Bourgeois, Michael; Jacquin, Françoise; Cassecuelle, Florence; Savois, Vincent; Belghazi, Maya; Aubert, Grégoire; Quillien, Laurence; Huart, Myriam; Marget, Pascal; Burstin, Judith
2011-05-01
Legume seeds are a major source of dietary proteins for humans and animals. Deciphering the genetic control of their accumulation is thus of primary significance towards their improvement. At first, we analysed the genetic variability of the pea seed proteome of three genotypes over 3 years of cultivation. This revealed that seed protein composition variability was under predominant genetic control, with as much as 60% of the spots varying quantitatively among the three genotypes. Then, by combining proteomic and quantitative trait loci (QTL) mapping approaches, we uncovered the genetic architecture of seed proteome variability. Protein quantity loci (PQL) were searched for 525 spots detected on 2-D gels obtained for 157 recombinant inbred lines. Most protein quantity loci mapped in clusters, suggesting that the accumulation of the major storage protein families was under the control of a limited number of loci. While convicilin accumulation was mainly under the control of cis-regulatory regions, vicilins and legumins were controlled by both cis- and trans-regulatory regions. Some loci controlled both seed protein composition and protein content and a locus on LGIIa appears to be a major regulator of protein composition and of protein in vitro digestibility. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-09
.... Second, NASDAQ OMX is proposing to amend the compositional requirements of the Nominating & Governance... approve a proposed rule change of a self-regulatory organization if it finds that such proposed rule... are in the custody or control of such clearing agency or for which it is responsible, and to comply...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-09
.... Second, NASDAQ OMX is proposing to amend the compositional requirements of the Nominating & Governance... approve a proposed rule change of a self-regulatory organization if it finds that such proposed rule... are in the custody or control of such clearing agency or for which it is responsible, and to comply...
Media Ion Composition Controls Regulatory and Virulence Response of Salmonella in Spaceflight
Wilson, James W.; Ott, C. Mark; Quick, Laura; Davis, Richard; zu Bentrup, Kerstin Höner; Crabbé, Aurélie; Richter, Emily; Sarker, Shameema; Barrila, Jennifer; Porwollik, Steffen; Cheng, Pui; McClelland, Michael; Tsaprailis, George; Radabaugh, Timothy; Hunt, Andrea; Shah, Miti; Nelman-Gonzalez, Mayra; Hing, Steve; Parra, Macarena; Dumars, Paula; Norwood, Kelly; Bober, Ramona; Devich, Jennifer; Ruggles, Ashleigh; CdeBaca, Autumn; Narayan, Satro; Benjamin, Joseph; Goulart, Carla; Rupert, Mark; Catella, Luke; Schurr, Michael J.; Buchanan, Kent; Morici, Lisa; McCracken, James; Porter, Marc D.; Pierson, Duane L.; Smith, Scott M.; Mergeay, Max; Leys, Natalie; Stefanyshyn-Piper, Heidemarie M.; Gorie, Dominic; Nickerson, Cheryl A.
2008-01-01
The spaceflight environment is relevant to conditions encountered by pathogens during the course of infection and induces novel changes in microbial pathogenesis not observed using conventional methods. It is unclear how microbial cells sense spaceflight-associated changes to their growth environment and orchestrate corresponding changes in molecular and physiological phenotypes relevant to the infection process. Here we report that spaceflight-induced increases in Salmonella virulence are regulated by media ion composition, and that phosphate ion is sufficient to alter related pathogenesis responses in a spaceflight analogue model. Using whole genome microarray and proteomic analyses from two independent Space Shuttle missions, we identified evolutionarily conserved molecular pathways in Salmonella that respond to spaceflight under all media compositions tested. Identification of conserved regulatory paradigms opens new avenues to control microbial responses during the infection process and holds promise to provide an improved understanding of human health and disease on Earth. PMID:19079590
2016-10-01
AWARD NUMBER: W81XWH-15-1-0244 TITLE: Regulatory T Cell-Enriching Microparticles for Promoting Vascularized Composite Allotransplant Survival...2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Regulatory T Cell-Enriching Microparticles for Promoting Vascularized Composite Allotransplant Survival...observed effects these particles have on allograft survival. Key Words CTA Composite Tissue Allotransplantation VCA Vascularized Composite
Control of Metastatic Progression by microRNA Regulatory Networks
Pencheva, Nora; Tavazoie, Sohail F.
2015-01-01
Aberrant microRNA (miRNA) expression is a defining feature of human malignancy. Specific miRNAs have been identified as promoters or suppressors of metastatic progression. These miRNAs control metastasis through divergent or convergent regulation of metastatic gene pathways. Some miRNA regulatory networks govern cell-autonomous cancer phenotypes, while others modulate the cell-extrinsic composition of the metastatic microenvironment. The use of small RNAs as probes into the molecular and cellular underpinnings of metastasis holds promise for the identification of candidate genes for potential therapeutic intervention. PMID:23728460
Wilson, A Justine; Jung, Mary E; Cramp, Anita; Simatovic, Jacqueline; Prapavessis, Harry; Clarson, Cheril
2012-11-01
This feasibility study assessed the effects of an exercise plus group-based self-regulatory skills intervention on obese youths' physical activity, social cognitions, body composition and strength. Forty-three obese youth (male = 13, BMI > 95th percentile; 10-16 yrs) completed this 12-week intervention. Assessments were taken at baseline, week 6, 13 and 12 weeks post-intervention (week 24). Although no attention control group (i.e. exercise only) was included in this study, participants engaged in significantly more self-reported physical activity at weeks 13 and 24 as compared to baseline. Social cognitions, body composition and strength were also positively impacted suggesting this intervention technique may be feasible for treating obese adolescents.
Regulatory principles governing Salmonella and Yersinia virulence
Erhardt, Marc; Dersch, Petra
2015-01-01
Enteric pathogens such as Salmonella and Yersinia evolved numerous strategies to survive and proliferate in different environmental reservoirs and mammalian hosts. Deciphering common and pathogen-specific principles for how these bacteria adjust and coordinate spatiotemporal expression of virulence determinants, stress adaptation, and metabolic functions is fundamental to understand microbial pathogenesis. In order to manage sudden environmental changes, attacks by the host immune systems and microbial competition, the pathogens employ a plethora of transcriptional and post-transcriptional control elements, including transcription factors, sensory and regulatory RNAs, RNAses, and proteases, to fine-tune and control complex gene regulatory networks. Many of the contributing global regulators and the molecular mechanisms of regulation are frequently conserved between Yersinia and Salmonella. However, the interplay, arrangement, and composition of the control elements vary between these closely related enteric pathogens, which generate phenotypic differences leading to distinct pathogenic properties. In this overview we present common and different regulatory networks used by Salmonella and Yersinia to coordinate the expression of crucial motility, cell adhesion and invasion determinants, immune defense strategies, and metabolic adaptation processes. We highlight evolutionary changes of the gene regulatory circuits that result in different properties of the regulatory elements and how this influences the overall outcome of the infection process. PMID:26441883
Mounet, Fabien; Moing, Annick; Garcia, Virginie; Petit, Johann; Maucourt, Michael; Deborde, Catherine; Bernillon, Stéphane; Le Gall, Gwénaëlle; Colquhoun, Ian; Defernez, Marianne; Giraudel, Jean-Luc; Rolin, Dominique; Rothan, Christophe; Lemaire-Chamley, Martine
2009-01-01
Variations in early fruit development and composition may have major impacts on the taste and the overall quality of ripe tomato (Solanum lycopersicum) fruit. To get insights into the networks involved in these coordinated processes and to identify key regulatory genes, we explored the transcriptional and metabolic changes in expanding tomato fruit tissues using multivariate analysis and gene-metabolite correlation networks. To this end, we demonstrated and took advantage of the existence of clear structural and compositional differences between expanding mesocarp and locular tissue during fruit development (12–35 d postanthesis). Transcriptome and metabolome analyses were carried out with tomato microarrays and analytical methods including proton nuclear magnetic resonance and liquid chromatography-mass spectrometry, respectively. Pairwise comparisons of metabolite contents and gene expression profiles detected up to 37 direct gene-metabolite correlations involving regulatory genes (e.g. the correlations between glutamine, bZIP, and MYB transcription factors). Correlation network analyses revealed the existence of major hub genes correlated with 10 or more regulatory transcripts and embedded in a large regulatory network. This approach proved to be a valuable strategy for identifying specific subsets of genes implicated in key processes of fruit development and metabolism, which are therefore potential targets for genetic improvement of tomato fruit quality. PMID:19144766
Code of Federal Regulations, 2014 CFR
2014-04-01
... ACT Miscellaneous § 1.64 Composition of various self-regulatory organization governing boards and... organization means “self-regulatory organization” as defined in § 1.3(ee), not including a “clearing... authorized by a self-regulatory organization to conduct disciplinary hearings, to settle disciplinary charges...
Code of Federal Regulations, 2010 CFR
2010-04-01
... ACT Miscellaneous § 1.64 Composition of various self-regulatory organization governing boards and... organization means “self-regulatory organization” as defined in § 1.3(ee), not including a “clearing... authorized by a self-regulatory organization to conduct disciplinary hearings, to settle disciplinary charges...
Code of Federal Regulations, 2012 CFR
2012-04-01
... ACT Miscellaneous § 1.64 Composition of various self-regulatory organization governing boards and... organization means “self-regulatory organization” as defined in § 1.3(ee), not including a “clearing... authorized by a self-regulatory organization to conduct disciplinary hearings, to settle disciplinary charges...
Code of Federal Regulations, 2013 CFR
2013-04-01
... ACT Miscellaneous § 1.64 Composition of various self-regulatory organization governing boards and... organization means “self-regulatory organization” as defined in § 1.3(ee), not including a “clearing... authorized by a self-regulatory organization to conduct disciplinary hearings, to settle disciplinary charges...
Code of Federal Regulations, 2011 CFR
2011-04-01
... ACT Miscellaneous § 1.64 Composition of various self-regulatory organization governing boards and... organization means “self-regulatory organization” as defined in § 1.3(ee), not including a “clearing... authorized by a self-regulatory organization to conduct disciplinary hearings, to settle disciplinary charges...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-13
..., ``Recombinant Vaccinia Virus Containing a Chimeric Gene Having Foreign DNA Flanked by Vaccinia Regulatory DNA..., ``Compositions Containing Recombinant Poxviruses Having Foreign DNA Expressed under the Control of Poxvirus... entitled, ``Methods of Immunization Using Recombinant Poxviruses Having Foreign DNA Expressed under the...
This 2002 report includes the costs associated with the regulatory control options associated with the proposed NESHAP, results of the economic impact analysis, a summary of impacts on small businesses, and results of the monetized benefits analysis.
Stein, G S; van Wijnen, A J; Stein, J L; Lian, J B; Montecino, M; Zaidi, K; Javed, A
2000-01-01
The regulated and regulatory components that interrelate nuclear structure and function must be experimentally established. A formidable challenge is to define further the control of transcription factor targeting to acceptor sites associated with the nuclear matrix. It will be important to determine whether acceptor proteins are associated with a pre-existing core-filament structural lattice or whether a compositely organized scaffold of regulatory factors is dynamically assembled. An inclusive model for all steps in the targeting of proteins to subnuclear sites cannot yet be proposed. However, this model must account for the apparent diversity of intranuclear targeting signals. It is also important to assess the extent to which regulatory discrimination is mediated by subnuclear domain-specific trafficking signals. Furthermore, the checkpoints that monitor subnuclear distribution of regulatory factors and the sorting steps that ensure both structural and functional fidelity of nuclear domains in which replication and expression of genes occur must be biochemically and mechanistically defined. There is emerging recognition that placement of regulatory components of gene expression must be temporally and spatially coordinated to facilitate biological control. The consequences of breaches in nuclear structure-function relationships are observed in an expanding series of diseases that include cancer [Weis et al., 1994; Rogaia et al., 1997; Yano et al., 1997; Rowley, 1998; Zeng et al., 1998; McNeil et al., 1999; Tao and Levine, 1999a] and neurological disorders [Skinner et al., 1997]. As the repertoire of architecture-associated regulatory factors and cofactors expands, workers in the field are becoming increasingly confident that nuclear organization contributes significantly to control of transcription. To gain increased appreciation for the complexities of subnuclear organization and gene regulation, we must continue to characterize mechanisms that direct regulatory proteins to specific transcription sites within the nucleus so that these proteins are in the right place at the right time. J. Cell. Biochem. Suppl. 35:84-92, 2000. Copyright 2001 Wiley-Liss, Inc.
Optical tests for using smartphones inside medical devices
NASA Astrophysics Data System (ADS)
Bernat, Amir S.; Acobas, Jennifer K.; Phang, Ye Shang; Hassan, David; Bolton, Frank J.; Levitz, David
2018-02-01
Smartphones are currently used in many medical applications and are more frequently being integrated into medical imaging devices. The regulatory requirements in existence today however, particularly the standardization of smartphone imaging through validation and verification testing, only partially cover imaging characteristics with a smartphone. Specifically, it has been shown that smartphone camera specifications are of sufficient quality for medical imaging, and there are devices which comply with the FDA's regulatory requirements for a medical device such as a device's field of view, direction of viewing and optical resolution and optical distortion. However, these regulatory requirements do not call specifically for color testing. Images of the same object using automatic settings or different light sources can show different color composition. Experimental results showing such differences are presented. Under some circumstances, such differences in color composition could potentially lead to incorrect diagnoses. It is therefore critical to control the smartphone camera and illumination parameters properly. This paper examines different smartphone camera settings that affect image quality and color composition. To test and select the correct settings, a test methodology is proposed. It aims at evaluating and testing image color correctness and white balance settings for mobile phones and LED light sources. Emphasis is placed on color consistency and deviation from gray values, specifically by evaluating the ΔC values based on the CIEL*a*b* color space. Results show that such standardization minimizes differences in color composition and thus could reduce the risk of a wrong diagnosis.
Selectivity in subunit composition of Ena/VASP tetramers
Riquelme, Daisy N.; Meyer, Aaron S.; Barzik, Melanie; Keating, Amy; Gertler, Frank B.
2015-01-01
The members of the actin regulatory family of Ena/VASP proteins form stable tetramers. The vertebrate members of the Ena/VASP family, VASP, Mena and EVL, have many overlapping properties and expression patterns, but functional and regulatory differences between paralogues have been observed. The formation of mixed oligomers may serve a regulatory role to refine Ena/VASP activity. While it has been assumed that family members can form mixed oligomers, this possibility has not been investigated systematically. Using cells expressing controlled combinations of VASP, Mena and EVL, we evaluated the composition of Ena/VASP oligomers and found that VASP forms oligomers without apparent bias with itself, Mena or EVL. However, Mena and EVL showed only weak hetero-oligomerization, suggesting specificity in the association of Ena/VASP family members. Co-expression of VASP increased the ability of Mena and EVL to form mixed oligomers. Additionally, we found that the tetramerization domain (TD) at the C-termini of Ena/VASP proteins conferred the observed selectivity. Finally, we demonstrate that replacement of the TD with a synthetic tetramerizing coiled coil sequence supports homo-oligomerization and normal VASP subcellular localization. PMID:26221026
Regulation of cell wall biosynthesis.
Zhong, Ruiqin; Ye, Zheng-Hua
2007-12-01
Plant cell walls differ in their amount and composition among various cell types and even in different microdomains of the wall of a given cell. Plants must have evolved regulatory mechanisms controlling biosynthesis, targeted secretion, and assembly of wall components to achieve the heterogeneity in cell walls. A number of factors, including hormones, the cytoskeleton, glycosylphosphatidylinositol-anchored proteins, phosphoinositides, and sugar nucleotide supply, have been implicated in the regulation of cell wall biosynthesis or deposition. In the past two years, there have been important discoveries in transcriptional regulation of secondary wall biosynthesis. Several transcription factors in the NAC and MYB families have been shown to be the key switches for activation of secondary wall biosynthesis. These studies suggest a transcriptional network comprised of a hierarchy of transcription factors is involved in regulating secondary wall biosynthesis. Further investigation and integration of the regulatory players participating in the making of cell walls will certainly lead to our understanding of how wall amounts and composition are controlled in a given cell type. This may eventually allow custom design of plant cell walls on the basis of our needs.
Meat and milk compositions of bovine clones
Tian, X. Cindy; Kubota, Chikara; Sakashita, Kunihito; Izaike, Yoshiaki; Okano, Ryoichi; Tabara, Norio; Curchoe, Carol; Jacob, Lavina; Zhang, Yuqin; Smith, Sadie; Bormann, Charles; Xu, Jie; Sato, Masumi; Andrew, Sheila; Yang, Xiangzhong
2005-01-01
The technology is now available for commercial cloning of farm animals for food production, but is the food safe for consumers? Here, we provide data on >100 parameters that compare the composition of meat and milk from beef and dairy cattle derived from cloning to those of genetic- and breed-matched control animals from conventional reproduction. The cloned animals and the comparators were managed under the same conditions and received the same diet. The composition of the meat and milk from the clones were largely not statistically different from those of matched comparators, and all parameters examined were within the normal industry standards or previously reported values. The data generated from our match-controlled experiments provide science-based information desired by regulatory agencies to address public concerns about the safety of meat and milk from somatic animal clones. PMID:15829585
Proximate Composition Analysis.
2016-01-01
The proximate composition of foods includes moisture, ash, lipid, protein and carbohydrate contents. These food components may be of interest in the food industry for product development, quality control (QC) or regulatory purposes. Analyses used may be rapid methods for QC or more accurate but time-consuming official methods. Sample collection and preparation must be considered carefully to ensure analysis of a homogeneous and representative sample, and to obtain accurate results. Estimation methods of moisture content, ash value, crude lipid, total carbohydrates, starch, total free amino acids and total proteins are put together in a lucid manner.
Building Blocks of the Nexin-Dynein Regulatory Complex in Chlamydomonas Flagella*
Lin, Jianfeng; Tritschler, Douglas; Song, Kangkang; Barber, Cynthia F.; Cobb, Jennifer S.; Porter, Mary E.; Nicastro, Daniela
2011-01-01
The directional flow generated by motile cilia and flagella is critical for many processes, including human development and organ function. Normal beating requires the control and coordination of thousands of dynein motors, and the nexin-dynein regulatory complex (N-DRC) has been identified as an important regulatory node for orchestrating dynein activity. The nexin link appears to be critical for the transformation of dynein-driven, linear microtubule sliding to flagellar bending, yet the molecular composition and mechanism of the N-DRC remain largely unknown. Here, we used proteomics with special attention to protein phosphorylation to analyze the composition of the N-DRC and to determine which subunits may be important for signal transduction. Two-dimensional electrophoresis and MALDI-TOF mass spectrometry of WT and mutant flagellar axonemes from Chlamydomonas identified 12 N-DRC-associated proteins, including all seven previously observed N-DRC components. Sequence and PCR analyses identified the mutation responsible for the phenotype of the sup-pf-4 strain, and biochemical comparison with a radial spoke mutant revealed two components that may link the N-DRC and the radial spokes. Phosphoproteomics revealed eight proteins with phosphorylated isoforms for which the isoform patterns changed with the genotype as well as two components that may play pivotal roles in N-DRC function through their phosphorylation status. These data were assembled into a model of the N-DRC that explains aspects of its regulatory function. PMID:21700706
Hypoglycemia evaluation and reporting in diabetes: Importance for the development of new therapies.
Klonoff, David C; Alexander Fleming, G; Muchmore, Douglas B; Frier, Brian M
2017-07-01
Hypoglycemia complicating diabetes therapy is well recognized to be an ever-present threat to patients, their families, providers, payers, and regulators. Despite this being widely acknowledged, the regulatory stance on hypoglycemia as an endpoint in clinical trials to support new product registration has not evolved in any meaningful way since the publication of a position paper by an American Diabetes Association (ADA) Workgroup in 2005. As the impact of hypoglycemia on persons affected by diabetes is of major importance when assessing new treatments, the historical position of regulatory agencies on hypoglycemia is reviewed with respect to product approvals. The purpose of this article is to present proposals for facilitating development of therapies that reduce hypoglycemia risk through (1) development of composite measures of benefit for regulatory endpoints and (2) facilitation of the fulfillment of an unmet clinical need for reducing hypoglycemia. In view of greater comprehension of the effects of hypoglycemia, coupled with improved methodology to assess its frequency, the authors recommend: (1) a numerical cut point of <54 mg/dl (<3.0 mmol/L) as a clinically relevant level with which to define meaningful hypoglycemia for trials of diabetes therapies; (2) utilization in clinical trials of mature glucose monitoring technologies for purposes of regulatory evaluation and clinical decision-making; and (3) development of primary efficacy endpoint composites that include hypoglycemia rates and glycemic control. Copyright © 2017 John Wiley & Sons, Ltd.
Extensive cross-regulation of post-transcriptional regulatory networks in Drosophila
Stoiber, Marcus H.; Olson, Sara; May, Gemma E.; ...
2015-08-20
In eukaryotic cells, RNAs exist as ribonucleoprotein particles (RNPs). Despite the importance of these complexes in many biological processes, including splicing, polyadenylation, stability, transportation, localization, and translation, their compositions are largely unknown. We affinity-purified 20 distinct RNA-binding proteins (RBPs) from cultured Drosophila melanogaster cells under native conditions and identified both the RNA and protein compositions of these RNP complexes. We identified “high occupancy target” (HOT) RNAs that interact with the majority of the RBPs we surveyed. HOT RNAs encode components of the nonsense-mediated decay and splicing machinery, as well as RNA-binding and translation initiation proteins. The RNP complexes contain proteinsmore » and mRNAs involved in RNA binding and post-transcriptional regulation. Genes with the capacity to produce hundreds of mRNA isoforms, ultracomplex genes, interact extensively with heterogeneous nuclear ribonuclear proteins (hnRNPs). Our data are consistent with a model in which subsets of RNPs include mRNA and protein products from the same gene, indicating the widespread existence of auto-regulatory RNPs. Lastly, from the simultaneous acquisition and integrative analysis of protein and RNA constituents of RNPs, we identify extensive cross-regulatory and hierarchical interactions in post-transcriptional control.« less
Extensive cross-regulation of post-transcriptional regulatory networks in Drosophila
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoiber, Marcus H.; Olson, Sara; May, Gemma E.
In eukaryotic cells, RNAs exist as ribonucleoprotein particles (RNPs). Despite the importance of these complexes in many biological processes, including splicing, polyadenylation, stability, transportation, localization, and translation, their compositions are largely unknown. We affinity-purified 20 distinct RNA-binding proteins (RBPs) from cultured Drosophila melanogaster cells under native conditions and identified both the RNA and protein compositions of these RNP complexes. We identified “high occupancy target” (HOT) RNAs that interact with the majority of the RBPs we surveyed. HOT RNAs encode components of the nonsense-mediated decay and splicing machinery, as well as RNA-binding and translation initiation proteins. The RNP complexes contain proteinsmore » and mRNAs involved in RNA binding and post-transcriptional regulation. Genes with the capacity to produce hundreds of mRNA isoforms, ultracomplex genes, interact extensively with heterogeneous nuclear ribonuclear proteins (hnRNPs). Our data are consistent with a model in which subsets of RNPs include mRNA and protein products from the same gene, indicating the widespread existence of auto-regulatory RNPs. Lastly, from the simultaneous acquisition and integrative analysis of protein and RNA constituents of RNPs, we identify extensive cross-regulatory and hierarchical interactions in post-transcriptional control.« less
This presentation, Exposures to Polycyclic Aromatic Hydrocarbons and Childhood Growth Trajectories and Body Composition: Linkages to Disrupted Self-Regulatory Processes, was given at the NIEHS/EPA Children's Centers 2016 Webinar Series: Childhood Obesity
Piotrowski, Jessica Taylor; Lapierre, Matthew A; Linebarger, Deborah L
2013-04-01
Children who possess less self-regulatory skill are at a disadvantage when compared to children who demonstrate greater skill at regulating their emotions, cognitions and behavior. Children with these regulatory deficits have difficulty connecting with peers, generating relationships with teachers, negotiating their social world, and succeeding academically. By understanding the correlates of self-regulatory abilities, interventions can be developed to ensure that children at-risk for poor self-regulation receive the support necessary to enhance their regulatory skills. Using data from a nationally representative survey of English-speaking American parents with children between the ages of two and eight ( n = 1,141), we evaluated a host of demographic and parenting variables to isolate the correlates of self-regulation. Older children were found to have fewer regulatory problems than younger children while children from low-income homes and male children were found to have greater problems with self-regulation. Minority status, household composition (single vs multi-parent), and parental education were not significant correlates of self-regulation. Findings also illustrate the powerful relationship between parenting style and self-regulation. Parents who rely on nurturing parenting practices that reinforce the child's sense of autonomy while still maintaining a consistent parenting presence (i.e., authoritative parenting) have children who demonstrate stronger self-regulatory skills. Parents who exert an excess of parental control (i.e., authoritarian parents) have children with weaker self-regulatory skills. And lastly, parents who have notable absence of control (i.e., permissive parents) are more likely to have children with considerable regulatory deficits. Results offer implications for both practitioners and scholars.
Regulatory Considerations in the Design and Manufacturing of Implantable 3D‐Printed Medical Devices
Morrison, Robert J.; Kashlan, Khaled N.; Flanangan, Colleen L.; Wright, Jeanne K.; Green, Glenn E.; Hollister, Scott J.
2015-01-01
Abstract Three‐dimensional (3D) printing, or additive manufacturing, technology has rapidly penetrated the medical device industry over the past several years, and innovative groups have harnessed it to create devices with unique composition, structure, and customizability. These distinctive capabilities afforded by 3D printing have introduced new regulatory challenges. The customizability of 3D‐printed devices introduces new complexities when drafting a design control model for FDA consideration of market approval. The customizability and unique build processes of 3D‐printed medical devices pose unique challenges in meeting regulatory standards related to the manufacturing quality assurance. Consistent material powder properties and optimal printing parameters such as build orientation and laser power must be addressed and communicated to the FDA to ensure a quality build. Postprinting considerations unique to 3D‐printed devices, such as cleaning, finishing and sterilization are also discussed. In this manuscript we illustrate how such regulatory hurdles can be navigated by discussing our experience with our group's 3D‐printed bioresorbable implantable device. PMID:26243449
Vischi Winck, Flavia; Arvidsson, Samuel; Riaño-Pachón, Diego Mauricio; Hempel, Sabrina; Koseska, Aneta; Nikoloski, Zoran; Urbina Gomez, David Alejandro; Rupprecht, Jens; Mueller-Roeber, Bernd
2013-01-01
The unicellular green alga Chlamydomonas reinhardtii is a long-established model organism for studies on photosynthesis and carbon metabolism-related physiology. Under conditions of air-level carbon dioxide concentration [CO2], a carbon concentrating mechanism (CCM) is induced to facilitate cellular carbon uptake. CCM increases the availability of carbon dioxide at the site of cellular carbon fixation. To improve our understanding of the transcriptional control of the CCM, we employed FAIRE-seq (formaldehyde-assisted Isolation of Regulatory Elements, followed by deep sequencing) to determine nucleosome-depleted chromatin regions of algal cells subjected to carbon deprivation. Our FAIRE data recapitulated the positions of known regulatory elements in the promoter of the periplasmic carbonic anhydrase (Cah1) gene, which is upregulated during CCM induction, and revealed new candidate regulatory elements at a genome-wide scale. In addition, time series expression patterns of 130 transcription factor (TF) and transcription regulator (TR) genes were obtained for cells cultured under photoautotrophic condition and subjected to a shift from high to low [CO2]. Groups of co-expressed genes were identified and a putative directed gene-regulatory network underlying the CCM was reconstructed from the gene expression data using the recently developed IOTA (inner composition alignment) method. Among the candidate regulatory genes, two members of the MYB-related TF family, Lcr1 (Low-CO 2 response regulator 1) and Lcr2 (Low-CO 2 response regulator 2), may play an important role in down-regulating the expression of a particular set of TF and TR genes in response to low [CO2]. The results obtained provide new insights into the transcriptional control of the CCM and revealed more than 60 new candidate regulatory genes. Deep sequencing of nucleosome-depleted genomic regions indicated the presence of new, previously unknown regulatory elements in the C. reinhardtii genome. Our work can serve as a basis for future functional studies of transcriptional regulator genes and genomic regulatory elements in Chlamydomonas. PMID:24224019
Quantifying lipid changes in various membrane compartments using lipid binding protein domains.
Várnai, Péter; Gulyás, Gergő; Tóth, Dániel J; Sohn, Mira; Sengupta, Nivedita; Balla, Tamas
2017-06-01
One of the largest challenges in cell biology is to map the lipid composition of the membranes of various organelles and define the exact location of processes that control the synthesis and distribution of lipids between cellular compartments. The critical role of phosphoinositides, low-abundant lipids with rapid metabolism and exceptional regulatory importance in the control of almost all aspects of cellular functions created the need for tools to visualize their localizations and dynamics at the single cell level. However, there is also an increasing need for methods to determine the cellular distribution of other lipids regulatory or structural, such as diacylglycerol, phosphatidic acid, or other phospholipids and cholesterol. This review will summarize recent advances in this research field focusing on the means by which changes can be described in more quantitative terms. Published by Elsevier Ltd.
Trends in auto emissions and gasoline composition.
Sawyer, R F
1993-01-01
The invention of the spark-ignited internal combustion engine provided a market for a petroleum middle distillate, gasoline, about 100 years ago. The internal combustion engine and gasoline have co-evolved until motor vehicles now annually consume about 110 billion gallons of gasoline in the United States. Continuing air pollution problems and resulting regulatory pressures are driving the need for further automotive emissions reductions. Engine and emissions control technology provided most earlier reductions. Changing the composition of gasoline will play a major role in the next round of reductions. The engineering and regulatory definition of a reformulated gasoline is proceeding rapidly, largely as the result of an auto and oil industry cooperative data generation program. It is likely that this new, reformulated gasoline will be introduced in high-ozone regions of the United States in the mid-1990s. Alternative clean fuels, primarily methane, methanol, and liquid petroleum gas, will become more widely used during this same period, probably first in fleet operations. PMID:7517353
Thermal Properties of Cement-Based Composites for Geothermal Energy Applications.
Bao, Xiaohua; Memon, Shazim Ali; Yang, Haibin; Dong, Zhijun; Cui, Hongzhi
2017-04-27
Geothermal energy piles are a quite recent renewable energy technique where geothermal energy in the foundation of a building is used to transport and store geothermal energy. In this paper, a structural-functional integrated cement-based composite, which can be used for energy piles, was developed using expanded graphite and graphite nanoplatelet-based composite phase change materials (CPCMs). Its mechanical properties, thermal-regulatory performance, and heat of hydration were evaluated. Test results showed that the compressive strength of GNP-Paraffin cement-based composites at 28 days was more than 25 MPa. The flexural strength and density of thermal energy storage cement paste composite decreased with increases in the percentage of CPCM in the cement paste. The infrared thermal image analysis results showed superior thermal control capability of cement based materials with CPCMs. Hence, the carbon-based CPCMs are promising thermal energy storage materials and can be used to improve the durability of energy piles.
Thermal Properties of Cement-Based Composites for Geothermal Energy Applications
Bao, Xiaohua; Memon, Shazim Ali; Yang, Haibin; Dong, Zhijun; Cui, Hongzhi
2017-01-01
Geothermal energy piles are a quite recent renewable energy technique where geothermal energy in the foundation of a building is used to transport and store geothermal energy. In this paper, a structural–functional integrated cement-based composite, which can be used for energy piles, was developed using expanded graphite and graphite nanoplatelet-based composite phase change materials (CPCMs). Its mechanical properties, thermal-regulatory performance, and heat of hydration were evaluated. Test results showed that the compressive strength of GNP-Paraffin cement-based composites at 28 days was more than 25 MPa. The flexural strength and density of thermal energy storage cement paste composite decreased with increases in the percentage of CPCM in the cement paste. The infrared thermal image analysis results showed superior thermal control capability of cement based materials with CPCMs. Hence, the carbon-based CPCMs are promising thermal energy storage materials and can be used to improve the durability of energy piles. PMID:28772823
Evolutionary toxicology: Meta-analysis of evolutionary events in response to chemical stressors.
M Oziolor, Elias; De Schamphelaere, Karel; Matson, Cole W
2016-12-01
The regulatory decision-making process regarding chemical safety is most often informed by evidence based on ecotoxicity tests that consider growth, reproduction and survival as end-points, which can be quantitatively linked to short-term population outcomes. Changes in these end-points resulting from chemical exposure can cause alterations in micro-evolutionary forces (mutation, drift, selection and gene flow) that control the genetic composition of populations. With multi-generation exposures, anthropogenic contamination can lead to a population with an altered genetic composition, which may respond differently to future stressors. These evolutionary changes are rarely discussed in regulatory or risk assessment frameworks, but the growing body of literature that documents their existence suggests that these important population-level impacts should be considered. In this meta-analysis we have compared existing contamination levels of polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) that have been documented to be associated with evolutionary changes in resident aquatic organisms to regulatory benchmarks for these contaminants. The original intent of this project was to perform a meta-analysis on evolutionary events associated with PCB and PAH contamination. However, this effort was hindered by a lack of consistency in congener selection for "total" PCB or PAH measurements. We expanded this manuscript to include a discussion of methods used to determine PCB and PAH total contamination in addition to comparing regulatory guidelines and contamination that has caused evolutionary effects. Micro-evolutionary responses often lead populations onto unique and unpredictable trajectories. Therefore, to better understand the risk of population-wide alterations occurring, we need to improve comparisons of chemical contamination between affected locations. In this manuscript we offer several possibilities to unify chemical comparisons for PCBs and PAHs that would improve comparability among evolutionary toxicology investigations, and with regulatory guidelines. In addition, we identify studies documenting evolutionary change in the presence of PCB and PAH contamination levels below applicable regulatory benchmarks.
Gause, William C; Maizels, Rick M
2016-01-01
Important insights have recently been gained in our understanding of the intricate relationship in the intestinal milieu between the vertebrate host mucosal immune response, commensal bacteria, and helminths. Helminths are metazoan worms (macrobiota) and trigger immune responses that include potent regulatory components capable of controlling harmful inflammation, protecting barrier function and mitigating tissue damage. They can secrete a variety of products that directly affect immune regulatory function but they also have the capacity to influence the composition of microbiota, which can also then impact immune function. Conversely, changes in microbiota can affect susceptibility to helminth infection, indicating that crosstalk between these two disparate groups of endobiota can play an essential role in host intestinal immune function and homeostasis. PMID:27116368
Nuclear hormone receptor NHR-49 controls fat consumption and fatty acid composition in C. elegans.
Van Gilst, Marc R; Hadjivassiliou, Haralambos; Jolly, Amber; Yamamoto, Keith R
2005-02-01
Mammalian nuclear hormone receptors (NHRs), such as liver X receptor, farnesoid X receptor, and peroxisome proliferator-activated receptors (PPARs), precisely control energy metabolism. Consequently, these receptors are important targets for the treatment of metabolic diseases, including diabetes and obesity. A thorough understanding of NHR fat regulatory networks has been limited, however, by a lack of genetically tractable experimental systems. Here we show that deletion of the Caenorhabditis elegans NHR gene nhr-49 yielded worms with elevated fat content and shortened life span. Employing a quantitative RT-PCR screen, we found that nhr-49 influenced the expression of 13 genes involved in energy metabolism. Indeed, nhr-49 served as a key regulator of fat usage, modulating pathways that control the consumption of fat and maintain a normal balance of fatty acid saturation. We found that the two phenotypes of the nhr-49 knockout were linked to distinct pathways and were separable: The high-fat phenotype was due to reduced expression of enzymes in fatty acid beta-oxidation, and the shortened adult life span resulted from impaired expression of a stearoyl-CoA desaturase. Despite its sequence relationship with the mammalian hepatocyte nuclear factor 4 receptor, the biological activities of nhr-49 were most similar to those of the mammalian PPARs, implying an evolutionarily conserved role for NHRs in modulating fat consumption and composition. Our findings in C. elegans provide novel insights into how NHR regulatory networks are coordinated to govern fat metabolism.
Schoor, Michael; Mortlock, Doug P.; Reddi, A. Hari; Kingsley, David M.
2016-01-01
Synovial joints are crucial for support and locomotion in vertebrates, and are the frequent site of serious skeletal defects and degenerative diseases in humans. Growth and differentiation factor 5 (Gdf5) is one of the earliest markers of joint formation, is required for normal joint development in both mice and humans, and has been genetically linked to risk of common osteoarthritis in Eurasian populations. Here, we systematically survey the mouse Gdf5 gene for regulatory elements controlling expression in synovial joints. We identify separate regions of the locus that control expression in axial tissues, in proximal versus distal joints in the limbs, and in remarkably specific sub-sets of composite joints like the elbow. Predicted transcription factor binding sites within Gdf5 regulatory enhancers are required for expression in particular joints. The multiple enhancers that control Gdf5 expression in different joints are distributed over a hundred kilobases of DNA, including regions both upstream and downstream of Gdf5 coding exons. Functional rescue tests in mice confirm that the large flanking regions are required to restore normal joint formation and patterning. Orthologs of these enhancers are located throughout the large genomic region previously associated with common osteoarthritis risk in humans. The large array of modular enhancers for Gdf5 provide a new foundation for studying the spatial specificity of joint patterning in vertebrates, as well as new candidates for regulatory regions that may also influence osteoarthritis risk in human populations. PMID:27902701
Shaping skeletal growth by modular regulatory elements in the Bmp5 gene.
Guenther, Catherine; Pantalena-Filho, Luiz; Kingsley, David M
2008-12-01
Cartilage and bone are formed into a remarkable range of shapes and sizes that underlie many anatomical adaptations to different lifestyles in vertebrates. Although the morphological blueprints for individual cartilage and bony structures must somehow be encoded in the genome, we currently know little about the detailed genomic mechanisms that direct precise growth patterns for particular bones. We have carried out large-scale enhancer surveys to identify the regulatory architecture controlling developmental expression of the mouse Bmp5 gene, which encodes a secreted signaling molecule required for normal morphology of specific skeletal features. Although Bmp5 is expressed in many skeletal precursors, different enhancers control expression in individual bones. Remarkably, we show here that different enhancers also exist for highly restricted spatial subdomains along the surface of individual skeletal structures, including ribs and nasal cartilages. Transgenic, null, and regulatory mutations confirm that these anatomy-specific sequences are sufficient to trigger local changes in skeletal morphology and are required for establishing normal growth rates on separate bone surfaces. Our findings suggest that individual bones are composite structures whose detailed growth patterns are built from many smaller lineage and gene expression domains. Individual enhancers in BMP genes provide a genomic mechanism for controlling precise growth domains in particular cartilages and bones, making it possible to separately regulate skeletal anatomy at highly specific locations in the body.
Geochemical signature of NORM waste in Brazilian oil and gas industry.
De-Paula-Costa, G T; Guerrante, I C; Costa-de-Moura, J; Amorim, F C
2018-09-01
The Brazilian Nuclear Energy Agency (CNEN) is responsible for any radioactive waste storage and disposal in the country. The storage of radioactive waste is carried out in the facilities under CNEN regulation and its disposal is operated, managed and controlled by the CNEN. Oil NORM (Naturally Occurring Radioactive Materials) in this article refers to waste coming from oil exploitation. Oil NORM has called much attention during the last decades, mostly because it is not possible to determine its primary source due to the actual absence of a regulatory control mechanism. There is no efficient regulatory tool which allows determining the origin of such NORM wastes even among those facilities under regulatory control. This fact may encourage non-authorized radioactive material transportation, smuggling and terrorism. The aim of this project is to provide a geochemical signature for oil NORM waste using its naturally occurring isotopic composition to identify its origin. The here proposed method is the modeling of radioisotopes normally present in oil pipe contamination such as 228 Ac, 214 Bi and 214 Pb analyzed by gamma spectrometry. The specific activities of elements from different decay series are plotted in a scatter diagram. This method was successfully tested with gamma spectrometry analyses of oil sludge NORM samples from four different sources obtained from Petrobras reports for the Campos Basin/Brazil. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tolerance to Vascularized Composite Allografts in Canine Mixed Hematopoietic Chimeras
Mathes, David W.; Hwang, Billanna; Graves, Scott S.; Edwards, James; Chang, Jeff; Storer, Barry E.; Butts-Miwongtum, Tiffany; Sale, George E.; Nash, Richard A.; Storb, Rainer.
2012-01-01
Background Mixed donor-host chimerism, established through hematopoietic cell transplantation (HCT), is a highly reproducible strategy for the induction of tolerance towards solid organs. Here, we ask whether a nonmyeloablative conditioning regimen establishing mixed donor-host chimerism leads to tolerance of highly antigenic vascularized composite allografts. Methods Stable mixed chimerism was established in dogs given a sublethal dose (1–2 Gy) total body irradiation before and a short course of immunosuppression after dog leukocyte antigen-identical marrow transplantation. Vascularized composite allografts from marrow donors were performed after a median of 36 (range 4-54) months after HCT. Results All marrow recipients maintained mixed donor-host hematopoietic chimerism and accepted composite tissue grafts for periods ranging between 52 and 90 weeks; in turn, marrow donors rejected vascularized composite allografts from their respective marrow recipients within 18–29 days. Biopsies of muscle and skin of vascularized composite allografts from mixed chimeras showed few infiltrating cells compared to extensive infiltrates in biopsies of vascularized composite allografts from marrow donors. Elevated levels of CD3+ FoxP3+ T-regulatory cells were found in skin and muscle of vascularized composite allografts of mixed chimeras compared to normal tissues. In mixed chimeras, increased numbers of T-regulatory cells were found in draining compared to non-draining lymph nodes of vascularized composite allografts. Conclusion These data suggest that nonmyeloablative HCT may form the basis for future clinical applications of solid organ transplantation and that T-regulatory cells may function towards maintenance of the vascularized composite allograft. PMID:22082819
Side draw control design for a high purity multi-component distillation column.
A Udugama, Isuru; Munir, M T; Kirkpatrick, Rob; Young, Brent R; Yu, Wei
2018-05-01
Industrial methanol production involves a multi component feed containing methanol, water and trace levels of ethanol being refined to produce AA grade methanol at high product recovery. Due to practical constraints, the bottoms discharge of the column is primarily water with only trace of methanol impurities. As a result of these constraints, ethanol, which is a non-key middle boiling component gets "trapped" near the side draw of the column forming an ethanol bulge, which in turn results in non-linear, inverse, time and state varying behaviour of the side draw ethanol composition. In this work, we established that the existence of the ethanol bulge creates the complex process behaviour of the side draw ethanol composition and that this bulge needs to be explicitly controlled. This type of explicit composition bulge analysis and subsequent control has not been attempted on methanol distillation columns before. For this purpose a novel, robust and practical side draw control scheme to detect and remedy the excess ethanol bulge movement using override control is presented. The side draw controller, together with other regulatory controllers is shown to maintain on-specification operations of the column. Disturbance rejection tests carried out illustrate that the side draw control scheme will keep the column operating within commercial specification. It is also shown that a traditional DV control structure is unable to achieve this objective. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Gause, William C; Maizels, Rick M
2016-08-01
Important insights have recently been gained in our understanding of the intricate relationship in the intestinal milieu between the vertebrate host mucosal immune response, commensal bacteria, and helminths. Helminths are metazoan worms (macrobiota) and trigger immune responses that include potent regulatory components capable of controlling harmful inflammation, protecting barrier function and mitigating tissue damage. They can secrete a variety of products that directly affect immune regulatory function but they also have the capacity to influence the composition of microbiota, which can also then impact immune function. Conversely, changes in microbiota can affect susceptibility to helminth infection, indicating that crosstalk between these two disparate groups of endobiota can play an essential role in host intestinal immune function and homeostasis. Copyright © 2016. Published by Elsevier Ltd.
Historical Gasoline Composition Data 1976 - 2010
Gasoline composition varies for technical, market and regulatory reasons. Knowledge of any one of these is insufficient for understanding the chemical composition of gasoline at any specific location in the U.S. Historical data collected by the National Institute of Petroleum ...
Regulation of hepatic fatty acid elongase and desaturase expression in diabetes and obesity
Wang, Yun; Botolin, Daniela; Xu, Jinghua; Christian, Barbara; Mitchell, Ernestine; Jayaprakasam, Bolleddula; Nair, Muraleedharan; Peters, Jeffery M.; Busik, Julia; Olson, L. Karl; Jump, Donald B.
2009-01-01
Fatty acid elongases and desaturases play an important role in hepatic and whole body lipid composition. We examined the role that key transcription factors played in the control of hepatic elongase and desaturase expression. Studies with peroxisome proliferator-activated receptor α (PPARα)-deficient mice establish that PPARα was required for WY14643-mediated induction of fatty acid elongase-5 (Elovl-5), Elovl-6, and all three desaturases [Δ5 desaturase (Δ5D), Δ6D, and Δ9D]. Increased nuclear sterol-regulatory element binding protein-1 (SREBP-1) correlated with enhanced expression of Elovl-6, Δ5D, Δ6D, and Δ9D. Only Δ9D was also regulated independently by liver X receptor (LXR) agonist. Glucose induction of L-type pyruvate kinase, Δ9D, and Elovl-6 expression required the carbohydrate-regulatory element binding protein/MAX-like factor X (ChREBP/MLX) heterodimer. Suppression of Elovl-6 and Δ9D expression in livers of streptozotocin-induced diabetic rats and high fat-fed glucose-intolerant mice correlated with low levels of nuclear SREBP-1. In leptin-deficient obese mice (Lepob/ob), increased SREBP-1 and MLX nuclear content correlated with the induction of Elovl-5, Elovl-6, and Δ9D expression and the massive accumulation of monoun-saturated fatty acids (18:1,n-7 and 18:1,n-9) in neutral lipids. Diabetes- and obesity-induced changes in hepatic lipid composition correlated with changes in elongase and desaturase expression. In conclusion, these studies establish a role for PPARα, LXR, SREBP-1, ChREBP, and MLX in the control of hepatic fatty acid elongase and desaturase expression and lipid composition. PMID:16790840
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law
2013-10-01
The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbentmore » development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law
2013-09-01
The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbentmore » development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.« less
R2R3 MYB transcription factors: key regulators of the flavonoid biosynthetic pathway in grapevine.
Czemmel, Stefan; Heppel, Simon C; Bogs, Jochen
2012-06-01
Flavonoids compose one of the most abundant and important subgroups of secondary metabolites with more than 6,000 compounds detected so far in higher plants. They are found in various compositions and concentrations in nearly all plant tissues. Besides the attraction of pollinators and dispersers to fruits and flowers, flavonoids also protect against a plethora of stresses including pathogen attack, wounding and UV irradiation. Flavonoid content and composition of fruits such as grapes, bilberries, strawberries and apples as well as food extracts such as green tea, wine and chocolate have been associated with fruit quality including taste, colour and health-promoting effects. To unravel the beneficial potentials of flavonoids on fruit quality, research has been focused recently on the molecular basis of flavonoid biosynthesis and regulation in economically important fruit-producing plants such as grapevine (Vitis vinifera L.). Transcription factors and genes encoding biosynthetic enzymes have been characterized, studies that set a benchmark for future research on the regulatory networks controlling flavonoid biosynthesis and diversity. This review summarizes recent advances in the knowledge of regulatory cascades involved in flavonoid biosynthesis in grapevine. Transcriptional regulation of flavonoid biosynthesis during berry development is highlighted, with a particular focus on MYB transcription factors as molecular clocks, key regulators and powerful biotechnological tools to identify novel pathway enzymes to optimize flavonoid content and composition in grapes.
Grimm, Fabian A; Russell, William K; Luo, Yu-Syuan; Iwata, Yasuhiro; Chiu, Weihsueh A; Roy, Tim; Boogaard, Peter J; Ketelslegers, Hans B; Rusyn, Ivan
2017-06-20
Substances of Unknown or Variable composition, Complex reaction products, and Biological materials (UVCBs), including many refined petroleum products, present a major challenge in regulatory submissions under the EU Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) and US High Production Volume regulatory regimes. The inherent complexity of these substances, as well as variability in composition obfuscates detailed chemical characterization of each individual substance and their grouping for human and environmental health evaluation through read-across. In this study, we applied ion mobility mass spectrometry in conjunction with cheminformatics-based data integration and visualization to derive substance-specific signatures based on the distribution and abundance of various heteroatom classes. We used petroleum substances from four petroleum substance manufacturing streams and evaluated their chemical composition similarity based on high-dimensional substance-specific quantitative parameters including m/z distribution, drift time, carbon number range, and associated double bond equivalents and hydrogen-to-carbon ratios. Data integration and visualization revealed group-specific similarities for petroleum substances. Observed differences within a product group were indicative of batch- or manufacturer-dependent variation. We demonstrate how high-resolution analytical chemistry approaches can be used effectively to support categorization of UVCBs based on their heteroatom composition and how such data can be used in regulatory decision-making.
Mapping the Shh long-range regulatory domain
Anderson, Eve; Devenney, Paul S.; Hill, Robert E.; Lettice, Laura A.
2014-01-01
Coordinated gene expression controlled by long-distance enhancers is orchestrated by DNA regulatory sequences involving transcription factors and layers of control mechanisms. The Shh gene and well-established regulators are an example of genomic composition in which enhancers reside in a large desert extending into neighbouring genes to control the spatiotemporal pattern of expression. Exploiting the local hopping activity of the Sleeping Beauty transposon, the lacZ reporter gene was dispersed throughout the Shh region to systematically map the genomic features responsible for expression activity. We found that enhancer activities are retained inside a genomic region that corresponds to the topological associated domain (TAD) defined by Hi-C. This domain of approximately 900 kb is in an open conformation over its length and is generally susceptible to all Shh enhancers. Similar to the distal enhancers, an enhancer residing within the Shh second intron activates the reporter gene located at distances of hundreds of kilobases away, suggesting that both proximal and distal enhancers have the capacity to survey the Shh topological domain to recognise potential promoters. The widely expressed Rnf32 gene lying within the Shh domain evades enhancer activities by a process that may be common among other housekeeping genes that reside in large regulatory domains. Finally, the boundaries of the Shh TAD do not represent the absolute expression limits of enhancer activity, as expression activity is lost stepwise at a number of genomic positions at the verges of these domains. PMID:25252942
N-3 polyunsaturated fatty acid regulation of hepatic gene transcription
Jump, Donald B.
2009-01-01
Purpose of review The liver plays a central role in whole body lipid metabolism and adapts rapidly to changes in dietary fat composition. This adaption involves changes in the expression of genes involved in glycolysis, de-novo lipogenesis, fatty acid elongation, desaturation and oxidation. This review brings together metabolic and molecular studies that help explain n-3 (omega-3) polyunsaturated fatty acid regulation of hepatic gene transcription. Recent findings Dietary n-3 polyunsaturated fatty acid regulates hepatic gene expression by targeting three major transcriptional regulatory networks: peroxisome proliferator-activated receptor α, sterol regulatory element binding protein-1 and the carbohydrate regulatory element binding protein/Max-like factor X heterodimer. 22 : 6,n-3, the most prominent n-3 polyunsaturated fatty acid in tissues, is a weak activator of peroxisome proliferator-activated receptor α. Hepatic metabolism of 22 : 6,n-3, however, generates 20 : 5,n-3, a strong peroxisome proliferator-activated receptor α activator. In contrast to peroxisome proliferator-activated receptor α, 22 : 6,n-3 is the most potent fatty acid regulator of hepatic sterol regulatory element binding protein-1. 22 : 6,n-3 suppresses sterol regulatory element binding protein-1 gene expression while enhancing degradation of nuclear sterol regulatory element binding protein-1 through 26S proteasome and Erk1/2-dependent mechanisms. Both n-3 and n-6 polyunsaturated fatty acid suppress carbohydrate regulatory element binding protein and Max-like factor X nuclear abundance and interfere with glucose-regulated hepatic metabolism. Summary These studies have revealed unique mechanisms by which specific polyunsaturated fatty acids control peroxisome proliferator activated receptor α, sterol regulatory element binding protein-1 and carbohydrate regulatory element binding protein/Max-like factor X function. As such, specific metabolic and signal transduction pathways contribute significantly to the fatty acid regulation of these transcription factors and their corresponding regulatory networks. PMID:18460914
Re-evaluation of Non-regulatory Asbestos Group Minerals for Regulatory Agencies
NASA Astrophysics Data System (ADS)
Dogan, M.; Dogan, A.
2013-05-01
There are established rules and regulations for some asbestos group minerals - amphibole group minerals of actinolite, amosite, anthophyllite, crocidolite, tremolite; and serpentine group minerals of chrysotile- called "regulatory". There are also "non-regulatory" naturally occurring asbestos (NOA) group minerals as constituent of rocks and soil, including richterite, winchite, fluoro-edenite, balangeroite, carlosturanite, gageite, arfvedsonite, and magnesio-arfvedsonite. Strong evidences for carcinogenicity of these NOA minerals in later cohorts of cancer patients demonstrated the risks associated with these minerals. In addition, although the chrysotile asbestos regulated by some organizations such as WHO, World Trade Organization, United Nations, US EPA, International Labour Organization, and EU Countries; however, controversies still continue surrounding the use of chrysotile. Determinations of polymineralic fibrous veins, mixed particles, amphibole cleavage fragments, and genetic predisposition are also important issues (i.e. Dogan et al., 2006).Therefore, accurate characterizations of chemical composition, morphology, structure, and defects are necessary in order to find out mechanism(s) of carcinogenicity of all asbestos group minerals. Calculation methods of chemical composition are still under debate because of assumption of no vacancies at any sites and intergrowth of minerals. Substitution(s) may cause deviations from the ideal chemical formula and wide variations in chemical compositions. Detail morphological and chemical quantification of individual asbestos group minerals in micro- and nano-scale may help to evaluate its true carcinogenetic mechanism(s), and consequently prevention and possibly treatment of related diseases. we propose that nonregulatory asbestos minerals and the chrysotile should be re-evaluated. The amount of fibers inhaled, in terms of weight percent and number, need also be re-evaluated by mineralogists. Finally, Regulatory Agencies should oversea "positive" identification guidelines followed closely for non-regulatory asbestos group minerals.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-19
... Director Nominating Body and any petition candidate must satisfy the compositional requirements determined... Nominating Body and any petition candidate must satisfy the compositional requirements determined by the... with appropriate flexibility as it evaluates the structure and composition of its Board in the future...
Piek, Susannah; Kahler, Charlene M.
2012-01-01
The Gram-negative bacterial cell envelope consists of an inner membrane (IM) that surrounds the cytoplasm and an asymmetrical outer-membrane (OM) that forms a protective barrier to the external environment. The OM consists of lipopolysaccahride (LPS), phospholipids, outer membrane proteins (OMPs), and lipoproteins. Oxidative protein folding mediated by periplasmic oxidoreductases is required for the biogenesis of the protein components, mainly constituents of virulence determinants such as pili, flagella, and toxins, of the Gram-negative OM. Recently, periplasmic oxidoreductases have been implicated in LPS biogenesis of Escherichia coli and Neisseria meningitidis. Differences in OM biogenesis, in particular the transport pathways for endotoxin to the OM, the composition and role of the protein oxidation, and isomerization pathways and the regulatory networks that control them have been found in these two Gram-negative species suggesting that although form and function of the OM is conserved, the pathways required for the biosynthesis of the OM and the regulatory circuits that control them have evolved to suit the lifestyle of each organism. PMID:23267440
Batista, Marcelo B; Sfeir, Michelle Z T; Faoro, Helisson; Wassem, Roseli; Steffens, Maria B R; Pedrosa, Fábio O; Souza, Emanuel M; Dixon, Ray; Monteiro, Rose A
2013-01-01
The transcriptional regulatory protein Fnr, acts as an intracellular redox sensor regulating a wide range of genes in response to changes in oxygen levels. Genome sequencing of Herbaspirillum seropedicae SmR1 revealed the presence of three fnr-like genes. In this study we have constructed single, double and triple fnr deletion mutant strains of H. seropedicae. Transcriptional profiling in combination with expression data from reporter fusions, together with spectroscopic analysis, demonstrates that the Fnr1 and Fnr3 proteins not only regulate expression of the cbb3-type respiratory oxidase, but also control the cytochrome content and other component complexes required for the cytochrome c-based electron transport pathway. Accordingly, in the absence of the three Fnr paralogs, growth is restricted at low oxygen tensions and nitrogenase activity is impaired. Our results suggest that the H. seropedicae Fnr proteins are major players in regulating the composition of the electron transport chain in response to prevailing oxygen concentrations.
Batista, Marcelo B.; Sfeir, Michelle Z. T.; Faoro, Helisson; Wassem, Roseli; Steffens, Maria B. R.; Pedrosa, Fábio O.; Souza, Emanuel M.; Dixon, Ray; Monteiro, Rose A.
2013-01-01
The transcriptional regulatory protein Fnr, acts as an intracellular redox sensor regulating a wide range of genes in response to changes in oxygen levels. Genome sequencing of Herbaspirillum seropedicae SmR1 revealed the presence of three fnr-like genes. In this study we have constructed single, double and triple fnr deletion mutant strains of H. seropedicae. Transcriptional profiling in combination with expression data from reporter fusions, together with spectroscopic analysis, demonstrates that the Fnr1 and Fnr3 proteins not only regulate expression of the cbb3-type respiratory oxidase, but also control the cytochrome content and other component complexes required for the cytochrome c-based electron transport pathway. Accordingly, in the absence of the three Fnr paralogs, growth is restricted at low oxygen tensions and nitrogenase activity is impaired. Our results suggest that the H. seropedicae Fnr proteins are major players in regulating the composition of the electron transport chain in response to prevailing oxygen concentrations. PMID:23996052
Gasoline composition in the U.S is determined by factors related to crude oil source, refinery capacity, geography and regulatory factors. Major regulation derived from the Clean Air Act and its amendments determines the benzene and former oxygenate requirements for reformulated...
41 CFR 101-42.1102-4 - Nuclear Regulatory Commission-controlled materials.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Nuclear Regulatory...-Special Types of Hazardous Materials and Certain Categories of Property § 101-42.1102-4 Nuclear Regulatory Commission-controlled materials. (a) General. The Nuclear Regulatory Commission (NRC) has exclusive control...
41 CFR 101-42.1102-4 - Nuclear Regulatory Commission-controlled materials.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Nuclear Regulatory...-Special Types of Hazardous Materials and Certain Categories of Property § 101-42.1102-4 Nuclear Regulatory Commission-controlled materials. (a) General. The Nuclear Regulatory Commission (NRC) has exclusive control...
41 CFR 101-42.1102-4 - Nuclear Regulatory Commission-controlled materials.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Nuclear Regulatory...-Special Types of Hazardous Materials and Certain Categories of Property § 101-42.1102-4 Nuclear Regulatory Commission-controlled materials. (a) General. The Nuclear Regulatory Commission (NRC) has exclusive control...
41 CFR 101-42.1102-4 - Nuclear Regulatory Commission-controlled materials.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 41 Public Contracts and Property Management 2 2013-07-01 2012-07-01 true Nuclear Regulatory...-Special Types of Hazardous Materials and Certain Categories of Property § 101-42.1102-4 Nuclear Regulatory Commission-controlled materials. (a) General. The Nuclear Regulatory Commission (NRC) has exclusive control...
41 CFR 101-42.1102-4 - Nuclear Regulatory Commission-controlled materials.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Nuclear Regulatory...-Special Types of Hazardous Materials and Certain Categories of Property § 101-42.1102-4 Nuclear Regulatory Commission-controlled materials. (a) General. The Nuclear Regulatory Commission (NRC) has exclusive control...
Simola, Daniel F.; Wissler, Lothar; Donahue, Greg; Waterhouse, Robert M.; Helmkampf, Martin; Roux, Julien; Nygaard, Sanne; Glastad, Karl M.; Hagen, Darren E.; Viljakainen, Lumi; Reese, Justin T.; Hunt, Brendan G.; Graur, Dan; Elhaik, Eran; Kriventseva, Evgenia V.; Wen, Jiayu; Parker, Brian J.; Cash, Elizabeth; Privman, Eyal; Childers, Christopher P.; Muñoz-Torres, Monica C.; Boomsma, Jacobus J.; Bornberg-Bauer, Erich; Currie, Cameron R.; Elsik, Christine G.; Suen, Garret; Goodisman, Michael A.D.; Keller, Laurent; Liebig, Jürgen; Rawls, Alan; Reinberg, Danny; Smith, Chris D.; Smith, Chris R.; Tsutsui, Neil; Wurm, Yannick; Zdobnov, Evgeny M.; Berger, Shelley L.; Gadau, Jürgen
2013-01-01
Genomes of eusocial insects code for dramatic examples of phenotypic plasticity and social organization. We compared the genomes of seven ants, the honeybee, and various solitary insects to examine whether eusocial lineages share distinct features of genomic organization. Each ant lineage contains ∼4000 novel genes, but only 64 of these genes are conserved among all seven ants. Many gene families have been expanded in ants, notably those involved in chemical communication (e.g., desaturases and odorant receptors). Alignment of the ant genomes revealed reduced purifying selection compared with Drosophila without significantly reduced synteny. Correspondingly, ant genomes exhibit dramatic divergence of noncoding regulatory elements; however, extant conserved regions are enriched for novel noncoding RNAs and transcription factor–binding sites. Comparison of orthologous gene promoters between eusocial and solitary species revealed significant regulatory evolution in both cis (e.g., Creb) and trans (e.g., fork head) for nearly 2000 genes, many of which exhibit phenotypic plasticity. Our results emphasize that genomic changes can occur remarkably fast in ants, because two recently diverged leaf-cutter ant species exhibit faster accumulation of species-specific genes and greater divergence in regulatory elements compared with other ants or Drosophila. Thus, while the “socio-genomes” of ants and the honeybee are broadly characterized by a pervasive pattern of divergence in gene composition and regulation, they preserve lineage-specific regulatory features linked to eusociality. We propose that changes in gene regulation played a key role in the origins of insect eusociality, whereas changes in gene composition were more relevant for lineage-specific eusocial adaptations. PMID:23636946
USDA-ARS?s Scientific Manuscript database
Puberty is a complex physiological event by which animals mature into an adult capable of sexual reproduction. In order to enhance our understanding of the genes and regulatory pathways and networks involved in puberty, we characterized the transcriptome of five reproductive tissues (i.e., hypothal...
