Evaluation of Lightning Induced Effects in a Graphite Composite Fairing Structure. Parts 1 and 2
NASA Technical Reports Server (NTRS)
Trout, Dawn H.; Stanley, James E.; Wahid, Parveen F.
2011-01-01
Defining the electromagnetic environment inside a graphite composite fairing due to lightning is of interest to spacecraft developers. This paper is the first in a two part series and studies the shielding effectiveness of a graphite composite model fairing using derived equivalent properties. A frequency domain Method of Moments (MoM) model is developed and comparisons are made with shielding test results obtained using a vehicle-like composite fairing. The comparison results show that the analytical models can adequately predict the test results. Both measured and model data indicate that graphite composite fairings provide significant attenuation to magnetic fields as frequency increases. Diffusion effects are also discussed. Part 2 examines the time domain based effects through the development of a loop based induced field testing and a Transmission-Line-Matrix (TLM) model is developed in the time domain to study how the composite fairing affects lightning induced magnetic fields. Comparisons are made with shielding test results obtained using a vehicle-like composite fairing in the time domain. The comparison results show that the analytical models can adequately predict the test and industry results.
Model to Test Electric Field Comparisons in a Composite Fairing Cavity
NASA Technical Reports Server (NTRS)
Trout, Dawn; Burford, Janessa
2012-01-01
Evaluating the impact of radio frequency transmission in vehicle fairings is important to sensitive spacecraft. This study shows cumulative distribution function (CDF) comparisons of composite . a fairing electromagnetic field data obtained by computational electromagnetic 3D full wave modeling and laboratory testing. This work is an extension of the bare aluminum fairing perfect electric conductor (PEC) model. Test and model data correlation is shown.
Model to Test Electric Field Comparisons in a Composite Fairing Cavity
NASA Technical Reports Server (NTRS)
Trout, Dawn H.; Burford, Janessa
2013-01-01
Evaluating the impact of radio frequency transmission in vehicle fairings is important to sensitive spacecraft. This study shows cumulative distribution function (CDF) comparisons of composite a fairing electromagnetic field data obtained by computational electromagnetic 3D full wave modeling and laboratory testing. This work is an extension of the bare aluminum fairing perfect electric conductor (PEC) model. Test and model data correlation is shown.
Composite Failures: A Comparison of Experimental Test Results and Computational Analysis Using XFEM
2016-09-30
NUWC-NPT Technical Report 12,218 30 September 2016 Composite Failures: A Comparison of Experimental Test Results and Computational Analysis...A Comparison of Experimental Test Results and Computational Analysis Using XFEM 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...availability of measurement techniques, experimental testing of composite materials has largely outpaced the computational modeling ability, forcing
A systematic comparison of recurrent event models for application to composite endpoints.
Ozga, Ann-Kathrin; Kieser, Meinhard; Rauch, Geraldine
2018-01-04
Many clinical trials focus on the comparison of the treatment effect between two or more groups concerning a rarely occurring event. In this situation, showing a relevant effect with an acceptable power requires the observation of a large number of patients over a long period of time. For feasibility issues, it is therefore often considered to include several event types of interest, non-fatal or fatal, and to combine them within a composite endpoint. Commonly, a composite endpoint is analyzed with standard survival analysis techniques by assessing the time to the first occurring event. This approach neglects that an individual may experience more than one event which leads to a loss of information. As an alternative, composite endpoints could be analyzed by models for recurrent events. There exists a number of such models, e.g. regression models based on count data or Cox-based models such as the approaches of Andersen and Gill, Prentice, Williams and Peterson or, Wei, Lin and Weissfeld. Although some of the methods were already compared within the literature there exists no systematic investigation for the special requirements regarding composite endpoints. Within this work a simulation-based comparison of recurrent event models applied to composite endpoints is provided for different realistic clinical trial scenarios. We demonstrate that the Andersen-Gill model and the Prentice- Williams-Petersen models show similar results under various data scenarios whereas the Wei-Lin-Weissfeld model delivers effect estimators which can considerably deviate under commonly met data scenarios. Based on the conducted simulation study, this paper helps to understand the pros and cons of the investigated methods in the context of composite endpoints and provides therefore recommendations for an adequate statistical analysis strategy and a meaningful interpretation of results.
Rosić, Miroslav; Pešić, Dalibor; Kukić, Dragoslav; Antić, Boris; Božović, Milan
2017-01-01
Concept of composite road safety index is a popular and relatively new concept among road safety experts around the world. As there is a constant need for comparison among different units (countries, municipalities, roads, etc.) there is need to choose an adequate method which will make comparison fair to all compared units. Usually comparisons using one specific indicator (parameter which describes safety or unsafety) can end up with totally different ranking of compared units which is quite complicated for decision maker to determine "real best performers". Need for composite road safety index is becoming dominant since road safety presents a complex system where more and more indicators are constantly being developed to describe it. Among wide variety of models and developed composite indexes, a decision maker can come to even bigger dilemma than choosing one adequate risk measure. As DEA and TOPSIS are well-known mathematical models and have recently been increasingly used for risk evaluation in road safety, we used efficiencies (composite indexes) obtained by different models, based on DEA and TOPSIS, to present PROMETHEE-RS model for selection of optimal method for composite index. Method for selection of optimal composite index is based on three parameters (average correlation, average rank variation and average cluster variation) inserted into a PROMETHEE MCDM method in order to choose the optimal one. The model is tested by comparing 27 police departments in Serbia. Copyright © 2016 Elsevier Ltd. All rights reserved.
Biomechanical comparison of the human cadaveric pelvis with a fourth generation composite model.
Girardi, Brandon L; Attia, Tarik; Backstein, David; Safir, Oleg; Willett, Thomas L; Kuzyk, Paul R T
2016-02-29
The use of cadavers for orthopaedic biomechanics research is well established, but presents difficulties to researchers in terms of cost, biosafety, availability, and ease of use. High fidelity composite models of human bone have been developed for use in biomechanical studies. While several studies have utilized composite models of the human pelvis for testing orthopaedic reconstruction techniques, few biomechanical comparisons of the properties of cadaveric and composite pelves exist. The aim of this study was to compare the mechanical properties of cadaveric pelves to those of the 4th generation composite model. An Instron ElectroPuls E10000 mechanical testing machine was used to load specimens with orientation, boundary conditions and degrees of freedom that approximated those occurring during the single legged phase of walking, including hip abductor force. Each specimen was instrumented with strain gauge rosettes. Overall specimen stiffness and principal strains were calculated from the test data. Composite specimens showed significantly higher overall stiffness and slightly less overall variability between specimens (composite K=1448±54N/m, cadaver K=832±62N/m; p<0.0001). Strains measured at specific sites in the composite models and cadavers were similar (but did differ) only when the applied load was scaled to overall construct stiffness. This finding regarding strain distribution and the difference in overall stiffness must be accounted for when using these composite models for biomechanics research. Altering the cortical wall thickness or tuning the elastic moduli of the composite material may improve future generations of the composite model. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Maghsoudi, Mastoureh; Bakar, Shaiful Anuar Abu
2017-05-01
In this paper, a recent novel approach is applied to estimate the threshold parameter of a composite model. Several composite models from Transformed Gamma and Inverse Transformed Gamma families are constructed based on this approach and their parameters are estimated by the maximum likelihood method. These composite models are fitted to allocated loss adjustment expenses (ALAE). In comparison to all composite models studied, the composite Weibull-Inverse Transformed Gamma model is proved to be a competitor candidate as it best fit the loss data. The final part considers the backtesting method to verify the validation of VaR and CTE risk measures.
NASA Technical Reports Server (NTRS)
Sareen, Ashish K.; Sparks, Chad; Mullins, B. R., Jr.; Fasanella, Edwin; Jackson, Karen
2002-01-01
A comparison of the soft soil and hard surface impact performance of a crashworthy composite fuselage concept has been performed. Specifically, comparisons of the peak acceleration values, pulse duration, and onset rate at specific locations on the fuselage were evaluated. In a prior research program, the composite fuselage section was impacted at 25 feet per second onto concrete at the Impact Dynamics Research Facility (IDRF) at NASA Langley Research Center. A soft soil test was conducted at the same impact velocity as a part of the NRTC/RITA Crashworthy and Energy Absorbing Structures project. In addition to comparisons of soft soil and hard surface test results, an MSC. Dytran dynamic finite element model was developed to evaluate the test analysis correlation. In addition, modeling parameters and techniques affecting test analysis correlation are discussed. Once correlated, the analytical methodology will be used in follow-on work to evaluate the specific energy absorption of various subfloor concepts for improved crash protection during hard surface and soft soil impacts.
Harrison, Jay M; Breeze, Matthew L; Harrigan, George G
2011-08-01
Statistical comparisons of compositional data generated on genetically modified (GM) crops and their near-isogenic conventional (non-GM) counterparts typically rely on classical significance testing. This manuscript presents an introduction to Bayesian methods for compositional analysis along with recommendations for model validation. The approach is illustrated using protein and fat data from two herbicide tolerant GM soybeans (MON87708 and MON87708×MON89788) and a conventional comparator grown in the US in 2008 and 2009. Guidelines recommended by the US Food and Drug Administration (FDA) in conducting Bayesian analyses of clinical studies on medical devices were followed. This study is the first Bayesian approach to GM and non-GM compositional comparisons. The evaluation presented here supports a conclusion that a Bayesian approach to analyzing compositional data can provide meaningful and interpretable results. We further describe the importance of method validation and approaches to model checking if Bayesian approaches to compositional data analysis are to be considered viable by scientists involved in GM research and regulation. Copyright © 2011 Elsevier Inc. All rights reserved.
Benchmarking of Computational Models for NDE and SHM of Composites
NASA Technical Reports Server (NTRS)
Wheeler, Kevin; Leckey, Cara; Hafiychuk, Vasyl; Juarez, Peter; Timucin, Dogan; Schuet, Stefan; Hafiychuk, Halyna
2016-01-01
Ultrasonic wave phenomena constitute the leading physical mechanism for nondestructive evaluation (NDE) and structural health monitoring (SHM) of solid composite materials such as carbon-fiber-reinforced polymer (CFRP) laminates. Computational models of ultrasonic guided-wave excitation, propagation, scattering, and detection in quasi-isotropic laminates can be extremely valuable in designing practically realizable NDE and SHM hardware and software with desired accuracy, reliability, efficiency, and coverage. This paper presents comparisons of guided-wave simulations for CFRP composites implemented using three different simulation codes: two commercial finite-element analysis packages, COMSOL and ABAQUS, and a custom code implementing the Elastodynamic Finite Integration Technique (EFIT). Comparisons are also made to experimental laser Doppler vibrometry data and theoretical dispersion curves.
Creep-rupture of polymer-matrix composites. [graphite-epoxy laminates
NASA Technical Reports Server (NTRS)
Brinson, H. F.; Griffith, W. I.; Morris, D. H.
1980-01-01
An accelerated characterization method for resin matrix composites is reviewed. Methods for determining modulus and strength master curves are given. Creep rupture analytical models are discussed as applied to polymers and polymer matrix composites. Comparisons between creep rupture experiments and analytical models are presented. The time dependent creep rupture process in graphite epoxy laminates is examined as a function of temperature and stress level.
NASA Technical Reports Server (NTRS)
Madaras, Eric I.; Brush, Edwin F., III; Bridal, S. L.; Holland, Mark R.; Miller, James G.
1992-01-01
This paper focuses on the nature of a typical composite surface and its effects on scattering. Utilizing epoxy typical of that in composites and standard composite fabrication methods, a sample with release cloth impressions on its surface is produced. A simple model for the scattering from the surface impressions of this sample is constructed and then polar backscatter measurements are made on the sample and compared with the model predictions.
USDA-ARS?s Scientific Manuscript database
DeNitrification DeComposition (DNDC) model predictions of NH3 fluxes following chemical fertilizer application were evaluated by comparison to relaxed eddy accumulation (REA) measurements, in Central Illinois, United States, over the 2014 growing season of corn. Practical issues for evaluating closu...
Leckey, Cara A C; Wheeler, Kevin R; Hafiychuk, Vasyl N; Hafiychuk, Halyna; Timuçin, Doğan A
2018-03-01
Ultrasonic wave methods constitute the leading physical mechanism for nondestructive evaluation (NDE) and structural health monitoring (SHM) of solid composite materials, such as carbon fiber reinforced polymer (CFRP) laminates. Computational models of ultrasonic wave excitation, propagation, and scattering in CFRP composites can be extremely valuable in designing practicable NDE and SHM hardware, software, and methodologies that accomplish the desired accuracy, reliability, efficiency, and coverage. The development and application of ultrasonic simulation approaches for composite materials is an active area of research in the field of NDE. This paper presents comparisons of guided wave simulations for CFRP composites implemented using four different simulation codes: the commercial finite element modeling (FEM) packages ABAQUS, ANSYS, and COMSOL, and a custom code executing the Elastodynamic Finite Integration Technique (EFIT). Benchmark comparisons are made between the simulation tools and both experimental laser Doppler vibrometry data and theoretical dispersion curves. A pristine and a delamination type case (Teflon insert in the experimental specimen) is studied. A summary is given of the accuracy of simulation results and the respective computational performance of the four different simulation tools. Published by Elsevier B.V.
The auroral 6300 A emission - Observations and modeling
NASA Technical Reports Server (NTRS)
Solomon, Stanley C.; Hays, Paul B.; Abreu, Vincent J.
1988-01-01
A tomographic inversion is used to analyze measurements of the auroral atomic oxygen emission line at 6300 A made by the atmosphere explorer visible airglow experiment. A comparison is made between emission altitude profiles and the results from an electron transport and chemical reaction model. Measurements of the energetic electron flux, neutral composition, ion composition, and electron density are incorporated in the model.
Comparison Of Models Of Metal-Matrix Composites
NASA Technical Reports Server (NTRS)
Bigelow, C. A.; Johnson, W. S.; Naik, R. A.
1994-01-01
Report presents comparative review of four mathematical models of micromechanical behaviors of fiber/metal-matrix composite materials. Models differ in various details, all based on properties of fiber and matrix constituent materials, all involve square arrays of fibers continuous and parallel and all assume complete bonding between constituents. Computer programs implementing models used to predict properties and stress-vs.-strain behaviors of unidirectional- and cross-ply laminated composites made of boron fibers in aluminum matrices and silicon carbide fibers in titanium matrices. Stresses in fiber and matrix constituent materials also predicted.
A Comparison of Latent Growth Models for Constructs Measured by Multiple Items
ERIC Educational Resources Information Center
Leite, Walter L.
2007-01-01
Univariate latent growth modeling (LGM) of composites of multiple items (e.g., item means or sums) has been frequently used to analyze the growth of latent constructs. This study evaluated whether LGM of composites yields unbiased parameter estimates, standard errors, chi-square statistics, and adequate fit indexes. Furthermore, LGM was compared…
Deformation of Polymer Composites in Force Protection Systems
NASA Astrophysics Data System (ADS)
Nazarian, Oshin
Systems used for protecting personnel, vehicles and infrastructure from ballistic and blast threats derive their performance from a combination of the intrinsic properties of the constituent materials and the way in which the materials are arranged and attached to one another. The present work addresses outstanding issues in both the intrinsic properties of high-performance fiber composites and the consequences of how such composites are integrated into force protection systems. One aim is to develop a constitutive model for the large-strain intralaminar shear deformation of an ultra-high molecular weight polyethylene (UHMWPE) fiber-reinforced composite. To this end, an analytical model based on a binary representation of the constituent phases is developed and validated using finite element analyses. The model is assessed through comparisons with experimental measurements on cross-ply composite specimens in the +/-45° orientation. The hardening behavior and the limiting tensile strain are attributable to rotations of fibers in the plastic domain and the effects of these rotations on the internal stress state. The model is further assessed through quasi-static punch experiments and dynamic impact tests using metal foam projectiles. The finite element model based on this model accurately captures both the back-face deflection-time history and the final plate profile (especially the changes caused by fiber pull-in). A separate analytical framework for describing the accelerations caused by head impact during, for example, the secondary collision of a vehicle occupant with the cabin interior during an external event is also presented. The severity of impact, characterized by the Head Injury Criterion (HIC), is used to assess the efficacy of crushable foams in mitigating head injury. The framework is used to identify the optimal foam strength that minimizes the HIC for prescribed mass and velocity, subject to constraints on foam thickness. The predictive capability of the model is evaluated through comparisons with a series of experimental measurements from impacts of an instrumented headform onto several commercial foams. Additional comparisons are made with the results of finite element simulations. An analytical model for the planar impact of a cylindrical mass on a foam is also developed. This model sets a theoretical bound for the reduction in HIC by utilizing a "plate-on-foam" design. Experimental results of impact tests on foams coupled with stiff composite plates are presented, with comparisons to the theoretical limits predicted by the analytical model. Design maps are developed from the analytical models, illustrating the variations in the HIC with foam strength and impact velocity.
Gilmartin, Heather M; Sousa, Karen H; Battaglia, Catherine
2016-01-01
The central line (CL) bundle interventions are important for preventing central line-associated bloodstream infections (CLABSIs), but a modeling method for testing the CL bundle interventions within a health systems framework is lacking. Guided by the Quality Health Outcomes Model (QHOM), this study tested the CL bundle interventions in reflective and composite, latent, variable measurement models to assess the impact of the modeling approaches on an investigation of the relationships between adherence to the CL bundle interventions, organizational context, and CLABSIs. A secondary data analysis study was conducted using data from 614 U.S. hospitals that participated in the Prevention of Nosocomial Infection and Cost-Effectiveness Refined study. The sample was randomly split into exploration and validation subsets. The two CL bundle modeling approaches resulted in adequate fitting structural models (RMSEA = .04; CFI = .94) and supported similar relationships within the QHOM. Adherence to the CL bundle had a direct effect on organizational context (reflective = .23; composite = .20; p = .01) and CLABSIs (reflective = -.28; composite = -.25; p = .01). The relationship between context and CLABSIs was not significant. Both modeling methods resulted in partial support of the QHOM. There were little statistical, but large, conceptual differences between the reflective and composite modeling approaches. The empirical impact of the modeling approaches was inconclusive, for both models resulted in a good fit to the data. Lessons learned are presented. The comparison of modeling approaches is recommended when initially modeling variables that have never been modeled or with directional ambiguity to increase transparency and bring confidence to study findings.
Gilmartin, Heather M.; Sousa, Karen H.; Battaglia, Catherine
2016-01-01
Background The central line (CL) bundle interventions are important for preventing central line-associated bloodstream infections (CLABSIs), but a modeling method for testing the CL bundle interventions within a health systems framework is lacking. Objectives Guided by the Quality Health Outcomes Model (QHOM), this study tested the CL bundle interventions in reflective and composite, latent, variable measurement models to assess the impact of the modeling approaches on an investigation of the relationships between adherence to the CL bundle interventions, organizational context, and CLABSIs. Methods A secondary data analysis study was conducted using data from 614 U.S. hospitals that participated in the Prevention of Nosocomial Infection and Cost-Effectiveness-Refined study. The sample was randomly split into exploration and validation subsets. Results The two CL bundle modeling approaches resulted in adequate fitting structural models (RMSEA = .04; CFI = .94) and supported similar relationships within the QHOM. Adherence to the CL bundle had a direct effect on organizational context (reflective = .23; composite = .20; p = .01), and CLABSIs (reflective = −.28; composite = −.25; p =.01). The relationship between context and CLABSIs was not significant. Both modeling methods resulted in partial support of the QHOM. Discussion There were little statistical, but large, conceptual differences between the reflective and composite modeling approaches. The empirical impact of the modeling approaches was inconclusive, for both models resulted in a good fit to the data. Lessons learned are presented. The comparison of modeling approaches is recommended when initially modeling variables that have never been modeled, or with directional ambiguity, to increase transparency and bring confidence to study findings. PMID:27579507
Design for inadvertent damage in composite laminates
NASA Technical Reports Server (NTRS)
Singhal, Surendra N.; Chamis, Christos C.
1992-01-01
Simplified predictive methods and models to computationally simulate durability and damage in polymer matrix composite materials/structures are described. The models include (1) progressive fracture, (2) progressively damaged structural behavior, (3) progressive fracture in aggressive environments, (4) stress concentrations, and (5) impact resistance. Several examples are included to illustrate applications of the models and to identify significant parameters and sensitivities. Comparisons with limited experimental data are made.
Comparison of multiple atmospheric chemistry schemes in C-IFS
NASA Astrophysics Data System (ADS)
Flemming, Johannes; Huijnen, Vincent; Arteta, Joaquim; Stein, Olaf; Inness, Antje; Josse, Beatrice; Schultz, Martin; Peuch, Vincent-Henri
2013-04-01
As part of the MACCII -project (EU-FP7) ECMWF's integrated forecast system (IFS) is being extended by modules for chemistry, deposition and emission of reactive gases. This integration of the chemistry complements the integration of aerosol processes in IFS (Composition-IFS). C-IFS provides global forecasts and analysis of atmospheric composition. Its main motivation is to utilize the IFS for the assimilation of satellite observation of atmospheric composition. Furthermore, the integration of chemistry packages directly into IFS will achieve better consistency in terms of the treatment of physical processes and has the potential for simulating interactions between atmospheric composition and meteorology. Atmospheric chemistry in C-IFS can be represented by the modified CB05 scheme as implemented in the TM5 model and the RACMOBUS scheme as implemented in the MOCAGE model. An implementation of the scheme of the MOZART 3.5 model is ongoing. We will present the latest progress in the development and application of C-IFS. We will focus on the comparison of the different chemistry schemes in an otherwise identical C-IFS model setup (emissions, meteorology) as well as in their original Chemistry and Transport Model setup.
NASA Technical Reports Server (NTRS)
Hodges, Robert V.; Nixon, Mark W.; Rehfield, Lawrence W.
1987-01-01
A methodology was developed for the structural analysis of composite rotor blades. This coupled-beam analysis is relatively simple to use compared with alternative analysis techniques. The beam analysis was developed for thin-wall single-cell rotor structures and includes the effects of elastic coupling. This paper demonstrates the effectiveness of the new composite-beam analysis method through comparison of its results with those of an established baseline analysis technique. The baseline analysis is an MSC/NASTRAN finite-element model built up from anisotropic shell elements. Deformations are compared for three linear static load cases of centrifugal force at design rotor speed, applied torque, and lift for an ideal rotor in hover. A D-spar designed to twist under axial loading is the subject of the analysis. Results indicate the coupled-beam analysis is well within engineering accuracy.
Numerical Validation of Chemical Compositional Model for Wettability Alteration Processes
NASA Astrophysics Data System (ADS)
Bekbauov, Bakhbergen; Berdyshev, Abdumauvlen; Baishemirov, Zharasbek; Bau, Domenico
2017-12-01
Chemical compositional simulation of enhanced oil recovery and surfactant enhanced aquifer remediation processes is a complex task that involves solving dozens of equations for all grid blocks representing a reservoir. In the present work, we perform a numerical validation of the newly developed mathematical formulation which satisfies the conservation laws of mass and energy and allows applying a sequential solution approach to solve the governing equations separately and implicitly. Through its application to the numerical experiment using a wettability alteration model and comparisons with existing chemical compositional model's numerical results, the new model has proven to be practical, reliable and stable.
Thermal modeling of carbon-epoxy laminates in fire environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGurn, Matthew T.; DesJardin, Paul Edward; Dodd, Amanda B.
2010-10-01
A thermal model is developed for the response of carbon-epoxy composite laminates in fire environments. The model is based on a porous media description that includes the effects of gas transport within the laminate along with swelling. Model comparisons are conducted against the data from Quintere et al. Simulations are conducted for both coupon level and intermediate scale one-sided heating tests. Comparisons of the heat release rate (HRR) as well as the final products (mass fractions, volume percentages, porosity, etc.) are conducted. Overall, the agreement between available the data and model is excellent considering the simplified approximations to account formore » flame heat flux. A sensitivity study using a newly developed swelling model shows the importance of accounting for laminate expansion for the prediction of burnout. Excellent agreement is observed between the model and data of the final product composition that includes porosity, mass fractions and volume expansion ratio.« less
NASA Astrophysics Data System (ADS)
Singh, Savita; Singh, Alok; Sharma, Sudhir Kumar
2017-06-01
In this paper, an analytical modeling and prediction of tensile and flexural strength of three dimensional micro-scaled novel coconut shell powder (CSP) reinforced epoxy polymer composites have been reported. The novel CSP has a specific mixing ratio of different coconut shell particle size. A comparison is made between obtained experimental strength and modified Guth model. The result shows a strong evidence for non-validation of modified Guth model for strength prediction. Consequently, a constitutive modeled equation named Singh model has been developed to predict the tensile and flexural strength of this novel CSP reinforced epoxy composite. Moreover, high resolution Raman spectrum shows that 40 % CSP reinforced epoxy composite has high dielectric constant to become an alternative material for capacitance whereas fractured surface morphology revealed that a strong bonding between novel CSP and epoxy polymer for the application as light weight composite materials in engineering.
Modeling of outgassing and matrix decomposition in carbon-phenolic composites
NASA Technical Reports Server (NTRS)
Mcmanus, Hugh L.
1993-01-01
A new release rate equation to model the phase change of water to steam in composite materials was derived from the theory of molecular diffusion and equilibrium moisture concentration. The new model is dependent on internal pressure, the microstructure of the voids and channels in the composite materials, and the diffusion properties of the matrix material. Hence, it is more fundamental and accurate than the empirical Arrhenius rate equation currently in use. The model was mathematically formalized and integrated into the thermostructural analysis code CHAR. Parametric studies on variation of several parameters have been done. Comparisons to Arrhenius and straight-line models show that the new model produces physically realistic results under all conditions.
The failure of 1D seismic model fitting to constrain lower mantle composition
NASA Astrophysics Data System (ADS)
Houser, C. T.; Hernlund, J. W.; Valencia-Cardona, J. J.; Wentzcovitch, R.
2017-12-01
Tests of lower mantle composition models often compare mineral physics data bearing on the elasticity and density of lower mantle phases to the average seismic velocity profile determined by seismology, such a PREM or ak135. We demonstrate why such comparisons between mineralogy and seismology are an inadequate method for definitive discrimination between different scenarios. One issue is that the seismic velocity is more sensitive to temperature than composition for most lower mantle minerals. In practice, this allows one the freedom to choose the geotherm that brings the predicted seismic and density data into agreement with observations. It is commonly assumed that the temperature profile should be adiabatic, however, such a profile presupposes a particular state of the mantle and is only applicable in the absence of layering, buoyancy fluctuations, compositional segregation, and rheological complexities. The mantle temperature should depend on the composition since the latter influences the viscosity of rocks. However, the precise relation between composition, viscosity, and heat transfer would need to be specified, but unfortunately remains highly uncertain. If the mantle contains a mixture of domains with multiple bulk compositions, then the 1D seismic profile comparison is inherently non-unique. Rocks with different bulk composition likely have different isotopic abundances, and can exhibit differing degrees of internal heating and therefore distinct temperatures. Different composition domains can also exhibit variable densities, and tend to congregate at different depths in ways that also affect their thermal evolution and temperature. Therefore, fitting a 1D seismic model alone is an inadequate tool to evaluate lower mantle composition.
Tranchard, Pauline; Samyn, Fabienne; Duquesne, Sophie; Estèbe, Bruno; Bourbigot, Serge
2017-01-01
Based on a phenomenological methodology, a three dimensional (3D) thermochemical model was developed to predict the temperature profile, the mass loss and the decomposition front of a carbon-reinforced epoxy composite laminate (T700/M21 composite) exposed to fire conditions. This 3D model takes into account the energy accumulation by the solid material, the anisotropic heat conduction, the thermal decomposition of the material, the gas mass flow into the composite, and the internal pressure. Thermophysical properties defined as temperature dependant properties were characterised using existing as well as innovative methodologies in order to use them as inputs into our physical model. The 3D thermochemical model accurately predicts the measured mass loss and observed decomposition front when the carbon fibre/epoxy composite is directly impacted by a propane flame. In short, the model shows its capability to predict the fire behaviour of a carbon fibre reinforced composite for fire safety engineering. PMID:28772836
Tranchard, Pauline; Samyn, Fabienne; Duquesne, Sophie; Estèbe, Bruno; Bourbigot, Serge
2017-04-28
Based on a phenomenological methodology, a three dimensional (3D) thermochemical model was developed to predict the temperature profile, the mass loss and the decomposition front of a carbon-reinforced epoxy composite laminate (T700/M21 composite) exposed to fire conditions. This 3D model takes into account the energy accumulation by the solid material, the anisotropic heat conduction, the thermal decomposition of the material, the gas mass flow into the composite, and the internal pressure. Thermophysical properties defined as temperature dependant properties were characterised using existing as well as innovative methodologies in order to use them as inputs into our physical model. The 3D thermochemical model accurately predicts the measured mass loss and observed decomposition front when the carbon fibre/epoxy composite is directly impacted by a propane flame. In short, the model shows its capability to predict the fire behaviour of a carbon fibre reinforced composite for fire safety engineering.
NASA Astrophysics Data System (ADS)
Longbiao, Li
2016-10-01
In this paper, the comparison of fatigue life between C/SiC and SiC/SiC ceramic-matrix composites (CMCs) at room and elevated temperatures has been investigated. An effective coefficient of the fiber volume fraction along the loading direction (ECFL) was introduced to describe the fiber architecture of preforms. Under cyclic fatigue loading, the fibers broken fraction was determined by combining the interface wear model and fibers statistical failure model at room temperature, and interface/fibers oxidation model, interface wear model and fibers statistical failure model at elevated temperatures in the oxidative environments. When the broken fibers fraction approaches to the critical value, the composites fatigue fracture. The fatigue life S-N curves and fatigue limits of cross-ply, 2D and 3D C/SiC and SiC/SiC composites at room temperature, 550 °C in air, 750 °C in dry and humid condition, 800 °C in air, 1000 °C in argon and air, 1100 °C, 1300 °C and 1500 °C in vacuum, have been predicted. At room temperature, the fatigue limit of 2D C/SiC composite with ECFL of 20 % lies between 0.78 and 0.8 tensile strength; and the fatigue limit of 2D SiC/SiC composite with ECFL of 20 % lies between 0.75 and 0.85 tensile strength. The fatigue limit of 2D C/SiC composite increases to 0.83 tensile strength with ECFL increasing from 20 to 22.5 %, and the fatigue limit of 3D C/SiC composite is 0.85 tensile strength with ECFL of 37 %. The fatigue performance of 2D SiC/SiC composite is better than that of 2D C/SiC composite at elevated temperatures in oxidative environment.
Finite element modelling of crash response of composite aerospace sub-floor structures
NASA Astrophysics Data System (ADS)
McCarthy, M. A.; Harte, C. G.; Wiggenraad, J. F. M.; Michielsen, A. L. P. J.; Kohlgrüber, D.; Kamoulakos, A.
Composite energy-absorbing structures for use in aircraft are being studied within a European Commission research programme (CRASURV - Design for Crash Survivability). One of the aims of the project is to evaluate the current capabilities of crashworthiness simulation codes for composites modelling. This paper focuses on the computational analysis using explicit finite element analysis, of a number of quasi-static and dynamic tests carried out within the programme. It describes the design of the structures, the analysis techniques used, and the results of the analyses in comparison to the experimental test results. It has been found that current multi-ply shell models are capable of modelling the main energy-absorbing processes at work in such structures. However some deficiencies exist, particularly in modelling fabric composites. Developments within the finite element code are taking place as a result of this work which will enable better representation of composite fabrics.
Air Quality Forecasts Using the NASA GEOS Model
NASA Technical Reports Server (NTRS)
Keller, Christoph A.; Knowland, K. Emma; Nielsen, Jon E.; Orbe, Clara; Ott, Lesley; Pawson, Steven; Saunders, Emily; Duncan, Bryan; Follette-Cook, Melanie; Liu, Junhua;
2018-01-01
We provide an introduction to a new high-resolution (0.25 degree) global composition forecast produced by NASA's Global Modeling and Assimilation office. The NASA Goddard Earth Observing System version 5 (GEOS-5) model has been expanded to provide global near-real-time forecasts of atmospheric composition at a horizontal resolution of 0.25 degrees (25 km). Previously, this combination of detailed chemistry and resolution was only provided by regional models. This system combines the operational GEOS-5 weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 11) to provide detailed chemical analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). The resolution of the forecasts is the highest resolution compared to current, publically-available global composition forecasts. Evaluation and validation of modeled trace gases and aerosols compared to surface and satellite observations will be presented for constituents relative to health air quality standards. Comparisons of modeled trace gases and aerosols against satellite observations show that the model produces realistic concentrations of atmospheric constituents in the free troposphere. Model comparisons against surface observations highlight the model's capability to capture the diurnal variability of air pollutants under a variety of meteorological conditions. The GEOS-5 composition forecasting system offers a new tool for scientists and the public health community, and is being developed jointly with several government and non-profit partners. Potential applications include air quality warnings, flight campaign planning and exposure studies using the archived analysis fields.
Model nebulae and determination of the chemical composition of the Magellanic Clouds
Aller, L. H.; Keyes, C. D.; Czyzak, S. J.
1979-01-01
An analysis of previously presented photoelectric spectrophotometry of HII regions (emission-line diffuse nebulae) in the two Magellanic Clouds is carried out with the aid of theoretical nebular models, which are used primarily as interpolation devices. Some advantages and limitations of such theoretical models are discussed. A comparison of the finally obtained chemical compositions with those found by other observers shows generally a good agreement, suggesting that it is possible to obtain reliable chemical compositions from low excitation gaseous nebulae in our own galaxy as well as in distant stellar systems. PMID:16592633
Local stresses in metal matrix composites subjected to thermal and mechanical loading
NASA Technical Reports Server (NTRS)
Highsmith, Alton L.; Shin, Donghee; Naik, Rajiv A.
1990-01-01
An elasticity solution has been used to analyze matrix stresses near the fiber/matrix interface in continuous fiber-reinforced metal-matrix composites, modeling the micromechanics in question in terms of a cylindrical fiber and cylindrical matrix sheath which is embedded in an orthotropic medium representing the composite. The model's predictions for lamina thermal and mechanical properties are applied to a laminate analysis determining ply-level stresses due to thermomechanical loading. A comparison is made between these results, which assume cylindrical symmetry, and the predictions yielded by a FEM model in which the fibers are arranged in a square array.
Multi-Terrain Impact Testing and Simulation of a Composite Energy Absorbing Fuselage Section
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Sparks, Chad E.; Sareen, Ashish K.
2007-01-01
Comparisons of the impact performance of a 5-ft diameter crashworthy composite fuselage section were investigated for hard surface, soft soil, and water impacts. The fuselage concept, which was originally designed for impacts onto a hard surface only, consisted of a stiff upper cabin, load bearing floor, and an energy absorbing subfloor. Vertical drop tests were performed at 25-ft/s onto concrete, soft-soil, and water at NASA Langley Research Center. Comparisons of the peak acceleration values, pulse durations, and onset rates were evaluated for each test at specific locations on the fuselage. In addition to comparisons of the experimental results, dynamic finite element models were developed to simulate each impact condition. Once validated, these models can be used to evaluate the dynamic behavior of subfloor components for improved crash protection for hard surface, soft soil, and water impacts.
Multi-Terrain Impact Testing and Simulation of a Composite Energy Absorbing Fuselage Section
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Lyle, Karen H.; Sparks, Chad E.; Sareen, Ashish K.
2004-01-01
Comparisons of the impact performance of a 5-ft diameter crashworthy composite fuselage section were investigated for hard surface, soft soil, and water impacts. The fuselage concept, which was originally designed for impacts onto a hard surface only, consisted of a stiff upper cabin, load bearing floor, and an energy absorbing subfloor. Vertical drop tests were performed at 25-ft/s onto concrete, soft-soil, and water at NASA Langley Research Center. Comparisons of the peak acceleration values, pulse durations, and onset rates were evaluated for each test at specific locations on the fuselage. In addition to comparisons of the experimental results, dynamic finite element models were developed to simulate each impact condition. Once validated, these models can be used to evaluate the dynamic behavior of subfloor components for improved crash protection for hard surface, soft soil, and water impacts.
Impact and damage of an armor composite
NASA Astrophysics Data System (ADS)
Resnyansky, A. D.; Parry, S.; Bourne, N. K.; Townsend, D.; James, B. J.
2015-06-01
The use of carbon fiber composites under shock and impact loading in aerospace, defense and automotive applications is increasingly important. Therefore prediction of the composite behavior and damage in these conditions is critical. Influence of anisotropy, fiber orientation and the rate of loading during the impact is considered in the present study and validated by comparison with experiments. The experiments deal with the plane, ballistic and Taylor impacts accompanied by high-speed photography observations and tomography of recovered samples. The CTH hydrocode is employed as the modeling platform with an advanced rate sensitive material model used for description of the deformation and damage of the transversely isotropic composite material.
Field-incidence transmission of treated orthotropic and laminated composite panels
NASA Technical Reports Server (NTRS)
Koval, L. R.
1983-01-01
In an effort to improve understanding of the phenomenon of noise transmission through the sidewalls of an aircraft fuselage, an analytical model was developed for the field incidence transmission loss of an orthotropic or laminated composite infinite panel with layers of various noise insulation treatments. The model allows for four types of treatments, impervious limp septa, orthotropic trim panels, porous blankets, and air spaces, while it also takes into account the effects of forward speed. Agreement between the model and transmission loss data for treated panels is seen to be fairly good overall. In comparison with transmission loss data for untreated composite panels, excellent agreement occurred.
Air Quality Forecasts Using the NASA GEOS Model: A Unified Tool from Local to Global Scales
NASA Technical Reports Server (NTRS)
Knowland, E. Emma; Keller, Christoph; Nielsen, J. Eric; Orbe, Clara; Ott, Lesley; Pawson, Steven; Saunders, Emily; Duncan, Bryan; Cook, Melanie; Liu, Junhua;
2017-01-01
We provide an introduction to a new high-resolution (0.25 degree) global composition forecast produced by NASA's Global Modeling and Assimilation office. The NASA Goddard Earth Observing System version 5 (GEOS-5) model has been expanded to provide global near-real-time forecasts of atmospheric composition at a horizontal resolution of 0.25 degrees (approximately 25 km). Previously, this combination of detailed chemistry and resolution was only provided by regional models. This system combines the operational GEOS-5 weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 11) to provide detailed chemical analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). The resolution of the forecasts is the highest resolution compared to current, publically-available global composition forecasts. Evaluation and validation of modeled trace gases and aerosols compared to surface and satellite observations will be presented for constituents relative to health air quality standards. Comparisons of modeled trace gases and aerosols against satellite observations show that the model produces realistic concentrations of atmospheric constituents in the free troposphere. Model comparisons against surface observations highlight the model's capability to capture the diurnal variability of air pollutants under a variety of meteorological conditions. The GEOS-5 composition forecasting system offers a new tool for scientists and the public health community, and is being developed jointly with several government and non-profit partners. Potential applications include air quality warnings, flight campaign planning and exposure studies using the archived analysis fields.
NASA Technical Reports Server (NTRS)
Pindera, Marek-Jerzy; Salzar, Robert S.; Williams, Todd O.
1993-01-01
The utility of a recently developed analytical micromechanics model for the response of metal matrix composites under thermal loading is illustrated by comparison with the results generated using the finite-element approach. The model is based on the concentric cylinder assemblage consisting of an arbitrary number of elastic or elastoplastic sublayers with isotropic or orthotropic, temperature-dependent properties. The elastoplastic boundary-value problem of an arbitrarily layered concentric cylinder is solved using the local/global stiffness matrix formulation (originally developed for elastic layered media) and Mendelson's iterative technique of successive elastic solutions. These features of the model facilitate efficient investigation of the effects of various microstructural details, such as functionally graded architectures of interfacial layers, on the evolution of residual stresses during cool down. The available closed-form expressions for the field variables can readily be incorporated into an optimization algorithm in order to efficiently identify optimal configurations of graded interfaces for given applications. Comparison of residual stress distributions after cool down generated using finite-element analysis and the present micromechanics model for four composite systems with substantially different temperature-dependent elastic, plastic, and thermal properties illustrates the efficacy of the developed analytical scheme.
We incorporate the recently developed Regional Atmospheric Chemistry Mechanism (version 2, RACM2) into the Community Multiscale Air Quality modeling system for comparison with the existing 2005 Carbon Bond mechanism with updated toluene chemistry (CB05TU). Compared to CB05TU, RAC...
A Statistical Comparison of PSC Model Simulations and POAM Observations
NASA Technical Reports Server (NTRS)
Strawa, A. W.; Drdla, K.; Fromm, M.; Bokarius, K.; Gore, Warren J. (Technical Monitor)
2002-01-01
A better knowledge of PSC composition and formation mechanisms is important to better understand and predict stratospheric ozone depletion. Several past studies have attempted to compare modeling results with satellite observations. These comparisons have concentrated on case studies. In this paper we adopt a statistical approach. POAM PSC observations from several Arctic winters are categorized into Type Ia and Ib PSCs using a technique based on Strawa et al. The discrimination technique has been modified to employ the wavelengths dependence of the extinction signal at all wavelengths rather than only at 603 and 10 18 nm. Winter-long simulations for the 1999-2000 Arctic winter have been made using the IMPACT model. These simulations have been constrained by aircraft observations made during the SOLVE/THESEO 2000 campaign. A complete set of winter-long simulations was run for several different microphysical and PSC formation scenarios. The simulations give us perfect knowledge of PSC type (Ia, Ib, or II), composition, especially condensed phase HNO3 which is important for denitrification, and condensed phase H2O. Comparisons are made between the simulation and observation of PSC extinction at 1018 rim versus wavelength dependence, winter-long percentages of Ia and Ib occurrence, and temporal and altitude trends of the PSCs. These comparisons allow us to comment on how realistic some modeling scenarios are.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroupa, J.L.; Coker, D.; Neu, R.W.
1996-12-31
Several micromechanical models that are currently being used for predicting the thermal and mechanical behavior of a cross-ply, [0/90], titanium matrix composite are evaluated. Six computer programs or methods are compared: (1) VISCOPLY; (2) METCAN; (3) FIDEP, an enhanced concentric cylinder model; (4) LISOL, a modified method of cells approach; (5) an elementary approach where the [90] ply is assumed to have the same properties as the matrix; and (6) a finite element method. Comparisons are made for the thermal residual stresses at room temperature resulting from processing, as well as for stresses and strains in two isothermal and twomore » thermomechanical fatigue test cases. For each case, the laminate response of the models is compared to experimental behavior, while the responses of the constituents are compared among the models. The capability of each model to predict frequency effects, inelastic cyclic strain (hysteresis) behavior, and strain ratchetting with cycling is shown. The basis of formulation for the micromechanical models, the constitutive relationships used for the matrix and fiber, and the modeling technique of the [90] ply are all found to be important factors for determining the accurate behavior of the [0/90] composite.« less
Comparison of model predictions for the composition of the ionosphere of Mars to MAVEN NGIMS data
NASA Astrophysics Data System (ADS)
Withers, Paul; Vogt, Marissa; Mayyasi, Majd; Mahaffy, Paul; Benna, Mehdi; Elrod, Meredith; Bougher, Stephen; Dong, Chuanfei; Chaufray, Jean-Yves; Ma, Yingjuan; Jakosky, Bruce
2015-11-01
Prior to the arrival of the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft at Mars, the only available measurements of the composition of the planet's ionosphere were those acquired by the two Viking Landers during their atmospheric entries. Many numerical models of the composition of the ionosphere of Mars have been developed, but these have only been validated for species, altitudes, and conditions for which Viking data exist. Here we compare the ionospheric composition and structure predicted by 10 ionospheric models at solar zenith angles of 45-60° against ion density measurements acquired by the MAVEN Neutral Gas and Ion Mass Spectrometer (NGIMS). The most successful models included three-dimensional plasma transport driven by interactions with the surrounding space environment but had relatively simple ionospheric chemistry.
Finite element simulation of a novel composite light-weight microporous cladding panel
NASA Astrophysics Data System (ADS)
Tian, Lida; Wang, Dongyan
2018-04-01
A novel composite light-weight microporous cladding panel with matched connection detailing is developed. Numerical simulation on the experiment is conducted by ABAQUS. The accuracy and rationality of the finite element model is verified by comparison between the simulation and the experiment results. It is also indicated that the novel composite cladding panel is of desirable bearing capacity, stiffness and deformability under out-of-plane load.
NASA Technical Reports Server (NTRS)
Sun, Guo-Qing; Simonett, David S.
1988-01-01
SIR-B images of the Mt. Shasta region of northern California are used to evaluate a composite L-band HH backscattering model of coniferous forest stands. It is found that both SIR-B and simulated backscattering coefficients for eight stands studied have similar trends and relations to average tree height and average number of trees per pixel. Also, the dispersion and distribution of simulated backscattering coefficients from each stand broadly match SIR-B data from the same stand. Although the limited quality and quantity of experimental data makes it difficult to draw any strong conclusions, the comparisons indicate that a stand-based L-band HH composite model seems promising for explaining backscattering features.
A Multi-Wavelength Thermal Infrared and Reflectance Scene Simulation Model
NASA Technical Reports Server (NTRS)
Ballard, J. R., Jr.; Smith, J. A.; Smith, David E. (Technical Monitor)
2002-01-01
Several theoretical calculations are presented and our approach discussed for simulating overall composite scene thermal infrared exitance and canopy bidirectional reflectance of a forest canopy. Calculations are performed for selected wavelength bands of the DOE Multispectral Thermal Imagery and comparisons with atmospherically corrected MTI imagery are underway. NASA EO-1 Hyperion observations also are available and the favorable comparison of our reflective model results with these data are reported elsewhere.
NASA Astrophysics Data System (ADS)
Peters, John J.; Nielsen, Zachary A.; Hsu, David K.
2001-04-01
This paper shows that the local spring stiffness of composite honeycomb sandwiches, such as those used in aircraft flight control structures, can be obtained with a tap test. A simple spring model is invoked for converting the time of contact measured in a tap test to the local stiffness. The validity of the model is verified using test results obtained on aircraft components. The stiffness obtained from the tap test is compared with that measured in a static loading test. Good agreements are obtained for a variety of composite sandwiches with and without defects.
Development of a realistic stress analysis for fatigue analysis of notched composite laminates
NASA Technical Reports Server (NTRS)
Humphreys, E. A.; Rosen, B. W.
1979-01-01
A finite element stress analysis which consists of a membrane and interlaminar shear spring analysis was developed. This approach was utilized in order to model physically realistic failure mechanisms while maintaining a high degree of computational economy. The accuracy of the stress analysis predictions is verified through comparisons with other solutions to the composite laminate edge effect problem. The stress analysis model was incorporated into an existing fatigue analysis methodology and the entire procedure computerized. A fatigue analysis is performed upon a square laminated composite plate with a circular central hole. A complete description and users guide for the computer code FLAC (Fatigue of Laminated Composites) is included as an appendix.
A Validated Open-Source Multisolver Fourth-Generation Composite Femur Model.
MacLeod, Alisdair R; Rose, Hannah; Gill, Harinderjit S
2016-12-01
Synthetic biomechanical test specimens are frequently used for preclinical evaluation of implant performance, often in combination with numerical modeling, such as finite-element (FE) analysis. Commercial and freely available FE packages are widely used with three FE packages in particular gaining popularity: abaqus (Dassault Systèmes, Johnston, RI), ansys (ANSYS, Inc., Canonsburg, PA), and febio (University of Utah, Salt Lake City, UT). To the best of our knowledge, no study has yet made a comparison of these three commonly used solvers. Additionally, despite the femur being the most extensively studied bone in the body, no freely available validated model exists. The primary aim of the study was primarily to conduct a comparison of mesh convergence and strain prediction between the three solvers (abaqus, ansys, and febio) and to provide validated open-source models of a fourth-generation composite femur for use with all the three FE packages. Second, we evaluated the geometric variability around the femoral neck region of the composite femurs. Experimental testing was conducted using fourth-generation Sawbones® composite femurs instrumented with strain gauges at four locations. A generic FE model and four specimen-specific FE models were created from CT scans. The study found that the three solvers produced excellent agreement, with strain predictions being within an average of 3.0% for all the solvers (r2 > 0.99) and 1.4% for the two commercial codes. The average of the root mean squared error against the experimental results was 134.5% (r2 = 0.29) for the generic model and 13.8% (r2 = 0.96) for the specimen-specific models. It was found that composite femurs had variations in cortical thickness around the neck of the femur of up to 48.4%. For the first time, an experimentally validated, finite-element model of the femur is presented for use in three solvers. This model is freely available online along with all the supporting validation data.
NASA Technical Reports Server (NTRS)
Caruso, J. J.
1984-01-01
Finite element substructuring is used to predict unidirectional fiber composite hygral (moisture), thermal, and mechanical properties. COSMIC NASTRAN and MSC/NASTRAN are used to perform the finite element analysis. The results obtained from the finite element model are compared with those obtained from the simplified composite micromechanics equations. A unidirectional composite structure made of boron/HM-epoxy, S-glass/IMHS-epoxy and AS/IMHS-epoxy are studied. The finite element analysis is performed using three dimensional isoparametric brick elements and two distinct models. The first model consists of a single cell (one fiber surrounded by matrix) to form a square. The second model uses the single cell and substructuring to form a nine cell square array. To compare computer time and results with the nine cell superelement model, another nine cell model is constructed using conventional mesh generation techniques. An independent computer program consisting of the simplified micromechanics equation is developed to predict the hygral, thermal, and mechanical properties for this comparison. The results indicate that advanced techniques can be used advantageously for fiber composite micromechanics.
Structural modeling for multicell composite rotor blades
NASA Technical Reports Server (NTRS)
Rehfield, Lawrence W.; Atilgan, Ali R.
1987-01-01
Composite material systems are currently good candidates for aerospace structures, primarily for the design flexibility they offer, i.e., it is possible to tailor the material and manufacturing approach to the application. A working definition of elastic or structural tailoring is the use of structural concept, fiber orientation, ply stacking sequence, and a blend of materials to achieve specific performance goals. In the design process, choices of materials and dimensions are made which produce specific response characteristics, and which permit the selected goals to be achieved. Common choices for tailoring goals are preventing instabilities or vibration resonances or enhancing damage tolerance. An essential, enabling factor in the design of tailored composite structures is structural modeling that accurately, but simply, characterizes response. The objective of this paper is to present a new multicell beam model for composite rotor blades and to validate predictions based on the new model by comparison with a finite element simulation in three benchmark static load cases.
NASA Astrophysics Data System (ADS)
Zhu, S.; Sartelet, K. N.; Seigneur, C.
2015-06-01
The Size-Composition Resolved Aerosol Model (SCRAM) for simulating the dynamics of externally mixed atmospheric particles is presented. This new model classifies aerosols by both composition and size, based on a comprehensive combination of all chemical species and their mass-fraction sections. All three main processes involved in aerosol dynamics (coagulation, condensation/evaporation and nucleation) are included. The model is first validated by comparison with a reference solution and with results of simulations using internally mixed particles. The degree of mixing of particles is investigated in a box model simulation using data representative of air pollution in Greater Paris. The relative influence on the mixing state of the different aerosol processes (condensation/evaporation, coagulation) and of the algorithm used to model condensation/evaporation (bulk equilibrium, dynamic) is studied.
Studies of Cosmic Ray Composition and Air Shower Structure with the Pierre Auger Observatory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abraham, : J.; Abreu, P.; Aglietta, M.
2009-06-01
These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Measurement of the average depth of shower maximum and its fluctuations with the Pierre Auger Observatory; (2) Study of the nuclear mass composition of UHECR with the surface detectors of the Pierre Auger Observatory; (3) Comparison of data from the Pierre Auger Observatory with predictions from air shower simulations: testing models of hadronic interactions; (4) A Monte Carlo exploration of methods to determine the UHECR composition with the Pierre Auger Observatory; (5) The delaymore » of the start-time measured with the Pierre Auger Observatory for inclined showers and a comparison of its variance with models; (6) UHE neutrino signatures in the surface detector of the Pierre Auger Observatory; and (7) The electromagnetic component of inclined air showers at the Pierre Auger Observatory.« less
Energy Finite Element Analysis Developments for Vibration Analysis of Composite Aircraft Structures
NASA Technical Reports Server (NTRS)
Vlahopoulos, Nickolas; Schiller, Noah H.
2011-01-01
The Energy Finite Element Analysis (EFEA) has been utilized successfully for modeling complex structural-acoustic systems with isotropic structural material properties. In this paper, a formulation for modeling structures made out of composite materials is presented. An approach based on spectral finite element analysis is utilized first for developing the equivalent material properties for the composite material. These equivalent properties are employed in the EFEA governing differential equations for representing the composite materials and deriving the element level matrices. The power transmission characteristics at connections between members made out of non-isotropic composite material are considered for deriving suitable power transmission coefficients at junctions of interconnected members. These coefficients are utilized for computing the joint matrix that is needed to assemble the global system of EFEA equations. The global system of EFEA equations is solved numerically and the vibration levels within the entire system can be computed. The new EFEA formulation for modeling composite laminate structures is validated through comparison to test data collected from a representative composite aircraft fuselage that is made out of a composite outer shell and composite frames and stiffeners. NASA Langley constructed the composite cylinder and conducted the test measurements utilized in this work.
Creep of Heat-Resistant Composites of an Oxide-Fiber/Ni-Matrix Family
NASA Astrophysics Data System (ADS)
Mileiko, S. T.
2001-09-01
A creep model of a composite with a creeping matrix and initially continuous elastic brittle fibers is developed. The model accounts for the fiber fragmentation in the stage of unsteady creep of the composite, which ends with a steady-state creep, where a minimum possible average length of the fiber is achieved. The model makes it possible to analyze the creep rate of the composite in relation to such parameters of its structure as the statistic characteristics of the fiber strength, the creep characteristics of the matrix, and the strength of the fiber-matrix interface, the latter being of fundamental importance. A comparison between the calculation results and the experimental ones obtained on composites with a Ni-matrix and monocrystalline and eutectic oxide fibers as well as on sapphire fiber/TiAl-matrix composites shows that the model is applicable to the computer simulation of the creep behavior of heat-resistant composites and to the optimization of the structure of such composites. By combining the experimental data with calculation results, it is possible to evaluate the heat resistance of composites and the potential of oxide-fiber/Ni-matrix composites. The composite specimens obtained and tested to date reveal their high creep resistance up to a temperature of 1150°C. The maximum operating temperature of the composites can be considerably raised by strengthening the fiber-matrix interface.
Comparisons are presented for the C2-C12 volatile organic compounds (VOCs) observed at Houston area sites used for ambient air monitoring during special ozone field study programs conducted in 1978 and 2000. In 1978 the special study called the Houston Ozone Modeling Study cons...
NASA Technical Reports Server (NTRS)
Morgan, J. W.; Anders, E.
1979-01-01
The chemical composition of Mars is estimated from the cosmochemical model of Ganapathy and Anders (1974) with additional petrological and geophysical constraints. The model assumes that planets and chondrites underwent the same fractionation processes in the solar nebula, and constraints are imposed by the abundance of the heat-producing elements, U, Th and K, the volatile-rich component and the high density of the mantle. Global abundances of 83 elements are presented, and it is noted that the mantle is an iron-rich garnet wehrlite, nearly identical to the bulk moon composition of Morgan at al. (1978) and that the core is sulfur poor (3.5% S). The comparison of model compositions for the earth, Venus, Mars, the moon and a eucrite parent body suggests that volatile depletion correlates mainly with size rather than with radial distance from the sun.
Modeling and Testing of the Viscoelastic Properties of a Graphite Nanoplatelet/Epoxy Composite
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Gates, Thomas S.
2005-01-01
In order to facilitate the interpretation of experimental data, a micromechanical modeling procedure is developed to predict the viscoelastic properties of a graphite nanoplatelet/epoxy composite as a function of volume fraction and nanoplatelet diameter. The predicted storage and loss moduli for the composite are compared to measured values from the same material using three test methods; Dynamical Mechanical Analysis, nanoindentation, and quasi-static tensile tests. In most cases, the model and experiments indicate that for increasing volume fractions of nanoplatelets, both the storage and loss moduli increase. Also, the results indicate that for nanoplatelet sizes above 15 microns, nanoindentation is capable of measuring properties of individual constituents of a composite system. Comparison of the predicted values to the measured data helps illustrate the relative similarities and differences between the bulk and local measurement techniques.
Radicals and Reservoirs in the GMI Chemistry and Transport Model: Comparison to Measurements
NASA Technical Reports Server (NTRS)
Douglass, Anne R.; Stolarski, Richard S.; Strahan, Susan E.; Connell, Peter S.
2004-01-01
We have used a three-dimensional chemistry and transport model (CTM), developed under the Global Modeling Initiative (GMI), to carry out two simulations of the composition of the stratosphere under changing halogen loading for 1995 through 2030. The two simulations differ only in that one uses meteorological fields from a general circulation model while the other uses meteorological fields from a data assimilation system. A single year's winds and temperatures are repeated for each 36-year simulation. We compare results from these two simulations with an extensive collection of data from satellite and ground-based measurements for 1993-2000. Comparisons of simulated fields with observations of radical and reservoir species for some of the major ozone-destroying compounds are of similar quality for both simulations. Differences in the upper stratosphere, caused by transport of total reactive nitrogen and methane, impact the balance among the ozone loss processes and the sensitivity of the two simulations to the change in composition.
Kim, Ki-Bok; Hsu, David K; Ahn, Bongyoung; Kim, Young-Gil; Barnard, Daniel J
2010-08-01
This paper describes fabrication and comparison of PMN-PT single crystal, PZT, and PZT-based 1-3 composite ultrasonic transducers for NDE applications. As a front matching layer between test material (Austenite stainless steel, SUS316) and piezoelectric materials, alumina ceramics was selected. The appropriate acoustic impedance of the backing materials for each transducer was determined based on the results of KLM model simulation. Prototype ultrasonic transducers with the center frequencies of approximately 2.25 and 5MHz for contact measurement were fabricated and compared to each other. The PMN-PT single crystal ultrasonic transducer shows considerably improved performance in sensitivity over the PZT and PZT-based 1-3 composite ultrasonic transducers. Copyright (c) 2010 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
College Entrance Examination Board, New York, NY. Commission on English.
Literature, language, and composition are integrated in this collection of 30 model teaching units for grades 9-12. The units are concerned with (1) the explication and comparison of novels by Hemingway, Wilder, Kipling, and Knowles, (2) short story techniques used by writers from Poe to Joyce, (3) poetic structure and themes as demonstrated in…
NASA Astrophysics Data System (ADS)
Li, Dongna; Li, Xudong; Dai, Jianfeng; Xi, Shangbin
2018-02-01
In this paper, three kinds of constitutive laws, elastic, "cure hardening instantaneously linear elastic (CHILE)" and viscoelastic law, are used to predict curing process-induced residual stress for the thermoset polymer composites. A multi-physics coupling finite element analysis (FEA) model implementing the proposed three approaches is established in COMSOL Multiphysics-Version 4.3b. The evolution of thermo-physical properties with temperature and degree of cure (DOC), which improved the accuracy of numerical simulations, and cure shrinkage are taken into account for the three models. Subsequently, these three proposed constitutive models are implemented respectively in a 3D micro-scale composite laminate structure. Compared the differences between these three numerical results, it indicates that big error in residual stress and cure shrinkage generates by elastic model, but the results calculated by the modified CHILE model are in excellent agreement with those estimated by the viscoelastic model.
Three-dimensional printing fiber reinforced hydrogel composites.
Bakarich, Shannon E; Gorkin, Robert; in het Panhuis, Marc; Spinks, Geoffrey M
2014-09-24
An additive manufacturing process that combines digital modeling and 3D printing was used to prepare fiber reinforced hydrogels in a single-step process. The composite materials were fabricated by selectively pattering a combination of alginate/acrylamide gel precursor solution and an epoxy based UV-curable adhesive (Emax 904 Gel-SC) with an extrusion printer. UV irradiation was used to cure the two inks into a single composite material. Spatial control of fiber distribution within the digital models allowed for the fabrication of a series of materials with a spectrum of swelling behavior and mechanical properties with physical characteristics ranging from soft and wet to hard and dry. A comparison with the "rule of mixtures" was used to show that the swollen composite materials adhere to standard composite theory. A prototype meniscus cartilage was prepared to illustrate the potential application in bioengineering.
NASA Astrophysics Data System (ADS)
Al-Maharma, A. Y.; Sendur, P.
2018-05-01
In this study, we compare the inter-laminar effect of graphene nano-sheets (GNSs) and CNTs on the single and multiple dynamic impact response of E-glass fiber reinforced epoxy composite (GFEP). In the comparisons, raw GFEP composite is used as baseline for quantifying the improvement on the dynamic impact response. For that purpose, finite element based models are developed for GNSs on GFEP, graphene coating on glass fibers, inter-laminar composite of CNTs reinforced polyester at 7.5 vol%, and combinations of all these reinforcements. Comparisons are made on three metrics: (i) total deformation, (ii) the contact force, and (iii) internal energy of the composite plate. The improvement on axial modulus (E1) of GFEP reinforced with one layer of GNS (0.5 wt%) without polyester at lamination sequence of [0]8 is 29.4%, which is very close to the improvement of 31% on storage modulus for multi-layer graphene with 0.5 wt% reinforced E-glass/epoxy composite at room temperature. Using three GNSs (1.5 wt%) reinforced polyester composite as interlaminar layer results in an improvement of 57.1% on E1 of GFEP composite. The simulation results reveal that the interlaminar three GNSs/polyester composite at mid-plane of GFEP laminated composite can significantly improve the dynamic impact resistance of GFEP structure compared to the other aforementioned structural reinforcements. Reinforcing GFEP composite with three layers of GNSs/polyester composite at mid-plane results in an average of 35% improvement on the dynamic impact resistance for healthy and damaged composite plate under low velocity impacts of single and multiple steel projectiles. This model can find application in various areas including structural health monitoring, fire retardant composite, and manufacturing of high strength and lightweight mechanical parts such as gas tank, aircraft wings and wind turbine blades.
2016-01-01
The problem of multi-scale modelling of damage development in a SiC ceramic fibre-reinforced SiC matrix ceramic composite tube is addressed, with the objective of demonstrating the ability of the finite-element microstructure meshfree (FEMME) model to introduce important aspects of the microstructure into a larger scale model of the component. These are particularly the location, orientation and geometry of significant porosity and the load-carrying capability and quasi-brittle failure behaviour of the fibre tows. The FEMME model uses finite-element and cellular automata layers, connected by a meshfree layer, to efficiently couple the damage in the microstructure with the strain field at the component level. Comparison is made with experimental observations of damage development in an axially loaded composite tube, studied by X-ray computed tomography and digital volume correlation. Recommendations are made for further development of the model to achieve greater fidelity to the microstructure. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’. PMID:27242308
Composite panel development at JPL
NASA Technical Reports Server (NTRS)
Mcelroy, Paul; Helms, Rich
1988-01-01
Parametric computer studies can be use in a cost effective manner to determine optimized composite mirror panel designs. An InterDisciplinary computer Model (IDM) was created to aid in the development of high precision reflector panels for LDR. The materials properties, thermal responses, structural geometries, and radio/optical precision are synergistically analyzed for specific panel designs. Promising panels designs are fabricated and tested so that comparison with panel test results can be used to verify performance prediction models and accommodate design refinement. The iterative approach of computer design and model refinement with performance testing and materials optimization has shown good results for LDR panels.
NASA Technical Reports Server (NTRS)
McManus, Hugh L.; Chamis, Christos C.
1996-01-01
This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) is presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.
NASA Astrophysics Data System (ADS)
Rahmi; Marlina; Nisfayati
2018-05-01
The use of chitosan and epichlorohydrin crosslinked chitosan/eggshell composite for cadmium adsorption from water were investigated. The factors affecting adsorption such as pH and contact time were considered. The results showed that the optimum pH of adsorption was pH = 6.0 and the equilibrium time of adsorption was 40 min. The adsorption isotherm of Cd ions onto chitosan and composite were well fitted to Langmuir equation. The maximum adsorption capacity (fitting by Langmuir model) of chitosan and composite were 1.008 and 11.7647 mg/g, respectively. Adsorption performance of composite after regeneration was better than chitosan.
NASA Technical Reports Server (NTRS)
Murthy, P. L. N.; Chamis, C. C.
1992-01-01
A generic unit cell model which includes a unique fiber substructuring concept is proposed for the development of micromechanics equations for continuous fiber reinforcement ceramic composites. The unit cell consists of three constituents: fiber, matrix, and an interphase. In the present approach, the unit cell is further subdivided into several slices and the equations of micromechanics are derived for each slice. These are subsequently integrated to obtain ply level properties. A stand alone computer code containing the micromechanics model as a module is currently being developed specifically for the analysis of ceramic matrix composites. Towards this development, equivalent ply property results for a SiC/Ti-15-3 composite with 0.5 fiber volume ratio are presented and compared with those obtained from customary micromechanics models to illustrate the concept. Also, comparisons with limited experimental data for the ceramic matrix composite, SiC/RBSN (Reaction Bonded Silicon Nitride) with a 0.3 fiber volume ratio are given to validate the concepts.
NASA Astrophysics Data System (ADS)
Dauphin, Myriam; Cosson, Benoit
2016-10-01
The importance of the absorption phenomenon occurring into the semi-transparent substrate of reinforced fiber thermoplastic, during the Laser Transmission Welding process (LTW), was examined. A (3D) transient thermal model of LTW was developed. First, the energy distribution coming from the laser irradiation was assessed. Ray tracing techniques allowed us to deal with both absorption and a strong light-scattering caused by the heterogeneity of composite. Then, the energy balance equation was solved in order to study the heating stage. This paper proposes a comparison of the welding area obtained with a model for which absorption was neglected and a second model where absorption was considered. The interest to consider absorption was shown for process optimization purposes and for the use of reinforced composites colored or filled with additives.
Viscoelastic damping in crystalline composites and alloys
NASA Astrophysics Data System (ADS)
Ranganathan, Raghavan; Ozisik, Rahmi; Keblinski, Pawel
We use molecular dynamics simulations to study viscoelastic behavior of model Lennard-Jones (LJ) crystalline composites subject to an oscillatory shear deformation. The two crystals, namely a soft and a stiff phase, individually show highly elastic behavior and a very small loss modulus. On the other hand, when the stiff phase is included within the soft matrix as a sphere, the composite exhibits significant viscoelastic damping and a large phase shift between stress and strain. In fact, the maximum loss modulus in these model composites was found to be about 20 times greater than that given by the theoretical Hashin-Shtrikman upper bound. We attribute this behavior to the fact that in composites shear strain is highly inhomogeneous and mostly accommodated by the soft phase, corroborated by frequency-dependent Grüneisen parameter analysis. Interestingly, the frequency at which the damping is greatest scales with the microstructural length scale of the composite. Finally, a critical comparison between damping properties of these composites with ordered and disordered alloys and superlattice structures is made.
Estimation of pyrethroid pesticide intake using regression ...
Population-based estimates of pesticide intake are needed to characterize exposure for particular demographic groups based on their dietary behaviors. Regression modeling performed on measurements of selected pesticides in composited duplicate diet samples allowed (1) estimation of pesticide intakes for a defined demographic community, and (2) comparison of dietary pesticide intakes between the composite and individual samples. Extant databases were useful for assigning individual samples to composites, but they could not provide the breadth of information needed to facilitate measurable levels in every composite. Composite sample measurements were found to be good predictors of pyrethroid pesticide levels in their individual sample constituents where sufficient measurements are available above the method detection limit. Statistical inference shows little evidence of differences between individual and composite measurements and suggests that regression modeling of food groups based on composite dietary samples may provide an effective tool for estimating dietary pesticide intake for a defined population. The research presented in the journal article will improve community's ability to determine exposures through the dietary route with a less burdensome and costly method.
Fiber shape effects on metal matrix composite behavior
NASA Technical Reports Server (NTRS)
Brown, H. C.; Lee, H.-J.; Chamis, C. C.
1992-01-01
The effects of different fiber shapes on the behavior of a SiC/Ti-15 metal matrix composite is computationally simulated. A three-dimensional finite element model consisting of a group of nine unidirectional fibers is used in the analysis. The model is employed to represent five different fiber shapes: a circle, an ellipse, a kidney, and two different cross shapes. The distribution of microstresses and the composite material properties, such as moduli, coefficients of thermal expansion, and Poisson's ratios, are obtained from the finite element analysis for the various fiber shapes. Comparisons of these results are used to determine the sensitivity of the composite behavior to the different fiber shapes and assess their potential benefits. No clear benefits result from different fiber shapes though there are some increases/decreases in isolated properties.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.; Polanco, Michael A.
2012-01-01
This paper describes the experimental and analytical evaluation of an externally deployable composite honeycomb structure that is designed to attenuate impact energy during helicopter crashes. The concept, designated the Deployable Energy Absorber (DEA), utilizes an expandable Kevlar (Registered Trademark) honeycomb to dissipate kinetic energy through crushing. The DEA incorporates a unique flexible hinge design that allows the honeycomb to be packaged and stowed until needed for deployment. Experimental evaluation of the DEA included dynamic crush tests of multi-cell components and vertical drop tests of a composite fuselage section, retrofitted with DEA blocks, onto multi-terrain. Finite element models of the test articles were developed and simulations were performed using the transient dynamic code, LSDYNA (Registered Trademark). In each simulation, the DEA was represented using shell elements assigned two different material properties: Mat 24, an isotropic piecewise linear plasticity model, and Mat 58, a continuum damage mechanics model used to represent laminated composite fabrics. DEA model development and test-analysis comparisons are presented.
