimum value of alpha sq/rho should possess the optimum figure-of-merit. Data for the Seebeck coefficient and electrical resistivity of non-stoichiometric lanthanum sulfides will be pressed, together with structural properties of these materials.

  1. Thermal expansion and elastic anisotropy in single crystal Al2O3 and SiC reinforcements

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Li, Zhuang; Bradt, Richard C.

    1994-01-01

    In single crystal form, SiC and Al2O3 are attractive reinforcing components for high temperature composites. In this study, the axial coefficients of thermal expansion and single crystal elastic constants of SiC and Al2O3 were used to determine their coefficients of thermal expansion and Young's moduli as a function of crystallographic orientation and temperature. SiC and Al2O3 exhibit a strong variation of Young's modulus with orientation; however, their moduli and anisotropies are weak functions of temperature below 1000 C. The coefficients of thermal expansion exhibit significant temperature dependence, and that of the non-cubic Al2O3 is also a function of crystallographic orientation.

  2. Wavelength dependence of aerosol backscatter coefficients obtained by multiple wavelength Lidar measurements

    NASA Technical Reports Server (NTRS)

    Sasano, Y.; Browell, E. V.

    1986-01-01

    Aerosols are often classified into several general types according to their origins and composition, such as maritime, continental, and stratospheric aerosols, and these aerosol types generally have different characteristics in chemical and physical properties. The present study aims at demonstrating the potential for distinguishing these aerosol types by the wavelength dependence of their backscatter coefficients obtained from quantitative analyses of multiple wavelength lidar signals. Data from the NASA Airborne Differential Abosrption lidar (DIAL) S ystems, which can measure aerosol backscatter profiles at wavelenghts of 300, 600, and 1064 nm and ozone profiles of backscatter coefficients for these three wavelength were derived from the observations of aerosols of different types. Observations were performed over the Atlantic Ocean, the Southwestern United States, and French Guyana.

  3. Multigrid methods for differential equations with highly oscillatory coefficients

    NASA Technical Reports Server (NTRS)

    Engquist, Bjorn; Luo, Erding

    1993-01-01

    New coarse grid multigrid operators for problems with highly oscillatory coefficients are developed. These types of operators are necessary when the characters of the differential equations on coarser grids or longer wavelengths are different from that on the fine grid. Elliptic problems for composite materials and different classes of hyperbolic problems are practical examples. The new coarse grid operators can be constructed directly based on the homogenized differential operators or hierarchically computed from the finest grid. Convergence analysis based on the homogenization theory is given for elliptic problems with periodic coefficients and some hyperbolic problems. These are classes of equations for which there exists a fairly complete theory for the interaction between shorter and longer wavelengths in the problems. Numerical examples are presented.

  4. Trace element partitioning between plagioclase and melt: An investigation of the impact of experimental and analytical procedures

    NASA Astrophysics Data System (ADS)

    Nielsen, Roger L.; Ustunisik, Gokce; Weinsteiger, Allison B.; Tepley, Frank J.; Johnston, A. Dana; Kent, Adam J. R.

    2017-09-01

    Quantitative models of petrologic processes require accurate partition coefficients. Our ability to obtain accurate partition coefficients is constrained by their dependence on pressure temperature and composition, and on the experimental and analytical techniques we apply. The source and magnitude of error in experimental studies of trace element partitioning may go unrecognized if one examines only the processed published data. The most important sources of error are relict crystals, and analyses of more than one phase in the analytical volume. Because we have typically published averaged data, identification of compromised data is difficult if not impossible. We addressed this problem by examining unprocessed data from plagioclase/melt partitioning experiments, by comparing models based on that data with existing partitioning models, and evaluated the degree to which the partitioning models are dependent on the calibration data. We found that partitioning models are dependent on the calibration data in ways that result in erroneous model values, and that the error will be systematic and dependent on the value of the partition coefficient. In effect, use of different calibration datasets will result in partitioning models whose results are systematically biased, and that one can arrive at different and conflicting conclusions depending on how a model is calibrated, defeating the purpose of applying the models. Ultimately this is an experimental data problem, which can be solved if we publish individual analyses (not averages) or use a projection method wherein we use an independent compositional constraint to identify and estimate the uncontaminated composition of each phase.

  5. Two Computer Programs for the Statistical Evaluation of a Weighted Linear Composite.

    ERIC Educational Resources Information Center

    Sands, William A.

    1978-01-01

    Two computer programs (one batch, one interactive) are designed to provide statistics for a weighted linear combination of several component variables. Both programs provide mean, variance, standard deviation, and a validity coefficient. (Author/JKS)

  6. An investigation on the tribological properties of Co(ReO4)2/MoS2 composite as potential lubricating additive at various temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Junhai; Lu, Bing; Zhang, Lixiu; Li, Ting; Yan, Tingting; Li, Mengxu

    2018-02-01

    The Co(ReO4)2 powder was fabricated via the aqueous solution method, and mixed with MoS2 powder using ball milling technique. A certain concentration of Co(ReO4)2/MoS2 composite additive was dispersed into the poly alpha olefin base oil with the assistance of surface active agents. The load-carrying property and lubricating behavior of base oil containing a certain content of Co(ReO4)2/MoS2 composite additive at various temperatures were evaluated by four-ball test and ball-on-disc sliding friction test. The physical properties and friction-reducing mechanism of synthesized composite were ascertained by a series of characterization techniques including X-ray diffraction, scanning electron microscopy-energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and differential thermal analysis/thermogravimetry. The four-ball test results suggested the Co(ReO4)2/MoS2 composite additive could effectively promote the load-carrying capacity of base oil, and decrease the friction coefficient as well as wear scar diameter. Ball-on-disc sliding friction test results showed that the base oil with Co(ReO4)2/MoS2 composite additive possessed lower friction coefficients than that of base oil in the whole temperature range, particularly at high temperatures. The protective layer consisted of composite additive and native oxides from superalloy substrate formed on the worn surface to prevent the direct contact between friction pair. The Co(ReO4)2/MoS2 composite played a dominant role in friction-reducing function in the protective layer at elevated temperatures, and the reason for this was that MoS2 possessed layered structure and superior adsorption capacity, and Co(ReO4)2 had experienced thermal softening with elevated temperatures and maintained shear-susceptible hexagonal structure.

  7. A method for radiological characterization based on fluence conversion coefficients

    NASA Astrophysics Data System (ADS)

    Froeschl, Robert

    2018-06-01

    Radiological characterization of components in accelerator environments is often required to ensure adequate radiation protection during maintenance, transport and handling as well as for the selection of the proper disposal pathway. The relevant quantities are typical the weighted sums of specific activities with radionuclide-specific weighting coefficients. Traditional methods based on Monte Carlo simulations are radionuclide creation-event based or the particle fluences in the regions of interest are scored and then off-line weighted with radionuclide production cross sections. The presented method bases the radiological characterization on a set of fluence conversion coefficients. For a given irradiation profile and cool-down time, radionuclide production cross-sections, material composition and radionuclide-specific weighting coefficients, a set of particle type and energy dependent fluence conversion coefficients is computed. These fluence conversion coefficients can then be used in a Monte Carlo transport code to perform on-line weighting to directly obtain the desired radiological characterization, either by using built-in multiplier features such as in the PHITS code or by writing a dedicated user routine such as for the FLUKA code. The presented method has been validated against the standard event-based methods directly available in Monte Carlo transport codes.

  8. Measurement of Soret coefficients in a ternary mixture of toluene-methanol-cyclohexane in convection-free environment

    NASA Astrophysics Data System (ADS)

    Mialdun, A.; Ryzhkov, I.; Khlybov, O.; Lyubimova, T.; Shevtsova, V.

    2018-01-01

    We report on the measurement of Soret (ST) coefficients in the ternary system toluene (T)-methanol (M)-cyclohexane (Ch) onboard the International Space Station in the experiment selectable optical diagnostic instrument/DCMIX2 (Diffusion Coefficients Measurement in ternary mIXtures). Nine experiments were conducted in the range of mean temperatures between 298.15 K and 306.15 K in the mixture with composition 0.62 (T)-0.31 (M)-0.07 (Ch) in mass fractions. A linear dependence of the Soret coefficients on temperature was established for the ternary mixture. It has also been found that, over considered range of mean temperatures, the Soret coefficients of toluene are small and positive, while the Soret coefficients for methanol are negative and, at least, two times larger. The present work also presents a comprehensive study of possible methodologies to process raw data from the Soret experiment in ternary mixtures. All the experiments were processed by seven different schemes and two of them were identified as the most reliable. We also investigate the error propagation and explain the reasons for the discrepancy of the results obtained by different schemes.

  9. Characterization of the effective electrostriction coefficients in ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Kholkin, A. L.; Akdogan, E. K.; Safari, A.; Chauvy, P.-F.; Setter, N.

    2001-06-01

    Electromechanical properties of a number of ferroelectric films including PbZrxTi1-xO3(PZT), 0.9PbMg1/3Nb2/3O3-0.1PbTiO3(PMN-PT), and SrBi2Ta2O9(SBT) are investigated using laser interferometry combined with conventional dielectric measurements. Effective electrostriction coefficients of the films, Qeff, are determined using a linearized electrostriction equation that couples longitudinal piezoelectric coefficient, d33, with the polarization and dielectric constant. It is shown that, in PZT films, electrostriction coefficients slightly increase with applied electric field, reflecting the weak contribution of non-180° domains to piezoelectric properties. In contrast, in PMN-PT and SBT films electrostriction coefficients are field independent, indicating the intrinsic nature of the piezoelectric response. The experimental values of Qeff are significantly smaller than those of corresponding bulk materials due to substrate clamping and possible size effects. Electrostriction coefficients of PZT layers are shown to depend strongly on the composition and preferred orientation of the grains. In particular, Qeff of (100) textured rhombohedral films (x=0.7) is significantly greater than that of (111) layers. Thus large anisotropy of the electrostrictive coefficients is responsible for recently observed large piezoelectric coefficients of (100) textured PZT films. Effective electrostriction coefficients obtained by laser interferometry allow evaluation of the electromechanical properties of ferroelectric films based solely on the dielectric parameters and thus are very useful in the design and fabrication of microsensors and microactuators.

  10. The development of a neutralizing amines based reagent for maintaining the water chemistry for medium and high pressures steam boilers

    NASA Astrophysics Data System (ADS)

    Butakova, M. V.; Orlov, K. A.; Guseva, O. V.

    2017-11-01

    An overview of the development for neutralizing amine based reagent for water chemistry of steam boilers for medium and high pressures was given. Total values of the neutralization constants and the distribution coefficients of the compositions selected as a main criteria for reagent composition. Experimental results of using this new reagent for water chemistry in HRSG of power plant in oil-production company are discussed.

  11. Effect of space exposure of some epoxy matrix composites on their thermal expansion and mechanical properties (AO 138-8)

    NASA Technical Reports Server (NTRS)

    Jabs, Heinrich

    1991-01-01

    The experiment objectives are: to detect a variation of the coefficient of thermal expansion (CTE) of composite samples; to detect an evolution of mechanical properties; to compare the behavior of two epoxy resins. The CTE is measured by interferometric method in a vacuum chamber. The following mechanical tests are achieved on the samples: interlaminar shear strength; flexural strength; flatwise tensile strength. The results are reported.

  12. Nanoscale Engineering of Multiferroic Hybrid Composites for Micro- and Nano-scale Devices

    DTIC Science & Technology

    2012-09-14

    saturation field of the nickel ferrite layer [7]. The ME coupling dE coefficient is conventionally defined as am =— (5), where E and H denote the electric...of Co- ferrite in granular composites measured at different electric fields Voltage(V) 0 To realize the first objective a series of NBT-CFO...sample with intermediate (30%) content of Co- ferrite [publications 3,5]. The effect of the electric field on ferromagnetic resonance curves is

  13. Structure and tribological properties of composite materials based on Al-Cu-Fe formed at high pressure

    NASA Astrophysics Data System (ADS)

    Golovkova, E. A.; Ekimov, E. A.; Ivanov, A. S.; Kruglov, V. S.; Pal', A. F.; Ryabinkin, A. N.; Serov, A. O.; Starostin, A. N.; Tsetlin, M. B.