Gasoline composition varies for technical, market and regulatory reasons. Knowledge of any one of these is insufficient for understanding the chemical composition of gasoline at any specific location in the U.S. Historical data collected by the National Institute of Petroleum ...
Stochastic Effects in Computational Biology of Space Radiation Cancer Risk
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Pluth, Janis; Harper, Jane; O'Neill, Peter
2007-01-01
Estimating risk from space radiation poses important questions on the radiobiology of protons and heavy ions. We are considering systems biology models to study radiation induced repair foci (RIRF) at low doses, in which less than one-track on average transverses the cell, and the subsequent DNA damage processing and signal transduction events. Computational approaches for describing protein regulatory networks coupled to DNA and oxidative damage sites include systems of differential equations, stochastic equations, and Monte-Carlo simulations. We review recent developments in the mathematical description of protein regulatory networks and possible approaches to radiation effects simulation. These include robustness, which states that regulatory networks maintain their functions against external and internal perturbations due to compensating properties of redundancy and molecular feedback controls, and modularity, which leads to general theorems for considering molecules that interact through a regulatory mechanism without exchange of matter leading to a block diagonal reduction of the connecting pathways. Identifying rate-limiting steps, robustness, and modularity in pathways perturbed by radiation damage are shown to be valid techniques for reducing large molecular systems to realistic computer simulations. Other techniques studied are the use of steady-state analysis, and the introduction of composite molecules or rate-constants to represent small collections of reactants. Applications of these techniques to describe spatial and temporal distributions of RIRF and cell populations following low dose irradiation are described.
Gillespie, Mark A; Gold, Elizabeth S; Ramsey, Stephen A; Podolsky, Irina; Aderem, Alan; Ranish, Jeffrey A
2015-01-01
LXR–cofactor complexes activate the gene expression program responsible for cholesterol efflux in macrophages. Inflammation antagonizes this program, resulting in foam cell formation and atherosclerosis; however, the molecular mechanisms underlying this antagonism remain to be fully elucidated. We use promoter enrichment-quantitative mass spectrometry (PE-QMS) to characterize the composition of gene regulatory complexes assembled at the promoter of the lipid transporter Abca1 following downregulation of its expression. We identify a subset of proteins that show LXR ligand- and binding-dependent association with the Abca1 promoter and demonstrate they differentially control Abca1 expression. We determine that NCOA5 is linked to inflammatory Toll-like receptor (TLR) signaling and establish that NCOA5 functions as an LXR corepressor to attenuate Abca1 expression. Importantly, TLR3–LXR signal crosstalk promotes recruitment of NCOA5 to the Abca1 promoter together with loss of RNA polymerase II and reduced cholesterol efflux. Together, these data significantly expand our knowledge of regulatory inputs impinging on the Abca1 promoter and indicate a central role for NCOA5 in mediating crosstalk between pro-inflammatory and anti-inflammatory pathways that results in repression of macrophage cholesterol efflux. PMID:25755249
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-07
... By-Laws, Article VIII, Section 8.1 (Establishment of Districts) and Section 8.2 (Composition of..., Article VIII, Section 2(c) (District Committees and District Business Conduct Committees), amended...\\ See FINRA Regulation By-Laws, Article VIII, Section 8.1 (Establishment of Districts) and Section 8.2...
45 CFR 73a.735-502 - Employees in regulatory activities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... regulatory activities. (a) An employee in regulatory activities (“control activity” employee) may hold... control of the employee that resulted in the interest becoming prohibited; (iii) No direct relationship... provisions within this part, the following interpretations apply: (1) A “control activity” employee (“control...
45 CFR 73a.735-502 - Employees in regulatory activities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... regulatory activities. (a) An employee in regulatory activities (“control activity” employee) may hold... control of the employee that resulted in the interest becoming prohibited; (iii) No direct relationship... provisions within this part, the following interpretations apply: (1) A “control activity” employee (“control...
45 CFR 73a.735-502 - Employees in regulatory activities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... regulatory activities. (a) An employee in regulatory activities (“control activity” employee) may hold... control of the employee that resulted in the interest becoming prohibited; (iii) No direct relationship... provisions within this part, the following interpretations apply: (1) A “control activity” employee (“control...
45 CFR 73a.735-502 - Employees in regulatory activities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... regulatory activities. (a) An employee in regulatory activities (“control activity” employee) may hold... control of the employee that resulted in the interest becoming prohibited; (iii) No direct relationship... provisions within this part, the following interpretations apply: (1) A “control activity” employee (“control...
45 CFR 73a.735-502 - Employees in regulatory activities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... regulatory activities. (a) An employee in regulatory activities (“control activity” employee) may hold... control of the employee that resulted in the interest becoming prohibited; (iii) No direct relationship... provisions within this part, the following interpretations apply: (1) A “control activity” employee (“control...
Assessment of composite motif discovery methods.
Klepper, Kjetil; Sandve, Geir K; Abul, Osman; Johansen, Jostein; Drablos, Finn
2008-02-26
Computational discovery of regulatory elements is an important area of bioinformatics research and more than a hundred motif discovery methods have been published. Traditionally, most of these methods have addressed the problem of single motif discovery - discovering binding motifs for individual transcription factors. In higher organisms, however, transcription factors usually act in combination with nearby bound factors to induce specific regulatory behaviours. Hence, recent focus has shifted from single motifs to the discovery of sets of motifs bound by multiple cooperating transcription factors, so called composite motifs or cis-regulatory modules. Given the large number and diversity of methods available, independent assessment of methods becomes important. Although there have been several benchmark studies of single motif discovery, no similar studies have previously been conducted concerning composite motif discovery. We have developed a benchmarking framework for composite motif discovery and used it to evaluate the performance of eight published module discovery tools. Benchmark datasets were constructed based on real genomic sequences containing experimentally verified regulatory modules, and the module discovery programs were asked to predict both the locations of these modules and to specify the single motifs involved. To aid the programs in their search, we provided position weight matrices corresponding to the binding motifs of the transcription factors involved. In addition, selections of decoy matrices were mixed with the genuine matrices on one dataset to test the response of programs to varying levels of noise. Although some of the methods tested tended to score somewhat better than others overall, there were still large variations between individual datasets and no single method performed consistently better than the rest in all situations. The variation in performance on individual datasets also shows that the new benchmark datasets represents a suitable variety of challenges to most methods for module discovery.
Low-income minority fathers' control strategies and children's regulatory skills
Malin, Jenessa L.; Cabrera, Natasha J.; Karberg, Elizabeth; Aldoney, Daniela; Rowe, Meredith
2015-01-01
The current study explored the bidirectional association of children's individual characteristics, fathers' control strategies at 24-months and children's regulatory skills at pre-kindergarten (pre-K). Using a sample of low-income minority families with 2-year-olds from the Early Head Start Evaluation Research Program (n = 71) we assessed the association between child gender and vocabulary skills, fathers' control strategies at 24-months (e.g., regulatory behavior and regulatory language), and children's sustained attention and emotion regulation at pre-kindergarten. There were three main findings. First, fathers' overwhelmingly use commands (e.g., do that) to promote compliance in their 24-month old children. Second, children's vocabulary skills predict fathers' regulatory behaviors during a father-child interaction, whereas children's gender predicts fathers' regulatory language during an interaction. Third, controlling for maternal supportiveness, fathers' regulatory behaviors at 24-months predict children's sustained attention at pre-kindergarten whereas fathers' regulatory language at 24-months predicts children's emotion regulation at pre-kindergarten. Our findings highlight the importance of examining paternal contributions to children's regulatory skills. PMID:25798496
Low-income, minority fathers' control strategies and their children's regulatory skills.
Malin, Jenessa L; Cabrera, Natasha J; Karberg, Elizabeth; Aldoney, Daniela; Rowe, Meredith L
2014-01-01
The current study explored the bidirectional association of children's individual characteristics, fathers' control strategies at 24 months, and children's regulatory skills at prekindergarten (pre-K). Using a sample of low-income, minority families with 2-year-olds from the Early Head Start Research and Evaluation Project (n = 71), we assessed the association between child gender and vocabulary skills, fathers' control strategies at 24 months (e.g., regulatory behavior and regulatory language), and children's sustained attention and emotion regulation at prekindergarten. There were three main findings. First, fathers overwhelmingly used commands (e.g., "Do that.") to promote compliance in their 24-month-old children. Second, children's vocabulary skills predicted fathers' regulatory behaviors during a father-child interaction whereas children's gender predicted fathers' regulatory language during an interaction. Third, controlling for maternal supportiveness, fathers' regulatory behaviors at 24 months predicted children's sustained attention at pre-K whereas fathers' regulatory language at 24 months predicted children's emotion regulation at pre-K. Our findings highlight the importance of examining paternal contributions to children's regulatory skills. © 2014 Michigan Association for Infant Mental Health.
The Mediator complex: a central integrator of transcription
Allen, Benjamin L.; Taatjes, Dylan J.
2016-01-01
The RNA polymerase II (pol II) enzyme transcribes all protein-coding and most non-coding RNA genes and is globally regulated by Mediator, a large, conformationally flexible protein complex with variable subunit composition (for example, a four-subunit CDK8 module can reversibly associate). These biochemical characteristics are fundamentally important for Mediator's ability to control various processes important for transcription, including organization of chromatin architecture and regulation of pol II pre-initiation, initiation, re-initiation, pausing, and elongation. Although Mediator exists in all eukaryotes, a variety of Mediator functions appear to be specific to metazoans, indicative of more diverse regulatory requirements. PMID:25693131
Androgen receptor agonism promotes an osteogenic gene program in preadipocytes
Hartig, Sean M.; Feng, Qin; Ochsner, Scott A.; Xiao, Rui; McKenna, Neil J.; McGuire, Sean E.; He, Bin
2013-01-01
Androgens regulate body composition by interacting with the androgen receptor (AR) to control gene expression in a tissue-specific manner. To identify novel regulatory roles for AR in preadipocytes, we created a 3T3-L1 cell line stably expressing human AR. We found AR expression is required for androgen-mediated inhibition of 3T3-L1 adipogenesis. This inhibition is characterized by decreased lipid accumulation, reduced expression of adipogenic genes, and induction of genes associated with osteoblast differentiation. Collectively, our results suggest androgens promote an osteogenic gene program at the expense of adipocyte differentiation. PMID:23567971
Gu, Jianwei; Chao, Hongbo; Wang, Hao; Li, Yonghong; Li, Dianrong; Xiang, Jun; Gan, Jianping; Lu, Guangyuan; Zhang, Xuekun; Long, Yan; Li, Maoteng
2017-01-01
Oil bodies (OBs) are relatively simple but very important organelles comprising a matrix of triacylglycerol (TAG) surrounded by a phospholipid monolayer embedded and covered with unique proteins. The OB structure in Brassica napus with different oil content and the relationship between the oil content and the OB structure needs to be better understood. In this paper, the characteristics of OBs in the embryo of a series of B. napus materials with different oil content ranging from 34% to over 60% were studied. The results indicated that the OB size was significantly positively correlated with the oil content but was significantly negatively correlated with the glucosinolates and the protein content. Many genes associated with TAG synthesis, OB-membrane proteins, and the cell progress regulatory pathway were identified in the confidence interval of co-located QTLs for oil content, fatty acid (FA) compositions, and protein content. Our results suggested that the morphology of OBs might be directly controlled by the genes associated with OB-membrane proteins and indirectly controlled by the genes associated with TAG synthesis and cell progress regulatory pathway. PMID:28111582
Gu, Jianwei; Chao, Hongbo; Wang, Hao; Li, Yonghong; Li, Dianrong; Xiang, Jun; Gan, Jianping; Lu, Guangyuan; Zhang, Xuekun; Long, Yan; Li, Maoteng
2016-01-01
Oil bodies (OBs) are relatively simple but very important organelles comprising a matrix of triacylglycerol (TAG) surrounded by a phospholipid monolayer embedded and covered with unique proteins. The OB structure in Brassica napus with different oil content and the relationship between the oil content and the OB structure needs to be better understood. In this paper, the characteristics of OBs in the embryo of a series of B. napus materials with different oil content ranging from 34% to over 60% were studied. The results indicated that the OB size was significantly positively correlated with the oil content but was significantly negatively correlated with the glucosinolates and the protein content. Many genes associated with TAG synthesis, OB-membrane proteins, and the cell progress regulatory pathway were identified in the confidence interval of co-located QTLs for oil content, fatty acid (FA) compositions, and protein content. Our results suggested that the morphology of OBs might be directly controlled by the genes associated with OB-membrane proteins and indirectly controlled by the genes associated with TAG synthesis and cell progress regulatory pathway.
Advances in edible coatings for fresh fruits and vegetables: a review.
Dhall, R K
2013-01-01
Edible coatings are an environmentally friendly technology that is applied on many products to control moisture transfer, gas exchange or oxidation processes. Edible coatings can provide an additional protective coating to produce and can also give the same effect as modified atmosphere storage in modifying internal gas composition. One major advantage of using edible films and coatings is that several active ingredients can be incorporated into the polymer matrix and consumed with the food, thus enhancing safety or even nutritional and sensory attributes. But, in some cases, edible coatings were not successful. The success of edible coatings for fresh products totally depends on the control of internal gas composition. Quality criteria for fruits and vegetables coated with edible films must be determined carefully and the quality parameters must be monitored throughout the storage period. Color change, firmness loss, ethanol fermentation, decay ratio and weight loss of edible film coated fruits need to be monitored. This review discusses the use of different edible coatings (polysaccharides, proteins, lipids and composite) as carriers of functional ingredients on fresh fruits and vegetables to maximize their quality and shelf life. This also includes the recent advances in the incorporation of antimicrobials, texture enhancers and nutraceuticals to improve quality and functionality of fresh-cut fruits. Sensory implications, regulatory status and future trends are also reviewed.
Robinson, George A; Waddington, Kirsty E; Pineda-Torra, Ines; Jury, Elizabeth C
2017-01-01
It is well established that cholesterol and glycosphingolipids are enriched in the plasma membrane (PM) and form signaling platforms called lipid rafts, essential for T-cell activation and function. Moreover, changes in PM lipid composition affect the biophysical properties of lipid rafts and have a role in defining functional T-cell phenotypes. Here, we review the role of transcriptional regulators of lipid metabolism including liver X receptors α/β, peroxisome proliferator-activated receptor γ, estrogen receptors α/β (ERα/β), and sterol regulatory element-binding proteins in T-cells. These receptors lie at the interface between lipid metabolism and immune cell function and are endogenously activated by lipids and/or hormones. Importantly, they regulate cellular cholesterol, fatty acid, glycosphingolipid, and phospholipid levels but are also known to modulate a broad spectrum of immune responses. The current evidence supporting a role for lipid metabolism pathways in controlling immune cell activation by influencing PM lipid raft composition in health and disease, and the potential for targeting lipid biosynthesis pathways to control unwanted T-cell activation in autoimmunity is reviewed.
Robinson, George A.; Waddington, Kirsty E.; Pineda-Torra, Ines; Jury, Elizabeth C.
2017-01-01
It is well established that cholesterol and glycosphingolipids are enriched in the plasma membrane (PM) and form signaling platforms called lipid rafts, essential for T-cell activation and function. Moreover, changes in PM lipid composition affect the biophysical properties of lipid rafts and have a role in defining functional T-cell phenotypes. Here, we review the role of transcriptional regulators of lipid metabolism including liver X receptors α/β, peroxisome proliferator-activated receptor γ, estrogen receptors α/β (ERα/β), and sterol regulatory element-binding proteins in T-cells. These receptors lie at the interface between lipid metabolism and immune cell function and are endogenously activated by lipids and/or hormones. Importantly, they regulate cellular cholesterol, fatty acid, glycosphingolipid, and phospholipid levels but are also known to modulate a broad spectrum of immune responses. The current evidence supporting a role for lipid metabolism pathways in controlling immune cell activation by influencing PM lipid raft composition in health and disease, and the potential for targeting lipid biosynthesis pathways to control unwanted T-cell activation in autoimmunity is reviewed. PMID:29225604
Wang, Yan; Wang, Lei; Cui, Xianghua; Fang, Yuan; Chen, Qianqiu; Wang, Ya; Qiang, Yao
2015-12-01
Self-regulatory resources and trait self-control have been found to moderate the impulse-behavior relationship. The current study investigated whether the interaction of self-regulatory resources and trait self-control moderates the association between implicit attitudes and food consumption. One hundred twenty female participants were randomly assigned to either a depletion condition in which their self-regulatory resources were reduced or a no-depletion condition. Participants' implicit attitudes for chocolate were measured with the Single Category Implicit Association Test and self-report measures of trait self-control were collected. The dependent variable was chocolate consumption in an ostensible taste and rate task. Implicit attitudes predicted chocolate consumption in depleted participants but not in non-depleted participants. However, this predictive power of implicit attitudes on eating in depleted condition disappeared in participants with high trait self-control. Thus, trait self-control and self-regulatory resources interact to moderate the prediction of implicit attitude on eating behavior. Results suggest that high trait self-control buffers the effect of self-regulatory depletion on impulsive eating. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wood, Jennifer A; Tan, Hwei-Ting; Collins, Helen M; Yap, Kuok; Khor, Shi Fang; Lim, Wai Li; Xing, Xiaohui; Bulone, Vincent; Burton, Rachel A; Fincher, Geoffrey B; Tucker, Matthew R
2018-03-13
Chickpea (Cicer arietinum L.) is an important nutritionally rich legume crop that is consumed worldwide. Prior to cooking, desi chickpea seeds are most often dehulled and cleaved to release the split cotyledons, referred to as dhal. Compositional variation between desi genotypes has a significant impact on nutritional quality and downstream processing, and this has been investigated mainly in terms of starch and protein content. Studies in pulses such as bean and lupin have also implicated cell wall polysaccharides in cooking time variation, but the underlying relationship between desi chickpea cotyledon composition and cooking performance remains unclear. Here, we utilized a variety of chemical and immunohistological assays to examine details of polysaccharide composition, structure, abundance, and location within the desi chickpea cotyledon. Pectic polysaccharides were the most abundant cell wall components, and differences in monosaccharide and glycosidic linkage content suggest both environmental and genetic factors contribute to cotyledon composition. Genotype-specific differences were identified in arabinan structure, pectin methylesterification, and calcium-mediated pectin dimerization. These differences were replicated in distinct field sites and suggest a potentially important role for cell wall polysaccharides and their underlying regulatory machinery in the control of cooking time in chickpea. © 2018 The Authors. Plant, Cell & Environment Published by John Wiley & Sons Ltd.
Regulatory states in the developmental control of gene expression.
Peter, Isabelle S
2017-09-01
A growing body of evidence shows that gene expression in multicellular organisms is controlled by the combinatorial function of multiple transcription factors. This indicates that not the individual transcription factors or signaling molecules, but the combination of expressed regulatory molecules, the regulatory state, should be viewed as the functional unit in gene regulation. Here, I discuss the concept of the regulatory state and its proposed role in the genome-wide control of gene expression. Recent analyses of regulatory gene expression in sea urchin embryos have been instrumental for solving the genomic control of cell fate specification in this system. Some of the approaches that were used to determine the expression of regulatory states during sea urchin embryogenesis are reviewed. Significant developmental changes in regulatory state expression leading to the distinct specification of cell fates are regulated by gene regulatory network circuits. How these regulatory state transitions are encoded in the genome is illuminated using the sea urchin endoderm-mesoderms cell fate decision circuit as an example. These observations highlight the importance of considering developmental gene regulation, and the function of individual transcription factors, in the context of regulatory states. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Lippok, Bernadette; Birkenbihl, Rainer P; Rivory, Gaelle; Brümmer, Janna; Schmelzer, Elmon; Logemann, Elke; Somssich, Imre E
2007-04-01
WRKY transcription factors regulate distinct parts of the plant defense transcriptome. Expression of many WRKY genes themselves is induced by pathogens or pathogen-mimicking molecules. Here, we demonstrate that Arabidopsis WRKY33 responds to various stimuli associated with plant defense as well as to different kinds of phytopathogens. Although rapid pathogen-induced AtWRKY33 expression does not require salicylic acid (SA) signaling, it is dependent on PAD4, a key regulator upstream of SA. Activation of AtWRKY33 is independent of de novo protein synthesis, suggesting that it is at least partly under negative regulatory control. We show that a set of three WRKY-specific cis-acting DNA elements (W boxes) within the AtWRKY33 promoter is required for efficient pathogen- or PAMP-triggered gene activation. This strongly indicates that WRKY transcription factors are major components of the regulatory machinery modulating immediate to early expression of this gene in response to pathogen attack.
Ion Composition Elucidation (ICE) often leads to identification of compounds and provides high quality evidence for tracking compounds to their sources. Mass spectra for most organic compounds are not found in mass spectral libraries used to tentatively identify analytes. In addi...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-28
..., NASDAQ OMX is proposing to amend the compositional requirements of the Nominating & Governance Committee... other compositional requirements of the Nominating & Governance Committee, including independence... modified authority to increase the size of the Nominating & Governance Committee to six directors, but will...
[The system of the quality control and the safety of baby food, the prospects of its development].
Georgieva, O V; Konovalova, L S; Kon', I Ya
In the article there is considered the substantiation of raise demands to the chemical composition of children’s food and indices of their safety, with taking into account the immaturity of metabolic and physiological processes and limitations of “depot” of nutrients in babies. Based on research results of leading experts in the field of children’s nutritiology and according to the recommendations of the Codex Alimentarius of the Commission of FAO/WHO, ESPGHAN Committee on Nutrition, the EFSA recommendations and EUDirectives there were specified requirements for the ingredient composition, content of essential components and indices of the nutritional value of substitutes for human milk and functional products for the nutrition of infants of the first year of life. There are shown stages of the development of the Russian system of hygienic requirements for baby food, and the direction of its harmonization with international and European standards, particularly for substitutes for human milk and products of dietary therapeutic and dietary preventive nutrition for babies. There are considered aspects of the introduction ofproducts and weaning food dishes into the food ration of infants. There is presented the classification ofproducts of children’s food and the assortment of each group of weaning foods. There is provided the modern legislative framework in the field of the quality and safety for infant nutrition. There was shown the difference between domestic legislation and regulatory framework of the EurAsEC Customs Union of the European countries in the field offood products safety for children older three years. There are presented proposals on the creation of the single regulatory base within the framework of the EurAsEC Customs Union for control the quality and safety of all the baby foods.
Regulatory T cells in the control of host-microorganism interactions (*).
Belkaid, Yasmine; Tarbell, Kristin
2009-01-01
Each microenvironment requires a specific set of regulatory elements that are finely and constantly tuned to maintain local homeostasis. Various populations of regulatory T cells contribute to the maintenance of this equilibrium and establishment of controlled immune responses. In particular, regulatory T cells limit the magnitude of effector responses, which may result in failure to adequately control infection. However, regulatory T cells also help limit collateral tissue damage caused by vigorous antimicrobial immune responses against pathogenic microbes as well as commensals. In this review, we describe various situations in which the balance between regulatory T cells and effector immune functions influence the outcome of host-microorganism coexistence and discuss current hypotheses and points of polemic associated with the origin, target, and antigen specificity of both endogenous and induced regulatory T cells during these interactions.
Estrogen protection against EAE modulates the microbiota and mucosal-associated regulatory cells.
Benedek, Gil; Zhang, Jun; Nguyen, Ha; Kent, Gail; Seifert, Hilary A; Davin, Sean; Stauffer, Patrick; Vandenbark, Arthur A; Karstens, Lisa; Asquith, Mark; Offner, Halina
2017-09-15
Sex hormones promote immunoregulatory effects on multiple sclerosis. In the current study we evaluated the composition of the gut microbiota and the mucosal-associated regulatory cells in estrogen or sham treated female mice before and after autoimmune encephalomyelitis (EAE) induction. Treatment with pregnancy levels of estrogen induces changes in the composition and diversity of gut microbiota. Additionally, estrogen prevents EAE-associated changes in the gut microbiota and might promote the enrichment of bacteria that are associated with immune regulation. Our results point to a possible cross-talk between the sex hormones and the gut microbiota, which could promote neuroprotection. Copyright © 2017 Elsevier B.V. All rights reserved.
Development of five digits is controlled by a bipartite long-range cis-regulator.
Lettice, Laura A; Williamson, Iain; Devenney, Paul S; Kilanowski, Fiona; Dorin, Julia; Hill, Robert E
2014-04-01
Conservation within intergenic DNA often highlights regulatory elements that control gene expression from a long range. How conservation within a single element relates to regulatory information and how internal composition relates to function is unknown. Here, we examine the structural features of the highly conserved ZRS (also called MFCS1) cis-regulator responsible for the spatiotemporal control of Shh in the limb bud. By systematically dissecting the ZRS, both in transgenic assays and within in the endogenous locus, we show that the ZRS is, in effect, composed of two distinct domains of activity: one domain directs spatiotemporal activity but functions predominantly from a short range, whereas a second domain is required to promote long-range activity. We show further that these two domains encode activities that are highly integrated and that the second domain is crucial in promoting the chromosomal conformational changes correlated with gene activity. During limb bud development, these activities encoded by the ZRS are interpreted differently by the fore limbs and the hind limbs; in the absence of the second domain there is no Shh activity in the fore limb, and in the hind limb low levels of Shh lead to a variant digit pattern ranging from two to four digits. Hence, in the embryo, the second domain stabilises the developmental programme providing a buffer for SHH morphogen activity and this ensures that five digits form in both sets of limbs.
Effect of Control Blade History, and Axial Coolant Density and Burnup Profiles on BWR Burnup Credit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ade, Brian J; Marshall, William BJ J; Martinez-Gonzalez, Jesus S
Oak Ridge National Laboratory (ORNL) and the US Nuclear Regulatory Commission (NRC) have initiated a multiyear project to investigate the application of burnup credit (BUC) for boiling water reactor (BWR) fuel in storage and transportation systems (often referred to as casks) and spent fuel pools (SFPs). This work is divided into two main phases. The first phase investigated the applicability of peak reactivity methods currently used in SFPs to transportation and storage casks and the validation of reactivity calculations and spent fuel compositions within these methods. The second phase focuses on extending BUC beyond peak reactivity. This paper documents themore » analysis of the effects of control blade insertion history, and moderator density and burnup axial profiles for extended BWR BUC.« less
Reported emissions of organic gases are not consistent with observations
Henry, Ronald C.; Spiegelman, Clifford H.; Collins, John F.; Park, EunSug
1997-01-01
Regulatory agencies and photochemical models of ozone rely on self-reported industrial emission rates of organic gases. Incorrect self-reported emissions can severely impact on air quality models and regulatory decisions. We compared self-reported emissions of organic gases in Houston, Texas, to measurements at a receptor site near the Houston ship channel, a major petrochemical complex. We analyzed hourly observations of total nonmethane organic carbon and 54 hydrocarbon compounds from C-2 to C-9 for the period June through November, 1993. We were able to demonstrate severe inconsistencies between reported emissions and major sources as derived from the data using a multivariate receptor model. The composition and the location of the sources as deduced from the data are not consistent with the reported industrial emissions. On the other hand, our observationally based methods did correctly identify the location and composition of a relatively small nearby chemical plant. This paper provides strong empirical evidence that regulatory agencies and photochemical models are making predictions based on inaccurate industrial emissions. PMID:11038551
Kwon, Andrew T.; Chou, Alice Yi; Arenillas, David J.; Wasserman, Wyeth W.
2011-01-01
We performed a genome-wide scan for muscle-specific cis-regulatory modules (CRMs) using three computational prediction programs. Based on the predictions, 339 candidate CRMs were tested in cell culture with NIH3T3 fibroblasts and C2C12 myoblasts for capacity to direct selective reporter gene expression to differentiated C2C12 myotubes. A subset of 19 CRMs validated as functional in the assay. The rate of predictive success reveals striking limitations of computational regulatory sequence analysis methods for CRM discovery. Motif-based methods performed no better than predictions based only on sequence conservation. Analysis of the properties of the functional sequences relative to inactive sequences identifies nucleotide sequence composition can be an important characteristic to incorporate in future methods for improved predictive specificity. Muscle-related TFBSs predicted within the functional sequences display greater sequence conservation than non-TFBS flanking regions. Comparison with recent MyoD and histone modification ChIP-Seq data supports the validity of the functional regions. PMID:22144875
NASA Astrophysics Data System (ADS)
Nayak, Naren; Apelian, Diran
2014-11-01
Shredder residue is the by-product remaining after ferrous and nonferrous metals have been recovered from the processing of vehicles, white goods, and peddler scrap. Shredder residue consists of glass, plastics, rubber, dirt, and small amounts of metal. It is estimated that 5-7 million tons of this shredder residue are landfilled each year in the United States. Technical advancements, coupled with European Union directives and the economic climate, have transformed the recycling of shredder residue in Europe. In the United States, however, regulatory controls and the cheap cost of landfill have worked against the advancement of recycling and recovery of this resource. The Argonne National Laboratory, which is funded by the U.S. Department of Energy, has investigated the effectiveness of recycling shredder residue into polymers. Other research has examined the use of shredder residue in waste-to-energy applications. To improve our ability to process and recycle shredder residue, an investigation of the regulatory, economic, and technological challenges was undertaken. The objective was to conduct a comprehensive review of work done to date, to document the composition of typical shredder output and to identify potential recoverable items (residual metals, plastics, rubber, foam, etc.). Along with uncovering potential new markets, the research would identify the technical, regulatory, and economic barriers to developing those markets.
Benedito-Palos, Laura; Calduch-Giner, Josep A; Ballester-Lozano, Gabriel F; Pérez-Sánchez, Jaume
2013-04-14
The effect of ration size on muscle fatty acid (FA) composition and mRNA expression levels of key regulatory enzymes of lipid and lipoprotein metabolism have been addressed in juveniles of gilthead sea bream fed a practical diet over the course of an 11-week trial. The experimental setup included three feeding levels: (i) full ration until visual satiety, (ii) 70 % of satiation and (iii) 70 % of satiation with the last 2 weeks at the maintenance ration. Feed restriction reduced lipid content of whole body by 30 % and that of fillet by 50 %. In this scenario, the FA composition of fillet TAG was not altered by ration size, whereas that of phospholipids was largely modified with a higher retention of arachidonic acid and DHA. The mRNA transcript levels of lysophosphatidylcholine acyltransferases, phosphatidylethanolamine N-methyltransferase and FA desaturase 2 were not regulated by ration size in the present experimental model. In contrast, mRNA levels of stearoyl-CoA desaturases were markedly down-regulated by feed restriction. An opposite trend was found for a muscle-specific lipoprotein lipase, which is exclusive of fish lineage. Several upstream regulatory transcriptions were also assessed, although nutritionally mediated changes in mRNA transcripts were almost reduced to PPARα and β, which might act in a counter-regulatory way on lipolysis and lipogenic pathways. This gene expression pattern contributes to the construction of a panel of biomarkers to direct marine fish production towards muscle lean phenotypes with increased retentions of long-chain PUFA.
Salem, Mohamed A; Li, Yan; Wiszniewski, Andrew; Giavalisco, Patrick
2017-11-01
Target of Rapamycin (TOR) is a positive regulator of growth and development in all eukaryotes, which positively regulates anabolic processes like protein synthesis, while repressing catabolic processes, including autophagy. To better understand TOR function we decided to analyze its role in seed development and germination. We therefore performed a detailed phenotypic analysis using mutants of the REGULATORY-ASSOCIATED PROTEIN OF TOR 1B (RAPTOR1B), a conserved TOR interactor, acting as a scaffold protein, which recruits substrates for the TOR kinase. Our results show that raptor1b plants produced seeds that were delayed in germination and less resistant to stresses, leading to decreased viability. These physiological phenotypes were accompanied by morphological changes including decreased seed-coat pigmentation and reduced production of seed-coat mucilage. A detailed molecular analysis revealed that many of these morphological changes were associated with significant changes of the metabolic content of raptor1b seeds, including elevated levels of free amino acids, as well as reduced levels of protective secondary metabolites and storage proteins. Most of these observed changes were accompanied by significantly altered phytohormone levels in the raptor1b seeds, with increases in abscisic acid, auxin and jasmonic acid, which are known to inhibit germination. Delayed germination and seedling growth, observed in the raptor1b seeds, could be partially restored by the exogenous supply of gibberellic acid, indicating that TOR is at the center of a regulatory hub controlling seed metabolism, maturation and germination. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.
Biological Regulation of Bone Quality
Alliston, Tamara
2014-01-01
The ability of bone to resist fracture is determined by the combination of bone mass and bone quality. Like bone mass, bone quality is carefully regulated. Of the many aspects of bone quality, this review focuses on biological mechanisms that control the material quality of the bone extracellular matrix (ECM). Bone ECM quality depends upon ECM composition and organization. Proteins and signaling pathways that affect the mineral or organic constituents of bone ECM impact bone ECM material properties, such as elastic modulus and hardness. These properties are also sensitive to pathways that regulate bone remodeling by osteoblasts, osteoclasts, and osteocytes. Several extracellular proteins, signaling pathways, intracellular effectors, and transcription regulatory networks have been implicated in the control of bone ECM quality. A molecular understanding of these mechanisms will elucidate the biological control of bone quality and suggest new targets for the development of therapies to prevent bone fragility. PMID:24894149
48 CFR 52.227-1 - Authorization and Consent.
Code of Federal Regulations, 2011 CFR
2011-10-01
... United States patent— (1) Embodied in the structure or composition of any article the delivery of which... a government regulatory body, of any invention described in and covered by a United States patent (1) embodied in the structure or composition of any article the delivery of which is accepted by the Government...
48 CFR 52.227-1 - Authorization and Consent.
Code of Federal Regulations, 2010 CFR
2010-10-01
... United States patent— (1) Embodied in the structure or composition of any article the delivery of which... a government regulatory body, of any invention described in and covered by a United States patent (1) embodied in the structure or composition of any article the delivery of which is accepted by the Government...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-22
... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-69596; File No. SR-NSCC-2013-06] Self... Effectiveness of Proposed Rule Change To Modify Fees Related to Portfolio Composition File Reporting in Addendum... Portfolio Composition File Reporting in Addendum A of NSCC's Rules and Procedures (``Rules''), as described...
A Preliminary Assessment of the Benefits of Reducing Formaldehyde Exposures (1984)
The report reviews a variety of regulatory responses that EPA might consider in developing regulatory strategies for controlling human exposures under the Toxic Substance Control Act and previewed issues that may arise in a regulatory impact analysis.
Immobile Robots: AI in the New Millennium
NASA Technical Reports Server (NTRS)
Williams, Brian C.; Nayak, P. Pandurang
1996-01-01
A new generation of sensor rich, massively distributed, autonomous systems are being developed that have the potential for profound social, environmental, and economic change. These include networked building energy systems, autonomous space probes, chemical plant control systems, satellite constellations for remote ecosystem monitoring, power grids, biosphere-like life support systems, and reconfigurable traffic systems, to highlight but a few. To achieve high performance, these immobile robots (or immobots) will need to develop sophisticated regulatory and immune systems that accurately and robustly control their complex internal functions. To accomplish this, immobots will exploit a vast nervous system of sensors to model themselves and their environment on a grand scale. They will use these models to dramatically reconfigure themselves in order to survive decades of autonomous operations. Achieving these large scale modeling and configuration tasks will require a tight coupling between the higher level coordination function provided by symbolic reasoning, and the lower level autonomic processes of adaptive estimation and control. To be economically viable they will need to be programmable purely through high level compositional models. Self modeling and self configuration, coordinating autonomic functions through symbolic reasoning, and compositional, model-based programming are the three key elements of a model-based autonomous systems architecture that is taking us into the New Millennium.
MYB107 and MYB9 Homologs Regulate Suberin Deposition in Angiosperms
Cohen, Hagai; Levy-Samocha, Dorit; Tzfadia, Oren; Panizel, Irina; Zeisler, Viktoria; Massalha, Hassan; Stern, Adi; Aharoni, Asaph
2016-01-01
Suberin, a polymer composed of both aliphatic and aromatic domains, is deposited as a rough matrix upon plant surface damage and during normal growth in the root endodermis, bark, specialized organs (e.g., potato [Solanum tuberosum] tubers), and seed coats. To identify genes associated with the developmental control of suberin deposition, we investigated the chemical composition and transcriptomes of suberized tomato (Solanum lycopersicum) and russet apple (Malus x domestica) fruit surfaces. Consequently, a gene expression signature for suberin polymer assembly was revealed that is highly conserved in angiosperms. Seed permeability assays of knockout mutants corresponding to signature genes revealed regulatory proteins (i.e., AtMYB9 and AtMYB107) required for suberin assembly in the Arabidopsis thaliana seed coat. Seeds of myb107 and myb9 Arabidopsis mutants displayed a significant reduction in suberin monomers and altered levels of other seed coat-associated metabolites. They also exhibited increased permeability, and lower germination capacities under osmotic and salt stress. AtMYB9 and AtMYB107 appear to synchronize the transcriptional induction of aliphatic and aromatic monomer biosynthesis and transport and suberin polymerization in the seed outer integument layer. Collectively, our findings establish a regulatory system controlling developmentally deposited suberin, which likely differs from the one of stress-induced polymer assembly recognized to date. PMID:27604696
Event DAS-444Ø6-6 soybean grown in Brazil is compositionally equivalent to non-transgenic soybean.
Fast, Brandon J; Galan, Maria P; Schafer, Ariane C
2016-04-02
Soybean event DAS-444Ø6-6 is tolerant to the herbicides 2,4-D, glyphosate, and glufosinate. An investigation of potential unintended adverse compositional changes in a genetically modified crop is required to meet government regulatory requirements in various geographies. A study to meet these requirements in Brazil was completed demonstrating compositional equivalency between DAS-444Ø6-6 and non-transgenic soybean. This study supplements the extensive literature supporting transgenesis as less disruptive of crop composition compared with traditional breeding methods.
Zimmermann, Michael T.; Kennedy, Richard B.; Grill, Diane E.; Oberg, Ann L.; Goergen, Krista M.; Ovsyannikova, Inna G.; Haralambieva, Iana H.; Poland, Gregory A.
2017-01-01
The development of a humoral immune response to influenza vaccines occurs on a multisystems level. Due to the orchestration required for robust immune responses when multiple genes and their regulatory components across multiple cell types are involved, we examined an influenza vaccination cohort using multiple high-throughput technologies. In this study, we sought a more thorough understanding of how immune cell composition and gene expression relate to each other and contribute to interindividual variation in response to influenza vaccination. We first hypothesized that many of the differentially expressed (DE) genes observed after influenza vaccination result from changes in the composition of participants’ peripheral blood mononuclear cells (PBMCs), which were assessed using flow cytometry. We demonstrated that DE genes in our study are correlated with changes in PBMC composition. We gathered DE genes from 128 other publically available PBMC-based vaccine studies and identified that an average of 57% correlated with specific cell subset levels in our study (permutation used to control false discovery), suggesting that the associations we have identified are likely general features of PBMC-based transcriptomics. Second, we hypothesized that more robust models of vaccine response could be generated by accounting for the interplay between PBMC composition, gene expression, and gene regulation. We employed machine learning to generate predictive models of B-cell ELISPOT response outcomes and hemagglutination inhibition (HAI) antibody titers. The top HAI and B-cell ELISPOT model achieved an area under the receiver operating curve (AUC) of 0.64 and 0.79, respectively, with linear model coefficients of determination of 0.08 and 0.28. For the B-cell ELISPOT outcomes, CpG methylation had the greatest predictive ability, highlighting potentially novel regulatory features important for immune response. B-cell ELISOT models using only PBMC composition had lower performance (AUC = 0.67), but highlighted well-known mechanisms. Our analysis demonstrated that each of the three data sets (cell composition, mRNA-Seq, and DNA methylation) may provide distinct information for the prediction of humoral immune response outcomes. We believe that these findings are important for the interpretation of current omics-based studies and set the stage for a more thorough understanding of interindividual immune responses to influenza vaccination. PMID:28484452
76 FR 14108 - Notice of Issuance of Regulatory Guide
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-15
..., Revision 1, ``Control of Preheat Temperature for Welding of Low-Alloy Steel.'' FOR FURTHER INFORMATION... for Welding of Low-Alloy Steel,'' was issued with a temporary identification as Draft Regulatory Guide... implementing regulatory requirements related to the control of welding for low-alloy steel components during...
Self-Regulation and Approaches to Learning in English Composition Writing
ERIC Educational Resources Information Center
Magno, Carlo
2009-01-01
It is hypothesized in the present study that when learners are tasked to write a composition in a second language (such as English language for Filipinos), they use specific approaches to learning and eventually undergo self-regulatory processes. The present study tested a model showing the shift from process to outcome in writing (Zimmerman &…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-19
...) Amend its Bylaws to expressly provide that the Representative Director Nominating Body and any petition... expressly state that the Representative Director Nominating Body and any petition candidate must satisfy the... composition of its Board in the future.\\4\\ Additionally, C2 stated that no matter what the composition of its...
Development of five digits is controlled by a bipartite long-range cis-regulator
Lettice, Laura A.; Williamson, Iain; Devenney, Paul S.; Kilanowski, Fiona; Dorin, Julia; Hill, Robert E.
2014-01-01
Conservation within intergenic DNA often highlights regulatory elements that control gene expression from a long range. How conservation within a single element relates to regulatory information and how internal composition relates to function is unknown. Here, we examine the structural features of the highly conserved ZRS (also called MFCS1) cis-regulator responsible for the spatiotemporal control of Shh in the limb bud. By systematically dissecting the ZRS, both in transgenic assays and within in the endogenous locus, we show that the ZRS is, in effect, composed of two distinct domains of activity: one domain directs spatiotemporal activity but functions predominantly from a short range, whereas a second domain is required to promote long-range activity. We show further that these two domains encode activities that are highly integrated and that the second domain is crucial in promoting the chromosomal conformational changes correlated with gene activity. During limb bud development, these activities encoded by the ZRS are interpreted differently by the fore limbs and the hind limbs; in the absence of the second domain there is no Shh activity in the fore limb, and in the hind limb low levels of Shh lead to a variant digit pattern ranging from two to four digits. Hence, in the embryo, the second domain stabilises the developmental programme providing a buffer for SHH morphogen activity and this ensures that five digits form in both sets of limbs. PMID:24715461
Vidor, Emmanuel; Soubeyrand, Benoit
2016-12-01
The manufacture of DTP-backboned combination vaccines is complex, and vaccine quality is evaluated by both batch composition and conformance of manufacturing history. Since their first availability, both the manufacturing regulations for DTP combination vaccines and their demand have evolved significantly. This has resulted in a constant need to modify manufacturing and quality control processes. Areas covered: Regulations that govern the manufacture of complex vaccines can be inconsistent between countries and need to be aligned with the regulatory requirements that apply in all countries of distribution. Changes in product mix and quantities can lead to uncertainty in vaccine supply maintenance. These problems are discussed in the context of the importance of these products as essential public health tools. Expert commentary: Increasing demand for complex vaccines globally has led to problems in supply due to intrinsically complex manufacturing and regulatory procedures. Vaccine manufacturers are fully engaged in the resolution of these challenges, but currently changes in demand need ideally to be anticipated approximately 3 years in advance due to long production cycle times.
Hao, Hailing; Li, Ying; Tzatzalos, Evangeline; Gilbert, Jordana; Zala, Dhara; Bhaumik, Mantu; Cai, Li
2014-01-01
Precise control of lineage-specific gene expression in the neural stem/progenitor cells is crucial for generation of the diversity of neuronal and glial cell types in the central nervous system (CNS). The mechanism underlying such gene regulation, however, is not fully elucidated. Here, we report that a 377 bp evolutionarily conserved DNA fragment (CR5), located approximately 32 kbp upstream of Olig2 transcription start site, acts as a cis-regulator for gene expression in the development of the neonatal forebrain. CR5 is active in a time-specific and brain region-restricted manner. CR5 activity is not detected in the embryonic stage, but it is exclusively in a subset of Sox5+ cells in the neonatal ventral forebrain. Furthermore, we show that Sox5 binding motif in CR5 is important for this cell-specific gene regulatory activity; mutation of Sox5 binding motif in CR5 alters reporter gene expression with different cellular composition. Together, our study provides new insights into the regulation of cell-specific gene expression during CNS development. PMID:24954155
Bellmann, Bernd; Schaeffer, Helmut A; Muhle, Hartwig
2010-08-01
The chronic toxicity of vitreous fibers is substantially dependent on their biopersistence. Removal of fibers deposited in the respiratory tract is dependent on a combination of physiological clearance processes (like mechanical translocation) and physico-chemical processes like dissolution and leaching. This publication presents data of about 60 different fibers investigated in the biopersistence test which was standardized in the European Union. This test is based on in vivo investigation of biopersistence after intratracheal instillation in rats of a respirable fiber fraction, and it is a basis for the regulatory classification of vitreous fibers. Regression analysis is carried out employing the data of glass fiber compositions and the corresponding results of biopersistence tests (half-times). The study leads to a model that enables prediction of half-times for stone wool fibers as well as for glass wool fibers on the basis of their chemical composition. The aim of this paper was to investigate the stringency of the existing limits for the range of the chemical composition of glass and stone wools in view of the currently available data base. For regulatory purposes, however, this model is currently not sufficient to replace biopersistence tests completely.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-07
... Public Reference Room. II. Self-Regulatory Organization's Statement of the Purpose of, and Statutory... significant aspects of such statements. A. Self-Regulatory Organization's Statement of the Purpose of, and... professional responsibilities, including key regulatory and control themes, as well as the importance of...
Lévi-Meyrueis, Corinne; Monteil, Véronique; Sismeiro, Odile; Dillies, Marie-Agnès; Monot, Marc; Jagla, Bernd; Coppée, Jean-Yves; Dupuy, Bruno; Norel, Françoise
2014-01-01
The RpoS/σS sigma subunit of RNA polymerase (RNAP) controls a global adaptive response that allows many Gram-negative bacteria to survive starvation and various stresses. σS also contributes to biofilm formation and virulence of the food-borne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium). In this study, we used directional RNA-sequencing and complementary assays to explore the σS-dependent transcriptome of S. Typhimurium during late stationary phase in rich medium. This study confirms the large regulatory scope of σS and provides insights into the physiological functions of σS in Salmonella. Extensive regulation by σS of genes involved in metabolism and membrane composition, and down-regulation of the respiratory chain functions, were important features of the σS effects on gene transcription that might confer fitness advantages to bacterial cells and/or populations under starving conditions. As an example, we show that arginine catabolism confers a competitive fitness advantage in stationary phase. This study also provides a firm basis for future studies to address molecular mechanisms of indirect regulation of gene expression by σS. Importantly, the σS-controlled downstream network includes small RNAs that might endow σS with post-transcriptional regulatory functions. Of these, four (RyhB-1/RyhB-2, SdsR, SraL) were known to be controlled by σS and deletion of the sdsR locus had a competitive fitness cost in stationary phase. The σS-dependent control of seven additional sRNAs was confirmed in Northern experiments. These findings will inspire future studies to investigate molecular mechanisms and the physiological impact of post-transcriptional regulation by σS. PMID:24810289
Regulatory considerations on new adjuvants and delivery systems.
Sesardic, D
2006-04-12
New and improved vaccines and delivery systems are increasingly being developed for prevention, treatment and diagnosis of human diseases. Prior to their use in humans, all new biological products must undergo pre-clinical evaluation. These pre-clinical studies are important not only to establish the biological properties of the material and to evaluate its possible risk to the public, but also to plan protocols for subsequent clinical trials from which safety and efficacy can be evaluated. For vaccines, evaluation in pre-clinical studies is particularly important as information gained may also contribute to identifying the optimum composition and formulation process and provide an opportunity to develop suitable indicator tests for quality control. Data from pre-clinical and laboratory evaluation studies, which continue during clinical studies, is used to support an application for marketing authorisation. Addition of a new adjuvant and exploration of new delivery systems for vaccines presents challenges to both manufacturers and regulatory authorities. Because no adjuvant is licensed as a medicinal product in its own right, but only as a component of a particular vaccine, pre-clinical and appropriate toxicology studies need to be designed on a case-by-case basis to evaluate the safety profile of the adjuvant and adjuvant/vaccine combination. Current regulatory requirements for the pharmaceutical and pre-clinical safety assessment of vaccines are insufficient and initiatives are in place to develop more specific guidelines for evaluation of adjuvants in vaccines.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-22
...-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing and Immediate...\\ 17 CFR 240.19b-4(f)(6). I. Self-Regulatory Organization's Statement of the Terms of Substance of the... Approval of Change in Ownership, Control, or Business Operations) to provide for a refund of the...
77 FR 59023 - Preoperational Testing of Instrument and Control Air Systems
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-25
... NUCLEAR REGULATORY COMMISSION [NRC-2012-0065] Preoperational Testing of Instrument and Control Air..., ``Preoperational Testing of Instrument and Control Air Systems.'' This regulatory guide is being revised to address... instrument and control air systems (ICAS) to meet seismic requirement, ICAS air- dryer testing to meet dew...
Deficient Activity in the Neural Systems That Mediate Self-regulatory Control in Bulimia Nervosa
Marsh, Rachel; Steinglass, Joanna E.; Gerber, Andrew J.; O’Leary, Kara Graziano; Wang, Zhishun; Murphy, David; Walsh, B. Timothy; Peterson, Bradley S.
2009-01-01
Context Disturbances in neural systems that mediate voluntary self-regulatory processes may contribute to bulimia nervosa (BN) by releasing feeding behaviors from regulatory control. Objective To study the functional activity in neural circuits that subserve self-regulatory control in women with BN. Design We compared functional magnetic resonance imaging blood oxygenation level–dependent responses in patients with BN with healthy controls during performance of the Simon Spatial Incompatibility task. Setting University research institute. Participants Forty women: 20 patients with BN and 20 healthy control participants. Main Outcome Measure We used general linear modeling of Simon Spatial Incompatibility task–related activations to compare groups on their patterns of brain activation associated with the successful or unsuccessful engagement of self-regulatory control. Results Patients with BN responded more impulsively and made more errors on the task than did healthy controls; patients with the most severe symptoms made the most errors. During correct responding on incongruent trials, patients failed to activate frontostriatal circuits to the same degree as healthy controls in the left inferolateral prefrontal cortex (Brodmann area [BA] 45), bilateral inferior frontal gyrus (BA 44), lenticular and caudate nuclei, and anterior cingulate cortex (BA 24/32). Patients activated the dorsal anterior cingulate cortex (BA 32) more when making errors than when responding correctly. In contrast, healthy participants activated the anterior cingulate cortex more during correct than incorrect responses, and they activated the striatum more when responding incorrectly, likely reflecting an automatic response tendency that, in the absence of concomitant anterior cingulate cortex activity, produced incorrect responses. Conclusions Self-regulatory processes are impaired in women with BN, likely because of their failure to engage frontostriatal circuits appropriately. These findings enhance our understanding of the pathogenesis of BN by pointing to functional abnormalities within a neural system that subserves self-regulatory control, which may contribute to binge eating and other impulsive behaviors in women with BN. PMID:19124688
Regulatory logic of pan-neuronal gene expression in C. elegans
Stefanakis, Nikolaos; Carrera, Ines; Hobert, Oliver
2015-01-01
While neuronal cell types display an astounding degree of phenotypic diversity, most if not all neuron types share a core panel of terminal features. However, little is known about how pan-neuronal expression patterns are genetically programmed. Through an extensive analysis of the cis-regulatory control regions of a battery of pan-neuronal C.elegans genes, including genes involved in synaptic vesicle biology and neuropeptide signaling, we define a common organizational principle in the regulation of pan-neuronal genes in the form of a surprisingly complex array of seemingly redundant, parallel-acting cis-regulatory modules that direct expression to broad, overlapping domains throughout the nervous system. These parallel-acting cis-regulatory modules are responsive to a multitude of distinct trans-acting factors. Neuronal gene expression programs therefore fall into two fundamentally distinct classes. Neuron type-specific genes are generally controlled by discrete and non-redundantly acting regulatory inputs, while pan-neuronal gene expression is controlled by diverse, coincident and seemingly redundant regulatory inputs. PMID:26291158
A genomic regulatory network for development
NASA Technical Reports Server (NTRS)
Davidson, Eric H.; Rast, Jonathan P.; Oliveri, Paola; Ransick, Andrew; Calestani, Cristina; Yuh, Chiou-Hwa; Minokawa, Takuya; Amore, Gabriele; Hinman, Veronica; Arenas-Mena, Cesar;
2002-01-01
Development of the body plan is controlled by large networks of regulatory genes. A gene regulatory network that controls the specification of endoderm and mesoderm in the sea urchin embryo is summarized here. The network was derived from large-scale perturbation analyses, in combination with computational methodologies, genomic data, cis-regulatory analysis, and molecular embryology. The network contains over 40 genes at present, and each node can be directly verified at the DNA sequence level by cis-regulatory analysis. Its architecture reveals specific and general aspects of development, such as how given cells generate their ordained fates in the embryo and why the process moves inexorably forward in developmental time.
Dual Nature of Translational Control by Regulatory BC RNAs ▿
Eom, Taesun; Berardi, Valerio; Zhong, Jun; Risuleo, Gianfranco; Tiedge, Henri
2011-01-01
In higher eukaryotes, increasing evidence suggests, gene expression is to a large degree controlled by RNA. Regulatory RNAs have been implicated in the management of neuronal function and plasticity in mammalian brains. However, much of the molecular-mechanistic framework that enables neuronal regulatory RNAs to control gene expression remains poorly understood. Here, we establish molecular mechanisms that underlie the regulatory capacity of neuronal BC RNAs in the translational control of gene expression. We report that regulatory BC RNAs employ a two-pronged approach in translational control. One of two distinct repression mechanisms is mediated by C-loop motifs in BC RNA 3′ stem-loop domains. These C-loops bind to eIF4B and prevent the factor's interaction with 18S rRNA of the small ribosomal subunit. In the second mechanism, the central A-rich domains of BC RNAs target eIF4A, specifically inhibiting its RNA helicase activity. Thus, BC RNAs repress translation initiation in a bimodal mechanistic approach. As BC RNA functionality has evolved independently in rodent and primate lineages, our data suggest that BC RNA translational control was necessitated and implemented during mammalian phylogenetic development of complex neural systems. PMID:21930783
Regulating the path from legacy recognition, through recovery to release from regulatory control.
Sneve, Malgorzata Karpow; Smith, Graham
2015-04-01
Past development of processes and technologies using radioactive material led to construction of many facilities worldwide. Some of these facilities were built and operated before the regulatory infrastructure was in place to ensure adequate control of radioactive material during operation and decommissioning. In other cases, controls were in place but did not meet modern standards, leading to what is now considered to have been inadequate control. Accidents and other events have occurred resulting in loss of control of radioactive material and unplanned releases to the environment. The legacy from these circumstances is that many countries have areas or facilities at which abnormal radiation conditions exist at levels that give rise to concerns about environmental and human health of potential interest to regulatory authorities. Regulation of these legacy situations is complex. This paper examines the regulatory challenges associated with such legacy management and brings forward suggestions for finding the path from: legacy recognition; implementation, as necessary, of urgent mitigation measures; development of a longer-term management strategy, through to release from regulatory control. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Olafsen, Kåre S; Rønning, John A; Handegård, Bjørn Helge; Ulvund, Stein Erik; Dahl, Lauritz Bredrup; Kaaresen, Per Ivar
2012-02-01
Temperamental regulatory competence and social communication in term and preterm infants at 12 months corrected age was studied in a randomized controlled intervention trial aimed at enhancing maternal sensitive responsiveness. Surviving infants <2000 g from a geographically defined area were randomized to an intervention (71) or a control group (69), and compared with term infants (74). The intervention was a modified version of the "Mother-Infant Transaction Program". Regulatory competence was measured with the Infant Behavior Questionnaire, and social communication with the Early Social Communication Scales. Preterm intervention infants with low regulatory competence had higher responding to joint attention than preterm control infants. A sensitizing intervention may moderate the association between temperament and social communication, and thus allow an alternative functional outlet for preterm infants low in regulatory competence. The finding may have implications for conceptualizations of the role of early sensitizing interventions in promoting important developmental outcomes for premature infants. Copyright © 2011 Elsevier Inc. All rights reserved.
Zagrijchuk, Elizaveta A.; Sabirov, Marat A.; Holloway, David M.; Spirov, Alexander V.
2014-01-01
Biological development depends on the coordinated expression of genes in time and space. Developmental genes have extensive cis-regulatory regions which control their expression. These regions are organized in a modular manner, with different modules controlling expression at different times and locations. Both how modularity evolved and what function it serves are open questions. We present a computational model for the cis-regulation of the hunchback (hb) gene in the fruit fly (Drosophila). We simulate evolution (using an evolutionary computation approach from computer science) to find the optimal cis-regulatory arrangements for fitting experimental hb expression patterns. We find that the cis-regulatory region tends to readily evolve modularity. These cis-regulatory modules (CRMs) do not tend to control single spatial domains, but show a multi-CRM/multi-domain correspondence. We find that the CRM-domain correspondence seen in Drosophila evolves with a high probability in our model, supporting the biological relevance of the approach. The partial redundancy resulting from multi-CRM control may confer some biological robustness against corruption of regulatory sequences. The technique developed on hb could readily be applied to other multi-CRM developmental genes. PMID:24712536
Topol, Eric J; Bousser, Marie-Germaine; Fox, Keith A A; Creager, Mark A; Despres, Jean-Pierre; Easton, J Donald; Hamm, Christian W; Montalescot, Gilles; Steg, P Gabriel; Pearson, Thomas A; Cohen, Eric; Gaudin, Christophe; Job, Bernard; Murphy, Judith H; Bhatt, Deepak L
2010-08-14
Blockade of the endocannabinoid receptor reduces obesity and improves metabolic abnormalities such as triglycerides, HDL cholesterol, and fasting blood glucose. We assessed whether rimonabant would improve major vascular event-free survival. This double-blind, placebo-controlled trial was undertaken in 974 hospitals in 42 countries. 18,695 patients with previously manifest or increased risk of vascular disease were randomly assigned to receive either rimonabant 20 mg (n=9381) or matching placebo (n=9314). Randomisation was stratified by centre, implemented with an independent interactive voice response system, and all study personnel and participants were masked to group assignment. The primary endpoint was the composite of cardiovascular death, myocardial infarction, or stroke, as determined via central adjudication. Analysis was by intention to treat. This study is registered with ClinicalTrials.gov, number NCT00263042. At a mean follow-up of 13.8 months (95% CI 13.6-14.0), the trial was prematurely discontinued because of concerns by health regulatory authorities in three countries about suicide in individuals receiving rimonabant. All randomised participants were analysed. At the close of the trial (Nov 6, 2008), the composite primary endpoint of cardiovascular death, myocardial infarction, or stroke occurred in 364 (3.9%) patients assigned to rimonabant and 375 (4.0%) assigned to placebo (hazard ratio 0.97, 95% CI 0.84-1.12, p=0.68). With rimonabant, gastrointestinal (3038 [33%] vs 2084 [22%]), neuropsychiatric (3028 [32%] vs 1989 [21%]), and serious psychiatric side-effects (232 [2.5%] vs 120 [1.3%]) were significantly increased compared with placebo. Four patients in the rimonabant group and one in the placebo group committed suicide. The premature termination of this trial has important lessons for drug development. A drug that was being marketed for weight loss, but being tested for improving cardiovascular outcomes, induced a level of serious neuropsychiatric effects that was deemed unacceptable by regulatory authorities, and both the drug and the trial were abruptly terminated. Sanofi-Aventis. Copyright 2010 Elsevier Ltd. All rights reserved.
Flying qualities and control system characteristics for superaugmented aircraft
NASA Technical Reports Server (NTRS)
Myers, T. T.; Mcruer, D. T.; Johnston, D. E.
1984-01-01
Aircraft-alone dynamics and superaugmented control system fundamental regulatory properties including stability and regulatory responses of the basic closed-loop systems; fundamental high and low frequency margins and governing factors; and sensitivity to aircraft and controller parameters are addressed. Alternative FCS mechanizations, and mechanizational side effects are also discussed. An overview of flying qualities considerations encompasses general pilot operations as a controller in unattended, intermittent and trim, and full-attention regulatory or command control; effective vehicle primary and secondary response properties to pilot inputs and disturbances; pilot control architectural possibilities; and comparison of superaugmented and conventional aircraft path responses for different forms of pilot control. Results of a simple experimental investigation into pilot dynamic behavior in attitude control of superaugmented aircraft configurations with high frequency time laps and time delays are presented.