NASA Technical Reports Server (NTRS)
Douglass, Anne R.; Stolarski, Richard S.; Steenrod, Steven; Pawson, Steven
2003-01-01
One key application of atmospheric chemistry and transport models is prediction of the response of ozone and other constituents to various natural and anthropogenic perturbations. These include changes in composition, such as the previous rise and recent decline in emission of man-made chlorofluorcarbons, changes in aerosol loading due to volcanic eruption, and changes in solar forcing. Comparisons of hindcast model results for the past few decades with observations are a key element of model evaluation and provide a sense of the reliability of model predictions. The 25 year data set from Total Ozone Mapping Spectrometers is a cornerstone of such model evaluation. Here we report evaluation of three-dimensional multi-decadal simulation of stratospheric composition. Meteorological fields for this off-line calculation are taken from a 50 year simulation of a general circulation model. Model fields are compared with observations from TOMS and also with observations from the Stratospheric Aerosol and Gas Experiment (SAGE), Microwave Limb Sounder (MLS), Cryogenic Limb Array Etalon Spectrometer (CLAES), and the Halogen Occultation Experiment (HALOE). This overall evaluation will emphasize the spatial, seasonal, and interannual variability of the simulation compared with observed atmospheric variability.
Model Determined for Predicting Fatigue Lives of Metal Matrix Composites Under Mean Stresses
NASA Technical Reports Server (NTRS)
Lerch, Bradley
1997-01-01
Aircraft engine components invariably are subjected to mean stresses over and above the cyclic loads. In monolithic materials, it has been observed that tensile mean stresses are detrimental and compressive mean stresses are beneficial to fatigue life in comparison to a base of zero mean stress. Several mean stress models exist for monolithic metals, but each differ quantitatively in the extent to which detrimental or beneficial effects are ascribed. There have been limited attempts to apply these models to metal matrix composites. At the NASA Lewis Research Center, several mean stress models--the Smith-Watson- Topper, Walker, Normalized Goodman, and Soderberg models--were examined for applicability to this class of composite materials. The Soderberg approach, which normalizes the mean stress to a 0.02-percent yield strength, was shown to best represent the effect of mean stresses over the range covered. The other models varied significantly in their predictability and often failed to predict the composite behavior at very high tensile mean stresses. This work is the first to systematically demonstrate the influence of mean stresses on metal matrix composites and model their effects. Attention also was given to fatigue-cracking mechanisms in the Ti-15-3 matrix and to micromechanics analyses of mean stress effects.
NASA Astrophysics Data System (ADS)
Andersen, J. R.; Antipin, O.; Azuelos, G.; Del Debbio, L.; Del Nobile, E.; Di Chiara, S.; Hapola, T.; Järvinen, M.; Lowdon, P. J.; Maravin, Y.; Masina, I.; Nardecchia, M.; Pica, C.; Sannino, F.
2011-09-01
We provide a pedagogical introduction to extensions of the Standard Model in which the Higgs is composite. These extensions are known as models of dynamical electroweak symmetry breaking or, in brief, Technicolor. Material covered includes: motivations for Technicolor, the construction of underlying gauge theories leading to minimal models of Technicolor, the comparison with electroweak precision data, the low-energy effective theory, the spectrum of the states common to most of the Technicolor models, the decays of the composite particles and the experimental signals at the Large Hadron Collider. The level of the presentation is aimed at readers familiar with the Standard Model but who have little or no prior exposure to Technicolor. Several extensions of the Standard Model featuring a composite Higgs can be reduced to the effective Lagrangian introduced in the text. We establish the relevant experimental benchmarks for Vanilla, Running, Walking, and Custodial Technicolor, and a natural fourth family of leptons, by laying out the framework to discover these models at the Large Hadron Collider.
Comparison of two gas chromatograph models and analysis of binary data
NASA Technical Reports Server (NTRS)
Keba, P. S.; Woodrow, P. T.
1972-01-01
The overall objective of the gas chromatograph system studies is to generate fundamental design criteria and techniques to be used in the optimum design of the system. The particular tasks currently being undertaken are the comparison of two mathematical models of the chromatograph and the analysis of binary system data. The predictions of two mathematical models, an equilibrium absorption model and a non-equilibrium absorption model exhibit the same weaknesses in their inability to predict chromatogram spreading for certain systems. The analysis of binary data using the equilibrium absorption model confirms that, for the systems considered, superposition of predicted single component behaviors is a first order representation of actual binary data. Composition effects produce non-idealities which limit the rigorous validity of superposition.
Numerical optimization of composite hip endoprostheses under different loading conditions
NASA Technical Reports Server (NTRS)
Blake, T. A.; Davy, D. T.; Saravanos, D. A.; Hopkins, D. A.
1992-01-01
The optimization of composite hip implants was investigated. Emphasis was placed on the effect of shape and material tailoring of the implant to improve the implant-bone interaction. A variety of loading conditions were investigated to better understand the relationship between loading and optimization outcome. Comparisons of the initial and optimal models with more complex 3D finite element models were performed. The results indicate that design improvements made using this method result in similar improvements in the 3D models. Although the optimization outcomes were significantly affected by the choice of loading conditions, certain trends were observed that were independent of the applied loading.
Structural health monitoring in composite materials using frequency response methods
NASA Astrophysics Data System (ADS)
Kessler, Seth S.; Spearing, S. Mark; Atalla, Mauro J.; Cesnik, Carlos E. S.; Soutis, Constantinos
2001-08-01
Cost effective and reliable damage detection is critical for the utilization of composite materials in structural applications. Non-destructive evaluation techniques (e.g. ultrasound, radiography, infra-red imaging) are available for use during standard repair and maintenance cycles, however by comparison to the techniques used for metals these are relatively expensive and time consuming. This paper presents part of an experimental and analytical survey of candidate methods for the detection of damage in composite materials. The experimental results are presented for the application of modal analysis techniques applied to rectangular laminated graphite/epoxy specimens containing representative damage modes, including delamination, transverse ply cracks and through-holes. Changes in natural frequencies and modes were then found using a scanning laser vibrometer, and 2-D finite element models were created for comparison with the experimental results. The models accurately predicted the response of the specimems at low frequencies, but the local excitation and coalescence of higher frequency modes make mode-dependent damage detection difficult and most likely impractical for structural applications. The frequency response method was found to be reliable for detecting even small amounts of damage in a simple composite structure, however the potentially important information about damage type, size, location and orientation were lost using this method since several combinations of these variables can yield identical response signatures.
NASA Technical Reports Server (NTRS)
Wright, William B.
1988-01-01
Transient, numerical simulations of the deicing of composite aircraft components by electrothermal heating have been performed in a 2-D rectangular geometry. Seven numerical schemes and four solution methods were used to find the most efficient numerical procedure for this problem. The phase change in the ice was simulated using the Enthalpy method along with the Method for Assumed States. Numerical solutions illustrating deicer performance for various conditions are presented. Comparisons are made with previous numerical models and with experimental data. The simulation can also be used to solve a variety of other heat conduction problems involving composite bodies.
Investigation of the Thermomechanical Response of Shape Memory Alloy Hybrid Composite Beams
NASA Technical Reports Server (NTRS)
Davis, Brian A.
2005-01-01
Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical model. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. Excellent agreement is achieved between the predicted and measured results, thereby quantitatively validating the numerical tool.
The fatigue life study of polyphenylene sulfide composites filled with continuous glass fibers
NASA Astrophysics Data System (ADS)
Ye, Junjie; Hong, Yun; Wang, Yongkun; Zhai, Zhi; Shi, Baoquan; Chen, Xuefeng
2018-04-01
In this study, an effective microscopic model is proposed to investigate the fatigue life of composites containing continuous glass fibers, which is surrounded by polyphenylene sulfide (PPS) matrix materials. The representative volume element is discretized by parametric elements. Moreover, the microscopic model is established by employing the relation between average surface displacements and average surface tractions. Based on the experimental data, the required fatigue failure parameters of the PPS are determined. Two different fiber arrangements are considered for comparisons. Numerical analyses indicated that the square edge packing provides a more accuracy. In addition, microscopic structural parameters (fiber volume fraction, fiber off-axis angle) effect on the fatigue life of Glass/PPS composites is further discussed. It is revealed that fiber strength degradation effects on the fatigue life of continuous fiber-reinforced composites can be ignored.
Present, Future, and Novel Bioclimates of the San Francisco, California Region
Torregrosa, Alicia; Taylor, Maxwell D.; Flint, Lorraine E.; Flint, Alan L.
2013-01-01
Bioclimates are syntheses of climatic variables into biologically relevant categories that facilitate comparative studies of biotic responses to climate conditions. Isobioclimates, unique combinations of bioclimatic indices (continentality, ombrotype, and thermotype), were constructed for northern California coastal ranges based on the Rivas-Martinez worldwide bioclimatic classification system for the end of the 20th century climatology (1971–2000) and end of the 21st century climatology (2070–2099) using two models, Geophysical Fluid Dynamics Laboratory (GFDL) model and the Parallel Climate Model (PCM), under the medium-high A2 emission scenario. The digitally mapped results were used to 1) assess the relative redistribution of isobioclimates and their magnitude of change, 2) quantify the loss of isobioclimates into the future, 3) identify and locate novel isobioclimates projected to appear, and 4) explore compositional change in vegetation types among analog isobioclimate patches. This study used downscaled climate variables to map the isobioclimates at a fine spatial resolution −270 m grid cells. Common to both models of future climate was a large change in thermotype. Changes in ombrotype differed among the two models. The end of 20th century climatology has 83 isobioclimates covering the 63,000 km2 study area. In both future projections 51 of those isobioclimates disappear over 40,000 km2. The ordination of vegetation-bioclimate relationships shows very strong correlation of Rivas-Martinez indices with vegetation distribution and composition. Comparisons of vegetation composition among analog patches suggest that vegetation change will be a local rearrangement of species already in place rather than one requiring long distance dispersal. The digitally mapped results facilitate comparison with other Mediterranean regions. Major remaining challenges include predicting vegetation composition of novel isobioclimates and developing metrics to compare differences in climate space. PMID:23526985
Present, future, and novel bioclimates of the San Francisco, California region
Torregrosa, Alicia; Taylor, Maxwell D.; Flint, Lorraine E.; Flint, Alan L.
2013-01-01
Bioclimates are syntheses of climatic variables into biologically relevant categories that facilitate comparative studies of biotic responses to climate conditions. Isobioclimates, unique combinations of bioclimatic indices (continentality, ombrotype, and thermotype), were constructed for northern California coastal ranges based on the Rivas-Martinez worldwide bioclimatic classification system for the end of the 20th century climatology (1971–2000) and end of the 21st century climatology (2070–2099) using two models, Geophysical Fluid Dynamics Laboratory (GFDL) model and the Parallel Climate Model (PCM), under the medium-high A2 emission scenario. The digitally mapped results were used to 1) assess the relative redistribution of isobioclimates and their magnitude of change, 2) quantify the loss of isobioclimates into the future, 3) identify and locate novel isobioclimates projected to appear, and 4) explore compositional change in vegetation types among analog isobioclimate patches. This study used downscaled climate variables to map the isobioclimates at a fine spatial resolution −270 m grid cells. Common to both models of future climate was a large change in thermotype. Changes in ombrotype differed among the two models. The end of 20th century climatology has 83 isobioclimates covering the 63,000 km2 study area. In both future projections 51 of those isobioclimates disappear over 40,000 km2. The ordination of vegetation-bioclimate relationships shows very strong correlation of Rivas-Martinez indices with vegetation distribution and composition. Comparisons of vegetation composition among analog patches suggest that vegetation change will be a local rearrangement of species already in place rather than one requiring long distance dispersal. The digitally mapped results facilitate comparison with other Mediterranean regions. Major remaining challenges include predicting vegetation composition of novel isobioclimates and developing metrics to compare differences in climate space.
ERIC Educational Resources Information Center
Sari, Halil Ibrahim; Huggins, Anne Corinne
2015-01-01
This study compares two methods of defining groups for the detection of differential item functioning (DIF): (a) pairwise comparisons and (b) composite group comparisons. We aim to emphasize and empirically support the notion that the choice of pairwise versus composite group definitions in DIF is a reflection of how one defines fairness in DIF…
NASA Astrophysics Data System (ADS)
Molchanov, E. S.; Yudin, V. E.; Kydralieva, K. A.; Elokhovskii, V. Yu.
2012-07-01
Prepregs of fiber-reinforced plastics based on a PORCHER-43200 carbon twill-weave fabric and two types of binders — thermoreactive and thermoplastic — were fabricated using electrostatic spraying, followed by rolling the prepregs in temperature-controlled calenders. A solid epoxy olygomer with dicyandiamine as a hardener and Fortron® polyphenylene sulfide were used as the thermoreactive and thermoplastic binders. The thermomechanical properties of carbon-fiber-reinforced plastics processed from these prepregs, as well as commercial Sigranex® PREPREGCE8201-200-45 S prepregs as model ones, and composites manufactured from them were investigated for comparison. The latter ones are being used for the design of orthopaedic products. It is shown that the composites based on polyphenylene sulfide are characterized by higher values of flexural strength, flexural and shear moduli, and interlaminar fracture toughness ( G IC), the latter being the most important parameter.
Hartzell, S.; Harmsen, S.; Frankel, A.; Larsen, S.
1999-01-01
This article compares techniques for calculating broadband time histories of ground motion in the near field of a finite fault by comparing synthetics with the strong-motion data set for the 1994 Northridge earthquake. Based on this comparison, a preferred methodology is presented. Ground-motion-simulation techniques are divided into two general methods: kinematic- and composite-fault models. Green's functions of three types are evaluated: stochastic, empirical, and theoretical. A hybrid scheme is found to give the best fit to the Northridge data. Low frequencies ( 1 Hz) are calculated using a composite-fault model with a fractal subevent size distribution and stochastic, bandlimited, white-noise Green's functions. At frequencies below 1 Hz, theoretical elastic-wave-propagation synthetics introduce proper seismic-phase arrivals of body waves and surface waves. The 3D velocity structure more accurately reproduces record durations for the deep sedimentary basin structures found in the Los Angeles region. At frequencies above 1 Hz, scattering effects become important and wave propagation is more accurately represented by stochastic Green's functions. A fractal subevent size distribution for the composite fault model ensures an ??-2 spectral shape over the entire frequency band considered (0.1-20 Hz).
Xiang, Junfeng; Xie, Lijing; Gao, Feinong; Zhang, Yu; Yi, Jie; Wang, Tao; Pang, Siqin; Wang, Xibin
2018-01-01
Discrepancies in capturing material behavior of some materials, such as Particulate Reinforced Metal Matrix Composites, by using conventional ad hoc strategy make the applicability of Johnson-Cook constitutive model challenged. Despites applicable efforts, its extended formalism with more fitting parameters would increase the difficulty in identifying constitutive parameters. A weighted multi-objective strategy for identifying any constitutive formalism is developed to predict mechanical behavior in static and dynamic loading conditions equally well. These varying weighting is based on the Gaussian-distributed noise evaluation of experimentally obtained stress-strain data in quasi-static or dynamic mode. This universal method can be used to determine fast and directly whether the constitutive formalism is suitable to describe the material constitutive behavior by measuring goodness-of-fit. A quantitative comparison of different fitting strategies on identifying Al6063/SiCp’s material parameters is made in terms of performance evaluation including noise elimination, correlation, and reliability. Eventually, a three-dimensional (3D) FE model in small-hole drilling of Al6063/SiCp composites, using multi-objective identified constitutive formalism, is developed. Comparison with the experimental observations in thrust force, torque, and chip morphology provides valid evidence on the applicability of the developed multi-objective identification strategy in identifying constitutive parameters. PMID:29324688
Fully Coupled Micro/Macro Deformation, Damage, and Failure Prediction for SiC/Ti-15-3 Laminates
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Arnold, Steven M.; Lerch, Brad A.
2001-01-01
The deformation, failure, and low cycle fatigue life of SCS-6/Ti-15-3 composites are predicted using a coupled deformation and damage approach in the context of the analytical generalized method of cells (GMC) micromechanics model. The local effects of inelastic deformation, fiber breakage, fiber-matrix interfacial debonding, and fatigue damage are included as sub-models that operate on the micro scale for the individual composite phases. For the laminate analysis, lamination theory is employed as the global or structural scale model, while GMC is embedded to operate on the meso scale to simulate the behavior of the composite material within each laminate layer. While the analysis approach is quite complex and multifaceted, it is shown, through comparison with experimental data, to be quite accurate and realistic while remaining extremely efficient.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.; Lyle, Karen H.
2003-01-01
A 25-fps vertical drop test of a 1/5-scale model composite fuselage section was conducted to replicate a previous test of a full-scale fuselage section. The purpose of the test was to obtain experimental data characterizing the impact response of the 1/5-scale model fuselage section for comparison with the corresponding full-scale data. This comparison is performed to assess the scaling procedures and to determine if scaling effects are present. For the drop test, the 1/5-scale model fuselage section was configured in a similar manner as the full-scale section, with lead masses attached to the floor through simulated seat rails. Scaled acceleration and velocity responses are compared and a general assessment of structural damage is made. To further quantify the data correlation, comparisons of the average acceleration data are made as a function of floor location and longitudinal position. Also, the percentage differences in the velocity change (area under the acceleration curve) and the velocity change squared (proportional to kinetic energy) are compared as a function of floor location. Finally, correlation coefficients are calculated for corresponding 1/5- and full-scale data channels and these values are plotted versus floor location. From a scaling perspective, the differences between the 1/5- and full-scale tests are relatively small, indicating that appropriate scaling procedures were used in fabricating the test specimens and in conducting the experiments. The small differences in the scaled test data are attributed to minor scaling anomalies in mass, potential energy, and impact attitude.
Determining absolute protein numbers by quantitative fluorescence microscopy.
Verdaasdonk, Jolien Suzanne; Lawrimore, Josh; Bloom, Kerry
2014-01-01
Biological questions are increasingly being addressed using a wide range of quantitative analytical tools to examine protein complex composition. Knowledge of the absolute number of proteins present provides insights into organization, function, and maintenance and is used in mathematical modeling of complex cellular dynamics. In this chapter, we outline and describe three microscopy-based methods for determining absolute protein numbers--fluorescence correlation spectroscopy, stepwise photobleaching, and ratiometric comparison of fluorescence intensity to known standards. In addition, we discuss the various fluorescently labeled proteins that have been used as standards for both stepwise photobleaching and ratiometric comparison analysis. A detailed procedure for determining absolute protein number by ratiometric comparison is outlined in the second half of this chapter. Counting proteins by quantitative microscopy is a relatively simple yet very powerful analytical tool that will increase our understanding of protein complex composition. © 2014 Elsevier Inc. All rights reserved.
Comparison of ACCENT 2000 Shuttle Plume Data with SIMPLE Model Predictions
NASA Astrophysics Data System (ADS)
Swaminathan, P. K.; Taylor, J. C.; Ross, M. N.; Zittel, P. F.; Lloyd, S. A.
2001-12-01
The JHU/APL Stratospheric IMpact of PLume Effluents (SIMPLE)model was employed to analyze the trace species in situ composition data collected during the ACCENT 2000 intercepts of the space shuttle Space Transportation Launch System (STS) rocket plume as a function of time and radial location within the cold plume. The SIMPLE model is initialized using predictions for species depositions calculated using an afterburning model based on standard TDK/SPP nozzle and SPF plume flowfield codes with an expanded chemical kinetic scheme. The time dependent ambient stratospheric chemistry is fully coupled to the plume species evolution whose transport is based on empirically derived diffusion. Model/data comparisons are encouraging through capturing observed local ozone recovery times as well as overall morphology of chlorine chemistry.
Analysis and interpretation of lidar observations of the stratospheric aerosol
NASA Technical Reports Server (NTRS)
Hamill, P.; Swissler, T. J.; Osborn, M.; Mccormick, M. P.
1980-01-01
Data obtained with a 48 in. telescope lidar system are compared with results obtained using a one-dimensional stratospheric aerosol model to analyze various microphysical processes influencing the formation of this aerosol. Special attention is given to the following problems: (1) how lidar data can help determine the composition of the aerosol particles and (2) how the layer corresponds to temperature profile variations. The lidar record during the period 1974 to 1979 shows a considerable decrease of the peak value of the backscatter ratio. Seasonal variations in the aerosol layer and a gradual decrease in stratospheric loading are observed. The aerosol model simulates a background stratospheric aerosol layer, and it predicts stratospheric aerosol concentrations and compositions. Numerical experiments are carried out by using the model and by comparing the theoretical results with the experimentally obtained lidar record. Comparisons show that the backscatter profile is consistent with the composition when the particles are sulfuric acid and water; it is not consistent with an ammonium sulfate composition. It is shown that the backscatter ratio is not sensitive to the composition or stratospheric loading of condensation nuclei such as meteoritic debris.
Prasad, Kumar Suranjit; Amin, Yesha; Selvaraj, Kaliaperumal
2014-07-15
The present study reports a novel approach for synthesis of Zr nanoparticles using aqueous extract of Aloe vera. Resulting nanoparticles were embedded into chitosan biopolymer and termed as CNZr composite. The composite was subjected to detailed adsorption studies for removal of fluoride from aqueous solution. The synthesized Zr nanoparticles showed UV-vis absorption peak at 420nm. TEM result showed the formation of polydispersed, nanoparticles ranging from 18nm to 42nm. SAED and XRD analysis suggested an fcc (face centered cubic) Zr crystallites. EDAX analysis suggested that Zr was an integral component of synthesized nanoparticles. FT-IR study indicated that functional group like NH, CO, CN and CC were involved in particle formation. The adsorption of fluoride on to CNZr composite worked well at pH 7.0, where ∼99% of fluoride was found to be adsorbed on adsorbent. Langmuir isotherm model best fitted the equilibrium data since it presented higher R(2) value than Freundlich model. In comparison to pseudo-first order kinetic model, the pseudo-second order model could explain adsorption kinetic behavior of F(-) onto CNZr composite satisfactorily with a good correlation coefficient. The present study revealed that CNZr composite may work as an effective tool for removal of fluoride from contaminated water. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mcmanus, H.L.; Chamis, C.C.
1996-01-01
This report describes analytical methods for calculating stresses and damage caused by degradation of the matrix constituent in polymer matrix composite materials. Laminate geometry, material properties, and matrix degradation states are specified as functions of position and time. Matrix shrinkage and property changes are modeled as functions of the degradation states. The model is incorporated into an existing composite mechanics computer code. Stresses, strains, and deformations at the laminate, ply, and micro levels are calculated, and from these calculations it is determined if there is failure of any kind. The rationale for the model (based on published experimental work) ismore » presented, its integration into the laminate analysis code is outlined, and example results are given, with comparisons to existing material and structural data. The mechanisms behind the changes in properties and in surface cracking during long-term aging of polyimide matrix composites are clarified. High-temperature-material test methods are also evaluated.« less
Steinert, Janina Isabel; Cluver, Lucie Dale; Melendez-Torres, G J; Vollmer, Sebastian
2018-01-01
Composite indices have been prominently used in poverty research. However, validity of these indices remains subject to debate. This paper examines the validity of a common type of composite poverty indices using data from a cross-sectional survey of 2477 households in urban and rural KwaZulu-Natal, South Africa. Multiple-group comparisons in structural equation modelling were employed for testing differences in the measurement model across urban and rural groups. The analysis revealed substantial variations between urban and rural respondents both in the conceptualisation of poverty as well as in the weights and importance assigned to individual poverty indicators. The validity of a 'one size fits all' measurement model can therefore not be confirmed. In consequence, it becomes virtually impossible to determine a household's poverty level relative to the full sample. Findings from our analysis have important practical implications in nuancing how we can sensitively use composite poverty indices to identify poor people.
Magneto-elastic modeling of composites containing chain-structured magnetostrictive particles
NASA Astrophysics Data System (ADS)
Yin, H. M.; Sun, L. Z.; Chen, J. S.
2006-05-01
Magneto-elastic behavior is investigated for two-phase composites containing chain-structured magnetostrictive particles under both magnetic and mechanical loading. To derive the local magnetic and elastic fields, three modified Green's functions are derived and explicitly integrated for the infinite domain containing a spherical inclusion with a prescribed magnetization, body force, and eigenstrain. A representative volume element containing a chain of infinite particles is introduced to solve averaged magnetic and elastic fields in the particles and the matrix. Effective magnetostriction of composites is derived by considering the particle's magnetostriction and the magnetic interaction force. It is shown that there exists an optimal choice of the Young's modulus of the matrix and the volume fraction of the particles to achieve the maximum effective magnetostriction. A transversely isotropic effective elasticity is derived at the infinitesimal deformation. Disregarding the interaction term, this model provides the same effective elasticity as Mori-Tanaka's model. Comparisons of model results with the experimental data and other models show the efficacy of the model and suggest that the particle interactions have a considerable effect on the effective magneto-elastic properties of composites even for a low particle volume fraction.
Scaling effects in the impact response of graphite-epoxy composite beams
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.
1989-01-01
In support of crashworthiness studies on composite airframes and substructure, an experimental and analytical study was conducted to characterize size effects in the large deflection response of scale model graphite-epoxy beams subjected to impact. Scale model beams of 1/2, 2/3, 3/4, 5/6, and full scale were constructed of four different laminate stacking sequences including unidirectional, angle ply, cross ply, and quasi-isotropic. The beam specimens were subjected to eccentric axial impact loads which were scaled to provide homologous beam responses. Comparisons of the load and strain time histories between the scale model beams and the prototype should verify the scale law and demonstrate the use of scale model testing for determining impact behavior of composite structures. The nonlinear structural analysis finite element program DYCAST (DYnamic Crash Analysis of STructures) was used to model the beam response. DYCAST analysis predictions of beam strain response are compared to experimental data and the results are presented.
van der Wegen, M.; Dastgheib, A.; Jaffe, B.E.; Roelvink, D.
2011-01-01
Applications of process-based morphodynamic models are often constrained by limited availability of data on bed composition, which may have a considerable impact on the modeled morphodynamic development. One may even distinguish a period of "morphodynamic spin-up" in which the model generates the bed level according to some ill-defined initial bed composition rather than describing the realistic behavior of the system. The present paper proposes a methodology to generate bed composition of multiple sand and/or mud fractions that can act as the initial condition for the process-based numerical model Delft3D. The bed composition generation (BCG) run does not include bed level changes, but does permit the redistribution of multiple sediment fractions over the modeled domain. The model applies the concept of an active layer that may differ in sediment composition above an underlayer with fixed composition. In the case of a BCG run, the bed level is kept constant, whereas the bed composition can change. The approach is applied to San Pablo Bay in California, USA. Model results show that the BCG run reallocates sand and mud fractions over the model domain. Initially, a major sediment reallocation takes place, but development rates decrease in the longer term. Runs that take the outcome of a BCG run as a starting point lead to more gradual morphodynamic development. Sensitivity analysis shows the impact of variations in the morphological factor, the active layer thickness, and wind waves. An important but difficult to characterize criterion for a successful application of a BCG run is that it should not lead to a bed composition that fixes the bed so that it dominates the "natural" morphodynamic development of the system. Future research will focus on a decadal morphodynamic hindcast and comparison with measured bathymetries in San Pablo Bay so that the proposed methodology can be tested and optimized. ?? 2010 The Author(s).
An improved model for the combustion of AP composite propellants
NASA Technical Reports Server (NTRS)
Cohen, N. S.; Strand, L. D.
1981-01-01
This paper presents several improvements to the BDP model of steady-state burning of AP composite solid propellants. The Price-Boggs-Derr model of AP monopropellant burning is incorporated to represent the AP. A separate energy equation is written for the binder to permit a different surface temperature from the AP; this includes an analysis of the sharing of primary diffusion flame energy, and correction of a BDP model inconsistency in treating the binder regression rate. A method for assembling component contributions to calculate the burning rates of multimodal propellants is also presented. Results are shown in the form of representative burning rate curves, comparisons with data, and calculated internal details of interest. Ideas for future work are discussed in an Appendix.
Development of an empirically based dynamic biomechanical strength model
NASA Technical Reports Server (NTRS)
Pandya, A.; Maida, J.; Aldridge, A.; Hasson, S.; Woolford, B.
1992-01-01
The focus here is on the development of a dynamic strength model for humans. Our model is based on empirical data. The shoulder, elbow, and wrist joints are characterized in terms of maximum isolated torque, position, and velocity in all rotational planes. This information is reduced by a least squares regression technique into a table of single variable second degree polynomial equations determining the torque as a function of position and velocity. The isolated joint torque equations are then used to compute forces resulting from a composite motion, which in this case is a ratchet wrench push and pull operation. What is presented here is a comparison of the computed or predicted results of the model with the actual measured values for the composite motion.
Layerwise mechanics and finite element for the dynamic analysis of piezoelectric composite plates
NASA Technical Reports Server (NTRS)
Saravanos, Dimitris A.; Heyliger, Paul R.; Hopkins, Dale A.
1996-01-01
Laminate and structural mechanics for the analysis of laminated composite plate structures with piezoelectric actuators and sensors are presented. The theories implement layerwise representations of displacements and electric potential, and can model both the global and local electromechanical response of smart composite laminates. Finite-element formulations are developed for the quasi-static and dynamic analysis of smart composite structures containing piezoelectric layers. Comparisons with an exact solution illustrate the accuracy, robustness and capability of the developed mechanics to capture the global and local response of thin and/or thick laminated piezoelectric plates. Additional correlations and numerical applications demonstrate the unique capabilities of the mechanics in analyzing the static and free-vibration response of composite plates with distributed piezoelectric actuators and sensors.
1985-12-01
J ub. we Jr. Captain, USARt Z712 AFIT/GAE/AA/85D- 12 Iv COMPARISON OF NOTCH STRENGTH BETWEEN GR/PEEK (APC-1 AND APC-2) AND GR/EPOXY COMPOSITE ...85D-12 COMPARISON OF NOTCH STRENGTH BETWEEN GR/PEEK _ (APC-1 AND APC-2) AND GR/EPOXY COMPOSITE MATERIAL AT ELEVATED TEMPERATURE THESIS Presented to the...unlimited Preface In this experimental investigation, the reduction of strength for notched composite laminates of Aromatic Polymer Composite , APC-2
Comparisons of Auricular Cartilage Tissues from Different Species.
Chiu, Loraine L Y; Giardini-Rosa, Renata; Weber, Joanna F; Cushing, Sharon L; Waldman, Stephen D
2017-12-01
Tissue engineering of auricular cartilage has great potential in providing readily available materials for reconstructive surgeries. As the field of tissue engineering moves forward to developing human tissues, there needs to be an interspecies comparison of the native auricular cartilage in order to determine a suitable animal model to assess the performance of engineered auricular cartilage in vivo. Here, we performed interspecies comparisons of auricular cartilage by comparing tissue microstructure, protein localization, biochemical composition, and mechanical properties of auricular cartilage tissues from rat, rabbit, pig, cow, and human. Human, pig, and cow auricular cartilage have smaller lacunae compared to rat and rabbit cartilage ( P < .05). Despite differences in tissue microstructure, human auricular cartilage has similar biochemical composition to both rat and rabbit. Auricular cartilage from pig and cow, alternatively, display significantly higher glycosaminoglycan and collagen contents compared to human, rat, and rabbit ( P < .05). The mechanical properties of human auricular cartilage were comparable to that of all 4 animal species. This is the first study that compares the microstructural, biochemical, and mechanical properties of auricular cartilage from different species. This study showed that different experimental animal models of human auricular cartilage may be suitable in different cases.
Mars atmospheric dust properties: A synthesis of Mariner 9, Viking, and Phobos observations
NASA Technical Reports Server (NTRS)
Clancy, R. T.; Lee, S. W.; Gladstone, G. R.
1993-01-01
We have modified a doubling-and-adding code to reanalyze the Mariner 9 IRIS spectra of Mars atmospheric dust as well as Viking IRTM EPF sequences in the 7, 9, and 20 micron channels. The code is capable of accurate emission/ absorption/scattering radiative transfer calculations over the 5-30 micron wavelength region for variable dust composition and particle size inputs, and incorporates both the Viking IRTM channel weightings and the Mariner 9 IRIS wavelength resolution for direct comparisons to these datasets. We adopt atmospheric temperature profiles according to the algorithm of Martin (1986) in the case of the Viking IRTM comparisons, and obtained Mariner 9 IRIS temperature retrievals from the 15 micron CO2 band for the case of the IRIS comparisons. We consider palagonite as the primary alternative to the montmorillonite composition of Mars atmospheric dust, based on several considerations. Palagonite absorbs in the ultraviolet and visible wavelength region due to its Fe content. Palagonite is also, in principal, consistent with the observed lack of clays on the Mars surface. Furthermore, palagonite does not display strong, structured absorption near 20 microns as does montmorillonite (in conflict with the IRIS observations). We propose that a palagonite composition with particle sizes roughly one-half that of the Toon et al. (1977) determination provide a much improved model to Mars atmospheric dust. Since palagonite is a common weathering product of terrrestrial basalts, it would not be unreasonable for palagonite to be a major surface component for Mars. The lack of even a minor component of Al-rich clays on the surface of Mars could be consistent with a palagonite composition for Mars dust if the conditions for basalt weathering on Mars were sufficiently anhydrous. Variations in palagonite composition could also lead to the inability of the modeled palagonite to fit the details of the 9 micron absorbtion indicated by the IRIS observations.
Analysis of 2H-Evaporator Acid Cleaning Samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, M.; Diprete, D.; Edwards, T.
The 2H-Evaporator acid cleaning solution samples were analyzed by SRNL to determine a composition for the scale present in the evaporator before recent acid cleaning. Composite samples were formed from the solution samples from the two acid cleaning cycles. The solution composition was converted to a weight percent scale solids basis under an assumed chemical composition. The scale composition produced from the acid cleaning solution samples indicates a concentration of 6.85 wt% uranium. An upper bound, onesided 95% confidence interval on the weight percent uranium value may be given as 6.9 wt% + 1.645 × 0.596 wt% = 7.9 wt%.more » The comparison of the composition from the current acid cleaning solutions with the composition of recent scale samples along with the thermodynamic modeling results provides reasonable assurance that the sample results provide a good representation of the overall scale composition in the evaporator prior to acid cleaning. The small amount of scale solids dissolved in the 1.5 M nitric acid during the evaporator cleaning process likely produced only a small amount of precipitation based on modeling results and the visual appearance of the samples.« less
NASA Astrophysics Data System (ADS)
Röder, F.; Heintze, C.; Pecko, S.; Akhmadaliev, S.; Bergner, F.; Ulbricht, A.; Altstadt, E.
2018-04-01
Ion-irradiation-induced hardening is investigated on six selected reactor pressure vessel (RPV) steels. The steels were irradiated with 5 MeV Fe2+ ions at fluences ranging from 0.01 to 1.0 displacements per atom (dpa) and the induced hardening of the surface layer was probed with nanoindentation. To separate the indentation size effect and the substrate effect from the irradiation-induced hardness profile, we developed an analytic model with the plastic zone of the indentation approximated as a half sphere. This model allows the actual hardness profile to be retrieved and the measured hardness increase to be assigned to the respective fluence. The obtained values of hardness increase vs. fluence are compared for selected pairs of samples in order to extract effects of the RPV steel composition. We identify hardening effects due to increased levels of copper, manganese-nickel and phosphorous. Further comparison with available neutron-irradiated conditions of the same heats of RPV steels indicates pronounced differences of the considered effects of composition for irradiation with neutrons vs. ions.
NASA Technical Reports Server (NTRS)
Gates, Thomas S.; Veazie, David R.; Brinson, L. Catherine
1996-01-01
Experimental and analytical methods were used to investigate the similarities and differences of the effects of physical aging on creep compliance of IM7/K3B composite loaded in tension and compression. Two matrix dominated loading modes, shear and transverse, were investigated for two load cases, tension and compression. The tests, run over a range of sub-glass transition temperatures, provided material constants, material master curves and aging related parameters. Comparing results from the short-term data indicated that although trends in the data with respect to aging time and aging temperature are similar, differences exist due to load direction and mode. The analytical model used for predicting long-term behavior using short-term data as input worked equally as well for the tension or compression loaded cases. Comparison of the loading modes indicated that the predictive model provided more accurate long term predictions for the shear mode as compared to the transverse mode. Parametric studies showed the usefulness of the predictive model as a tool for investigating long-term performance and compliance acceleration due to temperature.
NASA Astrophysics Data System (ADS)
Lemanle Sanga, Roger Pierre; Garnier, Christian; Pantalé, Olivier
2016-12-01
Low velocity barely visible impact damage (BVID) in laminated carbon composite structures has a major importance for aeronautical industries. This contribution leads with the development of finite element models to simulate the initiation and the propagation of internal damage inside a carbon composite structure due by a low velocity impact. Composite plates made from liquid resin infusion process (LRI) have been subjected to low energy impacts (around 25 J) using a drop weight machine. In the experimental procedure, the internal damage is evaluated using an infrared thermographic camera while the indentation depth of the face is measured by optical measurement technique. In a first time we developed a robust model using homogenised shells based on degenerated tri-dimensional brick elements and in a second time we decided to modelize the whole stacking sequence of homogeneous layers and cohesive interlaminar interfaces in order to compare and validate the obtained results. Both layer and interface damage initiation and propagation models based on the Hashin and the Benzeggagh-Kenane criteria have been used for the numerical simulations. Comparison of numerical results and experiments has shown the accuracy of the proposed models.
Overview of South‐east Asia land cover using a NOAA AVHRR one kilometer composite
Defourny, Pierre; Pradhan, Udai C.; Vinay, Sritharan; Johnson, Gary E.
1994-01-01
A cloud free AVHRR composite of South‐East Asia at one kilometer resolution has been produced from 38 selected daily NOAA‐11 AVHRR images. Geometric accuracy of about 1 pixel is achieved using a two‐step rectification algorithm (orbital model and transformation by ground control points). A spatial and spectral enhancement has been performed, the sea masked out and political boundaries included in the final product. This AVHRR composite is particularly useful for a comprehensive overview of land cover at a regional scale. Qualitative comparison between a monthly composite and the existing forest maps highlights the forest cover change and points out the hot spots where the maps have to be updated.
Multi-Scale Modeling of an Integrated 3D Braided Composite with Applications to Helicopter Arm
NASA Astrophysics Data System (ADS)
Zhang, Diantang; Chen, Li; Sun, Ying; Zhang, Yifan; Qian, Kun
2017-10-01
A study is conducted with the aim of developing multi-scale analytical method for designing the composite helicopter arm with three-dimensional (3D) five-directional braided structure. Based on the analysis of 3D braided microstructure, the multi-scale finite element modeling is developed. Finite element analysis on the load capacity of 3D five-directional braided composites helicopter arm is carried out using the software ABAQUS/Standard. The influences of the braiding angle and loading condition on the stress and strain distribution of the helicopter arm are simulated. The results show that the proposed multi-scale method is capable of accurately predicting the mechanical properties of 3D braided composites, validated by the comparison the stress-strain curves of meso-scale RVCs. Furthermore, it is found that the braiding angle is an important factor affecting the mechanical properties of 3D five-directional braided composite helicopter arm. Based on the optimized structure parameters, the nearly net-shaped composite helicopter arm is fabricated using a novel resin transfer mould (RTM) process.
NASA Astrophysics Data System (ADS)
Liu, Y.; Rollinson, C.; Dietze, M.; McLachlan, J. S.; Poulter, B.; Quaife, T. L.; Raiho, A.; Ricciuto, D. M.; Schaefer, K. M.; Steinkamp, J.; Moore, D. J.
2015-12-01
Over multi-decadal to multi-centennial timescales, ecosystem function and carbon storage is largely influenced by vegetation composition. The predictability of ecosystem responses to climate change thus depends on the understanding of long-term community dynamics. Our study aims to quantify the influence of the most relevant ecological factors that control plant distribution and abundance, in contemporary terrestrial biosphere models and in paleo-records, and constrain the model processes and parameters with paleoecological data. We simulated vegetation changes at 6 sites in the northeastern United States over the past 1160 years using 7 terrestrial biosphere models and variations (CLM4.5-CN, ED2, ED2-LU, JULES-TRIFFID, LINKAGES, LPJ-GUESS, LPJ-wsl) driven by common paleoclimatic drivers. We examined plant growth, recruitment, and mortality (including other carbon turnover) of the plant functional types (PFTs) in the models, attributed the responses to three major factors (climate, competition, and disturbance), and estimated the relative effect of each factor. We assessed the model responses against plant-community theories (bioclimatic limits, niche difference, temporal variation and storage effect, and disturbance). We found that vegetation composition were sensitive to realized niche differences (e.g. differential growth response) among PFTs. Because many models assume unlimited dispersal and sometimes recruitment, the "storage effect" constantly affects community composition. Fire was important in determining the ecosystem composition, yet the vegetation to fire feedback was weak in the models. We also found that vegetation-composition changes in the simulations were driven to a much greater degree by growth as opposed to by turnover/mortality, when compared with those in paleoecological records. Our work suggest that 1) for forecasting slow changes in vegetation composition, we can use paleo-data to better quantify the realized niches of PFTs and associated uncertainties, and 2) for predicting abrupt changes in vegetation composition, we need to better implement processes of dynamic turnover and fire in current ecosystem models.
NASA Astrophysics Data System (ADS)
Yan, Wei; Cai, J. B.; Chen, W. Q.
2011-01-01
A model of a laminated composite beam including multiple non-propagating part-through surface cracks as well as installed PZT transducers is presented based on the method of reverberation-ray matrix (MRRM) in this paper. Toward determining the local flexibility characteristics induced by the individual cracks, the concept of the massless rotational spring is applied. A Timoshenko beam theory is then used to simulate the behavior of the composite beam with open cracks. As a result, transverse shear and rotatory inertia effects are included in the model. Only one-dimensional axial vibration of the PZT wafer is considered and the imperfect interfacial bonding between PZT patches and the host beam is further investigated based on a Kelvin-type viscoelastic model. Then, an accurate electro-mechanical impedance (EMI) model can be established for crack detection in laminated beams. In this model, the effects of various parameters such as the ply-angle, fibre volume fraction, crack depth and position on the EMI signatures are highlighted. Furthermore, comparison with existent numerical results is presented to validate the present analysis.
Predicting the mineral composition of dust aerosols - Part 1: Representing key processes
NASA Astrophysics Data System (ADS)
Perlwitz, J. P.; Pérez García-Pando, C.; Miller, R. L.
2015-02-01
Soil dust aerosols created by wind erosion are typically assigned globally uniform physical and chemical properties within Earth system models, despite known regional variations in the mineral content of the parent soil. Mineral composition of the aerosol particles is important to their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, coating by heterogeneous uptake of sulfates and nitrates, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Here, aerosol mineral composition is derived by extending a method that provides the composition of a wet-sieved soil. The extension accounts for measurements showing significant differences between the mineral fractions of the wet-sieved soil and the resulting aerosol concentration. For example, some phyllosilicate aerosols are more prevalent at silt sizes, even though they are nearly absent in a soil whose aggregates are dispersed by wet sieving during analysis. We reconstruct the undispersed size distribution of the original soil that is subject to wind erosion. An empirical constraint upon the relative emission of clay and silt is applied that further differentiates the soil and aerosol mineral composition. In addition, a method is proposed for mixing minerals with small impurities composed of iron oxides. These mixtures are important for transporting iron far from the dust source, because pure iron oxides are more dense and vulnerable to gravitational removal than most minerals comprising dust aerosols. A limited comparison to measurements from North Africa shows that the extension brings the model into better agreement, consistent with a more extensive comparison to global observations as well as measurements of elemental composition downwind of the Sahara, as described in companion articles.
NASA Astrophysics Data System (ADS)
Bisegna, Paolo; Caselli, Federica
2008-06-01
This paper presents a simple analytical expression for the effective complex conductivity of a periodic hexagonal arrangement of conductive circular cylinders embedded in a conductive matrix, with interfaces exhibiting a capacitive impedance. This composite material may be regarded as an idealized model of a biological tissue comprising tubular cells, such as skeletal muscle. The asymptotic homogenization method is adopted, and the corresponding local problem is solved by resorting to Weierstrass elliptic functions. The effectiveness of the present analytical result is proved by convergence analysis and comparison with finite-element solutions and existing models.
Viscous and thermal modelling of thermoplastic composites forming process
NASA Astrophysics Data System (ADS)
Guzman, Eduardo; Liang, Biao; Hamila, Nahiene; Boisse, Philippe
2016-10-01
Thermoforming thermoplastic prepregs is a fast manufacturing process. It is suitable for automotive composite parts manufacturing. The simulation of thermoplastic prepreg forming is achieved by alternate thermal and mechanical analyses. The thermal properties are obtained from a mesoscopic analysis and a homogenization procedure. The forming simulation is based on a viscous-hyperelastic approach. The thermal simulations define the coefficients of the mechanical model that depend on the temperature. The forming simulations modify the boundary conditions and the internal geometry of the thermal analyses. The comparison of the simulation with an experimental thermoforming of a part representative of automotive applications shows the efficiency of the approach.
Xie, Xinran; Zhang, Lei; Lin, Yan; Wang, Yan; Liu, Weihong; Li, Xue; Li, Ping
2017-10-01
Psoriasis patients are at increased risk of developing lipid metabolism disturbances. Both psoriasis and dyslipideamia not only closely interact in disease development, but occur as mutual side effects in some medicine treatment. The interactive mechanism of the two diseases is complicated and still unclear. Here, we proposed applying imiquimod on the dorsal skin of ApoE -/- mice to establish a composite animal model which formed psoriasiform skin lesions under hyperlipidemic condition. By comparison with corresponding wild-type(C57BL/6) mice, the composite mice model was evaluated by skin pathological features, lipid levels, immune inflammatory factors in order to clarify the diseases interplay mechanism. In addition, IL-17 mAb treatment was applied to observe the effect of IL-17 antibody on the composite animal model. The results verified that imiquimod-induced ApoE -/- mice model presented keratinocyte hyperplasia, parakeratosis, inflammatory cells infiltration and elevated serum lipid levels, and also reflected the complex interaction between inflammation and lipid metabolism. IL-17 mAb could inhibit psoriasis skin lesions with lipid accumulation via STAT3 pathway, but no influence on elevated serum cholesterol. Imiquimod-induced ApoE -/- mice model presented the pathological features of psoriasis and dyslipideamia, which could be an ideal composite animal model for the study of pathogenesis and pharmacotherapeutics of psoriasis and dyslipideamia comorbidity. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Mixture Model for Determination of Shock Equation of State
2012-07-25
not considered in this paper. III. COMPARISON WITH EXPERIMENTAL DATA A. Two-constituent composites 1. Uranium- rhodium composite Uranium- rhodium (U...sound speed, Co, and S were determined from linear least squares fit to the available data22 as shown in Figs. 1(a) and 1(b) for uranium and rhodium ...overpredicts the experimental data, with an average deviation, dUs,/Us of 0.05, shown in Fig. 2(b). The linear fits for uranium and rhodium are shown for
Experimental study and thermodynamic modeling of the Al–Co–Cr–Ni system
Gheno, Thomas; Liu, Xuan L.; Lindwall, Greta; ...
2015-09-21
In this study, a thermodynamic database for the Al–Co–Cr–Ni system is built via the Calphad method by extrapolating re-assessed ternary subsystems. A minimum number of quaternary parameters are included, which are optimized using experimental phase equilibrium data obtained by electron probe micro-analysis and x-ray diffraction analysis of NiCoCrAlY alloys spanning a wide compositional range, after annealing at 900 °C, 1100 °C and 1200 °C, and water quenching. These temperatures are relevant to oxidation and corrosion resistant MCrAlY coatings, where M corresponds to some combination of nickel and cobalt. Comparisons of calculated and measured phase compositions show excellent agreement for themore » β–γ equilibrium, and good agreement for three-phase β–γ–σ and β–γ–α equilibria. An extensive comparison with existing Ni-base databases (TCNI6, TTNI8, NIST) is presented in terms of phase compositions.« less
Understanding the Percolation Characteristics of Nonlinear Composite Dielectrics
Yang, Xiao; Hu, Jun; Chen, Shuiming; He, Jinliang
2016-01-01
Nonlinear composite dielectrics can function as smart materials for stress control and field grading in all fields of electrical insulations. The percolation process is a significant issue of composite dielectrics. However, the classic percolation theory mainly deals with traditional composites in which the electrical parameters of both insulation matrix and conducting fillers are independent of the applied electric field. This paper measured the nonlinear V-I characteristics of ZnO microvaristors/silicone rubber composites with several filler concentrations around an estimated percolation threshold. For the comparison with the experiment, a new microstructural model is proposed to simulate the nonlinear conducting behavior of the composite dielectrics modified by metal oxide fillers, which is based on the Voronoi network and considers the breakdown feature of the insulation matrix for near percolated composites. Through both experiment and simulation, the interior conducting mechanism and percolation process of the nonlinear composites were presented and a specific percolation threshold was determined as 33%. This work has provided a solution to better understand the characteristics of nonlinear composite dielectrics. PMID:27476998
Understanding the Percolation Characteristics of Nonlinear Composite Dielectrics
NASA Astrophysics Data System (ADS)
Yang, Xiao; Hu, Jun; Chen, Shuiming; He, Jinliang
2016-08-01
Nonlinear composite dielectrics can function as smart materials for stress control and field grading in all fields of electrical insulations. The percolation process is a significant issue of composite dielectrics. However, the classic percolation theory mainly deals with traditional composites in which the electrical parameters of both insulation matrix and conducting fillers are independent of the applied electric field. This paper measured the nonlinear V-I characteristics of ZnO microvaristors/silicone rubber composites with several filler concentrations around an estimated percolation threshold. For the comparison with the experiment, a new microstructural model is proposed to simulate the nonlinear conducting behavior of the composite dielectrics modified by metal oxide fillers, which is based on the Voronoi network and considers the breakdown feature of the insulation matrix for near percolated composites. Through both experiment and simulation, the interior conducting mechanism and percolation process of the nonlinear composites were presented and a specific percolation threshold was determined as 33%. This work has provided a solution to better understand the characteristics of nonlinear composite dielectrics.
ERIC Educational Resources Information Center
Armey, Michael F.; Crowther, Janis H.
2008-01-01
Research has identified a significant increase in both the incidence and prevalence of non-suicidal self-injury (NSSI). The present study sought to test both linear and non-linear cusp catastrophe models by using aversive self-awareness, which was operationalized as a composite of aversive self-relevant affect and cognitions, and dissociation as…
Finite Elements Analysis of a Composite Semi-Span Test Article With and Without Discrete Damage
NASA Technical Reports Server (NTRS)
Lovejoy, Andrew E.; Jegley, Dawn C. (Technical Monitor)
2000-01-01
AS&M Inc. performed finite element analysis, with and without discrete damage, of a composite semi-span test article that represents the Boeing 220-passenger transport aircraft composite semi-span test article. A NASTRAN bulk data file and drawings of the test mount fixtures and semi-span components were utilized to generate the baseline finite element model. In this model, the stringer blades are represented by shell elements, and the stringer flanges are combined with the skin. Numerous modeling modifications and discrete source damage scenarios were applied to the test article model throughout the course of the study. This report details the analysis method and results obtained from the composite semi-span study. Analyses were carried out for three load cases: Braked Roll, LOG Down-Bending and 2.5G Up-Bending. These analyses included linear and nonlinear static response, as well as linear and nonlinear buckling response. Results are presented in the form of stress and strain plots. factors of safety for failed elements, buckling loads and modes, deflection prediction tables and plots, and strainage prediction tables and plots. The collected results are presented within this report for comparison to test results.
Grove, Timothy L.; Holbig, Eva S.; Barr, Jay A.; Till, Christy B.; Krawczynski, Michael J.
2013-01-01
Phase equilibrium experiments on a compositionally modified olivine leucitite from the Tibetan plateau have been carried out from 2.2 to 2.8 GPa and 1,380–1,480 °C. The experiments-produced liquids multiply saturated with spinel and garnet lherzolite phase assemblages (olivine, orthopyroxene, clinopyroxene and spinel ± garnet) under nominally anhydrous conditions. These SiO2-undersaturated liquids and published experimental data are utilized to develop a predictive model for garnet lherzolite melting of compositionally variable mantle under anhydrous conditions over the pressure range of 1.9–6 GPa. The model estimates the major element compositions of garnet-saturated melts for a range of mantle lherzolite compositions and predicts the conditions of the spinel to garnet lherzolite phase transition for natural peridotite compositions at above-solidus temperatures and pressures. We compare our predicted garnet lherzolite melts to those of pyroxenite and carbonated lherzolite and develop criteria for distinguishing among melts of these different source types. We also use the model in conjunction with a published predictive model for plagioclase and spinel lherzolite to characterize the differences in major element composition for melts in the plagioclase, spinel and garnet facies and develop tests to distinguish between melts of these three lherzolite facies based on major elements. The model is applied to understand the source materials and conditions of melting for high-K lavas erupted in the Tibetan plateau, basanite–nephelinite lavas erupted early in the evolution of Kilauea volcano, Hawaii, as well as younger tholeiitic to alkali lavas from Kilauea.
Integrated rheology model: Explosive Composition B-3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Stephen M.; Zerkle, David K.; Smilowitz, Laura B.
Composition B-3 (Comp B-3) is a high explosive formulation composed of 60/40wt% RDX (1,3,5-trinitroperhydro-1,3,5-triazine) /TNT (2,4,6 trinitrotoluene). Above approximately 78°C this formulation partially melts to form a multiphase system with solid RDX particles in a molten TNT matrix. This multiphase system presents a number of phenomena that influence its apparent viscosity. In an earlier study explosive Composition B-3 (Comp B-3, 60/40wt% RDX/TNT) was examined for evidence of yield stress using a non-isothermal falling ball viscometer and a yield stress model was proposed in this paper. An integrated viscosity model suitable for use in computational fluid dynamics (CFD) simulations is developedmore » to capture the transition from a heterogeneous solid to a Bingham viscoplastic fluid. This viscosity model is used to simulate the motion of imbedded spheres falling through molten Comp B-3. Finally, comparison of the simulations to physical tests show agreement between the positions predicted by the model and the measured locations of the spheres as a function of temperature between 90C and 165C.« less
Integrated rheology model: Explosive Composition B-3
Davis, Stephen M.; Zerkle, David K.; Smilowitz, Laura B.; ...
2018-03-20
Composition B-3 (Comp B-3) is a high explosive formulation composed of 60/40wt% RDX (1,3,5-trinitroperhydro-1,3,5-triazine) /TNT (2,4,6 trinitrotoluene). Above approximately 78°C this formulation partially melts to form a multiphase system with solid RDX particles in a molten TNT matrix. This multiphase system presents a number of phenomena that influence its apparent viscosity. In an earlier study explosive Composition B-3 (Comp B-3, 60/40wt% RDX/TNT) was examined for evidence of yield stress using a non-isothermal falling ball viscometer and a yield stress model was proposed in this paper. An integrated viscosity model suitable for use in computational fluid dynamics (CFD) simulations is developedmore » to capture the transition from a heterogeneous solid to a Bingham viscoplastic fluid. This viscosity model is used to simulate the motion of imbedded spheres falling through molten Comp B-3. Finally, comparison of the simulations to physical tests show agreement between the positions predicted by the model and the measured locations of the spheres as a function of temperature between 90C and 165C.« less
The effect of interface properties on nickel base alloy composites
NASA Technical Reports Server (NTRS)
Groves, M.; Grossman, T.; Senemeier, M.; Wright, K.
1995-01-01
This program was performed to assess the extent to which mechanical behavior models can predict the properties of sapphire fiber/nickel aluminide matrix composites and help guide their development by defining improved combinations of matrix and interface coating. The program consisted of four tasks: 1) selection of the matrices and interface coating constituents using a modeling-based approach; 2) fabrication of the selected materials; 3) testing and evaluation of the materials; and 4) evaluation of the behavior models to develop recommendations. Ni-50Al and Ni-20AI-30Fe (a/o) matrices were selected which gave brittle and ductile behavior, respectively, and an interface coating of PVD YSZ was selected which provided strong bonding to the sapphire fiber. Significant fiber damage and strength loss was observed in the composites which made straightforward comparison of properties with models difficult. Nevertheless, the models selected generally provided property predictions which agreed well with results when fiber degradation was incorporated. The presence of a strong interface bond was felt to be detrimental in the NiAI MMC system where low toughness and low strength were observed.
The validation of a human force model to predict dynamic forces resulting from multi-joint motions
NASA Technical Reports Server (NTRS)
Pandya, Abhilash K.; Maida, James C.; Aldridge, Ann M.; Hasson, Scott M.; Woolford, Barbara J.
1992-01-01
The development and validation is examined of a dynamic strength model for humans. This model is based on empirical data. The shoulder, elbow, and wrist joints were characterized in terms of maximum isolated torque, or position and velocity, in all rotational planes. This data was reduced by a least squares regression technique into a table of single variable second degree polynomial equations determining torque as a function of position and velocity. The isolated joint torque equations were then used to compute forces resulting from a composite motion, in this case, a ratchet wrench push and pull operation. A comparison of the predicted results of the model with the actual measured values for the composite motion indicates that forces derived from a composite motion of joints (ratcheting) can be predicted from isolated joint measures. Calculated T values comparing model versus measured values for 14 subjects were well within the statistically acceptable limits and regression analysis revealed coefficient of variation between actual and measured to be within 0.72 and 0.80.
Deformation and Damage Mechanisms in High Temperature Composits with Ductile Matrices
1992-06-01
Models 2 2.1.2 Uniform Fields and Phase Eigenstrains 4 in Heterogeneous Media 6 2.1.3 Constitutive Equations of the Phases 10 2.1.4 Comparison with...systems, but the FDM model assumptions may no longer hold and the PHA model is again indicated. 3 I 2.1.2 Uniform Fields and Phase Eigenstrains in...mechanical and eigenstrain -induced local fields, and regard plastic strains as phase eigenstrains . A solution scheme for the PHA and FDM models was
The Earth's core composition from high pressure density measurements of liquid iron alloys
NASA Astrophysics Data System (ADS)
Morard, G.; Siebert, J.; Andrault, D.; Guignot, N.; Garbarino, G.; Guyot, F.; Antonangeli, D.
2013-07-01
High-pressure, high-temperature in situ X-ray diffraction has been measured in liquid iron alloys (Fe-5 wt% Ni-12 wt% S and Fe-5 wt% Ni-15 wt% Si) up to 94 GPa and 3200 K in laser-heated diamond anvil cells. From the analysis of the X-ray diffuse scattering signal of the metallic liquids, we determined density and bulk modulus of the two liquid alloys. Comparison with a reference Earth model indicates that a core composition containing 6% of sulfur and 2% of silicon by weight would best match the geophysical data. Models with 2.5% of sulfur and 4-5% of silicon are still consistent with geophysical constraints whereas silicon only compositions are not. These results suggest only moderate depletion of sulfur in the bulk Earth.
Simulation of Infrared Spectra of Carbonaceous Grains
NASA Astrophysics Data System (ADS)
Dadswell, G.; Duley, W. W.
1997-02-01
Random covalent network (RCN) theory is applied to describe the infrared spectroscopic properties of carbonaceous solids with compositions containing a mixture of aromatic, aliphatic, and diamond-like hydrocarbons. Application of this technique to carbonaceous dust is equivalent to the synthesis of solids whose structure and bonding satisfy stoicheometry while minimizing strain energy. The result involves a range of compositions compatible with carbon bonding and the hydrogen concentration incorporated in the network. In general, only a limited range of compositions is available rather than the infinite number of possible compositions expected without the inclusion of these constraints. When compositions have been defined in this way, infrared spectra may be synthesized for comparison with astronomical spectra of interstellar carbonaceous solids. Such spectra contain components corresponding to absorption by CHn groups in which n = 1-3. We find, however, that additional spectral features, not included in our simple chemical model, must be present also in dust. We give plots of such spectra in the 3100-2800 cm-1 (3.2-3.6 μm) region for comparison with infrared spectra of interstellar dust. We have also developed an RCN formalism that incorporates oxygen into the carbon network as OH groups, and we show that this inclusion introduces a strong additional absorption band in the 3300 cm-1 (3.0 μm) region.
[Nondestructive discrimination of strawberry varieties by NIR and BP-ANN].
Niu, Xiao-ying; Shao, Li-min; Zhao, Zhi-lei; Zhang, Xiao-yu
2012-08-01
Strawberry variety is a main factor that can influence strawberry fruit quality. The use of near-infrared reflectance spectroscopy was explored discriminate among samples of strawberry of different varieties. And the significance of difference among different varieties was analyzed by comparison of the chemical composition of the different varieties samples. The performance of models established using back propagation-artificial neural networks (BP-ANN), least squares-support vector machine and discriminant analysis were evaluated on spectra range of 4545-9090 cm(-1). The optimal model was obtained by BP-ANN with a topology of 12-18-3, which correctly classified 96.68% of calibration set and 97.14% of prediction set. And the 94.95%, 97% and 98.29% classifications were given respectively for "Tianbao" (n=99), "Fengxiang" (n=100) and "Mingxing" (n=117). One-way analysis of variance was made for comparison of the mean values for soluble solids content (SSC), titratable acid (TA), pH value and SSC-TA ratio, and the statistically significant differences were found. Principal component analysis was performed on the four chemical compositions, and obvious clustering tendencies for different varieties were found. These results showed that NIR combined with BP-ANN can discriminate strawberry of different varieties effectively, and the difference in chemical compositions of different varieties strawberry might be a chemical validation for NIR results.
Progressive Failure And Life Prediction of Ceramic and Textile Composites
NASA Technical Reports Server (NTRS)
Xue, David Y.; Shi, Yucheng; Katikala, Madhu; Johnston, William M., Jr.; Card, Michael F.
1998-01-01
An engineering approach to predict the fatigue life and progressive failure of multilayered composite and textile laminates is presented. Analytical models which account for matrix cracking, statistical fiber failures and nonlinear stress-strain behavior have been developed for both composites and textiles. The analysis method is based on a combined micromechanics, fracture mechanics and failure statistics analysis. Experimentally derived empirical coefficients are used to account for the interface of fiber and matrix, fiber strength, and fiber-matrix stiffness reductions. Similar approaches were applied to textiles using Repeating Unit Cells. In composite fatigue analysis, Walker's equation is applied for matrix fatigue cracking and Heywood's formulation is used for fiber strength fatigue degradation. The analysis has been compared with experiment with good agreement. Comparisons were made with Graphite-Epoxy, C/SiC and Nicalon/CAS composite materials. For textile materials, comparisons were made with triaxial braided and plain weave materials under biaxial or uniaxial tension. Fatigue predictions were compared with test data obtained from plain weave C/SiC materials tested at AS&M. Computer codes were developed to perform the analysis. Composite Progressive Failure Analysis for Laminates is contained in the code CPFail. Micromechanics Analysis for Textile Composites is contained in the code MicroTex. Both codes were adapted to run as subroutines for the finite element code ABAQUS and CPFail-ABAQUS and MicroTex-ABAQUS. Graphic user interface (GUI) was developed to connect CPFail and MicroTex with ABAQUS.
Shoemaker, W. Barclay; O'Reilly, Andrew M.; Sepúlveda, Nicasio; Williams, Stanley A.; Motz, Louis H.; Sun, Qing
2004-01-01
Areas contributing recharge to springs are defined in this report as the land-surface area wherein water entering the ground-water system at the water table eventually discharges to a spring. These areas were delineated for Blue Spring, Silver Springs, Alexander Springs, and Silver Glen Springs in north-central Florida using four regional ground-water flow models and particle tracking. As expected, different models predicted different areas contributing recharge. In general, the differences were due to different hydrologic stresses, subsurface permeability properties, and boundary conditions that were used to calibrate each model, all of which are considered to be equally feasible because each model matched its respective calibration data reasonably well. To evaluate the agreement of the models and to summarize results, areas contributing recharge to springs from each model were combined into composite areas. During 1993-98, the composite areas contributing recharge to Blue Spring, Silver Springs, Alexander Springs, and Silver Glen Springs were about 130, 730, 110, and 120 square miles, respectively. The composite areas for all springs remained about the same when using projected 2020 ground-water withdrawals.
CFD Modeling of Flow, Temperature, and Concentration Fields in a Pilot-Scale Rotary Hearth Furnace
NASA Astrophysics Data System (ADS)
Liu, Ying; Su, Fu-Yong; Wen, Zhi; Li, Zhi; Yong, Hai-Quan; Feng, Xiao-Hong
2014-01-01
A three-dimensional mathematical model for simulation of flow, temperature, and concentration fields in a pilot-scale rotary hearth furnace (RHF) has been developed using a commercial computational fluid dynamics software, FLUENT. The layer of composite pellets under the hearth is assumed to be a porous media layer with CO source and energy sink calculated by an independent mathematical model. User-defined functions are developed and linked to FLUENT to process the reduction process of the layer of composite pellets. The standard k-ɛ turbulence model in combination with standard wall functions is used for modeling of gas flow. Turbulence-chemistry interaction is taken into account through the eddy-dissipation model. The discrete ordinates model is used for modeling of radiative heat transfer. A comparison is made between the predictions of the present model and the data from a test of the pilot-scale RHF, and a reasonable agreement is found. Finally, flow field, temperature, and CO concentration fields in the furnace are investigated by the model.
Simple Statistical Model to Quantify Maximum Expected EMC in Spacecraft and Avionics Boxes
NASA Technical Reports Server (NTRS)
Trout, Dawn H.; Bremner, Paul
2014-01-01
This study shows cumulative distribution function (CDF) comparisons of composite a fairing electromagnetic field data obtained by computational electromagnetic 3D full wave modeling and laboratory testing. Test and model data correlation is shown. In addition, this presentation shows application of the power balance and extention of this method to predict the variance and maximum exptected mean of the E-field data. This is valuable for large scale evaluations of transmission inside cavities.
Coupled attenuation and multiscale damage model for composite structures
NASA Astrophysics Data System (ADS)
Moncada, Albert M.; Chattopadhyay, Aditi; Bednarcyk, Brett; Arnold, Steven M.
2011-04-01
Composite materials are widely used in many applications for their high strength, low weight, and tailorability for specific applications. However, the development of robust and reliable methodologies to detect micro level damage in composite structures has been challenging. For composite materials, attenuation of ultrasonic waves propagating through the media can be used to determine damage within the material. Currently available numerical solutions for attenuation induce arbitrary damage, such as fiber-matrix debonding or inclusions, to show variations between healthy and damaged states. This paper addresses this issue by integrating a micromechanics analysis to simulate damage in the form of a fiber-matrix crack and an analytical model for calculating the attenuation of the waves when they pass through the damaged region. The hybrid analysis is validated by comparison with experimental stress-strain curves and piezoelectric sensing results for attenuation measurement. The results showed good agreement between the experimental stress-strain curves and the results from the micromechanics analysis. Wave propagation analysis also showed good correlation between simulation and experiment for the tested frequency range.
Radioactive waste disposal in the marine environment
NASA Astrophysics Data System (ADS)
Anderson, D. R.
In order to find the optimal solution to waste disposal problems, it is necessary to make comparisons between disposal media. It has become obvious to many within the scientific community that the single medium approach leads to over protection of one medium at the expense of the others. Cross media comparisons are being conducted in the Department of Energy ocean disposal programs for several radioactive wastes. Investigations in three areas address model development, comparisons of laboratory tests with field results and predictions, and research needs in marine disposal of radioactive waste. Tabulated data are included on composition of liquid high level waste and concentration of some natural radionuclides in the sea.
Comparison of Martian Meteorites and Martian Regolith as Shield Materials for Galactic Cosmic Rays
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Thibeault, Sheila A.; Simonsen, Lisa C.; Wilson, John W.
1998-01-01
Theoretical calculations of radiation attenuation due to energetic galactic cosmic rays behind Martian rock and Martian regolith material have been made to compare their utilization as shields for advanced manned missions to Mars because the detailed chemical signature of Mars is distinctly different from Earth. The modified radiation fields behind the Martian rocks and the soil model were generated by solving the Boltzmann equation using a HZETRN system with the 1977 Solar Minimum environmental model. For the comparison of the attenuation characteristics, dose and dose equivalent are calculated for the five different subgroups of Martian rocks and the Martian regolith. The results indicate that changes in composition of subgroups of Martian rocks have negligible effects on the overall shielding properties because of the similarity of their constituents. The differences for dose and dose equivalent of these materials relative to those of Martian regolith are within 0.5 and 1 percent, respectively. Therefore, the analysis of Martian habitat construction options using in situ materials according to the Martian regolith model composition is reasonably accurate. Adding an epoxy to Martian regolith, which changes the major constituents of the material, enhances shielding properties because of the added hydrogenous constituents.
NASA Astrophysics Data System (ADS)
Badro, James; Fiquet, Guillaume; Guyot, François; Gregoryanz, Eugene; Occelli, Florent; Antonangeli, Daniele; d'Astuto, Matteo
2007-02-01
We measured compressional sound velocities in light element alloys of iron (FeO, FeSi, FeS, and FeS2) at high-pressure by inelastic X-ray scattering. This dataset provides new mineralogical constraints on the composition of Earth's core, and completes the previous sets formed by the pressure-density systematics for these compounds. Based on the combination of these datasets and their comparison with radial seismic models, we propose an average composition model of the Earth's core. We show that the incorporation of small amounts of silicon or oxygen is compatible with geophysical observations and geochemical abundances. The effect of nickel on the calculated light element contents is shown to be negligible. The preferred core model derived from our measurements is an inner core which contains 2.3 wt.% silicon and traces of oxygen, and an outer core containing 2.8 wt.% silicon and around 5.3 wt.% oxygen.
Multiscale Modeling of Dewetting Damage in Highly Filled Particulate Composites
NASA Astrophysics Data System (ADS)
Geubelle, P. H.; Inglis, H. M.; Kramer, J. D.; Patel, J. J.; Kumar, N. C.; Tan, H.
