Sample records for composition muscle strength

  1. Estimation of 1RM for knee extension based on the maximal isometric muscle strength and body composition.

    PubMed

    Kanada, Yoshikiyo; Sakurai, Hiroaki; Sugiura, Yoshito; Arai, Tomoaki; Koyama, Soichiro; Tanabe, Shigeo

    2017-11-01

    [Purpose] To create a regression formula in order to estimate 1RM for knee extensors, based on the maximal isometric muscle strength measured using a hand-held dynamometer and data regarding the body composition. [Subjects and Methods] Measurement was performed in 21 healthy males in their twenties to thirties. Single regression analysis was performed, with measurement values representing 1RM and the maximal isometric muscle strength as dependent and independent variables, respectively. Furthermore, multiple regression analysis was performed, with data regarding the body composition incorporated as another independent variable, in addition to the maximal isometric muscle strength. [Results] Through single regression analysis with the maximal isometric muscle strength as an independent variable, the following regression formula was created: 1RM (kg)=0.714 + 0.783 × maximal isometric muscle strength (kgf). On multiple regression analysis, only the total muscle mass was extracted. [Conclusion] A highly accurate regression formula to estimate 1RM was created based on both the maximal isometric muscle strength and body composition. Using a hand-held dynamometer and body composition analyzer, it was possible to measure these items in a short time, and obtain clinically useful results.

  2. Association between body composition and stair negotiation ability among individuals >55 years of age: a cross-sectional study

    PubMed Central

    Dip, Renata Maciulis; Cabrera, Marcos AS; Prato, Sabrina Ferrari

    2017-01-01

    Background Loss of muscle strength exerts a considerable impact on the quality of life and mortality of older adults. The present household survey study measured body composition and muscle strength with the aim of analyzing the roles of low lean mass, low muscle strength and obesity in stair negotiation ability and the effect of comorbidities on the relationship between body composition and functional capacity. Methods Body composition was assessed using bioelectrical impedance analysis and muscle strength was assessed with a hand grip dynamometer. The study population comprised individuals >55 years of age from a medium-sized Brazilian municipality. The sample included 451 participants. Results A total of 368 subjects were interviewed; their ages varied from 56 to 91 years. Among males, low muscle strength was associated with stair negotiation difficulty independent of muscle mass, age and obesity but muscle mass was not. However, when we analyzed comorbidities and body composition jointly, chronic lower limb pain and obesity were independently associated with stair negotiation difficulty but body composition and age were not. Among women, after comorbidities were included into the model, low muscle strength and obesity remained associated with stair negotiation difficulty as chronic lower limb pain and depression. The relationship between muscle function and comorbidities is discussed in this article. PMID:28860730

  3. Association between body composition and stair negotiation ability among individuals >55 years of age: a cross-sectional study.

    PubMed

    Dip, Renata Maciulis; Cabrera, Marcos As; Prato, Sabrina Ferrari

    2017-01-01

    Loss of muscle strength exerts a considerable impact on the quality of life and mortality of older adults. The present household survey study measured body composition and muscle strength with the aim of analyzing the roles of low lean mass, low muscle strength and obesity in stair negotiation ability and the effect of comorbidities on the relationship between body composition and functional capacity. Body composition was assessed using bioelectrical impedance analysis and muscle strength was assessed with a hand grip dynamometer. The study population comprised individuals >55 years of age from a medium-sized Brazilian municipality. The sample included 451 participants. A total of 368 subjects were interviewed; their ages varied from 56 to 91 years. Among males, low muscle strength was associated with stair negotiation difficulty independent of muscle mass, age and obesity but muscle mass was not. However, when we analyzed comorbidities and body composition jointly, chronic lower limb pain and obesity were independently associated with stair negotiation difficulty but body composition and age were not. Among women, after comorbidities were included into the model, low muscle strength and obesity remained associated with stair negotiation difficulty as chronic lower limb pain and depression. The relationship between muscle function and comorbidities is discussed in this article.

  4. The functional significance of hamstrings composition: is it really a "fast" muscle group?

    PubMed

    Evangelidis, Pavlos E; Massey, Garry J; Ferguson, Richard A; Wheeler, Patrick C; Pain, Matthew T G; Folland, Jonathan P

    2017-11-01

    Hamstrings muscle fiber composition may be predominantly fast-twitch and could explain the high incidence of hamstrings strain injuries. However, hamstrings muscle composition in vivo, and its influence on knee flexor muscle function, remains unknown. We investigated biceps femoris long head (BFlh) myosin heavy chain (MHC) composition from biopsy samples, and the association of hamstrings composition and hamstrings muscle volume (using MRI) with knee flexor maximal and explosive strength. Thirty-one young men performed maximal (concentric, eccentric, isometric) and explosive (isometric) contractions. BFlh exhibited a balanced MHC distribution [mean ± SD (min-max); 47.1 ± 9.1% (32.6-71.0%) MHC-I, 35.5 ± 8.5% (21.5-60.0%) MHC-IIA, 17.4 ± 9.1% (0.0-30.9%) MHC-IIX]. Muscle volume was correlated with knee flexor maximal strength at all velocities and contraction modes (r = 0.62-0.76, P < 0.01), but only associated with late phase explosive strength (time to 90 Nm; r = -0.53, P < 0.05). In contrast, BFlh muscle composition was not related to any maximal or explosive strength measure. BFlh MHC composition was not found to be "fast", and therefore composition does not appear to explain the high incidence of hamstrings strain injury. Hamstrings muscle volume explained 38-58% of the inter-individual differences in knee flexor maximum strength at a range of velocities and contraction modes, while BFlh muscle composition was not associated with maximal or explosive strength. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Irisin and FNDC5: effects of 12-week strength training, and relations to muscle phenotype and body mass composition in untrained women.

    PubMed

    Ellefsen, S; Vikmoen, O; Slettaløkken, G; Whist, J E; Nygaard, H; Hollan, I; Rauk, I; Vegge, G; Strand, T A; Raastad, T; Rønnestad, B R

    2014-09-01

    To investigate the effects of strength training on abundances of irisin-related biomarkers in skeletal muscle and blood of untrained young women, and their associations with body mass composition, muscle phenotype and levels of thyroid hormones. Eighteen untrained women performed 12 weeks of progressive whole-body heavy strength training, with measurement of strength, body composition, expression of irisin-related genes (FNDC5 and PGC1α) in two different skeletal muscles, and levels of serum-irisin and -thyroid hormones, before and after the training intervention. The strength training intervention did not result in changes in serum-irisin or muscle FNDC5 expression, despite considerable effects on strength, lean body mass (LBM) and skeletal muscle phenotype. Our data indicate that training affects irisin biology in a LBM-dependent manner. However, no association was found between steady-state serum-irisin or training-associated changes in serum-irisin and alterations in body composition. FNDC5 expression was higher in m.Biceps brachii than in m.Vastus lateralis, with individual expression levels being closely correlated, suggesting a systemic mode of transcriptional regulation. In pre-biopsies, FNDC5 expression was correlated with proportions of aerobic muscle fibers, a relationship that disappeared in post-biopsies. No association was found between serum-thyroid hormones and FNDC5 expression or serum-irisin. No evidence was found for an effect of strength training on irisin biology in untrained women, though indications were found for a complex interrelationship between irisin, body mass composition and muscle phenotype. FNDC5 expression was closely associated with muscle fiber composition in untrained muscle.

  6. Muscle strength in patients with acromegaly at diagnosis and during long-term follow-up.

    PubMed

    Füchtbauer, Laila; Olsson, Daniel S; Bengtsson, Bengt-Åke; Norrman, Lise-Lott; Sunnerhagen, Katharina S; Johannsson, Gudmundur

    2017-08-01

    Patients with acromegaly have decreased body fat (BF) and increased extracellular water (ECW) and muscle mass. Although there is a lack of systematic studies on muscle function, it is believed that patients with acromegaly may suffer from proximal muscle weakness despite their increased muscle mass. We studied body composition and muscle function in untreated acromegaly and after biochemical remission. Prospective observational study. Patients with acromegaly underwent measurements of muscle strength (dynamometers) and body composition (four-compartment model) at diagnosis ( n  = 48), 1 year after surgery ( n  = 29) and after long-term follow-up (median 11 years) ( n  = 24). Results were compared to healthy subjects. Untreated patients had increased body cell mass (113 ± 9% of predicted) and ECW (110 ± 20%) and decreased BF (67 ± 7.6%). At one-year follow-up, serum concentration of IGF-I was reduced and body composition had normalized. At baseline, isometric muscle strength in knee flexors and extensors was normal and concentric strength was modestly increased whereas grip strength and endurance was reduced. After one year, muscle strength was normal in both patients with still active disease and patients in remission. At long-term follow-up, all patients were in remission. Most muscle function tests remained normal, but isometric flexion and the fatigue index were increased to 153 ± 42% and 139 ± 28% of predicted values, respectively. Patients with untreated acromegaly had increased body cell mass and normal or modestly increased proximal muscle strength, whereas their grip strength was reduced. After biochemical improvement and remission, body composition was normalized, hand grip strength was increased, whereas proximal muscle fatigue increased. © 2017 European Society of Endocrinology.

  7. Cut points of muscle strength associated with metabolic syndrome in men.

    PubMed

    Sénéchal, Martin; McGavock, Jonathan M; Church, Timothy S; Lee, Duck-Chul; Earnest, Conrad P; Sui, Xuemei; Blair, Steven N

    2014-08-01

    The loss of muscle strength with age increases the likelihood of chronic conditions, including metabolic syndrome (MetS). However, the minimal threshold of muscle strength at which the risk for MetS increases has never been established. This study aimed to identify a threshold of muscle strength associated with MetS in men. We created receiver operating curves for muscle strength and the risk of MetS from a cross-sectional sample of 5685 men age <50 yr and 1541 men age ≥50 yr enrolled in the Aerobics Center Longitudinal Study. The primary outcome measure, the MetS, was defined according to the National Cholesterol Education Program Adult Treatment Panel III criteria. Upper and lower body muscle strength was treated as a composite measure of one-repetition maximum tests on bench and leg press and scaled to body weight. Low muscle strength was defined as the lowest age-specific 20th percentile, whereas high muscle strength was defined as composite muscle strength above the 20th percentile. In men aged <50 yr, the odds of MetS were 2.20-fold (95% confidence interval = 1.89-2.54) higher in those with low muscle strength, independent of age, smoking, and alcohol intake. The strength of this association was similar for men age ≥50 yr (odds ratio = 2.11, 95% confidence interval = 1.62-2.74). In men age < 50 yr, the composite strength threshold associated with MetS was 2.57 kg·kg body weight, whereas in men age ≥ 50 yr the threshold was 2.35 kg·kg body weight. This study is the first to identify a threshold of muscle strength associated with an increased likelihood of MetS in men. Measures of muscle strength may help identify men at risk of chronic disease.

  8. Muscle strength and fatigue in newly diagnosed patients with myasthenia gravis.

    PubMed

    Vinge, Lotte; Andersen, Henning

    2016-10-01

    Dynamometry is increasingly used as an objective measurement of muscle strength in neurological diseases. No study has applied dynamometry in untreated newly diagnosed patients with myasthenia gravis (MG). Isometric muscle strength at the shoulder, knee, and ankle was determined in 21 MG patients before and after initial anti-myasthenic treatment. Isometric strength was compared with MG evaluation scales. Muscle strength was reduced for knee extensors and shoulder abductors but normal for ankle extensors. Isometric muscle strength did not correlate significantly with manual muscle testing (MG Composite). Dynamometry revealed improved muscle strength of up to 50% (median 17%; range -1.8-49.8) despite no change in the MG Composite score. Dynamometry appears to be a more sensitive method of identifying changes in limb strength than MG evaluation scales. This supports the use of dynamometry in MG patients, especially for evaluation of the effect of anti-myasthenic treatment. Muscle Nerve 54: 709-714, 2016. © 2016 Wiley Periodicals, Inc.

  9. Body Composition, Neuromuscular Performance, and Mobility: Comparison Between Regularly Exercising and Inactive Older Women.

    PubMed

    Rava, Anni; Pihlak, Anu; Ereline, Jaan; Gapeyeva, Helena; Kums, Tatjana; Purge, Priit; Jürimäe, Jaak; Pääsuke, Mati

    2017-01-01

    The purpose of this study was to evaluate the differences in body composition, neuromuscular performance, and mobility in healthy, regularly exercising and inactive older women, and examine the relationship between skeletal muscle indices and mobility. Overall, 32 healthy older women participated. They were divided into groups according to their physical activity history as regularly exercising (n = 22) and inactive (n = 10) women. Body composition, hand grip strength, leg extensor muscle strength, rapid force development, power output, and mobility indices were assessed. Regularly exercising women had lower fat mass and higher values for leg extensor muscle strength and muscle quality, and also for mobility. Leg extensor muscle strength and power output during vertical jumping and appendicular lean mass per unit of body mass were associated with mobility in healthy older women. It was concluded that long-term regular exercising may have beneficial effects on body composition and physical function in older women.

  10. Hyperandrogenism Enhances Muscle Strength After Progressive Resistance Training, Independent of Body Composition, in Women With Polycystic Ovary Syndrome.

    PubMed

    Kogure, Gislaine S; Silva, Rafael C; Miranda-Furtado, Cristiana L; Ribeiro, Victor B; Pedroso, Daiana C C; Melo, Anderson S; Ferriani, Rui A; Reis, Rosana Maria Dos

    2018-06-20

    Kogure, GS, Silva, RC, Miranda-Furtado, CL, Ribeiro, VB, Pedroso, DCC, Melo, AS, Ferriani, RA, and Reis, RMd. Hyperandrogenism enhances muscle strength after progressive resistance training, independent of body composition, in women with polycystic ovary syndrome. J Strength Cond Res XX(X): 000-000, 2018-The effects of resistance exercise on muscle strength, body composition, and increase in cross-sectional area of skeletal muscle (hypertrophy) were evaluated in women with polycystic ovary syndrome (PCOS). This case-control study included 45 PCOS and 52 non-PCOS women, with age between 18-37 years and body mass index of 18-39.9 kg·m. Subjects performed a program of progressive resistance training (PRT), 3 times per week for 4 months. Biochemical characteristics were measured before and after PRT. Muscle strength evaluated by 1 maximum repetition test and body composition and hypertrophy indicator, evaluated by anthropometry, were measured at baseline, at 8 weeks, and at 16 weeks after PRT. Progressive resistance training produced an increase in maximum strength (bench press, p = 0.04; leg extension, p = 0.04) in the PCOS group; however, no changes were observed in body composition between groups. Concentration of testosterone decreased in both PCOS and non-PCOS groups (p < 0.01, both) after PRT, as well as glycemia (PCOS, p = 0.01; non-PCOS, p = 0.02) and body fat percentage (p < 0.01, both). An increase in hypertrophy indicators, lean body mass (LBM), and maximum strength on all exercises was observed in both PCOS and non-PCOS groups (p < 0.01). This training protocol promoted increases in muscle strength in PCOS women, and improved hyperandrogenism and body composition by decreasing body fat and increasing LBM and muscle strength in both PCOS and non-PCOS groups. Therefore, it is suggested that resistance exercise programs could promote health and fitness in women of reproductive age, especially functional capacity of strength those with PCOS.

  11. Propranolol and Oxandrolone Therapy Accelerated Muscle Recovery in Burned Children.

    PubMed

    Chao, Tony; Porter, Craig; Herndon, David N; Siopi, Aikaterina; Ideker, Henry; Mlcak, Ronald P; Sidossis, Labros S; Suman, Oscar E

    2018-03-01

    Severe burns result in prolonged hypermetabolism and skeletal muscle catabolism. Rehabilitative exercise training (RET) programs improved muscle mass and strength in severely burned children. The combination of RET with β-blockade or testosterone analogs showed improved exercise-induced benefits on body composition and muscle function. However, the effect of RET combined with multiple drug therapy on muscle mass, strength, cardiorespiratory fitness, and protein turnover are unknown. In this placebo-controlled randomized trial, we hypothesize that RET combined with oxandrolone and propranolol (Oxprop) will improve muscle mass and function and protein turnover in severely burned children compared with burned children undergoing the same RET with a placebo. We studied 42 severely burned children (7-17 yr) with severe burns over 30% of the total body surface area. Patients were randomized to placebo (22 control) or to Oxprop (20) and began drug administration within 96 h of admission. All patients began RET at hospital discharge as part of their standardized care. Muscle strength (N·m), power (W), V˙O2peak, body composition, and protein fractional synthetic rate and fractional breakdown rate were measured pre-RET (PRE) and post-RET (POST). Muscle strength and power, lean body mass, and V˙O2peak increased with RET in both groups (P < 0.01). The increase in strength and power was significantly greater in Oxprop versus control (P < 0.01), and strength and power was greater in Oxprop over control POST (P < 0.05). Fractional synthetic rate was significantly higher in Oxprop than control POST (P < 0.01), resulting in improved protein net balance POST (P < 0.05). Rehabilitative exercise training improves body composition, muscle function, and cardiorespiratory fitness in children recovering from severe burns. Oxprop therapy augments RET-mediated improvements in muscle strength, power, and protein turnover.

  12. The effects of exercise on muscle strength, body composition, physical functioning and the inflammatory profile of older adults: a systematic review.

    PubMed

    Liberman, Keliane; Forti, Louis N; Beyer, Ingo; Bautmans, Ivan

    2017-01-01

    This systematic review reports the most recent literature regarding the effects of physical exercise on muscle strength, body composition, physical functioning and inflammation in older adults. All articles were assessed for methodological quality and where possible effect size was calculated. Thirty-four articles were included - four involving frail, 24 healthy and five older adults with a specific disease. One reported on both frail and nonfrail patients. Several types of exercise were used: resistance training, aerobic training, combined resistance training and aerobic training and others. In frail older persons, moderate-to-large beneficial exercise effects were noted on inflammation, muscle strength and physical functioning. In healthy older persons, effects of resistance training (most frequently investigated) on inflammation or muscle strength can be influenced by the exercise modalities (intensity and rest interval between sets). Muscle strength seemed the most frequently used outcome measure, with moderate-to-large effects obtained regardless the exercise intervention studied. Similar effects were found in patients with specific diseases. Exercise has moderate-to-large effects on muscle strength, body composition, physical functioning and inflammation in older adults. Future studies should focus on the influence of specific exercise modalities and target the frail population more.

  13. Pulmonary Function, Muscle Strength, and Incident Mobility Disability in Elders

    PubMed Central

    Buchman, Aron S.; Boyle, Patricia A.; Leurgans, Sue E.; Evans, Denis A.; Bennett, David A.

    2009-01-01

    Muscle strength, including leg strength and respiratory muscle strength, are relatively independently associated with mobility disability in elders. However, the factors linking muscle strength with mobility disability are unknown. To test the hypothesis that pulmonary function mediates the association of muscle strength with the development of mobility disability in elders, we used data from a longitudinal cohort study of 844 ambulatory elders without dementia participating in the Rush Memory and Aging Project with a mean follow-up of 4.0 years (SD = 1.39). A composite measure of pulmonary function was based on spirometric measures of forced vital capacity, forced expiratory volume, and peak expiratory flow. Respiratory muscle strength was based on maximal inspiratory pressure and expiratory pressure and leg strength based on hand-held dynamometry. Mobility disability was defined as a gait speed less than or equal to 0.55 m/s based on annual assessment of timed walk. Secondary analyses considered time to loss of the ability to ambulate. In separate proportional hazards models which controlled for age, sex, and education, composite measures of pulmonary function, respiratory muscle strength, and leg strength were each associated with incident mobility disability (all P values < 0.001). Further, all three were related to the development of incident mobility disability when considered together in a single model (pulmonary function: hazard ratio [HR], 0.721; 95% confidence interval [CI], 0.577, 0.902; respiratory muscle strength: HR, 0.732; 95% CI, 0.593, 0.905; leg strength: HR, 0.791; 95% CI, 0.640, 0.976). Secondary analyses examining incident loss of the ability to ambulate revealed similar findings. Overall, these findings suggest that lower levels of pulmonary function and muscle strength are relatively independently associated with the development of mobility disability in the elderly. PMID:19934353

  14. Skeletal muscle strength and endurance in recipients of lung transplants.

    PubMed

    Mathur, Sunita; Levy, Robert D; Reid, W Darlene

    2008-09-01

    Exercise limitation in recipients of lung transplant may be a result of abnormalities in the skeletal muscle. However, it is not clear whether these abnormalities are merely a reflection of the changes observed in the pretransplant condition. The purpose of this paper was to compare thigh muscle volume and composition, strength, and endurance in lung transplant recipients to people with chronic obstructive pulmonary disease (COPD). Single lung transplant recipients (n=6) and people with COPD (n=6), matched for age, sex, and BMI participated in the study. Subjects underwent MRI to determine muscle size and composition, lower extremity strength testing and an isometric endurance test of the quadriceps. Lung transplant recipients had similar muscle volumes and intramuscular fat infiltration of their thigh muscles and similar strength of the quadriceps and hamstrings to people with COPD who had not undergone transplant. However, quadriceps endurance tended to be lower in transplant recipients compared to people with COPD (15 +/- 7 seconds in transplant versus 31 +/- 12 seconds in COPD, p = 0.08). Recipients of lung transplant showed similar changes in muscle size and strength as people with COPD, however muscle endurance tended to be lower in people with lung transplants. Impairments in muscle endurance may reflect the effects of immunosuppressant medications on skeletal muscle in people with lung transplant.

  15. Effects of Different Types of Exercise on Body Composition, Muscle Strength, and IGF-1 in the Elderly with Sarcopenic Obesity.

    PubMed

    Chen, Hung-Ting; Chung, Yu-Chun; Chen, Yu-Jen; Ho, Sung-Yen; Wu, Huey-June

    2017-04-01

    To investigate the influence of resistance training (RT), aerobic training (AT), or combination training (CT) interventions on the body composition, muscle strength performance, and insulin-like growth factor 1 (IGF-1) of patients with sarcopenic obesity. Randomized controlled trial. Community center and research center. Sixty men and women aged 65-75 with sarcopenic obesity. Participants were randomly assigned to RT, AT, CT, and control (CON) groups. After training twice a week for 8 weeks, the participants in each group ceased training for 4 weeks before being examined for the retention effects of the training interventions. The body composition, grip strength, maximum back extensor strength, maximum knee extensor muscle strength, and blood IGF-1 concentration were measured. The skeletal muscle mass (SMM), body fat mass, appendicular SMM/weight %, and visceral fat area (VFA) of the RT, AT, and CT groups were significantly superior to those of the CON group at both week 8 and week 12. Regarding muscle strength performance, the RT group exhibited greater grip strength at weeks 8 and 12 as well as higher knee extensor performance at week 8 than that of the other groups. At week 8, the serum IGF-1 concentration of the RT group was higher than the CON group, whereas the CT group was superior to the AT and CON groups. Older adults with sarcopenic obesity who engaged in the RT, AT, and CT interventions demonstrated increased muscle mass and reduced total fat mass and VFA compared with those without training. The muscle strength performance and serum IGF-1 level in trained groups, especially in the RT group, were superior to the control group. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  16. Body mass reduction markedly improves muscle performance and body composition in obese females aged 61-75 years: comparison between the effects exerted by energy-restricted diet plus moderate aerobic-strength training alone or associated with rGH or nandrolone undecanoate.

    PubMed

    Sartorio, Alessandro; Maffiuletti, Nicola A; Agosti, Fiorenza; Marinone, Pier Giulio; Ottolini, Saverio; Lafortuna, Claudio L

    2004-04-01

    To investigate the effectiveness of a body mass reduction programme entailing diet caloric restriction and moderate physical activity with or without supplementary treatment with recombinant (r) GH or steroids to improve body composition and muscle performance in severely obese women aged 61-75 years. Twenty women were randomly assigned to one of three groups: body mass reduction alone; body mass reduction plus rGH; body mass reduction plus nandrolone undecanoate. Body composition, isotonic muscle strength and anaerobic power output during jumping were determined before and after the 3-week period. Whatever the experimental group considered, body mass (P<0.01), body mass index (P<0.05) and fat mass (P<0.05) decreased significantly, whereas muscle strength and power increased significantly (P<0.05) after the intervention. Small body mass reductions after 3 weeks of energy-restricted diet combined with moderate aerobic and strength exercise are associated with significant improvements in upper and lower limb muscle strength and power and reduction of fat mass in severely obese women aged 61-75 years. Although the association of rGH or nandrolone undecanoate does not appear to exert additional effects on body composition and muscle performance attained by body mass reduction alone, further additional studies with larger study groups, different dosages and more prolonged periods are required for definitive conclusions to be drawn.

  17. Associations between body composition and bone density and structure in men and women across the adult age spectrum.

    PubMed

    Baker, Joshua F; Davis, Matthew; Alexander, Ruben; Zemel, Babette S; Mostoufi-Moab, Sogol; Shults, Justine; Sulik, Michael; Schiferl, Daniel J; Leonard, Mary B

    2013-03-01

    The objective of this study was to identify independent associations between body composition and bone outcomes, including cortical structure and cortical and trabecular volumetric bone mineral density (vBMD) across the adult age spectrum. This cross-sectional study evaluated over 400 healthy adults (48% male, 44% black race), ages 21-78years. Multivariable linear regression models evaluated associations between whole-body DXA measures of lean body mass index (LBMI) and fat mass index (FMI) and tibia peripheral quantitative CT (pQCT) measures of cortical section modulus, cortical and trabecular vBMD and muscle density (as a measure of intramuscular fat), adjusted for age, sex, and race. All associations reported below were statistically significant (p<0.05). Older age and female sex were associated with lower LBMI and muscle strength. Black race was associated with greater LBMI but lower muscle density. Greater FMI was associated with lower muscle density. Cortical section modulus was positively associated with LBMI and muscle strength and negatively associated with FMI. Adjustment for body composition eliminated the greater section modulus observed in black participants and attenuated the lower section modulus in females. Greater LBMI was associated with lower cortical BMD and greater trabecular BMD. FMI was not associated with either BMD outcome. Greater muscle density was associated with greater trabecular and cortical BMD. Associations between body composition and bone outcomes did not vary by sex (no significant tests for interaction). These data highlight age-, sex- and race-specific differences in body composition, muscle strength and muscle density, and demonstrate discrete associations with bone density and structure. These data also show that age-, sex- and race-related patterns of bone density and strength are independent of differences in body composition. Longitudinal studies are needed to examine the temporal relations between changes in bone and body composition. Published by Elsevier Inc.

  18. Associations between Body Composition and Bone Density and Structure in Men and Women across the Adult Age Spectrum

    PubMed Central

    Baker, Joshua F.; Davis, Matthew; Alexander, Ruben; Zemel, Babette S.; Mostoufi-Moab, Sogol; Shults, Justine; Sulik, Michael; Schiferl, Daniel J.; Leonard, Mary B.

    2012-01-01

    Background/Purpose The objective of this study was identify independent associations between body composition and bone outcomes, including cortical structure and cortical and trabecular volumetric bone mineral density (vBMD) across the adult age spectrum. Methods This cross-sectional study evaluated over 400 healthy adults (48% male, 44% black race), ages 21–78 years. Multivariable linear regression models evaluated associations between whole-body DXA measures of lean body mass index (LBMI) and fat mass index (FMI) and tibia peripheral quantitative CT (pQCT) measures of cortical section modulus, cortical and trabecular vBMD and muscle density (as a measure of intramuscular fat), adjusted for age, sex, and race. All associations reported below were statistically significant (p < 0.05). Results Older age and female sex were associated with lower LBMI and muscle strength. Black race was associated with greater LBMI but lower muscle density. Greater FMI was associated with lower muscle density. Cortical section modulus was positively associated with LBMI and muscle strength and negatively associated with FMI. Adjustment for body composition eliminated the greater section modulus observed in black participants and attenuated the lower section modulus in females. Greater LBMI was associated with lower cortical BMD and greater trabecular BMD. FMI was not associated with either BMD outcome. Greater muscle density was associated with greater trabecular and cortical BMD. Associations between body composition and bone outcomes did not vary by sex (no significant tests for interaction). Conclusions These data highlight age, sex- and race-specific differences in body composition, muscle strength and muscle density, and demonstrate discrete associations with bone density and structure. These data also show that age, sex- and race- related patterns of bone density and strength are independent of differences in body composition. Longitudinal studies are needed to examine the temporal relations between changes in bone and body composition. PMID:23238122

  19. Sarcopenia during neoadjuvant therapy for oesophageal cancer: characterising the impact on muscle strength and physical performance.

    PubMed

    Guinan, Emer M; Doyle, S L; Bennett, A E; O'Neill, L; Gannon, J; Elliott, J A; O'Sullivan, J; Reynolds, J V; Hussey, J

    2018-05-01

    Preoperative chemo(radio)therapy for oesophageal cancer (OC) may have an attritional impact on body composition and functional status, impacting postoperative outcome. Physical decline with skeletal muscle loss has not been previously characterised in OC and may be amenable to physical rehabilitation. This study characterises skeletal muscle mass and physical performance from diagnosis to post-neoadjuvant therapy in patients undergoing preoperative chemo(radio)therapy for OC. Measures of body composition (axial computerised tomography), muscle strength (handgrip), functional capacity (walking distance), anthropometry (weight, height and waist circumference), physical activity, quality-of-life and nutritional status were captured prospectively. Sarcopenia status was defined as pre-sarcopenic (low muscle mass only), sarcopenic (low muscle mass and low muscle strength or function) or severely sarcopenic (low muscle mass and low muscle strength and low muscle function). Twenty-eight participants were studied at both time points (mean age 62.86 ± 8.18 years, n = 23 male). Lean body mass reduced by 4.9 (95% confidence interval 3.2 to 6.7) kg and mean grip strength reduced by 4.3 (2.5 to 6.1) kg from pre- to post-neoadjuvant therapy. Quality-of-life scores capturing gastrointestinal symptoms improved. Measures of anthropometry, walking distance, physical activity and nutritional status did not change. There was an increase in sarcopenic status from diagnosis (pre-sarcopenic n = 2) to post-treatment (pre-sarcopenic n = 5, severely sarcopenic n = 1). Despite maintenance of body weight, functional capacity and activity habits, participants experience declines in muscle mass and strength. Interventions involving exercise and/or nutritional support to build muscle mass and strength during preoperative therapy, even in patients who are functioning normally, are warranted.

  20. Poor physical function in elderly women in low-level aged care is related to muscle strength rather than to measures of sarcopenia

    PubMed Central

    Woods, Julie L; Iuliano-Burns, Sandra; King, Susannah J; Strauss, Boyd J; Walker, Karen Z

    2011-01-01

    Purpose: To determine the prevalence of sarcopenia and investigate relationships among body composition, muscle strength, and physical function in elderly women in low-level aged care. Subjects and methods: Sixty-three ambulatory women (mean age 86 years) participated in this cross-sectional study where body composition was determined by dual energy X-ray absorptiometry (DXA); ankle, knee, and hip strength by the Nicholas Manual Muscle Tester; and physical function by ‘timed up and go’ (TUG) and walking speed (WS) over 6 meters. Body composition data from a female reference group (n = 62, mean age 29 years) provided cut-off values for defining sarcopenia. Results: Elderly women had higher body mass index (P < 0.001), lower lean mass (P < 0.001), and higher fat mass (P < 0.01) than the young reference group. Only a small proportion (3.2%) had absolute sarcopenia (defined by appendicular skeletal muscle mass/height squared) whereas 37% had relative sarcopenia class II (defined by percentage skeletal muscle mass). Scores for TUG and WS indicated relatively poor physical function, yet these measures were not associated with muscle mass or indices of sarcopenia. In multivariate analysis, only hip abductor strength predicted both TUG and WS (both P = 0.01). Conclusion: Hip strength is a more important indicator of physical functioning than lean mass. Measurement of hip strength may therefore be a useful screening tool to detect those at risk of functional decline and requirement for additional care. Further longitudinal studies with a range of other strength measures are warranted. PMID:21472094

  1. Poor physical function in elderly women in low-level aged care is related to muscle strength rather than to measures of sarcopenia.

    PubMed

    Woods, Julie L; Iuliano-Burns, Sandra; King, Susannah J; Strauss, Boyd J; Walker, Karen Z

    2011-01-01

    To determine the prevalence of sarcopenia and investigate relationships among body composition, muscle strength, and physical function in elderly women in low-level aged care. Sixty-three ambulatory women (mean age 86 years) participated in this cross-sectional study where body composition was determined by dual energy X-ray absorptiometry (DXA); ankle, knee, and hip strength by the Nicholas Manual Muscle Tester; and physical function by 'timed up and go' (TUG) and walking speed (WS) over 6 meters. Body composition data from a female reference group (n = 62, mean age 29 years) provided cut-off values for defining sarcopenia. Elderly women had higher body mass index (P < 0.001), lower lean mass (P < 0.001), and higher fat mass (P < 0.01) than the young reference group. Only a small proportion (3.2%) had absolute sarcopenia (defined by appendicular skeletal muscle mass/height squared) whereas 37% had relative sarcopenia class II (defined by percentage skeletal muscle mass). Scores for TUG and WS indicated relatively poor physical function, yet these measures were not associated with muscle mass or indices of sarcopenia. In multivariate analysis, only hip abductor strength predicted both TUG and WS (both P = 0.01). Hip strength is a more important indicator of physical functioning than lean mass. Measurement of hip strength may therefore be a useful screening tool to detect those at risk of functional decline and requirement for additional care. Further longitudinal studies with a range of other strength measures are warranted.

  2. Reduced Appendicular Lean Body Mass, Muscle Strength, and Size of Type II Muscle Fibers in Patients with Spondyloarthritis versus Healthy Controls: A Cross-Sectional Study.

    PubMed

    Røren Nordén, Kristine; Dagfinrud, Hanne; Løvstad, Amund; Raastad, Truls

    Introduction . The purpose of this study was to investigate body composition, muscle function, and muscle morphology in patients with spondyloarthritis (SpA). Methods . Ten male SpA patients (mean ± SD age 39 ± 4.1 years) were compared with ten healthy controls matched for sex, age, body mass index, and self-reported level of physical exercise. Body composition was measured by dual energy X-ray absorptiometry. Musculus quadriceps femoris (QF) strength was assessed by maximal isometric contractions prior to test of muscular endurance. Magnetic resonance imaging of QF was used to measure muscle size and calculate specific muscle strength. Percutaneous needle biopsy samples were taken from m. vastus lateralis . Results . SpA patients presented with significantly lower appendicular lean body mass (LBM) ( p = 0.02), but there was no difference in bone mineral density, fat mass, or total LBM. Absolute QF strength was significantly lower in SpA patients ( p = 0.03) with a parallel trend for specific strength ( p = 0.08). Biopsy samples from the SpA patients revealed significantly smaller cross-sectional area (CSA) of type II muscle fibers ( p = 0.04), but no difference in CSA type I fibers. Conclusions . Results indicate that the presence of SpA disease is associated with reduced appendicular LBM, muscle strength, and type II fiber CSA.

  3. D-aspartic acid supplementation combined with 28 days of heavy resistance training has no effect on body composition, muscle strength, and serum hormones associated with the hypothalamo-pituitary-gonadal axis in resistance-trained men.

    PubMed

    Willoughby, Darryn S; Leutholtz, Brian

    2013-10-01

    It was hypothesized that D-aspartic acid (D-ASP) supplementation would not increase endogenous testosterone levels or improve muscular performance associated with resistance training. Therefore, body composition, muscle strength, and serum hormone levels associated with the hypothalamo-pituitary-gonadal axis were studied after 28 days of resistance training and D-ASP supplementation. Resistance-trained men resistance trained 4 times/wk for 28 days while orally ingesting either 3 g of placebo or 3 g of D-ASP. Data were analyzed with 2 × 2 analysis of variance (P < .05). Before and after resistance training and supplementation, body composition and muscle strength, serum gonadal hormones, and serum D-ASP and d-aspartate oxidase (DDO) were determined. Body composition and muscle strength were significantly increased in both groups in response to resistance training (P < .05) but not different from one another (P > .05). Total and free testosterone, luteinizing hormone, gonadotropin-releasing hormone, and estradiol were unchanged with resistance training and D-ASP supplementation (P > .05). For serum D-ASP and DDO, D-ASP resulted in a slight increase compared with baseline levels (P > .05). For the D-ASP group, the levels of serum DDO were significantly increased compared with placebo (P < .05). The gonadal hormones were unaffected by 28 days of D-ASP supplementation and not associated with the observed increases in muscle strength and mass. Therefore, at the dose provided, D-ASP supplementation is ineffective in up-regulating the activity of the hypothalamo-pituitary-gonadal axis and has no anabolic or ergogenic effects in skeletal muscle. © 2013 Elsevier Inc. All rights reserved.

  4. Grip strength and body composition in Turkana pastoralist children and adolescents.

    PubMed

    Little, Michael A

    2017-03-01

    In an earlier study, age changes and sex differences in grip strength were documented for adult Turkana pastoralists of Kenya (Little and Johnson, 1986). The objective here is to characterize age changes and sex differences in grip strength of Turkana children and adolescents in the context of arm lean tissue composition, and in comparison with other African, African-American, and non-Western populations. Anthropometric measurements, derived body composition values, and grip strength measures (maximum voluntary contraction) were taken on a sample of 232 nomadic Turkana pastoralist children (94 boys and 138 girls) aged 3 to 21 years. Relationships were tested between grip strength (in Newtons) and mid-upper arm (brachium) lean tissue cross-sectional areas. Comparisons were made among several different ethnic groups. Turkana children and adolescents had low arm muscle (derived lean tissue) and grip strength values when compared with U.S. NHANES percentile references. Girls' percentile rankings were greater than boys' percentile rankings for muscle and for grip strength. Both boys and girls were intermediate when compared with other non-Western populations and U.S. strength grip reference values. Correlations between grip strength and arm lean tissue areas were highly significant for both boys and girls. The greater relative muscle size and grip strength values of late adolescent girls compared to boys is consistent with an earlier study of adults. The difference is likely to result from greater physical subsistence activity and greater access to food in girls than in boys. Several suggestions are given to explain why Turkana youths have relatively small muscle sizes. © 2016 Wiley Periodicals, Inc.

  5. Comparison of a space shuttle flight (STS-78) and bed rest on human muscle function

    NASA Technical Reports Server (NTRS)

    Trappe, S. W.; Trappe, T. A.; Lee, G. A.; Widrick, J. J.; Costill, D. L.; Fitts, R. H.

    2001-01-01

    The purpose of this investigation was to assess muscle fiber size, composition, and in vivo contractile characteristics of the calf muscle of four male crew members during a 17-day spaceflight (SF; Life and Microgravity Sciences Spacelab Shuttle Transport System-78 mission) and eight men during a 17-day bed rest (BR). The protocols and timelines of these two investigations were identical, therefore allowing for direct comparisons between SF and the BR. The subjects' age, height, and weight were 43 +/- 2 yr, 183 +/- 4 cm, and 86 +/- 3 kg for SF and 43 +/- 2 yr, 182 +/- 3 cm, and 82 +/- 4 kg for BR, respectively. Calf muscle strength was examined before SF and BR; on days 2, 8, and 12 during SF and BR; and on days 2 and 8 of recovery. Muscle biopsies were obtained before and within 3 h after SF (gastrocnemius and soleus) and BR (soleus) before reloading. Maximal isometric calf strength and the force-velocity characteristics were unchanged with SF or BR. Additionally, neither SF nor BR had any effect on fiber composition or fiber size of the calf muscles studied. In summary, no changes in calf muscle strength and morphology were observed after the 17-day SF and BR. Because muscle strength is lost during unloading, both during spaceflight and on the ground, these data suggest that the testing sequence employed during the SF and BR may have served as a resistance training countermeasure to attenuate whole muscle strength loss.

  6. Comparisons of low-intensity versus moderate-intensity combined aerobic and resistance training on body composition, muscle strength, and functional performance in older women.

    PubMed

    Shiotsu, Yoko; Yanagita, Masahiko

    2018-06-01

    This study aimed to examine the effects of exercise order of combined aerobic and low- or moderate-intensity resistance training into the same session on body composition, functional performance, and muscle strength in healthy older women. Furthermore, this study compared the effects of different (low- vs moderate-) intensity combined training. A total of 60 healthy older women (age 61-81 y) were randomly assigned to five groups that performed aerobic exercise before low-intensity resistance training (AR-L, n = 12) or after resistance training (RA-L, n = 12), performed aerobic exercise before moderate-intensity resistance training (AR-M, n = 12) or after resistance training (RA-M, n = 12), or nonintervention control conditions (CON, n = 12). Body composition, functional performance, and muscle strength were evaluated before and after the 10-week training. No effects of exercise order of combined aerobic and low- or moderate-intensity resistance training (AR-L vs RA-L, AR-M vs RA-M) were observed in body composition, functional performance, or muscle strength, whereas the effects of training intensity of combined training (AR-L vs AR-M, RA-L vs RA-M) were observed on functional performance. All combined trainings significantly increased muscle strength and gait ability (P < 0.01, respectively). Functional reach test significantly increased in the AR-M and RA-M groups (P < 0.01, respectively), and there were significant group differences between AR-L and AR-M (P = 0.002), RA-L and RA-M (P = 0.014). Preliminary findings suggest that combined aerobic and low- or moderate-intensity resistance training increases muscle strength and improves gait ability, regardless of the exercise order. Also, greater improvement in dynamic balance capacity, a risk factor associated with falling, is observed in moderate-intensity combined training.

  7. Muscle Strength and Changes in Physical Function in Women With Systemic Lupus Erythematosus.

    PubMed

    Andrews, James S; Trupin, Laura; Schmajuk, Gabriela; Barton, Jennifer; Margaretten, Mary; Yazdany, Jinoos; Yelin, Edward H; Katz, Patricia P

    2015-08-01

    Cross-sectional studies have observed that muscle weakness is associated with worse physical function among women with systemic lupus erythematosus (SLE). The present study examines whether reduced upper and lower extremity muscle strength predict declines in function over time among adult women with SLE. One hundred forty-six women from a longitudinal SLE cohort participated in the study. All measures were collected during in-person research visits approximately 2 years apart. Upper extremity muscle strength was assessed by grip strength. Lower extremity muscle strength was assessed by peak knee torque of extension and flexion. Physical function was assessed using the Short Physical Performance Battery (SPPB). Regression analyses modeled associations of baseline upper and lower extremity muscle strength with followup SPPB scores controlling for baseline SPPB, age, SLE duration, SLE disease activity (Systemic Lupus Activity Questionnaire), physical activity level, prednisone use, body composition, and depression. Secondary analyses tested whether associations of baseline muscle strength with followup in SPPB scores differed between intervals of varying baseline muscle strength. Lower extremity muscle strength strongly predicted changes over 2 years in physical function even when controlling for covariates. The association of reduced lower extremity muscle strength with reduced physical function in the future was greatest among the weakest women. Reduced lower extremity muscle strength predicted clinically significant declines in physical function, especially among the weakest women. Future studies should test whether therapies that promote preservation of lower extremity muscle strength may prevent declines in function among women with SLE. © 2015, American College of Rheumatology.

  8. Muscle quality, aerobic fitness and fat mass predict lower-extremity physical function in community-dwelling older adults.

    PubMed

    Misic, Mark M; Rosengren, Karl S; Woods, Jeffrey A; Evans, Ellen M

    2007-01-01

    Muscle mass, strength and fitness play a role in lower-extremity physical function (LEPF) in older adults; however, the relationships remain inadequately characterized. This study aimed to examine the relationships between leg mineral free lean mass (MFLM(LEG)), leg muscle quality (leg strength normalized for MFLM(LEG)), adiposity, aerobic fitness and LEPF in community-dwelling healthy elderly subjects. Fifty-five older adults (69.3 +/- 5.5 years, 36 females, 19 males) were assessed for leg strength using an isokinetic dynamometer, body composition by dual energy X-ray absorptiometry and aerobic fitness via a treadmill maximal oxygen consumption test. LEPF was assessed using computerized dynamic posturography and stair ascent/descent, a timed up-and-go task and a 7-meter walk with and without an obstacle. Muscle strength, muscle quality and aerobic fitness were similarly correlated with static LEPF tests (r range 0.27-0.40, p < 0.05); however, the strength of the independent predictors was not robust with explained variance ranging from 9 to 16%. Muscle quality was the strongest correlate of all dynamic LEPF tests (r range 0.54-0.65, p < 0.001). Using stepwise linear regression analysis, muscle quality was the strongest independent predictor of dynamic physical function explaining 29-42% of the variance (p < 0.001), whereas aerobic fitness or body fat mass explained 5-6% of the variance (p < 0.05) depending on performance measure. Muscle quality is the most important predictor, and aerobic fitness and fat mass are secondary predictors of LEPF in community-dwelling older adults. These findings support the importance of exercise, especially strength training, for optimal body composition, and maintenance of strength and physical function in older adults.

  9. Leisure-time physical activity at moderate and high intensity is associated with parameters of body composition, muscle strength and sarcopenia in aged adults with obesity and metabolic syndrome from the PREDIMED-Plus study.

    PubMed

    Rosique-Esteban, Nuria; Babio, Nancy; Díaz-López, Andrés; Romaguera, Dora; Alfredo Martínez, J; Sanchez, Vicente Martin; Schröder, Helmut; Estruch, Ramón; Vidal, Josep; Buil-Cosiales, Pilar; Konieczna, Jadwiga; Abete, Itziar; Salas-Salvadó, Jordi

    2018-06-06

    We aimed to examine the associations of leisure-time physical activity (PA) and sedentary behavior (SB) with the prevalence of sarcopenia, body composition and muscle strength among older adults having overweight/obesity and metabolic syndrome, from the PREDIMED-Plus trial. Cross-sectional baseline analysis including 1539 men and women (65 ± 5 y). Sarcopenia was defined as low muscle mass (according to FNIH cut-offs) plus low muscle strength (lowest sex-specific tertile for 30-s chair-stand test). We applied multivariable-adjusted Cox regression with robust variance and constant time (given the cross-sectional design) for the associations of self-reported leisure-time PA and SB with sarcopenia; and multivariable-linear regression for the associations with dual-energy X-ray absorptiometry (DXA)-derived bone mass, fat mass, lean mass and lower-limb muscle strength. Inverse associations were observed between sarcopenia and each hourly increment in total [prevalence ratio 0.81 (95% confidence interval, 0.70, 0.93)], moderate [0.80 (0.66, 0.97)], vigorous [0.51 (0.32, 0.84)], and moderate-vigorous PA (MVPA) [0.74 (0.62, 0.89)]. Incrementing 1-h/day total-PA and MVPA was inversely associated with body-mass-index, waist circumference (WC), fat mass, and positively associated with bone mass and lower-limb muscle strength (all P <.05). One h/day increase in total SB, screen-based SB and TV-viewing was positively associated with body-mass-index, WC and fat mass. Light-PA was not significantly associated with any outcome. Total-PA and PA at moderate and high intensities may protect against the prevalence of sarcopenia, have a beneficial role on body composition and prevent loss of muscle strength. SB, particularly TV-viewing, may have detrimental effects on body composition in older adults at high cardiovascular risk. Copyright © 2018 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  10. Respiratory Muscle Strength Predicts Decline in Mobility in Older Persons

    PubMed Central

    Buchman, A.S.; Boyle, P.A.; Wilson, R.S.; Leurgans, S.; Shah, R.C.; Bennett, D.A.

    2008-01-01

    Objectives To test the hypothesis that respiratory muscle strength is associated with the rate of change in mobility even after controlling for leg strength and physical activity. Methods Prospective study of 890 ambulatory older persons without dementia who underwent annual clinical evaluations to examine change in the rate of mobility over time. Results In a linear mixed-effect model adjusted for age, sex, and education, mobility declined about 0.12 unit/year, and higher levels of respiratory muscle strength were associated with a slower rate of mobility decline (estimate 0.043, SE 0.012, p < 0.001). Respiratory muscle strength remained associated with the rate of change in mobility even after controlling for lower extremity strength (estimate 0.036, SE 0.012, p = 0.004). In a model that included terms for respiratory muscle strength, lower extremity strength and physical activity together, all three were independent predictors of mobility decline in older persons. These associations remained significant even after controlling for body composition, global cognition, the development of dementia, parkinsonian signs, possible pulmonary disease, smoking, joint pain and chronic diseases. Conclusion Respiratory muscle strength is associated with mobility decline in older persons independent of lower extremity strength and physical activity. Clinical interventions to improve respiratory muscle strength may decrease the burden of mobility impairment in the elderly. PMID:18784416

  11. Muscle strength and body composition are clinical indicators of osteoporosis.

    PubMed

    Rikkonen, Toni; Sirola, Joonas; Salovaara, Kari; Tuppurainen, Marjo; Jurvelin, Jukka S; Honkanen, Risto; Kröger, Heikki

    2012-08-01

    We examined the role of muscle strength, lean tissue distribution, and overall body composition as indicators of osteoporosis (OP) in a pooled sample of 979 Finnish postmenopausal women (mean age 68.1 years) from the Kuopio Osteoporosis Risk Factor and Prevention study. Bone mineral density (BMD) at the femoral neck (FN) and total body composition were assessed by dual-energy X-ray absorptiometry scans. The women (n = 979) were divided into three groups according to WHO criteria, based on FN BMD T score: normal (n = 474), osteopenia (n = 468), and OP (n = 37). Soft tissue proportions, fat mass index (FMI, fat/height²), lean mass index (LMI, lean/height²), and appendicular skeletal muscle mass (ASM, (arms + legs)/height²) were calculated. Handgrip and knee extension strength measurements were made. OP subjects had significantly smaller LMI (p = 0.001), ASM (p = 0.001), grip strength (p < 0.0001), and knee extension strength (p < 0.05) but not FMI (p > 0.05) compared to other subjects. Grip and knee extension strength were 19 and 16 % weaker in OP women compared to others, respectively. The area under the receiver operating characteristic curve was 69 % for grip and 71 % for knee extension strength. In tissue proportions only LMI showed predictive power (63 %, p = 0.016). An overall linear association of LMI (R² = 0.007, p = 0.01) and FMI (R² = 0.028, p < 0.001) with FN BMD remained significant. In the multivariate model, after adjusting for age, grip strength, leg extension strength, FMI, LMI, number of medications, alcohol consumption, current smoking, dietary calcium intake, and hormone therapy, grip strength (adjusted OR = 0.899, 95 % CI 0.84-0.97, p < 0.01), leg extension strength (OR = 0.998, 95 % CI 0.99-1, p < 0.05), and years of hormone therapy (OR = 0.905, 95 % CI 0.82-1, p < 0.05) remained as significant determinants of OP. Muscle strength tests, especially grip strength, serve as an independent and useful tool for postmenopausal OP risk assessment. In addition, lean mass contributes to OP in this age group. Muscle strength and lean mass should be considered separately since both are independently associated with postmenopausal BMD.

  12. Muscle function and body composition profile in adolescents with restrictive anorexia nervosa: does resistance training help?

    PubMed

    Fernández-del-Valle, Maria; Larumbe-Zabala, Eneko; Morande-Lavin, Gonzalo; Perez Ruiz, Margarita

    2016-01-01

    The aim of this study was to analyze the effects of short-term resistance training on the body composition profile and muscle function in a group of Anorexia Nervosa restricting type (AN-R) patients. The sample consisted of AN-R female adolescents (12.8 ± 0.6 years) allocated into the control and intervention groups (n = 18 each). Body composition and relative strength were assessed at baseline, after 8 weeks and 4 weeks following the intervention. Body mass index (BMI) increased throughout the study (p = 0.011). Significant skeletal muscle mass (SMM) gains were found in the intervention group (p = 0.045, d = 0.6) that correlated to the change in BMI (r = 0.51, p < 0.031). Meanwhile, fat mass (FM) gains were significant in the control group (p = 0.047, d = 0.6) and correlated (r > 0.60) with change in BMI in both the groups. Significant relative strength increases (p < 0.001) were found in the intervention group and were sustained over time. SMM gain is linked to an increased relative strength when resistance training is prescribed. Although FM, relative body fat (%BF), BMI and body weight (BW) are used to monitor nutritional progress. Based on our results, we suggest to monitor SMM and relative strength ratios for a better estimation of body composition profile and muscle function recovery. Implications for Rehabilitation Anorexia Nervosa Restricting Type (AN-R) AN-R is a psychiatric disorder that has a major impact on muscle mass content and function. However, little or no attention has been paid to muscle recovery. High intensity resistance training is safe for AN-R after hospitalization and enhances the force generating capacity as well as muscle mass gains. Skeletal muscle mass content and muscular function improvements are partially maintained for a short period of time when the exercise program ceases.

  13. Dietary protein and resistance training effects on muscle and body composition in older persons.

    PubMed

    Campbell, Wayne W; Leidy, Heather J

    2007-12-01

    The regular performance of resistance exercises and the habitual ingestion of adequate amounts of dietary protein from high-quality sources are two important ways for older persons to slow the progression of and treat sarcopenia, the age-related loss of skeletal muscle mass and function. Resistance training can help older people gain muscle strength, hypertrophy muscle, and increase whole body fat-free mass. It can also help frail elderly people improve balance and physical functioning capabilities. Inadequate protein intake will cause adverse metabolic and physiological accommodation responses that include the loss of fat-free mass and muscle strength and size. Findings from controlled feeding studies show that older persons retain the capacity to metabolically adjust to lower protein intakes by increasing the efficiency of nitrogen retention and amino acid utilization. However, they also suggest that the recommended dietary allowance of 0.8 g protein x kg(-1) x d(-1) might not be sufficient to prevent subtle accommodations and blunt desired changes in body composition and muscle size with resistance training. Most of the limited research suggests that resistance training-induced improvements in body composition, muscle strength and size, and physical functioning are not enhanced when older people who habitually consume adequate protein (modestly above the RDA) increase their protein intake by either increasing the ingestion of higher-protein foods or consuming protein-enriched nutritional supplements.

  14. Efficacy of a novel formulation of L-Carnitine, creatine, and leucine on lean body mass and functional muscle strength in healthy older adults: a randomized, double-blind placebo-controlled study.

    PubMed

    Evans, Malkanthi; Guthrie, Najla; Pezzullo, John; Sanli, Toran; Fielding, Roger A; Bellamine, Aouatef

    2017-01-01

    Progressive decline in skeletal muscle mass and function are growing concerns in an aging population. Diet and physical activity are important for muscle maintenance but these requirements are not always met. This highlights the potential for nutritional supplementation. As a primary objective, we sought to assess the effect of a novel combination of L-Carnitine, creatine and leucine on muscle mass and performance in older subjects. Forty-two healthy older adults aged 55-70 years were randomized to receive either a novel L-Carnitine (1500 mg), L-leucine (2000 mg), creatine (3000 mg), Vitamin D3 (10 μg) (L-Carnitine-combination) product ( n  = 14), L-Carnitine (1500 mg) ( n  = 14), or a placebo ( n  = 14) for eight weeks. We evaluated body mass by DXA, upper and lower strength by dynamometry, and walking distance by a 6-min walk test at baseline and after eight weeks of intervention. These measures, reflecting muscle mass, functional strength and mobility have been combined to generate a primary composite score. Quality of life, blood safety markers, and muscle biopsies for protein biomarker analysis were also conducted at baseline and the end of the study. The primary composite outcome improved by 63.5 percentage points in the L-Carnitine-combination group vs. placebo ( P  = 0.013). However, this composite score did not change significantly in the L-Carnitine group ( P =  0.232), and decreased slightly in the placebo group ( P =  0.534). Participants supplemented with the L-Carnitine-combination showed a 1.0 kg increase in total lean muscle mass ( P  = 0.013), leg lean muscle mass (0.35 kg, P =  0.005), and a 1.0 kg increase in lower leg strength ( P  = 0.029) at week 8. In addition, these increases were significant when compared to the placebo group (P =  0.034, P =  0.026, and P =  0.002, respectively). Total mTOR protein expression was increased in participants in the L-Carnitine-combination group at the end of the study compared to the baseline ( P  = 0.017). This increase was also significant when compared to the placebo ( P =  0.039), suggesting that the increase in muscle mass and strength was due to new protein synthesis and mTOR pathway activation. The trial did reach its primary objective. L-Carnitine combined with creatine and L-leucine significantly improved the composite score which reflects muscle mass and strength, at the end of the study compared to placebo. The combination showed an increase in mTOR protein level, a driver for increased muscle mass which translated to an improvement in muscle strength. This new combination may provide a potential nutritional intervention to promote muscle growth and improved physical functioning in older adults.

  15. Subcutaneous immunoglobulin preserves muscle strength in chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Markvardsen, L H; Harbo, T; Sindrup, S H; Christiansen, I; Andersen, H; Jakobsen, J

    2014-12-01

    Subcutaneous immunoglobulin (SCIG) is superior to placebo treatment for maintenance of muscle strength during 12 weeks in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). The present study evaluated whether SCIG preserves muscle strength for 1 year in an open-label follow-up study. Seventeen responders to intravenous immunoglobulin (IVIG) who had participated in the previous study of SCIG versus placebo in CIDP were included. After one IVIG infusion 2 weeks prior to baseline, all continued on SCIG treatment at weekly equal dosage and were evaluated after 3, 6 and 12 months. Primary end-points were changes in muscle strength evaluated by isokinetic dynamometry in four affected muscle groups and a composite score of muscle performance and function tests, including Medical Research Council (MRC) score, grip strength, 40-m walking test (40-MWT) and nine-hole peg test (9-HPT). Secondary end-points were changes of each of the listed parameters at each time point as well as an overall disability sum score (ODSS). The dose of SCIG was significantly unaltered during the follow-up period. Overall the isokinetic dynamometry value increased by 7.2% (P = 0.033) and after 3, 6 and 12 months by 5.7%, 8.2% and 6.8% (ns). The overall composite score at all time intervals and for each interval remained unchanged. Amongst the secondary parameters the MRC score increased significantly by 1.7% (P = 0.007), whereas grip strength, 40-MWT, 9-HPT and ODSS remained unchanged. SCIG preserves muscle strength and functional ability in patients with CIDP who previously responded to IVIG. SCIG should be considered as an alternative in long-term treatment of CIDP patients. © 2014 The Author(s) European Journal of Neurology © 2014 EAN.

  16. EFFECTS OF DIFFERENT DURATION EXERCISE PROGRAMS IN CHILDREN WITH SEVERE BURNS

    PubMed Central

    Clayton, Robert P.; Wurzer, Paul; Andersen, Clark R.; Mlcak, Ronald P.; Herndon, David N.; Suman, Oscar E.

    2016-01-01

    Introduction Burns lead to persistent and detrimental muscle breakdown and weakness. Standard treatment at our institution includes a voluntary 12-week rehabilitative exercise program to limit and reverse the effects of increased muscle catabolism. In the present work, we investigated if different durations of exercise, 6 or 12 weeks, produce comparable improvements in muscle strength, body composition, and cardiopulmonary fitness. Methods We prospectively enrolled and randomized patients with ≥30% total body surface area (TBSA) burned to receive 6- or 12-weeks of exercise rehabilitation. Patients were evaluated for muscle strength, oxygen consumption capacity, and lean body mass at discharge (n = 42) and post exercise. After 6 weeks (n = 18) or 12 weeks (n = 24) of exercise training, leg muscle strength was assessed as peak torque per body weight using a Biodex Isokinetic Dynamometer. Oxygen consumption capacity, measured as peak VO2, was studied using a standard treadmill-based test, and lean body mass was determined using dual-energy X-ray absorptiometry. Results Significant improvements in muscle strength, peak VO2, and lean body mass were seen after 6 weeks of exercise training (p<0.001), with only significant improvements in peak VO2 being seen after 6 weeks more of training. Conclusion These data suggest that a 6-week rehabilitative exercise program is sufficient for improving muscle strength, body composition, and cardiopulmonary fitness in pediatric burn patients. However, continuation of at- or near-home cardiopulmonary training following the 6 weeks of at-hospital rehabilitation may be useful. PMID:27908464

  17. The role of skeletal muscle in the pathophysiology and management of knee osteoarthritis.

    PubMed

    Krishnasamy, Priathashini; Hall, Michelle; Robbins, Sarah R

    2018-05-01

    The role of skeletal muscle in the pathophysiology of knee OA is poorly understood. To date, the majority of literature has focused on the association of muscle strength with OA symptoms, disease onset and progression. However, deficits or improvements in skeletal muscle strength do not fully explain the mechanisms behind outcome measures in knee OA, such as pain, function and structural disease. This review aims to summarize components of skeletal muscle, providing a holistic view of skeletal muscle mechanisms that includes muscle function, quality and composition and their interactions. Similarly, the role of skeletal muscle in the management of knee OA will be discussed.

  18. Effects of 12-week concurrent high-intensity interval strength and endurance training programme on physical performance in healthy older people.

    PubMed

    García-Pinillos, Felipe; Laredo-Aguilera, José A; Muñoz-Jiménez, Marcos; Latorre-Román, Pedro A

    2017-03-13

    This study aimed to analyse the effect of 12-week low-volume HIIT-based concurrent training programme on body composition, upper- and lower-body muscle strength, mobility and balance in older adults, as well as to compare it with a low- moderate-intensity continuous training. 90 active older adults were randomly assigned to experimental (EG, n=47), and control (CG, n=43) groups. Body composition and physical functioning were assessed before (pre-test) and after (post-test) a 12-week intervention. A 2-way repeated measures ANOVA was used to test for an interaction between training programme and groups. The time x group interaction revealed no significant between-group differences at pre-test (p≥0.05). The group x time interaction showed significant improvements for the EG in body composition parameters (p<0.05) and physical functioning (muscle strength: p<0.001; mobility: p<0.001; and balance: p<0.05); while the CG remained unchanged (p≥0.05). This HIIT-based concurrent training programme led to greater improvements in body composition, muscle strength, mobility and balance in healthy older people than a regular low- moderate-intensity continuous training, despite the reduction in overall training volume.

  19. The effects of strength and endurance training in patients with rheumatoid arthritis.

    PubMed

    Strasser, Barbara; Leeb, Gunther; Strehblow, Christoph; Schobersberger, Wolfgang; Haber, Paul; Cauza, Edmund

    2011-05-01

    Patients with rheumatoid arthritis (RA) suffer from muscle loss, causing reduced muscle strength and endurance. The current study aimed to: (1) evaluate the effects of combined strength and endurance training (CT) on disease activity and functional ability in patients with RA and (2) investigate the benefits of a 6-month supervised CT program on muscle strength, cardio-respiratory fitness, and body composition of RA patients. Forty patients with RA, aged 41-73 years, were recruited for the current study. Twenty of these patients (19 females, one male) were randomly assigned to a 6-month supervised CT program; 20 patients (17 females, three males) served as controls. Within the CT program, strength training consisted of sets of weight bearing exercises for all major muscle groups. In addition to strength training, systematic endurance training was performed on a cycle ergometer two times per week. For RA patients involved in CT, disease activity (p = 0.06) and pain (p = 0.05) were reduced after the 6-month training period while general health (p = 0.04) and functional ability (p = 0.06) improved. Cardio-respiratory endurance was found to have improved significantly (by 10%) after 6 months of CT (p < 0.001). The overall strength of patients undertaking CT increased by an average of 14%. Lean body mass increased, and the percentage of body fat was found to decrease significantly (p < 0.05). A combination of strength and endurance training resulted in considerable improvements in RA patients' muscle strength and cardio-respiratory endurance, accompanied by positive changes in body composition and functional ability. Long-term training appears to be effective in reducing disease activity and associated pain and was found to have no deleterious effects.

  20. Effects of different duration exercise programs in children with severe burns.

    PubMed

    Clayton, Robert P; Wurzer, Paul; Andersen, Clark R; Mlcak, Ronald P; Herndon, David N; Suman, Oscar E

    2017-06-01

    Burns lead to persistent and detrimental muscle breakdown and weakness. Standard treatment at our institution includes a voluntary 12-week rehabilitative exercise program to limit and reverse the effects of increased muscle catabolism. In the present work, we investigated if different durations of exercise, 6 or 12 weeks, produce comparable improvements in muscle strength, body composition, and cardiopulmonary fitness. We prospectively enrolled and randomized patients with ≥30% total body surface area (TBSA) burned to receive 6 or 12 weeks of exercise rehabilitation. Patients were evaluated for muscle strength, oxygen consumption capacity, and lean body mass at discharge (n=42) and after exercise. After 6 weeks (n=18) or 12 weeks (n=24) of exercise training, leg muscle strength was assessed as peak torque per body weight using a Biodex isokinetic dynamometer. Oxygen consumption capacity, measured as peak VO 2 , was studied using a standard treadmill-based test, and lean body mass was determined using dual-energy X-ray absorptiometry. Significant improvements in muscle strength, peak VO 2 , and lean body mass were seen after 6 weeks of exercise training (p<0.001), with only significant improvements in peak VO 2 being seen after 6 weeks more of training. These data suggest that a 6-week rehabilitative exercise program is sufficient for improving muscle strength, body composition, and cardiopulmonary fitness in pediatric burn patients. However, continuation of at- or near-home cardiopulmonary training following the 6 weeks of at-hospital rehabilitation may be useful. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  1. Daily Overfeeding from Protein and/or Carbohydrate Supplementation for Eight Weeks in Conjunction with Resistance Training Does not Improve Body Composition and Muscle Strength or Increase Markers Indicative of Muscle Protein Synthesis and Myogenesis in Resistance-Trained Males

    PubMed Central

    Spillane, Mike; Willoughby, Darryn S.