    2017-11-01

    The use of high pressure ( 8 GPa) in the formation of composite quasi-crystalline materials from powders made it possible to create practically poreless samples with a density close to the maximum known for this type of quasi-crystals. For samples with a nickel binder, sintered at a temperature of 550°C, a very low coefficient of friction was obtained, which retain its value during the testing.

  14. Co-Ordination Compounds as Sensitizers for Percussion Cap Compositions

    DTIC Science & Technology

    1949-01-01

    table. TABLE III Time elapsed (hours) Mixture Sensitivity* (inches/ £ lb.) Ballistic Pendulum » Power coefficient C. of V. of trace lengths...dimension C = 50-52. The power co-efficient is obtained by dividing the average trace length for 10 of the caps under trial by the average trace ...resulting in a high C. of V. The trace lengths as measured were as follows: 8.25, 8.30, 4.55, 10.65, 9.55, 9.0C, 8.46, 8.42, 8.21, 8.34 inches. The

  15. As-Built design specification for the CLASFYT program. [production of classification files - crop inventory

    NASA Technical Reports Server (NTRS)

    Horton, C. L. (Principal Investigator)

    1981-01-01

    The CLASFYT program is described in detail. The program produces a one-channel universal-formatted classification file. Trajectory coefficients and a composite set of tolerance values are calculated from five acquisitions of radiance values in each of the training fields corresponding to up to ten agricultural products. These coefficients and tolerance values are used to classify each pixel in the test field of the same segment to be the same agricultural product as one of the training fields, none of the products or a screened pixel.

  16. Studies on temperature coefficient of resistivity of Cu2Se - V2O5 nanocomposite

    NASA Astrophysics Data System (ADS)

    Sairam, S.; Rai, Ranjan; Molli, Muralikrishna

    2018-05-01

    Nanocomposite of Copper Selenide in Vanadium Pentoxide (Cu2Se-V2O5) was prepared and characterized using XRD for phase analysis, SEM for morphology, and EDAX for elemental analysis. Electrical resistivity measurement was carried out using van der Pauw method as a function of temperature from 35 °C to 170 °C for 5 mol% Cu2Se - 95 mol%V2O5 composite. The temperature coefficient of resistivity was found to be -1.8% per °C.

  17. Piezoelectric and dielectric characterization of corona and contact poled PZT-epoxy-MWCNT bulk composites

    NASA Astrophysics Data System (ADS)

    Banerjee, S.; Cook-Chennault, K. A.; Du, W.; Sundar, U.; Halim, H.; Tang, A.

    2016-11-01

    Three-phase lead zirconate titanate (PZT, PbZr0.52Ti0.48O3)-epoxy-multi-walled carbon nanotube (MWCNT) bulk composites were prepared, where the volume fraction of PZT was held constant at 30%, while the volume fraction of the MWCNTs was varied from 1.0%-10%. The samples were poled using either a parallel plate contact or contactless (corona) poling technique. The piezoelectric strain coefficient (d33), dielectric constant (ɛ), and dielectric loss tangent (tan δ) of the samples were measured at 110 Hz, and compared as a function of poling technique and volume fraction of MWCNTs. The highest values for dielectric constant and piezoelectric strain coefficients were 465.82 and 18.87 pC/N for MWCNT volume fractions of 10% and 6%, respectively. These values were obtained for samples that were poled using the corona contactless method. The impedance and dielectric spectra of the composites were recorded over a frequency range of 100 Hz-20 MHz. The impedance values observed for parallel-plate contact poled samples are higher than that of corona poled composites. The fractured surface morphology and distribution of the PZT particles and MWCNTs were observed with the aid of electron dispersion spectroscopy and a scanning electron microscope. The surface morphology of the MWCNTs was observed with the aid of a field emission transmission electron microscope.

  18. Association between Body Composition and Motor Performance in Preschool Children.

    PubMed

    Kakebeeke, Tanja H; Lanzi, Stefano; Zysset, Annina E; Arhab, Amar; Messerli-Bürgy, Nadine; Stuelb, Kerstin; Leeger-Aschmann, Claudia S; Schmutz, Einat A; Meyer, Andrea H; Kriemler, Susi; Munsch, Simone; Jenni, Oskar G; Puder, Jardena J

    2017-01-01

    Being overweight makes physical movement more difficult. Our aim was to investigate the association between body composition and motor performance in preschool children. A total of 476 predominantly normal-weight preschool children (age 3.9 ± 0.7 years; m/f: 251/225; BMI 16.0 ± 1.4 kg/m2) participated in the Swiss Preschoolers' Health Study (SPLASHY). Body composition assessments included skinfold thickness, waist circumference (WC), and BMI. The Zurich Neuromotor Assessment (ZNA) was used to assess gross and fine motor tasks. After adjustment for age, sex, socioeconomic status, sociocultural characteristics, and physical activity (assessed with accelerometers), skinfold thickness and WC were both inversely correlated with jumping sideward (gross motor task β-coefficient -1.92, p = 0.027; and -3.34, p = 0.014, respectively), while BMI was positively correlated with running performance (gross motor task β-coefficient 9.12, p = 0.001). No significant associations were found between body composition measures and fine motor tasks. The inverse associations between skinfold thickness or WC and jumping sideward indicates that children with high fat mass may be less proficient in certain gross motor tasks. The positive association between BMI and running suggests that BMI might be an indicator of fat-free (i.e., muscle) mass in predominately normal-weight preschool children. © 2017 The Author(s) Published by S. Karger GmbH, Freiburg.

  19. Composition- and crystallinity-dependent thermoelectric properties of ternary BixSb2-xTey films

    NASA Astrophysics Data System (ADS)

    Kim, Jiwon; Lim, Jae-Hong; Myung, Nosang V.

    2018-01-01

    BixSb2-xTey films with controlled compositions were synthesized by a simple and cost-effective electrodeposition technique followed by post-annealing, for thermoelectric applications. Tailoring the chemical composition of ternary BixSb2-xTey materials is critical to adjust the carrier concentration and carrier type, which are crucial to determine their thermoelectric performance. Herein, the composition of electrodeposited BixSb2-xTey film was simply tailored by controlling the [Sb]/[Bi] ratio in the electrolytes while maintaining their dense and uniform morphology. Crystallographic properties of the BixSb2-xTey films, such as crystallinity and grain size changes, were confirmed by X-ray diffraction. Room-temperature measurements of electrical conductivity, Hall mobility, and carrier concentration revealed that the substitution of Bi with Sb decreased the carrier concentration, and increased the mobility. The Seebeck coefficient of the ternary BixSb2-xTey films transitioned between p- and n-type characteristics with an increase in the Bi content. Moreover, the mobility-dependent electrical conductivity of the Bi10Sb30Te60 film resulted in a high Seebeck coefficient owing to decreased carrier concentration of the film, leading to a power factor (PF) of ∼490 μW/m K2. This is more than 10 times higher than the PF values of binary nanocrystalline Sb2Te3 films.

  20. Development of wear resistant NFSS-HA novel biocomposites and study of their tribological properties for orthopaedic applications.

    PubMed

    Younesi, M; Bahrololoom, M E; Fooladfar, H

    2010-02-01

    Implants made of nickel free austenitic stainless steel can reduce the toxic effect of released nickel ion and compounds from the conventional stainless steels. On the other hand, hydroxyapatite is a ceramic which has been used in orthopaedic applications due to its good osteoconductivity, biocompatibility and bioactivity. However, there is no evidence in the literature up to now on producing composites based on nickel free stainless steel and hydroxyapatite and study of their tribology. The aim of this work was to produce novel biocomposites made up of nickel free stainless steel with hydroxyapatite (prepared by heat treating bone ash) and studying their tribology under various loads in air and in Ringer's physiological solution. Different amounts of hydroxyapatite powder (10, 20, 30 and 40% Vol.) were added to this nickel free stainless steel powder to get the biocomposites. Variation of their density, hardness, wear resistance and friction with the ceramic (hydroxyapatite) content and wear load were investigated in air and in Ringer's solution. The density of the composites was decreased by increasing the volume percentage of the hydroxyapatite, while wear resistance of the composites was increased. The wear mechanism of these composites was changed by increasing the wear load and consequently the volume loss was enhanced dramatically. Furthermore, by increasing the sliding distance, the rate of volume loss was decreased slightly. The friction coefficient of the composites was also decreased by increasing the weight percentage of hydroxyapatite. Effect of the physiological Ringer's solution on wear resistance and friction coefficient of the composites was nearly negligible. The wear mechanisms of the samples were identified by studying the SEM images of the worn surfaces of the tested samples in different wear loads and HA contents. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Buckling and postbuckling of composite panels with cutouts subjected to combined edge shear and temperature change

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Kim, Yong H.

    1995-01-01

    The results of a detailed study of the buckling and postbuckling responses of composite panels with central circular cutouts are presented. The panels are subjected to combined edge shear and temperature change. The panels are discretized by using a two-field degenerate solid element with each of the displacement components having a linear variation throughout the thickness of the panel. The fundamental unknowns consist of the average mechanical strains through the thickness and the displacement components. The effects of geometric nonlinearities and laminated anisotropic material behavior are included. The stability boundary, postbuckling response and the hierarchical sensitivity coefficients are evaluated. The hierarchical sensitivity coefficients measure the sensitivity of the buckling and postbuckling responses to variations in the panel stiffnesses, and the material properties of both the individual layers and the constituents (fibers and matrix). Numerical results are presented for composite panels with central circular cutouts subjected to combined edge shear and temperature change, showing the effects of variations in the hole diameter, laminate stacking sequence and fiber orientation, on the stability boundary and postbuckling response and their sensitivity to changes in the various panel parameters.

  2. Influence of condensed species on thermo-physical properties of LTE and non-LTE SF6-Cu mixture

    NASA Astrophysics Data System (ADS)

    Chen, Zhexin; Wu, Yi; Yang, Fei; Sun, Hao; Rong, Mingzhe; Wang, Chunlin

    2017-10-01

    SF6-Cu mixture is frequently formed in high-voltage circuit breakers due to the electrode erosion and metal vapor diffusion. During the interruption process, the multiphase effect and deviation from local thermal equilibrium (non-LTE assumption) can both affect the thermo-physical of the arc plasma and further influence the performance of circuit breaker. In this paper, thermo-physical properties, namely composition, thermodynamic properties and transport coefficients are calculated for multiphase SF6-Cu mixture with and without LTE assumption. The composition is confirmed by combining classical two-temperature mass action law with phase equilibrium condition deduced from second law of thermodynamics. The thermodynamic properties and transport coefficients are calculated using the multiphase composition result. The influence of condensed species on thermo-physical properties is discussed at different temperature, pressure (0.1-10 atm), non-equilibrium degrees (1-10), and copper molar proportions (0-50%). It is found that the multiphase effect has significant influence on specific enthalpy, specific heat and heavy species thermal conductivity in both LTE and non-LTE SF6-Cu system. This paper provides a more accurate database for computational fluid dynamic calculation.

  3. Growth and piezoelectric properties of Ca3Nb(Al0.5Ga0.5)3Si2O14 crystals with langasite structure

    NASA Astrophysics Data System (ADS)

    Xiong, Kainan; Zheng, Yanqing; Tu, Xiaoniu; Jiang, Bohan; Cao, Shuoliang; Shi, Erwei

    2017-06-01

    Piezoelectric crystals Ca3Nb(Al0.5Ga0.5)3Si2O14 (CNAGS) with langasite structure have been successfully grown by Czochralski method. In this work, the crystal structure, quality, chemical composition, piezoelectric properties, electric resistivity and optical properties of the as-grown crystals were characterized. The full width at half-maximum (FWHM) of the rocking curve of CNAGS was found to be 23″. The chemical compositions of CNAGS crystals are very close to that of initial compositions. At room temperature, the piezoelectric coefficients d11 and d14 of CNAGS crystals are 4.12 pC/N and -5.03 pC/N, and the electromechanical coupling coefficients k12 and k26 are also determined as 11.6% and 18.3%, respectively. The electric resistivity of as-growth crystal was found to be on the order of 2×108 Ω cm at 500 °C and 1×106 Ω cm at 800 °C. And the transmittances of CNAGS crystals were found to be over 80% in the wavelength range of 700-2700 nm.