2008-02-01
Particle debonding or dewetting constitutes one of the key damage processes in highly filled particulate composites such as solid propellant and other energetic materials. To analyze this failure process, we have developed a multiscale finite element framework that combines, at the microscale, a nonlinear description of the binder response with a cohesive model of the damage process taking place in a representative periodic unit cell (PUC). To relate micro-scale damage to the macroscopic constitutive response of the material, we employ the mathematical theory of homogenization (MTH). After a description of the numerical scheme, we present the results of the damage response of a highly filled particulate composite subjected to a uniaxial macroscopic strain, and show the direct correlation between the complex damage processes taking place in the PUC and the nonlinear macroscopic constitutive response. We also present a detailed study of the PUC size and a comparison between the finite element MTH-based study and a micromechanics model of the dewetting process.
NASA Astrophysics Data System (ADS)
El Moumen, A.; Tarfaoui, M.; Lafdi, K.
2018-06-01
Elastic properties of laminate composites based Carbone Nanotubes (CNTs), used in military applications, were estimated using homogenization techniques and compared to the experimental data. The composite consists of three phases: T300 6k carbon fibers fabric with 5HS (satin) weave, baseline pure Epoxy matrix and CNTs added with 0.5%, 1%, 2% and 4%. Two step homogenization methods based RVE model were employed. The objective of this paper is to determine the elastic properties of structure starting from the knowledge of those of constituents (CNTs, Epoxy and carbon fibers fabric). It is assumed that the composites have a geometric periodicity and the homogenization model can be represented by a representative volume element (RVE). For multi-scale analysis, finite element modeling of unit cell based two step homogenization method is used. The first step gives the properties of thin film made of epoxy and CNTs and the second is used for homogenization of laminate composite. The fabric unit cell is chosen using a set of microscopic observation and then identified by its ability to enclose the characteristic periodic repeat in the fabric weave. The unit cell model of 5-Harness satin weave fabric textile composite is identified for numerical approach and their dimensions are chosen based on some microstructural measurements. Finally, a good comparison was obtained between the predicted elastic properties using numerical homogenization approach and the obtained experimental data with experimental tests.
NASA Astrophysics Data System (ADS)
El Moumen, A.; Tarfaoui, M.; Lafdi, K.
2017-08-01
Elastic properties of laminate composites based Carbone Nanotubes (CNTs), used in military applications, were estimated using homogenization techniques and compared to the experimental data. The composite consists of three phases: T300 6k carbon fibers fabric with 5HS (satin) weave, baseline pure Epoxy matrix and CNTs added with 0.5%, 1%, 2% and 4%. Two step homogenization methods based RVE model were employed. The objective of this paper is to determine the elastic properties of structure starting from the knowledge of those of constituents (CNTs, Epoxy and carbon fibers fabric). It is assumed that the composites have a geometric periodicity and the homogenization model can be represented by a representative volume element (RVE). For multi-scale analysis, finite element modeling of unit cell based two step homogenization method is used. The first step gives the properties of thin film made of epoxy and CNTs and the second is used for homogenization of laminate composite. The fabric unit cell is chosen using a set of microscopic observation and then identified by its ability to enclose the characteristic periodic repeat in the fabric weave. The unit cell model of 5-Harness satin weave fabric textile composite is identified for numerical approach and their dimensions are chosen based on some microstructural measurements. Finally, a good comparison was obtained between the predicted elastic properties using numerical homogenization approach and the obtained experimental data with experimental tests.
Belli, Sema; Eskitaşcioglu, Gürcan; Eraslan, Oguz; Senawongse, Pisol; Tagami, Junji
2005-08-01
The aim of this finite elemental stress analysis study was to evaluate the effect of hybrid layer on distribution and amount of stress formed under occlusal loading in a premolar tooth restored with composite or ceramic inlay. The mandibular premolar tooth was selected as the model based on the anatomical measurements suggested by Wheeler. The analysis is performed by using a Pentium II IBM compatible computer with the SAP 2000 structural analysis program. Four different mathematical models including the following structures were evaluated: 1) composite inlay, adhesive resin, and tooth structure; 2) composite inlay, adhesive resin, hybrid layer, and tooth structure; 3) ceramic inlay, adhesive resin, and tooth structure; 4) ceramic inlay, adhesive resin, hybrid layer, and tooth structure. Loading was applied from the occlusal surface of the restoration, and shear stresses under loading were evaluated. The findings were drawn by the Saplot program, and the results were analyzed by graphical comparison method. The output indicated that the hybrid layer acts as a stress absorber in models 2 and 4. The hybrid layer has also changed mathematical values of stress on cavity floors in both restoration types. Ceramic inlay collected the stress inside the body of the material, but the composite inlay directly transferred the stress through dental tissues. As a result, it was concluded that the hybrid layer has an effect on stress distribution under loading in a premolar tooth model restored with composite or ceramic inlay. Copyright 2005 Wiley Periodicals, Inc.
Microstructure-Based Computational Modeling of Mechanical Behavior of Polymer Micro/Nano Composites
2013-12-01
K. ......... 165 Fig. 5.11. Comparison between experimental data and calibrated numerical models for displacement control tests, at three different...displacement control simulation) for all mesh densities for both work-conjugate and non work-conjugate. ........................ 302 Fig. 9.3. Damage...some large deformation experimental tests (and also accepting the non -uniformity of the strain field). In the established well-known theorem for
NASA Astrophysics Data System (ADS)
Srirengan, Kanthikannan
The overall objective of this research was to develop the finite element code required to efficiently predict the strength of plain weave composite structures. Towards which, three-dimensional conventional progressive damage analysis was implemented to predict the strength of plain weave composites subjected to periodic boundary conditions. Also, modal technique for three-dimensional global/local stress analysis was developed to predict the failure initiation in plain weave composite structures. The progressive damage analysis was used to study the effect of quadrature order, mesh refinement and degradation models on the predicted damage and strength of plain weave composites subjected to uniaxial tension in the warp tow direction. A 1/32sp{nd} part of the representative volume element of a symmetrically stacked configuration was analyzed. The tow geometry was assumed to be sinusoidal. Graphite/Epoxy system was used. Maximum stress criteria and combined stress criteria were used to predict failure in the tows and maximum principal stress criterion was used to predict failure in the matrix. Degradation models based on logical reasoning, micromechanics idealization and experimental comparisons were used to calculate the effective material properties with of damage. Modified Newton-Raphson method was used to determine the incremental solution for each applied strain level. Using a refined mesh and the discount method based on experimental comparisons, the progressive damage and the strength of plain weave composites of waviness ratios 1/3 and 1/6 subjected to uniaxial tension in the warp direction have been characterized. Plain weave composites exhibit a brittle response in uniaxial tension. The strength decreases significantly with the increase in waviness ratio. Damage initiation and collapse were caused dominantly due to intra-tow cracking and inter-tow debonding respectively. The predicted strength of plain weave composites of racetrack geometry and waviness ratio 1/25.7 was compared with analytical predictions and experimental findings and was found to match well. To evaluate the performance of the modal technique, failure initiation in a short woven composite cantilevered plate subjected to end moment and transverse end load was predicted. The global/local predictions were found to reasonably match well with the conventional finite element predictions.
NASA Astrophysics Data System (ADS)
Bauters, Marijn; Bruneel, Stijn; Demol, Miro; Taveirne, Cys; Van Der Heyden, Dries; Boeckx, Pascal; Kearsley, Elizabeth; Cizungu, Landry; Verbeeck, Hans
2016-04-01
Tropical forests are key actors in the global carbon cycle. Predicting future responses of these forests to global change is challenging, but important for global climate models. However, our current understanding of such responses is limited, due to the complexity of forest ecosystems and the slow dynamics that inherently form these systems. Our understanding of ecosystem ecology and functioning could greatly benefit from experimental setups including strong environmental gradients in the tropics, as found on altitudinal transects. We setup two such transects in both South-America and Africa, focussing on shifts in carbon allocation, forest structure and functional composition. By a cross-continental comparison of both transects, we will gain insight in how different or alike both tropical forests biomes are in their responses, and how universal the observed adaption mechanisms are.
Furstoss, C; Reniers, B; Bertrand, M J; Poon, E; Carrier, J-F; Keller, B M; Pignol, J P; Beaulieu, L; Verhaegen, F
2009-05-01
A Monte Carlo (MC) study was carried out to evaluate the effects of the interseed attenuation and the tissue composition for two models of 125I low dose rate (LDR) brachytherapy seeds (Medi-Physics 6711, IBt InterSource) in a permanent breast implant. The effect of the tissue composition was investigated because the breast localization presents heterogeneities such as glandular and adipose tissue surrounded by air, lungs, and ribs. The absolute MC dose calculations were benchmarked by comparison to the absolute dose obtained from experimental results. Before modeling a clinical case of an implant in heterogeneous breast, the effects of the tissue composition and the interseed attenuation were studied in homogeneous phantoms. To investigate the tissue composition effect, the dose along the transverse axis of the two seed models were calculated and compared in different materials. For each seed model, three seeds sharing the same transverse axis were simulated to evaluate the interseed effect in water as a function of the distance from the seed. A clinical study of a permanent breast 125I implant for a single patient was carried out using four dose calculation techniques: (1) A TG-43 based calculation, (2) a full MC simulation with realistic tissues and seed models, (3) a MC simulation in water and modeled seeds, and (4) a MC simulation without modeling the seed geometry but with realistic tissues. In the latter, a phase space file corresponding to the particles emitted from the external surface of the seed is used at each seed location. The results were compared by calculating the relevant clinical metrics V85, V100, and V200 for this kind of treatment in the target. D90 and D50 were also determined to evaluate the differences in dose and compare the results to the studies published for permanent prostate seed implants in literature. The experimental results are in agreement with the MC absolute doses (within 5% for EBT Gafchromic film and within 7% for TLD-100). Important differences between the dose along the transverse axis of the seed in water and in adipose tissue are obtained (10% at 3.5 cm). The comparisons between the full MC and the TG-43 calculations show that there are no significant differences for V85 and V100. For V200, 8.4% difference is found coming mainly from the tissue composition effect. Larger differences (about 10.5% for the model 6711 seed and about 13% for the InterSource125) are determined for D90 and D50. These differences depend on the composition of the breast tissue modeled in the simulation. A variation in percentage by mass of the mammary gland and adipose tissue can cause important differences in the clinical dose metrics V200, D90, and D50. Even if the authors can conclude that clinically, the differences in V85, V100, and V200 are acceptable in comparison to the large variation in dose in the treated volume, this work demonstrates that the development of a MC treatment planning system for LDR brachytherapy will improve the dose determination in the treated region and consequently the dose-outcome relationship, especially for the skin toxicity.
NASA Astrophysics Data System (ADS)
Garg, Harish Kumar; Singh, Rupinder
2017-10-01
In the present work, to increase the application domain of fused deposition modelling (FDM) process, Nylon6-Fe powder based composite wire has been prepared as feed stock filament. Further for smooth functioning of feed stock filament without any change in the hardware and software of the commercial FDM setup, the mechanical properties of the newly prepared composite wire must be comparable/at par to the existing material i.e. ABS, P-430. So, keeping this in consideration; an effort has been made to model the peak elongation of in house developed feedstock filament comprising of Nylon6 and Fe powder (prepared on single screw extrusion process) for commercial FDM setup. The input parameters of single screw extruder (namely: barrel temperature, temperature of the die, speed of the screw, speed of the winding machine) and rheological property of material (melt flow index) has been modelled with peak elongation as the output by using response surface methodology. For validation of model the result of peak elongation obtained from the model equation the comparison was made with the results of actual experimentation which shows the variation of ±1 % only.
Prediction of mechanical properties of composites of HDPE/HA/EAA.
Albano, C; Perera, R; Cataño, L; Karam, A; González, G
2011-04-01
In this investigation, the behavior of the mechanical properties of composites of high-density polyethylene/hydroxyapatite (HDPE/HA) with and without ethylene-acrylic acid copolymer (EAA) as possible compatibilizer, was studied. Different mathematical models were used to predict their Young's modulus, tensile strength and elongation at break. A comparison with the experimental results shows that the theoretical models of Guth and Kerner modified can be used to predict the Young's modulus. On the other hand, the values obtained by the Verbeek model do not show a good agreement with the experimental data, since different factors that influence the mechanical properties are considered in this model such as: aspect ratio of the reinforcement, interfacial adhesion, porosity and binder content. TEM analysis confirms the discrepancies obtained between the experimental Young's modulus values and those predicted by the Verbeek model. The values of "P", "a" and "σ(A)" suggest that an interaction among the carboxylic groups of the copolymer and the hydroxyl groups of hydroxyapatite might be present. In composites with 20 and 30 wt% of filler, this interaction does not improve the Young's modulus values, since the deviations of the Verbeek model are significant. Copyright © 2010 Elsevier Ltd. All rights reserved.
Milewska, Magdalena; Mioduszewska, Milena; Pańczyk, Mariusz; Kucharska, Alicja; Sińska, Beata; Dąbrowska-Bender, Marta; Michota-Katulska, Ewa; Zegan, Magdalena; Szabla, Anna
2016-01-01
Both menopausal period and aging have influence on body composition, increase of total body fat and visceral fat in particular. We should be aware that changes in body composition, mainly fat translocation to abdominal region, can occur without significant changes in body weight. Therefore quantitative abdominal fat assessment should be our aim. Body composition analysis based on two compartment model and abdominal fat area assessment in cross section. Subjects in postmenopausal period (41 women) were recruited for this study and divided into 2 groups: group 1 - women aged 45-56 years and group 2 - women aged 57-79 years. Body composition analysis and abdominal fat area assessment were conducted by using bioelectrical impedance method with BioScan 920 (Maltron int.) accordingly with standardized procedure. Women in early postmenopausal stage (Group 1) had statistically significant lower total body fat percentage in comparison with women in late postmenopausal period (Group 2) (41.09 ± 7.72% vs. 50.7 ± 9.88%, p=0.0021). Also women in group 1 were characterized by significant lower visceral fat area (VAT) as well as subcutaneous fat area (SAT) in comparison with group 2 (respectively VAT 119.25 ± 30.09 cm2 vs. 199.36 ± 87.38 cm2, p=0.0011; SAT 175.19 ±57.67 cm2 vs. 223.4±74.29 cm2, p=0.0336). According to VAT criteria (>120 cm2), 44% of women in group 1 and 80% in group 2 had excess of visceral fat. Both total body fat and intra-abdominal fat increased with age, independently of weight changes.
Yoshikawa, Tetsuro; Osada, Yutaka
2015-01-01
Determining the composition of a bird’s diet and its seasonal shifts are fundamental for understanding the ecology and ecological functions of a species. Various methods have been used to estimate the dietary compositions of birds, which have their own advantages and disadvantages. In this study, we examined the possibility of using long-term volunteer monitoring data as the source of dietary information for 15 resident bird species in Kanagawa Prefecture, Japan. The data were collected from field observations reported by volunteers of regional naturalist groups. Based on these monitoring data, we calculated the monthly dietary composition of each bird species directly, and we also estimated unidentified items within the reported foraging episodes using Bayesian models that contained additional information regarding foraging locations. Next, to examine the validity of the estimated dietary compositions, we compared them with the dietary information for focal birds based on stomach analysis methods, collected from past literatures. The dietary trends estimated from the monitoring data were largely consistent with the general food habits determined from the previous studies of focal birds. Thus, the estimates based on the volunteer monitoring data successfully detected noticeable seasonal shifts in many of the birds from plant materials to animal diets during spring—summer. Comparisons with stomach analysis data supported the qualitative validity of the monitoring-based dietary information and the effectiveness of the Bayesian models for improving the estimates. This comparison suggests that one advantage of using monitoring data is its ability to detect dietary items such as fleshy fruits, flower nectar, and vertebrates. These results emphasize the potential importance of observation data collecting and mining by citizens, especially free descriptive observation data, for use in bird ecology studies. PMID:25723544
An online model composition tool for system biology models
2013-01-01
Background There are multiple representation formats for Systems Biology computational models, and the Systems Biology Markup Language (SBML) is one of the most widely used. SBML is used to capture, store, and distribute computational models by Systems Biology data sources (e.g., the BioModels Database) and researchers. Therefore, there is a need for all-in-one web-based solutions that support advance SBML functionalities such as uploading, editing, composing, visualizing, simulating, querying, and browsing computational models. Results We present the design and implementation of the Model Composition Tool (Interface) within the PathCase-SB (PathCase Systems Biology) web portal. The tool helps users compose systems biology models to facilitate the complex process of merging systems biology models. We also present three tools that support the model composition tool, namely, (1) Model Simulation Interface that generates a visual plot of the simulation according to user’s input, (2) iModel Tool as a platform for users to upload their own models to compose, and (3) SimCom Tool that provides a side by side comparison of models being composed in the same pathway. Finally, we provide a web site that hosts BioModels Database models and a separate web site that hosts SBML Test Suite models. Conclusions Model composition tool (and the other three tools) can be used with little or no knowledge of the SBML document structure. For this reason, students or anyone who wants to learn about systems biology will benefit from the described functionalities. SBML Test Suite models will be a nice starting point for beginners. And, for more advanced purposes, users will able to access and employ models of the BioModels Database as well. PMID:24006914
NASA Astrophysics Data System (ADS)
Zhang, Youjun; Sekine, Toshimori; He, Hongliang; Yu, Yin; Liu, Fusheng; Zhang, Mingjian
2014-07-01
The shock Hugoniot of an Fe-9 wt %Ni-10 wt %Si system as a model of the Earth's core has been measured up to ~280 GPa using a two-stage light-gas gun. The samples had an average density of 6.853 (±0.036) g/cm3. The relationship between shock velocity (Us) and particle velocity (up) can be described by Us (km/s) = 3.95 (±0.15) + 1.53 (±0.05) up (km/s). The calculated Hugoniot temperatures and the melting curve indicate that the model composition melts above a shock pressure of ~168 GPa, which is significantly lower than the shock-melting pressure of iron (~225 GPa). A comparison of the pressure-density (P-ρ) profiles between the model composition and the preliminary reference Earth model gives a silicon content close to 10 wt %, necessary to compensate the density deficit in the Earth's outer core from seismological observations, if silicon is present as a major light element in the Fe-Ni core system.
Effects of elevated temperature on the viscoplastic modeling of graphite/polymeric composites
NASA Technical Reports Server (NTRS)
Gates, Thomas S.
1991-01-01
To support the development of new materials for the design of next generation supersonic transports, a research program is underway at NASA to assess the long term durability of advanced polymer matrix composites (PMC's). One of main objectives of the program was to explore the effects of elevated temperature (23 to 200 C) on the constitutive model's material parameters. To achieve this goal, test data on the observed nonlinear, stress-strain behavior of IM7/5260 and IM7/8320 composites under tension and compression loading were collected and correlated against temperature. These tests, conducted under isothermal conditions using variable strain rates, included such phenomena as stress relaxation and short term creep. The second major goal was the verification of the model by comparison of analytical predictions and test results for off axis and angle ply laminates. Correlation between test and predicted behavior was performed for specimens of both material systems over a range of temperatures. Results indicated that the model provided reasonable predictions of material behavior in load or strain controlled tests. Periods of loading, unloading, stress relaxation, and creep were accounted for.
Lapotre, Mathieu G.A.; Ehlmann, B. L.; Minson, Sarah E.; Arvidson, R. E.; Ayoub, F.; Fraeman, A. A.; Ewing, R. C.; Bridges, N. T.
2017-01-01
During its ascent up Mount Sharp, the Mars Science Laboratory Curiosity rover traversed the Bagnold Dune Field. We model sand modal mineralogy and grain size at four locations near the rover traverse, using orbital shortwave infrared single scattering albedo spectra and a Markov-Chain Monte Carlo implementation of Hapke's radiative transfer theory to fully constrain uncertainties and permitted solutions. These predictions, evaluated against in situ measurements at one site from the Curiosity rover, show that XRD-measured mineralogy of the basaltic sands is within the 95% confidence interval of model predictions. However, predictions are relatively insensitive to grain size and are non-unique, especially when modeling the composition of minerals with solid solutions. We find an overall basaltic mineralogy and show subtle spatial variations in composition in and around the Bagnold dunes, consistent with a mafic enrichment of sands with cumulative transport distance by sorting of olivine, pyroxene, and plagioclase grains during aeolian saltation. Furthermore, the large variations in Fe and Mg abundances (~20 wt%) at the Bagnold Dunes suggest that compositional variability induced by wind sorting may be enhanced by local mixing with proximal sand sources. Our estimates demonstrate a method for orbital quantification of composition with rigorous uncertainty determination and provide key constraints for interpreting in situ measurements of compositional variability within martian aeolian sandstones.
Comparing and improving reconstruction methods for proxies based on compositional data
NASA Astrophysics Data System (ADS)
Nolan, C.; Tipton, J.; Booth, R.; Jackson, S. T.; Hooten, M.
2017-12-01
Many types of studies in paleoclimatology and paleoecology involve compositional data. Often, these studies aim to use compositional data to reconstruct an environmental variable of interest; the reconstruction is usually done via the development of a transfer function. Transfer functions have been developed using many different methods. Existing methods tend to relate the compositional data and the reconstruction target in very simple ways. Additionally, the results from different methods are rarely compared. Here we seek to address these two issues. First, we introduce a new hierarchical Bayesian multivariate gaussian process model; this model allows for the relationship between each species in the compositional dataset and the environmental variable to be modeled in a way that captures the underlying complexities. Then, we compare this new method to machine learning techniques and commonly used existing methods. The comparisons are based on reconstructing the water table depth history of Caribou Bog (an ombrotrophic Sphagnum peat bog in Old Town, Maine, USA) from a new 7500 year long record of testate amoebae assemblages. The resulting reconstructions from different methods diverge in both their resulting means and uncertainties. In particular, uncertainty tends to be drastically underestimated by some common methods. These results will help to improve inference of water table depth from testate amoebae. Furthermore, this approach can be applied to test and improve inferences of past environmental conditions from a broad array of paleo-proxies based on compositional data
A molecular investigation of soil organic carbon composition across a subalpine catchment
Hsu, Hsiao-Tieh; Lawrence, Corey R.; Winnick, Matthew J.; Bargar, John R.; Maher, Katharine
2018-01-01
The dynamics of soil organic carbon (SOC) storage and turnover are a critical component of the global carbon cycle. Mechanistic models seeking to represent these complex dynamics require detailed SOC compositions, which are currently difficult to characterize quantitatively. Here, we address this challenge by using a novel approach that combines Fourier transform infrared spectroscopy (FT-IR) and bulk carbon X-ray absorption spectroscopy (XAS) to determine the abundance of SOC functional groups, using elemental analysis (EA) to constrain the total amount of SOC. We used this SOC functional group abundance (SOC-fga) method to compare variability in SOC compositions as a function of depth across a subalpine watershed (East River, Colorado, USA) and found a large degree of variability in SOC functional group abundances between sites at different elevations. Soils at a lower elevation are predominantly composed of polysaccharides, while soils at a higher elevation have more substantial portions of carbonyl, phenolic, or aromatic carbon. We discuss the potential drivers of differences in SOC composition between these sites, including vegetation inputs, internal processing and losses, and elevation-driven environmental factors. Although numerical models would facilitate the understanding and evaluation of the observed SOC distributions, quantitative and meaningful measurements of SOC molecular compositions are required to guide such models. Comparison among commonly used characterization techniques on shared reference materials is a critical next step for advancing our understanding of the complex processes controlling SOC compositions.
NASA Astrophysics Data System (ADS)
Zhang, Jin S.; Bass, Jay D.
2016-09-01
We present the elastic properties of San Carlos olivine up to P = 12.8(8) GPa and T = 1300(200) K using Brillouin spectroscopy with CO2 laser heating. A comparison of our results with the global seismic model AK135 yields average olivine content near 410 km depth of about 37% and 43% in a dry and wet (1.9 wt % H2O) upper mantle, respectively. These olivine contents are far less than in the pyrolite model. However, comparisons of our results with regional seismic models lead to very different conclusions. High olivine contents of up to 87% are implied by seismic models of the western U.S. and eastern Pacific regions. In contrast, we infer less than 35% olivine under the central Pacific. Strong variations of olivine content and upper mantle lithologies near the 410 km discontinuity are suggested by regional seismic models.
Wang, Zhengzhi; Chiang, Martin Y M
2016-04-01
The effect of filler content in dental restorative composites on the polymerization shrinkage stress (PS) is not straightforward and has caused much debate in the literature. Our objective in this study was to clarify the PS/filler content relationship based on analytical and experimental approaches, so that guidelines for materials comparison in terms of PS and clinical selection of dental composites with various filler content can be provided. Analytically, a simplified model based on linear elasticity was utilized to predict PS as a function of filler content under various compliances of the testing system, a cantilever beam-based instrument used in this study. The predictions were validated by measuring PS of composites synthesized using 50/50 mixtures of two common dimethacrylate resins with a variety of filler contents. Both experiments and predictions indicated that the influence of filler content on the PS highly depended on the compliance of the testing system. Within the clinic-relevant range of compliances and for the specific sample configuration tested, the PS increased with increasing filler content at low compliance of instrument, while increasing the compliance caused the effect of filler content on the PS to gradually diminish. Eventually, at high compliance, the PS inverted and decreased with increasing filler content. This compliance-dependent effect of filler content on PS suggests: (1) for materials comparison in terms of PS, the specific compliance at which the comparison being done should always be reported and (2) clinically, composites with relatively lower filler content could be selected for such cavities with relatively lower compliance (e.g. a Class-I cavity with thick tooth walls or the basal part in a cavity) and vice versa in order to reduce the final PS. Published by Elsevier Ltd.
A general mixture theory. I. Mixtures of spherical molecules
NASA Astrophysics Data System (ADS)
Hamad, Esam Z.
1996-08-01
We present a new general theory for obtaining mixture properties from the pure species equations of state. The theory addresses the composition and the unlike interactions dependence of mixture equation of state. The density expansion of the mixture equation gives the exact composition dependence of all virial coefficients. The theory introduces multiple-index parameters that can be calculated from binary unlike interaction parameters. In this first part of the work, details are presented for the first and second levels of approximations for spherical molecules. The second order model is simple and very accurate. It predicts the compressibility factor of additive hard spheres within simulation uncertainty (equimolar with size ratio of three). For nonadditive hard spheres, comparison with compressibility factor simulation data over a wide range of density, composition, and nonadditivity parameter, gave an average error of 2%. For mixtures of Lennard-Jones molecules, the model predictions are better than the Weeks-Chandler-Anderson perturbation theory.
Lamb wave propagation in a restricted geometry composite pi-joint specimen
NASA Astrophysics Data System (ADS)
Blackshire, James L.; Soni, Som
2012-05-01
The propagation of elastic waves in a material can involve a number of complex physical phenomena, resulting in both subtle and dramatic effects on detected signal content. In recent years, the use of advanced methods for characterizing and imaging elastic wave propagation and scattering processes has increased, where for example the use of scanning laser vibrometry and advanced computational models have been used very effectively to identify propagating modes, scattering phenomena, and damage feature interactions. In the present effort, the propagation of Lamb waves within a narrow, constrained geometry composite pi-joint structure are studied using 3D finite element models and scanning laser vibrometry measurements, where the effects of varying sample thickness, complex joint curvatures, and restricted structure geometries are highlighted, and a direct comparison of computational and experimental results are provided for simulated and realistic geometry composite pi-joint samples.
Micromechanical performance of interfacial transition zone in fiber-reinforced cement matrix
NASA Astrophysics Data System (ADS)
Zacharda, V.; Němeček, J.; Štemberk, P.
2017-09-01
The paper investigates microstructure, chemical composition and micromechanical behavior of an interfacial transition zone (ITZ) in steel fiber reinforced cement matrix. For this goal, a combination of scanning electron microscopy (SEM), nanoindentation and elastic homogenization theory are used. The investigated sample of cement paste with dispersed reinforcement consists of cement CEM I 42,5R and a steel fiber TriTreg 50 mm. The microscopy revealed smaller portion of clinkers and larger porosity in the ITZ. Nanoindentation delivered decreased elastic modulus in comparison with cement bulk (67%) and the width of ITZ (∼ 40 μm). The measured properties served as input parameters for a simple two-scale model for elastic properties of the composite. Although, no major influence of ITZ properties on the composite elastic behavior was found, the findings about the ITZ reduced properties and its size can serve as input to other microstructural fracture based models.
Glass science tutorial: Lecture No. 7, Waste glass technology for Hanford
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, A.A.
1995-07-01
This paper presents the details of the waste glass tutorial session that was held to promote knowledge of waste glass technology and how this can be used at the Hanford Reservation. Topics discussed include: glass properties; statistical approach to glass development; processing properties of nuclear waste glass; glass composition and the effects of composition on durability; model comparisons of free energy of hydration; LLW glass structure; glass crystallization; amorphous phase separation; corrosion of refractories and electrodes in waste glass melters; and glass formulation for maximum waste loading.
NASA Technical Reports Server (NTRS)
Hodge, Andrew J.; Nettles, Alan T.; Jackson, Justin R.
2011-01-01
Notched (open hole) composite laminates were tested in compression. The effect on strength of various sizes of through holes was examined. Results were compared to the average stress criterion model. Additionally, laminated sandwich structures were damaged from low-velocity impact with various impact energy levels and different impactor geometries. The compression strength relative to damage size was compared to the notched compression result strength. Open-hole compression strength was found to provide a reasonable bound on compression after impact.
Busing, Richard T.; Solomon, Allen M.
2004-01-01
Two forest dynamics simulators are compared along climatic gradients in the Pacific Northwest. The ZELIG and FORCLIM models are tested against forest survey data from western Oregon. Their ability to generate accurate patterns of forest basal area and species composition is evaluated for series of sites with contrasting climate. Projections from both models approximate the basal area and composition patterns for three sites along the elevation gradient at H.J. Andrews Experimental Forest in the western Cascade Range. The ZELIG model is somewhat more accurate than FORCLIM at the two low-elevation sites. Attempts to project forest composition along broader climatic gradients reveal limitations of ZELIG, however. For example, ZELIG is less accurate than FORCLIM at projecting the average composition of a west Cascades ecoregion selected for intensive analysis. Also, along a gradient consisting of several sites on an east to west transect at 44.1oN latitude, both the FORCLIM model and the actual data show strong changes in composition and total basal area, but the ZELIG model shows a limited response. ZELIG does not simulate the declines in forest basal area and the diminished dominance of mesic coniferous species east of the Cascade crest. We conclude that ZELIG is suitable for analyses of certain sites for which it has been calibrated. FORCLIM can be applied in analyses involving a range of climatic conditions without requiring calibration for specific sites.
Constitutive Behavior and Finite Element Analysis of FRP Composite and Concrete Members.
Ann, Ki Yong; Cho, Chang-Geun
2013-09-10
The present study concerns compressive and flexural constitutive models incorporated into an isoparametric beam finite element scheme for fiber reinforced polymer (FRP) and concrete composites, using their multi-axial constitutive behavior. The constitutive behavior of concrete was treated in triaxial stress states as an orthotropic hypoelasticity-based formulation to determine the confinement effect of concrete from a three-dimensional failure surface in triaxial stress states. The constitutive behavior of the FRP composite was formulated from the two-dimensional classical lamination theory. To predict the flexural behavior of circular cross-section with FRP sheet and concrete composite, a layered discretization of cross-sections was incorporated into nonlinear isoparametric beam finite elements. The predicted constitutive behavior was validated by a comparison to available experimental results in the compressive and flexural beam loading test.
Analysis of composite plates by using mechanics of structure genome and comparison with ANSYS
NASA Astrophysics Data System (ADS)
Zhao, Banghua
Motivated by a recently discovered concept, Structure Genome (SG) which is defined as the smallest mathematical building block of a structure, a new approach named Mechanics of Structure Genome (MSG) to model and analyze composite plates is introduced. MSG is implemented in a general-purpose code named SwiftComp(TM), which provides the constitutive models needed in structural analysis by homogenization and pointwise local fields by dehomogenization. To improve the user friendliness of SwiftComp(TM), a simple graphic user interface (GUI) based on ANSYS Mechanical APDL platform, called ANSYS-SwiftComp GUI is developed, which provides a convenient way to create some common SG models or arbitrary customized SG models in ANSYS and invoke SwiftComp(TM) to perform homogenization and dehomogenization. The global structural analysis can also be handled in ANSYS after homogenization, which could predict the global behavior and provide needed inputs for dehomogenization. To demonstrate the accuracy and efficiency of the MSG approach, several numerical cases are studied and compared using both MSG and ANSYS. In the ANSYS approach, 3D solid element models (ANSYS 3D approach) are used as reference models and the 2D shell element models created by ANSYS Composite PrepPost (ACP approach) are compared with the MSG approach. The results of the MSG approach agree well with the ANSYS 3D approach while being as efficient as the ACP approach. Therefore, the MSG approach provides an efficient and accurate new way to model composite plates.
Design Optimization and Residual Strength Assessment of a Cylindrical Composite Shell Structure
NASA Technical Reports Server (NTRS)
Rais-Rohani, Masoud
2000-01-01
A summary of research conducted during the specified period is presented. The research objectives included the investigation of an efficient technique for the design optimization and residual strength assessment of a semi-monocoque cylindrical shell structure made of composite materials. The response surface methodology is used in modeling the buckling response of individual skin panels under the combined axial compression and shear loading. These models are inserted into the MSC/NASTRAN code for design optimization of the cylindrical structure under a combined bending-torsion loading condition. The comparison between the monolithic and sandwich skin design cases indicated a 35% weight saving in using sandwich skin panels. In addition, the residual strength of the optimum design was obtained by identifying the most critical region of the structure and introducing a damage in the form of skin-stringer and skin-stringer-frame detachment. The comparison between the two skin design concepts indicated that the sandwich skin design is capable of retaining a higher residual strength than its monolithic counterpart. The results of this investigation are presented and discussed in this report.
Bartlett, Jill K; Maher, William A; Purss, Matthew B J
2018-03-15
Near infrared spectroscopy (NIRS) quantitative modelling was used to measure the protein, lipid and glycogen composition of five marine bivalve species (Saccostrea glomerata, Ostrea angasi, Crassostrea gigas, Mytilus galloprovincialis and Anadara trapezia) from multiple locations and seasons. Predictive models were produced for each component using individual species and aggregated sample populations for the three oyster species (S. glomerata, O. angasi and C. gigas) and for all five bivalve species. Whole animal tissues were freeze dried, ground to >20μm and scanned by NIRS. Protein, lipid and glycogen composition were determined by traditional chemical analyses and calibration models developed to allow rapid NIRS-measurement of these components in the five bivalve species. Calibration modelling was performed using wavelet selection, genetic algorithms and partial least squares analysis. Model quality was assessed using RPIQ and RMESP. For protein composition, single species model results had RPIQ values between 2.4 and 3.5 and RMSEP between 8.6 and 18%, the three oyster model had an RPIQ of 2.6 and an RMSEP of 10.8% and the five bivalve species had an RPIQ of 3.6 and RMSEP of 8.7% respectively. For lipid composition, single species models achieved RPIQ values between 2.9 and 5.3 with RMSEP between 9.1 and 11.2%, the oyster model had an RPIQ of 3.6 and RMSEP of 6.8 and the five bivalve model had an RPIQ of 5.2 and RMSEP of 6.8% respectively. For glycogen composition, the single species models had RPIQs between 3.8 and 18.9 with RMSEP between 3.5 and 9.2%, the oyster model had an RPIQ of 5.5 and RMSEP of 7.1% and the five bivalve model had an RPIQ of 4 and RMSEP of 7.6% respectively. Comparison between individual species models and aggregated models for three oyster species and five bivalve species for each component indicate that aggregating data from like species produces high quality models with robust and reliable quantitative application. The benefit of aggregated multi-species models include a greater range of bivalve composition, greater application to different bivalve species and reduced need to extensively sample individual species, that is required for obtain robust single species NIRS models. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bartlett, Jill K.; Maher, William A.; Purss, Matthew B. J.
2018-03-01
Near infrared spectroscopy (NIRS) quantitative modelling was used to measure the protein, lipid and glycogen composition of five marine bivalve species (Saccostrea glomerata, Ostrea angasi, Crassostrea gigas, Mytilus galloprovincialis and Anadara trapezia) from multiple locations and seasons. Predictive models were produced for each component using individual species and aggregated sample populations for the three oyster species (S. glomerata, O. angasi and C. gigas) and for all five bivalve species. Whole animal tissues were freeze dried, ground to > 20 μm and scanned by NIRS. Protein, lipid and glycogen composition were determined by traditional chemical analyses and calibration models developed to allow rapid NIRS-measurement of these components in the five bivalve species. Calibration modelling was performed using wavelet selection, genetic algorithms and partial least squares analysis. Model quality was assessed using RPIQ and RMESP. For protein composition, single species model results had RPIQ values between 2.4 and 3.5 and RMSEP between 8.6 and 18%, the three oyster model had an RPIQ of 2.6 and an RMSEP of 10.8% and the five bivalve species had an RPIQ of 3.6 and RMSEP of 8.7% respectively. For lipid composition, single species models achieved RPIQ values between 2.9 and 5.3 with RMSEP between 9.1 and 11.2%, the oyster model had an RPIQ of 3.6 and RMSEP of 6.8 and the five bivalve model had an RPIQ of 5.2 and RMSEP of 6.8% respectively. For glycogen composition, the single species models had RPIQs between 3.8 and 18.9 with RMSEP between 3.5 and 9.2%, the oyster model had an RPIQ of 5.5 and RMSEP of 7.1% and the five bivalve model had an RPIQ of 4 and RMSEP of 7.6% respectively. Comparison between individual species models and aggregated models for three oyster species and five bivalve species for each component indicate that aggregating data from like species produces high quality models with robust and reliable quantitative application. The benefit of aggregated multi-species models include a greater range of bivalve composition, greater application to different bivalve species and reduced need to extensively sample individual species, that is required for obtain robust single species NIRS models.
Additive Manufacturing of Ultem Polymers and Composites
NASA Technical Reports Server (NTRS)
Chuang, Kathy C.; Grady, Joseph E.; Draper, Robert D.; Shin, Euy-Sik E.; Patterson, Clark; Santelle, Thomas D.
2015-01-01
The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimdes Ultem 9085 and experimental Ultem 1000 filled with 10 chopped carbon fiber. A property comparison between FDM-printed and injection molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25-31. Coupons of Ultem 9085, experimental Ultem 1000 composites and XH6050 resin were tested at room temperature and 400F to evaluate their corresponding mechanical properties.
Tensile strength of ramie yarn (spinning by machine)/HDPE thermoplastic matrix composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banowati, Lies, E-mail: liesbano@gmail.com; Hadi, Bambang K., E-mail: bkhadi@ae.itb.ac.id; Suratman, Rochim, E-mail: rochim@material.itb.ac.id
2016-03-29
Technological developments should be trooped to prevent a gap between technology and environmental sustainability, then it needs to be developed “Green technology”. In this research is making of green composites which use natural fiber ramie as reinforcement. Whereas the matrix used was HDPE (High Density Polyethylene) thermoplastic polymer which could be recycled and had a good formability and flexibility. The ramie yarns and fibers for unidirectional (0°) direction respectively were mixed with HDPE powder and processed using hot compression molding. The surface morphology was observed by SEM (Scanning Electrone Microscopy). Results showed that both tensile strength of the ramie fiber/HDPEmore » composites increased in comparison with the ramie yarn (spinning by machine)/HDPE composites. However, the ramie yarn (spinning by machine)/HDPE composites have a good producibility for wider application. Analysis of the test results using the Weibull distribution as approaches to modeling the reliability of the specimens.« less
Isothermal fatigue behavior of a (90)(sub 8) SiC/Ti-15-3 composite at 426 C
NASA Technical Reports Server (NTRS)
Gayda, John; Gabb, Timothy P.
1991-01-01
The transverse fatigue behavior of a unidirectional, SiC/Ti-15-3 composite (35 v/o SiC, (90)(sub 8)) was evaluated at 426 C. The fatigue behavior of the composite along the fiber direction (0)(sub 8) and of unreinforced Ti-15-3 alloy were also studied for comparison purposes. The (90)(sub 8) composite fatigue life was much shorter then (0)(sub 8) life. Further, (90)(sub 8) fatigue life was also found to be far lower than that of the unreinforced Ti-15-3 alloys. A simple one-dimensional model for (90)(sub 8) fatigue behavior indicated that the short life of the composite in this orientation resulted, in large part, from weak fiber-matrix bond strength. This conclusion was supported by fractographic evidence showing numerous initiation sites along the fiber-matrix interfaces.
NASA Technical Reports Server (NTRS)
Bowles, David E.
1990-01-01
Space simulated thermally induced deformations and stresses in continuous fiber reinforced composites were investigated with a micromechanics analysis. The investigation focused on two primary areas. First, available explicit expressions for predicting the effective coefficients of thermal expansion (CTEs) for a composite were compared with each other, and with a finite element (FE) analysis, developed specifically for this study. Analytical comparisons were made for a wide range of fiber/matrix systems, and predicted values were compared with experimental data. The second area of investigation focused on the determination of thermally induced stress fields in the individual constituents. Stresses predicted from the FE analysis were compared to those predicted from a closed-form solution to the composite cylinder (CC) model, for two carbon fiber/epoxy composites. A global-local formulation, combining laminated plate theory and FE analysis, was used to determine the stresses in multidirectional laminates. Thermally induced damage initiation predictions were also made.
NASA Astrophysics Data System (ADS)
Kerr, Alexander; Burt, Timothy; Mullen, Kieran; Glatzhofer, Daniel; Houck, Matthew; Huang, Paul
The use of carbon nanotubes (CNTs) to improve the thermal conductivity of composite materials is thwarted by their large thermal boundary resistance. We study how to overcome this Kapitza resistance by functionalizing CNTs with mixed molecular chains. Certain configurations of chains improve the transmission of thermal vibrations through our systems by decreasing phonon mismatch between the CNTs and their surrounding matrix. Through the calculation of vibrational normal modes and Green's functions, we develop a variety of computational metrics to compare the thermal conductivity (κ) of our systems. We show how different configurations of attached chains affect the samples' κ values by varying chain identity, chain length, number of chains, and heat driver behavior. We vary the parameters to maximize κ. To validate and optimize these metrics, we perform molecular dynamics simulations for comparison. We also present experimental results of composites enhanced with CNTs and make comparisons to the theory. We observe that some composites are thermally improved with the inclusion of CNTs, while others are scarcely changed, in agreement with theoretical models. This work was supported by NSF Grant DMR-1310407.
Experimental and Numerical Analysis of Notched Composites Under Tension Loading
NASA Astrophysics Data System (ADS)
Aidi, Bilel; Case, Scott W.
2015-12-01
Experimental quasi-static tests were performed on center notched carbon fiber reinforced polymer (CFRP) composites having different stacking sequences made of G40-600/5245C prepreg. The three-dimensional Digital Image Correlation (DIC) technique was used during quasi-static tests conducted on quasi-isotropic notched samples to obtain the distribution of strains as a function of applied stress. A finite element model was built within Abaqus to predict the notched strength and the strain profiles for comparison with measured results. A user-material subroutine using the multi-continuum theory (MCT) as a failure initiation criterion and an energy-based damage evolution law as implemented by Autodesk Simulation Composite Analysis (ASCA) was used to conduct a quantitative comparison of strain components predicted by the analysis and obtained in the experiments. Good agreement between experimental data and numerical analyses results are observed. Modal analysis was carried out to investigate the effect of static damage on the dominant frequencies of the notched structure using the resulted degraded material elements. The first in-plane mode was found to be a good candidate for tracking the level of damage.
NASA Astrophysics Data System (ADS)
Golestanian, Hossein
This research focuses on modeling Resin Transfer Molding process for manufacture of composite parts with woven fiber mats. Models are developed to determine cure dependent stiffness matrices for composites manufactured with two types of woven fiber mats. Five-harness carbon and eight-harness fiberglass mats with EPON 826 resin composites are considered. The models presented here take into account important material/process parameters with emphasis on; (1) The effects of cure-dependent resin mechanical properties, (2) Fiber undulation due to the weave of the fiber fill and warp bundles, and (3) Resin interaction with the fiber bundles at a microscopic scale. Cure-dependent mechanical properties were then used in numerical models to determine residual stresses and deformation in the composite parts. The complete cure cycle was modeled in these analyses. Also the cool down stage after the composite cure was analyzed. The effect of 5% resin shrinkage on residual stresses and deformations was also investigated. In the second part of the study, Finite Element models were developed to simulate mold filling in RTM processes. Resin flow in the fiber mats was modeled as flow through porous media. Physical models were also developed to investigate resin flow behavior into molds of rectangular and irregular shapes. Silicone fluids of 50 and 100 centistoke viscosities as well as EPON 826 epoxy resin were used in the mold filling experiments. The reinforcements consisted of several layers of woven fiberglass and carbon fiber mats. The effects of injection pressure, fluid viscosity, type of reinforcement, and mold geometry on mold filling times were investigated. Fiber mat permeabilities were determined experimentally for both types of reinforcements. Comparison of experimental and numerical resin front positions indicated the importance of edge effects in resin flow behavior in small cavities. The resin front positions agreed well for the rectangular mold geometry.
Material Model Evaluation of a Composite Honeycomb Energy Absorber
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Annett, Martin S.; Fasanella, Edwin L.; Polanco, Michael A.
2012-01-01
A study was conducted to evaluate four different material models in predicting the dynamic crushing response of solid-element-based models of a composite honeycomb energy absorber, designated the Deployable Energy Absorber (DEA). Dynamic crush tests of three DEA components were simulated using the nonlinear, explicit transient dynamic code, LS-DYNA . In addition, a full-scale crash test of an MD-500 helicopter, retrofitted with DEA blocks, was simulated. The four material models used to represent the DEA included: *MAT_CRUSHABLE_FOAM (Mat 63), *MAT_HONEYCOMB (Mat 26), *MAT_SIMPLIFIED_RUBBER/FOAM (Mat 181), and *MAT_TRANSVERSELY_ANISOTROPIC_CRUSHABLE_FOAM (Mat 142). Test-analysis calibration metrics included simple percentage error comparisons of initial peak acceleration, sustained crush stress, and peak compaction acceleration of the DEA components. In addition, the Roadside Safety Verification and Validation Program (RSVVP) was used to assess similarities and differences between the experimental and analytical curves for the full-scale crash test.
Simulation of an Impact Test of the All-Composite Lear Fan Aircraft
NASA Technical Reports Server (NTRS)
Stockwell, Alan E.; Jones, Lisa E. (Technical Monitor)
2002-01-01
An MSC.Dytran model of an all-composite Lear Fan aircraft fuselage was developed to simulate an impact test conducted at the NASA Langley Research Center Impact Dynamics Research Facility (IDRF). The test was the second of two Lear Fan impact tests. The purpose of the second test was to evaluate the performance of retrofitted composite energy-absorbing floor beams. A computerized photogrammetric survey was performed to provide airframe geometric coordinates, and over 5000 points were processed and imported into MSC.Patran via an IGES file. MSC.Patran was then used to develop the curves and surfaces and to mesh the finite element model. A model of the energy-absorbing floor beams was developed separately and then integrated into the Lear Fan model. Structural responses of components such as the wings were compared with experimental data or previously published analytical data wherever possible. Comparisons with experimental results were used to guide structural model modifications to improve the simulation performance. This process was based largely on qualitative (video and still camera images and post-test inspections) rather than quantitative results due to the relatively few accelerometers attached to the structure.
NASA Astrophysics Data System (ADS)
Morard, G.; Antonangeli, D.; Andrault, D.; Nakajima, Y.
2017-12-01
The composition of the Earth's core is still an open question. Although mostly composed of iron, it contains impurities that lower its density and melting point with respect to pure Fe. Knowledge of the nature and abundance of light elements (O, S, Si, C or H) in the core has major implications for establishing the bulk composition of the Earth and for building the model of Earth's differentiation. Geochemical models of the Earth's formation point out that its building blocks were depleted in volatile elements compared to the chondritic abundance, therefore light elements such as S, H or C cannot be the major elements alloyed with iron in the Earth's core. However, such models should be compatible with the comparison of seismic properties of the Earth's core and physical properties of iron alloys under extreme conditions, such as sound velocity or density of solid and liquid. The present work will discuss the recent progress for compositional model issued from studies of phase diagrams and elastic properties of iron alloys under core conditions and highlight the compatibility of volatile elements with observed properties of the Earth's core, in potential contradiction with models derived from metal-silicate partitioning experiments.
Comparison of measured and calculated composition of irradiated EBR-II blanket assemblies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grimm, K. N.
1998-07-13
In anticipation of processing irradiated EBR-II depleted uranium blanket subassemblies in the Fuel Conditioning Facility (FCF) at ANL-West, it has been possible to obtain a limited set of destructive chemical analyses of samples from a single EBR-II blanket subassembly. Comparison of calculated values with these measurements is being used to validate a depletion methodology based on a limited number of generic models of EBR-II to simulate the irradiation history of these subassemblies. Initial comparisons indicate these methods are adequate to meet the operations and material control and accountancy (MC and A) requirements for the FCF, but also indicate several shortcomingsmore » which may be corrected or improved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Yifei; Kim, Honggyu; Zuo, Jian-Min
2014-07-07
We propose a digital model for high quality superlattices by including fluctuations in the superlattice periods. The composition and strain profiles are assumed to be coherent and persist throughout the superlattice. Using this model, we have significantly improved the fit with experimental X-ray diffraction data recorded from the nominal InAs/GaSb superlattice. The lattice spacing of individual layers inside the superlattice and the extent of interfacial intermixing are refined by including both (002) and (004) and their satellite peaks in the fitting. For the InAs/GaSb strained layer superlattice, results show: (i) the GaSb-on-InAs interface is chemically sharper than the InAs-on-GaSb interface,more » (ii) the GaSb layers experience compressive strain with In incorporation, (iii) there are interfacial strain associated with InSb-like bonds in GaSb and GaAs-like bonds in InAs, (iv) Sb substitutes a significant amount of In inside InAs layer near the InAs-on-GaSb interface. For support, we show that the composition profiles determined by X-ray diffraction are in good agreement with those obtained from atom probe tomography measurement. Comparison with the kinetic growth model shows a good agreement in terms of the composition profiles of anions, while the kinetic model underestimates the intermixing of cations.« less
Gokmen-Karasu, Ayse Filiz; Aydin, Serdar; Sonmez, Fatma Cavide; Adanir, Ilknur; Ilhan, Gulsah; Ates, Seda
2017-11-01
Peritonization of mesh during sacrohysteropexy is generally advocated to prevent adhesions to the viscera; however, randomized clinical trials are lacking, and peritonization may not be completely possible in a laparoscopic hysteropexy procedure. Our main objective was to describe a basic experimental rat sacrohysteropexy model. We hypothesized that even when peritoneal closure was omitted, using composite mesh would result in less adhesions to the viscera. Twenty in-bred female virgin Wistar Hannover rats were used in this study. Standardized hysteropexy procedure and adhesion model is described step by step with two different mesh materials: polypropylene and a composite polyester. Mesh was anchored between the posterior cervix and anterior longitudinal ligament of the lumbar vertebrae. Macroscopic adhesion scores and histopathological tissue reaction was investigated. Macroscopically, the surface area involved in adhesions was similar between groups. However, adhesions in the polypropylene group were more dense, required sharp dissection for lysis, and yielded higher total macroscopic adhesion scores (p < 0.001). Histologically, a more pronounced host inflammatory response was encountered in the polyester group (p < 0.001). We describe a rat hysteropexy model and a previously established uterine adhesion model. Adhesion scores in the composite mesh group were lower, and bowel involvement was not seen. Our findings are promising, and further research investigating antiadhesive composite mesh use for hysterosacropexy would be appropriate, especially when peritoneal closure is omitted.
NASA Technical Reports Server (NTRS)
Arnold, Steven M. (Technical Monitor); Bansal, Yogesh; Pindera, Marek-Jerzy
2004-01-01
The High-Fidelity Generalized Method of Cells is a new micromechanics model for unidirectionally reinforced periodic multiphase materials that was developed to overcome the original model's shortcomings. The high-fidelity version predicts the local stress and strain fields with dramatically greater accuracy relative to the original model through the use of a better displacement field representation. Herein, we test the high-fidelity model's predictive capability in estimating the elastic moduli of periodic composites characterized by repeating unit cells obtained by rotation of an infinite square fiber array through an angle about the fiber axis. Such repeating unit cells may contain a few or many fibers, depending on the rotation angle. In order to analyze such multi-inclusion repeating unit cells efficiently, the high-fidelity micromechanics model's framework is reformulated using the local/global stiffness matrix approach. The excellent agreement with the corresponding results obtained from the standard transformation equations confirms the new model's predictive capability for periodic composites characterized by multi-inclusion repeating unit cells lacking planes of material symmetry. Comparison of the effective moduli and local stress fields with the corresponding results obtained from the original Generalized Method of Cells dramatically highlights the original model's shortcomings for certain classes of unidirectional composites.
Prediction of frozen food properties during freezing using product composition.
Boonsupthip, W; Heldman, D R
2007-06-01
Frozen water fraction (FWF), as a function of temperature, is an important parameter for use in the design of food freezing processes. An FWF-prediction model, based on concentrations and molecular weights of specific product components, has been developed. Published food composition data were used to determine the identity and composition of key components. The model proposed in this investigation had been verified using published experimental FWF data and initial freezing temperature data, and by comparison to outputs from previously published models. It was found that specific food components with significant influence on freezing temperature depression of food products included low molecular weight water-soluble compounds with molality of 50 micromol per 100 g food or higher. Based on an analysis of 200 high-moisture food products, nearly 45% of the experimental initial freezing temperature data were within an absolute difference (AD) of +/- 0.15 degrees C and standard error (SE) of +/- 0.65 degrees C when compared to values predicted by the proposed model. The predicted relationship between temperature and FWF for all analyzed food products provided close agreements with experimental data (+/- 0.06 SE). The proposed model provided similar prediction capability for high- and intermediate-moisture food products. In addition, the proposed model provided statistically better prediction of initial freezing temperature and FWF than previous published models.
Happell, Brenda; Stanton, Robert; Hodgetts, Danya; Scott, David
2016-01-01
Quality of life is shown to be lower in people diagnosed with mental illness in comparison to the general population. The aim of this study is to examine the Quality of life in a subset of people accessing mental health services in a regional Queensland Centre. Thirty-seven people accessing mental health services completed the SF36 Health Survey on three occasions. Differences and relationships between Physical Composite Scores and Mental Composite Scores, comparisons with Australian population norms, and temporal change in Quality of Life were examined. Physical Composite Scores were significantly different to, but significantly correlated with, Mental Composite Scores on each occasion. Physical Composite Scores and Mental Composite Scores were significantly different to population norms, and did not vary significantly across time. The poor Quality of life of people with mental illness remains a significant challenge for the mental health workforce.
NASA Astrophysics Data System (ADS)
Burgisser, Alain; Alletti, Marina; Scaillet, Bruno
2015-06-01
Modeling magmatic degassing, or how the volatile distribution between gas and melt changes at pressure varies, is a complex task that involves a large number of thermodynamical relationships and that requires dedicated software. This article presents the software D-Compress, which computes the gas and melt volatile composition of five element sets in magmatic systems (O-H, S-O-H, C-S-O-H, C-S-O-H-Fe, and C-O-H). It has been calibrated so as to simulate the volatiles coexisting with three common types of silicate melts (basalt, phonolite, and rhyolite). Operational temperatures depend on melt composition and range from 790 to 1400 °C. A specificity of D-Compress is the calculation of volatile composition as pressure varies along a (de)compression path between atmospheric and 3000 bars. This software was prepared so as to maximize versatility by proposing different sets of input parameters. In particular, whenever new solubility laws on specific melt compositions are available, the model parameters can be easily tuned to run the code on that composition. Parameter gaps were minimized by including sets of chemical species for which calibration data were available over a wide range of pressure, temperature, and melt composition. A brief description of the model rationale is followed by the presentation of the software capabilities. Examples of use are then presented with outputs comparisons between D-Compress and other currently available thermodynamical models. The compiled software and the source code are available as electronic supplementary materials.
In-process, non-destructive, dynamic testing of high-speed polymer composite rotors
NASA Astrophysics Data System (ADS)
Kuschmierz, Robert; Filippatos, Angelos; Günther, Philipp; Langkamp, Albert; Hufenbach, Werner; Czarske, Jürgen; Fischer, Andreas
2015-03-01
Polymer composite rotors are lightweight and offer great perspectives in high-speed applications such as turbo machinery. Currently, novel rotor structures and materials are investigated for the purpose of increasing machine efficiency and lifetime, as well as allowing for higher dynamic loads. However, due to the complexity of the composite materials an in-process measurement system is required. This allows for monitoring the evolution of damages under dynamic loads, for testing and predicting the structural integrity of composite rotors in process. In rotor design, it can be used for calibrating and improving models, simulating the dynamic behaviour of polymer composite rotors. The measurement system is to work non-invasive, offer micron uncertainty, as well as a high measurement rate of several tens of kHz. Furthermore, it must be applicable at high surface speeds and under technical vacuum. In order to fulfil these demands a novel laser distance measurement system was developed. It provides the angle resolved measurement of the biaxial deformation of a fibre-reinforced polymer composite rotor with micron uncertainty at surface speeds of more than 300 m/s. Furthermore, a simulation procedure combining a finite element model and a damage mechanics model is applied. A comparison of the measured data and the numerically calculated data is performed to validate the simulation towards rotor expansion. This validating procedure can be used for a model calibration in the future. The simulation procedure could be used to investigate different damage-test cases of the rotor, in order to define its structural behaviour without further experiments.
Nonlinear effective permittivity of field grading composite dielectrics
NASA Astrophysics Data System (ADS)
Yang, Xiao; Zhao, Xiaolei; Li, Qi; Hu, Jun; He, Jinliang
2018-02-01
Field grading composite dielectrics with good nonlinear electrical properties can function as smart materials for electrical field control in a high-voltage apparatus. Besides the well-documented nonlinear conducting behavior, the field-dependent effective permittivity of field grading composites were also reported; however, in-depth research on the mechanism and influencing factors of this nonlinear permittivity are absent. This paper theoretically discusses the origin of the nonlinear effective permittivity, and the mechanism is illustrated through the waveform analysis of the nonlinear response of ZnO microvaristor/silicone rubber composites under a pure AC field. The field-dependent effective permittivity and loss property of the ZnO composites are measured by a dielectric spectrometer in both DC and AC fields under different frequencies. Through comparison of measurement results and theoretical models, the influence of the filler concentration, frequency, and time domain characteristics of the applied field on the nonlinear permittivity of the field grading composites are well explained. This paper provides insight into the nonlinear permittivity of field grading composites, and will be helpful for further tuning the performance of field grading composites.
Studies on Effective Elastic Properties of CNT/Nano-Clay Reinforced Polymer Hybrid Composite
NASA Astrophysics Data System (ADS)
Thakur, Arvind Kumar; Kumar, Puneet; Srinivas, J.
2016-02-01
This paper presents a computational approach to predict elastic propertiesof hybrid nanocomposite material prepared by adding nano-clayplatelets to conventional CNT-reinforced epoxy system. In comparison to polymers alone/single-fiber reinforced polymers, if an additional fiber is added to the composite structure, it was found a drastic improvement in resultant properties. In this regard, effective elastic moduli of a hybrid nano composite are determined by using finite element (FE) model with square representative volume element (RVE). Continuum mechanics based homogenization of the nano-filler reinforced composite is considered for evaluating the volumetric average of the stresses and the strains under different periodic boundary conditions.A three phase Halpin-Tsai approach is selected to obtain the analytical result based on micromechanical modeling. The effect of the volume fractions of CNTs and nano-clay platelets on the mechanical behavior is studied. Two different RVEs of nano-clay platelets were used to investigate the influence of nano-filler geometry on composite properties. The combination of high aspect ratio of CNTs and larger surface area of clay platelets contribute to the stiffening effect of the hybrid samples. Results of analysis are validated with Halpin-Tsai empirical formulae.
Mineralogical analysis of the Eos family from near-infrared spectra
NASA Astrophysics Data System (ADS)
Mothé-Diniz, T.; Carvano, J. M.; Bus, S. J.; Duffard, R.; Burbine, T. H.
2008-05-01
The aim of this work is to analyze the mineralogy of the Eos family, which exhibits considerable taxonomic diversity. Its biggest fragment, (221) Eos has previously been associated, through direct spectral comparisons, with such diverse mineralogies as CV/CO and achondrite meteorites [Burbine, T.H., Binzel, R.P., Bus, S.J., Clark, B.E., 2001. Meteorit. Planet. Sci. 36, 245-253; Mothé-Diniz, T., Carvano, J.M., 2005. Astron. Astrophys. 174, 54-80]. In order to perform such analysis we obtained spectra of 30 family members in the 0.8-2.5 μm range, and used three different methods of mineralogical inference: direct spectral comparison with meteorites, intimate mixing using Hapke's theory, and fitting absorption features with the MGM. Although the direct comparison failed to yield good matches—the best candidates being R-chondrites—both mixing model and MGM analysis suggest that the bulk of the family is dominated by forsteritic ( Fa) olivine, with a minor component of orthopyroxene. This composition can be compatible with what would be expected from the partial differentiation of a parent-body with an original composition similar to ordinary chondrites, which probably formed and differentiated closer to the Sun than the present location of the family. A CK-like composition is also possible, from the inferred mineralogy, as well as from the similarities of the spectra in the NIR.
Constitutive Behavior and Finite Element Analysis of FRP Composite and Concrete Members
Ann, Ki Yong; Cho, Chang-Geun
2013-01-01
The present study concerns compressive and flexural constitutive models incorporated into an isoparametric beam finite element scheme for fiber reinforced polymer (FRP) and concrete composites, using their multi-axial constitutive behavior. The constitutive behavior of concrete was treated in triaxial stress states as an orthotropic hypoelasticity-based formulation to determine the confinement effect of concrete from a three-dimensional failure surface in triaxial stress states. The constitutive behavior of the FRP composite was formulated from the two-dimensional classical lamination theory. To predict the flexural behavior of circular cross-section with FRP sheet and concrete composite, a layered discretization of cross-sections was incorporated into nonlinear isoparametric beam finite elements. The predicted constitutive behavior was validated by a comparison to available experimental results in the compressive and flexural beam loading test. PMID:28788312
NASA Astrophysics Data System (ADS)
Shi, Weilong; Guo, Feng; Wang, Huibo; Liu, Changan; Fu, Yijun; Yuan, Songliu; Huang, Hui; Liu, Yang; Kang, Zhenhui
2018-03-01
Widely used synthetic dyes have been caused serious environmental pollution. Therefore, it is imperative to acquire highly efficient adsorbent to remove them. Here, we report the carbon dots/ZnFe2O4 (CDs/ZFO) composites were prepared through a facile hydrothermal route for absorption removal of dye from aqueous solution. The characterizations reveal the CDs were uniformly deposited on the surfaces of ZFO nanoparticles in the composite. The CDs/ZFO composites as adsorbents exhibit enhanced adsorption behavior for methyl orange (MO) in comparison of pristine ZFO, in which the 5% CDs/ZFO (with the CDs mass content of 5 wt%) shows the highest absorption activity. Experimental studies on adsorption isotherms of MO over the 5% CDs/ZFO composite indicate that experimental data were found to follow Langmuir model with a monolayer adsorption capacity of 181.2 mg g-1. The corresponding adsorption kinetics was fitted well with the pseudo-second-order kinetic model. Moreover, thermodynamics parameters including ΔG°, ΔH° and ΔS° were tested, demonstrating that the adsorption of MO over CDs/ZFO composite was spontaneous and exothermic in nature. The remarkably increased adsorption performance of CDs/ZFO composites can be attributed to abundant oxygen-containing groups on the surface of CDs.
Payne, C L R; Scarborough, P; Rayner, M; Nonaka, K
2016-03-01
Insects have been the subject of recent attention as a potentially environmentally sustainable and nutritious alternative to traditional protein sources. The purpose of this paper is to test the hypothesis that insects are nutritionally preferable to meat, using two evaluative tools that are designed to combat over- and under-nutrition. We selected 183 datalines of publicly available data on the nutrient composition of raw cuts and offal of three commonly consumed meats (beef, pork and chicken), and six commercially available insect species, for energy and 12 relevant nutrients. We applied two nutrient profiling tools to this data: The Ofcom model, which is used in the United Kingdom, and the Nutrient Value Score (NVS), which has been used in East Africa. We compared the median nutrient profile scores of different insect species and meat types using non-parametric tests and applied Bonferroni adjustments to assess for statistical significance in differences. Insect nutritional composition showed high diversity between species. According to the Ofcom model, no insects were significantly 'healthier' than meat products. The NVS assigned crickets, palm weevil larvae and mealworm a significantly healthier score than beef (P<0.001) and chicken (P<0.001). No insects were statistically less healthy than meat. Insect nutritional composition is highly diverse in comparison with commonly consumed meats. The food category 'insects' contains some foods that could potentially exacerbate diet-related public health problems related to over-nutrition, but may be effective in combating under-nutrition.
Zhou, Jinghao; Yan, Zhennan; Lasio, Giovanni; Huang, Junzhou; Zhang, Baoshe; Sharma, Navesh; Prado, Karl; D'Souza, Warren
2015-12-01
To resolve challenges in image segmentation in oncologic patients with severely compromised lung, we propose an automated right lung segmentation framework that uses a robust, atlas-based active volume model with a sparse shape composition prior. The robust atlas is achieved by combining the atlas with the output of sparse shape composition. Thoracic computed tomography images (n=38) from patients with lung tumors were collected. The right lung in each scan was manually segmented to build a reference training dataset against which the performance of the automated segmentation method was assessed. The quantitative results of this proposed segmentation method with sparse shape composition achieved mean Dice similarity coefficient (DSC) of (0.72, 0.81) with 95% CI, mean accuracy (ACC) of (0.97, 0.98) with 95% CI, and mean relative error (RE) of (0.46, 0.74) with 95% CI. Both qualitative and quantitative comparisons suggest that this proposed method can achieve better segmentation accuracy with less variance than other atlas-based segmentation methods in the compromised lung segmentation. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Lee, Ho-Jun
2001-01-01
Analytical formulations are developed to account for the coupled mechanical, electrical, and thermal response of piezoelectric composite materials. The coupled response is captured at the material level through the thermopiezoelectric constitutive equations and leads to the inherent capability to model both the sensory and active responses of piezoelectric materials. A layerwise laminate theory is incorporated to provide more accurate analysis of the displacements, strains, stresses, electric fields, and thermal fields through-the-thickness. Thermal effects which arise from coefficient of thermal expansion mismatch, pyroelectric effects, and temperature dependent material properties are explicitly accounted for in the formulation. Corresponding finite element formulations are developed for piezoelectric beam, plate, and shell elements to provide a more generalized capability for the analysis of arbitrary piezoelectric composite structures. The accuracy of the current formulation is verified with comparisons from published experimental data and other analytical models. Additional numerical studies are also conducted to demonstrate additional capabilities of the formulation to represent the sensory and active behaviors. A future plan of experimental studies is provided to characterize the high temperature dynamic response of piezoelectric composite materials.
Classification of Clouds and Deep Convection from GEOS-5 Using Satellite Observations
NASA Technical Reports Server (NTRS)
Putman, William; Suarez, Max
2010-01-01
With the increased resolution of global atmospheric models and the push toward global cloud resolving models, the resemblance of model output to satellite observations has become strikingly similar. As we progress with our adaptation of the Goddard Earth Observing System Model, Version 5 (GEOS-5) as a high resolution cloud system resolving model, evaluation of cloud properties and deep convection require in-depth analysis beyond a visual comparison. Outgoing long-wave radiation (OLR) provides a sufficient comparison with infrared (IR) satellite imagery to isolate areas of deep convection. We have adopted a binning technique to generate a series of histograms for OLR which classify the presence and fraction of clear sky versus deep convection in the tropics that can be compared with a similar analyses of IR imagery from composite Geostationary Operational Environmental Satellite (GOES) observations. We will present initial results that have been used to evaluate the amount of deep convective parameterization required within the model as we move toward cloud system resolving resolutions of 10- to 1-km globally.
Experimental and Numerical Study of Ammonium Perchlorate Counterflow Diffusion Flames
NASA Technical Reports Server (NTRS)
Smooke, M. D.; Yetter, R. A.; Parr, T. P.; Hanson-Parr, D. M.; Tanoff, M. A.
1999-01-01
Many solid rocket propellants are based on a composite mixture of ammonium perchlorate (AP) oxidizer and polymeric binder fuels. In these propellants, complex three-dimensional diffusion flame structures between the AP and binder decomposition products, dependent upon the length scales of the heterogeneous mixture, drive the combustion via heat transfer back to the surface. Changing the AP crystal size changes the burn rate of such propellants. Large AP crystals are governed by the cooler AP self-deflagration flame and burn slowly, while small AP crystals are governed more by the hot diffusion flame with the binder and burn faster. This allows control of composite propellant ballistic properties via particle size variation. Previous measurements on these diffusion flames in the planar two-dimensional sandwich configuration yielded insight into controlling flame structure, but there are several drawbacks that make comparison with modeling difficult. First, the flames are two-dimensional and this makes modeling much more complex computationally than with one-dimensional problems, such as RDX self- and laser-supported deflagration. In addition, little is known about the nature, concentration, and evolution rates of the gaseous chemical species produced by the various binders as they decompose. This makes comparison with models quite difficult. Alternatively, counterflow flames provide an excellent geometric configuration within which AP/binder diffusion flames can be studied both experimentally and computationally.
Mechanical behavior of several hybrid ceramic-matrix-composite laminates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cutler, W.A.; Zok, F.W.; Lange, F.F.