    2016-01-01

    This study determined the effects of heavy resistance training and daily overfeeding with carbohydrate and/or protein on blood and skeletal muscle markers of protein synthesis (MPS), myogenesis, body composition, and muscle performance. Twenty one resistance-trained males were randomly assigned to either a protein + carbohydrate [HPC (n = 11)] or a carbohydrate [HC (n = 10)] supplement group in a double-blind fashion. Body composition and muscle performance were assessed, and venous blood samples and muscle biopsies were obtained before and after eight weeks of resistance training and supplementation. Data were analyzed by two-way ANOVA (p ≤ 0.05). Total body mass, body water, and fat mass were significantly increased in both groups in response to resistance training, but not supplementation (p < 0.05); however, lean mass was not significantly increased in either group (p = 0.068). Upper- (p = 0.024) and lower-body (p = 0.001) muscle strength and myosin heavy chain (MHC) 1 (p = 0.039) and MHC 2A (p = 0.027) were also significantly increased with resistance training. Serum IGF-1, GH, and HGF were not significantly affected (p > 0.05). Muscle total DNA, total protein, and c-Met were not significantly affected (p > 0.05). In conjunction with resistance training, the peri-exercise and daily overfeeding of protein and/or carbohydrate did not preferentially improve body composition, muscle performance, and markers indicative of MPS and myogenic activation. Key points In response to 56 days of heavy resistance training and HC or HPC supplementation, similar increases in muscle mass and strength in both groups occurred; however, the increases were not different between supplement groups. The supplementation of HPC had no preferential effect on augmenting serum IGF-1 GH, or HGF. The supplementation of HPC had no preferential effect on augmenting increases in total muscle protein content or the myogenic markers, total DNA and muscle cMet content. In response to 56 days of a daily supplemental dose of 94 g of protein and 196 g of carbohydrate, the HPC group was no more effective than 312 g of carbohydrate in the HC group in increasing muscle strength and mass due to its ability to elevate serum anabolic hormones and growth factors and markers of myogenic activation of satellite cells. PMID:26957922

  2. Effects of an integrated health education and elastic band resistance training program on physical function and muscle strength in community-dwelling elderly women: Healthy Aging and Happy Aging II study.

    PubMed

    Oh, Seung-Lyul; Kim, Hee-Jae; Woo, Shinae; Cho, Be-Long; Song, Misoon; Park, Yeon-Hwan; Lim, Jae-Young; Song, Wook

    2017-05-01

    In the present study, we determined the effect of an integrated health education and elastic band resistance training program on body composition, physical function, muscle strength and quality in community-dwelling elderly women. We recruited participants with eligibility inclusion criteria, and randomly assigned them to either the control group (n = 19) or the intervention group (n = 19). The integrated intervention program comprised of health education and individual counseling, and elastic band training for 18 weeks (8 weeks of supervised training and 10 weeks of self-directed training). We assessed body composition, muscle strength and quality, and physical function at pre-, after 8 weeks (mid-) and 18 weeks (post-training). After the intervention, there were no significant changes in skeletal muscle index, fat free mass, total lean mass and total fat mass for both the control group and intervention group. However, the interaction effect was significantly different in SPPB score (P < 0.05), isokinetic strength (60 deg/s, P < 0.001; 120 deg/s; P < 0.05) and muscle quality (P < 0.05) after 18 weeks of intervention relative to the baseline of the control and intervention groups. The supervised elastic band training of 8 weeks did not improve short physical performance battery score and isokinetic strength, whereas there was a significant increase of those outcomes (10.6% improvement, 9.8~23.5% improvement) after 10 weeks of following self-directed exercise compared with the baseline. These results show the effectiveness of following self-directed resistance training with health education after supervised training cessation in improvement of short physical performance battery and leg muscle strength. This intervention program might be an effective method to promote muscle strength and quality, and to prevent frailty in elderly women. Geriatr Gerontol Int 2017; 17: 825-833. © 2016 Japan Geriatrics Society.

  3. Effects of a Pilates exercise program on muscle strength, postural control and body composition: results from a pilot study in a group of post-menopausal women.

    PubMed

    Bergamin, M; Gobbo, S; Bullo, V; Zanotto, T; Vendramin, B; Duregon, F; Cugusi, L; Camozzi, V; Zaccaria, M; Neunhaeuserer, D; Ermolao, A

    2015-12-01

    Participation in exercise programs is heartily recommended for older adults since the level of physical fitness directly influences functional independence. The aim of this present study was to investigate the effects of supervised Pilates exercise training on the physical function, hypothesizing that a period of Pilates exercise training (PET) can increase overall muscle strength, body composition, and balance, during single and dual-task conditions, in a group of post-menopausal women. Twenty-five subjects, aged 59 to 66 years old, were recruited. Eligible participants were assessed prior and after 3 months of PET performed twice per week. Muscular strength was evaluated with handgrip strength (HGS) test, 30-s chair sit-to-stand test (30CST), and abdominal strength (AST) test. Postural control and dual-task performance were measured through a stabilometric platform while dynamic balance with 8 ft up and go test. Finally, body composition was assessed by means of dual-energy X-ray absorptiometry. Statistically significant improvements were detected on HGS (+8.22%), 30CST (+23.41%), 8 ft up and go test (-5.95%), AST (+30.81%), medio-lateral oscillations in open eyes and dual-task condition (-22.03% and -10.37%). Pilates was effective in increasing upper body, lower body, and abdominal muscle strength. No changes on body composition were detected. Results on this investigation indicated also that 12-week of mat Pilates is not sufficient to determine a clinical meaningful improvement on static balance in single and dual-task conditions.

  4. Effects of Caloric Restriction with or without Resistance Training in Dynapenic-Overweight and Obese Menopausal Women: A MONET Study.

    PubMed

    Normandin, E; Sénéchal, M; Prud'homme, D; Rabasa-Lhoret, R; Brochu, M

    2015-01-01

    The dynapenic (DYN)-obese phenotype is associated with an impaired metabolic profile. However, there is a lack of evidences regarding the effect of lifestyle interventions on the metabolic profile of individual with dynapenic phenotype. The objective was to investigate the impact of caloric restriction (CR) with or without resistance training (RT) on body composition, metabolic profile and muscle strength in DYN and non-dynapenic (NDYN) overweight and obese menopausal women. 109 obese menopausal women (age 57.9 ± 9.0 yrs; BMI 32.1 ± 4.6 kg/m2) were randomized to a 6-month CR intervention with or without a RT program. Participants were categorized as DYN or NDYN based on the lowest tertile of relative muscle strength in our cohort (< 4.86 kg/BMI). Body composition was measured by DXA, body fat distribution by CT scan, glucose homeostasis at fasting state and during an euglycemic-hyperinsulinemic clamp, fasting lipids, resting blood pressure, fasting inflammation markers and maximal muscle strength. No difference was observed between groups at baseline for body composition and the metabolic profile. Overall, a treatment effect was observed for all variables of body composition and some variables of the metabolic profile (fasting insulin, glucose disposal, triglyceride levels, triglycerides/HDL-Chol ratio and resting diastolic blood pressure) (P between 0.05 and 0.001). No Group X Treatment interaction was observed for variables of body composition and the metabolic profile. However, an interaction was observed for muscle strength; which significantly improved more in the CR+RT NDYN group (all P ≤ 0.05). In the present study, dynapenia was not associated with a worse metabolic profile at baseline in overweight and obese menopausal women. DYN and NDYN menopausal women showed similar cardiometabolic benefit from CR or CR+RT interventions. However, our results showed that the addition of RT to CR was more effective in improving maximal strength in DYN and NDYN obese menopausal women.

  5. Muscle Fiber Type Composition and Knee Extension Isometric Strength Fatigue Patterns in Power- and Endurance-Trained Males.

    ERIC Educational Resources Information Center

    Kroll, Walter; And Others

    1980-01-01

    There is a degree of uniqueness in fatigue patterns, particularly between different levels of absolute maximum strength. Caution should be used when analyzing fatigue curves among subjects with unspecified strength levels. (CJ)

  6. HMB attenuates muscle loss during sustained energy deficit induced by calorie restriction and endurance exercise.

    PubMed

    Park, Bong-Sup; Henning, Paul C; Grant, Samuel C; Lee, Won Jun; Lee, Sang-Rok; Arjmandi, Bahram H; Kim, Jeong-Su

    2013-12-01

    To investigate the efficacy and underlying mechanisms of β-hydroxy-β-methylbutyrate (HMB) on body composition, muscle mass and physical performance under catabolic versus normal training conditions. Mice were divided into four groups (n=10/group): (1) ALT=ad libitum+trained (1 h/d for 3 d/wk); (2) ALTH=ALT+HMB (0.5 g/kg BW/d); (3) C=calorie restricted (-30%)+trained (6 h/d, 6 d/wk); and (4) CH=C+HMB. Repeated in vivo assessments included body composition, grip strength and sensorimotor coordination before and after the experimental protocol, while in vitro analyses included muscle wet weights, expression of selected genes and proteins regulating muscle mass, and myofiber cross-sectional area. ANOVAs were used with significance set at p<0.05. ALTH had greater lean mass than ALT and sensorimotor function increased in ALTH, but decreased in ALT under normal training conditions. Grip strength decreased only in C, but was maintained in CH. Gastrocnemius mass and myofiber CSA were greater in CH than C following catabolic conditions. Gastrocnemius atrogin-1 mRNA expression was elevated in C but not in CH compared to all other groups whereas atrogin-1 protein levels showed no significant changes. HMB improves body composition and sensorimotor function during normal training and attenuates muscle mass and strength loss during catabolic conditions. © 2013.

  7. Do muscle mass, muscle density, strength, and physical function similarly influence risk of hospitalization in older adults?

    PubMed

    Cawthon, Peggy Mannen; Fox, Kathleen M; Gandra, Shravanthi R; Delmonico, Matthew J; Chiou, Chiun-Fang; Anthony, Mary S; Sewall, Ase; Goodpaster, Bret; Satterfield, Suzanne; Cummings, Steven R; Harris, Tamara B

    2009-08-01

    To examine the association between strength, function, lean mass, muscle density, and risk of hospitalization. Prospective cohort study. Two U.S. clinical centers. Adults aged 70 to 80 (N=3,011) from the Health, Aging and Body Composition Study. Measurements were of grip strength, knee extension strength, lean mass, walking speed, and chair stand pace. Thigh computed tomography scans assessed muscle area and density (a proxy for muscle fat infiltration). Hospitalizations were confirmed by local review of medical records. Negative binomial regression models estimated incident rate ratios (IRRs) of hospitalization for race- and sex-specific quartiles of each muscle and function parameter separately. Multivariate models adjusted for age, body mass index, health status, and coexisting medical conditions. During an average 4.7 years of follow-up, 1,678 (55.7%) participants experienced one or more hospitalizations. Participants in the lowest quartile of muscle density were more likely to be subsequently hospitalized (multivariate IRR=1.47, 95% confidence interval (CI)=1.24-1.73) than those in the highest quartile. Similarly, participants with the weakest grip strength were at greater risk of hospitalization (multivariate IRR=1.52, 95% CI=1.30-1.78, Q1 vs. Q4). Comparable results were seen for knee strength, walking pace, and chair stands pace. Lean mass and muscle area were not associated with risk of hospitalization. Weak strength, poor function, and low muscle density, but not muscle size or lean mass, were associated with greater risk of hospitalization. Interventions to reduce the disease burden associated with sarcopenia should focus on increasing muscle strength and improving physical function rather than simply increasing lean mass.

  8. Effects of Arachidonic Acid Supplementation on Acute Anabolic Signaling and Chronic Functional Performance and Body Composition Adaptations.

    PubMed

    De Souza, Eduardo O; Lowery, Ryan P; Wilson, Jacob M; Sharp, Matthew H; Mobley, Christopher Brooks; Fox, Carlton D; Lopez, Hector L; Shields, Kevin A; Rauch, Jacob T; Healy, James C; Thompson, Richard M; Ormes, Jacob A; Joy, Jordan M; Roberts, Michael D

    2016-01-01

    The primary purpose of this investigation was to examine the effects of arachidonic acid (ARA) supplementation on functional performance and body composition in trained males. In addition, we performed a secondary study looking at molecular responses of ARA supplementation following an acute exercise bout in rodents. Thirty strength-trained males (age: 20.4 ± 2.1 yrs) were randomly divided into two groups: ARA or placebo (i.e. CTL). Then, both groups underwent an 8-week, 3-day per week, non-periodized training protocol. Quadriceps muscle thickness, whole-body composition scan (DEXA), muscle strength, and power were assessed at baseline and post-test. In the rodent model, male Wistar rats (~250 g, ~8 weeks old) were pre-fed with either ARA or water (CTL) for 8 days and were fed the final dose of ARA prior to being acutely strength trained via electrical stimulation on unilateral plantar flexions. A mixed muscle sample was removed from the exercised and non-exercised leg 3 hours post-exercise. Lean body mass (2.9%, p<0.0005), upper-body strength (8.7%, p<0.0001), and peak power (12.7%, p<0.0001) increased only in the ARA group. For the animal trial, GSK-β (Ser9) phosphorylation (p<0.001) independent of exercise and AMPK phosphorylation after exercise (p-AMPK less in ARA, p = 0.041) were different in ARA-fed versus CTL rats. Our findings suggest that ARA supplementation can positively augment strength-training induced adaptations in resistance-trained males. However, chronic studies at the molecular level are required to further elucidate how ARA combined with strength training affect muscle adaptation.

  9. Highlights from the functional single nucleotide polymorphisms associated with human muscle size and strength or FAMuSS study.

    PubMed

    Pescatello, Linda S; Devaney, Joseph M; Hubal, Monica J; Thompson, Paul D; Hoffman, Eric P

    2013-01-01

    The purpose of the Functional Single Nucleotide Polymorphisms Associated with Human Muscle Size and Strength study or FAMuSS was to identify genetic factors that dictated the response of health-related fitness phenotypes to resistance exercise training (RT). The phenotypes examined were baseline muscle strength and muscle, fat, and bone volume and their response to RT. FAMuSS participants were 1300 young (24 years), healthy men (42%) and women (58%) that were primarily of European-American descent. They were genotyped for ~500 polymorphisms and completed the Paffenbarger Physical Activity Questionnaire to assess energy expenditure and time spent in light, moderate, and vigorous intensity habitual physical activity and sitting. Subjects then performed a 12-week progressive, unilateral RT program of the nondominant arm with the dominant arm used as a comparison. Before and after RT, muscle strength was measured with the maximum voluntary contraction and one repetition maximum, while MRI measured muscle, fat, and bone volume. We will discuss the history of how FAMuSS originated, provide a brief overview of the FAMuSS methods, and summarize our major findings regarding genotype associations with muscle strength and size, body composition, cardiometabolic biomarkers, and physical activity.

  10. Highlights from the Functional Single Nucleotide Polymorphisms Associated with Human Muscle Size and Strength or FAMuSS Study

    PubMed Central

    Pescatello, Linda S.; Devaney, Joseph M.; Hubal, Monica J.; Thompson, Paul D.; Hoffman, Eric P.

    2013-01-01

    The purpose of the Functional Single Nucleotide Polymorphisms Associated with Human Muscle Size and Strength study or FAMuSS was to identify genetic factors that dictated the response of health-related fitness phenotypes to resistance exercise training (RT). The phenotypes examined were baseline muscle strength and muscle, fat, and bone volume and their response to RT. FAMuSS participants were 1300 young (24 years), healthy men (42%) and women (58%) that were primarily of European-American descent. They were genotyped for ~500 polymorphisms and completed the Paffenbarger Physical Activity Questionnaire to assess energy expenditure and time spent in light, moderate, and vigorous intensity habitual physical activity and sitting. Subjects then performed a 12-week progressive, unilateral RT program of the nondominant arm with the dominant arm used as a comparison. Before and after RT, muscle strength was measured with the maximum voluntary contraction and one repetition maximum, while MRI measured muscle, fat, and bone volume. We will discuss the history of how FAMuSS originated, provide a brief overview of the FAMuSS methods, and summarize our major findings regarding genotype associations with muscle strength and size, body composition, cardiometabolic biomarkers, and physical activity. PMID:24455711

  11. Resistance training-induced gains in muscle strength, body composition, and functional capacity are attenuated in elderly women with sarcopenic obesity

    PubMed Central

    de Oliveira Silva, Alessandro; Dutra, Maurílio Tiradentes; de Moraes, Wilson Max Almeida Monteiro; Funghetto, Silvana Schwerz; Lopes de Farias, Darlan; dos Santos, Paulo Henrique Fernandes; Vieira, Denis Cesar Leite; Nascimento, Dahan da Cunha; Orsano, Vânia Silva Macedo; Schoenfeld, Brad J; Prestes, Jonato

    2018-01-01

    Objectives The purpose of this study was to compare the effects of resistance training (RT) on body composition, muscle strength, and functional capacity in elderly women with and without sarcopenic obesity (SO). Methods A total of 49 women (aged ≥60 years) were divided in two groups: without SO (non-SO, n=41) and with SO (n=8). Both groups performed a periodized RT program consisting of two weekly sessions for 16 weeks. All measures were assessed at baseline and postintervention, including anthropometry and body composition (dual-energy X-ray absorptiometry), muscle strength (one repetition maximum) for chest press and 45° leg press, and functional capacity (stand up, elbow flexion, timed “up and go”). Results After the intervention, only the non-SO group presented significant reductions in percentage body fat (−2.2%; P=0.006), waist circumference (−2.7%; P=0.01), waist-to-hip ratio (−2.3; P=0.02), and neck circumference (−1.8%; P=0.03) as compared with baseline. Muscle strength in the chest press and biceps curl increased in non-SO only (12.9% and 11.3%, respectively), while 45° leg press strength increased in non-SO (50.3%) and SO (40.5%) as compared with baseline. Performance in the chair stand up and timed “up and go” improved in non-SO only (21.4% and −8.4%, respectively), whereas elbow flexion performance increased in non-SO (23.8%) and SO (21.4%). Effect sizes for motor tests were of higher magnitude in the non-SO group, and in general, considered “moderate” compared to “trivial” in the SO group. Conclusion Results suggest that adaptations induced by 16 weeks of RT are attenuated in elderly woman with SO, compromising improvements in adiposity indices and gains in muscle strength and functional capacity. PMID:29588579

  12. Cancer survivors exhibit a different relationship between muscle strength and health-related quality of life/fatigue compared to healthy subjects.

    PubMed

    Morishita, S; Tsubaki, A; Fu, J B; Mitobe, Y; Onishi, H; Tsuji, T

    2018-05-16

    We investigated the difference in relationship between muscle strength and quality of life (QOL)/fatigue in long-term cancer survivors and healthy subjects. Thirty-six cancer survivors and 29 healthy subjects were assessed for body composition and bone status at the calcaneus using the Osteo Sono Assessment Index. Muscle strength was evaluated via handgrip and knee extensor strength. Health-related QOL was assessed using the Medical Outcome Study 36-item Short-Form Health Survey. Fatigue was measured using the brief fatigue inventory. Cancer survivors exhibited lower QOL scores in the physical functioning, physical role function, bodily pain and general health domains (p < .05). Grip and knee extension muscle strength in cancer survivors was positively correlated with the physical function and bodily pain of QOL (p < .05). The usual fatigue subscale score was only significantly higher in cancer survivors than in healthy subjects (p < .05). However, there were no correlations between muscle strength and fatigue in cancer survivors. Our results showed that muscle strength was an important factor for improving QOL in cancer survivors. We believe that the findings of this study will be relevant in the context of planning rehabilitation for cancer survivors. © 2018 John Wiley & Sons Ltd.

  13. Intermuscular Fat: A Review of the Consequences and Causes

    PubMed Central

    Marcus, Robin L.; LaStayo, Paul C.; Ryan, Alice S.

    2014-01-01

    Muscle's structural composition is an important factor underlying muscle strength and physical function in older adults. There is an increasing amount of research to support the clear disassociation between the loss of muscle lean tissue mass and strength with aging. This disassociation implies that factors in addition to lean muscle mass are responsible for the decreases in strength and function seen with aging. Intermuscular adipose tissue (IMAT) is a significant predictor of both muscle function and mobility function in older adults and across a wide variety of comorbid conditions such as stroke, spinal cord injury, diabetes, and COPD. IMAT is also implicated in metabolic dysfunction such as insulin resistance. The purpose of this narrative review is to provide a review of the implications of increased IMAT levels in metabolic, muscle, and mobility function. Potential treatment options to mitigate increasing levels of IMAT will also be discussed. PMID:24527032

  14. Urinary incontinence in older women: the role of body composition and muscle strength from the Health, Aging, and Body Composition Study

    PubMed Central

    Suskind, Anne M; Cawthon, Peggy M.; Nakagawa, Sanae; Subak, Leslee L.; Reinders, Ilse; Satterfield, Suzanne; Cummings, Steve; Cauley, Jane A.; Harris, Tamara; Huang, Alison J.

    2016-01-01

    Objectives To evaluate prospective relationships between body composition and muscle strength with predominantly stress- and urgency urinary incontinence (SUI and UUI) in older women. Design Prospective community-dwelling observational cohort study (Health, Aging, and Body Composition study). Participants Women initially aged 70 to 79 years recruited from Pittsburgh, PA and Memphis, TN. Measurements Urinary incontinence was assessed by structured questionnaires. Body mass index (BMI), grip strength, quadriceps torque and walking speed were assessed by physical examination and performance testing. Appendicular lean body mass (ALM) and whole-body fat mass were measured using dual-energy x-ray absorptiometry. Results Of 1475 women, 212 (14%) and 233 (16%) reported at least monthly predominantly SUI and UUI at baseline, respectively. At 3 years, there were 1137 women, 164 (14%) with new/persistent SUI and 320 (28%) with new/persistent UUI. Women had increased odds of new/persistent SUI if they demonstrated ≥5% decrease in grip strength, (adjusted OR [AOR] 1.60, p=0.047). Alternatively, women had decreased odds of new/persistent SUI if they demonstrated ≥5% decrease in BMI (AOR 0.46; p=0.014), ≥5% increase in ALM corrected for BMI (AOR 0.17; p=0.004), or ≥5% decrease in fat mass (AOR 0.53; p=0.010). Only a ≥5% increase in walking speed was associated with new/persistent UUI over 3 years (AOR 1.54; p=0.040). Conclusion Among women 70 years and older, changes in body composition and grip strength were associated with changes in SUI frequency over time. In contrast, changes in these factors did not influence UUI. Findings suggest that optimization of body composition and muscle strength is more likely to modify SUI than UUI risk among older women. PMID:27918084

  15. Circuit strength training improves muscle strength, functional performance and anthropometric indicators in sedentary elderly women.

    PubMed

    Mazini Filho, Mauro L; Aidar, Felipe J; Gama de Matos, Dihogo; Costa Moreira, Osvaldo; Patrocínio de Oliveira, Cláudia E; de Oliveira Venturini, Gabriela R; Magalhães Curty, Victor; Menezes Touguinha, Henrique; Caputo Ferreira, Maria E

    2017-04-26

    This study aimed to investigate the effects of circuit strength training on the muscle strength, functional autonomy and anthropometric indicators of the elderly. Were included 65 women divided in two groups: strength training (TG, n= 34) and control group (CG, n = 31). The strength-training group was subjected to a circuit shaped training program, three days per week, for a period of 12 weeks. In each training session, the circuit was repeated three times. In each circuit, all exercises wereperformed once, with 8 to 12 repetitions per exercise, with 30-seconds intervals between each exercise. TG showed significantly changes in body composition post 12 weeks, as decreases in body weight (Δ -1.5±1.8 kg) and BMI (Δ-0.57 ±0.74 kg/m²), and decreases in abdominal (Δ -3±1.61 cm), waist (Δ -1 ± 1.61 cm), hip (Δ -2.75±1.44 cm) and waist hip ratio circumference (Δ -0.02 ± 0.15 cm). For functional autonomy, TG showed increases post 12 weeks by 30-second chair stand (Δ 3.5±0.4 reps), six minute walk (Δ60.95±7.91 m), back scratch (Δ 3.2 ± 1.36 cm), and time up and go tests (Δ -1,62 ±0,15s). TG also showed increases in muscle strength post 12 weeks in both leg press (Δ 11±1,29 kg) and lat pulldown (Δ11 ±0,75 Kg). For CG, Body composition, functional autonomy and muscle strength did not improved in any moment. Hence, circuit strength training provides significant improvements inmuscle strength, functional performance and anthropometric indicators in sedentary elderly women.

  16. Body composition explains sex differential in physical performance among older adults.

    PubMed

    Tseng, Lisa A; Delmonico, Matthew J; Visser, Marjolein; Boudreau, Robert M; Goodpaster, Bret H; Schwartz, Ann V; Simonsick, Eleanor M; Satterfield, Suzanne; Harris, Tamara; Newman, Anne B

    2014-01-01

    Older women have higher percent body fat, poorer physical function, lower strength, and higher rates of nonfatal chronic conditions than men. We sought to determine whether these differences explained physical performance differences between men and women. Physical performance was assessed in the Health, Aging and Body Composition study in 2,863 men and women aged 70-79 with a composite 0-4 point score consisting of chair stands, standing balance including one-leg stand, and 6-m usual and narrow walk tests. Total body composition was measured by dual x-ray absorptiometry, thigh composition by computed tomography, and knee extensor strength by isokinetic dynamometer. Analysis of covariance estimated least square mean performance scores for men and women. Men had higher performance scores than women (least square means: 2.33±0.02 vs 2.03±0.02, p < .0001), adjusted for race, study site, age, and height. Body composition measures (total body fat and thigh muscle area, muscle density, subcutaneous fat, and intermuscular fat) accounted for differences between men and women (least square means: 2.15±0.02 vs 2.17±0.02, p = .53). Higher strength in men partly explained the sex difference (least square means: 2.28±0.02 vs 2.12±0.02, p < .0001). Strength attenuated the association of thigh muscle mass with performance. Chronic health conditions did not explain the sex difference. In a well-functioning cohort, poorer physical function in women compared with men can be explained predominantly by their higher fat mass, but also by other body composition differences. The higher proportion of body fat in women may put them at significant biomechanical disadvantage for greater disability in old age.

  17. Muscle strength and areal bone mineral density at the hip in women: a cross-sectional study.

    PubMed

    Pasco, Julie A; Holloway, Kara L; Brennan-Olsen, Sharon L; Moloney, David J; Kotowicz, Mark A

    2015-05-24

    Muscle strengthening exercises are promoted for building and maintaining a healthy skeleton. We aimed to investigate the relationship between muscle strength and areal bone mineral density (BMD) at the hip in women aged 26-97 years. This cross-sectional study utilises data from 863 women assessed for the Geelong Osteoporosis Study. Measures of hip flexor and abductor strength were made using a hand-held dynamometer (Nicholas Manual Muscle Tester). The maximal measure from three trials on each leg was used for analyses. BMD was measured at the hip using dual energy x-ray absorptiometry (DXA; Lunar DPX-L). Total lean mass, body fat mass and appendicular lean mass were determined from whole body DXA scans. Linear regression techniques were used with muscle strength as the independent variable and BMD as the dependent variable. Models were adjusted for age and indices of body composition. Measures of age-adjusted hip flexor strength and hip abductor strength were positively associated with total hip BMD. For each standard deviation (SD) increase in hip flexor strength, the increase in mean total hip BMD (SD) was 10.4 % (p = 0.009). A similar pattern was observed for hip abductor strength, with an increase in mean total hip BMD of 22.8 % (p = 0.025). All associations between hip muscle strength and total hip BMD were independent of height, but were nullified after adjusting for appendicular lean mass or total lean mass. There was a positive association observed between muscle strength and BMD at the hip. However, this association was explained by measures of lean mass.

  18. Reductions in muscle quality and quantity in CIDP patients assessed by magnetic resonance imaging.

    PubMed

    Gilmore, Kevin J; Doherty, Timothy J; Kimpinski, Kurt; Rice, Charles L

    2018-05-09

    Weakness in patients with chronic inflammatory demyelinating polyneuropathy (CIDP) may be caused by decreases in muscle quantity and quality, but these have not been explored. Twelve patients with CIDP (mean 61 years) and ten age- matched (mean 59 years) control subjects were assessed for ankle dorsiflexion strength, and two different MRI scans (T1 and T2) of leg musculature. Isometric strength was lower in CIDP patients by 36% compared with controls. Tibialis anterior muscle volumes of CIDP patients were smaller by ∼17% than controls, and non-contractile tissue volume was ∼58% greater in CIDP patients. When normalized to total muscle or corrected contractile volume, strength was ∼ 29% and ∼18% lower, respectively in CIDP patients DISCUSSION: These results provide insight into structural integrity of muscle contractile proteins and pathological changes to whole-muscle tissue composition that contribute to impaired muscle function in CIDP. This article is protected by copyright. All rights reserved. © 2018 Wiley Periodicals, Inc.

  19. Eight Weeks of Phosphatidic Acid Supplementation in Conjunction with Resistance Training Does Not Differentially Affect Body Composition and Muscle Strength in Resistance-Trained Men

    PubMed Central

    Andre, Thomas L.; Gann, Joshua J.; McKinley-Barnard, Sarah K.; Song, Joon J.; Willoughby, Darryn S.

    2016-01-01

    This study attempted to determine the effects of eight weeks of resistance training (RT) combined with phosphatidic acid (PA) supplementation at a dose of either 250 mg or 375 mg on body composition and muscle size and strength. Twenty-eight resistance-trained men were randomly assigned to ingest 375 mg [PA375 (n = 9)] or 250 mg [PA250 (n = 9)] of PA or 375 mg of placebo [PLC (n = 10)] daily for eight weeks with RT. Supplements were ingested 60 minutes prior to RT and in the morning on non-RT days. Participants’ body composition, muscle size, and lower-body muscle strength were determined before and after training/supplementation. Separate group x time ANOVAs for each criterion variable were used employing an alpha level of ≤ 0.05. Magnitude- based inferences were utilized to determine the likely or unlikely impact of PA on each criterion variable. A significant main effect for time was observed for improvements in total body mass (p = 0.003), lean mass (p = 0.008), rectus femoris cross-sectional area [RF CSA (p = 0.011)], and lower-body strength (p < 0.001), but no significant interactions were present (p > 0.05). Collectively, magnitude-based inferences determined both doses of PA to have a likely impact of increasing body mass (74.2%), lean mass (71.3%), RF CSA (92.2%), and very likely impact on increasing lower-body strength (98.1% beneficial). When combined with RT, it appears that PA has a more than likely impact on improving lower-body strength, whereas a likely impact exists for increasing muscle size and lean mass. Key points In response to eight weeks resistance training and PLC and PA (375 mg and 250 mg) supplementation, similar increases in lower-body muscle strength occurred in all three groups; however, the increases were not different between supplement groups. In response to eight weeks resistance training and PLC and PA (375 mg and 250 mg) supplementation, similar increases in lean mass occurred in all three groups; however, the increases were not different between supplement groups. In response to eight weeks resistance training and PLC and PA (375 mg and 250 mg) supplementation, similar increases in muscle mass (RF CSA) occurred in all three groups; however, the increases were not different between supplement groups. Supplementation of PA in conjunction with RT does not impose a differential benefit; however, regarding trends in the data magnitude-based inferences indicate that PA has a more than likely impact on improving lower-body strength, whereas a likely impact for increasing muscle mass when combined with resistance training. PMID:27803633

  20. The Effects of Exercise Training in Addition to Energy Restriction on Functional Capacities and Body Composition in Obese Adults during Weight Loss: A Systematic Review

    PubMed Central

    Miller, Clint T.; Fraser, Steve F.; Levinger, Itamar; Straznicky, Nora E.; Dixon, John B.; Reynolds, John; Selig, Steve E.

    2013-01-01

    Background Obesity is associated with impairments of physical function, cardiovascular fitness, muscle strength and the capacity to perform activities of daily living. This review examines the specific effects of exercise training in relation to body composition and physical function demonstrated by changes in cardiovascular fitness, and muscle strength when obese adults undergo energy restriction. Methods Electronic databases were searched for randomised controlled trials comparing energy restriction plus exercise training to energy restriction alone. Studies published to May 2013 were included if they used multi-component methods for analysing body composition and assessed measures of fitness in obese adults. Results Fourteen RCTs met the inclusion criteria. Heterogeneity of study characteristics prevented meta-analysis. Energy restriction plus exercise training was more effective than energy restriction alone for improving cardiovascular fitness, muscle strength, and increasing fat mass loss and preserving lean body mass, depending on the type of exercise training. Conclusion Adding exercise training to energy restriction for obese middle-aged and older individuals results in favourable changes to fitness and body composition. Whilst weight loss should be encouraged for obese individuals, exercise training should be included in lifestyle interventions as it offers additional benefits. PMID:24409219

  1. What Physical Fitness Component Is Most Closely Associated With Adolescents' Blood Pressure?

    PubMed

    Nunes, Heloyse E G; Alves, Carlos A S; Gonçalves, Eliane C A; Silva, Diego A S

    2017-12-01

    This study aimed to determine which of four selected physical fitness variables, would be most associated with blood pressure changes (systolic and diastolic) in a large sample of adolescents. This was a descriptive and cross-sectional, epidemiological study of 1,117 adolescents aged 14-19 years from southern Brazil. Systolic and diastolic blood pressure were measured by a digital pressure device, and the selected physical fitness variables were body composition (body mass index), flexibility (sit-and-reach test), muscle strength/resistance (manual dynamometer), and aerobic fitness (Modified Canadian Aerobic Fitness Test). Simple and multiple linear regression analyses revealed that aerobic fitness and muscle strength/resistance best explained variations in systolic blood pressure for boys (17.3% and 7.4% of variance) and girls (7.4% of variance). Aerobic fitness, body composition, and muscle strength/resistance are all important indicators of blood pressure control, but aerobic fitness was a stronger predictor of systolic blood pressure in boys and of diastolic blood pressure in both sexes.

  2. Chronic effect of light resistance exercise after ingestion of a high-protein snack on increase of skeletal muscle mass and strength in young adults.

    PubMed

    Kato, Yushi; Sawada, Atsushi; Numao, Shigeharu; Suzuki, Masashige

    2011-01-01

    We have previously reported on the possibility that light resistance exercise performed with a high plasma amino acid concentration resulting from the ingestion of a high-protein snack (HPS; 15 g protein, 18 g sugar) 3 h after a basal meal promotes the utilization of amino acids in peripheral tissues such as muscle in both rats and humans. In the present study, we further examined the effectiveness of a daily routine involving ingestion of HPS 3 h after a basal meal and subsequent light resistance exercise (dumbbell exercise) in increasing the mass and strength of human muscle. Ten young adult males were subject to the following 3 conditions for 5 wk each, with sufficient recovery period between each condition: (1) Snack-Exercise (SE), (2) Snack-Sedentary (SS), and (3) No snack-Exercise (NE). The SE group showed a significant increase in lean body mass and total cross-sectional area (CSA) of the right forearm muscles along with a significant decrease in body fat mass. The SS group showed no change in body composition. Furthermore, the SE group showed significant increase in grip strength and isometric knee extensor muscle strength, while the SS group showed no increase in muscle strength. The NE group showed significant increase in grip strength. In conclusion, daily routine ingestion of HPS 3 h after a basal meal and subsequent light resistance exercise is effective in increasing the mass and strength of human muscle.

  3. Muscle strength and soft tissue composition as measured by dual energy x-ray absorptiometry in women aged 18-87 years.

    PubMed

    Madsen, O R; Lauridsen, U B; Hartkopp, A; Sørensen, O H

    1997-01-01

    Dual energy x-ray absorptiometry (DEXA) offers the possibility of assessing regional soft tissue composition, i.e. lean mass (LM) and fat mass: LM may be considered a measure of muscle mass. We examined age-related differences in LM, percentage fat (%fat) and muscle strength in 100 healthy non-athletic women aged 18-87 years. Relationships between muscle strength and leg LM in 20 elite female weight lifters and in 18 inactive women with previous hip fractures were also studied. The LM and %fat of the whole body, trunk, arms and legs were derived from a whole body DEXA scan. Isokinetic knee extensor strength (KES) and flexor strength (KFS) at 30 degrees.s-1 were assessed using an isokinetic dynamometer. The women aged 71-87 years had 35% lower KES and KFS than the women aged 18-40 years (P < 0.0001). Differences in LM were less pronounced. The LM of the legs, for instance, was 15% lower in the old than in the young women (P < 0.0001). In a multiple regression analysis with age, body mass, height and leg LM or KES as independent variables and KES or leg LM as the dependent variable, age was the most important predictor of KES (r(partial) = -0.74, P < 0.0001). The same applied to KFS. Body mass, not age, was the most important predictor of leg LM (r(partial) = 0.65, P < 0.0001) and of LM at all other measurement sites. The LM measured at different regions decreased equally with increasing age. The KES:leg LM ratio was negatively correlated with age (r = -0.70, P < 0.0001). The weight lifters had significantly higher KES:leg LM ratios than age-matched controls (+ 12%, P < 0.0001) and vice versa for the women with previous hip fractures (-36%, P < 0.0001). In conclusion, from our study it would seem that in healthy nonathletic women, age is a more important determinant of muscle strength than is LM as measured by DEXA. Muscle strengthening exercises and inactivity seem to have a considerably stronger influence on muscle strength than on LM.

  4. Patterns and correlates of grip strength change with age in Afro-Caribbean men.

    PubMed

    Forrest, Kimberly Y Z; Bunker, Clareann H; Sheu, Yahtyng; Wheeler, Victor W; Patrick, Alan L; Zmuda, Joseph M

    2012-05-01

    muscle strength is essential for physical functions and an indicator of morbidity and mortality in older adults. Among the factors associated with muscle strength loss with age, ethnicity has been shown to play an important role. to examine the patterns and correlates of muscle strength change with age in a population-based cohort of middle-aged and older Afro-Caribbean men. handgrip strength and body composition were measured in 1,710 Afro-Caribbean men. Data were also collected for demographic variables, medical history and lifestyle behaviours. the age range of the study population was 29-89 years. Grip strength increased below age 50 years, and decreased after age 50 years over 4.5-year follow-up. The average loss in grip strength was 2.2% (0.49% per year) for ages 50 years or older and 3.8% (0.64% per year) for ages 65 years or older. The significant independent predictors of grip strength loss included older age, a greater body mass index, lower initial arm lean mass and greater loss of arm lean mass. Afro-Caribbean men experience a significant decline in muscle strength with advanced age. The major independent factors associated with strength loss were similar to other ethnic groups, including age, body weight and lean mass.

  5. Effects of a 2-Year Supervised Exercise Program Upon the Body Composition and Muscular Performance of HIV-Infected Patients

    PubMed Central

    Paes, Lorena da Silva; Borges, Juliana Pereira; dos Santos, Fernanda Monteiro; de Oliveira, Taciana Pinto; Dupin, Jaciara Gomes; Harris, Elizabeth Assumpção; Farinatti, Paulo

    2015-01-01

    Background : There is a lack of research investigating long-term effects of exercise training upon the body composition and muscle function in HIV-infected patients (PHIV). The study investigated the influence of a 2-year supervised exercise program on body composition and strength of PHIV under highly active antiretroviral therapy (HAART). Methods : A training program including aerobic, strength and flexibility exercises was performed by 27 PHIV (17 men/ 10 women; age: 48.7±7.0 years; HAART: 150.7±65.3 months) during 1 year and 18 PHIV (10 men/ 8 women; age: 50.6±5.2 years; HAART: 176.6±53.1 months) during 2 years. Body composition and knee isokinetic strength were assessed at baseline and at the end of each year of intervention. Results : Body composition remained stable along the whole experiment vs baseline (1-year - total muscle mass: Δ men=1.1%, P=0.21; Δ women=1.4%, P=0.06; trunk fat: Δ men=-0.1%, P=0.65; Δ women=-1.5%, P=0.45; 2 years - total muscle mass: Δ men=2.7%, P=0.54; Δ women=-1.9%, P=0.71; trunk fat: Δ men=4.4%, P=0.96; Δ women=10.0%, P=0.30). After 1-year, peak torque increased in men (Δ extension=4.2%, P=0.01; Δ flexion=12.2%, P=0.04) and total work reduced in women (Δ extension=-15.4%, P=0.01, Δ flexion=-17.5%, P=0.05). All strength markers remained stable vs baseline after 2 years of intervention (P>0.05). Only men showed significant reduction in the risk of disability due to sarcopenia (P=0.05) after 1 year of intervention, which remained stable after 2 years. Conclusion : Long-term exercise training preserved strength and muscle mass in PHIV under HAART. Exercise programs should be part of HIV therapy to prevent sarcopenia of this population along the years. Trial Registration : ACTRN12610000683033; UTN U1111-1116-4416. PMID:26587076

  6. Obesity, Muscular Strength, Muscle Composition and Physical Performance in an Elderly Population.

    PubMed

    De Stefano, F; Zambon, S; Giacometti, L; Sergi, G; Corti, M C; Manzato, E; Busetto, L

    2015-08-01

    To evaluate the association between BMI levels, muscular strength, muscle composition and physical performance in the elderly. Italians subjects from the Progetto Veneto Anziani (ProVA) study were analyzed. The ProVa was a population study focused on chronic diseases and functional limitations in Italian subjects aged ≥65 years living in two Northeast Italian cities. The ProVa study included 3099 subjects. ProVa participants with unknown information on BMI or disability status were excluded. The final sample was thus represented by 1.188 men, and 1.723 women. Physical performance was measured with the Short Physical Performance Battery (SPPB) and leg muscular strength with dynamometry. Fat distribution and skeletal muscle composition were measured in an abdominal single-scan magnetic resonance (MRI) in a randomly selected sample of 348 subjects. Study population was stratified by BMI classes. An association between BMI levels and SPPB was observed. Normal weight subjects showed the best SPPB scores (8.29±0.03), with significant differences compared to underweight (7.50±0.15; p<0.001), overweight (8.12±0.02; p<0.001), class I (7.72±0.04; p<0.001), class II (6.67±0.09; p<0.001) and class III obesity (5.88±0.24; p<0.001). This pattern was not modified by adjustment for possible confounders. Compared to normal weight subjects (22.9±0.1 kg), leg muscular strength was higher in overweight (23.8±0.1; p<0.001) and in class I obesity (24.5±0.1; p<0.001), but it was reduced in class II (21.4±0.3; p<0.001) and class III (19.8±0.9; p<0.001). The association between BMI and impaired physical performance was not affected by adjustment for muscular strength. An inverse association between SPPB scores and fat infiltration in skeletal muscle was observed in patients with abdominal MRI. A poor physical performance was observed in overweight and obese elderly subjects. Leg strength was reduced only in subjects with severe obesity. Physical performance was negatively influenced by the degree of fat infiltration in skeletal muscle.

  7. Effects of feedback-based balance and core resistance training vs. Pilates training on balance and muscle function in older women: a randomized-controlled trial.

    PubMed

    Markovic, Goran; Sarabon, Nejc; Greblo, Zrinka; Krizanic, Valerija

    2015-01-01

    Aging is associated with decline in physical function that could result in the development of physical impairment and disability. Hence, interventions that simultaneously challenge balance ability, trunk (core) and extremity strength of older adults could be particularly effective in preserving and enhancing these physical functions. The purpose of this study was to compare the effects of feedback-based balance and core resistance training utilizing the a special computer-controlled device (Huber®) with the conventional Pilates training on balance ability, neuromuscular function and body composition of healthy older women. Thirty-four older women (age: 70±4 years) were randomly assigned to a Huber group (n=17) or Pilates group (n=17). Both groups trained for 8 weeks, 3 times a week. Maximal isometric strength of the trunk flexors, extensors, and lateral flexors, leg power, upper-body strength, single- and dual-task static balance, and body composition were measured before and after the intervention programs. Significant group×time interactions and main effects of time (p<0.05) were found for body composition, balance ability in standard and dual-task conditions, all trunk muscle strength variables, and leg power in favor of the Huber group. The observed improvements in balance ability under both standard and dual-task conditions in the Huber group were mainly the result of enhanced postural control in medial-lateral direction (p<0.05). Feedback-based balance and core resistance training proved to be more effective in improving single- and dual-task balance ability, trunk muscle strength, leg power, and body composition of healthy older women than the traditional Pilates training. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  8. Effects of soluble milk protein or casein supplementation on muscle fatigue following resistance training program: a randomized, double-blind, and placebo-controlled study

    PubMed Central

    2014-01-01

    Background The effects of protein supplementation on muscle thickness, strength and fatigue seem largely dependent on its composition. The current study compared the effects of soluble milk protein, micellar casein, and a placebo on strength and fatigue during and after a resistance training program. Methods Sixty-eight physically active men participated in this randomized controlled trial and underwent 10 weeks of lower-body resistance training. Participants were randomly assigned to the Placebo (PLA), Soluble Milk Protein (SMP, with fast digestion rate) or Micellar Casein (MC, with slow digestion rate) group. During the 10-week training period, participants were instructed to take 30 g of the placebo or protein twice a day, or three times on training days. Tests were performed on quadriceps muscles at inclusion (PRE), after 4 weeks (MID) and after 10 weeks (POST) of training. They included muscle endurance (maximum number of repetitions during leg extensions using 70% of the individual maximal load), fatigue (decrease in muscle power after the endurance test), strength, power and muscle thickness. Results Muscle fatigue was significantly lower (P < 0.05) in the SMP group at MID and POST (-326.8 ± 114.1 W and -296.6 ± 130.1 W, respectively) as compared with PLA (-439.2 ± 153.9 W and -479.2 ± 138.1 W, respectively) and MC (-415.1 ± 165.1 W and -413.7 ± 139.4 W, respectively). Increases in maximal muscle power, strength, endurance and thickness were not statistically different between groups. Conclusions The present study demonstrated that protein composition has a large influence on muscular performance after prolonged resistance training. More specifically, as compared with placebo or micellar casein, soluble milk protein (fast digestible) appeared to significantly reduce muscle fatigue induced by intense resistance exercise. PMID:25057266

  9. Effects of soluble milk protein or casein supplementation on muscle fatigue following resistance training program: a randomized, double-blind, and placebo-controlled study.

    PubMed

    Babault, Nicolas; Deley, Gaëlle; Le Ruyet, Pascale; Morgan, François; Allaert, François André

    2014-01-01

    The effects of protein supplementation on muscle thickness, strength and fatigue seem largely dependent on its composition. The current study compared the effects of soluble milk protein, micellar casein, and a placebo on strength and fatigue during and after a resistance training program. Sixty-eight physically active men participated in this randomized controlled trial and underwent 10 weeks of lower-body resistance training. Participants were randomly assigned to the Placebo (PLA), Soluble Milk Protein (SMP, with fast digestion rate) or Micellar Casein (MC, with slow digestion rate) group. During the 10-week training period, participants were instructed to take 30 g of the placebo or protein twice a day, or three times on training days. Tests were performed on quadriceps muscles at inclusion (PRE), after 4 weeks (MID) and after 10 weeks (POST) of training. They included muscle endurance (maximum number of repetitions during leg extensions using 70% of the individual maximal load), fatigue (decrease in muscle power after the endurance test), strength, power and muscle thickness. Muscle fatigue was significantly lower (P < 0.05) in the SMP group at MID and POST (-326.8 ± 114.1 W and -296.6 ± 130.1 W, respectively) as compared with PLA (-439.2 ± 153.9 W and -479.2 ± 138.1 W, respectively) and MC (-415.1 ± 165.1 W and -413.7 ± 139.4 W, respectively). Increases in maximal muscle power, strength, endurance and thickness were not statistically different between groups. The present study demonstrated that protein composition has a large influence on muscular performance after prolonged resistance training. More specifically, as compared with placebo or micellar casein, soluble milk protein (fast digestible) appeared to significantly reduce muscle fatigue induced by intense resistance exercise.

  10. Relations of meeting national public health recommendations for muscular strengthening activities with strength, body composition, and obesity: the Women's Injury Study.

    PubMed

    Trudelle-Jackson, Elaine; Jackson, Allen W; Morrow, James R

    2011-10-01

    We examined the relations of meeting or not meeting the 2008 Physical Activity Guidelines for Americans recommendations for muscular strengthening activities with percentage of body fat, body mass index (BMI; defined as weight in kilograms divided by height in meters, squared), muscular strength, and obesity classification in women. We analyzed data on 918 women aged 20 to 83 years in the Women's Injury Study from 2007 to 2009. A baseline orthopedic examination included measurement of height, body weight, skinfolds, and muscle strength. Women who met muscle strengthening activity recommendations had significantly lower BMI and percentage of body fat and higher muscle strength. Women not meeting those recommendations were more likely to be obese (BMI ≥ 30) compared with women who met the recommendations after we adjusted for age, race, and aerobic physical activity (odds ratio = 2.28; 95% confidence interval = 1.61, 3.23). There was a small but significant positive association between meeting muscle strengthening activity recommendations and muscular strength, a moderate inverse association with body fat percentage, and a strong inverse association with obesity classification, providing preliminary support for the muscle strengthening activity recommendation for women.

  11. Fitness Profiles and Activity Patterns of Entering College Students.

    ERIC Educational Resources Information Center

    Pierce, Edgar F.; And Others

    1992-01-01

    Entering college students were evaluated for performance on maximal oxygen consumption, body composition, muscle endurance, muscle strength, and joint flexibility tests to determine the relationship of physical activity patterns to fitness levels. Results supported previous research indicating reduced fitness levels in young adults. (SM)

  12. Body composition, muscle capacity, and physical function in older adults: an integrated conceptual model.

    PubMed

    Brady, Anne O; Straight, Chad R; Evans, Ellen M

    2014-07-01

    The aging process leads to adverse changes in body composition (increases in fat mass and decreases in skeletal muscle mass), declines in physical function (PF), and ultimately increased risk for disability and loss of independence. Specific components of body composition or muscle capacity (strength and power) may be useful in predicting PF; however, findings have been mixed regarding the most salient predictor of PF. The development of a conceptual model potentially aids in understanding the interrelated factors contributing to PF with the factors of interest being physical activity, body composition, and muscle capacity. This article also highlights sex differences in these domains. Finally, factors known to affect PF, such as sleep, depression, fatigue, and self-efficacy, are discussed. Development of a comprehensive conceptual model is needed to better characterize the most salient factors contributing to PF and to subsequently inform the development of interventions to reduce physical disability in older adults.

  13. Heavy resistance training and peri-exercise ingestion of a multi-ingredient ergogenic nutritional supplement in males: effects on body composition, muscle performance and markers of muscle protein synthesis.

    PubMed

    Spillane, Mike; Schwarz, Neil; Willoughby, Darryn S

    2014-12-01

    This study determined the effects of heavy resistance training and peri-exercise ergogenic multi-ingredient nutritional supplement ingestion on blood and skeletal markers of muscle protein synthesis (MPS), body composition, and muscle performance. Twenty-four college-age males were randomly assigned to either a multi-ingredient SizeOn Maximum Performance (SIZE) or protein/carbohydrate/creatine (PCC) comparator supplement group in a double-blind fashion. Body composition and muscle performance were assessed, and venous blood samples and muscle biopsies were obtained before and after 6 weeks of resistance training and supplementation. Data were analyzed by 2-way ANOVA (p ≤ 0.05). Total body mass, body water, and fat mass were not differentially affected (p > 0.05). However, fat-free mass was significantly increased in both groups in response to resistance training (p = 0.037). Lower-body muscle strength (p = 0.029) and endurance (p = 0.027) were significantly increased with resistance training, but not supplementation (p > 0.05). Serum insulin, IGF-1, GH, and cortisol were not differentially affected (p > 0.05). Muscle creatine content was significantly increased in both groups from supplementation (p = 0.044). Total muscle protein (p = 0.038), MHC 1 (p = 0.041), MHC 2A, (p = 0.029), total IRS- (p = 0.041), and total Akt (p = 0.011) were increased from resistance training, but not supplementation. In response to heavy resistance training when compared to PCC, the peri-exercise ingestion of SIZE did not preferentially improve body composition, muscle performance, and markers indicative of MPS. Key pointsIn response to 42 days of heavy resistance training and either SizeOn Maximum Performance or protein/carbohydrate/creatine supplementation, similar increases in muscle mass and strength in both groups occurred; however, the increases were not different between supplement groups.The supplementation of SizeOn Maximum Performance had no preferential effect on augmenting serum insulin, IGF-1, and GH, or in decreasing cortisol.While resistance training was effective in increasing total creatine content in skeletal muscle, myofibrillar protein, and the content of total IRS-1 and Akt, it was not preferentially due to SizeOn Maximum Performance supplementation.At the daily dose of 50 g, SizeOn Maximum Performance supplementation for 42 days combined with resistance training does not increases muscle mass and strength due to its ability to elevate serum hormones and growth factors or in its ability to augment skeletal muscle signaling pathway markers indicative of muscle protein synthesis when compared to an equivalent daily dose of protein/carbohydrate/creatine.

  14. The Relationship of Core Strength and Activation and Performance on Three Functional Movement Screens.

    PubMed

    Johnson, Caleb D; Whitehead, Paul N; Pletcher, Erin R; Faherty, Mallory S; Lovalekar, Mita T; Eagle, Shawn R; Keenan, Karen A

    2018-04-01

    Johnson, CD, Whitehead, PN, Pletcher, ER, Faherty, MS, Lovalekar, MT, Eagle, SR, and Keenan, KA. The relationship of core strength and activation and performance on three functional movement screens. J Strength Cond Res 32(4): 1166-1173, 2018-Current measures of core stability used by clinicians and researchers suffer from several shortcomings. Three functional movement screens appear, at face-value, to be dependent on the ability to activate and control core musculature. These 3 screens may present a viable alternative to current measures of core stability. Thirty-nine subjects completed a deep squat, trunk stability push-up, and rotary stability screen. Scores on the 3 screens were summed to calculate a composite score (COMP). During the screens, muscle activity was collected to determine the length of time that the bilateral erector spinae, rectus abdominis, external oblique, and gluteus medius muscles were active. Strength was assessed for core muscles (trunk flexion and extension, trunk rotation, and hip abduction and adduction) and accessory muscles (knee flexion and extension and pectoralis major). Two ordinal logistic regression equations were calculated with COMP as the outcome variable, and: (a) core strength and accessory strength, (b) only core strength. The first model was significant in predicting COMP (p = 0.004) (Pearson's Chi-Square = 149.132, p = 0.435; Nagelkerke's R-Squared = 0.369). The second model was significant in predicting COMP (p = 0.001) (Pearson's Chi-Square = 148.837, p = 0.488; Nagelkerke's R-Squared = 0.362). The core muscles were found to be active for most screens, with percentages of "time active" for each muscle ranging from 54-86%. In conclusion, performance on the 3 screens is predicted by core strength, even when accounting for "accessory" strength variables. Furthermore, it seems the screens elicit wide-ranging activation of core muscles. Although more investigation is needed, these screens, collectively, seem to be a good assessment of core strength.

  15. The SH3 and cysteine-rich domain 3 (Stac3) gene is important to growth, fiber composition, and calcium release from the sarcoplasmic reticulum in postnatal skeletal muscle.

    PubMed

    Cong, Xiaofei; Doering, Jonathan; Mazala, Davi A G; Chin, Eva R; Grange, Robert W; Jiang, Honglin

    2016-01-01

    The SH3 and cysteine-rich domain 3 (Stac3) gene is specifically expressed in the skeletal muscle. Stac3 knockout mice die perinatally. In this study, we determined the potential role of Stac3 in postnatal skeletal muscle growth, fiber composition, and contraction by generating conditional Stac3 knockout mice. We disrupted the Stac3 gene in 4-week-old male mice using the Flp-FRT and tamoxifen-inducible Cre-loxP systems. RT-qPCR and western blotting analyses of the limb muscles of target mice indicated that nearly all Stac3 mRNA and more than 70 % of STAC3 protein were deleted 4 weeks after tamoxifen injection. Postnatal Stac3 deletion inhibited body and limb muscle mass gains. Histological staining and gene expression analyses revealed that postnatal Stac3 deletion decreased the size of myofibers and increased the percentage of myofibers containing centralized nuclei, with no effect on the total myofiber number. Grip strength and grip time tests indicated that postnatal Stac3 deletion decreased limb muscle strength in mice. Muscle contractile tests revealed that postnatal Stac3 deletion reduced electrostimulation-induced but not the ryanodine receptor agonist caffeine-induced maximal force output in the limb muscles. Calcium imaging analysis of single flexor digitorum brevis myofibers indicated that postnatal Stac3 deletion reduced electrostimulation- but not caffeine-induced calcium release from the sarcoplasmic reticulum. This study demonstrates that STAC3 is important to myofiber hypertrophy, myofiber-type composition, contraction, and excitation-induced calcium release from the sarcoplasmic reticulum in the postnatal skeletal muscle.

  16. Strength Modeling Report

    NASA Technical Reports Server (NTRS)

    Badler, N. I.; Lee, P.; Wong, S.

    1985-01-01

    Strength modeling is a complex and multi-dimensional issue. There are numerous parameters to the problem of characterizing human strength, most notably: (1) position and orientation of body joints; (2) isometric versus dynamic strength; (3) effector force versus joint torque; (4) instantaneous versus steady force; (5) active force versus reactive force; (6) presence or absence of gravity; (7) body somatotype and composition; (8) body (segment) masses; (9) muscle group envolvement; (10) muscle size; (11) fatigue; and (12) practice (training) or familiarity. In surveying the available literature on strength measurement and modeling an attempt was made to examine as many of these parameters as possible. The conclusions reached at this point toward the feasibility of implementing computationally reasonable human strength models. The assessment of accuracy of any model against a specific individual, however, will probably not be possible on any realistic scale. Taken statistically, strength modeling may be an effective tool for general questions of task feasibility and strength requirements.

  17. Psychosocial correlates of cardiorespiratory fitness and muscle strength in overweight and obese post-menopausal women: a MONET study.

    PubMed

    Karelis, Antony D; Fontaine, Jonathan; Messier, Virginie; Messier, Lyne; Blanchard, Chris; Rabasa-Lhoret, Remi; Strychar, Irene

    2008-07-01

    The purpose of this study was to examine the psychosocial correlates of cardiorespiratory fitness (VO2peak) and muscle strength in overweight and obese sedentary post-menopausal women. The study population consisted of 137 non-diabetic, sedentary overweight and obese post-menopausal women (mean age 57.7 years, s = 4.8; body mass index 32.4 kg.m(-2), s = 4.6). At baseline we measured: (1) body composition using dual-energy X-ray absorptiometry; (2) visceral fat using computed tomography; (3) insulin sensitivity using the hyperinsulinaemic-euglycaemic clamp; (4) cardiorespiratory fitness; (5) muscle strength using the leg press exercise; and (6) psychosocial profile (quality of life, perceived stress, self-esteem, body-esteem, and perceived risk for developing chronic diseases) using validated questionnaires. Both VO2peak and muscle strength were significantly correlated with quality of life (r = 0.29, P < 0.01 and r = 0.30, P < 0.01, respectively), and quality of life subscales for: physical functioning (r = 0.28, P < 0.01 and r = 0.22, P < 0.05, respectively), pain (r = 0.18, P < 0.05 and r = 0.23, P < 0.05, respectively), role functioning (r = 0.20, P < 0.05 and r = 0.24, P < 0.05, respectively), and perceived risks (r = -0.24, P < 0.01 and r = -0.30, P < 0.01, respectively). In addition, VO2peak was significantly associated with positive health perceptions, greater body esteem, and less time watching television/video. Stepwise regression analysis showed that quality of life for health perceptions and for role functioning were independent predictors of VO2peak and muscle strength, respectively. In conclusion, higher VO2peak and muscle strength are associated with a favourable psychosocial profile, and the psychosocial correlates of VO2peak were different from those of muscle strength. Furthermore, psychosocial factors could be predictors of VO2peak and muscle strength in our cohort of overweight and obese sedentary post-menopausal women.

  18. Effects of long term supplementation of anabolic androgen steroids on human skeletal muscle.

    PubMed

    Yu, Ji-Guo; Bonnerud, Patrik; Eriksson, Anders; Stål, Per S; Tegner, Yelverton; Malm, Christer

    2014-01-01

    The effects of long-term (over several years) anabolic androgen steroids (AAS) administration on human skeletal muscle are still unclear. In this study, seventeen strength training athletes were recruited and individually interviewed regarding self-administration of banned substances. Ten subjects admitted having taken AAS or AAS derivatives for the past 5 to 15 years (Doped) and the dosage and type of banned substances were recorded. The remaining seven subjects testified to having never used any banned substances (Clean). For all subjects, maximal muscle strength and body composition were tested, and biopsies from the vastus lateralis muscle were obtained. Using histochemistry and immunohistochemistry (IHC), muscle biopsies were evaluated for morphology including fiber type composition, fiber size, capillary variables and myonuclei. Compared with the Clean athletes, the Doped athletes had significantly higher lean leg mass, capillary per fibre and myonuclei per fiber. In contrast, the Doped athletes had significantly lower absolute value in maximal squat force and relative values in maximal squat force (relative to lean body mass, to lean leg mass and to muscle fiber area). Using multivariate statistics, an orthogonal projection of latent structure discriminant analysis (OPLS-DA) model was established, in which the maximal squat force relative to muscle mass and the maximal squat force relative to fiber area, together with capillary density and nuclei density were the most important variables for separating Doped from the Clean athletes (regression  =  0.93 and prediction  =  0.92, p<0.0001). In Doped athletes, AAS dose-dependent increases were observed in lean body mass, muscle fiber area, capillary density and myonuclei density. In conclusion, long term AAS supplementation led to increases in lean leg mass, muscle fiber size and a parallel improvement in muscle strength, and all were dose-dependent. Administration of AAS may induce sustained morphological changes in human skeletal muscle, leading to physical performance enhancement.

  19. Effects of Long Term Supplementation of Anabolic Androgen Steroids on Human Skeletal Muscle

    PubMed Central

    Yu, Ji-Guo; Bonnerud, Patrik; Eriksson, Anders; Stål, Per S.; Tegner, Yelverton; Malm, Christer

    2014-01-01

    The effects of long-term (over several years) anabolic androgen steroids (AAS) administration on human skeletal muscle are still unclear. In this study, seventeen strength training athletes were recruited and individually interviewed regarding self-administration of banned substances. Ten subjects admitted having taken AAS or AAS derivatives for the past 5 to 15 years (Doped) and the dosage and type of banned substances were recorded. The remaining seven subjects testified to having never used any banned substances (Clean). For all subjects, maximal muscle strength and body composition were tested, and biopsies from the vastus lateralis muscle were obtained. Using histochemistry and immunohistochemistry (IHC), muscle biopsies were evaluated for morphology including fiber type composition, fiber size, capillary variables and myonuclei. Compared with the Clean athletes, the Doped athletes had significantly higher lean leg mass, capillary per fibre and myonuclei per fiber. In contrast, the Doped athletes had significantly lower absolute value in maximal squat force and relative values in maximal squat force (relative to lean body mass, to lean leg mass and to muscle fiber area). Using multivariate statistics, an orthogonal projection of latent structure discriminant analysis (OPLS-DA) model was established, in which the maximal squat force relative to muscle mass and the maximal squat force relative to fiber area, together with capillary density and nuclei density were the most important variables for separating Doped from the Clean athletes (regression  =  0.93 and prediction  =  0.92, p<0.0001). In Doped athletes, AAS dose-dependent increases were observed in lean body mass, muscle fiber area, capillary density and myonuclei density. In conclusion, long term AAS supplementation led to increases in lean leg mass, muscle fiber size and a parallel improvement in muscle strength, and all were dose-dependent. Administration of AAS may induce sustained morphological changes in human skeletal muscle, leading to physical performance enhancement. PMID:25207812

  20. Time-Course of Muscle Mass Loss, Damage, and Proteolysis in Gastrocnemius following Unloading and Reloading: Implications in Chronic Diseases

    PubMed Central

    Chacon-Cabrera, Alba; Lund-Palau, Helena; Gea, Joaquim; Barreiro, Esther

    2016-01-01

    Background Disuse muscle atrophy is a major comorbidity in patients with chronic diseases including cancer. We sought to explore the kinetics of molecular mechanisms shown to be involved in muscle mass loss throughout time in a mouse model of disuse muscle atrophy and recovery following immobilization. Methods Body and muscle weights, grip strength, muscle phenotype (fiber type composition and morphometry and muscle structural alterations), proteolysis, contractile proteins, systemic troponin I, and mitochondrial content were assessed in gastrocnemius of mice exposed to periods (1, 2, 3, 7, 15 and 30 days) of non-invasive hindlimb immobilization (plastic splint, I cohorts) and in those exposed to reloading for different time-points (1, 3, 7, 15, and 30 days, R cohorts) following a seven-day period of immobilization. Groups of control animals were also used. Results Compared to non-exposed controls, muscle weight, limb strength, slow- and fast-twitch cross-sectional areas, mtDNA/nDNA, and myosin content were decreased in mice of I cohorts, whereas tyrosine release, ubiquitin-proteasome activity, muscle injury and systemic troponin I levels were increased. Gastrocnemius reloading following splint removal improved muscle mass loss, strength, fiber atrophy, injury, myosin content, and mtDNA/nDNA, while reducing ubiquitin-proteasome activity and proteolysis. Conclusions A consistent program of molecular and cellular events leading to reduced gastrocnemius muscle mass and mitochondrial content and reduced strength, enhanced proteolysis, and injury, was seen in this non-invasive mouse model of disuse muscle atrophy. Unloading of the muscle following removal of the splint significantly improved the alterations seen during unloading, characterized by a specific kinetic profile of molecular events involved in muscle regeneration. These findings have implications in patients with chronic diseases including cancer in whom physical activity may be severely compromised. PMID:27792730

  1. Genetic variation in the human vitamin D receptor is associated with muscle strength, fat mass and body weight in Swedish women.