40 CFR 94.6 - Regulatory structure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Regulatory structure. 94.6 Section 94... for Compression-Ignition Marine Engines § 94.6 Regulatory structure. This section provides an overview of the regulatory structure of this part. (a) The regulations of this Part 94 are intended to control...
Modelling and analysis of gene regulatory network using feedback control theory
NASA Astrophysics Data System (ADS)
El-Samad, H.; Khammash, M.
2010-01-01
Molecular pathways are a part of a remarkable hierarchy of regulatory networks that operate at all levels of organisation. These regulatory networks are responsible for much of the biological complexity within the cell. The dynamic character of these pathways and the prevalence of feedback regulation strategies in their operation make them amenable to systematic mathematical analysis using the same tools that have been used with success in analysing and designing engineering control systems. In this article, we aim at establishing this strong connection through various examples where the behaviour exhibited by gene networks is explained in terms of their underlying control strategies. We complement our analysis by a survey of mathematical techniques commonly used to model gene regulatory networks and analyse their dynamic behaviour.
NASA Astrophysics Data System (ADS)
Ravindran, Vandana; Sunitha, V.; Bagler, Ganesh
2017-05-01
Cancer is characterized by a complex web of regulatory mechanisms which makes it difficult to identify features that are central to its control. Molecular integrative models of cancer, generated with the help of data from experimental assays, facilitate use of control theory to probe for ways of controlling the state of such a complex dynamic network. We modeled the human cancer signaling network as a directed graph and analyzed it for its controllability, identification of driver nodes and their characterization. We identified the driver nodes using the maximum matching algorithm and classified them as backbone, peripheral and ordinary based on their role in regulatory interactions and control of the network. We found that the backbone driver nodes were key to driving the regulatory network into cancer phenotype (via mutations) as well as for steering into healthy phenotype (as drug targets). This implies that while backbone genes could lead to cancer by virtue of mutations, they are also therapeutic targets of cancer. Further, based on their impact on the size of the set of driver nodes, genes were characterized as indispensable, dispensable and neutral. Indispensable nodes within backbone of the network emerged as central to regulatory mechanisms of control of cancer. In addition to probing the cancer signaling network from the perspective of control, our findings suggest that indispensable backbone driver nodes could be potentially leveraged as therapeutic targets. This study also illustrates the application of structural controllability for studying the mechanisms underlying the regulation of complex diseases.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-08
... controls) for conditions where imminent death is threatened by cardiopulmonary failure in neonates and... to the same regulatory controls, all of the device components used in an ECMO procedure are being... regulatory controls needed to provide reasonable assurance of their safety and effectiveness. The three...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-02
... Change Relating to New Market Access Risk Management Service, EdgeRisk Controls SM June 26, 2012... access risk management service, called EdgeRisk Controls\\SM\\ (the ``Service''). II. Self-Regulatory... and maintain a system of risk management controls and supervisory procedures that are reasonably...
Analyzing and Understanding Lipids of Yeast: A Challenging Endeavor.
Kohlwein, Sepp D
2017-05-01
Lipids are essential biomolecules with diverse biological functions, ranging from building blocks for all biological membranes to energy substrates, signaling molecules, and protein modifiers. Despite advances in lipid analytics by mass spectrometry, the extraction and quantitative analysis of the diverse classes of lipids are still an experimental challenge. Yeast is a model organism that provides several advantages for studying lipid metabolism, because most biosynthetic pathways are well described and a great deal of information is available on the regulatory mechanisms that control lipid homeostasis. In addition, the composition of yeast lipids is much less complex than that of mammalian lipids, making yeast an excellent reference system for studying lipid-associated cell functions. © 2017 Cold Spring Harbor Laboratory Press.
Authority defied: need for cognitive closure influences regulatory control when resisting authority.
Damen, Tom G E; van Leeuwen, Matthijs L; Dijksterhuis, Ap; van Baaren, Rick B
2014-08-01
The present studies examined whether differences in need for cognitive closure (NCC) were related to differences in regulatory control when confronted with authority. In two studies, levels of regulatory control were measured when participants resisted (Study 1; N = 46) or prepared to resist the influence attempt of an authority figure (Study 2; N = 50). Results showed that resisting the influence attempt from a high-authority figure was more depleting for participants higher in NCC compared to individuals lower in NCC. However, when they were given instructions and time to prepare the act of resistance, individuals high in NCC actually showed an increase in regulatory control. Authority is usually viewed as a general principle of influence; however, the present studies suggest that there are individual differences that influence how people may experience interactions with authorities. © 2013 Wiley Periodicals, Inc.
Chertkova, Aleksandra A; Schiffman, Joshua S; Nuzhdin, Sergey V; Kozlov, Konstantin N; Samsonova, Maria G; Gursky, Vitaly V
2017-02-07
Cis-regulatory sequences are often composed of many low-affinity transcription factor binding sites (TFBSs). Determining the evolutionary and functional importance of regulatory sequence composition is impeded without a detailed knowledge of the genotype-phenotype map. We simulate the evolution of regulatory sequences involved in Drosophila melanogaster embryo segmentation during early development. Natural selection evaluates gene expression dynamics produced by a computational model of the developmental network. We observe a dramatic decrease in the total number of transcription factor binding sites through the course of evolution. Despite a decrease in average sequence binding energies through time, the regulatory sequences tend towards organisations containing increased high affinity transcription factor binding sites. Additionally, the binding energies of separate sequence segments demonstrate ubiquitous mutual correlations through time. Fewer than 10% of initial TFBSs are maintained throughout the entire simulation, deemed 'core' sites. These sites have increased functional importance as assessed under wild-type conditions and their binding energy distributions are highly conserved. Furthermore, TFBSs within close proximity of core sites exhibit increased longevity, reflecting functional regulatory interactions with core sites. In response to elevated mutational pressure, evolution tends to sample regulatory sequence organisations with fewer, albeit on average, stronger functional transcription factor binding sites. These organisations are also shaped by the regulatory interactions among core binding sites with sites in their local vicinity.
Rahman, Sayma; Gudetta, Berhanu; Fink, Joshua; Granath, Anna; Ashenafi, Senait; Aseffa, Abraham; Derbew, Milliard; Svensson, Mattias; Andersson, Jan; Brighenti, Susanna Grundström
2009-06-01
Immune responses were assessed at the single-cell level in lymph nodes from children with tuberculous lymphadenitis. Tuberculosis infection was associated with tissue remodeling of lymph nodes as well as altered cellular composition. Granulomas were significantly enriched with CD68+ macrophages expressing the M. tuberculosis complex-specific protein antigen MPT64 and inducible nitric oxide synthase. There was a significant increase in CD8+ cytolytic T cells surrounding the granuloma; however, CD8+ T cells expressed low levels of the cytolytic and antimicrobial effector molecules perforin and granulysin in the granulomatous lesions. Quantitative real-time mRNA analysis revealed that interferon-gamma, tumor necrosis factor-alpha, and interleukin-17 were not up-regulated in infected lymph nodes, but there was a significant induction of both transforming growth factor-beta and interleukin-13. In addition, granulomas contained an increased number of CD4+FoxP3+ T cells co-expressing the immunoregulatory cytotoxic T-lymphocyte antigen-4 and glucocorticoid-induced tumor necrosis factor receptor molecules. Low numbers of CD8+ T cells in the lesions correlated with high levels of transforming growth factor-beta and FoxP3+ regulatory T cells, suggesting active immunosuppression at the local infection site. Compartmentalization and skewing of the immune response toward a regulatory phenotype may result in an uncoordinated effector T-cell response that reduces granule-mediated killing of M. tuberculosis-infected cells and subsequent disease control.
Methylphenidate blocks effort-induced depletion of regulatory control in healthy volunteers.
Sripada, Chandra; Kessler, Daniel; Jonides, John
2014-06-01
A recent wave of studies--more than 100 conducted over the last decade--has shown that exerting effort at controlling impulses or behavioral tendencies leaves a person depleted and less able to engage in subsequent rounds of regulation. Regulatory depletion is thought to play an important role in everyday problems (e.g., excessive spending, overeating) as well as psychiatric conditions, but its neurophysiological basis is poorly understood. Using a placebo-controlled, double-blind design, we demonstrated that the psychostimulant methylphenidate (commonly known as Ritalin), a catecholamine reuptake blocker that increases dopamine and norepinephrine at the synaptic cleft, fully blocks effort-induced depletion of regulatory control. Spectral analysis of trial-by-trial reaction times revealed specificity of methylphenidate effects on regulatory depletion in the slow-4 frequency band. This band is associated with the operation of resting-state brain networks that produce mind wandering, which raises potential connections between our results and recent brain-network-based models of control over attention. © The Author(s) 2014.
Creating and validating cis-regulatory maps of tissue-specific gene expression regulation
O'Connor, Timothy R.; Bailey, Timothy L.
2014-01-01
Predicting which genomic regions control the transcription of a given gene is a challenge. We present a novel computational approach for creating and validating maps that associate genomic regions (cis-regulatory modules–CRMs) with genes. The method infers regulatory relationships that explain gene expression observed in a test tissue using widely available genomic data for ‘other’ tissues. To predict the regulatory targets of a CRM, we use cross-tissue correlation between histone modifications present at the CRM and expression at genes within 1 Mbp of it. To validate cis-regulatory maps, we show that they yield more accurate models of gene expression than carefully constructed control maps. These gene expression models predict observed gene expression from transcription factor binding in the CRMs linked to that gene. We show that our maps are able to identify long-range regulatory interactions and improve substantially over maps linking genes and CRMs based on either the control maps or a ‘nearest neighbor’ heuristic. Our results also show that it is essential to include CRMs predicted in multiple tissues during map-building, that H3K27ac is the most informative histone modification, and that CAGE is the most informative measure of gene expression for creating cis-regulatory maps. PMID:25200088
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-02
... Change Relating to New Market Access Risk Management Service, EdgeRisk Controls SM June 26, 2012... access risk management service, called EdgeRisk Controls SM (the ``Service''). II. Self-Regulatory..., document and maintain a system of risk management controls and supervisory procedures that are reasonably...
Mistri, Tapan Kumar; Arindrarto, Wibowo; Ng, Wei Ping; Wang, Choayang; Lim, Leng Hiong; Sun, Lili; Chambers, Ian; Wohland, Thorsten; Robson, Paul
2018-03-20
Oct4 and Sox2 regulate the expression of target genes such as Nanog, Fgf4 , and Utf1 , by binding to their respective regulatory motifs. Their functional cooperation is reflected in their ability to heterodimerize on adjacent cis regulatory motifs, the composite Sox/Oct motif. Given that Oct4 and Sox2 regulate many developmental genes, a quantitative analysis of their synergistic action on different Sox/Oct motifs would yield valuable insights into the mechanisms of early embryonic development. In the present study, we measured binding affinities of Oct4 and Sox2 to different Sox/Oct motifs using fluorescence correlation spectroscopy. We found that the synergistic binding interaction is driven mainly by the level of Sox2 in the case of the Fgf4 Sox/Oct motif. Taking into account Sox2 expression levels fluctuate more than Oct4 , our finding provides an explanation on how Sox2 controls the segregation of the epiblast and primitive endoderm populations within the inner cell mass of the developing rodent blastocyst. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nehdi, M.; Tariq, A.
2008-11-15
In the present research, industrial byproducts, namely, cement kiln dust (CKD) and Class C fly ash (FAC) have been used as candidate materials along with the partial addition of sulfate-resistant cement (SRC) in the Stabilization/solidification of polymetallic sulfidic mine tailings (MT). The effectiveness of S/S was assessed by comparing laboratory experimental values obtained from unconfined compressive strength, hydraulic conductivity and leaching propensity tests of S/S samples with regulatory standards for safe surface disposal of such wastes. Despite general regulatory compliance of compressive strength and hydraulic conductivity, some solidified/stabilized-cured matrices were found unable to provide the required immobilization of pollutants. Solidified/stabilizedmore » and 90-day cured mine tailings specimens made with composite binders containing (10% CKD + 10% FAC), (5% SRC + 15% FAC) and (5% SRC + 5% CKD + 10% FAC) significantly impaired the solubility of all contaminants investigated and proved successful in fixing metals within the matrix, in addition to achieving adequate unconfined compressive strength and hydraulic conductivity values, thus satisfying USEPA regulations. Laboratory investigations revealed that, for polymetallic mining waste, leachate concentrations are the most critical factor in assessing the effectiveness of S/S technology.« less
Bartholomaeus, Andrew; Parrott, Wayne; Bondy, Genevieve; Walker, Kate
2013-11-01
There is disagreement internationally across major regulatory jurisdictions on the relevance and utility of whole food (WF) toxicity studies on GM crops, with no harmonization of data or regulatory requirements. The scientific value, and therefore animal ethics, of WF studies on GM crops is a matter addressable from the wealth of data available on commercialized GM crops and WF studies on irradiated foods. We reviewed available GM crop WF studies and considered the extent to which they add to the information from agronomic and compositional analyses. No WF toxicity study was identified that convincingly demonstrated toxicological concern or that called into question the adequacy, sufficiency, and reliability of safety assessments based on crop molecular characterization, transgene source, agronomic characteristics, and/or compositional analysis of the GM crop and its near-isogenic line. Predictions of safety based on crop genetics and compositional analyses have provided complete concordance with the results of well-conducted animal testing. However, this concordance is primarily due to the improbability of de novo generation of toxic substances in crop plants using genetic engineering practices and due to the weakness of WF toxicity studies in general. Thus, based on the comparative robustness and reliability of compositional and agronomic considerations and on the absence of any scientific basis for a significant potential for de novo generation of toxicologically significant compositional alterations as a sole result of transgene insertion, the conclusion of this review is that WF animal toxicity studies are unnecessary and scientifically unjustifiable.
Data Integrity-A Study of Current Regulatory Thinking and Action.
Shafiei, Nader; De Montardy, Regis; Rivera-Martinez, Edwin
2015-01-01
In reaction to breaches of data integrity in the pharmaceutical industry, regulatory authorities have introduced inspection approaches or initiatives with the aim of reducing occurrences of data integrity problems. This review article-based on study of 65 cases of regulatory action from 2002 to 2014-provides an overview of current regulatory thinking and action on breaches of data integrity affecting GxP (health-related regulations) processes supporting non-clinical studies, clinical studies, laboratory controls, and production controls. These case studies largely represent position of the U.S. Food and Drug Administration and the regulatory agencies affiliated with the European Medicines Agency. Also discussed is the role of human factors as a potential source of data integrity problems. The article concludes by recommending some remedial controls that could be established to avoid or reduce occurrences of data integrity problems.Lay Abstract: In fulfilling their mission to protect public health, regulatory agencies (e.g., U.S. Food and Drug Administration, European Medicines Agency) must establish confidence that medical products they approve are fit for their intended use. In so doing they rely on scientific and operational data generated during research, development, manufacturing, sales, marketing, distribution, and post-marketing surveillance activities. The level of confidence they build is directly proportional to the scientific validity and integrity of data presented to them by the sponsors of medical products. In this article we present analysis of 65 case studies that document regulatory action taken by various regulatory agencies on breach of data integrity between 2002 and 2014. The ensuing discussion on current trends largely represents position of the U.S. Food and Drug Administration and European Medicines Agency. The article concludes by proposing some remedial controls that could be established by pharmaceutical companies to avoid or reduce occurrences of data integrity problems. © PDA, Inc. 2015.
Project #OA&E-FY18-0177, April 10, 2018. The OIG plans to begin preliminary research on the Office of the Administrator's Office of Policy implementation of Executive Order 13771, Reducing Regulation and Controlling Regulatory Costs.
75 FR 34962 - Pennsylvania Regulatory Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-21
... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 938 [PA-154-FOR; OSM 2010-0002] Pennsylvania Regulatory Program AGENCY: Office of Surface Mining... the Pennsylvania regulatory program (the ``Pennsylvania program'') under the Surface Mining Control...
Parker, Stacey L; Laurie, Kaitlan R; Newton, Cameron J; Jimmieson, Nerina L
2014-12-01
This experiment examined whether trait regulatory focus moderates the effects of task control on stress reactions during a demanding work simulation. Regulatory focus describes two ways in which individuals self-regulate toward desired goals: promotion and prevention. As highly promotion-focused individuals are oriented toward growth and challenge, it was expected that they would show better adaptation to demanding work under high task control. In contrast, as highly prevention-focused individuals are oriented toward safety and responsibility they were expected to show better adaptation under low task control. Participants (N=110) completed a measure of trait regulatory focus and then three trials of a demanding inbox activity under either low, neutral, or high task control. Heart rate variability (HRV), affective reactions (anxiety & task dissatisfaction), and task performance were measured at each trial. As predicted, highly promotion-focused individuals found high (compared to neutral) task control stress-buffering for performance. Moreover, highly prevention-focused individuals found high (compared to low) task control stress-exacerbating for dissatisfaction. In addition, highly prevention-focused individuals found low task control stress-buffering for dissatisfaction, performance, and HRV. However, these effects of low task control for highly prevention-focused individuals depended on their promotion focus. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
ER phospholipid composition modulates lipogenesis during feeding and in obesity.
Rong, Xin; Wang, Bo; Palladino, Elisa Nd; de Aguiar Vallim, Thomas Q; Ford, David A; Tontonoz, Peter
2017-10-02
Sterol regulatory element-binding protein 1c (SREBP-1c) is a central regulator of lipogenesis whose activity is controlled by proteolytic cleavage. The metabolic factors that affect its processing are incompletely understood. Here, we show that dynamic changes in the acyl chain composition of ER phospholipids affect SREBP-1c maturation in physiology and disease. The abundance of polyunsaturated phosphatidylcholine in liver ER is selectively increased in response to feeding and in the setting of obesity-linked insulin resistance. Exogenous delivery of polyunsaturated phosphatidylcholine to ER accelerated SREBP-1c processing through a mechanism that required an intact SREBP cleavage-activating protein (SCAP) pathway. Furthermore, induction of the phospholipid-remodeling enzyme LPCAT3 in response to liver X receptor (LXR) activation promoted SREBP-1c processing by driving the incorporation of polyunsaturated fatty acids into ER. Conversely, LPCAT3 deficiency increased membrane saturation, reduced nuclear SREBP-1c abundance, and blunted the lipogenic response to feeding, LXR agonist treatment, or obesity-linked insulin resistance. Desaturation of the ER membrane may serve as an auxiliary signal of the fed state that promotes lipid synthesis in response to nutrient availability.
An outbreak of illness among aerospace workers.
Sparks, P. J.; Simon, G. E.; Katon, W. J.; Altman, L. C.; Ayars, G. H.; Johnson, R. L.
1990-01-01
A multispecialty panel of physicians evaluated a case series of 53 composite-materials workers in a large aircraft manufacturing facility who filed workers' compensation claims for illness labeled by the media as the "aerospace syndrome." Possible skin and respiratory tract exposures included formaldehyde, phenol, particulates, epoxy resins, and trace organic solvents, but measured concentrations were well below all regulatory and consensus standards. Most workers had histories of transient skin or respiratory tract irritation consistent with the known potential toxicity of these materials. None of the workers tested had immunoglobulin IgG or IgE antibodies to human serum albumin complexed with formaldehyde. A majority (74%) met DSM-III-R [Diagnostic and Statistical Manual of Mental Disorders, 3rd edition, revised] criteria for major depression, panic disorder, or both. Most of these psychiatric disorders were of a recent onset, correlating in time with the use of phenol- and formaldehyde-impregnated composite material. Psychosocial factors were thought to have played a major role in the high prevalence of illness in this group and should be evaluated directly in well-controlled epidemiologic studies of similar crisis-building situations in the future. PMID:2098006
Park, D L; Stoloff, L
1989-04-01
The control by the Food and Drug Administration (FDA) of aflatoxin, a relatively recently discovered, unavoidable natural contaminant produced by specific molds that invade a number of basic food and feedstuffs, provides an example of the varying forces that affect risk assessment and management by a regulatory Agency. This is the story of how the FDA responded to the initial discovery of a potential carcinogenic hazard to humans in a domestic commodity, to the developing information concerning the nature of the hazard, to the economic and political pressures that are created by the impact of natural forces on regulatory controls, and to the restraints of laws within which the Agency must work. This story covers four periods: the years of discovery and action decisions on the basis of meager knowledge and the fear of cancer; the years of tinkering on paper with the regulatory process, the years of digestion of the accumulating knowledge, and the application of that knowledge to actions forced by natural events; and an audit of the current status of knowledge about the hazard from aflatoxin, and proposals for regulatory control based on that knowledge.
Best Practices for Use of Historical Control Data of Proliferative Rodent Lesions.
The Historical Control Data Working Group under the direction of the Scientific and Regulatory Policy Committee (SRPC) of the Society of Toxicologic Pathology (STP) was tasked with reviewing the current scientific practices, regulatory guidance and relevant literature pertaining ...
76 FR 2725 - Draft Regulatory Guide: Issuance, Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-14
.... The draft regulatory guide, entitled, ``Inspection of Water-Control Structures Associated with Nuclear... and surveillance program for dams, slopes, canals, and other water-control structures associated with emergency cooling water systems or flood protection of nuclear power plants. II. Further Information The NRC...
76 FR 16714 - Pennsylvania Regulatory Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-25
... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 938 [PA-160-FOR; OSM 2010-0019] Pennsylvania Regulatory Program AGENCY: Office of Surface Mining... Pennsylvania regulatory program (the ``Pennsylvania program'') under the Surface Mining Control and Reclamation...
78 FR 37850 - Quality Assurance Program Requirements (Operations)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-24
... NUCLEAR REGULATORY COMMISSION [NRC-2013-0021] Quality Assurance Program Requirements (Operations... Regulatory Commission (NRC) is issuing a revision to Regulatory Guide (RG) 1.33, ``Quality Assurance Program... managerial and administrative Quality Assurance (QA) controls for nuclear power plants during operations...
Allison, Gretchen; Cain, Yanxi Tan; Cooney, Charles; Garcia, Tom; Bizjak, Tara Gooen; Holte, Oyvind; Jagota, Nirdosh; Komas, Bekki; Korakianiti, Evdokia; Kourti, Dora; Madurawe, Rapti; Morefield, Elaine; Montgomery, Frank; Nasr, Moheb; Randolph, William; Robert, Jean-Louis; Rudd, Dave; Zezza, Diane
2015-03-01
This paper assesses the current regulatory environment, relevant regulations and guidelines, and their impact on continuous manufacturing. It summarizes current regulatory experience and learning from both review and inspection perspectives. It outlines key regulatory aspects, including continuous manufacturing process description and control strategy in regulatory files, process validation, and key Good Manufacturing Practice (GMP) requirements. In addition, the paper identifies regulatory gaps and challenges and proposes a way forward to facilitate implementation. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Stability Testing of Herbal Drugs: Challenges, Regulatory Compliance and Perspectives.
Bansal, Gulshan; Suthar, Nancy; Kaur, Jasmeen; Jain, Astha
2016-07-01
Stability testing is an important component of herbal drugs and products (HDPs) development process. Drugs regulatory agencies across the globe have recommended guidelines for the conduct of stability studies on HDPs, which require that stability data should be included in the product registration dossier. From the scientific viewpoint, numerous chemical constituents in an herbal drug are liable to varied chemical reactions under the influence of different conditions during its shelf life. These reactions can lead to altered chemical composition of HDP and consequently altered therapeutic profile. Many reports on stability testing of HDPs have appeared in literature since the last 10 years. A review of these reports reveals that there is wide variability in temperature (-80 to 100 °C), humidity (0-100%) and duration (a few hours-36 months) for stability assessment of HDPs. Of these, only 1% studies are conducted in compliance with the regulatory guidelines for stability testing. The present review is aimed at compiling all stability testing reports, understanding key challenges in stability testing of HDPs and suggesting possible solutions for these. The key challenges are classified as chemical complexity and biochemical composition variability in raw material, selection of marker(s) and influences of enzymes. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
75 FR 81112 - Montana Regulatory Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-27
... Supplemental Planting of Tree and Shrub Seedlings (III.A.); Mechanical Practices, Supplemental Mulching... Shrub Seedlings. Montana proposes to add the following language regarding Interseeding and Supplemental.... Interseeding may also be used to improve or alter the compositional balance between forage species and shrubs...
Eisenlohr-Moul, Tory A; Burris, Jessica L; Evans, Daniel R
2013-12-01
A growing body of evidence suggests that chronic pain patients suffer from chronic self-regulatory fatigue: difficulty controlling thoughts, emotions, and behavior. Pain acceptance, which involves responding to pain and related experiences without attempts to control or avoid them (pain willingness), and pursuit of valued life activities regardless of pain (activity engagement) has been associated with various favorable outcomes in chronic pain patients, including better psychological functioning. The study presented here tested the hypotheses that pain acceptance is associated with less psychological distress, higher psychological well-being, and reduced self-regulatory fatigue in temporomandibular disorder (TMD) patients, particularly for those with longer pain duration. Cross-sectional data were provided by 135 TMD patients during an initial evaluation at a university-based tertiary orofacial pain clinic. Results of hierarchical linear regression models indicated that, controlling for pain severity, pain willingness is associated with less psychological distress and lower self-regulatory fatigue, and activity engagement is associated with greater psychological well-being. Furthermore, the effect of pain willingness on psychological distress was moderated by pain duration such that pain willingness was more strongly associated with less psychological distress in patients with longer pain duration; this moderating effect was fully mediated by self-regulatory fatigue. These findings suggest pain willingness may buffer against self-regulatory fatigue in those with longer pain duration, and such conservation of self-regulatory resources may protect against psychological symptoms.
Integrated Module and Gene-Specific Regulatory Inference Implicates Upstream Signaling Networks
Roy, Sushmita; Lagree, Stephen; Hou, Zhonggang; Thomson, James A.; Stewart, Ron; Gasch, Audrey P.
2013-01-01
Regulatory networks that control gene expression are important in diverse biological contexts including stress response and development. Each gene's regulatory program is determined by module-level regulation (e.g. co-regulation via the same signaling system), as well as gene-specific determinants that can fine-tune expression. We present a novel approach, Modular regulatory network learning with per gene information (MERLIN), that infers regulatory programs for individual genes while probabilistically constraining these programs to reveal module-level organization of regulatory networks. Using edge-, regulator- and module-based comparisons of simulated networks of known ground truth, we find MERLIN reconstructs regulatory programs of individual genes as well or better than existing approaches of network reconstruction, while additionally identifying modular organization of the regulatory networks. We use MERLIN to dissect global transcriptional behavior in two biological contexts: yeast stress response and human embryonic stem cell differentiation. Regulatory modules inferred by MERLIN capture co-regulatory relationships between signaling proteins and downstream transcription factors thereby revealing the upstream signaling systems controlling transcriptional responses. The inferred networks are enriched for regulators with genetic or physical interactions, supporting the inference, and identify modules of functionally related genes bound by the same transcriptional regulators. Our method combines the strengths of per-gene and per-module methods to reveal new insights into transcriptional regulation in stress and development. PMID:24146602
Regulatory alerts for dietary supplements in Canada and the United States, 2005-13.
Abe, Andrew M; Hein, Darren J; Gregory, Philip J
2015-06-01
Dietary supplement regulatory alerts published by the Food and Drug Administration (FDA) and Health Canada were evaluated and characterized. FDA MedWatch and Health Canada websites were reviewed to identify regulatory alerts regarding dietary supplements from January 1, 2005, through December 31, 2013. Alerts were analyzed to identify product characteristics that may be predictive of product quality issues and potential patient harm. A total of 1560 dietary supplement-related regulatory alerts were identified. Of those, 1287 (83%) were identified through Health Canada, and 273 (18%) were identified through FDA MedWatch. The country of origin of dietary supplements associated with regulatory alerts was not provided in most regulatory alerts; however, when their origin was provided, the United States was the most common. Dietary supplements intended for sexual enhancement were the subject of 33% of all regulatory alerts identified. Products purchased online were the most likely to be associated with a regulatory alert. Dietary supplements intended for sexual enhancement, weight loss, and bodybuilding or athletic performance appeared to pose the greatest risk for patient harm due to product contamination with a pharmaceutical such as a phosphodiesterase-5 inhibitor or sibutramine. Analysis of Canadian and U.S. regulatory alerts concerning dietary supplements revealed that more than 80% of the composite alerts were issued by Health Canada. The most common intended uses of supplements for which alerts were issued were sexual enhancement, weight loss, and bodybuilding or athletic performance. The most common reason for alerts was the presence of a pharmaceutical contaminant. Copyright © 2015 by the American Society of Health-System Pharmacists, Inc. All rights reserved.
Method to transform algae, materials therefor, and products produced thereby
Dunahay, T.G.; Roessler, P.G.; Jarvis, E.E.
1997-08-26
Disclosed is a method to transform chlorophyll C-containing algae. The method includes introducing a recombinant molecule comprising a nucleic acid molecule encoding a dominant selectable marker operatively linked to an algal regulatory control sequence into a chlorophyll C-containing alga in such a manner that the marker is produced by the alga. In a preferred embodiment the algal regulatory control sequence is derived from a diatom and preferably Cyclotella cryptica. Also disclosed is a chimeric molecule having one or more regulatory control sequences derived from one or more chlorophyll C-containing algae operatively linked to a nucleic acid molecule encoding a selectable marker, an RNA molecule and/or a protein, wherein the nucleic acid molecule does not normally occur with one or more of the regulatory control sequences. Further, specifically disclosed are molecules pACCNPT10, pACCNPT4.8 and pACCNPT5.1. The methods and materials of the present invention provide the ability to accomplish stable genetic transformation of chlorophyll C-containing algae. 2 figs.
Method to transform algae, materials therefor, and products produced thereby
Dunahay, Terri Goodman; Roessler, Paul G.; Jarvis, Eric E.
1997-01-01
Disclosed is a method to transform chlorophyll C-containing algae which includes introducing a recombinant molecule comprising a nucleic acid molecule encoding a dominant selectable marker operatively linked to an algal regulatory control sequence into a chlorophyll C-containing alga in such a manner that the marker is produced by the alga. In a preferred embodiment the algal regulatory control sequence is derived from a diatom and preferably Cyclotella cryptica. Also disclosed is a chimeric molecule having one or more regulatory control sequences derived from one or more chlorophyll C-containing algae operatively linked to a nucleic acid molecule encoding a selectable marker, an RNA molecule and/or a protein, wherein the nucleic acid molecule does not normally occur with one or more of the regulatory control sequences. Further specifically disclosed are molecules pACCNPT10, pACCNPT4.8 and pACCNPT5.1. The methods and materials of the present invention provide the ability to accomplish stable genetic transformation of chlorophyll C-containing algae.
77 FR 31486 - Virginia Regulatory Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-29
... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 946 [VA-126-FOR; OSM-2008-0012] Virginia Regulatory Program AGENCY: Office of Surface Mining Reclamation... an amendment to the Virginia regulatory program under the Surface Mining Control and Reclamation Act...
Thelen, Martin; Reuter, Sabrina; Zentis, Peter; Shimabukuro-Vornhagen, Alexander; Theurich, Sebastian; Wennhold, Kerstin; Garcia-Marquez, Maria; Tharun, Lars; Quaas, Alexander; Schauss, Astrid; Isensee, Jörg; Hucho, Tim; Huebbers, Christian
2017-01-01
The composition of tumor-infiltrating lymphocytes (TIL) reflects biology and immunogenicity of cancer. Here, we characterize T-cell subsets and expression of immune checkpoint molecules in head and neck squamous cell carcinoma (HNSCC). We analyzed TIL subsets in primary tumors (n = 34), blood (peripheral blood mononuclear cells (PBMC); n = 34) and non-cancerous mucosa (n = 7) of 34 treatment-naïve HNSCC patients and PBMC of 15 healthy controls. Flow cytometry analyses revealed a highly variable T-cell infiltration mainly of an effector memory phenotype (CD45RA−/CCR7−). Naïve T cells (CD45RA+/CCR7+) were decreased in the microenvironment compared to PBMC of patients, while regulatory T cells (CD4+/CD25+/CD127low and CD4+/CD39+) were elevated. Furthermore, we performed digital image analyses of entire cross sections of HNSCC to define the ‘Immunoscore’ (CD3+ and CD8+ cell infiltration in tumor core and invasive margin) and quantified MHC class I expression on tumor cells by immunohistochemistry. Immune checkpoint molecules cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), programmed cell death 1 (PD-1) and programmed cell death 1 ligand 1 (PD-L1) were increased in TILs compared to peripheral T cells in flow-cytometric analysis. Human papillomavirus (HPV) positive tumors showed higher numbers of TILs, but a similar composition of T-cell subsets and checkpoint molecule expression compared to HPV negative tumors. Taken together, the tumor microenvironment of HNSCC is characterized by a strong infiltration of regulatory T cells and high checkpoint molecule expression on T-cell subsets. In view of increasingly used immunotherapies, a detailed knowledge of TILs and checkpoint molecule expression on TILs is of high translational relevance. PMID:28574843
Nasr, Moheb M; Krumme, Markus; Matsuda, Yoshihiro; Trout, Bernhardt L; Badman, Clive; Mascia, Salvatore; Cooney, Charles L; Jensen, Keith D; Florence, Alastair; Johnston, Craig; Konstantinov, Konstantin; Lee, Sau L
2017-11-01
Continuous manufacturing plays a key role in enabling the modernization of pharmaceutical manufacturing. The fate of this emerging technology will rely, in large part, on the regulatory implementation of this novel technology. This paper, which is based on the 2nd International Symposium on the Continuous Manufacturing of Pharmaceuticals, describes not only the advances that have taken place since the first International Symposium on Continuous Manufacturing of Pharmaceuticals in 2014, but the regulatory landscape that exists today. Key regulatory concepts including quality risk management, batch definition, control strategy, process monitoring and control, real-time release testing, data processing and management, and process validation/verification are outlined. Support from regulatory agencies, particularly in the form of the harmonization of regulatory expectations, will be crucial to the successful implementation of continuous manufacturing. Collaborative efforts, among academia, industry, and regulatory agencies, are the optimal solution for ensuring a solid future for this promising manufacturing technology. Copyright © 2017 American Pharmacists Association®. All rights reserved.
Hamilton, Kyra; Cornish, Stephen; Kirkpatrick, Aaron; Kroon, Jeroen; Schwarzer, Ralf
2018-05-01
With 60-90% of children worldwide reportedly experiencing dental caries, poor oral health in the younger years is a major public health issue. As parents are important to children's oral hygiene practices, we examined the key self-regulatory behaviours of parents for supervising their children's toothbrushing using the health action process approach. Participants (N = 281, 197 mothers) comprised Australian parents of 2- to 5-year-olds. A longitudinal design was used to investigate the sequential mediation chain for the effect of intention (Time 1) on parental supervision for their youngest child's toothbrushing (Time 3), via self-efficacy and planning (Time 2), and action control (Time 3). A latent-variable structural equation model, controlling for baseline behaviour and habit, revealed significant indirect effects from intention via self-efficacy and action control and intention via planning and action control, on parental supervision behaviour. The model was a good fit to the data, explaining 74% of the variance in parents' supervising behaviour for their children's toothbrushing. While national recommendations are provided to guide parents in promoting good oral hygiene practices with their children, current results show the importance of going beyond simple knowledge transmission to support parents' intentions to supervise their children's toothbrushing actually materialize. Current findings make a significant contribution to the cumulative empirical evidence regarding self-regulatory components in health behaviour change and can inform intervention development to increase parents' participation in childhood oral hygiene practices, thus helping to curb rising oral health conditions and diseases. Statement of contribution What is already known on this subject? Self-regulatory skills are important to translate intentions into behaviour. Self-efficacy, planning, and action control are key self-regulatory skills for behaviour change. What does this study add? Self-regulatory skills are needed for parents to supervise their children's toothbrushings. Self-efficacy, planning, and action control are important self-regulatory skills in this context. Future interventions should map these self-regulatory predictors onto behaviour change techniques. © 2018 The British Psychological Society.
Hourd, Paul; Medcalf, Nicholas; Segal, Joel; Williams, David J
2015-01-01
Computer-aided 3D printing approaches to the industrial production of customized 3D functional living constructs for restoration of tissue and organ function face significant regulatory challenges. Using the manufacture of a customized, 3D-bioprinted nasal implant as a well-informed but hypothetical exemplar, we examine how these products might be regulated. Existing EU and USA regulatory frameworks do not account for the differences between 3D printing and conventional manufacturing methods or the ability to create individual customized products using mechanized rather than craft approaches. Already subject to extensive regulatory control, issues related to control of the computer-aided design to manufacture process and the associated software system chain present additional scientific and regulatory challenges for manufacturers of these complex 3D-bioprinted advanced combination products.
From Genes to Networks: Characterizing Gene-Regulatory Interactions in Plants.
Kaufmann, Kerstin; Chen, Dijun
2017-01-01
Plants, like other eukaryotes, have evolved complex mechanisms to coordinate gene expression during development, environmental response, and cellular homeostasis. Transcription factors (TFs), accompanied by basic cofactors and posttranscriptional regulators, are key players in gene-regulatory networks (GRNs). The coordinated control of gene activity is achieved by the interplay of these factors and by physical interactions between TFs and DNA. Here, we will briefly outline recent technological progress made to elucidate GRNs in plants. We will focus on techniques that allow us to characterize physical interactions in GRNs in plants and to analyze their regulatory consequences. Targeted manipulation allows us to test the relevance of specific gene-regulatory interactions. The combination of genome-wide experimental approaches with mathematical modeling allows us to get deeper insights into key-regulatory interactions and combinatorial control of important processes in plants.
mTOR signaling for biological control and cancer.
Alayev, Anya; Holz, Marina K
2013-08-01
Mammalian target of rapamycin (mTOR) is a major intersection that connects signals from the extracellular milieu to corresponding changes in intracellular processes. When abnormally regulated, the mTOR signaling pathway is implicated in a wide spectrum of cancers, neurological diseases, and proliferative disorders. Therefore, pharmacological agents that restore the regulatory balance of the mTOR pathway could be beneficial for a great number of diseases. This review summarizes current understanding of mTOR signaling and some unanswered questions in the field. We describe the composition of the mTOR complexes, upstream signals that activate mTOR, and physiological processes that mTOR regulates. We also discuss the role of mTOR and its downstream effectors in cancer, obesity and diabetes, and autism. Copyright © 2013 Wiley Periodicals, Inc.
Probiotics in prevention and treatment of obesity: a critical view.
Kobyliak, Nazarii; Conte, Caterina; Cammarota, Giovanni; Haley, Andreana P; Styriak, Igor; Gaspar, Ludovit; Fusek, Jozef; Rodrigo, Luis; Kruzliak, Peter
2016-01-01
The worldwide prevalence of obesity more than doubled between 1980 and 2014. The obesity pandemic is tightly linked to an increase in energy availability, sedentariness and greater control of ambient temperature that have paralleled the socioeconomic development of the past decades. The most frequent cause which leads to the obesity development is a dysbalance between energy intake and energy expenditure. The gut microbiota as an environmental factor which influence whole-body metabolism by affecting energy balance but also inflammation and gut barrier function, integrate peripheral and central food intake regulatory signals and thereby increase body weight. Probiotics have physiologic functions that contribute to the health of gut microbiota, can affect food intake and appetite, body weight and composition and metabolic functions through gastrointestinal pathways and modulation of the gut bacterial community.
Functional cis-regulatory modules encoded by mouse-specific endogenous retrovirus
Sundaram, Vasavi; Choudhary, Mayank N. K.; Pehrsson, Erica; Xing, Xiaoyun; Fiore, Christopher; Pandey, Manishi; Maricque, Brett; Udawatta, Methma; Ngo, Duc; Chen, Yujie; Paguntalan, Asia; Ray, Tammy; Hughes, Ava; Cohen, Barak A.; Wang, Ting
2017-01-01
Cis-regulatory modules contain multiple transcription factor (TF)-binding sites and integrate the effects of each TF to control gene expression in specific cellular contexts. Transposable elements (TEs) are uniquely equipped to deposit their regulatory sequences across a genome, which could also contain cis-regulatory modules that coordinate the control of multiple genes with the same regulatory logic. We provide the first evidence of mouse-specific TEs that encode a module of TF-binding sites in mouse embryonic stem cells (ESCs). The majority (77%) of the individual TEs tested exhibited enhancer activity in mouse ESCs. By mutating individual TF-binding sites within the TE, we identified a module of TF-binding motifs that cooperatively enhanced gene expression. Interestingly, we also observed the same motif module in the in silico constructed ancestral TE that also acted cooperatively to enhance gene expression. Our results suggest that ancestral TE insertions might have brought in cis-regulatory modules into the mouse genome. PMID:28348391
Hyytiäinen, H; Montesano, M; Palva, E T
2001-08-01
The production of the main virulence determinants, the extracellular plant cell wall-degrading enzymes, and hence virulence of Erwinia carotovora subsp. carotovora is controlled by a complex regulatory network. One of the global regulators, the response regulator ExpA, a GacA homolog, is required for transcriptional activation of the extracellular enzyme genes of this soft-rot pathogen. To elucidate the mechanism of ExpA control as well as interactions with other regulatory systems, we isolated second-site transposon mutants that would suppress the enzyme-negative phenotype of an expA (gacA) mutant. Inactivation of kdgR resulted in partial restoration of extracellular enzyme production and virulence to the expA mutant, suggesting an interaction between the two regulatory pathways. This interaction was mediated by the RsmA-rsmB system. Northern analysis was used to show that the regulatory rsmB RNA was under positive control of ExpA. Conversely, the expression of rsmA encoding a global repressor was under negative control of ExpA and positive control of KdgR. This study indicates a central role for the RsmA-rsmB regulatory system during pathogenesis, integrating signals from the ExpA (GacA) and KdgR global regulators of extracellular enzyme production in E. carotovora subsp. carotovora.
Solberg Nes, Lise; Ehlers, Shawna L; Patten, Christi A; Gastineau, Dennis A
2013-03-01
Hematopoietic stem cell transplantation (HSCT) is an intensive cancer therapy entailing numerous physical, emotional, cognitive, and practical challenges. Patients' ability to adjust and cope with such challenges may depend on their ability to exert control over cognitive, emotional, and behavioral processes, that is, ability to self-regulate. Self-regulatory capacity is a limited resource that can be depleted or fatigued (i.e., "self-regulatory fatigue"), particularly in the context of stressful life events such as cancer diagnosis and treatment. This is one of the first studies to examine self-regulatory fatigue in a cancer population. The current study aimed to (1) extract items for a specific scale of self-regulatory capacity and (2) examine the impact of such capacity on adaptation in patients with hematologic malignancies preparing for HSCT. Factor analysis of four existing scales gauging psychological adjustment and well-being in 314 patients preparing for HSCT (63% male and 89% Caucasian) identified 23 items (α = 0.85) related to self-regulatory control or fatigue. This measure was then examined using existing clinical data obtained from 178 patients (57% male and 91% Caucasian) undergoing treatment for hematologic malignancies in relationship to quality of life, coping, and self-reported adherence to physicians' recommendations. Controlling for pain severity, physical fatigue, and depression, self-regulatory fatigue scores were incrementally associated with decreased quality of life, use of avoidance coping strategies, and decreased adherence to physicians' recommendations. These results emphasize the potential role of self-regulatory capacity in coping with and adjusting to hematologic cancers and future research is warranted.
Reeve, Belinda
2011-09-01
This article examines whether responsive regulation has potential to improve the regulatory framework which controls free-to-air television advertising to children, so that the regulatory scheme can be used more effectively as a tool for obesity prevention. It presents two apparently conflicting arguments, the first being that responsive regulation, particularly monitoring and enforcement measures, can be used to refine the regulation of children's food advertising. The second argument is that there are limits to the improvements that responsive regulation can achieve, since it is trying to achieve the wrong goal, namely placing controls on misleading or deceptive advertising techniques rather than diminishing the sheer volume of advertisements to which children are exposed. These two positions reflect a conflict between public health experts and governments regarding the role of industry in chronic disease prevention, as well as a broader debate about how best to regulate industry.
Jensen, Lea M.; Kliebenstein, Daniel J.; Burow, Meike
2015-01-01
Quantitative trait loci (QTL) mapping studies enable identification of loci that are part of regulatory networks controlling various phenotypes. Detailed investigations of genes within these loci are required to ultimately understand the function of individual genes and how they interact with other players in the network. In this study, we use transgenic plants in combination with natural variation to investigate the regulatory role of the AOP3 gene found in GS-AOP locus previously suggested to contribute to the regulation of glucosinolate defense compounds. Phenotypic analysis and QTL mapping in F2 populations with different AOP3 transgenes support that the enzymatic function and the AOP3 RNA both play a significant role in controlling glucosinolate accumulation. Furthermore, we find different loci interacting with either the enzymatic activity or the RNA of AOP3 and thereby extend the regulatory network controlling glucosinolate accumulation. PMID:26442075
Myerson, Allan S; Krumme, Markus; Nasr, Moheb; Thomas, Hayden; Braatz, Richard D
2015-03-01
This white paper provides a perspective of the challenges, research needs, and future directions for control systems engineering in continuous pharmaceutical processing. The main motivation for writing this paper is to facilitate the development and deployment of control systems technologies so as to ensure quality of the drug product. Although the main focus is on small-molecule pharmaceutical products, most of the same statements apply to biological drug products. An introduction to continuous manufacturing and control systems is followed by a discussion of the current status and technical needs in process monitoring and control, systems integration, and risk analysis. Some key points are that: (1) the desired objective in continuous manufacturing should be the satisfaction of all critical quality attributes (CQAs), not for all variables to operate at steady-state values; (2) the design of start-up and shutdown procedures can significantly affect the economic operation of a continuous manufacturing process; (3) the traceability of material as it moves through the manufacturing facility is an important consideration that can at least in part be addressed using residence time distributions; and (4) the control systems technologies must assure quality in the presence of disturbances, dynamics, uncertainties, nonlinearities, and constraints. Direct measurement, first-principles and empirical model-based predictions, and design space approaches are described for ensuring that CQA specifications are met. Ways are discussed for universities, regulatory bodies, and industry to facilitate working around or through barriers to the development of control systems engineering technologies for continuous drug manufacturing. Industry and regulatory bodies should work with federal agencies to create federal funding mechanisms to attract faculty to this area. Universities should hire faculty interested in developing first-principles models and control systems technologies for drug manufacturing that are easily transportable to industry. Industry can facilitate the move to continuous manufacturing by working with universities on the conception of new continuous pharmaceutical manufacturing process unit operations that have the potential to make major improvements in product quality, controllability, or reduced capital and/or operating costs. Regulatory bodies should ensure that: (1) regulations and regulatory practices promote, and do not derail, the development and implementation of continuous manufacturing and control systems engineering approaches; (2) the individuals who approve specific regulatory filings are sufficiently trained to make good decisions regarding control systems approaches; (3) provide regulatory clarity and eliminate/reduce regulatory risks; (4) financially support the development of high-quality training materials for use of undergraduate students, graduate students, industrial employees, and regulatory staff; (5) enhance the training of their own technical staff by financially supporting joint research projects with universities in the development of continuous pharmaceutical manufacturing processes and the associated control systems engineering theory, numerical algorithms, and software; and (6) strongly encourage the federal agencies that support research to fund these research areas. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Myerson, Allan S; Krumme, Markus; Nasr, Moheb; Thomas, Hayden; Braatz, Richard D
2015-03-01
This white paper provides a perspective of the challenges, research needs, and future directions for control systems engineering in continuous pharmaceutical processing. The main motivation for writing this paper is to facilitate the development and deployment of control systems technologies so as to ensure quality of the drug product. Although the main focus is on small-molecule pharmaceutical products, most of the same statements apply to biological drug products. An introduction to continuous manufacturing and control systems is followed by a discussion of the current status and technical needs in process monitoring and control, systems integration, and risk analysis. Some key points are that: (1) the desired objective in continuous manufacturing should be the satisfaction of all critical quality attributes (CQAs), not for all variables to operate at steady-state values; (2) the design of start-up and shutdown procedures can significantly affect the economic operation of a continuous manufacturing process; (3) the traceability of material as it moves through the manufacturing facility is an important consideration that can at least in part be addressed using residence time distributions; and (4) the control systems technologies must assure quality in the presence of disturbances, dynamics, uncertainties, nonlinearities, and constraints. Direct measurement, first-principles and empirical model-based predictions, and design space approaches are described for ensuring that CQA specifications are met. Ways are discussed for universities, regulatory bodies, and industry to facilitate working around or through barriers to the development of control systems engineering technologies for continuous drug manufacturing. Industry and regulatory bodies should work with federal agencies to create federal funding mechanisms to attract faculty to this area. Universities should hire faculty interested in developing first-principles models and control systems technologies for drug manufacturing that are easily transportable to industry. Industry can facilitate the move to continuous manufacturing by working with universities on the conception of new continuous pharmaceutical manufacturing process unit operations that have the potential to make major improvements in product quality, controllability, or reduced capital and/or operating costs. Regulatory bodies should ensure that: (1) regulations and regulatory practices promote, and do not derail, the development and implementation of continuous manufacturing and control systems engineering approaches; (2) the individuals who approve specific regulatory filings are sufficiently trained to make good decisions regarding control systems approaches; (3) provide regulatory clarity and eliminate/reduce regulatory risks; (4) financially support the development of high-quality training materials for use of undergraduate students, graduate students, industrial employees, and regulatory staff; (5) enhance the training of their own technical staff by financially supporting joint research projects with universities in the development of continuous pharmaceutical manufacturing processes and the associated control systems engineering theory, numerical algorithms, and software; and (6) strongly encourage the federal agencies that support research to fund these research areas. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Bartholomaeus, Andrew; Parrott, Wayne; Bondy, Genevieve
2013-01-01
There is disagreement internationally across major regulatory jurisdictions on the relevance and utility of whole food (WF) toxicity studies on GM crops, with no harmonization of data or regulatory requirements. The scientific value, and therefore animal ethics, of WF studies on GM crops is a matter addressable from the wealth of data available on commercialized GM crops and WF studies on irradiated foods. We reviewed available GM crop WF studies and considered the extent to which they add to the information from agronomic and compositional analyses. No WF toxicity study was identified that convincingly demonstrated toxicological concern or that called into question the adequacy, sufficiency, and reliability of safety assessments based on crop molecular characterization, transgene source, agronomic characteristics, and/or compositional analysis of the GM crop and its near-isogenic line. Predictions of safety based on crop genetics and compositional analyses have provided complete concordance with the results of well-conducted animal testing. However, this concordance is primarily due to the improbability of de novo generation of toxic substances in crop plants using genetic engineering practices and due to the weakness of WF toxicity studies in general. Thus, based on the comparative robustness and reliability of compositional and agronomic considerations and on the absence of any scientific basis for a significant potential for de novo generation of toxicologically significant compositional alterations as a sole result of transgene insertion, the conclusion of this review is that WF animal toxicity studies are unnecessary and scientifically unjustifiable. PMID:24164514
Regulatory modes and time management: how locomotors and assessors plan and perceive time.
Amato, Clara; Pierro, Antonio; Chirumbolo, Antonio; Pica, Gennaro
2014-06-01
This research investigated the relationship between regulatory mode orientations (locomotion and assessment), time management behaviours and the perceived control of time. "Locomotion" refers to the aspect of self-regulation involving the movement from state to state, whereas "assessment" is the comparative aspect of self-regulation that refers to the critical evaluation of alternative goals and the means for achieving them. The Italian versions of the Time Management Behavior Scale and the Perceived Control of Time Scale, as well as the Locomotion and Assessment Regulatory Modes Scales were administered to 339 Italian participants (249 students and 90 employees). The results supported the notion that locomotors and assessors differ in the ways they perceive the control of time. Locomotion was found to be positively related to perceived control of time. In contrast, assessment was negatively related to perceived control of time. Furthermore, the two time management dimensions of setting goals and priorities and preference for organisation were shown to mediate the relationship between locomotion and perceived control of time, whereas assessment proved to be unrelated to all time management behaviours. These findings highlight the importance of regulatory modes for human behaviour regarding time management and perceived control of time. © 2014 International Union of Psychological Science.
Bacterial RNA Biology on a Genome Scale.
Hör, Jens; Gorski, Stanislaw A; Vogel, Jörg
2018-06-07
Bacteria are an exceedingly diverse group of organisms whose molecular exploration is experiencing a renaissance. While the classical view of bacterial gene expression was relatively simple, the emerging view is more complex, encompassing extensive post-transcriptional control involving riboswitches, RNA thermometers, and regulatory small RNAs (sRNAs) associated with the RNA-binding proteins CsrA, Hfq, and ProQ, as well as CRISPR/Cas systems that are programmed by RNAs. Moreover, increasing interest in members of the human microbiota and environmental microbial communities has highlighted the importance of understudied bacterial species with largely unknown transcriptome structures and RNA-based control mechanisms. Collectively, this creates a need for global RNA biology approaches that can rapidly and comprehensively analyze the RNA composition of a bacterium of interest. We review such approaches with a focus on RNA-seq as a versatile tool to investigate the different layers of gene expression in which RNA is made, processed, regulated, modified, translated, and turned over. Copyright © 2017 Elsevier Inc. All rights reserved.
Sustained attention in infancy as a longitudinal predictor of self-regulatory functions.
Johansson, Maria; Marciszko, Carin; Gredebäck, Gustaf; Nyström, Pär; Bohlin, Gunilla
2015-11-01
Previous literature suggests that attention processes such as sustained attention would constitute a developmental foundation for the self-regulatory functions executive functioning and effortful control (e.g., Garon, Bryson, & Smith, 2008; Rothbart, Derryberry, & Posner, 1994). Our main aim was to test this hypothesis by studying whether sustained attention at age 1 year can predict individual differences in self-regulatory functions at age 2 years. Longitudinal data from 66 infants and their parents were included in the study. Sustained attention was assessed during free play at age 1 year; executive functioning, measured using an eye-tracking version of the A-not-B task, and effortful control, measured using parental ratings, were assessed at both age 1 and age 2 years. The results did support a longitudinal prediction of individual differences in 2-year-olds' self-regulatory functions as a function of sustained attention at age 1 year. We also found significant improvement in both executive functioning and effortful control over time, and the two self-regulatory constructs were related in toddlerhood but not in infancy. The study helps increase our understanding of the early development of self-regulatory functions necessary for identifying developmental risks and, in the future, for developing new interventions. Copyright © 2015 Elsevier Inc. All rights reserved.
Allison, Gretchen; Cain, Yanxi Tan; Cooney, Charles; Garcia, Tom; Bizjak, Tara Gooen; Holte, Oyvind; Jagota, Nirdosh; Komas, Bekki; Korakianiti, Evdokia; Kourti, Dora; Madurawe, Rapti; Morefield, Elaine; Montgomery, Frank; Nasr, Moheb; Randolph, William; Robert, Jean-Louis; Rudd, Dave; Zezza, Diane
2015-03-01
This paper assesses the current regulatory environment, relevant regulations and guidelines, and their impact on continuous manufacturing. It summarizes current regulatory experience and learning from both review and inspection perspectives. It outlines key regulatory aspects, including continuous manufacturing process description and control strategy in regulatory files, process validation, and key Good Manufacturing Practice (GMP) requirements. In addition, the paper identifies regulatory gaps and challenges and proposes a way forward to facilitate implementation. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Regulatory BC1 RNA in Cognitive Control
ERIC Educational Resources Information Center
Iacoangeli, Anna; Dosunmu, Aderemi; Eom, Taesun; Stefanov, Dimitre G.; Tiedge, Henri
2017-01-01
Dendritic regulatory BC1 RNA is a non-protein-coding (npc) RNA that operates in the translational control of gene expression. The absence of BC1 RNA in BC1 knockout (KO) animals causes translational dysregulation that entails neuronal phenotypic alterations including prolonged epileptiform discharges, audiogenic seizure activity in vivo, and…
75 FR 9626 - Notice of Issuance of Regulatory Guide
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-03
... maintain variables and systems that can affect the fission process, the integrity of the reactor core, the... on some other defined basis. GDC 24 requires that interconnection of the protection and control..., Regulatory Guide Development Branch, Division of Engineering, Office of Nuclear Regulatory Research. [FR Doc...
77 FR 8185 - Ohio Regulatory Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-14
... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 935 [SATS No. OH-252-FOR; Docket ID OSM 2011-0003] Ohio Regulatory Program AGENCY: Office of Surface Mining... amendment to the Ohio regulatory program (the ``Ohio program'') under the Surface Mining Control and...
5 CFR 1320.15 - Independent regulatory agency override authority.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Independent regulatory agency override authority. 1320.15 Section 1320.15 Administrative Personnel OFFICE OF MANAGEMENT AND BUDGET OMB DIRECTIVES CONTROLLING PAPERWORK BURDENS ON THE PUBLIC § 1320.15 Independent regulatory agency override authority. (a) An...
An assessment model for atmospheric composition
NASA Technical Reports Server (NTRS)
Prather, Michael J. (Editor)
1988-01-01
Predicting future perturbations to global air quality and climate requires, as a prerequisite, prognostic models for the composition of the Earth's atmosphere. Such assessment models are needed to evaluate the impact on our environment of different social choices that affect emissions of the photochemically and radiatively important trace gases. Our presentation here of a prototype assessment model is intended to encourage public scientific discussions of the necessary components of the model and their interactions, with the recognition that models similar to this will likely be used by the Environmental Protection Agency and other regulatory agencies in order to assess the effect of changes in atmospheric composition on climate over the next century.
Smith, James; Ross, Kirstin; Whiley, Harriet
2016-12-08
Foodborne illness is a global public health burden. Over the past decade in Australia, despite advances in microbiological detection and control methods, there has been an increase in the incidence of foodborne illness. Therefore improvements in the regulation and implementation of food safety policy are crucial for protecting public health. In 2000, Australia established a national food safety regulatory system, which included the adoption of a mandatory set of food safety standards. These were in line with international standards and moved away from a "command and control" regulatory approach to an "outcomes-based" approach using risk assessment. The aim was to achieve national consistency and reduce foodborne illness without unnecessarily burdening businesses. Evidence demonstrates that a risk based approach provides better protection for consumers; however, sixteen years after the adoption of the new approach, the rates of food borne illness are still increasing. Currently, food businesses are responsible for producing safe food and regulatory bodies are responsible for ensuring legislative controls are met. Therefore there is co-regulatory responsibility and liability and implementation strategies need to reflect this. This analysis explores the challenges facing food regulation in Australia and explores the rationale and evidence in support of this new regulatory approach.
A map of terminal regulators of neuronal identity in Caenorhabditis elegans
2016-01-01
Our present day understanding of nervous system development is an amalgam of insights gained from studying different aspects and stages of nervous system development in a variety of invertebrate and vertebrate model systems, with each model system making its own distinctive set of contributions. One aspect of nervous system development that has been among the most extensively studied in the nematode Caenorhabditis elegans is the nature of the gene regulatory programs that specify hardwired, terminal cellular identities. I first summarize a number of maps (anatomical, functional, and molecular) that describe the terminal identity of individual neurons in the C. elegans nervous system. I then provide a comprehensive summary of regulatory factors that specify terminal identities in the nervous system, synthesizing these past studies into a regulatory map of cellular identities in the C. elegans nervous system. This map shows that for three quarters of all neurons in the C. elegans nervous system, regulatory factors that control terminal identity features are known. In‐depth studies of specific neuron types have revealed that regulatory factors rarely act alone, but rather act cooperatively in neuron‐type specific combinations. In most cases examined so far, distinct, biochemically unlinked terminal identity features are coregulated via cooperatively acting transcription factors, termed terminal selectors, but there are also cases in which distinct identity features are controlled in a piecemeal fashion by independent regulatory inputs. The regulatory map also illustrates that identity‐defining transcription factors are reemployed in distinct combinations in different neuron types. However, the same transcription factor can drive terminal differentiation in neurons that are unrelated by lineage, unrelated by function, connectivity and neurotransmitter deployment. Lastly, the regulatory map illustrates the preponderance of homeodomain transcription factors in the control of terminal identities, suggesting that these factors have ancient, phylogenetically conserved roles in controlling terminal neuronal differentiation in the nervous system. WIREs Dev Biol 2016, 5:474–498. doi: 10.1002/wdev.233 For further resources related to this article, please visit the WIREs website. PMID:27136279
Illicit drugs policy through the lens of regulation.
Ritter, Alison
2010-07-01
The application of regulatory theory to the problem of illicit drugs has generally been thought about only in terms of 'command and control'. The international treaties governing global illicit drug control and the use of law enforcement to dissuade and punish offenders have been primary strategies. In this paper I explore the application of other aspects of regulatory theory to illicit drugs-primarily self-regulation and market regulation. There has been an overreliance on strategies from the top of the regulatory pyramid. Two other regulatory strategies--self-regulation and market regulation--can be applied to illicit drugs. Self-regulation, driven by the proactive support of consumer groups may reduce drug-related harms. Market strategies such as pill-testing can change consumer preferences and encourage alternate seller behaviour. Regulatory theory is also concerned with partnerships between the state and third parties: strategies in these areas include partnerships between police and pharmacies regarding sale of potential precursor chemicals. Regulatory theory and practice is a rich and well-developed field in the social sciences. I argue that governments should consider the full array of regulatory strategies. Using regulatory theory provides a rationale and justification to strategies that are currently at the whim of politics, such as funding for user groups. The greater application of regulatory approaches may produce more flexible and structured illicit drug policies. Copyright (c) 2009 Elsevier B.V. All rights reserved.