Several different hybrid laminated composites comprised of alternating layers of dense ceramic sheets (either SiC or Si{sub 3}N{sub 4}) and fiber-reinforced ceramic-matrix-composite (CMC) layers (Nicalon fibers with either glass or glass-ceramic matrices) have been fabricated and characterized. The effects of the reinforcement architecture (unidirectional vs cross-ply) and the relative volume fractions of the phases on the tensile and flexural properties have been examined. Comparisons have been made with the properties of the constituent layers. Rudimentary models have been developed to describe the onset of cracking and for the minimum volume fraction of CMC required to develop multiple cracks and thusmore » obtain a high failure strain.« less
NASA Technical Reports Server (NTRS)
Grimes-Ledesma, Lorie; Murthy, Pappu L. N.; Phoenix, S. Leigh; Glaser, Ronald
2007-01-01
In conjunction with a recent NASA Engineering and Safety Center (NESC) investigation of flight worthiness of Kevlar Overwrapped Composite Pressure Vessels (COPVs) on board the Orbiter, two stress rupture life prediction models were proposed independently by Phoenix and by Glaser. In this paper, the use of these models to determine the system reliability of 24 COPVs currently in service on board the Orbiter is discussed. The models are briefly described, compared to each other, and model parameters and parameter uncertainties are also reviewed to understand confidence in reliability estimation as well as the sensitivities of these parameters in influencing overall predicted reliability levels. Differences and similarities in the various models will be compared via stress rupture reliability curves (stress ratio vs. lifetime plots). Also outlined will be the differences in the underlying model premises, and predictive outcomes. Sources of error and sensitivities in the models will be examined and discussed based on sensitivity analysis and confidence interval determination. Confidence interval results and their implications will be discussed for the models by Phoenix and Glaser.
COMPARISON OF ECOLOGICAL COMMUNITIES: THE PROBLEM OF SAMPLE REPRESENTATIVENESS
Obtaining an adequate, representative sample of ecological communities to make taxon richness (TR) or compositional comparisons among sites is a continuing challenge. Sample representativeness literally means the similarity in species composition and relative abundance between a ...
Creep and stress relaxation modeling of polycrystalline ceramic fibers
NASA Technical Reports Server (NTRS)
Dicarlo, James A.; Morscher, Gregory N.
1994-01-01
A variety of high performance polycrystalline ceramic fibers are currently being considered as reinforcement for high temperature ceramic matrix composites. However, under mechanical loading about 800 C, these fibers display creep related instabilities which can result in detrimental changes in composite dimensions, strength, and internal stress distributions. As a first step toward understanding these effects, this study examines the validity of a mechanism-based empirical model which describes primary stage tensile creep and stress relaxation of polycrystalline ceramic fibers as independent functions of time, temperature, and applied stress or strain. To verify these functional dependencies, a simple bend test is used to measure stress relaxation for four types of commercial ceramic fibers for which direct tensile creep data are available. These fibers include both nonoxide (SCS-6, Nicalon) and oxide (PRD-166, FP) compositions. The results of the Bend Stress Relaxation (BSR) test not only confirm the stress, time, and temperature dependencies predicted by the model, but also allow measurement of model empirical parameters for the four fiber types. In addition, comparison of model tensile creep predictions based on the BSR test results with the literature data show good agreement, supporting both the predictive capability of the model and the use of the BSR text as a simple method for parameter determination for other fibers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, E.K.H.; Funkenbusch, P.D.
1993-06-01
Hot isostatic pressing (HIP) of powder mixtures (containing differently sized components) and of composite powders is analyzed. Recent progress, including development of a simple scheme for estimating radial distribution functions, has made modeling of these systems practical. Experimentally, powders containing bimodal or continuous size distributions are observed to hot isostatically press to a higher density tinder identical processing conditions and to show large differences in the densification rate as a function of density when compared with the monosize powders usually assumed for modeling purposes. Modeling correctly predicts these trends and suggests that they can be partially, but not entirely, attributedmore » to initial packing density differences. Modeling also predicts increased deformation in the smaller particles within a mixture. This effect has also been observed experimentally and is associated with microstructural changes, such as preferential recrystallization of small particles. Finally, consolidation of a composite mixture containing hard, but deformable, inclusions has been modeled for comparison with existing experimental data. Modeling results match both the densification and microstructural observations reported experimentally. Densification is retarded due to contacts between the reinforcing particles which support a significant portion of the applied pressure. In addition, partitioning of deformation between soft matrix and hard inclusion powders results in increased deformation of the softer material.« less
Creep and stress relaxation modeling of polycrystalline ceramic fibers
NASA Technical Reports Server (NTRS)
Dicarlo, James A.; Morscher, Gregory N.
1991-01-01
A variety of high performance polycrystalline ceramic fibers are currently being considered as reinforcement for high temperature ceramic matrix composites. However, under mechanical loading above 800 C, these fibers display creep-related instabilities which can result in detrimental changes in composite dimensions, strength, and internal stress distributions. As a first step toward understanding these effects, this study examines the validity of mechanistic-based empirical model which describes primary stage tensile creep and stress relaxation of polycrystalline ceramic fibers as independent functions of time, temperature, and applied stress or strain. To verify these functional dependencies, a simple bend test is used to measure stress relaxation for four types of commercial ceramic fibers for which direct tensile creep data are available. These fibers include both nonoxide (SCS-6, Nicalon) and oxide (PRD-166, FP) compositions. The results of the bend stress relaxation (BSR) test not only confirm the stress, time, and temperature dependencies predicted by the model but also allow measurement of model empirical parameters for the four fiber types. In addition, comparison of model predictions and BSR test results with the literature tensile creep data show good agreement, supporting both the predictive capability of the model and the use of the BSR test as a simple method for parameter determination for other fibers.
NASA Technical Reports Server (NTRS)
Stanford, Bret K.; Jutte, Christine V.
2016-01-01
A series of aeroelastic optimization problems are solved on a high aspect ratio wingbox of the Common Research Model, in an effort to minimize structural mass under coupled stress, buckling, and flutter constraints. Two technologies are of particular interest: tow steered composite laminate skins and curvilinear stiffeners. Both methods are found to afford feasible reductions in mass over their non-curvilinear structural counterparts, through both distinct and shared mechanisms for passively controlling aeroelastic performance. Some degree of diminishing returns are seen when curvilinear stiffeners and curvilinear fiber tow paths are used simultaneously.
NASA Astrophysics Data System (ADS)
Fedulov, Boris N.; Safonov, Alexander A.; Sergeichev, Ivan V.; Ushakov, Andrey E.; Klenin, Yuri G.; Makarenko, Irina V.
2016-10-01
An application of composites for construction of subway brackets is a very effective approach to extend their lifetime. However, this approach involves the necessity to prevent process-induced distortions of the bracket due to thermal deformation and chemical shrinkage. At present study, a process simulation has been carried out to support the design of the production tooling. The simulation was based on the application of viscoelastic model for the resin. Simulation results were verified by comparison with results of manufacturing experiments. To optimize the bracket structure the strength analysis was carried out as well.
Surface tension and density of liquid In-Sn-Zn alloys
NASA Astrophysics Data System (ADS)
Pstruś, Janusz
2013-01-01
Using the dilatometric method, measurements of the density of liquid alloys of the ternary system In-Sn-Zn in four sections with a constant ratio Sn:In = 24:1, 3:1, 1:1, 1:3, for various Zn additions (5, 10, 14, 20, 3 5, 50 and 75 at.% Zn) were performed at the temperature ranges of 500-1150 K. Density decreases linearly for all compositions. The molar volume calculated from density data exhibits close to ideal dependence on composition. Measurements of the surface tension of liquid alloys have been conducted using the method of maximum pressure in the gas bubbles. There were observed linear dependences on temperature with a negative gradients dσ/dT. Generally, with two exceptions, there was observed the increase of surface tension with increasing content of zinc. Using the Butler's model, the surface tension isotherms were calculated for temperatures T = 673 and 1073 K. Calculations show that only for high temperatures and for low content of zinc (up to about 35 at.%), the modeling is in very good agreement with experiment. Using the mentioned model, the composition of the surface phase was defined at two temperatures T = 673 and 973 K. Regardless of the temperature and of the defined section, the composition of the bulk is very different in comparison with the composition of the surface.
Composite Structure Modeling and Analysis of Advanced Aircraft Fuselage Concepts
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek; Sorokach, Michael R.
2015-01-01
NASA Environmentally Responsible Aviation (ERA) project and the Boeing Company are collabrating to advance the unitized damage arresting composite airframe technology with application to the Hybrid-Wing-Body (HWB) aircraft. The testing of a HWB fuselage section with Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) construction is presently being conducted at NASA Langley. Based on lessons learned from previous HWB structural design studies, improved finite-element models (FEM) of the HWB multi-bay and bulkhead assembly are developed to evaluate the performance of the PRSEUS construction. In order to assess the comparative weight reduction benefits of the PRSEUS technology, conventional cylindrical skin-stringer-frame models of a cylindrical and a double-bubble section fuselage concepts are developed. Stress analysis with design cabin-pressure load and scenario based case studies are conducted for design improvement in each case. Alternate analysis with stitched composite hat-stringers and C-frames are also presented, in addition to the foam-core sandwich frame and pultruded rod-stringer construction. The FEM structural stress, strain and weights are computed and compared for relative weight/strength benefit assessment. The structural analysis and specific weight comparison of these stitched composite advanced aircraft fuselage concepts demonstrated that the pressurized HWB fuselage section assembly can be structurally as efficient as the conventional cylindrical fuselage section with composite stringer-frame and PRSEUS construction, and significantly better than the conventional aluminum construction and the double-bubble section concept.
Experimental constraints on light elements in the Earth’s outer core
Zhang, Youjun; Sekine, Toshimori; He, Hongliang; Yu, Yin; Liu, Fusheng; Zhang, Mingjian
2016-01-01
Earth’s outer core is liquid and dominantly composed of iron and nickel (~5–10 wt%). Its density, however, is ~8% lower than that of liquid iron, and requires the presence of a significant amount of light element(s). A good way to specify the light element(s) is a direct comparison of density and sound velocity measurements between seismological data and those of possible candidate compositions at the core conditions. We report the sound velocity measurements of a model core composition in the Fe-Ni-Si system at the outer core conditions by shock-wave experiments. Combining with the previous studies, we found that the best estimate for the outer core’s light elements is ~6 wt% Si, ~2 wt% S, and possible ~1–2.5 wt% O. This composition satisfies the requirements imposed by seismology, geochemistry, and some models of the early core formation. This finding may help us to further constrain the thermal structure of the Earth and the models of Earth’s core formation. PMID:26932596
A Cohesive Zone Approach for Fatigue-Driven Delamination Analysis in Composite Materials
NASA Astrophysics Data System (ADS)
Amiri-Rad, Ahmad; Mashayekhi, Mohammad
2017-08-01
A new model for prediction of fatigue-driven delamination in laminated composites is proposed using cohesive interface elements. The presented model provides a link between cohesive elements damage evolution rate and crack growth rate of Paris law. This is beneficial since no additional material parameters are required and the well-known Paris law constants are used. The link between the cohesive zone method and fracture mechanics is achieved without use of effective length which has led to more accurate results. The problem of unknown failure path in calculation of the energy release rate is solved by imposing a condition on the damage model which leads to completely vertical failure path. A global measure of energy release rate is used for the whole cohesive zone which is computationally more efficient compared to previous similar models. The performance of the proposed model is investigated by simulation of well-known delamination tests and comparison against experimental data of the literature.
Chondritic Earth: comparisons, guidelines and status
NASA Astrophysics Data System (ADS)
McDonough, W. F.
2014-12-01
The chemical and isotopic composition of the Earth is rationally understood within the context of the chondritic reference frame, without recourse to hidden reservoirs, collision erosion, or strict interpretation of an enstatite chondrite model. Challenges to interpreting the array of recent and disparate chemical and isotopic observations from meteorites need to be understood as rich data harvests that inform us of the compositional heterogeneity in the early solar system. Our ability to resolve small, significant compositional differences between chondrite families provide critical insights into integrated compositional signatures at differing annuli distances from the Sun (i.e., 1-6 AU). Rigorous evaluation of chondritic models for planets requires treatment of both statistical and systematic uncertainties - to date these efforts are uncommonly practiced. Planetary olivine to pyroxene ratio reflects fO2 and temperature potentials in the nebular, given possible ISM compositional conditions; thus this ratio is a non-unique parameter of terrestrial bodies. Consequently the Mg/Si value of a planet (ie., olivine to pyroxene ratio) is a free variable; there is no singular chondritic Mg/Si value. For the Earth, there is an absence of physical and chemical evidence requiring a major element, chemical distinction between the upper and lower mantle, within uncertainties. Early Earth differentiation likely occurred, but there is an absence of chemical and isotopic evidence of its imprint. Chondrites, peridotites, komatiites, and basalts (ancient and modern) reveal a coherent picture of a chondritic compositional Earth, with compositionally affinities to enstatite chondrites. At present results from geoneutrino studies non-uniquely support these conclusions. Future experiments can provide true transformative insights into the Earth's thermal budget, define compositional BSE models, and will restrict discussions on Earth dynamics and its thermal evolution.
NASA Astrophysics Data System (ADS)
Hirl, Regina; Schnyder, Hans; Auerswald, Karl; Vetter, Sylvia; Ostler, Ulrike; Schleip, Inga; Wingate, Lisa; Ogée, Jérôme
2015-04-01
The oxygen isotope composition (δ18O) of water in terrestrial ecosystems usually shows strong and dynamic variations within and between the various compartments. These variations originate from changes in the δ18O of water inputs (e.g. rain or water vapour) and from 18O fractionation phenomena in the soil-plant-atmosphere continuum. Investigations of δ18O in ecosystem water pools and of their main drivers can help us understand water relations at plant, canopy or ecosystem scale and interpret δ18O signals in plant and animal tissues as paleo-climate proxies. During the vegetation periods of 2006 to 2012, soil, leaf and stem water as well as atmospheric humidity, rain water and groundwater were sampled at bi-weekly intervals in a temperate humid pasture of the Grünschwaige Grassland Research Station near Munich (Germany). The sampling was performed following standardised MIBA (Moisture Isotopes in the Biosphere and Atmosphere) protocols. Leaf water samples were prepared from a mixture of co-dominant species in the plant community in order to obtain a canopy-scale leaf water δ18O signal. All samples were then analysed for their δ18O compositions. The measured δ18O of leaf, stem and soil water were then compared with the δ18O signatures simulated by the process-based isotope-enabled ecosystem model MuSICA (Multi-layer Simulator of the Interactions between a vegetation Canopy and the Atmosphere). MuSICA integrates current mechanistic understanding of processes in the soil-plant-atmosphere continuum. Hence, the comparison of modelled and measured data allows the identification of gaps in current knowledge and of questions to be tackled in the future. Soil and plant characteristics for model parameterisation were derived from investigations at the experimental site and supplemented by values from the literature. Eddy-covariance measurements of ecosystem CO2 (GPP, NEE) and energy (H, LE) fluxes and soil temperature data were used for model evaluation. The comparison of measured and predicted ecosystem fluxes showed that the model captured the main features of the diurnal cycles of GPP, NEE, LE and H, as well as the soil temperature dynamics. In this presentation I will present the main results of this model-data comparison, as well as results from a model sensitivity analysis performed over a range of soil, plant and meteorological parameters to evaluate the relative importance of each parameter on the δ18O signatures of the various water pools.
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Pindera, Marek-Jerzy
1994-01-01
Two micromechanical models were developed to investigate the thermal expansion of graphite/copper (Gr/Cu) composites. The models incorporate the effects of temperature-dependent material properties, matrix inelasticity, initial residual stresses due to processing history, and nonuniform fiber distribution. The first model is based on the multiple concentric cylinder geometry, with each cylinder treated as a two-phase composite with a characteristic fiber volume fractions. By altering the fiber volume fraction of the individual cylinders, unidirectional composites with radially nonuniform fiber distributions can be investigated using this model. The second model is based on the inelastic lamination theory. By varying the fiber content in the individual laminae, composites with nonuniform fiber distribution in the thickness direction can be investigated. In both models, the properties of the individual regions (cylinders or laminae) are calculated using the method of cells micromechanical model. Classical incremental plasticity theory is used to model the inelastic response of the copper matrix at the microlevel. The models were used to characterize the effects of nonuniform fiber distribution on the thermal expansion of Gr/Cu. These effects were compared to the effects of matrix plasticity, choice of stress-free temperature, and slight fiber misalignment. It was found that the radially nonuniform fiber distribution has little effect on the thermal expansion of Gr/Cu but could become significant for composites with large fiber-matrix transverse CTE and Young's modulus mismatch. The effect of nonuniform fiber distribution in the through-thickness direction of a laminate was more significant, but only approached that of the stress-free temperature for the most extreme cases that include large amounts of bending. Subsequent comparison with experimental thermal expansion data indicated the need for more accurate characterization of the graphite fiber thermomechanical properties. Correlation with cyclic data revealed the presence of a mechanism not considered in the developed models. The predicted response did, however, exhibit ratcheting behavior that has been observed experimentally in Gr/Cu. Finally, simulation of the actual fiber distribution of particular specimens had little effect on the predicted thermal expansion.
Numerical Modeling of Electromagnetic Radiation Within a Particulate Medium.
NASA Astrophysics Data System (ADS)
Noe Dobrea, E. Z.
2017-12-01
Numerical modeling of electromagnetic radiation with a particulate medium. Understanding the effect of particulate media and coatings on electromagnetic radiation is key to understanding the effects of multiple scattering on the spectra of geologic materials. Multiple radiative transfer theories have been developed that provide a good approximation to these effects [1,2]. However, approximations regarding particle size, distribution, shape, and other parameters need to be made and in some cases, the theory is limited to specific geometries [2]. In this work, we seek to develop an numerical radiative transfer algorithm to simulate the passage of light through a particulate medium. The code allows arbitrary particle size distributions (uniform, bimodal, trimodal, composition dependent), compositions, and viewing geometries, as well as arbitrary coating thicknesses and compositions. Here, we report on the the status of our model and present comparisons of model predictions with the spectra of well-characterize minerals and mixtures. Future work will include particle size-dependent effects of diffraction as well as particle emittance due to fluorescence and Raman excitation. [1] Hapke, B. (2012). Theory of reflectance and emittance spectroscopy. Cambridge University Press, 2nd edition, 528 p. [2] Shkuratov et al. (1999) Icarus 137
Chemical evolution in spiral and irregular galaxies
NASA Technical Reports Server (NTRS)
Torres-Peimbert, S.
1986-01-01
A brief review of models of chemical evolution of the interstellar medium in our galaxy and other galaxies is presented. These models predict the time variation and radial dependence of chemical composition in the gas as function of the input parameters; initial mass function, stellar birth rate, chemical composition of mass lost by stars during their evolution (yields), and the existence of large scale mass flows, like infall from the halo, outflow to the intergalactic medium or radial flows within a galaxy. At present there is a considerable wealth of observational data on the composition of HII regions in spiral and irregular galaxies to constrain the models. Comparisons are made between theory and the observed physical conditions. In particular, studies of helium, carbon, nitrogen and oxygen abundances are reviewed. In many molecular clouds the information we have on the amount of H2 is derived from the observed CO column density, and a standard CO/H2 ratio derived for the solar neighborhood. Chemical evolution models and the observed variations in O/H and N/O values, point out the need to include these results in a CO/H2 relation that should be, at least, a function of the O/H ratio. This aspect is also discussed.
Osthoff, G; Hugo, A; Madende, M; Deacon, F; Nel, P J
2017-02-01
The composition of major nutrients and fatty acids of the milk of three species, red hartebeest, Southern reedbuck and warthog, and milk fatty acids of giraffe, that have not been published before, are reported, and together with the same parameters of 11 species previously published, were incorporated in a phylogenetic comparison. Unique properties of milk composition have been observed. Southern reedbuck milk seems to have a complex casein composition, similar to that of sheep. Milk composition varies between species. Although some differences may be ascribed to biological condition, such as stage of lactation, or ecological factors, such as availability of certain nutrients, the contribution by evolutionary history is not well documented and the emphasis is usually on the composition of the macro nutrients. Phylogenetic comparisons often lack representatives of multiple species of taxonomic groups and sub-groups. To date phylogenetic comparisons of milk composition have been carried out by using data from different publications. The problem with this approach is that the ecological factors cannot be completely ruled out. A statistical phylogenetic comparison by PCA between 15 species representing 7 different suborders, families or subfamilies of African Artiodactyla was carried out. The phylogenetic properties showed that the milk composition of the Bovinae, represented here by the subfamilies Bovini and Tragelaphini, differs from the other taxonomic groups, in that the Alcelaphinae had a high milk fat content of the medium chain length fatty acids C8-C12 (>17% of total fatty acids) and the Hippotraginae high amounts of oligosaccharides (>0.4%). Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calcaterra, J.R.; Johnson, W.S.; Neu, R.W.
1997-12-31
Several methodologies have been developed to predict the lives of titanium matrix composites (TMCs) subjected to thermomechanical fatigue (TMF). This paper reviews and compares five life prediction models developed at NASA-LaRC. Wright Laboratories, based on a dingle parameter, the fiber stress in the load-carrying, or 0{degree}, direction. The two other models, both developed at Wright Labs. are multi-parameter models. These can account for long-term damage, which is beyond the scope of the single-parameter models, but this benefit is offset by the additional complexity of the methodologies. Each of the methodologies was used to model data generated at NASA-LeRC. Wright Labs.more » and Georgia Tech for the SCS-6/Timetal 21-S material system. VISCOPLY, a micromechanical stress analysis code, was used to determine the constituent stress state for each test and was used for each model to maintain consistency. The predictive capabilities of the models are compared, and the ability of each model to accurately predict the responses of tests dominated by differing damage mechanisms is addressed.« less
Depth estimation of multi-layered impact damage in PMC using lateral thermography
NASA Astrophysics Data System (ADS)
Whitlow, Travis; Kramb, Victoria; Reibel, Rick; Dierken, Josiah
2018-04-01
Characterization of impact damage in polymer matrix composites (PMCs) continues to be a challenge due to the complex internal structure of the material. Nondestructive characterization approaches such as normal incident immersion ultrasound and flash thermography are sensitive to delamination damage, but do not provide information regarding damage obscured by the delaminations. Characterization of material state below a delamination requires a technique which is sensitive to in-plane damage modes such as matrix cracking and fiber breakage. Previous studies of the lateral heat flow through a composite laminate showed that the diffusion time was sensitive to the depth of the simulated damage zone. The current study will further evaluate the lateral diffusion model to provide sensitivity limits for the modeled flaw dimensions. Comparisons between the model simulations and experimental data obtained using a concentrated heat source and machined targets will also be presented.
How do Polar Stratospheric Clouds Form?
NASA Technical Reports Server (NTRS)
Drdla, Katja; Gandrud, Bruce; Baumgardner, Darrel; Herman, Robert; Gore, Warren J. (Technical Monitor)
2000-01-01
SOLVE measurements have been compared with results from a microphysical model to understand the composition and formation of the polar stratospheric clouds (PSCs) observed during SOLVE. Evidence that the majority of the particles remain liquid throughout the winter will be presented. However, a small fraction of the particles do freeze, and the presence of these frozen particles can not be explained by current theories, in which the only freezing mechanism is homogeneous freezing to ice below the ice frost point. Alternative formation mechanisms, in particular homogeneous freezing above the ice frost point and heterogeneous freezing, have been explored using the microphysical model. Both nitric acid trihydrate (NAT) and nitric acid dihydrate (NAD) have been considered as possible compositions for the solid-phase nitric acid aerosols. Comparisons between the model results and the SOLVE measurements will be used to constrain the possible formation mechanisms. Other effects of these frozen particles will also be discussed, in particular denitrification.
Characterization of SiCSiC Composites in Support of Environmental Degradation Modeling
NASA Technical Reports Server (NTRS)
Kiser, Doug; Sullivan, Roy; Bhatt, Ram; Smith, Craig; Zima, John; McCue, Terry
2016-01-01
SiCSiC (silicon carbide fiber reinforced silicon carbide) composites are candidate materials for various turbine engine applications because of their high specific strength and good creep and oxidation resistance at elevated temperatures. This study was performed to characterize the microstructure of a melt infiltrated (MI) SiCSiC, and to examine environmental degradation mechanisms occurring in precracked MI SiCSiC CMC specimens under tensile stresses of 30 ksi or less at 815C in dry air or argon. In addition, the oxidation of the BN interface was characterized at815C, and crack opening displacement as a function of stress measurements were made. This material characterization is being performed to obtain data to support NASA GRC modeling of SiCSiC environmental degradation. The comparison of experimentally-observed phenomena with model predictions can lead to improved understanding of material degradation mechanisms.
ERIC Educational Resources Information Center
LoCoco, Veronica Gonzalez-Mena
Three methods for second language data collection are compared: free composition, picture description and translation. The comparison is based on percentage of errors in a grammatical category and in a source category. Most results obtained from the free compositions and picture descriptions tended to be similar. Greater variation was found for…
HPHT reservoir evolution: a case study from Jade and Judy fields, Central Graben, UK North Sea
NASA Astrophysics Data System (ADS)
di Primio, Rolando; Neumann, Volkmar
2008-09-01
3D basin modelling of a study area in Quadrant 30, UK North Sea was performed in order to elucidate the burial, thermal, pressure and hydrocarbon generation, migration and accumulation history in the Jurassic and Triassic high pressure high temperature sequences. Calibration data, including reservoir temperatures, pressures, petroleum compositional data, vitrinite reflectance profiles and published fluid inclusion data were used to constrain model predictions. The comparison of different pressure generating processes indicated that only when gas generation is taken into account as a pressure generating mechanism, both the predicted present day as well as palaeo-pressure evolution matches the available calibration data. Compositional modelling of hydrocarbon generation, migration and accumulation also reproduced present and palaeo bulk fluid properties such as the reservoir fluid gas to oil ratios. The reconstruction of the filling histories of both reservoirs indicates that both were first charged around 100 Ma ago and contained initially a two-phase system in which gas dominated volumetrically. Upon burial reservoir fluid composition evolved to higher GORs and became undersaturated as a function of increasing pore pressure up to the present day situation. Our results indicate that gas compositions must be taken into account when calculating the volumetric effect of gas generation on overpressure.
Thermal shock fracture in cross-ply fibre-reinforced ceramic-matrix composites
NASA Astrophysics Data System (ADS)
Kastritseas, C.; Smith, P. A.; Yeomans, J. A.
2010-11-01
The onset of matrix cracking due to thermal shock in a range of simple and multi-layer cross-ply laminates comprising a calcium aluminosilicate (CAS) matrix reinforced with Nicalon® fibres is investigated analytically. A comprehensive stress analysis under conditions of thermal shock, ignoring transient effects, is performed and fracture criteria based on either a recently derived model for the thermal shock resistance of unidirectional Nicalon®/glass ceramic-matrix composites or fracture mechanics considerations are formulated. The effect of material thickness on the apparent thermal shock resistance is also modelled. Comparison with experimental results reveals that the accuracy of the predictions is satisfactory and the reasons for some discrepancies are discussed. In addition, a theoretical argument based on thermal shock theory is formulated to explain the observed cracking patterns.
Analysis of interlaminar stresses in symmetric and unsymmetric laminates under various loadings
NASA Astrophysics Data System (ADS)
Leger, C. A.; Chan, W. S.
1993-04-01
A quasi-three-dimensional finite-element model is developed to investigate the interlaminar stresses in a composite laminate under combined loadings. An isoparametric quadrilateral element with eight nodes and three degrees of freedom per node is the finite element used in this study. The element is used to model a composite laminate cross section loaded by tension, torsion, transverse shear, and both beam and chord bending which are representative of loading in a helicopter rotor system. Symmetric and unsymmetric laminates are examined with comparisons made between the interlaminar stress distributions and magnitudes for each laminate. Unsymmetric results are compared favorably to limited results found in literature. The unsymmetric interlaminar normal stress distribution in a symmetric laminate containing a free edge delamination is also examined.
Structural performance of notch damaged steel beams repaired with composite materials
NASA Astrophysics Data System (ADS)
El-Taly, Boshra
2016-06-01
An experimental program and an analytical model using ANSYS program were employed to estimate the structural performance of repaired damaged steel beams using fiber reinforced polymer (FRP) composite materials. The beams were artificially notched in the tension flanges at mid-spans and retrofitted by FRP flexible sheets on the tension flanges and the sheets were extended to cover parts of the beams webs with different heights. Eleven box steel beams, including one intact beam, one notch damaged beam and nine notches damaged beam and retrofitted with composite materials, were tested in two-point loading up to failure. The parameters considered were the FRP type (GFRP and CFRP) and number of layers. The results indicated that bonding CFRP sheets to both of the tension steel flange and part of the webs, instead of the tension flange only, enhances the ultimate load of the retrofitted beams, avoids the occurrence of the debonding and increases the beam ductility. Also the numerical models give acceptable results in comparison with the experimental results.
Dynamic tests of composite panels of an aircraft wing
NASA Astrophysics Data System (ADS)
Splichal, Jan; Pistek, Antonin; Hlinka, Jiri
2015-10-01
The paper describes the analysis of aerospace composite structures under dynamic loading. Today, it is common to use design procedures based on assumption of static loading only, and dynamic loading is rarely assumed and applied in design and certification of aerospace structures. The paper describes the application of dynamic loading for the design of aircraft structures, and the validation of the procedure on a selected structure. The goal is to verify the possibility of reducing the weight through improved design/modelling processes using dynamic loading instead of static loading. The research activity focuses on the modelling and testing of a composite panel representing a local segment of an aircraft wing section, investigating in particular the buckling behavior under dynamic loading. Finite Elements simulation tools are discussed, as well as the advantages of using a digital optical measurement system for the evaluation of the tests. The comparison of the finite element simulations with the results of the tests is presented.
Radulescu, Georgeta; Gauld, Ian C.; Ilas, Germina; ...
2014-11-01
This paper describes a depletion code validation approach for criticality safety analysis using burnup credit for actinide and fission product nuclides in spent nuclear fuel (SNF) compositions. The technical basis for determining the uncertainties in the calculated nuclide concentrations is comparison of calculations to available measurements obtained from destructive radiochemical assay of SNF samples. Probability distributions developed for the uncertainties in the calculated nuclide concentrations were applied to the SNF compositions of a criticality safety analysis model by the use of a Monte Carlo uncertainty sampling method to determine bias and bias uncertainty in effective neutron multiplication factor. Application ofmore » the Monte Carlo uncertainty sampling approach is demonstrated for representative criticality safety analysis models of pressurized water reactor spent fuel pool storage racks and transportation packages using burnup-dependent nuclide concentrations calculated with SCALE 6.1 and the ENDF/B-VII nuclear data. Furthermore, the validation approach and results support a recent revision of the U.S. Nuclear Regulatory Commission Interim Staff Guidance 8.« less
Bayesian cross-entropy methodology for optimal design of validation experiments
NASA Astrophysics Data System (ADS)
Jiang, X.; Mahadevan, S.
2006-07-01
An important concern in the design of validation experiments is how to incorporate the mathematical model in the design in order to allow conclusive comparisons of model prediction with experimental output in model assessment. The classical experimental design methods are more suitable for phenomena discovery and may result in a subjective, expensive, time-consuming and ineffective design that may adversely impact these comparisons. In this paper, an integrated Bayesian cross-entropy methodology is proposed to perform the optimal design of validation experiments incorporating the computational model. The expected cross entropy, an information-theoretic distance between the distributions of model prediction and experimental observation, is defined as a utility function to measure the similarity of two distributions. A simulated annealing algorithm is used to find optimal values of input variables through minimizing or maximizing the expected cross entropy. The measured data after testing with the optimum input values are used to update the distribution of the experimental output using Bayes theorem. The procedure is repeated to adaptively design the required number of experiments for model assessment, each time ensuring that the experiment provides effective comparison for validation. The methodology is illustrated for the optimal design of validation experiments for a three-leg bolted joint structure and a composite helicopter rotor hub component.
ERIC Educational Resources Information Center
Moon, Byongook; Morash, Merry
2017-01-01
The present study of 659 Korean adolescents tests General Strain Theory's (GST) utility in explaining gender differences in delinquency causation. It models the effects of key strains, negative emotions, and a composite measure of several conditioning factors separately for boys and girls and for delinquency. Consistent with the theory, males and…
Shock wave structure in an ideal dissociating gas
NASA Technical Reports Server (NTRS)
Liu, K. H.
1975-01-01
Composition changes within the shock layer due to chemical reactions are considered. The Lighthill ideal dissociating gas model was used in an effort to describe the oxygen type molecule. First, the two limiting cases, when the chemical reaction rates are very slow and very fast in comparison to local convective rates, are investigated. Then, the problem is solved for arbitrary chemical reaction rates.
ERIC Educational Resources Information Center
Wefel, John P.
1982-01-01
The second of two parts (part 1 in v20 n4, p222, Apr 1982) focuses on experimental techniques used to study cosmic-ray isotopic composition, experimental results, and comparison between cosmic-ray source matter and solar-system material. Several models for nucleosynthesis and evolution of cosmic-source matter are also discussed. (Author/JN)
A comparison of satellite systems for gravity field measurements
NASA Technical Reports Server (NTRS)
Argentiero, P. D.; Lowrey, B. E.
1977-01-01
A detailed and accurate earth gravity field model is important to the understanding of the structure and composition of the earth's crust and upper mantle. Various satellite-based techniques for providing more accurate models of the gravity field are analyzed and compared. A high-low configuration satellite-to-satellite tracking mission is recommended for the determination of both the long wavelength and short wavelength portions of the field. Satellite altimetry and satellite gradiometry missions are recommended for determination of the short wavelength portion of the field.
Acoustic results of the Boeing model 360 whirl tower test
NASA Astrophysics Data System (ADS)
Watts, Michael E.; Jordan, David
1990-09-01
An evaluation is presented for whirl tower test results of the Model 360 helicopter's advanced, high-performance four-bladed composite rotor system intended to facilitate over-200-knot flight. During these performance measurements, acoustic data were acquired by seven microphones. A comparison of whirl-tower tests with theory indicate that theoretical prediction accuracies vary with both microphone position and the inclusion of ground reflection. Prediction errors varied from 0 to 40 percent of the measured signal-to-peak amplitude.
Modeling the Hydrogen Solubility in Liquid Aluminum Alloys
NASA Astrophysics Data System (ADS)
Harvey, Jean-Philippe; Chartrand, Patrice
2010-08-01
The modeling of hydrogen solubility in multicomponent Al-(Li, Mg, Cu, and Si) liquid phase has been performed with a thermodynamic approach using the modified quasichemical model with the pair approximation (MQMPA). All hydrogen solubility data available in literature was assessed critically to obtain the binary parameters of the MQMPA model for the Al-H, Li-H, Mg-H, Cu-H, Zn-H, and Si-H melts. For the Li-H system, a new thermodynamic description of the stable solid lithium hydride was determined based on the c p found in literature. The thermodynamic model for the Al-Li system also was reassessed in this work to take into account the short-range ordering observed for this system. Built-in interpolation techniques allow the model to estimate the thermodynamic properties of the multicomponent liquid solution from the liquid model parameters of the lower order subsystems. A comparison of the calculated hydrogen solubility performed at various equilibrium conditions of temperature, pressure, and composition with the available experimental data found in the literature is presented in this work, as well as a comparison with some results from previous modeling.
NASA Technical Reports Server (NTRS)
Moncada, Albert M.; Chattopadhyay, Aditi; Bednarcyk, Brett A.; Arnold, Steven M.
2008-01-01
Predicting failure in a composite can be done with ply level mechanisms and/or micro level mechanisms. This paper uses the Generalized Method of Cells and High-Fidelity Generalized Method of Cells micromechanics theories, coupled with classical lamination theory, as implemented within NASA's Micromechanics Analysis Code with Generalized Method of Cells. The code is able to implement different failure theories on the level of both the fiber and the matrix constituents within a laminate. A comparison is made among maximum stress, maximum strain, Tsai-Hill, and Tsai-Wu failure theories. To verify the failure theories the Worldwide Failure Exercise (WWFE) experiments have been used. The WWFE is a comprehensive study that covers a wide range of polymer matrix composite laminates. The numerical results indicate good correlation with the experimental results for most of the composite layups, but also point to the need for more accurate resin damage progression models.
NASA Astrophysics Data System (ADS)
Livings, R. A.; Dayal, V.; Barnard, D. J.; Hsu, D. K.
2012-05-01
Ceramic tiles are the main ingredient of a multi-material, multi-layered composite being considered for the modernization of tank armors. The high stiffness, low attenuation, and precise dimensions of these uniform tiles make them remarkable resonators when driven to vibrate. Defects in the tile, during manufacture or after usage, are expected to change the resonance frequencies and resonance images of the tile. The comparison of the resonance frequencies and resonance images of a pristine tile/lay-up to a defective tile/lay-up will thus be a quantitative damage metric. By examining the vibrational behavior of these tiles and the composite lay-up with Finite Element Modeling and analytical plate vibration equations, the development of a new Nondestructive Evaluation technique is possible. This study examines the development of the Air-Coupled Ultrasonic Resonance Imaging technique as applied to a hexagonal ceramic tile and a multi-material, multi-layered composite.
NASA Astrophysics Data System (ADS)
Ektarawong, A.; Simak, S. I.; Alling, B.
2018-05-01
We perform first-principles calculations to investigate the phase stability of boron carbide, concentrating on the recently proposed alternative structural models composed not only of the regularly studied B11Cp (CBC) and B12(CBC), but also of B12(CBCB) and B12( B4 ). We find that a combination of the four structural motifs can result in low-energy electron precise configurations of boron carbide. Among several considered configurations within the composition range of B10.5C and B4C , we identify in addition to the regularly studied B11Cp (CBC) at the composition of B4C two low-energy configurations, resulting in a new view of the B-C convex hull. Those are [B12 (CBC)]0.67[B12(B4)] 0.33 and [B12 (CBC)]0.67[ B12 (CBCB)]0.33, corresponding to compositions of B10.5C and B6.67C , respectively. As a consequence, B12(CBC) at the composition of B6.5C , previously suggested in the literature as a stable configuration of boron carbide, is no longer part of the B -C convex hull. By inspecting the electronic density of states as well as the elastic moduli, we find that the alternative models of boron carbide can provide a reasonably good description for electronic and elastic properties of the material in comparison with the experiments, highlighting the importance of considering B12(CBCB) and B12( B4 ), together with the previously proposed B11Cp (CBC) and B12(CBC), as the crucial ingredients for modeling boron carbide with compositions throughout the single-phase region.
NASA Technical Reports Server (NTRS)
Santare, Michael H.; Pipes, R. Byron; Beaussart, A. J.; Coffin, D. W.; Otoole, B. J.; Shuler, S. F.
1993-01-01
Flexible manufacturing methods are needed to reduce the cost of using advanced composites in structural applications. One method that allows for this is the stretch forming of long discontinuous fiber materials with thermoplastic matrices. In order to exploit this flexibility in an economical way, a thorough understanding of the relationship between manufacturing and component performance must be developed. This paper reviews some of the recent work geared toward establishing this understanding. Micromechanics models have been developed to predict the formability of the material during processing. The latest improvement of these models includes the viscoelastic nature of the matrix and comparison with experimental data. A finite element scheme is described which can be used to model the forming process. This model uses equivalent anisotropic viscosities from the micromechanics models and predicts the microstructure in the formed part. In addition, structural models have been built to account for the material property gradients that can result from the manufacturing procedures. Recent developments in this area include the analysis of stress concentrations and a failure model each accounting for the heterogeneous material fields.
Lake, Spencer P.; Hadi, Mohammad F.; Lai, Victor K.; Barocas, Victor H.
2013-01-01
While collagen is recognized as the predominant mechanical component of soft connective tissues, the role of the non-fibrillar matrix (NFM) is less well understood. Even model systems, such as the collagen-agarose co-gel, can exhibit complex behavior, making it difficult to identify relative contributions of specific tissue constituents. In the present study, we developed a two-component microscale model of collagen-agarose tissue analogs and used it to elucidate the interaction between collagen and NFM in uniaxial tension. Collagen fibers were represented with Voronoi networks, and the NFM was modeled as a neo-Hookean solid. Model predictions of total normal stress and Poisson’s ratio matched experimental observations well (including high Poisson’s values of ~3), and the addition of NFM led to composition-dependent decreases in volume change and increases in fiber stretch. Because the NFM was more resistant to volume change than the fiber network, extension of the composite led to pressurization of the NFM. Within a specific range of parameter values (low shear modulus and moderate Poisson’s ratio), the magnitude of the reaction force decreased relative to this pressurization component resulting in a negative (compressive) NFM stress in the loading direction, even though the composite tissue was in tension. PMID:22565816
The Gendered Family Process Model: An Integrative Framework of Gender in the Family.
Endendijk, Joyce J; Groeneveld, Marleen G; Mesman, Judi
2018-05-01
This article reviews and integrates research on gender-related biological, cognitive, and social processes that take place in or between family members, resulting in a newly developed gendered family process (GFP) model. The GFP model serves as a guiding framework for research on gender in the family context, calling for the integration of biological, social, and cognitive factors. Biological factors in the model are prenatal, postnatal, and pubertal androgen levels of children and parents, and genetic effects on parent and child gendered behavior. Social factors are family sex composition (i.e., parent sex, sexual orientation, marriage status, sibling sex composition) and parental gender socialization, such as modeling, gender-differentiated parenting, and gender talk. Cognitive factors are implicit and explicit gender-role cognitions of parents and children. Our review and the GFP model confirm that gender is an important organizer of family processes, but also highlight that much is still unclear about the mechanisms underlying gender-related processes within the family context. Therefore, we stress the need for (1) longitudinal studies that take into account the complex bidirectional relationship between parent and child gendered behavior and cognitions, in which within-family comparisons (comparing behavior of parents toward a boy and a girl in the same family) are made instead of between-family comparisons (comparing parenting between all-boy families and all-girl families, or between mixed-gender families and same-gender families), (2) experimental studies on the influence of testosterone on human gender development, (3) studies examining the interplay between biology with gender socialization and gender-role cognitions in humans.
Additive Manufacturing and Characterization of Ultem Polymers and Composites
NASA Technical Reports Server (NTRS)
Chuang, Kathy C.; Grady, Joseph E.; Draper, Robert D.; Shin, Euy-Sik E.; Patterson, Clark; Santelle, Thomas D.
2015-01-01
The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimides - Ultem 9085 and experimental Ultem 1000 mixed with 10 percent chopped carbon fiber. A property comparison between FDM-printed and injection-molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25-31 percent. Coupons of Ultem 9085 and experimental Ultem 1000 composites were tested at room temperature and 400 degrees Fahrenheit to evaluate their corresponding mechanical properties.
Stress Free Temperature Testing and Residual Stress Calculations on Out-of-Autoclave Composites
NASA Technical Reports Server (NTRS)
Cox, Sarah; Tate, LaNetra C.; Danley, Susan; Sampson, Jeff; Taylor, Brian; Miller, Sandi
2012-01-01
Future launch vehicles will require the incorporation large composite parts that will make up primary and secondary components of the vehicle. NASA has explored the feasibility of manufacturing these large components using Out-of-Autoclave impregnated carbon fiber composite systems through many composites development projects. Most recently, the Composites for Exploration Project has been looking at the development of a 10 meter diameter fairing structure, similar in size to what will be required for a heavy launch vehicle. The development of new material systems requires the investigation of the material properties and the stress in the parts. Residual stress is an important factor to incorporate when modeling the stresses that a part is undergoing. Testing was performed to verify the stress free temperature with two-ply asymmetric panels. A comparison was done between three newly developed out of autoclave IM7 /Bismalieimide (BMI) systems. This paper presents the testing results and the analysis performed to determine the residual stress of the materials.
Stress Free Temperature Testing and Calculations on Out-of-Autoclave Composites
NASA Technical Reports Server (NTRS)
Cox, Sarah B.; Tate, LeNetra C.; Danley, Susan E.; Sampson, Jeffrey W.; Taylor, Brian J.; Sutter, James K.; Miller, Sandi G.
2013-01-01
Future launch vehicles will require the incorporation of large composite parts that will make up primary and secondary components of the vehicle. NASA has explored the feasibility of manufacturing these large components using Out-of-Autoclave impregnated carbon fiber composite systems through many composites development projects. Most recently, the Composites for Exploration Project has been looking at the development of a 10 meter diameter fairing structure, similar in size to what will be required for a heavy launch vehicle. The development of new material systems requires the investigation of the material properties and the stress in the parts. Residual stress is an important factor to incorporate when modeling the stresses that a part is undergoing. Testing was performed to verify the stress free temperature with two-ply asymmetric panels. A comparison was done between three newly developed out of autoclave IM7/Bismaleimide (BMI) systems. This paper presents the testing results and the analysis performed to determine the stress free temperature of the materials
New Polylactic Acid Composites Reinforced with Artichoke Fibers
Botta, Luigi; Fiore, Vincenzo; Scalici, Tommaso; Valenza, Antonino; Scaffaro, Roberto
2015-01-01
In this work, artichoke fibers were used for the first time to prepare poly(lactic acid) (PLA)-based biocomposites. In particular, two PLA/artichoke composites with the same fiber loading (10% w/w) were prepared by the film-stacking method: the first one (UNID) reinforced with unidirectional long artichoke fibers, the second one (RANDOM) reinforced by randomly-oriented long artichoke fibers. Both composites were mechanically characterized in tensile mode by quasi-static and dynamic mechanical tests. The morphology of the fracture surfaces was analyzed through scanning electron microscopy (SEM). Moreover, a theoretical model, i.e., Hill’s method, was used to fit the experimental Young’s modulus of the biocomposites. The quasi-static tensile tests revealed that the modulus of UNID composites is significantly higher than that of the neat PLA (i.e., ~40%). Moreover, the tensile strength is slightly higher than that of the neat matrix. The other way around, the stiffness of RANDOM composites is not significantly improved, and the tensile strength decreases in comparison to the neat PLA.
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Murthy, Pappu L. N.; Chamis, Christos C.
1994-01-01
A computational simulation procedure is presented for nonlinear analyses which incorporates microstress redistribution due to progressive fracture in ceramic matrix composites. This procedure facilitates an accurate simulation of the stress-strain behavior of ceramic matrix composites up to failure. The nonlinearity in the material behavior is accounted for at the constituent (fiber/matrix/interphase) level. This computational procedure is a part of recent upgrades to CEMCAN (Ceramic Matrix Composite Analyzer) computer code. The fiber substructuring technique in CEMCAN is used to monitor the damage initiation and progression as the load increases. The room-temperature tensile stress-strain curves for SiC fiber reinforced reaction-bonded silicon nitride (RBSN) matrix unidirectional and angle-ply laminates are simulated and compared with experimentally observed stress-strain behavior. Comparison between the predicted stress/strain behavior and experimental stress/strain curves is good. Collectively the results demonstrate that CEMCAN computer code provides the user with an effective computational tool to simulate the behavior of ceramic matrix composites.
Challenges in Discerning Atmospheric Composition in Directly Imaged Planets
NASA Technical Reports Server (NTRS)
Marley, Mark S.
2017-01-01
One of the justifications motivating efforts to detect and characterize young extrasolar giant planets has been to measure atmospheric composition for comparison with that of the primary star. If the enhancement of heavy elements in the atmospheres of extrasolar giant planets, like it is for their solar system analogs, is inversely proportional to mass, then it is likely that these worlds formed by core accretion. However in practice it has been very difficult to constrain metallicity because of the complex effect of clouds. Cloud opacity varies both vertically and, in some cases, horizontally through the atmosphere. Particle size and composition, both of which impact opacity, are difficult challenges both for forward modeling and retrieval studies. In my presentation I will discuss systematic efforts to improve cloud studies to enable more reliable determinations of atmospheric composition. These efforts are relevant both to discerning composition of directly imaged young planets from ground based telescopes and future space based missions, such as WFIRST and LUVOIR.
NASA Astrophysics Data System (ADS)
Kim, Jeong-Woo
A joint experimental and analytical investigation of the sound transmission loss (STL) and two-dimensional free wave propagation in composite sandwich panels is presented here. An existing panel, a Nomex honeycomb sandwich panel, was studied in detail. For the purpose of understanding the typical behavior of sandwich panels, a composite structure comprising two aluminum sheets with a relatively soft, poro-elastic foam core was also constructed and studied. The cores of both panels were modeled using an anisotropic (transversely isotropic) poro-elastic material theory. Several estimation methods were used to obtain the material properties of the honeycomb core and the skin plates to be used in the numerical calculations. Appropriate values selected from among the estimates were used in the STL and free wave propagation models. The prediction model was then verified in two ways: first, the calculated wave speeds and STL of a single poro-elastic layer were numerically verified by comparison with the predictions of a previously developed isotropic model. Secondly, to physically validate the transversely isotropic model, the measured STL and the phase speeds of the sandwich panels were compared with their predicted values. To analyze the actual treatment of a fuselage structure, multi-layered configurations, including a honeycomb panel and several layers such as air gaps, acoustic blankets and membrane partitions, were formulated. Then, to find the optimal solution for improving the sound barrier performance of an actual fuselage system, air layer depth and glass fiber lining effects were investigated by using these multi-layer models. By using the free wave propagation model, the first anti-symmetric and symmetric modes of the sandwich panels were characterized to allow the identification of the coincidence frequencies of the sandwich panel. The behavior of the STL could then be clearly explained by comparison with the free wave propagation solutions. By performing a parameter study based both on the STL and free wave propagation speeds, the mass, stiffness and damping-controlled regions of the STL were identified. The structural factors that can be adjusted to improve STL performance were also identified.
Time dependent micromechanics in continuous graphite fiber/epoxy composites with fiber breaks
NASA Astrophysics Data System (ADS)
Zhou, Chao Hui
Time dependent micromechanics in graphite fiber/epoxy composites around fiber breaks was investigated with micro Raman spectroscopy (MRS) and two shear-lag based composite models, a multi-fiber model (VBI) and a single fiber model (SFM), which aim at predicting the strain/stress evolutions in the composite from the matrix creep behavior and fiber strength statistics. This work is motivated by the need to understand the micromechanics and predict the creep-rupture of the composites. Creep of the unfilled epoxy was characterized under different stress levels and at temperatures up to 80°C, with two power law functions, which provided the modeling parameters used as input for the composite models. Both the VBI and the SFM models showed good agreement with the experimental data obtained with MRS, when inelasticity (interfacial debonding and/or matrix yielding) was not significant. The maximum shear stress near a fiber break relaxed at t-alpha/2 (or as (1+ talpha)-1/2) and the load recovery length increased at talpha/2(or (1+ talpha)1/2) following the model predictions. When the inelastic zone became non-negligible, the viscoelastic VBI model lost its competence, while the SFM with inelasticity showed good agreement with the MRS measurements. Instead of using the real fiber spacing, an effective fiber spacing was used in model predictions, taking into account of the radial decay of the interfacial shear stress from the fiber surface. The comparisons between MRS data and the SFM showed that inelastic zone would initiate when the shear strain at the fiber end exceeds a critical value gammac which was determined to be 5% for this composite system at room temperature and possibly a smaller value at elevated temperatures. The stress concentrations in neighboring intact fibers played important roles in the subsequent fiber failure and damage growth. The VBI model predicts a constant stress concentration factor, 1.33, for the 1st nearest intact fiber, which is in good agreement with MRS measurements for most cases except for those with severely debonded interfaces. However, the VBI model usually gives a stress concentration profile narrower than the measured one due to the inelasticity near the fiber break. The low average fiber volume fraction in the model composites caused small relaxation in the stress concentration, which became more obvious at elevated temperatures, especially for large fiber spacing cases. When new break(s) occurred in the original intact neighboring fibers within an effective distance from the original break, the inelastic zones grew at a faster rate due to the strong interactions. Results on the creep-rupture of the bulk composites showed that the failure probability depends on the stress level and the loading time. The time dependent failure probability data could be fitted to a power law function, which suggested a link between the matrix creep, composite short-term strength and the composite creep-rupture.
NASA Astrophysics Data System (ADS)
Panday, S.; Wu, Y. S.; Huyakorn, P. S.; Wade, S. C.; Saleem, Z. A.
1997-02-01
Subsurface fate and transport models are utilized to predict concentrations of chemicals leaching from wastes into downgradient receptor wells. The contaminant concentrations in groundwater provide a measure of the risk to human health and the environment. The level of potential risk is currently used by the U.S. Environmental Protection Agency to determine whether management of the wastes should conform to hazardous waste management standards. It is important that the transport and fate of contaminants is simulated realistically. Most models in common use are inappropriate for simulating the migration of wastes containing significant fractions of nonaqueous-phase liquids (NAPLs). The migration of NAPL and its dissolved constituents may not be reliably predicted using conventional aqueous-phase transport simulations. To overcome this deficiency, an efficient and robust regulatory assessment model incorporating multiphase flow and transport in the unsaturated and saturated zones of the subsurface environment has been developed. The proposed composite model takes into account all of the major transport processes including infiltration and ambient flow of NAPL, entrapment of residual NAPL, adsorption, volatilization, degradation, dissolution of chemical constituents, and transport by advection and hydrodynamic dispersion. Conceptually, the subsurface is treated as a composite unsaturated zone-saturated zone system. The composite simulator consists of three major interconnected computational modules representing the following components of the migration pathway: (1) vertical multiphase flow and transport in the unsaturated zone; (2) areal movement of the free-product lens in the saturated zone with vertical equilibrium; and (3) three-dimensional aqueous-phase transport of dissolved chemicals in ambient groundwater. Such a composite model configuration promotes computational efficiency and robustness (desirable for regulatory assessment applications). Two examples are presented to demonstrate the model verification and a site application. Simulation results obtained using the composite modeling approach are compared with a rigorous numerical solution and field observations of crude oil saturations and plume concentrations of total dissolved organic carbon at a spill site in Minnesota, U.S.A. These comparisons demonstrate the ability of the present model to provide realistic depiction of field-scale situations.
Predicting the Mineral Composition of Dust Aerosols. Part 1; Representing Key Processes
NASA Technical Reports Server (NTRS)
Perlwitz, J. P.; Garcia-Pando, C. Perez; Miller, R. L.
2015-01-01
Soil dust aerosols created by wind erosion are typically assigned globally uniform physical and chemical properties within Earth system models, despite known regional variations in the mineral content of the parent soil. Mineral composition of the aerosol particles is important to their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Here, aerosol mineral composition is derived by extending a method that provides the composition of a wet-sieved soil. The extension accounts for measurements showing significant differences between the mineral fractions of the wetsieved soil and the emitted aerosol concentration. For example, some phyllosilicate aerosols are more prevalent at silt sizes, even though they are nearly absent at these diameters in a soil whose aggregates are dispersed by wet sieving. We calculate the emitted mass of each mineral with respect to size by accounting for the disintegration of soil aggregates during wet sieving. These aggregates are emitted during mobilization and fragmentation of the original undispersed soil that is subject to wind erosion. The emitted aggregates are carried far downwind from their parent soil. The soil mineral fractions used to calculate the aggregates also include larger particles that are suspended only in the vicinity of the source. We calculate the emitted size distribution of these particles using a normalized distribution derived from aerosol measurements. In addition, a method is proposed for mixing minerals with small impurities composed of iron oxides. These mixtures are important for transporting iron far from the dust source, because pure iron oxides are more dense and vulnerable to gravitational removal than most minerals comprising dust aerosols. A limited comparison to measurements from North Africa shows that the model extensions result in better agreement, consistent with a more extensive comparison to global observations as well as measurements of elemental composition downwind of the Sahara, as described in companion articles.
Predicting the mineral composition of dust aerosols - Part 1: Representing key processes
NASA Astrophysics Data System (ADS)
Perlwitz, J. P.; Pérez García-Pando, C.; Miller, R. L.
2015-10-01
Soil dust aerosols created by wind erosion are typically assigned globally uniform physical and chemical properties within Earth system models, despite known regional variations in the mineral content of the parent soil. Mineral composition of the aerosol particles is important to their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Here, aerosol mineral composition is derived by extending a method that provides the composition of a wet-sieved soil. The extension accounts for measurements showing significant differences between the mineral fractions of the wet-sieved soil and the emitted aerosol concentration. For example, some phyllosilicate aerosols are more prevalent at silt sizes, even though they are nearly absent at these diameters in a soil whose aggregates are dispersed by wet sieving. We calculate the emitted mass of each mineral with respect to size by accounting for the disintegration of soil aggregates during wet sieving. These aggregates are emitted during mobilization and fragmentation of the original undispersed soil that is subject to wind erosion. The emitted aggregates are carried far downwind from their parent soil. The soil mineral fractions used to calculate the aggregates also include larger particles that are suspended only in the vicinity of the source. We calculate the emitted size distribution of these particles using a normalized distribution derived from aerosol measurements. In addition, a method is proposed for mixing minerals with small impurities composed of iron oxides. These mixtures are important for transporting iron far from the dust source, because pure iron oxides are more dense and vulnerable to gravitational removal than most minerals comprising dust aerosols. A limited comparison to measurements from North Africa shows that the model extensions result in better agreement, consistent with a more extensive comparison to global observations as well as measurements of elemental composition downwind of the Sahara, as described in companion articles.
Comparison of forcefields for molecular dynamics simulations of hydrocarbon phase diagrams
NASA Astrophysics Data System (ADS)
Pisarev, V. V.; Zakharov, S. A.
2018-01-01
Molecular dynamics calculations of vapor-liquid equilibrium of methane-n-butane mixture are performed. Three force-field models are tested: the TraPPE-UA united-atom forcefield, LOPLS-AA all-atom forcefield and a fully flexible version of the TraPPE-EH all-atom forcefield. All those forcefields reproduce well the composition of liquid phase in the mixture as a function of pressure at the 300 K isotherm, while significant discrepancies from experimental data are observed in the saturated vapor compositions with OPLS-AA and TraPPE-UA forcefields. The best agreement with the experimental phase diagram is found with TraPPE-EH forcefield which accurately reproduces compositions of both liquid and vapor phase. This forcefield can be recommended for simulation of two-phase hydrocarbon systems.
Thomson, Russell J; Hill, Nicole A; Leaper, Rebecca; Ellis, Nick; Pitcher, C Roland; Barrett, Neville S; Edgar, Graham J
2014-03-01
To support coastal planning through improved understanding of patterns of biotic and abiotic surrogacy at broad scales, we used gradient forest modeling (GFM) to analyze and predict spatial patterns of compositional turnover of demersal fishes, macroinvertebrates, and macroalgae on shallow, temperate Australian reefs. Predictive models were first developed using environmental surrogates with estimates of prediction uncertainty, and then the efficacy of the three assemblages as biosurrogates for each other was assessed. Data from underwater visual surveys of subtidal rocky reefs were collected from the southeastern coastline of continental Australia (including South Australia and Victoria) and the northern coastline of Tasmania. These data were combined with 0.01 degree-resolution gridded environmental variables to develop statistical models of compositional turnover (beta diversity) using GFM. GFM extends the machine learning, ensemble tree-based method of random forests (RF), to allow the simultaneous modeling of multiple taxa. The models were used to generate predictions of compositional turnover for each of the three assemblages within unsurveyed areas across the 6600 km of coastline in the region of interest. The most important predictor for all three assemblages was variability in sea surface temperature (measured as standard deviation from measures taken interannually). Spatial predictions of compositional turnover within unsurveyed areas across the region of interest were remarkably congruent across the three taxa. However, the greatest uncertainty in these predictions varied in location among the different assemblages. Pairwise congruency comparisons of observed and predicted turnover among the three assemblages showed that invertebrate and macroalgal biodiversity were most similar, followed by fishes and macroalgae, and lastly fishes and invertebrate biodiversity, suggesting that of the three assemblages, macroalgae would make the best biosurrogate for both invertebrate and fish compositional turnover.
Diet composition as a source of variation in experimental animal models of cancer cachexia.
Giles, Kaitlin; Guan, Chen; Jagoe, Thomas R; Mazurak, Vera
2016-05-01
A variety of experimental animal models are used extensively to study mechanisms underlying cancer cachexia, and to identify potential treatments. The important potential confounding effect of dietary composition and intake used in many preclinical studies of cancer cachexia is frequently overlooked. Dietary designs applied in experimental studies should maximize the applicability to human cancer cachexia, meeting the essential requirements of the species used in the study, matched between treatment and control groups as well as also being generally similar to human consumption. A literature review of scientific studies using animal models of cancer and cancer cachexia with dietary interventions was performed. Studies that investigated interventions using lipid sources were selected as the focus of discussion. The search revealed a number of nutrient intervention studies (n = 44), with the majority including n-3 fatty acids (n = 16), mainly eicosapentaenoic acid and/or docosahexaenoic acid. A review of the literature revealed that the majority of studies do not provide information about dietary design; food intake or pair-feeding is rarely reported. Further, there is a lack of standardization in dietary design, content, source, and overall composition in animal models of cancer cachexia. A model is proposed with the intent of guiding dietary design in preclinical studies to enable comparisons of dietary treatments within the same study, translation across different study designs, as well as application to human nutrient intakes. The potential for experimental endpoints to be affected by variations in food intake, macronutrient content, and diet composition is likely. Diet content and composition should be reported, and food intake assessed. Minimum standards for diet definition in cachexia studies would improve reproducibility of pre-clinical studies and aid the interpretation and translation of results to humans with cancer.
Diet composition as a source of variation in experimental animal models of cancer cachexia
Giles, Kaitlin; Guan, Chen; Jagoe, Thomas R.
2015-01-01
Abstract Background A variety of experimental animal models are used extensively to study mechanisms underlying cancer cachexia, and to identify potential treatments. The important potential confounding effect of dietary composition and intake used in many preclinical studies of cancer cachexia is frequently overlooked. Dietary designs applied in experimental studies should maximize the applicability to human cancer cachexia, meeting the essential requirements of the species used in the study, matched between treatment and control groups as well as also being generally similar to human consumption. Methods A literature review of scientific studies using animal models of cancer and cancer cachexia with dietary interventions was performed. Studies that investigated interventions using lipid sources were selected as the focus of discussion. Results The search revealed a number of nutrient intervention studies (n = 44), with the majority including n‐3 fatty acids (n = 16), mainly eicosapentaenoic acid and/or docosahexaenoic acid. A review of the literature revealed that the majority of studies do not provide information about dietary design; food intake or pair‐feeding is rarely reported. Further, there is a lack of standardization in dietary design, content, source, and overall composition in animal models of cancer cachexia. A model is proposed with the intent of guiding dietary design in preclinical studies to enable comparisons of dietary treatments within the same study, translation across different study designs, as well as application to human nutrient intakes. Conclusion The potential for experimental endpoints to be affected by variations in food intake, macronutrient content, and diet composition is likely. Diet content and composition should be reported, and food intake assessed. Minimum standards for diet definition in cachexia studies would improve reproducibility of pre‐clinical studies and aid the interpretation and translation of results to humans with cancer. PMID:27493865
Modeling of Dendritic Structure and Microsegregation in Solidification of Al-Rich Quaternary Alloys
NASA Astrophysics Data System (ADS)
Dai, Ting; Zhu, Mingfang; Chen, Shuanglin; Cao, Weisheng
A two-dimensional cellular automaton (CA) model is coupled with a CALPHAD tool for the simulation of dendritic growth and microsegregation in solidification of quaternary alloys. The dynamics of dendritic growth is calculated according to the difference between the local equilibrium liquidus temperature and the actual temperature, incorporating with the Gibbs—Thomson effect and preferential dendritic growth orientations. Based on the local liquid compositions determined by solving the solutal transport equation in the domain, the local equilibrium liquidus temperature and the solid concentrations at the solid/liquid (SL) interface are calculated by the CALPHAD tool. The model was validated through the comparisons of the simulated results with the Scheil predictions for the solid composition profiles as a function of solid fraction in an Al-6wt%Cu-0.6wt%Mg-1wt%Si alloy. It is demonstrated that the model is capable of not only reproducing realistic dendrite morphologies, but also reasonably predicting microsegregation patterns in solidification of Al-rich quaternary alloys.
Abo Sabah, Saddam Hussein; Kueh, Ahmad Beng Hong
2014-01-01
This paper investigates the effects of localized interface progressive delamination on the behavior of two-layer laminated composite plates when subjected to low velocity impact loading for various fiber orientations. By means of finite element approach, the laminae stiffnesses are constructed independently from their interface, where a well-defined virtually zero-thickness interface element is discreetly adopted for delamination simulation. The present model has the advantage of simulating a localized interfacial condition at arbitrary locations, for various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. In comparison, the model shows good agreement with existing results from the literature when modeled in a perfectly bonded state. It is found that as the local delamination area increases, so does the magnitude of the maximum displacement history. Also, as top and bottom fiber orientations deviation increases, both central deflection and energy absorption increase although the relative maximum displacement correspondingly decreases when in contrast to the laminates perfectly bonded state. PMID:24696668
Abo Sabah, Saddam Hussein; Kueh, Ahmad Beng Hong
2014-01-01
This paper investigates the effects of localized interface progressive delamination on the behavior of two-layer laminated composite plates when subjected to low velocity impact loading for various fiber orientations. By means of finite element approach, the laminae stiffnesses are constructed independently from their interface, where a well-defined virtually zero-thickness interface element is discreetly adopted for delamination simulation. The present model has the advantage of simulating a localized interfacial condition at arbitrary locations, for various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. In comparison, the model shows good agreement with existing results from the literature when modeled in a perfectly bonded state. It is found that as the local delamination area increases, so does the magnitude of the maximum displacement history. Also, as top and bottom fiber orientations deviation increases, both central deflection and energy absorption increase although the relative maximum displacement correspondingly decreases when in contrast to the laminates perfectly bonded state.
NASA Astrophysics Data System (ADS)
Verbeeck, Hans; Bauters, Marijn; Bruneel, Stijn; Demol, Miro; Taveirne, Cys; Van Der Heyden, Dries; Kearsley, Elizabeth; Cizungu, Landry; Boeckx, Pascal
2017-04-01
Tropical forests are key actors in the global carbon cycle. Predicting future responses of these forests to global change is challenging, but important for global climate models. However, our current understanding of such responses is limited, due to the complexity of forest ecosystems and the slow dynamics that inherently form these systems. Our understanding of ecosystem ecology and functioning could greatly benefit from experimental setups including strong environmental gradients in the tropics, as found on altitudinal transects. We setup two such transects in both South-America and Central Africa, focussing on shifts in carbon allocation, forest structure, nutrient cycling and functional composition. The Ecuadorian transect has 16 plots (40 by 40 m) and ranges from 400 to 3000 m.a.s.l., and the Rwandan transect has 20 plots (40 by 40 m) from 1500 to 3000 m.a.s.l. All plots were inventoried and canopy, litter and soil were extensively sampled. By a cross-continental comparison of both transects, we will gain insight in how different or alike both tropical forests biomes are in their responses, and how universal the observed altitudinal adaption mechanisms are. This could provide us with vital information of the ecological responses of both biomes to future global change scenarios. Additionally, comparison of nutrient shifts and trait-based functional composition allows us to compare the biogeochemical cycles of African and South-American tropical forests.
The delineation and interpretation of the Earth's gravity field
NASA Technical Reports Server (NTRS)
Marsh, B. D.
1983-01-01
The observed changes in velocity with time are reduced relative to the well-determined low degree and order GEM field model and accelerations are found by analytical differentiation of the range rates. This new map is essentially identical to the first map and we have produced a composite map by combining all 90 passes of SST data. The resolution of the map is at worst about 5 deg and much better in most places. A comparison of this map with conventional GEM models shows very good agreement. A reduction of the SEASAT altimeter data has also been carried out for an additional comparison. Although the SEASAT geoid contains much more high frequency information, it agrees very well with both the SST and GEM fields. The maps are dominated (especially in the east) by a pattern of roughly east-west anomalies with a transverse wavelength of about 2000 km. A further comparison with regional bathymetric data shows a remarkably close correlation with plate age.
Temperature dependent nonlinear metal matrix laminae behavior
NASA Technical Reports Server (NTRS)
Barrett, D. J.; Buesking, K. W.
1986-01-01
An analytical method is described for computing the nonlinear thermal and mechanical response of laminated plates. The material model focuses upon the behavior of metal matrix materials by relating the nonlinear composite response to plasticity effects in the matrix. The foundation of the analysis is the unidirectional material model which is used to compute the instantaneous properties of the lamina based upon the properties of the fibers and matrix. The unidirectional model assumes that the fibers properties are constant with temperature and assumes that the matrix can be modelled as a temperature dependent, bilinear, kinematically hardening material. An incremental approach is used to compute average stresses in the fibers and matrix caused by arbitrary mechanical and thermal loads. The layer model is incorporated in an incremental laminated plate theory to compute the nonlinear response of laminated metal matrix composites of general orientation and stacking sequence. The report includes comparisons of the method with other analytical approaches and compares theoretical calculations with measured experimental material behavior. A section is included which describes the limitations of the material model.
A comparison of techniques for nondestructive composition measurements in CdZnTe substrates
NASA Astrophysics Data System (ADS)
Tobin, S. P.; Tower, J. P.; Norton, P. W.; Chandler-Horowitz, D.; Amirtharaj, P. M.; Lopes, V. C.; Duncan, W. M.; Syllaios, A. J.; Ard, C. K.; Giles, N. C.; Lee, Jaesun; Balasubramanian, R.; Bollong, A. B.; Steiner, T. W.; Thewalt, M. L. W.; Bowen, D. K.; Tanner, B. K.
1995-05-01
We report an overview and a comparison of nondestructive optical techniques for determining alloy composition x in Cd1-xZnxTe substrates for HgCdTe epitaxy. The methods for single-point measurements include a new x-ray diffraction technique for precision lattice parameter measurements using a standard highresolution diffractometer, room-temperature photoreflectance, and low-temperature photoluminescence. We compare measurements on the same set of samples by all three techniques. Comparisons of precision and accuracy, with a discussion of the strengths and weaknesses of different techniques, are presented. In addition, a new photoluminescence excitation technique for full-wafer imaging of composition variations is described.
An Efficient Analysis Methodology for Fluted-Core Composite Structures
NASA Technical Reports Server (NTRS)
Oremont, Leonard; Schultz, Marc R.