    PubMed

    Grundberg, Elin; Brändström, Helena; Ribom, Eva L; Ljunggren, Osten; Mallmin, Hans; Kindmark, Andreas

    2004-03-01

    Bone mineral density (BMD) is under strong genetic control and a number of candidate genes have been associated with BMD. Both muscle strength and body weight are considered to be important predictors of BMD but far less is known about the genes affecting muscle strength and fat mass. The purpose of this study was to investigate the poly adenosine (A) repeat and the BsmI SNP in the vitamin D receptor (VDR) in relation to muscle strength and body composition in healthy women. A population-based study of 175 healthy women aged 20-39 years was used. The polymorphic regions in the VDR gene (the poly A repeat and the BsmI SNP) were amplified by PCR. Body mass measurements (fat mass, lean mass, body weight and body mass index) and muscle strength (quadriceps, hamstring and grip strength) were evaluated. Individuals with shorter poly A repeat, ss and/or absence of the linked BsmI restriction site (BB) have higher hamstring strength (ss vs LL, P=0.02), body weight (ss vs LL, P=0.049) and fat mass (ss vs LL, P=0.04) compared with women with a longer poly A repeat (LL) and/or the presence of the linked BsmI restriction site (bb). Genetic variation in the VDR is correlated with muscle strength, fat mass and body weight in premenopausal women. Further functional studies on the poly A microsatellite are needed to elucidate whether this is the functionally relevant locus or if the polymorphism is in linkage disequilibrium with a functional variant in a closely situated gene further downstream of the VDR 3'UTR.

  2. Gymnastics participation is associated with skeletal benefits in the distal forearm: a 6-month study using peripheral Quantitative Computed Tomography.

    PubMed

    Burt, L A; Ducher, G; Naughton, G A; Courteix, D; Greene, D A

    2013-12-01

    Musculoskeletal development of the upper limbs during exposure to weight-bearing loading is under-researched during early pubescent growth. The purpose was to assess the changes in upper body musculoskeletal strength in young girls following 6 months of non-elite gymnastics participation. Eighty-four girls, 6-12 years were divided into groups based on gymnastics participation: high-training (HGYM, 6-16 hr/wk), low-training (LGYM, 1-5 hr/wk), and non-gymnasts (NONGYM). Volumetric BMD, bone geometry, estimated bone strength and muscle size were assessed at the non-dominant forearm (4% and 66% radius and ulna) with pQCT. DXA assessed aBMD and body composition. Tests for explosive power, muscle strength, and endurance were also performed. Interaction effects were observed in all variables at the 4% radius. At the 66% ulna, HGYM and LGYM had greater bone mass, size and bone strength than NONGYM, furthermore a dose-response relationship was observed at this location. Body composition was better for HGYM than LGYM and NONGYM, however muscle function was better for HGYM and LGYM than NONGYM. The greatest changes were obtained with more than one gymnastics class per week. Separating gymnastics participation-related changes from those associated with normal growth and development remains difficult, particularly at the 4% radius.

  3. The effects of whey protein with or without carbohydrates on resistance training adaptations.

    PubMed

    Hulmi, Juha J; Laakso, Mia; Mero, Antti A; Häkkinen, Keijo; Ahtiainen, Juha P; Peltonen, Heikki

    2015-01-01

    Nutrition intake in the context of a resistance training (RT) bout may affect body composition and muscle strength. However, the individual and combined effects of whey protein and carbohydrates on long-term resistance training adaptations are poorly understood. A four-week preparatory RT period was conducted in previously untrained males to standardize the training background of the subjects. Thereafter, the subjects were randomized into three groups: 30 g of whey proteins (n = 22), isocaloric carbohydrates (maltodextrin, n = 21), or protein + carbohydrates (n = 25). Within these groups, the subjects were further randomized into two whole-body 12-week RT regimens aiming either for muscle hypertrophy and maximal strength or muscle strength, hypertrophy and power. The post-exercise drink was always ingested immediately after the exercise bout, 2-3 times per week depending on the training period. Body composition (by DXA), quadriceps femoris muscle cross-sectional area (by panoramic ultrasound), maximal strength (by dynamic and isometric leg press) and serum lipids as basic markers of cardiovascular health, were analysed before and after the intervention. Twelve-week RT led to increased fat-free mass, muscle size and strength independent of post-exercise nutrient intake (P < 0.05). However, the whey protein group reduced more total and abdominal area fat when compared to the carbohydrate group independent of the type of RT (P < 0.05). Thus, a larger relative increase (per kg bodyweight) in fat-free mass was observed in the protein vs. carbohydrate group (P < 0.05) without significant differences to the combined group. No systematic effects of the interventions were found for serum lipids. The RT type did not have an effect on the adaptations in response to different supplementation paradigms. Post-exercise supplementation with whey proteins when compared to carbohydrates or combination of proteins and carbohydrates did not have a major effect on muscle size or strength when ingested two to three times a week. However, whey proteins may increase abdominal fat loss and relative fat-free mass adaptations in response to resistance training when compared to fast-acting carbohydrates.

  4. Androgen signaling in myocytes contributes to the maintenance of muscle mass and fiber type regulation but not to muscle strength or fatigue.

    PubMed

    Ophoff, Jill; Van Proeyen, Karen; Callewaert, Filip; De Gendt, Karel; De Bock, Katrien; Vanden Bosch, An; Verhoeven, Guido; Hespel, Peter; Vanderschueren, Dirk

    2009-08-01

    Muscle frailty is considered a major cause of disability in the elderly and chronically ill. However, the exact role of androgen receptor (AR) signaling in muscle remains unclear. Therefore, a postmitotic myocyte-specific AR knockout (mARKO) mouse model was created and investigated together with a mouse model with ubiquitous AR deletion. Muscles from mARKO mice displayed a marked reduction in AR protein (60-88%). Interestingly, body weights and lean body mass were lower in mARKO vs. control mice (-8%). The weight of the highly androgen-sensitive musculus levator ani was significantly reduced (-46%), whereas the weights of other peripheral skeletal muscles were not or only slightly reduced. mARKO mice had lower intra-abdominal fat but did not demonstrate a cortical or trabecular bone phenotype, indicating that selective ablation of the AR in myocytes affected male body composition but not skeletal homeostasis. Furthermore, muscle contractile performance in mARKO mice did not differ from their controls. Myocyte-specific AR ablation resulted in a conversion of fast toward slow fibers, without affecting muscle strength or fatigue. Similar results were obtained in ubiquitous AR deletion, showing lower body weight, whereas some but not all muscle weights were reduced. The percent slow fibers was increased, but no changes in muscle strength or fatigue could be detected. Together, our findings show that myocyte AR signaling contributes to the maintenance of muscle mass and fiber type regulation but not to muscle strength or fatigue. The levator ani weight remains the most sensitive and specific marker of AR-mediated anabolic action on muscle.

  5. Hormonal regulators of muscle and metabolism in aging (HORMA): Design and conduct of a complex, double-masked, multicenter trial

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: Older persons often lose muscle mass, strength, and physical function. This report describes the challenges of conducting a complex clinical investigation assessing the effects of anabolic hormones on body composition, physical function, and metabolism during aging. METHODS: HORMA is a m...

  6. Longitudinal decline of lower extremity muscle power in healthy and mobility-limited older adults: influence of muscle mass, strength, composition, neuromuscular activation and single fiber contractile properties

    USDA-ARS?s Scientific Manuscript database

    This longitudinal study examined the major physiological mechanisms that determine the age related loss of lower extremity muscle power in two distinct groups of older humans. We hypothesized that after ~3 years of follow-up, mobility-limited older adults (mean age: 77.2 +/- 4, n = 22, 12 females) w...

  7. Effects of high-intensity interval cycling performed after resistance training on muscle strength and hypertrophy.

    PubMed

    Tsitkanou, S; Spengos, K; Stasinaki, A-N; Zaras, N; Bogdanis, G; Papadimas, G; Terzis, G

    2017-11-01

    Aim of the study was to investigate whether high-intensity interval cycling performed immediately after resistance training would inhibit muscle strength increase and hypertrophy expected from resistance training per se. Twenty-two young men were assigned into either resistance training (RE; N = 11) or resistance training plus high-intensity interval cycling (REC; N = 11). Lower body muscle strength and rate of force development (RFD), quadriceps cross-sectional area (CSA) and vastus lateralis muscle architecture, muscle fiber type composition and capillarization, and estimated aerobic capacity were evaluated before and after 8 weeks of training (2 times per week). Muscle strength and quadriceps CSA were significantly and similarly increased after both interventions. Fiber CSA increased significantly and similarly after both RE (type I: 13.6 ± 3.7%, type IIA: 17.6 ± 4.4%, type IIX: 23.2 ± 5.7%, P < 0.05) and REC (type I: 10.0 ± 2.7%, type IIA: 14.8 ± 4.3% type IIX: 20.8 ± 6.0%, P < 0.05). In contrast, RFD decreased and fascicle angle increased (P < 0.05) only after REC. Capillary density and estimated aerobic capacity increased (P < 0.05) only after REC. These results suggest that high-intensity interval cycling performed after heavy-resistance exercise may not inhibit resistance exercise-induced muscle strength/hypertrophy after 2 months of training, while it prompts aerobic capacity and muscle capillarization. The addition of high-intensity cycling after heavy-resistance exercise may decrease RFD partly due to muscle architectural changes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Association of Muscle Endurance, Fatigability, and Strength With Functional Limitation and Mortality in the Health Aging and Body Composition Study

    PubMed Central

    Patel, Kushang V.; Fried, Linda F.; Robinson-Cohen, Cassianne; de Boer, Ian H.; Harris, Tamara; Murphy, Rachel A.; Satterfield, Suzanne; Goodpaster, Bret H.; Shlipak, Michael; Newman, Anne B.; Kestenbaum, Bryan

    2017-01-01

    Background: Mobility limitation is highly prevalent among older adults and is central to the loss of functional independence. Dynamic isokinetic muscle fatigue testing may reveal increased vulnerability to disability and mortality beyond strength testing. Methods: We studied community-dwelling older adults enrolled in the Health Aging and Body Composition study (age range: 71–82) free of mobility disability and who underwent isokinetic muscle fatigue testing in 1999–2000 (n = 1,963). Isokinetic quadriceps work and fatigue index was determined over 30 repetitions and compared with isometric quadriceps maximum torque. Work was normalized to leg lean mass accounting for gender-specific differences (specific work). The primary outcome was incident persistent severe lower extremity limitation (PSLL), defined as two consecutive reports of either having a lot of difficulty or being unable to walk 1/4 mile or climb 10 steps without resting. The secondary outcome was all-cause mortality. Results: There were 608 (31%) occurrences of incident PSLL and 488 (25%) deaths during median follow-up of 9.3 years. After adjustment, lower isokinetic work was associated with significantly greater risks of PSLL and mortality across the full measured range. Hazard ratios per standard deviation lower specific isokinetic work were 1.22 (95% CI 1.12, 1.33) for PSLL and 1.21 (95% CI 1.13, 1.30) for mortality, respectively. Lower isometric strength was associated with PSLL, but not mortality. Fatigue index was not associated with PSLL or mortality. Conclusions: Muscle endurance, estimated by isokinetic work, is an indicator of muscle health associated with mobility limitation and mortality providing important insight beyond strength testing. PMID:27907890

  9. Dietary intake and physical performance in healthy elderly women: a 3-year follow-up.

    PubMed

    Sarti, Silvia; Ruggiero, Elena; Coin, Alessandra; Toffanello, Elena Debora; Perissinotto, Egle; Miotto, Fabrizia; Pintore, Giulia; Inelmen, Emine Meral; Manzato, Enzo; Sergi, Giuseppe

    2013-02-01

    Aging is generally accompanied by changes in body composition, muscle mass and strength, leading to a decline in motor and functional performance. Physical activity and eating habits could be involved in modulating this paraphysiological deterioration. Aim of our study was to investigate changes in body composition, diet and physical performance in healthy, elderly females over a 3-year follow-up. 92 healthy elderly females (70.9±4.0 years) attending a twice-weekly mild fitness program were eligible for the study. They were assessed at baseline and again after 3 years in terms of clinical history, diet, body composition by DEXA, resting energy expenditure, handgrip strength, knee extensor isometric/isotonic strength, and functional performance measured using the Short Physical Performance Battery (SPPB). After 3 years, women had a significant decline in muscle strength (∆ isotonic: -1.4±4.3 kg, ∆ isokinetic: -2.0±6.3 kg, ∆ handgrip: -3.2±5.0 kg; p<0.001) and physical performance (∆ walking time: 0.71±0.9 s, ∆ walking speed: -0.25±0.35 m/s; p<0.001), while their weight and body composition parameters did not change, except for a small decrease in appendicular skeletal muscle mass (-0.4±1.4 kg). There was a significant drop in calorie (∆:-345.7±533.1 kcal/d; p<0.001) and protein intake (∆:-0.14±0.23 g/d; p<0.001), while resting energy expenditure remained stable. ∆ calorie intake correlated with the variation in 4-meter walking time (r: 0.34; p<0.01). With advancing age, physical performance declines even in healthy, fit females despite a spare of weight and body composition. This decline in physical activity could lead to a lower calorie intake, which would explain why there is no variation in body weight. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Chronic exercise preserves lean muscle mass in masters athletes.

    PubMed

    Wroblewski, Andrew P; Amati, Francesca; Smiley, Mark A; Goodpaster, Bret; Wright, Vonda

    2011-09-01

    Aging is commonly associated with a loss of muscle mass and strength, resulting in falls, functional decline, and the subjective feeling of weakness. Exercise modulates the morbidities of muscle aging. Most studies, however, have examined muscle-loss changes in sedentary aging adults. This leaves the question of whether the changes that are commonly associated with muscle aging reflect the true physiology of muscle aging or whether they reflect disuse atrophy. This study evaluated whether high levels of chronic exercise prevents the loss of lean muscle mass and strength experienced in sedentary aging adults. A cross-section of 40 high-level recreational athletes ("masters athletes") who were aged 40 to 81 years and trained 4 to 5 times per week underwent tests of health/activity, body composition, quadriceps peak torque (PT), and magnetic resonance imaging of bilateral quadriceps. Mid-thigh muscle area, quadriceps area (QA), subcutaneous adipose tissue, and intramuscular adipose tissue were quantified in magnetic resonance imaging using medical image processing, analysis, and visualization software. One-way analysis of variance was used to examine age group differences. Relationships were evaluated using Spearman correlations. Mid-thigh muscle area (P = 0.31) and lean mass (P = 0.15) did not increase with age and were significantly related to retention of mid-thigh muscle area (P < 0.0001). This occurred despite an increase in total body fat percentage (P = 0.003) with age. Mid-thigh muscle area (P = 0.12), QA (P = 0.17), and quadriceps PT did not decline with age. Specific strength (strength per QA) did not decline significantly with age (P = 0.06). As muscle area increased, PT increased significantly (P = 0.008). There was not a significant relationship between intramuscular adipose tissue (P = 0.71) or lean mass (P = 0.4) and PT. This study contradicts the common observation that muscle mass and strength decline as a function of aging alone. Instead, these declines may signal the effect of chronic disuse rather than muscle aging. Evaluation of masters athletes removes disuse as a confounding variable in the study of lower-extremity function and loss of lean muscle mass. This maintenance of muscle mass and strength may decrease or eliminate the falls, functional decline, and loss of independence that are commonly seen in aging adults.

  11. Gene polymorphisms and fiber-type composition of human skeletal muscle.

    PubMed

    Ahmetov, Ildus I; Vinogradova, Olga L; Williams, Alun G

    2012-08-01

    The ability to perform aerobic or anaerobic exercise varies widely among individuals, partially depending on their muscle-fiber composition. Variability in the proportion of skeletal-muscle fiber types may also explain marked differences in aspects of certain chronic disease states including obesity, insulin resistance, and hypertension. In untrained individuals, the proportion of slow-twitch (Type I) fibers in the vastus lateralis muscle is typically around 50% (range 5-90%), and it is unusual for them to undergo conversion to fast-twitch fibers. It has been suggested that the genetic component for the observed variability in the proportion of Type I fibers in human muscles is on the order of 40-50%, indicating that muscle fiber-type composition is determined by both genotype and environment. This article briefly reviews current progress in the understanding of genetic determinism of fiber-type proportion in human skeletal muscle. Several polymorphisms of genes involved in the calcineurin-NFAT pathway, mitochondrial biogenesis, glucose and lipid metabolism, cytoskeletal function, hypoxia and angiogenesis, and circulatory homeostasis have been associated with fiber-type composition. As muscle is a major contributor to metabolism and physical strength and can readily adapt, it is not surprising that many of these gene variants have been associated with physical performance and athlete status, as well as metabolic and cardiovascular diseases. Genetic variants associated with fiber-type proportions have important implications for our understanding of muscle function in both health and disease.

  12. Strength Training for Women as a Vehicle for Health Promotion at Work.

    PubMed

    Nestler, Kai; Witzki, Alexander; Rohde, Ulrich; Rüther, Thomas; Tofaute, Kim Alexander; Leyk, Dieter

    2017-06-30

    Women, on average, have less muscle strength than men. This anthropometric-physiological trait may make them more vulnerable to ex - cessive physical strain, injury, and inability to work. Strength training is used for preventive health maintenance and to lessen musculoskeletal symptoms. In this context, we studied whether the degree of muscle strength has any effect on women's health in everyday working life, and also the effects of strength training for women on their health in the workplace. We systematically searched the PubMed/MEDLINE, Embase, CINAHL, Web of Science, CENTRAL, and SPOLIT databases for pertinent publications, in accordance with the PRISMA criteria for literature searches. We analyzed all of the retrieved randomized controlled trials conducted on women aged 18 to 65 to determine the effects of training on muscle strength, physical performance ability, and health-related parameters including body composition, musculo - skeletal pain, and subjective well-being. We did not find any studies that provided answers to the first question. As for the second question, the selection criteria were met by 12 of the 4969 retrieved studies, which dealt with the effect of strength training on health in the occupational environment and involved a total of 1365 female subjects. These studies were carried out in heterogeneous subject groups, with a variety of overlapping interventions consisting of both strength and endurance training. Significantly increased strength was found in all studies, as was a reduction of pain in all of the studies where this question was asked. Inconsistent results were obtained with respect to body weight, body composition, and subjective well-being. The interventions that were conducted in these studies succeeded in increasing strength and reducing pain, even when the training was brief and of low intensity. This was true not only for women working in occupations requiring unusual physical strength, but also for those in sedentary occupations. The small number of studies performed on this subject to date is surprising in view of the high prevalence of musculoskeletal symptoms in women.

  13. Effects of resistance training on body composition and functional capacity among sarcopenic obese residents in long-term care facilities: a preliminary study.

    PubMed

    Chiu, Shu-Ching; Yang, Rong-Sen; Yang, Rea-Jeng; Chang, Shu-Fang

    2018-01-22

    Aging-related loss of muscle and strength with increased adiposity is prevalent among older people in long-term care (LTC) facilities. Studies have shown that people with sarcopenic obesity (SO) are at high risk of declining physical performance. At present, no interventional studies on residents with SO in nursing homes have been conducted in the literature. The objectives of this study include appraising the changes in body composition and physical performance following resistance training among residents with SO in LTC facilities. This study used a quasiexperimental research design. Residents who are 60 years of age or above and have been living a sedentary lifestyle in LTC facilities for the past 3 months will be eligible for inclusion. The intervention group engaged in chair muscle strength training twice a week for 12 weeks, whereas the control group underwent the usual care. The main variables were physical parameters of being lean and fat, the strength of grip and pinch, and a functional independence measure using descriptive analysis, chi-squared test, t-test, and generalized estimating equation for statistical analysis through SPSS. A total of 64 respondents with SO completed the study. After training, total grip strength (p = 0.001) and total pinch strength (p = 0.014) of the intervention group differed significantly from those of the control group. The right grip strength of the intervention group increased by 1.71 kg (p = 0.003) and the left grip strength improved by 1.35 kg (p = 0.028) compared with baseline values. The self-care scores of the intervention group increased by 2.76 points over baseline scores, particularly for the action of dressing oneself. Although grip strength and self-care scores improved more among those in the intervention group, body fat and skeletal muscle percentages did not differ significantly between the groups after training (p > 0.05). Resistance exercises for elderly residents in LTC facilities may play an important role in helping them maintain physical well-being and improve muscle strength. Clinicaltrials.gov, number NCT02912338 . Retrospectively registered on 09/21/2016.

  14. The Need for Standardized Assessment of Muscle Quality in Skeletal Muscle Function Deficit and Other Aging-Related Muscle Dysfunctions: A Symposium Report.

    PubMed

    Correa-de-Araujo, Rosaly; Harris-Love, Michael O; Miljkovic, Iva; Fragala, Maren S; Anthony, Brian W; Manini, Todd M

    2017-01-01

    A growing body of scientific literature suggests that not only changes in skeletal muscle mass, but also other factors underpinning muscle quality, play a role in the decline in skeletal muscle function and impaired mobility associated with aging. A symposium on muscle quality and the need for standardized assessment was held on April 28, 2016 at the International Conference on Frailty and Sarcopenia Research in Philadelphia, Pennsylvania. The purpose of this symposium was to provide a venue for basic science and clinical researchers and expert clinicians to discuss muscle quality in the context of skeletal muscle function deficit and other aging-related muscle dysfunctions. The present article provides an expanded introduction concerning the emerging definitions of muscle quality and a potential framework for scientific inquiry within the field. Changes in muscle tissue composition, based on excessive levels of inter- and intra-muscular adipose tissue and intramyocellular lipids, have been found to adversely impact metabolism and peak force generation. However, methods to easily and rapidly assess muscle tissue composition in multiple clinical settings and with minimal patient burden are needed. Diagnostic ultrasound and other assessment methods continue to be developed for characterizing muscle pathology, and enhanced sonography using sensors to provide user feedback and improve reliability is currently the subject of ongoing investigation and development. In addition, measures of relative muscle force such as specific force or grip strength adjusted for body size have been proposed as methods to assess changes in muscle quality. Furthermore, performance-based assessments of muscle power via timed tests of function and body size estimates, are associated with lower extremity muscle strength may be responsive to age-related changes in muscle quality. Future aims include reaching consensus on the definition and standardized assessments of muscle quality, and providing recommendations to address critical clinical and technology research gaps within the field.

  15. Tension in Skinned Frog Muscle Fibers in Solutions of Varying Ionic Strength and Neutral Salt Composition

    PubMed Central

    Gordon, A. M.; Godt, R. E.; Donaldson, S. K. B.; Harris, C. E.

    1973-01-01

    The maximal calcium-activated isometric tension produced by a skinned frog single muscle fiber falls off as the ionic strength of the solution bathing this fiber is elevated declining to zero near 0.5 M as the ionic strength is varied using KCl. When other neutral salts are used, the tension always declines at high ionic strength, but there is some difference between the various neutral salts used. The anions and cations can be ordered in terms of their ability to inhibit the maximal calcium-activated tension. The order of increasing inhibition of tension (decreasing tension) at high ionic strength for anions is propionate- ≃ SO4 -- < Cl- < Br-. The order of increasing inhibition of calcium-activated tension for cations is K+ ≃ Na+ ≃ TMA+ < TEA+ < TPrA+ < TBuA+. The decline of maximal calcium-activated isometric tension with elevated salt concentration (ionic strength) can quantitatively explain the decline of isometric tetanic tension of a frog muscle fiber bathed in a hypertonic solution if one assumes that the internal ionic strength of a muscle fiber in normal Ringer's solution is 0.14–0.17 M. There is an increase in the base-line tension of a skinned muscle fiber bathed in a relaxing solution (no added calcium and 3 mM EGTA) of low ionic strength. This tension, which has no correlate in the intact fiber in hypotonic solutions, appears to be a noncalcium-activated tension and correlates more with a declining ionic strength than with small changes in [MgATP], [Mg], pH buffer, or [EGTA]. It is dependent upon the specific neutral salts used with cations being ordered in increasing inhibition of this noncalcium-activated tension (decreasing tension) as TPrA+ < TMA+ < K+ ≃ Na+. Measurements of potentials inside these skinned muscle fibers bathed in relaxing solutions produced occasional small positive values (<6 mV) which were not significantly different from zero. PMID:4543066

  16. Improvement in lung function and functional capacity in morbidly obese women subjected to bariatric surgery.

    PubMed

    Campos, Elaine Cristina de; Peixoto-Souza, Fabiana Sobral; Alves, Viviane Cristina; Basso-Vanelli, Renata; Barbalho-Moulim, Marcela; Laurino-Neto, Rafael Melillo; Costa, Dirceu

    2018-03-15

    To determine whether weight loss in women with morbid obesity subjected to bariatric surgery alters lung function, respiratory muscle strength, functional capacity and the level of habitual physical activity and to investigate the relationship between these variables and changes in both body composition and anthropometrics. Twenty-four women with morbid obesity were evaluated with regard to lung function, respiratory muscle strength, functional capacity, body composition, anthropometrics and the level of habitual physical activity two weeks prior to and six months after bariatric surgery. Regarding lung function, mean increases of 160 mL in slow vital capacity, 550 mL in expiratory reserve volume, 290 mL in forced vital capacity and 250 mL in forced expiratory volume in the first second as well as a mean reduction of 490 mL in inspiratory capacity were found. Respiratory muscle strength increased by a mean of 10 cmH2O of maximum inspiratory pressure, and a 72-meter longer distance on the Incremental Shuttle Walk Test demonstrated that functional capacity also improved. Significant changes also occurred in anthropometric variables and body composition but not in the level of physical activity detected using the Baecke questionnaire, indicating that the participants remained sedentary. Moreover, correlations were found between the percentages of lean and fat mass and both inspiratory and expiratory reserve volumes. The present data suggest that changes in body composition and anthropometric variables exerted a direct influence on functional capacity and lung function in the women analyzed but exerted no influence on sedentarism, even after accentuated weight loss following bariatric surgery.

  17. Serum levels of bioactive IGF1 and physiological markers of ageing in healthy adults.

    PubMed

    Vestergaard, Poul Frølund; Hansen, Mette; Frystyk, Jan; Espelund, Ulrick; Christiansen, Jens S; Jørgensen, Jens Otto Lunde; Fisker, Sanne

    2014-02-01

    Senescent changes in body composition and muscle strength are accompanied by reduced production of GH and IGF1, but the causal relationship remains elusive. We speculate that serum bioactive IGF1, measured by the IGF1 kinase receptor activation assay, is closer related to human physiological ageing than total IGF1 measured by immunoassay. We conducted a cross-sectional study in 150 adult males and females, between 20 and 70 years. After an overnight fasting, serum levels of bioactive IGF1, total IGF1 and IGF-binding protein 1 (IGFBP1) and IGFBP3 were assessed. Furthermore, body composition and muscle strength was measured. Total IGF1 levels were higher in females (P=0.048). Bioactive IGF1 were identical in males and females (P=0.31), decreasing with age. Total IGF1 tended to decrease more with age compared with bioactive IGF1 (-1.48 vs -0.89 percent/year, P=0.052). Total body fat (TBF) was lower and BMI was higher in males (P<0.001 and P=0.005), and both increased with age. Knee extension and elbow flexion force were higher in males (P=0.001 and P=0.001), but decreased with age in both genders.  Total but not bioactive IGF1 was positively correlated to TBF, knee extension and muscle function in males. In multiple linear regression, only age predicted total IGF1, whereas age and IGFBP1 predicted bioactive IGF1. Bioactive IGF1 tends to decrease to a lesser extent than total IGF1 with age and was not correlated with measures of body composition or muscle strength. Therefore, levels of circulating bioactive IGF1 does not appear to be a better biomarker of physiological ageing than total IGF1.

  18. Effectiveness of Tai Chi on Cardiac Autonomic Function and Symptomatology in Women With Fibromyalgia: A Randomized Controlled Trial.

    PubMed

    Wong, Alexei; Figueroa, Arturo; Sanchez-Gonzalez, Marcos A; Son, Won-Mok; Chernykh, Oksana; Park, Song-Young

    2018-04-01

    The present study examined the effects of a 12-week Tai Chi (TC) training regimen on heart rate variability (HRV), symptomatology, muscle fitness and body composition in women with fibromyalgia. Participants were randomly assigned to either a TC training group (n = 18) or a control group (n = 19). HRV, symptomatology, muscle fitness and body composition were measured before and after 12 weeks. There were significant decreases (p < 0.05) in sympathovagal balance (LnLF/LnHF), sympathetic tone (LnLF, nLF), pain, and fatigue, and significant increases (p < 0.05) in parasympathetic tone (LnHF, nHF), strength and flexibility following TC compared with no changes after control. The changes in LnLF and LnLF/LnHF were correlated with changes in pain. There were no significant changes in HR, sleep quality and body composition after TC or control. TC may be an effective therapeutic intervention for improving sympathovagal balance, pain, fatigue, strength and flexibility in women with fibromyalgia.

  19. Resistance Training with Single vs. Multi-joint Exercises at Equal Total Load Volume: Effects on Body Composition, Cardiorespiratory Fitness, and Muscle Strength.

    PubMed

    Paoli, Antonio; Gentil, Paulo; Moro, Tatiana; Marcolin, Giuseppe; Bianco, Antonino

    2017-01-01

    The present study aimed to compare the effects of equal-volume resistance training performed with single-joint (SJ) or multi-joint exercises (MJ) on VO 2 max, muscle strength and body composition in physically active males. Thirty-six participants were divided in two groups: SJ group ( n = 18, 182.1 ± 5.2, 80.03 ± 2.78 kg, 23.5 ± 2.7 years) exercised with only SJ exercises (e.g., dumbbell fly, knee extension, etc.) and MJ group ( n = 18, 185.3 ± 3.6 cm, 80.69 ± 2.98 kg, 25.5 ± 3.8 years) with only MJ exercises (e.g., bench press, squat, etc.). The total work volume (repetitions × sets × load) was equated between groups. Training was performed three times a week for 8 weeks. Before and after the training period, participants were tested for VO 2 max, body composition, 1 RM on the bench press, knee extension and squat. Analysis of covariance (ANCOVA) was used to compare post training values between groups, using baseline values as covariates. According to the results, both groups decreased body fat and increased fat free mass with no difference between them. Whilst both groups significantly increased cardiorespiratory fitness and maximal strength, the improvements in MJ group were higher than for SJ in VO 2 max (5.1 and 12.5% for SJ and MJ), bench press 1 RM (8.1 and 10.9% for SJ and MJ), knee extension 1 RM (12.4 and 18.9% for SJ and MJ) and squat 1 RM (8.3 and 13.8% for SJ and MJ). In conclusion, when total work volume was equated, RT programs involving MJ exercises appear to be more efficient for improving muscle strength and maximal oxygen consumption than programs involving SJ exercises, but no differences were found for body composition.

  20. Proton Density Fat-Fraction of Rotator Cuff Muscles Is Associated With Isometric Strength 10 Years After Rotator Cuff Repair: A Quantitative Magnetic Resonance Imaging Study of the Shoulder.

    PubMed

    Karampinos, Dimitrios C; Holwein, Christian; Buchmann, Stefan; Baum, Thomas; Ruschke, Stefan; Gersing, Alexandra S; Sutter, Reto; Imhoff, Andreas B; Rummeny, Ernst J; Jungmann, Pia M

    2017-07-01

    Quantitative muscle fat-fraction magnetic resonance (MR) imaging techniques correlate with semiquantitative Goutallier scores with failure after rotator cuff (RC) repair. To investigate the relationship of proton density fat fraction (PDFF) of the RC muscles with semiquantitative MR scores, cartilage T2 relaxation times, and clinical isometric strength measurements in patients 10 years after unilateral RC repair. Cross-sectional study; Level of evidence, 3. Bilateral shoulder MR imaging was performed in 13 patients (11 male, 2 female; age, 72 ± 8 years) 10.9 ± 0.4 years after unilateral autologous periosteal flap augmented RC repair (total shoulders assessed, N = 26). Goutallier classification, muscle atrophy, RC tendon integrity, and cartilage defects were determined based on morphological MR sequences. A paracoronal 2D multi-slice multi-echo sequence was used for quantitative cartilage T2 mapping. A chemical shift-encoding-based water-fat separation technique (based on a 6-echo 3D spoiled gradient echo sequence) was used for quantification of the PDFF of RC muscles. Isometric shoulder abduction strength was measured clinically. Mean and SD, Pearson correlation, and partial Spearman correlation were calculated. There were 6 RC full-thickness retears in ipsilateral shoulders and 6 RC full-thickness tears in contralateral shoulders. Isometric shoulder abduction strength was not significantly different between ipsilateral and contralateral shoulders (50 ± 24 N vs 54 ± 24 N; P = .159). The mean PDFF of RC muscles was 11.7% ± 10.4% (ipsilateral, 14.2% ± 8.5%; contralateral, 9.2% ± 7.8%; P = .002). High supraspinatus PDFF correlated significantly with higher Goutallier scores ( R = 0.75, P < .001) and with lower isometric muscle strength ( R = -0.49, P = .011). This correlation remained significant after adjustment for muscle area measurements and tendon rupture ( R = -0.41, P = .048). More severe cartilage defects at the humerus were significantly associated with higher supraspinatus PDFF ( R = 0.44; P = .023). Cartilage T2 values did not correlate with muscle PDFF ( P > .05). MR imaging-derived RC muscle PDFF is associated with isometric strength independent of muscle atrophy and tendon rupture in shoulders with early and advanced degenerative changes. It therefore provides complementary, clinically relevant information in tracking RC muscle composition on a quantitative level.

  1. Effects of exercise on fitness and health of adults with spinal cord injury: A systematic review.

    PubMed

    van der Scheer, Jan W; Martin Ginis, Kathleen A; Ditor, David S; Goosey-Tolfrey, Victoria L; Hicks, Audrey L; West, Christopher R; Wolfe, Dalton L

    2017-08-15

    To synthesize and appraise research testing the effects of exercise interventions on fitness, cardiometabolic health, and bone health among adults with spinal cord injury (SCI). Electronic databases were searched (1980-2016). Included studies employed exercise interventions for a period ≥2 weeks, involved adults with acute or chronic SCI, and measured fitness (cardiorespiratory fitness, power output, or muscle strength), cardiometabolic health (body composition or cardiovascular risk factors), or bone health outcomes. Evidence was synthesized and appraised using Grading of Recommendations Assessment, Development, and Evaluation (GRADE). A total of 211 studies met the inclusion criteria (22 acute, 189 chronic). For chronic SCI, GRADE confidence ratings were moderate to high for evidence showing exercise can improve all of the reviewed outcomes except bone health. For acute SCI, GRADE ratings were very low for all outcomes. For chronic SCI, there was low to moderate confidence in the evidence showing that 2-3 sessions/week of upper body aerobic exercise at a moderate to vigorous intensity for 20-40 minutes, plus upper body strength exercise (3 sets of 10 repetitions at 50%-80% 1-repetition maximum for all large muscle groups), can improve cardiorespiratory fitness, power output, and muscle strength. For chronic SCI, there was low to moderate confidence in the evidence showing that 3-5 sessions per week of upper body aerobic exercise at a moderate to vigorous intensity for 20-44 minutes can improve cardiorespiratory fitness, muscle strength, body composition, and cardiovascular risk. Exercise improves fitness and cardiometabolic health of adults with chronic SCI. The evidence on effective exercise types, frequencies, intensities, and durations should be used to formulate exercise guidelines for adults with SCI. © 2017 American Academy of Neurology.

  2. Improvement in lung function and functional capacity in morbidly obese women subjected to bariatric surgery

    PubMed Central

    de Campos, Elaine Cristina; Peixoto-Souza, Fabiana Sobral; Alves, Viviane Cristina; Basso-Vanelli, Renata; Barbalho-Moulim, Marcela; Laurino-Neto, Rafael Melillo; Costa, Dirceu

    2018-01-01

    OBJECTIVE: To determine whether weight loss in women with morbid obesity subjected to bariatric surgery alters lung function, respiratory muscle strength, functional capacity and the level of habitual physical activity and to investigate the relationship between these variables and changes in both body composition and anthropometrics. METHODS: Twenty-four women with morbid obesity were evaluated with regard to lung function, respiratory muscle strength, functional capacity, body composition, anthropometrics and the level of habitual physical activity two weeks prior to and six months after bariatric surgery. RESULTS: Regarding lung function, mean increases of 160 mL in slow vital capacity, 550 mL in expiratory reserve volume, 290 mL in forced vital capacity and 250 mL in forced expiratory volume in the first second as well as a mean reduction of 490 mL in inspiratory capacity were found. Respiratory muscle strength increased by a mean of 10 cmH2O of maximum inspiratory pressure, and a 72-meter longer distance on the Incremental Shuttle Walk Test demonstrated that functional capacity also improved. Significant changes also occurred in anthropometric variables and body composition but not in the level of physical activity detected using the Baecke questionnaire, indicating that the participants remained sedentary. Moreover, correlations were found between the percentages of lean and fat mass and both inspiratory and expiratory reserve volumes. CONCLUSION: The present data suggest that changes in body composition and anthropometric variables exerted a direct influence on functional capacity and lung function in the women analyzed but exerted no influence on sedentarism, even after accentuated weight loss following bariatric surgery. PMID:29561930

  3. Effect of Increasing Glutathione With Cysteine and Glycine Supplementation on Mitochondrial Fuel Oxidation, Insulin Sensitivity, and Body Composition in Older HIV-Infected Patients

    PubMed Central

    Nguyen, Dan; Hsu, Jean W.; Jahoor, Farook

    2014-01-01

    Background: HIV-infected patients are reported to have impaired oxidation of fatty acids despite increased availability, suggesting a mitochondrial defect. We investigated whether diminished levels of a key mitochondrial antioxidant, glutathione (GSH), was contributing to defective fatty acid oxidation in older HIV-infected patients, and if so, the metabolic mechanisms contributing to GSH deficiency in these patients. Methods: In an open-label design, 8 older GSH-deficient HIV-infected males were studied before and after 14 days of oral supplementation with the GSH precursors cysteine and glycine. A combination of stable-isotope tracers, calorimetry, hyperinsulinemic-euglycemic clamp, and dynamometry were used to measure GSH synthesis, fasted and insulin-stimulated (fed) mitochondrial fuel oxidation, insulin sensitivity, body composition, anthropometry, forearm-muscle strength, and lipid profiles. Results: Impaired synthesis contributed to GSH deficiency in the patients and was restored with cysteine plus glycine supplementation. GSH improvement was accompanied by marked improvements in fasted and fed mitochondrial fuel oxidation. Associated benefits included improvements in insulin sensitivity, body composition, anthropometry, muscle strength, and dyslipidemia. Conclusions: This work identifies 2 novel findings in older HIV-infected patients: 1) diminished synthesis due to decreased availability of cysteine and glycine contributes to GSH deficiency and can be rapidly corrected by dietary supplementation of these precursors and 2) correction of GSH deficiency is associated with improvement of mitochondrial fat and carbohydrate oxidation in both fasted and fed states and with improvements in insulin sensitivity, body composition, and muscle strength. The role of GSH on ameliorating metabolic complications in older HIV-infected patients warrants further investigation. PMID:24081740

  4. Age, Sex, and Body Composition as Predictors of Children's Performance on Basic Motor Abilities and Health-Related Fitness Items.

    ERIC Educational Resources Information Center

    Pissanos, Becky W.; And Others

    1983-01-01

    Step-wise linear regressions were used to relate children's age, sex, and body composition to performance on basic motor abilities including balance, speed, agility, power, coordination, and reaction time, and to health-related fitness items including flexibility, muscle strength and endurance and cardiovascular functions. Eighty subjects were in…

  5. Sarcopenia and age-related changes in body composition and functional capacity.

    PubMed

    Evans, W J; Campbell, W W

    1993-02-01

    Advancing adult age is associated with profound changes in body composition. One of the most prominent of these changes is sarcopenia, defined as the age-related loss in skeletal muscle mass, which results in decreased strength and aerobic capacity and thus functional capacity. Sarcopenia is also closely linked to age-related losses in bone mineral, basal metabolic rate and increased body fat content. Through physical exercise and training, especially resistance training, it may be possible to prevent sarcopenia and the remarkable array of associated abnormalities, such as type II diabetes, coronary artery disease, hypertension, osteoporosis and obesity. Using an exercise program of sufficient frequency, intensity and duration, it is quite possible to increase muscle strength and endurance at any age. There is no pharmacological intervention that holds a greater promise of improving health and promoting independence in the elderly than does exercise.

  6. Vitamin C and E supplementation alters protein signalling after a strength training session, but not muscle growth during 10 weeks of training

    PubMed Central

    Paulsen, G; Hamarsland, H; Cumming, K T; Johansen, R E; Hulmi, J J; Børsheim, E; Wiig, H; Garthe, I; Raastad, T

    2014-01-01

    This study investigated the effects of vitamin C and E supplementation on acute responses and adaptations to strength training. Thirty-two recreationally strength-trained men and women were randomly allocated to receive a vitamin C and E supplement (1000 mg day−1 and 235 mg day−1, respectively), or a placebo, for 10 weeks. During this period the participants’ training involved heavy-load resistance exercise four times per week. Muscle biopsies from m. vastus lateralis were collected, and 1 repetition maximum (1RM) and maximal isometric voluntary contraction force, body composition (dual-energy X-ray absorptiometry), and muscle cross-sectional area (magnetic resonance imaging) were measured before and after the intervention. Furthermore, the cellular responses to a single exercise session were assessed midway in the training period by measurements of muscle protein fractional synthetic rate and phosphorylation of several hypertrophic signalling proteins. Muscle biopsies were obtained from m. vastus lateralis twice before, and 100 and 150 min after, the exercise session (4 × 8RM, leg press and knee-extension). The supplementation did not affect the increase in muscle mass or the acute change in protein synthesis, but it hampered certain strength increases (biceps curl). Moreover, increased phosphorylation of p38 mitogen-activated protein kinase, Extracellular signal-regulated protein kinases 1 and 2 and p70S6 kinase after the exercise session was blunted by vitamin C and E supplementation. The total ubiquitination levels after the exercise session, however, were lower with vitamin C and E than placebo. We concluded that vitamin C and E supplementation interfered with the acute cellular response to heavy-load resistance exercise and demonstrated tentative long-term negative effects on adaptation to strength training. PMID:25384788

  7. Effects of egg white protein supplementation on muscle strength and serum free amino acid concentrations.

    PubMed

    Hida, Azumi; Hasegawa, Yuko; Mekata, Yuko; Usuda, Mika; Masuda, Yasunobu; Kawano, Hitoshi; Kawano, Yukari

    2012-10-19

    The aim of this study was to evaluate the effects of egg white protein compared to carbohydrate intake prior to exercise on fat free mass (FFM), one repetition maximum (1RM) muscle strength and blood biochemistry in female athletes. Thirty healthy female collegiate athletes were recruited for this study and matched by sport type, body fat percentage and 1RM leg curl muscle strength. Participants were randomly divided into two groups: protein group (15.0 g egg white protein; 75 kcal) and carbohydrate group (17.5 g maltodextrin, 78 kcal). Supplements were administered daily at the same time in a double-blind manner prior to training during an 8-week period. Measurements were performed before and after the 8-week regimen. The mean dietary energy intake did not change throughout the study period. FFM and 1RM assessments (i.e., leg curl, leg extension, squat, and bench press) increased in both groups. Furthermore, serum urea and serum citrulline levels after the 8-week regimen increased significantly only in the protein group. Our findings indicated that compared to the carbohydrate supplement, the protein supplement was associated with some changes in protein metabolites but not with changes in body composition or muscle strength.

  8. Effects of Egg White Protein Supplementation on Muscle Strength and Serum Free Amino Acid Concentrations

    PubMed Central

    Hida, Azumi; Hasegawa, Yuko; Mekata, Yuko; Usuda, Mika; Masuda, Yasunobu; Kawano, Hitoshi; Kawano, Yukari

    2012-01-01

    The aim of this study was to evaluate the effects of egg white protein compared to carbohydrate intake prior to exercise on fat free mass (FFM), one repetition maximum (1RM) muscle strength and blood biochemistry in female athletes. Thirty healthy female collegiate athletes were recruited for this study and matched by sport type, body fat percentage and 1RM leg curl muscle strength. Participants were randomly divided into two groups: protein group (15.0 g egg white protein; 75 kcal) and carbohydrate group (17.5 g maltodextrin, 78 kcal). Supplements were administered daily at the same time in a double-blind manner prior to training during an 8-week period. Measurements were performed before and after the 8-week regimen. The mean dietary energy intake did not change throughout the study period. FFM and 1RM assessments (i.e., leg curl, leg extension, squat, and bench press) increased in both groups. Furthermore, serum urea and serum citrulline levels after the 8-week regimen increased significantly only in the protein group. Our findings indicated that compared to the carbohydrate supplement, the protein supplement was associated with some changes in protein metabolites but not with changes in body composition or muscle strength. PMID:23201768

  9. Combined Training Enhances Skeletal Muscle Mitochondrial Oxidative Capacity Independent of Age

    PubMed Central

    Lanza, Ian R.; Henderson, Gregory C.; Rao, Rajesh R.; Spiegelman, Bruce M.

    2015-01-01

    Context: Skeletal muscle from sedentary older adults exhibits reduced mitochondrial abundance and oxidative capacity. Objective: The primary objective was to determine whether 8 weeks of combined training (CT) has a more robust effect than endurance training (ET) or resistance training (RT) on mitochondrial physiology in healthy young (18–30 years) and older (≥65 years) adults. Intervention: Thirty-four young and 31 older adults were randomly assigned to 8 weeks of ET, RT, and control/CT. Control subjects completed 8 weeks of no exercise (control) followed by 8 weeks of CT. Body composition, skeletal muscle strength, and peak oxygen uptake were measured before and after the intervention. Vastus lateralis muscle biopsy samples were obtained before and 48 hours after the intervention. Mitochondrial physiology was evaluated by high-resolution respirometry and expression of mitochondrial proteins and transcription factors by quantitative PCR and immunoblotting. Results: ET and CT significantly increased oxidative capacity and expression of mitochondrial proteins and transcription factors. All training modalities improved body composition, cardiorespiratory fitness, and skeletal muscle strength. CT induced the most robust improvements in mitochondria-related outcomes and physical characteristics despite lower training volumes for the ET and RT components. Importantly, most of the adaptations to training occurred independent of age. Conclusion: Collectively, these results demonstrate that both ET and CT increase muscle mitochondrial abundance and capacity although CT induced the most robust improvements in the outcomes measured. In conclusion, CT provides a robust exercise regimen to improve muscle mitochondrial outcomes and physical characteristics independent of age. PMID:25599385

  10. Handgrip Strength Cutoff Points to Identify Mobility Limitation in Community-dwelling Older People and Associated Factors.

    PubMed

    Vasconcelos, K S de Souza; Dias, J M Domingues; Bastone, A de Carvalho; Vieira, R Alvarenga; Andrade, A C de Souza; Perracini, M Rodrigues; Guerra, R Oliveira; Dias, R Corrêa

    2016-03-01

    Sarcopenia is defined as a progressive and generalized loss of skeletal muscle mass and strength. The specific threshold of muscle weakness that leads to mobility limitations has not been identified. To determine the best cutoff point of handgrip strength for identifying mobility limitation and to investigate the factors associated with muscle weakness and mobility limitation in community-dwelling older people. Transversal study. Cities of Belo Horizonte, Barueri and Santa Cruz in Brazil. 1374 community-dwelling older people from the Frailty study in Brazilian older people (FIBRA Study). Outcomes included muscle weakness determined according to gender-specific handgrip strength cutoff points generated by Receiver Operating Characteristic curves, mobility limitation defined as a gait speed ≤ 0.8 m/s; and a combination of both muscle weakness and mobility limitation. Associated factors included socio-demographic variables, lifestyle, anthropometrics, health conditions, use of health services and disability. The cutoff points of handgrip strength with the best balancing between sensitivity and specificity for mobility limitation were 25.8 kgf for men (sensitivity 69%, specificity 73%) and 17.4 kgf (sensitivity 60%, specificity 66%) for women. Age and disability in instrumental activities of daily living were associated with all outcomes. Women had greater odds of mobility limitation than men. Physical inactivity, body fat, diabetes, depression, sleeping disturbances, number of medications and occurrence of falls remained as significant associated factors in the final model. Handgrip strength can be a useful tool to identify mobility limitation in clinical practice. Interventions to prevent or minimize impacts of sarcopenia should stimulate physical activity and improvement of body composition in addition to the management of chronic diseases and disabilities.

  11. Effects of Soccer Training on Anthropometry, Body Composition, and Physical Fitness during a Soccer Season in Female Elite Young Athletes: A Prospective Cohort Study.

    PubMed

    Lesinski, Melanie; Prieske, Olaf; Helm, Norman; Granacher, Urs

    2017-01-01

    The objectives of this study were to (i) describe soccer training (e.g., volume, types), anthropometry, body composition, and physical fitness and (ii) compute associations between soccer training data and relative changes of anthropometry, body composition, and physical fitness during a soccer season in female elite young athletes. Seasonal training (i.e., day-to-day training volume/types) as well as variations in anthropometry (e.g., body height/mass), body composition (e.g., lean body/fat mass), and physical fitness (e.g., muscle strength/power, speed, balance) were collected from 17 female elite young soccer players (15.3 ± 0.5 years) over the training periods (i.e., preparation, competition, transition) of a soccer season that resulted in the German championship title in under-17 female soccer. Training volume/types, anthropometrics, body composition, and physical fitness significantly varied over a soccer season. During the two preparation periods, higher volumes in resistance and endurance training were performed (2.00 ≤ d ≤ 18.15; p < 0.05), while higher sprint and tactical training volumes were applied during the two competition periods (2.22 ≤ d ≤ 11.18; p < 0.05). Body height and lean body mass increased over the season (2.50 ≤ d ≤ 3.39; p < 0.01). In terms of physical fitness, significant performance improvements were found over the soccer season in measures of balance, endurance, and sport-specific performance (2.52 ≤ d ≤ 3.95; p < 0.05). In contrast, no statistically significant changes were observed for measures of muscle power/endurance, speed, and change-of-direction speed. Of note, variables of muscle strength (i.e., leg extensors) significantly decreased ( d = 2.39; p < 0.01) over the entire season. Our period-specific sub-analyses revealed significant performance improvements during the first round of the season for measures of muscle power/endurance, and balance (0.89 ≤ d ≤ 4.01; p < 0.05). Moreover, change-of-direction speed significantly declined after the first round of the season, i.e., transition period ( d = 2.83; p < 0.01). Additionally, significant medium-to-large associations were observed between training and anthropometrics/body composition/physical fitness (-0.541 ≤ r ≤ 0.505). Soccer training and/or growth/maturation contributed to significant variations in anthropometry, body composition, and physical fitness outcomes throughout the different training periods over the course of a soccer season in female elite young soccer players. However, changes in components of fitness were inconsistent (e.g., power, speed, strength). Thus, training volume and/or types should be carefully considered in order to develop power-, speed- or strength-related fitness measures more efficiently throughout the soccer season.

  12. Effects of Soccer Training on Anthropometry, Body Composition, and Physical Fitness during a Soccer Season in Female Elite Young Athletes: A Prospective Cohort Study

    PubMed Central

    Lesinski, Melanie; Prieske, Olaf; Helm, Norman; Granacher, Urs

    2017-01-01

    The objectives of this study were to (i) describe soccer training (e.g., volume, types), anthropometry, body composition, and physical fitness and (ii) compute associations between soccer training data and relative changes of anthropometry, body composition, and physical fitness during a soccer season in female elite young athletes. Seasonal training (i.e., day-to-day training volume/types) as well as variations in anthropometry (e.g., body height/mass), body composition (e.g., lean body/fat mass), and physical fitness (e.g., muscle strength/power, speed, balance) were collected from 17 female elite young soccer players (15.3 ± 0.5 years) over the training periods (i.e., preparation, competition, transition) of a soccer season that resulted in the German championship title in under-17 female soccer. Training volume/types, anthropometrics, body composition, and physical fitness significantly varied over a soccer season. During the two preparation periods, higher volumes in resistance and endurance training were performed (2.00 ≤ d ≤ 18.15; p < 0.05), while higher sprint and tactical training volumes were applied during the two competition periods (2.22 ≤ d ≤ 11.18; p < 0.05). Body height and lean body mass increased over the season (2.50 ≤ d ≤ 3.39; p < 0.01). In terms of physical fitness, significant performance improvements were found over the soccer season in measures of balance, endurance, and sport-specific performance (2.52 ≤ d ≤ 3.95; p < 0.05). In contrast, no statistically significant changes were observed for measures of muscle power/endurance, speed, and change-of-direction speed. Of note, variables of muscle strength (i.e., leg extensors) significantly decreased (d = 2.39; p < 0.01) over the entire season. Our period-specific sub-analyses revealed significant performance improvements during the first round of the season for measures of muscle power/endurance, and balance (0.89 ≤ d ≤ 4.01; p < 0.05). Moreover, change-of-direction speed significantly declined after the first round of the season, i.e., transition period (d = 2.83; p < 0.01). Additionally, significant medium-to-large associations were observed between training and anthropometrics/body composition/physical fitness (−0.541 ≤ r ≤ 0.505). Soccer training and/or growth/maturation contributed to significant variations in anthropometry, body composition, and physical fitness outcomes throughout the different training periods over the course of a soccer season in female elite young soccer players. However, changes in components of fitness were inconsistent (e.g., power, speed, strength). Thus, training volume and/or types should be carefully considered in order to develop power-, speed- or strength-related fitness measures more efficiently throughout the soccer season. PMID:29375392

  13. Oral supplement enriched in HMB combined with pulmonary rehabilitation improves body composition and health related quality of life in patients with bronchiectasis (Prospective, Randomised Study).

    PubMed

    Olveira, Gabriel; Olveira, Casilda; Doña, Esperanza; Palenque, Francisco Javier; Porras, Nuria; Dorado, Antonio; Godoy, Ana M; Rubio-Martínez, Elehazara; Rojo-Martínez, Gemma; Martín-Valero, Rocío

    2016-10-01

    Pulmonary Rehabilitation (PR) is recommended for bronchiectasis but there is no data about its effect on body composition. The aim of this study is to assess the effect of Pulmonary Rehabilitation (PR) for 12 weeks in normally-nourished non-cystic-fibrosis bronchiectasis patients compared with the effect of PR plus a hyperproteic oral nutritional supplement enriched with beta-hydroxy-beta-methylbutyrate (HMB) on body composition, muscle strength, quality of life and serum biomarkers. single center randomized controlled trial, parallel treatment design: Participants were randomly assigned to receive PR for 12 weeks or PR plus ONS (PRONS) (one can per day). Outcome assessments were performed at baseline, 12 weeks and 24 weeks: body composition (Dual-energy X-Ray Absorptiometry (DEXA), mid-arm muscle circumference (MAMC), phase angle by Bio-impedance), health related quality of life (Spanish QOL-B-V3.0, Physical Functioning Scale), handgrip strength, diet questionnaire, and plasma levels of prealbumin, myostatin and somatomedin-c. Thirty patients were randomized (15 per group) without differences in clinical and respiratory variables. In the PRONS group bone mineral density (BMD), mean and maximum handgrip dynamometry, MAMC, QOLB and prealbumin were significantly increased from baseline at 12 and 24 weeks and Fat free Mass (FFM) and FFM index, at 12 weeks. In the PR group only mean handgrip dynamometry and prealbumin were significantly increased at 12 and 24 weeks. In both groups plasma myostatin was reduced at 12 weeks (without significant differences). The addition of a hyperproteic ONS enriched with HMB to Pulmonary Rehabilitation could improve body composition, BMD, muscle strength and health related quality of life in bronchiectasis patients. Clinical Trials Number NCT02048397. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  14. Age-associated declines in muscle mass, strength, power, and physical performance: impact on fear of falling and quality of life.

    PubMed

    Trombetti, A; Reid, K F; Hars, M; Herrmann, F R; Pasha, E; Phillips, E M; Fielding, R A

    2016-02-01

    This 3-year longitudinal study among older adults showed that declining muscle mass, strength, power, and physical performance are independent contributing factors to increased fear of falling, while declines of muscle mass and physical performance contribute to deterioration of quality of life. Our findings reinforce the importance of preserving muscle health with advancing age. The age-associated loss of skeletal muscle quantity and function are critical determinants of independent physical functioning in later life. Longitudinal studies investigating how decrements in muscle components of sarcopenia impact fear of falling (FoF) and quality of life (QoL) in older adults are lacking. Twenty-six healthy older subjects (age, 74.1 ± 3.7; Short Physical Performance Battery (SPPB) score ≥10) and 22 mobility-limited older subjects (age, 77.2 ± 4.4; SPPB score ≤9) underwent evaluations of lower extremity muscle size and composition by computed tomography, strength and power, and physical performance at baseline and after 3-year follow-up. The Falls Efficacy Scale (FES) and Short Form-36 questionnaire (SF-36) were also administered at both timepoints to assess FoF and QoL, respectively. At 3-year follow-up, muscle cross-sectional area (CSA) (p < 0.013) and power decreased (p < 0.001), while intermuscular fat infiltration increased (p < 0.001). These decrements were accompanied with a longer time to complete 400 m by 22 ± 46 s (p < 0.002). Using linear mixed-effects regression models, declines of muscle CSA, strength and power, and SPPB score were associated with increased FES score (p < 0.05 for each model). Reduced physical component summary score of SF-36 over follow-up was independently associated with decreased SPPB score (p < 0.020), muscle CSA (p < 0.046), and increased 400 m walk time (p < 0.003). In older adults with and without mobility limitations, declining muscle mass, strength, power, and physical performance contribute independently to increase FoF, while declines of muscle mass and physical performance contribute to deterioration of QoL. These findings provide further rationale for developing interventions to improve aging muscle health.

  15. Limb muscle quality and quantity in elderly adults with dynapenia but not sarcopenia: An ultrasound imaging study.

    PubMed

    Chang, Ke-Vin; Wu, Wei-Ting; Huang, Kuo-Chin; Jan, Wei Han; Han, Der-Sheng

    2018-03-28

    Dynapenia is prevalent in people with reduced skeletal muscle mass, i.e. sarcopenia, but a certain population develops muscle strength loss despite having normal skeletal muscle volume. To date, studies investigating muscle quality and quantity in groups with dynapenia but not sarcopenia are limited. Echogenicity and thickness of the biceps brachii, triceps brachii, rectus femoris, and medial gastrocnemius muscles were measured using high-resolution ultrasonography in 140 community-dwelling elderly adults. Participants with decreased handgrip strength but normal muscular volume were diagnosed as having dynapenia without sarcopenia. A multivariate regression model was used to analyze the association between dynapenia and ultrasound indicators of the sampled muscle expressed as odds ratio (OR) and 95% confidence interval (CI). A total of 140 participants were recruited for the study, 12.6% (n = 18) of whom had dynapenia. The dynapenia group had a higher mean age, higher proportion of women, slower fast gait speed, reduced handgrip strength, and decreased thicknesses of the biceps brachii, rectus femoris, and medial gastrocnemius muscles. On multivariate logistic regression analysis, dynapenia was associated with older age (OR, 1.18; 95% CI, 1.05 to 1.33), higher body mass index (OR, 1.28; 95% CI, 1.05 to 1.64), and decreased thicknesses of the rectus femoris (OR, 0.01; 95% CI, <0.01 to 0.24) and medial gastrocnemius muscles (OR, 0.03; 95% CI, <0.01 to 0.61). Dynapenia without sarcopenia is associated with decreased thicknesses of the rectus femoris and medial gastrocnemius muscles, an association that remains significant after adjustment for demographics, body composition, and physical performance. Ultrasound measurements of lower-limb muscle thickness can be considered an auxiliary criterion for evaluating dynapenia. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Skeletal muscle ceramide species in men with abdominal obesity.

    PubMed

    de la Maza, M P; Rodriguez, J M; Hirsch, S; Leiva, L; Barrera, G; Bunout, D

    2015-04-01

    Obesity is a risk factor for diabetes and its consequences, including accelerated ageing and mortality. The underlying factor could be accumulation of certain lipid moieties, such as ceramides (CER) and diacylgycerol (DAG) within muscle tissue, which are known to promote insulin resistance (IR), induce inflammation and oxidative injury, ultimately altering muscle function. First, to study the relationship between body composition and age (independent variables) with skeletal muscle accumulation of lipid species, oxidative injury and strength. Second, to analyze the relationship between muscle tissue metabolites and insulin resistance, inflammation and lymphocyte telomere length, the latter as an indicator of ageing. The sample included 56 healthy sedentary males, scheduled for inguinal hernia surgery, aged 27 to 80 y. Each individual was subject to anthropometric measurements, body composition assessment through radiologic densitometry (DEXA), measurement of handgrip and quadriceps strength, serum biochemical parameters (lipoproteins, creatinine, high sensitivity C reactive protein [hsCRP], fasting and post glucose insulin and glucose concentrations for calculation of IR through the Matsuda and HOMA-IR indexes), and extraction of peripheral leukocytes for measurement of telomere length. During the surgical procedure, a sample of muscle tissue was obtained (anterior abdominal oblique) in order to measure CER and DAG (and sub species according to chain length and saturation) by mass spectrometry, 4 hydroxy-2-nonenal adducts (4-HNE) using electron microscopy immunohistochemistry, and carboxymethyl-lisine (CML) by immunohistochemistry, the latter as indicators of oxidative stress (OS). Body mass index (BMI) of twenty six individuals was > 25 k/m2, while BMI of 7 was > 30 k/m2. Overweight/obese individuals, did not exhibit differences in skeletal muscle lipid metabolites, however total CER and specific long chain CER sub-species (20 and 22 carbon) increased significantly among individuals with a central fat distribution (n = 14) as well as in glucose intolerant subjects (n =23). A negative association was found between mononuclear leukocyte telomere length and 20 and 22 carbon CER (rho = - 0.4 and -0.5 0 p < 0.05). Muscle strength was not associated with any of the measured muscle metabolites or markers of OS. A multiple regression analysis accepted central abdominal fat and telomere length as significant predictors of CER (R2 = 0.28). An association was found between accumulation of specific ceramide species in muscle tissue and abdominal obesity, glucose intolerance and shortening of leukocyte telomeres, although not with muscle oxidative injury or dysfunction.

  17. The eccentric, concentric strength relationship of the hamstring muscles in chronic low back pain.

    PubMed

    Marshall, Paul W M; Mannion, Jamie; Murphy, Bernadette A

    2010-02-01

    The objective of this study was to measure hamstring muscle eccentric and concentric strength in individuals with and without low back pain (LBP). Two composite scores for the relative balance of eccentric to concentric strength at the different movement velocities were calculated (the DEC and SEC), to determine whether or not self perceived pain, disability, or fear avoidance measures were associated with hamstring strength characteristics. Cross-sectional repeated measures design. University laboratory. Fifteen individuals with chronic LBP and 15 matched controls. Isokinetic eccentric and concentric strength at 30 degrees s(-1) and 120 degrees s(-1)(.) Composite scores (DEC and SEC) based on peak torque were calculated to evaluate the relationship between the different muscle actions across the test velocities. Self report measures included the Oswestry disability index, general health and well being, fear avoidance, and pain. Eccentric/concentric strength ratio at 30 degrees s(-1) was higher for the LBP group (F(1,58)=4.81, p=0.032). The SEC was also higher for the LBP (F(1,58)=5.97, p=0.018). Fear avoidance beliefs and mental well-being were significantly associated with the SEC only in the LBP group (adjusted r(2)=0.26, (F(2,27)=5.8, p=.008). For the control group both the DEC and SEC were associated with self report measures. Matched differences between groups' for the SEC were best explained by fear avoidance beliefs about work (adjusted r(2)=0.12, F(1,28)=5.1, p=0.03). Reduced concentric relative to eccentric strength is best identified by the SEC. The SEC was significantly associated with impaired self report measures of fear avoidance and mental well being in individuals with LBP. Differences between groups for the SEC were best explained by fear avoidance beliefs about work.

  18. Reduced flexibility associated with metabolic syndrome in community-dwelling elders.

    PubMed

    Chang, Ke-Vin; Hung, Chen-Yu; Li, Chia-Ming; Lin, Yu-Hung; Wang, Tyng-Guey; Tsai, Keh-Sung; Han, Der-Sheng

    2015-01-01

    The ageing process may lead to reductions in physical fitness, a known risk factor in the development of metabolic syndrome. The purpose of the current study was to evaluate cross-sectional and combined associations of metabolic syndrome with body composition and physical fitness in a community based geriatric population. A total of 628 community-dwelling elders attending a geriatric health examination were enrolled in the study. The diagnosis of metabolic syndrome was based on the modified National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III) criterion with Asian cutoff of waist girth was adopted in this study. Body composition was obtained using bioimpedance analysis, and physical fitness was evaluated through the measurement of muscle strength (handgrip force), lower extremity muscle endurance (sit-to-stand test), flexibility (sit-and-reach test), and cardiorespiratory endurance (2-minute step test). Multivariable logistic regression and correlation analysis were performed to determine the association of metabolic syndrome with body composition and functionality variables. Metabolic syndrome was associated with increased skeletal muscle index (SMI) (odds ratio (OR), 1.61, 95% confidence interval (CI), 1.25-2.07) and decreased flexibility (OR, 0.97, 95% CI, 0.95-0.99) compared with those without metabolic syndrome. When body mass index was accounted for in the analysis, the association of SMI with metabolic syndrome was reduced. Waist circumference was positively correlated with SMI but negatively correlated with flexibility, whereas high density lipoprotein was positively correlated with flexibility but negatively correlated with SMI. Reduced flexibility was positively associated with metabolic syndrome independent of age, gender, body composition, and functionality measurements in a community based geriatric population. Significant associations between metabolic syndrome with muscle strength and cardiorespiratory fitness in the elderly were not observed. Furthermore, flexibility should be included in the complete evaluation for metabolic syndrome.