Sheu, Yi-Jun; Kinney, Justin B.; Stillman, Bruce
2016-01-01
Eukaryotic chromosomes initiate DNA synthesis from multiple replication origins in a temporally specific manner during S phase. The replicative helicase Mcm2-7 functions in both initiation and fork progression and thus is an important target of regulation. Mcm4, a helicase subunit, possesses an unstructured regulatory domain that mediates control from multiple kinase signaling pathways, including the Dbf4-dependent Cdc7 kinase (DDK). Following replication stress in S phase, Dbf4 and Sld3, an initiation factor and essential target of Cyclin-Dependent Kinase (CDK), are targets of the checkpoint kinase Rad53 for inhibition of initiation from origins that have yet to be activated, so-called late origins. Here, whole-genome DNA replication profile analysis is used to access under various conditions the effect of mutations that alter the Mcm4 regulatory domain and the Rad53 targets, Sld3 and Dbf4. Late origin firing occurs under genotoxic stress when the controls on Mcm4, Sld3, and Dbf4 are simultaneously eliminated. The regulatory domain of Mcm4 plays an important role in the timing of late origin firing, both in an unperturbed S phase and in dNTP limitation. Furthermore, checkpoint control of Sld3 impacts fork progression under replication stress. This effect is parallel to the role of the Mcm4 regulatory domain in monitoring fork progression. Hypomorph mutations in sld3 are suppressed by a mcm4 regulatory domain mutation. Thus, in response to cellular conditions, the functions executed by Sld3, Dbf4, and the regulatory domain of Mcm4 intersect to control origin firing and replication fork progression, thereby ensuring genome stability. PMID:26733669
Yan, Koon-Kiu; Fang, Gang; Bhardwaj, Nitin; Alexander, Roger P.; Gerstein, Mark
2010-01-01
The genome has often been called the operating system (OS) for a living organism. A computer OS is described by a regulatory control network termed the call graph, which is analogous to the transcriptional regulatory network in a cell. To apply our firsthand knowledge of the architecture of software systems to understand cellular design principles, we present a comparison between the transcriptional regulatory network of a well-studied bacterium (Escherichia coli) and the call graph of a canonical OS (Linux) in terms of topology and evolution. We show that both networks have a fundamentally hierarchical layout, but there is a key difference: The transcriptional regulatory network possesses a few global regulators at the top and many targets at the bottom; conversely, the call graph has many regulators controlling a small set of generic functions. This top-heavy organization leads to highly overlapping functional modules in the call graph, in contrast to the relatively independent modules in the regulatory network. We further develop a way to measure evolutionary rates comparably between the two networks and explain this difference in terms of network evolution. The process of biological evolution via random mutation and subsequent selection tightly constrains the evolution of regulatory network hubs. The call graph, however, exhibits rapid evolution of its highly connected generic components, made possible by designers’ continual fine-tuning. These findings stem from the design principles of the two systems: robustness for biological systems and cost effectiveness (reuse) for software systems. PMID:20439753
Yan, Koon-Kiu; Fang, Gang; Bhardwaj, Nitin; Alexander, Roger P; Gerstein, Mark
2010-05-18
The genome has often been called the operating system (OS) for a living organism. A computer OS is described by a regulatory control network termed the call graph, which is analogous to the transcriptional regulatory network in a cell. To apply our firsthand knowledge of the architecture of software systems to understand cellular design principles, we present a comparison between the transcriptional regulatory network of a well-studied bacterium (Escherichia coli) and the call graph of a canonical OS (Linux) in terms of topology and evolution. We show that both networks have a fundamentally hierarchical layout, but there is a key difference: The transcriptional regulatory network possesses a few global regulators at the top and many targets at the bottom; conversely, the call graph has many regulators controlling a small set of generic functions. This top-heavy organization leads to highly overlapping functional modules in the call graph, in contrast to the relatively independent modules in the regulatory network. We further develop a way to measure evolutionary rates comparably between the two networks and explain this difference in terms of network evolution. The process of biological evolution via random mutation and subsequent selection tightly constrains the evolution of regulatory network hubs. The call graph, however, exhibits rapid evolution of its highly connected generic components, made possible by designers' continual fine-tuning. These findings stem from the design principles of the two systems: robustness for biological systems and cost effectiveness (reuse) for software systems.
76 FR 60713 - Establishment of Class E Airspace; Bumpass, VA
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-30
... controlled airspace required to support the new RNA V GPS standard instrument approach procedures developed... regulatory action'' under Executive Order 12866; (2) is not a ``significant rule'' under DOT Regulatory... Regulatory Evaluation as the anticipated impact is so minimal. Since this is a routine matter that will only...
78 FR 63911 - Montana Regulatory Program
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-25
... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 926...; S2D2SSS08011000 SX066A00033 F13XS501520] Montana Regulatory Program AGENCY: Office of Surface Mining Reclamation... regulatory program (hereinafter, the ``Montana program'') under the Surface Mining Control and Reclamation...
77 FR 4461 - New Mexico Regulatory Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-30
... [SATS No. NM-048-FOR; Docket ID OSM-2010-0014] New Mexico Regulatory Program AGENCY: Office of Surface... approving an amendment to the New Mexico regulatory program (the ``New Mexico program'') under the Surface Mining Control and Reclamation Act of 1977 (``SMCRA'' or ``the Act''). New Mexico proposed non...
Regulatory Fit Improves Fitness for People With Low Exercise Experience.
Kay, Sophie A; Grimm, Lisa R
2017-04-01
Considering only 20.8% of American adults meet current physical activity recommendations, it is important to examine the psychological processes that affect exercise motivation and behavior. Drawing from regulatory fit theory, this study examined how manipulating regulatory focus and reward structures would affect exercise performance, with a specific interest in investigating whether exercise experience would moderate regulatory fit effects. We predicted that regulatory fit effects would appear only for participants with low exercise experience. One hundred and sixty-five young adults completed strength training exercise tasks (i.e., sit-ups, squats, plank, and wall-sit) in regulatory match or mismatch conditions. Consistent with predictions, only participants low in experience in regulatory match conditions exercised more compared with those in regulatory mismatch conditions. Although this is the first study manipulating regulatory fit in a controlled setting to examine exercise behavior, findings suggest that generating regulatory fit could positively influence those low in exercise experience.
Gene Regulation, Two Component Regulatory Systems, and Adaptive Responses in Treponema Denticola.
Marconi, Richard T
2017-10-13
The oral microbiome consists of a remarkably diverse group of 500-700 bacterial species. The microbial etiology of periodontal disease is similarly complex. Of the ~400 bacterial species identified in subgingival plaque, at least 50 belong to the genus Treponema. As periodontal disease develops and progresses, T. denticola transitions from a low to high abundance species in the subgingival crevice. Changes in the overall composition of the bacterial population trigger significant changes in the local physical, immunological and physiochemical conditions. For T. denticola to thrive in periodontal pockets, it must be nimble and adapt to rapidly changing environmental conditions. The purpose of this chapter is to review the current understanding of the molecular basis of these essential adaptive responses, with a focus on the role of two component regulatory systems with global regulatory potential.
Genome-wide network of regulatory genes for construction of a chordate embryo.
Shoguchi, Eiichi; Hamaguchi, Makoto; Satoh, Nori
2008-04-15
Animal development is controlled by gene regulation networks that are composed of sequence-specific transcription factors (TF) and cell signaling molecules (ST). Although housekeeping genes have been reported to show clustering in the animal genomes, whether the genes comprising a given regulatory network are physically clustered on a chromosome is uncertain. We examined this question in the present study. Ascidians are the closest living relatives of vertebrates, and their tadpole-type larva represents the basic body plan of chordates. The Ciona intestinalis genome contains 390 core TF genes and 119 major ST genes. Previous gene disruption assays led to the formulation of a basic chordate embryonic blueprint, based on over 3000 genetic interactions among 79 zygotic regulatory genes. Here, we mapped the regulatory genes, including all 79 regulatory genes, on the 14 pairs of Ciona chromosomes by fluorescent in situ hybridization (FISH). Chromosomal localization of upstream and downstream regulatory genes demonstrates that the components of coherent developmental gene networks are evenly distributed over the 14 chromosomes. Thus, this study provides the first comprehensive evidence that the physical clustering of regulatory genes, or their target genes, is not relevant for the genome-wide control of gene expression during development.
Loots, Gabriela G
2008-01-01
Despite remarkable recent advances in genomics that have enabled us to identify most of the genes in the human genome, comparable efforts to define transcriptional cis-regulatory elements that control gene expression are lagging behind. The difficulty of this task stems from two equally important problems: our knowledge of how regulatory elements are encoded in genomes remains elementary, and there is a vast genomic search space for regulatory elements, since most of mammalian genomes are noncoding. Comparative genomic approaches are having a remarkable impact on the study of transcriptional regulation in eukaryotes and currently represent the most efficient and reliable methods of predicting noncoding sequences likely to control the patterns of gene expression. By subjecting eukaryotic genomic sequences to computational comparisons and subsequent experimentation, we are inching our way toward a more comprehensive catalog of common regulatory motifs that lie behind fundamental biological processes. We are still far from comprehending how the transcriptional regulatory code is encrypted in the human genome and providing an initial global view of regulatory gene networks, but collectively, the continued development of comparative and experimental approaches will rapidly expand our knowledge of the transcriptional regulome.
NASA Astrophysics Data System (ADS)
Bari, Vlasta; Marchi, Andrea; De Maria, Beatrice; Rossato, Gianluca; Nollo, Giandomenico; Faes, Luca; Porta, Alberto
2016-05-01
Cardiovascular and cerebrovascular regulatory systems are vital control mechanisms responsible for guaranteeing homeostasis and are affected by respiration. This work proposes the investigation of cardiovascular and cerebrovascular control systems and the nonlinear influences of respiration on both regulations through joint symbolic analysis (JSA), conditioned or unconditioned on respiration. Interactions between cardiovascular and cerebrovascular regulatory systems were evaluated as well by performing correlation analysis between JSA indexes describing the two control systems. Heart period, systolic and mean arterial pressure, mean cerebral blood flow velocity and respiration were acquired on a beat-to-beat basis in 13 subjects experiencing recurrent syncope episodes (SYNC) and 13 healthy individuals (non-SYNC) in supine resting condition and during head-up tilt test at 60° (TILT). Results showed that JSA distinguished conditions and groups, whereas time domain parameters detected only the effect of TILT. Respiration affected cardiovascular and cerebrovascular regulatory systems in a nonlinear way and was able to modulate the interactions between the two control systems with different outcome in non-SYNC and SYNC groups, thus suggesting that the analysis of the impact of respiration on cardiovascular and cerebrovascular regulatory systems might improve our understanding of the mechanisms underpinning the development of postural-related syncope.
The effects of age, glucose ingestion and gluco-regulatory control on episodic memory.
Riby, Leigh Martin; Meikle, Andrew; Glover, Cheryl
2004-09-01
Previous research has been inconclusive regarding the impact of glucose ingestion and gluco-regulatory control on cognitive performance in healthy older adults. The aim of this research was to determine whether glucose specifically enhanced episodic memory in an older population. In addition, the link between individual differences in glucose regulation and the magnitude of the enhancement effect was examined. A within subjects, counterbalanced, crossover design was used with 20 participants (60-80 year olds), each serving as his/her control. Episodic memory was tested by presenting unrelated paired associates followed by immediate and delayed cued recall, and delayed recognition, under single and dual task conditions. In addition, a battery of cognitive tests was administered, including tests of semantic memory, working memory and speed of processing. Glucose ingestion was found to largely facilitate performance of episodic memory. Furthermore, subsidiary analyses found that gluco-regulatory efficiency predicted episodic memory performance in both control and glucose conditions. A boost in performance after glucose ingestion was particularly seen in the episodic memory domain. Notably, strong evidence was provided for the utility of gluco-regulatory control measures as indicators of cognitive decline in the elderly.
49 CFR Appendix A to Part 385 - Explanation of Safety Audit Evaluation Criteria
Code of Federal Regulations, 2010 CFR
2010-10-01
... safety management controls in place, is included in Appendix B, VII. List of Acute and Critical... having similar characteristics are combined together into six regulatory areas called “factors.” The regulatory factors, evaluated on the basis of the adequacy of the carrier's safety management controls, are...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-14
... addresses BX Rule 2240 entitled ``Disclosure of Control Relationship with Issuer'' and 2250 entitled... reference to NASD 2240 [sic] entitled ``Disclosure of Control Relationship with Issuer.'' The Commission... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-61298; File No. SR-BX-2009-087] Self-Regulatory...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-06
... Business Operations) To Adopt Form CMA May 31, 2012. I. Introduction On February 28, 2012, Financial... (Application for Approval of Change in Ownership, Control, or Business Operations) and to adopt Form CMA... a change in ownership, control, or business operations consistent with Rule 1017. The proposed rule...
NASA Astrophysics Data System (ADS)
Spicer, Patrick
Craniofacial defects resulting from trauma and resection present many challenges to reconstruction due to the complex structure, combinations of tissues, and environment, with exposure to the oral, skin and nasal mucosal pathogens. Tissue engineering seeks to regenerate the tissues lost in these defects; however, the composite nature and proximity to colonizing bacteria remain difficult to overcome. Additionally, many tissue engineering approaches have further hurdles to overcome in the regulatory process to clinical translation. As such these studies investigated a two stage strategy employing an antibiotic-releasing porous polymethylmethacrylate space maintainer fabricated with materials currently part of products approved or cleared by the United States Food and Drug Administration, expediting the translation to the clinic. This porous space maintainer holds the bone defect open allowing soft tissue to heal around the defect. The space maintainer can then be removed and one regenerated in the defect. These studies investigated the individual components of this strategy. The porous space maintainer showed similar soft tissue healing and response to non-porous space maintainers in a rabbit composite tissue defect. The antibiotic-releasing space maintainers showed release of antibiotics from 1-5 weeks, which could be controlled by loading and fabrication parameters. In vivo, space maintainers releasing a high dose of antibiotics for an extended period of time increased soft tissue healing over burst release space maintainers in an infected composite tissue defect model in a rabbit mandible. Finally, stabilization of bone defects and regeneration could be improved through scaffold structures and delivery of a bone forming growth factor. These studies illustrate the possibility of the two stage strategy for repair of composite tissue defects of the craniofacial complex.
Regulatory gene networks and the properties of the developmental process
NASA Technical Reports Server (NTRS)
Davidson, Eric H.; McClay, David R.; Hood, Leroy
2003-01-01
Genomic instructions for development are encoded in arrays of regulatory DNA. These specify large networks of interactions among genes producing transcription factors and signaling components. The architecture of such networks both explains and predicts developmental phenomenology. Although network analysis is yet in its early stages, some fundamental commonalities are already emerging. Two such are the use of multigenic feedback loops to ensure the progressivity of developmental regulatory states and the prevalence of repressive regulatory interactions in spatial control processes. Gene regulatory networks make it possible to explain the process of development in causal terms and eventually will enable the redesign of developmental regulatory circuitry to achieve different outcomes.
Manipulation of Carotenoid Content in Plants to Improve Human Health.
Alós, Enriqueta; Rodrigo, Maria Jesús; Zacarias, Lorenzo
2016-01-01
Carotenoids are essential components for human nutrition and health, mainly due to their antioxidant and pro-vitamin A activity. Foods with enhanced carotenoid content and composition are essential to ensure carotenoid feasibility in malnourished population of many countries around the world, which is critical to alleviate vitamin A deficiency and other health-related disorders. The pathway of carotenoid biosynthesis is currently well understood, key steps of the pathways in different plant species have been characterized and the corresponding genes identified, as well as other regulatory elements. This enables the manipulation and improvement of carotenoid content and composition in order to control the nutritional value of a number of agronomical important staple crops. Biotechnological and genetic engineering-based strategies to manipulate carotenoid metabolism have been successfully implemented in many crops, with Golden rice as the most relevant example of β-carotene improvement in one of the more widely consumed foods. Conventional breeding strategies have been also adopted in the bio-fortification of carotenoid in staple foods that are highly consumed in developing countries, including maize, cassava and sweet potatoes, to alleviate nutrition-related problems. The objective of the chapter is to summarize major breakthroughs and advances in the enhancement of carotenoid content and composition in agronomical and nutritional important crops, with special emphasis to their potential impact and benefits in human nutrition and health.
Modulation of ColE1-like Plasmid Replication for Recombinant Gene Expression
Camps, Manel
2010-01-01
ColE1-like plasmids constitute the most popular vectors for recombinant protein expression. ColE1 plasmid replication is tightly controlled by an antisense RNA mechanism that is highly dynamic, tuning plasmid metabolic burden to the physiological state of the host. Plasmid homeostasis is upset upon induction of recombinant protein expression because of non-physiological levels of expression and because of the frequently biased amino acid composition of recombinant proteins. Disregulation of plasmid replication is the main cause of collapse of plasmid-based expression systems because of a simultaneous increase in the metabolic burden (due to increased average copy number) and in the probability of generation of plasmid-free cells (due to increased copy number variation). Interference between regulatory elements of co-resident plasmids causes comparable effects on plasmid stability (plasmid incompatibility). Modulating plasmid copy number for recombinant gene expression aims at achieving a high gene dosage while preserving the stability of the expression system. Here I present strategies targeting plasmid replication for optimizing recombinant gene expression. Specifically, I review approaches aimed at modulating the antisense regulatory system (as well as their implications for plasmid incompatibility) and innovative strategies involving modulation of host factors, of R-loop formation, and of the timing of recombinant gene expression. PMID:20218961
Babina, Arianne M; Parker, Darren J; Li, Gene-Wei; Meyer, Michelle M
2018-06-20
In many bacteria, ribosomal proteins autogenously repress their own expression by interacting with RNA structures typically located in the 5'-UTRs of their mRNA transcripts. This regulation is necessary to maintain a balance between ribosomal proteins and rRNA to ensure proper ribosome production. Despite advances in non-coding RNA discovery and validation of RNA-protein regulatory interactions, the selective pressures that govern the formation and maintenance of such RNA cis-regulators in the context of an organism remain largely undetermined. To examine the impact disruptions to this regulation have on bacterial fitness, we introduced point mutations that abolish ribosomal protein binding and regulation into the RNA structure that controls expression of ribosomal proteins L20 and L35 within the Bacillus subtilis genome. Our studies indicate that removing this regulation results in reduced log phase growth, improper rRNA maturation, and the accumulation of a kinetically trapped or mis-assembled ribosomal particle at low temperatures, suggesting defects in ribosome synthesis. Such work emphasizes the important role regulatory RNAs play in the stoichiometric production of ribosomal components for proper ribosome composition and overall organism viability and reinforces the potential of targeting ribosomal protein production and ribosome assembly with novel antimicrobials. Published by Cold Spring Harbor Laboratory Press for the RNA Society.
The Composite Regulatory Basis of the Large X-Effect in Mouse Speciation.
Larson, Erica L; Keeble, Sara; Vanderpool, Dan; Dean, Matthew D; Good, Jeffrey M
2017-02-01
The disruption of meiotic sex chromosome inactivation (MSCI) has been proposed to be a major developmental mechanism underlying the rapid evolution of hybrid male sterility. We tested this idea by analyzing cell-specific gene expression across spermatogenesis in two lineages of house mice and their sterile and fertile reciprocal hybrids. We found pervasive disruption of sex chromosome gene expression in sterile hybrids at every stage of spermatogenesis. Failure of MSCI was developmentally preceded by increased silencing of autosomal genes, supporting the hypothesis that divergence at the hybrid incompatibility gene, Prdm9, results in increased rates of autosomal asynapsis which in turn triggers widespread silencing of unsynapsed chromatin. We also detected opposite patterns of postmeiotic overexpression or hyper-repression of the sex chromosomes in reciprocal hybrids, supporting the hypothesis that genomic conflict has driven functional divergence that leads to deleterious X-Y dosage imbalances in hybrids. Our developmental timeline also exposed more subtle patterns of mitotic misregulation on the X chromosome, a previously undocumented stage of spermatogenic disruption in this cross. These results indicate that multiple hybrid incompatibilities have converged on a common regulatory phenotype, the disrupted expression of the sex chromosomes during spermatogenesis. Collectively, these data reveal a composite regulatory basis to hybrid male sterility in mice that helps resolve the mechanistic underpinnings of the well-documented large X-effect in mice speciation. We propose that the inherent sensitivity of spermatogenesis to X-linked regulatory disruption has the potential to be a major driver of reproductive isolation in species with chromosomal sex determination. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
78 FR 51078 - Reporting Requirements for Positive Train Control Expenses and Investments
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-20
... useful in making regulatory policy and business decisions. The new rule will require a PTC Supplement \\5... interested parties with data useful in making regulatory policy and business decisions. PTC grants. AAR and... useful in regulatory decision making.\\45\\ They also argue that the burden will be on the carriers to...
Effects of Regulatory Self-Questioning on Secondary-Level Students' Problem-Solving Performance
ERIC Educational Resources Information Center
Pate, Michael L.; Miller, Greg
2011-01-01
A randomized posttest-only control group experimental design was used to determine the effects of regulatory self-questioning on secondary-level career and technical education students' electrical circuit theory test scores. Students who participated in the self-questioning group were asked to answer a list of regulatory questions as they solved…
Mechanisms and Evolution of Control Logic in Prokaryotic Transcriptional Regulation
van Hijum, Sacha A. F. T.; Medema, Marnix H.; Kuipers, Oscar P.
2009-01-01
Summary: A major part of organismal complexity and versatility of prokaryotes resides in their ability to fine-tune gene expression to adequately respond to internal and external stimuli. Evolution has been very innovative in creating intricate mechanisms by which different regulatory signals operate and interact at promoters to drive gene expression. The regulation of target gene expression by transcription factors (TFs) is governed by control logic brought about by the interaction of regulators with TF binding sites (TFBSs) in cis-regulatory regions. A factor that in large part determines the strength of the response of a target to a given TF is motif stringency, the extent to which the TFBS fits the optimal TFBS sequence for a given TF. Advances in high-throughput technologies and computational genomics allow reconstruction of transcriptional regulatory networks in silico. To optimize the prediction of transcriptional regulatory networks, i.e., to separate direct regulation from indirect regulation, a thorough understanding of the control logic underlying the regulation of gene expression is required. This review summarizes the state of the art of the elements that determine the functionality of TFBSs by focusing on the molecular biological mechanisms and evolutionary origins of cis-regulatory regions. PMID:19721087
78 FR 63517 - Control of Ferrite Content in Stainless Steel Weld Metal
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-24
...The U.S. Nuclear Regulatory Commission (NRC) is issuing a revision to Regulatory Guide (RG) 1.31, ``Control of Ferrite Content in Stainless Steel Weld Metal.'' This guide (Revision 4) describes a method that the NRC staff considers acceptable for controlling ferrite content in stainless steel weld metal. It updates the guide to remove references to outdated standards and to remove an appendix that has been incorporated into relevant specifications.
Transcriptional network control of normal and leukaemic haematopoiesis
Sive, Jonathan I.; Göttgens, Berthold
2014-01-01
Transcription factors (TFs) play a key role in determining the gene expression profiles of stem/progenitor cells, and defining their potential to differentiate into mature cell lineages. TF interactions within gene-regulatory networks are vital to these processes, and dysregulation of these networks by TF overexpression, deletion or abnormal gene fusions have been shown to cause malignancy. While investigation of these processes remains a challenge, advances in genome-wide technologies and growing interactions between laboratory and computational science are starting to produce increasingly accurate network models. The haematopoietic system provides an attractive experimental system to elucidate gene regulatory mechanisms, and allows experimental investigation of both normal and dysregulated networks. In this review we examine the principles of TF-controlled gene regulatory networks and the key experimental techniques used to investigate them. We look in detail at examples of how these approaches can be used to dissect out the regulatory mechanisms controlling normal haematopoiesis, as well as the dysregulated networks associated with haematological malignancies. PMID:25014893
Transcriptional network control of normal and leukaemic haematopoiesis.
Sive, Jonathan I; Göttgens, Berthold
2014-12-10
Transcription factors (TFs) play a key role in determining the gene expression profiles of stem/progenitor cells, and defining their potential to differentiate into mature cell lineages. TF interactions within gene-regulatory networks are vital to these processes, and dysregulation of these networks by TF overexpression, deletion or abnormal gene fusions have been shown to cause malignancy. While investigation of these processes remains a challenge, advances in genome-wide technologies and growing interactions between laboratory and computational science are starting to produce increasingly accurate network models. The haematopoietic system provides an attractive experimental system to elucidate gene regulatory mechanisms, and allows experimental investigation of both normal and dysregulated networks. In this review we examine the principles of TF-controlled gene regulatory networks and the key experimental techniques used to investigate them. We look in detail at examples of how these approaches can be used to dissect out the regulatory mechanisms controlling normal haematopoiesis, as well as the dysregulated networks associated with haematological malignancies. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-09
... discrete unit of an effective system of internal controls at a member firm are presumed to be related, and provided the following examples of the ``most discrete unit of an effective system of internal controls... that there should not be a presumption that algorithms within the most discrete trading units are...
Radiation exposure levels within timber industries in Calabar, Nigeria
Inyang, S. O.; Inyang, I. S.; Egbe, N. O.
2009-01-01
The UNSCEAR (2000) observed that there could be some exposure at work which would require regulatory control but is not really considered. This study was, therefore, set up to evaluate the effective dose in timber industries in Calabar, Nigeria to determine if the evaluated dose levels could lead to any radiological health effect in the workers, and also determine if the industries require regulatory control. The gamma ray exposure at four timber industries measured using an exposure meter were converted to effective dose and compared with the public and occupational values. The evaluated effective dose values in the timber industries were below public and occupational exposure limits and may not necessarily result in any radiological health hazard. Therefore, they may not require regulatory control. PMID:20098544
Potential importance of B cells in aging and aging-associated neurodegenerative diseases.
Biragyn, Arya; Aliseychik, Maria; Rogaev, Evgeny
2017-04-01
Our understanding of B cells as merely antibody producers is slowly changing. Alone or in concert with antibody, they control outcomes of seemingly different diseases such as cancer, rheumatoid arthritis, diabetes, and multiple sclerosis. While their role in activation of effector immune cells is beneficial in cancer but bad in autoimmune diseases, their immunosuppressive and regulatory subsets (Bregs) inhibit autoimmune and anticancer responses. These pathogenic and suppressive functions are not static and appear to be regulated by the nature and strength of inflammation. Although aging increases inflammation and changes the composition and function of B cells, surprisingly, little is known whether the change affects aging-associated neurodegenerative disease, such as Alzheimer's disease (AD). Here, by analyzing B cells in cancer and autoimmune and neuroinflammatory diseases, we elucidate their potential importance in AD and other aging-associated neuroinflammatory diseases.
USDA-ARS?s Scientific Manuscript database
To balance the demand for uptake of essential elements with their potential toxicity living cells have complex regulatory mechanisms. Here, we describe a genome-wide screen to identify genes that impact the elemental composition (‘ionome’) of yeast Saccharomyces cerevisiae. Using inductively coupled...
LIFE CYCLE DESIGN OF AIR INTAKE MANIFOLDS; PHASE I: 2.0 L FORD CONTOUR AIR INTAKE MANIFOLD
The project team applied the life cycle design methodology to the design analysis of three alternative air intake manifolds: a sand cast aluminum, brazed aluminum tubular, and nylon composite. The design analysis included a life cycle inventory analysis, environmental regulatory...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-28
..., NASDAQ OMX is proposing to amend the compositional requirements of the Nominating & Governance Committee... requirements of the Nominating & Governance Committee, including independence requirements. BSECC expects that... increase the size of the Nominating & Governance Committee to six directors, but will not modify the size...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-28
..., NASDAQ OMX is proposing to amend the compositional requirements of the Nominating & Governance Committee... requirements of the Nominating & Governance Committee, including independence requirements. SCCP expects that... increase the size of the Nominating & Governance Committee to six directors, but will not modify the size...
Tabulation of asbestos-related terminology
Lowers, Heather; Meeker, Greg
2002-01-01
The term asbestos has been defined in numerous publications including many State and Federal regulations. The definition of asbestos often varies depending on the source or publication in which it is used. Differences in definitions also exist for the asbestos-related terms acicular, asbestiform, cleavage, cleavage fragment, fiber, fibril, fibrous, and parting. An inexperienced reader of the asbestos literature would have difficulty understanding these differences and grasping many of the subtleties that exist in the literature and regulatory language. Disagreement among workers from the industrial, medical, mineralogical, and regulatory communities regarding these definitions has fueled debate as to their applicability to various morphological structures and chemical compositions that exist in the amphibole and serpentine groups of minerals. This debate has significant public health, economic and legal implications. This report summarizes asbestos-related definitions taken from a variety of academic, industrial, and regulatory sources. This summary is by no means complete but includes the majority of significant definitions currently applied in the discipline.
Gap junctions in cells of the immune system: structure, regulation and possible functional roles.
Sáez, J C; Brañes, M C; Corvalán, L A; Eugenín, E A; González, H; Martínez, A D; Palisson, F
2000-04-01
Gap junction channels are sites of cytoplasmic communication between contacting cells. In vertebrates, they consist of protein subunits denoted connexins (Cxs) which are encoded by a gene family. According to their Cx composition, gap junction channels show different gating and permeability properties that define which ions and small molecules permeate them. Differences in Cx primary sequences suggest that channels composed of different Cxs are regulated differentially by intracellular pathways under specific physiological conditions. Functional roles of gap junction channels could be defined by the relative importance of permeant substances, resulting in coordination of electrical and/or metabolic cellular responses. Cells of the native and specific immune systems establish transient homo- and heterocellular contacts at various steps of the immune response. Morphological and functional studies reported during the last three decades have revealed that many intercellular contacts between cells in the immune response present gap junctions or "gap junction-like" structures. Partial characterization of the molecular composition of some of these plasma membrane structures and regulatory mechanisms that control them have been published recently. Studies designed to elucidate their physiological roles suggest that they might permit coordination of cellular events which favor the effective and timely response of the immune system.
T regulatory cells in contact hypersensitivity.
Cavani, Andrea
2008-08-01
The review summarizes the recent investigations focused on T regulatory cells in hapten diseases. Multiple mechanisms ensure tolerance to small chemicals penetrating the skin. Among these, specific T regulatory cells play a major role in controlling harmful immune responses to environmental antigens. Most of the T regulatory cells involved in this process belongs to the CD4 subset and suppress hapten-specific immune response through the release of IL-10 and through direct interaction with effector T cells, blocking their function. Methods for in-vitro and in-vivo expansion of specific T regulatory cells may represent an innovative approach for the cure of contact hypersensitivity.
[Regulatory Program for Medical Devices in Cuba: experiences and current challenges].
Pereira, Dulce María Martínez; Rodríguez, Yadira Álvarez; Valdés, Yamila Cedeño; Ribas, Silvia Delgado
2016-05-01
Regulatory control of medical devices in Cuba is conducted through a system based on the Regulatory Program for Medical Devices as a way to ensure the safety, efficacy, and effectiveness of these technologies, which are in use by the National Health System. This program was launched in 1992, when the Regulations for State Evaluation and Registration of Medical Devices were approved. Its successive stages and the merging of regulatory activities for drugs and medical equipment have meant progress toward stronger, more transparent strategies and greater control of industry and the National Health System. Throughout its course the Cuban program has met with challenges and difficulties that it has addressed by drawing on its own experiences. During the new period, the greatest challenges revolve around ensuring that regulatory systems incorporate scientific evaluation, risk levels, maximum rigor through the use of technical standards, and the implementation of international recommendations, together with the application of the ISO 13485 certification scheme, enhanced market monitoring, and classification of medical devices in accordance with their relevance to the country's national health policies. From the regional standpoint, the greatest challenge lies in working toward regulatory convergence. The Collaborating Centre for the Regulation of Health Technologies will support the proposed regulatory strategy and established regional priorities, in particular in connection with the implementation of actions involving medical devices.
Cis-regulatory landscapes of four cell types of the retina
Hartl, Dominik; Jüttner, Josephine
2017-01-01
Abstract The retina is composed of ∼50 cell-types with specific functions for the process of vision. Identification of the cis-regulatory elements active in retinal cell-types is key to elucidate the networks controlling this diversity. Here, we combined transcriptome and epigenome profiling to map the regulatory landscape of four cell-types isolated from mouse retinas including rod and cone photoreceptors as well as rare inter-neuron populations such as horizontal and starburst amacrine cells. Integration of this information reveals sequence determinants and candidate transcription factors for controlling cellular specialization. Additionally, we refined parallel reporter assays to enable studying the transcriptional activity of large collection of sequences in individual cell-types isolated from a tissue. We provide proof of concept for this approach and its scalability by characterizing the transcriptional capacity of several hundred putative regulatory sequences within individual retinal cell-types. This generates a catalogue of cis-regulatory regions active in retinal cell types and we further demonstrate their utility as potential resource for cellular tagging and manipulation. PMID:29059322
Li, Hao; Li, Songyan; Hu, Shidong; Zou, Guijun; Hu, Zilong; Wei, Huahua; Wang, Yufeng; Du, Xiaohui
2017-01-01
Objective To detect the frequencies of peripheral programmed death-1 + (PD-1 + ) lymphocytes and CD4 + CD25 + FOXP3 + regulatory T cells in patients with gastric adenocarcinoma. Methods The study enrolled 29 patients with gastric adenocarcinoma and 29 age- and sex-matched healthy controls. Frequencies of PD-1 + lymphocytes and CD4 + CD25 + FOXP3 + regulatory T cells were detected using flow cytometry. Results The number of PD-1 + lymphocytes and CD4 + CD25 + FOXP3 + regulatory T cells in peripheral blood was higher in patients with gastric adenocarcinoma than that in the control group. Moreover, linear correlation analysis indicated a positive correlation between PD-1 expression and frequency of CD4 + CD25 + FOXP3 + regulatory T cells in peripheral blood of the patients. Conclusion Gastric adenocarcinoma patients present with increased PD-1 + lymphocytes and CD4 + CD25 + FOXP3 + regulatory T cells in the peripheral blood.
Wang, Daifeng; He, Fei; Maslov, Sergei; Gerstein, Mark
2016-10-01
Gene expression is controlled by the combinatorial effects of regulatory factors from different biological subsystems such as general transcription factors (TFs), cellular growth factors and microRNAs. A subsystem's gene expression may be controlled by its internal regulatory factors, exclusively, or by external subsystems, or by both. It is thus useful to distinguish the degree to which a subsystem is regulated internally or externally-e.g., how non-conserved, species-specific TFs affect the expression of conserved, cross-species genes during evolution. We developed a computational method (DREISS, dreiss.gerteinlab.org) for analyzing the Dynamics of gene expression driven by Regulatory networks, both External and Internal based on State Space models. Given a subsystem, the "state" and "control" in the model refer to its own (internal) and another subsystem's (external) gene expression levels. The state at a given time is determined by the state and control at a previous time. Because typical time-series data do not have enough samples to fully estimate the model's parameters, DREISS uses dimensionality reduction, and identifies canonical temporal expression trajectories (e.g., degradation, growth and oscillation) representing the regulatory effects emanating from various subsystems. To demonstrate capabilities of DREISS, we study the regulatory effects of evolutionarily conserved vs. divergent TFs across distant species. In particular, we applied DREISS to the time-series gene expression datasets of C. elegans and D. melanogaster during their embryonic development. We analyzed the expression dynamics of the conserved, orthologous genes (orthologs), seeing the degree to which these can be accounted for by orthologous (internal) versus species-specific (external) TFs. We found that between two species, the orthologs have matched, internally driven expression patterns but very different externally driven ones. This is particularly true for genes with evolutionarily ancient functions (e.g. the ribosomal proteins), in contrast to those with more recently evolved functions (e.g., cell-cell communication). This suggests that despite striking morphological differences, some fundamental embryonic-developmental processes are still controlled by ancient regulatory systems.
Long-Range Control of Gene Expression: Emerging Mechanisms and Disruption in Disease
Kleinjan, Dirk A.; van Heyningen, Veronica
2005-01-01
Transcriptional control is a major mechanism for regulating gene expression. The complex machinery required to effect this control is still emerging from functional and evolutionary analysis of genomic architecture. In addition to the promoter, many other regulatory elements are required for spatiotemporally and quantitatively correct gene expression. Enhancer and repressor elements may reside in introns or up- and downstream of the transcription unit. For some genes with highly complex expression patterns—often those that function as key developmental control genes—the cis-regulatory domain can extend long distances outside the transcription unit. Some of the earliest hints of this came from disease-associated chromosomal breaks positioned well outside the relevant gene. With the availability of wide-ranging genome sequence comparisons, strong conservation of many noncoding regions became obvious. Functional studies have shown many of these conserved sites to be transcriptional regulatory elements that sometimes reside inside unrelated neighboring genes. Such sequence-conserved elements generally harbor sites for tissue-specific DNA-binding proteins. Developmentally variable chromatin conformation can control protein access to these sites and can regulate transcription. Disruption of these finely tuned mechanisms can cause disease. Some regulatory element mutations will be associated with phenotypes distinct from any identified for coding-region mutations. PMID:15549674
Cheung, Tracy T. L.; Gillebaart, Marleen; Kroese, Floor; De Ridder, Denise
2014-01-01
Background: While self-control has often been related to positive outcomes in life such as higher academic achievements and better health, recent insights reveal that people with high trait self-control (TSC) may even experience greater life satisfaction or happiness. Objective: The current study further scrutinizes this potential association between TSC and happiness, and examines how regulatory focus, defined as the way people frame and direct their goal pursuit strategies, plays a role in this relationship. Accordingly, the present study examines the mediating role of regulatory-focus (promotion and prevention focus) on the relationship between TSC and happiness. Method: Data was collected from 545 individuals (65.9% female, Mage = 27.52 years) regarding their TSC, regulatory focus, and happiness. Results: Mediation analyses demonstrate that TSC positively predicts happiness, while this effect was partially mediated by relatively more promotion focus and less prevention focus. Conclusion: Results suggest that people with higher TSC are happier possibly because they are: (1) more promotion-focused on acquiring positive gains thereby facilitating more approach-oriented behaviors, and (2) less prevention-focused on avoiding losses thereby reducing avoidance-oriented behaviors. These findings are relevant for topical scientific debates regarding the underlying mechanisms of self-control regarding initiatory and inhibitory behaviors. PMID:25071683
77 FR 60478 - Control of Ferrite Content in Stainless Steel Weld Metal
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-03
...The U.S. Nuclear Regulatory Commission (NRC or the Commission) is issuing for public comment draft regulatory guide (DG), DG-1279, ``Control of Ferrite Content in Stainless Steel Weld Metal.'' This guide describes a method that the NRC staff considers acceptable for controlling ferrite content in stainless steel weld metal. Revision 4 updates the guide to remove references to outdated standards and to remove an appendix that has been incorporated into relevant specifications.
Yang, Yunpeng; Zhang, Lu; Huang, He; Yang, Chen; Yang, Sheng; Gu, Yang; Jiang, Weihong
2017-01-24
Catabolite control protein A (CcpA) is the master regulator in Gram-positive bacteria that mediates carbon catabolite repression (CCR) and carbon catabolite activation (CCA), two fundamental regulatory mechanisms that enable competitive advantages in carbon catabolism. It is generally regarded that CcpA exerts its regulatory role by binding to a typical 14- to 16-nucleotide (nt) consensus site that is called a catabolite response element (cre) within the target regions. However, here we report a previously unknown noncanonical flexible architecture of the CcpA-binding site in solventogenic clostridia, providing new mechanistic insights into catabolite regulation. This novel CcpA-binding site, named cre var , has a unique architecture that consists of two inverted repeats and an intervening spacer, all of which are variable in nucleotide composition and length, except for a 6-bp core palindromic sequence (TGTAAA/TTTACA). It was found that the length of the intervening spacer of cre var can affect CcpA binding affinity, and moreover, the core palindromic sequence of cre var is the key structure for regulation. Such a variable architecture of cre var shows potential importance for CcpA's diverse and fine regulation. A total of 103 potential cre var sites were discovered in solventogenic Clostridium acetobutylicum, of which 42 sites were picked out for electrophoretic mobility shift assays (EMSAs), and 30 sites were confirmed to be bound by CcpA. These 30 cre var sites are associated with 27 genes involved in many important pathways. Also of significance, the cre var sites are found to be widespread and function in a great number of taxonomically different Gram-positive bacteria, including pathogens, suggesting their global role in Gram-positive bacteria. In Gram-positive bacteria, the global regulator CcpA controls a large number of important physiological and metabolic processes. Although a typical consensus CcpA-binding site, cre, has been identified, it remains poorly explored for the diversity of CcpA-mediated catabolite regulation. Here, we discovered a novel flexible CcpA-binding site architecture (cre var ) that is highly variable in both length and base composition but follows certain principles, providing new insights into how CcpA can differentially recognize a variety of target genes to form a complicated regulatory network. A comprehensive search further revealed the wide distribution of cre var sites in Gram-positive bacteria, indicating it may have a universal function. This finding is the first to characterize such a highly flexible transcription factor-binding site architecture, which would be valuable for deeper understanding of CcpA-mediated global catabolite regulation in bacteria. Copyright © 2017 Yang et al.
Sun, Eric I; Leyn, Semen A; Kazanov, Marat D; Saier, Milton H; Novichkov, Pavel S; Rodionov, Dmitry A
2013-09-02
In silico comparative genomics approaches have been efficiently used for functional prediction and reconstruction of metabolic and regulatory networks. Riboswitches are metabolite-sensing structures often found in bacterial mRNA leaders controlling gene expression on transcriptional or translational levels.An increasing number of riboswitches and other cis-regulatory RNAs have been recently classified into numerous RNA families in the Rfam database. High conservation of these RNA motifs provides a unique advantage for their genomic identification and comparative analysis. A comparative genomics approach implemented in the RegPredict tool was used for reconstruction and functional annotation of regulons controlled by RNAs from 43 Rfam families in diverse taxonomic groups of Bacteria. The inferred regulons include ~5200 cis-regulatory RNAs and more than 12000 target genes in 255 microbial genomes. All predicted RNA-regulated genes were classified into specific and overall functional categories. Analysis of taxonomic distribution of these categories allowed us to establish major functional preferences for each analyzed cis-regulatory RNA motif family. Overall, most RNA motif regulons showed predictable functional content in accordance with their experimentally established effector ligands. Our results suggest that some RNA motifs (including thiamin pyrophosphate and cobalamin riboswitches that control the cofactor metabolism) are widespread and likely originated from the last common ancestor of all bacteria. However, many more analyzed RNA motifs are restricted to a narrow taxonomic group of bacteria and likely represent more recent evolutionary innovations. The reconstructed regulatory networks for major known RNA motifs substantially expand the existing knowledge of transcriptional regulation in bacteria. The inferred regulons can be used for genetic experiments, functional annotations of genes, metabolic reconstruction and evolutionary analysis. The obtained genome-wide collection of reference RNA motif regulons is available in the RegPrecise database (http://regprecise.lbl.gov/).
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-03
... securities and funds which are in the custody or control of such clearing agency or for which it is... assure the safeguarding of securities and funds which are in its custody or control or for which it is... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-65655; File No. SR-CME-2011-07] Self-Regulatory...
Control and regulatory mechanisms associated with thermogenesis in flying insects and birds.
Loli, Denise; Bicudo, José Eduardo P W
2005-01-01
Most insects and birds are able to fly. The chitin made exoskeleton of insects poses them several constraints, and this is one the reasons they are in general small sized animals. On the other hand, because birds possess an endoskeleton made of bones they may grow much larger when compared to insects. The two taxa are quite different with regards to their general "design" platform, in particular with respect to their respiratory and circulatory systems. However, because they fly, they may share in common several traits, namely those associated with the control and regulatory mechanisms governing thermogenesis. High core temperatures are essential for animal flight irrespective of the taxa they belong to. Birds and insects have thus evolved mechanisms which allowed them to control and regulate high rates of heat fluxes. This article discusses possible convergent thermogenic control and regulatory mechanisms associated with flight in insects and birds.
MetNet: Software to Build and Model the Biogenetic Lattice of Arabidopsis
Wurtele, Eve Syrkin; Li, Jie; Diao, Lixia; ...
2003-01-01
MetNet (http://www.botany.iastate.edu/∼mash/metnetex/metabolicnetex.html) is publicly available software in development for analysis of genome-wide RNA, protein and metabolite profiling data. The software is designed to enable the biologist to visualize, statistically analyse and model a metabolic and regulatory network map of Arabidopsis , combined with gene expression profiling data. It contains a JAVA interface to an interactions database (MetNetDB) containing information on regulatory and metabolic interactions derived from a combination of web databases (TAIR, KEGG, BRENDA) and input from biologists in their area of expertise. FCModeler captures input from MetNetDB in a graphical form. Sub-networks can be identified and interpreted using simplemore » fuzzy cognitive maps. FCModeler is intended to develop and evaluate hypotheses, and provide a modelling framework for assessing the large amounts of data captured by high-throughput gene expression experiments. FCModeler and MetNetDB are currently being extended to three-dimensional virtual reality display. The MetNet map, together with gene expression data, can be viewed using multivariate graphics tools in GGobi linked with the data analytic tools in R. Users can highlight different parts of the metabolic network and see the relevant expression data highlighted in other data plots. Multi-dimensional expression data can be rotated through different dimensions. Statistical analysis can be computed alongside the visual. MetNet is designed to provide a framework for the formulation of testable hypotheses regarding the function of specific genes, and in the long term provide the basis for identification of metabolic and regulatory networks that control plant composition and development.« less
T Cell Proliferation and Colitis Are Initiated by Defined Intestinal Microbes.
Chiaranunt, Pailin; Tometich, Justin T; Ji, Junyi; Hand, Timothy W
2018-07-01
Inflammatory bowel disease has been associated with the dysregulation of T cells specific to Ags derived from the intestinal microbiota. How microbiota-specific T cells are regulated is not completely clear but is believed to be mediated by a combination of IgA, regulatory T cells, and type 3 innate lymphoid cells. To test the role of these regulatory components on microbiota-specific T cells, we bred CBir1 TCR transgenic (CBir1Tg) mice (specific to flagellin from common intestinal bacteria) onto a lymphopenic Rag1 -/- background. Surprisingly, T cells from CBir1Tg mice bred onto a Rag1 -/- background could not induce colitis and did not differentiate to become effectors under lymphopenic conditions, despite deficits in immunoregulatory factors, such as IgA, regulatory T cells, and type 3 innate lymphoid cells. In fact, upon transfer of conventional CBir1Tg T cells into lymphopenic mice, the vast majority of proliferating T cells responded to Ags other than CBir1 flagellin, including those found on other bacteria, such as Helicobacter spp. Thus, we discovered a caveat in the CBir1Tg model within our animal facility that illustrates the limitations of using TCR transgenics at mucosal surfaces, where multiple TCR specificities can respond to the plethora of foreign Ags. Our findings also indicate that T cell specificity to the microbiota alone is not sufficient to induce T cell activation and colitis. Instead, other interrelated factors, such as the composition and ecology of the intestinal microbiota and host access to Ag, are paramount in controlling the activation of microbiota-specific T cell clones. Copyright © 2018 by The American Association of Immunologists, Inc.
A balance of activity in brain control and reward systems predicts self-regulatory outcomes
Chen, Pin-Hao A.; Huckins, Jeremy F.; Hofmann, Wilhelm; Kelley, William M.; Heatherton, Todd F.
2017-01-01
Abstract Previous neuroimaging work has shown that increased reward-related activity following exposure to food cues is predictive of self-control failure. The balance model suggests that self-regulation failures result from an imbalance in reward and executive control mechanisms. However, an open question is whether the relative balance of activity in brain systems associated with executive control (vs reward) supports self-regulatory outcomes when people encounter tempting cues in daily life. Sixty-nine chronic dieters, a population known for frequent lapses in self-control, completed a food cue-reactivity task during an fMRI scanning session, followed by a weeklong sampling of daily eating behaviors via ecological momentary assessment. We related participants’ food cue activity in brain systems associated with executive control and reward to real-world eating patterns. Specifically, a balance score representing the amount of activity in brain regions associated with self-regulatory control, relative to automatic reward-related activity, predicted dieters’ control over their eating behavior during the following week. This balance measure may reflect individual self-control capacity and be useful for examining self-regulation success in other domains and populations. PMID:28158874
A balance of activity in brain control and reward systems predicts self-regulatory outcomes.
Lopez, Richard B; Chen, Pin-Hao A; Huckins, Jeremy F; Hofmann, Wilhelm; Kelley, William M; Heatherton, Todd F
2017-05-01
Previous neuroimaging work has shown that increased reward-related activity following exposure to food cues is predictive of self-control failure. The balance model suggests that self-regulation failures result from an imbalance in reward and executive control mechanisms. However, an open question is whether the relative balance of activity in brain systems associated with executive control (vs reward) supports self-regulatory outcomes when people encounter tempting cues in daily life. Sixty-nine chronic dieters, a population known for frequent lapses in self-control, completed a food cue-reactivity task during an fMRI scanning session, followed by a weeklong sampling of daily eating behaviors via ecological momentary assessment. We related participants' food cue activity in brain systems associated with executive control and reward to real-world eating patterns. Specifically, a balance score representing the amount of activity in brain regions associated with self-regulatory control, relative to automatic reward-related activity, predicted dieters' control over their eating behavior during the following week. This balance measure may reflect individual self-control capacity and be useful for examining self-regulation success in other domains and populations. © The Author (2017). Published by Oxford University Press.
Identification of regulatory network hubs that control lipid metabolism in Chlamydomonas reinhardtii
Gargouri, Mahmoud; Park, Jeong -Jin; Holguin, F. Omar; ...
2015-05-28
Microalgae-based biofuels are promising sources of alternative energy, but improvements throughout the production process are required to establish them as economically feasible. One of the most influential improvements would be a significant increase in lipid yields, which could be achieved by altering the regulation of lipid biosynthesis and accumulation. Chlamydomonas reinhardtii accumulates oil (triacylglycerols, TAG) in response to nitrogen (N) deprivation. Although a few important regulatory genes have been identified that are involved in controlling this process, a global understanding of the larger regulatory network has not been developed. In order to uncover this network in this species, a combinedmore » omics (transcriptomic, proteomic and metabolomic) analysis was applied to cells grown in a time course experiment after a shift from N-replete to N-depleted conditions. Changes in transcript and protein levels of 414 predicted transcription factors (TFs) and transcriptional regulators (TRs) were monitored relative to other genes. The TF and TR genes were thus classified by two separate measures: up-regulated versus down-regulated and early response versus late response relative to two phases of polar lipid synthesis (before and after TAG biosynthesis initiation). Lipidomic and primary metabolite profiling generated compound accumulation levels that were integrated with the transcript dataset and TF profiling to produce a transcriptional regulatory network. In conclusion, evaluation of this proposed regulatory network led to the identification of several regulatory hubs that control many aspects of cellular metabolism, from N assimilation and metabolism, to central metabolism, photosynthesis and lipid metabolism.« less
Thomashow, Mike
2018-02-06
The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. Mike Thomashow of Michigan State University gives a presentation on on "Low Temperature Regulatory Networks Controlling Cold Acclimation in Arabidopsis" at the 6th annual Genomics of Energy & Environment Meeting on March 23, 2011."
ERIC Educational Resources Information Center
Fouche, Jaunine
2013-01-01
The purpose of this nonequivalent control group design study was to evaluate the effectiveness of metacognitive and self-regulatory strategy use on the assessment achievement of 215 9th-grade, residential physics students from low socioeconomic status (low-SES) backgrounds. Students from low-SES backgrounds often lack the self-regulatory habits…
Neves, Susana R; Tsokas, Panayiotis; Sarkar, Anamika; Grace, Elizabeth A; Rangamani, Padmini; Taubenfeld, Stephen M; Alberini, Cristina M; Schaff, James C; Blitzer, Robert D; Moraru, Ion I; Iyengar, Ravi
2008-05-16
The role of cell size and shape in controlling local intracellular signaling reactions, and how this spatial information originates and is propagated, is not well understood. We have used partial differential equations to model the flow of spatial information from the beta-adrenergic receptor to MAPK1,2 through the cAMP/PKA/B-Raf/MAPK1,2 network in neurons using real geometries. The numerical simulations indicated that cell shape controls the dynamics of local biochemical activity of signal-modulated negative regulators, such as phosphodiesterases and protein phosphatases within regulatory loops to determine the size of microdomains of activated signaling components. The model prediction that negative regulators control the flow of spatial information to downstream components was verified experimentally in rat hippocampal slices. These results suggest a mechanism by which cellular geometry, the presence of regulatory loops with negative regulators, and key reaction rates all together control spatial information transfer and microdomain characteristics within cells.
Creating and testing regulatory focus messages to enhance medication adherence.
O'Connor, Ashley; Ladebue, Amy; Peterson, Jamie; Davis, Ryan; Jung Grant, Susan; McCreight, Marina; Lambert-Kerzner, Anne
2018-01-01
Objectives Strategies were explored to improve patient adherence to cardioprotective medications by borrowing from a motivational framework used in psychology, regulatory focus theory. The current study is part of a larger randomized control trial and was aimed at understanding what written educational messages, based on patients' regulatory focus tendency, resonated with each individual as a potential reminder to take medications. This study was also aimed at understanding why messages resonated with the patients. Methods Twenty veterans were tested for regulatory fitand presented with messages dependent on focus tendency. In-person semi-structured interviews were conducted to collect feedback of messages. An iterative analysis drawing primarily on matrix and reflexive team analyses was conducted. Result Six promotion and six prevention messages emerged, such as "team up with your provider to create a combination of medications to prevent illness" and "Live your best life - Take your medications". Five themes related to types of health messages that spoke to patients' regulatory fit were discovered: relatability; empowerment and control; philosophy on life; relationship with provider and medications; and vocabulary effect on the impact of messages. Discussion Motivational messages based on regulatory fit may be useful in improving patient medication adherence, leading to improved cardiovascular outcomes.
Self-regulatory failure and intimate partner violence perpetration.
Finkel, Eli J; DeWall, C Nathan; Slotter, Erica B; Oaten, Megan; Foshee, Vangie A
2009-09-01
Five studies tested the hypothesis that self-regulatory failure is an important predictor of intimate partner violence (IPV) perpetration. Study 1 participants were far more likely to experience a violent impulse during conflictual interaction with their romantic partner than they were to enact a violent behavior, suggesting that self-regulatory processes help individuals refrain from perpetrating IPV when they experience a violent impulse. Study 2 participants high in dispositional self-control were less likely to perpetrate IPV, in both cross-sectional and residualized-lagged analyses, than were participants low in dispositional self-control. Study 3 participants verbalized more IPV-related cognitions if they responded immediately to partner provocations than if they responded after a 10-s delay. Study 4 participants whose self-regulatory resources were experimentally depleted were more violent in response to partner provocation (but not when unprovoked) than were nondepleted participants. Finally, Study 5 participants whose self-regulatory resources were experimentally bolstered via a 2-week training regimen exhibited less violent inclinations than did participants whose self-regulatory resources had not been bolstered. These findings hint at the power of incorporating self-regulation dynamics into predictive models of IPV perpetration. (c) 2009 APA, all rights reserved).
Azuma, Miyuki
2010-01-01
Glucocorticoid-induced TNF receptor-related protein (GITR) is expressed in regulatory T cells at high levels, but is also inducible in conventional effector T cells after activation. Initial studies using an agonistic anti- GITR mAb mislead this line of research with respect to the contribution of GITR stimulation on the function of regulatory T cells. In fact, GITR acts as a costimulatory receptor for both effector and regulatory T cells by enhancing effector and regulatory functions, respectively. Unlike other costimulatory ligands, GITR ligand (GITRL) expression on mature myeloid dendritic cells (DCs) is extremely limited and the GITR-GITRL pathway does not contribute markedly to direct interactions with T cells and antigen-presenting cells in the secondary lymphoid tissues. Rather, GITRL is constitutively expressed on parenchymal tissue cells and interacts with GITR expressed on tissue-infiltrating macrophages and DCs, or effector and regulatory T cells. Interactions with GITR and GITRL at local inflammatory sites induce site-specific production of cytokines and chemokines, resulting in control activation of tissue-infiltrating effector or regulatory cells and their migration. This review summarizes recent reports on the GITR-GITRL pathway, which controls both innate and adaptive immune responses.
Jin, Erqing; Wong, Lynn; Jiao, Yun; Engel, Jake; Holdridge, Benjamin; Xu, Peng
2017-12-01
Engineering cell factories for producing biofuels and pharmaceuticals has spurred great interests to develop rapid and efficient synthetic biology tools customized for modular pathway engineering. Along the way, combinatorial gene expression control through modification of regulatory element offered tremendous opportunity for fine-tuning gene expression and generating digital-like genetic circuits. In this report, we present an efficient evolutionary approach to build a range of regulatory control elements. The reported method allows for rapid construction of promoter, 5'UTR, terminator and trans -activating RNA libraries. Synthetic overlapping oligos with high portion of degenerate nucleotides flanking the regulatory element could be efficiently assembled to a vector expressing fluorescence reporter. This approach combines high mutation rate of the synthetic DNA with the high assembly efficiency of Gibson Mix. Our constructed library demonstrates broad range of transcriptional or translational gene expression dynamics. Specifically, both the promoter library and 5'UTR library exhibits gene expression dynamics spanning across three order of magnitude. The terminator library and trans -activating RNA library displays relatively narrowed gene expression pattern. The reported study provides a versatile toolbox for rapidly constructing a large family of prokaryotic regulatory elements. These libraries also facilitate the implementation of combinatorial pathway engineering principles and the engineering of more efficient microbial cell factory for various biomanufacturing applications.
Modularity and design principles in the sea urchin embryo gene regulatory network
Peter, Isabelle S.; Davidson, Eric H.
2010-01-01
The gene regulatory network (GRN) established experimentally for the pre-gastrular sea urchin embryo provides causal explanations of the biological functions required for spatial specification of embryonic regulatory states. Here we focus on the structure of the GRN which controls the progressive increase in complexity of territorial regulatory states during embryogenesis; and on the types of modular subcircuits of which the GRN is composed. Each of these subcircuit topologies executes a particular operation of spatial information processing. The GRN architecture reflects the particular mode of embryogenesis represented by sea urchin development. Network structure not only specifies the linkages constituting the genomic regulatory code for development, but also indicates the various regulatory requirements of regional developmental processes. PMID:19932099
Enhancing gene regulatory network inference through data integration with markov random fields
Banf, Michael; Rhee, Seung Y.
2017-02-01
Here, a gene regulatory network links transcription factors to their target genes and represents a map of transcriptional regulation. Much progress has been made in deciphering gene regulatory networks computationally. However, gene regulatory network inference for most eukaryotic organisms remain challenging. To improve the accuracy of gene regulatory network inference and facilitate candidate selection for experimentation, we developed an algorithm called GRACE (Gene Regulatory network inference ACcuracy Enhancement). GRACE exploits biological a priori and heterogeneous data integration to generate high- confidence network predictions for eukaryotic organisms using Markov Random Fields in a semi-supervised fashion. GRACE uses a novel optimization schememore » to integrate regulatory evidence and biological relevance. It is particularly suited for model learning with sparse regulatory gold standard data. We show GRACE’s potential to produce high confidence regulatory networks compared to state of the art approaches using Drosophila melanogaster and Arabidopsis thaliana data. In an A. thaliana developmental gene regulatory network, GRACE recovers cell cycle related regulatory mechanisms and further hypothesizes several novel regulatory links, including a putative control mechanism of vascular structure formation due to modifications in cell proliferation.« less
Enhancing gene regulatory network inference through data integration with markov random fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banf, Michael; Rhee, Seung Y.
Here, a gene regulatory network links transcription factors to their target genes and represents a map of transcriptional regulation. Much progress has been made in deciphering gene regulatory networks computationally. However, gene regulatory network inference for most eukaryotic organisms remain challenging. To improve the accuracy of gene regulatory network inference and facilitate candidate selection for experimentation, we developed an algorithm called GRACE (Gene Regulatory network inference ACcuracy Enhancement). GRACE exploits biological a priori and heterogeneous data integration to generate high- confidence network predictions for eukaryotic organisms using Markov Random Fields in a semi-supervised fashion. GRACE uses a novel optimization schememore » to integrate regulatory evidence and biological relevance. It is particularly suited for model learning with sparse regulatory gold standard data. We show GRACE’s potential to produce high confidence regulatory networks compared to state of the art approaches using Drosophila melanogaster and Arabidopsis thaliana data. In an A. thaliana developmental gene regulatory network, GRACE recovers cell cycle related regulatory mechanisms and further hypothesizes several novel regulatory links, including a putative control mechanism of vascular structure formation due to modifications in cell proliferation.« less
Damienikan, Aliaksandr U.