2012-01-01
The primary loading condition in launch-vehicle barrel sections is axial compression, and it is therefore important to understand the compression behavior of any structures, structural concepts, and materials considered in launch-vehicle designs. This understanding will necessarily come from a combination of test and analysis. However, certain potentially beneficial structures and structural concepts do not lend themselves to commonly used simplified analysis methods, and therefore innovative analysis methodologies must be developed if these structures and structural concepts are to be considered. This paper discusses such an analysis technique for the fluted-core sandwich composite structural concept. The presented technique is based on commercially available finite-element codes, and uses shell elements to capture behavior that would normally require solid elements to capture the detailed mechanical response of the structure. The shell thicknesses and offsets using this analysis technique are parameterized, and the parameters are adjusted through a heuristic procedure until this model matches the mechanical behavior of a more detailed shell-and-solid model. Additionally, the detailed shell-and-solid model can be strategically placed in a larger, global shell-only model to capture important local behavior. Comparisons between shell-only models, experiments, and more detailed shell-and-solid models show excellent agreement. The discussed analysis methodology, though only discussed in the context of fluted-core composites, is widely applicable to other concepts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luciano, R.; Barbero, E.J.
Many micromechanical models have been used to estimate the overall stiffness of heterogeneous- materials and a large number of results and experimental data have been obtained. However, few theoretical and experimental results are available in the field of viscoelastic behavior of heterogeneous media. In this paper the viscoelastostatic problem of composite materials with periodic microstructure is studied. The matrix is assumed linear viscoelastic and the fibers elastic. The correspondence principle in viscoelasticity is applied and the problem in the Laplace domain is solved by using the Fourier series technique and assuming the Laplace transform of the homogenization eigenstrain piecewise constantmore » in the space. Formulas for the Laplace transform of the relaxation functions of the composite are obtained in terms of the properties of the matrix and the fibers and in function of nine triple series which take in account the geometry of the inclusions. The inversion to the time domain of the relaxation and the creep functions of composites reinforced by long fibers is carried out analytically when the four parameters model is used to represent the viscoelastic behavior of the matrix. Finally, comparisons with experimental results are presented.« less
Filament winding cylinders. II - Validation of the process model
NASA Technical Reports Server (NTRS)
Calius, Emilio P.; Lee, Soo-Yong; Springer, George S.
1990-01-01
Analytical and experimental studies were performed to validate the model developed by Lee and Springer for simulating the manufacturing process of filament wound composite cylinders. First, results calculated by the Lee-Springer model were compared to results of the Calius-Springer thin cylinder model. Second, temperatures and strains calculated by the Lee-Springer model were compared to data. The data used in these comparisons were generated during the course of this investigation with cylinders made of Hercules IM-6G/HBRF-55 and Fiberite T-300/976 graphite-epoxy tows. Good agreement was found between the calculated and measured stresses and strains, indicating that the model is a useful representation of the winding and curing processes.
NASA Technical Reports Server (NTRS)
LaCasse, Katherine M.; Splitt, Michael E.; Lazarus, Steven M.; Lapenta, William M.
2008-01-01
High- and low-resolution sea surface temperature (SST) analysis products are used to initialize the Weather Research and Forecasting (WRF) Model for May 2004 for short-term forecasts over Florida and surrounding waters. Initial and boundary conditions for the simulations were provided by a combination of observations, large-scale model output, and analysis products. The impact of using a 1-km Moderate Resolution Imaging Spectroradiometer (MODIS) SST composite on subsequent evolution of the marine atmospheric boundary layer (MABL) is assessed through simulation comparisons and limited validation. Model results are presented for individual simulations, as well as for aggregates of easterly- and westerly-dominated low-level flows. The simulation comparisons show that the use of MODIS SST composites results in enhanced convergence zones. earlier and more intense horizontal convective rolls. and an increase in precipitation as well as a change in precipitation location. Validation of 10-m winds with buoys shows a slight improvement in wind speed. The most significant results of this study are that 1) vertical wind stress divergence and pressure gradient accelerations across the Florida Current region vary in importance as a function of flow direction and stability and 2) the warmer Florida Current in the MODIS product transports heat vertically and downwind of this heat source, modifying the thermal structure and the MABL wind field primarily through pressure gradient adjustments.
ERIC Educational Resources Information Center
Waite, Linda J.; Berryman, Sue E.
This study explores young women's retention in sex-atypical jobs in the military and in civilian firms. It tests the hypothesis that women tend to leave stereotypically male jobs at higher rates than they leave stereotypically female jobs. The study models job turnover over a one-year period as a function of (1) the sex composition of an…
EUV/soft x-ray spectra for low B neutron stars
NASA Technical Reports Server (NTRS)
Romani, Roger W.; Rajagopal, Mohan; Rogers, Forrest J.; Iglesias, Carlos A.
1995-01-01
Recent ROSAT and EUVE detections of spin-powered neutron stars suggest that many emit 'thermal' radiation, peaking in the EUV/soft X-ray band. These data constrain the neutron stars' thermal history, but interpretation requires comparison with model atmosphere computations, since emergent spectra depend strongly on the surface composition and magnetic field. As recent opacity computations show substantial change to absorption cross sections at neutron star photospheric conditions, we report here on new model atmosphere computations employing such data. The results are compared with magnetic atmosphere models and applied to PSR J0437-4715, a low field neutron star.
Comparison of numerical simulation and experimental data for steam-in-place sterilization
NASA Technical Reports Server (NTRS)
Young, Jack H.; Lasher, William C.
1993-01-01
A complex problem involving convective flow of a binary mixture containing a condensable vapor and noncondensable gas in a partially enclosed chamber was modelled and results compared to transient experimental values. The finite element model successfully predicted transport processes in dead-ended tubes with inside diameters of 0.4 to 1.0 cm. When buoyancy driven convective flow was dominant, temperature and mixture compositions agreed with experimental data. Data from 0.4 cm tubes indicate diffusion to be the primary air removal method in small diameter tubes and the diffusivity value in the model to be too large.
NASA Technical Reports Server (NTRS)
Margetan, Frank J.; Leckey, Cara A.; Barnard, Dan
2012-01-01
The size and shape of a delamination in a multi-layered structure can be estimated in various ways from an ultrasonic pulse/echo image. For example the -6dB contours of measured response provide one simple estimate of the boundary. More sophisticated approaches can be imagined where one adjusts the proposed boundary to bring measured and predicted UT images into optimal agreement. Such approaches require suitable models of the inspection process. In this paper we explore issues pertaining to model-based size estimation for delaminations in carbon fiber reinforced laminates. In particular we consider the influence on sizing when the delamination is non-planar or partially transmitting in certain regions. Two models for predicting broadband sonic time-domain responses are considered: (1) a fast "simple" model using paraxial beam expansions and Kirchhoff and phase-screen approximations; and (2) the more exact (but computationally intensive) 3D elastodynamic finite integration technique (EFIT). Model-to-model and model-to experiment comparisons are made for delaminations in uniaxial composite plates, and the simple model is then used to critique the -6dB rule for delamination sizing.
A cure-rate model for the Shuttle filament-wound case
NASA Technical Reports Server (NTRS)
Cagliostro, D. E.; Islas, A.; Hsu, Ming-Ta
1987-01-01
An epoxy and carbon fiber composite has been used to produce a light-weight rocket case for the Space Shuttle. A kinetic model is developed which can predict the extent of epoxy conversion during the winding and curing of the case. The model accounts for both chemical and physical kinetics. In the model, chemical kinetics occur exclusively up to the time the transition temperature equals the reaction temperature. At this point the resin begins to solidify and the rate of this process limits the rate of epoxy conversion. A comparison of predicted and actual epoxy conversion is presented for isothermal and temperature programmed cure schedules.
Biological indicators for monitoring water quality of MTF canals system
NASA Technical Reports Server (NTRS)
Sethi, S. L.
1975-01-01
Biological models, diversity indexes, were developed to predict environmental effects of NASA's Mississippi test facility (MTF) chemical operations on canal systems in the area. To predict the effects on local streams, a physical model of unpolluted streams was established. The model is fed by artesian well water free of background levels of pollutants. The species diversity and biota composition of unpolluted MTF stream was determined; resulting information will be used to form baseline data for future comparisons. Biological modeling was accomplished by adding controlled quantities or kinds of chemical pollutants and evaluating the effects of these chemicals on the biological life of the stream.
New Numerical Approaches To thermal Convection In A Compositionally Stratified Fluid
NASA Astrophysics Data System (ADS)
Puckett, E. G.; Turcotte, D. L.; Kellogg, L. H.; Lokavarapu, H. V.; He, Y.; Robey, J.
2016-12-01
Seismic imaging of the mantle has revealed large and small scale heterogeneities in the lower mantle; specifically structures known as large low shear velocity provinces (LLSVP) below Africa and the South Pacific. Most interpretations propose that the heterogeneities are compositional in nature, differing from the overlying mantle, an interpretation that would be consistent with chemical geodynamic models. The LLSVP's are thought to be very old, meaning they have persisted thoughout much of Earth's history. Numerical modeling of persistent compositional interfaces present challenges to even state-of-the-art numerical methodology. It is extremely difficult to maintain sharp composition boundaries which migrate and distort with time dependent fingering without compositional diffusion and / or artificial diffusion. The compositional boundary must persist indefinitely. In this work we present computations of an initial compositionally stratified fluid that is subject to a thermal gradient ΔT = T1 - T0 across the height D of a rectangular domain over a range of buoyancy numbers B and Rayleigh numbers Ra. In these computations we compare three numerical approaches to modeling the movement of two distinct, thermally driven, compositional fields; namely, a high-order Finte Element Method (FEM) that employs artifical viscosity to preserve the maximum and minimum values of the compositional field, a Discontinous Galerkin (DG) method with a Bound Preserving (BP) limiter, and a Volume-of-Fluid (VOF) interface tracking algorithm. Our computations demonstrate that the FEM approach has far too much numerical diffusion to yield meaningful results, the DGBP method yields much better resuts but with small amounts of each compositional field being (numerically) entrained within the other compositional field, while the VOF method maintains a sharp interface between the two compositions throughout the computation. In the figure we show a comparison of between the three methods for a computation made with B = 1.111 and Ra = 10,000 after the flow has reached 'steady state'. (R) the images computed with the standard FEM method (with artifical viscosity), (C) the images computed with the DGBP method (with no artifical viscosity or diffusion due to discretization errors) and (L) the images computed with the VOF algorithm.
NASA Astrophysics Data System (ADS)
Kontaxis, L. C.; Pavlou, C.; Portan, D. V.; Papanicolaou, G. C.
2018-02-01
In the present study, a composite material consisting of a polymeric epoxy resin matrix, reinforced with forty layers of non-woven cotton fiber fabric was manufactured. The method used to manufacture the composite was the Resin Vacuum Infusion technique. This is a technique widely used for high-performance, defect-free, composite materials. Composites and neat polymers are subjected to stresses during their function, while at the same time being influenced by environmental conditions, such as temperature and humidity. The main goal of this study was the investigation of the degradation of composite's viscoelastic behavior, after saline absorption. At this point, it should be mentioned, that this material could be used in biomedical applications. Therefore, a sealed container full of saline was used for the immer s ion of the specimens manufactured, and was placed in a bath at 37°C (body temperature). The specimens remained there for five different immersion periods (24, 72, 144, 216, 336 hours). The viscoelastic behavior of the composite material was determined through stress relaxation under flexure conditions, and the effect of immersion time and amount of saline absorption was studied. It was observed that after 24 hours of immersion a 42% decrease in stress was observed, which in the sequence remained almost constant. The stress relaxation experimental results were predicted by using the Residua l Property Model (RPM), a model developed by Papanicolaou et al. The same model has been successfully applied in the past, to many different materials previously subjected to various types of damage, in order to predict their residual behavior. For its application, the RPM predictive model needs only two experimental points. It was found that in all cases, predictions were in good agreement with experimental findings. Furthermore, the comparison between experimental values and theoretical predictions formed the basis of useful observations and conclusions.
Bozorgpour, Farahnaz; Ramandi, Hossein Fasih; Jafari, Pooya; Samadi, Saman; Yazd, Shabnam Sharif; Aliabadi, Majid
2016-12-01
In the present study the chitosan/Al 2 O 3 /Fe 3 O 4 composite nanofibrous adsorbent was prepared by electrospinning process and its application for the removal of nitrate and phosphate were compared with chitosan/Al 2 O 3 /Fe 3 O 4 composite bead adsorbent. The influence of Al 2 O 3 /Fe 3 O 4 composite content, pH, contact time, nitrate and phosphate initial concentrations and temperature on the nitrate and phosphate sorption using synthesized bead and nanofibrous adsorbents was investigated in a single system. The reusability of chitosan/Al 2 O 3 /Fe 3 O 4 composite beads and nanofibers after five sorption-desorption cycles were carried out. The Box-Behnken design was used to investigate the interaction effects of adsorbent dosage, nitrate and phosphate initial concentrations on the nitrate and phosphate removal efficiency. The pseudo-second-order kinetic model and known Freundlich and Langmuir isotherm models were used to describe the kinetic and equilibrium data of nitrate and phosphate sorption using chitosan/Al 2 O 3 /Fe 3 O 4 composite beads and nanofibers. The influence of other anions including chloride, fluoride and sulphate on the sorption efficiency of nitrate and phosphate was examined. The obtained results revealed the higher potential of chitosan/Al 2 O 3 /Fe 3 O 4 composite nanofibers for nitrate and phosphate compared with chitosan/Al 2 O 3 /Fe 3 O 4 composite beads. Copyright © 2016 Elsevier B.V. All rights reserved.
Modelling compression sensing in ionic polymer metal composites
NASA Astrophysics Data System (ADS)
Volpini, Valentina; Bardella, Lorenzo; Rodella, Andrea; Cha, Youngsu; Porfiri, Maurizio
2017-03-01
Ionic polymer metal composites (IPMCs) consist of an ionomeric membrane, including mobile counterions, sandwiched between two thin noble metal electrodes. IPMCs find application as sensors and actuators, where an imposed mechanical loading generates a voltage across the electrodes, and, vice versa, an imposed electric field causes deformation. Here, we present a predictive modelling approach to elucidate the dynamic sensing response of IPMCs subject to a time-varying through-the-thickness compression (‘compression sensing’). The model relies on the continuum theory recently developed by Porfiri and co-workers, which couples finite deformations to the modified Poisson-Nernst-Planck (PNP) system governing the IPMC electrochemistry. For the ‘compression sensing’ problem we establish a perturbative closed-form solution along with a finite element (FE) solution. The systematic comparison between these two solutions is a central contribution of this study, offering insight on accuracy and mathematical complexity. The method of matched asymptotic expansions is employed to find the analytical solution. To this end, we uncouple the force balance from the modified PNP system and separately linearise the PNP equations in the ionomer bulk and in the boundary layers at the ionomer-electrode interfaces. Comparison with FE results for the fully coupled nonlinear system demonstrates the accuracy of the analytical solution to describe IPMC sensing for moderate deformation levels. We finally demonstrate the potential of the modelling scheme to accurately reproduce experimental results from the literature. The proposed model is expected to aid in the design of IPMC sensors, contribute to an improved understanding of IPMC electrochemomechanical response, and offer insight into the role of nonlinear phenomena across mechanics and electrochemistry.
NASA Technical Reports Server (NTRS)
Halbig, Michael C.; Cawley, James D.; Eckel, Andrew J.
2003-01-01
The oxidation model simulates the oxidation of the reinforcing carbon fibers within a ceramic matrix composite material containing as-fabricated microcracks. The physics-based oxidation model uses theoretically and experimentally determined variables as input for the model. The model simulates the ingress of oxygen through microcracks into a two-dimensional plane within the composite material. Model input includes temperature, oxygen concentration, the reaction rate constant, the diffusion coefficient, and the crack opening width as a function of the mechanical and thermal loads. The model is run in an iterative process for a two-dimensional grid system in which oxygen diffuses through the porous and cracked regions of the material and reacts with carbon in short time steps. The model allows the local oxygen concentrations and carbon volumes from the edge to the interior of the composite to be determined over time. Oxidation damage predicted by the model was compared with that observed from microstructural analysis of experimentally tested composite material to validate the model for two temperatures of interest. When the model is run for low-temperature conditions, the kinetics are reaction controlled. Carbon and oxygen reactions occur relatively slowly. Therefore, oxygen can bypass the carbon near the outer edge and diffuse into the interior so that it saturates the entire composite at relatively high concentrations. The kinetics are limited by the reaction rate between carbon and oxygen. This results in an interior that has high local concentrations of oxygen and a similar amount of consumed carbon throughout the cross section. When the model is run for high-temperature conditions, the kinetics are diffusion controlled. Carbon and oxygen reactions occur very quickly. The carbon consumes oxygen as soon as it is supplied. The kinetics are limited by the relatively slow rate at which oxygen is supplied in comparison to the relatively fast rate at which carbon and oxygen reactions occur. This results in a sharp gradient in oxygen concentration from the edge where it is supplied to the nearest source of carbon, which is where the oxygen is quickly consumed. A moving reaction front is seen in which the outlaying carbon is consumed before the next inner layer of carbon begins to react.
Discrete-Layer Piezoelectric Plate and Shell Models for Active Tip-Clearance Control
NASA Technical Reports Server (NTRS)
Heyliger, P. R.; Ramirez, G.; Pei, K. C.
1994-01-01
The objectives of this work were to develop computational tools for the analysis of active-sensory composite structures with added or embedded piezoelectric layers. The targeted application for this class of smart composite laminates and the analytical development is the accomplishment of active tip-clearance control in turbomachinery components. Two distinct theories and analytical models were developed and explored under this contract: (1) a discrete-layer plate theory and corresponding computational models, and (2) a three dimensional general discrete-layer element generated in curvilinear coordinates for modeling laminated composite piezoelectric shells. Both models were developed from the complete electromechanical constitutive relations of piezoelectric materials, and incorporate both displacements and potentials as state variables. This report describes the development and results of these models. The discrete-layer theories imply that the displacement field and electrostatic potential through-the-thickness of the laminate are described over an individual layer rather than as a smeared function over the thickness of the entire plate or shell thickness. This is especially crucial for composites with embedded piezoelectric layers, as the actuating and sensing elements within these layers are poorly represented by effective or smeared properties. Linear Lagrange interpolation polynomials were used to describe the through-thickness laminate behavior. Both analytic and finite element approximations were used in the plane or surface of the structure. In this context, theoretical developments are presented for the discrete-layer plate theory, the discrete-layer shell theory, and the formulation of an exact solution for simply-supported piezoelectric plates. Finally, evaluations and results from a number of separate examples are presented for the static and dynamic analysis of the plate geometry. Comparisons between the different approaches are provided when possible, and initial conclusions regarding the accuracy and limitations of these models are given.
Developing a predictive model for the chemical composition of soot nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Violi, Angela; Michelsen, Hope; Hansen, Nils
In order to provide the scientific foundation to enable technology breakthroughs in transportation fuel, it is important to develop a combustion modeling capability to optimize the operation and design of evolving fuels in advanced engines for transportation applications. The goal of this proposal is to develop a validated predictive model to describe the chemical composition of soot nanoparticles in premixed and diffusion flames. Atomistic studies in conjunction with state-of-the-art experiments are the distinguishing characteristics of this unique interdisciplinary effort. The modeling effort has been conducted at the University of Michigan by Prof. A. Violi. The experimental work has entailed amore » series of studies using different techniques to analyze gas-phase soot precursor chemistry and soot particle production in premixed and diffusion flames. Measurements have provided spatial distributions of polycyclic aromatic hydrocarbons and other gas-phase species and size and composition of incipient soot nanoparticles for comparison with model results. The experimental team includes Dr. N. Hansen and H. Michelsen at Sandia National Labs' Combustion Research Facility, and Dr. K. Wilson as collaborator at Lawrence Berkeley National Lab's Advanced Light Source. Our results show that the chemical and physical properties of nanoparticles affect the coagulation behavior in soot formation, and our results on an experimentally validated, predictive model for the chemical composition of soot nanoparticles will not only enhance our understanding of soot formation since but will also allow the prediction of particle size distributions under combustion conditions. These results provide a novel description of soot formation based on physical and chemical properties of the particles for use in the next generation of soot models and an enhanced capability for facilitating the design of alternative fuels and the engines they will power.« less
Modeling the Inner Magnetosphere: Radiation Belts, Ring Current, and Composition
NASA Technical Reports Server (NTRS)
Glocer, Alex
2011-01-01
The space environment is a complex system defined by regions of differing length scales, characteristic energies, and physical processes. It is often difficult, or impossible, to treat all aspects of the space environment relative to a particular problem with a single model. In our studies, we utilize several models working in tandem to examine this highly interconnected system. The methodology and results will be presented for three focused topics: 1) Rapid radiation belt electron enhancements, 2) Ring current study of Energetic Neutral Atoms (ENAs), Dst, and plasma composition, and 3) Examination of the outflow of ionospheric ions. In the first study, we use a coupled MHD magnetosphere - kinetic radiation belt model to explain recent Akebono/RDM observations of greater than 2.5 MeV radiation belt electron enhancements occurring on timescales of less than a few hours. In the second study, we present initial results of a ring current study using a newly coupled kinetic ring current model with an MHD magnetosphere model. Results of a dst study for four geomagnetic events are shown. Moreover, direct comparison with TWINS ENA images are used to infer the role that composition plays in the ring current. In the final study, we directly model the transport of plasma from the ionosphere to the magnetosphere. We especially focus on the role of photoelectrons and and wave-particle interactions. The modeling methodology for each of these studies will be detailed along with the results.
NASA Technical Reports Server (NTRS)
Cutten, D. R.; Jarzembski, M. A.; Srivastava, V.; Pueschel, R. F.; Howard, S. D.; McCaul, E. W., Jr.
2003-01-01
An inversion technique has been developed to determine volume fractions of an atmospheric aerosol composed primarily of ammonium sulfate and ammonium nitrate and water combined with fixed concentration of elemental and organic carbon. It is based on measured aerosol backscatter obtained with 9.11 - and 10.59-micron wavelength continuous wave CO2 lidars and modeled backscatter from aerosol size distribution data. The technique is demonstrated during a flight of the NASA DC-8 aircraft over the Sierra Nevada Mountain Range, California on 19 September, 1995. Volume fraction of each component and effective complex refractive index of the composite particle were determined assuming an internally mixed composite aerosol model. The volume fractions were also used to re-compute aerosol backscatter, providing good agreement with the lidar-measured data. The robustness of the technique for determining volume fractions was extended with a comparison of calculated 2.1,-micron backscatter from size distribution data with the measured lidar data converted to 2.1,-micron backscatter using an earlier derived algorithm, verifying the algorithm as well as the backscatter calculations.
Surface tension estimation of high temperature melts of the binary alloys Ag-Au
NASA Astrophysics Data System (ADS)
Dogan, Ali; Arslan, Hüseyin
2017-11-01
Surface tension calculation of the binary alloys Ag-Au at the temperature of 1381 K, where Ag and Au have similar electronic structures and their atomic radii are comparable, are carried out in this study using several equations over entire composition range of Au. Apparently, the deviations from ideality of the bulk solutions, such as activities of Ag and Au are small and the maximum excess Gibbs free energy of mixing of the liquid phase is for instance -4500 J/mol at XAu = 0.5. Besides, the results obtained in Ag-Au alloys that at a constant temperature the surface tension increases with increasing composition while the surface tension decreases as the temperature increases for entire composition range of Au. Although data about surface tension of the Ag-Au alloy are limited, it was possible to make a comparison for the calculated results for the surface tension in this study with the available experimental data. Taken together, the average standard error analysis that especially the improved Guggenheim model in the other models gives the best agreement along with the experimental results at temperature 1383 K although almost all models are mutually in agreement with the other one.
Dynamic Response of Functionally Graded Carbon Nanotube Reinforced Sandwich Plate
NASA Astrophysics Data System (ADS)
Mehar, Kulmani; Panda, Subrata Kumar
2018-03-01
In this article, the dynamic response of the carbon nanotube-reinforced functionally graded sandwich composite plate has been studied numerically with the help of finite element method. The face sheets of the sandwich composite plate are made of carbon nanotube- reinforced composite for two different grading patterns whereas the core phase is taken as isotropic material. The final properties of the structure are calculated using the rule of mixture. The geometrical model of the sandwich plate is developed and discretized suitably with the help of available shell element in ANSYS library. Subsequently, the corresponding numerical dynamic responses computed via batch input technique (parametric design language code in ANSYS) of ANSYS including Newmark’s integration scheme. The stability of the sandwich structural numerical model is established through the proper convergence study. Further, the reliability of the sandwich model is checked by comparison study between present and available results from references. As a final point, some numerical problems have been solved to examine the effect of different design constraints (carbon nanotube distribution pattern, core to face thickness ratio, volume fractions of the nanotube, length to thickness ratio, aspect ratio and constraints at edges) on the time-responses of sandwich plate.
Assessment and prediction of drying shrinkage cracking in bonded mortar overlays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beushausen, Hans, E-mail: hans.beushausen@uct.ac.za; Chilwesa, Masuzyo
2013-11-15
Restrained drying shrinkage cracking was investigated on composite beams consisting of substrate concrete and bonded mortar overlays, and compared to the performance of the same mortars when subjected to the ring test. Stress development and cracking in the composite specimens were analytically modeled and predicted based on the measurement of relevant time-dependent material properties such as drying shrinkage, elastic modulus, tensile relaxation and tensile strength. Overlay cracking in the composite beams could be very well predicted with the analytical model. The ring test provided a useful qualitative comparison of the cracking performance of the mortars. The duration of curing wasmore » found to only have a minor influence on crack development. This was ascribed to the fact that prolonged curing has a beneficial effect on tensile strength at the onset of stress development, but is in the same time not beneficial to the values of tensile relaxation and elastic modulus. -- Highlights: •Parameter study on material characteristics influencing overlay cracking. •Analytical model gives good quantitative indication of overlay cracking. •Ring test presents good qualitative indication of overlay cracking. •Curing duration has little effect on overlay cracking.« less
First day of an oil spill on the open sea: early mass transfers of hydrocarbons to air and water.
Gros, Jonas; Nabi, Deedar; Würz, Birgit; Wick, Lukas Y; Brussaard, Corina P D; Huisman, Johannes; van der Meer, Jan R; Reddy, Christopher M; Arey, J Samuel
2014-08-19
During the first hours after release of petroleum at sea, crude oil hydrocarbons partition rapidly into air and water. However, limited information is available about very early evaporation and dissolution processes. We report on the composition of the oil slick during the first day after a permitted, unrestrained 4.3 m(3) oil release conducted on the North Sea. Rapid mass transfers of volatile and soluble hydrocarbons were observed, with >50% of ≤C17 hydrocarbons disappearing within 25 h from this oil slick of <10 km(2) area and <10 μm thickness. For oil sheen, >50% losses of ≤C16 hydrocarbons were observed after 1 h. We developed a mass transfer model to describe the evolution of oil slick chemical composition and water column hydrocarbon concentrations. The model was parametrized based on environmental conditions and hydrocarbon partitioning properties estimated from comprehensive two-dimensional gas chromatography (GC×GC) retention data. The model correctly predicted the observed fractionation of petroleum hydrocarbons in the oil slick resulting from evaporation and dissolution. This is the first report on the broad-spectrum compositional changes in oil during the first day of a spill at the sea surface. Expected outcomes under other environmental conditions are discussed, as well as comparisons to other models.
A Comparison of Metallic, Composite and Nanocomposite Optimal Transonic Transport Wings
NASA Technical Reports Server (NTRS)
Kennedy, Graeme J.; Kenway, Gaetan K. W.; Martins, Joaquim R. R.
2014-01-01
Current and future composite material technologies have the potential to greatly improve the performance of large transport aircraft. However, the coupling between aerodynamics and structures makes it challenging to design optimal flexible wings, and the transonic flight regime requires high fidelity computational models. We address these challenges by solving a series of high-fidelity aerostructural optimization problems that explore the design space for the wing of a large transport aircraft. We consider three different materials: aluminum, carbon-fiber reinforced composites and an hypothetical composite based on carbon nanotubes. The design variables consist of both aerodynamic shape (including span), structural sizing, and ply angle fractions in the case of composites. Pareto fronts with respect to structural weight and fuel burn are generated. The wing performance in each case is optimized subject to stress and buckling constraints. We found that composite wings consistently resulted in lower fuel burn and lower structural weight, and that the carbon nanotube composite did not yield the increase in performance one would expect from a material with such outstanding properties. This indicates that there might be diminishing returns when it comes to the application of advanced materials to wing design, requiring further investigation.
Compressive strength of delaminated aerospace composites.
Butler, Richard; Rhead, Andrew T; Liu, Wenli; Kontis, Nikolaos
2012-04-28
An efficient analytical model is described which predicts the value of compressive strain below which buckle-driven propagation of delaminations in aerospace composites will not occur. An extension of this efficient strip model which accounts for propagation transverse to the direction of applied compression is derived. In order to provide validation for the strip model a number of laminates were artificially delaminated producing a range of thin anisotropic sub-laminates made up of 0°, ±45° and 90° plies that displayed varied buckling and delamination propagation phenomena. These laminates were subsequently subject to experimental compression testing and nonlinear finite element analysis (FEA) using cohesive elements. Comparison of strip model results with those from experiments indicates that the model can conservatively predict the strain at which propagation occurs to within 10 per cent of experimental values provided (i) the thin-film assumption made in the modelling methodology holds and (ii) full elastic coupling effects do not play a significant role in the post-buckling of the sub-laminate. With such provision, the model was more accurate and produced fewer non-conservative results than FEA. The accuracy and efficiency of the model make it well suited to application in optimum ply-stacking algorithms to maximize laminate strength.
Jakubinek, Michael B; O'Neill, Catherine; Felix, Chris; Price, Richard B; White, Mary Anne
2008-11-01
Excessive heat produced during the curing of light-activated dental restorations may injure the dental pulp. The maximum temperature excursion at the pulp-dentin junction provides a means to assess the risk of thermal injury. In this investigation we develop and evaluate a model to simulate temperature increases during light-curing of dental restorations and use it to investigate the influence of several factors on the maximum temperature excursion along the pulp-dentin junction. Finite element method modeling, using COMSOL 3.3a, was employed to simulate temperature distributions in a 2D, axisymmetric model tooth. The necessary parameters were determined from a combination of literature reports and our measurements of enthalpy of polymerization, heat capacity, density, thermal conductivity and reflectance for several dental composites. Results of the model were validated using in vitro experiments. Comparisons with in vitro experiments indicate that the model provides a good approximation of the actual temperature increases. The intensity of the curing light, the curing time and the enthalpy of polymerization of the resin composite were the most important factors. The composite is a good insulator and the greatest risk occurs when using the light to cure the thin layer of bonding resin or in deep restorations that do not have a liner to act as a thermal barrier. The results show the importance of considering temperature increases when developing curing protocols. Furthermore, we suggest methods to minimize the temperature increase and hence the risk of thermal injury. The physical properties measured for several commercial composites may be useful in other studies.
Characterisation of a sucrose-independent in vitro biofilm model of supragingival plaque.
Tsutsumi, K; Maruyama, M; Uchiyama, A; Shibasaki, K
2018-04-01
Sugar consumption has been decreasing in Japan, suggesting higher rates of sucrose-independent supragingival plaque formation. For developing an in vitro biofilm model of sucrose-independent supragingival plaque, this study aimed to investigate the compositions and functions on contributing to cariogenicity in comparison with sucrose-dependent biofilm. An in vitro multispecies biofilm containing Actinomyces naeslundii, Streptococcus gordonii, S. mutans, Veillonella parvula and Fusobacterium nucleatum was formed on 24-well plates in the absence or presence of 1% sucrose. Compositions were assessed by plate culture, scanning electron microscopy and confocal laser scanning microscopy after fluorescent in situ hybridisation or labelling of extracellular polymeric substances (EPS). Functions were assessed by acidogenicity, adherence strength and sensitivities to anticaries agents. Although both biofilms exhibited a Streptococcus predominant bacterial composition, there were differences in bacterial and EPS compositions; in particular, little glucan EPS was observed in sucrose-independent biofilm. Compared with sucrose-dependent biofilm, acidogenicity, adherence strength and antimicrobial resistance of sucrose-independent biofilm were only slightly lower. However, dextranase degradation was substantially lower in sucrose-independent biofilm. Our findings suggest that sucrose-independent biofilm may have cariogenicity as with sucrose-dependent biofilm. These in vitro models can help further elucidate plaque-induced caries aetiology and develop new anticaries agents. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. All rights reserved.
Variational asymptotic modeling of composite dimensionally reducible structures
NASA Astrophysics Data System (ADS)
Yu, Wenbin
A general framework to construct accurate reduced models for composite dimensionally reducible structures (beams, plates and shells) was formulated based on two theoretical foundations: decomposition of the rotation tensor and the variational asymptotic method. Two engineering software systems, Variational Asymptotic Beam Sectional Analysis (VABS, new version) and Variational Asymptotic Plate and Shell Analysis (VAPAS), were developed. Several restrictions found in previous work on beam modeling were removed in the present effort. A general formulation of Timoshenko-like cross-sectional analysis was developed, through which the shear center coordinates and a consistent Vlasov model can be obtained. Recovery relations are given to recover the asymptotic approximations for the three-dimensional field variables. A new version of VABS has been developed, which is a much improved program in comparison to the old one. Numerous examples are given for validation. A Reissner-like model being as asymptotically correct as possible was obtained for composite plates and shells. After formulating the three-dimensional elasticity problem in intrinsic form, the variational asymptotic method was used to systematically reduce the dimensionality of the problem by taking advantage of the smallness of the thickness. The through-the-thickness analysis is solved by a one-dimensional finite element method to provide the stiffnesses as input for the two-dimensional nonlinear plate or shell analysis as well as recovery relations to approximately express the three-dimensional results. The known fact that there exists more than one theory that is asymptotically correct to a given order is adopted to cast the refined energy into a Reissner-like form. A two-dimensional nonlinear shell theory consistent with the present modeling process was developed. The engineering computer code VAPAS was developed and inserted into DYMORE to provide an efficient and accurate analysis of composite plates and shells. Numerical results are compared with the exact solutions, and the excellent agreement proves that one can use VAPAS to analyze composite plates and shells efficiently and accurately. In conclusion, rigorous modeling approaches were developed for composite beams, plates and shells within a general framework. No such consistent and general treatment is found in the literature. The associated computer programs VABS and VAPAS are envisioned to have many applications in industry.
NASA Technical Reports Server (NTRS)
Khandelwal, Govind S.; Khan, Ferdous
1989-01-01
An optical model description of energy and momentum transfer in relativistic heavy-ion collisions, based upon composite particle multiple scattering theory, is presented. Transverse and longitudinal momentum transfers to the projectile are shown to arise from the real and absorptive part of the optical potential, respectively. Comparisons of fragment momentum distribution observables with experiments are made and trends outlined based on our knowledge of the underlying nucleon-nucleon interaction. Corrections to the above calculations are discussed. Finally, use of the model as a tool for estimating collision impact parameters is indicated.
Chehrazi, Ehsan; Sharif, Alireza; Omidkhah, Mohammadreza; Karimi, Mohammad
2017-10-25
Theoretical approaches that accurately predict the gas permeation behavior of nanotube-containing mixed matrix membranes (nanotube-MMMs) are scarce. This is mainly due to ignoring the effects of nanotube/matrix interfacial characteristics in the existing theories. In this paper, based on the analogy of thermal conduction in polymer composites containing nanotubes, we develop a model to describe gas permeation through nanotube-MMMs. Two new parameters, "interfacial thickness" (a int ) and "interfacial permeation resistance" (R int ), are introduced to account for the role of nanotube/matrix interfacial interactions in the proposed model. The obtained values of a int , independent of the nature of the permeate gas, increased by increasing both the nanotubes aspect ratio and polymer-nanotube interfacial strength. An excellent correlation between the values of a int and polymer-nanotube interaction parameters, χ, helped to accurately reproduce the existing experimental data from the literature without the need to resort to any adjustable parameter. The data includes 10 sets of CO 2 /CH 4 permeation, 12 sets of CO 2 /N 2 permeation, 3 sets of CO 2 /O 2 permeation, and 2 sets of CO 2 /H 2 permeation through different nanotube-MMMs. Moreover, the average absolute relative errors between the experimental data and the predicted values of the proposed model are very small (less than 5%) in comparison with those of the existing models in the literature. To the best of our knowledge, this is the first study where such a systematic comparison between model predictions and such extensive experimental data is presented. Finally, the new way of assessing gas permeation data presented in the current work would be a simple alternative to complex approaches that are usually utilized to estimate interfacial thickness in polymer composites.
Composition, Context, and Endogeneity in School and Teacher Comparisons
ERIC Educational Resources Information Center
Castellano, Katherine E.; Rabe-Hesketh, Sophia; Skrondal, Anders
2014-01-01
Investigations of the effects of schools (or teachers) on student achievement focus on either (1) individual school effects, such as value-added analyses, or (2) school-type effects, such as comparisons of charter and public schools. Controlling for school composition by including student covariates is critical for valid estimation of either kind…
Merkow, Ryan P; Hall, Bruce L; Cohen, Mark E; Wang, Xue; Adams, John L; Chow, Warren B; Lawson, Elise H; Bilimoria, Karl Y; Richards, Karen; Ko, Clifford Y
2013-03-01
To develop a reliable, robust, parsimonious, risk-adjusted 30-day composite colectomy outcome measure. A fundamental aspect in the pursuit of high-quality care is the development of valid and reliable performance measures in surgery. Colon resection is associated with appreciable morbidity and mortality and therefore is an ideal quality improvement target. From 2010 American College of Surgeons National Surgical Quality Improvement Program data, patients were identified who underwent colon resection for any indication. A composite outcome of death or any serious morbidity within 30 days of the index operation was established. A 6-predictor, parsimonious model was developed and compared with a more complex model with more variables. National caseload requirements were calculated on the basis of increasing reliability thresholds. From 255 hospitals, 22,346 patients were accrued who underwent a colon resection in 2010, most commonly for neoplasm (46.7%). A mortality or serious morbidity event occurred in 4461 patients (20.0%). At the hospital level, the median composite event rate was 20.7% (interquartile range: 15.8%-26.3%). The parsimonious model performed similarly to the full model (Akaike information criterion: 19,411 vs 18,988), and hospital-level performance comparisons were highly correlated (R = 0.97). At a reliability threshold of 0.4, 56 annual colon resections would be required and achievable at an estimated 42% of US and 69% of American College of Surgeons National Surgical Quality Improvement Program hospitals. This 42% of US hospitals performed approximately 84% of all colon resections in the country in 2008. It is feasible to design a measure with a composite outcome of death or serious morbidity after colon surgery that has a low burden for data collection, has substantial clinical importance, and has acceptable reliability.
Workshop on the Analysis of Interplanetary Dust Particles
NASA Technical Reports Server (NTRS)
Zolensky, Michael E. (Editor)
1994-01-01
Great progress has been made in the analysis of interplanetary dust particles (IDP's) over the past few years. This workshop provided a forum for the discussion of the following topics: observation and modeling of dust in the solar system, mineralogy and petrography of IDP's, processing of IDP's in the solar system and terrestrial atmosphere, comparison of IDP's to meteorites and micrometeorites, composition of IDP's, classification, and collection of IDP's.
An Orthotropic Model for Composite Materials in EPIC
2014-06-06
directions, and fails the material by eliminating the deviatoric stresses when any of the plastic strain components reaches its user-supplied critical...the directions of the fibers, especially in comparison to the non-linear stress -strain curves obtained from off-axis tensile tests. A somewhat...increment in Cauchy stress ; and is the tensor of elastic moduli. In EPIC, this equation is implemented via central differences because the velocity
Infrared signature modelling of a rocket jet plume - comparison with flight measurements
NASA Astrophysics Data System (ADS)
Rialland, V.; Guy, A.; Gueyffier, D.; Perez, P.; Roblin, A.; Smithson, T.
2016-01-01
The infrared signature modelling of rocket plumes is a challenging problem involving rocket geometry, propellant composition, combustion modelling, trajectory calculations, fluid mechanics, atmosphere modelling, calculation of gas and particles radiative properties and of radiative transfer through the atmosphere. This paper presents ONERA simulation tools chained together to achieve infrared signature prediction, and the comparison of the estimated and measured signatures of an in-flight rocket plume. We consider the case of a solid rocket motor with aluminized propellant, the Black Brant sounding rocket. The calculation case reproduces the conditions of an experimental rocket launch, performed at White Sands in 1997, for which we obtained high quality infrared signature data sets from DRDC Valcartier. The jet plume is calculated using an in-house CFD software called CEDRE. The plume infrared signature is then computed on the spectral interval 1900-5000 cm-1 with a step of 5 cm-1. The models and their hypotheses are presented and discussed. Then the resulting plume properties, radiance and spectra are detailed. Finally, the estimated infrared signature is compared with the spectral imaging measurements. The discrepancies are analyzed and discussed.
Composite Study Of Aerosol Long-Range Transport Events From East Asia And North America
NASA Astrophysics Data System (ADS)
Jiang, X.; Waliser, D. E.; Guan, B.; Xavier, P.; Petch, J.; Klingaman, N. P.; Woolnough, S.
2011-12-01
While the Madden-Julian Oscillation (MJO) exerts pronounced influences on global climate and weather systems, current general circulation models (GCMs) exhibit rather limited capability in representing this prominent tropical variability mode. Meanwhile, the fundamental physics of the MJO are still elusive. Given the central role of the diabatic heating for prevailing MJO theories and demands for reducing the model deficiencies in simulating the MJO, a global model inter-comparison project on diabatic processes and vertical heating structure associated with the MJO has been coordinated through a joint effort by the WCRP-WWRP/THORPEX YOTC MJO Task Force and GEWEX GASS Program. In this presentation, progress of this model inter-comparison project will be reported, with main focus on climate simulations from about 27 atmosphere-only and coupled GCMs. Vertical structures of heating and diabatic processes associated with the MJO based on multi-model simulations will be presented along with their reanalysis and satellite estimate counterparts. Key processes possibly responsible for a realistic simulation of the MJO, including moisture-convection interaction, gross moist stability, ocean coupling, and surface heat flux, will be discussed.
Comparison of Test and Finite Element Analysis for Two Full-Scale Helicopter Crash Tests
NASA Technical Reports Server (NTRS)
Annett, Martin S.; Horta,Lucas G.
2011-01-01
Finite element analyses have been performed for two full-scale crash tests of an MD-500 helicopter. The first crash test was conducted to evaluate the performance of a composite deployable energy absorber under combined flight loads. In the second crash test, the energy absorber was removed to establish the baseline loads. The use of an energy absorbing device reduced the impact acceleration levels by a factor of three. Accelerations and kinematic data collected from the crash tests were compared to analytical results. Details of the full-scale crash tests and development of the system-integrated finite element model are briefly described along with direct comparisons of acceleration magnitudes and durations for the first full-scale crash test. Because load levels were significantly different between tests, models developed for the purposes of predicting the overall system response with external energy absorbers were not adequate under more severe conditions seen in the second crash test. Relative error comparisons were inadequate to guide model calibration. A newly developed model calibration approach that includes uncertainty estimation, parameter sensitivity, impact shape orthogonality, and numerical optimization was used for the second full-scale crash test. The calibrated parameter set reduced 2-norm prediction error by 51% but did not improve impact shape orthogonality.
Experimental and analytical characterization of triaxially braided textile composites
NASA Technical Reports Server (NTRS)
Masters, John E.; Fedro, Mark J.; Ifju, Peter G.
1993-01-01
There were two components, experimental and analytical, to this investigation of triaxially braided textile composite materials. The experimental portion of the study centered on measuring the materials' longitudinal and transverse tensile moduli, Poisson's ratio, and strengths. The identification of the damage mechanisms exhibited by these materials was also a prime objective of the experimental investigation. The analytical portion of the investigation utilized the Textile Composites Analysis (TECA) model to predict modulus and strength. The analytical and experimental results were compared to assess the effectiveness of the analysis. The figures contained in this paper reflect the presentation made at the conference. They may be divided into four sections: a definition of the material system tested; followed by a series of figures summarizing the experimental results (these figures contain results of a Moire interferometry study of the strain distribution in the material, examples and descriptions of the types of damage encountered in these materials, and a summary of the measured properties); a description of the TECA model follows the experimental results (this includes a series of predicted results and a comparison with measured values); and finally, a brief summary completes the paper.
LaFountain, Amy M; Frank, Harry A; Yuan, Yao-Wu
2015-05-01
The genus Mimulus has been used as a model system in a wide range of ecological and evolutionary studies and contains many species with carotenoid pigmented flowers. However, the detailed carotenoid composition of these flowers has never been reported. In this paper the floral carotenoid composition of 11 Mimulus species are characterized using high-performance liquid chromatography, mass spectrometry and chemical methods with a particular focus on the genetic model species, Mimulus lewisii. M. lewisii flowers have five major carotenoids: antheraxanthin, violaxanthin, neoxanthin, and the unique allenic carotenoids, deepoxyneoxanthin and mimulaxanthin. This carotenoid profile is consistent with the expression levels of putative carotenoid biosynthetic genes in the M. lewisii flower. The other 10 species possess the same five carotenoids or a subset of these. Comparison of the carotenoid profiles among species in a phylogenetic context provides new insights into the biosynthesis and evolution of deepoxyneoxanthin and mimulaxanthin. This work also lays the foundation for future studies regarding transcriptional control of the carotenoid biosynthesis pathway in Mimulus flowers. Copyright © 2015 Elsevier Inc. All rights reserved.
Nanopolishing by colloidal nanodiamond in elastohydrodynamic lubrication
NASA Astrophysics Data System (ADS)
Shirvani, Khosro A.; Mosleh, Mohsen; Smith, Sonya T.
2016-08-01
In this paper, the feasibility of using explosion synthesized diamond nanoparticles with an average particle size (APS) of 3-5 nm with a concentration of 1 % by weight for improving lubrication and friction in elastohydrodynamic lubrication (EHL) was investigated. Owing to the orders of magnitude increase in the viscosity of the lubricant in the EHL contact zone, diamond nanoparticles in the lubricant polish the surfaces at the nanoscale which decreases the composite roughness of contacting surfaces. The reduced composite roughness results in an increased film thickness ratio which yields lower friction. In the numerical analysis, governing equations of lubricant flow in the full elastohydrodynamic lubrication were solved, and the shear stress distribution over the fluid film was calculated. Using an abrasion model and the shear stress distribution profile, the material removal by the nanofluid containing nanoparticles and the resultant surface roughness were determined. The numerical analysis showed that in full EHL regime, the nanolubricant can reduce the composite roughness of moving surfaces. Experimental results from prior studies which exhibited surface polishing by such nanolubricants in boundary, mixed, and full elastohydrodynamic lubrication were used for comparison to the numerical model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montañés-Rodríguez, Pilar; González-Merino, B.; Pallé, E.
Currently, the analysis of transmission spectra is the most successful technique to probe the chemical composition of exoplanet atmospheres. However, the accuracy of these measurements is constrained by observational limitations and the diversity of possible atmospheric compositions. Here, we show the UV–VIS–IR transmission spectrum of Jupiter as if it were a transiting exoplanet, obtained by observing one of its satellites, Ganymede, while passing through Jupiter’s shadow, i.e., during a solar eclipse from Ganymede. The spectrum shows strong extinction due to the presence of clouds (aerosols) and haze in the atmosphere and strong absorption features from CH{sub 4}. More interestingly, themore » comparison with radiative transfer models reveals a spectral signature, which we attribute here to a Jupiter stratospheric layer of crystalline H{sub 2}O ice. The atomic transitions of Na are also present. These results are relevant for the modeling and interpretation of giant transiting exoplanets. They also open a new technique to explore the atmospheric composition of the upper layers of Jupiter’s atmosphere.« less
NASA Astrophysics Data System (ADS)
David, Denis G. F.; Marin, J. Y.; Tretout, Herve R.
An original concept for IR thermography nondestructive testing is validated. The principles of image and data processing investigated and developed as well as the utilization of AI should be transposable to other nondestructive techniques such as ultrasounds and X-rays. It is shown that modeling can be used in different ways to play a great part in the detection, the interpretation, and the sizing of the defects. The original concept lies in the comparison of experimental data with theoretical ones in order to identify regions of abnormal behavior related to defects. A Laplace transforms analytical method is successfully implemented in the case of composite materials such as graphite epoxy to identify a set of thermal parameters which contributes to the expertise. This approach is extended to a more complicated composite material such as Kevlar, which presents semitransparent characteristics. This modeling technique, which expresses experimental data in terms of thermal parameters, makes it possible to increase SNR and reduce the number of thermal images to be processed.
NASA Astrophysics Data System (ADS)
David, D.; Marin, J. Y.; Tretout, H.
1992-04-01
An original concept for IR thermography nondestructive testing is validated. The principles of image and data processing investigated and developed as well as the utilization of AI should be transposable to other nondestructive techniques such as ultrasounds and X-rays. It is shown that modeling can be used in different ways to play a great part in the detection, the interpretation, and the sizing of the defects. The original concept lies in the comparison of experimental data with theoretical ones in order to identify regions of abnormal behavior related to defects. A Laplace transforms analytical method is successfully implemented in the case of composite materials such as graphite epoxy to identify a set of thermal parameters which contributes to the expertise. This approach is extended to a more complicated composite material such as Kevlar, which presents semitransparent characteristics. This modeling technique, which expresses experimental data in terms of thermal parameters, makes it possible to increase SNR and reduce the number of thermal images to be processed.
Impact of inoculum sources on biotransformation of pharmaceuticals and personal care products.
Kim, Sunah; Rossmassler, Karen; Broeckling, Corey D; Galloway, Sarah; Prenni, Jessica; De Long, Susan K
2017-11-15
Limited knowledge of optimal microbial community composition for PPCP biotreatment, and of the microbial phylotypes that drive biotransformation within mixed microbial communities, has hindered the rational design and operation of effective and reliable biological PPCP treatment technologies. Herein, bacterial community composition was investigated as an isolated variable within batch biofilm reactors via comparison of PPCP removals for three distinct inocula. Inocula pre-acclimated to model PPCPs were derived from activated sludge (AS), ditch sediment historically-impacted by wastewater treatment plant effluent (Sd), and material from laboratory-scale soil aquifer treatment (SAT) columns. PPCP removals were found to be substantially higher for AS- and Sd-derived inocula compared to the SAT-derived inocula despite comparable biomass. Removal patterns differed among the 6 model compounds examined (diclofenac, 5-fluorouracil, gabapentin, gemfibrozil, ibuprofen, and triclosan) indicating differences in biotransformation mechanisms. Sphingomonas, Beijerinckia, Methylophilus, and unknown Cytophagaceae were linked with successful PPCP biodegradation via next-generation sequencing of 16S rRNA genes over time. Results indicate the criticality of applying engineering approaches to control bacterial community compositions in biotreatment systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Boone, E.; Laskin, J.; Laskin, A.; Wirth, C.; Shepson, P. B.; Stirm, B. H.; Pratt, K.
2014-12-01
Organic compounds comprise a significant mass fraction of submicron atmospheric particles with considerable contribution from secondary organic aerosol (SOA), a large fraction of which is formed from the oxidation of biogenic volatile organic compounds. Aqueous-phase reactions in particles and cloud droplets are suggested to increase SOA mass and change the chemical composition the particles following cloud evaporation. Aqueous-phase processing may also explain discrepancies between measurements and models. To gain a better understanding of these processes, cloud water and below-cloud atmospheric particles were collected onboard a research aircraft during the Southeast Oxidants and Aerosol Study (SOAS) over Alabama in June 2013. Nanospray desorption electrospray ionization (nano-DESI) and direct electrospray ionization (ESI) coupled with high resolution mass spectrometry were utilized to compare the organic molecular composition of the particle and cloud water samples, respectively. Several hundred unique compounds have been identified in the particle and cloud water samples, allowing possible aqueous-phase reactions to be examined. Hydrolysis of organosulfate compounds, aqueous-phase formation of nitrogen-containing compounds, and possible fragmentation of oligomeric compounds will be discussed, with comparisons to previous laboratory studies. This study provides insights into aqueous-phase reactions in ambient cloud droplets.
Common Occurrence of Explosive Hydrogen Burning in Type II Supernovae
NASA Astrophysics Data System (ADS)
Liu, Nan; Stephan, Thomas; Boehnke, Patrick; Nittler, Larry R.; Meyer, Bradley S.; O’D. Alexander, Conel M.; Davis, Andrew M.; Trappitsch, Reto; Pellin, Michael J.
2018-03-01
We report Mo isotopic data for 16 15N-rich presolar SiC grains of type AB (14N/15N < solar, AB1) and their correlated Sr and Ba isotope ratios when available. Of the 16 AB1 grains, 8 show s-process Mo isotopic compositions, together with s-process Ba and/or Sr isotopic compositions. We found that a higher percentage of AB1 grains show anomalous isotopic compositions than that of AB2 grains (14N/15N > solar), thus providing further support to the division of the two AB subgroups recently proposed by Liu et al., who showed that AB1 grains most likely originated from Type II supernovae (SNe) with explosive H burning. Comparison of the Sr, Mo, and Ba isotopic compositions of the AB1 grains with SN model predictions indicates that the s-process isotopic compositions of AB1 grains resulted from neutron-capture processes occurring during the progenitor massive stars’ pre-SN evolution rather than from an explosive neutron-capture process. In addition, the observations of (1) explosive H burning occurring in the C-rich regions of the progenitor SNe of X grains as suggested by the isotopic compositions of X grains, and (2) explosive H burning occurring both at the bottom of the He/C zone and at the top of the He/N zone as suggested by model simulations, imply that explosive H burning is a common phenomenon in outer SN zones.
Common Occurrence of Explosive Hydrogen Burning in Type II Supernovae
Liu, Nan; Stephan, Thomas; Boehnke, Patrick; ...
2018-03-16
In this paper, we report Mo isotopic data for 16 15N-rich presolar SiC grains of type AB ( 14N/ 15N < solar, AB1) and their correlated Sr and Ba isotope ratios when available. Of the 16 AB1 grains, 8 show s-process Mo isotopic compositions, together with s-process Ba and/or Sr isotopic compositions. We found that a higher percentage of AB1 grains show anomalous isotopic compositions than that of AB2 grains ( 14N/ 15N > solar), thus providing further support to the division of the two AB subgroups recently proposed by Liu et al., who showed that AB1 grains most likelymore » originated from Type II supernovae (SNe) with explosive H burning. Comparison of the Sr, Mo, and Ba isotopic compositions of the AB1 grains with SN model predictions indicates that the s-process isotopic compositions of AB1 grains resulted from neutron-capture processes occurring during the progenitor massive stars' pre-SN evolution rather than from an explosive neutron-capture process. Finally, in addition, the observations of (1) explosive H burning occurring in the C-rich regions of the progenitor SNe of X grains as suggested by the isotopic compositions of X grains, and (2) explosive H burning occurring both at the bottom of the He/C zone and at the top of the He/N zone as suggested by model simulations, imply that explosive H burning is a common phenomenon in outer SN zones.« less
Common Occurrence of Explosive Hydrogen Burning in Type II Supernovae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Nan; Stephan, Thomas; Boehnke, Patrick
In this paper, we report Mo isotopic data for 16 15N-rich presolar SiC grains of type AB ( 14N/ 15N < solar, AB1) and their correlated Sr and Ba isotope ratios when available. Of the 16 AB1 grains, 8 show s-process Mo isotopic compositions, together with s-process Ba and/or Sr isotopic compositions. We found that a higher percentage of AB1 grains show anomalous isotopic compositions than that of AB2 grains ( 14N/ 15N > solar), thus providing further support to the division of the two AB subgroups recently proposed by Liu et al., who showed that AB1 grains most likelymore » originated from Type II supernovae (SNe) with explosive H burning. Comparison of the Sr, Mo, and Ba isotopic compositions of the AB1 grains with SN model predictions indicates that the s-process isotopic compositions of AB1 grains resulted from neutron-capture processes occurring during the progenitor massive stars' pre-SN evolution rather than from an explosive neutron-capture process. Finally, in addition, the observations of (1) explosive H burning occurring in the C-rich regions of the progenitor SNe of X grains as suggested by the isotopic compositions of X grains, and (2) explosive H burning occurring both at the bottom of the He/C zone and at the top of the He/N zone as suggested by model simulations, imply that explosive H burning is a common phenomenon in outer SN zones.« less
A net reproductive number for periodic matrix models.
Cushing, J M; Ackleh, A S
2012-01-01
We give a definition of a net reproductive number R (0) for periodic matrix models of the type used to describe the dynamics of a structured population with periodic parameters. The definition is based on the familiar method of studying a periodic map by means of its (period-length) composite. This composite has an additive decomposition that permits a generalization of the Cushing-Zhou definition of R (0) in the autonomous case. The value of R (0) determines whether the population goes extinct (R (0)<1) or persists (R (0)>1). We discuss the biological interpretation of this definition and derive formulas for R (0) for two cases: scalar periodic maps of arbitrary period and periodic Leslie models of period 2. We illustrate the use of the definition by means of several examples and by applications to case studies found in the literature. We also make some comparisons of this definition of R (0) with another definition given recently by Bacaër.
NASA Technical Reports Server (NTRS)
Lamarque, J.-F.; Shindell, D. T.; Naik, V.; Plummer, D.; Josse, B.; Righi, M.; Rumbold, S. T.; Schulz, M.; Skeie, R. B.; Strode, S.;
2013-01-01
The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) consists of a series of time slice experiments targeting the long-term changes in atmospheric composition between 1850 and 2100, with the goal of documenting composition changes and the associated radiative forcing. In this overview paper, we introduce the ACCMIP activity, the various simulations performed (with a requested set of 14) and the associated model output. The 16 ACCMIP models have a wide range of horizontal and vertical resolutions, vertical extent, chemistry schemes and interaction with radiation and clouds. While anthropogenic and biomass burning emissions were specified for all time slices in the ACCMIP protocol, it is found that the natural emissions are responsible for a significant range across models, mostly in the case of ozone precursors. The analysis of selected present-day climate diagnostics (precipitation, temperature, specific humidity and zonal wind) reveals biases consistent with state-of-the-art climate models. The model-to- model comparison of changes in temperature, specific humidity and zonal wind between 1850 and 2000 and between 2000 and 2100 indicates mostly consistent results. However, models that are clear outliers are different enough from the other models to significantly affect their simulation of atmospheric chemistry.
NASA Astrophysics Data System (ADS)
Gao, Meng; Han, Zhiwei; Liu, Zirui; Li, Meng; Xin, Jinyuan; Tao, Zhining; Li, Jiawei; Kang, Jeong-Eon; Huang, Kan; Dong, Xinyi; Zhuang, Bingliang; Li, Shu; Ge, Baozhu; Wu, Qizhong; Cheng, Yafang; Wang, Yuesi; Lee, Hyo-Jung; Kim, Cheol-Hee; Fu, Joshua S.; Wang, Tijian; Chin, Mian; Woo, Jung-Hun; Zhang, Qiang; Wang, Zifa; Carmichael, Gregory R.
2018-04-01
Topic 3 of the Model Inter-Comparison Study for Asia (MICS-Asia) Phase III examines how online coupled air quality models perform in simulating high aerosol pollution in the North China Plain region during wintertime haze events and evaluates the importance of aerosol radiative and microphysical feedbacks. A comprehensive overview of the MICS-Asia III Topic 3 study design, including descriptions of participating models and model inputs, the experimental designs, and results of model evaluation, are presented. Six modeling groups from China, Korea and the United States submitted results from seven applications of online coupled chemistry-meteorology models. Results are compared to meteorology and air quality measurements, including data from the Campaign on Atmospheric Aerosol Research Network of China (CARE-China) and the Acid Deposition Monitoring Network in East Asia (EANET). The correlation coefficients between the multi-model ensemble mean and the CARE-China observed near-surface air pollutants range from 0.51 to 0.94 (0.51 for ozone and 0.94 for PM2.5) for January 2010. However, large discrepancies exist between simulated aerosol chemical compositions from different models. The coefficient of variation (SD divided by the mean) can reach above 1.3 for sulfate in Beijing and above 1.6 for nitrate and organic aerosols in coastal regions, indicating that these compositions are less consistent from different models. During clean periods, simulated aerosol optical depths (AODs) from different models are similar, but peak values differ during severe haze events, which can be explained by the differences in simulated inorganic aerosol concentrations and the hygroscopic growth efficiency (affected by varied relative humidity). These differences in composition and AOD suggest that future models can be improved by including new heterogeneous or aqueous pathways for sulfate and nitrate formation under hazy conditions, a secondary organic aerosol (SOA) formation chemical mechanism with new volatile organic compound (VOCs) precursors, yield data and approaches, and a more detailed evaluation of the dependence of aerosol optical properties on size distribution and mixing state. It was also found that using the ensemble mean of the models produced the best prediction skill. While this has been shown for other conditions (for example, the prediction of high-ozone events in the US (McKeen et al., 2005)), this is to our knowledge the first time it has been shown for heavy haze events.
NASA Technical Reports Server (NTRS)
Chuang, Kathy C.; Grady, Joseph E.; Arnold, Steven M.; Draper, Robert D.; Shin, Eugene; Patterson, Clark; Santelle, Tom; Lao, Chao; Rhein, Morgan; Mehl, Jeremy
2015-01-01
This publication is the second part of the three part report of the project entitled "A Fully Nonmetallic Gas Turbine Engine Enabled by Additive Manufacturing" funded by NASA Aeronautics Research Institute (NARI). The objective of this project was to conduct additive manufacturing to produce aircraft engine components by Fused Deposition Modeling (FDM), using commercially available polyetherimides-Ultem 9085 and experimental Ultem 1000 mixed with 10% chopped carbon fiber. A property comparison between FDM-printed and injection molded coupons for Ultem 9085, Ultem 1000 resin and the fiber-filled composite Ultem 1000 was carried out. Furthermore, an acoustic liner was printed from Ultem 9085 simulating conventional honeycomb structured liners and tested in a wind tunnel. Composite compressor inlet guide vanes were also printed using fiber-filled Ultem 1000 filaments and tested in a cascade rig. The fiber-filled Ultem 1000 filaments and composite vanes were characterized by scanning electron microscope (SEM) and acid digestion to determine the porosity of FDM-printed articles which ranged from 25 to 31%. Coupons of Ultem 9085, experimental Ultem 1000 composites and XH6050 resin were tested at room temperature and 400F to evaluate their corresponding mechanical properties. A preliminary modeling was also initiated to predict the mechanical properties of FDM-printed Ultem 9085 coupons in relation to varied raster angles and void contents, using the GRC-developed MAC/GMC program.
Marginal fit of indirect composite inlays using a new system for manual fabrication.
Pott, P; Rzasa, A; Stiesch, M; Eisenburger, M
2016-09-01
This in vitro study compares a new system for manual chair side fabrication of indirect composite restorations, which uses silicone models after alginate impressions, to CAD/CAM-technology and laboratory manual production techniques. MATRIALS AND METHODS: and study design Each 10 composite inlays were fabricated using different types of production techniques: CAD/CAM- technology (A), the new inlay system (B), plaster model after alginate impression (C) or silicone impression (D). The inlays were adapted into a metal tooth and silicone replicas of the cement gaps were made and measured. Statistical analysis was performed using ANOVA and Tukey's test. Results and Statistics In group A the biggest marginal gaps (174.9μm ± 106.2μm) were found. In group B the gaps were significantly smaller (119.5 μm ± 90.6 μm) than in group A (p=0.035). Between groups C (64.6 μm ± 68.0μm) and D (58.2 μm ± 61.7 μm) no significant differences could be found (p=0.998), but the gaps were significantly smaller compared with group B. Conclusion Chairside manufacturing of composite inlays resulted in better marginal precision than CAD/CAM technology. In comparison to build restorations in a laboratory, the new system is a timesaving and inexpensive alternative. Nevertheless, production of indirect composite restorations in the dental laboratory showed the highest precision.
Parametric study of guided waves dispersion curves for composite plates
NASA Astrophysics Data System (ADS)
Predoi, Mihai Valentin; Petre, Cristian Cǎtǎlin; Kettani, Mounsif Ech Cherif El; Leduc, Damien
2018-02-01
Nondestructive testing of composite panels benefit from the relatively long range propagation of guided waves in sandwich structures. The guided waves are sensitive to delamination, air bubbles inclusions and cracks and can thus bring information about hidden defects in the composite panel. The preliminary data in all such inspections is represented by the dispersion curves, representing the dependency of the phase/group velocity on the frequency for the propagating modes. In fact, all modes are more or less attenuated, so it is even more important to compute the dispersion curves, which provide also the modal attenuation as function of frequency. Another important aspect is the sensitivity of the dispersion curves on each of the elastic constant of the composite, which are orthotropic in most cases. All these aspects are investigated in the present work, based on our specially developed finite element numerical model implemented in Comsol, which has several advantages over existing methods. The dispersion curves and modal displacements are computed for an example of composite plate. Comparison with literature data validates the accuracy of our results.
NASA Technical Reports Server (NTRS)
Riccitiello, S. R.; Figueroa, H.; Coe, C. F.; Kuo, C. P.
1984-01-01
An advanced leading-edge concept was analyzed using the space shuttle leading edge system as a reference model. The comparison indicates that a direct-bond system utilizing a high temperature (2700 F) fibrous refractory composite insulation tile bonded to a high temperature (PI/graphite) composite structure can result in a weight savings of up to 800 lb. The concern that tile damage or loss during ascent would result in adverse entry aerodynamics if a leading edge tile system were used is addressed. It was found from experiment that missing tiles (as many as 22) on the leading edge would not significantly affect the basic force-and-moment aerodynamic coefficients. Additionally, this concept affords a degree of redundancy to a thermal protection system in that the base structure (being a composite material) ablates and neither melts nor burns through when subjected to entry heating in the event tiles are actually lost or damaged during ascent.
NASA Astrophysics Data System (ADS)
Guenanou, A.; Houmat, A.
2018-05-01
The optimum stacking sequence design for the maximum fundamental frequency of symmetrically laminated composite circular plates with curvilinear fibres is investigated for the first time using a layer-wise optimization method. The design variables are two fibre orientation angles per layer. The fibre paths are constructed using the method of shifted paths. The first-order shear deformation plate theory and a curved square p-element are used to calculate the objective function. The blending function method is used to model accurately the geometry of the circular plate. The equations of motion are derived using Lagrange's method. The numerical results are validated by means of a convergence test and comparison with published values for symmetrically laminated composite circular plates with rectilinear fibres. The material parameters, boundary conditions, number of layers and thickness are shown to influence the optimum solutions to different extents. The results should serve as a benchmark for optimum stacking sequences of symmetrically laminated composite circular plates with curvilinear fibres.
Flaw detection in a multi-material multi-layered composite: using fem and air-coupled ut
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livings, R. A.; Dayal, V.; Barnard, D. J.
Ceramic tiles are the main ingredient of a multi-layer multi-material composite being considered for the modernization of tank armors. The high stiffness, low attenuation, and precise dimensions of these uniform tiles make them remarkable resonators when driven to vibrate. This study is aimed at modeling the vibration modes of the tiles and the composite lay-up with finite element analysis and comparing the results with the resonance modes observed in air-coupled ultrasonic excitation of the tiles and armor samples. Defects in the tile, during manufacturing and/or after usage, are expected to change the resonance modes. The comparison of a pristine tile/lay-upmore » and a defective tile/lay-up will thus be a quantitative damage metric. The understanding of the vibration behavior of the tile, both by itself and in the composite lay-up, can provide useful guidance to the nondestructive evaluation of armor panels containing ceramic tiles.« less
Finite element model correlation of a composite UAV wing using modal frequencies
NASA Astrophysics Data System (ADS)
Oliver, Joseph A.; Kosmatka, John B.; Hemez, François M.; Farrar, Charles R.
2007-04-01
The current work details the implementation of a meta-model based correlation technique on a composite UAV wing test piece and associated finite element (FE) model. This method involves training polynomial models to emulate the FE input-output behavior and then using numerical optimization to produce a set of correlated parameters which can be returned to the FE model. After discussions about the practical implementation, the technique is validated on a composite plate structure and then applied to the UAV wing structure, where it is furthermore compared to a more traditional Newton-Raphson technique which iteratively uses first-order Taylor-series sensitivity. The experimental testpiece wing comprises two graphite/epoxy prepreg and Nomex honeycomb co-cured skins and two prepreg spars bonded together in a secondary process. MSC.Nastran FE models of the four structural components are correlated independently, using modal frequencies as correlation features, before being joined together into the assembled structure and compared to experimentally measured frequencies from the assembled wing in a cantilever configuration. Results show that significant improvements can be made to the assembled model fidelity, with the meta-model procedure producing slightly superior results to Newton-Raphson iteration. Final evaluation of component correlation using the assembled wing comparison showed worse results for each correlation technique, with the meta-model technique worse overall. This can be most likely be attributed to difficultly in correlating the open-section spars; however, there is also some question about non-unique update variable combinations in the current configuration, which lead correlation away from physically probably values.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, Xiaonan; Schreiber, Daniel K.; Neeway, James J.
Atom probe tomography (APT) is a novel analytical microscopy method that provides three dimensional elemental mapping with sub-nanometer spatial resolution and has only recently been applied to insulating glass and ceramic samples. In this paper, we have studied the influence of the optical absorption in glass samples on APT characterization by introducing different transition metal optical dopants to a model borosilicate nuclear waste glass (international simple glass). A systematic comparison is presented of the glass optical properties and the resulting APT data quality in terms of compositional accuracy and the mass spectra quality for two APT systems: one with amore » green laser (532 nm, LEAP 3000X HR) and one with a UV laser (355 nm, LEAP 4000X HR). These data were also compared to the study of a more complex borosilicate glass (SON68). The results show that the analysis data quality such as compositional accuracy and total ions collected, was clearly linked to optical absorption when using a green laser, while for the UV laser optical doping aided in improving data yield but did not have a significant effect on compositional accuracy. Comparisons of data between the LEAP systems suggest that the smaller laser spot size of the LEAP 4000X HR played a more critical role for optimum performance than the optical dopants themselves. The smaller spot size resulted in more accurate composition measurements due to a reduced background level independent of the material’s optical properties.« less
NASA Astrophysics Data System (ADS)
Du, Qiang; Li, Yanjun
2015-06-01
In this paper, a multi-scale as-cast grain size prediction model is proposed to predict as-cast grain size of inoculated aluminum alloys melt solidified under non-isothermal condition, i.e., the existence of temperature gradient. Given melt composition, inoculation and heat extraction boundary conditions, the model is able to predict maximum nucleation undercooling, cooling curve, primary phase solidification path and final as-cast grain size of binary alloys. The proposed model has been applied to two Al-Mg alloys, and comparison with laboratory and industrial solidification experimental results have been carried out. The preliminary conclusion is that the proposed model is a promising suitable microscopic model used within the multi-scale casting simulation modelling framework.