  19. An Artificial Tendon with Durable Muscle Interface

    PubMed Central

    Melvin, Alan; Litsky, Alan; Mayerson, Joel; Witte, David; Melvin, David; Juncosa-Melvin, Natalia

    2010-01-01

    A coupling mechanism that can permanently fix a forcefully contracting muscle to a bone anchor or any totally inert prosthesis would meet a serious need in orthopaedics. Our group developed the OrthoCoupler™ device to satisfy these demands. The objective of this study was to test OrthoCoupler’s performance in vitro and in vivo in the goat semitendinosus tendon model. For in vitro evaluation, 40 samples were fatigue-tested, cycling at 10 load levels, n=4 each. For in vivo evaluation, the semitendinosus tendon was removed bilaterally in 8 goats. Left sides were reattached with an OrthoCoupler, and right sides were reattached using the Krackow stitch with #5 braided polyester sutures. Specimens were harvested 60 days post-surgery and assigned for biomechanics and histology. Fatigue strength of the devices in vitro was several times the contractile force of the semitendinosus muscle. The in vivo devices were built equivalent to two of the in vitro devices, providing an additional safety factor. In strength testing at necropsy, suture controls pulled out at 120.5 ± 68.3 N, whereas each OrthoCoupler was still holding after the muscle tore, remotely, at 298±111.3N (mean ± SD)(p<0.0003). Muscle tear strength was reached with the fiber-muscle composite produced in healing still soundly intact. This technology may be of value for orthopaedic challenges in oncology, revision arthroplasty, tendon transfer, and sports-injury reconstruction. PMID:19639642

  20. Skeletal muscle mass adjusted by height correlated better with muscular functions than that adjusted by body weight in defining sarcopenia.

    PubMed

    Han, Der-Sheng; Chang, Ke-Vin; Li, Chia-Ming; Lin, Yu-Hong; Kao, Tung-Wei; Tsai, Keh-Sung; Wang, Tyng-Grey; Yang, Wei-Shiung

    2016-01-20

    Sarcopenia, characterized by low muscle mass and function, results in frailty, comorbidities and mortality. However, its prevalence varies according to the different criteria used in its diagnosis. This cross-sectional study investigated the difference in the number of sarcopenia cases recorded by two different measurement methods of low muscle mass to determine which measurement was better. We recruited 878 (54.2% female) individuals aged over 65 years and obtained their body composition and functional parameters. Low muscle mass was defined as two standard deviations below either the mean height-adjusted (hSMI) or weight-adjusted (wSMI) muscle mass of a young reference group. The prevalence of sarcopenia was 6.7% vs. 0.4% (male/female) by hSMI, and 4.0% vs. 10.7% (male/female) by wSMI. The κ coefficients for these two criteria were 0.39 vs. 0.03 (male/female), and 0.17 in all subjects. Serum myostatin levels correlated positively with gait speed (r = 0.142, p = 0.007) after adjustment for gender. hSMI correlated with grip strength, cardiopulmonary endurance, leg endurance, gait speed, and flexibility. wSMI correlated with grip strength, leg endurance, gait speed, and flexibility. Since hSMI correlated more closely with grip strength and more muscular functions, we recommend hSMI in the diagnosis of low muscle mass.

  1. Effects of arachidonic acid supplementation on training adaptations in resistance-trained males

    PubMed Central

    Roberts, Michael D; Iosia, Mike; Kerksick, Chad M; Taylor, Lem W; Campbell, Bill; Wilborn, Colin D; Harvey, Travis; Cooke, Matthew; Rasmussen, Chris; Greenwood, Mike; Wilson, Ronald; Jitomir, Jean; Willoughby, Darryn; Kreider, Richard B

    2007-01-01

    Background To determine the impact of AA supplementation during resistance training on body composition, training adaptations, and markers of muscle hypertrophy in resistance-trained males. Methods In a randomized and double blind manner, 31 resistance-trained male subjects (22.1 ± 5.0 years, 180 ± 0.1 cm, 86.1 ± 13.0 kg, 18.1 ± 6.4% body fat) ingested either a placebo (PLA: 1 g·day-1 corn oil, n = 16) or AA (AA: 1 g·day-1 AA, n = 15) while participating in a standardized 4 day·week-1 resistance training regimen. Fasting blood samples, body composition, bench press one-repetition maximum (1RM), leg press 1RM and Wingate anaerobic capacity sprint tests were completed after 0, 25, and 50 days of supplementation. Percutaneous muscle biopsies were taken from the vastus lateralis on days 0 and 50. Results Wingate relative peak power was significantly greater after 50 days of supplementation while the inflammatory cytokine IL-6 was significantly lower after 25 days of supplementation in the AA group. PGE2 levels tended to be greater in the AA group. However, no statistically significant differences were observed between groups in body composition, strength, anabolic and catabolic hormones, or markers of muscle hypertrophy (i.e. total protein content or MHC type I, IIa, and IIx protein content) and other intramuscular markers (i.e. FP and EP3 receptor density or MHC type I, IIa, and IIx mRNA expression). Conclusion AA supplementation during resistance-training may enhance anaerobic capacity and lessen the inflammatory response to training. However, AA supplementation did not promote statistically greater gains in strength, muscle mass, or influence markers of muscle hypertrophy. PMID:18045476

  2. Sex- and age-related differences in mid-thigh composition and muscle quality determined by computed tomography in middle-aged and elderly Japanese.

    PubMed

    Kasai, Takehiro; Ishiguro, Naoki; Matsui, Yasumoto; Harada, Atsushi; Takemura, Marie; Yuki, Atsumu; Kato, Yuki; Otsuka, Rei; Ando, Fujiko; Shimokata, Hiroshi

    2015-06-01

    Sex- and age-related differences in mid-thigh composition and muscle quality remain unclear. The present study aimed to clarify these differences using computed tomography in middle-aged and elderly Japanese. A total of 2310 participants (age 40-89 years), who were randomly selected from the local residents, underwent computed tomography examination of the right mid-thigh. Thigh circumference and cross-sectional areas of the thigh, muscle, quadriceps, non-quadriceps, fat, and bone were measured. Knee extension strength and muscle quality index (knee extension strength/quadriceps cross-sectional area) were also assessed. Sex- and age-related differences in these indices were analyzed. The thigh cross-sectional area in men and women decreased by 0.6% and 0.5%/year, respectively, because of a decrease in muscle cross-sectional area (men 75.2%, women 40.6%), fat cross-sectional area (men 24.4%, women 59.6%) and bone cross-sectional area (men 0.5%, women -0.2%). Muscle cross-sectional area in men and women decreased by 0.6% and 0.4%/year, respectively, because of a decrease in quadriceps cross-sectional area (men 65.6%, women 81.6%) and non-quadriceps cross-sectional area (men 34.4%, women 18.4%). Muscle quality in men and women decreased by 0.4% and 0.3%/year, respectively. Thigh cross-sectional area decreased with age mainly because of a decrease in muscle cross-sectional area in men and fat cross-sectional area in women. The rate of decrease in muscle cross-sectional area was 1.5-fold higher in men than in women. Muscle cross-sectional area decreased with age mainly because of a decrease in quadriceps cross-sectional area, especially in women. Decrease in muscle quality with age was similar in both sexes. © 2014 Japan Geriatrics Society.

  3. Feasibility and Preliminary Efficacy of a 10-Week Resistance and Aerobic Exercise Intervention During Neoadjuvant Chemoradiation Treatment in Rectal Cancer Patients.

    PubMed

    Singh, Favil; Galvão, Daniel A; Newton, Robert U; Spry, Nigel A; Baker, Michael K; Taaffe, Dennis R

    2018-06-01

    Neoadjuvant chemoradiation treatment (CRT) in rectal cancer patients is associated with a reduction in physical capacity, lean mass and increased fatigue. As a countermeasure to these treatment-related adverse effects, we examined the feasibility and preliminary efficacy of a 10-week exercise program during CRT. Ten rectal cancer patients (7 men, aged 27-70 years, body mass index = 26.4 ± 3.8 kg/m 2 ) receiving CRT undertook supervised resistance and aerobic exercise twice weekly. Assessments were undertaken pre- and post-intervention for upper and lower body muscle strength by 1-RM, muscle endurance, physical performance tests, body composition by dual X-ray absorptiometry, quality of life, and fatigue. There was a significant loss in appendicular skeletal muscle (-1.1 kg, P = .012), and fat mass (-0.8 kg, P = .029) following CRT. Despite the loss in skeletal muscle, leg press ( P = .030) and leg extension ( P = .046) strength improved by 27.2% and 22.7%, respectively, and leg press endurance by 76.7% ( P = .007). Changes in strength were accompanied by improved performance ( P < .05) in 6-m fast walking speed (6.9%) and dynamic balance as determined by the 6-m backwards walk (15.5%). There was minimal change in quality of life and fatigue, and no adverse events related to training. Exercise during neoadjuvant CRT appears to be feasible and well tolerated in rectal cancer patients and may enhance physical function while minimizing adverse changes in body composition and cancer-related fatigue. These initial findings need to be confirmed in randomized controlled trials.

  4. Osteoporosis and body composition.

    PubMed

    Crepaldi, G; Romanato, G; Tonin, P; Maggi, S

    2007-01-01

    The Epidemiologic Study on the Prevalence of Osteoporosis in Italy showed that the prevalence of osteoporosis among women and men aged 60 yr and over is 22.8% and 14.5%, respectively, giving rise to about 80,000 new fractures a yr. Sarcopenia is considered to be one of the main features of the aging process. It is characterized by a reduction in muscle mass and muscle strength, and affects women more than men. It is associated with a increased risk of fractures consequent upon a greater predisposition to falls, but also to the lack of bone remodeling due to reduced muscle mechanical strength. Muscle strength determines quality bone modifications such as density, strength, and microarchitecture. Variations in the ratios of cortical and muscle areas give rise to various types of osteoporosis, with different risks of fracture. Bone mineral density increases with body fat mass, and obesity has a protective effect against osteoporosis. This protective effect is explained by a combination of hormonal (peripheral aromatization of androgens to estrogens in adipose tissue) and mechanical factors (on weight-bearing bone sites), but the hormone leptin also probably mediates fat and bone mass. Serum leptin levels are closely related to body fat mass, and some findings suggest the peripheral effect of leptin, which exerts estrogenic effects, enhancing osteoblastic differentiation and inhibiting late adipocytic differentiation. The overall effect of leptin on bone results from a balance between negative central effects and positive direct peripheral effects, according to serum leptin levels.

  5. The Effect of Low Extremity Plyometric Training on Back Muscle Power of High School Throwing Event Athletes

    PubMed Central

    Park, Gi Duck; Lee, Joong Chul; Lee, Juri

    2014-01-01

    [Purpose] The physical strength elements required for athletic throwing events include muscle strength, swiftness, agility, speed, flexibility, and physical balance. Although plyometric training and weight training are implemented as representative training methods for improving swiftness and agility, most studies of it have been conducted with players of other sports. [Subjects] The study subjects were 10 throwing event athletes attending K physical education high school. The subjects were randomly assigned to a control group of five subjects and an experimental group of five subjects. To analyze the body composition, an Inbody 3.0 instrument (Biospace, Korea) was used as experimental equipment to measure heights, weight, body fat percentages, and muscle masses and a Biodex system 4.0 (BIODEX, USA) was used to measure isokinetic muscle-joint and lumbar muscle strengths. The plyometric training consisted of 15 techniques out of the training methods introduced in the ‘Power up plyometric training’. The plyometric program was implemented without any training load three times per week during daybreak exercises for the experimental group. The number of times and the number of sets were changed over time as follows: three sets of 10 times in the 1st −4th weeks, three sets of 15 times in the 5th–8th weeks, and five sets of 15 times in the 9th−12th weeks. [Results] According to the ANCOVA results of lumbar extensor muscle strength at 60°/sec, the overall reliability of the model was significant. According to the ANCOVA results of lumbar flexor muscle strength at 60°/sec, the overall reliability of the model was significant. [Conclusion] Plyometric training positively affected high school throwing event athletes. To summarize the study findings, the application of plyometric training with high intensity and loads improved the results of athletes who perform highly intensive exercises at normal times. PMID:24567698

  6. The effect of low extremity plyometric training on back muscle power of high school throwing event athletes.

    PubMed

    Park, Gi Duck; Lee, Joong Chul; Lee, Juri

    2014-01-01

    [Purpose] The physical strength elements required for athletic throwing events include muscle strength, swiftness, agility, speed, flexibility, and physical balance. Although plyometric training and weight training are implemented as representative training methods for improving swiftness and agility, most studies of it have been conducted with players of other sports. [Subjects] The study subjects were 10 throwing event athletes attending K physical education high school. The subjects were randomly assigned to a control group of five subjects and an experimental group of five subjects. To analyze the body composition, an Inbody 3.0 instrument (Biospace, Korea) was used as experimental equipment to measure heights, weight, body fat percentages, and muscle masses and a Biodex system 4.0 (BIODEX, USA) was used to measure isokinetic muscle-joint and lumbar muscle strengths. The plyometric training consisted of 15 techniques out of the training methods introduced in the 'Power up plyometric training'. The plyometric program was implemented without any training load three times per week during daybreak exercises for the experimental group. The number of times and the number of sets were changed over time as follows: three sets of 10 times in the 1st -4th weeks, three sets of 15 times in the 5th-8th weeks, and five sets of 15 times in the 9th-12th weeks. [Results] According to the ANCOVA results of lumbar extensor muscle strength at 60°/sec, the overall reliability of the model was significant. According to the ANCOVA results of lumbar flexor muscle strength at 60°/sec, the overall reliability of the model was significant. [Conclusion] Plyometric training positively affected high school throwing event athletes. To summarize the study findings, the application of plyometric training with high intensity and loads improved the results of athletes who perform highly intensive exercises at normal times.

  7. Lower extremity muscle size and strength and aerobic capacity decrease with caloric restriction but not with exercise-induced weight loss

    PubMed Central

    Weiss, Edward P.; Racette, Susan B.; Villareal, Dennis T.; Fontana, Luigi; Steger-May, Karen; Schechtman, Kenneth B.; Klein, Samuel; Ehsani, Ali A.; Holloszy, John O.

    2015-01-01

    Caloric restriction (CR) results in fat loss; however, it may also result in loss of muscle and thereby reduce strength and aerobic capacity (V̇O2 max). These effects may not occur with exercise-induced weight loss (EX) because of the anabolic effects of exercise on heart and skeletal muscle. We tested the hypothesis that CR reduces muscle size and strength and V̇O2 max, whereas EX preserves or improves these parameters. Healthy 50- to 60-yr-old men and women (body mass index of 23.5–29.9 kg/m2) were studied before and after 12 mo of weight loss by CR (n = 18) or EX (n = 16). Lean mass was assessed by dual-energy X-ray absorptiometry, thigh muscle volume by MRI, isometric and isokinetic knee flexor strength by dynamometry, and treadmill V̇O2 max by indirect calorimetry. Both interventions caused significant decreases in body weight (CR: −10.7 ± 1.4%, EX: −9.5 ± 1.5%) and lean mass (CR: −3.5 ± 0.7%, EX: −2.2 ± 0.8%), with no significant differences between groups. Significant decreases in thigh muscle volume (−6.9 ± 0.8%) and composite knee flexion strength (−7.2 ± 3%) occurred in the CR group only. Absolute V̇O2 max decreased significantly in the CR group (−6.8 ± 2.3%), whereas the EX group had significant increases in both absolute (+15.5 ± 2.4%) and relative (+28.3 ± 3.0%) V̇O2 max. These data provide evidence that muscle mass and absolute physical work capacity decrease in response to 12 mo of CR but not in response to a similar weight loss induced by exercise. These findings suggest that, during EX, the body adapts to maintain or even enhance physical performance capacity. PMID:17095635

  8. Gender influence on fatigability of back muscles during intermittent isometric contractions: a study of neuromuscular activation patterns.

    PubMed

    Larivière, Christian; Gravel, Denis; Gagnon, Denis; Gardiner, Phillip; Bertrand Arsenault, A; Gaudreault, Nathaly

    2006-11-01

    Gender difference in the fatigability of muscles can be attributed to muscle mass (or strength) and associated level of vascular occlusion, substrate utilization, muscle composition, and neuromuscular activation patterns. The purpose of this study was to assess the role of neuromuscular activation patterns to explain gender differences in back muscle fatigability during intermittent isometric tasks. Sixteen males and 15 females performed maximal voluntary contractions (Strength) and a fatigue test to exhaustion (fatigue criterion=time to exhaustion), while standing in a static dynamometer measuring L5/S1 extension moment. The fatigue test consisted of repetitions of an 8-s cycle (1.5 s ramp to reach 40% of maximal voluntary contraction +5s plateau at 40% of maximal voluntary contraction +1.5s rest). Surface electromyography signals were collected bilaterally from 4 back muscles (multifidus at the L5 level, iliocostalis lumborum at L3, and longissimus at L1 and T10). Males were stronger (P<0.05) than females (316, SD 82>196, SD 25 Nm) but showed significantly shorter time-to-exhaustion values (7.1, SD 5.2<13.0, SD 6.1 min.), the latter result being corroborated by electromyographic indices of fatigue. However, the gender effect on time to exhaustion disappeared when accounting for Strength, thus supporting the muscle mass hypothesis. Among the various electromyographic indices computed to assess neuromuscular activation patterns, the amount of alternating activity between homolateral and between contralateral muscles showed a gender effect (females>males). These results support the muscle mass hypothesis as well as the neuromuscular activation hypothesis to explain gender differences in back muscle fatigability.

  9. Effects of Combined Aerobic-Strength Training vs Fitness Education Program in COPD Patients.

    PubMed

    Rinaldo, Nicoletta; Bacchi, Elisabetta; Coratella, Giuseppe; Vitali, Francesca; Milanese, Chiara; Rossi, Andrea; Schena, Federico; Lanza, Massimo

    2017-11-01

    We compared the effects of a new physical activity education program approach (EDU), based on a periodically supervised protocol of different exercise modalities vs traditionally supervised combined strength-endurance training (CT) on health-related factors in patients with stable chronic obstructive pulmonary disease (COPD). Twenty-eight COPD patients without comorbidities were randomly assigned to receive either EDU or CT. CT was continuously supervised to combine strength-endurance training; EDU was taught to progressively increase the rate of autonomous physical activity, through different training modalities such as Nordic walking, group classes and circuit training. Body composition, walking capacity, muscle strength, flexibility and balance, total daily energy expenditure and quality of life were evaluated at baseline, after 28 weeks training period (3d/week) and after a 14-week follow-up. No adverse events occurred during the interventions. After training, CT and EDU similarly improved walking capacity, body composition and quality of life. However, after 14 weeks of follow-up, such improvements were not maintained. Only in CT, muscle strength and flexibility improved after training but returned to baseline after follow-up. EDU, similar to CT, can effectively and safely improve health-related parameters in COPD patients. EDU could be an attractive alternative to traditional supervised training for improving quality of life in COPD patients. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Unilateral Muscle Overuse Causes Bilateral Changes in Muscle Fiber Composition and Vascular Supply

    PubMed Central

    Song, Yafeng; Forsgren, Sture; Liu, Jing-Xia; Yu, Ji-Guo; Stål, Per

    2014-01-01

    Unilateral strength training can cause cross-transfer strength effects to the homologous contralateral muscles. However, the impact of the cross-over effects on the muscle tissue is unclear. To test the hypothesis that unilateral muscle overuse causes bilateral alterations in muscle fiber composition and vascular supply, we have used an experimental rabbit model with unilateral unloaded overstrain exercise via electrical muscle stimulation (E/EMS). The soleus (SOL) and gastrocnemius (GA) muscles of both exercised (E) and contralateral non-exercised (NE) legs (n = 24) were morphologically analyzed after 1w, 3w and 6w of EMS. Non-exercised rabbits served as controls (n = 6). After unilateral intervention the muscles of both E and NE legs showed myositis and structural and molecular tissue changes that to various degrees mirrored each other. The fiber area was bilaterally smaller than in controls after 3w of E/EMS in both SOL (E 4420 and NE 4333 µm2 vs. 5183 µm2, p<0.05) and GA (E 3572 and NE 2983 µm2 vs. 4697 µm2, p<0.02) muscles. After 6w of E/EMS, the percentage of slow MyHCI fibers was lower than in controls in the NE legs of SOL (88.1% vs. 98.1%, p<0.009), while the percentage of fast MyHCIIa fibers was higher in the NE legs of GA (25.7% vs. 15.8%, p = 0.02). The number of capillaries around fibers in the E and NE legs was lower (SOL 13% and 15%, respectively, GA 25% and 23%, respectively, p<0.05) than in controls. The overall alterations were more marked in the fast GA muscle than in the slow SOL muscle, which on the other hand showed more histopathological muscle changes. We conclude that unilateral repetitive unloaded overuse exercise via EMS causes myositis and muscle changes in fiber type proportions, fiber area and fiber capillarization not only in the exercised leg, but also in the homologous muscles in the non-exercised leg. PMID:25545800

  11. New haystacks reveal new needles: using Caenorhabditis elegans to identify novel targets for ameliorating body composition changes during human aging.

    PubMed

    Wolkow, Catherine A

    2010-01-01

    Dramatic changes in body composition accompany aging in humans, particularly with respect to adiposity and the musculature. People accumulate fat as they age and lose muscle mass and strength. Caenorhabditis elegans nematodes are small, hermaphroditic soil nematodes that offer a flexible model for studying genetic pathways regulating body composition in humans. While there are significant physiological differences between worms and people, many of the genetic pathways relevant to human lipid and muscle homeostasis are present in worms. Initial studies indicate that adiposity increases in C. elegans during aging, as occurs in humans. Furthermore, substantial evidence demonstrates age-related loss of muscle mass in worms. Possible mechanisms for these changes in C. elegans are presented. Recent studies have highlighted neuroendocrine and environmental signals regulating C. elegans fat metabolism. Potential dysfunction of these pathways during aging could affect overall fat accumulation. By contrast, muscle decline in aging worms results from accumulated damage and 'wear-and-tear' over life span. However, neuroendocrine pathways also regulate muscle mass in response to food availability. Such pathways might provide useful therapeutic approaches for combating muscle loss during aging. From this chapter, readers will develop a deeper understanding of the ways that C.elegans can be used for mechanistic gerontological studies. Copyright © 2010 S. Karger AG, Basel.

  12. The importance of trunk muscle strength for balance, functional performance, and fall prevention in seniors: a systematic review.

    PubMed

    Granacher, Urs; Gollhofer, Albert; Hortobágyi, Tibor; Kressig, Reto W; Muehlbauer, Thomas

    2013-07-01

    The aging process results in a number of functional (e.g., deficits in balance and strength/power performance), neural (e.g., loss of sensory/motor neurons), muscular (e.g., atrophy of type-II muscle fibers in particular), and bone-related (e.g., osteoporosis) deteriorations. Traditionally, balance and/or lower extremity resistance training were used to mitigate these age-related deficits. However, the effects of resistance training are limited and poorly translate into improvements in balance, functional tasks, activities of daily living, and fall rates. Thus, it is necessary to develop and design new intervention programs that are specifically tailored to counteract age-related weaknesses. Recent studies indicate that measures of trunk muscle strength (TMS) are associated with variables of static/dynamic balance, functional performance, and falls (i.e., occurrence, fear, rate, and/or risk of falls). Further, there is preliminary evidence in the literature that core strength training (CST) and Pilates exercise training (PET) have a positive influence on measures of strength, balance, functional performance, and falls in older adults. The objectives of this systematic literature review are: (a) to report potential associations between TMS/trunk muscle composition and balance, functional performance, and falls in old adults, and (b) to describe and discuss the effects of CST/PET on measures of TMS, balance, functional performance, and falls in seniors. A systematic approach was employed to capture all articles related to TMS/trunk muscle composition, balance, functional performance, and falls in seniors that were identified using the electronic databases PubMed and Web of Science (1972 to February 2013). A systematic approach was used to evaluate the 582 articles identified for initial review. Cross-sectional (i.e., relationship) or longitudinal (i.e., intervention) studies were included if they investigated TMS and an outcome-related measure of balance, functional performance, and/or falls. In total, 20 studies met the inclusionary criteria for review. Longitudinal studies were evaluated using the Physiotherapy Evidence Database (PEDro) scale. Effect sizes (ES) were calculated whenever possible. For ease of discussion, the 20 articles were separated into three groups [i.e., cross-sectional (n = 6), CST (n = 9), PET (n = 5)]. The cross-sectional studies reported small-to-medium correlations between TMS/trunk muscle composition and balance, functional performance, and falls in older adults. Further, CST and/or PET proved to be feasible exercise programs for seniors with high-adherence rates. Age-related deficits in measures of TMS, balance, functional performance, and falls can be mitigated by CST (mean strength gain = 30 %, mean effect size = 0.99; mean balance/functional performance gain = 23 %, mean ES = 0.88) and by PET (mean strength gain = 12 %, mean ES = 0.52; mean balance/functional performance gain = 18 %, mean ES = 0.71). Given that the mean PEDro quality score did not reach the predetermined cut-off of ≥6 for the intervention studies, there is a need for more high-quality studies to explicitly identify the relevance of CST and PET to the elderly population. Core strength training and/or PET can be used as an adjunct or even alternative to traditional balance and/or resistance training programs for old adults. Further, CST and PET are easy to administer in a group setting or in individual fall preventive or rehabilitative intervention programs because little equipment and space is needed to perform such exercises.

  13. Importance and challenges of measuring intrinsic foot muscle strength

    PubMed Central

    2012-01-01

    Background Intrinsic foot muscle weakness has been implicated in a range of foot deformities and disorders. However, to establish a relationship between intrinsic muscle weakness and foot pathology, an objective measure of intrinsic muscle strength is needed. The aim of this review was to provide an overview of the anatomy and role of intrinsic foot muscles, implications of intrinsic weakness and evaluate the different methods used to measure intrinsic foot muscle strength. Method Literature was sourced from database searches of MEDLINE, PubMed, SCOPUS, Cochrane Library, PEDro and CINAHL up to June 2012. Results There is no widely accepted method of measuring intrinsic foot muscle strength. Methods to estimate toe flexor muscle strength include the paper grip test, plantar pressure, toe dynamometry, and the intrinsic positive test. Hand-held dynamometry has excellent interrater and intrarater reliability and limits toe curling, which is an action hypothesised to activate extrinsic toe flexor muscles. However, it is unclear whether any method can actually isolate intrinsic muscle strength. Also most methods measure only toe flexor strength and other actions such as toe extension and abduction have not been adequately assessed. Indirect methods to investigate intrinsic muscle structure and performance include CT, ultrasonography, MRI, EMG, and muscle biopsy. Indirect methods often discriminate between intrinsic and extrinsic muscles, but lack the ability to measure muscle force. Conclusions There are many challenges to accurately measure intrinsic muscle strength in isolation. Most studies have measured toe flexor strength as a surrogate measure of intrinsic muscle strength. Hand-held dynamometry appears to be a promising method of estimating intrinsic muscle strength. However, the contribution of extrinsic muscles cannot be excluded from toe flexor strength measurement. Future research should clarify the relative contribution of intrinsic and extrinsic muscles during intrinsic foot muscle strength testing. PMID:23181771

  14. Supplementation of l-Alanyl-l-Glutamine and Fish Oil Improves Body Composition and Quality of Life in Patients With Chronic Heart Failure.

    PubMed

    Wu, Christina; Kato, Tomoko S; Ji, Ruiping; Zizola, Cynthia; Brunjes, Danielle L; Deng, Yue; Akashi, Hirokazu; Armstrong, Hilary F; Kennel, Peter J; Thomas, Tiffany; Forman, Daniel E; Hall, Jennifer; Chokshi, Aalap; Bartels, Matthew N; Mancini, Donna; Seres, David; Schulze, P Christian

    2015-11-01

    Skeletal muscle dysfunction and exercise intolerance are clinical hallmarks of patients with heart failure. These have been linked to a progressive catabolic state, skeletal muscle inflammation, and impaired oxidative metabolism. Previous studies suggest beneficial effects of ω-3 polyunsaturated fatty acids and glutamine on exercise performance and muscle protein balance. In a randomized double-blind, placebo-controlled trial, 31 patients with heart failure were randomized to either l-alanyl-l-glutamine (8 g/d) and polyunsaturated fatty acid (6.5 g/d) or placebo (safflower oil and milk powder) for 3 months. Cardiopulmonary exercise testing, dual-energy x-ray absorptiometry, 6-minute walk test, hand grip strength, functional muscle testing, echocardiography, and quality of life and lateral quadriceps muscle biopsy were performed at baseline and at follow-up. Oxidative capacity and metabolic gene expression were analyzed on muscle biopsies. No differences in muscle function, echocardiography, 6-minute walk test, or hand grip strength and a nonsignificant increase in peak VO2 in the treatment group were found. Lean body mass increased and quality of life improved in the active treatment group. Molecular analysis revealed no differences in muscle fiber composition, fiber cross-sectional area, gene expression of metabolic marker genes (PGC1α, CPT1, PDK4, and GLUT4), and skeletal muscle oxidative capacity. The combined supplementation of l-alanyl-l-glutamine and polyunsaturated fatty acid did not improve exercise performance or muscle function but increased lean body mass and quality of life in patients with chronic stable heart failure. These findings suggest potentially beneficial effects of high-dose nutritional polyunsaturated fatty acids and amino acid supplementations in patients with chronic stable heart failure. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01534663. © 2015 American Heart Association, Inc.

  15. Analysis of isokinetic muscle strength for sports physiotherapy research in Korean ssireum athletes

    PubMed Central

    Noh, Ji-Woong; Park, Byoung-Sun; Kim, Mee-Young; Lee, Lim-Kyu; Yang, Seung-Min; Lee, Won-Deok; Shin, Yong-Sub; Kim, Ju-Hyun; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Kim, Ju-Young; Park, Jaehong; Kim, Junghwan

    2015-01-01

    [Purpose] The purpose of the present study was to elucidate the muscle conditions such as the isokinetic muscle of Korean ssireum athletes. [Subjects and Methods] This study enrolled 25 elite ssireum athletes. We measured body composition and peak torque at an angular speed at 60°/s using an isokinetic muscle strength dynamometer. [Results] The lean body mass of the left upper limb was significantly higher than that of the right upper limb. However, the lean body mass of the left lower limb was significantly lower than that of the right lower limb. The peak torque for left elbow flexion was significantly higher than that for right elbow flexion. Conversely, the peak torque for left elbow extension was significantly lower than that for right elbow extension. Furthermore, the peak torque for the left knee was significantly lower than that for the right knee for both flexion and extension. [Conclusion] The data from this study elucidate in part the muscle conditions of Korean ssireum athletes, which can be used to establish a reference for the scientific study of sports physiotherapy. PMID:26644679

  16. Analysis of isokinetic muscle strength for sports physiotherapy research in Korean ssireum athletes.

    PubMed

    Noh, Ji-Woong; Park, Byoung-Sun; Kim, Mee-Young; Lee, Lim-Kyu; Yang, Seung-Min; Lee, Won-Deok; Shin, Yong-Sub; Kim, Ju-Hyun; Lee, Jeong-Uk; Kwak, Taek-Yong; Lee, Tae-Hyun; Kim, Ju-Young; Park, Jaehong; Kim, Junghwan

    2015-10-01

    [Purpose] The purpose of the present study was to elucidate the muscle conditions such as the isokinetic muscle of Korean ssireum athletes. [Subjects and Methods] This study enrolled 25 elite ssireum athletes. We measured body composition and peak torque at an angular speed at 60°/s using an isokinetic muscle strength dynamometer. [Results] The lean body mass of the left upper limb was significantly higher than that of the right upper limb. However, the lean body mass of the left lower limb was significantly lower than that of the right lower limb. The peak torque for left elbow flexion was significantly higher than that for right elbow flexion. Conversely, the peak torque for left elbow extension was significantly lower than that for right elbow extension. Furthermore, the peak torque for the left knee was significantly lower than that for the right knee for both flexion and extension. [Conclusion] The data from this study elucidate in part the muscle conditions of Korean ssireum athletes, which can be used to establish a reference for the scientific study of sports physiotherapy.

  17. Are unilateral and bilateral patellar tendinopathy distinguished by differences in anthropometry, body composition, or muscle strength in elite female basketball players?

    PubMed Central

    Gaida, J; Cook, J; Bass, S; Austen, S; Kiss, Z

    2004-01-01

    Background: Overuse injury to the patellar tendon (patellar tendinopathy) is a major reason for interrupted training and competition for elite athletes. In both sexes, the prevalence of unilateral and bilateral tendinopathy has been shown to differ. It has been proposed that bilateral pathology may have a different aetiology from unilateral pathology. Investigation of risk factors that may be unique to unilateral and bilateral patellar tendinopathy in female athletes may reveal insights into the aetiology of this condition. Objectives: To examine whether anthropometry, body composition, or muscle strength distinguished elite female basketball players with unilateral or bilateral patellar tendinopathy. Methods: Body composition, anthropometry, and muscle strength were compared in elite female basketball players with unilateral (n = 8), bilateral (n = 7), or no (n = 24) patellar tendinopathy. Body composition was analysed using a dual energy x ray absorptiometer. Anthropometric measures were assessed using standard techniques. Knee extensor strength was measured at 180°/s using an isokinetic dynamometer. z scores were calculated for the unilateral and bilateral groups (using the no tendinopathy group as controls). z scores were tested against zero. Results: The tibia length to stature ratio was approximately 1.3 (1.3) SDs above zero in both the affected and non-affected legs in the unilateral group (p<0.05). The waist to hip ratio was 0.66 (0.78) SD above zero in the unilateral group (p<0.05). In the unilateral group, leg lean to total lean ratio was 0.42 (0.55) SD above zero (p<0.07), the trunk lean to total lean ratio was 0.63 (0.68) SD below zero (p<0.05), and leg fat relative to total fat was 0.47 (0.65) SD below zero (p<0.09). In the unilateral group, the leg with pathology was 0.78 (1.03) SD weaker during eccentric contractions (p<0.07). Conclusions: Unilateral patellar tendinopathy has identifiable risk factors whereas bilateral patellar tendinopathy may not. This suggests that the aetiology of these conditions may be different. However, interpretation must respect the limitation of small subject numbers. PMID:15388543

  18. The effect of five weeks of Tribulus terrestris supplementation on muscle strength and body composition during preseason training in elite rugby league players.

    PubMed

    Rogerson, Shane; Riches, Christopher J; Jennings, Carl; Weatherby, Robert P; Meir, Rudi A; Marshall-Gradisnik, Sonya M

    2007-05-01

    Tribulus terrestris is an herbal nutritional supplement that is promoted to produce large gains in strength and lean muscle mass in 5-28 days (15, 18). Although some manufacturers claim T. terrestris will not lead to a positive drug test, others have suggested that T. terrestris may increase the urinary testosterone/epitestosterone (T/E) ratio, which may place athletes at risk of a positive drug test. The purpose of the study was to determine the effect of T. terrestris on strength, fat free mass, and the urinary T/E ratio during 5 weeks of preseason training in elite rugby league players. Twenty-two Australian elite male rugby league players (mean +/- SD; age = 19.8 +/- 2.9 years; weight = 88.0 +/- 9.5 kg) were match-paired and randomly assigned in a double-blind manner to either a T. terrestris (n = 11) or placebo (n = 11) group. All subjects performed structured heavy resistance training as part of the club's preseason preparations. A T. terrestris extract (450 mg.d(-1)) or placebo capsules were consumed once daily for 5 weeks. Muscular strength, body composition, and the urinary T/E ratio were monitored prior to and after supplementation. After 5 weeks of training, strength and fat free mass increased significantly without any between-group differences. No between-group differences were noted in the urinary T/E ratio. It was concluded that T. terrestris did not produce the large gains in strength or lean muscle mass that many manufacturers claim can be experienced within 5-28 days. Furthermore, T. terrestris did not alter the urinary T/E ratio and would not place an athlete at risk of testing positive based on the World Anti-Doping Agency's urinary T/E ratio limit of 4:1.

  19. Comparison of different volumes of high intensity interval training on cardiac autonomic function in sedentary young women.

    PubMed

    Bhati, Pooja; Bansal, Vishal; Moiz, Jamal Ali

    2017-08-24

    Purpose The present study was conducted to compare the effects of low volume of high intensity interval training (LVHIIT) and high volume of high intensity interval training (HVHIIT) on heart rate variability (HRV) as a primary outcome measure, and on maximum oxygen consumption (VO2max), body composition, and lower limb muscle strength as secondary outcome measures, in sedentary young women. Methods Thirty-six participants were recruited in this study. The LVHIIT group (n = 17) performed one 4-min bout of treadmill running at 85%-95% maximum heart rate (HRmax), followed by 3 min of recovery by running at 70% HRmax, three times per week for 6 weeks. The HVHIIT group (n = 15) performed four times 4-min bouts of treadmill running at 85%-95% HRmax, interspersed with 3-min of recovery by running at 70% HRmax, 3 times per week for 6 weeks. All criterion measures were measured before and after training in both the groups. Results Due to attrition of four cases, data of 32 participants was used for analysis. A significant increase in high frequency (HF) power (p < 0.001) and decrease in the ratio of low frequency to high frequency power (LF/HF) ratio (p < 0.001) in HRV parameters, was observed post-HVHIIT, whereas, these variables did not change significantly (HF: p = 0.92, LF/HF ratio: p = 0.52) in LVHIIT group. Nevertheless, both the interventions proved equally effective in improving aerobic capacity (VO2max), body composition, and muscle strength. Conclusion The study results suggest that both LVHIIT and HVHIIT are equally effective in improving VO2max, body composition, and muscle strength, in sedentary young women. However, HVHIIT induces parasympathetic dominance as well, as measured by HRV.

  20. Alpha-linolenic acid supplementation and resistance training in older adults.

    PubMed

    Cornish, Stephen M; Chilibeck, Philip D

    2009-02-01

    Increased inflammation with aging has been linked to sarcopenia. The purpose of this study was to evaluate the effects of supplementing older adults with alpha-linolenic acid (ALA) during a resistance training program, based on the hypothesis that ALA decreases the plasma concentration of the inflammatory cytokine tumor necrosis factor (TNF)-alpha and interleukin (IL)-6, which in turn would improve muscle size and strength. Fifty-one older adults (65.4 +/- 0.8 years) were randomized to receive ALA in flax oil (~14 g.day-1) or placebo for 12 weeks while completing a resistance training program (3 days a week). Subjects were evaluated at baseline and after 12 weeks for muscle thickness of knee and elbow flexors and extensors (B-mode ultrasound), muscle strength (1 repetition maximum), body composition (dual energy X-ray absorptiometry), and concentrations of TNF-alpha and IL-6. Males supplementing with ALA decreased IL-6 concentration over the 12 weeks (62 +/- 36% decrease; p = 0.003), with no other changes in inflammatory cytokines. Chest and leg press strength, lean tissue mass, muscle thickness, hip bone mineral content and density, and total bone mineral content significantly increased, and percent fat and total body mass decreased with training (p < 0.05), with the only benefit of ALA being a significantly greater increase in knee flexor muscle thickness in males (p < 0.05). Total-body bone mineral density improved in the placebo group, with no change in the ALA group (p = 0.05). ALA supplementation lowers the IL-6 concentration in older men but not women, but had minimal effect on muscle mass and strength during resistance training.

  1. Quantitative muscle ultrasound and quadriceps strength in patients with post-polio syndrome.

    PubMed

    Bickerstaffe, Alice; Beelen, Anita; Zwarts, Machiel J; Nollet, Frans; van Dijk, Johannes P

    2015-01-01

    We investigated whether muscle ultrasound can distinguish muscles affected by post-polio syndrome (PPS) from healthy muscles and whether severity of ultrasound abnormalities is associated with muscle strength. Echo intensity, muscle thickness, and isometric strength of the quadriceps muscles were measured in 48 patients with PPS and 12 healthy controls. Patients with PPS had significantly higher echo intensity and lower muscle thickness than healthy controls. In patients, both echo intensity and muscle thickness were associated independently with muscle strength. A combined measure of echo intensity and muscle thickness was more strongly related to muscle strength than either parameter alone. Quantitative ultrasound distinguishes healthy muscles from those affected by PPS, and measures of muscle quality and quantity are associated with muscle strength. Hence, ultrasound could be a useful tool for assessing disease severity and monitoring changes resulting from disease progression or clinical intervention in patients with PPS. © 2014 Wiley Periodicals, Inc.

  2. Influence of muscle strength, physical activity and weight on bone mass in a population-based sample of 1004 elderly women.

    PubMed

    Gerdhem, P; Ringsberg, K A M; Akesson, K; Obrant, K J

    2003-09-01

    High physical activity level has been associated with high bone mass and low fracture risk and is therefore recommended to reduce fractures in old age. The aim of this study was to estimate the effect of potentially modifiable variables, such as physical activity, muscle strength, muscle mass and weight, on bone mass in elderly women. The influence of isometric thigh muscle strength, self-estimated activity level, body composition and weight on bone mineral density (dual energy X-ray absorptiometry; DXA) in total body, hip and spine was investigated. Subjects were 1004 women, all 75 years old, taking part in the Malmö Osteoporosis Prospective Risk Assessment (OPRA) study. Physical activity and muscle strength accounted for 1-6% of the variability in bone mass, whereas weight, and its closely associated variables lean mass and fat mass, to a much greater extent explained the bone mass variability. We found current body weight to be the variable with the most substantial influence on the total variability in bone mass (15-32% depending on skeletal site) in a forward stepwise regression model. Our findings suggest that in elderly women, the major fracture-preventive effect of physical activity is unlikely to be mediated through increased bone mass. Retaining or even increasing body weight is likely to be beneficial to the skeleton, but an excess body weight increase may have negative effects on health. Nevertheless, training in elderly women may have advantages by improving balance, co-ordination and mobility and therefore decreasing the risk of fractures.

  3. Vitamin C and E supplementation alters protein signalling after a strength training session, but not muscle growth during 10 weeks of training.

    PubMed

    Paulsen, G; Hamarsland, H; Cumming, K T; Johansen, R E; Hulmi, J J; Børsheim, E; Wiig, H; Garthe, I; Raastad, T

    2014-12-15

    This study investigated the effects of vitamin C and E supplementation on acute responses and adaptations to strength training. Thirty-two recreationally strength-trained men and women were randomly allocated to receive a vitamin C and E supplement (1000 mg day(-1) and 235 mg day(-1), respectively), or a placebo, for 10 weeks. During this period the participants' training involved heavy-load resistance exercise four times per week. Muscle biopsies from m. vastus lateralis were collected, and 1 repetition maximum (1RM) and maximal isometric voluntary contraction force, body composition (dual-energy X-ray absorptiometry), and muscle cross-sectional area (magnetic resonance imaging) were measured before and after the intervention. Furthermore, the cellular responses to a single exercise session were assessed midway in the training period by measurements of muscle protein fractional synthetic rate and phosphorylation of several hypertrophic signalling proteins. Muscle biopsies were obtained from m. vastus lateralis twice before, and 100 and 150 min after, the exercise session (4 × 8RM, leg press and knee-extension). The supplementation did not affect the increase in muscle mass or the acute change in protein synthesis, but it hampered certain strength increases (biceps curl). Moreover, increased phosphorylation of p38 mitogen-activated protein kinase, Extracellular signal-regulated protein kinases 1 and 2 and p70S6 kinase after the exercise session was blunted by vitamin C and E supplementation. The total ubiquitination levels after the exercise session, however, were lower with vitamin C and E than placebo. We concluded that vitamin C and E supplementation interfered with the acute cellular response to heavy-load resistance exercise and demonstrated tentative long-term negative effects on adaptation to strength training. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  4. The effect of a virtual reality exercise program on physical fitness, body composition, and fatigue in hemodialysis patients.

    PubMed

    Cho, Hyeyoung; Sohng, Kyeong-Yae

    2014-10-01

    [Purpose] The aim of the present study was to investigate the effects of a virtual reality exercise program (VREP) on physical fitness, body composition, and fatigue in hemodialysis (HD) patients with end-stage renal failure. [Subjects and Methods] A nonequivalent control group pretest-posttest design was used. Forty-six HD patients were divided into exercise (n=23) and control groups (n=23); while waiting for their dialyses, the exercise group followed a VREP, and the control group received only their usual care. The VREP was accomplished using Nintendo's Wii Fit Plus for 40 minutes, 3 times a week for 8 weeks during the period of May 27 to July 19, 2013. Physical fitness (muscle strength, balance, flexibility), body composition (skeletal muscle mass, body fat rate, arm and leg muscle mass), and fatigue were measured at baseline and after the intervention. [Results] After the VREP, physical fitness and body composition significantly increased, and the level of fatigue significantly decreased in the exercise group. [Conclusion] These results suggest that a VREP improves physical fitness, body composition, and fatigue in HD patients. Based on the findings, VREPs should be used as a health promotion programs for HD patients.

  5. Aceneuramic Acid Extended Release Administration Maintains Upper Limb Muscle Strength in a 48-week Study of Subjects with GNE Myopathy: Results from a Phase 2, Randomized, Controlled Study.

    PubMed

    Argov, Zohar; Caraco, Yoseph; Lau, Heather; Pestronk, Alan; Shieh, Perry B; Skrinar, Alison; Koutsoukos, Tony; Ahmed, Ruhi; Martinisi, Julia; Kakkis, Emil

    2016-03-03

    GNE Myopathy (GNEM) is a progressive adult-onset myopathy likely caused by deficiency of sialic acid (SA) biosynthesis. Evaluate the safety and efficacy of SA (delivered by aceneuramic acid extended-release [Ace-ER]) as treatment for GNEM. A Phase 2, randomized, double-blind, placebo-controlled study evaluating Ace-ER 3 g/day or 6 g/day versus placebo was conducted in GNEM subjects (n = 47). After the first 24 weeks, placebo subjects crossed over to 3 g/day or 6 g/day for 24 additional weeks (dose pre-assigned during initial randomization). Assessments included serum SA, muscle strength by dynamometry, functional assessments, clinician- and patient-reported outcomes, and safety. Dose-dependent increases in serum SA levels were observed. Supplementation with Ace-ER resulted in maintenance of muscle strength in an upper extremity composite (UEC) score at 6 g/day compared with placebo at Week 24 (LS mean difference +2.33 kg, p = 0.040), and larger in a pre-specified subgroup able to walk ≥200 m at Screening (+3.10 kg, p = 0.040). After cross-over, a combined 6 g/day group showed significantly better UEC strength than a combined 3 g/day group (+3.46 kg, p = 0.0031). A similar dose-dependent response was demonstrated within the lower extremity composite score, but was not significant (+1.06 kg, p = 0.61). The GNEM-Functional Activity Scale demonstrated a trend improvement in UE function and mobility in a combined 6 g/day group compared with a combined 3 g/day group. Patients receiving Ace-ER tablets had predominantly mild-to-moderate AEs and no serious adverse events. This is the first clinical study to provide evidence that supplementation with SA delivered by Ace-ER may stabilize muscle strength in individuals with GNEM and initiating treatment earlier in the disease course may lead to better outcomes.

  6. Aceneuramic Acid Extended Release Administration Maintains Upper Limb Muscle Strength in a 48-week Study of Subjects with GNE Myopathy: Results from a Phase 2, Randomized, Controlled Study

    PubMed Central

    Argov, Zohar; Caraco, Yoseph; Lau, Heather; Pestronk, Alan; Shieh, Perry B.; Skrinar, Alison; Koutsoukos, Tony; Ahmed, Ruhi; Martinisi, Julia; Kakkis, Emil

    2016-01-01

    Background: GNE Myopathy (GNEM) is a progressive adult-onset myopathy likely caused by deficiency of sialic acid (SA) biosynthesis. Objective: Evaluate the safety and efficacy of SA (delivered by aceneuramic acid extended-release [Ace-ER]) as treatment for GNEM. Methods: A Phase 2, randomized, double-blind, placebo-controlled study evaluating Ace-ER 3 g/day or 6 g/day versus placebo was conducted in GNEM subjects (n = 47). After the first 24 weeks, placebo subjects crossed over to 3 g/day or 6 g/day for 24 additional weeks (dose pre-assigned during initial randomization). Assessments included serum SA, muscle strength by dynamometry, functional assessments, clinician- and patient-reported outcomes, and safety. Results: Dose-dependent increases in serum SA levels were observed. Supplementation with Ace-ER resulted in maintenance of muscle strength in an upper extremity composite (UEC) score at 6 g/day compared with placebo at Week 24 (LS mean difference +2.33 kg, p = 0.040), and larger in a pre-specified subgroup able to walk ≥200 m at Screening (+3.10 kg, p = 0.040). After cross-over, a combined 6 g/day group showed significantly better UEC strength than a combined 3 g/day group (+3.46 kg, p = 0.0031). A similar dose-dependent response was demonstrated within the lower extremity composite score, but was not significant (+1.06 kg, p = 0.61). The GNEM-Functional Activity Scale demonstrated a trend improvement in UE function and mobility in a combined 6 g/day group compared with a combined 3 g/day group. Patients receiving Ace-ER tablets had predominantly mild-to-moderate AEs and no serious adverse events. Conclusions: This is the first clinical study to provide evidence that supplementation with SA delivered by Ace-ER may stabilize muscle strength in individuals with GNEM and initiating treatment earlier in the disease course may lead to better outcomes. PMID:27854209

  7. Skeletal muscle responses to unloading with special reference to man

    NASA Technical Reports Server (NTRS)

    Dudley, G. A.; Hather, B. M.; Buchanan, P.

    1992-01-01

    The limited space flight data suggest that exposure to microgravity decreases muscle strength in humans and muscle mass in lower mammals. Several earth-based models have been used to address the effect of unloading on the human neuromuscular system due to the limited access of biological research to long-term space flight. Bedrest eliminates body weight bearing of both lower limbs. Unilateral lower limb suspension (ULLS), where all ambulatory activity is performed on crutches with an elevated sole on the shoe of one foot, has recently been used to unload one lower limb. The results from studies using these two models support their efficacy. The decrease in strength of m. quadriceps femoris, for example, after four to six weeks of bedrest, ULLS or space flight is 20 to 25 percent. The results from the earth-based studies show that this response can be attributed in part to a decrease in the cross-sectional area of the KE which reflects muscle fiber atrophy. The results from the ground based studies also support the limited flight data and show that reductions in strength are larger in lower than upper limbs and in extensor than flexor muscle groups. They also raise issue with the generally held concept that postural muscle is most affected by unweighting. Slow-twitch fibers in lower limb muscles of mixed fiber type composition and muscle composed mainly of slow-twitch fibers do not preferentially atrophy after bedrest or ULLS. Taken together, the data suggest that unloading causes remarkable adaptations in the neuromuscular system of humans. It should be appreciated, however, that this area of research is in its infancy.

  8. The Influence of Muscle Weakness on the Association Between Obesity and Inpatient Recovery From Total Hip Arthroplasty.

    PubMed

    Oosting, Ellen; Hoogeboom, Thomas J; Dronkers, Jaap J; Visser, Marlieke; Akkermans, Reinier P; van Meeteren, Nico L U

    2017-06-01

    There is ongoing discussion about whether preoperative obesity is negatively associated with inpatient outcomes of total hip arthroplasty (THA). The aim was to investigate the interaction between obesity and muscle strength and the association with postoperative inpatient recovery after THA. Preoperative obesity (body mass index [BMI] >30 kg/m 2 ) and muscle weakness (hand grip strength <20 kg for woman and <30 kg for men) were measured about 6 weeks before THA. Patients with a BMI <18.5 kg/m 2 were excluded. Outcomes were delayed inpatient recovery of activities (>2 days to reach independence of walking) and prolonged length of hospital stay (LOS, >4 days and/or discharge to extended rehabilitation). Univariate and multivariable regression analyses with the independent variables muscle weakness and obesity, and the interaction between obesity and muscle weakness, were performed and corrected for possible confounders. Two hundred and ninety-seven patients were included, 54 (18%) of whom were obese and 21 (7%) who also had muscle weakness. Obesity was not significantly associated with prolonged LOS (odds ratio [OR] 1.36, 95% confidence interval [CI] 0.75-2.47) or prolonged recovery of activities (OR 1.77, 95% CI 0.98-3.22), but the combination of obesity and weakness was significantly associated with prolonged LOS (OR 3.59, 95% CI 1.09-11.89) and prolonged recovery of activities (OR 6.21, 95% CI 1.64-23.65). Obesity is associated with inpatient recovery after THA only in patients with muscle weakness. The results of this study suggest that we should measure muscle strength in addition to BMI (or body composition) to identify patients at risk of prolonged LOS. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Cushing's syndrome: a model for sarcopenic obesity.

    PubMed

    Drey, Michael; Berr, Christina M; Reincke, Martin; Fazel, Julia; Seissler, Jochen; Schopohl, Jochen; Bidlingmaier, Martin; Zopp, Stefanie; Reisch, Nicole; Beuschlein, Felix; Osswald, Andrea; Schmidmaier, Ralf

    2017-09-01

    Obesity and its metabolic impairments are discussed as major risk factors for sarcopenia leading to sarcopenic obesity. Cushing's syndrome is known to be associated with obesity and muscle atrophy. We compared Cushing's syndrome with matched obese controls regarding body composition, physical performance, and biochemical markers to test the hypothesis that Cushing's syndrome could be a model for sarcopenic obesity. By propensity score matching, 47 controls were selected by body mass index and gender as obese controls. Fat mass and muscle mass were measured by bioelectrical impedance analysis. Muscle function was assessed by chair rising test and hand grip strength. Biochemical markers of glucose and lipid metabolism and inflammation (hsCRP) were measured in peripheral blood. Muscle mass did not differ between Cushing's syndrome and obese controls. However, Cushing's syndrome patients showed significantly greater chair rising time (9.5 s vs. 7.3 s, p = 0.008) and significantly lower hand grip strength (32.1 kg vs. 36.8 kg, p = 0.003). Cushing's syndrome patients with impaired fasting glucose have shown the highest limitations in hand grip strength and chair rising time. Similar to published data in ageing medicine, Cushing's syndrome patients show loss of muscle function that cannot be explained by loss of muscle mass. Impaired muscle quality due to fat infiltration may be the reason. This is supported by the observation that Cushing's syndrome patients with impaired glucose metabolism show strongest deterioration of muscle function. Research in sarcopenic obesity in elderly is hampered by confounding comorbidities and polypharmacy. As Cushing's syndrome patients are frequently free of comorbidities and as Cushing's syndrome is potentially curable we suggest Cushing's syndrome as a clinical model for further research in sarcopenic obesity.

  10. Effects of Insect Protein Supplementation during Resistance Training on Changes in Muscle Mass and Strength in Young Men.

    PubMed

    Vangsoe, Mathias T; Joergensen, Malte S; Heckmann, Lars-Henrik L; Hansen, Mette

    2018-03-10

    During prolonged resistance training, protein supplementation is known to promote morphological changes; however, no previous training studies have tested the effect of insect protein isolate in a human trial. The aim of this study was to investigate the potential effect of insect protein as a dietary supplement to increase muscle hypertrophy and strength gains during prolonged resistance training in young men. Eighteen healthy young men performed resistance training four day/week for eight weeks. Subjects were block randomized into two groups consuming either an insect protein isolate or isocaloric carbohydrate supplementation within 1 h after training and pre-sleep on training days. Strength and body composition were measured before and after intervention to detect adaptions to the resistance training. Three-day weighed dietary records were completed before and during intervention. Fat- and bone- free mass (FBFM) improved significantly in both groups (Mean (95% confidence interval (CI))), control group (Con): (2.5 kg (1.5, 3.5) p < 0.01), protein group (Pro): (2.7 kg (1.6, 3.8) p < 0.01) from pre- to post-. Leg and bench press one repetition maximum (1 RM) improved by Con: (42.0 kg (32.0, 52.0) p < 0.01) and (13.8 kg (10.3, 17.2) p < 0.01), Pro: (36.6 kg (27.3, 45.8) p < 0.01) and (8.1 kg (4.5, 11.8) p < 0.01), respectively. No significant differences in body composition and muscle strength improvements were found between groups. In young healthy men, insect protein supplementation did not improve adaptations to eight weeks of resistance training in comparison to carbohydrate supplementation. A high habitual protein intake in both Con and Pro may partly explain our observation of no superior effect of insect protein supplementation.

  11. Effects of Insect Protein Supplementation during Resistance Training on Changes in Muscle Mass and Strength in Young Men

    PubMed Central

    Vangsoe, Mathias T.; Joergensen, Malte S.

    2018-01-01

    During prolonged resistance training, protein supplementation is known to promote morphological changes; however, no previous training studies have tested the effect of insect protein isolate in a human trial. The aim of this study was to investigate the potential effect of insect protein as a dietary supplement to increase muscle hypertrophy and strength gains during prolonged resistance training in young men. Eighteen healthy young men performed resistance training four day/week for eight weeks. Subjects were block randomized into two groups consuming either an insect protein isolate or isocaloric carbohydrate supplementation within 1 h after training and pre-sleep on training days. Strength and body composition were measured before and after intervention to detect adaptions to the resistance training. Three-day weighed dietary records were completed before and during intervention. Fat- and bone- free mass (FBFM) improved significantly in both groups (Mean (95% confidence interval (CI))), control group (Con): (2.5 kg (1.5, 3.5) p < 0.01), protein group (Pro): (2.7 kg (1.6, 3.8) p < 0.01) from pre- to post- leg and bench press one repetition maximum (1 RM) improved by Con: (42.0 kg (32.0, 52.0) p < 0.01) and (13.8 kg (10.3, 17.2) p < 0.01), Pro: (36.6 kg (27.3, 45.8) p < 0.01) and (8.1 kg (4.5, 11.8) p < 0.01), respectively. No significant differences in body composition and muscle strength improvements were found between groups. In young healthy men, insect protein supplementation did not improve adaptations to eight weeks of resistance training in comparison to carbohydrate supplementation. A high habitual protein intake in both Con and Pro may partly explain our observation of no superior effect of insect protein supplementation. PMID:29534456

  12. Nordic Walking Can Be Incorporated in the Exercise Prescription to Increase Aerobic Capacity, Strength, and Quality of Life for Elderly: A Systematic Review and Meta-Analysis.

    PubMed

    Bullo, Valentina; Gobbo, Stefano; Vendramin, Barbara; Duregon, Federica; Cugusi, Lucia; Di Blasio, Andrea; Bocalini, Danilo Sales; Zaccaria, Marco; Bergamin, Marco; Ermolao, Andrea

    2018-04-01

    The aim of this systematic review and meta-analysis was to summarize and analyze the effects of Nordic Walking on physical fitness, body composition, and quality of life in the elderly. Keyword "Nordic Walking" associated with "elderly" AND/OR "aging" AND/OR "old subjects" AND/OR "aged" AND/OR "older adults" were used in the online database MEDLINE, Embase, PubMed, Scopus, PsycINFO, and SPORTDiscus. Only studies written in English language and published in peer-reviewed journals were considered. A meta-analysis was performed and effect sizes calculated. Fifteen studies were identified; age of participants ranged from 60 to 92 years old. Comparing with a sedentary group, effect sizes showed that Nordic Walking was able to improve dynamic balance (0.30), functional balance (0.62), muscle strength of upper (0.66) and lower limbs (0.43), aerobic capacity (0.92), cardiovascular outcomes (0.23), body composition (0.30), and lipid profile (0.67). It seemed that Nordic Walking had a negative effect on static balance (-0.72). Comparing with a walking (alone) training, effect sizes showed that Nordic Walking improved the dynamic balance (0.30), flexibility of the lower body (0.47), and quality of life (0.53). Walking training was more effective in improving aerobic capacity (-0.21). Comparing Nordic Walking with resistance training, effect sizes showed that Nordic Walking improved dynamic balance (0.33), muscle strength of the lower body (0.39), aerobic capacity (0.75), flexibility of the upper body (0.41), and the quality of life (0.93). Nordic Walking can be considered as a safe and accessible form of aerobic exercise for the elderly population, able to improve cardiovascular outcomes, muscle strength, balance ability, and quality of life.

  13. Examination of muscle composition and motor unit behavior of the first dorsal interosseous of normal and overweight children.

    PubMed

    Miller, Jonathan D; Sterczala, Adam J; Trevino, Michael A; Herda, Trent J

    2018-05-01

    We examined differences between normal weight (NW) and overweight (OW) children aged 8-10 yr in strength, muscle composition, and motor unit (MU) behavior of the first dorsal interosseous. Ultrasonography was used to determine muscle cross-sectional area (CSA), subcutaneous fat (sFAT), and echo intensity (EI). MU behavior was assessed during isometric muscle actions at 20% and 50% of maximal voluntary contraction (MVC) by analyzing electromyography amplitude (EMG RMS ) and relationships between mean firing rates (MFR), recruitment thresholds (RT), and MU action potential amplitudes (MUAP size ) and durations (MUAP time ). The OW group had significantly greater EI than the NW group ( P = 0.002; NW, 47.99 ± 6.01 AU; OW, 58.90 ± 10.63 AU, where AU is arbitrary units) with no differences between groups for CSA ( P = 0.688) or MVC force ( P = 0.790). MUAP size was larger for NW than OW in relation to RT ( P = 0.002) and for MUs expressing similar MFRs ( P = 0.011). There were no significant differences ( P = 0.279-0.969) between groups for slopes or y-intercepts from the MFR vs. RT relationships. MUAP time was larger in OW ( P = 0.015) and EMG RMS was attenuated in OW compared with NW ( P = 0.034); however, there were no significant correlations ( P = 0.133-0.164, r = 0.270-0.291) between sFAT and EMG RMS . In a muscle that does not support body mass, the OW children had smaller MUAP size as well as greater EI, although anatomical CSA was similar. This contradicts previous studies examining larger limb muscles. Despite evidence of smaller MUs, the OW children had similar isometric strength compared with NW children. NEW & NOTEWORTHY Ultrasound data and motor unit action potential sizes suggest that overweight children have poorer muscle composition and smaller motor units in the first dorsal interosseous than normal weight children. Evidence is presented that suggests differences in action potential size cannot be explained by differences in subcutaneous fat alone.

  14. Effect of creatine supplementation and drop-set resistance training in untrained aging adults.

    PubMed

    Johannsmeyer, Sarah; Candow, Darren G; Brahms, C Markus; Michel, Deborah; Zello, Gordon A

    2016-10-01

    To investigate the effects of creatine supplementation and drop-set resistance training in untrained aging adults. Participants were randomized to one of two groups: Creatine (CR: n=14, 7 females, 7 males; 58.0±3.0yrs, 0.1g/kg/day of creatine+0.1g/kg/day of maltodextrin) or Placebo (PLA: n=17, 7 females, 10 males; age: 57.6±5.0yrs, 0.2g/kg/day of maltodextrin) during 12weeks of drop-set resistance training (3days/week; 2 sets of leg press, chest press, hack squat and lat pull-down exercises performed to muscle fatigue at 80% baseline 1-repetition maximum [1-RM] immediately followed by repetitions to muscle fatigue at 30% baseline 1-RM). Prior to and following training and supplementation, assessments were made for body composition, muscle strength, muscle endurance, tasks of functionality, muscle protein catabolism and diet. Drop-set resistance training improved muscle mass, muscle strength, muscle endurance and tasks of functionality (p<0.05). The addition of creatine to drop-set resistance training significantly increased body mass (p=0.002) and muscle mass (p=0.007) compared to placebo. Males on creatine increased muscle strength (lat pull-down only) to a greater extent than females on creatine (p=0.005). Creatine enabled males to resistance train at a greater capacity over time compared to males on placebo (p=0.049) and females on creatine (p=0.012). Males on creatine (p=0.019) and females on placebo (p=0.014) decreased 3-MH compared to females on creatine. The addition of creatine to drop-set resistance training augments the gains in muscle mass from resistance training alone. Creatine is more effective in untrained aging males compared to untrained aging females. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Effects of free leucine supplementation and resistance training on muscle strength and functional status in older adults: a randomized controlled trial

    PubMed Central

    Trabal, Joan; Forga, Maria; Leyes, Pere; Torres, Ferran; Rubio, Jordi; Prieto, Esther; Farran-Codina, Andreu

    2015-01-01

    Objective To assess the effect of free leucine supplementation combined with resistance training versus resistance training only on muscle strength and functional status in older adults. Methods This was a randomized, double-blind, placebo-controlled, parallel study with two intervention groups. Thirty older adults were randomly assigned to receive either 10 g leucine/day (leucine group [LG], n=15) or a placebo (control group [CG], n=15), plus resistance training over a 12-week period. Maximal overcoming isometric leg strength, functional status, nutritional status, body composition, health-related quality of life, depression, and dietary intake were assessed at 4 and 12 weeks. Missing data at 12 weeks were handled using mixed models for repeated measurements for data imputation. Results Twenty-four subjects completed the 4-week assessment and eleven completed the 12-week intervention. Clinically significant gains were found in isometric leg strength at both assessment time points. Analysis of the effect size also showed how participants in LG outperformed those in CG for chair stands and the timed up and go test. No significant changes were observed for the rest of the outcomes. Conclusion Our combined analysis showed moderate changes in isometric leg muscle strength and certain components of functional status. The magnitude of changes found on these outcomes should be qualified as a positive effect of the concomitant intervention. PMID:25926725

  16. Effects of free leucine supplementation and resistance training on muscle strength and functional status in older adults: a randomized controlled trial.