2016-01-01
The majority of bacterial genome annotations are currently automated and based on a ‘gene by gene’ approach. Regulatory signals and operon structures are rarely taken into account which often results in incomplete and even incorrect gene function assignments. Here we present SigmoID, a cross-platform (OS X, Linux and Windows) open-source application aiming at simplifying the identification of transcription regulatory sites (promoters, transcription factor binding sites and terminators) in bacterial genomes and providing assistance in correcting annotations in accordance with regulatory information. SigmoID combines a user-friendly graphical interface to well known command line tools with a genome browser for visualising regulatory elements in genomic context. Integrated access to online databases with regulatory information (RegPrecise and RegulonDB) and web-based search engines speeds up genome analysis and simplifies correction of genome annotation. We demonstrate some features of SigmoID by constructing a series of regulatory protein binding site profiles for two groups of bacteria: Soft Rot Enterobacteriaceae (Pectobacterium and Dickeya spp.) and Pseudomonas spp. Furthermore, we inferred over 900 transcription factor binding sites and alternative sigma factor promoters in the annotated genome of Pectobacterium atrosepticum. These regulatory signals control putative transcription units covering about 40% of the P. atrosepticum chromosome. Reviewing the annotation in cases where it didn’t fit with regulatory information allowed us to correct product and gene names for over 300 loci. PMID:27257541
Munding, Elizabeth M.; Igel, A. Haller; Shiue, Lily; Dorighi, Kristel M.; Treviño, Lisa R.; Ares, Manuel
2010-01-01
Splicing regulatory networks are essential components of eukaryotic gene expression programs, yet little is known about how they are integrated with transcriptional regulatory networks into coherent gene expression programs. Here we define the MER1 splicing regulatory network and examine its role in the gene expression program during meiosis in budding yeast. Mer1p splicing factor promotes splicing of just four pre-mRNAs. All four Mer1p-responsive genes also require Nam8p for splicing activation by Mer1p; however, other genes require Nam8p but not Mer1p, exposing an overlapping meiotic splicing network controlled by Nam8p. MER1 mRNA and three of the four Mer1p substrate pre-mRNAs are induced by the transcriptional regulator Ume6p. This unusual arrangement delays expression of Mer1p-responsive genes relative to other genes under Ume6p control. Products of Mer1p-responsive genes are required for initiating and completing recombination and for activation of Ndt80p, the activator of the transcriptional network required for subsequent steps in the program. Thus, the MER1 splicing regulatory network mediates the dependent relationship between the UME6 and NDT80 transcriptional regulatory networks in the meiotic gene expression program. This study reveals how splicing regulatory networks can be interlaced with transcriptional regulatory networks in eukaryotic gene expression programs. PMID:21123654
Long Noncoding RNAs: a New Regulatory Code in Metabolic Control
Zhao, Xu-Yun; Lin, Jiandie D.
2015-01-01
Long noncoding RNAs (lncRNAs) are emerging as an integral part of the regulatory information encoded in the genome. LncRNAs possess the unique capability to interact with nucleic acids and proteins and exert discrete effects on numerous biological processes. Recent studies have delineated multiple lncRNA pathways that control metabolic tissue development and function. The expansion of the regulatory code that links nutrient and hormonal signals to tissue metabolism gives new insights into the genetic and pathogenic mechanisms underlying metabolic disease. This review discusses lncRNA biology with a focus on its role in the development, signaling, and function of key metabolic tissues. PMID:26410599
Advancement in carbon nanotubes: basics, biomedical applications and toxicity.
Beg, Sarwar; Rizwan, Mohammad; Sheikh, Asif M; Hasnain, M Saquib; Anwer, Khalid; Kohli, Kanchan
2011-02-01
Carbon nanotubes (CNTs) have attracted much attention by researchers worldwide in recent years for their small dimensions and unique architecture, and for having immense potential in nanomedicine as biocompatible and supportive substrates, as a novel tool for the delivery of therapeutic molecules including peptides, RNA and DNA, and also as sensors, actuators and composites. CNTs have been employed in the development of molecular electronic, composite materials and others due to their unique atomic structure, high surface area-to-volume ratio and excellent electronic, mechanical and thermal properties. Recently they have been exploited as novel nanocarriers in drug delivery systems and biomedical applications. Their larger inner volume as compared with the dimensions of the tube and easy immobilization of their outer surface with biocompatible materials make CNTs a superior nanomaterial for drug delivery. Literature reveals that CNTs are versatile carriers for controlled and targeted drug delivery, especially for cancer cells, because of their cell membrane penetrability. This review enlightens the biomedical application of CNTs with special emphasis on utilization in controlled and targeted drug delivery, as a diagnostics tool and other possible uses in therapeutic systems. The review also focuses on the toxicity aspects of CNTs, and revealed that genotoxic potential, mutagenic and carcinogenic effects of different types of CNTs must be explored and overcome by formulating safe biomaterial for drug delivery. The review also describes the regulatory aspects and clinical and market status of CNTs. © 2010 The Authors. JPP © 2010 Royal Pharmaceutical Society.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-28
... Nominating & Governance Committee in Section 4.13(h) to replace a requirement that the committee comprise... any of the other compositional requirements of the Nominating & Governance Committee, including..., use the modified authority to increase the size of the Nominating & Governance Committee to six...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-28
... Nominating & Governance Committee in Section 4.13(h) to replace a requirement that the committee comprise... any of the other compositional requirements of the Nominating & Governance Committee, including... the modified authority to increase the size of the Nominating & Governance Committee to six directors...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-29
... Amendments No. 1 and 2 Thereto, To Amend Certain Corporate Governance Disclosure Requirements for Listed... rules relating to corporate governance standards for listed companies. The proposed rule change, as... when it relies on certain exceptions to Nasdaq rules concerning the composition and independence of...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-18
...-Adviser has designed the following quantitative stock selection rules to make allocation decisions and to..., the Sub-Adviser's investment process is quantitative. Based on extensive historical research, the Sub... open-end fund's portfolio composition must be subject to procedures designed to prevent the use and...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-05
... fund's portfolio composition must be subject to procedures designed to prevent the use and... and/or changes to the portfolio, and will be subject to procedures designed to prevent the use and... with other applicable securities laws. Accordingly, procedures designed to prevent the communication...
Camara, Johanna Eltz; Skarstad, Kirsten; Crooke, Elliott
2003-05-01
Regulatory inactivation of DnaA helps ensure that the Escherichia coli chromosome is replicated only once per cell cycle, through accelerated hydrolysis of active replication initiator ATP-DnaA to inactive ADP-DnaA. Analysis of deltahda strains revealed that the regulatory inactivation of DnaA component Hda is necessary for maintaining controlled initiation but not for cell growth or viability.
Regulatory Mechanisms Controlling Maturation of Serotonin Neuron Identity and Function
Spencer, William C.; Deneris, Evan S.
2017-01-01
The brain serotonin (5-hydroxytryptamine; 5-HT) system has been extensively studied for its role in normal physiology and behavior, as well as, neuropsychiatric disorders. The broad influence of 5-HT on brain function, is in part due to the vast connectivity pattern of 5-HT-producing neurons throughout the CNS. 5-HT neurons are born and terminally specified midway through embryogenesis, then enter a protracted period of maturation, where they functionally integrate into CNS circuitry and then are maintained throughout life. The transcriptional regulatory networks controlling progenitor cell generation and terminal specification of 5-HT neurons are relatively well-understood, yet the factors controlling 5-HT neuron maturation are only recently coming to light. In this review, we first provide an update on the regulatory network controlling 5-HT neuron development, then delve deeper into the properties and regulatory strategies governing 5-HT neuron maturation. In particular, we discuss the role of the 5-HT neuron terminal selector transcription factor (TF) Pet-1 as a key regulator of 5-HT neuron maturation. Pet-1 was originally shown to positively regulate genes needed for 5-HT synthesis, reuptake and vesicular transport, hence 5-HT neuron-type transmitter identity. It has now been shown to regulate, both positively and negatively, many other categories of genes in 5-HT neurons including ion channels, GPCRs, transporters, neuropeptides, and other transcription factors. Its function as a terminal selector results in the maturation of 5-HT neuron excitability, firing characteristics, and synaptic modulation by several neurotransmitters. Furthermore, there is a temporal requirement for Pet-1 in the control of postmitotic gene expression trajectories thus indicating a direct role in 5-HT neuron maturation. Proper regulation of the maturation of cellular identity is critical for normal neuronal functioning and perturbations in the gene regulatory networks controlling these processes may result in long-lasting changes in brain function in adulthood. Further study of 5-HT neuron gene regulatory networks is likely to provide additional insight into how neurons acquire their mature identities and how terminal selector-type TFs function in postmitotic vertebrate neurons. PMID:28769770
Regulatory Mechanisms Controlling Maturation of Serotonin Neuron Identity and Function.
Spencer, William C; Deneris, Evan S
2017-01-01
The brain serotonin (5-hydroxytryptamine; 5-HT) system has been extensively studied for its role in normal physiology and behavior, as well as, neuropsychiatric disorders. The broad influence of 5-HT on brain function, is in part due to the vast connectivity pattern of 5-HT-producing neurons throughout the CNS. 5-HT neurons are born and terminally specified midway through embryogenesis, then enter a protracted period of maturation, where they functionally integrate into CNS circuitry and then are maintained throughout life. The transcriptional regulatory networks controlling progenitor cell generation and terminal specification of 5-HT neurons are relatively well-understood, yet the factors controlling 5-HT neuron maturation are only recently coming to light. In this review, we first provide an update on the regulatory network controlling 5-HT neuron development, then delve deeper into the properties and regulatory strategies governing 5-HT neuron maturation. In particular, we discuss the role of the 5-HT neuron terminal selector transcription factor (TF) Pet-1 as a key regulator of 5-HT neuron maturation. Pet-1 was originally shown to positively regulate genes needed for 5-HT synthesis, reuptake and vesicular transport, hence 5-HT neuron-type transmitter identity. It has now been shown to regulate, both positively and negatively, many other categories of genes in 5-HT neurons including ion channels, GPCRs, transporters, neuropeptides, and other transcription factors. Its function as a terminal selector results in the maturation of 5-HT neuron excitability, firing characteristics, and synaptic modulation by several neurotransmitters. Furthermore, there is a temporal requirement for Pet-1 in the control of postmitotic gene expression trajectories thus indicating a direct role in 5-HT neuron maturation. Proper regulation of the maturation of cellular identity is critical for normal neuronal functioning and perturbations in the gene regulatory networks controlling these processes may result in long-lasting changes in brain function in adulthood. Further study of 5-HT neuron gene regulatory networks is likely to provide additional insight into how neurons acquire their mature identities and how terminal selector-type TFs function in postmitotic vertebrate neurons.
Arenas-Mena, Cesar; Coffman, James A.
2016-01-01
Summary It is proposed that the evolution of complex animals required repressive genetic mechanisms for controlling the transcriptional and proliferative potency of cells. Unicellular organisms are transcriptionally potent, able to express their full genetic complement as the need arises through their life cycle, whereas differentiated cells of multicellular organisms can only express a fraction of their genomic potential. Likewise, whereas cell proliferation in unicellular organisms is primarily limited by nutrient availability, cell proliferation in multicellular organisms is developmentally regulated. Repressive genetic controls limiting the potency of cells at the end of ontogeny would have stabilized the gene expression states of differentiated cells and prevented disruptive proliferation, allowing the emergence of diverse cell types and functional shapes. We propose that distal cis-regulatory elements represent the primary innovations that set the stage for the evolution of developmental gene regulatory networks and the repressive control of key multipotency and cell-cycle control genes. The testable prediction of this model is that the genomes of extant animals, unlike those of our unicellular relatives, encode gene regulatory circuits dedicated to the developmental control of transcriptional and proliferative potency. PMID:26173445
TrawlerWeb: an online de novo motif discovery tool for next-generation sequencing datasets.
Dang, Louis T; Tondl, Markus; Chiu, Man Ho H; Revote, Jerico; Paten, Benedict; Tano, Vincent; Tokolyi, Alex; Besse, Florence; Quaife-Ryan, Greg; Cumming, Helen; Drvodelic, Mark J; Eichenlaub, Michael P; Hallab, Jeannette C; Stolper, Julian S; Rossello, Fernando J; Bogoyevitch, Marie A; Jans, David A; Nim, Hieu T; Porrello, Enzo R; Hudson, James E; Ramialison, Mirana
2018-04-05
A strong focus of the post-genomic era is mining of the non-coding regulatory genome in order to unravel the function of regulatory elements that coordinate gene expression (Nat 489:57-74, 2012; Nat 507:462-70, 2014; Nat 507:455-61, 2014; Nat 518:317-30, 2015). Whole-genome approaches based on next-generation sequencing (NGS) have provided insight into the genomic location of regulatory elements throughout different cell types, organs and organisms. These technologies are now widespread and commonly used in laboratories from various fields of research. This highlights the need for fast and user-friendly software tools dedicated to extracting cis-regulatory information contained in these regulatory regions; for instance transcription factor binding site (TFBS) composition. Ideally, such tools should not require prior programming knowledge to ensure they are accessible for all users. We present TrawlerWeb, a web-based version of the Trawler_standalone tool (Nat Methods 4:563-5, 2007; Nat Protoc 5:323-34, 2010), to allow for the identification of enriched motifs in DNA sequences obtained from next-generation sequencing experiments in order to predict their TFBS composition. TrawlerWeb is designed for online queries with standard options common to web-based motif discovery tools. In addition, TrawlerWeb provides three unique new features: 1) TrawlerWeb allows the input of BED files directly generated from NGS experiments, 2) it automatically generates an input-matched biologically relevant background, and 3) it displays resulting conservation scores for each instance of the motif found in the input sequences, which assists the researcher in prioritising the motifs to validate experimentally. Finally, to date, this web-based version of Trawler_standalone remains the fastest online de novo motif discovery tool compared to other popular web-based software, while generating predictions with high accuracy. TrawlerWeb provides users with a fast, simple and easy-to-use web interface for de novo motif discovery. This will assist in rapidly analysing NGS datasets that are now being routinely generated. TrawlerWeb is freely available and accessible at: http://trawler.erc.monash.edu.au .
Luszcz, Mary A; Anstey, Kaarin J; Ghisletta, Paolo
2015-01-01
Neither subjective memory beliefs, nor remembering itself, can be isolated from the overall context in which one is aging, nor are the drivers of memory complaints well specified. Sense of control is an important self-regulatory resource that drives cognitive and physical health over the lifespan. Existing findings are equivocal concerning both the extent of stability or change in control beliefs over time as well as their contribution to changes in behavior. Subjective beliefs may play a role when engaging memory processes or identifying memory complaints, and it has been argued that self-regulatory potential in general may be limited by age-related changes in the domains of health and cognition. We aimed to examine trajectories of change and shed light on relationships among subjective beliefs and indicators of memory and functional health. Participants' data were drawn from four measurement occasions over up to a 12-year period (1992-2004) from the Australian Longitudinal Study of Ageing (ALSA), a population-based study of older adults [age 65-100 years; mean age(SD) at the first and final occasion 78.2 (6.7) and 84.9 (4.9) years, respectively]. Participants completed three questionnaires assessing subjective beliefs concerning (1) memory knowledge and control, (2) health control, and (3) expectancy of control over a range of lifestyle situations. Memory comprised a recall composite. Functional health tapped mobility and disability. Latent growth curve models incorporated informative covariates (baseline age, gender, self-rated health, education, and chronic conditions). While subjective memory control beliefs, but not subjective knowledge of memory tasks, improved over 12 years, neither was associated with level of memory performance. Knowledge of memory tasks was linked to a significant memory decline. Beliefs about memory, health, and lifestyle were interrelated. Declines in remembering and health were also coupled; moreover, changes in both were coupled with change in lifestyle control beliefs. This is the first examination of individual differences in changes in, and relationships among, psychological domains of subjective beliefs about memory, health, and lifestyle, and objective remembering and functional health in very late life. Findings point to a system of coupled changes in memory and health in late life that is related to underlying beliefs about control over lifestyle. © 2015 S. Karger AG, Basel
Vermeirssen, Vanessa; De Clercq, Inge; Van Parys, Thomas; Van Breusegem, Frank; Van de Peer, Yves
2014-01-01
The abiotic stress response in plants is complex and tightly controlled by gene regulation. We present an abiotic stress gene regulatory network of 200,014 interactions for 11,938 target genes by integrating four complementary reverse-engineering solutions through average rank aggregation on an Arabidopsis thaliana microarray expression compendium. This ensemble performed the most robustly in benchmarking and greatly expands upon the availability of interactions currently reported. Besides recovering 1182 known regulatory interactions, cis-regulatory motifs and coherent functionalities of target genes corresponded with the predicted transcription factors. We provide a valuable resource of 572 abiotic stress modules of coregulated genes with functional and regulatory information, from which we deduced functional relationships for 1966 uncharacterized genes and many regulators. Using gain- and loss-of-function mutants of seven transcription factors grown under control and salt stress conditions, we experimentally validated 141 out of 271 predictions (52% precision) for 102 selected genes and mapped 148 additional transcription factor-gene regulatory interactions (49% recall). We identified an intricate core oxidative stress regulatory network where NAC13, NAC053, ERF6, WRKY6, and NAC032 transcription factors interconnect and function in detoxification. Our work shows that ensemble reverse-engineering can generate robust biological hypotheses of gene regulation in a multicellular eukaryote that can be tested by medium-throughput experimental validation. PMID:25549671
Vermeirssen, Vanessa; De Clercq, Inge; Van Parys, Thomas; Van Breusegem, Frank; Van de Peer, Yves
2014-12-01
The abiotic stress response in plants is complex and tightly controlled by gene regulation. We present an abiotic stress gene regulatory network of 200,014 interactions for 11,938 target genes by integrating four complementary reverse-engineering solutions through average rank aggregation on an Arabidopsis thaliana microarray expression compendium. This ensemble performed the most robustly in benchmarking and greatly expands upon the availability of interactions currently reported. Besides recovering 1182 known regulatory interactions, cis-regulatory motifs and coherent functionalities of target genes corresponded with the predicted transcription factors. We provide a valuable resource of 572 abiotic stress modules of coregulated genes with functional and regulatory information, from which we deduced functional relationships for 1966 uncharacterized genes and many regulators. Using gain- and loss-of-function mutants of seven transcription factors grown under control and salt stress conditions, we experimentally validated 141 out of 271 predictions (52% precision) for 102 selected genes and mapped 148 additional transcription factor-gene regulatory interactions (49% recall). We identified an intricate core oxidative stress regulatory network where NAC13, NAC053, ERF6, WRKY6, and NAC032 transcription factors interconnect and function in detoxification. Our work shows that ensemble reverse-engineering can generate robust biological hypotheses of gene regulation in a multicellular eukaryote that can be tested by medium-throughput experimental validation. © 2014 American Society of Plant Biologists. All rights reserved.
Unraveling transcriptional control and cis-regulatory codes using the software suite GeneACT
Cheung, Tom Hiu; Kwan, Yin Lam; Hamady, Micah; Liu, Xuedong
2006-01-01
Deciphering gene regulatory networks requires the systematic identification of functional cis-acting regulatory elements. We present a suite of web-based bioinformatics tools, called GeneACT , that can rapidly detect evolutionarily conserved transcription factor binding sites or microRNA target sites that are either unique or over-represented in differentially expressed genes from DNA microarray data. GeneACT provides graphic visualization and extraction of common regulatory sequence elements in the promoters and 3'-untranslated regions that are conserved across multiple mammalian species. PMID:17064417
Clinical translation of controlled protein delivery systems for tissue engineering.
Spiller, Kara L; Vunjak-Novakovic, Gordana
2015-04-01
Strategies that utilize controlled release of drugs and proteins for tissue engineering have enormous potential to regenerate damaged organs and tissues. The multiple advantages of controlled release strategies merit overcoming the significant challenges to translation, including high costs and long, difficult regulatory pathways. This review highlights the potential of controlled release of proteins for tissue engineering and regenerative medicine. We specifically discuss treatment modalities that have reached preclinical and clinical trials, with emphasis on controlled release systems for bone tissue engineering, the most advanced application with several products already in clinic. Possible strategies to address translational and regulatory concerns are also discussed.
Clinical translation of controlled protein delivery systems for tissue engineering
Spiller, Kara L.; Vunjak-Novakovic, Gordana
2013-01-01
Strategies that utilize controlled release of drugs and proteins for tissue engineering have enormous potential to regenerate damaged organs and tissues. The multiple advantages of controlled release strategies merit overcoming the significant challenges to translation, including high costs and long, difficult regulatory pathways. This review highlights the potential of controlled release of proteins for tissue engineering and regenerative medicine. We specifically discuss treatment modalities that have reached preclinical and clinical trials, with emphasis on controlled release systems for bone tissue engineering, the most advanced application with several products already in clinic. Possible strategies to address translational and regulatory concerns are also discussed. PMID:25787736
[Agricultural biotechnology safety assessment].
McClain, Scott; Jones, Wendelyn; He, Xiaoyun; Ladics, Gregory; Bartholomaeus, Andrew; Raybould, Alan; Lutter, Petra; Xu, Haibin; Wang, Xue
2015-01-01
Genetically modified (GM) crops were first introduced to farmers in 1995 with the intent to provide better crop yield and meet the increasing demand for food and feed. GM crops have evolved to include a thorough safety evaluation for their use in human food and animal feed. Safety considerations begin at the level of DNA whereby the inserted GM DNA is evaluated for its content, position and stability once placed into the crop genome. The safety of the proteins coded by the inserted DNA and potential effects on the crop are considered, and the purpose is to ensure that the transgenic novel proteins are safe from a toxicity, allergy, and environmental perspective. In addition, the grain that provides the processed food or animal feed is also tested to evaluate its nutritional content and identify unintended effects to the plant composition when warranted. To provide a platform for the safety assessment, the GM crop is compared to non-GM comparators in what is typically referred to as composition equivalence testing. New technologies, such as mass spectrometry and well-designed antibody-based methods, allow better analytical measurements of crop composition, including endogenous allergens. Many of the analytical methods and their intended uses are based on regulatory guidance documents, some of which are outlined in globally recognized documents such as Codex Alimentarius. In certain cases, animal models are recommended by some regulatory agencies in specific countries, but there is typically no hypothesis or justification of their use in testing the safety of GM crops. The quality and standardization of testing methods can be supported, in some cases, by employing good laboratory practices (GLP) and is recognized in China as important to ensure quality data. Although the number of recommended, in some cases, required methods for safety testing are increasing in some regulatory agencies, it should be noted that GM crops registered to date have been shown to be comparable to their nontransgenic counterparts and safe . The crops upon which GM development are based are generally considered safe.
Genetic and epigenetic variation in the lineage specification of regulatory T cells
Arvey, Aaron; van der Veeken, Joris; Plitas, George; Rich, Stephen S; Concannon, Patrick; Rudensky, Alexander Y
2015-01-01
Regulatory T (Treg) cells, which suppress autoimmunity and other inflammatory states, are characterized by a distinct set of genetic elements controlling their gene expression. However, the extent of genetic and associated epigenetic variation in the Treg cell lineage and its possible relation to disease states in humans remain unknown. We explored evolutionary conservation of regulatory elements and natural human inter-individual epigenetic variation in Treg cells to identify the core transcriptional control program of lineage specification. Analysis of single nucleotide polymorphisms in core lineage-specific enhancers revealed disease associations, which were further corroborated by high-resolution genotyping to fine map causal polymorphisms in lineage-specific enhancers. Our findings suggest that a small set of regulatory elements specify the Treg lineage and that genetic variation in Treg cell-specific enhancers may alter Treg cell function contributing to polygenic disease. DOI: http://dx.doi.org/10.7554/eLife.07571.001 PMID:26510014
Regulatory T cells: present facts and future hopes.
Becker, Christian; Stoll, Sabine; Bopp, Tobias; Schmitt, Edgar; Jonuleit, Helmut
2006-09-01
Naturally occurring CD4(+)CD25(+)Foxp3(+) regulatory T cells and several subsets of induced suppressor T cells are key players of the immune tolerance network and control the induction and effector phase of our immunological defense system. These T cell populations actively control the properties of other immune cells by suppressing their functional activity to prevent autoimmunity and transplant rejection but also influence the immune response to allergens as well as against tumor cells and pathogens. Even though we are far from completely understanding the molecular and cellular mechanisms that manage the different regulatory T cell populations, increasing evidence exists about their functional importance. The knowledge on their induction and activation opens the possibility for their selective manipulation in vivo as an attractive approach for an immunotherapy of unwanted immune responses. This review summarizes this knowledge and discusses the potential of regulatory T cells for novel immunointervention strategies in the future.
Lhakhang, Pempa; Gholami, Maryam; Knoll, Nina; Schwarzer, Ralf
2015-01-01
A sequential intervention to facilitate the adoption and maintenance of dental flossing was conducted among 205 students in India, aged 18-26 years. Two experimental groups received different treatment sequences and were observed at three assessment points, 34 days apart. One group received first a motivational intervention (intention, outcome expectancies, and risk perception, followed by a self-regulatory intervention (planning, self-efficacy, and action control). The second group received the same intervention in the opposite order. Both intervention sequences yielded gains in terms of flossing, planning, self-efficacy, and action control. However, at Time 2, those who had received the self-regulatory intervention first, were superior to their counterparts who had received the motivational intervention first. At Time 3, differences vanished as everyone had then received both interventions. Thus, findings highlight the benefits of a self-regulatory compared to a mere motivational intervention.
A transcription factor collective defines the HSN serotonergic neuron regulatory landscape
Artacho, Alejandro; Jimeno-Martín, Ángela; Chirivella, Laura; Weinberg, Peter
2018-01-01
Cell differentiation is controlled by individual transcription factors (TFs) that together activate a selection of enhancers in specific cell types. How these combinations of TFs identify and activate their target sequences remains poorly understood. Here, we identify the cis-regulatory transcriptional code that controls the differentiation of serotonergic HSN neurons in Caenorhabditis elegans. Activation of the HSN transcriptome is directly orchestrated by a collective of six TFs. Binding site clusters for this TF collective form a regulatory signature that is sufficient for de novo identification of HSN neuron functional enhancers. Among C. elegans neurons, the HSN transcriptome most closely resembles that of mouse serotonergic neurons. Mouse orthologs of the HSN TF collective also regulate serotonergic differentiation and can functionally substitute for their worm counterparts which suggests deep homology. Our results identify rules governing the regulatory landscape of a critically important neuronal type in two species separated by over 700 million years. PMID:29553368
Thick filament mechano-sensing is a calcium-independent regulatory mechanism in skeletal muscle.
Fusi, L; Brunello, E; Yan, Z; Irving, M
2016-10-31
Recent X-ray diffraction studies on actively contracting fibres from skeletal muscle showed that the number of myosin motors available to interact with actin-containing thin filaments is controlled by the stress in the myosin-containing thick filaments. Those results suggested that thick filament mechano-sensing might constitute a novel regulatory mechanism in striated muscles that acts independently of the well-known thin filament-mediated calcium signalling pathway. Here we test that hypothesis using probes attached to the myosin regulatory light chain in demembranated muscle fibres. We show that both the extent and kinetics of thick filament activation depend on thick filament stress but are independent of intracellular calcium concentration in the physiological range. These results establish direct control of myosin motors by thick filament mechano-sensing as a general regulatory mechanism in skeletal muscle that is independent of the canonical calcium signalling pathway.
Thick filament mechano-sensing is a calcium-independent regulatory mechanism in skeletal muscle
Fusi, L.; Brunello, E.; Yan, Z.; Irving, M.
2016-01-01
Recent X-ray diffraction studies on actively contracting fibres from skeletal muscle showed that the number of myosin motors available to interact with actin-containing thin filaments is controlled by the stress in the myosin-containing thick filaments. Those results suggested that thick filament mechano-sensing might constitute a novel regulatory mechanism in striated muscles that acts independently of the well-known thin filament-mediated calcium signalling pathway. Here we test that hypothesis using probes attached to the myosin regulatory light chain in demembranated muscle fibres. We show that both the extent and kinetics of thick filament activation depend on thick filament stress but are independent of intracellular calcium concentration in the physiological range. These results establish direct control of myosin motors by thick filament mechano-sensing as a general regulatory mechanism in skeletal muscle that is independent of the canonical calcium signalling pathway. PMID:27796302
Husten, Corinne G; Deyton, Lawrence R
2013-05-04
The USA has a rich history of public health efforts to reduce morbidity and mortality from tobacco use. Comprehensive tobacco-prevention programmes, when robustly implemented, reduce the prevalence of youth and adult smoking, decrease cigarette consumption, accelerate declines in tobacco-related deaths, and diminish health-care costs from tobacco-related diseases. Effective public health interventions include raising the price of tobacco products, smoke-free policies, counter-marketing campaigns, advertising restrictions, augmenting access to treatment for tobacco use through insurance coverage and telephone help lines, and comprehensive approaches to prevent children and adolescents from accessing tobacco products. The US Food and Drug Administration (FDA) has six major areas of regulatory authority: regulation of tobacco products; regulation of the advertising, marketing, and promotion of tobacco products; regulation of the distribution and sales of tobacco products; enforcement of the provisions of the Tobacco Control Act and tobacco regulations; regulatory science to support FDA authorities and activities; and public education about the harms of tobacco products and to support FDA regulatory actions. With passing of the Family Smoking Prevention and Tobacco Control Act (Tobacco Control Act) in June, 2009, important new regulatory approaches were added to the tobacco prevention and control arsenal. Copyright © 2013 Elsevier Ltd. All rights reserved.
The Neural Correlates of Self-Regulatory Fatigability During Inhibitory Control of Eye Blinking.
Abi-Jaoude, Elia; Segura, Barbara; Cho, Sang Soo; Crawley, Adrian; Sandor, Paul
2018-05-30
The capacity to regulate urges is an important human characteristic associated with a range of social and health outcomes. Self-regulatory capacity has been postulated to have a limited reserve, which when depleted leads to failure. The authors aimed to investigate the neural correlates of self-regulatory fatigability. Functional MRI was used to detect brain activations in 19 right-handed healthy subjects during inhibition of eye blinking, in a block design. The increase in number of blinks during blink inhibition from the first to the last block was used as covariate of interest. There was an increase in the number of eye blinks escaping inhibitory control across blink inhibition blocks, whereas there was no change in the number of eye blinks occurring during rest blocks. Inhibition of blinking activated a wide network bilaterally, including the inferior frontal gyrus, dorsolateral prefrontal cortex, dorsal anterior cingulate cortex, supplementary motor area, and caudate. Deteriorating performance was associated with activity in orbitofrontal cortex, ventromedial prefrontal cortex, rostroventral anterior cingulate cortex, precuneus, somatosensory, and parietal areas. As anticipated, effortful eye-blink control resulted in activation of prefrontal control areas and regions involved in urge and interoceptive processing. Worsening performance was associated with activations in brain areas involved in urge, as well as regions involved in motivational evaluation. These findings suggest that self-regulatory fatigability is associated with relatively less recruitment of prefrontal cortical regions involved in executive control.
Iyer, Mohan N Harihara; Sarmah, Babul C; Tamuli, Madan K; Das, Anubrata; Kalita, Dhireswar
2012-08-01
The present study was conducted to assess whether the partial replacement of feed energy by vegetable oils containing high medium-chain saturated fatty acids (MCFA) and n-6 polyunsaturated fatty acids (PUFA) would modify lipogenic gene expression and other parameter of fat metabolism in pigs. Eighteen pigs (17-19 kg body weight) received one of three experimental diets for 60 days (six animals per group): (i) Control diet; (ii) a diet with sunflower oil (SO) or (iii) a diet with coconut oil (CO). In diets SO and CO, 10% of the feed energy was replaced by the respective oils. The experimental treatment did not influence the performance of the pigs. In blood serum, an increased content of total cholesterol was observed for SO and CO fed animals, whereas no significant changes for total triglycerides and different lipoprotein fractions were detected. The fatty acid composition of adipose tissue was significantly modified, with an increased content of MCFA and n-6 PUFA in CO and SO fed pigs, respectively. The gene expression for fatty acid synthase was decreased for SO and CO fed pigs; for stearoyl CoA desaturase and sterol regulatory element binding protein, a depression was observed in SO but not in CO fed pigs. The results of present study suggest that the type of dietary fat can modulate the adipose tissue gene expression and fatty acid composition differentially, with minimal effect on serum lipid profile.
Sphingolipid topology and the dynamic organization and function of membrane proteins.
van Meer, Gerrit; Hoetzl, Sandra
2010-05-03
When acquiring internal membranes and vesicular transport, eukaryotic cells started to synthesize sphingolipids and sterols. The physical differences between these and the glycerophospholipids must have enabled the cells to segregate lipids in the membrane plane. Localizing this event to the Golgi then allowed them to create membranes of different lipid composition, notably a thin, flexible ER membrane, consisting of glycerolipids, and a sturdy plasma membrane containing at least 50% sphingolipids and sterols. Besides sorting membrane proteins, in the course of evolution the simple sphingolipids obtained key positions in cellular physiology by developing specific interactions with (membrane) proteins involved in the execution and control of signaling. The few signaling sphingolipids in mammals must provide basic transmission principles that evolution has built upon for organizing the specific regulatory pathways tuned to the needs of the different cell types in the body. Copyright 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
mRNA interactome capture in mammalian cells.
Kastelic, Nicolai; Landthaler, Markus
2017-08-15
Throughout their entire life cycle, mRNAs are associated with RNA-binding proteins (RBPs), forming ribonucleoprotein (RNP) complexes with highly dynamic compositions. Their interplay is one key to control gene regulatory mechanisms from mRNA synthesis to decay. To assay the global scope of RNA-protein interactions, we and others have published a method combining crosslinking with highly stringent oligo(dT) affinity purification to enrich proteins associated with polyadenylated RNA (poly(A)+ RNA). Identification of the poly(A)+ RNA-bound proteome (also: mRNA interactome capture) has by now been applied to a diversity of cell lines and model organisms, uncovering comprehensive repertoires of RBPs and hundreds of novel RBP candidates. In addition to determining the RBP catalog in a given biological system, mRNA interactome capture allows the examination of changes in protein-mRNA interactions in response to internal and external stimuli, altered cellular programs and disease. Copyright © 2017. Published by Elsevier Inc.
Ravichandran, Srikanth; Del Sol, Antonio
2017-02-01
Understanding how the cellular niche controls the stem cell phenotype is often hampered due to the complexity of variegated niche composition, its dynamics, and nonlinear stem cell-niche interactions. Here, we propose a systems biology view that considers stem cell-niche interactions as a many-body problem amenable to simplification by the concept of mean field approximation. This enables approximation of the niche effect on stem cells as a constant field that induces sustained activation/inhibition of specific stem cell signaling pathways in all stem cells within heterogeneous populations exhibiting the same phenotype (niche determinants). This view offers a new basis for the development of single cell-based computational approaches for identifying niche determinants, which has potential applications in regenerative medicine and tissue engineering. © 2017 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
Loss of astrocyte cholesterol synthesis disrupts neuronal function and alters whole-body metabolism.
Ferris, Heather A; Perry, Rachel J; Moreira, Gabriela V; Shulman, Gerald I; Horton, Jay D; Kahn, C Ronald
2017-01-31
Cholesterol is important for normal brain function. The brain synthesizes its own cholesterol, presumably in astrocytes. We have previously shown that diabetes results in decreased brain cholesterol synthesis by a reduction in sterol regulatory element-binding protein 2 (SREBP2)-regulated transcription. Here we show that coculture of control astrocytes with neurons enhances neurite outgrowth, and this is reduced with SREBP2 knockdown astrocytes. In vivo, mice with knockout of SREBP2 in astrocytes have impaired brain development and behavioral and motor defects. These mice also have altered energy balance, altered body composition, and a shift in metabolism toward carbohydrate oxidation driven by increased glucose oxidation by the brain. Thus, SREBP2-mediated cholesterol synthesis in astrocytes plays an important role in brain and neuronal development and function, and altered brain cholesterol synthesis may contribute to the interaction between metabolic diseases, such as diabetes and altered brain function.
Cnidarian-microbe interactions and the origin of innate immunity in metazoans.
Bosch, Thomas C G
2013-01-01
Most epithelia in animals are colonized by microbial communities. These resident microbes influence fitness and thus ecologically important traits of their hosts, ultimately forming a metaorganism consisting of a multicellular host and a community of associated microorganisms. Recent discoveries in the cnidarian Hydra show that components of the innate immune system as well as transcriptional regulators of stem cells are involved in maintaining homeostasis between animals and their resident microbiota. Here I argue that components of the innate immune system with its host-specific antimicrobial peptides and a rich repertoire of pattern recognition receptors evolved in early-branching metazoans because of the need to control the resident beneficial microbes, not because of invasive pathogens. I also propose a mutual intertwinement between the stem cell regulatory machinery of the host and the resident microbiota composition, such that disturbances in one trigger a restructuring and resetting of the other.
Loss of astrocyte cholesterol synthesis disrupts neuronal function and alters whole-body metabolism
Ferris, Heather A.; Perry, Rachel J.; Moreira, Gabriela V.; Shulman, Gerald I.; Horton, Jay D.; Kahn, C. Ronald
2017-01-01
Cholesterol is important for normal brain function. The brain synthesizes its own cholesterol, presumably in astrocytes. We have previously shown that diabetes results in decreased brain cholesterol synthesis by a reduction in sterol regulatory element-binding protein 2 (SREBP2)-regulated transcription. Here we show that coculture of control astrocytes with neurons enhances neurite outgrowth, and this is reduced with SREBP2 knockdown astrocytes. In vivo, mice with knockout of SREBP2 in astrocytes have impaired brain development and behavioral and motor defects. These mice also have altered energy balance, altered body composition, and a shift in metabolism toward carbohydrate oxidation driven by increased glucose oxidation by the brain. Thus, SREBP2-mediated cholesterol synthesis in astrocytes plays an important role in brain and neuronal development and function, and altered brain cholesterol synthesis may contribute to the interaction between metabolic diseases, such as diabetes and altered brain function. PMID:28096339
Implementing AORN recommended practices for hand hygiene.
Patrick, Marcia; Van Wicklin, Sharon A
2012-04-01
This article focuses on implementing the revised AORN "Recommended practices for hand hygiene in the perioperative setting." The content of the document has been expanded and reorganized from the previous iteration and now includes specific activity statements about water temperature, water and soap dispensing controls, the type of dispensers to use, paper towel dispenser requirements, placement of soap and rub dispensers, and regulatory requirements for products and recommendations for hand hygiene practices. A successful hand hygiene program allows end users to have input into the selection and evaluation of products and should include educating personnel about proper hand hygiene, product composition and safety, and how and when to use specific products. Measures for competency evaluation and compliance monitoring include observations, quizzes, skills labs, electronic monitoring systems, handheld device applications, and data collection forms. Copyright © 2012 AORN, Inc. Published by Elsevier Inc. All rights reserved.
Cis-regulatory landscapes of four cell types of the retina.
Hartl, Dominik; Krebs, Arnaud R; Jüttner, Josephine; Roska, Botond; Schübeler, Dirk
2017-11-16
The retina is composed of ∼50 cell-types with specific functions for the process of vision. Identification of the cis-regulatory elements active in retinal cell-types is key to elucidate the networks controlling this diversity. Here, we combined transcriptome and epigenome profiling to map the regulatory landscape of four cell-types isolated from mouse retinas including rod and cone photoreceptors as well as rare inter-neuron populations such as horizontal and starburst amacrine cells. Integration of this information reveals sequence determinants and candidate transcription factors for controlling cellular specialization. Additionally, we refined parallel reporter assays to enable studying the transcriptional activity of large collection of sequences in individual cell-types isolated from a tissue. We provide proof of concept for this approach and its scalability by characterizing the transcriptional capacity of several hundred putative regulatory sequences within individual retinal cell-types. This generates a catalogue of cis-regulatory regions active in retinal cell types and we further demonstrate their utility as potential resource for cellular tagging and manipulation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
The 3’-Jα Region of the TCRα Locus Bears Gene Regulatory Activity in Thymic and Peripheral T Cells
Kučerová-Levisohn, Martina; Knirr, Stefan; Mejia, Rosa I.; Ortiz, Benjamin D.
2015-01-01
Much progress has been made in understanding the important cis-mediated controls on mouse TCRα gene function, including identification of the Eα enhancer and TCRα locus control region (LCR). Nevertheless, previous data have suggested that other cis-regulatory elements may reside in the locus outside of the Eα/LCR. Based on prior findings, we hypothesized the existence of gene regulatory elements in a 3.9-kb region 5’ of the Cα exons. Using DNase hypersensitivity assays and TCRα BAC reporter transgenes in mice, we detected gene regulatory activity within this 3.9-kb region. This region is active in both thymic and peripheral T cells, and selectively affects upstream, but not downstream, gene expression. Together, these data indicate the existence of a novel cis-acting regulatory complex that contributes to TCRα transgene expression in vivo. The active chromatin sites we discovered within this region would remain in the locus after TCRα gene rearrangement, and thus may contribute to endogenous TCRα gene activity, particularly in peripheral T cells, where the Eα element has been found to be inactive. PMID:26177549
Academic performance and self-regulatory skills in elite youth soccer players.
Jonker, Laura; Elferink-Gemser, Marije T; Toering, Tynke T; Lyons, James; Visscher, Chris
2010-12-01
Although elite athletes have been reported to be high academic achievers, many elite soccer players struggle with a stereotype of being low academic achievers. The purpose of this study was to compare the academic level (pre-university or pre-vocational) and self-regulatory skills (planning, self-monitoring, evaluation, reflection, effort, and self-efficacy) of elite youth soccer players aged 12-16 years (n = 128) with those of 164 age-matched controls (typical students). The results demonstrate that the elite youth soccer players are more often enrolled in the pre-university academic system, which means that they are high academic achievers, compared with the typical student. The elite players also report an increased use of self-regulatory skills, in particular self-monitoring, evaluation, reflection, and effort. In addition, control students in the pre-university system had more highly developed self-regulatory skills than those in the pre-vocational system, whereas no difference was observed within the soccer population. This suggests that the relatively stronger self-regulatory skills reported by the elite youth soccer players may be essential for performance at the highest levels of sport competition and in academia.
Summary Analysis: Hanford Site Composite Analysis Update
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, W. E.; Lehman, L. L.
2017-06-05
The Hanford Site’s currently maintained Composite Analysis, originally completed in 1998, requires an update. A previous update effort was undertaken by the U.S. Department of Energy (DOE) in 2001-2005, but was ended before completion to allow the Tank Closure & Waste Management Environmental Impact Statement (TC&WM EIS) (DOE/EIS-0391) to be prepared without potential for conflicting sitewide models. This EIS was issued in 2012, and the deferral was ended with guidance in memorandum “Modeling to Support Regulatory Decision Making at Hanford” (Williams, 2012) provided with the aim of ensuring subsequent modeling is consistent with the EIS.
Mern, Demissew S; Ha, Seung-Wook; Khodaverdi, Viola; Gliese, Nicole; Görisch, Helmut
2010-05-01
In addition to the known response regulator ErbR (former AgmR) and the two-component regulatory system EraSR (former ExaDE), three additional regulatory proteins have been identified as being involved in controlling transcription of the aerobic ethanol oxidation system in Pseudomonas aeruginosa. Two putative sensor kinases, ErcS and ErcS', and a response regulator, ErdR, were found, all of which show significant similarity to the two-component flhSR system that controls methanol and formaldehyde metabolism in Paracoccus denitrificans. All three identified response regulators, EraR (formerly ExaE), ErbR (formerly AgmR) and ErdR, are members of the luxR family. The three sensor kinases EraS (formerly ExaD), ErcS and ErcS' do not contain a membrane domain. Apparently, they are localized in the cytoplasm and recognize cytoplasmic signals. Inactivation of gene ercS caused an extended lag phase on ethanol. Inactivation of both genes, ercS and ercS', resulted in no growth at all on ethanol, as did inactivation of erdR. Of the three sensor kinases and three response regulators identified thus far, only the EraSR (formerly ExaDE) system forms a corresponding kinase/regulator pair. Using reporter gene constructs of all identified regulatory genes in different mutants allowed the hierarchy of a hypothetical complex regulatory network to be established. Probably, two additional sensor kinases and two additional response regulators, which are hidden among the numerous regulatory genes annotated in the genome of P. aeruginosa, remain to be identified.
The plant cytoskeleton controls regulatory volume increase.
Liu, Qiong; Qiao, Fei; Ismail, Ahmed; Chang, Xiaoli; Nick, Peter
2013-09-01
The ability to adjust cell volume is required for the adaptation to osmotic stress. Plant protoplasts can swell within seconds in response to hypoosmotic shock suggesting that membrane material is released from internal stores. Since the stability of plant membranes depends on submembraneous actin, we asked, whether this regulatory volume control depends on the cytoskeleton. As system we used two cell lines from grapevine which differ in their osmotic tolerance and observed that the cytoskeleton responded differently in these two cell lines. To quantify the ability for regulatory volume control, we used hydraulic conductivity (Lp) as readout and demonstrated a role of the cytoskeleton in protoplast swelling. Chelation of calcium, inhibition of calcium channels, or manipulation of membrane fluidity, did not significantly alter Lp, whereas direct manipulation of the cytoskeleton via specific chemical reagents, or indirectly, through the bacterial elicitor Harpin or activation of phospholipase D, was effective. By optochemical engineering of actin using a caged form of the phytohormone auxin we can break the symmetry of actin organisation resulting in a localised deformation of cell shape indicative of a locally increased Lp. We interpret our findings in terms of a model, where the submembraneous cytoskeleton controls the release of intracellular membrane stores during regulatory volume change. Copyright © 2013 Elsevier B.V. All rights reserved.
Bonertz, A; Roberts, G; Slater, J E; Bridgewater, J; Rabin, R L; Hoefnagel, M; Timon, M; Pini, C; Pfaar, O; Sheikh, A; Ryan, D; Akdis, C; Goldstein, J; Poulsen, L K; van Ree, R; Rhyner, C; Barber, D; Palomares, O; Pawankar, R; Hamerlijnk, D; Klimek, L; Agache, I; Angier, E; Casale, T; Fernandez-Rivas, M; Halken, S; Jutel, M; Lau, S; Pajno, G; Sturm, G; Varga, E M; Gerth van Wijk, R; Bonini, S; Muraro, A; Vieths, S
2018-04-01
Adequate quality is essential for any medicinal product to be eligible for marketing. Quality includes verification of the identity, content and purity of a medicinal product in combination with a specified production process and its control. Allergen products derived from natural sources require particular considerations to ensure adequate quality. Here, we describe key aspects of the documentation on manufacturing and quality aspects for allergen immunotherapy products in the European Union and the United States. In some key parts, requirements in these areas are harmonized while other fields are regulated separately between both regions. Essential differences are found in the use of Reference Preparations, or the requirement to apply standardized assays for potency determination. As the types of products available are different in specific regions, regulatory guidance for such products may also be available in one specific region only, such as for allergoids in the European Union. Region-specific issues and priorities are a result of this. As allergen products derived from natural sources are inherently variable in their qualitative and quantitative composition, these products present special challenges to balance the variability and ensuring batch-to-batch consistency. Advancements in scientific knowledge on specific allergens and their role in allergic disease will consequentially find representation in future regulatory guidelines. © 2017 EAACI and John Wiley and Sons A/S. Published by John Wiley and Sons Ltd.
Pathogenic adaptation of intracellular bacteria by rewiring a cis-regulatory input function.
Osborne, Suzanne E; Walthers, Don; Tomljenovic, Ana M; Mulder, David T; Silphaduang, Uma; Duong, Nancy; Lowden, Michael J; Wickham, Mark E; Waller, Ross F; Kenney, Linda J; Coombes, Brian K
2009-03-10
The acquisition of DNA by horizontal gene transfer enables bacteria to adapt to previously unexploited ecological niches. Although horizontal gene transfer and mutation of protein-coding sequences are well-recognized forms of pathogen evolution, the evolutionary significance of cis-regulatory mutations in creating phenotypic diversity through altered transcriptional outputs is not known. We show the significance of regulatory mutation for pathogen evolution by mapping and then rewiring a cis-regulatory module controlling a gene required for murine typhoid. Acquisition of a binding site for the Salmonella pathogenicity island-2 regulator, SsrB, enabled the srfN gene, ancestral to the Salmonella genus, to play a role in pathoadaptation of S. typhimurium to a host animal. We identified the evolved cis-regulatory module and quantified the fitness gain that this regulatory output accrues for the bacterium using competitive infections of host animals. Our findings highlight a mechanism of pathogen evolution involving regulatory mutation that is selected because of the fitness advantage the new regulatory output provides the incipient clones.
Pathogenic adaptation of intracellular bacteria by rewiring a cis-regulatory input function
Osborne, Suzanne E.; Walthers, Don; Tomljenovic, Ana M.; Mulder, David T.; Silphaduang, Uma; Duong, Nancy; Lowden, Michael J.; Wickham, Mark E.; Waller, Ross F.; Kenney, Linda J.; Coombes, Brian K.
2009-01-01
The acquisition of DNA by horizontal gene transfer enables bacteria to adapt to previously unexploited ecological niches. Although horizontal gene transfer and mutation of protein-coding sequences are well-recognized forms of pathogen evolution, the evolutionary significance of cis-regulatory mutations in creating phenotypic diversity through altered transcriptional outputs is not known. We show the significance of regulatory mutation for pathogen evolution by mapping and then rewiring a cis-regulatory module controlling a gene required for murine typhoid. Acquisition of a binding site for the Salmonella pathogenicity island-2 regulator, SsrB, enabled the srfN gene, ancestral to the Salmonella genus, to play a role in pathoadaptation of S. typhimurium to a host animal. We identified the evolved cis-regulatory module and quantified the fitness gain that this regulatory output accrues for the bacterium using competitive infections of host animals. Our findings highlight a mechanism of pathogen evolution involving regulatory mutation that is selected because of the fitness advantage the new regulatory output provides the incipient clones. PMID:19234126
Functional Evolution of a cis-Regulatory Module
Palsson, Arnar; Alekseeva, Elena; Bergman, Casey M; Nathan, Janaki; Kreitman, Martin
2005-01-01
Lack of knowledge about how regulatory regions evolve in relation to their structure–function may limit the utility of comparative sequence analysis in deciphering cis-regulatory sequences. To address this we applied reverse genetics to carry out a functional genetic complementation analysis of a eukaryotic cis-regulatory module—the even-skipped stripe 2 enhancer—from four Drosophila species. The evolution of this enhancer is non-clock-like, with important functional differences between closely related species and functional convergence between distantly related species. Functional divergence is attributable to differences in activation levels rather than spatiotemporal control of gene expression. Our findings have implications for understanding enhancer structure–function, mechanisms of speciation and computational identification of regulatory modules. PMID:15757364
NASA Astrophysics Data System (ADS)
Tkačik, Gašper
2016-07-01
The article by O. Martin and colleagues provides a much needed systematic review of a body of work that relates the topological structure of genetic regulatory networks to evolutionary selection for function. This connection is very important. Using the current wealth of genomic data, statistical features of regulatory networks (e.g., degree distributions, motif composition, etc.) can be quantified rather easily; it is, however, often unclear how to interpret the results. On a graph theoretic level the statistical significance of the results can be evaluated by comparing observed graphs to ;randomized; ones (bravely ignoring the issue of how precisely to randomize!) and comparing the frequency of appearance of a particular network structure relative to a randomized null expectation. While this is a convenient operational test for statistical significance, its biological meaning is questionable. In contrast, an in-silico genotype-to-phenotype model makes explicit the assumptions about the network function, and thus clearly defines the expected network structures that can be compared to the case of no selection for function and, ultimately, to data.
Baumbach, Jan; Wittkop, Tobias; Rademacher, Katrin; Rahmann, Sven; Brinkrolf, Karina; Tauch, Andreas
2007-04-30
CoryneRegNet is an ontology-based data warehouse for the reconstruction and visualization of transcriptional regulatory interactions in prokaryotes. To extend the biological content of CoryneRegNet, we added comprehensive data on transcriptional regulations in the model organism Escherichia coli K-12, originally deposited in the international reference database RegulonDB. The enhanced web interface of CoryneRegNet offers several types of search options. The results of a search are displayed in a table-based style and include a visualization of the genetic organization of the respective gene region. Information on DNA binding sites of transcriptional regulators is depicted by sequence logos. The results can also be displayed by several layouters implemented in the graphical user interface GraphVis, allowing, for instance, the visualization of genome-wide network reconstructions and the homology-based inter-species comparison of reconstructed gene regulatory networks. In an application example, we compare the composition of the gene regulatory networks involved in the SOS response of E. coli and Corynebacterium glutamicum. CoryneRegNet is available at the following URL: http://www.cebitec.uni-bielefeld.de/groups/gi/software/coryneregnet/.
Modrák, Martin; Vohradský, Jiří
2018-04-13
Identifying regulons of sigma factors is a vital subtask of gene network inference. Integrating multiple sources of data is essential for correct identification of regulons and complete gene regulatory networks. Time series of expression data measured with microarrays or RNA-seq combined with static binding experiments (e.g., ChIP-seq) or literature mining may be used for inference of sigma factor regulatory networks. We introduce Genexpi: a tool to identify sigma factors by combining candidates obtained from ChIP experiments or literature mining with time-course gene expression data. While Genexpi can be used to infer other types of regulatory interactions, it was designed and validated on real biological data from bacterial regulons. In this paper, we put primary focus on CyGenexpi: a plugin integrating Genexpi with the Cytoscape software for ease of use. As a part of this effort, a plugin for handling time series data in Cytoscape called CyDataseries has been developed and made available. Genexpi is also available as a standalone command line tool and an R package. Genexpi is a useful part of gene network inference toolbox. It provides meaningful information about the composition of regulons and delivers biologically interpretable results.
77 FR 25874 - Pennsylvania Regulatory Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-02
... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 938... Mining Reclamation and Enforcement (OSM), Interior. ACTION: Final rule; removal of required amendment... regulatory program (the ``Pennsylvania program'') regulations under the Surface Mining Control and...
77 FR 1430 - Maryland Regulatory Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-10
... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 920... Mining Reclamation and Enforcement (OSM), Interior. ACTION: Proposed rule; extension of the comment... the Maryland regulatory program (the ``Maryland program'') under the Surface Mining Control and...
Candy or apple? How self-control resources and motives impact dietary healthiness in women.
Sproesser, Gudrun; Strohbach, Stefanie; Schupp, Harald; Renner, Britta
2011-06-01
People can choose between a virtually endless array of food items rising the question, which factors determine healthy or unhealthy food choice. The present study examines the impact of two contrasting motives for food choice (affect regulation and body weight control) and self-regulatory competences on healthy eating within a sample of women (N=761). The data show that a relative lack of self-regulatory resources combined with a high tendency to regulate negative affect through comfort eating was associated with an unfavorable dietary pattern. Accordingly, a healthy dietary pattern requires not only self-regulatory capacities but also a facilitating motive structure. Copyright © 2011 Elsevier Ltd. All rights reserved.
Long, Justin M.; Ray, Balmiki; Lahiri, Debomoy K.
2012-01-01
Regulation of amyloid-β (Aβ) precursor protein (APP) expression is complex. MicroRNAs (miRNAs) are expected to participate in the molecular network that controls this process. The composition of this network is, however, still undefined. Elucidating the complement of miRNAs that regulate APP expression should reveal novel drug targets capable of modulating Aβ production in AD. Here, we investigated the contribution of miR-153 to this regulatory network. A miR-153 target site within the APP 3′-untranslated region (3′-UTR) was predicted by several bioinformatic algorithms. We found that miR-153 significantly reduced reporter expression when co-transfected with an APP 3′-UTR reporter construct. Mutation of the predicted miR-153 target site eliminated this reporter response. miR-153 delivery in both HeLa cells and primary human fetal brain cultures significantly reduced APP expression. Delivery of a miR-153 antisense inhibitor to human fetal brain cultures significantly elevated APP expression. miR-153 delivery also reduced expression of the APP paralog APLP2. High functional redundancy between APP and APLP2 suggests that miR-153 may target biological pathways in which they both function. Interestingly, in a subset of human AD brain specimens with moderate AD pathology, miR-153 levels were reduced. This same subset also exhibited elevated APP levels relative to control specimens. Therefore, endogenous miR-153 inhibits expression of APP in human neurons by specifically interacting with the APP 3′-UTR. This regulatory interaction may have relevance to AD etiology, where low miR-153 levels may drive increased APP expression in a subset of AD patients. PMID:22733824
Shafiee, Mohamad N; Mongan, Nigel; Seedhouse, Claire; Chapman, Caroline; Deen, Suha; Abu, Jafaru; Atiomo, William
2017-05-01
Women with polycystic ovary syndrome have a three-fold higher risk of endometrial cancer. Insulin resistance and hyperlipidemia may be pertinent factors in the pathogenesis of both conditions. The aim of this study was to investigate endometrial sterol regulatory element binding protein-1 gene expression in polycystic ovary syndrome and endometrial cancer endometrium, and to correlate endometrial sterol regulatory element binding protein-1 gene expression with serum lipid profiles. A cross-sectional study was performed at Nottingham University Hospital, UK. A total of 102 women (polycystic ovary syndrome, endometrial cancer and controls; 34 participants in each group) were recruited. Clinical and biochemical assessments were performed before endometrial biopsies were obtained from all participants. Taqman real-time polymerase chain reaction for endometrial sterol regulatory element binding protein-1 gene and its systemic protein expression were analyzed. The body mass indices of women with polycystic ovary syndrome (29.28 ± 2.91 kg/m 2 ) and controls (28.58 ± 2.62 kg/m 2 ) were not significantly different. Women with endometrial cancer had a higher mean body mass index (32.22 ± 5.70 kg/m 2 ). Sterol regulatory element binding protein-1 gene expression was significantly increased in polycystic ovary syndrome and endometrial cancer endometrium compared with controls (p < 0.0001). Sterol regulatory element binding protein-1 gene expression was positively correlated with body mass index (r = 0.017, p = 0.921) and waist-hip ratio (r = 0.023, p = 0.544) in polycystic ovary syndrome, but this was not statistically significant. Similarly, statistically insignificant positive correlations were found between endometrial sterol regulatory element binding protein-1 gene expression and body mass index in endometrial cancer (r = 0.643, p = 0.06) and waist-hip ratio (r = 0.096, p = 0.073). Sterol regulatory element binding protein-1 gene expression was significantly positively correlated with triglyceride in both polycystic ovary syndrome and endometrial cancer (p = 0.028 and p = 0.027, respectively). Quantitative serum sterol regulatory element binding protein-1 gene correlated with endometrial gene expression (p < 0.05). Sterol regulatory element binding protein-1 gene expression is significantly increased in the endometrium of women with polycystic ovary syndrome and women with endometrial cancer compared with controls and positively correlates with serum triglyceride in both polycystic ovary syndrome and endometrial cancer. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.
Establishing a Quality Control System for Stem Cell-Based Medicinal Products in China
2015-01-01
Stem cell-based medicinal products (SCMPs) are emerging as novel therapeutic products. The success of its development depends on the existence of an effective quality control system, which is constituted by quality control technologies, standards, reference materials, guidelines, and the associated management system in accordance with regulatory requirements along product lifespan. However, a worldwide, effective quality control system specific for SCMPs is still far from established partially due to the limited understanding of stem cell sciences and lack of quality control technologies for accurately assessing the safety and biological effectiveness of SCMPs before clinical use. Even though, based on the existing regulations and current stem cell sciences and technologies, initial actions toward the goal of establishing such a system have been taken as exemplified by recent development of new “interim guidelines” for governing quality control along development of SCMPs and new development of the associated quality control technologies in China. In this review, we first briefly introduced the major institutions involved in the regulation of cell substrates and therapeutic cell products in China and the existing regulatory documents and technical guidelines used as critical references for developing the new interim guidelines. With focus only on nonhematopoietic stem cells, we then discussed the principal quality attributes of SCMPs as well as our thinking of proper testing approaches to be established with relevant evaluation technologies to ensure all quality requirements of SCMPs along different manufacturing processes and development stages. At the end, some regulatory and technical challenges were also discussed with the conclusion that combined efforts should be taken to promote stem cell regulatory sciences to establish the effective quality control system for SCMPs. PMID:25471126
Patock-Peckham, J A; Cheong, J; Balhorn, M E; Nagoshi, C T
2001-09-01
This investigation sought to determine how different parenting styles are related to general self-regulatory processes that are linked to alcohol use and abuse. Self-regulation and, more specifically, thoughts of control over drinking are forms of positive self-control mechanisms. Parenting styles are known determinants of both negative and positive self-control mechanisms in offspring. According to social learning theory, stronger relationships between parenting style and self-regulatory processes would be expected from the parent who is the same sex as the respondent. A total of 144 female and 107 male college students currently using alcohol were administered a questionnaire on their alcohol use and problems, perceived style of parenting (authoritarian, permissive, or authoritative) of their parents, self-regulation, and perceived control of drinking. A model linking parenting styles, self-regulatory processes, and control over drinking with alcohol use and alcohol problems was tested across sex groups by using structural equation modeling. In general, the parenting style of the parent of the same sex as the respondent's was found to be significantly related to self-regulation, which is known to be protective against alcohol use and abuse. A permissive parent of the same sex as the respondent was negatively associated with good self-regulatory processes for both men and women. Having an authoritative mother was also shown to be related to higher levels of self-regulation for women. Self-regulation mediated the pathway from a permissive parenting style to perceived drinking control, which, in turn, mediated the pathway from self-regulation to alcohol use and problems. Finally, self-regulation mediated the positive pathway from an authoritative mother to perceived control over drinking for women.