Creep and Toughness of Cryomilled NiAl Containing Cr
NASA Technical Reports Server (NTRS)
Whittenberger, J. Daniel; Aikin, Beverly; Salem, Jon
2000-01-01
NiAl-AlN + Cr composites were produced by blending cryomilled NiAl powder with approx. 10 vol % Cr flakes. In comparison to the as-consolidated matrices, hot isostatically pressed Cr-modified materials did not demonstrate any significant improvement in toughness. Hot extruded NiAl-AlN+10.5Cr, however, possessed a toughness twice that determine for the base NiAl-AlN alloy. Measurement of the 1200 to 1400 K plastic flow properties revealed that the strength of the composites was completely controlled by the properties of the NiAl-AlN matrices. This behavior could be successfully modeled by the Rule-of-Mixtures, where load is shed from the weak Cr to the strong matrix.
NASA Astrophysics Data System (ADS)
Algarray, A. F. A.; Jun, H.; Mahdi, I.-E. M.
2017-11-01
The effects of the end conditions of cross-ply laminated composite beams on their dimensionless natural frequencies of free vibration is investigated. The problem is analyzed and solved by using the energy approach, which is formulated by a finite element model. Various end conditions of beams are used. Each beam has either movable ends or immovable ends. Numerical results are verified by comparisons with other relevant works. It is found that more constrained beams have higher values of natural frequencies of transverse vibration. The values of the natural frequencies of longitudinal modes are found to be the same for all beams with movable ends because they are generated by longitudinal movements only.
Sadat HashemiKamangar, Sedighe; Ghavam, Maryam; Mirkhezri, Zhina; Karazifard, Mohammad Javad
2015-09-01
Acidic foods and drinks can erode composite resins. Silorane-based composite is a new low shrinkage composite with higher hydrophobicity which might resist the erosive effect of beverages. The aim of this study was to determine the effects of 100% orange juice and non-alcoholic carbonated beer on microhardness of a silorane-based composite in comparison with two methacrylate-based composite resins. Ninety disc-shaped composite specimens were fabricated of Filtek P90, Filtek Z350 XT Enamel and Filtek Z250 (3M-ESPE) (n=30) and randomly divided into 3 subgroups of 10.Group 1 was immersed in distilled water, group 2 in 100% orange juice, and group 3 in non-alcoholic beer for 3 h/day. Primary, secondary and final Vickers microhardness tests were performed at the beginning of the study and 7 and 28 days later. Surface of 2 specimens in each group was evaluated under scanning electron microscope on day 28. Data were analyzed using repeated measures of ANOVA model (α=0.05). The primary and secondary microhardness of P90 was significantly lower than that of Z350, and Z250 (p< 0.001). Microhardness of Z350 was also lower than that of Z250 (p= 0.002). On day 28, microhardness of P90 was lower than Z250 and Z350 (p< 0.001); however, microhardness values of Z250 and Z350 were not significantly different (p= 0.054). Microhardness of specimens subjected to non-alcoholic beer was significantly lower than that of controls (p= 0.003). Meanwhile, the microhardness value of resins in orange juice was somewhere between the two mentioned values with no significant difference with any of them (p> 0.05). Although 28 days of immersion in 100% orange juice and non-alcoholic beer decreased the microhardness of all specimens, P90 experienced the greatest reduction of microhardness and non-alcoholic beer had the highest effect on reducing microhardness.
Shear properties of pultruded fiber reinforced polymer composite materials
NASA Astrophysics Data System (ADS)
Seo, J. H.; Kim, S. H.; Ok, D. M.; An, D. J.; Yoon, S. J.
2018-06-01
This paper focuses on the mechanical properties of PFRP composite materials. Especially, relationship between shear property and the other mechanical properties of PFRP composite materials is investigated through comparison between experimental and theoretical results. The shear property of PFRP composite specimen is calculated from the theoretical equations which were suggested in previous studies. In addition, comparison between the shear property determined by the tensile test and the shear property calculated from theoretical equations is conducted and discussed. It was found that the theoretically predicted shear modulus of elasticity considering contiguity is close to the shear modulus of elasticity obtained by the 45° off-axis tensile test.
Bulk flow strength of forsterite?enstatite composites as a function of forsterite content
NASA Astrophysics Data System (ADS)
Ji, Shaocheng; Wang, Zichao; Wirth, Richard
2001-11-01
Creep experiments have been conducted to investigate the effect of varying forsterite content ( VFo) on the bulk flow strength of dry forsterite-enstatite (Fo-En) aggregates in order to evaluate the applicability of existing theoretical models to two-phase rocks, as well as to understand the rheology of polyphase systems in general. The experiments were performed at temperatures of 1423-1593 K, stresses of 18-100 MPa, oxygen fugacities of 10 -14-10 -2.5 MPa and 0.1 MPa total pressure. The fine-grained (Fo: 10-17 μm; En: 14-31 μm) composites of various Fo volume fractions ( VFo=0, 0.2, 0.4, 0.5, 0.6, 0.8 and 1) were synthesized by isostatically hot-pressing in a gas-medium apparatus at 1523 and 350 MPa. Our experiments show that flow strength contrasts between Fo and En are in the range of 3-8 at the given experimental conditions, with Fo as the stronger phase. The measured stress exponent ( n) and activation energy ( Q) values of the Fo-En composites fall between those of the end-members. The n values show a nearly linear increase from 1.3 to 2.0, while the Q values display a non-linear increase from 472 to 584 kJ/mol with En volume fraction from 0 to 1.0. There is no clear dependence of creep rates on oxygen fugacity for the Fo-En composites. The mechanical data and TEM microstructural observations suggest no change in deformation mechanism of each phase when in the composites, compared to when in a single-phase aggregate, the En deformed mainly by dislocation creep while the Fo deformed by dislocation-accommodated diffusion creep for our grain sizes and experimental conditions. Comparisons between the measured composite strengths and various theoretical models indicate that none of the existing theoretical models can give a precise predication over the entire VFo range from 0 to 1. However, the theoretical models based on weak-phase supported structures (WPS) yield a good prediction for the flow strengths of the composites with VFo<0.4, while those based on strong-phase supported structures (SPS) are better for the composites with VFo>0.6. No model gives a good prediction for the bulk strength of two-phase composites in the transitional regime ( VFo=0.4-0.6). Applications of the WPS- and SPS-based models in the transitional regime result in under- and over-estimations for the composite flow strength, respectively. Thus, the effect of rock microstructure should be taken into consideration in modeling the bulk flow strengths of the crust and upper mantle using laboratory-determined flow laws of single-phase aggregates.
NASA Astrophysics Data System (ADS)
Ramasahayam, Veda Krishna Vyas; Diwakar, Anant; Bodi, Kowsik
2017-11-01
To study the flow of high temperature air in vibrational and chemical equilibrium, accurate models for thermodynamic state and transport phenomena are required. In the present work, the performance of a state equation model and two mixing rules for determining equilibrium air thermodynamic and transport properties are compared with that of curve fits. The thermodynamic state model considers 11 species which computes flow chemistry by an iterative process and the mixing rules considered for viscosity are Wilke and Armaly-Sutton. The curve fits of Srinivasan, which are based on Grabau type transition functions, are chosen for comparison. A two-dimensional Navier-Stokes solver is developed to simulate high enthalpy flows with numerical fluxes computed by AUSM+-up. The accuracy of state equation model and curve fits for thermodynamic properties is determined using hypersonic inviscid flow over a circular cylinder. The performance of mixing rules and curve fits for viscosity are compared using hypersonic laminar boundary layer prediction on a flat plate. It is observed that steady state solutions from state equation model and curve fits match with each other. Though curve fits are significantly faster the state equation model is more general and can be adapted to any flow composition.
Comparison of Tungsten and Molybdenum Based Emitters for Advanced Thermionic Space Nuclear Reactors
NASA Astrophysics Data System (ADS)
Lee, Hsing H.; Dickinson, Jeffrey W.; Klein, Andrew C.; Lamp, Thomas R.
1994-07-01
Variations to the Advanced Thermionic Initiative thermionic fuel element are analyzed. Analysis included neutronic modeling with MCNP for criticality determination and thermal power distribution, and thermionic performance modeling with TFEHX. Changes to the original ATI configuration include the addition of W-HfC wire to the emitter for high temperature creep resistance improvement and substitution of molybdenum for the tungsten base material. Results from MCNP showed that all the tungsten used in the coating and base material must be 100% W-184 to obtain criticality. The presence of molybdenum in the emitter base affects the neutronic performance of the TFE by increasing the emitter neutron absorption cross section. Due to the reduced thermal conductivity for the molybdenum based emitter, a higher temperature is obtained resulting in a greater electrical power production. The thermal conductivity and resistivity of the composite emitter region were derived for the W-Mo composite and used in TFEHX.
NASA Technical Reports Server (NTRS)
Bogert, Philip B.; Satyanarayana, Arunkumar; Chunchu, Prasad B.
2006-01-01
Splitting, ultimate failure load and the damage path in center notched composite specimens subjected to in-plane tension loading are predicted using progressive failure analysis methodology. A 2-D Hashin-Rotem failure criterion is used in determining intra-laminar fiber and matrix failures. This progressive failure methodology has been implemented in the Abaqus/Explicit and Abaqus/Standard finite element codes through user written subroutines "VUMAT" and "USDFLD" respectively. A 2-D finite element model is used for predicting the intra-laminar damages. Analysis results obtained from the Abaqus/Explicit and Abaqus/Standard code show good agreement with experimental results. The importance of modeling delamination in progressive failure analysis methodology is recognized for future studies. The use of an explicit integration dynamics code for simple specimen geometry and static loading establishes a foundation for future analyses where complex loading and nonlinear dynamic interactions of damage and structure will necessitate it.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chandler, David; Betzler, Ben; Hirtz, Gregory John
2016-09-01
The purpose of this report is to document a high-fidelity VESTA/MCNP High Flux Isotope Reactor (HFIR) core model that features a new, representative experiment loading. This model, which represents the current, high-enriched uranium fuel core, will serve as a reference for low-enriched uranium conversion studies, safety-basis calculations, and other research activities. A new experiment loading model was developed to better represent current, typical experiment loadings, in comparison to the experiment loading included in the model for Cycle 400 (operated in 2004). The new experiment loading model for the flux trap target region includes full length 252Cf production targets, 75Se productionmore » capsules, 63Ni production capsules, a 188W production capsule, and various materials irradiation targets. Fully loaded 238Pu production targets are modeled in eleven vertical experiment facilities located in the beryllium reflector. Other changes compared to the Cycle 400 model are the high-fidelity modeling of the fuel element side plates and the material composition of the control elements. Results obtained from the depletion simulations with the new model are presented, with a focus on time-dependent isotopic composition of irradiated fuel and single cycle isotope production metrics.« less
NASA Technical Reports Server (NTRS)
Wilt, T. E.
1995-01-01
The Generalized Method of Cells (GMC), a micromechanics based constitutive model, is implemented into the finite element code MARC using the user subroutine HYPELA. Comparisons in terms of transverse deformation response, micro stress and strain distributions, and required CPU time are presented for GMC and finite element models of fiber/matrix unit cell. GMC is shown to provide comparable predictions of the composite behavior and requires significantly less CPU time as compared to a finite element analysis of the unit cell. Details as to the organization of the HYPELA code are provided with the actual HYPELA code included in the appendix.
NASA Astrophysics Data System (ADS)
Cranmer, Steven R.
2014-08-01
There have been several ideas proposed to explain how the Sun's corona is heated and how the solar wind is accelerated. Some models assume that open magnetic field lines are heated by Alfvén waves driven by photospheric motions and dissipated after undergoing a turbulent cascade. Other models posit that much of the solar wind's mass and energy is injected via magnetic reconnection from closed coronal loops. The latter idea is motivated by observations of reconnecting jets and also by similarities of ion composition between closed loops and the slow wind. Wave/turbulence models have also succeeded in reproducing observed trends in ion composition signatures versus wind speed. However, the absolute values of the charge-state ratios predicted by those models tended to be too low in comparison with observations. This Letter refines these predictions by taking better account of weak Coulomb collisions for coronal electrons, whose thermodynamic properties determine the ion charge states in the low corona. A perturbative description of nonlocal electron transport is applied to an existing set of wave/turbulence models. The resulting electron velocity distributions in the low corona exhibit mild suprathermal tails characterized by "kappa" exponents between 10 and 25. These suprathermal electrons are found to be sufficiently energetic to enhance the charge states of oxygen ions, while maintaining the same relative trend with wind speed that was found when the distribution was assumed to be Maxwellian. The updated wave/turbulence models are in excellent agreement with solar wind ion composition measurements.
NASA Astrophysics Data System (ADS)
Singh, Jaswinder; Chauhan, Amit
2017-12-01
This study investigates the mechanical behavior of aluminum 2024 matrix composites reinforced with silicon carbide and red mud particles. The hybrid reinforcements were successfully incorporated into the alloy matrix using the stir casting process. An orthogonal array based on Taguchi's technique was used to acquire experimental data for mechanical properties (hardness and impact energy) of the composites. The analysis of variance (ANOVA) and response surface methodology (RSM) techniques were used to evaluate the influence of test parameters (reinforcement ratio, particle size and ageing time). The morphological analysis of the surfaces (fractured during impact tests) was conducted to identify the failure mechanism. Finally, a confirmation experiment was performed to check the adequacy of the developed model. The results indicate that the ageing time is the most effective parameter as far as the hardness of the hybrid composites is concerned. It has also been revealed that red mud wt.% has maximum influence on the impact energy characteristics of the hybrid composites. The study concludes that Al2024/SiC/red mud hybrid composites possess superior mechanical performance in comparison to pure alloy under optimized conditions.
Low velocity impact analysis of composite laminated plates
NASA Astrophysics Data System (ADS)
Zheng, Daihua
2007-12-01
In the past few decades polymer composites have been utilized more in structures where high strength and light weight are major concerns, e.g., aircraft, high-speed boats and sports supplies. It is well known that they are susceptible to damage resulting from lateral impact by foreign objects, such as dropped tools, hail and debris thrown up from the runway. The impact response of the structures depends not only on the material properties but also on the dynamic behavior of the impacted structure. Although commercial software is capable of analyzing such impact processes, it often requires extensive expertise and rigorous training for design and analysis. Analytical models are useful as they allow parametric studies and provide a foundation for validating the numerical results from large-scale commercial software. Therefore, it is necessary to develop analytical or semi-analytical models to better understand the behaviors of composite structures under impact and their associated failure process. In this study, several analytical models are proposed in order to analyze the impact response of composite laminated plates. Based on Meyer's Power Law, a semi-analytical model is obtained for small mass impact response of infinite composite laminates by the method of asymptotic expansion. The original nonlinear second-order ordinary differential equation is transformed into two linear ordinary differential equations. This is achieved by neglecting high-order terms in the asymptotic expansion. As a result, the semi-analytical solution of the overall impact response can be applied to contact laws with varying coefficients. Then an analytical model accounting for permanent deformation based on an elasto-plastic contact law is proposed to obtain the closed-form solutions of the wave-controlled impact responses of composite laminates. The analytical model is also used to predict the threshold velocity for delamination onset by combining with an existing quasi-static delamination criterion. The predictions are compared with experimental data and explicit finite element LS-DYNA simulation. The comparisons show reasonable agreement. Furthermore, an analytical model is developed to evaluate the combined effects of prestresses and permanent deformation based on the linearized elasto-plastic contact law and the Laplace Transform technique. It is demonstrated that prestresses do not have noticeable effects on the time history of contact force and strains, but they have significant consequences on the plate central displacement. For a impacted composite laminate with the presence of prestresses, the contact force increases with the increasing of the mass of impactor, thickness and interlaminar shear strength of the laminate. The combined analytical and numerical investigations provide validated models for elastic and elasto-plastic impact analysis of composite structures and shed light on the design of impact-resistant composite systems.
NASA Technical Reports Server (NTRS)
Sorini, Chris; Chattopadhyay, Aditi; Goldberg, Robert K.; Kohlman, Lee W.
2016-01-01
Understanding the high velocity impact response of polymer matrix composites with complex architectures is critical to many aerospace applications, including engine fan blade containment systems where the structure must be able to completely contain fan blades in the event of a blade-out. Despite the benefits offered by these materials, the complex nature of textile composites presents a significant challenge for the prediction of deformation and damage under both quasi-static and impact loading conditions. The relatively large mesoscale repeating unit cell (in comparison to the size of structural components) causes the material to behave like a structure rather than a homogeneous material. Impact experiments conducted at NASA Glenn Research Center have shown the damage patterns to be a function of the underlying material architecture. Traditional computational techniques that involve modeling these materials using smeared homogeneous, orthotropic material properties at the macroscale result in simulated damage patterns that are a function of the structural geometry, but not the material architecture. In order to preserve heterogeneity at the highest length scale in a robust yet computationally efficient manner, and capture the architecturally dependent damage patterns, a previously-developed subcell modeling approach where the braided composite unit cell is approximated as a series of four adjacent laminated composites is utilized. This work discusses the implementation of the subcell methodology into the commercial transient dynamic finite element code LS-DYNA (Livermore Software Technology Corp.). Verification and validation studies are also presented, including simulation of the tensile response of straight-sided and notched quasi-static coupons composed of a T700/PR520 triaxially braided [0deg/60deg/-60deg] composite. Based on the results of the verification and validation studies, advantages and limitations of the methodology as well as plans for future work are discussed.
Li, Jia; Xia, Yunni; Luo, Xin
2014-01-01
OWL-S, one of the most important Semantic Web service ontologies proposed to date, provides a core ontological framework and guidelines for describing the properties and capabilities of their web services in an unambiguous, computer interpretable form. Predicting the reliability of composite service processes specified in OWL-S allows service users to decide whether the process meets the quantitative quality requirement. In this study, we consider the runtime quality of services to be fluctuating and introduce a dynamic framework to predict the runtime reliability of services specified in OWL-S, employing the Non-Markovian stochastic Petri net (NMSPN) and the time series model. The framework includes the following steps: obtaining the historical response times series of individual service components; fitting these series with a autoregressive-moving-average-model (ARMA for short) and predicting the future firing rates of service components; mapping the OWL-S process into a NMSPN model; employing the predicted firing rates as the model input of NMSPN and calculating the normal completion probability as the reliability estimate. In the case study, a comparison between the static model and our approach based on experimental data is presented and it is shown that our approach achieves higher prediction accuracy.
Strong Ground Motion Prediction By Composite Source Model
NASA Astrophysics Data System (ADS)
Burjanek, J.; Irikura, K.; Zahradnik, J.
2003-12-01
A composite source model, incorporating different sized subevents, provides a possible description of complex rupture processes during earthquakes. The number of subevents with characteristic dimension greater than R is proportional to R-2. The subevents do not overlap with each other, and the sum of their areas equals to the area of the target event (e.g. mainshock). The subevents are distributed randomly over the fault. Each subevent is modeled either as a finite or point source, differences between these choices are shown. The final slip and duration of each subevent is related to its characteristic dimension, using constant stress-drop scaling. Absolute value of subevents' stress drop is free parameter. The synthetic Green's functions are calculated by the discrete-wavenumber method in a 1D horizontally layered crustal model. An estimation of subevents' stress drop is based on fitting empirical attenuation relations for PGA and PGV, as they represent robust information on strong ground motion caused by earthquakes, including both path and source effect. We use the 2000 M6.6 Western Tottori, Japan, earthquake as validation event, providing comparison between predicted and observed waveforms.
Spatial modeling of biological soil crusts to support rangeland assessment and monitoring
Bowker, M.A.; Belnap, J.; Miller, M.E.
2006-01-01
Biological soil crusts are a diverse soil surface community, prevalent in semiarid regions, which function as ecosystem engineers and perform numerous important ecosystem services. Loss of crusts has been implicated as a factor leading to accelerated soil erosion and other forms of land degradation. To support assessment and monitoring efforts aimed at ensuring the sustainability of rangeland ecosystems, managers require spatially explicit information concerning potential cover and composition of biological soil crusts. We sampled low disturbance sites in Grand Staircase-Escalante National Monument (Utah, USA) to determine the feasibility of modeling the potential cover and composition of biological soil crusts in a large area. We used classification and regression trees to model cover of four crust types (light cyanobacterial, dark cyanobacterial, moss, lichen) and 1 cyanobacterial biomass proxy (chlorophyll a), based upon a parsimonious set of GIS (Geographic Information Systems) data layers (soil types, precipitation, and elevation). Soil type was consistently the best predictor, although elevation and precipitation were both invoked in the various models. Predicted and observed values for the dark cyanobacterial, moss, and lichen models corresponded moderately well (R 2 = 0.49, 0.64, 0.55, respectively). Cover of late successional crust elements (moss + lichen + dark cyanobacterial) was also successfully modeled (R2 = 0.64). We were less successful with models of light cyanobacterial cover (R2 = 0.22) and chlorophyll a (R2 = 0.09). We believe that our difficulty modeling chlorophyll a concentration is related to a severe drought and subsequent cyanobacterial mortality during the course of the study. These models provide the necessary reference conditions to facilitate the comparison between the actual cover and composition of biological soil crusts at a given site and their potential cover and composition condition so that sites in poor condition can be identified and management actions can be taken.
Zelenyak, Andreea-Manuela; Schorer, Nora; Sause, Markus G R
2018-02-01
This paper presents a method for embedding realistic defect geometries of a fiber reinforced material in a finite element modeling environment in order to simulate active ultrasonic inspection. When ultrasonic inspection is used experimentally to investigate the presence of defects in composite materials, the microscopic defect geometry may cause signal characteristics that are difficult to interpret. Hence, modeling of this interaction is key to improve our understanding and way of interpreting the acquired ultrasonic signals. To model the true interaction of the ultrasonic wave field with such defect structures as pores, cracks or delamination, a realistic three dimensional geometry reconstruction is required. We present a 3D-image based reconstruction process which converts computed tomography data in adequate surface representations ready to be embedded for processing with finite element methods. Subsequent modeling using these geometries uses a multi-scale and multi-physics simulation approach which results in quantitative A-Scan ultrasonic signals which can be directly compared with experimental signals. Therefore, besides the properties of the composite material, a full transducer implementation, piezoelectric conversion and simultaneous modeling of the attached circuit is applied. Comparison between simulated and experimental signals provides very good agreement in electrical voltage amplitude and the signal arrival time and thus validates the proposed modeling approach. Simulating ultrasound wave propagation in a medium with a realistic shape of the geometry clearly shows a difference in how the disturbance of the waves takes place and finally allows more realistic modeling of A-scans. Copyright © 2017 Elsevier B.V. All rights reserved.
Development of Composite PCMs by Incorporation of Paraffin into Various Building Materials
Memon, Shazim Ali; Liao, Wenyu; Yang, Shuqing; Cui, Hongzhi; Shah, Syed Farasat Ali
2015-01-01
In this research, we focused on the development of composite phase-change materials (CPCMs) by incorporation of a paraffin through vacuum impregnation in widely used building materials (Kaolin and ground granulated blast-furnace slag (GGBS)). The composite PCMs were characterized using environmental scanning electron microscopy (ESEM), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) techniques. Moreover, thermal performance of cement paste composite PCM panels was evaluated using a self-designed heating system. Test results showed that the maximum percentage of paraffin retained by Kaolin and GGBS was found to be 18% and 9%, respectively. FT-IR results show that CPCMs are chemically compatible. The phase-change temperatures of CPCMs were in the human comfort zone, and they possessed considerable latent-heat storage capacity. TGA results showed that CPCMs are thermally stable, and they did not show any sign of degradation below 150 °C. From thermal cycling tests, it was revealed that the CPCMs are thermally reliable. Thermal performance tests showed that in comparison to the control room model, the room models prepared with CPCMs reduced both the temperature fluctuations and maximum indoor center temperature. Therefore, the prepared CPCMs have some potential in reducing peak loads in buildings when applied to building facade. PMID:28787953
NASA Astrophysics Data System (ADS)
Bellaredj, Mohamed L. F.; Mueller, Sebastian; Davis, Anto K.; Mano, Yasuhiko; Kohl, Paul A.; Swaminathan, Madhavan
2017-11-01
High-efficiency integrated voltage regulators (IVRs) require the integration of power inductors, which have low loss and reduced size at very high frequency. The use of a magnetic material core can reduce significantly the inductor area and simultaneously increase the inductance. This paper focuses on the fabrication, characterization and modeling of nickel zinc (NiZn) ferrite and carbonyl iron powder (CIP)-epoxy magnetic composite materials, which are used as the magnetic core materials of embedded inductors in a printed wiring board (PWB) for a system in package (SIP) based buck type IVR. The fabricated composite materials and process are fully compatible with FR4 epoxy resin prepreg and laminate. For 85% weight loading of the magnetic powder (around 100 MHz at room temperature), the composite materials show a relative permeability of 7.5-8.1 for the NiZn ferrite composite and 5.2-5.6 for the CIP composite and a loss tangent value of 0.24-0.28 for the NiZn ferrite composite and 0.09-0.1 for the CIP-composite. The room temperature saturation flux density values are 0.1351 T and 0.5280 T for the NiZn ferrite and the CIP composites, respectively. The frequency dispersion parameters of the magnetic composites are modeled using a simplified Lorentz and Landau-Lifshitz-Gilbert equation for a Debye type relaxation. Embedded magnetic core solenoid inductors were designed based on the composite materials for the output filter of a high-efficiency SIP based buck type IVR. Evaluation of a SIP based buck type IVR with the designed inductors shows that it can reach peak efficiencies of 91.7% at 11 MHz for the NiZn ferrite-composite, 91.6% at 14 MHz for CIP-composite and 87.5% (NiZn ferrite-composite) and 87.3% (CIP-composite) efficiency at 100 MHz for a 1.7 V:1.05 V conversion. For a direct 5 V:1 V conversion using a stacked topology, a peak efficiency of 82% at 10 MHz and 72% efficiency at 100 MHz can be achieved for both materials.
Zihlman, Adrienne L; Bolter, Debra R
2015-06-16
The human body has been shaped by natural selection during the past 4-5 million years. Fossils preserve bones and teeth but lack muscle, skin, fat, and organs. To understand the evolution of the human form, information about both soft and hard tissues of our ancestors is needed. Our closest living relatives of the genus Pan provide the best comparative model to those ancestors. Here, we present data on the body composition of 13 bonobos (Pan paniscus) measured during anatomical dissections and compare the data with Homo sapiens. These comparative data suggest that both females and males (i) increased body fat, (ii) decreased relative muscle mass, (iii) redistributed muscle mass to lower limbs, and (iv) decreased relative mass of skin during human evolution. Comparison of soft tissues between Pan and Homo provides new insights into the function and evolution of body composition.
NASA Astrophysics Data System (ADS)
Baitinger, Michael; Böhme, Bodo; Ormeci, Alim; Grin, Yuri
Clathrates represent a family of inorganic materials called cage compounds. The key feature of their crystal structures is a three-dimensional (host) framework bearing large cavities (cages) with 20-28 vertices. These polyhedral cages bear—as a rule—guest species. Depending on the formal charge of the framework, clathrates are grouped in anionic, cationic and neutral. While the bonding in the framework is of (polar) covalent nature, the guest-host interaction can be ionic, covalent or even van-der Waals, depending on the chemical composition of the clathrates. The chemical composition and structural features of the cationic clathrates can be described by the enhanced Zintl concept, whereas the composition of the anionic clathrates deviates often from the Zintl counts, indicating additional atomic interactions in comparison with the ionic-covalent Zintl model. These interactions can be visualized and studied by applying modern quantum chemical approaches such as electron localizability.
Zihlman, Adrienne L.; Bolter, Debra R.
2015-01-01
The human body has been shaped by natural selection during the past 4–5 million years. Fossils preserve bones and teeth but lack muscle, skin, fat, and organs. To understand the evolution of the human form, information about both soft and hard tissues of our ancestors is needed. Our closest living relatives of the genus Pan provide the best comparative model to those ancestors. Here, we present data on the body composition of 13 bonobos (Pan paniscus) measured during anatomical dissections and compare the data with Homo sapiens. These comparative data suggest that both females and males (i) increased body fat, (ii) decreased relative muscle mass, (iii) redistributed muscle mass to lower limbs, and (iv) decreased relative mass of skin during human evolution. Comparison of soft tissues between Pan and Homo provides new insights into the function and evolution of body composition. PMID:26034269
Trace Element Study of H Chondrites: Evidence for Meteoroid Streams.
NASA Astrophysics Data System (ADS)
Wolf, Stephen Frederic
1993-01-01
Multivariate statistical analyses, both linear discriminant analysis and logistic regression, of the volatile trace elemental concentrations in H4-6 chondrites reveal compositionally distinguishable subpopulations. Observed difference in volatile trace element composition between Antarctic and non-Antarctic H4-6 chondrites (Lipschutz and Samuels, 1991) can be explained by a compositionaily distinct subpopulation found in Victoria Land, Antarctica. This population of H4-6 chondrites is compositionally distinct from non-Antarctic H4-6 chondrites and from Antarctic H4 -6 chondrites from Queen Maud Land. Comparisons of Queen Maud Land H4-6 chondrites with non-Antarctic H4-6 chondrites do not give reason to believe that these two populations are distinguishable from each other on the basis of the ten volatile trace element concentrations measured. ANOVA indicates that these differences are not the result of trivial causes such as weathering and analytical bias. Thermoluminescence properties of these populations parallels the results of volatile trace element comparisons. Given the differences in terrestrial age between Victoria Land, Queen Maud Land, and modern H4-6 chondrite falls, these results are consistent with a variation in H4-6 chondrite flux on a 300 ky timescale. This conclusion requires the existence of co-orbital meteoroid streams. Statistical analyses of the volatile trace elemental concentrations in non-Antarctic modern falls of H4-6 chondrites also demonstrate that a group of 13 H4-6 chondrites, Cluster 1, selected exclusively for their distinct fall parameters (Dodd, 1992) is compositionally distinguishable from a control group of 45 non-Antarctic modern H4-6 chondrites on the basis of the ten volatile trace element concentrations measured. Model-independent randomization-simulations based on both linear discriminant analysis and logistic regression verify these results. While ANOVA identifies two possible causes for this difference, analytical bias and group classification, a test validation experiment verifies that group classification is the more significant cause of compositional difference between Cluster 1 and non-Cluster 1 modern H4-6 chondrite falls. Thermoluminescence properties of these populations parallels the results of volatile trace element comparisons. This suggests that these meteorites are fragments of a co-orbital meteorite stream derived from a single parent body.
NASA Technical Reports Server (NTRS)
Douglass, Anne; Stolarski, Richard; Oman, Luke; Strahan, Susan
2012-01-01
The chemistry climate models that contributed simulations for past and future ozone evolution to the 2010 Scientific Assessment of Ozone Depletion were subject to extensive evaluation by the SPARC (Stratospheric Processes and their Role in Climate) CCMVal (Chemistry-Climate Model Validation) activity. The sensitivity of ozone to changes in composition and climate varies among the models, but the relationship between these variations and the model evaluations of CCMVal is not obvious. We have learned that the transport evaluation can be used to interpret the comparisons between observed and simulated columns of chlorine reservoirs, hydrochloric acid (HCl) and chlorine nitrate (ClONO2); these comparisons were part of the CCMVal evaluation of chemistry. The simulations with best performance on the transport diagnostics most faithfully reproduce the evolution and seasonal variation of the chlorine reservoirs as observed at NDACC (Network for Detection of Atmospheric Composition Change) stations (NyAlesund 78.9N, Kiruna 67.8N, Harestua 60.2N, Jungfraujoch 46.6N, Toronto 43.6N, Kitt Peak 31.9N, Izana 28.3N, Mauna Loa 19.5N, Lauder 45S and Arrival Heights 77.8S). In the simulations, the HCl in the lower stratosphere depends on total inorganic chlorine (Cly) and partitioning between HCl and ClON02. Total inorganic chlorine depends on the fractional release of chlorine from source gases, and ratio of ClON02 to HCl is inversely dependent on methane and varies quadratically with ozone. Simulated HCl from various models may agree with observations even though Cly is in error, partitioning is in error, or both. Simulated ozone sensitivity to chlorine is shown to be greater for models that produce larger values of chlorine nitrate for background chlorine levels, and vice versa. Comparisons with the NDACC data show why the models with 'best' transport have similar sensitivity to chlorine change. The realistic evolution of the simulated HCl and ClONO2 columns suggests realistic levels of Cly in the lower atmosphere. In addition, the wide range values for the sensitivity of ozone to chlorine obtained from the CCMVal simulations is explained by the wide range in lower atmospheric columns of ClONO2 and the concomitant wide range of levels for chlorine monoxide.
An Empirical Model of the Variation of the Solar Lyman-α Spectral Irradiance
NASA Astrophysics Data System (ADS)
Kretzschmar, Matthieu; Snow, Martin; Curdt, Werner
2018-03-01
We propose a simple model that computes the spectral profile of the solar irradiance in the hydrogen Lyman alpha line, H Ly-α (121.567 nm), from 1947 to present. Such a model is relevant for the study of many astronomical environments, from planetary atmospheres to interplanetary medium. This empirical model is based on the SOlar Heliospheric Observatory/Solar Ultraviolet Measurement of Emitted Radiation observations of the Ly-α irradiance over solar cycle 23 and the Ly-α disk-integrated irradiance composite. The model reproduces the temporal variability of the spectral profile and matches the independent SOlar Radiation and Climate Experiment/SOLar-STellar Irradiance Comparison Experiment spectral observations from 2003 to 2007 with an accuracy better than 10%.
Lovestead, Tara M; Burger, Jessica L; Schneider, Nico; Bruno, Thomas J
2016-12-15
Commercial and military aviation is faced with challenges that include high fuel costs, undesirable emissions, and supply chain insecurity that result from the reliance on petroleum-based feedstocks. The development of alternative gas turbine fuels from renewable resources will likely be part of addressing these issues. The United States has established a target for one billion gallons of renewable fuels to enter the supply chain by 2018. These alternative fuels will have to be very similar in properties, chemistry, and composition to existing fuels. To further this goal, the National Jet Fuel Combustion Program (a collaboration of multiple U.S. agencies under the auspices of the Federal Aviation Administration, FAA) is coordinating measurements on three reference gas turbine fuels to be used as a basis of comparison. These fuels are reference fuels with certain properties that are at the limits of experience. These fuels include a low viscosity, low flash point, high hydrogen content "best case" JP-8 (POSF 10264) fuel, a relatively high viscosity, high flash point, low hydrogen content "worst case" JP-5 (POSF 10259) fuel, and a Jet-A (POSF 10325) fuel with relatively average properties. A comprehensive speciation of these fuels is provided in this paper by use of high resolution gas chromatography/quadrupole time-of-flight - mass spectrometry (GC/QToF-MS), which affords unprecedented resolution and exact molecular formula capabilities. The volatility information as derived from the measurement of the advanced distillation curve temperatures, T k and T h , provides an approximation of the vapor liquid equilibrium and examination of the composition channels provides detailed insight into thermochemical data. A comprehensive understanding of the compositional and thermophysical data of gas turbine fuels is required not only for comparison but also for modeling of such complex mixtures, which will, in turn, aid in the development of new fuels with the goals of diversified feedstocks, decreased pollution, and increased efficiency.
Yang, L; Yang, Q; Yi, M; Pang, Z H; Xiong, B H
2013-01-01
This study was to investigate the effects of seasonal change and parity on milk composition and related indices, and to analyze the relationships among milk indices in Chinese Holstein cows from an intensive dairy farm in northern China. The 6,520 sets of complete Dairy Herd Improvement data were obtained and grouped by natural month and parity. The data included daily milk yield (DMY), milk solids percentage (MSP), milk fat percentage (MFP), milk protein percentage (MPP), milk lactose percentage (MLP), somatic cell count (SCC), somatic cell score (SCS), milk production loss (MPL), and fat-to-protein ratio (FPR). Data analysis showed that the above 9 indices were affected by both seasonal change and parity. However, the interaction between parity and seasonal change showed effects on MLP, SCS, MPL, and DMY, but no effects on MFP, MPP, MSP, and FPR. Duncan's multiple comparison on seasonal change showed that DMY (23.58 kg/d), MSP (12.35%), MPP (3.02%), and MFP (3.81%) were the lowest in June, but SCC (288.7 × 10(3)/mL) and MPL (0.69 kg/d) were the lowest in January; FPR (1.32) was the highest in February. Meanwhile, Duncan's multiple comparison on parities showed that MSP, MPP, and MLP were reduced rapidly in the fourth lactation, but SCC and MPL increased with increasing parities. The canonical correlation analysis for indices showed that SCS had high positive correlation with MPL (0.8360). Therefore, a few models were developed to quantify the effects of seasonal change and parity on raw milk composition using the Wood model. The changing patterns of milk composition and related indices in different months and parities could provide scientific evidence for improving feeding management and nutritional supplementation of Chinese Holstein cows. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Rengarajan, A; Drapekin, J; Patel, A; Gyawali, C P
2016-12-01
High-resolution manometry (HRM) utilizes software tools to diagnose esophageal motor disorders. Performance of these software metrics could be affected by averaging and by software characteristics of different manufacturers. High-resolution manometry studies on 86 patients referred for antireflux surgery (61.6 ± 1.4 year, 70% F) and 20 healthy controls (27.9 ± 0.7 year, 45% F) were first subject to standard analysis (Medtronic, Duluth, GA, USA). Coordinates for each of 10 test swallows were exported and averaged to generate a composite swallow. The swallows and averaged composites were imported as ASCII file format into Manoview (Medtronic) and Medical Measurement Systems database reporter (MMS, Dover, NH, USA), and analyses repeated. Comparisons were made between standard and composite swallow interpretations. Correlation between the two systems was high for mean distal contractile integral (DCI, r 2 ≥ 0.9) but lower for integrated relaxation pressure (IRP, r 2 = 0.7). Excluding achalasia, six patients with outflow obstruction (mean IRP 23.2 ± 2.1 with 10-swallow average) were identified by both systems. An additional nine patients (10.5%) were identified as outflow obstruction (15 mmHg threshold) with MMS 10-swallow and four with MMS composite swallow evaluation; only one was confirmed. Ineffective esophageal motility was diagnosed by 10-swallow evaluation in 19 (22.1%) with Manoview, and 20 (23.3%) with MMS. On Manoview composite, 17 had DCI <450 mmHg/cm/s, and on MMS composite, 21, (p ≥ 0.85 for each comparison) but these did not impact diagnostic conclusions. Comparison of 10 swallow and composite swallows demonstrate variability in software metrics between manometry systems. Our data support use of manufacturer specific software metrics on 10-swallow sequences. © 2016 John Wiley & Sons Ltd.
Brouckaert, D; Uyttersprot, J-S; Broeckx, W; De Beer, T
2017-06-08
The industrial production of liquid detergent compositions entails delicate balance of ingredients and process steps. In order to assure high quality and productivity in the manufacturing line, process analytical technology tools such as Raman spectroscopy are to be implemented. Marked chemical specificity, negligible water interference and high robustness are ascribed to this process analytical technique. Previously, at-line calibration models have been developed for determining the concentration levels of the being studied liquid detergents main ingredients from Raman spectra. A strategy is now proposed to transfer such at-line developed regression models to an in-line set-up, allowing real-time dosing control of the liquid detergent composition under production. To mimic in-line manufacturing conditions, liquid detergent compositions are created in a five-liter vessel with an overhead mixer. Raman spectra are continuously acquired by pumping the detergent under production via plastic tubing towards a Raman superhead probe, which is incorporated into a metal frame with a sapphire window facing the detergent fluid. Two at-line developed partial least squares (PLS) models are aimed at transferring, predicting the concentration of surfactant 1 and polymer 2 in the examined liquid detergent composition. A univariate slope/bias correction (SBC) is investigated, next to three well-acknowledged multivariate transformation methods: direct, piecewise and double-window piecewise direct standardization. Transfer is considered successful when the magnitude of the validation sets root mean square error of prediction (RMSEP) is similar to or smaller than the corresponding at-line prediction error. The transferred model offering the most promising outcome is further subjected to an exhaustive statistical evaluation, in order to appraise the applicability of the suggested calibration transfer method. Interval hypothesis tests are thereby performed for method comparison. It is illustrated that the investigated transfer approach yields satisfactory results, provided that the original at-line calibration model is thoroughly validated. Both SBC transfer models return lower RMSEP values than their corresponding original models. The surfactant 1 assay met all relevant evaluation criteria, demonstrating successful transfer to the in-line set-up. The in-line quantification of polymer 2 levels in the liquid detergent composition could not be statistically validated, due to the poorer performance of the at-line model. Copyright © 2017 Elsevier B.V. All rights reserved.
Dejak, Beata; Młotkowski, Andrzej
2015-03-01
Polymerization shrinkage of composites is one of the main causes of leakage around dental restorations. Despite the large numbers of studies there is no consensus, what kind of teeth reconstruction--direct or indirect composite restorations are the most beneficial and the most durable. The aim was to compare equivalent stresses and contact adhesive stresses in molar teeth with class II MOD cavities, which were restored with inlays and direct restorations (taking into account polymerization shrinkage of composite resin) during simulated mastication. The study was conducted using the finite elements method with the application of contact elements. Three 3D models of first molars were created: model A was an intact tooth; model B--a tooth with a composite inlay, and model C--a tooth with a direct composite restoration. Polymerization linear shrinkage 0.7% of a direct composite restoration and resin luting cement was simulated (load 1). A computer simulation of mastication was performed (load 2). In these 2 situations, equivalent stresses according to the modified von Mises criterion (mvM) in the materials of mandibular first molar models with different restorations were calculated and compared. Contact stresses in the luting cement-tooth tissue adhesive interface around the restorations were also assessed and analyzed. Equivalent stresses in a tooth with a direct composite restoration (the entire volume of which was affected by polymerization shrinkage) were many times higher than in the tooth restored with a composite inlay (where shrinkage was present only in a thin layer of the luting cement). In dentin and enamel the stress values were 8-14 times higher, and were 13 times higher in the direct restoration than in the inlay. Likewise, contact stresses in the adhesive bond around the direct restoration were 6.5-7.7 times higher compared to an extraorally cured restoration. In the masticatory simulation, shear contact stresses in the adhesive bond around the direct composite restoration reached the highest values 32.8 MPa and significantly exceeded the shear strength of the connection between the resin luting cement and the tooth structure. Equivalent stresses in the tooth structures restored with inlays and in the restoration material itself and contact stresses at the tooth-luting cement adhesive interface are many times lower compared to teeth with direct composite restorations. Teeth with indirect restorations are potentially less susceptible to damage compared to those with direct restorations. Composite inlays also ensure a better seal compared to direct restorations. Polymerization shrinkage determines stress levels in teeth with direct restorations, while its impact on adhesion in indirectly restored teeth is insignificant. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Enhancement of bioavailability by formulating rhEPO ionic complex with lysine into PEG-PLA micelle
NASA Astrophysics Data System (ADS)
Shi, Yanan; Sun, Fengying; Wang, Dan; Zhang, Renyu; Dou, Changlin; Liu, Wanhui; Sun, Kaoxiang; Li, Youxin
2013-10-01
A composite micelle of ionic complex encapsulated into poly(ethylene glycol)-poly( d, l-lactide) (PEG-PLA) di-block copolymeric micelles was used for protein drug delivery to improve its pharmacokinetic performance. In this study, recombinant human erythropoietin (rhEPO, as a model protein) was formulated with lysine into composite micelles at a diameter of 71.5 nm with narrow polydispersity indices (PDIs < 0.3). Only a trace amount of protein was in aggregate form. The zeta potential of the spherical micelles was ranging from -0.54 to 1.39 mv, and encapsulation efficiency is high (80 %). The stability of rhEPO was improved significantly in composite micelles in vitro. Pharmacokinetic studies in rats showed significant, enhanced plasma retention of the composite micelles in comparison with native rhEPO. Areas under curve (AUCs) of the rhEPO released from the composite micelles were 4.5- and 2.3-folds higher than those of the native rhEPO and rhEPO-loaded PEG-PLA micelle, respectively. In addition, the composite micelles exhibited good biocompatibility using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay with human embryonic kidney (HEK293T) cells. All these features are preferable for utilizing the composite micelles as a novel protein delivery system.
Predicting the mineral composition of dust aerosols – Part 1: Representing key processes
Perlwitz, J. P.; Perez Garcia-Pando, C.; Miller, R. L.
2015-10-21
Soil dust aerosols created by wind erosion are typically assigned globally uniform physical and chemical properties within Earth system models, despite known regional variations in the mineral content of the parent soil. Mineral composition of the aerosol particles is important to their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Here, aerosol mineral composition is derived by extending a method that provides the composition of a wet-sieved soil. The extension accountsmore » for measurements showing significant differences between the mineral fractions of the wet-sieved soil and the emitted aerosol concentration. For example, some phyllosilicate aerosols are more prevalent at silt sizes, even though they are nearly absent at these diameters in a soil whose aggregates are dispersed by wet sieving. We calculate the emitted mass of each mineral with respect to size by accounting for the disintegration of soil aggregates during wet sieving. These aggregates are emitted during mobilization and fragmentation of the original undispersed soil that is subject to wind erosion. The emitted aggregates are carried far downwind from their parent soil. The soil mineral fractions used to calculate the aggregates also include larger particles that are suspended only in the vicinity of the source. We calculate the emitted size distribution of these particles using a normalized distribution derived from aerosol measurements. In addition, a method is proposed for mixing minerals with small impurities composed of iron oxides. These mixtures are important for transporting iron far from the dust source, because pure iron oxides are more dense and vulnerable to gravitational removal than most minerals comprising dust aerosols. Finally, a limited comparison to measurements from North Africa shows that the model extensions result in better agreement, consistent with a more extensive comparison to global observations as well as measurements of elemental composition downwind of the Sahara, as described in companion articles.« less
Assessment of the quality of reporting observational studies in the pediatric dental literature.
Butani, Yogita; Hartz, Arthur; Levy, Steven; Watkins, Catherine; Kanellis, Michael; Nowak, Arthur
2006-01-01
The purpose of this assessment was to evaluate reporting of observational studies in the pediatric dental literature. This assessment included the following steps: (1) developing a model for reporting information in clinical dentistry studies; (2) identifying treatment comparisons in pediatric dentistry that were evaluated by at least 5 observational studies; (3) abstracting from these studies any data indicated by applying the reporting model; and (4) comparing available data elements to the desired data elements in the reporting model. The reporting model included data elements related to: (1) patients; (2) providers; (3) treatment details; and (4) study design. Two treatment comparisons in pediatric dentistry were identified with 5 or more observational studies: (1) stainless steel crowns vs amalgams (10 studies); and (2) composite restorations vs amalgam (5 studies). Results from studies comparing the same treatments varied substantially. Data elements from the reporting model that could have explained some of the variation were often reported inadequately or not at all. Reporting of observational studies in the pediatric dental literature may be inadequate for an informed interpretation of the results. Models similar to that used in this study could be used for developing standards for the conduct and reporting of observational studies in pediatric dentistry.
Johnson, Jennifer E; Berry, Joseph A
2013-10-01
The distribution of nitrogen isotopes in the biosphere has the potential to offer insights into the past, present and future of the nitrogen cycle, but it is challenging to unravel the processes controlling patterns of mixing and fractionation. We present a mathematical model describing a previously overlooked process: nitrogen isotope fractionation during leaf-atmosphere NH3(g ) exchange. The model predicts that when leaf-atmosphere exchange of NH3(g ) occurs in a closed system, the atmospheric reservoir of NH3(g ) equilibrates at a concentration equal to the ammonia compensation point and an isotopic composition 8.1‰ lighter than nitrogen in protein. In an open system, when atmospheric concentrations of NH3(g ) fall below or rise above the compensation point, protein can be isotopically enriched by net efflux of NH3(g ) or depleted by net uptake. Comparison of model output with existing measurements in the literature suggests that this process contributes to variation in the isotopic composition of nitrogen in plants as well as NH3(g ) in the atmosphere, and should be considered in future analyses of nitrogen isotope circulation. The matrix-based modelling approach that is introduced may be useful for quantifying isotope dynamics in other complex systems that can be described by first-order kinetics. © 2013 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Caley, T.; Roche, D. M.
2013-03-01
Oxygen stable isotopes (18O) are among the most usual tools in paleoclimatology/paleoceanography. Simulation of oxygen stable isotopes allows testing how the past variability of these isotopes in water can be interpreted. By modelling the proxy directly in the model, the results can also be directly compared with the data. Water isotopes have been implemented in the global three-dimensional model of intermediate complexity iLOVECLIM allowing fully coupled atmosphere-ocean simulations. In this study, we present the validation of the model results for present day climate against global database for oxygen stable isotopes in carbonates. The limitation of the model together with the processes operating in the natural environment reveal the complexity of use the continental calcite 18O signal of speleothems for a data-model comparison exercise. On the contrary, the reconstructed surface ocean calcite δ18O signal in iLOVECLIM does show a very good agreement with late Holocene database (foraminifers) at the global and regional scales. Our results indicate that temperature and the isotopic composition of the seawater are the main control on the fossil δ18O signal recorded in foraminifer shells and that depth habitat and seasonality play a role but have secondary importance. We argue that a data-model comparison for surface ocean calcite δ18O in past climate, such as the last glacial maximum (≈21 000 yr), could constitute an interesting tool for mapping the potential shifts of the frontal systems and circulation changes throughout time. Similarly, the potential changes in intermediate oceanic circulation systems in the past could be documented by a data (benthic foraminifers)-model comparison exercise whereas future investigations are necessary in order to quantitatively compare the results with data for the deep ocean.
NASA Astrophysics Data System (ADS)
Kühn, Michael; Vieth-Hillebrand, Andrea; Wilke, Franziska D. H.
2017-04-01
Black shales are a heterogeneous mixture of minerals, organic matter and formation water and little is actually known about the fluid-rock interactions during hydraulic fracturing and their effects on composition of flowback and produced water. Geochemical simulations have been performed based on the analyses of "real" flowback water samples and artificial stimulation fluids from lab experiments with the aim to set up a chemical process model for shale gas reservoirs. Prediction of flowback water compositions for potential or already chosen sites requires validated and parameterized geochemical models. For the software "Geochemist's Workbench" (GWB) data bases are adapted and amended based on a literature review. Evaluation of the system has been performed in comparison with the results from laboratory experiments. Parameterization was done in regard to field data provided. Finally, reaction path models are applied for quantitative information about the mobility of compounds in specific settings. Our work leads to quantitative estimates of reservoir compounds in the flowback based on calibrations by laboratory experiments. Such information is crucial for the assessment of environmental impacts as well as to estimate human- and ecotoxicological effects of the flowback waters from a variety of natural gas shales. With a comprehensive knowledge about potential composition and mobility of flowback water, selection of water treatment techniques will become easier.
NASA Astrophysics Data System (ADS)
Mespoulet, Jérôme; Plassard, Fabien; Hereil, Pierre-Louis
2015-09-01
Response of pressurized composite-Al vessels to hypervelocity impact of aluminum spheres have been numerically investigated to evaluate the influence of initial pressure on the vulnerability of these vessels. Investigated tanks are carbon-fiber overwrapped prestressed Al vessels. Explored internal air pressure ranges from 1 bar to 300 bar and impact velocity are around 4400 m/s. Data obtained from experiments (Xray radiographies, particle velocity measurement and post-mortem vessels) have been compared to numerical results given from LS-DYNA ALE-Lagrange-SPH full coupling models. Simulations exhibit an under estimation in term of debris cloud evolution and shock wave propagation in pressurized air but main modes of damage/rupture on the vessels given by simulations are coherent with post-mortem recovered vessels from experiments. First results of this numerical work are promising and further simulation investigations with additional experimental data will be done to increase the reliability of the simulation model. The final aim of this crossed work is to numerically explore a wide range of impact conditions (impact angle, projectile weight, impact velocity, initial pressure) that cannot be explore experimentally. Those whole results will define a rule of thumbs for the definition of a vulnerability analytical model for a given pressurized vessel.
The relationship between the human genome and microbiome comes into view
Goodrich, Julia K.; Davenport, Emily R.; Clark, Andrew G.; Ley, Ruth E.
2017-01-01
The microbiome’s involvement in health and disease, and the complexity of its composition and function, make it intriguing to consider human genetic factors that impact microbiome composition. Genes may influence health through their ability to promote a stable microbial community in the gut. Studies of heritability yield a consistent subset of microbes that are impacted by genes, but the use of genome-wide association studies (GWAS) to identify specific genetic variants associated with microbiota phenotypes has proven challenging. Processing microbiome datasets into traits to be modeled and reducing the burden of multiple testing are just some of the technical hurdles in microbiome GWAS. Studies to date are small by GWAS standards, making cross-study comparisons and validations particularly important in identifying authentic signals. Cross-study comparisons are hampered by differences in analytical approaches. Nevertheless, some consistent associations have emerged between populations, most notably between Bifidobacteria and the lactase non-persister genotype. These early successes open the way for the microbiome to be incorporated into studies that quantify interactions among genotype, environment, and the microbiome for predicting disease susceptibility. PMID:28934590
FIRST NEW SOLAR MODELS WITH OPAS OPACITY TABLES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Pennec, M.; Turck-Chièze, S.; Salmon, S.
Stellar seismology appears more and more as a powerful tool for a better determination of the fundamental properties of solar-type stars. However, the particular case of the Sun is still challenging. For about a decade now, the helioseismic sound-speed determination has continued to disagree with the standard solar model (SSM) prediction, questioning the reliability of this model. One of the sources of uncertainty could be in the treatment of the transport of radiation from the solar core to the surface. In this Letter, we use the new OPAS opacity tables, recently available for solar modeling, to address this issue. Wemore » discuss first the peculiarities of these tables, then we quantify their impact on the solar sound-speed and density profiles using the reduced OPAS tables taken on the grids of the OPAL ones. We use the two evolution codes, Modules for Experiments in Stellar Astrophysics and Code Liégeois d’Evolution Stellaire, that led to similar conclusions in the solar radiative zone. In comparison to commonly used OPAL opacity tables, the new solar models are computed for the most recent photospheric composition with OPAS tables and present improvements to the location of the base of the convective zone and to the description of the solar radiative zone in comparison to the helioseismic observations, even if the differences in the Rosseland mean opacity do not exceed 6%. We finally carry out a comparison to a solar model computed with the OP opacity tables.« less
Comparison of body composition between fashion models and women in general.
Park, Sunhee
2017-12-31
The present study compared the physical characteristics and body composition of professional fashion models and women in general, utilizing the skinfold test. The research sample consisted of 90 professional fashion models presently active in Korea and 100 females in the general population, all selected through convenience sampling. Measurement was done following standardized methods and procedures set by the International Society for the Advancement of Kinanthropometry. Body density (mg/ mm) and body fat (%) were measured at the biceps, triceps, subscapular, and suprailiac areas. The results showed that the biceps, triceps, subscapular, and suprailiac areas of professional fashion models were significantly thinner than those of women in general (p<.001), and that their waist size was also significantly smaller (p<.001). However, hip circumference showed no significant difference. Body mass index, waist-to-hip ratio, and body fat (%) in professional fashion models were significantly lower than those in women in general (p<.001), while the body density in professional fashion models was significantly greater (p<.001). Body density in professional fashion models is higher, due to taller stature, than in women in general. Moreover, there is an effort on the part of fashion models to lose weight in order to maintain a thin body and a low weight for occupational reasons. ©2017 The Korean Society for Exercise Nutrition
Comparison of body composition between fashion models and women in general
Park, Sunhee
2017-01-01
[Purpose] The present study compared the physical characteristics and body composition of professional fashion models and women in general, utilizing the skinfold test. [Methods] The research sample consisted of 90 professional fashion models presently active in Korea and 100 females in the general population, all selected through convenience sampling. Measurement was done following standardized methods and procedures set by the International Society for the Advancement of Kinanthropometry. Body density (mg/ mm) and body fat (%) were measured at the biceps, triceps, subscapular, and suprailiac areas. [Results] The results showed that the biceps, triceps, subscapular, and suprailiac areas of professional fashion models were significantly thinner than those of women in general (p<.001), and that their waist size was also significantly smaller (p<.001). However, hip circumference showed no significant difference. Body mass index, waist-to-hip ratio, and body fat (%) in professional fashion models were significantly lower than those in women in general (p<.001), while the body density in professional fashion models was significantly greater (p<.001). [Conclusion] Body density in professional fashion models is higher, due to taller stature, than in women in general. Moreover, there is an effort on the part of fashion models to lose weight in order to maintain a thin body and a low weight for occupational reasons. PMID:29370670
Elemental composition, isotopes, electrons and positrons in cosmic rays
NASA Technical Reports Server (NTRS)
Balasubrahmanyan, V. K.
1979-01-01
Papers presented at the 16th International Cosmic Ray Conference, Kyoto, Japan, dealing with the composition of cosmic rays are reviewed. Particular interest is given to data having bearing on nucleosynthesis sites, supernovae, gamma-process, comparison with solar system composition, multiplicity of sources, and the energy dependence of composition.
Promoting tolerance and moral engagement through peer modeling.
McAlister, A L; Ama, E; Barroso, C; Peters, R J; Kelder, S
2000-11-01
Behavioral journalism influences audiences by presenting peer modeling for cognitive processes that lead to behavior change. This technique was used in student newsletters promoting intergroup tolerance and moral engagement in a Houston high school with a diverse ethnic composition. Pretest (N = 393) and posttest (N = 363) cross-sectional comparisons of the student population in that school provided evidence of short-term (6 month) communication effects on attitudes and behavior. Tolerance and moral engagement increased among students in the school where behavioral journalism newsletters were distributed, and there was a corresponding reduction in hostile behavioral intentions and in reports of verbal aggression.
Couples' body composition and time-to-pregnancy.
Sundaram, Rajeshwari; Mumford, Sunni L; Buck Louis, Germaine M
2017-03-01
Is couples' body compositions associated with reduced fecundity as measured by a longer time-to-pregnancy (TTP)? Couples whose BMI are within obese class II (≥35 kg/m2) have a longer TTP in comparison to leaner (BMI < 25 kg/m2) couples, observed only when both partner's BMI was jointly modeled. Extremes of BMI have been associated with a longer TTP and with less successful assisted reproductive technology (ART) outcomes. To our knowledge, the association between measured adiposity in both partners of the couple and prospectively measured TTP has not been investigated despite pregnancy being a couple-dependent outcome. Prospective cohort with preconception recruitment of 501 couples trying for pregnancy and recruited from 16 counties in Michigan and Texas between 2005 and 2009. Couples were followed daily for up to a year of trying or until a hCG pregnancy. In-home standardized anthropometric assessment of couples upon enrollment included measured height and weight using calibrated stadiometers and scales, and measured waist and hip circumferences. Discrete-time Cox regression was used to estimate fecundability odds ratios (FORs) and 95% CIs, controlling for potential confounders including age, number of days of vigorous physical activity, serum cotinine concentration, race, education, free cholesterol levels for each partner in partner-specific models and for both partners in couple-based models as well as average acts of intercourse per menstrual cycle and menstrual cycle regularity. Neither male nor female partner's BMI was associated with TTP when modeled individually. However, obese class II (BMIs ≥ 35.0 kg/m2) couples experienced a reduction in fecundability in both unadjusted (FOR = 0.45; 95% CI: 0.23, 0.89) and adjusted analyses (aFOR = 0.41; 95% CI: 0.17, 0.98) resulting in a longer TTP in comparison to couples with normal BMI (<25 kg/m2). Female partners' waist circumference ≥88.6 cm was associated with a significant reduction in fecundability in the unadjusted model (FOR = 0.64; 95% CI: 0.48, 0.86) but not in the adjusted model (aFOR = 0.77; 95% CI: 0.55, 1.08) in comparison to females with a smaller (<80 cm) circumference. BMI and waist circumference are proxy measures of body composition and residual confounding cannot be eliminated. Findings may not be generalizable to clinical populations. This is the first cohort study known to us with preconception enrollment of couples who underwent standardized anthropometric assessment and for whom TTP was prospectively measured. The findings underscore the importance of considering both partners' body composition for fecundity outcomes and preconception guidance. Supported by the Intramural Research Program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development (Contracts #N01-HD-3-3355, N01-HD-3-3356 and N01-HD-3-3358). The authors have no competing interests. N/A. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Sparse intervertebral fence composition for 3D cervical vertebra segmentation
NASA Astrophysics Data System (ADS)
Liu, Xinxin; Yang, Jian; Song, Shuang; Cong, Weijian; Jiao, Peifeng; Song, Hong; Ai, Danni; Jiang, Yurong; Wang, Yongtian
2018-06-01
Statistical shape models are capable of extracting shape prior information, and are usually utilized to assist the task of segmentation of medical images. However, such models require large training datasets in the case of multi-object structures, and it also is difficult to achieve satisfactory results for complex shapes. This study proposed a novel statistical model for cervical vertebra segmentation, called sparse intervertebral fence composition (SiFC), which can reconstruct the boundary between adjacent vertebrae by modeling intervertebral fences. The complex shape of the cervical spine is replaced by a simple intervertebral fence, which considerably reduces the difficulty of cervical segmentation. The final segmentation results are obtained by using a 3D active contour deformation model without shape constraint, which substantially enhances the recognition capability of the proposed method for objects with complex shapes. The proposed segmentation framework is tested on a dataset with CT images from 20 patients. A quantitative comparison against corresponding reference vertebral segmentation yields an overall mean absolute surface distance of 0.70 mm and a dice similarity index of 95.47% for cervical vertebral segmentation. The experimental results show that the SiFC method achieves competitive cervical vertebral segmentation performances, and completely eliminates inter-process overlap.
Standard methods for open hole tension testing of textile composites
NASA Technical Reports Server (NTRS)
Portanova, M. A.; Masters, J. E.
1995-01-01
Sizing effects have been investigated by comparing the open hole failure strengths of each of the four different braided architectures as a function of specimen thickness, hole diameter, and the ratio of specimen width to hole diameter. The data used to make these comparisons was primarily generated by Boeing. Direct comparisons of Boeing's results were made with experiments conducted at West Virginia University whenever possible. Indirect comparisons were made with test results for other 2-D braids and 3-D weaves tested by Boeing and Lockheed. In general, failure strength was found to decrease with increasing plate thickness, increase with decreasing hole size, and decreasing with decreasing width to diameter ratio. The interpretation of the sensitive to each of these geometrical parameters was complicated by scatter in the test data. For open hole tension testing of textile composites, the use of standard testing practices employed by industry, such as ASTM D5766 - Standard Test Method for Open Hole Tensile Strength of Polymer Matrix Composite Laminates should provide adequate results for material comparisons studies.
Lithospheric models of the North American continent
NASA Astrophysics Data System (ADS)
Tesauro, Magdala; Kaban, Mikhail; Mooney, Walter; Cloetingh, Sierd
2015-04-01
We constructed NACr14, a 3D model of the North American (NA) crust, based on the most recent seismic data from the USGS database. In comparison with the global crustal model CRUST 1.0, NACr14 is more heterogeneous, showing a larger spatial variability of the thickness and average velocities of the crustal layers. Velocities of the lower crust vary in a larger range than those of the other layers, while the thickness of all the three layers is on average between 11 and 13 km. The largest velocities of the crystalline crust (>6.6 km/s) reflect the presence of a 7.x layer (>7.0 km/s) in the lowermost part of the crust. Using NACr2014, a regional (NA07) and a global (SL201sv) tomography model, and gravity data, we apply an iterative technique, which jointly interprets seismic tomography and gravity data, to estimate temperature and compositional variations in the NA upper mantle. The results obtained demonstrate that temperature of the cratonic mantle is up to 150°C higher than when using a uniform compositional model. The differences between the two tomography models influence the results more strongly than possible changes of the depth distribution of compositional variations. Strong negative compositional density anomalies, corresponding to Mg # >92, characterize the upper mantle of the northwestern part of the Superior craton and the central part of the Slave and Churchill craton. The Proterozoic upper mantle of the western and more deformed part of the NA cratons, appears weakly depleted (Mg# ~91) when NA07 is used, in agreement with the results based on the interpretation of xenolith data. When we use SL2013sv, the same areas are locally characterized by high density bodies, which might be interpreted as the effect due to fragments of subducted slabs, as those close to the suture of the Appalachians and Grenville province. We used the two thermal models to estimate the integrated strength and the effective elastic thickness (Te) of the lithosphere. In the peripheral parts of the cratons, as the Proterozoic Canadian Platform and Grenville, the integrated strength for model NA07 is ten times larger than in model SL2013sv, due to a model-dependent temperature difference of >200˚C in the uppermost mantle. In both models, Proterozoic regions reactivated by Meso-Cenozoic tectonics (e.g., Rocky Mountains and the Mississippi Embayment) show a weak lithosphere due to the absence of the mechanically strong part of the mantle lithospheric layer. Intraplate earthquakes are distributed along the edges of the cratons, characterized by a weak lithosphere or pronounced variations in integrated lithospheric strength and Te. In addition, the sum of the seismic moments shows that most of the energy is released by the weak lithosphere. These results suggest that the edges of the cratons are more prone to accumulation of tectonic stress and subsequent release by earthquakes, in comparison with the stable cratonic regions which resist deformation.
Spacecraft measurements of the elemental and isotopic composition of solar energetic particles
NASA Technical Reports Server (NTRS)
Mewaldt, R. A.
1980-01-01
Within the past few years, instruments flown on satellites and space probes have made significant progress in measuring the elemental and isotopic composition of energetic heavy nuclei accelerated in solar flares. These new observations are discussed, focusing on: (1) the energy dependence of the elemental composition at energies not greater than 1 MeV/nucleon; (2) flare to flare variations in the composition; and (3) comparisons of the average solar particle abundances (Z not less than 2 and not greater than 28) with other measures of the solar composition, including photospheric, coronal, and solar wind observations. These comparisons have led to the suggestion that solar flares sample the composition of the corona. Isotopic measurements of heavy solar flare nuclei have recently added a new dimension to these studies. In particular, the isotopic composition of solar flare neon has been found to be significantly different from that measured in the solar wind, but consistent with the meteoritic component neon-A.
Characterization of an improved 1-3 piezoelectric composite by simulation and experiment.
Zhong, Chao; Wang, Likun; Qin, Lei; Zhang, Yanjun
2017-06-16
To increase electromechanical coupling factor of 1-3 piezoelectric composite and reduce its bending deformation under external stress, an improved 1-3 piezoelectric composite is developed. In the improved structure, both epoxy resin and silicone rubber are used as polymer material. The simulation model of the improved 1-3 piezoelectric composite was established using the finite element software ANSYS. The relationship of the performance of the improved composite to the volume percentage of silicone rubber was determined by harmonic response analysis and the bending deformation under external stress was simulated by static analysis. The improved composite samples were prepared by cutting and filling methods, and the performance was tested. The feasibility of the improved structure was verified by finite element simulation and experiment. The electromechanical coupling factor of the improved composite can reach 0.67 and meanwhile the characteristic impedance can decline to 13 MRayl. The electromechanical coupling factor of the improved composite is higher than that of the composite with only epoxy resin as the polymer and the improved composite can reduce bending deformation. Comparison of simulation and experiment, the results of the experiment are in general agreement with those from the simulation. However, most experimental values were higher than the simulation results, and the abnormality of the test results was also more obvious than that of the simulation. These findings may be attributed to slight difference in the material parameters of simulation and experiment.
Comparing species interaction networks along environmental gradients.
Pellissier, Loïc; Albouy, Camille; Bascompte, Jordi; Farwig, Nina; Graham, Catherine; Loreau, Michel; Maglianesi, Maria Alejandra; Melián, Carlos J; Pitteloud, Camille; Roslin, Tomas; Rohr, Rudolf; Saavedra, Serguei; Thuiller, Wilfried; Woodward, Guy; Zimmermann, Niklaus E; Gravel, Dominique
2018-05-01
Knowledge of species composition and their interactions, in the form of interaction networks, is required to understand processes shaping their distribution over time and space. As such, comparing ecological networks along environmental gradients represents a promising new research avenue to understand the organization of life. Variation in the position and intensity of links within networks along environmental gradients may be driven by turnover in species composition, by variation in species abundances and by abiotic influences on species interactions. While investigating changes in species composition has a long tradition, so far only a limited number of studies have examined changes in species interactions between networks, often with differing approaches. Here, we review studies investigating variation in network structures along environmental gradients, highlighting how methodological decisions about standardization can influence their conclusions. Due to their complexity, variation among ecological networks is frequently studied using properties that summarize the distribution or topology of interactions such as number of links, connectance, or modularity. These properties can either be compared directly or using a procedure of standardization. While measures of network structure can be directly related to changes along environmental gradients, standardization is frequently used to facilitate interpretation of variation in network properties by controlling for some co-variables, or via null models. Null models allow comparing the deviation of empirical networks from random expectations and are expected to provide a more mechanistic understanding of the factors shaping ecological networks when they are coupled with functional traits. As an illustration, we compare approaches to quantify the role of trait matching in driving the structure of plant-hummingbird mutualistic networks, i.e. a direct comparison, standardized by null models and hypothesis-based metaweb. Overall, our analysis warns against a comparison of studies that rely on distinct forms of standardization, as they are likely to highlight different signals. Fostering a better understanding of the analytical tools available and the signal they detect will help produce deeper insights into how and why ecological networks vary along environmental gradients. © 2017 Cambridge Philosophical Society.