    PubMed

    Trabal, Joan; Forga, Maria; Leyes, Pere; Torres, Ferran; Rubio, Jordi; Prieto, Esther; Farran-Codina, Andreu

    2015-01-01

    To assess the effect of free leucine supplementation combined with resistance training versus resistance training only on muscle strength and functional status in older adults. This was a randomized, double-blind, placebo-controlled, parallel study with two intervention groups. Thirty older adults were randomly assigned to receive either 10 g leucine/day (leucine group [LG], n=15) or a placebo (control group [CG], n=15), plus resistance training over a 12-week period. Maximal overcoming isometric leg strength, functional status, nutritional status, body composition, health-related quality of life, depression, and dietary intake were assessed at 4 and 12 weeks. Missing data at 12 weeks were handled using mixed models for repeated measurements for data imputation. Twenty-four subjects completed the 4-week assessment and eleven completed the 12-week intervention. Clinically significant gains were found in isometric leg strength at both assessment time points. Analysis of the effect size also showed how participants in LG outperformed those in CG for chair stands and the timed up and go test. No significant changes were observed for the rest of the outcomes. Our combined analysis showed moderate changes in isometric leg muscle strength and certain components of functional status. The magnitude of changes found on these outcomes should be qualified as a positive effect of the concomitant intervention.

  17. Protein Supplementation Does Not Further Increase Latissimus Dorsi Muscle Fiber Hypertrophy after Eight Weeks of Resistance Training in Novice Subjects, but Partially Counteracts the Fast-to-Slow Muscle Fiber Transition.

    PubMed

    Paoli, Antonio; Pacelli, Quirico F; Cancellara, Pasqua; Toniolo, Luana; Moro, Tatiana; Canato, Marta; Miotti, Danilo; Neri, Marco; Morra, Aldo; Quadrelli, Marco; Reggiani, Carlo

    2016-06-01

    The response to resistance training and protein supplementation in the latissimus dorsi muscle (LDM) has never been investigated. We investigated the effects of resistance training (RT) and protein supplementation on muscle mass, strength, and fiber characteristics of the LDM. Eighteen healthy young subjects were randomly assigned to a progressive eight-week RT program with a normal protein diet (NP) or high protein diet (HP) (NP 0.85 vs. HP 1.8 g of protein·kg(-1)·day(-1)). One repetition maximum tests, magnetic resonance imaging for cross-sectional muscle area (CSA), body composition, and single muscle fibers mechanical and phenotype characteristics were measured. RT induced a significant gain in strength (+17%, p < 0.0001), whole muscle CSA (p = 0.024), and single muscle fibers CSA (p < 0.05) of LDM in all subjects. Fiber isometric force increased in proportion to CSA (+22%, p < 0.005) and thus no change in specific tension occurred. A significant transition from 2X to 2A myosin expression was induced by training. The protein supplementation showed no significant effects on all measured outcomes except for a smaller reduction of 2X myosin expression. Our results suggest that in LDM protein supplementation does not further enhance RT-induced muscle fiber hypertrophy nor influence mechanic muscle fiber characteristics but partially counteracts the fast-to-slow fiber shift.

  18. Muscle Strength and Muscle Mass in Older Patients during Hospitalization: The EMPOWER Study

    PubMed Central

    Van Ancum, Jeanine M.; Scheerman, Kira; Pierik, Vincent D.; Numans, Siger T.; Verlaan, Sjors; Smeenk, Hanne E.; Slee-Valentijn, Monique; Kruizinga, Roeliene C.; Meskers, Carel G.M.; Maier, Andrea B.

    2017-01-01

    Background Low muscle strength and muscle mass are associated with an increased length of hospital stay and higher mortality rate in inpatients. To what extent hospitalization affects muscle strength and muscle mass is unclear. Objective We aimed to assess muscle strength and muscle mass at admission and during hospitalization in older patients and its relation with being at risk of geriatric conditions. Methods The EMPOWER study included patients aged 70 years and older, admitted to 4 wards of the VU University Medical Center in the Netherlands between April and December 2015. At admission, patients were screened for being at risk of 4 geriatric conditions: delirium, falls, malnutrition, and functional disability. At admission and at discharge, muscle strength and muscle mass were assessed. Results A total of 373 patients (mean age, standard deviation [SD]: 79.6, 6.38 years) were included at admission, and 224 patients (mean age, SD: 80.1, 6.32 years) at discharge. At admission, lower muscle strength in both female and male patients and low muscle mass in male patients were associated with being at risk of a higher cumulative number of geriatric conditions. Muscle strength increased during hospitalization, but no change in muscle mass was observed. Changes in muscle measures were not associated with being at risk of geriatric conditions. Discussion Older patients with lower muscle strength and muscle mass at admission were at risk of a higher cumulative number of geriatric conditions. However, being at risk of geriatric conditions did not forecast further decrease in muscle strength and muscle mass during hospitalization PMID:28817825

  19. Muscle Strength and Muscle Mass in Older Patients during Hospitalization: The EMPOWER Study.

    PubMed

    Van Ancum, Jeanine M; Scheerman, Kira; Pierik, Vincent D; Numans, Siger T; Verlaan, Sjors; Smeenk, Hanne E; Slee-Valentijn, Monique; Kruizinga, Roeliene C; Meskers, Carel G M; Maier, Andrea B

    2017-01-01

    Low muscle strength and muscle mass are associated with an increased length of hospital stay and higher mortality rate in inpatients. To what extent hospitalization affects muscle strength and muscle mass is unclear. We aimed to assess muscle strength and muscle mass at admission and during hospitalization in older patients and its relation with being at risk of geriatric conditions. The EMPOWER study included patients aged 70 years and older, admitted to 4 wards of the VU University Medical Center in the Netherlands between April and December 2015. At admission, patients were screened for being at risk of 4 geriatric conditions: delirium, falls, malnutrition, and functional disability. At admission and at discharge, muscle strength and muscle mass were assessed. A total of 373 patients (mean age, standard deviation [SD]: 79.6, 6.38 years) were included at admission, and 224 patients (mean age, SD: 80.1, 6.32 years) at discharge. At admission, lower muscle strength in both female and male patients and low muscle mass in male patients were associated with being at risk of a higher cumulative number of geriatric conditions. Muscle strength increased during hospitalization, but no change in muscle mass was observed. Changes in muscle measures were not associated with being at risk of geriatric conditions. Older patients with lower muscle strength and muscle mass at admission were at risk of a higher cumulative number of geriatric conditions. However, being at risk of geriatric conditions did not forecast further decrease in muscle strength and muscle mass during hospitalization. © 2017 The Author(s) Published by S. Karger AG, Basel.

  20. Objective evaluation of muscle strength in infants with hypotonia and muscle weakness.

    PubMed

    Reus, Linda; van Vlimmeren, Leo A; Staal, J Bart; Janssen, Anjo J W M; Otten, Barto J; Pelzer, Ben J; Nijhuis-van der Sanden, Maria W G

    2013-04-01

    The clinical evaluation of an infant with motor delay, muscle weakness, and/or hypotonia would improve considerably if muscle strength could be measured objectively and normal reference values were available. The authors developed a method to measure muscle strength in infants and tested 81 typically developing infants, 6-36 months of age, and 17 infants with Prader-Willi Syndrome (PWS) aged 24 months. The inter-rater reliability of the measurement method was good (ICC=.84) and the convergent validity was confirmed by high Pearson's correlations between muscle strength, age, height, and weight (r=.79-.85). A multiple linear regression model was developed to predict muscle strength based on age, height, and weight, explaining 73% of the variance in muscle strength. In infants with PWS, muscle strength was significantly decreased. Pearson's correlations showed that infants with PWS in which muscle strength was more severely affected also had a larger motor developmental delay (r=.75). Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Reciprocal inhibition between motor neurons of the tibialis anterior and triceps surae in humans.

    PubMed

    Yavuz, Utku Ş; Negro, Francesco; Diedrichs, Robin; Farina, Dario

    2018-05-01

    Motor neurons innervating antagonist muscles receive reciprocal inhibitory afferent inputs to facilitate the joint movement in the two directions. The present study investigates the mutual transmission of reciprocal inhibitory afferent inputs between the tibialis anterior (TA) and triceps surae (soleus and medial gastrocnemius) motor units. We assessed this mutual mechanism in large populations of motor units for building a statistical distribution of the inhibition amplitudes during standardized input to the motor neuron pools to minimize the effect of modulatory pathways. Single motor unit activities were identified using high-density surface electromyography (HDsEMG) recorded from the TA, soleus (Sol), and medial gastrocnemius (GM) muscles during isometric dorsi- and plantarflexion. Reciprocal inhibition on the antagonist muscle was elicited by electrical stimulation of the tibial (TN) or common peroneal nerves (CPN). The probability density distributions of reflex strength for each muscle were estimated to examine the strength of mutual transmission of reciprocal inhibitory input. The results showed that the strength of reciprocal inhibition in the TA motor units was fourfold greater than for the GM and the Sol motor units. This suggests an asymmetric transmission of reciprocal inhibition between ankle extensor and flexor muscles. This asymmetry cannot be explained by differences in motor unit type composition between the investigated muscles since we sampled low-threshold motor units in all cases. Therefore, the differences observed for the strength of inhibition are presumably due to a differential reciprocal spindle afferent input and the relative contribution of nonreciprocal inhibitory pathways. NEW & NOTEWORTHY We investigated the mutual transmission of reciprocal inhibition in large samples of motor units using a standardized input (electrical stimulation) to the motor neurons. The results demonstrated that the disynaptic reciprocal inhibition exerted between ankle flexor and extensor muscles is asymmetric. The functional implication of asymmetric transmission may be associated with the neural strategies of postural control.

  2. Quick Tips for Weight Training Exercise

    ERIC Educational Resources Information Center

    Perez, Saul

    2004-01-01

    Weight training is one of the single most popular types of fitness activities in the United States. One of the reasons for its popularity is that it dramatically contributes to improved strength, muscle tone, body composition, health and appearance. Weight training is a progressive resistance exercise in which resistance is gradually increased as…

  3. Manitoba Schools Fitness 1989.

    ERIC Educational Resources Information Center

    Manitoba Dept. of Education, Winnipeg.

    This manual outlines physical fitness tests that may be used in the schools. The tests are based on criterion standards which indicate the levels of achievement at which health risk factors may be reduced. Test theory, protocols, and criterion charts are presented for: (1) muscle strength and endurance, (2) body composition, (3) flexibility, and…

  4. Weight and nutrition affect pre-mRNA splicing of a muscle gene associated with performance, energetics and life history.

    PubMed

    Marden, James H; Fescemyer, Howard W; Saastamoinen, Marjo; MacFarland, Suzanne P; Vera, J Cristobal; Frilander, Mikko J; Hanski, Ilkka

    2008-12-01

    A fundamental feature of gene expression in multicellular organisms is the production of distinct transcripts from single genes by alternative splicing (AS), which amplifies protein and functional diversity. In spite of the likely consequences for organismal biology, little is known about how AS varies among individuals or responds to body condition, environmental variation or extracellular signals in general. Here we show that evolutionarily conserved AS of troponin-t in flight muscle of adult moths responds in a quantitative fashion to experimental manipulation of larval nutrition and adult body weight. Troponin-t (Tnt) isoform composition is known to affect muscle force and power output in other animals, and is shown here to be associated with the thorax mass-specific rate of energy consumption during flight. Loading of adults with external weights for 5 days caused an AS response nearly identical to equal increases in actual body weight. In addition, there were effects of larval feeding history on adult Tnt isoform composition that were independent of body weight, with moths from poorer larval feeding regimes producing isoform profiles associated with reduced muscle performance and energy consumption rate. Thus, Tnt isoform composition in striated muscle is responsive to both weight-sensing and nutrition-sensing mechanisms, with consequent effects on function. In free-living butterflies, Tnt isoform composition was also associated with activity level and very strongly with the rate of egg production. Overall, these results show that AS of a muscle gene responds in a quantitative fashion to whole-organism variables, which apparently serves to coordinate muscle strength and energy expenditure with body condition and life history.

  5. Reduced Flexibility Associated with Metabolic Syndrome in Community-Dwelling Elders

    PubMed Central

    Chang, Ke-Vin; Hung, Chen-Yu; Li, Chia-Ming; Lin, Yu-Hung; Wang, Tyng-Guey; Tsai, Keh-Sung; Han, Der-Sheng

    2015-01-01

    Background The ageing process may lead to reductions in physical fitness, a known risk factor in the development of metabolic syndrome. The purpose of the current study was to evaluate cross-sectional and combined associations of metabolic syndrome with body composition and physical fitness in a community based geriatric population. Methods A total of 628 community-dwelling elders attending a geriatric health examination were enrolled in the study. The diagnosis of metabolic syndrome was based on the modified National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III) criterion with Asian cutoff of waist girth was adopted in this study. Body composition was obtained using bioimpedance analysis, and physical fitness was evaluated through the measurement of muscle strength (handgrip force), lower extremity muscle endurance (sit-to-stand test), flexibility (sit-and-reach test), and cardiorespiratory endurance (2-minute step test). Multivariable logistic regression and correlation analysis were performed to determine the association of metabolic syndrome with body composition and functionality variables. Results Metabolic syndrome was associated with increased skeletal muscle index (SMI) (odds ratio (OR), 1.61, 95% confidence interval (CI), 1.25–2.07) and decreased flexibility (OR, 0.97, 95% CI, 0.95–0.99) compared with those without metabolic syndrome. When body mass index was accounted for in the analysis, the association of SMI with metabolic syndrome was reduced. Waist circumference was positively correlated with SMI but negatively correlated with flexibility, whereas high density lipoprotein was positively correlated with flexibility but negatively correlated with SMI. Conclusion Reduced flexibility was positively associated with metabolic syndrome independent of age, gender, body composition, and functionality measurements in a community based geriatric population. Significant associations between metabolic syndrome with muscle strength and cardiorespiratory fitness in the elderly were not observed. Furthermore, flexibility should be included in the complete evaluation for metabolic syndrome. PMID:25614984

  6. Effect of HMB supplementation on body composition, fitness, hormonal profile and muscle damage indices.

    PubMed

    Portal, Shawn; Eliakim, Alon; Nemet, Dan; Halevy, Orna; Zadik, Zvi

    2010-07-01

    There is a huge market for ergogenic supplements for athletes. However, only a few products have been proven to have ergogenic effects and to be effective at improving muscle strength and body composition. One such supplement is beta-hydroxy beta-methylbutyrate (HMB). Derived from the amino acid leucine and its keto acid alpha-ketoisocaproate (KIC), HMB has been well documented as an oral ergogenic supplement commonly used by athletes. Several studies have shown that combining exercise training with HMB supplementation leads to increased muscle mass and strength, and there is some anecdotal evidence of aerobic improvement. However, HMB supplementation has been found to be effective mainly for untrained individuals. While previous reviews have emphasized three main pathways for HMB's mode of action: 1) enhancement of sarcolemmal integrity via cytosolic cholesterol, 2) inhibition of protein degradation via proteasomes, and 3) increased protein synthesis via the mTOR pathway, more recent studies have suggested additional possible mechanisms for its physiological effects. These include decreased cell apoptosis and enhanced cell survival, increased proliferation, differentiation and fusion via the MAPK/ERK and PI3K/Akt pathways, and enhanced IGF-I transcription. These are described here, and hormonal interactions are discussed, along with HMB dosage and safety issues.

  7. Relationship between Handgrip Strength and Muscle Mass in Female Survivors of Breast Cancer: A Mediation Analysis.

    PubMed

    Benavides-Rodríguez, Lorena; García-Hermoso, Antonio; Rodrigues-Bezerra, Diogo; Izquierdo, Mikel; Correa-Bautista, Jorge Enrique; Ramírez-Vélez, Robinson

    2017-07-04

    This study explored the mediating factors of sarcopenia in a group of women survivors of breast cancer in Bogotá, Colombia. This was a descriptive cross-sectional study with 98 women survivors of breast cancer, who were registered with the SIMMON (Integrated Synergies to Improve Oncological Management in Colombia) Foundation. Body weight, height, and waist circumference (WC) were measured, and body mass index (BMI) was calculated. Body composition (percentage of fat and muscle mass) was evaluated via four-pole bioelectrical impedance analysis. Sarcopenia was defined as low muscle mass plus low grip strength or low gait speed (European Working Group on Sarcopenia in Older People (EWGSOP) criteria). A "causal" mediation analysis with the Baron & Kenny procedure (PROCESS ® macro, Columbus, OH, USA) was used to explore variables related to sarcopenia. Analyses were performed with the IBM SPSS 21 statistical package (SPSS Inc., Chicago, IL, USA). The significance level of the results obtained in the hypothesis contrast was p < 0.05. The mean age of the sample was 65.5 ± 5.9 years, with a BMI of 27.8 ± 4.7 kg/m². The prevalence of sarcopenia was 22.4%. Linear regression models suggest a partial mediation of anthropometric parameters (body mass, body mass index and waist circumference) in the association between handgrip strength and muscle mass. In conclusion, one in every five women survivors of breast cancer had sarcopenia. The findings seem to emphasize the importance of obesity prevention in women survivors of breast cancer, suggesting that high handgrip strength may not relate closely to greater muscle mass and therefore would not exclude the risk of sarcopenia.

  8. Relationship between Handgrip Strength and Muscle Mass in Female Survivors of Breast Cancer: A Mediation Analysis

    PubMed Central

    Benavides-Rodríguez, Lorena; Rodrigues-Bezerra, Diogo; Correa-Bautista, Jorge Enrique

    2017-01-01

    This study explored the mediating factors of sarcopenia in a group of women survivors of breast cancer in Bogotá, Colombia. This was a descriptive cross-sectional study with 98 women survivors of breast cancer, who were registered with the SIMMON (Integrated Synergies to Improve Oncological Management in Colombia) Foundation. Body weight, height, and waist circumference (WC) were measured, and body mass index (BMI) was calculated. Body composition (percentage of fat and muscle mass) was evaluated via four-pole bioelectrical impedance analysis. Sarcopenia was defined as low muscle mass plus low grip strength or low gait speed (European Working Group on Sarcopenia in Older People (EWGSOP) criteria). A “causal” mediation analysis with the Baron & Kenny procedure (PROCESS® macro, Columbus, OH, USA) was used to explore variables related to sarcopenia. Analyses were performed with the IBM SPSS 21 statistical package (SPSS Inc., Chicago, IL, USA). The significance level of the results obtained in the hypothesis contrast was p < 0.05. The mean age of the sample was 65.5 ± 5.9 years, with a BMI of 27.8 ± 4.7 kg/m2. The prevalence of sarcopenia was 22.4%. Linear regression models suggest a partial mediation of anthropometric parameters (body mass, body mass index and waist circumference) in the association between handgrip strength and muscle mass. In conclusion, one in every five women survivors of breast cancer had sarcopenia. The findings seem to emphasize the importance of obesity prevention in women survivors of breast cancer, suggesting that high handgrip strength may not relate closely to greater muscle mass and therefore would not exclude the risk of sarcopenia. PMID:28677652

  9. Evaluation of health-related physical fitness parameters and association analysis with depression, anxiety, and quality of life in patients with fibromyalgia.

    PubMed

    Sener, Umit; Ucok, Kagan; Ulasli, Alper M; Genc, Abdurrahman; Karabacak, Hatice; Coban, Necip F; Simsek, Hasan; Cevik, Halime

    2016-08-01

    The purpose of this study was to investigate the physical fitness parameters (maximal aerobic capacity, muscle strength and flexibility), daily physical activity, resting metabolic rate (RMR), pulmonary function tests (PFTs), body composition, depression, anxiety and health-related quality of life (HRQoL) changes as well as the associations among these parameters in patients with fibromyalgia and to compare them with healthy controls. Thirty-nine women with fibromyalgia and 40 controls were included in this study. Physical measurements, HRQoL questionnaire, Beck Depression Inventory (BDI) score and Beck Anxiety Inventory (BAI) score were applied to all participants. Maximal aerobic capacity, trunk flexibility, daily step numbers, total energy expenditure, RMR and PFT values were not significantly different between the patients and the controls. Fibromyalgia patients had higher daily moderate activity times, active energy expenditure values, and BDI and BAI scores, while their lower handgrip strength and back-leg strength values and Short-form health survey (SF)-36 scores were comparable to controls. Handgrip strength and back-leg strength values showed moderately positive correlations with SF-36 scores (total, physical health, mental health) and moderately negative correlations with BDI and BAI scores in patients with fibromyalgia. Our results suggested that muscle strength, HRQoL, depression and anxiety symptomatology were impaired in fibromyalgia patients compared to healthy controls. Low muscle strength is related to reduced HRQoL and increased depression and anxiety symptomatology in patients with fibromyalgia. Also we suggest that performing daily exercises, including aerobic and strength training, as part of one's lifestyle may have beneficial effects in fibromyalgia patients. © 2013 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  10. Resistance training during preadolescence. Issues and controversies.

    PubMed

    Blimkie, C J

    1993-06-01

    High intensity resistance training appears to be effective in increasing strength in preadolescents. Children make similar relative (percentage improvement), but smaller absolute, strength gains compared with adolescents and young adults in response to similar resistance training programmes. Resistance training appears to have little if any effect on muscle size, and strength gains during training have been associated with increases in levels of neuromuscular activation and changes in intrinsic contractile characteristics of muscle. Although unsubstantiated, improved motor coordination probably also contributes to the increase in strength, especially for more complex strength manoeuvres. On the basis of limited information, training-induced strength gains are lost during detraining, and the decay in strength has been associated with a reduction in neuromuscular activation. Short term resistance training appears to have no effect on somatic growth (height or weight) and body composition, and no proven positive influence on sports performance, injury rate or recovery from injury during preadolescence. Weightlifting has proved injurious to some children, especially when unsupervised and without instruction in proper weightlifting technique and load selection. In contrast, the risk of injury from prudently prescribed and closely supervised resistance training appears to be low during preadolescence. Lastly, short term resistance training appears to have no detrimental effect during preadolescence on either cardiorespiratory fitness or resting blood pressure.

  11. [Evaluation of isometric force in lower limbs and body composition in preterm infants].

    PubMed

    Mata Zubillaga, D; Rodríguez Fernández, C; Rodríguez Fernández, L M; de Paz Fernández, J A; Arboleda Franco, S; Alonso Patiño, F

    2015-10-01

    Strength is a physical quality with a clear influence on quality of life. It is determined by the structure of the musculoskeletal system, and depends on the muscular structure. It has been described that prematurity conditions both qualities. The aims of this study are to determine whether prematurity is associated with strength or body composition and evaluate the relationship between prematurity, strength and muscle mass. Case-control study. Participants were premature 7-to-11 year-old children and full-term birth controls. Strength was measured by a strength gauge and body composition from DEXA (duel-energy X-ray absorptiometry) scans. A total of 89 subjects were included and divided into three groups: 30 prematures with birth-weight ≤ 1500g, 29 prematures with birth-weight 1500-2000g, and 30 controls. Weight and BMI z-score was lower in the premature group. No differences were found in muscular mass or strength between groups. A ratio was established between strength and weight or muscular mass. It was observed that it was possible for them to move four times their weight, without finding any differences between groups or a relationship with birth-weight. Between 7 and 11 years of age, children who were premature have lower weight and BMI than the rest of the children. However, there were no differences in body composition or strength between preterm children and controls. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier España, S.L.U. All rights reserved.

  12. High risk of malnutrition is associated with low muscle mass in older hospitalized patients - a prospective cohort study.

    PubMed

    Pierik, Vincent D; Meskers, Carel G M; Van Ancum, Jeanine M; Numans, Siger T; Verlaan, Sjors; Scheerman, Kira; Kruizinga, Roeliene C; Maier, Andrea B

    2017-06-05

    Malnutrition, low muscle strength and muscle mass are highly prevalent in older hospitalized patients and associated with adverse outcomes. Malnutrition may be a risk factor for developing low muscle mass. We aimed to investigate the association between the risk of malnutrition and 1) muscle strength and muscle mass at admission and 2) the change of muscle strength and muscle mass during hospitalization in older patients. The EMPOWER study included 378 patients aged seventy years or older who were acutely or electively admitted to four different wards of an academic teaching hospital in Amsterdam. Patients were grouped into low risk of malnutrition and high risk of malnutrition based on the Short Nutritional Assessment Questionnaire (SNAQ) score and were assessed for hand grip strength and muscle mass using hand held dynamometry respectively bioelectrical impedance analysis (BIA) within 48 h after admission and at day seven, or earlier at the day of discharge. Muscle mass was expressed as skeletal muscle mass, appendicular lean mass, fat free mass and the skeletal muscle index. The mean age of the patients was 79.7 years (SD 6.39), 48.9% were female. At admission, being at high risk of malnutrition was significantly associated with lower muscle mass (Odds Ratio, 95% CI, 0.90, 0.85-0.96), but not with muscle strength. Muscle strength and muscle mass did not change significantly during hospitalization in both groups. In older hospitalized patients, a high risk of malnutrition is associated with lower muscle mass at admission, but not with muscle strength nor with change of either muscle strength or muscle mass during hospitalization.

  13. Association of School Environment and After-School Physical Activity with Health-Related Physical Fitness among Junior High School Students in Taiwan

    PubMed Central

    Lo, Kai-Yang; Wu, Min-Chen; Tung, Shu-Chin; Hsieh, City C.; Yao, Hsueh-Hua; Ho, Chien-Chang

    2017-01-01

    The relationship between students’ school environment and exercise habits is complex, and is affected by numerous factors. However, the few studies that have been conducted on this relationship have reported inconsistent results, especially regarding Taiwanese students. We conducted this cross-sectional study to investigate the association of school environment and after-school physical activity with health-related physical fitness in Taiwanese adolescents. Data were drawn from a national survey conducted by the Ministry of Education in Taiwan in 2008 of health-related physical fitness measurements among junior high school students (649,442 total) in grades seven to nine. School environment (level of urbanization, school size, presence of sports field or gymnasium) and after-school physical activity were assessed for their association with adolescents’ physical fitness measurements (body mass index (BMI), bent-leg sit-ups, 800-/1600-m run, sit-and-reach, standing long jump). Urban boys and girls perform significantly better in muscle strength and endurance, cardiorespiratory endurance, flexibility, and explosive power; girls from rural areas exhibited significantly worse scores in body composition. Boys from large-size schools performed the worst in cardiorespiratory endurance, flexibility, and explosive power; whereas girls from large-size schools performed the worst in muscle strength, muscle endurance, and explosive power, but had the best score for body composition. However, the differences in body composition of boys from large-, medium-, and small- size schools did not reach a statistically significant level. Adolescents of both genders in schools with a sports field or gymnasium exhibited significantly better in muscle strength and endurance, cardiorespiratory endurance, and explosive power. Boys in schools with a sports field or gymnasium had significantly better body composition; girls in schools with sports field or gymnasium differed significantly in flexibility. Adolescents of both genders who participated in physical activity after school had significantly better body composition, cardiorespiratory endurance, and flexibility. Boys who participated in physical activity after school significantly differed in explosive power, whereas girls who participated in physical activity after school exhibited significantly better flexibility. Thus, the current study demonstrated that some factors, including urbanization (school location in rural or urban areas), school size, school facility provision (school with or without sports fields or gymnasiums), and after-school physical activity participation are more important than others in shaping adolescents’ physical fitness in Taiwan; meanwhile, these association patterns differed by gender. PMID:28098836

  14. Association of School Environment and After-School Physical Activity with Health-Related Physical Fitness among Junior High School Students in Taiwan.

    PubMed

    Lo, Kai-Yang; Wu, Min-Chen; Tung, Shu-Chin; Hsieh, City C; Yao, Hsueh-Hua; Ho, Chien-Chang

    2017-01-15

    The relationship between students' school environment and exercise habits is complex, and is affected by numerous factors. However, the few studies that have been conducted on this relationship have reported inconsistent results, especially regarding Taiwanese students. We conducted this cross-sectional study to investigate the association of school environment and after-school physical activity with health-related physical fitness in Taiwanese adolescents. Data were drawn from a national survey conducted by the Ministry of Education in Taiwan in 2008 of health-related physical fitness measurements among junior high school students (649,442 total) in grades seven to nine.School environment (level of urbanization, school size, presence of sports field or gymnasium) and after-school physical activity were assessed for their association with adolescents' physical fitness measurements (body mass index (BMI), bent-leg sit-ups, 800-/1600-m run, sit-and-reach, standing long jump). Urban boys and girls perform significantly better in muscle strength and endurance, cardiorespiratory endurance, flexibility, and explosive power; girls from rural areas exhibited significantly worse scores in body composition. Boys from large-size schools performed the worst in cardiorespiratory endurance, flexibility, and explosive power; whereas girls from large-size schools performed the worst in muscle strength, muscle endurance, and explosive power, but had the best score for body composition. However, the differences in body composition of boys from large-, medium-, and small- size schools did not reach a statistically significant level. Adolescents of both genders in schools with a sports field or gymnasium exhibited significantly better in muscle strength and endurance, cardiorespiratory endurance, and explosive power. Boys in schools with a sports field or gymnasium had significantly better body composition; girls in schools with sports field or gymnasium differed significantly in flexibility. Adolescents of both genders who participated in physical activity after school had significantly better body composition, cardiorespiratory endurance, and flexibility. Boys who participated in physical activity after school significantly differed in explosive power, whereas girls who participated in physical activity after school exhibited significantly better flexibility. Thus, the current study demonstrated that some factors, including urbanization (school location in rural or urban areas), school size, school facility provision (school with or without sports fields or gymnasiums), and after-school physical activity participation are more important than others in shaping adolescents' physical fitness in Taiwan; meanwhile, these association patterns differed by gender.

  15. Effects of group sports on health-related physical fitness of overweight youth: A systematic review and meta-analysis.

    PubMed

    Oliveira, Ana; Monteiro, Ângela; Jácome, Cristina; Afreixo, Vera; Marques, Alda

    2017-06-01

    Group sports interventions have been developed to improve health-related physical fitness of overweight/obese youth. However, its benefits are not systematically documented. This study synthesizes the evidence about the effects of group sports on health-related physical fitness of overweight/obese youth. Pubmed, Web of Knowledge, Scopus, Medline, CINAHL, SportDiscus, and Academic Search Complete were searched in February 2016. Studies assessing the effects of group sports on body composition, cardiorespiratory endurance, muscle strength, flexibility, and neuromotor fitness of overweight/obese youth (aged <18 years) were included. Effect sizes (ES) were calculated with Cohen's d and its 95% confidence intervals (CI). Improvements were found in (i) body composition - percentage of fat body mass (pooled ES = 0.67; 95% CI = 0.24-1.10) and waist circumference (ES = 0.69; P = 0.004); (ii) cardiorespiratory endurance - peak oxygen consumption (pooled ES = 0.53; 95% CI = 0.13-0.92) and (iii) muscle strength - hand grip strength (ES = 0.72; P = 0.003). No significant effects were found for body mass index (pooled ES = 0.27; 95% CI = -0.14 to 0.69), percentage of lean body mass (ES = 0.01; P > 0.05), maximal power output (ES from 0 to 0.06; P > 0.05), sit-and-reach test (pooled ES = 0.26; 95% CI = -0.16 to 0.68) and agility test (ES = 0; P = 0.48). Group sports improve body composition, cardiorespiratory endurance, and hand grip strength of overweight/obese youth. Flexibility and neuromotor fitness do not seem to change following group sports. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Lower Cognitive Function in Older Patients with Lower Muscle Strength and Muscle Mass.

    PubMed

    van Dam, Romee; Van Ancum, Jeanine M; Verlaan, Sjors; Scheerman, Kira; Meskers, Carel G M; Maier, Andrea B

    2018-06-18

    Low muscle strength and muscle mass are associated with adverse outcomes in older hospitalized patients. The aim of this study was to assess the association between cognitive functioning and muscle strength and muscle mass in hospitalized older patients. This prospective inception cohort included 378 patients aged 70 years or older. At admission patients were assessed for cognitive functioning by use of the Six-Item Cognitive Impairment Test (6-CIT). Muscle strength and muscle mass were assessed using handheld dynamometry and segmental multifrequency bioelectrical impedance analysis, within 48 h after admission and on day 7, or earlier on the day of discharge. The data of 371 patients (mean age ± standard deviation 80.1 ± 6.4 years, 49.3% female) were available for analyses. The median (interquartile range) 6-CIT score was 4 (0-8) points. At admission, lower cognitive functioning was associated with lower muscle strength, lower skeletal muscle mass (SMM), lower appendicular lean mass, and lower SMM index. Cognitive functioning was not associated with change in muscle strength and muscle mass during hospitalization. This study further strengthens evidence for an association between lower cognitive functioning and lower muscle strength and muscle mass, but without a further decline during hospitalization. © 2018 The Author(s) Published by S. Karger AG, Basel.

  17. Strength, power, fiber types, and mRNA expression in trained men and women with different ACTN3 R577X genotypes.

    PubMed

    Norman, Barbara; Esbjörnsson, Mona; Rundqvist, Håkan; Osterlund, Ted; von Walden, Ferdinand; Tesch, Per A

    2009-03-01

    Alpha-actinins are structural proteins of the Z-line. Human skeletal muscle expresses two alpha-actinin isoforms, alpha-actinin-2 and alpha-actinin-3, encoded by their respective genes ACTN2 and ACTN3. ACTN2 is expressed in all muscle fiber types, while only type II fibers, and particularly the type IIb fibers, express ACTN3. ACTN3 (R577X) polymorphism results in loss of alpha-actinin-3 and has been suggested to influence skeletal muscle function. The X allele is less common in elite sprint and power athletes than in the general population and has been suggested to be detrimental for performance requiring high power. The present study investigated the association of ACTN3 genotype with muscle power during 30-s Wingate cycling in 120 moderately to well-trained men and women and with knee extensor strength and fatigability in a subset of 21 men performing isokinetic exercise. Muscle biopsies were obtained from the vastus lateralis muscle to determine fiber-type composition and ACTN2 and ACTN3 mRNA levels. Peak and mean power and the torque-velocity relationship and fatigability output showed no difference across ACTN3 genotypes. Thus this study suggests that R577X polymorphism in ACTN3 is not associated with differences in power output, fatigability, or force-velocity characteristics in moderately trained individuals. However, repeated exercise bouts prompted an increase in peak torque in RR but not in XX genotypes, suggesting that ACTN3 genotype may modulate responsiveness to training. Our data further suggest that alpha-actinins do not play a significant role in determining muscle fiber-type composition. Finally, we show that ACTN2 expression is affected by the content of alpha-actinin-3, which implies that alpha-actinin-2 may compensate for the lack of alpha-actinin-3 and hence counteract the phenotypic consequences of the deficiency.

  18. The impact of obesity on skeletal muscle strength and structure through adolescence to old age.

    PubMed

    Tomlinson, D J; Erskine, R M; Morse, C I; Winwood, K; Onambélé-Pearson, Gladys

    2016-06-01

    Obesity is associated with functional limitations in muscle performance and increased likelihood of developing a functional disability such as mobility, strength, postural and dynamic balance limitations. The consensus is that obese individuals, regardless of age, have a greater absolute maximum muscle strength compared to non-obese persons, suggesting that increased adiposity acts as a chronic overload stimulus on the antigravity muscles (e.g., quadriceps and calf), thus increasing muscle size and strength. However, when maximum muscular strength is normalised to body mass, obese individuals appear weaker. This relative weakness may be caused by reduced mobility, neural adaptations and changes in muscle morphology. Discrepancies in the literature remain for maximal strength normalised to muscle mass (muscle quality) and can potentially be explained through accounting for the measurement protocol contributing to muscle strength capacity that need to be explored in more depth such as antagonist muscle co-activation, muscle architecture, a criterion valid measurement of muscle size and an accurate measurement of physical activity levels. Current evidence demonstrating the effect of obesity on muscle quality is limited. These factors not being recorded in some of the existing literature suggest a potential underestimation of muscle force either in terms of absolute force production or relative to muscle mass; thus the true effect of obesity upon skeletal muscle size, structure and function, including any interactions with ageing effects, remains to be elucidated.

  19. Effect of mirror use on lower extremity muscle strength of patients with chronic stroke.

    PubMed

    Kim, Myoung-Kwon; Choe, Yu-Won; Shin, Young-Jun; Peng, Cheng; Choi, Eun-Hong

    2018-02-01

    [Purpose] This study examines the effect on muscle strength of lower extremity muscle strength exercise while using a mirror on the non-paretic side in patients with chronic stroke. [Subjects and Methods] Subjects were randomly assigned to a non-mirror lower extremity exercise group (n=10), a mirror lower extremity exercise group (n=10), or a mirror lower extremity muscle strength exercise group (n=10). Subjects were asked to do the exercise assigned to their group (5 sets 30 times a day, 5 times weekly for 4 weeks) with general physical therapy in the hospital. Muscle strength in the knee extensor and flexor of paretic and non-paretic side were measured using electrical muscle testing device before and after the intervention. [Results] Muscle strength significantly increased within each group after intervention. No significant differences were found among the three groups. [Conclusion] This study showed that the lower extremity muscle strength exercise of the non-paretic side using a mirror has a positive effect on muscle strength in patient with chronic stroke.

  20. Physical fitness assessment: an update.

    PubMed

    Wilder, Robert P; Greene, Jill Amanda; Winters, Kathryne L; Long, William B; Gubler, K; Edlich, Richard F

    2006-01-01

    The American College of Sports Medicine (ACSM) gives the following definition of health-related physical fitness: Physical fitness is defined as a set of attributes that people have or achieve that relates to the ability to perform physical activity. It is also characterized by (1) an ability to perform daily activities with vigor, and (2) a demonstration of traits and capacities that are associated with a low risk of premature development of hypokinetic diseases (e.g., those associated with physical inactivity). Information from an individual's health and medical records can be combined with information from physical fitness assessment to meet the specific health goals and rehabilitative needs of that individual. Attaining adequate informed consent from participants prior to exercise testing is mandatory because of ethical and legal considerations.A physical fitness assessment includes measures of body composition, cardiorespiratory endurance, muscular fitness, and musculoskeletal flexibility. The three common techniques for assessing body composition are hydrostatic weighing, and skinfold measurements, and anthropometric measurements. Cardiorespiratory endurance is a crucial component of physical fitness assessment because of its strong correlation with health and health risks. Maximal oxygen uptake (VO2max) is the traditionally accepted criterion for measuring cardiorespiratory endurance. Although maximal-effort tests must be used to measure VO2max, submaximal exercise can be used to estimate this value. Muscular fitness has historically been used to describe an individual's integrated status of muscular strength and muscular endurance. An individual's muscular strength is specific to a particular muscle or muscle group and refers to the maximal force (N or kg) that the muscle or muscle group can generate. Dynamic strength can be assessed by measuring the movement of an individual's body against an external load. Isokinetic testing may be performed by assessing the muscle tension generated throughout a range of motion at a constant angular velocity. The ability of a muscle group to perform repeated contractions over a specific period of time that is sufficient to cause fatigue is termed muscular endurance. Musculoskeletal flexibility evaluations focus on the joints and associated structures, ligaments, and muscles that cross the joints. The sit-and-reach test and the behind-the-back reach test satisfy many of the criteria for physical assessment of musculoskeletal flexibility. A physical fitness assessment must be integrated into all activities of daily living, as well as the physician's examination, to assess and promote health.

  1. Pulmonary Function, Muscle Strength and Mortality in Old Age

    PubMed Central

    Buchman, A. S.; Boyle, P. A.; Wilson, R.S.; Gu, Liping; Bienias, Julia L.; Bennett, D. A.

    2009-01-01

    Numerous reports have linked extremity muscle strength with mortality but the mechanism underlying this association is not known. We used data from 960 older persons without dementia participating in the Rush Memory and Aging Project to test two sequential hypotheses: first, that extremity muscle strength is a surrogate for respiratory muscle strength, and second, that the association of respiratory muscle strength with mortality is mediated by pulmonary function. In a series of proportional hazards models, we first demonstrated that the association of extremity muscle strength with mortality was no longer significant after including a term for respiratory muscle strength, controlling for age, sex, education, and body mass index. Next, the association of respiratory muscle strength with mortality was attenuated by more than 50% and no longer significant after including a term for pulmonary function. The findings were unchanged after controlling for cognitive function, parkinsonian signs, physical frailty, balance, physical activity, possible COPD, use of pulmonary medications, vascular risk factors including smoking, chronic vascular diseases, musculoskeletal joint pain, and history of falls. Overall, these findings suggest that pulmonary function may partially account for the association of muscle strength and mortality. PMID:18755207

  2. Thigh muscle segmentation of chemical shift encoding-based water-fat magnetic resonance images: The reference database MyoSegmenTUM.

    PubMed

    Schlaeger, Sarah; Freitag, Friedemann; Klupp, Elisabeth; Dieckmeyer, Michael; Weidlich, Dominik; Inhuber, Stephanie; Deschauer, Marcus; Schoser, Benedikt; Bublitz, Sarah; Montagnese, Federica; Zimmer, Claus; Rummeny, Ernst J; Karampinos, Dimitrios C; Kirschke, Jan S; Baum, Thomas

    2018-01-01

    Magnetic resonance imaging (MRI) can non-invasively assess muscle anatomy, exercise effects and pathologies with different underlying causes such as neuromuscular diseases (NMD). Quantitative MRI including fat fraction mapping using chemical shift encoding-based water-fat MRI has emerged for reliable determination of muscle volume and fat composition. The data analysis of water-fat images requires segmentation of the different muscles which has been mainly performed manually in the past and is a very time consuming process, currently limiting the clinical applicability. An automatization of the segmentation process would lead to a more time-efficient analysis. In the present work, the manually segmented thigh magnetic resonance imaging database MyoSegmenTUM is presented. It hosts water-fat MR images of both thighs of 15 healthy subjects and 4 patients with NMD with a voxel size of 3.2x2x4 mm3 with the corresponding segmentation masks for four functional muscle groups: quadriceps femoris, sartorius, gracilis, hamstrings. The database is freely accessible online at https://osf.io/svwa7/?view_only=c2c980c17b3a40fca35d088a3cdd83e2. The database is mainly meant as ground truth which can be used as training and test dataset for automatic muscle segmentation algorithms. The segmentation allows extraction of muscle cross sectional area (CSA) and volume. Proton density fat fraction (PDFF) of the defined muscle groups from the corresponding images and quadriceps muscle strength measurements/neurological muscle strength rating can be used for benchmarking purposes.

  3. Lower limb muscle impairment in myotonic dystrophy type 1: the need for better guidelines.

    PubMed

    Petitclerc, Émilie; Hébert, Luc J; Desrosiers, Johanne; Gagnon, Cynthia

    2015-04-01

    In myotonic dystrophy type 1 (DM1), leg muscle weakness is a major impairment. There are challenges to obtaining a clear portrait of muscle strength impairment. A systematic literature review was conducted on lower limb strength impairment in late-onset and adult phenotypes to document variables which affect strength measurement. Thirty-two articles were reviewed using the COSMIN guidelines. Only a third of the studies described a reproducible protocol. Only 2 muscle groups have documented reliability for quantitative muscle testing and only 1 total score for manual muscle testing. Variables affecting muscle strength impairment are not described in most studies. This review illustrates the variability in muscle strength assessment in relation to DM1 characteristics and the questionable validity of the results with regard to undocumented methodological properties. There is therefore a clear need to adopt a consensus on the use of a standardized muscle strength assessment protocol. © 2015 Wiley Periodicals, Inc.

  4. Influence of exercise and aging on extracellular matrix composition in the skeletal muscle stem cell niche.

    PubMed

    Garg, Koyal; Boppart, Marni D

    2016-11-01

    Skeletal muscle is endowed with a remarkable capacity for regeneration, primarily due to the reserve pool of muscle resident satellite cells. The satellite cell is the physiologically quiescent muscle stem cell that resides beneath the basal lamina and adjacent to the sarcolemma. The anatomic location of satellite cells is in close proximity to vasculature where they interact with other muscle resident stem/stromal cells (e.g., mesenchymal stem cells and pericytes) through paracrine mechanisms. This mini-review describes the components of the muscle stem cell niche, as well as the influence of exercise and aging on the muscle stem cell niche. Although exercise promotes ECM reorganization and stem cell accumulation, aging is associated with dense ECM deposition and loss of stem cell function resulting in reduced regenerative capacity and strength. An improved understanding of the niche elements will be valuable to inform the development of therapeutic interventions aimed at improving skeletal muscle regeneration and adaptation over the life span. Copyright © 2016 the American Physiological Society.

  5. Tongue muscle plasticity following hypoglossal nerve stimulation in aged rats

    PubMed Central

    Connor, Nadine P.; Russell, John A.; Jackson, Michelle A.; Kletzien, Heidi; Wang, Hao; Schaser, Allison J.; Leverson, Glen E.; Zealear, David L.

    2012-01-01

    Introduction Age-related decreases in tongue muscle mass and strength have been reported. It may be possible to prevent age-related tongue muscle changes using neuromuscular electrical stimulation (NMES). Our hypothesis was that alterations in muscle contractile properties and myosin heavy chain composition would be found following NMES. Methods Fifty-four young, middle-aged and old Fischer 344/Brown Norway rats were included. Twenty-four rats underwent bilateral electrical stimulation of the hypoglossal nerves for 8 weeks and were compared with control or sham rats. Muscle contractile properties and myosin heavy chain (MHC) in the genioglossus (GG), styloglossus (SG) and hyoglossus (HG) muscles were examined. Results In comparison with unstimulated control rats, we found reduced muscle fatigue, increased contraction and half decay times and increased twitch and tetanic tension. Increased Type I MHC was found, except for GG in old and middle-aged rats. Discussion Transitions in tongue muscle contractile properties and phenotype were found following NMES. PMID:23169566

  6. Wii-Based Exercise Program to Improve Physical Fitness, Motor Proficiency and Functional Mobility in Adults with Down Syndrome

    ERIC Educational Resources Information Center

    Silva, V.; Campos, C.; Sá, A.; Cavadas, M.; Pinto, J.; Simões, P.; Machado, S.; Murillo-Rodríguez, E.; Barbosa-Rocha, N.

    2017-01-01

    Background: People with Down syndrome (DS) usually display reduced physical fitness (aerobic capacity, muscle strength and abnormal body composition), motor proficiency impairments (balance and postural control) and physical functional limitations. Exergames can be an appealing alternative to enhance exercise engagement and compliance, whilst…

  7. Dynamic Analysis of the Abnormal Isometric Strength Movement Pattern between Shoulder and Elbow Joint in Patients with Hemiplegia.

    PubMed

    Liu, Yali; Hong, Yuezhen; Ji, Linhong

    2018-01-01

    Patients with hemiplegia usually have weak muscle selectivity and usually perform strength at a secondary joint (secondary strength) during performing a strength at one joint (primary strength). The abnormal strength pattern between shoulder and elbow joint has been analyzed by the maximum value while the performing process with strength changing from 0 to maximum then to 0 was a dynamic process. The objective of this study was to develop a method to dynamically analyze the strength changing process. Ten patients were asked to perform four group asks (maximum and 50% maximum voluntary strength in shoulder abduction, shoulder adduction, elbow flexion, and elbow extension). Strength and activities from seven muscles were measured. The changes of secondary strength had significant correlation with those of primary strength in all tasks ( R > 0.76, p < 0.01). The antagonistic muscles were moderately influenced by the primary strength ( R > 0.4, p < 0.01). Deltoid muscles, biceps brachii, triceps brachii, and brachioradialis had significant influences on the abnormal strength pattern (all p < 0.01). The dynamic method was proved to be efficient to analyze the different influences of muscles on the abnormal strength pattern. The muscles, deltoid muscles, biceps brachii, triceps brachii, and brachioradialis, much influenced the stereotyped movement pattern between shoulder and elbow joint.

  8. Dynamic Analysis of the Abnormal Isometric Strength Movement Pattern between Shoulder and Elbow Joint in Patients with Hemiplegia

    PubMed Central

    2018-01-01

    Patients with hemiplegia usually have weak muscle selectivity and usually perform strength at a secondary joint (secondary strength) during performing a strength at one joint (primary strength). The abnormal strength pattern between shoulder and elbow joint has been analyzed by the maximum value while the performing process with strength changing from 0 to maximum then to 0 was a dynamic process. The objective of this study was to develop a method to dynamically analyze the strength changing process. Ten patients were asked to perform four group asks (maximum and 50% maximum voluntary strength in shoulder abduction, shoulder adduction, elbow flexion, and elbow extension). Strength and activities from seven muscles were measured. The changes of secondary strength had significant correlation with those of primary strength in all tasks (R > 0.76, p < 0.01). The antagonistic muscles were moderately influenced by the primary strength (R > 0.4, p < 0.01). Deltoid muscles, biceps brachii, triceps brachii, and brachioradialis had significant influences on the abnormal strength pattern (all p < 0.01). The dynamic method was proved to be efficient to analyze the different influences of muscles on the abnormal strength pattern. The muscles, deltoid muscles, biceps brachii, triceps brachii, and brachioradialis, much influenced the stereotyped movement pattern between shoulder and elbow joint. PMID:29610654

  9. Genetic Variations in the Androgen Receptor Are Associated with Steroid Concentrations and Anthropometrics but Not with Muscle Mass in Healthy Young Men

    PubMed Central

    De Naeyer, Hélène; Bogaert, Veerle; De Spaey, Annelies; Roef, Greet; Vandewalle, Sara; Derave, Wim; Taes, Youri; Kaufman, Jean-Marc

    2014-01-01

    Objective The relationship between serum testosterone (T) levels, muscle mass and muscle force in eugonadal men is incompletely understood. As polymorphisms in the androgen receptor (AR) gene cause differences in androgen sensitivity, no straightforward correlation can be observed between the interindividual variation in T levels and different phenotypes. Therefore, we aim to investigate the relationship between genetic variations in the AR, circulating androgens and muscle mass and function in young healthy male siblings. Design 677 men (25–45 years) were recruited in a cross-sectional, population-based sibling pair study. Methods Relations between genetic variation in the AR gene (CAGn, GGNn, SNPs), sex steroid levels (by LC-MS/MS), body composition (by DXA), muscle cross-sectional area (CSA) (by pQCT), muscle force (isokinetic peak torque, grip strength) and anthropometrics were studied using linear mixed-effect modelling. Results Muscle mass and force were highly heritable and related to age, physical activity, body composition and anthropometrics. Total T (TT) and free T (FT) levels were positively related to muscle CSA, whereas estradiol (E2) and free E2 (FE2) concentrations were negatively associated with muscle force. Subjects with longer CAG repeat length had higher circulating TT, FT, and higher E2 and FE2 concentrations. Weak associations with TT and FT were found for the rs5965433 and rs5919392 SNP in the AR, whereas no association between GGN repeat polymorphism and T concentrations were found. Arm span and 2D:4D finger length ratio were inversely associated, whereas muscle mass and force were not associated with the number of CAG repeats. Conclusions Age, physical activity, body composition, sex steroid levels and anthropometrics are determinants of muscle mass and function in young men. Although the number of CAG repeats of the AR are related to sex steroid levels and anthropometrics, we have no evidence that these variations in the AR gene also affect muscle mass or function. PMID:24465978

  10. Genetic variations in the androgen receptor are associated with steroid concentrations and anthropometrics but not with muscle mass in healthy young men.

    PubMed

    De Naeyer, Hélène; Bogaert, Veerle; De Spaey, Annelies; Roef, Greet; Vandewalle, Sara; Derave, Wim; Taes, Youri; Kaufman, Jean-Marc

    2014-01-01

    The relationship between serum testosterone (T) levels, muscle mass and muscle force in eugonadal men is incompletely understood. As polymorphisms in the androgen receptor (AR) gene cause differences in androgen sensitivity, no straightforward correlation can be observed between the interindividual variation in T levels and different phenotypes. Therefore, we aim to investigate the relationship between genetic variations in the AR, circulating androgens and muscle mass and function in young healthy male siblings. 677 men (25-45 years) were recruited in a cross-sectional, population-based sibling pair study. Relations between genetic variation in the AR gene (CAGn, GGNn, SNPs), sex steroid levels (by LC-MS/MS), body composition (by DXA), muscle cross-sectional area (CSA) (by pQCT), muscle force (isokinetic peak torque, grip strength) and anthropometrics were studied using linear mixed-effect modelling. Muscle mass and force were highly heritable and related to age, physical activity, body composition and anthropometrics. Total T (TT) and free T (FT) levels were positively related to muscle CSA, whereas estradiol (E2) and free E2 (FE2) concentrations were negatively associated with muscle force. Subjects with longer CAG repeat length had higher circulating TT, FT, and higher E2 and FE2 concentrations. Weak associations with TT and FT were found for the rs5965433 and rs5919392 SNP in the AR, whereas no association between GGN repeat polymorphism and T concentrations were found. Arm span and 2D:4D finger length ratio were inversely associated, whereas muscle mass and force were not associated with the number of CAG repeats. Age, physical activity, body composition, sex steroid levels and anthropometrics are determinants of muscle mass and function in young men. Although the number of CAG repeats of the AR are related to sex steroid levels and anthropometrics, we have no evidence that these variations in the AR gene also affect muscle mass or function.

  11. The influence of inspiratory muscle training combined with the Pilates method on lung function in elderly women: A randomized controlled trial.

    PubMed

    Alvarenga, Guilherme Medeiros de; Charkovski, Simone Arando; Santos, Larissa Kelin Dos; Silva, Mayara Alves Barbosa da; Tomaz, Guilherme Oliveira; Gamba, Humberto Remigio

    2018-01-01

    Aging is progressive, and its effects on the respiratory system include changes in the composition of the connective tissues of the lung that influence thoracic and lung compliance. The Powerbreathe® K5 is a device used for inspiratory muscle training with resistance adapted to the level of the inspiratory muscles to be trained. The Pilates method promotes muscle rebalancing exercises that emphasize the powerhouse. The aim of this study was to evaluate the influence of inspiratory muscle training combined with the Pilates method on lung function in elderly women. The participants were aged sixty years or older, were active women with no recent fractures, and were not gait device users. They were randomly divided into a Pilates with inspiratory training group (n=11), a Pilates group (n=11) and a control group (n=9). Spirometry, manovacuometry, a six-minute walk test, an abdominal curl-up test, and pulmonary variables were assessed before and after twenty intervention sessions. The intervention led to an increase in maximal inspiratory muscle strength and pressure and power pulmonary variables (p<0.0001), maximal expiratory muscle strength (p<0.0014), six-minute walk test performance (p<0.01), and abdominal curl-up test performance (p<0.00001). The control group showed no differences in the analyzed variables (p>0.05). The results of this study suggest inspiratory muscle training associated with the Pilates method provides an improvement in the lung function and physical conditioning of elderly patients.

  12. Androgen effects on skeletal muscle: implications for the development and management of frailty

    PubMed Central

    O’Connell, Matthew DL; Wu, Frederick CW

    2014-01-01

    Androgens have potent anabolic effects on skeletal muscle and decline with age in parallel to losses in muscle mass and strength. This loss of muscle mass and function, known as sarcopenia, is the central event in development of frailty, the vulnerable health status that presages adverse outcomes and rapid functional decline in older adults. The potential role of falling androgen levels in the development of frailty and their utility as function promoting therapies in older men has therefore attracted considerable attention. This review summarizes current concepts and definitions in muscle ageing, sarcopenia and frailty, and evaluates recent developments in the study of androgens and frailty. Current evidence from observational and interventional studies strongly supports an effect of androgens on muscle mass in ageing men, but effects on muscle strength and particularly physical function have been less clear. Androgen treatment has been generally well–tolerated in studies of older men, but concerns remain over higher dose treatments and use in populations with high cardiovascular risk. The first trials of selective androgen receptor modulators (SARMs) suggest similar effects on muscle mass and function to traditional androgen therapies in older adults. Important future directions include the use of these agents in combination with exercise training to promote functional ability across different populations of older adults, as well as more focus on the relationships between concurrent changes in hormone levels, body composition and physical function in observational studies. PMID:24457838

  13. Effects of dietary protein intake on body composition changes after weight loss in older adults: a systematic review and meta-analysis

    PubMed Central

    Kim, Jung Eun; O’Connor, Lauren E.; Sands, Laura P.; Slebodnik, Mary B.

    2016-01-01

    Context: The impact of dietary protein on body composition changes after older adults purposefully lose weight requires systematic evaluation. Objective: This systematic review and meta-analysis assessed the effects of protein intake (<25% vs ≥25% of energy intake or 1.0 g/kg/d) on energy restriction–induced changes in body mass, lean mass, and fat mass in adults older than 50 years. Data Sources: PubMed, Cochrane, Scopus, and Google Scholar were searched using the keywords “dietary proteins,” “body composition,” “skeletal muscle,” and “muscle strength.” Study Selection: Two researchers independently screened 1542 abstracts. Data Extraction: Information was extracted from 24 articles. Data Synthesis: Twenty randomized control trials met the inclusion criteria. Conclusion: Older adults retained more lean mass and lost more fat mass during weight loss when consuming higher protein diets. PMID:26883880

  14. Growth Hormone Therapy in Adults with Prader-Willi Syndrome.

    PubMed

    Vogt, Karen S; Emerick, Jill E

    2015-04-16

    Prader-Willi syndrome (PWS) is characterized by hyperphagia, obesity if food intake is not strictly controlled, abnormal body composition with decreased lean body mass and increased fat mass, decreased basal metabolic rate, short stature, low muscle tone, cognitive disability, and hypogonadism. In addition to improvements in linear growth, the benefits of growth hormone therapy on body composition and motor function in children with PWS are well established. Evidence is now emerging on the benefits of growth hormone therapy in adults with PWS. This review summarizes the current literature on growth hormone status and the use of growth hormone therapy in adults with PWS. The benefits of growth hormone therapy on body composition, muscle strength, exercise capacity, certain measures of sleep-disordered breathing, metabolic parameters, quality of life, and cognition are covered in detail along with potential adverse effects and guidelines for initiating and monitoring therapy.

  15. Comparative analysis between two models of active aging and its influence on body composition, strength levels and quality of life: long-distance runners versus bodybuilders practitioners.

    PubMed

    Latorre-Román, Pedro Ángel; Izquierdo-Sánchez, Jose Manuel; Salas-Sánchez, Jesús; García-Pinillos, Felipe

    2015-04-01

    To analyze the body composition, strength level, and the quality of life related to the health (QoL) in veteran sportsmen (>35 years old) in relation to sedentary ones (S), and to compare the result in the mentioned variables between two models of sports practice, long-distance runners (LDR) and bodybuilding practitioners (BBP). One hundred forty-eight male participants took part and were distributed into three groups: 47 LDR (age=42.01±6.96 years), 49 BBP (age=45.14±7.04 years), and 47 S (age=43.71±8.75 years). Body composition, upper- and lower-limb strength level, and QoL were assessed. The LDR and BBP obtained better performance in countermovement jump (CMJ) than the S ones (+0.06 m, p<0.001). Significant differences were found in BMI and %fat mass, between BBP and S with relation to LDR (p<0.001). In relation to the effect of aging on body composition, the muscle mass is reduced in all groups controlled (LDR, BBP, and S). Additionally, the %fat mass is increased only in S group (p< 0.05). The CMJ performance is significantly reduced only in S group (-0.07 m, p<0.001). The results suggested that the LDR as a model of active aging showed healthier values in BMI and %fat mass as well as greater results in QoL than BBP and S groups. Nevertheless, the LDR group showed similar values to S ones in muscle mass. The regression analysis performed showed that the sedentary habit predicts the %fat mass and CMJ performance. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  16. Growth hormone therapy, muscle thickness, and motor development in Prader-Willi syndrome: an RCT.

    PubMed

    Reus, Linda; Pillen, Sigrid; Pelzer, Ben J; van Alfen-van der Velden, Janielle A A E M; Hokken-Koelega, Anita C S; Zwarts, Machiel; Otten, Barto J; Nijhuis-van der Sanden, Maria W G

    2014-12-01

    To investigate the effect of physical training combined with growth hormone (GH) on muscle thickness and its relationship with muscle strength and motor development in infants with Prader-Willi syndrome (PWS). In a randomized controlled trial, 22 infants with PWS (12.9 ± 7.1 months) were followed over 2 years to compare a treatment group (n = 10) with a waiting-list control group (n = 12). Muscle thickness of 4 muscle groups was measured by using ultrasound. Muscle strength was evaluated by using the Infant Muscle Strength meter. Motor performance was measured with the Gross Motor Function Measurement. Analyses of variance were used to evaluate between-group effects of GH on muscle thickness at 6 months and to compare pre- and posttreatment (after 12 months of GH) values. Multilevel analyses were used to evaluate effects of GH on muscle thickness over time, and multilevel bivariate analyses were used to test relationships between muscle thickness, muscle strength, and motor performance. A significant positive effect of GH on muscle thickness (P < .05) was found. Positive relationships were found between muscle thickness and muscle strength (r = 0.61, P < .001), muscle thickness and motor performance (r = 0.81, P < .001), and muscle strength and motor performance (r = 0.76, P < .001). GH increased muscle thickness, which was related to muscle strength and motor development in infants with PWS. Catch-up growth was faster in muscles that are most frequently used in early development. Because this effect was independent of GH, it suggests a training effect. Copyright © 2014 by the American Academy of Pediatrics.

  17. Vitamin D status predicts hand-grip strength in young adult women living in Auckland, New Zealand.

    PubMed

    von Hurst, P R; Conlon, C; Foskett, A

    2013-07-01

    The identification of the vitamin D receptor (VDR) in skeletal muscle tissue and research in muscle strength and development in VDR-null mice confirms a role for vitamin D in muscle function. The relationship between muscle strength and vitamin D status has been explored to some degree in older populations with regard to fall prevention, but there has been very little research in younger adults. This cross-sectional study considered the predictors of muscle strength in 137 young women (19-29 years) living in New Zealand. The following measurements were taken in the latter months of winter: plasma 25OHD, dominant (HGD) and non-dominant hand-grip (HGND) strength (hand-grip dynamometer), counter measure jump, and recreational physical activity (RPA) assessed from a recent physical activity questionnaire (RPAQ). Dietary intake was measured with a four-day food diary, and body composition using air displacement plethysmography. This was a relatively inactive group of women; total RPA ranged from 0 to 3.93h per week, mean (SD) 0.86(0.74) h, approximately 50% comprised outdoor activities. Mean 25OHD was 54(28)nmol/l, HGD and HGND were significantly different (t=6.049, p<0.001) at 27.3(5.8) and 25.6(5.7)kg respectively. Total RPA and 25OHD were entered into a linear regression model with handgrip strength as the dependent variable (Model R(2)=0.11, p=0.001 non-dominant, R(2)=0.13, p<0.001 dominant). Serum 25OHD was significantly associated with HGD (B(SE)=0.05(0.02), p=0.016) and HGND (B(SE)=0.04(0.02), p=0.019), independent of recreational physical activity. Recreational activity had an association with both hand-grip strength and serum 25OHD, and when each were adjusted to remove this association, 25OHD accounted for 4.3% of HGND and 4.5% of HGD. These results suggest that vitamin D status does have a small but significant association with hand-grip strength in this group of young women. Further investigation in this age group with a randomised controlled trial is justified. This article is part of a Special Issue entitled 'Vitamin D Workshop'. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Strength and Conditioning Training by the Danish National Handball Team Before an Olympic Tournament.

    PubMed

    Kvorning, Thue; Hansen, Mikkel R B; Jensen, Kurt

    2017-07-01

    Kvorning, T, Hansen, MRB, and Jensen, K. Strength and conditioning training by the Danish national handball team before an Olympic tournament. J Strength Cond Res 31(7): 1759-1765, 2017-The physical demands imposed on national team handball teams during the Olympics imply significant physical preparation to improve performance and reduce incidence of injuries. The purpose of this case report was to describe and analyze the strength and conditioning (S&C) training performed by the Danish national handball team before the Beijing Olympic Games. Eight weeks of S&C was divided into 5 weeks emphasizing muscle hypertrophy and long-interval running followed by 3 weeks emphasizing strength, power, and short-interval running. Body mass increased by 1.6% (p < 0.05), whereas body fat decreased by 1.0% (p < 0.05). No differences were seen in countermovement jump or jump-and-reach height (p > 0.05). Agility performance was evaluated by a T-test and improved by 2.5% (p < 0.05). Changes by 6% and 22% were seen in 1 repetition maximum (1RM) bench press and 1RM back squat, respectively. However, only the 1RM bench press increased significantly (p < 0.05). Running performance was tested by the Yo-Yo intermittent recovery test, level 2, and improved by 25% (p < 0.05). In conclusion, during 8 weeks of S&C training before the Beijing Olympics, body composition changed toward more muscle mass, better upper-body strength, better interval running, and agility performance, whereas no changes were seen in jumping or lower-body muscle strength. This case report may be used as a handy script for handball teams preparing for competition. Detailed and periodized S&C training programs for 8 weeks are provided and can be used by teams ranging from moderately to highly trained.