Gerstein, Mark
2016-01-01
Gene expression is controlled by the combinatorial effects of regulatory factors from different biological subsystems such as general transcription factors (TFs), cellular growth factors and microRNAs. A subsystem’s gene expression may be controlled by its internal regulatory factors, exclusively, or by external subsystems, or by both. It is thus useful to distinguish the degree to which a subsystem is regulated internally or externally–e.g., how non-conserved, species-specific TFs affect the expression of conserved, cross-species genes during evolution. We developed a computational method (DREISS, dreiss.gerteinlab.org) for analyzing the Dynamics of gene expression driven by Regulatory networks, both External and Internal based on State Space models. Given a subsystem, the “state” and “control” in the model refer to its own (internal) and another subsystem’s (external) gene expression levels. The state at a given time is determined by the state and control at a previous time. Because typical time-series data do not have enough samples to fully estimate the model’s parameters, DREISS uses dimensionality reduction, and identifies canonical temporal expression trajectories (e.g., degradation, growth and oscillation) representing the regulatory effects emanating from various subsystems. To demonstrate capabilities of DREISS, we study the regulatory effects of evolutionarily conserved vs. divergent TFs across distant species. In particular, we applied DREISS to the time-series gene expression datasets of C. elegans and D. melanogaster during their embryonic development. We analyzed the expression dynamics of the conserved, orthologous genes (orthologs), seeing the degree to which these can be accounted for by orthologous (internal) versus species-specific (external) TFs. We found that between two species, the orthologs have matched, internally driven expression patterns but very different externally driven ones. This is particularly true for genes with evolutionarily ancient functions (e.g. the ribosomal proteins), in contrast to those with more recently evolved functions (e.g., cell-cell communication). This suggests that despite striking morphological differences, some fundamental embryonic-developmental processes are still controlled by ancient regulatory systems. PMID:27760135
van Rensburg, Ilana C; Loxton, Andre G
2018-01-01
Regulatory B cells (Bregs) have been shown to be present during several disease states. The phenotype of the cells is not completely defined and the function of these cells differ between disease. The presence of FASL expressing (killer) B cells during latent and successfully treated TB disease have been shown but whether these cells are similar to regulatory B cells remain unclear. We assessed the receptor expression of FASL/IL5 (killer B cells), CD24/CD38 (regulatory B cells) on whole peripheral blood of participants with untreated active TB and healthy controls. We then isolated B cells from a second cohort of M.tb exposed (Quantiferon (QFN) positive) and unexposed (Quantiferon negative) HIV negative participants, and evaluated the frequency of killer B cells induced following stimulation with BCG and/or CD40 and IL5. Our data reveal no difference in the expression on CD24 and CD38 between participants with active TB and the controls. There was also no difference in the frequency of regulatory B cells measured in the peripheral blood mononuclear cells (PBMC) fraction between latent TB and uninfected controls. We did however notice that regulatory B cells (CD24hiCD38hi) population express the FASL receptor. The expression of killer B cell phenotype (CD178+IL5RA+) was significantly higher in controls compared to those with active TB disease (1,06% vs 0,455%). Furthermore, we found that BCG restimulation significantly induced the FASL/IL5RA B cells but this was only evident in the QFN positive group. Our data suggest that both regulatory and killer B cells are present during latent and active TB disease but that the frequency of these populations are increased during latent disease. We also show that the FASL+IL5RA+ B killer B cells are induced in latent TB infection following BCG restimulation but whether these cells are indicative of protection remains unclear. Copyright © 2017 Elsevier Ltd. All rights reserved.
Strate, L D; Mayo, A M
1990-03-01
In September, 1988, the 100th Congress passed the Indian Gaming Regulatory Act, concluding five years of debate over the Indian Gaming issue - brought to a head by a Supreme Court decision in February, 1987, that barred states from regulating Indian Gaming. That case (State of California v. Cabazon Band of Mission Indians) forced the legislature to take a serious look at issues of gaming on Indian lands. The result was the creation of a three-tiered system whereby tribes will control ceremonial games, the federal government will control bingo, and the states and tribes will negotiate agreements to cover casino games, parimutuel racing, and jai alai, if such games are legal in that particular state. In light of the case of the Cabazon Indians and the passage of the Indian Gaming Regulatory Act, this paper will address the following competing issues: tribal sovereignty, state interests, federal interests, and states like Nevada, which have a regulated gaming industry.
Weininger, Sandy
2007-12-01
Developing safe and effective medical devices involves understanding the hazardous situations that can arise in clinical practice and implementing appropriate risk control measures. The hazardous situations may have their roots in the design or in the use of the device. Risk control measures may be engineering or clinically based. A multidisciplinary team of engineers and clinicians is needed to fully identify and assess the risks and implement and evaluate the effectiveness of the control measures. In this paper, I use three issues, calibration/accuracy, response time, and protective measures/alarms, to highlight the contributions of these groups. This important information is captured in standards and regulatory tools to control risk for respiratory gas monitors and pulse oximeters. This paper begins with a discussion of the framework of safety, explaining how voluntary standards and regulatory tools work. The discussion is followed by an examination of how engineering and clinical knowledge are used to support the assurance of safety.
Topology and Control of the Cell-Cycle-Regulated Transcriptional Circuitry
Haase, Steven B.; Wittenberg, Curt
2014-01-01
Nearly 20% of the budding yeast genome is transcribed periodically during the cell division cycle. The precise temporal execution of this large transcriptional program is controlled by a large interacting network of transcriptional regulators, kinases, and ubiquitin ligases. Historically, this network has been viewed as a collection of four coregulated gene clusters that are associated with each phase of the cell cycle. Although the broad outlines of these gene clusters were described nearly 20 years ago, new technologies have enabled major advances in our understanding of the genes comprising those clusters, their regulation, and the complex regulatory interplay between clusters. More recently, advances are being made in understanding the roles of chromatin in the control of the transcriptional program. We are also beginning to discover important regulatory interactions between the cell-cycle transcriptional program and other cell-cycle regulatory mechanisms such as checkpoints and metabolic networks. Here we review recent advances and contemporary models of the transcriptional network and consider these models in the context of eukaryotic cell-cycle controls. PMID:24395825
Glass Fibers for Printed Circuit Boards
NASA Astrophysics Data System (ADS)
Longobardo, Anthony V.
Fiberglass imparts numerous positive benefits to modern printed circuit boards. Reinforced laminate composites have an excellent cost-performance relationship that makes sense for most applications. At the leading edge of the technology, new glass fibers with improved properties, in combination with the best resin systems available, are able to meet very challenging performance, cost, and regulatory demands while remaining manufacturable.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-13
... securities markets outside the U.S. EDRs, for example, are designed for use in European securities markets... the composition and/or changes to the Fund's portfolio, and will be subject to procedures designed to... the portfolio, and will be subject to procedures designed to prevent the use and dissemination of...
fueled for the fleet to be subject to the regulatory requirements. Under Standard Compliance, the AFVs that may be used toward compliance or banked once the fleet achieves compliance for investments in composition. For more information, visit the EPAct State and Alternative Fuel Provider Fleets website
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-15
... composition and/or changes to the portfolio and will be subject to procedures designed to prevent the use and... evaluate the security's comparative credit rating. To the extent that the Fund invests in unrated... Exchange's rules be designed to prevent fraudulent and manipulative acts and practices, to promote just and...
GMOs in animal agriculture: time to consider both costs and benefits in regulatory evaluations.
Van Eenennaam, Alison L
2013-09-25
In 2012, genetically engineered (GE) crops were grown by 17.3 million farmers on over 170 million hectares. Over 70% of harvested GE biomass is fed to food producing animals, making them the major consumers of GE crops for the past 15 plus years. Prior to commercialization, GE crops go through an extensive regulatory evaluation. Over one hundred regulatory submissions have shown compositional equivalence, and comparable levels of safety, between GE crops and their conventional counterparts. One component of regulatory compliance is whole GE food/feed animal feeding studies. Both regulatory studies and independent peer-reviewed studies have shown that GE crops can be safely used in animal feed, and rDNA fragments have never been detected in products (e.g. milk, meat, eggs) derived from animals that consumed GE feed. Despite the fact that the scientific weight of evidence from these hundreds of studies have not revealed unique risks associated with GE feed, some groups are calling for more animal feeding studies, including long-term rodent studies and studies in target livestock species for the approval of GE crops. It is an opportune time to review the results of such studies as have been done to date to evaluate the value of the additional information obtained. Requiring long-term and target animal feeding studies would sharply increase regulatory compliance costs and prolong the regulatory process associated with the commercialization of GE crops. Such costs may impede the development of feed crops with enhanced nutritional characteristics and durability, particularly in the local varieties in small and poor developing countries. More generally it is time for regulatory evaluations to more explicitly consider both the reasonable and unique risks and benefits associated with the use of both GE plants and animals in agricultural systems, and weigh them against those associated with existing systems, and those of regulatory inaction. This would represent a shift away from a GE evaluation process that currently focuses only on risk assessment and identifying ever diminishing marginal hazards, to a regulatory approach that more objectively evaluates and communicates the likely impact of approving a new GE plant or animal on agricultural production systems.
GMOs in animal agriculture: time to consider both costs and benefits in regulatory evaluations
2013-01-01
In 2012, genetically engineered (GE) crops were grown by 17.3 million farmers on over 170 million hectares. Over 70% of harvested GE biomass is fed to food producing animals, making them the major consumers of GE crops for the past 15 plus years. Prior to commercialization, GE crops go through an extensive regulatory evaluation. Over one hundred regulatory submissions have shown compositional equivalence, and comparable levels of safety, between GE crops and their conventional counterparts. One component of regulatory compliance is whole GE food/feed animal feeding studies. Both regulatory studies and independent peer-reviewed studies have shown that GE crops can be safely used in animal feed, and rDNA fragments have never been detected in products (e.g. milk, meat, eggs) derived from animals that consumed GE feed. Despite the fact that the scientific weight of evidence from these hundreds of studies have not revealed unique risks associated with GE feed, some groups are calling for more animal feeding studies, including long-term rodent studies and studies in target livestock species for the approval of GE crops. It is an opportune time to review the results of such studies as have been done to date to evaluate the value of the additional information obtained. Requiring long-term and target animal feeding studies would sharply increase regulatory compliance costs and prolong the regulatory process associated with the commercialization of GE crops. Such costs may impede the development of feed crops with enhanced nutritional characteristics and durability, particularly in the local varieties in small and poor developing countries. More generally it is time for regulatory evaluations to more explicitly consider both the reasonable and unique risks and benefits associated with the use of both GE plants and animals in agricultural systems, and weigh them against those associated with existing systems, and those of regulatory inaction. This would represent a shift away from a GE evaluation process that currently focuses only on risk assessment and identifying ever diminishing marginal hazards, to a regulatory approach that more objectively evaluates and communicates the likely impact of approving a new GE plant or animal on agricultural production systems. PMID:24066781
Annesi, James J.
2011-01-01
An emphasis on increasing self-regulation is an alternate to nutrition education, which has had poor results in the behavioral treatment of obesity. Although appropriately designed weight-loss treatments may enhance one’s self-regulatory ability to control eating, whether improvements are moderated by psychosocial factors such as initial self-regulatory skills use, self-efficacy to control eating, and mood is unknown. Severely obese women (BMI 35-50 kg·m-2) were randomized into 26-week treatments of exercise supported by cognitive-behavioral methods paired with either nutrition education (n = 114) or cognitive-behavioral methods applied to controlled eating (n = 121). Improvement in self-regulation for controlled eating was 36.9% greater (p < 0.01) for the group incorporating cognitive-behavioral methods for controlled eating. Change in self-regulation was significantly associated with self-regulation at baseline (β = -0.33). Both mood and self-efficacy for controlled eating significantly moderated this relationship. Increased self-regulation was associated with both increases in fruit and vegetable consumption and fruit and vegetable intake at treatment end. The present findings increase our understanding of psychosocial variables associated with increased self-regulatory skills usage and improvements in eating that, after replication, may be used to improve the effects of behavioral weight-loss treatments. Key points Initial self-regulatory abilities do not appear to affect improvements in self-regulation for eating, however direct training in behavioral skills are predictors of change. The relationship of self-regulation improvements and improved eating is significant, and affected by mood and self-efficacy in women with obesity. Instruction in behavioral skills such as cognitive restructuring and relapse prevention is associated with better improvements in eating than typical methods of nutrition education. Cognitive-behavioral methods for exercise may be paired with cognitive-behavioral methods for eating to maximize longer-term effects on eating behaviors. PMID:24149553
Let it grow-the open market solution to marijuana control.
Gettman, Jon; Kennedy, Michael
2014-11-18
This commentary evaluates regulatory frameworks for the legalized production, sale, and use of marijuana. Specifically, we argue that the primary goal of legalization should be the elimination of the illicit trade in marijuana and that maximizing market participation through open markets and personal cultivation is the best approach to achieving this goal. This argument is based on the assertion that regulatory models based on a tightly controlled government market will fail because they replicate the fatal flaws of the prohibition model. This commentary argues that an examination of the reasons for prohibition's failure-to wit, the inability of government to control the production of marijuana-completely undercuts the basic premise of a tightly controlled market, which depends on the ability of the government to control production. The public interest would be better served by an effective regulatory framework which recognizes and takes advantage of competitive market forces. This analysis argues that reducing teenage access to marijuana requires the elimination of an overcapitalized illicit market. Further, it asserts that this goal and maximization of tax revenue from a legal marijuana market are mutually exclusive objectives.
Bartholow, Bruce D; Henry, Erika A; Lust, Sarah A; Saults, J Scott; Wood, Phillip K
2012-02-01
Alcohol is known to impair self-regulatory control of behavior, though mechanisms for this effect remain unclear. Here, we tested the hypothesis that alcohol's reduction of negative affect (NA) is a key mechanism for such impairment. This hypothesis was tested by measuring the amplitude of the error-related negativity (ERN), a component of the event-related brain potential (ERP) posited to reflect the extent to which behavioral control failures are experienced as distressing, while participants completed a laboratory task requiring self-regulatory control. Alcohol reduced both the ERN and error positivity (Pe) components of the ERP following errors and impaired typical posterror behavioral adjustment. Structural equation modeling indicated that effects of alcohol on both the ERN and posterror adjustment were significantly mediated by reductions in NA. Effects of alcohol on Pe amplitude were unrelated to posterror adjustment, however. These findings indicate a role for affect modulation in understanding alcohol's effects on self-regulatory impairment and more generally support theories linking the ERN with a distress-related response to control failures. PsycINFO Database Record (c) 2012 APA, all rights reserved.
75 FR 46877 - Pennsylvania Regulatory Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-04
... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 938 [PA-156-FOR; OSM 2010-0004] Pennsylvania Regulatory Program AGENCY: Office of Surface Mining... Pennsylvania program (the ``Pennsylvania program'') under the Surface Mining Control and Reclamation Act of...
Determining the Level of Regulation for Hazardous Waste Recycling, Recycled Materials that are not Subject to RCRA Hazardous Waste Regulation, Materials Subject to Alternative Regulatory Controls, Materials Subject to Full Hazardous Waste Regulations.
78 FR 11617 - Pennsylvania Regulatory Program
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-19
... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 938... Surface Mining Reclamation and Enforcement (OSM), Interior. ACTION: Proposed rule; reopening of comment... regulatory program (the ``Pennsylvania program'') under the Surface Mining Control and Reclamation Act of...
10 CFR 51.121 - Status of NEPA actions.
Code of Federal Regulations, 2012 CFR
2012-01-01
... address inquiries to: (a) Utilization facilities: ATTN: Document Control Desk, Director, Office of Nuclear Reactor Regulation or Director, Office of New Reactors, as appropriate, U.S. Nuclear Regulatory Commission... NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION REGULATIONS FOR DOMESTIC LICENSING AND...
10 CFR 51.121 - Status of NEPA actions.
Code of Federal Regulations, 2014 CFR
2014-01-01
... address inquiries to: (a) Utilization facilities: ATTN: Document Control Desk, Director, Office of Nuclear Reactor Regulation or Director, Office of New Reactors, as appropriate, U.S. Nuclear Regulatory Commission... NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION REGULATIONS FOR DOMESTIC LICENSING AND...
10 CFR 51.121 - Status of NEPA actions.
Code of Federal Regulations, 2013 CFR
2013-01-01
... address inquiries to: (a) Utilization facilities: ATTN: Document Control Desk, Director, Office of Nuclear Reactor Regulation or Director, Office of New Reactors, as appropriate, U.S. Nuclear Regulatory Commission... NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION REGULATIONS FOR DOMESTIC LICENSING AND...
Suleman, Sultan; Woliyi, Abdulkadir; Woldemichael, Kifle; Tushune, Kora; Duchateau, Luc; Degroote, Agnes; Vancauwenberghe, Roy; Bracke, Nathalie; De Spiegeleer, Bart
2016-05-01
Effective and enforceable national regulations describing the manufacture and (re)packaging, export and import, distribution and storage, supply and sale, information and pharmaco-vigilance of medicines are required to consistently ensure optimal patient benefit. Expansion of pharmaceutical industries in many countries with advancement in transport technologies facilitated not only trade of genuine pharmaceutical products but also the circulation of poor quality medicines across the globe. In Ethiopia, even though "The Pharmacists and Druggists Proclamation No 43/1942" was used to regulate both the professions and the facilities where they were practiced, comprehensive regulation of the pharmaceutical market was introduced in 1964 by a regulation called "Pharmacy Regulation No. 288/ 1964". This legislation formed the legal basis for official establishment of drug regulation in the history of Ethiopia, enabling the regulation of the practice of pharmacists, druggists and pharmacy technicians; manufacturing, distribution, and sale of medicines. In June 1999, a new regulation called the "Drug Administration and Control Proclamation No. 176/1999" repealed most parts of the regulation 288/1964. The law established an independent Drug Administration and Control Authority (DACA) with further mandate of setting standards of competence for licensing institutions/facilities. DACA was re-structured as Food, Medicine and Health Care Administration and Control Authority (EFMHACA) of Ethiopia by the "Proclamation No. 661/2009" in 2010 bearing additional responsibilities like regulation of food, health care personnel and settings. The mere existence of this legal framework does not guarantee complete absence of illegal, substandard and falsified products as well as illegal establishments in the pharmaceutical chain. Therefore, the objective of the research is to assess the pharmaceutical regulatory system in Ethiopia and to reveal possible reasons for deficiencies in the pharmaceutical chain. An archival review, an in-depth interview of key informants and an institutions-based cross-sectional survey study were conducted during March to April 2013. The comprehensiveness of the pharmaceutical law to protect public health relative to three selected African countries (South Africa, Tanzania and Uganda) and European Union, and implementation was assessed. The study revealed that Ethiopia does have a written national drug policy upon which the Medicines Regulatory Proclamation 661/2009 is based. According to this proclamation, the Ethiopian The Food, Medicines and Healthcare Administration and Control Authority is mandated to execute the regulatory activities as per the council of ministers regulation 189/2010. The legal framework for pharmaceutical regulation of Ethiopia was founded to fulfill all the medicines regulatory functions potentially enabling to combat illegal, substandard and falsified medicines and illegal establishments. Moreover, all the key informants witnessed that the government is commited and proclamation 661/2009 is comprehensive, but they stressed the compelling need of regulatory tools for effective implementation. From the institution-based cross-sectional study, it was revealed that there exist illegal sources formedicine in the pharmaceutical market. The main reasons for their existence were regulatory factors including weak regulatory enforcement (64.5%), lack of informal market control (60.8%), weak port control (50.0%), and poor cooperation between executive bodies (39.6%); and resource constraint (27.8%), which is an institutional factor. From legislative point of view, the medicines regulatory framework in Ethiopia fulfils all regulatory functions required for effective medicines regulation. However, the existence of the legislation by its own is not a guarantee to prevent the existence of unauthorized/illegal medicine sources since this requires effective implementation of the legislation, which is in fact affected by the governments political commitment, resource and intergovernmental cooperation.
Hirsh, C Elizabeth; Kornrich, Sabino
2008-03-01
This article explores the organizational conditions under which discrimination charges occur. Drawing on structural and organizational theories of the workplace, the authors demonstrate how organizational conditions affect workers' and regulatory agents' understandings of unlawful discrimination. Using a national sample of work establishments, matched to discrimination-charge data obtained from the Equal Employment Opportunity Commission (EEOC), the authors examine how characteristics of the workplace and institutional environment affect variation in the incidence of workers' charges of sex and race discrimination and in the subset of discrimination claims that are verified by EEOC investigators. The findings indicate that workplace conditions, including size, composition, and minority management, affect workers' charges as well as verified claims; the latter are also affected by institutional factors, such as affirmative action requirements, subsidiary status, and industrial sector. These results suggest that internal workplace conditions affect both workers' and regulatory agents' interpretations of potentially discriminatory experiences, while institutional conditions matter only for regulatory agents' interpretations of those events.
Review of Technical Studies in the United States in Support of Burnup Credit Regulatory Guidance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, John C; Parks, Cecil V; Mueller, Don
2010-01-01
Taking credit for the reduction in reactivity associated with fuel depletion can enable more cost-effective, higher-density storage, transport, disposal, and reprocessing of spent nuclear fuel (SNF) while maintaining sufficient subcritical margin to establish an adequate safety basis. Consequently, there continues to be considerable interest in the United States (U.S.), as well as internationally, in the increased use of burnup credit in SNF operations, particularly related to storage, transport, and disposal of commercial SNF. This interest has motivated numerous technical studies related to the application of burnup credit, both domestically and internationally, as well as the design of SNF storage, transportmore » and disposal systems that rely on burnup credit for maintaining subcriticality. Responding to industry requests and needs, the U.S. Nuclear Regulatory Commission (NRC) initiated a burnup credit research program in 1999, with support from the Oak Ridge National Laboratory (ORNL), to develop regulatory guidance and the supporting technical bases for allowing and expanding the use of burnup credit in pressurized-water reactor SNF storage and transport applications. Although this NRC research program has not been continuous since its inception, considerable progress has been achieved in many key areas in terms of increased understanding of relevant phenomena and issues, availability of relevant information and data, and subsequently updated regulatory guidance for expanded use of burnup credit. This paper reviews technical studies performed by ORNL for the U.S. NRC burnup credit research program. Examples of topics include reactivity effects associated with reactor operating characteristics, fuel assembly characteristics, burnable absorbers, control rods, spatial burnup distributions, cooling time, and assembly misloading; methods and data for validation of isotopic composition predictions; methods and data for validation of criticality calculations; and operational issues and data related to assembly burnup confirmation. The objective of this paper is to summarize the work and significant accomplishments, with references to the technical reports and publications for complete details, and provide a useful resource to others in the burnup credit community.« less
Bailly, E; Reed, S I
1999-10-01
By selectively eliminating ubiquitin-conjugated proteins, the 26S proteasome plays a pivotal role in a large variety of cellular regulatory processes, particularly in the control of cell cycle transitions. Access of ubiquitinated substrates to the inner catalytic chamber within the 20S core particle is mediated by the 19S regulatory particle (RP), whose subunit composition in budding yeast has been recently elucidated. In this study, we have investigated the cell cycle defects resulting from conditional inactivation of one of these RP components, the essential non-ATPase Rpn3/Sun2 subunit. Using temperature-sensitive mutant alleles, we show that rpn3 mutations do not prevent the G(1)/S transition but cause a metaphase arrest, indicating that the essential Rpn3 function is limiting for mitosis. rpn3 mutants appear severely compromised in the ubiquitin-dependent proteolysis of several physiologically important proteasome substrates. Thus, RPN3 function is required for the degradation of the G(1)-phase cyclin Cln2 targeted by SCF; the S-phase cyclin Clb5, whose ubiquitination is likely to involve a combination of E3 (ubiquitin protein ligase) enzymes; and anaphase-promoting complex targets, such as the B-type cyclin Clb2 and the anaphase inhibitor Pds1. Our results indicate that the Pds1 degradation defect of the rpn3 mutants most likely accounts for the metaphase arrest phenotype observed. Surprisingly, but consistent with the lack of a G(1) arrest phenotype in thermosensitive rpn3 strains, the Cdk inhibitor Sic1 exhibits a short half-life regardless of the RPN3 genotype. In striking contrast, Sic1 turnover is severely impaired by a temperature-sensitive mutation in RPN12/NIN1, encoding another essential RP subunit. While other interpretations are possible, these data strongly argue for the requirement of distinct RP subunits for efficient proteolysis of specific cell cycle regulators. The potential implications of these data are discussed in the context of possible Rpn3 function in multiubiquitin-protein conjugate recognition by the 19S proteasomal regulatory particle.
Gene regulation is governed by a core network in hepatocellular carcinoma.
Gu, Zuguang; Zhang, Chenyu; Wang, Jin
2012-05-01
Hepatocellular carcinoma (HCC) is one of the most lethal cancers worldwide, and the mechanisms that lead to the disease are still relatively unclear. However, with the development of high-throughput technologies it is possible to gain a systematic view of biological systems to enhance the understanding of the roles of genes associated with HCC. Thus, analysis of the mechanism of molecule interactions in the context of gene regulatory networks can reveal specific sub-networks that lead to the development of HCC. In this study, we aimed to identify the most important gene regulations that are dysfunctional in HCC generation. Our method for constructing gene regulatory network is based on predicted target interactions, experimentally-supported interactions, and co-expression model. Regulators in the network included both transcription factors and microRNAs to provide a complete view of gene regulation. Analysis of gene regulatory network revealed that gene regulation in HCC is highly modular, in which different sets of regulators take charge of specific biological processes. We found that microRNAs mainly control biological functions related to mitochondria and oxidative reduction, while transcription factors control immune responses, extracellular activity and the cell cycle. On the higher level of gene regulation, there exists a core network that organizes regulations between different modules and maintains the robustness of the whole network. There is direct experimental evidence for most of the regulators in the core gene regulatory network relating to HCC. We infer it is the central controller of gene regulation. Finally, we explored the influence of the core gene regulatory network on biological pathways. Our analysis provides insights into the mechanism of transcriptional and post-transcriptional control in HCC. In particular, we highlight the importance of the core gene regulatory network; we propose that it is highly related to HCC and we believe further experimental validation is worthwhile.
Chahal, Harinder Singh; Kashfipour, Farrah; Susko, Matt; Feachem, Neelam Sekhri; Boyle, Colin
2016-05-01
Medicines Regulatory Authorities (MRAs) are an essential part of national health systems and are charged with protecting and promoting public health through regulation of medicines. However, MRAs in resource-constrained settings often struggle to provide effective oversight of market entry and use of health commodities. This paper proposes a regulatory value chain model (RVCM) that policymakers and regulators can use as a conceptual framework to guide investments aimed at strengthening regulatory systems. The RVCM incorporates nine core functions of MRAs into five modules: (i) clear guidelines and requirements; (ii) control of clinical trials; (iii) market authorization of medical products; (iv) pre-market quality control; and (v) post-market activities. Application of the RVCM allows national stakeholders to identify and prioritize investments according to where they can add the most value to the regulatory process. Depending on the economy, capacity, and needs of a country, some functions can be elevated to a regional or supranational level, while others can be maintained at the national level. In contrast to a "one size fits all" approach to regulation in which each country manages the full regulatory process at the national level, the RVCM encourages leveraging the expertise and capabilities of other MRAs where shared processes strengthen regulation. This value chain approach provides a framework for policymakers to maximize investment impact while striving to reach the goal of safe, affordable, and rapidly accessible medicines for all.
Cis-regulatory RNA elements that regulate specialized ribosome activity.
Xue, Shifeng; Barna, Maria
2015-01-01
Recent evidence has shown that the ribosome itself can play a highly regulatory role in the specialized translation of specific subpools of mRNAs, in particular at the level of ribosomal proteins (RP). However, the mechanism(s) by which this selection takes place has remained poorly understood. In our recent study, we discovered a combination of unique RNA elements in the 5'UTRs of mRNAs that allows for such control by the ribosome. These mRNAs contain a Translation Inhibitory Element (TIE) that inhibits general cap-dependent translation, and an Internal Ribosome Entry Site (IRES) that relies on a specific RP for activation. The unique combination of an inhibitor of general translation and an activator of specialized translation is key to ribosome-mediated control of gene expression. Here we discuss how these RNA regulatory elements provide a new level of control to protein expression and their implications for gene expression, organismal development and evolution.
Genetic control of inflorescence architecture during rice domestication
Zhu, Zuofeng; Tan, Lubin; Fu, Yongcai; Liu, Fengxia; Cai, Hongwei; Xie, Daoxin; Wu, Feng; Wu, Jianzhong; Matsumoto, Takashi; Sun, Chuanqing
2013-01-01
Inflorescence architecture is a key agronomical factor determining grain yield, and thus has been a major target of cereal crop domestication. Transition from a spread panicle typical of ancestral wild rice (Oryza rufipogon Griff.) to the compact panicle of present cultivars (O. sativa L.) was a crucial event in rice domestication. Here we show that the spread panicle architecture of wild rice is controlled by a dominant gene, OsLG1, a previously reported SBP-domain transcription factor that controls rice ligule development. Association analysis indicates that a single-nucleotide polymorphism-6 in the OsLG1 regulatory region led to a compact panicle architecture in cultivars during rice domestication. We speculate that the cis-regulatory mutation can fine-tune the spatial expression of the target gene, and that selection of cis-regulatory mutations might be an efficient strategy for crop domestication. PMID:23884108
Friese, Malte; Engeler, Michèle; Florack, Arnd
2015-01-01
Weight loss and maintenance goals are highly prevalent in many affluent societies, but many weight regulators are not successful in the long term. Research started to reveal psychological mechanisms that help successful weight regulators in being successful. In the present study, we tested the assumption that these mechanisms facilitate successful self-regulation particularly under conditions of self-regulatory depletion. Participants exerted or did not exert self-control in a first task before engaging in a taste test of a tempting but unhealthy food. Participants who had initially exerted self-control ate more than participants in the control condition. This effect was reduced in self-perceived successful weight regulators as compared to perceived unsuccessful self-regulators. A reduced susceptibility to self-regulatory depletion may be an important contributor to long-term weight regulation success in successful weight regulators. Copyright © 2014 Elsevier Ltd. All rights reserved.
Rauch, Geraldine; Kieser, Meinhard; Binder, Harald; Bayes-Genis, Antoni; Jahn-Eimermacher, Antje
2018-05-01
Composite endpoints combining several event types of clinical interest often define the primary efficacy outcome in cardiologic trials. They are commonly evaluated as time-to-first-event, thereby following the recommendations of regulatory agencies. However, to assess the patient's full disease burden and to identify preventive factors or interventions, subsequent events following the first one should be considered as well. This is especially important in cohort studies and RCTs with a long follow-up leading to a higher number of observed events per patients. So far, there exist no recommendations which approach should be preferred. Recently, the Cardiovascular Round Table of the European Society of Cardiology indicated the need to investigate "how to interpret results if recurrent-event analysis results differ […] from time-to-first-event analysis" (Anker et al., Eur J Heart Fail 18:482-489, 2016). This work addresses this topic by means of a systematic simulation study. This paper compares two common analysis strategies for composite endpoints differing with respect to the incorporation of recurrent events for typical data scenarios motivated by a clinical trial. We show that the treatment effects estimated from a time-to-first-event analysis (Cox model) and a recurrent-event analysis (Andersen-Gill model) can systematically differ, particularly in cardiovascular trials. Moreover, we provide guidance on how to interpret these results and recommend points to consider for the choice of a meaningful analysis strategy. When planning trials with a composite endpoint, researchers, and regulatory agencies should be aware that the model choice affects the estimated treatment effect and its interpretation.
Giakountis, Antonis; Moulos, Panagiotis; Zarkou, Vasiliki; Oikonomou, Christina; Harokopos, Vaggelis; Hatzigeorgiou, Artemis G; Reczko, Martin; Hatzis, Pantelis
2016-06-21
The canonical Wnt pathway plays a central role in stem cell maintenance, differentiation, and proliferation in the intestinal epithelium. Constitutive, aberrant activity of the TCF4/β-catenin transcriptional complex is the primary transforming factor in colorectal cancer. We identify a nuclear long non-coding RNA, termed WiNTRLINC1, as a direct target of TCF4/β-catenin in colorectal cancer cells. WiNTRLINC1 positively regulates the expression of its genomic neighbor ASCL2, a transcription factor that controls intestinal stem cell fate. WiNTRLINC1 interacts with TCF4/β-catenin to mediate the juxtaposition of its promoter with the regulatory regions of ASCL2. ASCL2, in turn, regulates WiNTRLINC1 transcriptionally, closing a feedforward regulatory loop that controls stem cell-related gene expression. This regulatory circuitry is highly amplified in colorectal cancer and correlates with increased metastatic potential and decreased patient survival. Our results uncover the interplay between non-coding RNA-mediated regulation and Wnt signaling and point to the diagnostic and therapeutic potential of WiNTRLINC1. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.
Multiple Regulatory Systems Coordinate DNA Replication with Cell Growth in Bacillus subtilis
Murray, Heath; Koh, Alan
2014-01-01
In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes. PMID:25340815
Chatterjee, Sumantra; Sivakamasundari, V; Yap, Sook Peng; Kraus, Petra; Kumar, Vibhor; Xing, Xing; Lim, Siew Lan; Sng, Joel; Prabhakar, Shyam; Lufkin, Thomas
2014-12-05
Vertebrate organogenesis is a highly complex process involving sequential cascades of transcription factor activation or repression. Interestingly a single developmental control gene can occasionally be essential for the morphogenesis and differentiation of tissues and organs arising from vastly disparate embryological lineages. Here we elucidated the role of the mammalian homeobox gene Bapx1 during the embryogenesis of five distinct organs at E12.5 - vertebral column, spleen, gut, forelimb and hindlimb - using expression profiling of sorted wildtype and mutant cells combined with genome wide binding site analysis. Furthermore we analyzed the development of the vertebral column at the molecular level by combining transcriptional profiling and genome wide binding data for Bapx1 with similarly generated data sets for Sox9 to assemble a detailed gene regulatory network revealing genes previously not reported to be controlled by either of these two transcription factors. The gene regulatory network appears to control cell fate decisions and morphogenesis in the vertebral column along with the prevention of premature chondrocyte differentiation thus providing a detailed molecular view of vertebral column development.
Multiple regulatory systems coordinate DNA replication with cell growth in Bacillus subtilis.
Murray, Heath; Koh, Alan
2014-10-01
In many bacteria the rate of DNA replication is linked with cellular physiology to ensure that genome duplication is coordinated with growth. Nutrient-mediated growth rate control of DNA replication initiation has been appreciated for decades, however the mechanism(s) that connects these cell cycle activities has eluded understanding. In order to help address this fundamental question we have investigated regulation of DNA replication in the model organism Bacillus subtilis. Contrary to the prevailing view we find that changes in DnaA protein level are not sufficient to account for nutrient-mediated growth rate control of DNA replication initiation, although this regulation does require both DnaA and the endogenous replication origin. We go on to report connections between DNA replication and several essential cellular activities required for rapid bacterial growth, including respiration, central carbon metabolism, fatty acid synthesis, phospholipid synthesis, and protein synthesis. Unexpectedly, the results indicate that multiple regulatory systems are involved in coordinating DNA replication with cell physiology, with some of the regulatory systems targeting oriC while others act in a oriC-independent manner. We propose that distinct regulatory systems are utilized to control DNA replication in response to diverse physiological and chemical changes.
77 FR 34888 - Kentucky Regulatory Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-12
... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 917 [KY-255-FOR; OSM-2012-0004] Kentucky Regulatory Program AGENCY: Office of Surface Mining Reclamation... Program (hereinafter, the ``Kentucky program'') under the Surface Mining Control and Reclamation Act of...
78 FR 13002 - Pennsylvania Regulatory Program
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-26
... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 938... Mining Reclamation and Enforcement (``OSM''), Interior. ACTION: Proposed rule; public comment period and... regulatory program under the Surface Mining Control and Reclamation Act of 1977 (``SMCRA'' or the ``Act...
75 FR 34960 - Pennsylvania Regulatory Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-21
... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 938 [PA-155-FOR; OSM 2010-0003] Pennsylvania Regulatory Program AGENCY: Office of Surface Mining... ``Pennsylvania program'') under the Surface Mining Control and Reclamation Act of 1977 (SMCRA or the Act...
76 FR 50436 - Kentucky Regulatory Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-15
... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 917 [KY-254-FOR; OSM-2011-0005] Kentucky Regulatory Program AGENCY: Office of Surface Mining Reclamation... Program (hereinafter, the ``Kentucky program'') under the Surface Mining Control and Reclamation Act of...
Wawrzyniak, Agata; Lipińska-Opałka, Agnieszka; Zdanowski, Robert; Murawski, Piotr; Kalicki, Bolesław
2017-01-01
Due to the increased incidence of allergic diseases and emerging effects of unsatisfactory control of asthma, new mechanisms for supervising the immune system should be searched. The aim of the study was to analyze the percentage of CD3, CD4, CD8, CD19, CD16/56, NKT, CD3 anti-HLADR3 and Foxp3 regulatory lymphocytes in patients with asthma. Additionally the correlation between immune parameters, severity of asthma and serum concentration of vitamin D was performed. 25 children diagnosed with asthma were enrolled. Disease severity was assessed with the Asthma Control Test (ACT) and spirometry. The control group consisted of 15 healthy children. Venous blood from each patient was collected on EDTA or on “clott”. Phenotypes of lymphocytes were evaluated by flow cytometry. Vitamin D concentration was assessed by chemiluminescent immunoassay (CLIA) technology. There was a significant decrease in the percentage of T regulatory cells (p < 0.006) in children with asthma compared to the control group. There were no significant differences in the other investigated immunological parameters. In addition, in asthma group statistically significant decreased of vitamin D concentration (p < 0.04) was observed. There were also no significant correlations between vitamin D3 concentration and the course of asthma or percentage of regulatory cells. The results confirmed the role of regulatory T cells in the pathogenesis of asthma. Effects of vitamin D on the severity of the disease has not been proven. PMID:28680338
Wawrzyniak, Agata; Lipińska-Opałka, Agnieszka; Zdanowski, Robert; Lewicki, Sławomir; Murawski, Piotr; Kalicki, Bolesław
2017-01-01
Due to the increased incidence of allergic diseases and emerging effects of unsatisfactory control of asthma, new mechanisms for supervising the immune system should be searched. The aim of the study was to analyze the percentage of CD3, CD4, CD8, CD19, CD16/56, NKT, CD3 anti-HLADR3 and Foxp3 regulatory lymphocytes in patients with asthma. Additionally the correlation between immune parameters, severity of asthma and serum concentration of vitamin D was performed. 25 children diagnosed with asthma were enrolled. Disease severity was assessed with the Asthma Control Test (ACT) and spirometry. The control group consisted of 15 healthy children. Venous blood from each patient was collected on EDTA or on "clott". Phenotypes of lymphocytes were evaluated by flow cytometry. Vitamin D concentration was assessed by chemiluminescent immunoassay (CLIA) technology. There was a significant decrease in the percentage of T regulatory cells (p < 0.006) in children with asthma compared to the control group. There were no significant differences in the other investigated immunological parameters. In addition, in asthma group statistically significant decreased of vitamin D concentration (p < 0.04) was observed. There were also no significant correlations between vitamin D3 concentration and the course of asthma or percentage of regulatory cells. The results confirmed the role of regulatory T cells in the pathogenesis of asthma. Effects of vitamin D on the severity of the disease has not been proven.
Sarathy, S. Mani; Kukkadapu, Goutham; Mehl, Marco; ...
2016-05-08
As regulatory measures for improved fuel economy and decreased emissions are pushing gasoline engine combustion technologies towards extreme conditions (i.e., boosted and intercooled intake with exhaust gas recirculation), fuel ignition characteristics become increasingly important for enabling stable operation. Here, this study explores the effects of chemical composition on the fundamental ignition behavior of gasoline fuels. Two well-characterized, high-octane, non-oxygenated FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G, having similar antiknock indices but different octane sensitivities and chemical compositions are studied. Ignition experiments were conducted in shock tubes and a rapid compression machine (RCM) at nominal pressuresmore » of 20 and 40 atm, equivalence ratios of 0.5 and 1.0, and temperatures ranging from 650 to 1270 K. Results at temperatures above 900 K indicate that ignition delay time is similar for these fuels. However, RCM measurements below 900 K demonstrate a stronger negative temperature coefficient behavior for FACE F gasoline having lower octane sensitivity. In addition, RCM pressure profiles under two-stage ignition conditions illustrate that the magnitude of low-temperature heat release (LTHR) increases with decreasing fuel octane sensitivity. However, intermediate-temperature heat release is shown to increase as fuel octane sensitivity increases. Various surrogate fuel mixtures were formulated to conduct chemical kinetic modeling, and complex multicomponent surrogate mixtures were shown to reproduce experimentally observed trends better than simpler two- and three-component mixtures composed of n-heptane, iso-octane, and toluene. Measurements in a Cooperative Fuels Research (CFR) engine demonstrated that the multicomponent surrogates accurately captured the antiknock quality of the FACE gasolines. Simulations were performed using multicomponent surrogates for FACE F and G to reveal the underlying chemical kinetics linking fuel composition with ignition characteristics. Finally, a key discovery of this work is the kinetic coupling between aromatics and naphthenes, which affects the radical pool population and thereby controls ignition.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarathy, S. Mani; Kukkadapu, Goutham; Mehl, Marco
As regulatory measures for improved fuel economy and decreased emissions are pushing gasoline engine combustion technologies towards extreme conditions (i.e., boosted and intercooled intake with exhaust gas recirculation), fuel ignition characteristics become increasingly important for enabling stable operation. Here, this study explores the effects of chemical composition on the fundamental ignition behavior of gasoline fuels. Two well-characterized, high-octane, non-oxygenated FACE (Fuels for Advanced Combustion Engines) gasolines, FACE F and FACE G, having similar antiknock indices but different octane sensitivities and chemical compositions are studied. Ignition experiments were conducted in shock tubes and a rapid compression machine (RCM) at nominal pressuresmore » of 20 and 40 atm, equivalence ratios of 0.5 and 1.0, and temperatures ranging from 650 to 1270 K. Results at temperatures above 900 K indicate that ignition delay time is similar for these fuels. However, RCM measurements below 900 K demonstrate a stronger negative temperature coefficient behavior for FACE F gasoline having lower octane sensitivity. In addition, RCM pressure profiles under two-stage ignition conditions illustrate that the magnitude of low-temperature heat release (LTHR) increases with decreasing fuel octane sensitivity. However, intermediate-temperature heat release is shown to increase as fuel octane sensitivity increases. Various surrogate fuel mixtures were formulated to conduct chemical kinetic modeling, and complex multicomponent surrogate mixtures were shown to reproduce experimentally observed trends better than simpler two- and three-component mixtures composed of n-heptane, iso-octane, and toluene. Measurements in a Cooperative Fuels Research (CFR) engine demonstrated that the multicomponent surrogates accurately captured the antiknock quality of the FACE gasolines. Simulations were performed using multicomponent surrogates for FACE F and G to reveal the underlying chemical kinetics linking fuel composition with ignition characteristics. Finally, a key discovery of this work is the kinetic coupling between aromatics and naphthenes, which affects the radical pool population and thereby controls ignition.« less
Kühnel, Jana; Syrek, Christine J.; Dreher, Anne
2018-01-01
Background: This daily diary study investigates the phenomenon of bedtime procrastination. Bedtime procrastination is defined as going to bed later than intended, without having external reasons for doing so. We highlight the role chronotype (interindividual differences in biological preferences for sleep-wake-times) plays for bedtime procrastination. Moreover, we challenge the view that bedtime procrastination is the result of a lack of self-regulatory resources by investigating momentary self-regulatory resources as a predictor of day-specific bedtime procrastination. Methods: One-hundred and eight employees working in various industries completed a general electronic questionnaire (to assess chronotype and trait self-control) and two daily electronic questionnaires (to assess momentary self-regulatory resources before going to bed and day-specific bedtime procrastination) over the course of five work days, resulting in 399 pairs of matched day-next-day measurements. Results: Results of multilevel regression analyses showed that later chronotypes (also referred to as evening types or ‘owls’) tended to report more bedtime procrastination on work days. Moreover, for late chronotypes, day-specific bedtime procrastination declined over the course of the work week. This pattern is in line with expectations derived from chronobiology and could not be explained by trait self-control. In addition, on evenings on which employees had less self-regulatory resources available before going to bed—compared to evenings on which they had more self-regulatory resources available before going to bed—employees showed lower bedtime procrastination. This finding contradicts the prevailing idea that bedtime procrastination is the result of a lack of self-regulatory resources. Conclusion: The findings of this study provide important implications for how bedtime procrastination should be positioned in the field of procrastination as self-regulatory failure and for how bedtime procrastination should be dealt with in practice. PMID:29456519
Kühnel, Jana; Syrek, Christine J; Dreher, Anne
2018-01-01
Background: This daily diary study investigates the phenomenon of bedtime procrastination. Bedtime procrastination is defined as going to bed later than intended, without having external reasons for doing so. We highlight the role chronotype (interindividual differences in biological preferences for sleep-wake-times) plays for bedtime procrastination. Moreover, we challenge the view that bedtime procrastination is the result of a lack of self-regulatory resources by investigating momentary self-regulatory resources as a predictor of day-specific bedtime procrastination. Methods: One-hundred and eight employees working in various industries completed a general electronic questionnaire (to assess chronotype and trait self-control) and two daily electronic questionnaires (to assess momentary self-regulatory resources before going to bed and day-specific bedtime procrastination) over the course of five work days, resulting in 399 pairs of matched day-next-day measurements. Results: Results of multilevel regression analyses showed that later chronotypes (also referred to as evening types or 'owls') tended to report more bedtime procrastination on work days. Moreover, for late chronotypes, day-specific bedtime procrastination declined over the course of the work week. This pattern is in line with expectations derived from chronobiology and could not be explained by trait self-control. In addition, on evenings on which employees had less self-regulatory resources available before going to bed-compared to evenings on which they had more self-regulatory resources available before going to bed-employees showed lower bedtime procrastination. This finding contradicts the prevailing idea that bedtime procrastination is the result of a lack of self-regulatory resources. Conclusion: The findings of this study provide important implications for how bedtime procrastination should be positioned in the field of procrastination as self-regulatory failure and for how bedtime procrastination should be dealt with in practice.
The Temperature Fuzzy Control System of Barleythe Malt Drying Based on Microcontroller
NASA Astrophysics Data System (ADS)
Gao, Xiaoyang; Bi, Yang; Zhang, Lili; Chen, Jingjing; Yun, Jianmin
The control strategy of temperature and humidity in the beer barley malt drying chamber based on fuzzy logic control was implemented.Expounded in this paper was the selection of parameters for the structure of the regulatory device, as well as the essential design from control rules based on the existing experience. A temperature fuzzy controller was thus constructed using relevantfuzzy logic, and humidity control was achieved by relay, ensured the situation of the humidity to control the temperature. The temperature's fuzzy control and the humidity real-time control were all processed by single chip microcomputer with assembly program. The experimental results showed that the temperature control performance of this fuzzy regulatory system,especially in the ways of working stability and responding speed and so on,was better than normal used PID control. The cost of real-time system was inquite competitive position. It was demonstrated that the system have a promising prospect of extensive application.
Minnicelli, Carolina; Segges, Priscilla; Stefanoff, Gustavo; Kristcevic, Flavia; Ezpeleta, Joaquin; Tapia, Elizabeth; Niedobitek, Gerald; Barros, Mário Henrique M.
2018-01-01
ABSTRACT Interleukin-10 (IL10) is an immune regulatory cytokine. Single nucleotide polymorphisms (SNPs) in IL10 promoter have been associated with prognosis in adult classical Hodgkin lymphoma (cHL). We analyzed IL10 SNPs −1082 and −592 in respect of therapy response, gene expression and tumor microenvironment (TME) composition in 98 pediatric patients with cHL. As confirmatory results, we found that −1082AA/AG; −592CC genotypes and ATA haplotype were associated with unfavourable prognosis: Progression-free survival (PFS) was shorter in −1082AA+AG (72.2%) than in GG patients (100%) (P = 0.024), and in −592AA (50%) and AC (74.2%) vs. CC patients (87.0%) (P = 0.009). In multivariate analysis, the −592CC genotype and the ATA haplotype retained prognostic impact (HR: 0.41, 95% CI 0.2–0.86; P = 0.018, and HR: 3.06 95% CI 1.03–9.12; P = 0.044, respectively). Our analysis further led to some new observations, namely: (1) Low IL10 mRNA expression was associated with −1082GG genotype (P = 0.014); (2) IL10 promoter polymorphisms influence TME composition;−1082GG/−592CC carriers showed low numbers of infiltrating cells expressing MAF transcription factor (20 vs. 78 and 49 vs. 108 cells/mm2, respectively; P< 0.05); while ATA haplotype (high expression) associated with high numbers of MAF+ cells (P = 0.005). Specifically, −1082GG patients exhibited low percentages of CD68+MAF+ (M2-like) intratumoral macrophages (15.04% vs. 47.26%, P = 0.017). Considering ours as an independent validation cohort, our results give support to the clinical importance of IL10 polymorphisms in the full spectrum of cHL, and advance the concept of genetic control of microenvironment composition as a basis for susceptibility and therapeutic response. PMID:29721365
Vera-Lozada, Gabriela; Minnicelli, Carolina; Segges, Priscilla; Stefanoff, Gustavo; Kristcevic, Flavia; Ezpeleta, Joaquin; Tapia, Elizabeth; Niedobitek, Gerald; Barros, Mário Henrique M; Hassan, Rocio
2018-01-01
Interleukin-10 (IL10) is an immune regulatory cytokine. Single nucleotide polymorphisms (SNPs) in IL10 promoter have been associated with prognosis in adult classical Hodgkin lymphoma (cHL). We analyzed IL10 SNPs -1082 and -592 in respect of therapy response, gene expression and tumor microenvironment (TME) composition in 98 pediatric patients with cHL. As confirmatory results, we found that -1082AA/AG; -592CC genotypes and ATA haplotype were associated with unfavourable prognosis: Progression-free survival (PFS) was shorter in -1082AA+AG (72.2%) than in GG patients (100%) (P = 0.024), and in -592AA (50%) and AC (74.2%) vs. CC patients (87.0%) (P = 0.009). In multivariate analysis, the -592CC genotype and the ATA haplotype retained prognostic impact (HR: 0.41, 95% CI 0.2-0.86; P = 0.018, and HR: 3.06 95% CI 1.03-9.12; P = 0.044, respectively). Our analysis further led to some new observations, namely: (1) Low IL10 mRNA expression was associated with -1082GG genotype (P = 0.014); (2) IL10 promoter polymorphisms influence TME composition;-1082GG/-592CC carriers showed low numbers of infiltrating cells expressing MAF transcription factor (20 vs. 78 and 49 vs. 108 cells/mm 2 , respectively; P< 0.05); while ATA haplotype (high expression) associated with high numbers of MAF+ cells (P = 0.005). Specifically, -1082GG patients exhibited low percentages of CD68+MAF+ (M2-like) intratumoral macrophages (15.04% vs. 47.26%, P = 0.017). Considering ours as an independent validation cohort, our results give support to the clinical importance of IL10 polymorphisms in the full spectrum of cHL, and advance the concept of genetic control of microenvironment composition as a basis for susceptibility and therapeutic response.
75 FR 79049 - Final Regulatory Guide: Issuance, Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-17
... (RG) 5.80, ``Pressure-Sensitive and Tamper-Indicating Device Seals for Material Control and Accounting... and licenses. Regulatory Guide 5.80, ``Pressure-Sensitive and Tamper-Indicating Device Seals for... and Use of Pressure-Sensitive Seals on Containers for Onsite Storage of Special Nuclear Material...
76 FR 6587 - Pennsylvania Regulatory Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-07
... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 938 [PA-159-FOR; OSM 2010-0017] Pennsylvania Regulatory Program AGENCY: Office of Surface Mining... the Surface Mining Control and Reclamation Act of 1977 (SMCRA or the Act). In response to a required...
77 FR 46346 - Ohio Regulatory Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-03
... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 935 [OH-254-FOR; Docket ID OSM-2012-0012] Ohio Regulatory Program AGENCY: Office of Surface Mining... under the Surface Mining Control and Reclamation Act of 1977 (SMCRA or the Act). Ohio's proposed...
76 FR 12920 - Pennsylvania Regulatory Program
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-09
... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 938 [PA-157-FOR; OSM 2010-0011] Pennsylvania Regulatory Program AGENCY: Office of Surface Mining... the Surface Mining Control and Reclamation Act of 1977 (SMCRA or the Act). In response to a required...
Gibberllin driven growth in elf3 mutants requires PIF4 and PIF5
USDA-ARS?s Scientific Manuscript database
The regulatory connections between the circadian clock and hormone signaling are essential to understand, as these two regulatory processes work together to time growth processes relative to predictable environmental events. Gibberellins (GAs) are phytohormones that control many growth processes thr...
10 CFR 2.813 - Written communications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Written communications. 2.813 Section 2.813 Energy NUCLEAR... written communications from the applicant to the Nuclear Regulatory Commission concerning the regulations...: ATTN: Document Control Desk, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001; by hand...
10 CFR 2.813 - Written communications.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 1 2010-01-01 2010-01-01 false Written communications. 2.813 Section 2.813 Energy NUCLEAR... written communications from the applicant to the Nuclear Regulatory Commission concerning the regulations...: ATTN: Document Control Desk, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001; by hand...
10 CFR 2.813 - Written communications.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 1 2011-01-01 2011-01-01 false Written communications. 2.813 Section 2.813 Energy NUCLEAR... written communications from the applicant to the Nuclear Regulatory Commission concerning the regulations...: ATTN: Document Control Desk, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001; by hand...
Code of Federal Regulations, 2010 CFR
2010-01-01
... NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION REGULATIONS FOR DOMESTIC LICENSING AND RELATED REGULATORY FUNCTIONS National Environmental Policy Act-Regulations Implementing Section 102(2... Control Desk, Director, Office of Nuclear Material Safety and Safeguards, a separate document entitled...
A transcription factor collective defines the HSN serotonergic neuron regulatory landscape.
Lloret-Fernández, Carla; Maicas, Miren; Mora-Martínez, Carlos; Artacho, Alejandro; Jimeno-Martín, Ángela; Chirivella, Laura; Weinberg, Peter; Flames, Nuria
2018-03-22
Cell differentiation is controlled by individual transcription factors (TFs) that together activate a selection of enhancers in specific cell types. How these combinations of TFs identify and activate their target sequences remains poorly understood. Here, we identify the cis -regulatory transcriptional code that controls the differentiation of serotonergic HSN neurons in Caenorhabditis elegans . Activation of the HSN transcriptome is directly orchestrated by a collective of six TFs. Binding site clusters for this TF collective form a regulatory signature that is sufficient for de novo identification of HSN neuron functional enhancers. Among C. elegans neurons, the HSN transcriptome most closely resembles that of mouse serotonergic neurons. Mouse orthologs of the HSN TF collective also regulate serotonergic differentiation and can functionally substitute for their worm counterparts which suggests deep homology. Our results identify rules governing the regulatory landscape of a critically important neuronal type in two species separated by over 700 million years. © 2018, Lloret-Fernández et al.
RNA-based regulation of genes of tryptophan synthesis and degradation, in bacteria
Yanofsky, Charles
2007-01-01
We are now aware that RNA-based regulatory mechanisms are commonly used to control gene expression in many organisms. These mechanisms offer the opportunity to exploit relatively short, unique RNA sequences, in altering transcription, translation, and/or mRNA stability, in response to the presence of a small or large signal molecule. The ability of an RNA segment to fold and form alternative hairpin secondary structures—each dedicated to a different regulatory function—permits selection of specific sequences that can affect transcription and/or translation. In the present paper I will focus on our current understanding of the RNA-based regulatory mechanisms used by Escherichia coli and Bacillus subtilis in controlling expression of the tryptophan biosynthetic operon. The regulatory mechanisms they use for this purpose differ, suggesting that these organisms, or their ancestors, adopted different strategies during their evolution. I will also describe the RNA-based mechanism used by E. coli in regulating expression of its operon responsible for tryptophan degradation, the tryptophanase operon. PMID:17601995
Promoting action control and coping planning to improve hand hygiene.
Reyes Fernández, Benjamín; Lippke, Sonia; Knoll, Nina; Blanca Moya, Emanuel; Schwarzer, Ralf
2015-09-25
We examined a brief educational intervention addressing hand hygiene self-regulatory mechanisms, and evaluated which psychological mechanisms may lead to hand hygiene behaviours. Two hundred forty two students (mean age = 21 years, SD = 3.9) received either an experimental (n = 149) or a control condition on action control and planning (n = 93). Hand hygiene, coping planning, and action control were measured at baseline and six weeks later. By applying repeated measures ANOVA, we compared the experimental condition addressing planning to perform hand hygiene with a control condition. Additionally, working mechanisms were evaluated by means of mediation analysis. The intervention had an effect on action control, as reflected by a time by treatment interaction. The direct effect of the intervention on behaviour was, however, non-significant. Changes in action control led to changes in coping planning. These social-cognitive changes mediated the effect of intervention on behaviour, after controlling for gender, baseline behaviour, and classroom membership. In spite of the associations between the intervention and self-regulatory strategies, no direct effect was found of the intervention on behaviour. Further research on how to increase hand sanitizing, involving enviromental characteristics, is required. The intervention led only indirectly to an improvement of hand hygiene via changes in self-regulatory factors. Results indicate the importance of promoting action control and coping planning to initiate changes in hand hygienic behaviours.
Semen, Khrystyna; Yelisyeyeva, Olha; Jarocka-Karpowicz, Iwona; Kaminskyy, Danylo; Solovey, Lyubomyr; Skrzydlewska, Elzbieta; Yavorskyi, Ostap
2015-01-01
Pulmonary arterial hypertension (PAH) is a rare multifactorial disease with an unfavorable prognosis. Sildenafil therapy can improve functional capacity and pulmonary hemodynamics in PAH patients. Nowadays, it is increasingly recognized that the effects of sildenafil are pleiotropic and may also involve changes of the pro-/antioxidant balance, lipid peroxidation and autonomic control. In present study we aimed to assess the effects of sildenafil on the fatty acids (FAs) status, level of hydroxynonenal (HNE) and heart rate variability (HRV) in PAH patients. Patients with PAH were characterized by an increase in HNE and changes in the FAs composition with elevation of linoleic, oleic, docosahexanoic acids in phospholipids as well as reduced HRV with sympathetic predominance. Sildenafil therapy improved exercise capacity and pulmonary hemodynamics and reduced NT-proBNP level in PAH. Antioxidant and anti-inflammatory effects of sildenafil were noted from the significant lowering of HNE level and reduction of the phopholipid derived oleic, linoleic, docosahexanoic, docosapentanoic FAs. That was also associated with some improvement of HRV on account of the activation of the neurohumoral regulatory component. Incomplete recovery of the functional metabolic disorders in PAH patients may be assumed from the persistent increase in free FAs, reduced HRV with the sympathetic predominance in the spectral structure after treatment comparing to control group. The possibilities to improve PAH treatment efficacy through mild stimulation of free radical reactions and formation of hormetic reaction in the context of improved NO signaling are discussed. PMID:26654977
Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae.
Cid, V J; Durán, A; del Rey, F; Snyder, M P; Nombela, C; Sánchez, M
1995-01-01
In fungi and many other organisms, a thick outer cell wall is responsible for determining the shape of the cell and for maintaining its integrity. The budding yeast Saccharomyces cerevisiae has been a useful model organism for the study of cell wall synthesis, and over the past few decades, many aspects of the composition, structure, and enzymology of the cell wall have been elucidated. The cell wall of budding yeasts is a complex and dynamic structure; its arrangement alters as the cell grows, and its composition changes in response to different environmental conditions and at different times during the yeast life cycle. In the past few years, we have witnessed a profilic genetic and molecular characterization of some key aspects of cell wall polymer synthesis and hydrolysis in the budding yeast. Furthermore, this organism has been the target of numerous recent studies on the topic of morphogenesis, which have had an enormous impact on our understanding of the intracellular events that participate in directed cell wall synthesis. A number of components that direct polarized secretion, including those involved in assembly and organization of the actin cytoskeleton, secretory pathways, and a series of novel signal transduction systems and regulatory components have been identified. Analysis of these different components has suggested pathways by which polarized secretion is directed and controlled. Our aim is to offer an overall view of the current understanding of cell wall dynamics and of the complex network that controls polarized growth at particular stages of the budding yeast cell cycle and life cycle. PMID:7565410
Fleissner, Diana; Frede, Annika; Knott, Markus; Knuschke, Torben; Geffers, Robert; Hansen, Wiebke; Dobos, Gustav; Langhorst, Jost; Buer, Jan; Westendorf, Astrid M
2011-01-01
The intestinal immune system is constantly challenged by foreign antigens and commensal bacteria. Therefore, proper control of the intestinal microenvironment is required. One important arm of this regulatory network consists of regulatory T cells. In contrast to CD4+ Foxp3+ regulatory T cells, which have been well characterized, immunomodulatory CD8+ T cells that express Foxp3 are less well defined in terms of their generation and function. Failures of these regulatory mechanisms contribute to the development of inflammatory bowel disease. In this study we demonstrate that the frequency of CD8+ Foxp3+ T cells is reduced in the peripheral blood of patients with ulcerative colitis. As these cells might play a currently underestimated role in the maintenance of intestinal homeostasis, we have investigated human and murine CD8+ Foxp3+ T cells generated by stimulating naive CD8+ T cells in the presence of transforming growth factor-β and retinoic acid, mediators that are abundantly produced in the intestinal mucosa. These CD8+ Foxp3+ fully competent regulatory T cells show strong expression of regulatory molecules CD25, Gpr83 and CTLA-4 and exhibit cell–cell contact-dependent immunosuppressive activity in vitro. Our study illustrates a previously unappreciated critical role of CD8+ Foxp3+ T cells in controlling potentially dangerous T cells and in the maintenance of intestinal homeostasis. PMID:21711349
Technologies and Approaches to Elucidate and Model the Virulence Program of Salmonella.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDermott, Jason E.; Yoon, Hyunjin; Nakayasu, Ernesto S.