  4. NMR and molecular dynamics study of the size, shape, and composition of reverse micelles in a cetyltrimethylammonium bromide (CTAB)/n-hexane/pentanol/water microemulsion.

    PubMed

    Mills, Amanda J; Wilkie, John; Britton, Melanie M

    2014-09-11

    The size, shape, and composition of reverse micelles (RMs) in a cetyltrimethylammonium bromide (CTAB)/pentanol/n-hexane/water microemulsion were investigated using pulsed gradient stimulated echo (PGSTE) nuclear magnetic resonance (NMR) measurements and molecular modeling. PGSTE data were collected at observation times (Δ) of 10, 40, and 450 ms. At long observation times, CTAB and pentanol exhibited single diffusion coefficients. However, at short (Δ ≤ 40 ms) observation times both CTAB and pentanol exhibited slow and fast diffusion coefficients. These NMR data indicate that both CTAB and pentanol molecules reside in different environments within the microemulsion and that there is exchange between regions on the millisecond time scale. Molecular dynamic simulations of the CTAB RM, in a solvent box containing n-hexane and pentanol, produced an ellipsoid shaped RM. Using structural parameters from these simulations and the Stokes-Einstein relation, the structure factor and dimensions of the reverse micelle were determined. Analysis of the composition of the interphase also showed that there was a variation in the ratio of surfactant to cosurfactant molecules depending on the curvature of the interphase.

  5. Quality control tool of electrode coating for lithium-ion batteries based on X-ray radiography

    NASA Astrophysics Data System (ADS)

    Etiemble, A.; Besnard, N.; Adrien, J.; Tran-Van, P.; Gautier, L.; Lestriez, B.; Maire, E.

    2015-12-01

    A simple and efficient method, based on X-ray radiography, is developed to check the quality (homogeneity of the thickness, presence of defects) of NMC-, LFP- and NMC/LFP-based electrode coating for Li-ion batteries at the scale of several cm2 with a resolution of 20 μm. As a first step, the attenuation coefficient of NMC- and LFP-based coating is experimentally determined according to the Beer-Lambert law. Then, the attenuation coefficient of each active material is estimated from these experimental results and X-ray attenuation databases, which allows establishing an attenuation law for any coating composition. Finally, thanks to this relationship, the thickness can be evaluated in each spot of the film and the defects, such as pinholes or broad edges with gradual decrease of the thickness coating, can be detected. The analysis of NMC-, LFP- and NMC/LFP-based electrodes shows that the coating quality decreases as coating thickness increases and as the nanometric vs. micrometric material content increases in the coating composition. This reveals detrimental aspects of nanomaterials with respect to their use in composite electrode manufactured through conventional slot-die or casting process.

  6. Acoustical evaluation of carbonized and activated cotton nonwovens.

    PubMed

    Jiang, N; Chen, J Y; Parikh, D V

    2009-12-01

    An activated carbon fiber nonwoven (ACF) was manufactured from a cotton nonwoven fabric. For the ACF acoustic application, a nonwoven composite of ACF with cotton nonwoven as a base layer was developed. Also produced were the composites of the cotton nonwoven base layer with a layer of glassfiber nonwoven, and the cotton nonwoven base layer with a layer of cotton fiber nonwoven. Their noise absorption coefficients and sound transmission loss were measured using the Brüel and Kjaer impedance tube instrument. Statistical significance of the differences between the composites was tested using the method of Duncan's grouping. The study concluded that the ACF composite exhibited a greater ability to absorb normal incidence sound waves than the composites with either glassfiber or cotton fiber. The analysis of sound transmission loss revealed that the three composites still obeyed the mass law of transmission loss. The composite with the surface layer of cotton fiber nonwoven possessed a higher fabric density and therefore showed a better sound insulation than the composites with glassfiber and ACF.

  7. Relationship between Agronomic Parameters, Phenolic Composition of Grape Skin, and Texture Properties of Vitis vinifera L. cv. Tempranillo.

    PubMed

    García-Estévez, Ignacio; Andrés-García, Paula; Alcalde-Eon, Cristina; Giacosa, Simone; Rolle, Luca; Rivas-Gonzalo, Julián C; Quijada-Morín, Natalia; Escribano-Bailón, M Teresa

    2015-09-09

    The relationship between the agronomic parameters of grapevine and the phenolic composition of skin of Vitis vinifera L. cv. Tempranillo grapes was assessed. The physical and mechanical properties of berries and their skins were also determined and correlated to the chemical composition. Results showed a significant negative correlation between grapevine vigor-related parameters (such as leaf area and bunch weight) and anthocyanin composition, whereas the percentage (w/w) of seeds was negatively correlated with the amount of flavanols of grape skins. Texture properties of grape skins also showed an important relationship with chemical composition. Berry hardness showed a negative correlation with the coumaroyl-anthocyanin derivatives, but it was positively correlated to skin flavanic composition. Moreover, significant regressions with high coefficients of determination were found between phenolic composition and grapevine vigor-related and texture variables, thus pointing out that these parameters might be useful for estimating the phenolic composition of grape skins.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tietz, F., E-mail: f.tietz@fz-juelich.de; Arul Raj, I.; Ma, Q.

    An overview is presented on the variation of electrical conductivity, oxygen permeation, and thermal expansion coefficient as a function of the composition of perovskites in the quasi-ternary system LaFeO{sub 3}–LaCoO{sub 3}–LaNiO{sub 3}. Powders of thirteen nominal perovskite compositions were synthesized under identical conditions by the Pechini method. The powder X-ray diffraction data of two series, namely La(Ni{sub 0.5}Fe{sub 0.5}){sub 1−x}Co{sub x}O{sub 3} and LaNi{sub 0.5-x}Fe{sub x}Co{sub 0.5}O{sub 3}, are presented after the powders had been sintered at 1100 °C for 6 h in air. The measurements revealed a rhombohedral structure for all compositions except LaNi{sub 0.5}Fe{sub 0.5}O{sub 3} for whichmore » 60% rhombohedral and 40% orthorhombic phase was found. The maximum DC electrical conductivity value of the perovskites at 800 °C was 1229 S cm{sup −1} for the composition LaCoO{sub 3} and the minimum was 91 S cm{sup −1} for the composition LaCo{sub 0.5}Fe{sub 0.5}O{sub 3}. The oxygen permeation of samples with promising conductivities at 800 °C was one order of magnitude lower than that of La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3} (LSCF). The highest value of 0.017 ml cm{sup −2} min{sup −1} at 950 °C was obtained with LaNi{sub 0.5}Co{sub 0.5}O{sub 3}. The coefficients of thermal expansion varied in the range of 13.2×10{sup −6} K{sup −1} and 21.9×10{sup −6} K{sup −1} for LaNi{sub 0.5}Fe{sub 0.5}O{sub 3} and LaCoO{sub 3}, respectively. {sup 57}Fe Mössbauer spectroscopy was used as probe for the oxidation states, local environment and magnetic properties of iron ions as a function of chemical composition. The substitution had a great influence on the chemical properties of the materials. - Graphical abstract: Compositional dependence of isothermal electrical conductivity at 800 °C and thermal expansion coefficient in the series La(Fe{sub 0.5}Ni{sub 0.5}){sub (1−x)}Co{sub x}O{sub 3} and LaNi{sub 0.5−x}Fe{sub x}Co{sub 0.5}O{sub 3}.« less

  9. On-line consolidation of thermoplastic composites

    NASA Astrophysics Data System (ADS)

    Shih, Po-Jen

    An on-line consolidation system, which includes a computer-controlled filament winding machine and a consolidation head assembly, has been designed and constructed to fabricate composite parts from thermoplastic towpregs. A statistical approach was used to determine the significant processing parameters and their effect on the mechanical and physical properties of composite cylinders fabricated by on-line consolidation. A central composite experimental design was used to select the processing conditions for manufacturing the composite cylinders. The thickness, density, void content, degree of crystallinity and interlaminar shear strength (ILSS) were measured for each composite cylinder. Micrographs showed that complete intimate contact and uniform fiber-matrix distribution were achieved. The degree of crystallinity of the cylinders was found to be in the range of 25-30%. Under optimum processing conditions, an ILSS of 58 MPa and a void content of <1% were achieved for APC-2 (PEEK/Carbon fiber) composite cylinders. An in-situ measurement system which uses a slip ring assembly and a computer data acquisition system was developed to obtain temperature data during winding. Composite cylinders were manufactured with eight K-type thermocouples installed in various locations inside the cylinder. The temperature distribution inside the composite cylinder during winding was measured for different processing conditions. ABAQUS finite element models of the different processes that occur during on-line consolidation were constructed. The first model was used to determine the convective heat transfer coefficient for the hot-air heat source. A convective heat transfer coefficient of 260 w/msp{2°}K was obtained by matching the calculated temperature history to the in-situ measurement data. To predict temperature distribution during winding an ABAQUS winding simulation model was developed. The winding speed was modeled by incrementally moving the convective boundary conditions around the outer surface of the composite cylinder. A towpreg heating model was constructed to predict the temperature distribution on the cross section of the incoming towpreg. For the process-induced thermal stresses analysis, a thermoelastic finite element model was constructed. Using the temperature history obtained from thermal analysis as the initial conditions, the thermal stresses during winding and cooling were investigated.

  10. Experimental Determination of Fe-Mg Interdiffusion Coefficients in Orthopyroxene Using Pulsed Laser Ablation and Nanoscale Thin Films

    NASA Astrophysics Data System (ADS)

    Ter Heege, J. H.; Dohmen, R.; Becker, H.; Chakraborty, S.

    2006-12-01

    Fe-Mg interdiffusion in silicate minerals is of interest in petrological studies for determining the closure temperature of geothermometers and for determining cooling rates from compositional profiles. It is also relevant for studies of the physical properties of silicates, such as rheology or electrical conductivity, because knowledge of its dependence on oxygen fugacity can aid in the understanding of point defect chemistry. Compositionally zoned orthopyroxenes are common in meteorites, mantle rocks, lower crustal rocks and a variety of plutonic and volcanic igneous rocks. However, experimental difficulties have precluded direct determination of Fe-Mg diffusion rates in orthopyroxenes so far and the available information comes from (1) Mg tracer diffusion coefficients obtained from isotope tracer studies using enriched ^{25}MgO films [1], (2) calculations of interdiffusion rates based on the (diffusion-controlled) order-disorder kinetics measured in orthopyroxene [2], and (3) indirect estimates from the comparison of diffusion widths in coexisting garnets and olivines, in which Fe-Mg diffusion rates are relatively well known [e.g., 3]. We have directly measured Fe-Mg interdiffusion coefficients parallel to the [001] direction in two natural orthopyroxene single crystals (approximately En95Fs5 and En90Fs10) using diffusion couples consisting of an olivine thin film (Fo30Fa70, typically 20 - 50 nm thick) deposited under vacuum on pre-heated, polished and oriented pyroxene single crystals using a pulsed laser ablation deposition technique. Samples were annealed for 4 - 337 hours at 800 - 1100 °C under atmospheric pressure in a continuous flow of CO + CO2 to control the oxygen fugacity between 10-16 and 10^{-12} bar within the stability field of pyroxene. Film thickness and compositional profiles were measured using Rutherford backscattering Spectroscopy (RBS) on reference and annealed samples, and Fe concentration depth profiles were extracted from the RBS spectra and fitted numerically. At an oxygen fugacity of 10-16 bar, Fe-Mg interdiffusion coefficients in the Fs richer orthopyroxene vary between 4.10^{-22} m2/s and 2.10^{-20} m2/s for temperatures between 800 and 1000°C. Diffusion coefficients decrease by a factor of ~ 4 with decreasing oxygen fugacity between 10^{-12} and 10-16 bar at 1000 °C. Comparison of our data with other Fe-Mg diffusion data shows that these diffusion coefficients are (1) similar to Mg tracer diffusion coefficients measured in orthopyroxene at somewhat more reducing (e.g. fO2 = 10-16 to 10^{-19} bar) conditions at the same temperatures [1], (2) similar to Mg tracer diffusion in garnets measured at higher pressures of 10 kbar at an oxygen fugacity corresponding to the C-O equilibrium in graphite present systems [4], and (3) slower than Fe-Mg diffusion rates in olivine by a factor of ~10 at the same oxygen fugacities [5]. Further experiments to quantify the dependence on composition, temperature and oxygen fugacity are in progress. References: [1] Schwandt et al. (1998), Contr. Mineral. Petrol. 130: 390-396; [2] Ganguly and Tazzoli (1994), Am. Mineral. 79: 930-937; [3] Smith and Barron (1991), Am. Mineral. 76: 1950-1963; [4] Ganguly et al. (1998), Contr. Mineral. Petrol. 131: 171-180; [5] Chakraborty (1997), J. Geoph. Res. 102: 12317-12331.