  19. Association between pre‐sarcopenia, sarcopenia, and bone mineral density in patients with chronic hepatitis C

    PubMed Central

    Bering, Tatiana; Diniz, Kiara G.D.; Coelho, Marta Paula P.; Vieira, Diego A.; Soares, Maria Marta S.; Kakehasi, Adriana M.; Correia, Maria Isabel T.D.; Teixeira, Rosângela; Queiroz, Dulciene M.M.; Rocha, Gifone A.

    2018-01-01

    Abstract Background Preserved skeletal muscle is essential for the maintenance of healthy bone. Loss of bone mineral density (BMD) and muscle strength, considered a predictor of BMD, have been demonstrated in patients with cirrhosis, but they are poorly studied in chronic hepatitis C (CHC) without cirrhosis. Thus, we aimed to evaluate the prevalence of low BMD and its association with body composition, muscle strength, and nutritional status in CHC. Methods One hundred and four subjects [mean age, 50.5 ± 11.3 years; 75.0% males; 67.3% non‐cirrhotic; and 32.7% with compensated cirrhosis] with CHC, prospectively, underwent scanning of the lean tissue, appendicular skeletal muscle mass (ASM), fat mass, lumbar spine, hip, femoral neck, and whole‐body BMD by dual‐energy X‐ray absorptiometry. Muscle strength was assessed by dynamometry. Sarcopenia was defined by the presence of both low, ASM/height2 (ASMI) and low muscle strength according to the European Working Group on Sarcopenia in Older People criteria. The cut‐off points for low ASMI and low muscle strength, for women and men, were < 5.45 and < 7.26 kg/m2 and < 20 and < 30 kg, respectively. According to the adopted World Health Organization criteria in men aged > 50 years, the T‐score of osteopenia is between −1.0 and −2.49 standard deviation (SD) below the young average value and of osteoporosis is ≥−2.5 SD below the young normal mean for men, and the Z‐score of low bone mass is ≤−2.0 SD below the expected range in men aged < 50 years and women in the menacme. Nutritional status evaluation was based on the Controlling Nutritional Status score. Results Low BMD, low muscle strength, pre‐sarcopenia, sarcopenia, and sarcopenic obesity were observed in 34.6% (36/104), 27.9% (29/104), 14.4% (15/104), 8.7% (9/104), and 3.8% (4/104) of the patients, respectively. ASMI was an independent predictor of BMD (P < 0.001). Sarcopenia was independently associated with bone mineral content (P = 0.02) and malnutrition (P = 0.01). In 88.9% of the sarcopenic patients and in all with sarcopenic obesity, BMI was normal. The mid‐arm muscle circumference was positively correlated with ASMI (r = 0.88; P < 0.001). Conclusions This is the first study to demonstrate that ASM is an independent predictor of BMD in CHC. Mid‐arm muscle circumference coupled with handgrip strength testing should be incorporated into routine clinical practice to detect low muscle mass, which may be underdiagnosed when only BMI is used. These findings may influence clinical decision‐making and contribute to the development of effective strategies to screen the musculoskeletal abnormalities in CHC patients, independently of the stage of the liver disease. PMID:29349902

  20. Muscle Motion Solenoid Actuator

    NASA Astrophysics Data System (ADS)

    Obata, Shuji

    It is one of our dreams to mechanically recover the lost body for damaged humans. Realistic humanoid robots composed of such machines require muscle motion actuators controlled by all pulling actions. Particularly, antagonistic pairs of bi-articular muscles are very important in animal's motions. A system of actuators is proposed using the electromagnetic force of the solenoids with the abilities of the stroke length over 10 cm and the strength about 20 N, which are needed to move the real human arm. The devised actuators are based on developments of recent modern electro-magnetic materials, where old time materials can not give such possibility. Composite actuators are controlled by a high ability computer and software making genuine motions.

  1. Leg size and muscle functions associated with leg compliance

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.; Doerr, Donald F.; Flores, Jose F.; Hoffler, G. Wyckliffe; Buchanan, Paul

    1988-01-01

    The relationship between the leg compliance and factors related to the size of leg muscle and to physical fitness was investigated in ten healthy subjects. Vascular compliance of the leg, as determined by a mercury strain gauge, was found to be not significantly correlated with any variables associated with physical fitness per se (e.g., peak O2 uptake, calf strength, age, body weight, or body composition. On the other hand, leg compliance correlated with the calf cross-sectional area (CSA) and the calculated calf volume, with the CSA of calf muscle being the most dominant contributing factor (while fat and bone were poor predicators). It is suggested that leg compliance can be lowered by increasing calf muscle mass, thus providing structural support to limit the expansion of leg veins.

  2. Body weight-supported training in Becker and limb girdle 2I muscular dystrophy.

    PubMed

    Jensen, Bente R; Berthelsen, Martin P; Husu, Edith; Christensen, Sofie B; Prahm, Kira P; Vissing, John

    2016-08-01

    We studied the functional effects of combined strength and aerobic anti-gravity training in severely affected patients with Becker and Limb-Girdle muscular dystrophies. Eight patients performed 10-week progressive combined strength (squats, calf raises, lunges) and aerobic (walk/run, jogging in place or high knee-lift) training 3 times/week in a lower-body positive pressure environment. Closed-kinetic-chain leg muscle strength, isometric knee strength, rate of force development (RFD), and reaction time were evaluated. Baseline data indicated an intact neural activation pattern but showed compromised muscle contractile properties. Training (compliance 91%) improved functional leg muscle strength. Squat series performance increased 30%, calf raises 45%, and lunges 23%. Anti-gravity training improved closed-kinetic-chain leg muscle strength despite no changes in isometric knee extension strength and absolute RFD. The improved closed-kinetic-chain performance may relate to neural adaptation involving motor learning and/or improved muscle strength of other muscles than the weak knee extensors. Muscle Nerve 54: 239-243, 2016. © 2016 Wiley Periodicals, Inc.

  3. Pea proteins oral supplementation promotes muscle thickness gains during resistance training: a double-blind, randomized, Placebo-controlled clinical trial vs. Whey protein.

    PubMed

    Babault, Nicolas; Païzis, Christos; Deley, Gaëlle; Guérin-Deremaux, Laetitia; Saniez, Marie-Hélène; Lefranc-Millot, Catherine; Allaert, François A

    2015-01-01

    The effects of protein supplementation on muscle thickness and strength seem largely dependent on its composition. The current study aimed at comparing the impact of an oral supplementation with vegetable Pea protein (NUTRALYS®) vs. Whey protein and Placebo on biceps brachii muscle thickness and strength after a 12-week resistance training program. One hundred and sixty one males, aged 18 to 35 years were enrolled in the study and underwent 12 weeks of resistance training on upper limb muscles. According to randomization, they were included in the Pea protein (n = 53), Whey protein (n = 54) or Placebo (n = 54) group. All had to take 25 g of the proteins or placebo twice a day during the 12-week training period. Tests were performed on biceps muscles at inclusion (D0), mid (D42) and post training (D84). Muscle thickness was evaluated using ultrasonography, and strength was measured on an isokinetic dynamometer. Results showed a significant time effect for biceps brachii muscle thickness (P < 0.0001). Thickness increased from 24.9 ± 3.8 mm to 26.9 ± 4.1 mm and 27.3 ± 4.4 mm at D0, D42 and D84, respectively, with only a trend toward significant differences between groups (P = 0.09). Performing a sensitivity study on the weakest participants (with regards to strength at inclusion), thickness increases were significantly different between groups (+20.2 ± 12.3%, +15.6 ± 13.5% and +8.6 ± 7.3% for Pea, Whey and Placebo, respectively; P < 0.05). Increases in thickness were significantly greater in the Pea group as compared to Placebo whereas there was no difference between Whey and the two other conditions. Muscle strength also increased with time with no statistical difference between groups. In addition to an appropriate training, the supplementation with pea protein promoted a greater increase of muscle thickness as compared to Placebo and especially for people starting or returning to a muscular strengthening. Since no difference was obtained between the two protein groups, vegetable pea proteins could be used as an alternative to Whey-based dietary products. The present trial has been registered at ClinicalTrials.gov (NCT02128516).

  4. Neuromuscular dysfunction in type 2 diabetes: underlying mechanisms and effect of resistance training.

    PubMed

    Orlando, Giorgio; Balducci, Stefano; Bazzucchi, Ilenia; Pugliese, Giuseppe; Sacchetti, Massimo

    2016-01-01

    Diabetic patients are at higher risk of developing physical disabilities than non-diabetic subjects. Physical disability appears to be related, at least in part, to muscle dysfunction. Several studies have reported reduced muscle strength and power under dynamic and static conditions in both the upper and lower limbs of patients with type 2 diabetes. Additional effects of diabetes include a reduction in muscle mass, quality, endurance and an alteration in muscle fibre composition, though the available data on these parameters are conflicting. The impact of diabetes on neuromuscular function has been related to the co-existence of long-term complications. Peripheral neuropathy has been shown to affect muscle by impairing motor nerve conduction. Also, vascular complications may contribute to the decline in muscle strength. However, muscle dysfunction occurs early in the course of diabetes and affects also the upper limbs, thus suggesting that it may develop independently of micro and macrovascular disease. A growing body of evidence indicates that hyperglycaemia may cause an alteration of the intrinsic properties of the muscle to generate force, via several mechanisms. Recently, resistance exercise has been shown to be an effective strategy to counteract the deterioration of muscular performance. High-intensity exercise seems to provide greater benefits than moderate-intensity training, whereas the effect of a power training is yet unknown. This article reviews the available literature on the impairment of muscle function induced by diabetes, the underlying mechanisms, and the effect of resistance training on this defect. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  5. Scapular-Muscle Performance: Two Training Programs in Adolescent Swimmers

    PubMed Central

    Van de Velde, Annemie; De Mey, Kristof; Maenhout, Annelies; Calders, Patrick; Cools, Ann M.

    2011-01-01

    Abstract Context: Swimming requires well-balanced scapular-muscle performance. An additional strength-training program for the shoulders is pursued by swimmers, but whether these muscle-training programs need to be generic or specific for endurance or strength is unknown. Objective: To evaluate isokinetic scapular-muscle performance in a population of adolescent swimmers and to compare the results of training programs designed for strength or muscle endurance. Design: Controlled laboratory study. Setting: University human research laboratory. Patients or Other Participants: Eighteen adolescent swimmers. Intervention(s): Each participant pursued a 12-week scapular-training program designed to improve either muscle strength or muscle endurance. Main Outcome Measure(s): Bilateral peak force, fatigue index, and protraction/retraction strength ratios before and after the scapular-training program. Results: Scapular protraction/retraction ratios were slightly higher than 1 (dominant side  =  1.08, nondominant side  =  1.25, P  =  .006). Side-to-side differences in retraction strength were apparent both before and after the training program (P  =  .03 and P  = .05, respectively). After the training program, maximal protraction (P < .05) and retraction (P < .01) strength improved on the nondominant side. Peak force and fatigue index were not different between the training groups. The fatigue indexes for protraction on both sides (P < .05) and retraction on the nondominant side (P  =  .009) were higher after the training program. Conclusions: We describe the scapular-muscle characteristics of a group of adolescent swimmers. Both muscle-strength and muscle-endurance programs improved absolute muscle strength. Neither of the strength programs had a positive effect on scapular-muscle endurance. Our results may be valuable for coaches and physiotherapists when they are designing exercise programs for swimmers. PMID:21391801

  6. [Sarcopenia intervention with progressive resistance training and protein nutritional supplements].

    PubMed

    Palop Montoro, M Victoria; Párraga Montilla, Juan Antonio; Lozano Aguilera, Emilio; Arteaga Checa, Milagros

    2015-04-01

    Aging is accompanied by changes in body composition among which is a progressive reduction in muscle mass, which may contribute to the development of functional limitations in older people, and where the lifestyle plays a particularly important role. To test the effectiveness of progressive resistance training, protein nutritional supplements and both interventions combined in the treatment of sarcopenia. Review of literature in Medline, ScienceDirect, CINAHL, ISI WOK and PEDro data by combining the descriptors of Medical Subject Headings (MeSH) concerning sarcopenia, progressive resistance training, protein supplements and seniors. A total of 147 studies were found which resistance exercise performed by sessions 45-60 minutes, 2-3 times a week, and 3-4 sets of 8 repetitions, to an increasing intensity. This exercise resulted in increased muscle mass and strength, and increased skeletal muscle protein synthesis and muscle fiber size. Nutritional supplements such as beta-hydroxy-beta-methylbutyrate, leucine and essential amino acids produced gains in muscle mass. All supplements increased strength, especially when combined with resistance exercise. The combination of progressive resistance training and protein included in the diet, either in the form of nutritional supplements, strengthens the impact that each of these interventions can have on the treatment of sarcopenia in the elderly. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  7. Relationship Between Muscle Strength Asymmetry and Body Sway in Older Adults.

    PubMed

    Koda, Hitoshi; Kai, Yoshihiro; Murata, Shin; Osugi, Hironori; Anami, Kunihiko; Fukumoto, Takahiko; Imagita, Hidetaka

    2018-05-31

    The purpose of this study was to investigate the relationship between muscle strength asymmetry and body sway while walking. We studied 63 older adult women. Strong side and weak side of knee extension strength, toe grip strength, hand grip strength, and body sway while walking were measured. The relationship between muscle strength asymmetry for each muscle and body sway while walking was evaluated using Pearson's correlation coefficient. Regarding the muscles recognized to have significant correlation with body sway, the asymmetry cutoff value causing an increased sway was calculated. Toe grip strength asymmetry was significantly correlated with body sway. Toe grip strength asymmetry causing an increased body sway had a cutoff value of 23.5%. Our findings suggest toe grip strength asymmetry may be a target for improving gait stability.

  8. Global muscle dysfunction as a risk factor of readmission to hospital due to COPD exacerbations.

    PubMed

    Vilaró, Jordi; Ramirez-Sarmiento, Alba; Martínez-Llorens, Juana M A; Mendoza, Teresa; Alvarez, Miguel; Sánchez-Cayado, Natalia; Vega, Angeles; Gimeno, Elena; Coronell, Carlos; Gea, Joaquim; Roca, Josep; Orozco-Levi, Mauricio

    2010-12-01

    Exacerbations of chronic obstructive pulmonary disease (COPD) are associated with several modifiable (sedentary life-style, smoking, malnutrition, hypoxemia) and non-modifiable (age, co-morbidities, severity of pulmonary function, respiratory infections) risk factors. We hypothesise that most of these risk factors may have a converging and deleterious effects on both respiratory and peripheral muscle function in COPD patients. A multicentre study was carried out in 121 COPD patients (92% males, 63 ± 11 yr, FEV(1), 49 ± 17%pred). Assessments included anthropometrics, lung function, body composition using bioelectrical impedance analysis (BIA), and global muscle function (peripheral muscle (dominant and non-dominant hand grip strength, HGS), inspiratory (PI(max)), and expiratory (PE(max)) muscle strength). GOLD stage, clinical status (stable vs. non-stable) and both current and past hospital admissions due to COPD exacerbations were included as covariates in the analyses. Respiratory and peripheral muscle weakness were observed in all subsets of patients. Muscle weakness, was significantly associated with both current and past hospitalisations. Patients with history of multiple admissions showed increased global muscle weakness after adjusting by FEV(1) (PE(max), OR = 6.8, p < 0.01; PI(max), OR = 2.9, p < 0.05; HGSd, OR = 2.4, and HGSnd, OR = 2.6, p = 0.05). Moreover, a significant increase in both respiratory and peripheral muscle weakness, after adjusting by FEV(1), was associated with current acute exacerbations. Muscle dysfunction, adjusted by GOLD stage, is associated with an increased risk of hospital admissions due to acute episodes of exacerbation of the disease. Current exacerbations further deteriorate muscle dysfunction. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Is there a relation between pre-sarcopenia, sarcopenia, cachexia and osteoporosis in patients with ankylosing spondylitis?

    PubMed

    El Maghraoui, Abdellah; Ebo'o, François Bertin; Sadni, Siham; Majjad, Abderrahim; Hamza, Toufik; Mounach, Aziza

    2016-07-11

    Osteoporosis is a well-known complication of ankylosing spondylitis (AS). However, data about body composition modifications and muscle performance showed conflicting results. The aim of the study was to determine the prevalence and risk factors of pre-sarcopenia, sarcopenia and cachexia in patients with AS and analyze its relationship with bone loss and symptomatic and severity parameters of the disease. Sixty-seven consecutive male patients with AS (mean age of 40.9 ± 11.0 years) and 67 healthy controls were studied. Body composition and bone mineral density (BMD) scans were obtained using DXA. The fat-free mass index (FFMI; fat-free mass divided by height squared) and the percent of fat mass (%FM) were calculated. Pre-sarcopenia was defined by low skeletal muscle mass (SMI <7.25 kg/m(2)), sarcopenia by the combined presence of the two following criteria: SMI <7.25 kg/m(2) and a low muscle strength (handgrip strength <30 kg) or a low muscle performance (timed get-up-and-go test >10 s) and cachexia by a BMI <20 kg/m(2) plus 3 from the 5 following parameters: anorexia, fatigue, handgrip strength <30 kg, CRP >5 mg/l, SMI <7.25 kg/m(2). Pre-sarcopenia, sarcopenia, cachexia, and osteoporosis prevalences were (50.4, 34.3, 11.9, and 16.0) respectively. Patients had a mean 3 kg significant decrease in FFM and a 1 kg/m(2) decrease in appendicular mass vs. healthy controls. Pre-sarcopenia, sarcopenia and cachexia were significantly associated to higher BASDAI levels and low BMD. Our study showed that men with AS had a statistically significant reduction in total and appendicular lean mass that is related to higher disease activity and significantly associated to bone loss.

  10. Ursolic Acid-Induced Elevation of Serum Irisin Augments Muscle Strength During Resistance Training in Men

    PubMed Central

    Bang, Hyun Seok; Seo, Dae Yun; Chung, Yong Min; Oh, Kyoung-Mo; Park, Jung Jun; Arturo, Figueroa; Jeong, Seung-Hun; Kim, Nari

    2014-01-01

    Ursolic acid (UA), a type of pentacyclic triterpenoid carboxylic acid purified from natural plants, can promote skeletal muscle development. We measured the effect of resistance training (RT) with/without UA on skeletal muscle development and related factors in men. Sixteen healthy male participants (age, 29.37±5.14 years; body mass index=27.13±2.16 kg/m2) were randomly assigned to RT (n=7) or RT with UA (RT+UA, n=9) groups. Both groups completed 8 weeks of intervention consisting of 5 sets of 26 exercises, with 10~15 repetitions at 60~80% of 1 repetition maximum and a 60~90-s rest interval between sets, performed 6 times/week. UA or placebo was orally ingested as 1 capsule 3 times/day for 8 weeks. The following factors were measured pre-and post-intervention: body composition, insulin, insulin-like growth factor-1 (IGF-1), irisin, and skeletal muscle strength. Body fat percentage was significantly decreased (p<0.001) in the RT+UA group, despite body weight, body mass index, lean body mass, glucose, and insulin levels remaining unchanged. IGF-1 and irisin were significantly increased compared with baseline levels in the RT+UA group (p<0.05). Maximal right and left extension (p<0.01), right flexion (p<0.05), and left flexion (p<0.001) were significantly increased compared with baseline levels in the RT+UA group. These findings suggest that UA-induced elevation of serum irisin may be useful as an agent for the enhancement of skeletal muscle strength during RT. PMID:25352765

  11. Functional Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Greenisen, Michael C.; Hayes, Judith C.; Siconolfi, Steven F.; Moore, Alan D.

    1999-01-01

    The Extended Duration Orbiter Medical Project (EDOMP) was established to address specific issues associated with optimizing the ability of crews to complete mission tasks deemed essential to entry, landing, and egress for spaceflights lasting up to 16 days. The main objectives of this functional performance evaluation were to investigate the physiological effects of long-duration spaceflight on skeletal muscle strength and endurance, as well as aerobic capacity and orthostatic function. Long-duration exposure to a microgravity environment may produce physiological alterations that affect crew ability to complete critical tasks such as extravehicular activity (EVA), intravehicular activity (IVA), and nominal or emergency egress. Ultimately, this information will be used to develop and verify countermeasures. The answers to three specific functional performance questions were sought: (1) What are the performance decrements resulting from missions of varying durations? (2) What are the physical requirements for successful entry, landing, and emergency egress from the Shuttle? and (3) What combination of preflight fitness training and in-flight countermeasures will minimize in-flight muscle performance decrements? To answer these questions, the Exercise Countermeasures Project looked at physiological changes associated with muscle degradation as well as orthostatic intolerance. A means of ensuring motor coordination was necessary to maintain proficiency in piloting skills, EVA, and IVA tasks. In addition, it was necessary to maintain musculoskeletal strength and function to meet the rigors associated with moderate altitude bailout and with nominal or emergency egress from the landed Orbiter. Eight investigations, referred to as Detailed Supplementary Objectives (DSOs) 475, 476, 477, 606, 608, 617, 618, and 624, were conducted to study muscle degradation and the effects of exercise on exercise capacity and orthostatic function (Table 3-1). This chapter is divided into three parts. Part 1 describes specific findings from studies of muscle strength, endurance, fiber size, and volume. Part 2 describes results from studies of how in-flight exercise affects postflight exercise capacity and orthostatic function. Part 3 focuses on the development of new noninvasive methods for assessing body composition in astronauts and how those methods can be used to correlate measures of exercise performance and changes in body composition.

  12. The association between muscle strength and activity limitations in patients with the hypermobility type of Ehlers-Danlos syndrome: the impact of proprioception.

    PubMed

    Scheper, Mark; Rombaut, Lies; de Vries, Janneke; De Wandele, Inge; van der Esch, Martin; Visser, Bart; Malfait, Franciska; Calders, Patrick; Engelbert, Raoul

    2017-07-01

    The patients diagnosed with Ehlers-Danlos Syndrome Hypermobility Type (EDS-HT) are characterized by pain, proprioceptive inacuity, muscle weakness, potentially leading to activity limitations. In EDS-HT, a direct relationship between muscle strength, proprioception and activity limitations has never been studied. The objective of the study was to establish the association between muscle strength and activity limitations and the impact of proprioception on this association in EDS-HT patients. Twenty-four EDS-HT patients were compared with 24 controls. Activity limitations were quantified by Health Assessment Questionnaire (HAQ), Six-Minute Walk test (6MWT) and 30-s chair-rise test (30CRT). Muscle strength was quantified by handheld dynamometry. Proprioception was quantified by movement detection paradigm. In analyses, the association between muscle strength and activity limitations was controlled for proprioception and confounders. Muscle strength was associated with 30CRT (r = 0.67, p = <0.001), 6MWT (r = 0.58, p = <0.001) and HAQ (r = 0.63, p= <0.001). Proprioception was associated with 30CRT (r = 0.55, p < 0.001), 6MWT (r = 0.40, p = <0.05) and HAQ (r = 0.46, p < 0.05). Muscle strength was found to be associated with activity limitations, however, proprioceptive inacuity confounded this association. Muscle strength is associated with activity limitations in EDS-HT patients. Joint proprioception is of influence on this association and should be considered in the development of new treatment strategies for patients with EDS-HT. Implications for rehabilitation Reducing activity limitations by enhancing muscle strength is frequently applied in the treatment of EDS-HT patients. Although evidence regarding treatment efficacy is scarce, the current paper confirms the rationality that muscle strength is an important factor in the occurrence of activity limitations in EDS-HT patients. Although muscle strength is the most dominant factor that is associated with activity limitations, this association is confounded by proprioception. In contrast to common belief proprioception was not directly associated with activity limitations but confounded this association. Controlling muscle strength on the bases of proprioceptive input may be more important for reducing activity limitations than just enhancing sheer muscle strength.

  13. The effect of Nordic hamstring strength training on muscle architecture, stiffness, and strength.

    PubMed

    Seymore, Kayla D; Domire, Zachary J; DeVita, Paul; Rider, Patrick M; Kulas, Anthony S

    2017-05-01

    Hamstring strain injury is a frequent and serious injury in competitive and recreational sports. While Nordic hamstring (NH) eccentric strength training is an effective hamstring injury-prevention method, the protective mechanism of this exercise is not understood. Strength training increases muscle strength, but also alters muscle architecture and stiffness; all three factors may be associated with reducing muscle injuries. The purpose of this study was to examine the effects of NH eccentric strength training on hamstring muscle architecture, stiffness, and strength. Twenty healthy participants were randomly assigned to an eccentric training group or control group. Control participants performed static stretching, while experimental participants performed static stretching and NH training for 6 weeks. Pre- and post-intervention measurements included: hamstring muscle architecture and stiffness using ultrasound imaging and elastography, and maximal hamstring strength measured on a dynamometer. The experimental group, but not the control group, increased volume (131.5 vs. 145.2 cm 3 , p < 0.001) and physiological cross-sectional area (16.1 vs. 18.1 cm 2 , p = 0.032). There were no significant changes to muscle fascicle length, stiffness, or eccentric hamstring strength. The NH intervention was an effective training method for muscle hypertrophy, but, contrary to common literature findings for other modes of eccentric training, did not increase fascicle length. The data suggest that the mechanism behind NH eccentric strength training mitigating hamstring injury risk could be increasing volume rather than increasing muscle length. Future research is, therefore, warranted to determine if muscle hypertrophy induced by NH training lowers future hamstring strain injury risk.

  14. Joint laxity and the relationship between muscle strength and functional ability in patients with osteoarthritis of the knee.

    PubMed

    van der Esch, M; Steultjens, M; Knol, D L; Dinant, H; Dekker, J

    2006-12-15

    To establish the impact of knee joint laxity on the relationship between muscle strength and functional ability in osteoarthritis (OA) of the knee. A cross-sectional study of 86 patients with OA of the knee was conducted. Tests were performed to determine varus-valgus laxity, muscle strength, and functional ability. Laxity was assessed using a device that measures the angular deviation of the knee in the frontal plane. Muscle strength was measured using a computer-driven isokinetic dynamometer. Functional ability was assessed by observation (100-meter walking test) and self report (Western Ontario and McMaster Universities Osteoarthritis Index [WOMAC]). Regression analyses were performed to assess the impact of joint laxity on the relationship between muscle strength and functional ability. In regression analyses, the interaction between muscle strength and joint laxity contributed to the variance in both walking time (P = 0.002) and WOMAC score (P = 0.080). The slope of the regression lines indicated that the relationship between muscle strength and functional ability (walking time, WOMAC) was stronger in patients with high knee joint laxity. Patients with knee OA and high knee joint laxity show a stronger relationship between muscle strength and functional ability than patients with OA and low knee joint laxity. Patients with OA, high knee joint laxity, and low muscle strength are most at risk of being disabled.

  15. Muscle Strength Is Protective Against Osteoporosis in an Ethnically Diverse Sample of Adults.

    PubMed

    McGrath, Ryan P; Kraemer, William J; Vincent, Brenda M; Hall, Orman T; Peterson, Mark D

    2017-09-01

    McGrath, RP, Kraemer, WJ, Vincent, BM, Hall, OT, and Peterson, MD. Muscle strength is protective against osteoporosis in an ethnically diverse sample of adults. J Strength Cond Res 31(9): 2586-2589, 2017-The odds of developing osteoporosis may be affected by modifiable and nonmodifiable factors such as muscle strength and ethnicity. This study sought to (a) determine whether increased muscle strength was associated with decreased odds of osteoporosis and (b) identify whether the odds of osteoporosis differed by ethnicity. Data from the 2013 to 2014 National Health and Nutrition Examination Survey were analyzed. Muscle strength was measured with a hand-held dynamometer, and dual-energy x-ray absorptiometry was used to assess femoral neck bone mineral density. A T-score of ≤2.5 was used to define osteoporosis. Separate covariate-adjusted logistic regression models were performed on each sex to determine the association between muscle strength and osteoporosis. Odds ratios (ORs) were also generated to identify if the association between muscle strength and osteoporosis differed by ethnicity using non-Hispanic blacks as the reference group. There were 2,861 participants included. Muscle strength was shown to be protective against osteoporosis for men (OR: 0.94; 95% confidence interval [CI]: 0.94-0.94) and women (OR: 0.90; CI: 0.90-0.90). Although ORs varied across ethnicities, non-Hispanic Asian men (OR: 6.62; CI: 6.51-6.72) and women (OR: 6.42; CI: 6.37-6.48) were at highest odds of osteoporosis. Increased muscle strength reduced the odds of osteoporosis among both men and women in a nationally representative, ethnically diverse sample of adults. Non-Hispanic Asians had the highest odds of developing osteoporosis. Irrespective of sex or ethnicity, increased muscle strength may help protect against the odds of developing osteoporosis.

  16. Diagnostic ultrasound estimates of muscle mass and muscle quality discriminate between women with and without sarcopenia

    PubMed Central

    Ismail, Catheeja; Zabal, Johannah; Hernandez, Haniel J.; Woletz, Paula; Manning, Heather; Teixeira, Carla; DiPietro, Loretta; Blackman, Marc R.; Harris-Love, Michael O.

    2015-01-01

    Introduction: Age-related changes in muscle mass and muscle tissue composition contribute to diminished strength in older adults. The objectives of this study are to examine if an assessment method using mobile diagnostic ultrasound augments well-known determinants of lean body mass (LBM) to aid sarcopenia staging, and if a sonographic measure of muscle quality is associated with muscle performance. Methods: Twenty community-dwelling female subjects participated in the study (age = 43.4 ± 20.9 years; BMI: 23.8, interquartile range: 8.5). Dual energy X-ray absorptiometry (DXA) and diagnostic ultrasound morphometry were used to estimate LBM. Muscle tissue quality was estimated via the echogenicity using grayscale histogram analysis. Peak force was measured with grip dynamometry and scaled for body size. Bivariate and multiple regression analyses were used to determine the association of the predictor variables with appendicular lean mass (aLM/ht2), and examine the relationship between scaled peak force values and muscle echogenicity. The sarcopenia LBM cut point value of 6.75 kg/m2 determined participant assignment into the Normal LBM and Low LBM subgroups. Results: The selected LBM predictor variables were body mass index (BMI), ultrasound morphometry, and age. Although BMI exhibited a significant positive relationship with aLM/ht2 (adj. R2 = 0.61, p < 0.001), the strength of association improved with the addition of ultrasound morphometry and age as predictor variables (adj. R2 = 0.85, p < 0.001). Scaled peak force was associated with age and echogenicity (adj. R2 = 0.53, p < 0.001), but not LBM. The Low LBM subgroup of women (n = 10) had higher scaled peak force, lower BMI, and lower echogenicity values in comparison to the Normal LBM subgroup (n = 10; p < 0.05). Conclusions: Diagnostic ultrasound morphometry values are associated with LBM, and improve the BMI predictive model for aLM/ht2 in women. In addition, ultrasound proxy measures of muscle quality are more strongly associated with strength than muscle mass within the study sample. PMID:26578974

  17. Diagnostic ultrasound estimates of muscle mass and muscle quality discriminate between women with and without sarcopenia.

    PubMed

    Ismail, Catheeja; Zabal, Johannah; Hernandez, Haniel J; Woletz, Paula; Manning, Heather; Teixeira, Carla; DiPietro, Loretta; Blackman, Marc R; Harris-Love, Michael O

    2015-01-01

    Age-related changes in muscle mass and muscle tissue composition contribute to diminished strength in older adults. The objectives of this study are to examine if an assessment method using mobile diagnostic ultrasound augments well-known determinants of lean body mass (LBM) to aid sarcopenia staging, and if a sonographic measure of muscle quality is associated with muscle performance. Twenty community-dwelling female subjects participated in the study (age = 43.4 ± 20.9 years; BMI: 23.8, interquartile range: 8.5). Dual energy X-ray absorptiometry (DXA) and diagnostic ultrasound morphometry were used to estimate LBM. Muscle tissue quality was estimated via the echogenicity using grayscale histogram analysis. Peak force was measured with grip dynamometry and scaled for body size. Bivariate and multiple regression analyses were used to determine the association of the predictor variables with appendicular lean mass (aLM/ht(2)), and examine the relationship between scaled peak force values and muscle echogenicity. The sarcopenia LBM cut point value of 6.75 kg/m(2) determined participant assignment into the Normal LBM and Low LBM subgroups. The selected LBM predictor variables were body mass index (BMI), ultrasound morphometry, and age. Although BMI exhibited a significant positive relationship with aLM/ht(2) (adj. R (2) = 0.61, p < 0.001), the strength of association improved with the addition of ultrasound morphometry and age as predictor variables (adj. R (2) = 0.85, p < 0.001). Scaled peak force was associated with age and echogenicity (adj. R (2) = 0.53, p < 0.001), but not LBM. The Low LBM subgroup of women (n = 10) had higher scaled peak force, lower BMI, and lower echogenicity values in comparison to the Normal LBM subgroup (n = 10; p < 0.05). Diagnostic ultrasound morphometry values are associated with LBM, and improve the BMI predictive model for aLM/ht(2) in women. In addition, ultrasound proxy measures of muscle quality are more strongly associated with strength than muscle mass within the study sample.

  18. Differences in body composition and physical functions associated with sarcopenia in Chinese elderly: reference values and prevalence.

    PubMed

    Zeng, Ping; Wu, Sinan; Han, Yiwen; Liu, Jingmin; Zhang, Yi; Zhang, Enyi; Zhang, Yan; Gong, Huan; Pang, Jing; Tang, Zhili; Liu, Hongxing; Zheng, Xiuyuan; Zhang, Tiemei

    2015-01-01

    This study investigates the age-related differences in skeletal muscle mass (SM), muscle strength and physical performance in mainland Chinese. Based on available data, the reference values (criteria) for the definition of sarcopenia in elderly Chinese were explored. Body composition measurements were obtained using a bioelectrical impedance analyzer (BIA); muscle strength was determined by handgrip strength (HS); and physical function was evaluated by the subjects' 6-m gait speed (GS). In this study, HS and GS declined significantly after 55 years and very dramatically after 75 years. Appendicular SM index of <7.61kg/m(2) (males) and <6.43kg/m(2) (females); HS of <27kg (males) and <16kg (females); and GS of <0.98m/s (males) and <0.88m/s (females) were considered as low SM, low HS and low GS. Applying these suggested criteria to the study population, there were 9.55% and 6.63% of the subjects with low SM, 20.10% and 18.46% with low GS, and 14.07% and 15.38% with low HS in elderly males and females, respectively. Utilizing Asian Working Group for Sarcopenia (AWGS) criteria in our population results in a very low prevalence of low SM and low GS. If Western criteria for sarcopenia were adopted, the prevalence of low GS and low HS would be 2-4 times higher in the studied population, also exhibiting significant gender differences. These findings indicate that it is necessary to establish an outcomes-based and ethnic-specific set of reference values for the diagnosis of sarcopenia in elderly Chinese. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Diurnal and day-to-day variation of isometric muscle strength in myasthenia gravis.

    PubMed

    Vinge, Lotte; Jakobsen, Johannes; Pedersen, Asger Roer; Andersen, Henning

    2016-01-01

    In patients with myasthenia gravis (MG), muscle strength is expected to decrease gradually during the day due to physical activities. Isometric muscle strength at the shoulder, knee, and ankle was determined in 10 MG patients (MGFA class II-IV) who were receiving usual medical treatment and in 10 control subjects. To determine diurnal and day-to-day variation, muscle strength was measured 4 times during day 1 and once at day 2. Knee extension strength decreased during the day in both patients and controls. Neither diurnal nor day-to-day variation of muscle strength was higher in patients compared with controls. Patients with mild to moderate MG did not have increased variation of isometric muscle strength during the day or from day-to-day compared with controls. This suggests that isometric muscle performance can be determined with high reproducibility in similar groups of MG patients without regard to time of day. © 2015 Wiley Periodicals, Inc.

  20. Relationship between lower extremity isometric muscle strength and standing balance in patients with multiple sclerosis.

    PubMed

    Citaker, Seyit; Guclu-Gunduz, Arzu; Yazici, Gokhan; Bayraktar, Deniz; Nazliel, Bijen; Irkec, Ceyla

    2013-01-01

    Muscle strength and standing balance decrease in patients with Multiple Sclerosis (MS). The aim of the present study was to investigate the relationship between the lower extremity isometric muscle strength and standing balance in patients with MS. Forty-seven patients with MS and 10 healthy volunteers were included. Neurological disability level was assessed using Expanded Disability Status Scale (EDSS). Isometric strength of seven lower extremity muscles (hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor) was assessed using hand-held dynamometer. Duration of static one-leg standing balance was measured using digital chronometer. Hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor isometric muscle strength, and duration of one-leg standing balance were decreased in patients with MS when compared with controls (p < 0.05). All assessed lower extremity isometric muscle strength and EDSS level was related duration of one-leg standing balance in patients with MS. All assessed lower extremity isometric muscle strength (except ankle dorsal flexor) was related with EDSS. Hip flexor-extensor-abductor-adductor, knee flexor-extensor, and ankle dorsal flexor isometric muscle strength decreases in ambulatory MS patients. Lower extremity muscle weakness and neurological disability level are related with imbalance in MS population. Hip and knee region muscles weakness increases the neurological disability level. For the better balance and decrease neurological disability level whole lower extremity muscle strengthening should be included in rehabilitation programs.

  1. Muscle morphology and performance in master athletes: A systematic review and meta-analyses.

    PubMed

    Mckendry, James; Breen, Leigh; Shad, Brandon J; Greig, Carolyn A

    2018-04-30

    The extent to which chronic exercise training preserves age-related decrements in physical function, muscle strength, mass and morphology is unclear. Our aim was to conduct a systematic review of the literature to determine to what extent chronically trained master athletes (strength/power and endurance) preserve levels of physical function, muscle strength, muscle mass and morphology in older age, compared with older and younger controls and young trained individuals. The systematic data search included Medline, EMBASE, SPORTDiscus, CINAHL and Web of Science databases. i) master athletes mean exercise training duration ≥20 years ii) master athletes mean age of cohort >59 years) iii) at least one measurement of muscle mass/volume/fibre-type morphology and/or strength/physical function. Fifty-five eligible studies were identified. Meta-analyses were carried out on maximal aerobic capacity, maximal voluntary contraction and body composition. Master endurance athletes (42.0 ± 6.6 ml kg -1  min - 1) exhibited VO 2max values comparable with young healthy controls (43.1 ± 6.8 ml kg -1  min -1 , P = .84), greater than older controls (27.1 ± 4.3 ml kg -1  min -1 , P < 0.01) and master strength/power athletes (26.5 ± 2.3 mlkg -1  min -1 , P < 0.01), and lower than young endurance trained individuals (60.0 ± 5.4 ml kg -1  min -1 , P < 0.01). Master strength/power athletes (0.60 (0.28-0.93) P < 0.01) and young controls (0.71 (0.06-1.36) P < 0.05) were significantly stronger compared with the other groups. Body fat% was greater in master endurance athletes than young endurance trained (-4.44% (-8.44 to -0.43) P < 0.05) but lower compared with older controls (7.11% (5.70-8.52) P < 0.01). Despite advancing age, this review suggests that chronic exercise training preserves physical function, muscular strength and body fat levels similar to that of young, healthy individuals in an exercise mode-specific manner. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Objective Evaluation of Muscle Strength in Infants with Hypotonia and Muscle Weakness

    ERIC Educational Resources Information Center

    Reus, Linda; van Vlimmeren, Leo A.; Staal, J. Bart; Janssen, Anjo J. W. M.; Otten, Barto J.; Pelzer, Ben J.; Nijhuis-van der Sanden, Maria W. G.

    2013-01-01

    The clinical evaluation of an infant with motor delay, muscle weakness, and/or hypotonia would improve considerably if muscle strength could be measured objectively and normal reference values were available. The authors developed a method to measure muscle strength in infants and tested 81 typically developing infants, 6-36 months of age, and 17…

  3. Relative strengths of the calf muscles based on MRI volume measurements.

    PubMed

    Jeng, Clifford L; Thawait, Gaurav K; Kwon, John Y; Machado, Antonio; Boyle, James W; Campbell, John; Carrino, John A

    2012-05-01

    In 1985, Silver et al. published a cadaver study which determined the relative order of strength of the muscles in the calf. Muscle strength, which is proportional to volume, was obtained by dissecting out the individual muscles, weighing them, and then multiplying by the specific gravity. No similar studies have been performed using {\\it in vivo} measurements of muscle volume. Ten normal subjects underwent 3-Tesla MRI's of both lower extremities using non-fat-saturated T2 SPACE sequences. The volume for each muscle was determined by tracing the muscle contour on sequential axial images and then interpolating the volume using imaging software. The results from this study differ from Silver's original article. The lateral head of the gastrocnemius was found to be stronger than the tibialis anterior muscle. The FHL and EDL muscles were both stronger than the peroneus longus. There was no significant difference in strength between the peroneus longus and brevis muscles. This revised order of muscle strengths in the calf based on in vivo MRI findings may assist surgeons in determining the optimal tendons to transfer in order to address muscle weakness and deformity.

  4. Associations of knee muscle force, bone malalignment, and knee-joint laxity with osteoarthritis in elderly people.

    PubMed

    Nakagawa, Kazumasa; Maeda, Misako

    2017-03-01

    [Purpose] From the viewpoint of prevention of knee osteoarthritis, the aim of this study was to verify how muscle strength and joint laxity are related to knee osteoarthritis. [Subjects and Methods] The study subjects consisted of 90 community-dwelling elderly people aged more than 60 years (22 males, 68 females). Femorotibial angle alignment, knee joint laxity, knee extensors and flexor muscle strengths were measured in all subjects. In addition, the subjects were divided into four groups based on the presence of laxity and knee joint deformation, and the muscle strength values were compared. [Results] There was no significant difference in knee extensor muscle strength among the four groups. However, there was significant weakness of the knee flexor muscle in the group with deformation and laxity was compared with the group without deformation and laxity. [Conclusion] Decreased knee flexor muscle strengths may be involved in knee joint deformation. The importance of muscle strength balance was also considered.

  5. Influence of muscle strength on early mobility in critically ill adult patients: Systematic literature review.

    PubMed

    Roberson, Audrey R; Starkweather, Angela; Grossman, Catherine; Acevedo, Edmund; Salyer, Jeanne

    Muscle strength may be one indicator of readiness to mobilize that can be used to guide decisions regarding early mobility efforts and to progressively advance mobilization. To provide a synthesis of current measures of muscle strength in the assessment of early mobilization in critically ill adult patients who are receiving MV therapy. Research studies conducted between 2000-2015 were identified using PubMed, CINHAL, MEDLINE, and the Cochrane Database of Systematic Reviews databases using the search terms "muscle strength", "intensive care", "mechanical ventilation" and "muscle weakness". Nine articles used manual muscle testing, the Medical Research Council scale and/or hand-held dynamometer to provide objective measures for assessing muscle strength in the critically ill adult patient population. Further research is needed to examine the application of standardized measures of muscle strength for guiding decisions regarding early and progressive advancement of mobility goals in adult ICU patients on MV. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Body composition and functional assessment of nutritional status in adults: a narrative review of imaging, impedance, strength and functional techniques.

    PubMed

    Smith, S; Madden, A M

    2016-12-01

    The accurate and valid assessment of body composition is essential for the diagnostic evaluation of nutritional status, identifying relevant outcome measures, and determining the effectiveness of current and future nutritional interventions. Developments in technology and our understanding of the influences of body composition on risk and outcome will provide practitioners with new opportunities to enhance current practice and to lead future improvements in practice. This is the second of a two-part narrative review that aims to critically evaluate body composition methodology in diverse adult populations, with a primary focus on its use in the assessment and monitoring of under-nutrition. Part one focused on anthropometric variables [Madden and Smith (2016) J Hum Nutr Diet 29: 7-25] and part two focuses on the use of imaging techniques, bioelectrical impedance analysis, markers of muscle strength and functional status, with particular reference to developments relevant to practice. © 2016 The British Dietetic Association Ltd.

  7. The influence of inspiratory muscle training combined with the Pilates method on lung function in elderly women: A randomized controlled trial

    PubMed Central

    de Alvarenga, Guilherme Medeiros; Charkovski, Simone Arando; dos Santos, Larissa Kelin; da Silva, Mayara Alves Barbosa; Tomaz, Guilherme Oliveira; Gamba, Humberto Remigio

    2018-01-01

    OBJECTIVE: Aging is progressive, and its effects on the respiratory system include changes in the composition of the connective tissues of the lung that influence thoracic and lung compliance. The Powerbreathe® K5 is a device used for inspiratory muscle training with resistance adapted to the level of the inspiratory muscles to be trained. The Pilates method promotes muscle rebalancing exercises that emphasize the powerhouse. The aim of this study was to evaluate the influence of inspiratory muscle training combined with the Pilates method on lung function in elderly women. METHODS: The participants were aged sixty years or older, were active women with no recent fractures, and were not gait device users. They were randomly divided into a Pilates with inspiratory training group (n=11), a Pilates group (n=11) and a control group (n=9). Spirometry, manovacuometry, a six-minute walk test, an abdominal curl-up test, and pulmonary variables were assessed before and after twenty intervention sessions. RESULTS: The intervention led to an increase in maximal inspiratory muscle strength and pressure and power pulmonary variables (p<0.0001), maximal expiratory muscle strength (p<0.0014), six-minute walk test performance (p<0.01), and abdominal curl-up test performance (p<0.00001). The control group showed no differences in the analyzed variables (p>0.05). CONCLUSION: The results of this study suggest inspiratory muscle training associated with the Pilates method provides an improvement in the lung function and physical conditioning of elderly patients. PMID:29924184

  8. Effects of eight weeks of aerobic interval training and of isoinertial resistance training on risk factors of cardiometabolic diseases and exercise capacity in healthy elderly subjects

    PubMed Central

    Bruseghini, Paolo; Calabria, Elisa; Tam, Enrico; Milanese, Chiara; Oliboni, Eugenio; Pezzato, Andrea; Pogliaghi, Silvia; Salvagno, Gian Luca; Schena, Federico; Mucelli, Roberto Pozzi; Capelli, Carlo

    2015-01-01

    We investigated the effect of 8 weeks of high intensity interval training (HIT) and isoinertial resistance training (IRT) on cardiovascular fitness, muscle mass-strength and risk factors of metabolic syndrome in 12 healthy older adults (68 yy ± 4). HIT consisted in 7 two-minute repetitions at 80%–90% of V˙O2max, 3 times/w. After 4 months of recovery, subjects were treated with IRT, which included 4 sets of 7 maximal, bilateral knee extensions/flexions 3 times/w on a leg-press flywheel ergometer. HIT elicited significant: i) modifications of selected anthropometrical features; ii) improvements of cardiovascular fitness and; iii) decrease of systolic pressure. HIT and IRT induced hypertrophy of the quadriceps muscle, which, however, was paralleled by significant increases in strength only after IRT. Neither HIT nor IRT induced relevant changes in blood lipid profile, with the exception of a decrease of LDL and CHO after IRT. Physiological parameters related with aerobic fitness and selected body composition values predicting cardiovascular risk remained stable during detraining and, after IRT, they were complemented by substantial increase of muscle strength, leading to further improvements of quality of life of the subjects. PMID:26046575

  9. Noninvasive optical imaging of resistance training adaptations in human muscle

    NASA Astrophysics Data System (ADS)

    Warren, Robert V.; Cotter, Joshua; Ganesan, Goutham; Le, Lisa; Agustin, Janelle P.; Duarte, Bridgette; Cutler, Kyle; O'Sullivan, Thomas; Tromberg, Bruce J.

    2017-12-01

    A quantitative and dynamic analysis of skeletal muscle structure and function can guide training protocols and optimize interventions for rehabilitation and disease. While technologies exist to measure body composition, techniques are still needed for quantitative, long-term functional imaging of muscle at the bedside. We evaluate whether diffuse optical spectroscopic imaging (DOSI) can be used for long-term assessment of resistance training (RT). DOSI measures of tissue composition were obtained from 12 adults before and after 5 weeks of training and compared to lean mass fraction (LMF) from dual-energy X-ray absorptiometry (DXA). Significant correlations were detected between DXA LMF and DOSI-measured oxy-hemo/myoglobin, deoxy-hemo/myoglobin, total-hemo/myoglobin, water, and lipid. RT-induced increases of ˜6% in oxy-hemo/myoglobin (3.4±1.0 μM, p=0.00314) and total-hemo/myoglobin (4.9±1.1 μM, p=0.00024) from the medial gastrocnemius were detected with DOSI and accompanied by ˜2% increases in lean soft tissue mass (36.4±12.4 g, p=0.01641) and ˜60% increases in 1 rep-max strength (41.5±6.2 kg, p = 1.9E-05). DOSI measures of vascular and/or muscle changes combined with correlations between DOSI and DXA suggest that quantitative diffuse optical methods can be used to evaluate body composition, provide feedback on long-term interventions, and generate new insight into training-induced muscle adaptations.

  10. Experimental knee joint pain during strength training and muscle strength gain in healthy subjects: a randomized controlled trial.

    PubMed

    Sørensen, T J; Langberg, H; Hodges, P W; Bliddal, H; Henriksen, M

    2012-01-01

    Knee joint pain and reduced quadriceps strength are cardinal symptoms in many knee pathologies. In people with painful knee pathologies, quadriceps exercise reduces pain, improves physical function, and increases muscle strength. A general assumption is that pain compromises muscle function and thus may prevent effective rehabilitation. This study evaluated the effects of experimental knee joint pain during quadriceps strength training on muscle strength gain in healthy individuals. Twenty-seven healthy untrained volunteers participated in a randomized controlled trial of quadriceps strengthening (3 times per week for 8 weeks). Participants were randomized to perform resistance training either during pain induced by injections of painful hypertonic saline (pain group, n = 13) or during a nonpainful control condition with injection of isotonic saline (control group, n = 14) into the infrapatellar fat pad. The primary outcome measure was change in maximal isokinetic muscle strength in knee extension/flexion (60, 120, and 180 degrees/second). The group who exercised with pain had a significantly larger improvement in isokinetic muscle strength at all angular velocities of knee extension compared to the control group. In knee flexion there were improvements in isokinetic muscle strength in both groups with no between-group differences. Experimental knee joint pain improved the training-induced gain in muscle strength following 8 weeks of quadriceps training. It remains to be studied whether knee joint pain has a positive effect on strength gain in patients with knee pathology. Copyright © 2012 by the American College of Rheumatology.

  11. Relationships between Lower Limb Muscle Strength and Locomotor Capacity in Children and Adolescents with Cerebral Palsy Who Walk Independently

    ERIC Educational Resources Information Center

    Ferland, Chantale; Lepage, Celine; Moffet, Helene; Maltais, Desiree B.

    2012-01-01

    This study aimed to quantify relationships between lower limb muscle strength and locomotor capacity for children and adolescents with cerebral palsy (CP) to identify key muscle groups for strength training. Fifty 6- to 16-year-olds with CP (Gross Motor Function Classification System level I or II) participated. Isometric muscle strength of hip…

  12. Effects of preoperative oral carbohydrates and peptides on postoperative endocrine response, mobilization, nutrition and muscle function in abdominal surgery.

    PubMed

    Henriksen, M G; Hessov, I; Dela, F; Hansen, H Vind; Haraldsted, V; Rodt, S A

    2003-02-01

    Surgery is succeeded by long-lasting state of relative peripheral insulin resistance, which is reduced by giving glucose infusion or oral carbohydrate-rich drinks immediate before operating instead of fasting. The aim of the present study was to investigate whether oral carbohydrate or carbohydrate with peptide drinks preoperatively instead of fasting would improve postoperative voluntary muscle strength, nutritional intake and ambulation, decrease postoperative fatigue, anxiety and discomfort, and reduce the endocrine response to surgery. Forty-eight patients were included and randomized into three groups to receive 2 x 400 ml of carbohydrate-rich drinks or to fast overnight and allowed only water. Voluntary grip and quadriceps strength, body composition, pulmonary function, VAS-score of eight parameters of wellbeing, muscle biopsies and insulin, glucagon, IGF-1 and free fatty acids were measured before and after the operation. The basic postoperative regimen for all groups were immediate oral nutrition and early enforced mobilization. Significant postoperative decrease in glycogen synthase activity in the muscle biopsies was reduced in the intervention groups, and in combination, the intervention groups had a less reduced quadriceps strength after one week (-10% vs. -16%, NS) and one month (-5% vs. -13%, P < 0.05). Minor changes in the endocrine response to surgery were found without differences between the groups, and there were no differences between the groups in ambulation time, nutritional intake or subjective measures of wellbeing. Copyright Acta Anaesthesiologica Scandinavica 47 (2003)

  13. Serial Changes of Quadriceps and Hamstring Muscle Strength Following Total Knee Arthroplasty: A Meta-Analysis

    PubMed Central

    Ahn, Hyeong-Sik; Lee, Dae-Hee

    2016-01-01

    This meta-analysis was performed to analyze serial changes in thigh muscles, including quadriceps and hamstring muscles, from before to one year after total knee arthroplasty (TKA). All studies sequentially comparing isokinetic quadriceps and hamstring muscle strengths between the TKA side and the contralateral uninjured limb were included in this meta-analysis. Five studies with 7 cohorts were included in this meta-analysis. The mean differences in the strengths of quadriceps and hamstring muscles between the TKA and uninjured sides were greatest three months after surgery (26.8 N∙m, 12.8 N∙m, P<0.001), but were similar to preoperative level at six months (18.4 N∙m, 7.4 N∙m P<0.001) and were maintained for up to one year (15.9 N∙m, 4.1 N∙m P<0.001). The pooled mean differences in changes in quadriceps and hamstring strengths relative to preoperative levels were 9.2 N∙m and 4.9 N∙m, respectively, three months postoperatively (P = 0.041), but were no longer significant after six months and one year. During the year after TKA, quadriceps and hamstring muscle strengths were lowest after 3 months, recovering to preoperative level after six months, but not reaching the muscle strength on the contralateral side. Relative to preoperative levels, the difference in muscle strength between the TKA and contralateral knees was only significant at three months. Because decrease of strength of the quadriceps was significantly greater than decrease in hamstring muscle strength at postoperative three months, early rehabilitation after TKA should focus on recovery of quadriceps muscle strength. PMID:26849808

  14. Association with isokinetic ankle strength measurements and normal clinical muscle testing in sciatica patients.

    PubMed

    Ustun, N; Erol, O; Ozcakar, L; Ceceli, E; Ciner, O Akar; Yorgancioglu, Z R

    2013-01-01

    Sensitive muscle strength tests are needed to measure muscle strength in the diagnosis and management of sciatica patients. The aim of this study was to assess the isokinetic muscle strength in sciatica patients' and control subjects' ankles that exhibited normal ankle muscle strength when measured clinically. Forty-six patients with L5 and/or S1 nerve compression, and whose age, sex, weight, and height matched 36 healthy volunteers, were recruited to the study. Heel-walking, toe-walking, and manual muscle testing were used to perform ankle dorsiflexion and plantar flexion strengths in clinical examination. Patients with normal ankle dorsiflexion and plantar flexion strengths assessed by manual muscle testing and heel-and toe-walking tests were included in the study. Bilateral isokinetic (concentric/concentric) ankle plantar-flexion-dorsiflexion measurements of the patients and controls were performed within the protocol of 30°/sec (5 repetitions). Peak torque and peak torque/body weight were obtained for each ankle motion of the involved limb at 30°/s speed. L5 and/or S1 nerve compression was evident in 46 patients (76 injured limbs). Mean disease duration was two years. The plantar flexion muscle strength of the patients was found to be lower than that of the controls (p=0.036). The dorsiflexion muscle strength of the patients was found to be the same as that of the controls (p=0.211). Isokinetic testing is superior to clinical muscle testing when evaluating ankle plantar flexion torque in sciatica patients. Therefore, isokinetic muscle testing may be helpful when deciding whether to place a patient into a focused rehabilitation program.

  15. Association between muscle function, cognitive state, depression symptoms and quality of life of older people: evidence from clinical practice.

    PubMed

    Gariballa, Salah; Alessa, Awad

    2018-04-01

    Although low muscle function/strength is an important predictor of poor clinical outcome in older patients, information on its impact on mental health in clinical practice is still lacking. The aim of this report is to measure the impact of low muscle function measured by handgrip strength on mental health of older people during both acute illness and recovery. Four hundred and thirty-two randomly selected hospitalized older patients had their baseline demographic and clinical characteristics assessed within 72 h of admission, at 6 weeks and at 6 months. Low muscle strength-handgrip was defined using the European Working Group criteria. Mental health outcome measures including cognitive state, depression symptoms and quality of life were also measured. Among the 432 patients recruited, 308 (79%) had low muscle strength at baseline. Corresponding figures at 6 weeks and at 6 months were 140 (73%) and 158 (75%). Patients with poor muscle strength were significantly older with increased disability and poor nutritional status compared with those with normal muscle strength. After adjustment for age, gender, disability, comorbidity including severity of acute illness and body mass index patients with low muscle strength had worse cognitive function, quality of life and higher depression symptoms compared with those with normal muscle strength over a 6-month period (p < 0.05). Poor muscle strength in older people is associated with poor cognitive state and quality of life and increased depression symptoms during both acute illness and recovery.

  16. Pilates: Build Strength in Your Core Muscles

    MedlinePlus

    ... an accessible way to build strength in your core muscles for better posture, balance and flexibility. By ... an accessible way to build strength in your core muscles for better posture, balance and flexibility. If ...

  17. Association between muscle strength and metabolic syndrome in older Korean men and women: the Korean Longitudinal Study on Health and Aging.

    PubMed

    Yang, Eun Joo; Lim, Soo; Lim, Jae-Young; Kim, Ki Woong; Jang, Hak Chul; Paik, Nam-Jong

    2012-03-01

    The objective of the study was to investigate the association between metabolic syndrome (MS) and muscle strength in community-dwelling older men and women in Korea. Korean men and women 65 years and older living in a single, typical South Korean city (n = 647) were enrolled in the Korean Longitudinal Study on Health and Aging study. The diagnosis of MS was evaluated according to the definition of the National Cholesterol Education Program Adult Treatment Panel III. Isokinetic muscle strength of the knee extensors, as determined by peak torque per body weight (newton meter per kilogram) and hand-grip strength per body weight (newton per kilogram), was measured. Participants without MS had greater leg muscle strength and grip strength per weight. The effect of MS on muscle strength was more prominent in men than in women in our study population. Only men showed a significant interaction between MS and age for muscle strength (P = .014), and the effect was greater in men aged 65 to 74 years compared with those older than 75 years (119.2 ± 31.2 vs 134.5 ± 24.3 N m/kg). Participants with MS had weaker knee extensor strength after controlling the covariates (β = -90.80, P = .003), and the interaction term (age × MS × male sex) was significant (β = 1.00, P = .017). Metabolic syndrome is associated with muscle weakness, and this relationship is particularly pronounced in men. Age can modify the impact of MS on muscle strength. Men aged 65 to 74 years with MS need a thorough assessment of muscle strength to prevent disability. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Anabolic and catabolic biomarkers as predictors of muscle strength decline: the InCHIANTI study.

    PubMed

    Stenholm, Sari; Maggio, Marcello; Lauretani, Fulvio; Bandinelli, Stefania; Ceda, Gian Paolo; Di Iorio, Angelo; Giallauria, Francesco; Guralnik, Jack M; Ferrucci, Luigi

    2010-02-01

    Poor muscle strength is a major public health concern in older persons, predisposing to functional limitations, increased fall risk, and higher mortality. Understanding risk factors for muscle strength decline may offer opportunities for prevention and treatment. One of the possible causes of muscle strength decline is imbalance between catabolic and anabolic signaling. This study aims to examine whether high levels of multiple catabolic and low levels of multiple anabolic biomarkers predict accelerated decline of muscle strength. In a representative sample of 716 men and women aged >or=65 years in the InCHIANTI study we measured C-reactive protein, interleukin-6 (IL-6), IL-1 receptor antagonist (IL-1RA), tumor necrosis factor-alpha receptor 1 as well as dehydroepiandrosterone sulfate (DHEA-S), insulin-like growth factor-1, and bioavailable testosterone. Biomarker values were divided into tertiles and the numbers of catabolic/anabolic biomarkers in the highest/lowest tertile were calculated. Hand-grip strength was measured at baseline and 3- and 6-year follow up. In adjusted linear mixed models, higher concentration of IL-6 (p = 0.02) and IL-1RA (p = 0.04) as well as lower levels of DHEA-S (p = 0.01) predicted muscle strength decline. After combining all inflammatory markers, the rate of decline in grip strength was progressively greater with the increasing number of dysregulated catabolic biomarkers (p = 0.01). No effect on accelerated muscle strength decline was seen according to number of dysregulated anabolic hormones. Having multiple elevated catabolic biomarkers is a better predictor of muscle strength decline than a single biomarker alone, suggesting that a catabolic dysregulation is at the core of the mechanism leading to muscle strength decline with aging.

  19. Anabolic and Catabolic Biomarkers As Predictors of Muscle Strength Decline: The InCHIANTI Study

    PubMed Central

    Maggio, Marcello; Lauretani, Fulvio; Bandinelli, Stefania; Ceda, Gian Paolo; Di Iorio, Angelo; Giallauria, Francesco; Guralnik, Jack M.; Ferrucci, Luigi

    2010-01-01

    Abstract Background Poor muscle strength is a major public health concern in older persons, predisposing to functional limitations, increased fall risk, and higher mortality. Understanding risk factors for muscle strength decline may offer opportunities for prevention and treatment. One of the possible causes of muscle strength decline is imbalance between catabolic and anabolic signaling. This study aims to examine whether high levels of multiple catabolic and low levels of multiple anabolic biomarkers predict accelerated decline of muscle strength. Methods In a representative sample of 716 men and women aged ≥65 years in the InCHIANTI study we measured C-reactive protein, interleukin-6 (IL-6), IL-1 receptor antagonist (IL-1RA), tumor necrosis factor-α receptor 1 as well as dehydroepiandrosterone sulfate (DHEA-S), insulin-like growth factor-1, and bioavailable testosterone. Biomarker values were divided into tertiles and the numbers of catabolic/anabolic biomarkers in the highest/lowest tertile were calculated. Hand-grip strength was measured at baseline and 3- and 6-year follow up. Results In adjusted linear mixed models, higher concentration of IL-6 (p = 0.02) and IL-1RA (p = 0.04) as well as lower levels of DHEA-S (p = 0.01) predicted muscle strength decline. After combining all inflammatory markers, the rate of decline in grip strength was progressively greater with the increasing number of dysregulated catabolic biomarkers (p = 0.01). No effect on accelerated muscle strength decline was seen according to number of dysregulated anabolic hormones. Conclusions Having multiple elevated catabolic biomarkers is a better predictor of muscle strength decline than a single biomarker alone, suggesting that a catabolic dysregulation is at the core of the mechanism leading to muscle strength decline with aging. PMID:20230273

  20. Relationships between muscular strength and the level of energy sources in the muscle.

    PubMed

    Wit, A; Juskiak, R; Wit, B; Zieliński, J R

    1978-01-01

    Relationships between muscular strength and the level of energy sources in the muscle. Acta Physiol. Pol., 1978, 29 (2): 139--151. An attempt was made to establish a relationship between the post-excercise changes in the level of anaerobic energy sources and changes in the muscular strength. The gastrocnemius muscle of Wistar rats was examined. The muscle strength was measured by the resistance tensometry. In muscle specimens ATP, CP and glycogen contents were determined. It was demonstrated that changes in the post-excersise muscle response to electric stimulus have a phasic character resembling the overcompensation curve. The percent changes in the content of anaerobic energy sources in the muscle after contractions varying in duration suggests also overcompensation the muscle content of these substances. The parallelity between the time of appearance of peak overcompensation phase in the muscle strength and in the post-exercise level of musclar ATP, CP and glycogen contents suggest a casual relationship between these changes.

  1. Effects of combined endurance and strength training on muscle strength, power and hypertrophy in 40-67-year-old men.

    PubMed

    Karavirta, L; Häkkinen, A; Sillanpää, E; García-López, D; Kauhanen, A; Haapasaari, A; Alen, M; Pakarinen, A; Kraemer, W J; Izquierdo, M; Gorostiaga, E; Häkkinen, K

    2011-06-01

    Both strength and endurance training have several positive effects on aging muscle and physical performance of middle-aged and older adults, but their combination may compromise optimal adaptation. This study examined the possible interference of combined strength and endurance training on neuromuscular performance and skeletal muscle hypertrophy in previously untrained 40-67-year-old men. Maximal strength and muscle activation in the upper and lower extremities, maximal concentric power, aerobic capacity and muscle fiber size and distribution in the vastus lateralis muscle were measured before and after a 21-week training period. Ninety-six men [mean age 56 (SD 7) years] completed high-intensity strength training (S) twice a week, endurance training (E) twice a week, combined training (SE) four times per week or served as controls (C). SE and S led to similar gains in one repetition maximum strength of the lower extremities [22 (9)% and 21 (8)%, P<0.001], whereas E and C showed minor changes. Cross-sectional area of type II muscle fibers only increased in S [26 (22)%, P=0.002], while SE showed an inconsistent, non-significant change [8 (35)%, P=0.73]. Combined training may interfere with muscle hypertrophy in aging men, despite similar gains in maximal strength between the strength and the combined training groups. © 2009 John Wiley & Sons A/S.