Salmonella is a primary cause of enteric diseases in a variety of animals. During its evolution into a pathogenic bacterium, Salmonella acquired an elaborate regulatory network that responds to multiple environmental stimuli within host animals and integrates them resulting in fine regulation of the virulence program. The coordinated action by this regulatory network involves numerous virulence regulators, necessitating genome-wide profiling analysis to assess and combine efforts from multiple regulons. In this review we discuss recent high-throughput analytic approaches to understand the regulatory network of Salmonella that controls virulence processes. Application of high-throughput analyses have generated a large amount of datamore » and driven development of computational approaches required for data integration. Therefore, we also cover computer-aided network analyses to infer regulatory networks, and demonstrate how genome-scale data can be used to construct regulatory and metabolic systems models of Salmonella pathogenesis. Genes that are coordinately controlled by multiple virulence regulators under infectious conditions are more likely to be important for pathogenesis. Thus, reconstructing the global regulatory network during infection or, at the very least, under conditions that mimic the host cellular environment not only provides a bird’s eye view of Salmonella survival strategy in response to hostile host environments but also serves as an efficient means to identify novel virulence factors that are essential for Salmonella to accomplish systemic infection in the host.« less
Steinborn, A; Schmitt, E; Kisielewicz, A; Rechenberg, S; Seissler, N; Mahnke, K; Schaier, M; Zeier, M; Sohn, C
2012-01-01
Dysregulations concerning the composition and function of regulatory T cells (T(regs)) are assumed to be involved in the pathophysiology of complicated pregnancies. We used six-colour flow cytometric analysis to demonstrate that the total CD4(+) CD127(low+/-) CD25(+) forkhead box protein 3 (FoxP3)(+) T(reg) cell pool contains four distinct T(reg) subsets: DR(high+) CD45RA(-), DR(low+) CD45RA(-), DR(-) CD45RA(-) T(regs) and naive DR(-) CD45RA(+) T(regs). During the normal course of pregnancy, the most prominent changes in the composition of the total T(reg) cell pool were observed between the 10th and 20th weeks of gestation, with a clear decrease in the percentage of DR(high+) CD45RA(-) and DR(low+) CD45RA(-) T(regs) and a clear increase in the percentage of naive DR(-) CD45RA(+) T(regs). After that time, the composition of the total T(reg) cell pool did not change significantly. Its suppressive activity remained stable during normally progressing pregnancy, but decreased significantly at term. Compared to healthy pregnancies the composition of the total T(reg) cell pool changed in the way that its percentage of naive DR(-) CD45RA(+) T(regs) was reduced significantly in the presence of pre-eclampsia and in the presence of preterm labour necessitating preterm delivery (PL). Interestingly, its percentage of DR(high+) CD45RA(-) and DR(low+) CD45RA(-) T(regs) was increased significantly in pregnancies affected by pre-eclampsia, while PL was accompanied by a significantly increased percentage of DR(-) CD45RA(-) and DR(low+) CD45RA(-) T(regs). The suppressive activity of the total T(reg) cell pool was diminished in both patient collectives. Hence, our findings propose that pre-eclampsia and PL are characterized by homeostatic changes in the composition of the total T(reg) pool with distinct T(reg) subsets that were accompanied by a significant decrease of its suppressive activity. © 2011 The Authors. Clinical and Experimental Immunology © 2011 British Society for Immunology.
NASA Astrophysics Data System (ADS)
Panday, S.; Wu, Y. S.; Huyakorn, P. S.; Wade, S. C.; Saleem, Z. A.
1997-02-01
Subsurface fate and transport models are utilized to predict concentrations of chemicals leaching from wastes into downgradient receptor wells. The contaminant concentrations in groundwater provide a measure of the risk to human health and the environment. The level of potential risk is currently used by the U.S. Environmental Protection Agency to determine whether management of the wastes should conform to hazardous waste management standards. It is important that the transport and fate of contaminants is simulated realistically. Most models in common use are inappropriate for simulating the migration of wastes containing significant fractions of nonaqueous-phase liquids (NAPLs). The migration of NAPL and its dissolved constituents may not be reliably predicted using conventional aqueous-phase transport simulations. To overcome this deficiency, an efficient and robust regulatory assessment model incorporating multiphase flow and transport in the unsaturated and saturated zones of the subsurface environment has been developed. The proposed composite model takes into account all of the major transport processes including infiltration and ambient flow of NAPL, entrapment of residual NAPL, adsorption, volatilization, degradation, dissolution of chemical constituents, and transport by advection and hydrodynamic dispersion. Conceptually, the subsurface is treated as a composite unsaturated zone-saturated zone system. The composite simulator consists of three major interconnected computational modules representing the following components of the migration pathway: (1) vertical multiphase flow and transport in the unsaturated zone; (2) areal movement of the free-product lens in the saturated zone with vertical equilibrium; and (3) three-dimensional aqueous-phase transport of dissolved chemicals in ambient groundwater. Such a composite model configuration promotes computational efficiency and robustness (desirable for regulatory assessment applications). Two examples are presented to demonstrate the model verification and a site application. Simulation results obtained using the composite modeling approach are compared with a rigorous numerical solution and field observations of crude oil saturations and plume concentrations of total dissolved organic carbon at a spill site in Minnesota, U.S.A. These comparisons demonstrate the ability of the present model to provide realistic depiction of field-scale situations.
Smith, Joel; Davidson, Eric H.
2009-01-01
Design features that ensure reproducible and invariant embryonic processes are major characteristics of current gene regulatory network models. New cis-regulatory studies on a gene regulatory network subcircuit activated early in the development of the sea urchin embryo reveal a sequence of encoded “fail-safe” regulatory devices. These ensure the maintenance of fate separation between skeletogenic and nonskeletogenic mesoderm lineages. An unexpected consequence of the network design revealed in the course of these experiments is that it enables the embryo to “recover” from regulatory interference that has catastrophic effects if this feature is disarmed. A reengineered regulatory system inserted into the embryo was used to prove how this system operates in vivo. Genomically encoded backup control circuitry thus provides the mechanism underlying a specific example of the regulative development for which the sea urchin embryo has long been famous. PMID:19822764
Probst-Kepper, M; Balling, R; Buer, J
2010-08-01
FOXP3 is essential for the development and function of regulatory CD4(+)CD25(hi) T (T(reg)) cells. However, recent evidence suggests that FOXP3 alone is not sufficient to completely explain the regulatory phenotype of these key players in autoimmunity and inflammation: after being activated, conventional human CD4(+) T cells transiently up-regulate FOXP3 without acquiring a regulatory function. Researchers have recently found that glycoprotein A repetitions predominant (GARP, or LRRC32) is a T(reg)-specific receptor that binds latent TGF-beta and dominantly controls FOXP3 and the regulatory phenotype via a positive feedback loop. This finding provides a missing link in our molecular understanding of FOXP3 in T(reg) cells. This viewpoint focuses on GARP as safeguard of FOXP3 and the regulatory phenotype.
Tam, Leona; Bagozzi, Richard P; Spanjol, Jelena
2010-05-01
This study examined whether matching implementation intentions to people's regulatory orientation affects the effectiveness of changing unhealthy snacking habits. Participants' regulatory orientation was either measured (as a chronic trait) or manipulated (as a situational state), and participants were randomly assigned to implementation intention conditions to eat more healthy snacks or avoid eating unhealthy ones. A self-reported online food diary of healthy and unhealthy snacks over a 2-day period. Participants with weak unhealthy snacking habits consumed more healthy snacks when forming any type of implementation intentions (regardless of match or mismatch with their regulatory orientation), while participants with strong unhealthy snacking habits consumed more healthy snacks only when forming implementation intentions that matched their regulatory orientations. RESULTS suggest that implementation intentions that match regulatory orientation heighten motivation intensity and put snacking under intentional control for people with strong unhealthy snacking habits. (c) 2010 APA, all rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-13
... registration statement on Form N-1A (``Registration Statement'') with the Commission.\\6\\ The Fund is a series... designed to prevent the use and dissemination of material, non-public information regarding the open-end... concerning the composition and/or changes to the portfolio and will be subject to procedures designed to...
Immunomodulation to Optimize Vascularized Composite Allograft Integration in Limb Loss Therapy
2014-10-01
AD_________________ Award Number: W81XWH-12-2-0058 TITLE: Immunomodulation to Optimize Vascularized...ADDRESS. 1. REPORT DATE October 2014 2. REPORT TYPE Annual 3. DATES COVERED 30 Sep 2013 - 29 Sep 2014 4. TITLE AND SUBTITLE Immunomodulation to...efficacious immunomodulation regimen based on belatacept to optimize the integration of limb transplantation after limb loss. Regulatory Review
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-15
... will provide Web site disclosure of portfolio holdings daily and will include, as applicable, the names... same time, and the Web site for the Fund ( http://www.teucriumoilfund.com ) and/or the Exchange will... addition, the Web site disclosure of the portfolio composition of the Fund will occur at the same time as...
Data Quality Objectives for Regulatory Requirements for Dangerous Waste Sampling and Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
MULKEY, C.H.
1999-07-02
This document describes sampling and analytical requirements needed to meet state and federal regulations for dangerous waste (DW). The River Protection Project (RPP) is assigned to the task of storage and interim treatment of hazardous waste. Any final treatment or disposal operations, as well as requirements under the land disposal restrictions (LDRs), fall in the jurisdiction of another Hanford organization and are not part of this scope. The requirements for this Data Quality Objective (DQO) Process were developed using the RPP Data Quality Objective Procedure (Banning 1996), which is based on the U.S. Environmental Protection Agency's (EPA) Guidance for themore » Data Quality Objectives Process (EPA 1994). Hereafter, this document is referred to as the DW DQO. Federal and state laws and regulations pertaining to waste contain requirements that are dependent upon the composition of the waste stream. These regulatory drivers require that pertinent information be obtained. For many requirements, documented process knowledge of a waste composition can be used instead of analytical data to characterize or designate a waste. When process knowledge alone is used to characterize a waste, it is a best management practice to validate the information with analytical measurements.« less
Cholesterol: a novel regulatory role in myelin formation.
Saher, Gesine; Quintes, Susanne; Nave, Klaus-Armin
2011-02-01
Myelin consists of tightly compacted membranes that form an insulating sheath around axons. The function of myelin for rapid saltatory nerve conduction is dependent on its unique composition, highly enriched in glycosphingolipids and cholesterol. Cholesterol emerged as the only integral myelin component that is essential and rate limiting for the development of CNS and PNS myelin. Experiments with conditional mouse mutants that lack cholesterol biosynthesis in oligodendrocytes revealed that only minimal changes of the CNS myelin lipid composition are tolerated. In Schwann cells of the PNS, protein trafficking and myelin compaction depend on cholesterol. In this review, the authors summarize the role of cholesterol in myelin biogenesis and myelin disease.
Mission impossible? Regulatory and enforcement issues to ensure safety of dietary supplements.
Petroczi, A; Taylor, G; Naughton, D P
2011-02-01
Dietary supplements are widely used across all ages and user groups and constitute a considerable business sector in most developed countries. Hazards relating to concentration, composition, individual contaminants and supplement interactions present an increasing public health concern. The aim of this paper is to review the literature for reported supplement contaminations (occurs in ca 25% of supplements, with anabolic steroids being the most common) and complement these findings with notifications logged in the EU's Rapid Alert System for Food and Feed (RASFF) through imports or market surveillance, typically logged for poor quality control issues. Notifications in the RASFF have steadily increased by sixfold for supplements in the past 7 years with the USA and China being the major transgressors. Finland and Italy lead in detections, mainly notifying unpermitted substances and contaminants in sexual-enhancing or weight-loss supplements. This paper highlights the paucity of enforcement. Regulating supplements as a foodstuff and not a medicine, coupled with the fact that a significant proportion of the supplement market is distributed via the Internet (hence absent from routine border control and surveillance), make ensuring and enforcing safety a very challenging task. The need for better quality control, compliance and public awareness is evident. Copyright © 2010 Elsevier Ltd. All rights reserved.
Uncovering MicroRNA and Transcription Factor Mediated Regulatory Networks in Glioblastoma
Sun, Jingchun; Gong, Xue; Purow, Benjamin; Zhao, Zhongming
2012-01-01
Glioblastoma multiforme (GBM) is the most common and lethal brain tumor in humans. Recent studies revealed that patterns of microRNA (miRNA) expression in GBM tissue samples are different from those in normal brain tissues, suggesting that a number of miRNAs play critical roles in the pathogenesis of GBM. However, little is yet known about which miRNAs play central roles in the pathology of GBM and their regulatory mechanisms of action. To address this issue, in this study, we systematically explored the main regulation format (feed-forward loops, FFLs) consisting of miRNAs, transcription factors (TFs) and their impacting GBM-related genes, and developed a computational approach to construct a miRNA-TF regulatory network. First, we compiled GBM-related miRNAs, GBM-related genes, and known human TFs. We then identified 1,128 3-node FFLs and 805 4-node FFLs with statistical significance. By merging these FFLs together, we constructed a comprehensive GBM-specific miRNA-TF mediated regulatory network. Then, from the network, we extracted a composite GBM-specific regulatory network. To illustrate the GBM-specific regulatory network is promising for identification of critical miRNA components, we specifically examined a Notch signaling pathway subnetwork. Our follow up topological and functional analyses of the subnetwork revealed that six miRNAs (miR-124, miR-137, miR-219-5p, miR-34a, miR-9, and miR-92b) might play important roles in GBM, including some results that are supported by previous studies. In this study, we have developed a computational framework to construct a miRNA-TF regulatory network and generated the first miRNA-TF regulatory network for GBM, providing a valuable resource for further understanding the complex regulatory mechanisms in GBM. The observation of critical miRNAs in the Notch signaling pathway, with partial verification from previous studies, demonstrates that our network-based approach is promising for the identification of new and important miRNAs in GBM and, potentially, other cancers. PMID:22829753
Ibraheem, Omodele; Botha, Christiaan E J; Bradley, Graeme
2010-12-01
The regulation of gene expression involves a multifarious regulatory system. Each gene contains a unique combination of cis-acting regulatory sequence elements in the 5' regulatory region that determines its temporal and spatial expression. Cis-acting regulatory elements are essential transcriptional gene regulatory units; they control many biological processes and stress responses. Thus a full understanding of the transcriptional gene regulation system will depend on successful functional analyses of cis-acting elements. Cis-acting regulatory elements present within the 5' regulatory region of the sucrose transporter gene families in rice (Oryza sativa Japonica cultivar-group) and Arabidopsis thaliana, were identified using a bioinformatics approach. The possible cis-acting regulatory elements were predicted by scanning 1.5kbp of 5' regulatory regions of the sucrose transporter genes translational start sites, using Plant CARE, PLACE and Genomatix Matinspector professional databases. Several cis-acting regulatory elements that are associated with plant development, plant hormonal regulation and stress response were identified, and were present in varying frequencies within the 1.5kbp of 5' regulatory region, among which are; A-box, RY, CAT, Pyrimidine-box, Sucrose-box, ABRE, ARF, ERE, GARE, Me-JA, ARE, DRE, GA-motif, GATA, GT-1, MYC, MYB, W-box, and I-box. This result reveals the probable cis-acting regulatory elements that possibly are involved in the expression and regulation of sucrose transporter gene families in rice and Arabidopsis thaliana during cellular development or environmental stress conditions. Copyright © 2010 Elsevier Ltd. All rights reserved.
Molecular control of vertebrate iron homeostasis by iron regulatory proteins
Wallander, Michelle L.; Leibold, Elizabeth A.; Eisenstein, Richard S.
2008-01-01
Both deficiencies and excesses of iron represent major public health problems throughout the world. Understanding the cellular and organismal processes controlling iron homeostasis is critical for identifying iron-related diseases and in advancing the clinical treatments for such disorders of iron metabolism. Iron regulatory proteins (IRPs) 1 and 2 are key regulators of vertebrate iron metabolism. These RNA binding proteins post-transcriptionally control the stability or translation of mRNAs encoding proteins involved in iron homeostasis thereby controlling the uptake, utilization, storage or export of iron. Recent evidence provides insight into how IRPs selectively control the translation or stability of target mRNAs, how IRP RNA binding activity is controlled by iron-dependent and iron-independent effectors, and the pathological consequences of dysregulation of the IRP system. PMID:16872694
Abdul Aziz, Safiyyah; Fletcher, Janet; Bayliss, Donna M
2016-08-01
Self-regulatory speech has been shown to be important for the planning and problem solving of children. Our intervention study, including comparisons to both wait-list and typically developing controls, examined the effectiveness of a training programme designed to improve self-regulatory speech, and consequently, the planning and problem solving performance of 87 (60 males, 27 females) children aged 4-7 years with Specific Language Impairment (SLI) who were delayed in their self-regulatory speech development. The self-regulatory speech and Tower of London (TOL) performance of children with SLI who received the intervention initially or after a waiting period was compared with that of 80 (48 male, 32 female) typically developing children who did not receive any intervention. Children were tested at three time points: Time 1- prior to intervention; Time 2 - after the first SLI group had received training and the second SLI group provided a wait-list control; and Time 3 - when the second SLI group had received training. At Time 1 children with SLI produced less self-regulatory speech and were impaired on the TOL relative to the typically developing children. At Time 2, the TOL performance of children with SLI in the first training group improved significantly, whereas there was no improvement for the second training group (the wait-list group). At Time 3, the second training group improved their TOL performance and the first group maintained their performance. No significant differences in TOL performance were evident between typically developing children and those with SLI at Time 3. Moreover, decreases in social speech and increases in inaudible muttering following self-regulatory speech training were associated with improvements in TOL performance. Together, the results show that self-regulatory speech training was effective in increasing self-regulatory speech and in improving planning and problem solving performance in children with SLI.
Janfeshan, Sahar; Yaghobi, Ramin; Eidi, Akram; Karimi, Mohammad Hossein; Geramizadeh, Bita; Malekhosseini, Seyed Ali; Kafilzadeh, Farshid
2017-12-01
Hepatitis B virus, which mainly affects normal liver function, leads to severe acute and chronic hepatitis, resulting in cirrhosis and hepatocellular carcinoma, but can be safely treated after liver transplant. Evaluation of determinative biomarkers may facilitate more effective treatment of posttransplant rejection. Therefore, we investigated interferon regulatory factor 1 expression in hepatitis B virus-infected liver transplant patients with and without previous rejection compared with controls. Hepatitis B virus-infected liver recipients were divided into those with (20 patients) and without a rejection (26 patients), confirmed by pathologic analyses in those who had a rejection. In addition, a healthy control group composed of 13 individuals was included. Expression levels of interferon regulatory factor 1 were evaluated during 3 follow-ups after transplant using an in-house comparative SYBR green real-time polymerase chain reaction method. Statistical analyses were performed with SPSS software (SPSS: An IBM Company, version 16.0, IBM Corporation, Armonk, NY, USA). Modifications of interferon regulatory factor 1 gene expression levels in patient groups with and without rejection were not significant between days 1, 4, and 7 after liver transplant. Interferon regulatory factor 1 mRNA expression levels were down-regulated in patients without rejection versus patients with rejection, although not significantly at day 1 (P = .234) and day 4 (P = .302) but significantly at day 7 (P = .004) after liver transplant. Down-regulation of interferon regulatory factor 1 gene expression in hepatitis B virus patients without rejection emphasized counteraction between hepatitis B virus replication and interferon regulatory factor 1 production. On the other hand, interferon regulatory factor 1 gene overexpression in patients with rejection may result in inflammatory reactions and ischemic-reperfusion injury. Therefore, a better understanding of the association between interferon regulatory factor 1 and hepatitis B virus pathogenesis in a larger population with longer follow-up is needed.
76 FR 10917 - Draft Regulatory Guide: Issuance, Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-28
... in the agency's ``Regulatory Guide'' series. This series was developed to describe and make available... connection assemblies can perform their safety functions during and after a design-basis event. Title 10 of... Reprocessing Plants,'' Criterion III, ``Design Control,'' requires, in part, that test programs used to verify...
10 CFR 50.4 - Written communications.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 1 2012-01-01 2012-01-01 false Written communications. 50.4 Section 50.4 Energy NUCLEAR... written communications from the applicant or licensee to the Nuclear Regulatory Commission concerning the...: Document Control Desk, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001; by hand delivery to...
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Definitions. 55.4 Section 55.4 Energy NUCLEAR REGULATORY... means the Atomic Energy Act of 1954, including any amendments to the Act. Actively performing the... Nuclear Regulatory Commission or its duly authorized representatives. Controls when used with respect to a...
10 CFR 50.4 - Written communications.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Written communications. 50.4 Section 50.4 Energy NUCLEAR... written communications from the applicant or licensee to the Nuclear Regulatory Commission concerning the...: Document Control Desk, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001; by hand delivery to...
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Definitions. 55.4 Section 55.4 Energy NUCLEAR REGULATORY... means the Atomic Energy Act of 1954, including any amendments to the Act. Actively performing the... Nuclear Regulatory Commission or its duly authorized representatives. Controls when used with respect to a...
Boosting airway T-regulatory cells by gastrointestinal stimulation as a strategy for asthma control.
Strickland, D H; Judd, S; Thomas, J A; Larcombe, A N; Sly, P D; Holt, P G
2011-01-01
The hallmark of atopic asthma is transient airways hyperresponsiveness (AHR) preceded by aeroallergen-induced Th-cell activation. This is preceded by upregulation of CD86 on resident airway dendritic cells (DCs) that normally lack competence in T-cell triggering. Moreover, AHR duration is controlled via T-regulatory (Treg) cells, which can attenuate CD86 upregulation on DC. We show that airway mucosal Treg/DC interaction represents an accessible therapeutic target for asthma control. Notably, baseline airway Treg activity in sensitized rats can be boosted by microbe-derived stimulation of the gut, resulting in enhanced capacity to control CD86 expression on airway DC triggered by aeroallergen and accelerated resolution of AHR.
Benefits and Costs of Pulp and Paper Effluent Controls Under the Clean Water Act
NASA Astrophysics Data System (ADS)
Luken, Ralph A.; Johnson, F. Reed; Kibler, Virginia
1992-03-01
This study quantifies local improvements in environmental quality from controlling effluents in the pulp and paper industry. Although it is confined to a single industry, this study is the first effort to assess the actual net benefits of the Clean Water Act pollution control program. An assessment of water quality benefits requires linking regulatory policy, technical effects, and behavioral responses. Regulatory policies mandate specific controls that influence the quantity and nature of effluent discharges. We identify a subset of stream segments suitable for analysis, describe water quality simulations and control cost calculations under alternative regulatory scenarios, assign feasible water uses to each segment based on water quality, and determine probable upper bounds for the willingness of beneficiaries to pay. Because the act imposes uniform regulations that do not account for differences in compliance costs, existing stream quality, contributions of other effluent sources, and recreation potential, the relation between water quality benefits and costs varies widely across sites. This variation suggests that significant positive net benefits have probably been achieved in some cases, but we conclude that the costs of the Clean Water Act as a whole exceed likely benefits by a significant margin.
Mechanistic insights into the regulation of metabolic enzymes by acetylation
2012-01-01
The activity of metabolic enzymes is controlled by three principle levels: the amount of enzyme, the catalytic activity, and the accessibility of substrates. Reversible lysine acetylation is emerging as a major regulatory mechanism in metabolism that is involved in all three levels of controlling metabolic enzymes and is altered frequently in human diseases. Acetylation rivals other common posttranslational modifications in cell regulation not only in the number of substrates it modifies, but also the variety of regulatory mechanisms it facilitates. PMID:22826120
T Cell Receptor Signaling in the Control of Regulatory T Cell Differentiation and Function
Li, Ming O.; Rudensky, Alexander Y.
2016-01-01
Regulatory T cells (TReg cells), a specialized T cell lineage, have a pivotal function in the control of self-tolerance and inflammatory responses. Recent studies have revealed a discrete mode of TCR signaling that regulates Treg cell differentiation, maintenance and function and that impacts on gene expression, metabolism, cell adhesion and migration of these cells. Here, we discuss the emerging understanding of TCR-guided differentiation of Treg cells in the context of their function in health and disease. PMID:27026074
What makes a natural clay antibacterial?
Williams, Lynda B.; Metge, David W.; Eberl, Dennis D.; Harvey, Ronald W.; Turner, Amanda G.; Prapaipong, Panjai; Port-Peterson, Amisha T.
2011-01-01
Chemical analyses of E. coli killed by aqueous leachates of an antibacterial clay show that intracellular concentrations of Fe and P are elevated relative to controls. Phosphorus uptake by the cells supports a regulatory role of polyphosphate or phospholipids in controlling Fe2+. Fenton reaction products can degrade critical cell components, but we deduce that extracellular processes do not cause cell death. Rather, Fe2+ overwhelms outer membrane regulatory proteins and is oxidized when it enters the cell, precipitating Fe3+ and producing lethal hydroxyl radicals.
CTCF and Cohesin in Genome Folding and Transcriptional Gene Regulation.
Merkenschlager, Matthias; Nora, Elphège P
2016-08-31
Genome function, replication, integrity, and propagation rely on the dynamic structural organization of chromosomes during the cell cycle. Genome folding in interphase provides regulatory segmentation for appropriate transcriptional control, facilitates ordered genome replication, and contributes to genome integrity by limiting illegitimate recombination. Here, we review recent high-resolution chromosome conformation capture and functional studies that have informed models of the spatial and regulatory compartmentalization of mammalian genomes, and discuss mechanistic models for how CTCF and cohesin control the functional architecture of mammalian chromosomes.
Delage, Elise; Cervantes, Diégo Cordero; Pénard, Esthel; Schmitt, Christine; Syan, Sylvie; Disanza, Andrea; Scita, Giorgio; Zurzolo, Chiara
2016-12-23
Tunneling Nanotubes (TNTs) are actin enriched filopodia-like protrusions that play a pivotal role in long-range intercellular communication. Different pathogens use TNT-like structures as "freeways" to propagate across cells. TNTs are also implicated in cancer and neurodegenerative diseases, making them promising therapeutic targets. Understanding the mechanism of their formation, and their relation with filopodia is of fundamental importance to uncover their physiological function, particularly since filopodia, differently from TNTs, are not able to mediate transfer of cargo between distant cells. Here we studied different regulatory complexes of actin, which play a role in the formation of both these structures. We demonstrate that the filopodia-promoting CDC42/IRSp53/VASP network negatively regulates TNT formation and impairs TNT-mediated intercellular vesicle transfer. Conversely, elevation of Eps8, an actin regulatory protein that inhibits the extension of filopodia in neurons, increases TNT formation. Notably, Eps8-mediated TNT induction requires Eps8 bundling but not its capping activity. Thus, despite their structural similarities, filopodia and TNTs form through distinct molecular mechanisms. Our results further suggest that a switch in the molecular composition in common actin regulatory complexes is critical in driving the formation of either type of membrane protrusion.
Hospital adoption of medical technology: an empirical test of alternative models.
Teplensky, J. D.; Pauly, M. V.; Kimberly, J. R.; Hillman, A. L.; Schwartz, J. S.
1995-01-01
OBJECTIVE. This study examines hospital motivations to acquire new medical technology, an issue of considerable policy relevance: in this case, whether, when, and why hospitals acquire a new capital-intensive medical technology, magnetic resonance imaging equipment (MRI). STUDY DESIGN. We review three common explanations for medical technology adoption: profit maximization, technological preeminence, and clinical excellence, and incorporate them into a composite model, controlling for regulatory differences, market structures, and organizational characteristics. All four models are then tested using Cox regressions. DATA SOURCES. The study is based on an initial sample of 637 hospitals in the continental United States that owned or leased an MRI unit as of 31 December 1988, plus nonadopters. Due to missing data the final sample consisted of 507 hospitals. The data, drawn from two telephone surveys, are supplemented by the AHA Survey, census data, and industry and academic sources. PRINCIPAL FINDING. Statistically, the three individual models account for roughly comparable amounts of variance in past adoption behavior. On the basis of explanatory power and parsimony, however, the technology model is "best." Although the composite model is statistically better than any of the individual models, it does not add much more explanatory power adjusting for the number of variables added. CONCLUSIONS. The composite model identified the importance a hospital attached to being a technological leader, its clinical requirements, and the change in revenues it associated with the adoption of MRI as the major determinants of adoption behavior. We conclude that a hospital's adoption behavior is strongly linked to its strategic orientation. PMID:7649751
Dynamic Lipid-dependent Modulation of Protein Topology by Post-translational Phosphorylation.
Vitrac, Heidi; MacLean, David M; Karlstaedt, Anja; Taegtmeyer, Heinrich; Jayaraman, Vasanthi; Bogdanov, Mikhail; Dowhan, William
2017-02-03
Membrane protein topology and folding are governed by structural principles and topogenic signals that are recognized and decoded by the protein insertion and translocation machineries at the time of initial membrane insertion and folding. We previously demonstrated that the lipid environment is also a determinant of initial protein topology, which is dynamically responsive to post-assembly changes in membrane lipid composition. However, the effect on protein topology of post-assembly phosphorylation of amino acids localized within initially cytoplasmically oriented extramembrane domains has never been investigated. Here, we show in a controlled in vitro system that phosphorylation of a membrane protein can trigger a change in topological arrangement. The rate of change occurred on a scale of seconds, comparable with the rates observed upon changes in the protein lipid environment. The rate and extent of topological rearrangement were dependent on the charges of extramembrane domains and the lipid bilayer surface. Using model membranes mimicking the lipid compositions of eukaryotic organelles, we determined that anionic lipids, cholesterol, sphingomyelin, and membrane fluidity play critical roles in these processes. Our results demonstrate how post-translational modifications may influence membrane protein topology in a lipid-dependent manner, both along the organelle trafficking pathway and at their final destination. The results provide further evidence that membrane protein topology is dynamic, integrating for the first time the effect of changes in lipid composition and regulators of cellular processes. The discovery of a new topology regulatory mechanism opens additional avenues for understanding unexplored structure-function relationships and the development of optimized topology prediction tools. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Centrarchid assemblages in Mississippi state-operated fishing lakes
Olive, J.A.; Miranda, L.E.; Hubbard, W.D.
2005-01-01
We evaluated electrofishing catch per effort in 27 state-operated fishing lakes in Mississippi to identify patterns of centrarchid community composition and to determine whether those patterns were related to selected environmental characteristics and to artificial nutrient enrichment. Ordination with detrended correspondence analysis recognized two major axes accounting for 77% of the variability in species ordination. Axis 1 showed a distinct separation between the body sizes of various species. A notable exception was the density of small (<30 cm) largemouth bass Micropterus salmoides, which aligned with the large individuals of other centrarchid species. This pattern suggested that through predation, high densities of small largemouth bass exerted significant control over the size structure of fish communities. Axis 2 separated species of crappies Pomoxis spp., suggesting that conditions other than strong species interactions also moderated the composition of crappies in the assemblages. However, neither lake morphometry nor watershed composition exhibited a major influence over axes 1 or 2. In small, intensively managed lakes with low habitat complexity, the regulatory importance of biotic interactions may overwhelm that of abiotic factors. Nutrient enrichment influenced community structure by changing the densities of bluegill Lepomis macrochirus and largemouth bass substantially but had a minor or no effect on other species. The management techniques used in these state-operated lakes are usually targeted toward a particular species without adequately considering the other species within the community. Our results show that attention to community-level interactions could provide valuable insight into factors that affect the quality of the fishery, insight that is not available through traditional population-level assessments. ?? Copyright by the American Fisheries Society 2005.
Wanyonyi, Stephen S; Lefevre, Christophe; Sharp, Julie A; Nicholas, Kevin R
2013-08-08
Asynchronous concurrent lactation (ACL) is an extreme lactation strategy in macropod marsupials including the tammar wallaby, that may hold the key to understanding local control of mammary epithelial cell function. Marsupials have a short gestation and a long lactation consisting of three phases; P2A, P2B and P3, representing early, mid and late lactation respectively and characterised by profound changes in milk composition. A lactating tammar is able to concurrently produce phase 2A and 3 milk from adjacent glands in order to feed a young newborn and an older sibling at heel. Physiological effectors of ACL remain unknown and in this study the extracellular matrix (ECM) is investigated for its role in switching mammary phenotypes between phases of tammar wallaby lactation. Using the level of expression of the genes for the phase specific markers tELP, tWAP, and tLLP-B representing phases 2A, 2B and 3 respectively we show for the first time that tammar wallaby mammary epithelial cells (WallMECs) extracted from P2B acquire P3 phenotype when cultured on P3 ECM. Similarly P2A cells acquire P2B phenotype when cultured on P2B ECM. We further demonstrate that changes in phase phenotype correlate with phase-specific changes in ECM composition. This study shows that progressive changes in ECM composition in individual mammary glands provide a local regulatory mechanism for milk protein gene expression thereby enabling the mammary glands to lactate independently. Copyright © 2013. Published by Elsevier B.V.
The diabetes type 1 locus Idd6 modulates activity of CD4+CD25+ regulatory T-cells.
Rogner, Ute Christine; Lepault, Françoise; Gagnerault, Marie-Claude; Vallois, David; Morin, Joëlle; Avner, Philip; Boitard, Christian
2006-01-01
The genetic locus Idd6 confers susceptibility to the spontaneous development of type 1 diabetes in the NOD mouse. Our studies on disease resistance of the congenic mouse strain NOD.C3H 6.VIII showed that Idd6 influences T-cell activities in the peripheral immune system and suggest that a major mechanism by which the Idd6 locus modifies diabetes development is via modulation of regulatory T-cell activities. Our transfer experiments using total splenocytes and purified T-cells demonstrated that the locus specifically controls the efficiency of disease protection mediated by the regulatory CD4(+)CD25(+) T-cell subset. Our data also implicate the Idd6 locus in controlling the balance between infiltrating lymphocytes and antigen-presenting cells within the pancreatic islet.
Nickerson, Beverly; Harrington, Brent; Li, Fasheng; Guo, Michele Xuemei
2017-11-30
Drug product assay is one of several tests required for new drug products to ensure the quality of the product at release and throughout the life cycle of the product. Drug product assay testing is typically performed by preparing a composite sample of multiple dosage units to obtain an assay value representative of the batch. In some cases replicate composite samples may be prepared and the reportable assay value is the average value of all the replicates. In previously published work by Harrington et al. (2014) [5], a sample preparation composite and replicate strategy for assay was developed to provide a systematic approach which accounts for variability due to the analytical method and dosage form with a standard error of the potency assay criteria based on compendia and regulatory requirements. In this work, this sample preparation composite and replicate strategy for assay is applied to several case studies to demonstrate the utility of this approach and its application at various stages of pharmaceutical drug product development. Copyright © 2017 Elsevier B.V. All rights reserved.
Neuenschwander, Regula; Blair, Clancy
2017-02-01
When delaying gratification, both motivational and regulatory processes are likely to be at play; however, the relative contributions of motivational and regulatory influences on delay behavior are unclear. By examining behavioral responses during a delay task, this study sought to examine the motivational (anticipatory behavior) and regulatory mechanisms (executive function and self-control strategies) underlying children's self-regulation. The participants, 65 5- to 9-year-old children (M age =7.19years, SD=0.89), were video-recorded during a delay procedure and later coded for anticipatory behaviors (e.g., gazing intensely at the tablet) and self-control strategies. Children also completed two executive function (EF) tasks. We found that anticipatory behavior was curvilinearly related to delay time. Children showing either very low or very high levels of anticipatory behavior were not able to wait the entire time. Furthermore, our results indicated that anticipatory behavior interacted with EF to predict delay time. Specifically, anticipatory behavior was negatively related to delay time only if EF abilities were low. Finally, self-control strategies also interacted with EF to predict children's ability to delay. Spontaneous engagement in self-control strategies such as fidgeting and engagement in alternative activities were beneficial for children with low EF but were unrelated to delay time for children with high EF. Results indicate the value of examining motivational and regulatory influences on delay behavior. Lapses in self-regulation may be due to the combination of powerful impulsigenic (i.e., anticipatory behavior) and weak volitional processes (i.e., EF, self-control strategies). Copyright © 2016. Published by Elsevier Inc.
30 CFR 773.27 - Burden of proof for ownership or control challenges.
Code of Federal Regulations, 2010 CFR
2010-07-01
... regulatory authority. The materials presented in connection with your challenge will become part of the... challenges. 773.27 Section 773.27 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT... SYSTEMS UNDER REGULATORY PROGRAMS REQUIREMENTS FOR PERMITS AND PERMIT PROCESSING § 773.27 Burden of proof...
75 FR 61780 - Advisory Committee on the Medical Uses of Isotopes: Meeting Notice
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-06
... NUCLEAR REGULATORY COMMISSION Advisory Committee on the Medical Uses of Isotopes: Meeting Notice AGENCY: U.S. Nuclear Regulatory Commission (NRC). ACTION: Notice of meeting. SUMMARY: NRC will convene a... Conference of Radiation Control Program Directors on a national medical events database; (2) a discussion on...
77 FR 73966 - Utah Regulatory Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-12
... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 944 [SATS No. UT-049-FOR; Docket ID OSM-2012-0015] Utah Regulatory Program AGENCY: Office of Surface Mining... Mining Control and Reclamation Act of 1977 (SMCRA or the Act). Utah proposes to revise references to...
77 FR 40938 - Pilot Program on NAFTA Trucking Provisions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-11
... regulations is included in 49 CFR part 385, Appendix B, Section VII. Parts of the FMCSRs and HMRs having similar characteristics are combined together into six regulatory areas called ``factors.'' The regulatory factors are intended to evaluate the adequacy of a carrier's management controls. M. Passed Phase 1...
78 FR 24293 - Pilot Program on NAFTA Trucking Provisions
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-24
... Part 385, Appendix B, Section VII. Parts of the FMCSRs and HMRs having similar characteristics are combined together into six regulatory areas called ``factors.'' The regulatory factors are intended to evaluate the adequacy of a carrier's management controls. M. Passed Phase 1, Factor 1: A ``yes'' in this...
76 FR 56868 - Pilot Project on NAFTA Trucking Provisions
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-14
... part 385, Appendix B, Section VII. Parts of the FMCSRs and HMRs having similar characteristics are combined together into six regulatory areas called ``factors.'' The regulatory factors are intended to evaluate the adequacy of a carrier's management controls. L. Passed Phase 1, Factor 1: A ``yes'' in this...
77 FR 12356 - Pilot Program on NAFTA Trucking Provisions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-29
... part 385, Appendix B, Section VII. Parts of the FMCSRs and HMRs having similar characteristics are combined together into six regulatory areas called ``factors.'' The regulatory factors are intended to evaluate the adequacy of a carrier's management controls. M. Passed Phase 1, Factor 1: A ``yes'' in this...
Strategies for Protein Overproduction in Escherichia coli.
ERIC Educational Resources Information Center
Mott, John E.
1984-01-01
Examines heterologous expression in Escherichia coli and the role of regulatory sequences which control gene expression at transcription resulting in abundant production of messenger RNA and regulatory sequences in mRNA which promote efficient translation. Also examines the role of E. coli cells in stabilizing mRNA and protein that is…
Code of Federal Regulations, 2014 CFR
2014-01-01
..., combined licenses, and manufacturing licenses. 50.55 Section 50.55 Energy NUCLEAR REGULATORY COMMISSION... experimental nature of the facility or fire, flood, explosion, strike, sabotage, domestic violence, enemy... submitted to the Document Control Desk, U.S. Nuclear Regulatory Commission, by an appropriate method listed...
Code of Federal Regulations, 2012 CFR
2012-01-01
..., combined licenses, and manufacturing licenses. 50.55 Section 50.55 Energy NUCLEAR REGULATORY COMMISSION... experimental nature of the facility or fire, flood, explosion, strike, sabotage, domestic violence, enemy... submitted to the Document Control Desk, U.S. Nuclear Regulatory Commission, by an appropriate method listed...
Code of Federal Regulations, 2013 CFR
2013-01-01
..., combined licenses, and manufacturing licenses. 50.55 Section 50.55 Energy NUCLEAR REGULATORY COMMISSION... experimental nature of the facility or fire, flood, explosion, strike, sabotage, domestic violence, enemy... submitted to the Document Control Desk, U.S. Nuclear Regulatory Commission, by an appropriate method listed...
Regulations: Can They Control Staff Compliance in Human Services Systems?
ERIC Educational Resources Information Center
Jacobson, John W.
1990-01-01
This article discusses results of regulations for Intermediate Care Facilities for the Mentally Retarded, arguing that, by establishing minimum standards for funding, these policies promote mediocrity. Strategies for promoting compliance behaviors are offered, as are observations on regulatory reform and the process of regulatory impact. (PB)
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-30
... NUCLEAR REGULATORY COMMISSION [Docket No. 070-3098; NRC-2011-0081] Notice of Consideration of Approval of Application Regarding Proposed Indirect Transfer of Control of the Construction Authorization for the Mixed Oxide Fuel Fabrication Facility in Aiken, SC; Correction AGENCY: Nuclear Regulatory...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-31
... SECURITIES AND EXCHANGE COMMISSION [Release No. 34-65618; File No. SR-FINRA-2011-061] Self... Effectiveness of Proposed Rule Change To Expand the Exception Relating to Transfers of Proprietary Securities Positions in Connection With Certain Corporate Control Transactions October 25, 2011. Pursuant to Section 19...
76 FR 60939 - Metal Fatigue Analysis Performed by Computer Software
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-30
... Nuclear Power Plants,'' Revision 2, issued December 2010, which recommends that the effects of the reactor... design control in accordance with Appendix B, ``Quality Assurance Criteria for Nuclear Power Plants and... Nuclear Power Plants.'' Intent The U.S. Nuclear Regulatory Commission (NRC) is issuing this regulatory...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-20
... upgraded licenses or license renewals to operate the controls at a nuclear reactor facility. This... NUCLEAR REGULATORY COMMISSION [Docket No. NRC-2012-0184] Agency Information Collection Activities: Submission for the Office of Management and Budget (OMB) Review; Comment Request AGENCY: Nuclear Regulatory...
Yadav, Saveg; Kujur, Praveen Kumar; Pandey, Shrish Kumar; Goel, Yugal; Maurya, Babu Nandan; Verma, Ashish; Kumar, Ajay; Singh, Rana Pratap; Singh, Sukh Mahendra
2018-01-15
Evidences demonstrate that metabolic inhibitor 3-bromopyruvate (3-BP) exerts a potent antitumor action against a wide range of malignancies. However, the effect of 3-BP on progression of the tumors of thymic origin remains unexplored. Although, constituents of tumor microenvironment (TME) plays a pivotal role in regulation of tumor progression, it remains unclear if 3-BP can alter the composition of the crucial tumor growth regulatory components of the external surrounding of tumor cells. Thus, the present investigation attempts to understand the effect of 3-BP administration to a host bearing a progressively growing tumor of thymic origin on tumor growth regulatory soluble, cellular and biophysical components of tumor milieu vis-à-vis understanding its association with tumor progression, accompanying cell cycle events and mode of cell death. Further, the expression of cell survival regulatory molecules and hemodynamic characteristics of the tumor milieu were analysed to decipher mechanisms underlying the antitumor action of 3-BP. Administration of 3-BP to tumor-bearing hosts retarded tumor progression accompanied by induction of tumor cell death, cell cycle arrest, declined metabolism, inhibited mitochondrial membrane potential, elevated release of cytochrome c and altered hemodynamics. Moreover, 3-BP reconstituted the external milieu, in concurrence with deregulated glucose and pH homeostasis and increased tumor infiltration by NK cells, macrophages, and T lymphocytes. Further, 3-BP administration altered the expression of key regulatory molecules involved in glucose uptake, intracellular pH and tumor cell survival. The outcomes of this study will help in optimizing the therapeutic application of 3-BP by targeting crucial tumor growth regulatory components of tumor milieu. Copyright © 2017 Elsevier Inc. All rights reserved.
Graham, Morag R; Smoot, Laura M; Migliaccio, Cristi A Lux; Virtaneva, Kimmo; Sturdevant, Daniel E; Porcella, Stephen F; Federle, Michael J; Adams, Gerald J; Scott, June R; Musser, James M
2002-10-15
Two-component gene regulatory systems composed of a membrane-bound sensor and cytoplasmic response regulator are important mechanisms used by bacteria to sense and respond to environmental stimuli. Group A Streptococcus, the causative agent of mild infections and life-threatening invasive diseases, produces many virulence factors that promote survival in humans. A two-component regulatory system, designated covRS (cov, control of virulence; csrRS), negatively controls expression of five proven or putative virulence factors (capsule, cysteine protease, streptokinase, streptolysin S, and streptodornase). Inactivation of covRS results in enhanced virulence in mouse models of invasive disease. Using DNA microarrays and quantitative RT-PCR, we found that CovR influences transcription of 15% (n = 271) of all chromosomal genes, including many that encode surface and secreted proteins mediating host-pathogen interactions. CovR also plays a central role in gene regulatory networks by influencing expression of genes encoding transcriptional regulators, including other two-component systems. Differential transcription of genes influenced by covR also was identified in mouse soft-tissue infection. This analysis provides a genome-scale overview of a virulence gene network in an important human pathogen and adds insight into the molecular mechanisms used by group A Streptococcus to interact with the host, promote survival, and cause disease.
A Conserved Circular Network of Coregulated Lipids Modulates Innate Immune Responses
Köberlin, Marielle S.; Snijder, Berend; Heinz, Leonhard X.; Baumann, Christoph L.; Fauster, Astrid; Vladimer, Gregory I.; Gavin, Anne-Claude; Superti-Furga, Giulio
2015-01-01
Summary Lipid composition affects the biophysical properties of membranes that provide a platform for receptor-mediated cellular signaling. To study the regulatory role of membrane lipid composition, we combined genetic perturbations of sphingolipid metabolism with the quantification of diverse steps in Toll-like receptor (TLR) signaling and mass spectrometry-based lipidomics. Membrane lipid composition was broadly affected by these perturbations, revealing a circular network of coregulated sphingolipids and glycerophospholipids. This evolutionarily conserved network architecture simultaneously reflected membrane lipid metabolism, subcellular localization, and adaptation mechanisms. Integration of the diverse TLR-induced inflammatory phenotypes with changes in lipid abundance assigned distinct functional roles to individual lipid species organized across the network. This functional annotation accurately predicted the inflammatory response of cells derived from patients suffering from lipid storage disorders, based solely on their altered membrane lipid composition. The analytical strategy described here empowers the understanding of higher-level organization of membrane lipid function in diverse biological systems. PMID:26095250
Adapting to an initial self-regulatory task cancels the ego depletion effect.
Dang, Junhua; Dewitte, Siegfried; Mao, Lihua; Xiao, Shanshan; Shi, Yucai
2013-09-01
The resource-based model of self-regulation provides a pessimistic view of self-regulation that people are destined to lose their self-control after having engaged in any act of self-regulation because these acts deplete the limited resource that people need for successful self-regulation. The cognitive control theory, however, offers an alternative explanation and suggests that the depletion effect reflects switch costs between different cognitive control processes recruited to deal with demanding tasks. This account implies that the depletion effect will not occur once people have had the opportunity to adapt to the self-regulatory task initially engaged in. Consistent with this idea, the present study showed that engaging in a demanding task led to performance deficits on a subsequent self-regulatory task (i.e. the depletion effect) only when the initial demanding task was relatively short but not when it was long enough for participants to adapt. Our results were unrelated to self-efficacy, mood, and motivation. Copyright © 2013 Elsevier Inc. All rights reserved.
A self-regulatory approach to understanding boredom proneness.
Struk, A A; Scholer, A A; Danckert, J
2015-07-29
We investigated the relationship between self-regulation and two types of boredom proneness (perceived lack of internal stimulation, perceived lack of external stimulation) using a variety of measures of self-regulation. These included a general measure of self-control, measures of both regulatory focus (i.e., promotion or a sensitivity to gains/non-gains vs. prevention or a sensitivity to losses/non-losses) and regulatory mode (i.e., assessment or the tendency to compare means and goals vs. locomotion or the tendency to initiate and maintain commitment to action), and measures of cognitive flexibility (i.e., a perceived sense of control and the tendency to seek alternative solutions). Results identified a unique set of factors related to each boredom proneness component. Trait self-control and prevention focus were associated with lower boredom propensity due to a lack of external stimulation. Locomotion and the tendency to seek alternatives were associated with lower boredom propensity due to a lack of internal stimulation. These findings suggest that effective goal pursuit is associated with reduced likelihood of experiencing boredom.
Berlow, Noah; Pal, Ranadip
2011-01-01
Genetic Regulatory Networks (GRNs) are frequently modeled as Markov Chains providing the transition probabilities of moving from one state of the network to another. The inverse problem of inference of the Markov Chain from noisy and limited experimental data is an ill posed problem and often generates multiple model possibilities instead of a unique one. In this article, we address the issue of intervention in a genetic regulatory network represented by a family of Markov Chains. The purpose of intervention is to alter the steady state probability distribution of the GRN as the steady states are considered to be representative of the phenotypes. We consider robust stationary control policies with best expected behavior. The extreme computational complexity involved in search of robust stationary control policies is mitigated by using a sequential approach to control policy generation and utilizing computationally efficient techniques for updating the stationary probability distribution of a Markov chain following a rank one perturbation.
Stereotype threat can both enhance and impair older adults' memory.
Barber, Sarah J; Mather, Mara
2013-12-01
Negative stereotypes about aging can impair older adults' memory via stereotype threat; however, the mechanisms underlying this phenomenon are unclear. In two experiments, we tested competing predictions derived from two theoretical accounts of stereotype threat: executive-control interference and regulatory fit. Older adults completed a working memory test either under stereotype threat about age-related memory declines or not under such threat. Monetary incentives were manipulated such that recall led to gains or forgetting led to losses. The executive-control-interference account predicts that stereotype threat decreases the availability of executive-control resources and hence should impair working memory performance. The regulatory-fit account predicts that threat induces a prevention focus, which should impair performance when gains are emphasized but improve performance when losses are emphasized. Results were consistent only with the regulatory-fit account. Although stereotype threat significantly impaired older adults' working memory performance when remembering led to gains, it significantly improved performance when forgetting led to losses.
Friends and foes of tuberculosis: modulation of protective immunity.
Brighenti, Susanna; Joosten, Simone A
2018-05-27
Protective immunity in tuberculosis (TB) is subject of debate in the TB research community, as this is key to fully understand TB pathogenesis and to develop new promising tools for TB diagnosis and prognosis as well as a more efficient TB vaccine. IFN-γ producing CD4 + T cells are key in TB control, but may not be sufficient to provide protection. Additional subsets have been identified that contribute to protection such as multifunctional and cytolytic T cell subsets, including classical and non-classical T cells as well as novel innate immune cell subsets resulting from trained immunity. However, to define protective immune responses against TB, the complexity of balancing TB immunity also has to be considered. In this review, insights in effector cell immunity and how this is modulated by regulatory cells, associated comorbidities and the host microbiome is discussed. We systematically map how different suppressive immune cell subsets may affect effector cell responses at the local site of infection. We also dissect how common co-morbidities such as HIV, helminthes and diabetes may bias protective TB immunity towards pathogenic and regulatory responses. Finally, also the composition and diversity of the microbiome in the lung and gut could affect host TB immunity. Understanding these various aspects of the immunological balance in the human host is fundamental to prevent TB infection and disease. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Directing Discipline: State Medical Board Responsiveness to State Legislatures.
Lillvis, Denise F; McGrath, Robert J
2017-02-01
State medical boards are increasingly responsible for regulating medical and osteopathic licensure and professional conduct in the United States. Yet, there is great variation in the extent to which such boards take disciplinary action against physicians, indicating that some boards are more zealous regulators than others. We look to the political roots of such variation and seek to answer a simple, yet important, question: are nominally apolitical state medical boards responsive to political preferences? To address this question, we use panel data on disciplinary actions across sixty-four state medical boards from 1993 through 2006 and control for over-time changes in board characteristics (e.g., composition, independence, budgetary status), regulatory structure, and resources. We show that as state legislatures become more liberal [conservative], state boards increasingly [decreasingly] discipline physicians, especially during unified government and in the presence of highly professional legislatures. Our conclusions join others in emphasizing the importance of state medical boards and the contingent nature of political control of state regulation. In addition, we emphasize the roles that oversight capacity and strategy play in offsetting concerns regarding self-regulation of a powerful organized interest. Copyright © 2017 by Duke University Press.
Schmidt, Axel; Löhrer, Daniel; Alsop, Richard J.; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Wirtz, Monika; Rheinstädter, Maikel C.; Gründer, Stefan; Wiemuth, Dominik
2016-01-01
The bile acid-sensitive ion channel (BASIC) is a member of the degenerin/epithelial Na+ channel (Deg/ENaC) family of ion channels. It is mainly found in bile duct epithelial cells, the intestinal tract, and the cerebellum and is activated by alterations of its membrane environment. Bile acids, one class of putative physiological activators, exert their effect by changing membrane properties, leading to an opening of the channel. The physiological function of BASIC, however, is unknown. Deg/ENaC channels are characterized by a trimeric subunit composition. Each subunit is composed of two transmembrane segments, which are linked by a large extracellular domain. The termini of the channels protrude into the cytosol. Many Deg/ENaC channels contain regulatory domains and sequence motifs within their cytosolic domains. In this study, we show that BASIC contains an amphiphilic α-helical structure within its N-terminal domain. This α-helix binds to the cytosolic face of the plasma membrane and stabilizes a closed state. Truncation of this domain renders the channel hyperactive. Collectively, we identify a cytoplasmic domain, unique to BASIC, that controls channel activity via membrane interaction. PMID:27679529
Schmidt, Axel; Löhrer, Daniel; Alsop, Richard J; Lenzig, Pia; Oslender-Bujotzek, Adrienne; Wirtz, Monika; Rheinstädter, Maikel C; Gründer, Stefan; Wiemuth, Dominik
2016-11-18
The bile acid-sensitive ion channel (BASIC) is a member of the degenerin/epithelial Na + channel (Deg/ENaC) family of ion channels. It is mainly found in bile duct epithelial cells, the intestinal tract, and the cerebellum and is activated by alterations of its membrane environment. Bile acids, one class of putative physiological activators, exert their effect by changing membrane properties, leading to an opening of the channel. The physiological function of BASIC, however, is unknown. Deg/ENaC channels are characterized by a trimeric subunit composition. Each subunit is composed of two transmembrane segments, which are linked by a large extracellular domain. The termini of the channels protrude into the cytosol. Many Deg/ENaC channels contain regulatory domains and sequence motifs within their cytosolic domains. In this study, we show that BASIC contains an amphiphilic α-helical structure within its N-terminal domain. This α-helix binds to the cytosolic face of the plasma membrane and stabilizes a closed state. Truncation of this domain renders the channel hyperactive. Collectively, we identify a cytoplasmic domain, unique to BASIC, that controls channel activity via membrane interaction. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Food-induced changes of lipids in rat neuronal tissue visualized by ToF-SIMS imaging.
Dowlatshahi Pour, Masoumeh; Jennische, Eva; Lange, Stefan; Ewing, Andrew G; Malmberg, Per
2016-09-06
Time of flight secondary ion mass spectrometry (ToF-SIMS) was used to image the lipid localization in brain tissue sections from rats fed specially processed cereals (SPC). An IonTof 5 instrument equipped with a Bi cluster ion gun was used to analyze the tissue sections. Data from 15 brain samples from control and cereal-fed rats were recorded and exported to principal components analysis (PCA). The data clearly show changes of certain lipids in the brain following cereal feeding. PCA score plots show a good separation in lipid distribution between the control and the SPC-fed group. The loadings plot reveal that the groups separated mainly due to changes in cholesterol, vitamin E and c18:2, c16:0 fatty acid distribution as well as some short chain monocarboxylic fatty acid compositions. These insights relate to the working mechanism of SPC as a dietary supplement. SPC is thought to activate antisecretory factor (AF), an endogenous protein with regulatory function for inflammation and fluid secretion. These data provide insights into lipid content in brain following SPC feeding and suggest a relation to activating AF.
USDA-ARS?s Scientific Manuscript database
A regulatory agency (FSIS) in the U.S. rinses individual broiler carcasses with 400 mL of 1% buffered peptone water (BPW) for Salmonella incidence detection, while the European Union (EU) uses a 25 g composited neck skin sample from three carcasses. Therefore, the objectives of the study were to ob...
Nguyen, Quan H; Tellam, Ross L; Naval-Sanchez, Marina; Porto-Neto, Laercio R; Barendse, William; Reverter, Antonio; Hayes, Benjamin; Kijas, James; Dalrymple, Brian P
2018-01-01
Abstract Genome sequences for hundreds of mammalian species are available, but an understanding of their genomic regulatory regions, which control gene expression, is only beginning. A comprehensive prediction of potential active regulatory regions is necessary to functionally study the roles of the majority of genomic variants in evolution, domestication, and animal production. We developed a computational method to predict regulatory DNA sequences (promoters, enhancers, and transcription factor binding sites) in production animals (cows and pigs) and extended its broad applicability to other mammals. The method utilizes human regulatory features identified from thousands of tissues, cell lines, and experimental assays to find homologous regions that are conserved in sequences and genome organization and are enriched for regulatory elements in the genome sequences of other mammalian species. Importantly, we developed a filtering strategy, including a machine learning classification method, to utilize a very small number of species-specific experimental datasets available to select for the likely active regulatory regions. The method finds the optimal combination of sensitivity and accuracy to unbiasedly predict regulatory regions in mammalian species. Furthermore, we demonstrated the utility of the predicted regulatory datasets in cattle for prioritizing variants associated with multiple production and climate change adaptation traits and identifying potential genome editing targets. PMID:29618048
Diehl, Adam G
2018-01-01
Abstract The mouse is widely used as system to study human genetic mechanisms. However, extensive rewiring of transcriptional regulatory networks often confounds translation of findings between human and mouse. Site-specific gain and loss of individual transcription factor binding sites (TFBS) has caused functional divergence of orthologous regulatory loci, and so we must look beyond this positional conservation to understand common themes of regulatory control. Fortunately, transcription factor co-binding patterns shared across species often perform conserved regulatory functions. These can be compared to ‘regulatory sentences’ that retain the same meanings regardless of sequence and species context. By analyzing TFBS co-occupancy patterns observed in four human and mouse cell types, we learned a regulatory grammar: the rules by which TFBS are combined into meaningful regulatory sentences. Different parts of this grammar associate with specific sets of functional annotations regardless of sequence conservation and predict functional signatures more accurately than positional conservation. We further show that both species-specific and conserved portions of this grammar are involved in gene expression divergence and human disease risk. These findings expand our understanding of transcriptional regulatory mechanisms, suggesting that phenotypic divergence and disease risk are driven by a complex interplay between deeply conserved and species-specific transcriptional regulatory pathways. PMID:29361190
Nguyen, Quan H; Tellam, Ross L; Naval-Sanchez, Marina; Porto-Neto, Laercio R; Barendse, William; Reverter, Antonio; Hayes, Benjamin; Kijas, James; Dalrymple, Brian P
2018-03-01
Genome sequences for hundreds of mammalian species are available, but an understanding of their genomic regulatory regions, which control gene expression, is only beginning. A comprehensive prediction of potential active regulatory regions is necessary to functionally study the roles of the majority of genomic variants in evolution, domestication, and animal production. We developed a computational method to predict regulatory DNA sequences (promoters, enhancers, and transcription factor binding sites) in production animals (cows and pigs) and extended its broad applicability to other mammals. The method utilizes human regulatory features identified from thousands of tissues, cell lines, and experimental assays to find homologous regions that are conserved in sequences and genome organization and are enriched for regulatory elements in the genome sequences of other mammalian species. Importantly, we developed a filtering strategy, including a machine learning classification method, to utilize a very small number of species-specific experimental datasets available to select for the likely active regulatory regions. The method finds the optimal combination of sensitivity and accuracy to unbiasedly predict regulatory regions in mammalian species. Furthermore, we demonstrated the utility of the predicted regulatory datasets in cattle for prioritizing variants associated with multiple production and climate change adaptation traits and identifying potential genome editing targets.
Environmental Regulation of Yersinia Pathophysiology
Chen, Shiyun; Thompson, Karl M.; Francis, Matthew S.
2016-01-01
Hallmarks of Yersinia pathogenesis include the ability to form biofilms on surfaces, the ability to establish close contact with eukaryotic target cells and the ability to hijack eukaryotic cell signaling and take over control of strategic cellular processes. Many of these virulence traits are already well-described. However, of equal importance is knowledge of both confined and global regulatory networks that collaborate together to dictate spatial and temporal control of virulence gene expression. This review has the purpose to incorporate historical observations with new discoveries to provide molecular insight into how some of these regulatory mechanisms respond rapidly to environmental flux to govern tight control of virulence gene expression by pathogenic Yersinia. PMID:26973818
Microbial Control News - November 2011
USDA-ARS?s Scientific Manuscript database
This is the first of a column in the Society for Invertebrate Pathology Newsletter. Entitled "Microbial Control News" this article summarizes regulatory actions in the U.S. and Canada regarding microbial insect pest control agents....