  11. Experimental determination of trace-element partitioning between pargasite and a synthetic hydrous andesitic melt

    NASA Astrophysics Data System (ADS)

    Brenan, J. M.; Shaw, H. F.; Ryerson, F. J.; Phinney, D. L.

    1995-10-01

    In order to more fully establish a basis for quantifying the role of amphibole in trace-element fractionation processes, we have measured pargasite/silicate melt partitioning of a variety of trace elements (Rb, Ba, Nb, Ta, Hf, Zr, Ce, Nd, Sm, Yb), including the first published values for U, Th and Pb. Experiments conducted at 1000°C and 1.5 GPa yielded large crystals free of compositional zoning. Partition coefficients were found to be constant at total concentrations ranging from ˜ 1 to > 100 ppm, indicating Henry's Law is oparative over this interval. Comparison of partition coefficients measured in this study with previous determinations yields good agreement for similar compositions at comparable pressure and temperature. The compatibility of U, Th and Pb in amphibole decreases in the order Pb > Th > U. Partial melting or fractional crystallization of amphibole-bearing assemblages will therefore result in the generation of excesses in 238U activity relative to 230Th, similar in magnitude to that produced by clinopyroxene. The compatibility of Pb in amphibole relative to U or Th indicates that melt generation in the presence of residual amphibole will result in the long-term enrichment in Pb relative to U or Th in the residue. This process is therefore incapable of producing the depletion in Pb relative to U or Th inferred from the Pb isotopic composition of MORB and OIB. Comparison of partition coefficients measured in this study with previous values for clinopyroxene allows some distinction to be made between expected trace-element fractionations produced during dry (cpx present) and wet (cpx + amphibole present) melting. Rb, Ba, Nb and Ta are dramatically less compatible in clinopyroxene than in amphibole, whereas Th, U, Hf and Zr have similar compatibilities in both phases. Interelement fractionations, such as DNb/DBa are also different for clinopyroxene and amphibole. Changes in certain ratios, such as Ba/Nb, Ba/Th, and Nb/Th within comagmatic suites may therefore offer a means to discern the loss of amphibole from the melting assemblage. Elastic strain theory is applied to the partitioning data after the approaches of Beattie and Blundy and Wood and is used to predict amphibole/melt partition coefficients at conditions of P, T and composition other than those employed in this study. Given values of DCa, DTi and DK from previous partitioning studies, this approach yields amphibole/melt trace-element partition coefficients that reproduce measured values from the literature to within 40-45%. This degree of reproducibility is considered reasonable given that model parameters are derived from partitioning relations involving iron- and potassium-free amphibole.

  12. Tribological Properties of NiAl Matrix Composites Filled with Serpentine Powders

    NASA Astrophysics Data System (ADS)

    Xue, Bing; Jing, Peixing; Ma, Weidong

    2017-12-01

    The unexplored tribological properties of NiAl matrix composites filled with serpentine powders are investigated using a reciprocating ball-on-disk configuration. Tribological test results reveal that increasing the serpentine concentration to some extent reduces the friction coefficients and wear rates of the composites. The best anti-friction and anti-wear performance is displayed by the NiAl matrix composite filled with 8 wt.% serpentine and 2 wt.% TiC (NAST). Microstructural analyses demonstrate that after adding serpentine, the self-lubricating films with different percentages of coverage form on the worn surfaces of the composites. A self-lubricating film with the highest percentage of coverage smears on the worn surface of NAST. This clearly suggests that serpentine can act as a new type of filler for NiAl matrix composites, whereas a combination of serpentine and TiC can enable serpentine to provide a full play to its excellent lubricating performance.

  13. ICAN: Integrated composites analyzer

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Chamis, C. C.

    1984-01-01

    The ICAN computer program performs all the essential aspects of mechanics/analysis/design of multilayered fiber composites. Modular, open-ended and user friendly, the program can handle a variety of composite systems having one type of fiber and one matrix as constituents as well as intraply and interply hybrid composite systems. It can also simulate isotropic layers by considering a primary composite system with negligible fiber volume content. This feature is specifically useful in modeling thin interply matrix layers. Hygrothermal conditions and various combinations of in-plane and bending loads can also be considered. Usage of this code is illustrated with a sample input and the generated output. Some key features of output are stress concentration factors around a circular hole, locations of probable delamination, a summary of the laminate failure stress analysis, free edge stresses, microstresses and ply stress/strain influence coefficients. These features make ICAN a powerful, cost-effective tool to analyze/design fiber composite structures and components.

  14. Quantitative radiographic analysis of fiber reinforced polymer composites.

    PubMed

    Baidya, K P; Ramakrishna, S; Rahman, M; Ritchie, A

    2001-01-01

    X-ray radiographic examination of the bone fracture healing process is a widely used method in the treatment and management of patients. Medical devices made of metallic alloys reportedly produce considerable artifacts that make the interpretation of radiographs difficult. Fiber reinforced polymer composite materials have been proposed to replace metallic alloys in certain medical devices because of their radiolucency, light weight, and tailorable mechanical properties. The primary objective of this paper is to provide a comparable radiographic analysis of different fiber reinforced polymer composites that are considered suitable for biomedical applications. Composite materials investigated consist of glass, aramid (Kevlar-29), and carbon reinforcement fibers, and epoxy and polyether-ether-ketone (PEEK) matrices. The total mass attenuation coefficient of each material was measured using clinical X-rays (50 kev). The carbon fiber reinforced composites were found to be more radiolucent than the glass and kevlar fiber reinforced composites.

  15. Friction and wear of plasma-sprayed coatings containing cobalt alloys from 25 deg to 650 deg in air

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.; Jacobson, T. P.

    1979-01-01

    Four different compositions of self-lubricating, plasma-sprayed, composite coatings with calcium fluoride dispersed throughout cobalt alloy-silver matrices were evaluated on a friction and wear apparatus. In addition, coatings of the cobalt alloys alone and one coating with a nickel alloy-silver matrix were evaluated for comparison. The wear specimens consisted of two, diametrically opposed, flat rub shoes sliding on the coated, cylindrical surface of a rotating disk. Two of the cobalt composite coatings gave a friction coefficient of about 0.25 and low wear at room temperature, 400 and 650 C. Wear rates were lower than those of the cobalt alloys alone or the nickel alloy composite coating. However, oxidation limited the maximum useful temperature of the cobalt composite coating to about 650 C compared to about 900 C for the nickel composite coating.

  16. Maghemite based silicone composite for arterial embolization hyperthermia.

    PubMed

    Smolkova, Ilona S; Kazantseva, Natalia E; Makoveckaya, Kira N; Smolka, Petr; Saha, Petr; Granov, Anatoly M

    2015-03-01

    Maghemite nanoparticle based silicone composite for application in arterial embolization hyperthermia is developed. It possesses embolization ability, high heating efficiency in alternating magnetic fields and radiopaque property. The initial components of the composite are selected so that the material stays liquid for 20min, providing the opportunity for transcatheter transportation and filling of the tumour vascular system. After this induction period the viscosity increases rapidly and soft embolus is formed which is able to occlude the tumour blood vessels. The composite is thermally stable up to 225°C, displays rubber-elastic properties and has a thermal expansion coefficient higher than that of blood. Maghemite nanoparticles uniformly distributed in the composite provide its rapid heating (tens of °Cmin(-1)) due to Neel magnetization relaxation. Required X-ray contrast of composite is achieved by addition of potassium iodide. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Candle soot nanoparticles-polydimethylsiloxane composites for laser ultrasound transducers

    NASA Astrophysics Data System (ADS)

    Chang, Wei-Yi; Huang, Wenbin; Kim, Jinwook; Li, Sibo; Jiang, Xiaoning

    2015-10-01

    Generation of high power laser ultrasound strongly demands the advanced materials with efficient laser energy absorption, fast thermal diffusion, and large thermoelastic expansion capabilities. In this study, candle soot nanoparticles-polydimethylsiloxane (CSNPs-PDMS) composite was investigated as the functional layer for an optoacoustic transducer with high-energy conversion efficiency. The mean diameter of the collected candle soot carbon nanoparticles is about 45 nm, and the light absorption ratio at 532 nm wavelength is up to 96.24%. The prototyped CSNPs-PDMS nano-composite laser ultrasound transducer was characterized and compared with transducers using Cr-PDMS, carbon black (CB)-PDMS, and carbon nano-fiber (CNFs)-PDMS composites, respectively. Energy conversion coefficient and -6 dB frequency bandwidth of the CSNPs-PDMS composite laser ultrasound transducer were measured to be 4.41 × 10-3 and 21 MHz, respectively. The unprecedented laser ultrasound transduction performance using CSNPs-PDMS nano-composites is promising for a broad range of ultrasound therapy applications.

  18. Preparation and tribological behavior of Ni-graphene composite coating under room temperature

    NASA Astrophysics Data System (ADS)

    Chen, Juanjuan; Li, Jianliang; Xiong, Dangsheng; He, Yong; Ji, Yujuan; Qin, Yongkun

    2016-01-01

    In this paper, Ni-graphene composite coatings with different graphene addition amounts were prepared on 45 steel disk by using dipulse composite electrodeposition technology. Meanwhile, the influence of plating time, bath temperature and load on friction and wear of the coating was studied. The tribological behavior of composite coating was tested against a Si3N4 ceramic ball under dry condition. Cross-sectional morphologies showed that Ni-graphene coating was successfully coated on the substrate with an average thickness of 85 ± 5 μm. XRD analysis concluded that with the increase of addition amount of graphene, the average crystallite size of coating decreased. EDS analyses and Raman spectra proved the presence of graphene. Friction coefficient of composite coating decreased with the increase of graphene addition amounts, while the hardness increased. Meanwhile, the wear resistance of composite coating improved. The optimum experimental conditions were obtained.

  19. Comparison of mechanical and friction properties of composite materials based on AlMg2 containing nano-dimensional particles of crystalline graphite and nanofibers of gamma oxide of aluminum

    NASA Astrophysics Data System (ADS)

    Aborkin, A. V.; Babin, D. M.; Soboĺkov, A. V.

    2018-04-01

    The method of mechanical synthesis in a planetary ball mill was used for production of composite powders based on the AlMg2 alloy containing 1 wt. % of nanosized particles of crystalline graphite or γ-Al2O3. The resulting powders are consolidated by the sintering under pressure. Using the methods of X-ray diffraction analysis, scanning and transmission electron microscopy, the structural-phase composition of bulk composite materials was studied. Comparative analysis of the microhardness, the conditional yield stress at compression, and the friction coefficient of bulk composite materials is carried out. It has been found out that the mechanical properties of composites reinforced with γ-Al2O3 nanofibers are higher than when reinforcing with nanoscale particles of crystalline graphite.