Mechanical testing and modelling of carbon-carbon composites for aircraft disc brakes
NASA Astrophysics Data System (ADS)
Bradley, Luke R.
The objective of this study is to improve the understanding of the stress distributions and failure mechanisms experienced by carbon-carbon composite aircraft brake discs using finite element (FE) analyses. The project has been carried out in association with Dunlop Aerospace as an EPSRC CASE studentship. It therefore focuses on the carbon-carbon composite brake disc material produced by Dunlop Aerospace, although it is envisaged that the approach will have broader applications for modelling and mechanical testing of carbon-carbon composites in general. The disc brake material is a laminated carbon-carbon composite comprised of poly(acrylonitrile) (PAN) derived carbon fibres in a chemical vapour infiltration (CVI) deposited matrix, in which the reinforcement is present in both continuous fibre and chopped fibre forms. To pave the way for the finite element analysis, a comprehensive study of the mechanical properties of the carbon-carbon composite material was carried out. This focused largely, but not entirely, on model composite materials formulated using structural elements of the disc brake material. The strengths and moduli of these materials were measured in tension, compression and shear in several orientations. It was found that the stress-strain behaviour of the materials were linear in directions where there was some continuous fibre reinforcement, but non-linear when this was not the case. In all orientations, some degree of non-linearity was observed in the shear stress-strain response of the materials. However, this non-linearity was generally not large enough to pose a problem for the estimation of elastic moduli. Evidence was found for negative Poisson's ratio behaviour in some orientations of the material in tension. Additionally, the through-thickness properties of the composite, including interlaminar shear strength, were shown to be positively related to bulk density. The in-plane properties were mostly unrelated to bulk density over the range of densities of the tested specimens.Two types of FE model were developed using a commercially available program. The first type was designed to analyse the model composite materials for comparison with mechanical test data for the purpose of validation of the FE model. Elastic moduli predicted by this type of FE model showed good agreement with the experimentally measured elastic moduli of the model composite materials. This result suggested that the use of layered FE models, which rely upon an isostrain assumption between the layers, can be useful in predicting the elastic properties of different lay-ups of the disc brake material.The second type of FE model analysed disc brake segments, using the experimentally measured bulk mechanical properties of the disc brake material. This FE model approximated the material as a continuum with in-plane isotropy but with different properties in the through-thickness direction. In order to validate this modelling approach, the results of the FE analysis were compared with mechanical tests on disc brake segments, which were loaded by their drive tenons in a manner intended to simulate in-service loading. The FE model showed good agreement with in-plane strains measured on the disc tenon face close to the swept area of the disc, but predicted significantly higher strains than those experimentally measured on the tenon fillet curve. This discrepancy was attributed to the existence of a steep strain gradient on the fillet curve.
A finite element model of myocardial infarction using a composite material approach.
Haddad, Seyyed M H; Samani, Abbas
2018-01-01
Computational models are effective tools to study cardiac mechanics under normal and pathological conditions. They can be used to gain insight into the physiology of the heart under these conditions while they are adaptable to computer assisted patient-specific clinical diagnosis and therapeutic procedures. Realistic cardiac mechanics models incorporate tissue active/passive response in conjunction with hyperelasticity and anisotropy. Conventional formulation of such models leads to mathematically-complex problems usually solved by custom-developed non-linear finite element (FE) codes. With a few exceptions, such codes are not available to the research community. This article describes a computational cardiac mechanics model developed such that it can be implemented using off-the-shelf FE solvers while tissue pathologies can be introduced in the model in a straight-forward manner. The model takes into account myocardial hyperelasticity, anisotropy, and active contraction forces. It follows a composite tissue modeling approach where the cardiac tissue is decomposed into two major parts: background and myofibers. The latter is modelled as rebars under initial stresses mimicking the contraction forces. The model was applied in silico to study the mechanics of infarcted left ventricle (LV) of a canine. End-systolic strain components, ejection fraction, and stress distribution attained using this LV model were compared quantitatively and qualitatively to corresponding data obtained from measurements as well as to other corresponding LV mechanics models. This comparison showed very good agreement.
NASA Astrophysics Data System (ADS)
Bouillot, Baptiste; Spyriouni, Theodora; Teychené, Sébastien; Biscans, Béatrice
2017-04-01
The solubility of seven pharmaceutical compounds (paracetamol, benzoic acid, 4-aminobenzoic acid, salicylic acid, ibuprofen, naproxen and temazepam) in pure and mixed solvents as a function of temperature is calculated with SciPharma, a semi-empirical approach based on PC-SAFT, and the NRTL-SAC model. To conduct a fair comparison between the approaches, the parameters of the compounds were regressed against the same solubility data, chosen to account for hydrophilic, polar and hydrophobic interactions. Only these solubility data were used by both models for predicting solubility in other pure and mixed solvents for which experimental data were available for comparison. A total of 386 pure solvent data points were used for the comparison comprising one or more temperatures per solvent. SciPharma is found to be more accurate than NRTL-SAC on the pure solvent data used especially in the description of the temperature dependence. This is due to the appropriate parameterization of the pharmaceuticals and the temperature-dependent description of the activity coefficient in PC-SAFT. The solubility in mixed solvents is predicted satisfactorily with SciPharma. NRTL-SAC tends to overestimate the solubility in aqueous solutions of alcohols or shows invariable solubility with composition in other cases.
NASA Technical Reports Server (NTRS)
Bowles, Kenneth J.; McCorkle, Linda; Ingrahm, Linda
1998-01-01
Extensive effort is currently being expended to demonstrate the feasibility of using high-performance, polymer-matrix composites as engine structural materials over the expected operating lifetime of the aircraft, which can extend from 18,000 to 30,000 hr. The goal is to develop light-weight, high-strength, and high-modulus materials for use in higher temperature sections of advanced 21 st century aircraft propulsion systems. To accomplish this goal, it is necessary to pursue the development of thermal and mechanical durability models for graphite-fiber-reinforced, polymer-matrix composites. Numerous investigations have been reported regarding the thermo-oxidative stability (TOS) of the polyimide PMR-15 (1-5). A significant amount of this work has been directed at edge and geometry effects, reinforcement fiber influences, and empirical modeling of high-temperature weight loss behavior. It is yet to be determined if the information obtained from the PMR-15 composite tests is applicable to other polyimide-matrix composites. The condensation-curing polymer Avimid N is another advanced composite material often considered for structural applications at high temperatures. Avimid N has better thermo-oxidative stability than PMR-15 (6), but the latter is more easily processed. The most comprehensive study of the thermo-oxidative stability of Avimid N neat resin and composites at 371 (infinity)C is found in Salin and Seferis (7). The purposes of the work described herein were to compare the thermal aging behavior of these two matrix polymers and to determine the reasons for and the consequences of the difference in thermal durability. These results might be of some use in improving future polymer development through the incorporation of the desirable characteristics of both polyimides.
Georgiades, Anastasia; Davis, Vicki G; Atkins, Alexandra S; Khan, Anzalee; Walker, Trina W; Loebel, Antony; Haig, George; Hilt, Dana C; Dunayevich, Eduardo; Umbricht, Daniel; Sand, Michael; Keefe, Richard S E
2017-12-01
The MATRICS Consensus Cognitive Battery (MCCB) was developed to assess cognitive treatment effects in schizophrenia clinical trials, and is considered the FDA gold standard outcome measure for that purpose. The aim of the present study was to establish pre-treatment psychometric characteristics of the MCCB in a large pooled sample. The dataset included 2616 stable schizophrenia patients enrolled in 15 different clinical trials between 2007 and 2016 within the United States (94%) and Canada (6%). The MCCB was administered twice prior to the initiation of treatment in 1908 patients. Test-retest reliability and practice effects of the cognitive composite score, the neurocognitive composite score, which excludes the domain Social Cognition, and the subtests/domains were examined using Intra-Class Correlations (ICC) and Cohen's d. Simulated regression models explored which domains explained the greatest portion of variance in composite scores. Test-retest reliability was high (ICC=0.88) for both composite scores. Practice effects were small for the cognitive (d=0.15) and neurocognitive (d=0.17) composites. Simulated bootstrap regression analyses revealed that 3 of the 7 domains explained 86% of the variance for both composite scores. The domains that entered most frequently in the top 3 positions of the regression models were Speed of Processing, Working Memory, and Visual Learning. Findings provide definitive psychometric characteristics and a benchmark comparison for clinical trials using the MCCB. The test-retest reliability of the MCCB composite scores is considered excellent and the learning effects are small, fulfilling two of the key criteria for outcome measures in cognition clinical trials. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kroeger, D. M.; Koch, C. C.; Scarbrough, J. O.; McKamey, C. G.
1984-02-01
Measurements of the low-temperature specific heat Cp of liquid-quenched Zr-Ni glasses for a large number of compositions in the range from 55 to 74 at.% Zr revealed an unusual composition dependence of the density of states at the Fermi level, N(EF). Furthermore, for some compositions the variation of Cp near the superconducting transition temperature Tc indicated the presence of two superconducting phases, i.e., two superconducting transitions were detected. Comparison of the individual Tc's in phase-separated samples to the composition dependence of Tc for all of the samples suggests that amorphous phases with compositions near 60 and 66.7 at.% Zr occur. We discuss these results in terms of an "association model" for liquid alloys (due to Sommer), in which associations of unlike atoms with definite stoichiometries are assumed to exist in equilibrium with unassociated atoms. We conclude that in the composition range studied, associate clusters with the compositions Zr3Ni2 and Zr2Ni occur. In only a few cases are the clusters sufficiently large, compared with the superconducting coherence length, for separate superconducting transitions to be observed. The variation of N(EF) with composition is discussed, as well as the effects of this chemical short-range ordering on the crystallization behavior and glass-forming tendency.
A comparison of the wear resistance and hardness of indirect composite resins.
Mandikos, M N; McGivney, G P; Davis, E; Bush, P J; Carter, J M
2001-04-01
Various new, second-generation indirect composites have been developed with claimed advantages over existing tooth-colored restorative materials. To date, little independent research has been published on these materials, and the properties specified in the advertising materials are largely derived from in-house or contracted testing. Four second-generation indirect composites (Artglass, belleGlass, Sculpture, and Targis) were tested for wear resistance and hardness against 2 control materials with well-documented clinical application. Human enamel was also tested for comparison. Twelve specimens of each material were fabricated according to the manufacturers' directions and subjected to accelerated wear in a 3-body abrasion, toothbrushing apparatus. Vickers hardness was measured for each of the tested materials, and energy dispersive x-ray (EDX) spectroscopy was performed to determine the elemental composition of the composite fillers. The statistical tests used for wear and hardness were the Kruskal-Wallis 1-way ANOVA test with Mann-Whitney tests and 1-way ANOVA with multiple comparisons (Tukey HSD). The Pearson correlation coefficient was used to determine the existence of a relationship between the hardness of the materials and the degree to which they had worn. The level of statistical significance chosen was alpha=.05. The control material Concept was superior to the other composites in wear resistance and hardness and had the lowest surface roughness. Significant relationships were observed between depth of wear and hardness and between depth of wear and average surface roughness. Enamel specimens were harder and more wear resistant than any of the composites. EDX spectroscopy revealed that the elemental composition of the fillers of the 4 new composites was almost identical, as was the composition of the 2 control composites. The differences in wear, hardness, and average surface roughness may have been due to differences in the chemistry or method of polymerization of the composites. Further research in this area should be encouraged. It was also apparent that the filler present in the tested composites did not exactly fit the manufacturers' descriptions.
Analysis of a new composite material for watercraft manufacturing
NASA Astrophysics Data System (ADS)
Wahrhaftig, Alexandre; Ribeiro, Henrique; Nascimento, Ademar; Filho, Milton
2016-09-01
In this paper, we investigate the properties of an alternative material for use in marine engineering, namely a rigid and light sandwich-structured composite made of expanded polystyrene and fiberglass. Not only does this material have an improved section modulus, but it is also inexpensive, light, easy to manipulate, and commercially available in various sizes. Using a computer program based on the finite element method, we calculated the hogging and sagging stresses and strains acting on a prismatic boat model composed of this material, and determined the minimum sizes and maximum permissible stresses to avoid deformation. Finally, we calculated the structural weight of the resulting vessel for comparison with another structure of comparable dimensions constructed from the commonly used core material Divinycell.
NASA Technical Reports Server (NTRS)
Cheung, T.; Mackeown, P. K.
1985-01-01
Estimation of the relative intensities of protons and heavy nuclei in primary cosmic rays in the energy region 10 to the 15th power approx. 10 to the 17th power eV, was done by a systematic comparison between all available observed data on various parameters of extensive air showers (EAS) and the results of simulation. The interaction model used is an extrapolation of scaling violation indicated by recent pp collider results. A composition consisting of various percentages of Fe in an otherwise pure proton beam was assumed. Greatest overall consistency between the data and the simulation is found when the Fe fraction is in the region of 25%.
Comparison of various tool wear prediction methods during end milling of metal matrix composite
NASA Astrophysics Data System (ADS)
Wiciak, Martyna; Twardowski, Paweł; Wojciechowski, Szymon
2018-02-01
In this paper, the problem of tool wear prediction during milling of hard-to-cut metal matrix composite Duralcan™ was presented. The conducted research involved the measurements of acceleration of vibrations during milling with constant cutting conditions, and evaluation of the flank wear. Subsequently, the analysis of vibrations in time and frequency domain, as well as the correlation of the obtained measures with the tool wear values were conducted. The validation of tool wear diagnosis in relation to selected diagnostic measures was carried out with the use of one variable and two variables regression models, as well as with the application of artificial neural networks (ANN). The comparative analysis of the obtained results enable.
Modeling for stress-strain curve of a porous NiTi under compressive loading
NASA Astrophysics Data System (ADS)
Zhao, Ying; Taya, Minoru
2005-05-01
Two models for predicting the stress-strain curve of porous NiTi under compressive loading are presented in this paper. Porous NiTi shape memory alloy is investigated as a composite composed of solid NiTi as matrix and pores as inclusions. Eshelby"s equivalent inclusion method and Mori-Tanaka"s mean-field theory are employed in both models. In the first model, the geometry of the pores is assumed as sphere. The composite is with close-cells. While in the second model, two geometries of the pores, sphere and ellipsoid, are investigated. The pores are interconnected to each other forming an open-cell microstructure. The two adjacent pores connected along equator ring are investigated as a unit. Two pores interact with each other as they are connected. The average eigenstrain of each unit is obtained by taking the average of each pore"s eigenstrain. The stress-strain curves of porous shape memory alloy with spherical pores and ellipsoidal pores are compared, it is found that the shape of the pores has a nonignorable influence on the mechanical property of the porous NiTi. Comparison of the stress-strain curves of the two models shows that introducing of the average eigenstrains in the second model makes the predictions more agreeable to the experimental results.
NASA Astrophysics Data System (ADS)
Harris, David Lee
The objective of the research is to characterize the behavior of composite/composite joints with paste adhesive using both experimental testing and analytical modeling. In comparison with the conventional tape adhesive, joining composites using paste adhesive provides several advantages. The carbon fiber laminate material systems employed in this study included IM7 carbon fibers and 977-3 epoxy matrix assembled in prepreg tape, and AS4 carbon fibers and 977-3 epoxy matrix as a five-harness satin weave. The adhesive employed was EA 9394 epoxy. All laminates and test specimens were fabricated and inspected by Boeing using their standard propriety procedures. Three types of test specimens were used in the program. They were bonded double-lap shear (DLS), bonded double cantilever beam (DCB) and bonded interlaminar tension (ILT) specimens. A group of specimens were conditioned at elevated temperature and humidity in an environmental chamber at Boeing's facility and their moisture absorption recorded with time. Specimens were tested at room temperature dry and elevated temperatures. DCB and DLS specimens were tested in fatigue as well as static conditions. Two-dimensional finite element models of the three configurations were developed for determining stresses and strains using the ABAQUS finite element package code. Due to symmetry, only the one-half of the specimen needed to be considered thus reducing computational time. The effect of the test fixture is not taken into account instead equivalent distributed stresses are applied directly on the composite laminates. For each of the specimen, the distribution of Mises stress and the first strain invariant J1 are obtained to identify potential failure locations within a specimen.
Simulating the Impact Response of Composite Airframe Components
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Littell, Justin D.; Fasanella, Edwin L.
2014-01-01
In 2010, NASA Langley Research Center obtained residual hardware from the US Army's Survivable Affordable Repairable Airframe Program (SARAP). The hardware consisted of a composite fuselage section that was representative of the center section of a Black Hawk helicopter. The section was fabricated by Sikorsky Aircraft Corporation and designated the Test Validation Article (TVA). The TVA was subjected to a vertical drop test in 2008 to evaluate a tilting roof concept to limit the intrusion of overhead mass items, such as the rotor transmission, into the fuselage cabin. As a result of the 2008 test, damage to the hardware was limited primarily to the roof. Consequently, when the post-test article was obtained in 2010, the roof area was removed and the remaining structure was cut into six different types of test specimens including: (1) tension and compression coupons for material property characterization, (2) I-beam sections, (3) T-sections, (4) cruciform sections, (5) a large subfloor section, and (6) a forward framed fuselage section. In 2011, NASA and Sikorsky entered into a cooperative research agreement to study the impact responses of composite airframe structures and to evaluate the capabilities of the explicit transient dynamic finite element code, LS-DYNA®, to simulate these responses including damage initiation and progressive failure. Finite element models of the composite specimens were developed and impact simulations were performed. The properties of the composite material were represented using both a progressive in-plane damage model (Mat 54) and a continuum damage mechanics model (Mat 58) in LS-DYNA. This paper provides test-analysis comparisons of time history responses and the location and type of damage for representative I-beam, T-section, and cruciform section components.
Tripathi, Garima; Basu, Bikramjit
2014-07-01
The present work reports the biocompatibility property of injection molded HDPE-HA-Al2O3 hybrid composites. In vitro cytocompatibility results reveal that osteogenic cell viability and bone mineralization are favorably supported in a statistically significant manner on HDPE-20% HA-20% Al2O3 composite, in comparison to HDPE-40 wt.% HA or HDPE-40 wt.% Al2O3 The difference in cytocompatibility property is explained in terms of difference in substrate wettability/surface energy and importantly, both the cell proliferation at 7 days or bone mineralization at 21 days on HDPE-20% HA-20% Al2O3 composite are either comparable or better than sintered HA. The progressive healing of cylindrical femoral bone defects in rabbit animal model was assessed by implantation experiments over 1, 4 and 12 weeks. Based on the histological analysis as well as histomorphometrical evaluation, a better efficacy of HDPE-20% HA-20% Al2O3 over high-density polyethylene (HDPE) for bone regeneration and neobone formation at host bone-implant interface was established. Taken together, the present study unequivocally establishes that despite the presence of 20% Al2O3, HDPE-based hybrid composites are as biocompatible as HA in vitro or better than HDPE in vivo. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
The Importance of Protons in Reactive Transport Modeling
NASA Astrophysics Data System (ADS)
McNeece, C. J.; Hesse, M. A.
2014-12-01
The importance of pH in aqueous chemistry is evident; yet, its role in reactive transport is complex. Consider a column flow experiment through silica glass beads. Take the column to be saturated and flowing with solution of a distinct pH. An instantaneous change in the influent solution pH can yield a breakthrough curve with both a rarefaction and shock component (composite wave). This behavior is unique among aqueous ions in transport and is more complex than intuition would tell. Analysis of the hyperbolic limit of this physical system can explain these first order transport phenomenon. This analysis shows that transport behavior is heavily dependent on the shape of the adsorption isotherm. Hence it is clear that accurate surface chemistry models are important in reactive transport. The proton adsorption isotherm has nonconstant concavity due to the proton's ability to partition into hydroxide. An eigenvalue analysis shows that an inflection point in the adsorption isotherm allows the development of composite waves. We use electrostatic surface complexation models to calculate realistic proton adsorption isotherms. Surface characteristics such as specific surface area, and surface site density were determined experimentally. We validate the model by comparison against silica glass bead flow through experiments. When coupled to surface complexation models, the transport equation captures the timing and behavior of breakthrough curves markedly better than with commonly used Langmuir assumptions. Furthermore, we use the adsorption isotherm to predict, a priori, the transport behavior of protons across pH composition space. Expansion of the model to multicomponent systems shows that proton adsorption can force composite waves to develop in the breakthrough curves of ions that would not otherwise exhibit such behavior. Given the abundance of reactive surfaces in nature and the nonlinearity of chemical systems, we conclude that building a greater understanding of proton adsorption is of utmost importance to reactive transport modeling.
Jiang, Jingyi; Comar, Alexis; Burger, Philippe; Bancal, Pierre; Weiss, Marie; Baret, Frédéric
2018-01-01
Leaf biochemical composition corresponds to traits related to the plant state and its functioning. This study puts the emphasis on the main leaf absorbers: chlorophyll a and b ([Formula: see text]), carotenoids ([Formula: see text]), water ([Formula: see text]) and dry mater ([Formula: see text]) contents. Two main approaches were used to estimate [[Formula: see text] [Formula: see text], [Formula: see text], [Formula: see text
NASA Technical Reports Server (NTRS)
Rodriquez, J. M.; Yoshida, Y.; Duncan, B. N.; Bucsela, E. J.; Gleason, J. F.; Allen, D.; Pickering, K. E.
2007-01-01
We present simulations of the tropospheric composition for the years 2004 and 2005, carried out by the GMI Combined Stratosphere-Troposphere (Combo) model, at a resolution of 2degx2.5deg. The model includes a new parameterization of lightning sources of NO(x) which is coupled to the cloud mass fluxes in the adopted meteorological fields. These simulations use two different sets of input meteorological fields: a)late-look assimilated fields from the Global Modeling and Assimilation Office (GMAO), GEOS-4 system and b) 12-hour forecast fields initialized with the assimilated data. Comparison of the forecast to the assimilated fields indicates that the forecast fields exhibit less vigorous convection, and yield tropical precipitation fields in better agreement with observations. Since these simulations include a complete representation of the stratosphere, they provide realistic stratosphere-tropospheric fluxes of O3 and NO(y). Furthermore, the stratospheric contribution to total columns of different troposheric species can be subtracted in a consistent fashion, and the lightning production of NO(y) will depend on the adopted meteorological field. We concentrate here on the simulated tropospheric columns of NO2, and compare them to observations by the OM1 instrument for the years 2004 and 2005. The comparison is used to address these questions: a) is there a significant difference in the agreement/disagreement between simulations for these two different meteorological fields, and if so, what causes these differences?; b) how do the simulations compare to OMI observations, and does this comparison indicate an improvement in simulations with the forecast fields? c) what are the implications of these simulations for our understanding of the NO2 emissions over continental polluted regions?
Long Duration Exposure Facility (LDEF) experiment M0003 meteoroid and debris survey
NASA Technical Reports Server (NTRS)
Meshishnek, M. J.; Gyetvay, S. R.; Paschen, K. W.; Coggi, J. M.
1993-01-01
A survey of the meteoroid and space debris impacts on LDEF experiment M0003 was performed. The purpose of this survey was to document significant impact phenomenology and to obtain impact crater data for comparison to current space debris and micrometeoroid models. The survey consists of the following: photomicrographs of significant impacts in a variety of material types; accurate measurements of impact crater coordinates and dimensions for selected experiment surfaces; and databasing of the crater data for reduction, manipulation, and comparison to models. Large area surfaces that were studied include the experiment power and data system (EPDS) sunshields, environment exposure control canister (EECC) sunshields, and the M0003 signal conditioning unit (SCU) covers. Crater diameters down to 25 microns were measured and cataloged. Both leading (D8) and trailing (D4) edge surfaces were studied and compared. The EPDS sunshields are aluminum panels painted with Chemglaze A-276 white thermal control paint, the EECC sunshields are chromic acid-anodized aluminum, and the SCU covers are aluminum painted with S13GLO white thermal control paint. Typical materials that have documented impacts are metals, glasses and ceramics, composites, polymers, electronic materials, and paints. The results of this survey demonstrate the different response of materials to hypervelocity impacts. Comparison of the survey data to curves derived from the Kessler debris model and the Cour-Palais micrometeoroid model indicates that these models overpredict small impacts (less than 100 micron) and may underpredict large impacts (greater than 1000 micron) while having fair to good agreement for the intermediate impacts. Comparison of the impact distributions among the various surfaces indicates significant variations, which may be a function of material response effects, or in some cases surface roughness. Representative photographs and summary graphs of the impact data are presented.
Gao, Zan; Xiang, Ping
2014-07-01
Exergaming has been considered a fun solution to promoting a physically active lifestyle. This study examined the impact of an exergaming-based program on urban children's physical activity participation, body composition and perceptions of the program. A sample of 185 children's physical activity was measured in August 2009 (pretest), and percent body fat was used as index of body composition. Fourth graders were assigned to intervention group engaging in 30 minutes exergaming-based activities 3 times per week, while third and fifth graders were in comparison group. Measurements were repeated 9 months later (posttest). Interviews were conducted among 12 intervention children. ANCOVA with repeated measures revealed a significant main effect for intervention, F(1, 179) = 10.69, P < .01. Specifically, intervention children had significantly greater increased physical activity levels than comparison children. Logistic regression for body composition indicated intervention children did not differ significantly in percent body fat change from comparison children, Chi square = 5.42, P = .14. Children interviewed reported positive attitudes toward the intervention. The implementation of exergaming-based program could have a significantly positive effect on children's physical activity participation and attitudes. Meanwhile, long-term effect of the program on children's body composition deserves further investigation.
Huang, Xuelian; Deng, Meng; Liu, Mingdong; Cheng, Lei; Exterkate, R.A.M.; Li, Jiyao; Zhou, Xuedong; Ten Cate, Jacob. M.
2017-01-01
Objectives: Galla chinensis water extract (GCE) has been demonstrated to inhibit dental caries by favorably shifting the demineralization/remineralization balance of enamel and inhibiting the biomass and acid formation of dental biofilm. The present study focused on the comparison of composition and anticaries effect of Galla chinensis extracts with different isolation methods, aiming to improve the efficacy of caries prevention. Methods: The composition of water extract (GCE), ethanol extract (eGCE) and commercial tannic acid was compared. High performance liquid chromatography coupled to electrospray ionization-time of flight-mass spectrometry (HPLC-ESI-TOF-MS) analysis was used to analyze the main ingredients. In vitro pH-cycling regime and polymicrobial biofilms model were used to assess the ability of different Galla chinensis extracts to inhibit enamel demineralization, acid formation and biofilm formation. Results: All the GCE, eGCE and tannic acid contained a high level of total phenolics. HPLC-ESI-TOF-MS analysis showed that the main ingredients of GCE were gallic acid (GA), while eGCE mainly contained 4-7 galloylglucopyranoses (GGs) and tannic acid mainly contained 5-10 GGs. Furthermore, eGCE and tannic acid showed a better effect on inhibiting enamel demineralization, acid formation and biofilm formation compared to GCE. Conclusions: Galla chinensis extracts with higher tannin content were suggested to have higher potential to prevent dental caries. PMID:28979574
ABSTRACT: Few studies have addressed the efficacy of composite sampling for measurement of indicator bacteria by QPCR. In this study, composite results were compared to single sample results for culture- and QPCR-based water quality monitoring. Composite results for both methods ...
A composition joint PDF method for the modeling of spray flames
NASA Technical Reports Server (NTRS)
Raju, M. S.
1995-01-01
This viewgraph presentation discusses an extension of the probability density function (PDF) method to the modeling of spray flames to evaluate the limitations and capabilities of this method in the modeling of gas-turbine combustor flows. The comparisons show that the general features of the flowfield are correctly predicted by the present solution procedure. The present solution appears to provide a better representation of the temperature field, particularly, in the reverse-velocity zone. The overpredictions in the centerline velocity could be attributed to the following reasons: (1) the use of k-epsilon turbulence model is known to be less precise in highly swirling flows and (2) the swirl number used here is reported to be estimated rather than measured.
The Bean model and ac losses in Bi{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}/Ag tapes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suenaga, M.; Chiba, T.; Wiesmann, H.J.
The Bean model is almost solely used to interpret ac losses in the powder-in-tube processed composite conductor, Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}/Ag. In order to examine the limits of the applicability of the model, a detailed comparison was made between the values of critical current density J{sub c} for Bi(2223)/Ag tapes which were determined by standard four-probe-dc measurement, and which were deduced from the field dependence of the ac losses utilizing the model. A significant inconsistency between these values of J{sub c} were found, particularly at high fields. Possible sources of the discrepancies are discussed.
NASA Astrophysics Data System (ADS)
Purohit, A.; Satapathy, A.
2017-02-01
Use of industrial wastes, such as slag and sludge particles, as filler in polymers is not very common in the field of composite research. Therefore in this paper, a comparison of mechanical characteristics of epoxy based composites filled with LD sludge, BF slag and LD slag (wastes generated in iron and steel industries) were presented. A comparative study among these composites in regard to their dry sliding wear characteristics under similar test conditions was also included. Composites with different weight proportions (0, 5, 10, 15 and 20 wt.%) of LD sludge were fabricated by solution casting technique. Mechanical properties were evaluated as per ASTM test standards and sliding wear test was performed following a design of experiment approach based on Taguchi’s orthogonal array. The test results for epoxy-LD sludge composites were compared with those of epoxy-BF slag and epoxy-LD slag composites reported by previous investigators. The comparison reveals that epoxy filled with LD sludge exhibits superior mechanical and wear characteristics among the three types of composites considered in this study.
Fornaini, C; Lagori, G; Merigo, E; Rocca, J-P; Chiusano, M; Cucinotta, A
2015-12-30
A 405 nm diode laser is indicated for composite materials polymerizing, thanks to the recent evolution in their compositions, absorbing in blue part of the spectrum. The purpose of this research was to evaluate its performance on two different kinds of composite resins. Two different composites were polymerized with a traditional halogen lamp, a LED device and a 405 nm diode laser. The depth of the cure, the volumetric shrinkage, and the degree of the conversion (DC%) of the double bond during the curing process were measured. One-way ANOVA test, Kruskal-Wallis tests, and Dunn comparison tests were used for statistic analysis. Regarding the depth of polymerization, the laser had the worst performance on one composite while on the other, no significant difference with the other devices was observed. The volumetric shrinkage showed that laser produced the lowest change in both of the composites. The DC% measure confirmed these findings. Based on the results of this preliminary study, it is not possible to recommend the 405 nm diode laser for the polymerization of dental composites.
Comparison of Model and Observed Regional Temperature Changes During the Past 40 Years
NASA Technical Reports Server (NTRS)
Russell, Gary L.; Miller, James R.; Rind, David; Ruedy, Reto A.; Schmidt, Gavin A.; Sheth, Sukeshi
1999-01-01
Results are presented for six simulations of the Goddard Institute for Space Studies (GISS) global atmosphere-ocean model for the years 1950 to 2099. There are two control simulations with constant 1950 atmospheric composition from different initial states, two GHG experiments with observed greenhouse gases up to 1990 and compounded .5% CO2 annual increases thereafter, and two GHG+SO4 experiments with the same varying greenhouse gases plus varying tropospheric sulfate aerosols. Surface air temperature trends in the two GHG experiments are compared between themselves and with the observed temperature record from 1960 and 1998. All comparisons show high positive spatial correlation in the northern hemisphere except in summer when the greenhouse signal is weakest. The GHG+SO4 experiments show weaker correlations. In the southern hemisphere, correlations are either weak or negative which in part are due to the model's unrealistic interannual variability of southern sea ice cover. The model results imply that temperature changes due to forcing by increased greenhouse gases have risen above the level of regional interannual temperature variability in the northern hemisphere over the past 40 years. This period is thus an important test of reliability of coupled climate models.
Simulation of a G-tolerance curve using the pulsatile cardiovascular model
NASA Technical Reports Server (NTRS)
Solomon, M.; Srinivasan, R.
1985-01-01
A computer simulation study, performed to assess the ability of the cardiovascular model to reproduce the G tolerance curve (G level versus tolerance time) is reported. A composite strength duration curve derived from experimental data obtained in human centrifugation studies was used for comparison. The effects of abolishing automomic control and of blood volume loss on G tolerance were also simulated. The results provide additional validation of the model. The need for the presence of autonomic reflexes even at low levels of G is pointed out. The low margin of safety with a loss of blood volume indicated by the simulation results underscores the necessity for protective measures during Shuttle reentry.
Predicted and observed directional dependence of meteoroid/debris impacts on LDEF thermal blankets
NASA Technical Reports Server (NTRS)
Drolshagen, Gerhard
1993-01-01
The number of impacts from meteoroids and space debris particles to the various LDEF rows is calculated using ESABASE/DEBRIS, a 3-D numerical analysis tool. It is based on recent reference environment flux models and includes geometrical and directional effects. A comparison of model predictions and actual observations is made for penetrations of the thermal blankets which covered the UHCR experiment. The thermal blankets were located on all LDEF rows, except 3, 9, and 12. Because of their uniform composition and thickness, these blankets allow a direct analysis of the directional dependence of impacts and provide a test case for the latest meteoroid and debris flux models.
Hydrodynamics of CNT dispersion in high shear dispersion mixers
NASA Astrophysics Data System (ADS)
Park, Young Min; Lee, Dong Hyun; Hwang, Wook Ryol; Lee, Sang Bok; Jung, Seung-Il
2014-11-01
In this work, we investigate the carbon nanotube (CNT) fragmentation mechanism and dispersion in high shear homogenizers as a plausible dispersion technique, correlating with device geometries and processing conditions, for mass production of CNT-aluminum composites for automobile industries. A CNT dispersion model has been established in a turbulent flow regime and an experimental method in characterizing the critical yield stress of CNT flocs are presented. Considering CNT dispersion in ethanol as a model system, we tested two different geometries of high shear mixers — blade-stirrer type and rotor-stator type homogenizers — and reported the particle size distributions in time and the comparison has been made with the modeling approach and partly with the computational results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coppola, Anthony; Faruque, Omar; Truskin, James F
As automotive fuel economy requirements increase, the push for reducing overall vehicle weight will likely include the consideration of materials that have not previously been part of mainstream vehicle design and manufacturing, including carbon fiber composites. Vehicle manufacturers currently rely on computer-aided engineering (CAE) methods as part of the design and development process, so going forward, the ability to accurately and predictably model carbon fiber composites will be necessary. If composites are to be used for structural components, this need applies to both, crash and quasi-static modeling. This final report covers the results of a five-year, $6.89M, 50% cost-shared researchmore » project between Department of Energy (DOE) and the US Advanced Materials Partnership (USAMP) under Cooperative Agreement DE-EE-0005661 known as “Validation of Material Models for Automotive Carbon Fiber Composite Structures Via Physical and Crash Testing (VMM).” The objective of the VMM Composites Project was to validate and assess the ability of physics-based material models to predict crash performance of automotive primary load-carrying carbon fiber composite structures. Simulation material models that were evaluated included micro-mechanics based meso-scale models developed by the University of Michigan (UM) and micro-plane models by Northwestern University (NWU) under previous collaborations with the DOE and Automotive Composites Consortium/USAMP, as well as five commercial crash codes: LS-DYNA, RADIOSS, VPS/PAM-CRASH, Abaqus, and GENOA-MCQ. CAE predictions obtained from seven organizations were compared with experimental results from quasi-static testing and dynamic crash testing of a thermoset carbon fiber composite front-bumper and crush-can (FBCC) system gathered under multiple loading conditions. This FBCC design was developed to demonstrate progressive crush, virtual simulation, tooling, fabrication, assembly, non-destructive evaluation and crash testing advances in order to assess the correlation of the predicted results to the physical tests. The FBCC was developed to meet a goal of 30-35% mass reduction while aiming for equivalent energy absorption as a steel component for which baseline experimental results were obtained from testing in the same crash modes. The project also evaluated crash performance of thermoplastic composite structures fabricated from commercial prepreg materials and low cost carbon fiber sourced from Oak Ridge National Laboratory. The VMM Project determined that no set of predictions from a CAE supplier were found to be universally accurate among all the six crash modes evaluated. In general, crash modes that were most dependent on the properties of the prepreg were more accurate than those that were dependent on the behavior of the joints. The project found that current CAE modeling methods or best practices for carbon fiber composites have not achieved standardization, and accuracy of CAE is highly reliant on the experience of its users. Coupon tests alone are not sufficient to develop an accurate material model, but it is necessary to bridge the gap between the coupon data and performance of the actual structure with a series of subcomponent level tests. Much of the unreliability of the predictions can be attributed to shortcomings in our ability to mathematically link the effects of manufacturing and material variability into the material models. This is a subject of ongoing research in the industry. The final report is organized by key technical tasks to describe how the validation project developed, modeled and compared crash data obtained on the composite FBCC to the multiple sets of CAE predictions. Highlights of the report include a discussion of the quantitative comparison between predictions and experimental data, as well as an in-depth discussion of remaining technological gaps that exist in the industry, which are intended to spur innovations and improvements in CAE technology.« less
Gebreyesus, Grum; Lund, Mogens S; Buitenhuis, Bart; Bovenhuis, Henk; Poulsen, Nina A; Janss, Luc G
2017-12-05
Accurate genomic prediction requires a large reference population, which is problematic for traits that are expensive to measure. Traits related to milk protein composition are not routinely recorded due to costly procedures and are considered to be controlled by a few quantitative trait loci of large effect. The amount of variation explained may vary between regions leading to heterogeneous (co)variance patterns across the genome. Genomic prediction models that can efficiently take such heterogeneity of (co)variances into account can result in improved prediction reliability. In this study, we developed and implemented novel univariate and bivariate Bayesian prediction models, based on estimates of heterogeneous (co)variances for genome segments (BayesAS). Available data consisted of milk protein composition traits measured on cows and de-regressed proofs of total protein yield derived for bulls. Single-nucleotide polymorphisms (SNPs), from 50K SNP arrays, were grouped into non-overlapping genome segments. A segment was defined as one SNP, or a group of 50, 100, or 200 adjacent SNPs, or one chromosome, or the whole genome. Traditional univariate and bivariate genomic best linear unbiased prediction (GBLUP) models were also run for comparison. Reliabilities were calculated through a resampling strategy and using deterministic formula. BayesAS models improved prediction reliability for most of the traits compared to GBLUP models and this gain depended on segment size and genetic architecture of the traits. The gain in prediction reliability was especially marked for the protein composition traits β-CN, κ-CN and β-LG, for which prediction reliabilities were improved by 49 percentage points on average using the MT-BayesAS model with a 100-SNP segment size compared to the bivariate GBLUP. Prediction reliabilities were highest with the BayesAS model that uses a 100-SNP segment size. The bivariate versions of our BayesAS models resulted in extra gains of up to 6% in prediction reliability compared to the univariate versions. Substantial improvement in prediction reliability was possible for most of the traits related to milk protein composition using our novel BayesAS models. Grouping adjacent SNPs into segments provided enhanced information to estimate parameters and allowing the segments to have different (co)variances helped disentangle heterogeneous (co)variances across the genome.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cranmer, Steven R., E-mail: scranmer@cfa.harvard.edu
There have been several ideas proposed to explain how the Sun's corona is heated and how the solar wind is accelerated. Some models assume that open magnetic field lines are heated by Alfvén waves driven by photospheric motions and dissipated after undergoing a turbulent cascade. Other models posit that much of the solar wind's mass and energy is injected via magnetic reconnection from closed coronal loops. The latter idea is motivated by observations of reconnecting jets and also by similarities of ion composition between closed loops and the slow wind. Wave/turbulence models have also succeeded in reproducing observed trends inmore » ion composition signatures versus wind speed. However, the absolute values of the charge-state ratios predicted by those models tended to be too low in comparison with observations. This Letter refines these predictions by taking better account of weak Coulomb collisions for coronal electrons, whose thermodynamic properties determine the ion charge states in the low corona. A perturbative description of nonlocal electron transport is applied to an existing set of wave/turbulence models. The resulting electron velocity distributions in the low corona exhibit mild suprathermal tails characterized by ''kappa'' exponents between 10 and 25. These suprathermal electrons are found to be sufficiently energetic to enhance the charge states of oxygen ions, while maintaining the same relative trend with wind speed that was found when the distribution was assumed to be Maxwellian. The updated wave/turbulence models are in excellent agreement with solar wind ion composition measurements.« less
Composition of web services using Markov decision processes and dynamic programming.
Uc-Cetina, Víctor; Moo-Mena, Francisco; Hernandez-Ucan, Rafael
2015-01-01
We propose a Markov decision process model for solving the Web service composition (WSC) problem. Iterative policy evaluation, value iteration, and policy iteration algorithms are used to experimentally validate our approach, with artificial and real data. The experimental results show the reliability of the model and the methods employed, with policy iteration being the best one in terms of the minimum number of iterations needed to estimate an optimal policy, with the highest Quality of Service attributes. Our experimental work shows how the solution of a WSC problem involving a set of 100,000 individual Web services and where a valid composition requiring the selection of 1,000 services from the available set can be computed in the worst case in less than 200 seconds, using an Intel Core i5 computer with 6 GB RAM. Moreover, a real WSC problem involving only 7 individual Web services requires less than 0.08 seconds, using the same computational power. Finally, a comparison with two popular reinforcement learning algorithms, sarsa and Q-learning, shows that these algorithms require one or two orders of magnitude and more time than policy iteration, iterative policy evaluation, and value iteration to handle WSC problems of the same complexity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rather, Sami ullah, E-mail: rathersami@gmail.com; Taimoor, Aqeel Ahmad; Muhammad, Ayyaz
Highlights: • Hydrogen adsorption comparisons of commercial, milled, and MgH{sub 2} composite. • Hydrogen adsorption capacity and kinetics improves tremendously by CNT embedding. • Unsteady state modeling and simulation of adsorption kinetics. - Abstract: Magnesium hydride (MgH{sub 2})–carbon nanotubes (CNT) composite has been prepared by high-energy ball milling method and their experimental and kinetic hydrogen adsorption studies was assessed. Hydrogen adsorption studies were performed by Sievert’s volumetric apparatus and kinetic evaluation was conducted by surface chemistry and Langmuir–Hinshelwood–Hougen–Watson (LHHW) type mode. Powder X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) were performed. Hydrogen adsorption capacity of commercial MgH{submore » 2}, milled MgH{sub 2}, and MgH{sub 2}/CNT composite are found to be 0.04, 0.057, and 0.059 g (H{sub 2})/g (MgH{sub 2}) at 673 K and hydrogen pressure of 4.6 MPa. Addition of 5 wt% of CNTs to MgH{sub 2} proved to be very critical to enhance hydrogen adsorption as well as to improve its kinetics. It was observed that hydrogen adsorption is not in quasi-state equilibrium and is modeled using kinetic rate laws.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolluri, K; Zepeda-Ruiz, L A; Murthy, C S
2005-03-22
Strained semiconductor thin films grown epitaxially on semiconductor substrates of different composition, such as Si{sub 1-x}Ge{sub x}/Si, are becoming increasingly important in modern microelectronic technologies. In this paper, we report a hierarchical computational approach for analysis of dislocation formation, glide motion, multiplication, and annihilation in Si{sub 1-x}Ge{sub x} epitaxial thin films on Si substrates. Specifically, a condition is developed for determining the critical film thickness with respect to misfit dislocation generation as a function of overall film composition, film compositional grading, and (compliant) substrate thickness. In addition, the kinetics of strain relaxation in the epitaxial film during growth or thermalmore » annealing (including post-implantation annealing) is analyzed using a properly parameterized dislocation mean-field theoretical model, which describes plastic deformation dynamics due to threading dislocation propagation. The theoretical results for Si{sub 1-x}Ge{sub x} epitaxial thin films grown on Si (100) substrates are compared with experimental measurements and are used to discuss film growth and thermal processing protocols toward optimizing the mechanical response of the epitaxial film.« less
Atomic Step Formation on Sapphire Surface in Ultra-precision Manufacturing
Wang, Rongrong; Guo, Dan; Xie, Guoxin; Pan, Guoshun
2016-01-01
Surfaces with controlled atomic step structures as substrates are highly relevant to desirable performances of materials grown on them, such as light emitting diode (LED) epitaxial layers, nanotubes and nanoribbons. However, very limited attention has been paid to the step formation in manufacturing process. In the present work, investigations have been conducted into this step formation mechanism on the sapphire c (0001) surface by using both experiments and simulations. The step evolutions at different stages in the polishing process were investigated with atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM). The simulation of idealized steps was constructed theoretically on the basis of experimental results. It was found that (1) the subtle atomic structures (e.g., steps with different sawteeth, as well as steps with straight and zigzag edges), (2) the periodicity and (3) the degree of order of the steps were all dependent on surface composition and miscut direction (step edge direction). A comparison between experimental results and idealized step models of different surface compositions has been made. It has been found that the structure on the polished surface was in accordance with some surface compositions (the model of single-atom steps: Al steps or O steps). PMID:27444267
Atomic Step Formation on Sapphire Surface in Ultra-precision Manufacturing
NASA Astrophysics Data System (ADS)
Wang, Rongrong; Guo, Dan; Xie, Guoxin; Pan, Guoshun
2016-07-01
Surfaces with controlled atomic step structures as substrates are highly relevant to desirable performances of materials grown on them, such as light emitting diode (LED) epitaxial layers, nanotubes and nanoribbons. However, very limited attention has been paid to the step formation in manufacturing process. In the present work, investigations have been conducted into this step formation mechanism on the sapphire c (0001) surface by using both experiments and simulations. The step evolutions at different stages in the polishing process were investigated with atomic force microscopy (AFM) and high resolution transmission electron microscopy (HRTEM). The simulation of idealized steps was constructed theoretically on the basis of experimental results. It was found that (1) the subtle atomic structures (e.g., steps with different sawteeth, as well as steps with straight and zigzag edges), (2) the periodicity and (3) the degree of order of the steps were all dependent on surface composition and miscut direction (step edge direction). A comparison between experimental results and idealized step models of different surface compositions has been made. It has been found that the structure on the polished surface was in accordance with some surface compositions (the model of single-atom steps: Al steps or O steps).
Barbadillo, M; Casero, E; Petit-Domínguez, M D; Vázquez, L; Pariente, F; Lorenzo, E
2009-12-15
The design and characterization of a new organic-inorganic hybrid composite material for glucose electrochemical sensing are described. This material is based on the entrapment of both gold nanoparticles (AuNPs) and glucose oxidase, which was chosen as a model, into a sol-gel matrix. The addition of spectroscopic grade graphite to this system, which confers conductivity, leads to the development of a material particularly attractive for electrochemical biosensor fabrication. The characterization of the hybrid composite material was performed using atomic force microscopy and scanning electron microscopy techniques. This composite material was applied to the determination of glucose in presence of hydroxymethylferrocene as a redox mediator. The system exhibits a clear electrocatalytic activity towards glucose, allowing its determination at 250 mV vs Ag/AgCl. The performance of the resulting enzyme biosensor was evaluated in terms of sensitivity, detection limit, linear response range, stability and accuracy. Finally, the enhancement of the analytical response of the resulting biosensor induced by the presence of gold nanoparticles was evaluated by comparison with a similar organic-inorganic hybrid composite material without AuNPs.
NASA Astrophysics Data System (ADS)
Han, Tao; Chen, Lingyun; Lai, Chao-Jen; Liu, Xinming; Shen, Youtao; Zhong, Yuncheng; Ge, Shuaiping; Yi, Ying; Wang, Tianpeng; Shaw, Chris C.
2009-02-01
Images of mastectomy breast specimens have been acquired with a bench top experimental Cone beam CT (CBCT) system. The resulting images have been segmented to model an uncompressed breast for simulation of various CBCT techniques. To further simulate conventional or tomosynthesis mammographic imaging for comparison with the CBCT technique, a deformation technique was developed to convert the CT data for an uncompressed breast to a compressed breast without altering the breast volume or regional breast density. With this technique, 3D breast deformation is separated into two 2D deformations in coronal and axial views. To preserve the total breast volume and regional tissue composition, each 2D deformation step was achieved by altering the square pixels into rectangular ones with the pixel areas unchanged and resampling with the original square pixels using bilinear interpolation. The compression was modeled by first stretching the breast in the superior-inferior direction in the coronal view. The image data were first deformed by distorting the voxels with a uniform distortion ratio. These deformed data were then deformed again using distortion ratios varying with the breast thickness and re-sampled. The deformation procedures were applied in the axial view to stretch the breast in the chest wall to nipple direction while shrinking it in the mediolateral to lateral direction re-sampled and converted into data for uniform cubic voxels. Threshold segmentation was applied to the final deformed image data to obtain the 3D compressed breast model. Our results show that the original segmented CBCT image data were successfully converted into those for a compressed breast with the same volume and regional density preserved. Using this compressed breast model, conventional and tomosynthesis mammograms were simulated for comparison with CBCT.
NASA Astrophysics Data System (ADS)
Tsikerdekis, Athanasios; Katragou, Eleni; Zanis, Prodromos; Melas, Dimitrios; Eskes, Henk; Flemming, Johannes; Huijnen, Vincent; Inness, Antje; Kapsomenakis, Ioannis; Schultz, Martin; Stein, Olaf; Zerefos, Christos
2014-05-01
In this work we evaluate near surface ozone concentrations of the MACCii global reanalysis using measurements from the EMEP and AIRBASE database. The eight-year long reanalysis of atmospheric composition data covering the period 2003-2010 was constructed as part of the FP7-funded Monitoring Atmospheric Composition and Climate project by assimilating satellite data into a global model and data assimilation system (Inness et al., 2013). The study mainly focuses in the differences between the assimilated and the non-assimilated experiments and aims to identify and quantify any improvements achieved by adding data assimilation to the system. Results are analyzed in eight European sub-regions and region-specific Taylor plots illustrate the evaluation and the overall predictive skill of each experiment. The diurnal and annual cycles of near surface ozone are evaluated for both experiments. Furthermore ozone exposure indices for crop growth (AOT40), human health (SOMO35) and the number of days that 8-hour ozone averages exceeded 60ppb and 90ppb have been calculated for each station based on both observed and simulated data. Results indicate mostly improvement of the assimilated experiment with respect to the high near surface ozone concentrations, the diurnal cycle and range and the bias in comparison to the non-assimilated experiment. The limitations of the comparison between assimilated and non-assimilated experiments for near surface ozone are also discussed.
Using XCO2 retrievals for assessing the long-term consistency of NDACC/FTIR data sets
NASA Astrophysics Data System (ADS)
Barthlott, S.; Schneider, M.; Hase, F.; Wiegele, A.; Christner, E.; González, Y.; Blumenstock, T.; Dohe, S.; García, O. E.; Sepúlveda, E.; Strong, K.; Mendonca, J.; Weaver, D.; Palm, M.; Deutscher, N. M.; Warneke, T.; Notholt, J.; Lejeune, B.; Mahieu, E.; Jones, N.; Griffith, D. W. T.; Velazco, V. A.; Smale, D.; Robinson, J.; Kivi, R.; Heikkinen, P.; Raffalski, U.
2014-10-01
Within the NDACC (Network for the Detection of Atmospheric Composition Change), more than 20 FTIR (Fourier-Transform InfraRed) spectrometers, spread worldwide, provide long-term data records of many atmospheric trace gases. We present a method that uses measured and modelled XCO2 for assessing the consistency of these data records. Our NDACC XCO2 retrieval setup is kept simple so that it can easily be adopted for any NDACC/FTIR-like measurement made since the late 1950s. By a comparison to coincident TCCON (Total Carbon Column Observing Network) measurements, we empirically demonstrate the useful quality of this NDACC XCO2 product (empirically obtained scatter between TCCON and NDACC is about 4‰ for daily mean as well as monthly mean comparisons and the bias is 25‰). As XCO2 model we developed and used a simple regression model fitted to CarbonTracker results and the Mauna Loa CO2 in-situ records. A comparison to TCCON data suggests an uncertainty of the model for monthly mean data of below 3‰. We apply the method to the NDACC/FTIR spectra that are used within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) and demonstrate that there is a good consistency for these globally representative set of spectra measured since 1996: the scatter between the modelled and measured XCO2 on a yearly time scale is only 3‰.
Using XCO2 retrievals for assessing the long-term consistency of NDACC/FTIR data sets
NASA Astrophysics Data System (ADS)
Barthlott, S.; Schneider, M.; Hase, F.; Wiegele, A.; Christner, E.; González, Y.; Blumenstock, T.; Dohe, S.; García, O. E.; Sepúlveda, E.; Strong, K.; Mendonca, J.; Weaver, D.; Palm, M.; Deutscher, N. M.; Warneke, T.; Notholt, J.; Lejeune, B.; Mahieu, E.; Jones, N.; Griffith, D. W. T.; Velazco, V. A.; Smale, D.; Robinson, J.; Kivi, R.; Heikkinen, P.; Raffalski, U.
2015-03-01
Within the NDACC (Network for the Detection of Atmospheric Composition Change), more than 20 FTIR (Fourier-transform infrared) spectrometers, spread worldwide, provide long-term data records of many atmospheric trace gases. We present a method that uses measured and modelled XCO2 for assessing the consistency of these NDACC data records. Our XCO2 retrieval setup is kept simple so that it can easily be adopted for any NDACC/FTIR-like measurement made since the late 1950s. By a comparison to coincident TCCON (Total Carbon Column Observing Network) measurements, we empirically demonstrate the useful quality of this suggested NDACC XCO2 product (empirically obtained scatter between TCCON and NDACC is about 4‰ for daily mean as well as monthly mean comparisons, and the bias is 25‰). Our XCO2 model is a simple regression model fitted to CarbonTracker results and the Mauna Loa CO2 in situ records. A comparison to TCCON data suggests an uncertainty of the model for monthly mean data of below 3‰. We apply the method to the NDACC/FTIR spectra that are used within the project MUSICA (multi-platform remote sensing of isotopologues for investigating the cycle of atmospheric water) and demonstrate that there is a good consistency for these globally representative set of spectra measured since 1996: the scatter between the modelled and measured XCO2 on a yearly time scale is only 3‰.
[Concept of optimal body composition of professional football players].
Grigoryan, S
2011-09-01
Body composition and body weight are two of the many factors that contribute to optimal exercise performance. Body weight can influence an athlete's speed, endurance, and power, whereas body composition can affect an athlete's strength, agility, and appearance. Individualized assessment of an athlete's body composition and body weight or body image may be advantageous for the improvement of athletic performance. The purpose of the present research consists in development of physiologically proved modelling characteristic of high performance football players on the basis of the analysis of dynamics (changes) of the major parameters of structure of weight of football players of various ages in process of acquiring game experience and skill. 344 football players from 15 to 35 years old were surveyed. The basic parameters of body composition were determined. It was found that general tendency in dynamics of the basic components of structure of body composition at the end of playing season is expressed in appreciable gain of active cellular weight as analogue of the muscular mass, decrease in the absolute fat contents, increase in endocellular liquid and eritrocyte mass. Comparison of changeable parameters to external criteria of success in competition and tested productivity, adaptive reactions and stability of motivation led to the conclusion that quantitative sports-skill evaluation and forecast of the growth in achievements is possible.
NASA Astrophysics Data System (ADS)
Lane, R. J. L.
2015-12-01
At Geoscience Australia, we are upgrading our gravity and magnetic modeling tools to provide new insights into the composition, properties, and structure of the subsurface. The scale of the investigations varies from the size of tectonic plates to the size of a mineral prospect. To accurately model potential field data at all of these scales, we require modeling software that can operate in both spherical and Cartesian coordinate frameworks. The models are in the form of a mesh, with spherical prismatic (tesseroid) elements for spherical coordinate models of large volumes, and rectangular prisms for smaller volumes evaluated in a Cartesian coordinate framework. The software can compute the forward response of supplied rock property models and can perform inversions using constraints that vary from weak generic smoothness through to very specific reference models compiled from various types of "hard facts" (i.e., surface mapping, drilling information, crustal seismic interpretations). To operate efficiently, the software is being specifically developed to make use of the resources of the National Computational Infrastructure (NCI) at the Australian National University (ANU). The development of these tools is been carried out in collaboration with researchers from the Colorado School of Mines (CSM) and the China University of Geosciences (CUG) and is at the stage of advanced testing. The creation of individual 3D geological models will provide immediate insights. Users will also be able to combine models, either by stitching them together or by nesting smaller and more detailed models within a larger model. Comparison of the potential field response of a composite model with the observed fields will give users a sense of how comprehensively these models account for the observations. Users will also be able to model the residual fields (i.e., the observed minus calculated response) to discover features that are not represented in the input composite model.
Microbial Ecology along the Gastrointestinal Tract
Hillman, Ethan T.; Lu, Hang; Yao, Tianming; Nakatsu, Cindy H.
2017-01-01
The ecosystem of the human gastrointestinal (GI) tract traverses a number of environmental, chemical, and physical conditions because it runs from the oral cavity to the anus. These differences in conditions along with food or other ingested substrates affect the composition and density of the microbiota as well as their functional roles by selecting those that are the most suitable for that environment. Previous studies have mostly focused on Bacteria, with the number of studies conducted on Archaea, Eukarya, and Viruses being limited despite their important roles in this ecosystem. Furthermore, due to the challenges associated with collecting samples directly from the inside of humans, many studies are still exploratory, with a primary focus on the composition of microbiomes. Thus, mechanistic studies to investigate functions are conducted using animal models. However, differences in physiology and microbiomes need to be clarified in order to aid in the translation of animal model findings into the context of humans. This review will highlight Bacteria, Archaea, Fungi, and Viruses, discuss differences along the GI tract of healthy humans, and perform comparisons with three common animal models: rats, mice, and pigs. PMID:29129876
A computational model for the flow of resin in self-healing composites
NASA Astrophysics Data System (ADS)
Hall, J.; Qamar, I. P. S.; Rendall, T. C. S.; Trask, R. S.
2015-03-01
To explore the flow characteristics of healing agent leaving a vascular network and infusing a damage site within a fibre reinforced polymer composite, a numerical model of healing agent flow from an orifice has been developed using smoothed particle hydrodynamics. As an initial validation the discharge coefficient for low Reynolds number flow from a cylindrical tank is calculated numerically, using two different viscosity formulations, and compared to existing experimental data. Results of this comparison are very favourable; the model is able to reproduce experimental results for the discharge coefficient in the high Reynolds number limit, together with the power-law behaviour for low Reynolds numbers. Results are also presented for a representative delamination geometry showing healing fluid behaviour and fraction filled inside the delamination for a variety of fluid viscosities. This work provides the foundations for the vascular self-healing community in calculating not only the flow rate through the network, but also, by simulating a representative damage site, the final location of the healing fluid within the damage site in order to assess the improvement in local and global mechanical properties and thus healing efficiency.
Diesner, Susanne C.; Bergmayr, Cornelia; Pfitzner, Barbara; Assmann, Vera; Krishnamurthy, Durga; Starkl, Philipp; Endesfelder, David; Rothballer, Michael; Welzl, Gerhard; Rattei, Thomas; Eiwegger, Thomas; Szépfalusi, Zsolt; Fehrenbach, Heinz; Jensen-Jarolim, Erika; Hartmann, Anton
2017-01-01
In our mouse model, gastric acid-suppression is associated with antigen-specific IgE and anaphylaxis development. We repeatedly observed non-responder animals protected from food allergy. Here, we aimed to analyse reasons for this protection. Ten out of 64 mice, subjected to oral ovalbumin (OVA) immunizations under gastric acid-suppression, were non-responders without OVA-specific IgE or IgG1 elevation, indicating protection from allergy. In these non-responders, allergen challenges confirmed reduced antigen uptake and lack of anaphylactic symptoms, while in allergic mice high levels of mouse mast-cell protease-1 and a body temperature reduction, indicative for anaphylaxis, were determined. Upon OVA stimulation, significantly lower IL-4, IL-5, IL-10 and IL-13 levels were detected in non-responders, while IL-22 was significantly higher. Comparison of fecal microbiota revealed differences of bacterial communities on single bacterial Operational-Taxonomic-Unit level between the groups, indicating protection from food allergy being associated with a distinct microbiota composition in a non-responding phenotype in this mouse model. PMID:27789346
NASA Astrophysics Data System (ADS)
Ait Oumeziane, Amina; Parisse, Jean-Denis
2018-05-01
Titanium carbide (TiC) coatings of great quality can be produced using nanosecond pulsed laser deposition (PLD). Because the deposition rate and the transfer of the target stoichiometry depend strongly on the laser-target/laser-plasma interaction as well as the composition of the laser induced plume, investigating the ruling fundamental mechanisms behind the material ablation and the plasma evolution in the background environment under PLD conditions is essential. This work, which extends previous investigations dedicated to the study of nanosecond laser ablation of pure target materials, is a first step toward a comprehensive non-equilibrium model of multicomponent ones. A laser-material interaction model coupled to a laser-plasma interaction one is presented. A UV 20 ns KrF (248 nm) laser pulse is considered. Ablation depths, plasma ignition thresholds, and shielding rates have been calculated for a wide range of laser beam fluences. A comparison of TiC behavior with pure titanium material under the same conditions is made. Plasma characteristics such as temperature and composition have been investigated. An overall correlation between the various results is presented.
NASA Astrophysics Data System (ADS)
Song, Dawei; Ponte Castañeda, P.
2018-06-01
We make use of the recently developed iterated second-order homogenization method to obtain finite-strain constitutive models for the macroscopic response of porous polycrystals consisting of large pores randomly distributed in a fine-grained polycrystalline matrix. The porous polycrystal is modeled as a three-scale composite, where the grains are described by single-crystal viscoplasticity and the pores are assumed to be large compared to the grain size. The method makes use of a linear comparison composite (LCC) with the same substructure as the actual nonlinear composite, but whose local properties are chosen optimally via a suitably designed variational statement. In turn, the effective properties of the resulting three-scale LCC are determined by means of a sequential homogenization procedure, utilizing the self-consistent estimates for the effective behavior of the polycrystalline matrix, and the Willis estimates for the effective behavior of the porous composite. The iterated homogenization procedure allows for a more accurate characterization of the properties of the matrix by means of a finer "discretization" of the properties of the LCC to obtain improved estimates, especially at low porosities, high nonlinearties and high triaxialities. In addition, consistent homogenization estimates for the average strain rate and spin fields in the pores and grains are used to develop evolution laws for the substructural variables, including the porosity, pore shape and orientation, as well as the "crystallographic" and "morphological" textures of the underlying matrix. In Part II of this work has appeared in Song and Ponte Castañeda (2018b), the model will be used to generate estimates for both the instantaneous effective response and the evolution of the microstructure for porous FCC and HCP polycrystals under various loading conditions.
Molecular Modeling of Aerospace Polymer Matrices Including Carbon Nanotube-Enhanced Epoxy
NASA Astrophysics Data System (ADS)
Radue, Matthew S.
Carbon fiber (CF) composites are increasingly replacing metals used in major structural parts of aircraft, spacecraft, and automobiles. The current limitations of carbon fiber composites are addressed through computational material design by modeling the salient aerospace matrix materials. Molecular Dynamics (MD) models of epoxies with and without carbon nanotube (CNT) reinforcement and models of pure bismaleimides (BMIs) were developed to elucidate structure-property relationships for improved selection and tailoring of matrices. The influence of monomer functionality on the mechanical properties of epoxies is studied using the Reax Force Field (ReaxFF). From deformation simulations, the Young's modulus, yield point, and Poisson's ratio are calculated and analyzed. The results demonstrate an increase in stiffness and yield strength with increasing resin functionality. Comparison between the network structures of distinct epoxies is further advanced by the Monomeric Degree Index (MDI). Experimental validation demonstrates the MD results correctly predict the relationship in Young's moduli for all epoxies modeled. Therefore, the ReaxFF is confirmed to be a useful tool for studying the mechanical behavior of epoxies. While epoxies have been well-studied using MD, there has been no concerted effort to model cured BMI polymers due to the complexity of the network-forming reactions. A novel, adaptable crosslinking framework is developed for implementing 5 distinct cure reactions of Matrimid-5292 (a BMI resin) and investigating the network structure using MD simulations. The influence of different cure reactions and extent of curing are analyzed on the several thermo-mechanical properties such as mass density, glass transition temperature, coefficient of thermal expansion, elastic moduli, and thermal conductivity. The developed crosslinked models correctly predict experimentally observed trends for various properties. Finally, the epoxies modeled (di-, tri-, and tetra-functionalresins) are simulated with embedded CNT to understand how the affinity to nanoparticles affects the mechanical response. Multiscale modeling techniques are then employed to translate the molecular phenomena observed to predict the behavior of realistic composites. The effective stiffness of hybrid composites are predicted for CNT/epoxy composites with randomly oriented CNTs, for CF/CNT/epoxy systems with aligned CFs and randomly oriented CNTs, and for woven CF/CNT/epoxy fabric with randomly oriented CNTs. The results indicate that in the CNT/epoxy systems the epoxy type has a significant influence on the elastic properties. For the CF/CNT/epoxy hybrid composites, the axial modulus is highly influenced by CF concentration, while the transverse modulus is primarily affected by the CNT weight fraction.
Reliability Prediction of Ontology-Based Service Compositions Using Petri Net and Time Series Models
Li, Jia; Xia, Yunni; Luo, Xin
2014-01-01
OWL-S, one of the most important Semantic Web service ontologies proposed to date, provides a core ontological framework and guidelines for describing the properties and capabilities of their web services in an unambiguous, computer interpretable form. Predicting the reliability of composite service processes specified in OWL-S allows service users to decide whether the process meets the quantitative quality requirement. In this study, we consider the runtime quality of services to be fluctuating and introduce a dynamic framework to predict the runtime reliability of services specified in OWL-S, employing the Non-Markovian stochastic Petri net (NMSPN) and the time series model. The framework includes the following steps: obtaining the historical response times series of individual service components; fitting these series with a autoregressive-moving-average-model (ARMA for short) and predicting the future firing rates of service components; mapping the OWL-S process into a NMSPN model; employing the predicted firing rates as the model input of NMSPN and calculating the normal completion probability as the reliability estimate. In the case study, a comparison between the static model and our approach based on experimental data is presented and it is shown that our approach achieves higher prediction accuracy. PMID:24688429
NASA Astrophysics Data System (ADS)
Nelson, D. B.; Kahmen, A.
2016-12-01
The hydrogen and oxygen isotopic composition of water available for biosynthetic processes in vascular plants plays an important role in shaping the isotopic composition of organic compounds that these organisms produce, including leaf waxes and cellulose in leaves and tree rings. Characterizing changes in large scale spatial patterns of precipitation, soil water, stem water, and leaf water isotope values over time is therefore useful for evaluating how plants reflect changes in the isotopic composition of these source waters in different environments. This information can, in turn, provide improved calibration targets for understanding the environmental signals that plants preserve. The pathway of water through this continuum can include several isotopic fractionations, but the extent to which the isotopic composition of each of these water pools varies under normal field conditions and over space and time has not been systematically and concurrently evaluated at large spatial scales. Two season-long sampling campaigns were conducted at nineteen sites throughout Europe over the 2014 and 2015 growing seasons to track changes in the isotopic composition of plant-relevant waters. Samples of precipitation, soil water, stem water, and leaf water were collected over more than 200 field days and include more than 500 samples from each water pool. Measurements were used to validate continent-wide gridded estimates of leaf water isotope values derived from a combination of mechanistic and statistical modeling conducted with temperature, precipitation, and relative humidity data. Data-model comparison shows good agreement for summer leaf waters, and substantiates the incorporation of modeled leaf waters in evaluating how plants respond to hydroclimate changes at large spatial scales. These results also suggest that modeled leaf water isotope values might be used in future studies in similar ecosystems to improve the coverage density of spatial or temporal data.
Applied Integrated Design in Composite UAV Development
NASA Astrophysics Data System (ADS)
Vasić, Zoran; Maksimović, Stevan; Georgijević, Dragutin
2018-04-01
This paper presents a modern approach to integrated development of Unmanned Aerial Vehicle made of laminated composite materials from conceptual design, through detail design, strength and stiffness analyses, definition and management of design and production data, detailed tests results and other activities related to development of laminated composite structures with main of its particularities in comparison to metal structures. Special attention in this work is focused to management processes of product data during life cycle of an UAV and experimental tests of its composite wing. Experience shows that the automation management processes of product data during life cycle, as well as processes of manufacturing, are inevitable if a company wants to get cheaper and quality composite aircraft structures. One of the most effective ways of successful management of product data today is Product Life cycle Management (PLM). In terms of the PLM, a spectrum of special measures and provisions has to be implemented when defining fiber-reinforced composite material structures in comparison to designing with metals which is elaborated in the paper.
NASA Astrophysics Data System (ADS)
Ebrahimi, Izadyar; Gashti, Mazeyar Parvinzadeh
2018-07-01
In this study, we focused on the synthesis of polypyrrole-MWCNT-Ag composites and we evaluated their electrical properties to determine the electromagnetic interference shielding performance. We reduced silver nanoparticles in composites using two different in situ methods: UV-reduction and chemical deposition. Composites were characterized using spectroscopic and microscopic tools for evaluation of the chemical, morphological, electrical conductivity and electromagnetic shielding effectiveness. Results from Fourier transform infrared spectroscopy and dispersive Raman microscope showed chemical interactions between silver and the polypyrrole-MWCNT composite due to the charge-transfer within the structure. X-ray diffraction confirmed appearance of two new peaks for silver nanoparticles embedded in polypyrrole-MWCNT independent to reduction method. According to microscopy images, silver nanoparticles were homogenously distributed at the PPy-MWCNTs interfaces by UV reduction, while, chemical reduction resulted to deposition of silver within the PPy matrix. Finally, our results revealed that the polypyrrole-MWCNT-Ag composite produced via UV-reduction has higher electrical conductivity and shielding effectiveness in comparison to chemically reduced one.