Transcriptional master regulator analysis in breast cancer genetic networks.
Tovar, Hugo; García-Herrera, Rodrigo; Espinal-Enríquez, Jesús; Hernández-Lemus, Enrique
2015-12-01
Gene regulatory networks account for the delicate mechanisms that control gene expression. Under certain circumstances, gene regulatory programs may give rise to amplification cascades. Such transcriptional cascades are events in which activation of key-responsive transcription factors called master regulators trigger a series of gene expression events. The action of transcriptional master regulators is then important for the establishment of certain programs like cell development and differentiation. However, such cascades have also been related with the onset and maintenance of cancer phenotypes. Here we present a systematic implementation of a series of algorithms aimed at the inference of a gene regulatory network and analysis of transcriptional master regulators in the context of primary breast cancer cells. Such studies were performed in a highly curated database of 880 microarray gene expression experiments on biopsy-captured tissue corresponding to primary breast cancer and healthy controls. Biological function and biochemical pathway enrichment analyses were also performed to study the role that the processes controlled - at the transcriptional level - by such master regulators may have in relation to primary breast cancer. We found that transcription factors such as AGTR2, ZNF132, TFDP3 and others are master regulators in this gene regulatory network. Sets of genes controlled by these regulators are involved in processes that are well-known hallmarks of cancer. This kind of analyses may help to understand the most upstream events in the development of phenotypes, in particular, those regarding cancer biology. Copyright © 2015 Elsevier Ltd. All rights reserved.
Te Wierike, Sanne Cornelia Maria; Huijgen, Barbara Catharina Helena; Jonker, Laura; Elferink-Gemser, Marije Titia; Visscher, Chris
2018-03-01
This study first investigated the importance of ball control and (self-reported) self-regulatory skills in achieving the elite level in basketball. The second aim was to gain insight into the development of, and association between ball control and (self-reported) self-regulatory skills that contribute to achieving the elite level, with taking into account positional differences. Talented male players (N = 73; age 16.56 ± 1.96) completed the STARtest to measure ball control and a questionnaire to measure (self-reported) self-regulation from 2008-2012. Results showed that (self-reported) reflective skills were most important to achieve the elite level (OR = 11.76; P < 0.05). There was no significant improvement in (self-reported) reflection over time for guards, forwards, and centers. Improvement in ball control was evident for guards (r = -0.65; P < 0.05). Furthermore, guards and forwards had better ball control compared to centers (P < 0.01). For those two positions, negative correlations were found between (self-reported) reflection and ball control, i.e., higher reflection was related to better ball control (guards r = -0.19; forwards r = -0.18) in contrast to centers (r = 0.34). It is concluded that (self-reported) reflective skills are important to achieve the elite level, while ball control seems especially important for guards.
Smith, James; Ross, Kirstin; Whiley, Harriet
2016-01-01
Foodborne illness is a global public health burden. Over the past decade in Australia, despite advances in microbiological detection and control methods, there has been an increase in the incidence of foodborne illness. Therefore improvements in the regulation and implementation of food safety policy are crucial for protecting public health. In 2000, Australia established a national food safety regulatory system, which included the adoption of a mandatory set of food safety standards. These were in line with international standards and moved away from a “command and control” regulatory approach to an “outcomes-based” approach using risk assessment. The aim was to achieve national consistency and reduce foodborne illness without unnecessarily burdening businesses. Evidence demonstrates that a risk based approach provides better protection for consumers; however, sixteen years after the adoption of the new approach, the rates of food borne illness are still increasing. Currently, food businesses are responsible for producing safe food and regulatory bodies are responsible for ensuring legislative controls are met. Therefore there is co-regulatory responsibility and liability and implementation strategies need to reflect this. This analysis explores the challenges facing food regulation in Australia and explores the rationale and evidence in support of this new regulatory approach. PMID:27941657
Zhang, Yinan; Samee, Md. Abul Hassan; Halfon, Marc S.; Sinha, Saurabh
2014-01-01
Many genes familiar from Drosophila development, such as the so-called gap, pair-rule, and segment polarity genes, play important roles in the development of other insects and in many cases appear to be deployed in a similar fashion, despite the fact that Drosophila-like “long germband” development is highly derived and confined to a subset of insect families. Whether or not these similarities extend to the regulatory level is unknown. Identification of regulatory regions beyond the well-studied Drosophila has been challenging as even within the Diptera (flies, including mosquitoes) regulatory sequences have diverged past the point of recognition by standard alignment methods. Here, we demonstrate that methods we previously developed for computational cis-regulatory module (CRM) discovery in Drosophila can be used effectively in highly diverged (250–350 Myr) insect species including Anopheles gambiae, Tribolium castaneum, Apis mellifera, and Nasonia vitripennis. In Drosophila, we have successfully used small sets of known CRMs as “training data” to guide the search for other CRMs with related function. We show here that although species-specific CRM training data do not exist, training sets from Drosophila can facilitate CRM discovery in diverged insects. We validate in vivo over a dozen new CRMs, roughly doubling the number of known CRMs in the four non-Drosophila species. Given the growing wealth of Drosophila CRM annotation, these results suggest that extensive regulatory sequence annotation will be possible in newly sequenced insects without recourse to costly and labor-intensive genome-scale experiments. We develop a new method, Regulus, which computes a probabilistic score of similarity based on binding site composition (despite the absence of nucleotide-level sequence alignment), and demonstrate similarity between functionally related CRMs from orthologous loci. Our work represents an important step toward being able to trace the evolutionary history of gene regulatory networks and defining the mechanisms underlying insect evolution. PMID:25173756
Kazemian, Majid; Suryamohan, Kushal; Chen, Jia-Yu; Zhang, Yinan; Samee, Md Abul Hassan; Halfon, Marc S; Sinha, Saurabh
2014-09-01
Many genes familiar from Drosophila development, such as the so-called gap, pair-rule, and segment polarity genes, play important roles in the development of other insects and in many cases appear to be deployed in a similar fashion, despite the fact that Drosophila-like "long germband" development is highly derived and confined to a subset of insect families. Whether or not these similarities extend to the regulatory level is unknown. Identification of regulatory regions beyond the well-studied Drosophila has been challenging as even within the Diptera (flies, including mosquitoes) regulatory sequences have diverged past the point of recognition by standard alignment methods. Here, we demonstrate that methods we previously developed for computational cis-regulatory module (CRM) discovery in Drosophila can be used effectively in highly diverged (250-350 Myr) insect species including Anopheles gambiae, Tribolium castaneum, Apis mellifera, and Nasonia vitripennis. In Drosophila, we have successfully used small sets of known CRMs as "training data" to guide the search for other CRMs with related function. We show here that although species-specific CRM training data do not exist, training sets from Drosophila can facilitate CRM discovery in diverged insects. We validate in vivo over a dozen new CRMs, roughly doubling the number of known CRMs in the four non-Drosophila species. Given the growing wealth of Drosophila CRM annotation, these results suggest that extensive regulatory sequence annotation will be possible in newly sequenced insects without recourse to costly and labor-intensive genome-scale experiments. We develop a new method, Regulus, which computes a probabilistic score of similarity based on binding site composition (despite the absence of nucleotide-level sequence alignment), and demonstrate similarity between functionally related CRMs from orthologous loci. Our work represents an important step toward being able to trace the evolutionary history of gene regulatory networks and defining the mechanisms underlying insect evolution. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Hutton, John J; Jegga, Anil G; Kong, Sue; Gupta, Ashima; Ebert, Catherine; Williams, Sarah; Katz, Jonathan D; Aronow, Bruce J
2004-01-01
Background In this study we have built and mined a gene expression database composed of 65 diverse mouse tissues for genes preferentially expressed in immune tissues and cell types. Using expression pattern criteria, we identified 360 genes with preferential expression in thymus, spleen, peripheral blood mononuclear cells, lymph nodes (unstimulated or stimulated), or in vitro activated T-cells. Results Gene clusters, formed based on similarity of expression-pattern across either all tissues or the immune tissues only, had highly significant associations both with immunological processes such as chemokine-mediated response, antigen processing, receptor-related signal transduction, and transcriptional regulation, and also with more general processes such as replication and cell cycle control. Within-cluster gene correlations implicated known associations of known genes, as well as immune process-related roles for poorly described genes. To characterize regulatory mechanisms and cis-elements of genes with similar patterns of expression, we used a new version of a comparative genomics-based cis-element analysis tool to identify clusters of cis-elements with compositional similarity among multiple genes. Several clusters contained genes that shared 5–6 cis-elements that included ETS and zinc-finger binding sites. cis-Elements AP2 EGRF ETSF MAZF SP1F ZF5F and AREB ETSF MZF1 PAX5 STAT were shared in a thymus-expressed set; AP4R E2FF EBOX ETSF MAZF SP1F ZF5F and CREB E2FF MAZF PCAT SP1F STAT cis-clusters occurred in activated T-cells; CEBP CREB NFKB SORY and GATA NKXH OCT1 RBIT occurred in stimulated lymph nodes. Conclusion This study demonstrates a series of analytic approaches that have allowed the implication of genes and regulatory elements that participate in the differentiation, maintenance, and function of the immune system. Polymorphism or mutation of these could adversely impact immune system functions. PMID:15504237
Oberg, Elizabeth A.; Nifoussi, Shanna K.; Gingras, Anne-Claude; Strack, Stefan
2012-01-01
Protein phosphatase 2A (PP2A), a ubiquitous and pleiotropic regulator of intracellular signaling, is composed of a core dimer (AC) bound to a variable (B) regulatory subunit. PP2A is an enzyme family of dozens of heterotrimers with different subcellular locations and cellular substrates dictated by the B subunit. B′β is a brain-specific PP2A regulatory subunit that mediates dephosphorylation of Ca2+/calmodulin-dependent protein kinase II and tyrosine hydroxylase. Unbiased proteomic screens for B′β interactors identified Cullin3 (Cul3), a scaffolding component of E3 ubiquitin ligase complexes, and the previously uncharacterized Kelch-like 15 (KLHL15). KLHL15 is one of ∼40 Kelch-like proteins, many of which have been identified as adaptors for the recruitment of substrates to Cul3-based E3 ubiquitin ligases. Here, we report that KLHL15-Cul3 specifically targets B′β to promote turnover of the PP2A subunit by ubiquitylation and proteasomal degradation. Comparison of KLHL15 and B′β tissue expression profiles suggests that the E3 ligase adaptor contributes to selective expression of the PP2A/B′β holoenzyme in the brain. We mapped KLHL15 residues critical for homodimerization as well as interaction with Cul3 and B′β. Explaining PP2A subunit selectivity, the divergent N terminus of B′β was found necessary and sufficient for KLHL15-mediated degradation, with Tyr-52 having an obligatory role. Although KLHL15 can interact with the PP2A/B′β heterotrimer, it only degrades B′β, thus promoting exchange with other regulatory subunits. E3 ligase adaptor-mediated control of PP2A holoenzyme composition thereby adds another layer of regulation to cellular dephosphorylation events. PMID:23135275
Barsi, Julius C; Davidson, Eric H
2016-01-01
Specification of the ciliated band (CB) of echinoid embryos executes three spatial functions essential for postgastrular organization. These are establishment of a band about 5 cells wide which delimits and bounds other embryonic territories; definition of a neurogenic domain within this band; and generation within it of arrays of ciliary cells that bear the special long cilia from which the structure derives its name. In Strongylocentrotus purpuratus the spatial coordinates of the future ciliated band are initially and exactly determined by the disposition of a ring of cells that transcriptionally activate the onecut homeodomain regulatory gene, beginning in blastula stage, long before the appearance of the CB per se. Thus the cis-regulatory apparatus that governs onecut expression in the blastula directly reveals the genomic sequence code by which these aspects of the spatial organization of the embryo are initially determined. We screened the entire onecut locus and its flanking region for transcriptionally active cis-regulatory elements, and by means of BAC recombineered deletions identified three separated and required cis-regulatory modules that execute different functions. The operating logic of the crucial spatial control module accounting for the spectacularly precise and beautiful early onecut expression domain depends on spatial repression. Previously predicted oral ectoderm and aboral ectoderm repressors were identified by cis-regulatory mutation as the products of goosecoid and irxa genes respectively, while the pan-ectodermal activator SoxB1 supplies a transcriptional driver function. Copyright © 2015. Published by Elsevier Inc.
McKee, Heather C; Ntoumanis, Nikos
2014-12-01
We aimed to investigate whether a self-regulatory skills intervention can improve weight loss-related outcomes. Fifty-five participants (M BMI = 32.60 ± 4.86) were randomized into self-regulation training and advice groups and received two training workshops and weekly practice tasks. The self-regulation training group was trained to use six self-regulatory skills: Delayed gratification, thought control, goal setting, self-monitoring, mindfulness, and coping. The advice group received dietary and physical activity advice for weight loss. Physical, self-regulatory, and psychological measures were taken at baseline, end of intervention (week 8) and at follow-up (week 12). Using intention-to-treat analysis, weight, waist circumference, body fat and body mass index (BMI) were significantly reduced at follow-up for both groups. There were significant increases in all six self-regulatory skills and the psychological measures of self-efficacy, self-regulatory success, and physical self-worth for both groups. Results indicate that self-regulatory skills training might be as effective as dietary and physical activity advice in terms of weight loss and related outcomes.
Need for Uniqueness Determines Reactions to Web-Based Personalized Advertising.
Stiglbauer, Barbara; Kovacs, Carrie
2018-01-01
The presented empirical study among a sample of n = 256 participants addressed the relationship between consumers' need for uniqueness and their reactions to web-based personalized advertising. Drawing on regulatory focus theory, we argue that the consumers' need for uniqueness dimensions creative choice and similarity avoidance may relate to promotion and prevention regulatory orientations, respectively. Accordingly, we hypothesized that creative choice and similarity avoidance would differentially predict self-reported approach and avoidance behavior toward personalized advertising. These direct relationships were further expected to be mediated by subjective evaluations of personalized advertising (i.e., perceived value and irritation). In line with these hypotheses, we found that creative choice predicted approach behavior through increased web-based personalized advertising value, whereas similarity avoidance predicted avoidance behavior through increased irritation. Creative choice also predicted decreased irritation, which in turn was related to decreased approach behavior. In sum, the results suggest that the consumers' need for uniqueness dimensions should not be investigated as a composite, as they seem to reflect different regulatory orientations and are therefore likely to evoke different affective, cognitive, and behavioral responses.
In silico modeling of epigenetic-induced changes in photoreceptor cis-regulatory elements.
Hossain, Reafa A; Dunham, Nicholas R; Enke, Raymond A; Berndsen, Christopher E
2018-01-01
DNA methylation is a well-characterized epigenetic repressor of mRNA transcription in many plant and vertebrate systems. However, the mechanism of this repression is not fully understood. The process of transcription is controlled by proteins that regulate recruitment and activity of RNA polymerase by binding to specific cis-regulatory sequences. Cone-rod homeobox (CRX) is a well-characterized mammalian transcription factor that controls photoreceptor cell-specific gene expression. Although much is known about the functions and DNA binding specificity of CRX, little is known about how DNA methylation modulates CRX binding affinity to genomic cis-regulatory elements. We used bisulfite pyrosequencing of human ocular tissues to measure DNA methylation levels of the regulatory regions of RHO , PDE6B, PAX6 , and LINE1 retrotransposon repeats. To describe the molecular mechanism of repression, we used molecular modeling to illustrate the effect of DNA methylation on human RHO regulatory sequences. In this study, we demonstrate an inverse correlation between DNA methylation in regulatory regions adjacent to the human RHO and PDE6B genes and their subsequent transcription in human ocular tissues. Docking of CRX to the DNA models shows that CRX interacts with the grooves of these sequences, suggesting changes in groove structure could regulate binding. Molecular dynamics simulations of the RHO promoter and enhancer regions show changes in the flexibility and groove width upon epigenetic modification. Models also demonstrate changes in the local dynamics of CRX binding sites within RHO regulatory sequences which may account for the repression of CRX-dependent transcription. Collectively, these data demonstrate epigenetic regulation of CRX binding sites in human retinal tissue and provide insight into the mechanism of this mode of epigenetic regulation to be tested in future experiments.
Control systems and coordination protocols of the secretory pathway.
Luini, Alberto; Mavelli, Gabriella; Jung, Juan; Cancino, Jorge
2014-01-01
Like other cellular modules, the secretory pathway and the Golgi complex are likely to be supervised by control systems that support homeostasis and optimal functionality under all conditions, including external and internal perturbations. Moreover, the secretory apparatus must be functionally connected with other cellular modules, such as energy metabolism and protein degradation, via specific rules of interaction, or "coordination protocols". These regulatory devices are of fundamental importance for optimal function; however, they are generally "hidden" at steady state. The molecular components and the architecture of the control systems and coordination protocols of the secretory pathway are beginning to emerge through studies based on the use of controlled transport-specific perturbations aimed specifically at the detection and analysis of these internal regulatory devices.
A longitudinal and experimental study of the impact of knowledge on the bases of institutional trust
Kimbrough, Christopher D.; Shockley, Ellie; Neal, Tess M. S.; Herian, Mitchel N.; Hamm, Joseph A.; Bornstein, Brian H.; Tomkins, Alan J.
2017-01-01
This study examined a knowledge-centered theory of institutional trust development. In the context of trust in water regulatory institutions, the moderating impact of knowledge was tested to determine if there were longitudinal changes in the bases of institutional trust as a function of increases in knowledge about a target institution. We hypothesized that as people learn about an institution with which they were previously unfamiliar, they begin to form more nuanced perceptions, distinguishing the new institution from other institutions and relying less upon their generalized trust to estimate their trust in that institution. Prior to having specific, differential information about a new institution, we expected institutional trust to be a function of generalized trust variables such as dispositional trust and trust in government. The longitudinal experiment involved 185 college students randomly assigned to one of three information conditions. Every 3 months for 15 months, participants read information about water regulatory institutions or a control institution. At each time point, participants reported their trust in and perceptions of the trust- and distrust-worthiness of the water regulatory institutions. Participants also completed measures of knowledge of water regulatory institutions, dispositional trust, and governmental trust. Our manipulation check indicated that, as expected, those in the experimental group increased in subjective knowledge of water regulatory institutions to a greater extent than those in the control condition. Consistent with our hypotheses, there was some evidence that, compared to the control group, the experimental group relied less on their general trust in government as a basis for their trust in water regulatory institutions. However, contrary to our hypotheses, there was no evidence the experimental group relied less on dispositional trust as a basis for institutional trust. There also was some evidence the experimental group’s trust in water regulatory institutions was less affected by fluctuations of trustworthiness (but not distrustworthiness) perceptions over time. This suggests that knowledge results in the development of more stable institutional trust attitudes, but that trustworthiness and distrustworthiness perceptions may operate somewhat differently when impacting trust in specific institutions. PMID:28414808
PytlikZillig, Lisa M; Kimbrough, Christopher D; Shockley, Ellie; Neal, Tess M S; Herian, Mitchel N; Hamm, Joseph A; Bornstein, Brian H; Tomkins, Alan J
2017-01-01
This study examined a knowledge-centered theory of institutional trust development. In the context of trust in water regulatory institutions, the moderating impact of knowledge was tested to determine if there were longitudinal changes in the bases of institutional trust as a function of increases in knowledge about a target institution. We hypothesized that as people learn about an institution with which they were previously unfamiliar, they begin to form more nuanced perceptions, distinguishing the new institution from other institutions and relying less upon their generalized trust to estimate their trust in that institution. Prior to having specific, differential information about a new institution, we expected institutional trust to be a function of generalized trust variables such as dispositional trust and trust in government. The longitudinal experiment involved 185 college students randomly assigned to one of three information conditions. Every 3 months for 15 months, participants read information about water regulatory institutions or a control institution. At each time point, participants reported their trust in and perceptions of the trust- and distrust-worthiness of the water regulatory institutions. Participants also completed measures of knowledge of water regulatory institutions, dispositional trust, and governmental trust. Our manipulation check indicated that, as expected, those in the experimental group increased in subjective knowledge of water regulatory institutions to a greater extent than those in the control condition. Consistent with our hypotheses, there was some evidence that, compared to the control group, the experimental group relied less on their general trust in government as a basis for their trust in water regulatory institutions. However, contrary to our hypotheses, there was no evidence the experimental group relied less on dispositional trust as a basis for institutional trust. There also was some evidence the experimental group's trust in water regulatory institutions was less affected by fluctuations of trustworthiness (but not distrustworthiness) perceptions over time. This suggests that knowledge results in the development of more stable institutional trust attitudes, but that trustworthiness and distrustworthiness perceptions may operate somewhat differently when impacting trust in specific institutions.
USDA-ARS?s Scientific Manuscript database
Purple cauliflower (Brassica oleracea L. var. botrytis) Graffiti represents a unique mutant in conferring ectopic anthocyanin biosynthesis, which is caused by the tissue specific activation of BoMYB2, an ortholog of Arabidopsis PAP2 or MYB113. To gain a better understanding of the regulatory network...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-16
... Agreement State Radiation Control Program. FOR FURTHER INFORMATION CONTACT: Ms. Sophie Holiday, U.S. Nuclear... NUCLEAR REGULATORY COMMISSION Notice of Extension of Call for Nominations for the Advisory Committee on the Medical Uses of Isotopes AGENCY: U.S. Nuclear Regulatory Commission. ACTION: Notice...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-27
..., model number DR9M, that emit low levels of radiation. PHMSA and the Nuclear Regulatory Commission... with state Radiation Control Programs, the Nuclear Regulatory Commission, the Environmental Protection... dose of about 500-700 mrem. While no unnecessary radiation exposure is desirable, the dose from the...
Depressive Symptoms and Parenting Competence: An Analysis of 13 Regulatory Processes
ERIC Educational Resources Information Center
Dix, Theodore; Meunier, Leah N.
2009-01-01
Mechanisms that lead depressive symptoms to undermine parenting are poorly understood. This review examines cognitive, affective, and motivational processes thought to be responsible for the impact of depressive symptoms on parenting. We present a five-step, action-control model and review 152 studies relevant to 13 regulatory processes. Evidence…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-28
... Effectiveness of Proposed Rule Change To Amend Section 4 of Schedule A to the FINRA By- Laws To Increase the..., Control, or Business Operations) regarding the revised new member application fee and new continuing... member regularly conducts the business of effecting any transactions in, or inducing or attempting to...
ERIC Educational Resources Information Center
Schilling-Dickey, Gwen
2013-01-01
Researchers have been looking for solutions to disciplinary problems within the school setting. Many studies have been conducted to assess the impact of a variety of intervention strategies with research indicating that strategies involving self-regulatory control of behavioral responses can benefit students. Additionally, positive behavioral…
Synthetic fiber production facilities: Background information for proposed standards
NASA Astrophysics Data System (ADS)
Goodwin, D. R.
1982-10-01
Standards of performance to control emissions of volatile organic compounds (VOC) from new, modified, and reconstructed synthetic fiber production facilities are being proposed under section III of the Clean Air Act. This document contains information on the background and authority, regulatory alternatives considered, and environmental and economic impacts of the regulatory alternatives.
10 CFR 9.50 - Scope of subpart.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 1 2013-01-01 2013-01-01 false Scope of subpart. 9.50 Section 9.50 Energy NUCLEAR REGULATORY COMMISSION PUBLIC RECORDS Privacy Act Regulations § 9.50 Scope of subpart. This subpart implements... which are retrievable from a system of records under the control of the Nuclear Regulatory Commission by...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-11
... NUCLEAR REGULATORY COMMISSION [Docket Nos. 70-7003 and 70-7004; NRC-2010-0355] Approval of Direct... Operating, LLC AGENCY: Nuclear Regulatory Commission. ACTION: Notice of approval of direct transfer of control and issuance of license amendments to effectuate such transfers. SUMMARY: The U.S. Nuclear...
Intertemporal Regulatory Tasks and Responsibilities for Greenhouse Gas Reductions
ERIC Educational Resources Information Center
Deason, Jeffrey A.; Friedman, Lee S.
2010-01-01
Jurisdictions are in the process of establishing regulatory systems to control greenhouse gas emissions. Short-term and sometimes long-term emissions reduction goals are established, as California does for 2020 and 2050, but little attention has yet been focused on annual emissions targets for the intervening years. We develop recommendations for…
Effect of Salmonella infection on cecal tonsil regulatory T cell properties in chickens
USDA-ARS?s Scientific Manuscript database
Two experiments were conducted to study Regulatory T cell (Treg) properties post-Salmonella infection in broiler birds. Four-day-old broiler chicks were orally infected with 5x106 CFU/ml Salmonella enteritidis or sterile PBS (control). Samples were collected at 4, 7, 10, and 14 d post-infection. ...
Identification and role of regulatory non-coding RNAs in Listeria monocytogenes.
Izar, Benjamin; Mraheil, Mobarak Abu; Hain, Torsten
2011-01-01
Bacterial regulatory non-coding RNAs control numerous mRNA targets that direct a plethora of biological processes, such as the adaption to environmental changes, growth and virulence. Recently developed high-throughput techniques, such as genomic tiling arrays and RNA-Seq have allowed investigating prokaryotic cis- and trans-acting regulatory RNAs, including sRNAs, asRNAs, untranslated regions (UTR) and riboswitches. As a result, we obtained a more comprehensive view on the complexity and plasticity of the prokaryotic genome biology. Listeria monocytogenes was utilized as a model system for intracellular pathogenic bacteria in several studies, which revealed the presence of about 180 regulatory RNAs in the listerial genome. A regulatory role of non-coding RNAs in survival, virulence and adaptation mechanisms of L. monocytogenes was confirmed in subsequent experiments, thus, providing insight into a multifaceted modulatory function of RNA/mRNA interference. In this review, we discuss the identification of regulatory RNAs by high-throughput techniques and in their functional role in L. monocytogenes.
What should a radiation regulator do about naturally occurring radioactive material?
Loy, J
2015-06-01
The standard regulatory framework of authorisation, review and assessment, inspection and enforcement, and regulation making is directed principally towards ensuring the regulatory control of planned exposure situations. Some mining and industrial activities involving exposures to naturally occurring radioactive material (NORM), such as uranium mining or the treatment and conditioning of NORM residues, may fit readily within this standard framework. In other cases, such as oil and gas exploration and production, the standard regulatory framework needs to be adjusted. For example, it is not sensible to require that an oil company seek a licence from the radiation regulator before drilling a well. The paper discusses other approaches that a regulator might take to assure protection and safety in such activities involving exposures to NORM, including the use of conditional exemptions from regulatory controls. It also suggests some areas where further guidance from the International Commission on Radiological Protection on application of the system of radiological protection to NORM would assist both regulators and operators. © The International Society for Prosthetics and Orthotics Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Dozier, Samantha; Brown, Jeffrey; Currie, Alistair
2011-11-29
In recent years, technologically advanced high-throughput techniques have been developed that replace, reduce or refine animal use in vaccine quality control tests. Following validation, these tests are slowly being accepted for use by international regulatory authorities. Because regulatory acceptance itself has not guaranteed that approved humane methods are adopted by manufacturers, various organizations have sought to foster the preferential use of validated non-animal methods by interfacing with industry and regulatory authorities. After noticing this gap between regulation and uptake by industry, we began developing a paradigm that seeks to narrow the gap and quicken implementation of new replacement, refinement or reduction guidance. A systematic analysis of our experience in promoting the transparent implementation of validated non-animal vaccine potency assays has led to the refinement of our paradigmatic process, presented here, by which interested parties can assess the local regulatory acceptance of methods that reduce animal use and integrate them into quality control testing protocols, or ensure the elimination of peripheral barriers to their use, particularly for potency and other tests carried out on production batches.
The BAFF receptor TACI controls IL-10 production by regulatory B cells and CLL B cells.
Saulep-Easton, D; Vincent, F B; Quah, P S; Wei, A; Ting, S B; Croce, C M; Tam, C; Mackay, F
2016-01-01
Interleukin (IL)-10-producing B cells (B10 cells) have emerged as important regulatory elements with immunosuppressive roles. Chronic lymphocytic leukemia (CLL) B cells also secrete IL-10 and share features of B10 cells, suggesting a possible contribution of CLL B cells to immunosuppression in CLL patients. Factors controlling the emergence of B10 cells are not known. B-cell-activating factor of the tumor necrosis factor (TNF) family (BAFF) is critical for B-cell maturation and survival, and is implicated in the development and progression of CLL. We sought to investigate the role of BAFF in the emergence of IL-10-producing regulatory B cells in healthy donors and CLL patients. Here, we report that BAFF signaling promotes IL-10 production by CLL B cells in a mouse model of CLL and in CLL patients. Moreover, BAFF-mediated IL-10 production by normal and CLL B cells is mediated via its receptor transmembrane activator and cyclophilin ligand interactor. Our work uncovered a major targetable pathway important for the generation of regulatory B cells that is detrimental to immunity in CLL.
Edge usage, motifs, and regulatory logic for cell cycling genetic networks
NASA Astrophysics Data System (ADS)
Zagorski, M.; Krzywicki, A.; Martin, O. C.
2013-01-01
The cell cycle is a tightly controlled process, yet it shows marked differences across species. Which of its structural features follow solely from the ability to control gene expression? We tackle this question in silico by examining the ensemble of all regulatory networks which satisfy the constraint of producing a given sequence of gene expressions. We focus on three cell cycle profiles coming from baker's yeast, fission yeast, and mammals. First, we show that the networks in each of the ensembles use just a few interactions that are repeatedly reused as building blocks. Second, we find an enrichment in network motifs that is similar in the two yeast cell cycle systems investigated. These motifs do not have autonomous functions, yet they reveal a regulatory logic for cell cycling based on a feed-forward cascade of activating interactions.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-01
... Control System: Control Surface Position Awareness AGENCY: Federal Aviation Administration (FAA), DOT... electronic flight control system. The applicable airworthiness regulations do not contain adequate or... regulatory adequacy pursuant to section 611 of Public Law 92-574, the ``Noise Control Act of 1972.'' The FAA...
Wang, Miranda; Ly, Michael; Lugowski, Andrew; Laver, John D; Lipshitz, Howard D; Smibert, Craig A; Rissland, Olivia S
2017-09-06
In animal embryos, control of development is passed from exclusively maternal gene products to those encoded by the embryonic genome in a process referred to as the maternal-to-zygotic transition (MZT). We show that the RNA-binding protein, ME31B, binds to and represses the expression of thousands of maternal mRNAs during the Drosophila MZT. However, ME31B carries out repression in different ways during different phases of the MZT. Early, it represses translation while, later, its binding leads to mRNA destruction, most likely as a consequence of translational repression in the context of robust mRNA decay. In a process dependent on the PNG kinase, levels of ME31B and its partners, Cup and Trailer Hitch (TRAL), decrease by over 10-fold during the MZT, leading to a change in the composition of mRNA-protein complexes. We propose that ME31B is a global repressor whose regulatory impact changes based on its biological context.
Systematic discovery of Xist RNA binding proteins
Chu, Ci; Zhang, Qiangfeng Cliff; da Rocha, Simão Teixeira; Flynn, Ryan A.; Bharadwaj, Maheetha; Calabrese, J. Mauro; Magnuson, Terry; Heard, Edith; Chang, Howard Y.
2015-01-01
Summary Noncoding RNAs (ncRNAs) function with associated proteins to effect complex structural and regulatory outcomes. To reveal the composition and dynamics of specific noncoding RNA- protein complexes (RNPs) in vivo, we developed comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS). ChIRP-MS analysis of four ncRNAs captures key protein interactors, including a U1-specific link to the 3′ RNA processing machinery. Xist, an essential lncRNA for X-chromosome inactivation (XCI), interacts with 81 proteins from chromatin modification, nuclear matrix, and RNA remodeling pathways. The Xist RNA-protein particle assembles in two steps coupled with the transition from pluripotency to differentiation. Specific interactors include HnrnpK that participates in Xist-mediated gene silencing and histone modifications, but not Xist localization and Drosophila Split ends homolog Spen that interacts via the A-repeat domain of Xist and is required for gene silencing. Thus, Xist lncRNA engages with proteins in a modular and developmentally controlled manner to coordinate chromatin spreading and silencing. PMID:25843628
Choi, Hyun-Il; Kim, Moonjeong; Jeon, Jinseong; Han, Jin Kwan; Kim, Kwang-Sun
2017-08-26
Outer membrane vesicles (OMVs) derived from bacteria are promising candidates for subunit vaccines. Stresses that modulate the composition of outer membrane proteins (OMPs) are important for OMV synthesis. Small RNAs (sRNAs) expressed in response to stress regulate OMPs, although the mechanism underlying sRNA-mediated OMV biogenesis and its utility for developing vaccine platforms remains to be elucidated. Here, we characterized the role of a sRNA, MicA, which regulates OmpA, a major OMP involved in both production of OMVs and reactive immunity against Salmonella challenge. A Salmonella strain overexpressing MicA generated more OMVs than a control strain. In addition, OmpC was the major component of MicA-derived OMV proteins. MicA-derived OMVs induced Th1- and Th17-type immune responses in vitro and reduced Salmonella-mediated lethality in a mouse model. Thus, OmpA-regulatory sRNA-derived OMVs may facilitate production of Salmonella-protective vaccines. Copyright © 2017 Elsevier Inc. All rights reserved.
Duplication of the genome in normal and cancer cell cycles.
Bandura, Jennifer L; Calvi, Brian R
2002-01-01
It is critical to discover the mechanisms of normal cell cycle regulation if we are to fully understand what goes awry in cancer cells. The normal eukaryotic cell tightly regulates the activity of origins of DNA replication so that the genome is duplicated exactly once per cell cycle. Over the last ten years much has been learned concerning the cell cycle regulation of origin activity. It is now clear that the proteins and cell cycle mechanisms that control origin activity are largely conserved from yeast to humans. Despite this conservation, the composition of origins of DNA replication in higher eukaryotes remains ill defined. A DNA consensus for predicting origins has yet to emerge, and it is of some debate whether primary DNA sequence determines where replication initiates. In this review we outline what is known about origin structure and the mechanism of once per cell cycle DNA replication with an emphasis on recent advances in mammalian cells. We discuss the possible relevance of these regulatory pathways for cancer biology and therapy.
The control of branching morphogenesis
Iber, Dagmar; Menshykau, Denis
2013-01-01
Many organs of higher organisms are heavily branched structures and arise by an apparently similar process of branching morphogenesis. Yet the regulatory components and local interactions that have been identified differ greatly in these organs. It is an open question whether the regulatory processes work according to a common principle and how far physical and geometrical constraints determine the branching process. Here, we review the known regulatory factors and physical constraints in lung, kidney, pancreas, prostate, mammary gland and salivary gland branching morphogenesis, and describe the models that have been formulated to analyse their impacts. PMID:24004663
Dynamic integration of splicing within gene regulatory pathways
Braunschweig, Ulrich; Gueroussov, Serge; Plocik, Alex; Graveley, Brenton R.; Blencowe, Benjamin J.
2013-01-01
Precursor mRNA splicing is one of the most highly regulated processes in metazoan species. In addition to generating vast repertoires of RNAs and proteins, splicing has a profound impact on other gene regulatory layers, including mRNA transcription, turnover, transport and translation. Conversely, factors regulating chromatin and transcription complexes impact the splicing process. This extensive cross-talk between gene regulatory layers takes advantage of dynamic spatial, physical and temporal organizational properties of the cell nucleus, and further emphasizes the importance of developing a multidimensional understanding of splicing control. PMID:23498935
Portrait of Candida Species Biofilm Regulatory Network Genes.
Araújo, Daniela; Henriques, Mariana; Silva, Sónia
2017-01-01
Most cases of candidiasis have been attributed to Candida albicans, but Candida glabrata, Candida parapsilosis and Candida tropicalis, designated as non-C. albicans Candida (NCAC), have been identified as frequent human pathogens. Moreover, Candida biofilms are an escalating clinical problem associated with significant rates of mortality. Biofilms have distinct developmental phases, including adhesion/colonisation, maturation and dispersal, controlled by complex regulatory networks. This review discusses recent advances regarding Candida species biofilm regulatory network genes, which are key components for candidiasis. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sneve, M K; Kiselev, M; Shandala, N K
2014-05-01
The Norwegian Radiation Protection Authority has been implementing a regulatory cooperation program in the Russian Federation for over 10 years, as part of the Norwegian government's Plan of Action for enhancing nuclear and radiation safety in northwest Russia. The overall long-term objective has been the enhancement of safety culture and includes a special focus on regulatory supervision of nuclear legacy sites. The initial project outputs included appropriate regulatory threat assessments, to determine the hazardous situations and activities which are most in need of enhanced regulatory supervision. In turn, this has led to the development of new and updated norms and standards, and related regulatory procedures, necessary to address the often abnormal conditions at legacy sites. This paper presents the experience gained within the above program with regard to radio-ecological characterization of Sites of Temporary Storage for spent nuclear fuel and radioactive waste at Andreeva Bay and Gremikha in the Kola Peninsula in northwest Russia. Such characterization is necessary to support assessments of the current radiological situation and to support prospective assessments of its evolution. Both types of assessments contribute to regulatory supervision of the sites. Accordingly, they include assessments to support development of regulatory standards and guidance concerning: control of radiation exposures to workers during remediation operations; emergency preparedness and response; planned radionuclide releases to the environment; development of site restoration plans, and waste treatment and disposal. Examples of characterization work are presented which relate to terrestrial and marine environments at Andreeva Bay. The use of this data in assessments is illustrated by means of the visualization and assessment tool (DATAMAP) developed as part of the regulatory cooperation program, specifically to help control radiation exposure in operations and to support regulatory analysis of management options. For assessments of the current radiological situation, the types of data needed include information about the distribution of radionuclides in environmental media. For prognostic assessments, additional data are needed about the landscape features, on-shore and off-shore hydrology, geochemical properties of soils and sediments, and possible continuing source terms from continuing operations and on-site disposal. It is anticipated that shared international experience in legacy site characterization can be useful in the next steps. Although the output has been designed to support regulatory evaluation of these particular sites in northwest Russia, the methods and techniques are considered useful examples for application elsewhere, as well as providing relevant input to the International Atomic Energy Agency's international Working Forum for the Regulatory Supervision of Legacy Sites. Copyright © 2013 Elsevier Ltd. All rights reserved.
75 FR 48381 - Final Regulatory Guide: Issuance, Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-10
..., (2) demonstrating containment structural integrity related to combustible gas control, and (3... pertain to the containment structural capacity above design-basis pressures, to combustible gas control...
The writing approaches of secondary students.
Lavelle, Ellen; Smith, Jennifer; O'Ryan, Leslie
2002-09-01
Research with college students has supported a model of writing approaches that defines the relationship between a writer and writing task along a deep and surface process continuum (Biggs, 1988). Based on that model, Lavelle (1993) developed the Inventory of Processes in College Composition which reflects students' motives and strategies as related to writing outcomes. It is also important to define the approaches of secondary students to better understand writing processes at that level, and development in written composition. This study was designed to define the writing approaches of secondary students by factor analysing students' responses to items regarding writing beliefs and writing strategies, and to compare the secondary approaches to those of college students. A related goal was to explore the relationships of the secondary writing approaches to perceived self-regulatory efficacy for writing (Zimmerman & Bandura, 1994), writing preferences, and writing outcomes. The initial, factor analytic phase involved 398 junior level high school students (11th grade) enrolled in a mandatory language arts class at each of three large Midwestern high schools (USA). Then, 49 junior level students enrolled in two language arts classes participated as subjects in the second phase. Classroom teachers administered the Inventory of Processes in College Composition (Lavelle, 1993), which contained 72 true-or-false items regarding writing beliefs and strategies, during regular class periods. Data were factor analysed and the structure compared to that of college students. In the second phase, the new inventory, Inventory of Processes in Secondary Composition, was administered in conjunction with the Perceived Self-Regulatory Efficacy for Writing Inventory (Zimmerman & Bandura, 1994), and a writing preferences survey. A writing sample and grade in Language Arts classes were obtained and served as outcome variables. The factor structure of secondary writing reflected three process dimensions. The first factor, Elaborative-Expressive, describes a writing strategy based on personal investment and audience concern. The second factor, Planful-Procedural, denotes sticking to a plan, following the rules, and 'preparing' for writing. Achieving-Competitive, the third factor, reflects a 'teacher pleasing' strategy or doing only what needs to be done to get a good grade. Two factors from the college model, Elaborative and Procedural, were replicated, and two were not, Reflective-Revision and Low Self-Efficacy. Regression analyses supported that the processes in writing under a timed condition are different from those used when writing over time, and that students' perceptions of writing self-regulatory efficacy were predictive of writing success under both conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbose, Galen; Wiser, Ryan; Phadke, Amol
2008-02-01
The long economic lifetime and development lead-time of many electric infrastructure investments requires that utility resource planning consider potential costs and risks over a lengthy time horizon. One long-term -- and potentially far-reaching -- risk currently facing the electricity industry is the uncertain cost of future carbon dioxide (CO2) regulations. Recognizing the importance of this issue, many utilities (sometimes spurred by state regulatory requirements) are beginning to actively assess carbon regulatory risk within their resource planning processes, and to evaluate options for mitigating that risk. However, given the relatively recent emergence of this issue and the rapidly changing political landscape,more » methods and assumptions used to analyze carbon regulatory risk, and the impact of this analysis on the selection of a preferred resource portfolio, vary considerably across utilities. In this study, we examine the treatment of carbon regulatory risk in utility resource planning, through a comparison of the most-recent resource plans filed by fifteen investor-owned and publicly-owned utilities in the Western U.S. Together, these utilities account for approximately 60percent of retail electricity sales in the West, and cover nine of eleven Western states. This report has two related elements. First, we compare and assess utilities' approaches to addressing key analytical issues that arise when considering the risk of future carbon regulations. Second, we summarize the composition and carbon intensity of the preferred resource portfolios selected by these fifteen utilities and compare them to potential CO2 emission benchmark levels.« less
Brachyury, Foxa2 and the cis-Regulatory Origins of the Notochord
José-Edwards, Diana S.; Oda-Ishii, Izumi; Kugler, Jamie E.; Passamaneck, Yale J.; Katikala, Lavanya; Nibu, Yutaka; Di Gregorio, Anna
2015-01-01
A main challenge of modern biology is to understand how specific constellations of genes are activated to differentiate cells and give rise to distinct tissues. This study focuses on elucidating how gene expression is initiated in the notochord, an axial structure that provides support and patterning signals to embryos of humans and all other chordates. Although numerous notochord genes have been identified, the regulatory DNAs that orchestrate development and propel evolution of this structure by eliciting notochord gene expression remain mostly uncharted, and the information on their configuration and recurrence is still quite fragmentary. Here we used the simple chordate Ciona for a systematic analysis of notochord cis-regulatory modules (CRMs), and investigated their composition, architectural constraints, predictive ability and evolutionary conservation. We found that most Ciona notochord CRMs relied upon variable combinations of binding sites for the transcription factors Brachyury and/or Foxa2, which can act either synergistically or independently from one another. Notably, one of these CRMs contains a Brachyury binding site juxtaposed to an (AC) microsatellite, an unusual arrangement also found in Brachyury-bound regulatory regions in mouse. In contrast, different subsets of CRMs relied upon binding sites for transcription factors of widely diverse families. Surprisingly, we found that neither intra-genomic nor interspecific conservation of binding sites were reliably predictive hallmarks of notochord CRMs. We propose that rather than obeying a rigid sequence-based cis-regulatory code, most notochord CRMs are rather unique. Yet, this study uncovered essential elements recurrently used by divergent chordates as basic building blocks for notochord CRMs. PMID:26684323
Brachyury, Foxa2 and the cis-Regulatory Origins of the Notochord.
José-Edwards, Diana S; Oda-Ishii, Izumi; Kugler, Jamie E; Passamaneck, Yale J; Katikala, Lavanya; Nibu, Yutaka; Di Gregorio, Anna
2015-12-01
A main challenge of modern biology is to understand how specific constellations of genes are activated to differentiate cells and give rise to distinct tissues. This study focuses on elucidating how gene expression is initiated in the notochord, an axial structure that provides support and patterning signals to embryos of humans and all other chordates. Although numerous notochord genes have been identified, the regulatory DNAs that orchestrate development and propel evolution of this structure by eliciting notochord gene expression remain mostly uncharted, and the information on their configuration and recurrence is still quite fragmentary. Here we used the simple chordate Ciona for a systematic analysis of notochord cis-regulatory modules (CRMs), and investigated their composition, architectural constraints, predictive ability and evolutionary conservation. We found that most Ciona notochord CRMs relied upon variable combinations of binding sites for the transcription factors Brachyury and/or Foxa2, which can act either synergistically or independently from one another. Notably, one of these CRMs contains a Brachyury binding site juxtaposed to an (AC) microsatellite, an unusual arrangement also found in Brachyury-bound regulatory regions in mouse. In contrast, different subsets of CRMs relied upon binding sites for transcription factors of widely diverse families. Surprisingly, we found that neither intra-genomic nor interspecific conservation of binding sites were reliably predictive hallmarks of notochord CRMs. We propose that rather than obeying a rigid sequence-based cis-regulatory code, most notochord CRMs are rather unique. Yet, this study uncovered essential elements recurrently used by divergent chordates as basic building blocks for notochord CRMs.
Howard, Thomas P; Lloyd, Julie C; Raines, Christine A
2011-07-01
In darkened leaves the Calvin cycle enzymes glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and phosphoribulokinase (PRK) form a regulatory multi-enzyme complex with the small chloroplast protein CP12. GAPDH also forms a high molecular weight regulatory mono-enzyme complex. Given that there are different reports as to the number and subunit composition of these complexes and that enzyme regulatory mechanisms are known to vary between species, it was reasoned that protein-protein interactions may also vary between species. Here, this variation is investigated. This study shows that two different tetramers of GAPDH (an A2B2 heterotetramer and an A4 homotetramer) have the capacity to form part of the PRK/GAPDH/CP12 complex. The role of the PRK/GAPDH/CP12 complex is not simply to regulate the 'non-regulatory' A4 GAPDH tetramer. This study also demonstrates that the abundance and nature of PRK/GAPDH/CP12 interactions are not equal in all species and that whilst NAD enhances complex formation in some species, this is not sufficient for complex formation in others. Furthermore, it is shown that the GAPDH mono-enzyme complex is more abundant as a 2(A2B2) complex, rather than the larger 4(A2B2) complex. This smaller complex is sensitive to cellular metabolites indicating that it is an important regulatory isoform of GAPDH. This comparative study has highlighted considerable heterogeneity in PRK and GAPDH protein interactions between closely related species and the possible underlying physiological basis for this is discussed.
10 CFR 74.43 - Internal controls, inventory, and records.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 74.43 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) MATERIAL CONTROL AND ACCOUNTING OF SPECIAL...: (i) Clear overall responsibility for material control and accounting (MC&A) functions; (ii... measurements for the licensee. (c) Inventory control and physical inventories. The licensee shall: (1) Provide...
77 FR 28285 - Positive Train Control Systems (RRR)
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-14
...-0028, Notice No. 3] RIN 2130-AC27 Positive Train Control Systems (RRR) AGENCY: Federal Railroad... railroads to install positive train control (PTC) systems. This final rule removes regulatory provisions... Safety Assurance and Compliance, Staff Director, Signal & Train Control Division, Federal Railroad...
Statistics of optimal information flow in ensembles of regulatory motifs
NASA Astrophysics Data System (ADS)
Crisanti, Andrea; De Martino, Andrea; Fiorentino, Jonathan
2018-02-01
Genetic regulatory circuits universally cope with different sources of noise that limit their ability to coordinate input and output signals. In many cases, optimal regulatory performance can be thought to correspond to configurations of variables and parameters that maximize the mutual information between inputs and outputs. Since the mid-2000s, such optima have been well characterized in several biologically relevant cases. Here we use methods of statistical field theory to calculate the statistics of the maximal mutual information (the "capacity") achievable by tuning the input variable only in an ensemble of regulatory motifs, such that a single controller regulates N targets. Assuming (i) sufficiently large N , (ii) quenched random kinetic parameters, and (iii) small noise affecting the input-output channels, we can accurately reproduce numerical simulations both for the mean capacity and for the whole distribution. Our results provide insight into the inherent variability in effectiveness occurring in regulatory systems with heterogeneous kinetic parameters.
The Architectural Organization of Human Stem Cell Cycle Regulatory Machinery
Stein, Gary S.; Stein, Janet L.; Wijnen, Andre van J; Lian, Jane B.; Montecino, Martin; Medina, Ricardo; Kapinas, Kristie; Ghule, Prachi; Grandy, Rodrigo; Zaidi, Sayyed K.; Becker, Klaus A.
2013-01-01
Two striking features of human embryonic stem cells that support biological activity are an abbreviated cell cycle and reduced complexity to nuclear organization. The potential implications for rapid proliferation of human embryonic stem cells within the context of sustaining pluripotency, suppressing phenotypic gene expression and linkage to simplicity in the architectural compartmentalization of regulatory machinery in nuclear microenvironments is explored. Characterization of the molecular and architectural commitment steps that license human embryonic stem cells to initiate histone gene expression is providing understanding of the principal regulatory mechanisms that control the G1/S phase transition in primitive pluripotent cells. From both fundamental regulatory and clinical perspectives, further understanding of the pluripotent cell cycle in relation to compartmentalization of regulatory machinery in nuclear microenvironments is relevant to applications of stem cells for regenerative medicine and new dimensions to therapy where traditional drug discovery strategies have been minimally effective. PMID:22394165
Disentangling the many layers of eukaryotic transcriptional regulation.
Lelli, Katherine M; Slattery, Matthew; Mann, Richard S
2012-01-01
Regulation of gene expression in eukaryotes is an extremely complex process. In this review, we break down several critical steps, emphasizing new data and techniques that have expanded current gene regulatory models. We begin at the level of DNA sequence where cis-regulatory modules (CRMs) provide important regulatory information in the form of transcription factor (TF) binding sites. In this respect, CRMs function as instructional platforms for the assembly of gene regulatory complexes. We discuss multiple mechanisms controlling complex assembly, including cooperative DNA binding, combinatorial codes, and CRM architecture. The second section of this review places CRM assembly in the context of nucleosomes and condensed chromatin. We discuss how DNA accessibility and histone modifications contribute to TF function. Lastly, new advances in chromosomal mapping techniques have provided increased understanding of intra- and interchromosomal interactions. We discuss how these topological maps influence gene regulatory models.
Hale, Michael A; Swift, Galvin H; Hoang, Chinh Q; Deering, Tye G; Masui, Toshi; Lee, Youn-Kyoung; Xue, Jumin; MacDonald, Raymond J
2014-08-01
The orphan nuclear receptor NR5A2 is necessary for the stem-like properties of the epiblast of the pre-gastrulation embryo and for cellular and physiological homeostasis of endoderm-derived organs postnatally. Using conditional gene inactivation, we show that Nr5a2 also plays crucial regulatory roles during organogenesis. During the formation of the pancreas, Nr5a2 is necessary for the expansion of the nascent pancreatic epithelium, for the subsequent formation of the multipotent progenitor cell (MPC) population that gives rise to pre-acinar cells and bipotent cells with ductal and islet endocrine potential, and for the formation and differentiation of acinar cells. At birth, the NR5A2-deficient pancreas has defects in all three epithelial tissues: a partial loss of endocrine cells, a disrupted ductal tree and a >90% deficit of acini. The acinar defects are due to a combination of fewer MPCs, deficient allocation of those MPCs to pre-acinar fate, disruption of acinar morphogenesis and incomplete acinar cell differentiation. NR5A2 controls these developmental processes directly as well as through regulatory interactions with other pancreatic transcriptional regulators, including PTF1A, MYC, GATA4, FOXA2, RBPJL and MIST1 (BHLHA15). In particular, Nr5a2 and Ptf1a establish mutually reinforcing regulatory interactions and collaborate to control developmentally regulated pancreatic genes by binding to shared transcriptional regulatory regions. At the final stage of acinar cell development, the absence of NR5A2 affects the expression of Ptf1a and its acinar specific partner Rbpjl, so that the few acinar cells that form do not complete differentiation. Nr5a2 controls several temporally distinct stages of pancreatic development that involve regulatory mechanisms relevant to pancreatic oncogenesis and the maintenance of the exocrine phenotype. © 2014. Published by The Company of Biologists Ltd.
A transcriptional dynamic network during Arabidopsis thaliana pollen development.
Wang, Jigang; Qiu, Xiaojie; Li, Yuhua; Deng, Youping; Shi, Tieliu
2011-01-01
To understand transcriptional regulatory networks (TRNs), especially the coordinated dynamic regulation between transcription factors (TFs) and their corresponding target genes during development, computational approaches would represent significant advances in the genome-wide expression analysis. The major challenges for the experiments include monitoring the time-specific TFs' activities and identifying the dynamic regulatory relationships between TFs and their target genes, both of which are currently not yet available at the large scale. However, various methods have been proposed to computationally estimate those activities and regulations. During the past decade, significant progresses have been made towards understanding pollen development at each development stage under the molecular level, yet the regulatory mechanisms that control the dynamic pollen development processes remain largely unknown. Here, we adopt Networks Component Analysis (NCA) to identify TF activities over time course, and infer their regulatory relationships based on the coexpression of TFs and their target genes during pollen development. We carried out meta-analysis by integrating several sets of gene expression data related to Arabidopsis thaliana pollen development (stages range from UNM, BCP, TCP, HP to 0.5 hr pollen tube and 4 hr pollen tube). We constructed a regulatory network, including 19 TFs, 101 target genes and 319 regulatory interactions. The computationally estimated TF activities were well correlated to their coordinated genes' expressions during the development process. We clustered the expression of their target genes in the context of regulatory influences, and inferred new regulatory relationships between those TFs and their target genes, such as transcription factor WRKY34, which was identified that specifically expressed in pollen, and regulated several new target genes. Our finding facilitates the interpretation of the expression patterns with more biological relevancy, since the clusters corresponding to the activity of specific TF or the combination of TFs suggest the coordinated regulation of TFs to their target genes. Through integrating different resources, we constructed a dynamic regulatory network of Arabidopsis thaliana during pollen development with gene coexpression and NCA. The network illustrated the relationships between the TFs' activities and their target genes' expression, as well as the interactions between TFs, which provide new insight into the molecular mechanisms that control the pollen development.
Nunes, Caroline Fraga; Nogueira, Jeane S; Vianna, Pedro Henrique Oliveira; Ciambarella, Bianca Torres; Rodrigues, Patrícia Machado; Miranda, Karla Rodrigues; Lobo, Leandro Araújo; Domingues, Regina Maria Cavalcanti Pillotto; Busch, Mileane; Atella, Georgia Correa; Vale, André Macedo; Bellio, Maria; Nóbrega, Alberto; Canto, Fábio B; Fucs, Rita
2018-04-03
The incidence of allergic diseases, which increased to epidemic proportions in developed countries over the last few decades, has been correlated with altered gut microbiota colonization. Although probiotics may play a critical role in the restoration of gut homeostasis, their efficiency in the control of allergy is controversial. Here, we aimed to investigate the effects of probiotic treatment initiated at neonatal or adult ages on the suppression of experimental ovalbumin (OVA)-induced asthma. Neonatal or adult mice were orally treated with probiotic bacteria and subjected to OVA-induced allergy. Asthma-like symptoms, microbiota composition and frequencies of the total CD4+ T lymphocytes and CD4+Foxp3+ regulatory T (Treg) cells were evaluated in both groups. Probiotic administration to neonates, but not to adults, was necessary and sufficient for the absolute prevention of experimental allergen-induced sensitization. The neonatally acquired tolerance, transferrable to probiotic-untreated adult recipients by splenic cells from tolerant donors, was associated with modulation of gut bacterial composition, augmented levels of cecum butyrate and selective accumulation of Treg cells in the airways. Our findings reveal that a cross-talk between a healthy microbiota and qualitative features inherent to neonatal T cells, especially in the Treg cell subset, might support the beneficial effect of perinatal exposure to probiotic bacteria on the development of long-term tolerance to allergens.
Core Promoter Functions in the Regulation of Gene Expression of Drosophila Dorsal Target Genes*
Zehavi, Yonathan; Kuznetsov, Olga; Ovadia-Shochat, Avital; Juven-Gershon, Tamar
2014-01-01
Developmental processes are highly dependent on transcriptional regulation by RNA polymerase II. The RNA polymerase II core promoter is the ultimate target of a multitude of transcription factors that control transcription initiation. Core promoters consist of core promoter motifs, e.g. the initiator, TATA box, and the downstream core promoter element (DPE), which confer specific properties to the core promoter. Here, we explored the importance of core promoter functions in the dorsal-ventral developmental gene regulatory network. This network includes multiple genes that are activated by different nuclear concentrations of Dorsal, an NFκB homolog transcription factor, along the dorsal-ventral axis. We show that over two-thirds of Dorsal target genes contain DPE sequence motifs, which is significantly higher than the proportion of DPE-containing promoters in Drosophila genes. We demonstrate that multiple Dorsal target genes are evolutionarily conserved and functionally dependent on the DPE. Furthermore, we have analyzed the activation of key Dorsal target genes by Dorsal, as well as by another Rel family transcription factor, Relish, and the dependence of their activation on the DPE motif. Using hybrid enhancer-promoter constructs in Drosophila cells and embryo extracts, we have demonstrated that the core promoter composition is an important determinant of transcriptional activity of Dorsal target genes. Taken together, our results provide evidence for the importance of core promoter composition in the regulation of Dorsal target genes. PMID:24634215
Rangannan, Vetriselvi; Bansal, Manju
2009-12-01
The rapid increase in genome sequence information has necessitated the annotation of their functional elements, particularly those occurring in the non-coding regions, in the genomic context. Promoter region is the key regulatory region, which enables the gene to be transcribed or repressed, but it is difficult to determine experimentally. Hence an in silico identification of promoters is crucial in order to guide experimental work and to pin point the key region that controls the transcription initiation of a gene. In this analysis, we demonstrate that while the promoter regions are in general less stable than the flanking regions, their average free energy varies depending on the GC composition of the flanking genomic sequence. We have therefore obtained a set of free energy threshold values, for genomic DNA with varying GC content and used them as generic criteria for predicting promoter regions in several microbial genomes, using an in-house developed tool PromPredict. On applying it to predict promoter regions corresponding to the 1144 and 612 experimentally validated TSSs in E. coli (50.8% GC) and B. subtilis (43.5% GC) sensitivity of 99% and 95% and precision values of 58% and 60%, respectively, were achieved. For the limited data set of 81 TSSs available for M. tuberculosis (65.6% GC) a sensitivity of 100% and precision of 49% was obtained.
Wuchter, Patrick; Bieback, Karen; Schrezenmeier, Hubert; Bornhäuser, Martin; Müller, Lutz P; Bönig, Halvard; Wagner, Wolfgang; Meisel, Roland; Pavel, Petra; Tonn, Torsten; Lang, Peter; Müller, Ingo; Renner, Matthias; Malcherek, Georg; Saffrich, Rainer; Buss, Eike C; Horn, Patrick; Rojewski, Markus; Schmitt, Anita; Ho, Anthony D; Sanzenbacher, Ralf; Schmitt, Michael
2015-02-01
Human mesenchymal stem or stromal cells (MSCs) represent a potential resource not only for regenerative medicine but also for immunomodulatory cell therapies. The application of different MSC culture protocols has significantly hampered the comparability of experimental and clinical data from different laboratories and has posed a major obstacle for multicenter clinical trials. Manufacturing of cell products for clinical application in the European Community must be conducted in compliance with Good Manufacturing Practice and requires a manufacturing license. In Germany, the Paul-Ehrlich-Institut as the Federal Authority for Vaccines and Biomedicines is critically involved in the approval process. This report summarizes a consensus meeting between researchers, clinicians and regulatory experts on standard quality requirements for MSC production. The strategy for quality control testing depends on the product's cell composition, the manufacturing process and the indication and target patient population. Important quality criteria in this sense are, among others, the immunophenotype of the cells, composition of the culture medium and the risk for malignant transformation, as well as aging and the immunosuppressive potential of the manufactured MSCs. This position paper intends to provide relevant information to interested parties regarding these criteria to foster the development of scientifically valid and harmonized quality standards and to support approval of MSC-based investigational medicinal products. Copyright © 2015 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Chinese vaccine products go global: vaccine development and quality control.
Xu, Miao; Liang, Zhenglun; Xu, Yinghua; Wang, Junzhi
2015-05-01
Through the continuous efforts of several generations, China has become one of the few countries in the world that is capable of independently addressing all the requirements by the Expanded Program on Immunization. Regulatory science is applied to continuously improve the vaccine regulatory system. Passing the prequalification by WHO has allowed Chinese vaccine products to go global. Chinese vaccine products not only secure disease prevention and control domestically but also serve the needs for international public health. This article describes the history of Chinese vaccine development, the current situation of Chinese vaccine industry and its contribution to the prevention and control of infectious diseases. We also share our experience of national quality control and vaccine regulation during the past decades. China's experience in vaccine development and quality control can benefit other countries and regions worldwide, including the developing countries.