  20. Stationary-Afterglow measurements of dissociative recombination of H2D+ and HD2+ ions

    NASA Astrophysics Data System (ADS)

    Dohnal, Petr; Kalosi, Abel; Plasil, Radek; Johnsen, Rainer; Glosik, Juraj

    2016-09-01

    Binary recombination rate coefficients of H2D+ and HD2+ ions have been measured at a temperature of 80 K in an afterglow plasma experiment in which the fractional abundances of H3+, H2D+, HD2+, and D3+ ions were varied by adjusting the [D2]/([D2] + [H2]) ratio of the neutral gas. The fractional abundances of the four ion species during the afterglow and their rotational states were determined in situ by continuous-wave cavity ring-down absorption spectroscopy (CRDS), using overtone transitions from the ground vibrational states of the ions. The experimentally determined recombination rate coefficients will be compared to results of advanced theoretical calculations and to the known H3+ and D3+ recombination rate coefficients. We conclude that the recombination coefficients depend only weakly on the isotopic composition. Astrophysical implications of the measured recombination rate coefficients will be also discussed. Work supported by: Czech Science Foundation projects GACR 14-14649P, GACR 15-15077S, GACR P209/12/0233, and by Charles University in Prague Project Nr. GAUK 692214.

  1. Effect of size and indium-composition on linear and nonlinear optical absorption of InGaN/GaN lens-shaped quantum dot

    NASA Astrophysics Data System (ADS)

    Ahmed, S. Jbara; Zulkafli, Othaman; M, A. Saeed

    2016-05-01

    Based on the Schrödinger equation for envelope function in the effective mass approximation, linear and nonlinear optical absorption coefficients in a multi-subband lens quantum dot are investigated. The effects of quantum dot size on the interband and intraband transitions energy are also analyzed. The finite element method is used to calculate the eigenvalues and eigenfunctions. Strain and In-mole-fraction effects are also studied, and the results reveal that with the decrease of the In-mole fraction, the amplitudes of linear and nonlinear absorption coefficients increase. The present computed results show that the absorption coefficients of transitions between the first excited states are stronger than those of the ground states. In addition, it has been found that the quantum dot size affects the amplitudes and peak positions of linear and nonlinear absorption coefficients while the incident optical intensity strongly affects the nonlinear absorption coefficients. Project supported by the Ministry of Higher Education and Scientific Research in Iraq, Ibnu Sina Institute and Physics Department of Universiti Teknologi Malaysia (UTM RUG Vote No. 06-H14).

  2. Uncertainty of the potential curve minimum for diatomic molecules extrapolated from Dunham type coefficients

    NASA Astrophysics Data System (ADS)

    Ilieva, T.; Iliev, I.; Pashov, A.

    2016-12-01

    In the traditional description of electronic states of diatomic molecules by means of molecular constants or Dunham coefficients, one of the important fitting parameters is the value of the zero point energy - the minimum of the potential curve or the energy of the lowest vibrational-rotational level - E00 . Their values are almost always the result of an extrapolation and it may be difficult to estimate their uncertainties, because they are connected not only with the uncertainty of the experimental data, but also with the distribution of experimentally observed energy levels and the particular realization of set of Dunham coefficients. This paper presents a comprehensive analysis based on Monte Carlo simulations, which aims to demonstrate the influence of all these factors on the uncertainty of the extrapolated minimum of the potential energy curve U (Re) and the value of E00 . The very good extrapolation properties of the Dunham coefficients are quantitatively confirmed and it is shown that for a proper estimate of the uncertainties, the ambiguity in the composition of the Dunham coefficients should be taken into account.

  3. Low temperature hall effect investigation of conducting polymer-carbon nanotubes composite network.

    PubMed

    Bahrami, Afarin; Talib, Zainal Abidin; Yunus, Wan Mahmood Mat; Behzad, Kasra; M Abdi, Mahnaz; Din, Fasih Ud

    2012-11-14

    Polypyrrole (PPy) and polypyrrole-carboxylic functionalized multi wall carbon nanotube composites (PPy/f-MWCNT) were synthesized by in situ chemical oxidative polymerization of pyrrole on the carbon nanotubes (CNTs). The structure of the resulting complex nanotubes was characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The effects of f-MWCNT concentration on the electrical properties of the resulting composites were studied at temperatures between 100 K and 300 K. The Hall mobility and Hall coefficient of PPy and PPy/f-MWCNT composite samples with different concentrations of f-MWCNT were measured using the van der Pauw technique. The mobility decreased slightly with increasing temperature, while the conductivity was dominated by the gradually increasing carrier density.

  4. Theory and experimental technique for nondestructive evaluation of ceramic composites

    NASA Technical Reports Server (NTRS)

    Generazio, Edward R.

    1990-01-01

    The important ultrasonic scattering mechanisms for SiC and Si3N4 ceramic composites were identified by examining the interaction of ultrasound with individual fibers, pores, and grains. The dominant scattering mechanisms were identified as asymmetric refractive scattering due to porosity gradients in the matrix material, and symmetric diffractive scattering at the fiber-to-matrix interface and at individual pores. The effect of the ultrasonic reflection coefficient and surface roughness in the ultrasonic evaluation was highlighted. A new nonintrusive ultrasonic evaluation technique, angular power spectrum scanning (APSS), was presented that is sensitive to microstructural variations in composites. Preliminary results indicate that APSS will yield information on the composite microstructure that is not available by any other nondestructive technique.

  5. A comparative study of monoclonal antibodies. 1. Phase behavior and protein-protein interactions

    PubMed Central

    Lewus, Rachael A.; Levy, Nicholas E.; Lenhoff, Abraham M.; Sandler, Stanley I.

    2018-01-01

    Protein phase behavior is involved in numerous aspects of downstream processing, either by design as in crystallization or precipitation processes, or as an undesired effect, such as aggregation. This work explores the phase behavior of eight monoclonal antibodies (mAbs) that exhibit liquid-liquid separation, aggregation, gelation, and crystallization. The phase behavior has been studied systematically as a function of a number of factors, including solution composition and pH, in order to explore the degree of variability among different antibodies. Comparisons of the locations of phase boundaries show consistent trends as a function of solution composition; however, changing the solution pH has different effects on each of the antibodies studied. Furthermore, the types of dense phases formed varied among the antibodies. Protein-protein interactions, as reflected by values of the osmotic second virial coefficient, are used to correlate the phase behavior. The primary findings are that values of the osmotic second virial coefficient are useful for correlating phase boundary locations, though there is appreciable variability among the antibodies in the apparent strengths of the intrinsic protein-protein attraction manifested. However, the osmotic second virial coefficient does not provide a clear basis to predict the type of dense phase likely to result under a given set of solution conditions. PMID:25378269

  6. Retention of aroma compounds: an interlaboratory study on the effect of the composition of food matrices on thermodynamic parameters in comparison with water.

    PubMed

    Kopjar, Mirela; Andriot, Isabelle; Saint-Eve, Anne; Souchon, Isabelle; Guichard, Elisabeth

    2010-06-01

    Partition coefficients give an indication of the retention of aroma compounds by the food matrix. Data in the literature are obtained by various methods, under various conditions and expressed in various units, and it is thus difficult to compare the results. The aim of the present study was first to obtain gas/water and gas/matrix partition coefficients of selected aroma compounds, at different temperatures, in order to calculate thermodynamic parameters and second to compare the retention of these aroma compounds in different food matrices. Yogurts containing lipids and proteins induced a higher retention of aroma compounds than model gel matrices. The observed effects strongly depend on hydrophobicity of aroma compounds showing a retention for ethyl hexanoate and a salting out effect for ethyl acetate. A small but noticeable decrease in enthalpy of affinity is observed for ethyl butyrate and ethyl hexanoate between water and food matrices, suggesting that the energy needed for the volatilization is lower in matrices than in water. The composition and complexity of a food matrix influence gas/matrix partition coefficients or aroma compounds in function of their hydrophobicity and to a lower extent enthalpy of vaporization. Copyright (c) 2010 Society of Chemical Industry.

  7. Three Cs in Measurement Models: Causal Indicators, Composite Indicators, and Covariates

    PubMed Central

    Bollen, Kenneth A.; Bauldry, Shawn

    2013-01-01

    In the last two decades attention to causal (and formative) indicators has grown. Accompanying this growth has been the belief that we can classify indicators into two categories, effect (reflective) indicators and causal (formative) indicators. This paper argues that the dichotomous view is too simple. Instead, there are effect indicators and three types of variables on which a latent variable depends: causal indicators, composite (formative) indicators, and covariates (the “three Cs”). Causal indicators have conceptual unity and their effects on latent variables are structural. Covariates are not concept measures, but are variables to control to avoid bias in estimating the relations between measures and latent variable(s). Composite (formative) indicators form exact linear combinations of variables that need not share a concept. Their coefficients are weights rather than structural effects and composites are a matter of convenience. The failure to distinguish the “three Cs” has led to confusion and questions such as: are causal and formative indicators different names for the same indicator type? Should an equation with causal or formative indicators have an error term? Are the coefficients of causal indicators less stable than effect indicators? Distinguishing between causal and composite indicators and covariates goes a long way toward eliminating this confusion. We emphasize the key role that subject matter expertise plays in making these distinctions. We provide new guidelines for working with these variable types, including identification of models, scaling latent variables, parameter estimation, and validity assessment. A running empirical example on self-perceived health illustrates our major points. PMID:21767021

  8. Rapid determination of chemical composition and classification of bamboo fractions using visible-near infrared spectroscopy coupled with multivariate data analysis.

    PubMed

    Yang, Zhong; Li, Kang; Zhang, Maomao; Xin, Donglin; Zhang, Junhua

    2016-01-01

    During conversion of bamboo into biofuels and chemicals, it is necessary to efficiently predict the chemical composition and digestibility of biomass. However, traditional methods for determination of lignocellulosic biomass composition are expensive and time consuming. In this work, a novel and fast method for quantitative and qualitative analysis of chemical composition and enzymatic digestibilities of juvenile bamboo and mature bamboo fractions (bamboo green, bamboo timber, bamboo yellow, bamboo node, and bamboo branch) using visible-near infrared spectra was evaluated. The developed partial least squares models yielded coefficients of determination in calibration of 0.88, 0.94, and 0.96, for cellulose, xylan, and lignin of bamboo fractions in raw spectra, respectively. After visible-near infrared spectra being pretreated, the corresponding coefficients of determination in calibration yielded by the developed partial least squares models are 0.994, 0.990, and 0.996, respectively. The score plots of principal component analysis of mature bamboo, juvenile bamboo, and different fractions of mature bamboo were obviously distinguished in raw spectra. Based on partial least squares discriminant analysis, the classification accuracies of mature bamboo, juvenile bamboo, and different fractions of bamboo (bamboo green, bamboo timber, bamboo yellow, and bamboo branch) all reached 100 %. In addition, high accuracies of evaluation of the enzymatic digestibilities of bamboo fractions after pretreatment with aqueous ammonia were also observed. The results showed the potential of visible-near infrared spectroscopy in combination with multivariate analysis in efficiently analyzing the chemical composition and hydrolysabilities of lignocellulosic biomass, such as bamboo fractions.