Harrigan, George G; Harrison, Jay M
2012-01-01
New transgenic (GM) crops are subjected to extensive safety assessments that include compositional comparisons with conventional counterparts as a cornerstone of the process. The influence of germplasm, location, environment, and agronomic treatments on compositional variability is, however, often obscured in these pair-wise comparisons. Furthermore, classical statistical significance testing can often provide an incomplete and over-simplified summary of highly responsive variables such as crop composition. In order to more clearly describe the influence of the numerous sources of compositional variation we present an introduction to two alternative but complementary approaches to data analysis and interpretation. These include i) exploratory data analysis (EDA) with its emphasis on visualization and graphics-based approaches and ii) Bayesian statistical methodology that provides easily interpretable and meaningful evaluations of data in terms of probability distributions. The EDA case-studies include analyses of herbicide-tolerant GM soybean and insect-protected GM maize and soybean. Bayesian approaches are presented in an analysis of herbicide-tolerant GM soybean. Advantages of these approaches over classical frequentist significance testing include the more direct interpretation of results in terms of probabilities pertaining to quantities of interest and no confusion over the application of corrections for multiple comparisons. It is concluded that a standardized framework for these methodologies could provide specific advantages through enhanced clarity of presentation and interpretation in comparative assessments of crop composition.
Which is the better forecasting model? A comparison between HAR-RV and multifractality volatility
NASA Astrophysics Data System (ADS)
Ma, Feng; Wei, Yu; Huang, Dengshi; Chen, Yixiang
2014-07-01
In this paper, by taking the 5-min high frequency data of the Shanghai Composite Index as example, we compare the forecasting performance of HAR-RV and Multifractal volatility, Realized volatility, Realized Bipower Variation and their corresponding short memory model with rolling windows forecasting method and the Model Confidence Set which is proved superior to SPA test. The empirical results show that, for six loss functions, HAR-RV outperforms other models. Moreover, to make the conclusions more precise and robust, we use the MCS test to compare the performance of their logarithms form models, and find that the HAR-log(RV) has a better performance in predicting future volatility. Furthermore, by comparing the two models of HAR-RV and HAR-log(RV), we conclude that, in terms of performance forecasting, the HAR-log(RV) model is the best model among models we have discussed in this paper.
Cosmic Ray Propagation through the Magnetic Fields of the Galaxy with Extended Halo
NASA Technical Reports Server (NTRS)
Zhang, Ming
2005-01-01
In this project we perform theoretical studies of 3-dimensional cosmic ray propagation in magnetic field configurations of the Galaxy with an extended halo. We employ our newly developed Markov stochastic process methods to solve the diffusive cosmic ray transport equation. We seek to understand observations of cosmic ray spectra, composition under the constraints of the observations of diffuse gamma ray and radio emission from the Galaxy. The model parameters are directly are related to properties of our Galaxy, such as the size of the Galactic halo, particle transport in Galactic magnetic fields, distribution of interstellar gas, primary cosmic ray source distribution and their confinement in the Galaxy. The core of this investigation is the development of software for cosmic ray propagation models with the Markov stochastic process approach. Values of important model parameters for the halo diffusion model are examined in comparison with observations of cosmic ray spectra, composition and the diffuse gamma-ray background. This report summarizes our achievement in the grant period at the Florida Institute of Technology. Work at the co-investigator's institution, the University of New Hampshire, under a companion grant, will be covered in detail by a separate report.
Molecular-dynamics simulation of mutual diffusion in nonideal liquid mixtures
NASA Astrophysics Data System (ADS)
Rowley, R. L.; Stoker, J. M.; Giles, N. F.
1991-05-01
The mutual-diffusion coefficients, D 12, of n-hexane, n-heptane, and n-octane in chloroform were modeled using equilibrium molecular-dynamics (MD) simulations of simple Lennard-Jones (LJ) fluids. Pure-component LJ parameters were obtained by comparison of simulations to experimental self-diffusion coefficients. While values of “effective” LJ parameters are not expected to simulate accurately diverse thermophysical properties over a wide range of conditions, it was recently shown that effective parameters obtained from pure self-diffusion coefficients can accurately model mutual diffusion in ideal, liquid mixtures. In this work, similar simulations are used to model diffusion in nonideal mixtures. The same combining rules used in the previous study for the cross-interaction parameters were found to be adequate to represent the composition dependence of D 12. The effect of alkane chain length on D 12 is also correctly predicted by the simulations. A commonly used assumption in empirical correlations of D 12, that its kinetic portion is a simple, compositional average of the intradiffusion coefficients, is inconsistent with the simulation results. In fact, the value of the kinetic portion of D 12 was often outside the range of values bracketed by the two intradiffusion coefficients for the nonideal system modeled here.
Comparison of interphase models for a crack in fiber reinforced composite
NASA Astrophysics Data System (ADS)
Kaw, A. K.; Selvarathinam, A. S.; Besterfield, G. H.
1992-07-01
The influence of a nonhomogeneous interphase on fracture mechanics of a fiber reinforced composite is studied. The stress intensity factor at the crack tips, maximum interfacial shear and normal stresses, maximum cleavage stress in the matrix and load diffusion along the length of the fiber are studied as a function of the fiber width, the interphase thickness, and the relative stiffness properties of the fiber, the matrix and the interphase. The normal stresses at the interface, which represents the possibility of debonding of the interface, is lowest for interphase thicknesses of the order of one-tenth of the fiber-diameter, when the crack is in the stiffer material. These normal stresses are highest at such interphase thicknesses if the crack is in the less stiffer material. The results obtained by using the nonhomogeneous interphase model are also compared with five other interphase models used in the literature for the interphase, namely the perfect, the homogeneous, the distributed uncoupled shear and normal springs, and the distributed shear springs. It is found that the trends of the above parameters as a function of interphase thickness are different for the spring and continuum models, if the crack is in a stiffer material.
Furstoss, C; Bertrand, M J; Poon, E; Reniers, B; Pignol, J P; Carrier, J F; Beaulieu, L; Verhaegen, F
2008-07-01
This work consists of studying the interseed and tissue composition effects for two model iodine seeds: the IBt Interseed-125 and the 6711 model seed. Three seeds were modeled with the MCNP MC code in a water sphere to evaluate the interseed effect. The dose calculated at different distances from the centre was compared to the dose summed when the seeds were simulated separately. The tissue composition effect was studied calculating the radial dose function for different tissues. Before carrying out post-implant studies, the absolute dose calculated by MC was compared to experiment results: with LiF TLDs in an acrylic breast phantom and with an EBT Gafchromic film placed in a water tank. Afterwards, the TG-43 approximation effects were studied for a prostate and breast post-implant. The interseed effect study shows that this effect is more important for model 6711 (15%) than for IBt (10%) due to the silver rod in 6711. For both seed models the variations of the radial dose function as a function of the tissue composition are quasi similar. The absolute dose comparisons between MC calculations and experiments give good agreement (inferior to 3% in general). For the prostate and breast post-implant studies, a 10% difference between MC calculations and the TG-43 is found for both models of seeds. This study shows that the differences in dose distributions between TG43 and MC are quite similar for the two models of seeds and are about 10% for the studied post-implant treatments. © 2008 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Davis, Brian; Turner, Travis L.; Seelecke, Stefan
2005-05-01
Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons within the beam structures. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical analysis/design tool. The experimental investigation is refined by a more thorough test procedure and incorporation of higher fidelity measurements such as infrared thermography and projection moire interferometry. The numerical results are produced by a recently commercialized version of the constitutive model as implemented in ABAQUS and are refined by incorporation of additional measured parameters such as geometric imperfection. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. The results demonstrate the effectiveness of SMAHC structures in controlling static and dynamic responses by adaptive stiffening. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.
NASA Technical Reports Server (NTRS)
Davis, Brian; Turner, Travis L.; Seelecke, Stefan
2005-01-01
Previous work at NASA Langley Research Center (LaRC) involved fabrication and testing of composite beams with embedded, pre-strained shape memory alloy (SMA) ribbons within the beam structures. That study also provided comparison of experimental results with numerical predictions from a research code making use of a new thermoelastic model for shape memory alloy hybrid composite (SMAHC) structures. The previous work showed qualitative validation of the numerical model. However, deficiencies in the experimental-numerical correlation were noted and hypotheses for the discrepancies were given for further investigation. The goal of this work is to refine the experimental measurement and numerical modeling approaches in order to better understand the discrepancies, improve the correlation between prediction and measurement, and provide rigorous quantitative validation of the numerical analysis/design tool. The experimental investigation is refined by a more thorough test procedure and incorporation of higher fidelity measurements such as infrared thermography and projection moire interferometry. The numerical results are produced by a recently commercialized version of the constitutive model as implemented in ABAQUS and are refined by incorporation of additional measured parameters such as geometric imperfection. Thermal buckling, post-buckling, and random responses to thermal and inertial (base acceleration) loads are studied. The results demonstrate the effectiveness of SMAHC structures in controlling static and dynamic responses by adaptive stiffening. Excellent agreement is achieved between the predicted and measured results of the static and dynamic thermomechanical response, thereby providing quantitative validation of the numerical tool.
Measurement and modeling of the refilling plasmasphere during 2001
Krall, J.; Huba, J. D.; Jordanova, V. K.; ...
2016-03-18
The Naval Research Laboratory SAMI3 (Sami3 is Also a Model of the Ionosphere) and the RAM-CPL (Ring current Atmosphere interaction Model-Cold PLasma) codes are used to model observed plasmasphere dynamics during 25 November 2001 to 1 December 2001 and 1–5 February 2001. Model results compare well to plasmasphere observations of electron and mass densities. Comparison of model results to refilling data and to each other shows good agreement, generally within a factor of 2. We find that SAMI3 plasmaspheric refilling rates and ion densities are sensitive to the composition and temperature of the thermosphere and exosphere, and to photoelectron heating.more » Furthermore, results also support our previous finding that the wind-driven dynamo significantly impacts both refilling rates and plasmasphere dynamics during quiet periods.« less
Measurement and modeling of the refilling plasmasphere during 2001
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krall, J.; Huba, J. D.; Jordanova, V. K.
The Naval Research Laboratory SAMI3 (Sami3 is Also a Model of the Ionosphere) and the RAM-CPL (Ring current Atmosphere interaction Model-Cold PLasma) codes are used to model observed plasmasphere dynamics during 25 November 2001 to 1 December 2001 and 1–5 February 2001. Model results compare well to plasmasphere observations of electron and mass densities. Comparison of model results to refilling data and to each other shows good agreement, generally within a factor of 2. We find that SAMI3 plasmaspheric refilling rates and ion densities are sensitive to the composition and temperature of the thermosphere and exosphere, and to photoelectron heating.more » Furthermore, results also support our previous finding that the wind-driven dynamo significantly impacts both refilling rates and plasmasphere dynamics during quiet periods.« less
High-resolution 18 CM spectra of OH/IR stars
NASA Astrophysics Data System (ADS)
Fix, John D.
1987-02-01
High-velocity-resolution, high-signal-to-noise spectra have been obtained for the 18 cm maser emission lines from a number of optically visible OH/IR stars. The spectra have been interpreted in terms of a recent model by Alcock and Ross (1986), in which OH/IR stars lose mass in discrete elements rather than by a continuous wind. Comparison of the observed spectra with synthetic spectra shows that the lines are the composite emission from thousands or tens of thousands of individual elements.
The Theater Simulation of Airbase Resources and Logistics Composite Models: a Comparison
1987-09-01
4320 590 0.136574 27 1 326S4 LOOM 4320 584 0.135185 28 1 326S4 LCOM 4320 652 0.150926 29 1 326S4 LCOM 4320 516 0.119444 30 1 32654 LOOM 4320 917...0.144580 665 3 326SI LCOM 11628 1391 0.119625 666’ 3 326S4 LCOM 11633 1716 0.147511 667 3 32654 LCOM 11628 1569 0.134933 668 3 326S4 LCOM 11654 1652
Experimental Study of Dust Grain Charging
NASA Technical Reports Server (NTRS)
Spann, James F; Venturini, Catherine C.; Comfort, Richard H.; Mian, Abbas M.
1999-01-01
The results of an experimental study of the charging mechanisms of micron size dust grains are presented. Individual dust grains are electrodynamically suspended and exposed to an electron beam of known energy and flux, and to far ultraviolet radiation of known wavelength and intensity. Changes in the charge-to-mass ratio of the grain are directly measured as a function of incident beam (electron and/or photon), grain size and composition. Comparisons of our results to theoretical models that predict the grain response are presented.
Aronson, Dallas B; Bosch, Stephen; Gray, D Anthony; Howard, Philip H; Guiney, Patrick D
2007-10-01
A comparison of the human health risk to consumers using one of two types of toilet rimblock products, either a p-dichlorobenzene-based rimblock or two newer fragrance/surfactant-based alternatives, was conducted. Rimblock products are designed for global use by consumers worldwide and function by releasing volatile compounds into indoor air with subsequent exposure presumed to be mainly by inhalation of indoor air. Using the THERdbASE exposure model and experimentally determined emission data, indoor air concentrations and daily intake values were determined for both types of rimblock products. Modeled exposure concentrations from a representative p-dichlorobenzene rimblock product are an order of magnitude higher than those from the alternative rimblock products due to its nearly pure composition and high sublimation rate. Lifetime exposure to p-dichlorobenzene or the subset of fragrance components with available RfD values is not expected to lead to non-cancer-based adverse health effects based on the exposure concentrations estimated using the THERdbASE model. A similar comparison of cancer-based effects was not possible as insufficient data were available for the fragrance components.
NASA Astrophysics Data System (ADS)
Philip, Sajeev; Martin, Randall V.; Snider, Graydon; Weagle, Crystal L.; van Donkelaar, Aaron; Brauer, Michael; Henze, Daven K.; Klimont, Zbigniew; Venkataraman, Chandra; Guttikunda, Sarath K.; Zhang, Qiang
2017-04-01
Global measurements of the elemental composition of fine particulate matter across several urban locations by the Surface Particulate Matter Network reveal an enhanced fraction of anthropogenic dust compared to natural dust sources, especially over Asia. We develop a global simulation of anthropogenic fugitive, combustion, and industrial dust which, to our knowledge, is partially missing or strongly underrepresented in global models. We estimate 2-16 μg m-3 increase in fine particulate mass concentration across East and South Asia by including anthropogenic fugitive, combustion, and industrial dust emissions. A simulation including anthropogenic fugitive, combustion, and industrial dust emissions increases the correlation from 0.06 to 0.66 of simulated fine dust in comparison with Surface Particulate Matter Network measurements at 13 globally dispersed locations, and reduces the low bias by 10% in total fine particulate mass in comparison with global in situ observations. Global population-weighted PM2.5 increases by 2.9 μg m-3 (10%). Our assessment ascertains the urgent need of including this underrepresented fine anthropogenic dust source into global bottom-up emission inventories and global models.
Evaluation of Transport in the Lower Tropical Stratosphere in a Global Chemistry and Transport Model
NASA Technical Reports Server (NTRS)
Douglass, Anne R.; Schoeberl, Mark R.; Rood, Richard B.; Pawson, Steven; Bhartia, P. K. (Technical Monitor)
2002-01-01
Off-line models of the evolution of stratospheric constituents use meteorological information from a general circulation model (GCM) or from a data assimilation system (DAS). Here we focus on transport in the tropics and between the tropics and middle latitudes. Constituent fields from two simulations are compared with each other and with observations. One simulation uses winds from a GCM and the second uses winds from a DAS that has the same GCM at its core. Comparisons of results from the two simulations with observations from satellite, aircraft, and sondes are used to judge the realism of the tropical transport. Faithful comparisons between simulated fields and observations for O3, CH4, and the age-of-air are found for the simulation using the GCM fields. The same comparisons for the simulation using DAS fields show rapid upward tropical transport and excessive mixing between the tropics and middle latitudes. The unrealistic transport found in the DAS fields may be due to the failure of the GCM used in the assimilation system to represent the quasi-biennial oscillation. The assimilation system accounts for differences between the observations and the GCM by requiring implicit forcing to produce consistency between the GCM and observations. These comparisons suggest that the physical consistency of the GCM fields is more important to transport characteristics in the lower tropical stratosphere than the elimination bias with respect to meteorological observations that is accomplished by the DAS. The comparisons presented here show that GCM fields are more appropriate for long-term calculations to assess the impact of changes in stratospheric composition because the balance between photochemical and transport terms is likely to be represented correctly.
International comparison CCQM-K119 liquefied petroleum gas
NASA Astrophysics Data System (ADS)
Brewer, P. J.; Downey, M. L.; Atkins, E.; Brown, R. J. C.; Brown, A. S.; Zalewska, E. T.; van der Veen, A. M. H.; Smeulders, D. E.; McCallum, J. B.; Satumba, R. T.; Kim, Y. D.; Kang, N.; Bae, H. K.; Woo, J. C.; Konopelko, L. A.; Popova, T. A.; Meshkov, A. V.; Efremova, O. V.; Kustikov, Y.
2018-01-01
Liquefied hydrocarbon mixtures with traceable composition are required in order to underpin measurements of the composition and other physical properties of LPG (liquefied petroleum gas), thus meeting the needs of an increasingly large industrial market. This comparison aims to assess the analytical capabilities of laboratories for measuring the composition of a Liquid Petroleum Gas (LPG) mixture when sampled in the liquid phase from a Constant Pressure Cylinder. Mixtures contained ethane, propane, propene, i-butane, n-butane, but-1-ene and i-pentane with nominal amount fractions of 2, 71, 9, 4, 10, 3 and 1 cmol mol-1 respectively. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.; Lopez, Osvaldo F.
1991-01-01
Experimentally determined axial compressive failure loads, strains and failure modes of composite flat panels and cylinders are presented. A comparison of two types of filament wound flat graphite-epoxy panels indicates that the winding pattern can influence structural response. A comparison of hand laid-up tape and filament wound composite cylinders indicates that fabrication method may not significantly influence the failure mode or average failure strain of thick-walled (radius-to-thickness ratio less than 15) graphite-epoxy cylinders. The interaction of manufacturing-induced features (fiber cross-overs) and low-speed impact damage for graphite-epoxy specimens is also presented. Filament would flat panels with many fiber cross-overs exhibited lower failure strains than filament wound panels without fiber cross-overs for all impact speeds examined. Graphite-thermoplastic cylinders exhibited a significantly different failure mode from the graphite-epoxy cylinders.
Self-contained filtered density function
Nouri, Arash G.; Nik, Mehdi B.; Givi, Pope; ...
2017-09-18
The filtered density function (FDF) closure is extended to a “self-contained” format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via amore » set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. We demonstrated how LES is conducted of a turbulent shear flow with transport of a passive scalar. Finally, the consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.« less
NASA Technical Reports Server (NTRS)
Truhlik, Vladimir; Triskova, Ludmila; Benson, Robert F.; Bilitza, Dieter; Grebowsky, Joseph; Richards, Phil G.; Smilauer, Jan
2014-01-01
Orbiting Geophysical Observatory 5 (OGO 5) magnetospheric ion-composition data (H+, He+ and O+) from an ion spectrometer (Sharp, 1969) have been retrieved from old magnetic tapes archived at the National Space Science Data Center (NSSDC). The highly compressed binary format was converted into a user-friendly ASCII format and these data have been made available online. We have inspected reliability and consistency of this data set in state of the art current knowledge. Comparing with the climatological model IRI-2012 and the mathematical model FLIP a shift of absolute and relative ion densities with time was revealed. We have suggested a correction procedure of individual H+, He+ and O+ ion densities. Using the corrected data set, we investigated plasmapause locations based on density gradient in H+, and He+. Correlation coefficient of both locations was determined as approx. 0.886 and the typical difference (Delta)L approx. 0.1. The electron density at the He+ plasmapause location for all cases is >100/cu cm.
Optimal design of geodesically stiffened composite cylindrical shells
NASA Technical Reports Server (NTRS)
Gendron, G.; Guerdal, Z.
1992-01-01
An optimization system based on the finite element code Computations Structural Mechanics (CSM) Testbed and the optimization program, Automated Design Synthesis (ADS), is described. The optimization system can be used to obtain minimum-weight designs of composite stiffened structures. Ply thickness, ply orientations, and stiffener heights can be used as design variables. Buckling, displacement, and material failure constraints can be imposed on the design. The system is used to conduct a design study of geodesically stiffened shells. For comparison purposes, optimal designs of unstiffened shells and shells stiffened by rings and stingers are also obtained. Trends in the design of geodesically stiffened shells are identified. An approach to include local stress concentrations during the design optimization process is then presented. The method is based on a global/local analysis technique. It employs spline interpolation functions to determine displacements and rotations from a global model which are used as 'boundary conditions' for the local model. The organization of the strategy in the context of an optimization process is described. The method is validated with an example.
Self-contained filtered density function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nouri, Arash G.; Nik, Mehdi B.; Givi, Pope
The filtered density function (FDF) closure is extended to a “self-contained” format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via amore » set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. We demonstrated how LES is conducted of a turbulent shear flow with transport of a passive scalar. Finally, the consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.« less
Benchmarking FEniCS for mantle convection simulations
NASA Astrophysics Data System (ADS)
Vynnytska, L.; Rognes, M. E.; Clark, S. R.
2013-01-01
This paper evaluates the usability of the FEniCS Project for mantle convection simulations by numerical comparison to three established benchmarks. The benchmark problems all concern convection processes in an incompressible fluid induced by temperature or composition variations, and cover three cases: (i) steady-state convection with depth- and temperature-dependent viscosity, (ii) time-dependent convection with constant viscosity and internal heating, and (iii) a Rayleigh-Taylor instability. These problems are modeled by the Stokes equations for the fluid and advection-diffusion equations for the temperature and composition. The FEniCS Project provides a novel platform for the automated solution of differential equations by finite element methods. In particular, it offers a significant flexibility with regard to modeling and numerical discretization choices; we have here used a discontinuous Galerkin method for the numerical solution of the advection-diffusion equations. Our numerical results are in agreement with the benchmarks, and demonstrate the applicability of both the discontinuous Galerkin method and FEniCS for such applications.
Transverse cracking and stiffness reduction in composite laminates
NASA Technical Reports Server (NTRS)
Yuan, F. G.; Selek, M. C.
1993-01-01
A study of transverse cracking mechanism in composite laminates is presented using a singular hybrid finite element model. The model provides the global structural response as well as the precise local crack-tip stress fields. An elasticity basis for the problem is established by employing Lekhnitskii's complex variable potentials and method of eigenfunction expansion. Stress singularities associated with the transverse crack are obtained by decomposing the deformation into the symmetric and antisymmetric modes and proper boundary conditions. A singular hybrid element is thereby formulated based on the variational principle of a modified hybrid functional to incorporate local crack singularities. Axial stiffness reduction due to transverse cracking is studied. The results are shown to be in very good agreement with the existing experimental data. Comparison with simple shear lag analysis is also given. The effects of stress intensity factors and strain energy density on the increase of crack density are analyzed. The results reveal that the parameters approach definite limits when crack densities are saturated, an evidence of the existence of characteristic damage state.
Self-contained filtered density function
NASA Astrophysics Data System (ADS)
Nouri, A. G.; Nik, M. B.; Givi, P.; Livescu, D.; Pope, S. B.
2017-09-01
The filtered density function (FDF) closure is extended to a "self-contained" format to include the subgrid-scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large-eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF). In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.
PEVC-FMDF for Large Eddy Simulation of Compressible Turbulent Flows
NASA Astrophysics Data System (ADS)
Nouri Gheimassi, Arash; Nik, Mehdi; Givi, Peyman; Livescu, Daniel; Pope, Stephen
2017-11-01
The filtered density function (FDF) closure is extended to a ``self-contained'' format to include the subgrid scale (SGS) statistics of all of the hydro-thermo-chemical variables in turbulent flows. These are the thermodynamic pressure, the specific internal energy, the velocity vector, and the composition field. In this format, the model is comprehensive and facilitates large eddy simulation (LES) of flows at both low and high compressibility levels. A transport equation is developed for the joint ``pressure-energy-velocity-composition filtered mass density function (PEVC-FMDF).'' In this equation, the effect of convection appears in closed form. The coupling of the hydrodynamics and thermochemistry is modeled via a set of stochastic differential equation (SDE) for each of the transport variables. This yields a self-contained SGS closure. For demonstration, LES is conducted of a turbulent shear flow with transport of a passive scalar. The consistency of the PEVC-FMDF formulation is established, and its overall predictive capability is appraised via comparison with direct numerical simulation (DNS) data.
NASA Astrophysics Data System (ADS)
Kwon, Kibum
A dynamic analysis of the interaction between a crack and an auxetic (negative Poisson ratio)/non-auxetic inclusion is presented. The two most important fracture parameters, namely the stress intensity factors and the T-stress are analyzed by using the symmetric Galerkin boundary element method in the Laplace domain for three different models of crack-inclusion interaction. To investigate the effects of auxetic inclusions on the fracture behavior of composites reinforced by this new type of material, comparisons of the dynamic stress intensity factors and the dynamic T-stress are made between the use of auxetic inclusions as opposed to the use of traditional inclusions. Furthermore, the technique presented in this research can be employed to analyze for the interaction between a crack and a cluster of auxetic/non-auxetic inclusions. Results from the latter models can be employed in crack growth analysis in auxetic-fiber-reinforced composites.
Prognostic Health Management of DoD Assets
2015-06-01
34Acoustic emission for monitoring the mechanical behaviour of natural fibre composites: a literature review," Composites Part A: Applied Science and...34Acoustic emission of debonding between fibre and matrix to evaluate local adhesion," Composites Science and Technology, vol. 63, pp. 2155-2162, 2003...classification in carbon fibre composites using acoustic emission: A comparison of three techniques," Composites Part B: Engineering, vol. 68, pp. 424-430, 1
Differential Item Functioning Detection Across Two Methods of Defining Group Comparisons
Sari, Halil Ibrahim
2014-01-01
This study compares two methods of defining groups for the detection of differential item functioning (DIF): (a) pairwise comparisons and (b) composite group comparisons. We aim to emphasize and empirically support the notion that the choice of pairwise versus composite group definitions in DIF is a reflection of how one defines fairness in DIF studies. In this study, a simulation was conducted based on data from a 60-item ACT Mathematics test (ACT; Hanson & Béguin). The unsigned area measure method (Raju) was used as the DIF detection method. An application to operational data was also completed in the study, as well as a comparison of observed Type I error rates and false discovery rates across the two methods of defining groups. Results indicate that the amount of flagged DIF or interpretations about DIF in all conditions were not the same across the two methods, and there may be some benefits to using composite group approaches. The results are discussed in connection to differing definitions of fairness. Recommendations for practice are made. PMID:29795837
NASA Astrophysics Data System (ADS)
Liu, Bo-Yan; Shi, Bao-Ping; Zhang, Jian
2007-05-01
In this study, a composite source model has been used to calculate the realistic strong ground motions in Beijing area, caused by 1679 M S8.0 earthquake in Sanhe-Pinggu. The results could provide us the useful physical parameters for the future seismic hazard analysis in this area. Considering the regional geological/geophysical background, we simulated the scenario earthquake with an associated ground motions in the area ranging from 39.3°N to 41.1°N in latitude and from 115.35°E to 117.55°E in longitude. Some of the key factors which could influence the characteristics of strong ground motion have been discussed, and the resultant peak ground acceleration (PGA) distribution and the peak ground velocity (PGV) distribution around Beijing area also have been made as well. A comparison of the simulated result with the results derived from the attenuation relation has been made, and a sufficient discussion about the advantages and disadvantages of composite source model also has been given in this study. The numerical results, such as the PGA, PGV, peak ground displacement (PGD), and the three-component time-histories developed for Beijing area, have a potential application in earthquake engineering field and building code design, especially for the evaluation of critical constructions, government decision making and the seismic hazard assessment by financial/insurance companies.
Pownall, Henry J; Bray, George A; Wagenknecht, Lynne E; Walkup, Michael P; Heshka, Stanley; Hubbard, Van S; Hill, James; Kahn, Steven E; Nathan, David M; Schwartz, Anne V; Johnson, Karen C
2015-03-01
To determine the effects of an intensive lifestyle intervention versus a comparison group on body composition in obese or overweight persons with type 2 diabetes at baseline and at 1, 4, and 8 years. Body composition was measured by dual-energy X-ray absorptiometry in a subset of 1019 Look AHEAD study volunteers randomized to intervention or comparison groups. The intervention was designed to achieve and maintain ≥7% weight loss through increased physical activity and reduced caloric intake. The comparison group received social support and diabetes education. At 1 year, the intervention group lost fat (5.6 ± 0.2 kg) and lean mass (2.3 ± 0.1 kg) but regained fat (∼100%) and lost lean mass between years 1 and 8. Between baseline and year 8, weight loss was greater in intervention versus comparison groups (4.0 ± 0.4 vs. 2.3 ± 0.4 kg); comparison group weight loss was mostly lean mass (2.1 ± 0.17 kg). Fat mass in the intervention group was lower than that of the comparison group at all post-baseline time points. Reduced fat mass may place the intervention group at a lower risk of obesity-linked sequelae, a hypothesis that can be tested by future studies of this cohort. © 2015 The Obesity Society.
NASA Technical Reports Server (NTRS)
MacNeice, Peter; Taktakishvili, Alexandra; Jackson, Bernard; Clover, John; Bisi, Mario; Odstrcil, Dusan
2011-01-01
The University of California, San Diego 3D Heliospheric Tomography Model reconstructs the evolution of heliospheric structures, and can make forecasts of solar wind density and velocity up to 72 hours in the future. The latest model version, installed and running in realtime at the Community Coordinated Modeling Center(CCMC), analyzes scintillations of meter wavelength radio point sources recorded by the Solar-Terrestrial Environment Laboratory(STELab) together with realtime measurements of solar wind speed and density recorded by the Advanced Composition Explorer(ACE) Solar Wind Electron Proton Alpha Monitor(SWEPAM).The solution is reconstructed using tomographic techniques and a simple kinematic wind model. Since installation, the CCMC has been recording the model forecasts and comparing them with ACE measurements, and with forecasts made using other heliospheric models hosted by the CCMC. We report the preliminary results of this validation work and comparison with alternative models.
NASA Astrophysics Data System (ADS)
Stephan, K.; Ciarniello, M.; Beck, P.; Filacchione, G.; Moroz, L.; Pilorget, C.; Pommerol, A.; Quirico, E.; Raponi, A.; Schröder, S.; Kappel, D.; Vinogradoff, V.; Istiqomah, I.; Rousseau, B.
2017-12-01
Remote sensing observations at visible-infrared (VIS-IR) wavelengths of the nucleus of comet 67P/Churyumov-Gerasimenko performed by VIRTIS (Coradini et al., 2007) aboard the Rosetta mission have revealed a surface ubiquitously covered by low-albedo material (Capaccioni et al., 2015; Ciarniello et al., 2015), characterized by the presence of refractory and semi-volatile organics and dark opaque phases (Capaccioni et al., 2015; Quirico et al., 2016). However, a quantitative determination of the physical properties (grain size, porosity) and chemical composition of the surface regolith, from spectrophotometric analysis, is still missing. This subject will be investigated within an international team hosted by ISSI (International Space Science Institute), taking advantage of available and dedicated laboratory reflectance measurements on cometary analogue samples and radiative transfer models (Hapke, 2012; Shkuratov et al., 1999; Monte Carlo ray-tracing), applied to Rosetta spectrophotometric observations of the nucleus. The convergence between models and measurements will allow us to provide a thorough characterization of 67P/Churyumov-Gerasimenko surface. At the same time, the comparison of theoretical predictions with results from laboratory reflectance spectroscopy on powders of analog materials give us the possibility to constrain the capability of the models to characterize their composition (endmember abundances and mixing modalities) and physical properties. We report about the state of the art of laboratory reflectance spectroscopy and spectral modeling applied to 67P/Churyumov-Gerasimenko VIS-IR spectrum as well as preliminary results of the team activity and planned future work. Acknowledgements: the team thanks ISSI-Switzerland for the logistic and financial support.
Kulkova, Julia; Moritz, Niko; Suokas, Esa O; Strandberg, Niko; Leino, Kari A; Laitio, Timo T; Aro, Hannu T
2014-12-01
Bioresorbable suture anchors and interference screws have certain benefits over equivalent titanium-alloy implants. However, there is a need for compositional improvement of currently used bioresorbable implants. We hypothesized that implants made of poly(l-lactide-co-glycolide) (PLGA) compounded with nanostructured particles of beta-tricalcium phosphate (β-TCP) would induce stronger osteointegration than implants made of PLGA compounded with microsized β-TCP particles. The experimental nanostructured self-reinforced PLGA (85L:15G)/β-TCP composite was made by high-energy ball-milling. Self-reinforced microsized PLGA (95L:5G)/β-TCP composite was prepared by melt-compounding. The composites were characterized by gas chromatography, Ubbelohde viscometry, scanning electron microscopy, laser diffractometry, and standard mechanical tests. Four groups of implants were prepared for the controlled laboratory study employing a minipig animal model. Implants in the first two groups were prepared from nanostructured and microsized PLGA/β-TCP composites respectively. Microroughened titanium-alloy (Ti6Al4V) implants served as positive intra-animal control, and pure PLGA implants as negative control. Cone-shaped implants were inserted in a random order unilaterally in the anterior cortex of the femoral shaft. Eight weeks after surgery, the mechanical strength of osteointegration of the implants was measured by a push-out test. The quality of new bone surrounding the implant was assessed by microcomputed tomography and histology. Implants made of nanostructured PLGA/β-TCP composite did not show improved mechanical osteointegration compared with the implants made of microsized PLGA/β-TCP composite. In the intra-animal comparison, the push-out force of two PLGA/β-TCP composites was 35-60% of that obtained with Ti6Al4V implants. The implant materials did not result in distinct differences in quality of new bone surrounding the implant. Copyright © 2014 Elsevier Ltd. All rights reserved.
The thermo-optical behavior of turbid composite laminates under highly energetic laser irradiations
NASA Astrophysics Data System (ADS)
Allheily, Vadim; Merlat, Lionel; Lacroix, Fabrice; Eichhorn, Alfred; L'Hostis, Gildas
2017-01-01
From their prior emergence in the military domain but also nowadays in the civilian area, unmanned air vehicles constitute a growing threat to the todays civilization. In this respect, novel laser weapons are considered to eradicate this menace and the vulnerability of typical aeronautic materials under 1.07μm-wavelength irradiations is also investigated. In this paper, Kubelka-Munk optical parameters of laminated glass fiber-reinforced plastic composites are first assessed to build up a basic analytical interaction model involving internal refraction and reflection as well as the scattering effect due to the presence of glass fibers. Moreover, a thermo-gravimetric analysis is carried out and the kinetic parameters of the decomposition reaction extracted from this test with the Friedman method are verified trough a comparison with experimental measurements.
Topography, surface properties, and tectonic evolution. [of Venus and comparison with earth
NASA Technical Reports Server (NTRS)
Mcgill, G. E.; Warner, J. L.; Malin, M. C.; Arvidson, R. E.; Eliason, E.; Nozette, S.; Reasenberg, R. D.
1983-01-01
Differences in atmospheric composition, atmospheric and lithospheric temperature, and perhaps mantle composition, suggest that the rock cycle on Venus is not similar to the earth's. While radar data are not consistent with a thick, widespread and porous regolith like that of the moon, wind-transported regolith could be cemented into sedimentary rock that would be indistinguishable from other rocks in radar returns. The elevation spectrum of Venus is strongly unimodal, in contrast to the earth. Most topographic features of Venus remain enigmatic. Two types of tectonic model are proposed: a lithosphere too thick or buoyant to participate in convective flow, and a lithosphere which, in participating in convective flow, implies the existence of plate tectonics. Features consistent with earth-like plate tectonics have not been recognized.
Comparison of Newly Acquired Lunar Spectra with the Titanium Abundance Maps Derived from Clementine
NASA Technical Reports Server (NTRS)
Holsclaw, G. M.; McClintock, W. E.; Robinson, M. S.
2005-01-01
The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) is one of seven science instruments onboard NASA's MESSENGER mission, currently en-route to the planet Mercury. One of MASCS s components, referred to as the Visible and Near Infrared Spectrograph (VIRS), will record reflectance spectra of the surface in order to characterize the mineralogy of the planet [1]. The lunar highlands and the average mercurian crust are proposed to be compositionally similar [i.e. 2]. In preparation to interpret VIRS reflectance spectra of Mercury to be first obtained in 2008, the Moon has been observed with an engineering model of the VIRS from a ground-based telescope. In this study, the ultraviolet and visible region of the spectrum is compared with titanium content in the lunar regolith.
[Sex as a variable in research in psychotherapy, psychosomatic and medical psychology].
Davies-Osterkamp, S
1994-01-01
All empirical studies (n = 113) published in "Psychotherapie, Psychosomatik, medizinische Psychologie" between 1988 and 1992 where analyzed concerning the question whether sex comparisons in at least one of the dependent variables were reported. The main results were that sex composition of the samples was not reported in 17% of the cases and that 62% of the studies did not report on sex comparisons. Only 25% of studies reported on sex differences in a metric which allows using this study for meta-analysis. Except for sample-size and sex-composition there were no study-features which distinguished between studies reporting or not reporting sex comparisons.
Durability and mechanical properties of silane cross-linked wood thermoplastic composites
Magnus Bengtsson; Nicole M. Stark; Kristiina Oksman
2007-01-01
In this study, silane cross-linked woodâpolyethylene composite profiles were manufactured by reactive extrusion. These composites were evaluated regarding their durability and mechanical properties in comparison with two non-cross-linked woodâ polyethylene composites. An addition of only 2% w/w of silane solution during manufacturing was enough to achieve almost 60%...
Cellular Magnesium Matrix Foam Composites for Mechanical Damping Applications
NASA Astrophysics Data System (ADS)
Shunmugasamy, Vasanth Chakravarthy; Mansoor, Bilal; Gupta, Nikhil
2016-01-01
The damping characteristics of metal alloys and metal matrix composites are relevant to the automotive, aerospace, and marine structures. Use of lightweight materials can help in increasing payload capacity and in decreasing fuel consumption. Lightweight composite materials possessing high damping capabilities that can be designed as structural members can greatly benefit in addressing these needs. In this context, the damping properties of lightweight metals such as aluminum and magnesium and their respective composites have been studied in the existing literature. This review focuses on analyzing the damping properties of aluminum and magnesium alloys and their cellular composites. The damping properties of various lightweight alloys and composites are compared on the basis of their density to understand the potential for weight saving in structural applications. Magnesium alloys are observed to possess better damping properties in comparison to aluminum. However, aluminum matrix syntactic foams reinforced with silicon carbide hollow particles possess a damping capacity and density comparable to magnesium alloy. By using the data presented in the study, composites with specific compositions and properties can be selected for a given application. In addition, the comparison of the results helps in identifying the areas where attention needs to be focused to address the future needs.
Li, Longbiao
2016-01-01
In this paper, the comparison of cyclic hysteresis behavior between cross-ply C/SiC and SiC/SiC ceramic-matrix composites (CMCs) has been investigated. The interface slip between fibers and the matrix existed in the matrix cracking mode 3 and mode 5, in which matrix cracking and interface debonding occurred in the 0° plies are considered as the major reason for hysteresis loops of cross-ply CMCs. The hysteresis loops of cross-ply C/SiC and SiC/SiC composites corresponding to different peak stresses have been predicted using present analysis. The damage parameter, i.e., the proportion of matrix cracking mode 3 in the entire matrix cracking modes of the composite, and the hysteresis dissipated energy increase with increasing peak stress. The damage parameter and hysteresis dissipated energy of C/SiC composite under low peak stress are higher than that of SiC/SiC composite; However, at high peak stress, the damage extent inside of cross-ply SiC/SiC composite is higher than that of C/SiC composite as more transverse cracks and matrix cracks connect together. PMID:28787861
Li, Longbiao
2016-01-19
In this paper, the comparison of cyclic hysteresis behavior between cross-ply C/SiC and SiC/SiC ceramic-matrix composites (CMCs) has been investigated. The interface slip between fibers and the matrix existed in the matrix cracking mode 3 and mode 5, in which matrix cracking and interface debonding occurred in the 0° plies are considered as the major reason for hysteresis loops of cross-ply CMCs. The hysteresis loops of cross-ply C/SiC and SiC/SiC composites corresponding to different peak stresses have been predicted using present analysis. The damage parameter, i.e. , the proportion of matrix cracking mode 3 in the entire matrix cracking modes of the composite, and the hysteresis dissipated energy increase with increasing peak stress. The damage parameter and hysteresis dissipated energy of C/SiC composite under low peak stress are higher than that of SiC/SiC composite; However, at high peak stress, the damage extent inside of cross-ply SiC/SiC composite is higher than that of C/SiC composite as more transverse cracks and matrix cracks connect together.
Leblanc, Lawrence A; Buckel, Jeffrey A; Conover, David O; Brownawell, Bruce J
2006-08-01
A field-based study regarding uptake of polychlorinated biphenyl compounds (PCBs) by young-of-the-year (YOY) bluefish (Pomatomus saltatrix) was initiated to test a steady-state model of bioaccumulation and trophic transfer in a rapidly growing fish. Determination of prey composition as well as size-dependent growth and specific consumption rates for YOY bluefish from separate field and laboratory studies enabled the input of these species-specific parameters into the model. Furthermore, the time and duration of the exposure of YOY bluefish to dissolved PCBs from a well-characterized system (Hudson River, USA) was well known. Patterns of accumulation of individual PCB congeners differed relative to the accumulation of total PCBs, with the greatest net accumulation occurring for the higher-molecular-weight congeners. Comparison of lipid-normalized bioaccumulation factors (BAFs) with the octanol-water partition coefficients of individual PCB congeners revealed bluefish to be above the BAFs predicted by lipid-based equilibrium partitioning, suggesting that uptake from food is an important source of PCBs in YOY bluefish. Comparison of measured BAFs with values predicted by a steady-state, food-chain model showed good first-order agreement.
NASA Technical Reports Server (NTRS)
Childers, Brooks A.; Froggatt, Mark E.; Allison, Sidney G.; Moore, Thomas C., Sr.; Hare, David A.; Batten, Christopher F.; Jegley, Dawn C.
2001-01-01
This paper describes the use of a fiber optic system to measure strain at thousands of locations along optical fibers where weakly reflecting Bragg gratings have been photoetched. The optical fibers were applied to an advanced composite transport wing along with conventional foil strain gages. A comparison of the fiber optic and foil gage systems used for this test will be presented including: a brief description of both strain data systems; a discussion of the process used for installation of the optical fiber; comparative data from the composite wing test; the processes used for the location and display of the high density fiber optic data. Calibration data demonstrating the potential accuracy of the fiber optic system will also be presented. The opportunities for industrial and commercial applications will be discussed. The fiber optic technique is shown to be a valuable augmentation to foil strain gages providing insight to structural behavior previously requiring reliance on modeling.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fuchs, Yvonne T.
2008-01-01
Simulation of multi-terrain impact has been identified as an important research area for improved prediction of rotorcraft crashworthiness within the NASA Subsonic Rotary Wing Aeronautics Program on Rotorcraft Crashworthiness. As part of this effort, two vertical drop tests were conducted of a 5-ft-diameter composite fuselage section into water. For the first test, the fuselage section was impacted in a baseline configuration without energy absorbers. For the second test, the fuselage section was retrofitted with a composite honeycomb energy absorber. Both tests were conducted at a nominal velocity of 25-ft/s. A detailed finite element model was developed to represent each test article and water impact was simulated using both Arbitrary Lagrangian Eulerian (ALE) and Smooth Particle Hydrodynamics (SPH) approaches in LS-DYNA, a nonlinear, explicit transient dynamic finite element code. Analytical predictions were correlated with experimental data for both test configurations. In addition, studies were performed to evaluate the influence of mesh density on test-analysis correlation.
Elastomechanics of carbon nanotubes and their compositions
NASA Astrophysics Data System (ADS)
Yakobson, B. I.
1997-03-01
Nanotubes and their compositions have already revealed and promise more of unique mechanical properties, which are due to the three factors, corresponding to three different scales of organization. (i) The strength of the constituent C-C bonds, (ii) the spatial arrangement of these bonds within the tube layers, and (iii) the relatively weak interlayer and intertube forces. While the first has to be addressed by ab initio methods or by parameterization of empirical potentials, the important role of the two others can be investigated on a phenomenological level. Based on our shell model,(B.I. Yakobson, C. Brabec, J. Bernholc, PRL 76, 2511 (1996); also J. Comp.-Aided Mater. Design 3, 173 (1996).) we show how much can reasonably be expected for various mechanical parameters of nanotubes, in torsion, tension/compression, bending etc. Comparison with experimental data poses problems for future studies. We will discuss nanomechanics of NT compositions, their 2D and 3D arrays, largely determined by the weak lateral interactions, mostly of van Der Waals nature.
NASA Technical Reports Server (NTRS)
Hippensteele, S. A.; Russell, L. M.; Torres, F. J.
1985-01-01
Local heat transfer coefficients were experimentally mapped along the midchord of a five-time-size turbine blade airfoil in a static cascade operated at room temperature over a range of Reynolds numbers. The test surface consisted of a composite of commercially available materials: a mylar sheet with a layer of cholesteric liquid crystals, that change color with temperature, and a heater sheet made of a carbon-impregnated paper, that produces uniform heat flux. After the initial selection and calibration of the composite sheet, accurate, quantitative, and continuous heat transfer coefficients were mapped over the airfoil surface. The local heat transfer coefficients are presented for Reynolds numbers from 2.8 x 10 to the 5th power to 7.6 x 10 to the 5th power. Comparisons are made with analytical values of heat transfer coefficients obtained from the STAN5 boundary layer code. Also, a leading edge separation bubble was revealed by thermal and flow visualization.
The effect of matrix properties and fiber properties on impact failure mechanics
NASA Technical Reports Server (NTRS)
Elber, W.
1983-01-01
The low-velocity impact problem in graphite/epoxy composite sheets must be solved before large amounts of that material can be used in commercial aircraft. Many of the low-velocity impacts that affect aircraft parts occur during normal ground operations and maintenance. Service equipment and tools have masses above 1 kg, and at velocities of less than 3 m/s can impact structural parts with energies higher than composites can endure without degradation of stiffness or strength. Simple solutions were developed for large-mass, low-velocity impacts which can be modeled as quasi-static events. Static test data and impact data show that the fiber properties control the impact energy which can be absorbed before penetration. Matrix shear strength and peel resistance control the extent of delamination. Comparison of results from tough matrix and brittle matrix composites show that although tough matrices reduce the extent of delamination, they lead to more fiber damage in the contact area.
Temperature Distribution in a Composite of Opaque and Semitransparent Spectral Layers
NASA Technical Reports Server (NTRS)
Siegel, Robert
1997-01-01
The analysis of radiative transfer becomes computationally complex for a composite when there are multiple layers and multiple spectral bands. A convenient analytical method is developed for combined radiation and conduction in a composite of alternating semitransparent and opaque layers. The semi- transparent layers absorb, scatter, and emit radiation, and spectral properties with large scattering are included. The two-flux method is used, and its applicability is verified by comparison with a basic solution in the literature. The differential equation in the two-flux method Is solved by deriving a Green's function. The solution technique is applied to analyze radiation effects in a multilayer zirconia thermal barrier coating with internal radiation shields for conditions in an aircraft engine combustor. The zirconia radiative properties are modeled by two spectral bands. Thin opaque layers within the coating are used to decrease radiant transmission that can degrade the zirconia insulating ability. With radiation shields, the temperature distributions more closely approach the opaque limit that provides the lowest metal wall temperatures.
Removal of hexavalent chromium from wastewater using a new composite chitosan biosorbent.
Boddu, Veera M; Abburi, Krishnaiah; Talbott, Jonathan L; Smith, Edgar D
2003-10-01
A new composite chitosan biosorbent was prepared by coating chitosan, a glucosamine biopolymer, onto ceramic alumina. The composite bioadsorbent was characterized by high-temperature pyrolysis, porosimetry, scanning electron microscopy, and X-ray photoelectron spectroscopy. Batch isothermal equilibrium and continuous column adsorption experiments were conducted at 25 degrees C to evaluate the biosorbent for the removal of hexavalent chromium from synthetic as well as field samples obtained from chrome plating facilities. The effect of pH, sulfate, and chloride ion on adsorption was also investigated. The biosorbent loaded with Cr(VI) was regenerated using 0.1 M sodium hydroxide solution. A comparison of the results of the present investigation with those reported in the literature showed that chitosan coated on alumina exhibits greater adsorption capacity for chromium(VI). Further, experimental equilibrium data were fitted to Langmuir and Freundlich adsorption isotherms, and values of the parameters of the isotherms are reported. The ultimate capacity obtained from the Langmuir model is 153.85 mg/g chitosan.
BEAN MODEL AND AC LOSSES IN Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}/Ag TAPES
DOE Office of Scientific and Technical Information (OSTI.GOV)
SUENAGA,M.; CHIBA,T.; WIESMANN,H.J.
The Bean model is almost solely used to interpret ac losses in the powder-in-tube processed composite conductor, Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10}/Ag. In order to examine the limits of the applicability of the model, a detailed comparison was made between the values of critical current density J{sub c} for Bi(2223)/Ag tapes which were determined by standard four-probe-dc measurement, and which were deduced from the field dependence of the ac losses utilizing the model. A significant inconsistency between these values of J{sub c} were found, particularly at high fields. Possible sources of the discrepancies are discussed.
Electric Composition Cost Comparison.
ERIC Educational Resources Information Center
Joint Committee on Printing, Washington, DC.
Experience of the U.S. Government Printing Office and others has shown that electronic composition of computer processed data is more economical than printing from camera copy produced by the line printers of digital computers. But electronic composition of data not already being processed by computer is not necessarily economical. This analysis…
Toxicity testing of restorative dental materials using brine shrimp larvae (Artemia salina).
Milhem, Manar M; Al-Hiyasat, Ahmad S; Darmani, Homa
2008-01-01
This study investigated the effect of extracts of different composites, glass ionomer cement (GIC)s and compomers on the viability of brine shrimp larvae. Ethanolic extracts of four dental composites (Z-100; Solitaire 2; Filtek P60 and Synergy), a conventional GIC (Ketac-Fil), a resin-modified glass ionomer cement (Vitremer), two compomers (F2000; Dyract AP), and a flowable compomer (Dyract Flow) were prepared from each material. Following evaporation of the ethanol, the extracts were resuspended in distilled water, which was then used to test the effects on the viability of brine shrimp larvae. For the composites, the extract of Synergy was the least toxic (88% viability) followed by the extracts of Solitaire 2, Z100 and P60 (75%, 67.5% and 50% viability, respectively). One-way ANOVA revealed highly significant differences between the resin composite materials (p<0.001). Follow-up comparison between the composite groups by Tukey's pairwise multiple-comparison test (alpha =0.05) showed that the extract of Synergy was significantly less toxic than the extracts of all the other materials except that of Solitaire 2. The compomers showed 100% lethality, while the percentage of viable larvae for the extracts of Ketac-Fil, and Vitremer were 32.3%, and 37.0%, respectively. One-way ANOVA revealed highly significant differences between the groups of materials (p<0.001). Follow-up comparison between the groups by Tukey's test (alpha = 0.05) showed that the toxic effect of the extracts of the compomers were significantly greater than that of Ketac-Fil, and Vitremer. The differences in the toxic effects of Vitremer and Ketac-Fil were not statistically significant. In conclusion, the toxicity of composite materials varied according to their chemical composition. Compomers were the most lethal materials to brine shrimp larvae followed by GICs and then composites.
Study of Interesting Solidification Phenomena on the Ground and in Space (MEPHISTO)
NASA Technical Reports Server (NTRS)
Alexander, J. Iwan D.; Favier, J.-J.; Garandet, J.-P.
1999-01-01
Real-time Seebeck voltage variations in a Sn-Bi melt during directional solidification in the MEPHISTO spaceflight experiment flown on the USMP-3 mission, have been correlated with well-characterized thruster firings and an Orbiter Main System (OMS) burn. The Seebeck voltage measurement is related to the response of the instantaneous average melt composition at the melt-crystal interface. This allowed us to make a direct comparison of numerical simulations with the experimentally obtained Seebeck signals. Based on the results of preflight and real-time computations, several well-defined thruster firing events were programmed to occur at specific times during the experiment. In particular, we simulated the effects of the thruster firings on melt and crystal composition in a directionally solidifying Sn-Bi alloy. The relative accelerations produced by the firings were simulated by impulsive accelerations of the same magnitude, duration and orientation as the requested firings. A comparison of the simulation results with the Seebeck signal indicates that there is a good agreement between the two. This unique opportunity allows us to make the first quantitative characterization of actual g-jitter effects on an actual crystal growth experiment and to calibrate our models of g-jitter effects on crystal growth.
Franzen, Lutz; Mathes, Christiane; Hansen, Steffi; Windbergs, Maike
2013-06-01
Hair follicles have recently gained a lot of interest for dermal drug delivery. They provide facilitated penetration into the skin and a high potential to serve as a drug depot. In this area of research, excised pig ear is a widely accepted in vitro model to evaluate penetration of drug delivery into hair follicles. However, a comparison of human and porcine follicles in terms of chemical composition has not been performed so far. In this study, we applied confocal Raman microscopy as a chemically selective imaging technique to compare human and porcine follicle composition and to visualize component distribution within follicle cross-sections. Based on the evaluation of human and porcine Raman spectra optical similarity for both species was successfully confirmed. Furthermore, cyanoacrylate skin surface biopsies, which are generally used to determine the extent of follicular penetration, were imaged by a novel complementary analytical approach combining confocal Raman microscopy and optical profilometry. This all-encompassing analysis allows investigation of intactness and component distribution of the excised hair bulb in three dimensions. Confocal Raman microscopy shows a high potential as a noninvasive and chemically selective technique for the analysis of trans-follicular drug delivery.
NASA Astrophysics Data System (ADS)
Franzen, Lutz; Mathes, Christiane; Hansen, Steffi; Windbergs, Maike
2013-06-01
Hair follicles have recently gained a lot of interest for dermal drug delivery. They provide facilitated penetration into the skin and a high potential to serve as a drug depot. In this area of research, excised pig ear is a widely accepted in vitro model to evaluate penetration of drug delivery into hair follicles. However, a comparison of human and porcine follicles in terms of chemical composition has not been performed so far. In this study, we applied confocal Raman microscopy as a chemically selective imaging technique to compare human and porcine follicle composition and to visualize component distribution within follicle cross-sections. Based on the evaluation of human and porcine Raman spectra optical similarity for both species was successfully confirmed. Furthermore, cyanoacrylate skin surface biopsies, which are generally used to determine the extent of follicular penetration, were imaged by a novel complementary analytical approach combining confocal Raman microscopy and optical profilometry. This all-encompassing analysis allows investigation of intactness and component distribution of the excised hair bulb in three dimensions. Confocal Raman microscopy shows a high potential as a noninvasive and chemically selective technique for the analysis of trans-follicular drug delivery.
Study of Interesting Solidification Phenomena on the Ground and in Space (MEPHISTO)
NASA Technical Reports Server (NTRS)
Favier, J.-J.; Iwan, J.; Alexander, D.; Garandet, J.-P.
1998-01-01
Real-time Seebeck voltage variations in a Sn-Bi melt during directional solidification in the MEPHISTO spaceflight experiment flown on the USMP-3 mission, can be correlated with well characterized thruster firings and an Orbiter Main System (OMS) burn. The Seebeck voltage measurement is related to the response of the instantaneous average melt composition at the melt-crystal interface. This allowed us to make a direct comparison of numerical simulations with the experimentally obtained Seebeck signals. Based on the results of preflight and real-time computations, several well-defined thruster firing events were programmed to occur at specific times during the experiment. In particular, we simulated the effects of the thruster firings on melt and crystal composition in a directionally solidifying Sn-Bi alloy. The relative accelerations produced by the firings were simulated by impulsive accelerations of the same magnitude, duration and orientation as the requested firings. A comparison of the simulation results with the Seebeck signal indicates that there is a good agreement between the two. This unique opportunity allows us, for the first time, to quantitatively characterize actual g-jitter effects on an actual crystal growth experiment and to properly calibrate our models of g-jitter effects on crystal growth.
Evaluation of CESM1 (WACCM) with Observations of Stratospheric Composition
NASA Astrophysics Data System (ADS)
Kinnison, Doug; Froidevaux, Lucien; Garcia, Rolando; Fuller, Ryan
2017-04-01
The Community Earth System Model version 1 (CESM1) Whole Atmosphere Community Climate Model (WACCM) is used in this study. CESM1 (WACCM) includes a detailed representation of tropospheric through lower thermospheric chemistry and physical processes. Simulations for this work were based on scenarios defined by the Chemistry Climate Model Initiative (CCMI). These scenarios included both free-running (FR) and specified-dynamics versions (SD) of CESM1 (WACCM). Comparisons were made with global monthly zonal mean stratospheric data records from satellite-based remote measurements created by the Global Ozone Chemistry and Related Trace gas Data Records for the Stratosphere (GOZCARDS) project. These data records were drawn from high quality measurements of stratospheric composition starting in 1979 for ozone and in the early 1990s for other species. We discuss stratospheric variability and trends through analyses of observed time series of ozone (O3), hydrogen chloride (HCl), nitrous oxide (N2O), nitric acid (HNO3), and water vapor (H2O), and we contrast the fits from the FR and SD model versions. Conclusions from this work have aided in the development of a new version of CESM (WACCM) that will be used in the next Intergovernmental Panel on Climate Change (IPCC) Coupled Model Intercomparison Project Phase 6 (CMIP6) assessment.
Li, Longbiao
2016-01-01
In this paper, comparisons of damage evolution between 2D C/SiC and SiC/SiC ceramic-matrix composites (CMCs) under tension–tension cyclic fatigue loading at room and elevated temperatures have been investigated. Fatigue hysteresis loops models considering multiple matrix cracking modes in 2D CMCs have been developed based on the damage mechanism of fiber sliding relative to the matrix in the interface debonded region. The relationships between the fatigue hysteresis loops, fatigue hysteresis dissipated energy, fatigue peak stress, matrix multiple cracking modes, and interface shear stress have been established. The effects of fiber volume fraction, fatigue peak stress and matrix cracking mode proportion on fatigue hysteresis dissipated energy and interface debonding and sliding have been analyzed. The experimental fatigue hysteresis dissipated energy of 2D C/SiC and SiC/SiC composites at room temperature, 550 °C, 800 °C, and 1100 °C in air, and 1200 °C in vacuum corresponding to different fatigue peak stresses and cycle numbers have been analyzed. The interface shear stress degradation rate has been obtained through comparing the experimental fatigue hysteresis dissipated energy with theoretical values. Fatigue damage evolution in C/SiC and SiC/SiC composites has been compared using damage parameters of fatigue hysteresis dissipated energy and interface shear stress degradation rate. It was found that the interface shear stress degradation rate increases at elevated temperature in air compared with that at room temperature, decreases with increasing loading frequency at room temperature, and increases with increasing fatigue peak stress at room and elevated temperatures. PMID:28773966
Comparison of time-dependent changes in the surface hardness of different composite resins
Ozcan, Suat; Yikilgan, Ihsan; Uctasli, Mine Betul; Bala, Oya; Kurklu, Zeliha Gonca Bek
2013-01-01
Objective: The aim of this study was to evaluate the change in surface hardness of silorane-based composite resin (Filtek Silorane) in time and compare the results with the surface hardness of two methacrylate-based resins (Filtek Supreme and Majesty Posterior). Materials and Methods: From each composite material, 18 wheel-shaped samples (5-mm diameter and 2-mm depth) were prepared. Top and bottom surface hardness of these samples was measured using a Vicker's hardness tester. The samples were then stored at 37°C and 100% humidity. After 24 h and 7, 30 and 90 days, the top and bottom surface hardness of the samples was measured. In each measurement, the rate between the hardness of the top and bottom surfaces were recorded as the hardness rate. Statistical analysis was performed by one-way analysis of variance, multiple comparisons by Tukey's test and binary comparisons by t-test with a significance level of P = 0.05. Results: The highest hardness values were obtained from each two surfaces of Majesty Posterior and the lowest from Filtek Silorane. Both the top and bottom surface hardness of the methacrylate based composite resins was high and there was a statistically significant difference between the top and bottom hardness values of only the silorane-based composite, Filtek Silorane (P < 0.05). The lowest was obtained with Filtek Silorane. The hardness values of all test groups increased after 24 h (P < 0.05). Conclusion: Although silorane-based composite resin Filtek Silorane showed adequate hardness ratio, the use of incremental technic during application is more important than methacrylate based composites. PMID:24966724
NASA Technical Reports Server (NTRS)
Lettenmaier, Dennis P. (Editor); Rind, D. (Editor)
1992-01-01
The present conference on the hydrological aspects of global climate change discusses land-surface schemes for future climate models, modeling of the land-surface boundary in climate models as a composite of independent vegetation, a land-surface hydrology parameterizaton with subgrid variability for general circulation models, and conceptual aspects of a statistical-dynamical approach to represent landscape subgrid-scale heterogeneities in atmospheric models. Attention is given to the impact of global warming on river runoff, the influence of atmospheric moisture transport on the fresh water balance of the Atlantic drainage basin, a comparison of observations and model simulations of tropospheric water vapor, and the use of weather types to disaggregate the prediction of general circulation models. Topics addressed include the potential response of an Arctic watershed during a period of global warming and the sensitivity of groundwater recharge estimates to climate variability and change.
Transport Phenomena During Equiaxed Solidification of Alloys
NASA Technical Reports Server (NTRS)
Beckermann, C.; deGroh, H. C., III
1997-01-01
Recent progress in modeling of transport phenomena during dendritic alloy solidification is reviewed. Starting from the basic theorems of volume averaging, a general multiphase modeling framework is outlined. This framework allows for the incorporation of a variety of microscale phenomena in the macroscopic transport equations. For the case of diffusion dominated solidification, a simplified set of model equations is examined in detail and validated through comparisons with numerous experimental data for both columnar and equiaxed dendritic growth. This provides a critical assessment of the various model assumptions. Models that include melt flow and solid phase transport are also discussed, although their validation is still at an early stage. Several numerical results are presented that illustrate some of the profound effects of convective transport on the final compositional and structural characteristics of a solidified part. Important issues that deserve continuing attention are identified.
ICAN: A versatile code for predicting composite properties
NASA Technical Reports Server (NTRS)
Ginty, C. A.; Chamis, C. C.
1986-01-01
The Integrated Composites ANalyzer (ICAN), a stand-alone computer code, incorporates micromechanics equations and laminate theory to analyze/design multilayered fiber composite structures. Procedures for both the implementation of new data in ICAN and the selection of appropriate measured data are summarized for: (1) composite systems subject to severe thermal environments; (2) woven fabric/cloth composites; and (3) the selection of new composite systems including those made from high strain-to-fracture fibers. The comparisons demonstrate the versatility of ICAN as a reliable method for determining composite properties suitable for preliminary design.
Martin, O; Sauvant, D
2010-12-01
The prediction of the control of nutrient partitioning, particularly energy, is a major issue in modelling dairy cattle performance. The proportions of energy channelled to physiological functions (growth, maintenance, gestation and lactation) change as the animal ages and reproduces, and according to its genotype and nutritional environment. This is the first of two papers describing a teleonomic model of individual performance during growth and over repeated reproductive cycles throughout the lifespan of dairy cattle. The conceptual framework is based on the coupling of a regulating sub-model providing teleonomic drives to govern the work of an operating sub-model scaled with genetic parameters. The regulating sub-model describes the dynamic partitioning of a mammal female's priority between life functions targeted to growth (G), ageing (A), balance of body reserves (R) and nutrient supply of the unborn (U), newborn (N) and suckling (S) calf. The so-called GARUNS dynamic pattern defines a trajectory of relative priorities, goal directed towards the survival of the individual for the continuation of the specie. The operating sub-model describes changes in body weight (BW) and composition, foetal growth, milk yield and composition and food intake in dairy cows throughout their lifespan, that is, during growth, over successive reproductive cycles and through ageing. This dynamic pattern of performance defines a reference trajectory of a cow under normal husbandry conditions and feed regimen. Genetic parameters are incorporated in the model to scale individual performance and simulate differences within and between breeds. The model was calibrated for dairy cows with literature data. The model was evaluated by comparison with simulations of previously published empirical equations of BW, body condition score, milk yield and composition and feed intake. This evaluation showed that the model adequately simulates these production variables throughout the lifespan, and across a range of dairy cattle genotypes.
NASA Technical Reports Server (NTRS)
Noor, A. K.; Malik, M.
2000-01-01
A study is made of the effects of variation in the lamination and geometric parameters, and boundary conditions of multi-layered composite panels on the accuracy of the detailed response characteristics obtained by five different modeling approaches. The modeling approaches considered include four two-dimensional models, each with five parameters to characterize the deformation in the thickness direction, and a predictor-corrector approach with twelve displacement parameters. The two-dimensional models are first-order shear deformation theory, third-order theory; a theory based on trigonometric variation of the transverse shear stresses through the thickness, and a discrete layer theory. The combination of the following four key elements distinguishes the present study from previous studies reported in the literature: (1) the standard of comparison is taken to be the solutions obtained by using three-dimensional continuum models for each of the individual layers; (2) both mechanical and thermal loadings are considered; (3) boundary conditions other than simply supported edges are considered; and (4) quantities compared include detailed through-the-thickness distributions of transverse shear and transverse normal stresses. Based on the numerical studies conducted, the predictor-corrector approach appears to be the most effective technique for obtaining accurate transverse stresses, and for thermal loading, none of the two-dimensional models is adequate for calculating transverse normal stresses, even when used in conjunction with three-dimensional equilibrium equations.
Anchorage strength models for end-debonding predictions in RC beams strengthened with FRP composites
NASA Astrophysics Data System (ADS)
Nardini, V.; Guadagnini, M.; Valluzzi, M. R.
2008-05-01
The increase in the flexural capacity of RC beams obtained by externally bonding FRP composites to their tension side is often limited by the premature and brittle debonding of the external reinforcement. An in-depth understanding of this complex failure mechanism, however, has not yet been achieved. With specific regard to end-debonding failure modes, extensive experimental observations reported in the literature highlight the important distinction, often neglected in strength models proposed by researchers, between the peel-off and rip-off end-debonding types of failure. The peel-off failure is generally characterized by a failure plane located within the first few millimetres of the concrete cover, whilst the rip-off failure penetrates deeper into the concrete cover and propagates along the tensile steel reinforcement. A new rip-off strength model is described in this paper. The model proposed is based on the Chen and Teng peel-off model and relies upon additional theoretical considerations. The influence of the amount of the internal tensile steel reinforcement and the effective anchorage length of FRP are considered and discussed. The validity of the new model is analyzed further through comparisons with test results, findings of a numerical investigation, and a parametric study. The new rip-off strength model is assessed against a database comprising results from 62 beams tested by various researchers and is shown to yield less conservative results.
Lovestead, Tara M.; Burger, Jessica L.; Schneider, Nico; Bruno, Thomas J.
2018-01-01
Commercial and military aviation is faced with challenges that include high fuel costs, undesirable emissions, and supply chain insecurity that result from the reliance on petroleum-based feedstocks. The development of alternative gas turbine fuels from renewable resources will likely be part of addressing these issues. The United States has established a target for one billion gallons of renewable fuels to enter the supply chain by 2018. These alternative fuels will have to be very similar in properties, chemistry, and composition to existing fuels. To further this goal, the National Jet Fuel Combustion Program (a collaboration of multiple U.S. agencies under the auspices of the Federal Aviation Administration, FAA) is coordinating measurements on three reference gas turbine fuels to be used as a basis of comparison. These fuels are reference fuels with certain properties that are at the limits of experience. These fuels include a low viscosity, low flash point, high hydrogen content “best case” JP-8 (POSF 10264) fuel, a relatively high viscosity, high flash point, low hydrogen content “worst case” JP-5 (POSF 10259) fuel, and a Jet-A (POSF 10325) fuel with relatively average properties. A comprehensive speciation of these fuels is provided in this paper by use of high resolution gas chromatography/quadrupole time-of-flight – mass spectrometry (GC/QToF-MS), which affords unprecedented resolution and exact molecular formula capabilities. The volatility information as derived from the measurement of the advanced distillation curve temperatures, Tk and Th, provides an approximation of the vapor liquid equilibrium and examination of the composition channels provides detailed insight into thermochemical data. A comprehensive understanding of the compositional and thermophysical data of gas turbine fuels is required not only for comparison but also for modeling of such complex mixtures, which will, in turn, aid in the development of new fuels with the goals of diversified feedstocks, decreased pollution, and increased efficiency. PMID:29706688
Impedance Based Detection of Delamination in Composite Structures
NASA Astrophysics Data System (ADS)
Djemana, M.; Hrairi, M.
2017-03-01
Nowadays commercial and military aircrafts are increasingly using composite materials to take advantage of their excellent specific strength and stiffness properties but impacts on composites due to bird-strike, hail-storm cause barely visible impact damage (BVID) that underscores the need for robust structural health monitoring methods. Hence, damage identification in composite materials is a widely researched area that has to deal with problems coming from the anisotropic nature of composites and the fact that much of the damage occurs beneath the top surface of the laminate. This paper focuses on understanding self-sensing piezoelectric wafer active sensors (PWAS) to conduct electromechanical impedance (EMI) in glass fibre reinforced polymer composite to perform structural health monitoring. With the aid of a 3D ANSYS finite element model, an analysis of different techniques for the detection of position and size of a delamination in a composite structure using piezoelectric patches had been performed. The real part of the impedance is used because it is known to be more reactive to damage or changes in the structure’s integrity and less sensitive to ambient temperature changes compared to the imaginary part. Comparison with experimental results is presented to validate the FE results. The experimental setup utilizes as its main apparatus an impedance analyser HP4194 that reads the in-situ EMI of PWAS bonded to the monitored composite structure. A good match between experimental and numerical results has been observed for low and high frequencies. The analysis in this paper provides necessary basis for delamination detection in composite structures using EMI technique