  2. Creatine supplementation during pulmonary rehabilitation in chronic obstructive pulmonary disease.

    PubMed

    Fuld, J P; Kilduff, L P; Neder, J A; Pitsiladis, Y; Lean, M E J; Ward, S A; Cotton, M M

    2005-07-01

    Skeletal muscle wasting and dysfunction are strong independent predictors of mortality in patients with chronic obstructive pulmonary disease (COPD). Creatine nutritional supplementation produces increased muscle mass and exercise performance in health. A controlled study was performed to look for similar effects in 38 patients with COPD. Thirty eight patients with COPD (mean (SD) forced expiratory volume in 1 second (FEV(1)) 46 (15)% predicted) were randomised to receive placebo (glucose polymer 40.7 g) or creatine (creatine monohydrate 5.7 g, glucose 35 g) supplements in a double blind trial. After 2 weeks loading (one dose three times daily), patients participated in an outpatient pulmonary rehabilitation programme combined with maintenance (once daily) supplementation. Pulmonary function, body composition, and exercise performance (peripheral muscle strength and endurance, shuttle walking, cycle ergometry) took place at baseline (n = 38), post loading (n = 36), and post rehabilitation (n = 25). No difference was found in whole body exercise performance between the groups: for example, incremental shuttle walk distance mean -23.1 m (95% CI -71.7 to 25.5) post loading and -21.5 m (95% CI -90.6 to 47.7) post rehabilitation. Creatine increased fat-free mass by 1.09 kg (95% CI 0.43 to 1.74) post loading and 1.62 kg (95% CI 0.47 to 2.77) post rehabilitation. Peripheral muscle performance improved: knee extensor strength 4.2 N.m (95% CI 1.4 to 7.1) and endurance 411.1 J (95% CI 129.9 to 692.4) post loading, knee extensor strength 7.3 N.m (95% CI 0.69 to 13.92) and endurance 854.3 J (95% CI 131.3 to 1577.4) post rehabilitation. Creatine improved health status between baseline and post rehabilitation (St George's Respiratory Questionnaire total score -7.7 (95% CI -14.9 to -0.5)). Creatine supplementation led to increases in fat-free mass, peripheral muscle strength and endurance, health status, but not exercise capacity. Creatine may constitute a new ergogenic treatment in COPD.

  3. Sublingual testosterone replacement improves muscle mass and strength, decreases bone resorption, and increases bone formation markers in hypogonadal men--a clinical research center study.

    PubMed

    Wang, C; Eyre, D R; Clark, R; Kleinberg, D; Newman, C; Iranmanesh, A; Veldhuis, J; Dudley, R E; Berman, N; Davidson, T; Barstow, T J; Sinow, R; Alexander, G; Swerdloff, R S

    1996-10-01

    To study the effects of androgen replacement therapy on muscle mass and strength and bone turnover markers in hypogonadal men, we administered sublingual testosterone (T) cyclodextrin (SLT; 5 mg, three times daily) to 67 hypogonadal men (baseline serum T, < 8.4 nmol/L) recruited from 4 centers in the U.S.: Torrance (n = 34), Durham (n = 12), New York (n = 9), and Salem (n = 12). Subjects who had received prior T therapy were withdrawn from injections for at least 6 weeks and from oral therapy for 4 weeks. Body composition, muscle strength, and serum and urinary bone turnover markers were measured before and after 6 months of SLT. We have shown previously that this regimen for 60 days will maintain adequate serum T levels and restore sexual function. Total body (P = 0.0104) and lean body mass (P = 0.007) increased with SLT treatment in the 34 subjects in whom body composition was assessed. There was no significant change in total body fat or percent fat. The increase in lean body mass was mainly in the legs; the right leg lean mass increased from 8.9 +/- 0.3 kg at 0 months to 9.2 +/- 0.3 kg at 6 months (P = 0.0008). This increase in leg lean mass was associated with increased leg muscle strength, assessed by leg press (0 months, 139.0 +/- 4.0 kg; 6 months, 147.7 +/- 4.2 kg; P = 0.0038). SLT replacement in hypogonadal men led to small, but significant, decreases in serum Ca (P = 0.0029) and the urinary calcium/creatinine ratio (P = 0.0066), which were associated with increases in serum PTH (P = 0.0001). At baseline, the urinary type I collagen-cross linked N-telopeptides/creatinine ratio [75.6 +/- 7.9 nmol bone collagen equivalents (BCE/mmol] was twice the normal adult male mean (41.0 +/- 3.6 nmol BCE/mmol) and was significantly decreased in response to SLT treatment at 6 months (68.2 +/- 7.7 nmol BCE/mmol; P = 0.0304) without significant changes in urinary creatinine. Serum skeletal alkaline phosphatase did not change. In addition, SLT replacement caused significant increases in serum osteocalcin (P = 0.0001) and type I procollagen (P = 0.0012). Bone mineral density did not change during the 6 months of SLT treatment. We conclude that SLT replacement therapy resulted in increases in lean muscle mass and muscle strength. Like estrogen replacement in hypogonadal postmenopausal females, androgen replacement therapy led to decreased bone resorption and urinary calcium excretion. Moreover, androgen replacement therapy may have the additional benefit of increasing bone formation. A longer term study for several years duration would be necessary to demonstrate whether these changes in bone turnover marker levels will result in increased bone mineral density decreased fracture risks, and reduced frailty in hypogonadal men.

  4. Four-month course of soluble milk proteins interacts with exercise to improve muscle strength and delay fatigue in elderly participants.

    PubMed

    Gryson, Céline; Ratel, Sébastien; Rance, Mélanie; Penando, Stéphane; Bonhomme, Cécile; Le Ruyet, Pascale; Duclos, Martine; Boirie, Yves; Walrand, Stéphane

    2014-12-01

    The benefit of protein supplementation on the adaptive response of muscle to exercise training in older people is controversial. To investigate the independent and combined effects of a multicomponent exercise program with and without a milk-based nutritional supplement on muscle strength and mass, lower-extremity fatigue, and metabolic markers. A sample of 48 healthy sedentary men aged 60.8 ± 0.4 years were randomly assigned to a 16-week multicomponent exercise training program with a milk-based supplement containing, besides proteins [total milk proteins 4 or 10 g/day or soluble milk proteins rich in leucine (PRO) 10 g/day], carbohydrates and fat. Body composition, muscle mass and strength, and time to task failure, an index of muscle fatigue, were measured. Blood lipid, fibrinogen, creatine phosphokinase, glucose, insulin, C-reactive protein, interleukin-6, tumor necrosis factor-α soluble receptors, and endothelial markers were assessed. Body fat mass was reduced after the 4-month training program in groups receiving 10 g/day of protein supplementation (P < .01). The training program sustained with the daily 10 g/day PRO was associated with a significant increase in dominant fat free mass (+5.4%, P < .01) and in appendicular muscle mass (+4.5%, P < .01). Blood cholesterol was decreased in the trained group receiving 10 g/day PRO. The index of insulin resistance (homeostasis model assessment-insulin resistance) and blood creatine phosphokinase were reduced in the groups receiving 10 g/day PRO, irrespective of exercise. The inflammatory and endothelial markers were not different between the groups. Training caused a significant improvement (+10.6% to 19.4%, P < .01) in the maximal oxygen uptake. Increased maximum voluntary contraction force was seen in the trained groups receiving 10 g/day of proteins (about 3%, P < .05). Time to task failure was improved in the trained participants receiving a 10 g/day supplementation with PRO (P < .01). Soluble milk proteins rich in leucine improved time to muscle failure and increase in skeletal muscle mass and strength after prolonged multicomponent exercise training in healthy older men. Copyright © 2014 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  5. Does the Q - H index show a stronger relationship than the H:Q ratio in regard to knee pain during daily activities in patients with knee osteoarthritis?

    PubMed

    Fujita, Remi; Matsui, Yasumoto; Harada, Atsushi; Takemura, Marie; Kondo, Izumi; Nemoto, Tetsuya; Sakai, Tadahiro; Hiraiwa, Hideki; Ota, Susumu

    2016-12-01

    [Purpose] The purpose of this study was to elucidate the relationship between knee muscle strength and knee pain in activities of daily living, based on consideration of the difference between extension and flexion strength (Q - H) and the hamstring:quadriceps (H:Q) ratio in patients with knee osteoarthritis. [Subjects and Methods] The participants were 78 females with knee osteoarthritis, and a total of 133 knees that had not been treated surgically were the targets of this research. The legs were divided according to dominance. Isometric knee extension and flexion muscle strength and knee pain during activities of daily living were measured. The H:Q ratio (flexion/extension muscle strength) and the difference between extension and flexion strength, (extension muscle strength/weight) minus (flexion muscle strength/weight), that is, Q - H, were calculated. The correlation between these indices and the knee pain score during activities of daily living was investigated. [Results] Greater knee pain during activities of daily living was related to lower knee extension muscle strength and Q - H in both the dominant and nondominant legs. Knee flexion muscle strength and the H:Q ratio were not significantly correlated with knee pain during any activities of daily living. [Conclusion] Knee extension muscle strength and Q - H were found to be significantly correlated with knee pain during activities of daily living, whereas the H:Q ratio was not.

  6. CCL2 and CCR2 variants are associated with skeletal muscle strength and change in strength with resistance training.

    PubMed

    Harmon, Brennan T; Orkunoglu-Suer, E Funda; Adham, Kasra; Larkin, Justin S; Gordish-Dressman, Heather; Clarkson, Priscilla M; Thompson, Paul D; Angelopoulos, Theodore J; Gordon, Paul M; Moyna, Niall M; Pescatello, Linda S; Visich, Paul S; Zoeller, Robert F; Hubal, Monica J; Tosi, Laura L; Hoffman, Eric P; Devaney, Joseph M

    2010-12-01

    Baseline muscle size and muscle adaptation to exercise are traits with high variability across individuals. Recent research has implicated several chemokines and their receptors in the pathogenesis of many conditions that are influenced by inflammatory processes, including muscle damage and repair. One specific chemokine, chemokine (C-C motif) ligand 2 (CCL2), is expressed by macrophages and muscle satellite cells, increases expression dramatically following muscle damage, and increases expression further with repeated bouts of exercise, suggesting that CCL2 plays a key role in muscle adaptation. The present study hypothesizes that genetic variations in CCL2 and its receptor (CCR2) may help explain muscle trait variability. College-aged subjects [n = 874, Functional Single-Nucleotide Polymorphisms Associated With Muscle Size and Strength (FAMUSS) cohort] underwent a 12-wk supervised strength-training program for the upper arm muscles. Muscle size (via MR imaging) and elbow flexion strength (1 repetition maximum and isometric) measurements were taken before and after training. The study participants were then genotyped for 11 genetic variants in CCL2 and five variants in CCR2. Variants in the CCL2 and CCR2 genes show strong associations with several pretraining muscle strength traits, indicating that inflammatory genes in skeletal muscle contribute to the polygenic system that determines muscle phenotypes. These associations extend across both sexes, and several of these genetic variants have been shown to influence gene regulation.

  7. Muscle strength and kinetic gait pattern in children with bilateral spastic CP.

    PubMed

    Eek, Meta Nyström; Tranberg, Roy; Beckung, Eva

    2011-03-01

    Cerebral palsy is often associated with an abnormal gait pattern. This study put focus on relation between muscle strength and kinetic gait pattern in children with bilateral spastic cerebral palsy and compares them with a reference group. In total 20 children with CP and 20 typically developing children participated. They were all assessed with measurement of muscle strength in eight muscle groups in the legs and a 3-dimensional gait analysis including force data. It was found that children with CP were not only significantly weaker in all muscle groups but also walked with slower velocity and shorter stride length when compared with the reference group. Gait moments differed at the ankle level with significantly lower moments in children with CP. Gait moments were closer to the maximal muscle strength in the group of children with CP. Furthermore a correlation between plantarflexing gait moment and muscle strength was observed in six of the eight muscle groups in children with CP, a relation not found in the reference group. A similar pattern was seen between muscle strength and generating ankle power with a rho=0.582-0.766. The results of this study state the importance of the relationship of the overall muscle strength pattern in the lower extremity, not only the plantarflexors. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Relationships of muscle strength and bone mineral density in ambulatory children with cerebral palsy.

    PubMed

    Chen, C-L; Lin, K-C; Wu, C-Y; Ke, J-Y; Wang, C-J; Chen, C-Y

    2012-02-01

    This work explores the relationships of muscle strength and areal bone mineral density (aBMD) in ambulatory children with cerebral palsy (CP). The knee extensor strength, but not motor function, was related to aBMD. Thus, muscle strength, especially antigravity muscle strength, was more associated with aBMD in these children than motor function. Muscle strength is related to bone density in normal children. However, no studies have examined these relationships in ambulatory children with CP. This work explores the relationships of muscle strength and aBMD in ambulatory children with CP. Forty-eight ambulatory children with spastic CP, aged 5-15 years, were classified into two groups based on Gross Motor Function Classification System levels: I (n = 28) and II (n = 20). Another 31 normal development (ND) children were recruited as the comparison group for the aBMD. Children with CP underwent assessments of growth, lumbar and distal femur aBMD, Gross Motor Function Measure-66 (GMFM-66), and muscle strength of knee extensor and flexor by isokinetic dynamometer. The distal femur aBMD, but not lumbar aBMD, was lower in children with CP than in ND children (p < 0.05). Children with level I had greater knee flexor strength and GMFM-66 scores than those with level II (p < 0.001). However, the knee extensor strength and distal femur and lumbar aBMD did not differ between two groups. Regression analysis revealed the weight and knee extensor strength, but not GMFM-66 scores, were related positively to the distal femur and lumbar aBMD (adjusted r (2) = 0.56-0.65, p < 0.001). These results suggest the muscle strength, especially antigravity muscle strength, were more associated with the bone density of ambulatory children with CP than motor function. The data may allow clinicians for early identifying the ambulatory CP children of potential low bone density.

  9. Effects of Inspiratory Muscle Training and Calisthenics-and-Breathing Exercises in COPD With and Without Respiratory Muscle Weakness.

    PubMed

    Basso-Vanelli, Renata P; Di Lorenzo, Valéria A Pires; Labadessa, Ivana G; Regueiro, Eloisa M G; Jamami, Mauricio; Gomes, Evelim L F D; Costa, Dirceu

    2016-01-01

    Patients with COPD may experience respiratory muscle weakness. Two therapeutic approaches to the respiratory muscles are inspiratory muscle training and calisthenics-and-breathing exercises. The aims of the study are to compare the effects of inspiratory muscle training and calisthenics-and-breathing exercises associated with physical training in subjects with COPD as an additional benefit of strength and endurance of the inspiratory muscles, thoracoabdominal mobility, physical exercise capacity, and reduction in dyspnea on exertion. In addition, these gains were compared between subjects with and without respiratory muscle weakness. 25 subjects completed the study: 13 composed the inspiratory muscle training group, and 12 composed the calisthenics-and-breathing exercises group. Subjects were assessed before and after training by spirometry, measurements of respiratory muscle strength and test of inspiratory muscle endurance, thoracoabdominal excursion measurements, and the 6-min walk test. Moreover, scores for the Modified Medical Research Council dyspnea scale were reported. After intervention, there was a significant improvement in both groups of respiratory muscle strength and endurance, thoracoabdominal mobility, and walking distance in the 6-min walk test. Additionally, there was a decrease of dyspnea in the 6-min walk test peak. A difference was found between groups, with higher values of respiratory muscle strength and thoracoabdominal mobility and lower values of dyspnea in the 6-min walk test peak and the Modified Medical Research Council dyspnea scale in the inspiratory muscle training group. In the inspiratory muscle training group, subjects with respiratory muscle weakness had greater gains in inspiratory muscle strength and endurance. Both interventions increased exercise capacity and decreased dyspnea during physical effort. However, inspiratory muscle training was more effective in increasing inspiratory muscle strength and endurance, which could result in a decreased sensation of dyspnea. In addition, subjects with respiratory muscle weakness that performed inspiratory muscle training had higher gains in inspiratory muscle strength and endurance but not of dyspnea and submaximal exercise capacity. (ClinicalTrials.gov registration NCT01510041.). Copyright © 2016 by Daedalus Enterprises.

  10. Exercise capacity and muscle strength and risk of vascular disease and arrhythmia in 1.1 million young Swedish men: cohort study.

    PubMed

    Andersen, Kasper; Rasmussen, Finn; Held, Claes; Neovius, Martin; Tynelius, Per; Sundström, Johan

    2015-09-16

    To investigate the associations of exercise capacity and muscle strength in late adolescence with risk of vascular disease and arrhythmia. Cohort study. General population in Sweden. 1.1 million men who participated in mandatory military conscription between 1 August 1972 and 31 December 1995, at a median age of 18.2 years. Participants were followed until 31 December 2010. Associations between exercise capacity and muscle strength with risk of vascular disease and subgroups (ischaemic heart disease, heart failure, stroke, and cardiovascular death) and risk of arrhythmia and subgroups (atrial fibrillation or flutter, bradyarrhythmia, supraventricular tachycardia, and ventricular arrhythmia or sudden cardiac death). Maximum exercise capacity was estimated by the ergometer bicycle test, and muscle strength was measured as handgrip strength by a hand dynamometer. High exercise capacity or muscle strength was deemed as above the median level. During a median follow-up of 26.3 years, 26 088 vascular disease events and 17 312 arrhythmia events were recorded. Exercise capacity was inversely associated with risk of vascular disease and its subgroups. Muscle strength was also inversely associated with vascular disease risk, driven by associations of higher muscle strength with lower risk of heart failure and cardiovascular death. Exercise capacity had a U shaped association with risk of arrhythmia, driven by a direct association with risk of atrial fibrillation and a U shaped association with bradyarrhythmia. Higher muscle strength was associated with lower risk of arrhythmia (specifically, lower risk of bradyarrhythmia and ventricular arrhythmia). The combination of high exercise capacity and high muscle strength was associated with a hazard ratio of 0.67 (95% confidence interval 0.65 to 0.70) for vascular events and 0.92 (0.88 to 0.97) for arrhythmia compared with the combination of low exercise capacity and low muscle strength. Exercise capacity and muscle strength in late adolescence are independently and jointly associated with long term risk of vascular disease and arrhythmia. The health benefit of lower risk of vascular events with higher exercise capacity was not outweighed by higher risk of arrhythmia. © Andersen et al 2015.

  11. Cancer-Specific Mortality Relative to Engagement in Muscle-Strengthening Activities and Lower Extremity Strength.

    PubMed

    Dankel, Scott J; Loenneke, Jeremy P; Loprinzi, Paul D

    2018-02-01

    Skeletal muscle strength and engagement in muscle-strengthening activities are each inversely associated with all-cause mortality; however, less is known on their relationship with cancer-specific mortality. Data from the 1999-2002 National Health and Nutrition Examination Survey were used assessing 2773 individuals aged 50 years or older. Individuals being dichotomized at the 75th percentile for knee extensor strength, and engagement in muscle-strengthening activities was acquired through self-report with ≥2 sessions per week were classified as meeting guidelines. With respect to cancer-specific mortality, individuals in the upper quartile for muscle strength were at a 50% reduced risk (hazard ratio = 0.50; 95% confidence interval, 0.29-0.85; P = .01) and those meeting muscle-strengthening activities were at a nonsignificant 8% reduced risk (hazard ratio = 0.92; 95% confidence interval, 0.45-1.86, P = .81) of cancer-specific mortality after adjusting for covariates. Clinicians should routinely assess lower extremity strength and promote engagement in muscle-strengthening activities aimed at increasing muscle strength.

  12. Quadriceps muscle strength and voluntary activation after polio.

    PubMed

    Beelen, Anita; Nollet, Frans; de Visser, Marianne; de Jong, Bareld A; Lankhorst, Gustaaf J; Sargeant, Anthony J

    2003-08-01

    Quadriceps strength, maximal anatomical cross-sectional area (CSA), maximal voluntary activation (MVA), and maximal relaxation rate (MRR) were studied in 48 subjects with a past history of polio, 26 with and 22 without postpoliomyelitis syndrome (PPS), and in 13 control subjects. It was also investigated whether, apart from CSA, MVA and MRR were determinants of muscle strength. Polio subjects had significantly less strength, CSA, and MRR in the more-affected quadriceps than control subjects. MVA was reduced in 18 polio subjects and normal in all controls. PPS subjects differed from non-PPS subjects only in that the MVA of the more-affected quadriceps was significantly lower. Both CSA and MVA were found to be associated with muscle strength. Quadriceps strength in polio subjects was dependent not only on muscle mass, but also on the ability to activate the muscles. Since impaired activation was more pronounced in PPS subjects, the new muscle weakness and functional decline in PPS may be due not only to a gradual loss of muscle fibers, but also to an increasing inability to activate the muscles.

  13. [Correlations Between Joint Proprioception, Muscle Strength, and Functional Ability in Patients with Knee Osteoarthritis].

    PubMed

    Chen, Yoa; Yu, Yong; He, Cheng-qi

    2015-11-01

    To establish correlations between joint proprioception, muscle flexion and extension peak torque, and functional ability in patients with knee osteoarthritis (OA). Fifty-six patients with symptomatic knee OA were recruited in this study. Both proprioceptive acuity and muscle strength were measured using the isomed-2000 isokinetic dynamometer. Proprioceptive acuity was evaluated by establishing the joint motion detection threshold (JMDT). Muscle strength was evaluated by Max torque (Nm) and Max torque/weight (Nm/ kg). Functional ability was assessed by the Western Ontario and McMaster Universities Osteoarthritis Index physical function (WOMAC-PF) questionnaire. Correlational analyses were performed between proprioception, muscle strength, and functional ability. A multiple stepwise regression model was established, with WOMAC-PF as dependent variable and patient age, body mass index (BMI), visual analogue scale (VAS)-score, mean grade for Kellgren-Lawrance of both knees, mean strength for quadriceps and hamstring muscles of both knees, and mean JMDT of both knees as independent variables. Poor proprioception (high JMDT) was negatively correlated with muscle strength (P<0.05). There was no significant correlation between knee proprioception (high JMDT) and joint pain (WOMAC pain score), and between knee proprioception (high JMDT) and joint stiffness (WOMAC stiffness score). Poor proprioception (high JMDT) was correlated with limitation in functional ability (WOMAC physical function score r=0.659, P<0.05). WOMAC score was correlated with poor muscle strength (quadriceps muscle strength r = -0.511, P<0.05, hamstring muscle strength r = -0.408, P<0.05). The multiple stepwise regression model showed that high JMDT C standard partial regression coefficient (B) = 0.385, P<0.50 and high VAS-scale score (B=0.347, P<0.05) were significant predictors of WOMAC-PF score. Patients with poor proprioception is associated with poor muscle strength and limitation in functional ability. Patients with symptomatic OA of knees commonly endure with moderate to considerable dysfunction, which is associated with poor proprioception (high JMDT) and high VAS-scale score.

  14. A systematic review of the effects of different types of therapeutic exercise on physiologic and functional measurements in patients with HIV/AIDS

    PubMed Central

    Gomes-Neto, Mansueto; Conceição, Cristiano Sena; Carvalho, Vitor Oliveira; Brites, Carlos

    2013-01-01

    Several studies have reported the benefits of exercise training for adults with HIV, although there is no consensus regarding the most efficient modalities. The aim of this study was to determine the effects of different types of exercise on physiologic and functional measurements in patients with HIV using a systematic strategy for searching randomized controlled trials. The sources used in this review were the Cochrane Library, EMBASE, MEDLINE, and PEDro from 1950 to August 2012. We selected randomized controlled trials examining the effects of exercise on body composition, muscle strength, aerobic capacity, and/or quality of life in adults with HIV. Two independent reviewers screened the abstracts using the Cochrane Collaboration's protocol. The PEDro score was used to evaluate methodological quality. In total, 29 studies fulfilled the inclusion criteria. Individual studies suggested that exercise training contributed to improvement of physiologic and functional parameters, but that the gains were specific to the type of exercise performed. Resistance exercise training improved outcomes related to body composition and muscle strength, with little impact on quality of life. Aerobic exercise training improved body composition and aerobic capacity. Concurrent training produced significant gains in all outcomes evaluated, although moderate intensity and a long duration were necessary. We concluded that exercise training was shown to be a safe and beneficial intervention in the treatment of patients with HIV. PMID:24037014

  15. Effects of a 10-Day Intensive Health Promotion Program Combining Diet and Physical Activity on Body Composition, Physical Fitness, and Blood Factors of Young Adults: A Randomized Pilot Study

    PubMed Central

    Lee, Kyoung Soon; Lee, Jae Koo; Yeun, Young Ran

    2017-01-01

    Background A lifestyle characterized by poor eating habits and physical inactivity is a risk factor for multiple lifestyle diseases in young adults. This study assessed the effects of implementing an intensive 10-day health promotion program combining diet and physical activities on body composition, physical fitness, and biochemical parameters of young adults. Material/Methods In this randomized pilot study, 30 female undergraduate students were randomly allocated to an intervention and a control group. The health promotion program consisted of unlimited amounts of vegetarian food; aerobic, flexibility, and strength exercises (3 hours/day); lectures on health (3 hours/day); massage practice (2 hours/day); and healthy cooking practice (1 hour/day). The effects of the intervention were analyzed using the Mann-Whitney U test and the Wilcoxon signed-rank test. Results The intensive 10-day health promotion program significantly reduced body weight, body mass index, triglyceride, total cholesterol, low-density lipoprotein cholesterol, blood glucose, and the homeostasis model assessment of insulin resistance. At the same time, participants demonstrated increased back muscle, leg muscle, and grip strength; waist and shoulder flexibility; balance; and cardiorespiratory endurance. Conclusions The intensive 10-day health promotion program is a viable intervention for improving body composition, physical fitness, glycemic control, and blood lipid levels in young adults. PMID:28399076

  16. Cycle training induces muscle hypertrophy and strength gain: strategies and mechanisms.

    PubMed

    Ozaki, Hayao; Loenneke, J P; Thiebaud, R S; Abe, T

    2015-03-01

    Cycle training is widely performed as a major part of any exercise program seeking to improve aerobic capacity and cardiovascular health. However, the effect of cycle training on muscle size and strength gain still requires further insight, even though it is known that professional cyclists display larger muscle size compared to controls. Therefore, the purpose of this review is to discuss the effects of cycle training on muscle size and strength of the lower extremity and the possible mechanisms for increasing muscle size with cycle training. It is plausible that cycle training requires a longer period to significantly increase muscle size compared to typical resistance training due to a much slower hypertrophy rate. Cycle training induces muscle hypertrophy similarly between young and older age groups, while strength gain seems to favor older adults, which suggests that the probability for improving in muscle quality appears to be higher in older adults compared to young adults. For young adults, higher-intensity intermittent cycling may be required to achieve strength gains. It also appears that muscle hypertrophy induced by cycle training results from the positive changes in muscle protein net balance.

  17. The effects of 12 weeks of beta-hydroxy-beta-methylbutyrate free acid supplementation on muscle mass, strength, and power in resistance-trained individuals: a randomized, double-blind, placebo-controlled study.

    PubMed

    Wilson, Jacob M; Lowery, Ryan P; Joy, Jordan M; Andersen, J C; Wilson, Stephanie M C; Stout, Jeffrey R; Duncan, Nevine; Fuller, John C; Baier, Shawn M; Naimo, Marshall A; Rathmacher, John

    2014-06-01

    Studies utilizing beta-hydroxy-beta-methylbutyrate (HMB) supplementation in trained populations are limited. No long-term studies utilizing HMB free acid (HMB-FA) have been conducted. Therefore, we investigated the effects of 12 weeks of HMB-FA supplementation on skeletal muscle hypertrophy, body composition, strength, and power in trained individuals. We also determined the effects of HMB-FA on muscle damage and performance during an overreaching cycle. A three-phase double-blind, placebo- and diet-controlled randomized intervention study was conducted. Phase 1 was an 8-week-periodized resistance-training program; Phase 2 was a 2-week overreaching cycle; and Phase 3 was a 2-week taper. Muscle mass, strength, and power were examined at weeks 0, 4, 8, and 12 to assess the chronic effects of HMB-FA; and assessment of these, as well as cortisol, testosterone, and creatine kinase (CK) was performed at weeks 9 and 10 of the overreaching cycle. HMB-FA resulted in increased total strength (bench press, squat, and deadlift combined) over the 12-week training (77.1 ± 18.4 vs. 25.3 ± 22.0 kg, p < 0.001); a greater increase in vertical jump power (991 ± 168 vs. 630 ± 167 W, p < 0.001); and increased lean body mass gain (7.4 ± 4.2 vs. 2.1 ± 6.1 kg, p < 0.001) in HMB-FA- and placebo-supplemented groups, respectively. During the overreaching cycle, HMB-FA attenuated increases in CK (-6 ± 91 vs. 277 ± 229 IU/l, p < 0.001) and cortisol (-0.2 ± 2.9 vs. 4.5 ± 1.7 μg/dl, p < 0.003) in the HMB-FA- and placebo-supplemented groups, respectively. These results suggest that HMB-FA enhances hypertrophy, strength, and power following chronic resistance training, and prevents decrements in performance following the overreaching.

  18. Subclinical Hypothyroidism has Little Influences on Muscle Mass or Strength in Elderly People

    PubMed Central

    Moon, Min Kyong; Lee, You Jin; Choi, Sung Hee; Lim, Soo; Yang, Eun Joo; Lim, Jae-Young; Paik, Nam-Jong; Kim, Ki Woong; Park, Kyong Soo; Jang, Hak C.

    2010-01-01

    Sarcopenia, the age-related decline in muscle mass, affects the muscle strength and muscle quality, and these changes decrease functional capacity. The prevalence of thyroid dysfunction increases with age, and changes in thyroid hormone level lead to neuromuscular deficits. We investigated the effects of subclinical hypothyroidism on the muscle mass, strength or quality in elderly people. One thousand one hundred eighteen subjects aged ≥65 yr were randomly selected from a local population and classified into a euthyroid (280 men and 358 women), subclinically hypothyroid (61 men and 75 women), or overtly hypothyroid (7 men and 16 women) group. Although women with subclinical hypothyroidism had a higher prevalence of sarcopenia, defined according to the ratio of appendicular skeletal muscle mass to the square of height, muscle mass, strength or quality did not differ in relation to thyroid status in men or in women. Multivariate analysis including age, diabetes, hypertension, acute coronary event, alcohol, smoking, presence of pain, physical activity score, and lipid profile, showed that thyroid-stimulating hormone level was not associated with muscle mass, strength or quality. In conclusion, subclinical hypothyroidism has little influences on muscle mass, strength or quality, and may not be associated with sarcopenia. PMID:20676329

  19. Subclinical hypothyroidism has little influences on muscle mass or strength in elderly people.

    PubMed

    Moon, Min Kyong; Lee, You Jin; Choi, Sung Hee; Lim, Soo; Yang, Eun Joo; Lim, Jae-Young; Paik, Nam-Jong; Kim, Ki Woong; Park, Kyong Soo; Jang, Hak C; Cho, Bo Youn; Park, Young Joo

    2010-08-01

    Sarcopenia, the age-related decline in muscle mass, affects the muscle strength and muscle quality, and these changes decrease functional capacity. The prevalence of thyroid dysfunction increases with age, and changes in thyroid hormone level lead to neuromuscular deficits. We investigated the effects of subclinical hypothyroidism on the muscle mass, strength or quality in elderly people. One thousand one hundred eighteen subjects aged > or = 65 yr were randomly selected from a local population and classified into a euthyroid (280 men and 358 women), subclinically hypothyroid (61 men and 75 women), or overtly hypothyroid (7 men and 16 women) group. Although women with subclinical hypothyroidism had a higher prevalence of sarcopenia, defined according to the ratio of appendicular skeletal muscle mass to the square of height, muscle mass, strength or quality did not differ in relation to thyroid status in men or in women. Multivariate analysis including age, diabetes, hypertension, acute coronary event, alcohol, smoking, presence of pain, physical activity score, and lipid profile, showed that thyroid-stimulating hormone level was not associated with muscle mass, strength or quality. In conclusion, subclinical hypothyroidism has little influences on muscle mass, strength or quality, and may not be associated with sarcopenia.

  20. Interrogating the viscoelastic properties of tissue using viscoelastic response (VISR) ultrasound

    NASA Astrophysics Data System (ADS)

    Selzo, Mallory Renee

    Affecting approximately 1 in 3,500 newborn males, Duchenne muscular dystrophy (DMD) is one of the most common lethal genetic disorders in humans. Boys with DMD suffer progressive loss of muscle strength and function, leading to wheelchair dependence, cardiac and respiratory compromise, and death during young adulthood. There are currently no treatments that can halt or reverse the disease progression, and translating prospective treatments into clinical trials has been delayed by inadequate outcome measures. Current outcome measures, such as functional and muscle strength assessments, lack sensitivity to individual muscles, require subjective effort of the child, and are impacted by normal childhood growth and development. The goal of this research is to develop Viscoelastic Response (VisR) ultrasound which can be used to delineate compositional changes in muscle associated with DMD. In VisR, acoustic radiation force (ARF) is used to produce small, localized displacements within the muscle. Using conventional ultrasound to track the motion, the displacement response of the tissue can be evaluated against a mechanical model. In order to develop signal processing techniques and assess mechanical models, finite element method simulations are used to model the response of a viscoelastic material to ARF excitations. Results are then presented demonstrating VisR differentiation of viscoelastic changes with progressive dystrophic degeneration in a dog model of DMD. Finally, clinical feasibility of VisR imaging is demonstrated in two boys with DMD.

  1. Effect of whole-body vibration on neuromuscular performance and body composition for females 65 years and older: a randomized-controlled trial.

    PubMed

    von Stengel, S; Kemmler, W; Engelke, K; Kalender, W A

    2012-02-01

    We examined whether the effect of multipurpose exercise can be enhanced by whole-body vibration (WBV). One hundred and fifty-one post-menopausal women (68.5 ± 3.1 years) were randomly assigned to three groups: (1) a training group (TG); (2) training including vibration (VTG); and (3) a wellness control group (CG). TG and VTG performed the same training program twice weekly (60 min), consisting of aerobic and strength exercises, with the only difference that leg strength exercises (15 min) were performed with (VTG) or without (TG) vibration. CG performed a low-intensity "wellness" program. At baseline and after 18 months, body composition was determined using dual-X-ray-absorptiometry. Maximum isometric strength was determined for the legs and the trunk region. Leg power was measured by countermovement jumps using a force-measuring plate. In the TG lean body mass, total body fat, and abdominal fat were favorably affected, but no additive effects were generated by the vibration stimulus. However, concerning muscle strength and power, there was a tendency in favor of the VTG. Only vibration training resulted in a significant increase of leg and trunk flexion strength compared with CG. In summary, WBV embedded in a multipurpose exercise program showed minor additive effects on body composition and neuromuscular performance. © 2010 John Wiley & Sons A/S.

  2. Ten-week Whole-body Vibration Training Improves Body Composition and Muscle Strength in Obese Women

    PubMed Central

    Milanese, Chiara; Piscitelli, Francesco; Zenti, Maria Grazia; Moghetti, Paolo; Sandri, Marco; Zancanaro, Carlo

    2013-01-01

    This work explored the short-term effect of whole body vibration (WBV) training on anthropometry, body composition and muscular strength in obese women. Fifty obese women (age=46.8±7.81[SD]y; BMI=35.1±3.55kg/m2) were assigned to a ten-week WBV training period, two times a week (in each session, 14min vibration training, 5min rest; vibration amplitude 2.0-5.0mm, frequency 40-60Hz), with (n=18) or without (n=17) radiofrequency, or to a non-exercise control group (n=15). Subjects were instructed not to change their habitual lifestyle. Before and after the ten-week experimental period, anthropometric measurements, dual-energy X-ray absorptiometry (DXA), and the leg press, leg curl and leg extension strength tests were carried out. All changes in the two groups of WBV training, with or without radiofrequency, were similar and these groups were combined in a single WBV intervention group. As compared to controls, subjects submitted to WBV training had significantly lower BMI, total body and trunk fat, sum of skinfolds and body circumferences. On the other hand, lower limb strength tests were increased in the WBV group. These preliminary results suggest that WBV training may improve body composition and muscular strength in obese women and may be a useful adjuvant to lifestyle prescriptions. PMID:23423629

  3. Relationship between weight loss and parameters of skeletal muscle function in patients with advanced cancer and fatigue.

    PubMed

    Morgado, P Cresta; Giorlando, A; Castro, M; Navigante, A

    2016-09-01

    This study aims to determine the influence of significant weight loss on parameters of skeletal muscle function in a population of advanced cancer patients with fatigue. A cross-sectional and comparative study was designed between two arms of advanced cancer patients with fatigue (fatigue numeral scale (FNS) ≥4). A arm (n = 27) with ≥5 % weight loss in the last 6 months, and B arm (n = 22) without weight loss. Muscle strength was examined by hand grip technique and measurements of body composition by bioimpedance analysis (BIA), values of hemoglobin, albumin, lactic dehydrogenase (LDH), c-reactive protein (CRP), urine creatinine, and FNS. These variables were compared between both groups and correlated within each group. here were no differences concerning parameters of muscle strength between both arms. A arm had values of CRP ≥10 ug/dl in 77 % compared with 38.5 % of B arm (p = 0.004). A arm showed a higher percentage of body cell mass (%BCM) than B arm (p = 0.005). The A arm also showed a lower percentage of fat mass (%FM) (p = 0.014) when compared to the B arm. FNS was higher in A arm (median 7 vs 5; p = 0.047). All the variables of muscle strength had a significant positive correlation. In A arm, BCM had a negative significant correlation with CRP (p = 0.021). In this study, significant weight loss and high CRP did not have influence on parameters of skeletal muscular function. We consider that further studies should be necessary, preferably with longitudinal designs to evaluate these findings.

  4. Multiple chemical sensitivity: Genotypic characterization, nutritional status and quality of life in 52 patients.

    PubMed

    Loria-Kohen, Viviana; Marcos-Pasero, Helena; de la Iglesia, Rocío; Aguilar-Aguilar, Elena; Espinosa-Salinas, Isabel; Herranz, Jesús; Ramírez de Molina, Ana; Reglero, Guillermo

    2017-08-22

    Multiple chemical sensitivity (MCS) is a chronic, multisystem syndrome of unknown etiology. The aim of the present study was to describe the nutritional status and quality of life of patients suffering from MCS, as well as to identify potential polymorphisms associated with this illness. A cross-sectional, descriptive study was performed on patients with a diagnosis of MCS. Data on anthropometric and body composition variables, hand muscle strength and quality of life were collected. The selection of single nucleotide polymorphisms (SNPs) was based on genes previously associated with MCS and genes involved in inflammatory and oxidative stress pathways. A total of 52 patients (93.2% female), with a mean age of 50.9 (10.3) years were included in the study. Among them, based on their BMI, 48% had an inadequate nutritional status (17% were underweight and 32% were overweight or obese). Thirty percent of patients had a low muscle mass for their age, 84% had muscle strength below the tenth percentile, and 51.8% had a high fat mass percentage. Regarding quality of life, all median scores were lower than those of other illnesses assessed for every subscale assessed. Statistically significant differences between patient cases and controls were found with respect to rs1801133 (MTHFR), rs174546 (FADS1) and rs1801282 (PPARγ) polymorphisms. A high percentage of patients had a poor nutritional status, low muscle strength and decreased muscle mass. These facts exacerbate the already-lower quality of life of these patients. Specific genetic polymorphisms associated with the syndrome or its pathogenesis were not identified. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  5. A comparison of manual and quantitative elbow strength testing.

    PubMed

    Shahgholi, Leili; Bengtson, Keith A; Bishop, Allen T; Shin, Alexander Y; Spinner, Robert J; Basford, Jeffrey R; Kaufman, Kenton R

    2012-10-01

    The aim of this study was to compare the clinical ratings of elbow strength obtained by skilled clinicians with objective strength measurement obtained through quantitative testing. A retrospective comparison of subject clinical records with quantitative strength testing results in a motion analysis laboratory was conducted. A total of 110 individuals between the ages of 8 and 65 yrs with traumatic brachial plexus injuries were identified. Patients underwent manual muscle strength testing as assessed on the 5-point British Medical Research Council Scale (5/5, normal; 0/5, absent) and quantitative elbow flexion and extension strength measurements. A total of 92 subjects had elbow flexion testing. Half of the subjects clinically assessed as having normal (5/5) elbow flexion strength on manual muscle testing exhibited less than 42% of their age-expected strength on quantitative testing. Eighty-four subjects had elbow extension strength testing. Similarly, half of those displaying normal elbow extension strength on manual muscle testing were found to have less than 62% of their age-expected values on quantitative testing. Significant differences between manual muscle testing and quantitative findings were not detected for the lesser (0-4) strength grades. Manual muscle testing, even when performed by experienced clinicians, may be more misleading than expected for subjects graded as having normal (5/5) strength. Manual muscle testing estimates for the lesser strength grades (1-4/5) seem reasonably accurate.

  6. Relationships between Isometric Muscle Strength, Gait Parameters, and Gross Motor Function Measure in Patients with Cerebral Palsy

    PubMed Central

    Shin, Hyung-Ik; Sung, Ki Hyuk; Chung, Chin Youb; Lee, Kyoung Min; Lee, Seung Yeol; Lee, In Hyeok

    2016-01-01

    Purpose This study investigated the correlation between isometric muscle strength, gross motor function, and gait parameters in patients with spastic cerebral palsy and to find which muscle groups play an important role for gait pattern in a flexed knee gait. Materials and Methods Twenty-four ambulatory patients (mean age, 10.0 years) with spastic cerebral palsy who were scheduled for single event multilevel surgery, including distal hamstring lengthening, were included. Preoperatively, peak isometric muscle strength was measured for the hip flexor, hip extensor, knee flexor, and knee extensor muscle groups using a handheld dynamometer, and three-dimensional (3D) gait analysis and gross motor function measure (GMFM) scoring were also performed. Correlations between peak isometric strength and GMFM, gait kinematics, and gait kinetics were analyzed. Results Peak isometric muscle strength of all muscle groups was not related to the GMFM score and the gross motor function classification system level. Peak isometric strength of the hip extensor and knee extensor was significantly correlated with the mean pelvic tilt (r=-0.588, p=0.003 and r=-0.436, p=0.033) and maximum pelvic obliquity (r=-0.450, p=0.031 and r=-0.419, p=0.041). There were significant correlations between peak isometric strength of the knee extensor and peak knee extensor moment in early stance (r=0.467, p=0.021) and in terminal stance (r=0.416, p=0.043). Conclusion There is no correlation between muscle strength and gross motor function. However, this study showed that muscle strength, especially of the extensor muscle group of the hip and knee joints, might play a critical role in gait by stabilizing pelvic motion and decreasing energy consumption in a flexed knee gait. PMID:26632404

  7. Relationships between Isometric Muscle Strength, Gait Parameters, and Gross Motor Function Measure in Patients with Cerebral Palsy.

    PubMed

    Shin, Hyung Ik; Sung, Ki Hyuk; Chung, Chin Youb; Lee, Kyoung Min; Lee, Seung Yeol; Lee, In Hyeok; Park, Moon Seok

    2016-01-01

    This study investigated the correlation between isometric muscle strength, gross motor function, and gait parameters in patients with spastic cerebral palsy and to find which muscle groups play an important role for gait pattern in a flexed knee gait. Twenty-four ambulatory patients (mean age, 10.0 years) with spastic cerebral palsy who were scheduled for single event multilevel surgery, including distal hamstring lengthening, were included. Preoperatively, peak isometric muscle strength was measured for the hip flexor, hip extensor, knee flexor, and knee extensor muscle groups using a handheld dynamometer, and three-dimensional (3D) gait analysis and gross motor function measure (GMFM) scoring were also performed. Correlations between peak isometric strength and GMFM, gait kinematics, and gait kinetics were analyzed. Peak isometric muscle strength of all muscle groups was not related to the GMFM score and the gross motor function classification system level. Peak isometric strength of the hip extensor and knee extensor was significantly correlated with the mean pelvic tilt (r=-0.588, p=0.003 and r=-0.436, p=0.033) and maximum pelvic obliquity (r=-0.450, p=0.031 and r=-0.419, p=0.041). There were significant correlations between peak isometric strength of the knee extensor and peak knee extensor moment in early stance (r=0.467, p=0.021) and in terminal stance (r=0.416, p=0.043). There is no correlation between muscle strength and gross motor function. However, this study showed that muscle strength, especially of the extensor muscle group of the hip and knee joints, might play a critical role in gait by stabilizing pelvic motion and decreasing energy consumption in a flexed knee gait.

  8. Mechanical and histological characterization of the abdominal muscle. A previous step to modelling hernia surgery.

    PubMed

    Hernández, B; Peña, E; Pascual, G; Rodríguez, M; Calvo, B; Doblaré, M; Bellón, J M

    2011-04-01

    The aims of this study are to experimentally characterize the passive elastic behaviour of the rabbit abdominal wall and to develop a mechanical constitutive law which accurately reproduces the obtained experimental results. For this purpose, tissue samples from New Zealand White rabbits 2150±50 (g) were mechanically tested in vitro. Mechanical tests, consisting of uniaxial loading on tissue samples oriented along the craneo-caudal and the perpendicular directions, respectively, revealed the anisotropic non-linear mechanical behaviour of the abdominal tissues. Experiments were performed considering the composite muscle (including external oblique-EO, internal oblique-IO and transverse abdominis-TA muscle layers), as well as separated muscle layers (i.e., external oblique, and the bilayer formed by internal oblique and transverse abdominis). Both the EO muscle layer and the IO-TA bilayer demonstrated a stiffer behaviour along the transversal direction to muscle fibres than along the longitudinal one. The fibre arrangement was measured by means of a histological study which confirmed that collagen fibres are mainly responsible for the passive mechanical strength and stiffness. Furthermore, the degree of anisotropy of the abdominal composite muscle turned out to be less pronounced than those obtained while studying the EO and IO-TA separately. Moreover, a phenomenological constitutive law was used to capture the measured experimental curves. A Levenberg-Marquardt optimization algorithm was used to fit the model constants to reproduce the experimental curves. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Inspiratory muscle training increases inspiratory muscle strength in patients weaning from mechanical ventilation: a systematic review.

    PubMed

    Moodie, Lisa; Reeve, Julie; Elkins, Mark

    2011-01-01

    Does inspiratory muscle training improve inspiratory muscle strength and endurance, facilitate weaning, improve survival, and reduce the rate of reintubation and tracheostomy in adults receiving mechanical ventilation? Systematic review of randomised or quasi-randomised controlled trials. Adults over 16 years of age receiving mechanical ventilation. Inspiratory muscle training versus sham or no inspiratory muscle training. Data were extracted regarding inspiratory muscle strength and endurance, the duration of unassisted breathing periods, weaning success and duration, reintubation and tracheostomy, survival, adverse effects, and length of stay. Three studies involving 150 participants were included in the review. The studies varied in time to commencement of the training, the device used, the training protocol, and the outcomes measured. Inspiratory muscle training significantly increased inspiratory muscle strength over sham or no training (weighted mean difference 8 cmH(2)O, 95% CI 6 to 9). There were no statistically significant differences between the groups in weaning success or duration, survival, reintubation, or tracheostomy. Inspiratory muscle training was found to significantly increase inspiratory muscle strength in adults undergoing mechanical ventilation. Despite data from a substantial pooled cohort, it is not yet clear whether the increase in inspiratory muscle strength leads to a shorter duration of mechanical ventilation, improved weaning success, or improved survival. Further large randomised studies are required to clarify the impact of inspiratory muscle training on patients receiving mechanical ventilation. PROSPERO CRD42011001132. Copyright © 2011 Australian Physiotherapy Association. Published by .. All rights reserved.

  10. Autism Severity and Muscle Strength: A Correlation Analysis

    ERIC Educational Resources Information Center

    Kern, Janet K.; Geier, David A.; Adams, James B.; Troutman, Melissa R.; Davis, Georgia; King, Paul G.; Young, John L.; Geier, Mark R.

    2011-01-01

    The current study examined the relationship between muscle strength, as measured by hand grip strength, and autism severity, as measured by the Childhood Autism Rating Scale (CARS). Thirty-seven (37) children with a diagnosis of autism spectrum disorder (ASD) were evaluated using the CARS and then tested for hand muscle strength using a hand grip…

  11. The effectiveness of a single session of Whole-Body Vibration in improving the balance and the strength in type 2 diabetic patients with mild to moderate degree of peripheral neuropathy: a pilot study.

    PubMed

    Kordi Yoosefinejad, Amin; Shadmehr, Azadeh; Olyaei, Ghloamreza; Talebian, Saeed; Bagheri, Hossein

    2014-01-01

    Peripheral neuropathy is a common complication of diabetes mellitus. Muscle strength and the balance deficits are seen in these patients. Whole-Body Vibration (WBV) is a time-efficient method which may be beneficial for them. The immediate effects of WBV on muscle strength and balance have not been studied yet. The aim of this study was to investigate the effects of one session of WBV on muscle strength and the balance of diabetic patients. Ten diabetic patients with peripheral neuropathy took part in this study. Outcome measurements were total strength, strength of tibialis anterior and quadriceps femoris muscles and the balance parameters including Unilateral Stance Test and Timed Up and Go Test. Tibialis anterior muscle strength and Timed Up and GO Test parameters showed significant differences post-exercise in comparison to baseline. A session of WBV had positive effects on muscle strength and the balance in patients with type-2 diabetes associated with neuropathy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Foot and ankle muscle strength in people with gout: A two-arm cross-sectional study.

    PubMed

    Stewart, Sarah; Mawston, Grant; Davidtz, Lisa; Dalbeth, Nicola; Vandal, Alain C; Carroll, Matthew; Morpeth, Trish; Otter, Simon; Rome, Keith

    2016-02-01

    Foot and ankle structures are the most commonly affected in people with gout. However, the effect of gout on foot and ankle muscle strength is not well understood. The primary aim of this study was to determine whether differences exist in foot and ankle muscle strength for plantarflexion, dorsiflexion, inversion and eversion between people with gout and age- and sex-matched controls. The secondary aim was to determine whether foot and ankle muscle strength was correlated with foot pain and disability. Peak isokinetic concentric muscle torque was measured for ankle plantarflexion, dorsiflexion, eversion and inversion in 20 participants with gout and 20 matched controls at two testing velocities (30°/s and 120°/s) using a Biodex dynamometer. Foot pain and disability was measured using the Manchester Foot Pain and Disability Index (MFPDI). Participants with gout demonstrated reduced muscle strength at both the 30°/s and 120°/s testing velocities for plantarflexion, inversion and eversion (P<0.05). People with gout also displayed a reduced plantarflexion-to-dorsiflexion strength ratio at both 30°/s and 120°/s (P<0.05). Foot pain and disability was higher in people with gout (P<0.0001) and MFPDI scores were inversely correlated with plantarflexion and inversion muscle strength at the 30°/s testing velocity, and plantarflexion, inversion and eversion muscle strength at the 120°/s testing velocity (all P<0.05). People with gout have reduced foot and ankle muscle strength and experience greater foot pain and disability compared to controls. Foot and ankle strength reductions are strongly associated with increased foot pain and disability in people with gout. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Cardiorespiratory fitness and muscle strength in late adolescence and long-term risk of early heart failure in Swedish men.

    PubMed

    Lindgren, Martin; Åberg, Maria; Schaufelberger, Maria; Åberg, David; Schiöler, Linus; Torén, Kjell; Rosengren, Annika

    2017-05-01

    Aims To investigate the association between cardiorespiratory fitness (CRF) and muscle strength in late adolescence and the long-term risk of heart failure (HF). Methods A cohort was created of Swedish men enrolled in compulsory military service between 1968 and 2005 with measurements for CRF and muscle strength ( n = 1,226,623; mean age 18.3 years). They were followed until 31 December 2014 for HF hospitalization as recorded in the Swedish national inpatient registry. Results During the follow-up period (median (interquartile range) 28.4 (22.0-37.0) years), 7656 cases of first HF hospitalization were observed (mean ± SD age at diagnosis 50.1 ± 7.9 years). CRF and muscle strength were estimated by maximum capacity cycle ergometer testing and strength exercises (knee extension, elbow flexion and hand grip). Inverse dose-response relationships were found between CRF and muscle strength with HF as a primary or contributory diagnosis with an adjusted hazards ratio (95% confidence interval) of 1.60 (1.44-1.77) for low CRF and 1.45 (1.32-1.58) for low muscle strength categories. The associations of incident HF with CRF and muscle strength persisted, regardless of adjustments for the other potential confounders. The highest risk was observed for HF associated with coronary heart disease, diabetes or hypertension. Conclusions In this longitudinal study of young men, we found inverse and mutually independent associations between CRF and muscle strength with risk of hospitalization for HF. If causal, these results may emphasize the importance of the promotion of CRF and muscle strength in younger populations.

  14. The effects of 8 weeks of whey or rice protein supplementation on body composition and exercise performance

    PubMed Central

    2013-01-01

    Background Consumption of moderate amounts of animal-derived protein has been shown to differently influence skeletal muscle hypertrophy during resistance training when compared with nitrogenous and isoenergetic amounts of plant-based protein administered in small to moderate doses. Therefore, the purpose of the study was to determine if the post-exercise consumption of rice protein isolate could increase recovery and elicit adequate changes in body composition compared to equally dosed whey protein isolate if given in large, isocaloric doses. Methods 24 college-aged, resistance trained males were recruited for this study. Subjects were randomly and equally divided into two groups, either consuming 48 g of rice or whey protein isolate (isocaloric and isonitrogenous) on training days. Subjects trained 3 days per week for 8 weeks as a part of a daily undulating periodized resistance-training program. The rice and whey protein supplements were consumed immediately following exercise. Ratings of perceived recovery, soreness, and readiness to train were recorded prior to and following the first training session. Ultrasonography determined muscle thickness, dual emission x-ray absorptiometry determined body composition, and bench press and leg press for upper and lower body strength were recorded during weeks 0, 4, and 8. An ANOVA model was used to measure group, time, and group by time interactions. If any main effects were observed, a Tukey post-hoc was employed to locate where differences occurred. Results No detectable differences were present in psychometric scores of perceived recovery, soreness, or readiness to train (p > 0.05). Significant time effects were observed in which lean body mass, muscle mass, strength and power all increased and fat mass decreased; however, no condition by time interactions were observed (p > 0.05). Conclusion Both whey and rice protein isolate administration post resistance exercise improved indices of body composition and exercise performance; however, there were no differences between the two groups. PMID:23782948

  15. Three month intervention with protein and energy rich supplements improve muscle function and quality of life in malnourished patients with non-neoplastic gastrointestinal disease--a randomized controlled trial.

    PubMed

    Norman, Kristina; Kirchner, Henriette; Freudenreich, Manuela; Ockenga, Johann; Lochs, Herbert; Pirlich, Matthias

    2008-02-01

    Malnutrition is a common problem in patients with digestive disease and is associated with impaired outcome. We investigated the effect of a three-month post-hospital nutritional intervention with high protein and energy supplements on body composition, muscle function and quality of life (QoL) in malnourished GI patients. Eighty malnourished patients with benign digestive disease were randomized to receive either oral nutritional supplements (ONS) for three months in addition to dietary counselling (DC) (ONS patients) or only dietary counselling (DC patients). Nutritional status was determined with the subjective global assessment, body composition by bioelectrical impedance and anthropometry, muscle function with hand-grip strength and peak flow. QoL was assessed by the 36-item short-form questionnaire. Age, body cell mass (BCM), muscle function, gender distribution and QoL did not differ between ONS patients (n=38) and DC patients (n=42) at baseline. Body weight and BCM improved significantly in both groups after three months. However, hand-grip strength (26.1+/-11.3-31.5+/-10.1 kg, p<0.0001) and peak flow (329.2+/-124.0-388.9+/-108.4 l /min, p=0.004) improved only in the ONS patients and remained unchanged in the DC patients. Similarly, all eight scales of the QoL improved in the ONS patients compared with merely three in the DC patients. DC patients experienced significantly more readmissions (n=20) than ONS patients (n=10) during the study period (p=0.041). A three month intervention with high protein oral supplements improves outcome in malnourished patients with digestive disease in terms of functional status, QoL and rehospitalization.

  16. Disability affects the 6-minute walking distance in obese subjects (BMI>40 kg/m(2)).

    PubMed

    Donini, Lorenzo Maria; Poggiogalle, Eleonora; Mosca, Veronica; Pinto, Alessandro; Brunani, Amelia; Capodaglio, Paolo

    2013-01-01

    In obese subjects, the relative reduction of the skeletal muscle strength, the reduced cardio-pulmonary capacity and tolerance to effort, the higher metabolic costs and, therefore, the increased inefficiency of gait together with the increased prevalence of co-morbid conditions might interfere with walking. Performance tests, such as the six-minute walking test (6MWT), can unveil the limitations in cardio-respiratory and motor functions underlying the obesity-related disability. Therefore the aims of the present study were: to explore the determinants of the 6-minute walking distance (6MWD) and to investigate the predictors of interruption of the walk test in obese subjects. Obese patients [body mass index (BMI)>40 kg/m(2)] were recruited from January 2009 to December 2011. Anthropometry, body composition, specific questionnaire for Obesity-related Disabilities (TSD-OC test), fitness status and 6MWT data were evaluated. The correlation between the 6MWD and the potential independent variables (anthropometric parameters, body composition, muscle strength, flexibility and disability) were analysed. The variables which were singularly correlated with the response variable were included in a multivariated regression model. Finally, the correlation between nutritional and functional parameters and test interruption was investigated. 354 subjects (87 males, mean age 48.5 ± 14 years, 267 females, mean age 49.8 ± 15 years) were enrolled in the study. Age, weight, height, BMI, fat mass and fat free mass indexes, handgrip strength and disability were significantly correlated with the 6MWD and considered in the multivariate analysis. The determination coefficient of the regression analysis ranged from 0.21 to 0.47 for the different models. Body weight, BMI, waist circumference, TSD-OC test score and flexibility were found to be predictors of the 6MWT interruption. The present study demonstrated the impact of disability in obese subjects, together with age, anthropometric data, body composition and strength, on the 6-minute walking distance.

  17. Disability Affects the 6-Minute Walking Distance in Obese Subjects (BMI>40 kg/m2)

    PubMed Central

    Donini, Lorenzo Maria; Poggiogalle, Eleonora; Mosca, Veronica; Pinto, Alessandro; Brunani, Amelia; Capodaglio, Paolo

    2013-01-01

    Introduction In obese subjects, the relative reduction of the skeletal muscle strength, the reduced cardio-pulmonary capacity and tolerance to effort, the higher metabolic costs and, therefore, the increased inefficiency of gait together with the increased prevalence of co-morbid conditions might interfere with walking. Performance tests, such as the six-minute walking test (6MWT), can unveil the limitations in cardio-respiratory and motor functions underlying the obesity-related disability. Therefore the aims of the present study were: to explore the determinants of the 6-minute walking distance (6MWD) and to investigate the predictors of interruption of the walk test in obese subjects. Methods Obese patients [body mass index (BMI)>40 kg/m2] were recruited from January 2009 to December 2011. Anthropometry, body composition, specific questionnaire for Obesity-related Disabilities (TSD-OC test), fitness status and 6MWT data were evaluated. The correlation between the 6MWD and the potential independent variables (anthropometric parameters, body composition, muscle strength, flexibility and disability) were analysed. The variables which were singularly correlated with the response variable were included in a multivariated regression model. Finally, the correlation between nutritional and functional parameters and test interruption was investigated. Results 354 subjects (87 males, mean age 48.5±14 years, 267 females, mean age 49.8±15 years) were enrolled in the study. Age, weight, height, BMI, fat mass and fat free mass indexes, handgrip strength and disability were significantly correlated with the 6MWD and considered in the multivariate analysis. The determination coefficient of the regression analysis ranged from 0.21 to 0.47 for the different models. Body weight, BMI, waist circumference, TSD-OC test score and flexibility were found to be predictors of the 6MWT interruption. Discussion The present study demonstrated the impact of disability in obese subjects, together with age, anthropometric data, body composition and strength, on the 6-minute walking distance. PMID:24146756

  18. Respiratory muscle strength is not decreased in patients undergoing cardiac surgery.

    PubMed

    Urell, Charlotte; Emtner, Margareta; Hedenstrom, Hans; Westerdahl, Elisabeth

    2016-03-31

    Postoperative pulmonary impairments are significant complications after cardiac surgery. Decreased respiratory muscle strength could be one reason for impaired lung function in the postoperative period. The primary aim of this study was to describe respiratory muscle strength before and two months after cardiac surgery. A secondary aim was to describe possible associations between respiratory muscle strength and lung function. In this prospective observational study 36 adult cardiac surgery patients (67 ± 10 years) were studied. Respiratory muscle strength and lung function were measured before and two months after surgery. Pre- and postoperative respiratory muscle strength was in accordance with predicted values; MIP was 78 ± 24 cmH2O preoperatively and 73 ± 22 cmH2O at two months follow-up (p = 0.19). MEP was 122 ± 33 cmH2O preoperatively and 115 ± 38 cmH2O at two months follow-up (p = 0.18). Preoperative lung function was in accordance with predicted values, but was significantly decreased postoperatively. At two-months follow-up there was a moderate correlation between MIP and FEV1 (r = 0.43, p = 0.009). Respiratory muscle strength was not impaired, either before or two months after cardiac surgery. The reason for postoperative lung function alteration is not yet known. Interventions aimed at restore an optimal postoperative lung function should focus on other interventions then respiratory muscle strength training.

  19. Effectiveness of exercise and protein supplementation intervention on body composition, functional fitness, and oxidative stress among elderly Malays with sarcopenia.

    PubMed

    Shahar, Suzana; Kamaruddin, Norshafarina Shari; Badrasawi, Manal; Sakian, Noor Ibrahim Mohamed; Abd Manaf, Zahara; Yassin, Zaitun; Joseph, Leonard

    2013-01-01

    Sarcopenia, characterized as muscle loss that occurs with aging, is a major health problem in an aging population, due to its implications on mobility, quality of life, and fall risk. Protein supplementation could improve the physical fitness by increasing protein anabolism, and exercise has a documented evidence of positive effect on functional status among the elderly. However, the combined effect of both protein supplementation and exercise has not been investigated among sarcopenic elderly in the Asian population. Thus, this study aimed to determine the effectiveness of exercise intervention and protein supplementation either alone or in combination for 12 weeks, on body composition, functional fitness, and oxidative stress among elderly Malays with sarcopenia. Sixty five sarcopenic elderly Malays aged 60-74 years were assigned to the control group, exercise group (ExG), protein supplementation group (PrG), or the combination of exercise and protein supplementation group. A significant interaction effect between body weight and body mass index (BMI) was observed, with the PrG (-2.1% body weight, -1.8% BMI) showing the highest reductions. Further, there was a decrease in % body fat (-4.5%) and an increase in fat-free mass (kg) (+5.7%) in the ExG after 12 weeks (P < 0.05). The highest increments in lower and upper body strength were observed in the PrG (73.2%) and ExG (47.6%), respectively. In addition, the ExG showed a reduction in superoxide dismutase (SOD) levels, and both interventions did not alter either lipid or protein oxidation. In conclusion, the exercise program was found to improve muscle strength and body composition, while protein supplementation reduced body weight and increased upper body strength, among sarcopenic elderly in Malaysia.

  20. Effectiveness of exercise and protein supplementation intervention on body composition, functional fitness, and oxidative stress among elderly Malays with sarcopenia

    PubMed Central

    Shahar, Suzana; Kamaruddin, Norshafarina Shari; Badrasawi, Manal; Sakian, Noor Ibrahim Mohamed; Manaf, Zahara Abd; Yassin, Zaitun; Joseph, Leonard

    2013-01-01

    Sarcopenia, characterized as muscle loss that occurs with aging, is a major health problem in an aging population, due to its implications on mobility, quality of life, and fall risk. Protein supplementation could improve the physical fitness by increasing protein anabolism, and exercise has a documented evidence of positive effect on functional status among the elderly. However, the combined effect of both protein supplementation and exercise has not been investigated among sarcopenic elderly in the Asian population. Thus, this study aimed to determine the effectiveness of exercise intervention and protein supplementation either alone or in combination for 12 weeks, on body composition, functional fitness, and oxidative stress among elderly Malays with sarcopenia. Sixty five sarcopenic elderly Malays aged 60–74 years were assigned to the control group, exercise group (ExG), protein supplementation group (PrG), or the combination of exercise and protein supplementation group. A significant interaction effect between body weight and body mass index (BMI) was observed, with the PrG (−2.1% body weight, −1.8% BMI) showing the highest reductions. Further, there was a decrease in % body fat (−4.5%) and an increase in fat-free mass (kg) (+5.7%) in the ExG after 12 weeks (P < 0.05). The highest increments in lower and upper body strength were observed in the PrG (73.2%) and ExG (47.6%), respectively. In addition, the ExG showed a reduction in superoxide dismutase (SOD) levels, and both interventions did not alter either lipid or protein oxidation. In conclusion, the exercise program was found to improve muscle strength and body composition, while protein supplementation reduced body weight and increased upper body strength, among sarcopenic elderly in Malaysia. PMID:24143082

  1. Prevalence of pre-sarcopenia and sarcopenia in Hong Kong Chinese geriatric patients with hip fracture and its correlation with different factors.