  9. Theoretical and Numerical Approaches for Determining the Reflection and Transmission Coefficients of OPEFB-PCL Composites at X-Band Frequencies

    PubMed Central

    Ahmad, Ahmad F.; Abbas, Zulkifly; Obaiys, Suzan J.; Ibrahim, Norazowa; Hashim, Mansor; Khaleel, Haider

    2015-01-01

    Bio-composites of oil palm empty fruit bunch (OPEFB) fibres and polycaprolactones (PCL) with a thickness of 1 mm were prepared and characterized. The composites produced from these materials are low in density, inexpensive, environmentally friendly, and possess good dielectric characteristics. The magnitudes of the reflection and transmission coefficients of OPEFB fibre-reinforced PCL composites with different percentages of filler were measured using a rectangular waveguide in conjunction with a microwave vector network analyzer (VNA) in the X-band frequency range. In contrast to the effective medium theory, which states that polymer-based composites with a high dielectric constant can be obtained by doping a filler with a high dielectric constant into a host material with a low dielectric constant, this paper demonstrates that the use of a low filler percentage (12.2%OPEFB) and a high matrix percentage (87.8%PCL) provides excellent results for the dielectric constant and loss factor, whereas 63.8% filler material with 36.2% host material results in lower values for both the dielectric constant and loss factor. The open-ended probe technique (OEC), connected with the Agilent vector network analyzer (VNA), is used to determine the dielectric properties of the materials under investigation. The comparative approach indicates that the mean relative error of FEM is smaller than that of NRW in terms of the corresponding S21 magnitude. The present calculation of the matrix/filler percentages endorses the exact amounts of substrate utilized in various physics applications. PMID:26474301

  10. CVD Fiber Coatings for Al2O3/NiAl Composites

    NASA Technical Reports Server (NTRS)

    Boss, Daniel E.

    1995-01-01

    While sapphire-fiber-reinforced nickel aluminide (Al2O3/NiAl) composites are an attractive candidate for high-temperature structures, the significant difference in the coefficient of thermal expansion between the NiAl matrix and the sapphire fiber creates substantial residual stresses in the composite. This study seeks to produce two fiber-coating systems with the potential to reduce the residual stresses in the sapphire/NiAl composite system. Chemical vapor deposition (CVD) was used to produce both the compensating and compliant-fiber coatings for use in sapphire/NiAl composites. A special reactor was designed and built to produce the FGM and to handle the toxic nickel precursors. This process was successfully used to produce 500-foot lengths of fiber with coating thicknesses of approximately 3 microns, 5 microns, and 10 microns.

  11. Use of graphite epoxy composites in the Solar-A Soft X-Ray Telescope

    NASA Technical Reports Server (NTRS)

    Jurcevich, B. K.; Bruner, M. E.

    1990-01-01

    This paper describes the use of composite materials in the Soft X-Ray Telescope (SXT). One of the primary structural members of the telescope is a graphite epoxy metering tube. The metering tube maintains the structural stability of the telescope during launch as well as the focal length through various environmental conditions. The graphite epoxy metering tube is designed to have a negative coefficient of thermal expansion to compensate for the positive expansion of titanium structural supports. The focus is maintained to + or - 0.001 inch by matching the CTE of the composite tube to the remaining structural elements.

  12. Certain composition formulae for the fractional integral operators

    NASA Astrophysics Data System (ADS)

    Agarwal, Praveen; Harjule, Priyanka

    2017-09-01

    In this paper we establish some (presumably new) interesting expressions for the composition of some well known fractional integral operators Ia+ μ,Da+ μ,Ia+ γ ,μ and also derive an integral operator ℋa+;p ,q ;β w ;m ,n ;α whose kernel involves the Fox's H- function. By suitably specializing the coefficients and the parameters in these functions we can get a large number of (new and known) interesting expressions for the composition formulae which occur rather frequently in many problems of engineering and mathematical analysis but here we can mention only those which follow as particular cases of the Srivastava et al.

  13. Magneto electric effects in BaTiO3-CoFe2O4 bulk composites

    NASA Astrophysics Data System (ADS)

    Agarwal, Shivani; Caltun, O. F.; Sreenivas, K.

    2012-11-01

    Influence of a static magnetic field (HDC) on the hysteresis and remanence in the longitudinal and transverse magneto electric voltage coefficients (MEVC) observed in [BaTiO3]1-x-[CoFe2O4]x bulk composites are analyzed. Remanence in MEVC at zero bias (HDC=0) is stronger in the transverse configuration over the longitudinal case. The observed hysteretic behavior in MEVC vs. HDC is correlated with the changes observed in the magnetostriction characteristics (λ and dλ/dH) reported for [BaTiO3]1-x-[CoFe2O4]x bulk composites.

  14. Continuous fiber-reinforced titanium aluminide composites

    NASA Technical Reports Server (NTRS)

    Mackay, R. A.; Brindley, P. K.; Froes, F. H.

    1991-01-01

    An account is given of the fabrication techniques, microstructural characteristics, and mechanical behavior of a lightweight, high service temperature SiC-reinforced alpha-2 Ti-14Al-21Nb intermetallic-matrix composite. Fabrication techniques under investigation to improve the low-temperature ductility and environmental resistance of this material system, while reducing manufacturing costs to competitive levels, encompass powder-cloth processing, foil-fiber-foil processing, and thermal-spray processing. Attention is given to composite microstructure problems associated with fiber distribution and fiber-matrix interfaces, as well as with mismatches of thermal-expansion coefficient; major improvements are noted to be required in tensile properties, thermal cycling effects, mechanical damage, creep, and environmental effects.

  15. Estimates of diet selection in cattle grazing cornstalk residues by measurement of chemical composition and near infrared reflectance spectroscopy of diet samples collected by ruminal evacuation.

    PubMed

    Petzel, Emily A; Smart, Alexander J; St-Pierre, Benoit; Selman, Susan L; Bailey, Eric A; Beck, Erin E; Walker, Julie A; Wright, Cody L; Held, Jeffrey E; Brake, Derek W

    2018-05-04

    Six ruminally cannulated cows (570 ± 73 kg) fed corn residues were placed in a 6 × 6 Latin square to evaluate predictions of diet composition from ruminally collected diet samples. After complete ruminal evacuation, cows were fed 1-kg meals (dry matter [DM]-basis) containing different combinations of cornstalk and leaf and husk (LH) residues in ratios of 0:100, 20:80, 40:60, 60:40, 80:20, and 100:0. Diet samples from each meal were collected by removal of ruminal contents after 1-h and were either unrinsed, hand-rinsed or machine-rinsed to evaluate effects of endogenous compounds on predictions of diet composition. Diet samples were analyzed for neutral (NDF) and acid (ADF) detergent fiber, acid detergent insoluble ash (ADIA), acid detergent lignin (ADL), crude protein (CP), and near infrared reflectance spectroscopy (NIRS) to calculate diet composition. Rinsing type increased NDF and ADF content and decreased ADIA and CP content of diet samples (P < 0.01). Rinsing tended to increase (P < 0.06) ADL content of diet samples. Differences in concentration between cornstalk and LH residues within each chemical component were standardized by calculating a coefficient of variation (CV). Accuracy and precision of estimates of diet composition were analyzed by regressing predicted diet composition and known diet composition. Predictions of diet composition were improved by increasing differences in concentration of chemical components between cornstalk and LH residues up to a CV of 22.6 ± 5.4%. Predictions of diet composition from unrinsed ADIA and machine-rinsed NIRS had the greatest accuracy (slope = 0.98 and 0.95, respectively) and large coefficients of determination (r2 = 0.86 and 0.74, respectively). Subsequently, a field study (Exp. 2) was performed to evaluate predictions of diet composition in cattle (646 ± 89 kg) grazing corn residue. Five cows were placed in 1 of 10 paddocks and allowed to graze continuously or to strip-graze corn residues. Predictions of diet composition from ADIA, ADL, and NIRS did not differ (P = 0.99), and estimates of cornstalk intake tended to be greater (P = 0.09) in strip-grazed compared to continuously grazed cows. These data indicate that diet composition can be predicted by chemical components or NIRS by ruminal collection of diet samples among cattle grazing corn residues.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dees, D. W.; Kawauchi, S.; Abraham, D. P.

    Galvanostatic Intermittent Titration Technique (GITT) experiments were conducted to determine the lithium diffusion coefficient of LiNi{sub 0.8}Co{sub 0.15}Al{sub 0.05}O{sub 2}, used as the active material in a lithium-ion battery porous composite positive electrode. An electrochemical model, based on concentrated solution porous electrode theory, was developed to analyze the GITT experimental results and compare to the original GITT analytical theory. The GITT experimental studies on the oxide active material were conducted between 3.5 and 4.5 V vs. lithium, with the maximum lithium diffusion coefficient value being 10{sup -10} cm{sup 2} s{sup -1} at 3.85 V. The lithium diffusion coefficient values obtainedmore » from this study agree favorably with the values obtained from an earlier electrochemical impedance spectroscopy study.« less

  17. OPTOELECTRONICS, FIBER OPTICS, AND OTHER ASPECTS OF QUANTUM ELECTRONICS: Influence of the Rayleigh backscattering on the mode composition of radiation in multimode graded-index waveguides with a quadratic refractive-index profile

    NASA Astrophysics Data System (ADS)

    Esayan, G. L.; Krivoshlykov, S. G.

    1989-08-01

    A method of coherent states is used to describe the process of Rayleigh scattering in a multimode graded-index waveguide with a quadratic refractive-index profile. Explicit expressions are obtained for the coefficients representing excitation of Gaussian-Hermite backscattering modes in two cases of practical importance: excitation of a waveguide by an extended noncoherent light source and selective excitation of different modes at the entry to a waveguide. An analysis is also made of the coefficients of coupling between forward and backward modes. Explicit expressions for the coefficients representing capture of backscattered radiation by a waveguide are obtained for two special cases of excitation (extended light source and zeroth mode).

  18. Partition coefficients for REE between garnets and liquids - Implications of non-Henry's Law behaviour for models of basalt origin and evolution

    NASA Technical Reports Server (NTRS)

    Harrison, W. J.

    1981-01-01

    An experimental investigation of Ce, Sm and Tm rare earth element (REE) partition coefficients between coexisting garnets (both natural and synthetic) and hydrous liquids shows that Henry's Law may not be obeyed over a range of REE concentrations of geological relevance. Systematic differences between the three REE and the two garnet compositions may be explained in terms of the differences between REE ionic radii and those of the dodecahedral site into which they substitute, substantiating the Harrison and Wood (1980) model of altervalent substitution. Model calculations demonstrate that significant variation can occur in the rare earth contents of melts produced from a garnet lherzolite, if Henry's Law partition coefficients do not apply for the garnet phase.

  19. Quantitative broadband ultrasonic backscatter - An approach to nondestructive evaluation in acoustically inhomogeneous materials

    NASA Technical Reports Server (NTRS)

    Odonnell, M.; Miller, J. G.

    1981-01-01

    The use of a broadband backscatter technique to obtain the frequency dependence of the longitudinal-wave ultrasonic backscatter coefficient from a collection of scatterers in a solid is investigated. Measurements of the backscatter coefficient were obtained over the range of ultrasonic wave vector magnitude-glass sphere radius product between 0.1 and 3.0 from model systems consisting of dilute suspensions of randomly distributed crown glass spheres in hardened polyester resin. The results of these measurements were in good agreement with theoretical prediction. Consequently, broadband measurements of the ultrasonic backscatter coefficient may represent a useful approach toward characterizing the physical properties of scatterers in intrinsically inhomogeneous materials such as composites, metals, and ceramics, and may represent an approach toward nondestructive evaluation of these materials.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starchenko, S. V., E-mail: sstarchenko@mail.ru

    The optimum (to my mind) scaling of the combined thermal and compositional convection in a rapidly rotating plane layer is proposed.This scaling follows from self-consistent estimates of typical physical quantities. Similarity coefficients are introduced for the ratio convection dissipation/convection generation (s) and the ratio thermal convection/compositional convection (r). The third new and most important coefficient δ is the ratio of the characteristic size normal to the axis of rotation to the layer thickness. The faster the rotation, the lower δ. In the case of the liquid Earth core, δ ~ 10{sup –3} substitutes for the generally accepted Ekman number (Emore » ~ 10{sup –15}) and s ~ 10{sup –6} substitutes for the inverse Rayleigh number 1/Ra ~ 10{sup –30}. It is found that, at turbulent transport coefficients, number s and the Prandtl number are on the order of unity for any objects and δ is independent of transport coefficients. As a result of expansion in powers of δ, an initially 3D system of six variables is simplified to an almost 2D system of four variables without δ. The problem of convection excitation in the main volume is algebraically solved and this problem for critical values is analytically solved. Dispersion relations and general expressions for critical wavenumbers, numbers s (which determine Rayleigh numbers), other critical parameters, and asymptotic solutions are derived. Numerical estimates are made for the liquid cores in the planets that resemble the Earth. Further possible applications of the results obtained are proposed for the interior of planets, moons, their oceans, stars, and experimental objects.« less

  1. Urdu translation of the Hamilton Rating Scale for Depression: Results of a validation study

    PubMed Central

    Hashmi, Ali M.; Naz, Shahana; Asif, Aftab; Khawaja, Imran S.

    2016-01-01

    Objective: To develop a standardized validated version of the Hamilton Rating Scale for Depression (HAM-D) in Urdu. Methods: After translation of the HAM-D into the Urdu language following standard guidelines, the final Urdu version (HAM-D-U) was administered to 160 depressed outpatients. Inter-item correlation was assessed by calculating Cronbach alpha. Correlation between HAM-D-U scores at baseline and after a 2-week interval was evaluated for test-retest reliability. Moreover, scores of two clinicians on HAM-D-U were compared for inter-rater reliability. For establishing concurrent validity, scores of HAM-D-U and BDI-U were compared by using Spearman correlation coefficient. The study was conducted at Mayo Hospital, Lahore, from May to December 2014. Results: The Cronbach alpha for HAM-D-U was 0.71. Composite scores for HAM-D-U at baseline and after a 2-week interval were also highly correlated with each other (Spearman correlation coefficient 0.83, p-value < 0.01) indicating good test-retest reliability. Composite scores for HAM-D-U and BDI-U were positively correlated with each other (Spearman correlation coefficient 0.85, p < 0.01) indicating good concurrent validity. Scores of two clinicians for HAM-D-U were also positively correlated (Spearman correlation coefficient 0.82, p-value < 0.01) indicated good inter-rater reliability. Conclusion: The HAM-D-U is a valid and reliable instrument for the assessment of Depression. It shows good inter-rater and test-retest reliability. The HAM-D-U can be a tool either for clinical management or research. PMID:28083049

  2. Urdu translation of the Hamilton Rating Scale for Depression: Results of a validation study.

    PubMed

    Hashmi, Ali M; Naz, Shahana; Asif, Aftab; Khawaja, Imran S

    2016-01-01

    To develop a standardized validated version of the Hamilton Rating Scale for Depression (HAM-D) in Urdu. After translation of the HAM-D into the Urdu language following standard guidelines, the final Urdu version (HAM-D-U) was administered to 160 depressed outpatients. Inter-item correlation was assessed by calculating Cronbach alpha. Correlation between HAM-D-U scores at baseline and after a 2-week interval was evaluated for test-retest reliability. Moreover, scores of two clinicians on HAM-D-U were compared for inter-rater reliability. For establishing concurrent validity, scores of HAM-D-U and BDI-U were compared by using Spearman correlation coefficient. The study was conducted at Mayo Hospital, Lahore, from May to December 2014. The Cronbach alpha for HAM-D-U was 0.71. Composite scores for HAM-D-U at baseline and after a 2-week interval were also highly correlated with each other (Spearman correlation coefficient 0.83, p-value < 0.01) indicating good test-retest reliability. Composite scores for HAM-D-U and BDI-U were positively correlated with each other (Spearman correlation coefficient 0.85, p < 0.01) indicating good concurrent validity. Scores of two clinicians for HAM-D-U were also positively correlated (Spearman correlation coefficient 0.82, p-value < 0.01) indicated good inter-rater reliability. The HAM-D-U is a valid and reliable instrument for the assessment of Depression. It shows good inter-rater and test-retest reliability. The HAM-D-U can be a tool either for clinical management or research.

  3. The Stayhealthy bioelectrical impedance analyzer predicts body fat in children and adults.

    PubMed

    Erceg, David N; Dieli-Conwright, Christina M; Rossuello, Amerigo E; Jensky, Nicole E; Sun, Stephanie; Schroeder, E Todd

    2010-05-01

    Bioelectrical impedance analysis (BIA) is a time-efficient and cost-effective method for estimating body composition. We hypothesized that there would be no significant difference between the Stayhealthy BC1 BIA and the selected reference methods when determining body composition. Thus, the purpose of the present study was to determine the validity of estimating percent body fat (%BF) using the Stayhealthy BIA with its most recently updated algorithms compared to the reference methods of dual-energy x-ray absorptiometry for adults and hydrostatic weighing for children. We measured %BF in 245 adults aged 18 to 80 years and 115 children aged 10 to 17 years. Body fat by BIA was determined using a single 50 kHz frequency handheld impedance device and proprietary software. Agreement between BIA and reference methods was assessed by Bland and Altman plots. Bland and Altman analysis for men, women, and children revealed good agreement between the reference methods and BIA. There was no significant difference by t tests between mean %BF by BIA for men, women, or children when compared to the respective reference method. Significant correlation values between BIA, and reference methods for all men, women, and children were 0.85, 0.88, and 0.79, respectively. Reliability (test-retest) was assessed by intraclass correlation coefficient and coefficient of variation. Intraclass correlation coefficient values were greater than 0.99 (P < .001) for men, women, and children with coefficient of variation values 3.3%, 1.8%, and 1.7%, respectively. The Stayhealthy BIA device demonstrated good agreement between reference methods using Bland and Altman analyses. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Dynamic behaviour analysis of an energy accumulation system comprising a composite flywheel

    NASA Astrophysics Data System (ADS)

    Portnov, G. G.; Kulakov, V. L.; Barinov, I. N.

    1994-01-01

    A simple system for energy accumulation comprising a rim and a massive shaft with elastic couplings was considered; the shaft runs in elastic damping bearings. Forced vibrations of the flywheel system induced by linear and angular eccentricities of composite rim were investigated. The effect of variation of different parameters of the system (stiffness of bearings, viscous friction coefficients of bearings, mass and moment of inertia of the shaft) on damping of radial and angular forced vibrations has been estimated.

  5. Atomistic models of Cu diffusion in CuInSe2 under variations in composition

    NASA Astrophysics Data System (ADS)

    Sommer, David E.; Dunham, Scott T.

    2018-03-01

    We construct an analytic model for the composition dependence of the vacancy-mediated Cu diffusion coefficient in undoped CuInSe2 using parameters from density functional theory. The applicability of this model is supported numerically with kinetic lattice Monte Carlo and Onsager transport tensors. We discuss how this model relates to experimental measurements of Cu diffusion, arguing that our results can account for significant contributions to the bulk diffusion of Cu tracers in non-stoichiometric CuInSe2.

  6. Thermal-vacuum response of polymer matrix composites in space

    NASA Technical Reports Server (NTRS)

    Tennyson, R. C.; Matthews, R.

    1993-01-01

    This report describes a thermal-vacuum outgassing model and test protocol for predicting outgassing times and dimensional changes for polymer matrix composites. Experimental results derived from 'control' samples are used to provide the basis for analytical predictions to compare with the outgassing response of Long Duration Exposure Facility (LDEF) flight samples. Coefficient of thermal expansion (CTE) data are also presented. In addition, an example is given illustrating the dimensional change of a 'zero' CTE laminate due to moisture outgassing.

  7. Carbon nanotube/polymer composite coated tapered fiber for four wave mixing based wavelength conversion.

    PubMed

    Xu, Bo; Omura, Mika; Takiguchi, Masato; Martinez, Amos; Ishigure, Takaaki; Yamashita, Shinji; Kuga, Takahiro

    2013-02-11

    In this paper, we demonstrate a nonlinear optical device based on a fiber taper coated with a carbon nanotube (CNT)/polymer composite. Using this device, four wave mixing (FWM) based wavelength conversion of 10 Gb/s Non-return-to-zero signal is achieved. In addition, we investigate wavelength tuning, two photon absorption and estimate the effective nonlinear coefficient of the CNTs embedded in the tapered fiber to be 1816.8 W(-1)km(-1).

  8. Manning's roughness coefficient for buried composite arch bridges.

    DOT National Transportation Integrated Search

    2014-08-01

    This report includes fulfillment of Task 9 of a multi-task contract to further enhance concrete filled FRP tubes, or : the Bridge in a Backpack. Task 9 investigates the interaction of water flow under the bridge with the tubes and : decking and recom...

  9. [Fast optimization of stepwise gradient conditions for ternary mobile phase in reversed-phase high performance liquid chromatography].

    PubMed

    Shan, Yi-chu; Zhang, Yu-kui; Zhao, Rui-huan

    2002-07-01

    In high performance liquid chromatography, it is necessary to apply multi-composition gradient elution for the separation of complex samples such as environmental and biological samples. Multivariate stepwise gradient elution is one of the most efficient elution modes, because it combines the high selectivity of multi-composition mobile phase and shorter analysis time of gradient elution. In practical separations, the separation selectivity of samples can be effectively adjusted by using ternary mobile phase. For the optimization of these parameters, the retention equation of samples must be obtained at first. Traditionally, several isocratic experiments are used to get the retention equation of solute. However, it is time consuming especially for the separation of complex samples with a wide range of polarity. A new method for the fast optimization of ternary stepwise gradient elution was proposed based on the migration rule of solute in column. First, the coefficients of retention equation of solute are obtained by running several linear gradient experiments, then the optimal separation conditions are searched according to the hierarchical chromatography response function which acts as the optimization criterion. For each kind of organic modifier, two initial linear gradient experiments are used to obtain the primary coefficients of retention equation of each solute. For ternary mobile phase, only four linear gradient runs are needed to get the coefficients of retention equation. Then the retention times of solutes under arbitrary mobile phase composition can be predicted. The initial optimal mobile phase composition is obtained by resolution mapping for all of the solutes. A hierarchical chromatography response function is used to evaluate the separation efficiencies and search the optimal elution conditions. In subsequent optimization, the migrating distance of solute in the column is considered to decide the mobile phase composition and sustaining time of the latter steps until all the solutes are eluted out. Thus the first stepwise gradient elution conditions are predicted. If the resolution of samples under the predicted optimal separation conditions is satisfactory, the optimization procedure is stopped; otherwise, the coefficients of retention equation are adjusted according to the experimental results under the previously predicted elution conditions. Then the new stepwise gradient elution conditions are predicted repeatedly until satisfactory resolution is obtained. Normally, the satisfactory separation conditions can be found only after six experiments by using the proposed method. In comparison with the traditional optimization method, the time needed to finish the optimization procedure can be greatly reduced. The method has been validated by its application to the separation of several samples such as amino acid derivatives, aromatic amines, in which satisfactory separations were obtained with predicted resolution.

  10. Water Uptake Behavior and Young Modulus Prediction of Composites Based on Treated Sisal Fibers and Poly(Lactic Acid)

    PubMed Central

    Orue, Ander; Eceiza, Arantxa; Peña-Rodriguez, Cristina; Arbelaiz, Aitor

    2016-01-01

    The main aim of this work was to study the effect of sisal fiber surface treatments on water uptake behavior of composites based on untreated and treated fibers. For this purpose, sisal fibers were treated with different chemical treatments. All surface treatments delayed the water absorption of fibers only for a short time of period. No significant differences were observed in water uptake profiles of composites based on fibers with different surface treatments. After water uptake period, tensile strength and Young modulus values of sisal fiber/poly(lactic acid) (PLA) composites were decreased. On the other hand, composites based on NaOH + silane treated fibers showed the lowest diffusion coefficient values, suggesting that this treatment seemed to be the most effective treatment to reduce water diffusion rate into the composites. Finally, Young modulus values of composites, before water uptake period, were predicted using different micromechanical models and were compared with experimental data. PMID:28773524

  11. Tribological properties and lubrication mechanism of in situ graphene-nickel matrix composite impregnated with lubricating oil

    NASA Astrophysics Data System (ADS)

    Lei, Yu; Du, Jinfang; Pang, Xianjuan; Wang, Haizhong; Yang, Hua; Jiang, Jinlong

    2018-05-01

    A solid-liquid synergetic lubricating system has been designed to develop a novel self-lubricating nickel matrix composite. The graphene-nickel (G-Ni) matrix composite with porous structure was fabricated by in situ growing graphene in bulk nickel using a powder metallurgy method. The porous structures of the composite were used to store polyalphaolefin (PAO) oil for self-lubricating. It is found that the G-Ni matrix composite under oil lubrication condition exhibited superior tribological properties as compared to pure nickel and the composite under dry sliding condition. The prestored oil was released from pores to the sliding surface forming a lubricating oil film during friction process. This lubricating oil film can protect the worn surface from severe oxidation, and help the formation and transfer of a carbon-based solid tribofilm derived from graphene and lubricating oil. This solid (graphene)-liquid (oil) synergistic lubricating mechanism is responsible for the reduction of friction coefficient and improvement of wear resistance of the in situ fabricated G-Ni matrix composite.

  12. Research on graphite reinforced glass matrix composites

    NASA Technical Reports Server (NTRS)

    Prewo, K. M.; Thompson, E. R.

    1980-01-01

    High levels of mechanical performance in tension, flexure, fatigue, and creep loading situations of graphite fiber reinforced glass matrix composites are discussed. At test temperatures of up to 813 K it was found that the major limiting factor was the oxidative instability of the reinforcing graphite fibers. Particular points to note include the following: (1) a wide variety of graphite fibers were found to be comparable with the glass matrix composite fabrication process; (2) choice of fiber, to a large extent, controlled resultant composite performance; (3) composite fatigue performance was found to be excellent at both 300 K and 703 K; (4) composite creep and stress rupture at temperatures of up to 813 K was limited by the oxidative stability of the fiber; (5) exceptionally low values of composite thermal expansion coefficient were attributable to the dimensional stability of both matrix and fiber; and (6) component fabricability was demonstrated through the hot pressing of hot sections and brazing using glass and metal joining phases.

  13. Active shape control of composite blades using shape memory actuation

    NASA Astrophysics Data System (ADS)

    Chandra, Ramesh

    2001-10-01

    This paper presents active shape control of composite beams using shape memory actuation. Shape memory alloy (SMA) bender elements trained to memorize bending shape were used to induce bending and twisting deformations in composite beams. Bending-torsion coupled graphite-epoxy and kevlar-epoxy composite beams with Teflon inserts were manufactured using an autoclave-molding technique. Teflon inserts were replaced by trained SMA bender elements. Composite beams with SMA bender elements were activated by heating these using electrical resistive heating and the bending and twisting deformations of the beams were measured using a mirror and laser system. The structural response of the composite beams activated by SMA elements was predicted using the Vlasov theory, where these beams were modeled as open sections with many branches. The bending moment induced by a SMA bender element was calculated from its experimentally determined memorized shape. The bending, torsion, and bending-torsion coupling stiffness coefficients of these beams were obtained using analytical formulation of an open-section composite beam with many branches (Vlasov theory).

  14. Composite risers for deep-water offshore technology: Problems and prospects. 1. Metal-composite riser

    NASA Astrophysics Data System (ADS)

    Beyle, A. I.; Gustafson, C. G.; Kulakov, V. L.; Tarnopol'skii, Yu. M.

    1997-09-01

    Prospects for the application of advanced composites in the offshore technology of oil production are considered. The use of composites in vertical pipelines-risers seems to be the most efficient. The operating loads are studied and the attendant problems are formulated. A comparative analysis of the characteristics of metal, composite, and metal-composite deep-water risers is presented. A technique is developed for designing multilayered risers, taking into account the action of internal and external pressures, gravity, and the axial tensile force created by tensioners, as well as the residual technological stresses due to the difference in coefficients of thermal expansion, physical-chemical shrinkage, and force winding. Numerical estimations are given for a two-layered riser with an inner metal layer of steel, titanium, or aluminum alloys and a composite layer of glass- or carbon-fiber plastics formed by circumferential winding. It is shown that the technological stresses substantially affect the characteristics of the riser.

  15. Microstructures and Properties of 40Cu/Ag(Invar) Composites Fabricated by Powder Metallurgy and Subsequent Thermo-Mechanical Treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Huang, Yingqiu; Liu, Xiangyu; Yang, Lei; Shi, Changdong; Wu, Yucheng; Tang, Wenming

    2018-03-01

    Composites of 40Cu/Ag(Invar) were prepared via pressureless sintering and subsequent thermo-mechanical treatment from raw materials of electroless Ag-plated Invar alloy powder and electrolytic Cu powder. Microstructures and properties of the prepared composites were studied to evaluate the effect of the Ag layer on blocking Cu/Invar interfacial diffusion in the composites. The electroless-plated Ag layer was dense, uniform, continuous, and bonded tightly with the Invar alloy substrate. During sintering of the composites, the Ag layer effectively prevented Cu/Invar interfacial diffusion. During cold-rolling, the Ag layer was deformed uniformly with the Invar alloy particles. The composites exhibited bi-continuous network structure and considerably improved properties. After sintering at 775 °C and subsequent thermo-mechanical treatment, the 40Cu/Ag(Invar) composites showed satisfactory comprehensive properties: relative density of 99.0 pct, hardness of HV 253, thermal conductivity of 55.7 W/(m K), and coefficient of thermal expansion of 11.2 × 10-6/K.

  16. Thermopower and magnetocaloric properties in NdSrMnO/CrO3 composites

    NASA Astrophysics Data System (ADS)

    Ahmed, A. M.; Mohamed, H. F.; Paixão, J. A.; Mohamed, Sara A.

    2018-06-01

    The thermoelectric power (TEP) and magnetocaloric effect (MCE) for (Nd0.6Sr0.4MnO3)1-x/(CrO3)x composites have been measured. The TEP measurements show a negative sign value of the Seebeck coefficient (S), in microvolts. TEP data construe in the low range of temperature by the magnon and phonon drag model, whereas at high temperature by small polaron conduction mechanism. Magnetic measurements exhibit that all composites show a paramagnetic-ferromagnetic transition with decreasing temperature. The Arrott plots of composites reveal the occurrence of a second order phase transition. The maximum value of magnetic entropy change (ΔS) is 2.37 J kg-1 K-1, achieved fore the composite with x = 0.015. Moreover, the maximum value of relative cooling power (RCP) is 122.1 J kg-1, achieved for the composite with x = 0.020. These composites may be appropriate for magnetic application near room temperature.

  17. Synthesis and Study of Optical Properties of Graphene/TiO2 Composites Using UV-VIS Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rathod, P. B.; Waghuley, S. A.

    2016-09-01

    Graphene and TiO2 were synthesized using electrochemical exfoliation and co-precipitation methods, respectively. An ex situ approach was adopted for the graphene/TiO2 composites. The conformation of graphene in the TiO2 samples was examined through X-ray diffraction. Optical properties of the as-synthesised composites such as optical absorption, extinction coefficient, refractive index, real dielectric constant, imaginary dielectric constant, dissipation factor, and optical conductivity were measured using UV-Vis spectroscopy. The varying concentration of graphene in TiO2 affects the optical properties which appear different for 10 wt.% as compared to 5 wt.% graphene/ TiO2 composite. The composites exhibit an absorption peak at 300 nm with a decrease in band gap for 10 wt.% as compared to 5 wt.% graphene/TiO2 composite. The maximum optical conductivity for the graphene/TiO2 composite of 10 wt.% was found to be 1.86·10-2 Ω-1·m-1 at 300 nm.

  18. Adsorption of Pb(II) from aqueous solution using a magnetic chitosan/graphene oxide composite and its toxicity studies.

    PubMed

    Samuel, Melvin S; Shah, Sk Sheriff; Bhattacharya, Jayanta; Subramaniam, Kalidass; Pradeep Singh, N D

    2018-05-02

    This study involves the adsorption of lead using magnetic chitosan/graphene oxide (MCGO) composite material in batch mode. The MCGO composite material was synthesized via modified Hummers method. The MCGO composite material was characterized by powder x-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), Tunnelling electron microscopy (TEM), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET) and UV-vis diffusive reflectance spectra. The adsorption mechanism of MCGO composite material was well described by Langmuir isotherm and pseudo second order kinetic model, with a high regression coefficient (<0.99). The MCGO composite material was applied for the removal of lead metal from aqueous solution. We have also evaluated toxicity of synthesized MCGO composite material by examining on A549 cells. The results have shown that MCGO material showed viable cell percentage of 53.7% at 50 μg and 44.8% at 100 μg. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Micromachined PIN-PMN-PT crystal composite transducer for high-frequency intravascular ultrasound (IVUS) imaging.

    PubMed

    Li, Xiang; Ma, Teng; Tian, Jian; Han, Pengdi; Zhou, Qifa; Shung, K Kirk

    2014-07-01

    In this paper, we report the use of micromachined PbIn1/2Nb1/2O3-PbMg1/3Nb2/3O3-PbTiO 3 (PIN-PMNPT) single crystal 1-3 composite material for intravascular ultrasound (IVUS) imaging application. The effective electromechanical coupling coefficient kt(eff) of the composite was measured to be 0.75 to 0.78. Acoustic impedance was estimated to be 20 MRayl. Based on the composite, needle-type and flexible-type IVUS transducers were fabricated. The composite transducer achieved an 86% bandwidth at the center frequency of 41 MHz, which resulted in a 43 μm axial resolution. Ex vivo IVUS imaging was conducted to demonstrate the improvement of axial resolution. The composite transducer was capable of identifying the three layers of a cadaver coronary artery specimen with high resolution. The PIN-PMN-PT-based composite has superior piezoelectric properties comparable to PMN-PT-based composite and its thermal stability is higher than PMN-PT. PIN-PMN-PT crystal can be an alternative approach for fabricating high-frequency composite, instead of using PMN-PT.

  20. Physical Principles Pertaining to Ultrasonic and Mechanical Properties of Anisotropic Media and Their Application to Nondestructive Evaluation of Fiber-Reinforced Composite Materials

    NASA Astrophysics Data System (ADS)

    Handley, Scott Michael

    The central theme of this thesis is to contribute to the physics underlying the mechanical properties of highly anisotropic materials. Our hypothesis is that a fundamental understanding of the physics involved in the interaction of interrogating ultrasonic waves with anisotropic media will provide useful information applicable to quantitative ultrasonic measurement techniques employed for the determination of material properties. Fiber-reinforced plastics represent a class of advanced composite materials that exhibit substantial anisotropy. The desired characteristics of practical fiber -reinforced composites depend on average mechanical properties achieved by placing fibers at specific angles relative to the external surfaces of the finished part. We examine the physics underlying the use of ultrasound as an interrogation probe for determination of ultrasonic and mechanical properties of anisotropic materials such as fiber-reinforced composites. Fundamental constituent parameters, such as elastic stiffness coefficients (c_{rm IJ}), are experimentally determined from ultrasonic time-of-flight measurements. Mechanical moduli (Poisson's ratio, Young's and shear modulus) descriptive of the anisotropic mechanical properties of unidirectional graphite/epoxy composites are obtained from the ultrasonically determined stiffness coefficients. Three-dimensional visualizations of the anisotropic ultrasonic and mechanical properties of unidirectional graphite/epoxy composites are generated. A related goal of the research is to strengthen the connection-between practical ultrasonic nondestructive evaluation methods and the physics underlying quantitative ultrasonic measurements for the assessment of manufactured fiber-reinforced composites. Production defects such as porosity have proven to be of substantial concern in the manufacturing of composites. We investigate the applicability of ultrasonic interrogation techniques for the detection and characterization of porosity in graphite/epoxy laminates. Complementary ultrasonic parameters based on the frequency dependence of ultrasonic attenuation and integrated polar backscatter are investigated. In summary, the approach taken in this thesis is to examine the physical mechanisms in terms of a continuum mechanics framework and a linear elastic description of ultrasonic wave propagation in anisotropic media with specific application to the nondestructive evaluation of advanced composite materials.

Top