    PubMed

    Ho, A Wh; Lee, M Ml; Chan, E Wc; Ng, H My; Lee, C W; Ng, W S; Wong, S H

    2016-02-01

    Sarcopenia and osteoporosis are age-related declines in the quantity of muscle and bone, respectively. Both contribute in disability, fall, and hip fracture in the elderly. This study reported the prevalence of sarcopenia in Chinese geriatric patients with hip fracture, and the correlation between relative appendicular skeletal muscle mass index and other factors. This case series was conducted in Kowloon West Cluster Orthopaedic Rehabilitation Centre in Hong Kong. Data of all geriatric patients with primary hip fracture admitted to the above Centre from June to December 2014 were studied. Isometric grip strength, the maximal handgrip strength, was measured using a JAMAR hand dynamometer. Body composition including appendicular and whole-body lean body mass was measured using dual-energy X-ray absorptiometry. Pearson's correlation was used to examine the correlation between relative appendicular skeletal muscle mass index and other factors. A total of 239 patients with a mean age of 82 years were included in the study. Stratifying patients as male or female, the mean (± standard deviation) hand grip strength was 20.6 ± 7.3 kg and 13.6 ± 4.5 kg, the mean relative appendicular skeletal muscle mass index was 5.72 ± 0.83 kg/m(2) and 4.87 ± 0.83 kg/m(2), and the mean hip bone mineral density was 0.696 ± 0.13 g/cm(2) and 0.622 ± 0.12 g/cm(2), respectively. The prevalence of sarcopenia based on relative appendicular skeletal muscle mass index and hand grip strength according to the Asian Working Group for Sarcopenia definition was 73.6% in males and 67.7% in females. According to the European Working Group on Sarcopenia definition, the prevalence of pre-sarcopenia was 20.8% in males and 12.4% in females. Relative appendicular skeletal muscle mass index was positively correlated with hand grip strength, body weight, hip bone mineral density, body mass index, and total fat mass in males; and hand grip strength, body weight, body height, body mass index, and total fat mass in females. Except for body height in females, all correlations were statistically significant. The prevalence of sarcopenia was very high in geriatric hip fracture patients, and much higher than that in community-dwelling elderly population. Apart from the need to prescribe osteoporosis medicine, sarcopenia screening and treatment should be offered and is essential to reduce subsequent fall, subsequent fracture, fracture-related complications and economic burden to Hong Kong.

  2. Safety and efficacy of exercise training in adults with Pompe disease: evalution of endurance, muscle strength and core stability before and after a 12 week training program.

    PubMed

    van den Berg, Linda E M; Favejee, Marein M; Wens, Stephan C A; Kruijshaar, Michelle E; Praet, Stephan F E; Reuser, Arnold J J; Bussmann, Johannes B J; van Doorn, Pieter A; van der Ploeg, Ans T

    2015-07-19

    Pompe disease is a proximal myopathy. We investigated whether exercise training is a safe and useful adjuvant therapy for adult Pompe patients, receiving enzyme replacement therapy. Training comprised 36 sessions of standardized aerobic, resistance and core stability exercises over 12 weeks. Before and after, the primary outcome measures safety, endurance (aerobic exercise capacity and distance walked on the 6 min walk test) and muscle strength, and secondary outcome measures core stability, muscle function and body composition, were evaluated. Of 25 patients enrolled, 23 successfully completed the training. Improvements in endurance were shown by increases in maximum workload capacity (110 W before to 122 W after training, [95 % CI of the difference 6 · 0 to 19 · 7]), maximal oxygen uptake capacity (69 · 4 % and 75 · 9 % of normal, [2 · 5 to 10 · 4]), and maximum walking distance (6 min walk test: 492 meters and 508, [-4 · 4 to 27 · 7] ). There were increases in muscle strength of the hip flexors (156 · 4 N to 180 · 7 N [1 · 6 to 13 · 6) and shoulder abductors (143 · 1 N to 150 · 7 N [13 · 2 to 35 · 2]). As an important finding in secondary outcome measures the number of patients who were able to perform the core stability exercises rose, as did the core stability balancing time (p < 0.05, for all four exercises). Functional tests showed small reductions in the time needed to climb four steps (2 · 4 sec to 2 · 1, [- 0 · 54 to -0 · 04 ]) and rise to standing position (5 · 8 sec to 4 · 8, [-2 · 0 to 0 · 0]), while time to run, the quick motor function test results and body composition remained unchanged. Our study shows that a combination of aerobic, strength and core stability exercises is feasible, safe and beneficial to adults with Pompe disease.

  3. Is a sphygmomanometer a valid and reliable tool to measure the isometric strength of hip muscles? A systematic review.

    PubMed

    Toohey, Liam Anthony; De Noronha, Marcos; Taylor, Carolyn; Thomas, James

    2015-02-01

    Muscle strength measurement is a key component of physiotherapists' assessment and is frequently used as an outcome measure. A sphygmomanometer is an instrument commonly used to measure blood pressure that can be potentially used as a tool to assess isometric muscle strength. To systematically review the evidence on the reliability and validity of a sphygmomanometer for measuring isometric strength of hip muscles. A literature search was conducted across four databases. Studies were eligible if they presented data on reliability and/or validity, used a sphygmomanometer to measure isometric muscle strength of the hip region, and were peer reviewed. The individual studies were evaluated for quality using a standardized critical appraisal tool. A total of 644 articles were screened for eligibility, with five articles chosen for inclusion. The use of a sphygmomanometer to objectively assess isometric muscle strength of the hip muscles appears to be reliable with intraclass correlation coefficient values ranging from 0.66 to 0.94 in elderly and young populations. No studies were identified that have assessed the validity of a sphygmomanometer. The sphygmomanometer appears to be reliable for assessment of isometric muscle strength around the hip joint, but further research is warranted to establish its validity.

  4. Clinical Implications for Muscle Strength Differences in Women of Different Age and Racial Groups: The WIN Study.

    PubMed

    Trudelle-Jackson, Elaine; Ferro, Emerenciana; Morrow, James R

    2011-01-01

    BACKGROUND: Reduction in muscle strength is strongly associated with functional decline in women, and women with lower quadriceps strength adjusted for body weight are more likely to develop knee osteoarthritis. OBJECTIVE: To compare body weight--adjusted strength among women of different age/racial groups. STUDY DESIGN: Cross-sectional study of muscle strength in 918 women aged 20--83 (M ± SD = 52 ± 13). METHODS: An orthopedic examination was conducted including measurement of handgrip and lower extremity strength (hip abductors/external rotators, knee flexors/extensors). Data were grouped into young (20--39 years, n = 139), middle (40--54 years, n = 300), and older (55+ years, n = 424) ages for white (n = 699) and African American (AA) (n = 164) women. Means and standard deviations for strength adjusted for body weight were calculated for each age and racial group and compared using 2-way multivariate analysis of variance and post hoc tests. RESULTS: No significant age-by-race interaction (P = .092) but significant main effects for age and race (P < .001). Pairwise comparisons revealed significant differences in knee extensor and flexor strength between all age groups. For grip and hip external rotator strength, significant differences were found between the middle and older groups. Differences in hip abductor strength were found between the young and middle-aged groups. AA women had lower strength than white women in all muscle groups (P < .05) except hip external rotators. CONCLUSIONS: Strength decreased with age in all muscle groups but magnitude of decrease varied by muscle. Strengthening programs should target different muscles, depending on a woman's age and race.

  5. Fish-oil supplementation enhances the effects of strength training in elderly women.

    PubMed

    Rodacki, Cintia L N; Rodacki, André L F; Pereira, Gleber; Naliwaiko, Katya; Coelho, Isabela; Pequito, Daniele; Fernandes, Luiz Cléudio

    2012-02-01

    Muscle force and functional capacity generally decrease with aging in the older population, although this effect can be reversed, attenuated, or both through strength training. Fish oil (FO), which is rich in n-3 (omega-3) PUFAs, has been shown to play a role in the plasma membrane and cell function of muscles, which may enhance the benefits of training. The effect of strength training and FO supplementation on the neuromuscular system of the elderly has not been investigated. The objective was to investigate the chronic effect of FO supplementation and strength training on the neuromuscular system (muscle strength and functional capacity) of older women. Forty-five women (aged 64 ± 1.4 y) were randomly assigned to 3 groups. One group performed strength training only (ST group) for 90 d, whereas the others performed the same strength-training program and received FO supplementation (2 g/d) for 90 d (ST90 group) or for 150 d (ST150 group; supplemented 60 d before training). Muscle strength and functional capacity were assessed before and after the training period. No differences in the pretraining period were found between groups for any of the variables. The peak torque and rate of torque development for all muscles (knee flexor and extensor, plantar and dorsiflexor) increased from pre- to posttraining in all groups. However, the effect was greater in the ST90 and ST150 groups than in the ST group. The activation level and electromechanical delay of the muscles changed from pre- to posttraining only for the ST90 and ST150 groups. Chair-rising performance in the FO groups was higher than in the ST group. Strength training increased muscle strength in elderly women. The inclusion of FO supplementation caused greater improvements in muscle strength and functional capacity.

  6. EFFECTS OF STRENGTH TRAINING ON PHYSICAL FUNCTION: INFLUENCE OF POWER, STRENGTH, AND BODY COMPOSITION

    PubMed Central

    Hanson, Erik D.; Srivatsan, Sindhu R.; Agrawal, Siddhartha; Menon, Kalapurakkal S.; Delmonico, Matthew J.; Wang, Min Q.; Hurley, Ben F.

    2010-01-01

    The purpose of this study was to determine (a) the effects of strength training (ST) on physical function and (b) the influence of strength, power, muscle volume (MV), and body composition on physical function. Healthy, inactive adults (n = 50) aged 65 years and older underwent strength, power, total body composition (% fat and fat free mass [FFM]), and physical function testing before and after 22 weeks of ST. Physical function testing consisted of tasks designed to mimic common physical activities of daily living (ADL). To improve internal validity of the assessment of mid-thigh intermuscular fat, subcutaneous fat, and knee extensors MV, a 10-week unilateral ST program using the untrained leg as an internal control preceded 12 weeks of whole-body ST. Strength, power, and FFM increased significantly with ST (all p < 0.05), whereas rapid walk, 5 chair stands, and get up and go time decreased significantly with ST in the overall group (all p < 0.05). Women improved significantly in both walking test times (both p < 0.05) but not in the stair climb test, whereas men improved in the stair climb test (p < 0.05) but not in walking test times. Multiple regression analysis revealed the highest R2 (0.28) for the change in chair stands time, followed by stair climb and usual walk at 0.27 and 0.21, respectively. ST improves performance in functional tasks important for ADLs. Changes in strength, power, and FFM are predictors of ST-induced improvements in these tasks. PMID:19910811

  7. Autophagy activation in COL6 myopathic patients by a low-protein-diet pilot trial.

    PubMed

    Castagnaro, Silvia; Pellegrini, Camilla; Pellegrini, Massimo; Chrisam, Martina; Sabatelli, Patrizia; Toni, Silvia; Grumati, Paolo; Ripamonti, Claudio; Pratelli, Loredana; Maraldi, Nadir M; Cocchi, Daniela; Righi, Valeria; Faldini, Cesare; Sandri, Marco; Bonaldo, Paolo; Merlini, Luciano

    2016-12-01

    A pilot clinical trial based on nutritional modulation was designed to assess the efficacy of a one-year low-protein diet in activating autophagy in skeletal muscle of patients affected by COL6/collagen VI-related myopathies. Ullrich congenital muscular dystrophy and Bethlem myopathy are rare inherited muscle disorders caused by mutations of COL6 genes and for which no cure is yet available. Studies in col6 null mice revealed that myofiber degeneration involves autophagy defects and that forced activation of autophagy results in the amelioration of muscle pathology. Seven adult patients affected by COL6 myopathies underwent a controlled low-protein diet for 12 mo and we evaluated the presence of autophagosomes and the mRNA and protein levels for BECN1/Beclin 1 and MAP1LC3B/LC3B in muscle biopsies and blood leukocytes. Safety measures were assessed, including muscle strength, motor and respiratory function, and metabolic parameters. After one y of low-protein diet, autophagic markers were increased in skeletal muscle and blood leukocytes of patients. The treatment was safe as shown by preservation of lean:fat percentage of body composition, muscle strength and function. Moreover, the decreased incidence of myofiber apoptosis indicated benefits in muscle homeostasis, and the metabolic changes pointed at improved mitochondrial function. These data provide evidence that a low-protein diet is able to activate autophagy and is safe and tolerable in patients with COL6 myopathies, pointing at autophagy activation as a potential target for therapeutic applications. In addition, our findings indicate that blood leukocytes are a promising noninvasive tool for monitoring autophagy activation in patients.

  8. Functional polymorphisms associated with human muscle size and strength.

    PubMed

    Thompson, Paul D; Moyna, Niall; Seip, Richard; Price, Thomas; Clarkson, Priscilla; Angelopoulos, Theodore; Gordon, Paul; Pescatello, Linda; Visich, Paul; Zoeller, Robert; Devaney, Joseph M; Gordish, Heather; Bilbie, Stephen; Hoffman, Eric P

    2004-07-01

    Skeletal muscle is critically important to human performance and health, but little is known of the genetic factors influencing muscle size, strength, and its response to exercise training. The Functional single nucleotide polymorphisms (SNP) Associated with Muscle Size and Strength, or FAMuSS, Study is a multicenter, NIH-funded program to examine the influence of gene polymorphisms on skeletal muscle size and strength before and after resistance exercise training. One thousand men and women, age 18 - 40 yr, will train their nondominant arm for 12 wk. Skeletal muscle size (magnetic resonance imaging) and isometric and dynamic strength will be measured before and after training. Individuals whose baseline values or response to training deviate > or = 1.5 SD will be defined as outliers and examined for genetic variants. Initially candidate genes previously associated with muscle performance will be examined, but the study will ultimately attempt to identify genes associated with muscle performance. FAMuSS should help identify genetic factors associated with muscle performance and the response to exercise training. Such insight should contribute to our ability to predict the individual response to exercise training but may also contribute to understanding better muscle physiology, to identifying individuals who are susceptible to muscle loss with environmental challenge, and to developing pharmacologic agents capable of preserving muscle size and function.

  9. Non-elite gymnastics participation is associated with greater bone strength, muscle size, and function in pre- and early pubertal girls.

    PubMed

    Burt, L A; Naughton, G A; Greene, D A; Courteix, D; Ducher, G

    2012-04-01

    Recent reports indicate an increase in forearm fractures in children. Bone geometric properties are an important determinant of bone strength and therefore fracture risk. Participation in non-elite gymnastics appears to contribute to improving young girls' musculoskeletal health, more specifically in the upper body. The primary aim of this study was to determine the association between non-elite gymnastics participation and upper limb bone mass, geometry, and strength in addition to muscle size and function in young girls. Eighty-eight pre- and early pubertal girls (30 high-training gymnasts [HGYM, 6-16 hr/ wk], 29 low-training gymnasts [LGYM, 1-5 h r/wk] and 29 non-gymnasts [NONGYM]), aged 6-11 years were recruited. Upper limb lean mass, BMD and BMC were derived from a whole body DXA scan. Forearm volumetric BMD, bone geometry, estimated strength, and muscle CSA were determined using peripheral QCT. Upper body muscle function was investigated with muscle strength, explosive power, and muscle endurance tasks. HGYM showed greater forearm bone strength compared with NGYM, as well as greater arm lean mass, BMC, and muscle function (+5% to +103%, p < 0.05). LGYM displayed greater arm lean mass, BMC, muscle power, and endurance than NGYM (+4% to +46%, p < 0.05); however, the difference in bone strength did not reach significance. Estimated fracture risk at the distal radius, which accounted for body weight, was lower in both groups of gymnasts. Compared with NONGYM, HGYM tended to show larger skeletal differences than LGYM; yet, the two groups of gymnasts only differed for arm lean mass and muscle CSA. Non-elite gymnastics participation was associated with musculoskeletal benefits in upper limb bone geometry, strength and muscle function. Differences between the two gymnastic groups emerged for arm lean mass and muscle CSA, but not for bone strength.

  10. Molecular and Cellular Mechanisms of Muscle Aging and Sarcopenia and Effects of Electrical Stimulation in Seniors.

    PubMed

    Barber, Laura; Scicchitano, Bianca Maria; Musaro, Antonio

    2015-08-24

    The prolongation of skeletal muscle strength in aging and neuromuscular disease has been the objective of numerous studies employing a variety of approaches. It is generally accepted that cumulative failure to repair damage related to an overall decrease in anabolic processes is a primary cause of functional impairment in muscle. The functional performance of skeletal muscle tissues declines during post- natal life and it is compromised in different diseases, due to an alteration in muscle fiber composition and an overall decrease in muscle integrity as fibrotic invasions replace functional contractile tissue. Characteristics of skeletal muscle aging and diseases include a conspicuous reduction in myofiber plasticity (due to the progressive loss of muscle mass and in particular of the most powerful fast fibers), alteration in muscle-specific transcriptional mechanisms, and muscle atrophy. An early decrease in protein synthetic rates is followed by a later increase in protein degradation, to affect biochemical, physiological, and morphological parameters of muscle fibers during the aging process. Alterations in regenerative pathways also compromise the functionality of muscle tissues. In this review we will give an overview of the work on molecular and cellular mechanisms of aging and sarcopenia and the effects of electrical stimulation in seniors..

  11. The effect of intramuscular fat on skeletal muscle mechanics: implications for the elderly and obese

    PubMed Central

    Rahemi, Hadi; Nigam, Nilima; Wakeling, James M.

    2015-01-01

    Skeletal muscle accumulates intramuscular fat through age and obesity. Muscle quality, a measure of muscle strength per unit size, decreases in these conditions. It is not clear how fat influences this loss in performance. Changes to structural parameters (e.g. fibre pennation and connective tissue properties) affect the muscle quality. This study investigated the mechanisms that lead to deterioration in muscle performance due to changes in intramuscular fat, pennation and aponeurosis stiffness. A finite-element model of the human gastrocnemius was developed as a fibre-reinforced composite biomaterial containing contractile fibres within the base material. The base-material properties were modified to include intramuscular fat in five different ways. All these models with fat generated lower fibre stress and muscle quality than their lean counterparts. This effect is due to the higher stiffness of the tissue in the fatty models. The fibre deformations influence their interactions with the aponeuroses, and these change with fatty inclusions. Muscles with more compliant aponeuroses generated lower forces. The muscle quality was further reduced for muscles with lower pennation. This study shows that whole-muscle force is dependent on its base-material properties and changes to the base material due to fatty inclusions result in reductions to force and muscle quality. PMID:26156300

  12. Citrulline Supplementation Induces Changes in Body Composition and Limits Age-Related Metabolic Changes in Healthy Male Rats.

    PubMed

    Moinard, Christophe; Le Plenier, Servane; Noirez, Philippe; Morio, Béatrice; Bonnefont-Rousselot, Dominique; Kharchi, Caroline; Ferry, Arnaud; Neveux, Nathalie; Cynober, Luc; Raynaud-Simon, Agathe

    2015-07-01

    Aging is associated with profound metabolic disturbances, and citrulline may be of use to limit them. The aim of this work was to evaluate the long-term effect of citrulline supplementation on metabolism in healthy aged rats. Twenty-month-old male rats were randomly assigned to be fed (ad libitum) for 12 wk with either a citrulline-enriched diet (1 g ⋅ kg(-1) ⋅  d(-1)) or a standard diet [rendered isonitrogenous by addition of nonessential amino acids (NEAAs)]. Motor activity and muscle strength were measured, body composition was assessed, and muscle metabolism (protein structure, mitochondrial exploration, and transductional factors) and lipid metabolism (lipoprotein composition and sensitivity to oxidative stress) were explored. Compared with the NEAA-treated group, citrulline supplementation was associated with lower mortality (0% vs. 20%; P = 0.05), 9% higher lean body mass (P < 0.05), and 13% lower fat mass (P < 0.05). Compared with the NEAA-treated group, citrulline-treated rats had greater muscle mass (+14-48% depending on type of muscle; P < 0.05 for tibialis, gastrocnemius, and plantaris). Susceptibility to oxidation of lipoproteins, as measured by the maximal concentration of 7-ketocholesterol after copper-induced VLDL and LDL oxidation, was lower in citrulline-treated rats than in NEAA-treated rats (187 ± 8 μmol/L vs. 243 ± 7 μmol/L; P = 0.0005). Citrulline treatment in male aged rats favorably modulates body composition and protects against lipid oxidation and, thus, emerges as an interesting candidate to help prevent the aging process. © 2015 American Society for Nutrition.

  13. Effects of a Strength Training Session After an Exercise Inducing Muscle Damage on Recovery Kinetics.

    PubMed

    Abaïdia, Abd-Elbasset; Delecroix, Barthélémy; Leduc, Cédric; Lamblin, Julien; McCall, Alan; Baquet, Georges; Dupont, Grégory

    2017-01-01

    Abaïdia, A-E, Delecroix, B, Leduc, C, Lamblin, J, McCall, A, Baquet, G, and Dupont, G. Effects of a strength training session after an exercise inducing muscle damage on recovery kinetics. J Strength Cond Res 31(1): 115-125, 2017-The purpose of this study was to investigate the effects of an upper-limb strength training session the day after an exercise inducing muscle damage on recovery of performance. In a randomized crossover design, subjects performed the day after the exercise, on 2 separate occasions (passive vs. active recovery conditions) a single-leg exercise (dominant in one condition and nondominant in the other condition) consisting of 5 sets of 15 eccentric contractions of the knee flexors. Active recovery consisted of performing an upper-body strength training session the day after the exercise. Creatine kinase, hamstring strength, and muscle soreness were assessed immediately and 20, 24, and 48 hours after exercise-induced muscle damage. The upper-body strength session, after muscle-damaging exercise accelerated the recovery of slow concentric force (effect size = 0.65; 90% confidence interval = -0.06 to 1.32), but did not affect the recovery kinetics for the other outcomes. The addition of an upper-body strength training session the day after muscle-damaging activity does not negatively affect the recovery kinetics. Upper-body strength training may be programmed the day after a competition.

  14. What Are Strength Training Activities?

    Cancer.gov

    Strength training is any practice or exercise specifically designed to increase muscle tone, strength, and fitness. Concerned that strength training will make you bulky and too muscle-y? You are not alone.

  15. Low muscle mass and sarcopenia: common and predictive of osteopenia in inflammatory bowel disease.

    PubMed

    Bryant, R V; Ooi, S; Schultz, C G; Goess, C; Grafton, R; Hughes, J; Lim, A; Bartholomeusz, F D; Andrews, J M

    2015-05-01

    Body composition is poorly studied in inflammatory bowel disease (IBD). Sarcopenia describes a loss of muscle mass and strength. To assess the prevalence of low lean mass (LM), sarcopenia and associated morbidity in an adult IBD cohort. Cross-sectional data were gathered on pre-menopausal 18- to 50-year-old patients with IBD. Whole-body dual-energy X-ray absorptiometry, anthropometric assessment and grip strength were performed. Low LM was defined as ≥1 s.d. below the population mean for appendicular skeletal muscle index [ASMI (kg)/height (m)²], and sarcopenia as both ASMI and grip strength ≥1 s.d. below population mean. Multivariate regression analyses were performed. Of 137 participants (median age 31 years, BMI 24.8 kg/m(2) ), 56% were male and 69% had Crohn's disease (CD). Low LM and sarcopenia were observed in 21% and 12% of patients, respectively, and osteopenia/osteoporosis in 38% of patients (mean lumbar spine t-score -0.3 ± s.d. 1.1). Grip strength predicted low LM and sarcopenia better than did body mass index (BMI) (OR 4.8 vs. OR 0.7 for low-LM, P < 0.05 both). Normal BMI was falsely reassuring in 72% and 76% of patients with low ASMI and sarcopenia, respectively. Low LM and sarcopenia (OR = 3.6, P = 0.03; OR = 6.3, P = 0.02; respectively), but not BMI nor fat mass, predicted osteopenia/osteoporosis. Low lean mass and sarcopenia are common in patients with IBD, and important to recognise as they predict osteopenia/osteoporosis. Grip strength testing should be incorporated into routine clinical practice to detect low lean mass deficits, which may go unrecognised using BMI alone. © 2015 John Wiley & Sons Ltd.

  16. Muscle strength gains during resistance exercise training are attenuated with soy compared with dairy or usual protein intake in older adults: A randomized controlled trial.

    PubMed

    Thomson, Rebecca L; Brinkworth, Grant D; Noakes, Manny; Buckley, Jonathan D

    2016-02-01

    Maintenance of muscle mass and strength into older age is critical to maintain health. The aim was to determine whether increased dairy or soy protein intake combined with resistance training enhanced strength gains in older adults. 179 healthy older adults (age 61.5 ± 7.4 yrs, BMI 27.6 ± 3.6 kg/m(2)) performed resistance training three times per week for 12 weeks and were randomized to one of three eucaloric dietary treatments which delivered >20 g of protein at each main meal or immediately after resistance training: high dairy protein (HP-D, >1.2 g of protein/kg body weight/d; ∼27 g/d dairy protein); high soy protein (HP-S, >1.2 g of protein/kg body weight/d; ∼27 g/d soy protein); usual protein intake (UP, <1.2 g of protein/kg body weight/d). Muscle strength, body composition, physical function and quality of life were assessed at baseline and 12 weeks. Treatments effects were analyzed using two-way ANOVA. 83 participants completed the intervention per protocol (HP-D = 34, HP-S = 26, UP = 23). Protein intake was higher in HP-D and HP-S compared with UP (HP-D 1.41 ± 0.14 g/kg/d, HP-S 1.42 ± 0.61 g/kg/d, UP 1.10 ± 0.10 g/kg/d; P < 0.001 treatment effect). Strength increased less in HP-S compared with HP-D and UP (HP-D 92.1 ± 40.8%, HP-S 63.0 ± 23.8%,UP 92.3 ± 35.4%; P = 0.002 treatment effect). Lean mass, physical function and mental health scores increased and fat mass decreased (P ≤ 0.006), with no treatment effect (P > 0.06). Increased soy protein intake attenuated gains in muscle strength during resistance training in older adults compared with increased intake of dairy protein or usual protein intake. ACTRN12612000177853 www.anzctr.org.au. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  17. Recovery of strength is dependent on mTORC1 signaling after eccentric muscle injury.

    PubMed

    Baumann, Cory Walter; Rogers, Russell George; Otis, Jeffrey Scott; Ingalls, Christopher Paul

    2016-11-01

    Eccentric contractions may cause immediate and long-term reductions in muscle strength that can be recovered through increased protein synthesis rates. The purpose of this study was to determine whether the mechanistic target-of-rapamycin complex 1 (mTORC1), a vital controller of protein synthesis rates, is required for return of muscle strength after injury. Isometric muscle strength was assessed before, immediately after, and then 3, 7, and 14 days after a single bout of 150 eccentric contractions in mice that received daily injections of saline or rapamycin. The bout of eccentric contractions increased the phosphorylation of mTORC1 (1.8-fold) and p70s6k1 (13.8-fold), mTORC1's downstream effector, 3 days post-injury. Rapamycin blocked mTORC1 and p70s6k1 phosphorylation and attenuated recovery of muscle strength (∼20%) at 7 and 14 days. mTORC1 signaling is instrumental in the return of muscle strength after a single bout of eccentric contractions in mice. Muscle Nerve 54: 914-924, 2016. © 2016 Wiley Periodicals, Inc.

  18. A Maximum Muscle Strength Prediction Formula Using Theoretical Grade 3 Muscle Strength Value in Daniels et al.'s Manual Muscle Test, in Consideration of Age: An Investigation of Hip and Knee Joint Flexion and Extension.

    PubMed

    Usa, Hideyuki; Matsumura, Masashi; Ichikawa, Kazuna; Takei, Hitoshi

    2017-01-01

    This study attempted to develop a formula for predicting maximum muscle strength value for young, middle-aged, and elderly adults using theoretical Grade 3 muscle strength value (moment fair: M f )-the static muscular moment to support a limb segment against gravity-from the manual muscle test by Daniels et al. A total of 130 healthy Japanese individuals divided by age group performed isometric muscle contractions at maximum effort for various movements of hip joint flexion and extension and knee joint flexion and extension, and the accompanying resisting force was measured and maximum muscle strength value (moment max, M m ) was calculated. Body weight and limb segment length (thigh and lower leg length) were measured, and M f was calculated using anthropometric measures and theoretical calculation. There was a linear correlation between M f and M m in each of the four movement types in all groups, excepting knee flexion in elderly. However, the formula for predicting maximum muscle strength was not sufficiently compatible in middle-aged and elderly adults, suggesting that the formula obtained in this study is applicable in young adults only.

  19. A Maximum Muscle Strength Prediction Formula Using Theoretical Grade 3 Muscle Strength Value in Daniels et al.'s Manual Muscle Test, in Consideration of Age: An Investigation of Hip and Knee Joint Flexion and Extension

    PubMed Central

    Matsumura, Masashi; Ichikawa, Kazuna; Takei, Hitoshi

    2017-01-01

    This study attempted to develop a formula for predicting maximum muscle strength value for young, middle-aged, and elderly adults using theoretical Grade 3 muscle strength value (moment fair: Mf)—the static muscular moment to support a limb segment against gravity—from the manual muscle test by Daniels et al. A total of 130 healthy Japanese individuals divided by age group performed isometric muscle contractions at maximum effort for various movements of hip joint flexion and extension and knee joint flexion and extension, and the accompanying resisting force was measured and maximum muscle strength value (moment max, Mm) was calculated. Body weight and limb segment length (thigh and lower leg length) were measured, and Mf was calculated using anthropometric measures and theoretical calculation. There was a linear correlation between Mf and Mm in each of the four movement types in all groups, excepting knee flexion in elderly. However, the formula for predicting maximum muscle strength was not sufficiently compatible in middle-aged and elderly adults, suggesting that the formula obtained in this study is applicable in young adults only. PMID:28133549

  20. Strength deficits identified with concentric action of the hip extensors and eccentric action of the hamstrings predispose to hamstring injury in elite sprinters.

    PubMed

    Sugiura, Yusaku; Saito, Tomoyuki; Sakuraba, Keishoku; Sakuma, Kazuhiko; Suzuki, Eiichi

    2008-08-01

    Prospective cohort study. In this prospective cohort study of elite sprinters, muscle strength of the hip extensors, as well as of the knee extensors and flexors, was measured to determine a possible relationship between strength deficits and subsequent hamstring injury within 12 months of testing. The method used for testing muscle strength simulated the specific muscle action during late swing and early contact phases when sprinting. There have been no prospective studies in elite sprinters that examine the concentric and eccentric isokinetic strength of the hip extensors and the quadriceps and hamstring muscles in a manner that reflects their actions in late swing or early contact phases of sprinting. Consequently, the causal relationship between hip and thigh muscle strength and hamstring injury in elite sprinters may not be fully understood. Isokinetic testing was performed on 30 male elite sprinters to assess hip extensors, quadriceps, and hamstring muscle strength. The occurrence of hamstring injury among the subjects was determined during the year following the muscle strength measurements. The strength of the hip extensors, quadriceps, and hamstring muscles, as well as the hamstrings-quadriceps and hip extensors- quadriceps ratios were compared. Hamstring injury occurred in 6 subjects during the 1-year period. Isokinetic testing at a speed of 60 degrees /s revealed weakness of the injured limb with eccentric action of the hamstring muscles and during concentric action of the hip extensors. When performing a side-to-side comparison for the injured sprinters, the hamstring injury always occurred on the weaker side. Differences in the hamstrings-quadriceps and hip extensors-quadriceps strength ratios were also evident between uninjured and injured limbs, and this was attributable to deficits in hamstring strength. Hamstring injury in elite sprinters was associated with weakness during eccentric action of the hamstrings and weakness during concentric action of the hip extensors, but only when tested at the slower speed of 60 degrees /s.

  1. Effects of 28 days of resistance exercise while consuming commercially available pre- and post-workout supplements, NO-Shotgun® and NO-Synthesize® on body composition, muscle strength and mass, markers of protein synthesis, and clinical safety markers in males

    PubMed Central

    2011-01-01

    Purpose The effects of 28 days of heavy resistance training while ingesting the pre- and post-workout supplements, NO-Shotgun® and NO-Synthesize® were determined on body composition, muscle strength and mass, markers of protein synthesis, and clinical safety markers. Methods Nineteen non-resistance-trained males participated in a resistance training program 4 times/week for 28 days while either ingesting 27 g/day of carbohydrate (CARB) or NO-Shotgun® 30 min pre-exercise and 27 g/day of carbohydrate or NO- Synthesize® 30 min post-exercise (NOSS). Data were analyzed with separate 2 × 2 ANOVA (p < 0.05). Results Total body mass was increased in both groups (p = 0.001), but not different between groups. Fat mass was unchanged with CARB, but NOSS decreased fat mass (p = 0.026). Both groups increased fat-free mass (p = 0.001); however, the increases were greater with NOSS (p = 0.023). NOSS underwent greater increases in upper-body (p = 0.023) and lower-body (p = 0.035) strength than CARB. Myofibrillar protein significantly increased in both groups (p = 0.041), with NOSS being greater than CARB (p = 0.049). All of the MHC isoforms were significantly increased in both groups; however, NOSS was greater than CARB for MHC 1 (p = 0.013) and MHC 2A (p = 0.046). All of the myogenic regulatory factors were significantly increased in both groups; however, NOSS was greater than CARB for Myo-D (p = 0.038) and MRF-4 (p = 0.001). For the whole blood and serum clinical chemistry markers, all variables remained within normal clinical ranges. Conclusions Heavy resistance training for 28 days, with NO-Shotgun® and NO-Synthesize® ingested before and after exercise, respectively, significantly improved body composition and increased muscle mass and performance without abnormally impacting any of the clinical chemistry markers. PMID:22050827

  2. Electrical impedance myography in facioscapulohumeral muscular dystrophy.

    PubMed

    Statland, Jeffrey M; Heatwole, Chad; Eichinger, Katy; Dilek, Nuran; Martens, William B; Tawil, Rabi

    2016-10-01

    In this study we determined the reliability and validity of electrical impedance myography (EIM) in facioscapulohumeral muscular dystrophy (FSHD). We performed a prospective study of EIM on 16 bilateral limb and trunk muscles in 35 genetically defined and clinically affected FSHD patients (reliability testing on 18 patients). Summary scores based on body region were derived. Reactance and phase (50 and 100 kHz) were compared with measures of strength, FSHD disease severity, and functional outcomes. Participants were mostly men, mean age 53.0 years, and included a full range of severity. Limb and trunk muscles showed good to excellent reliability [intraclass correlation coefficients (ICC) 0.72-0.99]. Summary scores for the arm, leg, and trunk showed excellent reliability (ICC 0.89-0.98). Reactance was the most sensitive EIM parameter to a broad range of FSHD disease metrics. EIM is a reliable measure of muscle composition in FSHD that offers the possibility to serially evaluate affected muscles. Muscle Nerve 54: 696-701, 2016. © 2016 Wiley Periodicals, Inc.

  3. Effects of strength training, detraining and retraining in muscle strength, hypertrophy and functional tasks in older female adults.

    PubMed

    Correa, Cleiton S; Cunha, Giovani; Marques, Nise; Oliveira-Reischak, Ãlvaro; Pinto, Ronei

    2016-07-01

    Previous studies presented different results regarding the maintenance time of muscular adaptations after strength training and the ability to resume the gains on muscular performance after resumption of the training programme. This study aimed to verify the effect of strength training on knee extensors and elbow flexor muscle strength, rectus femoris muscle volume and functional performance in older female adults after 12 weeks of strength training, 1 year of detraining and followed by 12 weeks of retraining. Twelve sedentary older women performed 12 weeks of strength training, 1 year of detraining and 12 weeks of retraining. The strength training was performed twice a week, and the assessment was made four times: at the baseline, after the strength training, after the detraining and after the retraining. The knee extensor and elbow flexor strength, rectus femoris muscle volume and functional task were assessed. Strength of knee extensor and elbow flexor muscles, rectus femoris muscle volume and 30-s sit-to-stand increased from baseline to post-training (respectively, 40%, 70%, 38% and 46%), decreased after detraining (respectively, -36%, -64%, -35% and -43%) and increased again these parameters after retraining (35%, 68%, 36% and 42%). Strength training induces gains on strength and hypertrophy, also increased the performance on functional tasks after the strength training. The stoppage of the strength caused strength loss and reduction of functional performance. The resumption of the strength training promoted the same gains of muscular performance in older female adults. © 2015 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  4. Physiological Effects of Strength Training and Various Strength Training Devices.

    ERIC Educational Resources Information Center

    Wilmore, Jack H.

    Current knowledge in the area of muscle physiology is a basis for a discussion on strength training programs. It is now recognized that the expression of strength is related to, but not dependent upon, the size of the muscle and is probably more related to the ability to recruit more muscle fibers in the contraction, or to better synchronize their…

  5. Ageing influence in the evolution of strength and muscle mass in women with fibromyalgia: the al-Ándalus project.

    PubMed

    Latorre-Román, Pedro Ángel; Segura-Jiménez, Víctor; Aparicio, Virginia A; Santos E Campos, María Aparecida; García-Pinillos, Felipe; Herrador-Colmenero, Manuel; Álvarez-Gallardo, Inmaculada C; Delgado-Fernández, Manuel

    2015-07-01

    Fibromyalgia is associated with physical disabilities in daily activities. Moreover, patients with fibromyalgia present similar levels of functional capacity and physical condition than elderly people. The aim of this study was to analyse the evolution of strength and muscle mass in women with fibromyalgia along ageing. A total sample of 492 fibromyalgia patients and 279 healthy control women were included in the study. Participants in each group were further divided into four age subgroups: subgroup 1: 30-39 years old, subgroup 2: 40-49 years old, subgroup 3: 50-59 years old and subgroup 4: 60-69 years old. Standardized field-based fitness tests were used to assess muscle strength (30-s chair stand, handgrip strength and arm curl tests). Fibromyalgia patients did not show impairment on muscle mass along ageing, without values of skeletal muscle mass index below 6.76 kg/m(2) in any group. However, in all variables of muscle strength, the fibromyalgia group showed less strength than the healthy group (p < 0.05) for all age groups. As expected, handgrip strength test showed differences along ageing only in the fibromyalgia group (p < 0.001). Age was inversely associated with skeletal muscle mass (r = -0.155, p < 0.01) and handgrip strength (r = -0.230, p < 0.001) in the FM group. Women with fibromyalgia showed a reduction in muscle strength along ageing process, with significantly lower scores than healthy women for each age group, representing a risk of dynapenia.

  6. Pelvic floor muscle strength in primiparous women according to the delivery type: cross-sectional study 1

    PubMed Central

    Mendes, Edilaine de Paula Batista; de Oliveira, Sonia Maria Junqueira Vasconcellos; Caroci, Adriana de Souza; Francisco, Adriana Amorim; Oliveira, Sheyla Guimaraes; da Silva, Renata Luana

    2016-01-01

    ABSTRACT Objectives: to compare the pelvic floor muscle strength in primiparous women after normal birth and cesarean section, related to the socio-demographic characteristics, nutritional status, dyspareunia, urinary incontinence, perineal exercise in pregnancy, perineal condition and weight of the newborn. Methods: this was a cross-sectional study conducted after 50 - 70 postpartum days, with 24 primiparous women who underwent cesarean delivery and 72 who had a normal birth. The 9301 PeritronTM was used for analysis of muscle strength. The mean muscle strength was compared between the groups by two-way analysis of variance. Results: the pelvic floor muscle strength was 24.0 cmH2O (±16.2) and 25.4 cmH2O (±14.7) in postpartum primiparous women after normal birth and cesarean section, respectively, with no significant difference. The muscular strength was greater in postpartum women with ≥ 12 years of study (42.0 ±26.3 versus 14.6 ±7.7 cmH2O; p= 0.036) and in those who performed perineal exercises (42.6±25.4 11.8±4.9 vs. cmH2O; p = 0.010), compared to caesarean. There was no difference in muscle strength according to delivery type regarding nutritional status, dyspareunia, urinary incontinence, perineal condition or newborn weight. Conclusion: pelvic floor muscle strength does not differ between primiparous women based on the type of delivery. Postpartum women with normal births, with higher education who performed perineal exercise during pregnancy showed greater muscle strength. PMID:27533267

  7. THIGH MUSCLE CROSS-SECTIONAL AREAS AND STRENGTH IN KNEES WITH EARLY VS KNEES WITHOUT RADIOGRAPHIC KNEE OSTEOARTHRITIS: A BETWEEN-KNEE, WITHIN-PERSON COMPARISON

    PubMed Central

    Ruhdorfer, AS; Dannhauer, T; Wirth, W; Cotofana, S; Roemer, F; Nevitt, M; Eckstein, F

    2014-01-01

    Objective To compare cross-sectional and longitudinal side-differences in thigh muscle anatomical cross-sectional areas (ACSAs), muscle strength, and specific strength (strength/ACSA), between knees with early radiographic change vs. knees without radiographic knee osteoarthritis (RKOA), in the same person. Design 55 (of 4796) Osteoarthritis Initiative participants fulfilled the inclusion criteria of early RKOA in one limb (definite tibiofemoral osteophytes; no radiographic joint space narrowing [JSN]) vs. no RKOA (no osteophyte; no JSN) in the contralateral limb. ACSAs of the thigh muscles and quadriceps heads were determined using axial MRIs at 33%/30% femoral length (distal to proximal). Isometric extensor and flexor muscle strength were measured (Good Strength Chair). Baseline quadriceps ACSA and extensor (specific) strength represented the primary analytic focus, and two-year changes of quadriceps ACSAs the secondary focus. Results No statistically significant side-differences in quadriceps (or other thigh muscle) ACSAs, muscle strength, or specific strength were observed between early RKOA vs. contralateral limbs without RKOA (p≥0.44), neither in men nor in women. The two-year reduction in quadriceps ACSA in limbs with early RKOA was −0.9±6% (mean ± standard deviation) vs. −0.5±6% in limbs without RKOA (statistical difference p=0.85). Conclusion Our results do not provide evidence that early unilateral radiographic changes, i.e. presence of osteophytes, are associated with cross-sectional or longitudinal differences in quadriceps muscle status compared with contralateral knees without RKOA. At the stage of early unilateral RKOA there thus appears to be no clinical need for countervailing a potential dys-balance in quadriceps ACSAs and strength between both knees. PMID:25278072

  8. Greater understanding of normal hip physical function may guide clinicians in providing targeted rehabilitation programmes.

    PubMed

    Kemp, Joanne L; Schache, Anthony G; Makdissi, Michael; Sims, Kevin J; Crossley, Kay M

    2013-07-01

    This study investigated tests of hip muscle strength and functional performance. The specific objectives were to: (i) establish intra- and inter-rater reliability; (ii) compare differences between dominant and non-dominant limbs; (iii) compare agonist and antagonist muscle strength ratios; (iv) compare differences between genders; and (v) examine relationships between hip muscle strength, baseline measures and functional performance. Reliability study and cross-sectional analysis of hip strength and functional performance. In healthy adults aged 18-50years, normalised hip muscle peak torque and functional performance were evaluated to: (i) establish intra-rater and inter-rater reliability; (ii) analyse differences between limbs, between antagonistic muscle groups and genders; and (iii) associations between strength and functional performance. Excellent reliability (intra-rater ICC=0.77-0.96; inter-rater ICC=0.82-0.95) was observed. No difference existed between dominant and non-dominant limbs. Differences in strength existed between antagonistic pairs of muscles: hip abduction was greater than adduction (p<0.001) and hip ER was greater than IR (p<0.001). Men had greater ER strength (p=0.006) and hop for distance (p<0.001) than women. Strong associations were observed between measures of hip muscle strength (except hip flexion) and age, height, and functional performance. Deficits in hip muscle strength or functional performance may influence hip pain. In order to provide targeted rehabilitation programmes to address patient-specific impairments, and determine when individuals are ready to return to physical activity, clinicians are increasingly utilising tests of hip strength and functional performance. This study provides a battery of reliable, clinically applicable tests which can be used for these purposes. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  9. Dietary HMB and β-alanine co-supplementation does not improve in situ muscle function in sedentary, aged male rats.

    PubMed

    Russ, David W; Acksel, Cara; Boyd, Iva M; Maynard, John; McCorkle, Katherine W; Edens, Neile K; Garvey, Sean M

    2015-12-01

    This study evaluated the effects of dietary β-hydroxy-β-methylbutyrate (HMB) combined with β-alanine (β-Ala) in sedentary, aged male rats. It has been suggested that dietary HMB or β-Ala supplementation may mitigate age-related declines in muscle strength and fatigue resistance. A total of 20 aged Sprague-Dawley rats were studied. At age 20 months, 10 rats were administered a control, purified diet and 10 rats were administered a purified diet supplemented with both HMB and β-Ala (HMB+β-Ala) for 8 weeks (approximately equivalent to 3 and 2.4 g per day human dose). We measured medial gastrocnemius (MG) size, force, fatigability, and myosin composition. We also evaluated an array of protein markers related to muscle mitochondria, protein synthesis and breakdown, and autophagy. HMB+β-Ala had no significant effects on body weight, MG mass, force or fatigability, myosin composition, or muscle quality. Compared with control rats, those fed HMB+β-Ala exhibited a reduced (41%, P = 0.039) expression of muscle RING-finger protein 1 (MURF1), a common marker of protein degradation. Muscle from rats fed HMB+β-Ala also exhibited a 45% reduction (P = 0.023) in p70s6K phosphorylation following fatiguing stimulation. These data suggest that HMB+β-Ala at the dose studied may reduce muscle protein breakdown by reducing MURF1 expression, but has minimal effects on muscle function in this model of uncomplicated aging. They do not, however, rule out potential benefits of HMB+β-Ala co-supplementation at other doses or durations of supplementation in combination with exercise or in situations where extreme muscle protein breakdown and loss of mass occur (e.g., bedrest, cachexia, failure-to-thrive).

  10. Changes in muscle strength in patients with statin myalgia.

    PubMed

    Panza, Gregory A; Taylor, Beth A; Roman, William; Thompson, Paul D

    2014-10-15

    Statins can produce myalgia or muscle pain, which may affect medication adherence. We measured the effects of statins on muscle strength in patients with previous statin myalgia. Leg isokinetic extension average power at 60° per second (-8.8 ± 10.5N-M, p = 0.02) and average peak torque at 60° per second (-14.0 ± 19.7N-M, p = 0.04) decreased slightly with statin use, but 8 of 10 other variables for leg strength did not change (all p >0.13). Handgrip, muscle pain, respiratory exchange ratio, and daily activity also did not change (all p >0.09). In conclusion, statin myalgia is not associated with reduced muscle strength or muscle performance. Published by Elsevier Inc.

  11. Asymmetry of Muscle Strength in Elite Athletes

    ERIC Educational Resources Information Center

    Drid, Patrik; Drapsin, Miodrag; Trivic, Tatjana; Lukac, Damir; Obadov, Slavko; Milosevic, Zoran

    2009-01-01

    "Study aim": To determine muscle strength variables in elite judoists and wrestlers since thigh muscle strength and bilaterally balanced flexor-to-extensor ratio minimise injury risk and are desirable for achieving sport successes. "Material and methods": Judoists, wrestlers and untrained subjects, 10 each, were subjected to isokinetic strength…

  12. Identification of human skeletal muscle miRNA related to strength by high-throughput sequencing.

    PubMed

    Mitchell, Cameron J; D'Souza, Randall F; Schierding, William; Zeng, Nina; Ramzan, Farha; O'Sullivan, Justin M; Poppitt, Sally D; Cameron-Smith, David

    2018-06-01

    The loss of muscle size, strength, and quality with aging is a major determinant of morbidity and mortality in the elderly. The regulatory pathways that impact the muscle phenotype include the translational regulation maintained by microRNAs (miRNA). Yet the miRNAs that are expressed in human skeletal muscle and relationship to muscle size, strength, and quality are unknown. Using next-generation sequencing, we selected the 50 most abundantly expressed miRNAs and then analyzed them in vastus lateralis muscle, obtained by biopsy from middle-aged males ( n = 48; 50.0 ± 4.3 yr). Isokinetic strength testing and midthigh computed tomography was undertaken for muscle phenotype analysis. Muscle attenuation was measured by computerized tomography and is inversely proportional to myofiber lipid content. miR-486-5p accounted for 21% of total miR sequence reads, with miR-10b-5p, miR-133a-3p, and miR-22-3p accounting for a further 15, 12, and 10%, respectively. Isokinetic knee extension strength and muscle cross-sectional area were positively correlated with miR-100-5p, miR-99b-5p, and miR-191-5p expression. Muscle attenuation was negatively correlated to let-7f-5p, miR-30d-5p, and miR-125b-5p expression. In silico analysis implicates miRNAs related to strength and muscle size in the regulation of mammalian target of rapamycin, while miRNAs related to muscle attenuation may have potential roles regulating the transforming growth factor-β/SMAD3 pathway.

  13. Association between isometric muscle strength and gait joint kinetics in adolescents and young adults with cerebral palsy.

    PubMed

    Dallmeijer, A J; Baker, R; Dodd, K J; Taylor, N F

    2011-03-01

    The purpose of this study was to determine the association between isometric muscle strength of the lower limbs and gait joint kinetics in adolescents and young adults with cerebral palsy (CP). Twenty-five participants (11 males) with bilateral spastic CP, aged 14-22 years (mean: 18.9, sd: 2.0 yr) and Gross Motor Function Classification System (GMFCS) level II (n=19) and III (n=6) were tested. Hand held dynamometry was used to measure isometric strength (expressed in Nm/kg) of the hip, knee, and ankle muscles using standardized testing positions and procedures. 3D gait analysis was performed with a VICON system to calculate joint kinetics in the hip, knee and ankle during gait. Ankle peak moments exceeded by far the levels of isometric strength of the plantar flexors, while the knee and hip peak moments were just at or below maximal isometric strength of knee and hip muscles. Isometric muscle strength showed weak to moderate correlations with peak ankle and hip extension moment and power during walking. Despite considerable muscle weakness, joint moment curves were similar to norm values. Results suggest that passive stretch of the muscle-tendon complex of the triceps surae contributes to the ankle moment during walking and that muscle strength assessment may provide additional information to gait kinetics. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Evaluation of rotator cuff muscle strength in healthy individuals

    PubMed Central

    Cortez, Paulo José Oliveira; Tomazini, José Elias

    2015-01-01

    OBJECTIVE: To compare the strength generated by the rotator muscles of the shoulder joint between the right upper limb and left upper limb among healthy individuals. METHODS: To evaluate the muscle strength of upper limbs from isometric contractions in the horizontal direction (rotation) an isometric dynamometer was used, equipped with transducers, signal conditioning, a data acquisition board, and finally, a computer. Study participants were 22 male military subjects, aged between 18 and 19 years old, body mass between 57.7 and 93.0 kg (71.8 ± 9.45 kg) and height between 1.67 and 1.90 m (1.75 ± 0.06 m), healthy and without clinical diseases or any type of orthopedic injury in the muscle skeletal system. RESULTS: The internal rotation in the right upper limb (RUL) was higher than the average strength of internal rotation in the left upper limb (LUL) (p = 0.723). The external rotation strength in RUL was lower than the average strength of external rotation in the LUL (p=0.788). No statistical difference was observed by comparing the strength values of all isometric strength tests. CONCLUSION: For the sample and methodology used to assess muscle strength, there was no statistical difference between the strength generated by the muscles of the rotator cuff of the right and left upper limbs. Experimental Study. PMID:26207091

  15. Serum reference value of two potential doping candidates-myostatin and insulin-like growth factor-I in the healthy young male.

    PubMed

    Han, Der-Sheng; Huang, Chi-Huang; Chen, Ssu-Yuan; Yang, Wei-Shiung

    2017-01-01

    Myostatin negatively regulates muscle growth, and its inhibition by suitable proteins can increase muscle bulk and exercise performance. However, the reference values of serum myostatin in athletes performing strength training are still lacking. A cross-sectional study recruiting28 male collegiate athletes performing strength training and 29 age-matched normal controls was conducted. The serum concentration of myostatin and insulin-like growth factor 1 (IGF-1), grip strength, and body composition were the main outcome measures. We used regression models to analyze the correlation between serum markers and the physiological parameters. The athlete group had greater height, weight, body mass index (BMI), fat mass percentage, fat-free mass, muscle mass, waist girth, grip strength, and estimated daily energy expenditure. The IGF-1 concentration was higher in the athlete group (324 ± 80 vs. 263 ± 134 ng/ml), but the myostatin levels did not differ (12.1 ± 3.7 vs. 12.4 ± 3.5 ng/ml). The reference value for IGF-1 among the healthy young males was 293 ± 114 ng/ml, correlated with age and height; the value for myostatin was 12.3 ± 3.6 ng/ml, correlated negatively with BMI, fat mass percentage, and waist girth after adjustment for age. Myostatin level is negatively related to fat percentage, and serum IGF-1 is positively related to height. The reference values could provide a basis for future doping-related study.

  16. A Randomized Trial on the Effect of Bone Tissue on Vibration-induced Muscle Strength Gain and Vibration-induced Reflex Muscle Activity

    PubMed Central

    Cidem, Muharrem; Karacan, İlhan; Diraçoğlu, Demirhan; Yıldız, Aysel; Küçük, Suat Hayri; Uludağ, Murat; Gün, Kerem; Özkaya, Murat; Karamehmetoğlu, Şafak Sahir

    2014-01-01

    Background: Whole-body vibration (WBV) induces reflex muscle activity and leads to increased muscle strength. However, little is known about the physiological mechanisms underlying the effects of whole-body vibration on muscular performance. Tonic vibration reflex is the most commonly cited mechanism to explain the effects of whole-body vibration on muscular performance, although there is no conclusive evidence that tonic vibration reflex occurs. The bone myoregulation reflex is another neurological mechanism used to explain the effects of vibration on muscular performance. Bone myoregulation reflex is defined as a reflex mechanism in which osteocytes exposed to cyclic mechanical loading induce muscle activity. Aims: The aim of this study was to assess whether bone tissue affected vibration-induced reflex muscle activity and vibration-induced muscle strength gain. Study Design: A prospective, randomised, controlled, double-blind, parallel-group clinical trial. Methods: Thirty-four participants were randomised into two groups. High-magnitude whole-body vibration was applied in the exercise group, whereas low-magnitude whole-body vibration exercises were applied in the control group throughout 20 sessions. Hip bone mineral density, isokinetic muscle strength, and plasma sclerostin levels were measured. The surface electromyography data were processed to obtain the Root Mean Squares, which were normalised by maximal voluntarily contraction. Results: In the exercise group, muscle strength increased in the right and left knee flexors (23.9%, p=0.004 and 27.5%, p<0.0001, respectively). However, no significant change was observed in the knee extensor muscle strength. There was no significant change in the knee muscle strength in the control group. The vibration-induced corrected Root Mean Squares of the semitendinosus muscle was decreased by 2.8 times (p=0.005) in the exercise group, whereas there was no change in the control group. Sclerostin index was decreased by 15.2% (p=0.031) in the exercise group and increased by 20.8% (p=0.028) in the control group. A change in the sclerostin index was an important predictor of a change in the vibration-induced normalised Root Mean Square of the semitendinosus muscle (R2=0.7, p=0.0001). Femoral neck bone mineral density was an important predictor of muscle strength gain (R2=0.26, p=0.035). Conclusion: This study indicates that bone tissue may have an effect on vibration-induced muscle strength gain and vibration-induced reflex muscle activity. Trial registration: ClinicalTrials.gov: NCT01310348. PMID:25207162

  17. A Randomized Trial on the Effect of Bone Tissue on Vibration-induced Muscle Strength Gain and Vibration-induced Reflex Muscle Activity.

    PubMed

    Cidem, Muharrem; Karacan, Ilhan; Diraçoğlu, Demirhan; Yıldız, Aysel; Küçük, Suat Hayri; Uludağ, Murat; Gün, Kerem; Ozkaya, Murat; Karamehmetoğlu, Safak Sahir

    2014-03-01

    Whole-body vibration (WBV) induces reflex muscle activity and leads to increased muscle strength. However, little is known about the physiological mechanisms underlying the effects of whole-body vibration on muscular performance. Tonic vibration reflex is the most commonly cited mechanism to explain the effects of whole-body vibration on muscular performance, although there is no conclusive evidence that tonic vibration reflex occurs. The bone myoregulation reflex is another neurological mechanism used to explain the effects of vibration on muscular performance. Bone myoregulation reflex is defined as a reflex mechanism in which osteocytes exposed to cyclic mechanical loading induce muscle activity. The aim of this study was to assess whether bone tissue affected vibration-induced reflex muscle activity and vibration-induced muscle strength gain. A prospective, randomised, controlled, double-blind, parallel-group clinical trial. Thirty-four participants were randomised into two groups. High-magnitude whole-body vibration was applied in the exercise group, whereas low-magnitude whole-body vibration exercises were applied in the control group throughout 20 sessions. Hip bone mineral density, isokinetic muscle strength, and plasma sclerostin levels were measured. The surface electromyography data were processed to obtain the Root Mean Squares, which were normalised by maximal voluntarily contraction. In the exercise group, muscle strength increased in the right and left knee flexors (23.9%, p=0.004 and 27.5%, p<0.0001, respectively). However, no significant change was observed in the knee extensor muscle strength. There was no significant change in the knee muscle strength in the control group. The vibration-induced corrected Root Mean Squares of the semitendinosus muscle was decreased by 2.8 times (p=0.005) in the exercise group, whereas there was no change in the control group. Sclerostin index was decreased by 15.2% (p=0.031) in the exercise group and increased by 20.8% (p=0.028) in the control group. A change in the sclerostin index was an important predictor of a change in the vibration-induced normalised Root Mean Square of the semitendinosus muscle (R2=0.7, p=0.0001). Femoral neck bone mineral density was an important predictor of muscle strength gain (R2=0.26, p=0.035). This study indicates that bone tissue may have an effect on vibration-induced muscle strength gain and vibration-induced reflex muscle activity. ClinicalTrials.gov: NCT01310348.

  18. Correlation between toe flexor strength and ankle dorsiflexion ROM during the countermovement jump.

    PubMed

    Yun, Sung Joon; Kim, Moon-Hwan; Weon, Jong-Hyuck; Kim, Young; Jung, Sung-Hoon; Kwon, Oh-Yun

    2016-08-01

    [Purpose] This study assessed the relationships between peak toe flexor muscle strength, ankle dorsiflexion range of motion, and countermovement jump height. [Subjects and Methods] Eighteen healthy volunteers participated in the study. Each participant completed tests for peak toe flexor muscle strength, ankle dorsiflexion range of motion, and countermovement jump height. [Results] The results showed (1) a moderate correlation between ankle dorsiflexion range of motion and countermovement jump height and (2) a high correlation between peak first toe flexor muscle strength and countermovement jump height. Peak first toe flexor muscle strength and ankle dorsiflexion range of motion are the main contributors to countermovement jump performance. [Conclusion] These findings indicate that the measurement of peak first toe flexor muscle strength and ankle dorsiflexion range of motion may be useful in clinical practice for improving jump performance in athletes training for sports such as volleyball and basketball.

  19. Butyryl-cholinesterase is related to muscle mass and strength. A new biomarker to identify elderly subjects at risk of sarcopenia.

    PubMed

    Cacciatore, Francesco; Della-Morte, David; Basile, Claudia; Curcio, Francesco; Liguori, Ilaria; Roselli, Mario; Gargiulo, Gaetano; Galizia, Gianluigi; Bonaduce, Domenico; Abete, Pasquale

    2015-01-01

    To determine the relationship between Butyryl-cholinesterase (α-glycoprotein synthesized in the liver, b-CHE) and muscle mass and strength. Muscle mass by bioimpedentiometer and muscle strength by grip strength were evaluated in 337 elderly subjects (mean age: 76.2 ± 6.7 years) admitted to comprehensive geriatric assessment. b-CHE levels were lower in sarcopenic than in nonsarcopenic elderly subjects (p < 0.01). Linear regression analysis demonstrated that b-CHE is linearly related with grip strength and muscular mass both in men and women (r = 0.45 and r = 0.33, p < 0.01; r = 0.55 and r = 0.39, p < 0.01; respectively). Multivariate analysis confirms this analysis. b-CHE is related to muscle mass and strength in elderly subjects. Thus, b-CHE may be considered to be a fair biomarker for identifying elderly subjects at risk of sarcopenia.

  20. [Association of muscle strength with early markers of cardiovascular risk in sedentary adults].

    PubMed

    Triana-Reina, Héctor Reynaldo; Ramírez-Vélez, Robinson

    2013-10-01

    To assess the association between muscle strength and early cardiovascular risk (CVR) markers in sedentary adults. A total of 176 sedentary subjects aged 18-30 years were enrolled. Body mass index and fat percentage were calculated, and waist circumference, grip strength by dynamometry, systolic blood pressure, diastolic blood pressure, mean arterial pressure, and maximal oxygen uptake by VO2max were measured as CVR markers. A multivariate logistic regression analysis was used to assess associations between muscle strength and CVR markers. Inverse correlations were found between muscle strength and adiposity (r=-.317; P=.001), waist circumference (r=-.309; P=.001), systolic blood pressure (r=-.401; P=.001), and mean arterial pressure (r=-.256; P=.001). Subjects with lower levels of muscle strength had a 5.79-fold (95% CI 1.57 to 9.34; P=.008) risk of having higher adiposity levels (≥25%) and a 9.67-fold (95% CI=3.86 to 19.22; P<.001) risk of having lower physical capacity values for VO2max (≤31.5mL/kg/min(-1)). In sedentary adults, muscle strength is associated to early manifestations of CVR. It is suggested that muscle strength testing is added to routine measurement of VO2max and traditional risk factors for prevention and treatment of cardiovascular risk. Copyright © 2012 SEEN. Published by Elsevier Espana. All rights reserved.

  1. Changes in muscle strength in individuals with statin-induced myopathy: A summary of 3 investigations.

    PubMed

    Panza, Gregory A; Taylor, Beth A; Dada, Marcin R; Thompson, Paul D

    2015-01-01

    There are inconsistent findings regarding muscular weakness in individuals with statin-induced myalgia. We used rigorous muscle testing to compare findings from 3 investigations in 3 different study populations to determine if statin myalgia is associated with measurable weakness. In all 3 studies, we measured maximal isometric handgrip strength, resting respiratory exchange ratio (RER), and knee extensor isometric and isokinetic force. In 2 of the 3 studies, elbow flexor isometric and isokinetic force and knee endurance fatigue index were also assessed. Knee extensor and elbow flexor measurements were obtained using an isokinetic dynamometer. Resting RER was measured using a metabolic breath-by-breath collection method. Measurement outcomes were compared on vs off drug. In study 1, 18 participants fit the criteria for statin myalgia. Participants taking atorvastatin 80 mg daily had significantly lower muscle strength in 5 (P < .05) of 14 measured variables. Participants on placebo (N = 10) with myalgia had significantly lower muscle strength in 4 (P < .05) of 14 measured variables. In study 2, 18 participants tested positive for statin-induced myalgia when receiving simvastatin 20 mg daily and displayed no significant muscle strength changes (all P > .05). In study 3, 11 patients with statin-induced myalgia completed the study and had a significant decrease in 2 (P < .05) of 10 leg muscle strength variables. In all 3 studies, no significant changes were shown for handgrip strength or RER (all P > .05). Our results indicate that after a short-term treatment with statin therapy, a rigorous muscle strength protocol does not show decrements of muscle strength in subjects with statin myalgia. Short-term treatment with statin therapy is not common in clinical practice. Thus, future studies should examine the effects of prolonged statin therapy on muscle strength. Published by Elsevier Inc.

  2. Assessing the accuracy of subject-specific, muscle-model parameters determined by optimizing to match isometric strength.

    PubMed

    DeSmitt, Holly J; Domire, Zachary J

    2016-12-01

    Biomechanical models are sensitive to the choice of model parameters. Therefore, determination of accurate subject specific model parameters is important. One approach to generate these parameters is to optimize the values such that the model output will match experimentally measured strength curves. This approach is attractive as it is inexpensive and should provide an excellent match to experimentally measured strength. However, given the problem of muscle redundancy, it is not clear that this approach generates accurate individual muscle forces. The purpose of this investigation is to evaluate this approach using simulated data to enable a direct comparison. It is hypothesized that the optimization approach will be able to recreate accurate muscle model parameters when information from measurable parameters is given. A model of isometric knee extension was developed to simulate a strength curve across a range of knee angles. In order to realistically recreate experimentally measured strength, random noise was added to the modeled strength. Parameters were solved for using a genetic search algorithm. When noise was added to the measurements the strength curve was reasonably recreated. However, the individual muscle model parameters and force curves were far less accurate. Based upon this examination, it is clear that very different sets of model parameters can recreate similar strength curves. Therefore, experimental variation in strength measurements has a significant influence on the results. Given the difficulty in accurately recreating individual muscle parameters, it may be more appropriate to perform simulations with lumped actuators representing similar muscles.

  3. Effects of pelvic floor muscle training during pregnancy.

    PubMed

    de Oliveira, Claudia; Lopes, Marco Antonio Borges; Carla Longo e Pereira, Luciana; Zugaib, Marcelo

    2007-08-01

    The objective of the present study was to evaluate the effect of pelvic floor muscle training in 46 nulliparous pregnant women. The women were divided into 2 groups: an exercise group and a control group. Functional evaluation of the pelvic floor muscle was performed by digital vaginal palpation using the strength scale described by Ortiz and by a perineometer (with and without biofeedback). The functional evaluation of the pelvic floor muscles showed a significant increase in pelvic floor muscle strength during pregnancy in both groups (P < .001). However, the magnitude of the change was greater in the exercise group than in the control group (47.4% vs. 17.3%, P < .001). The study also showed a significant positive correlation (Spearman's test, r = 0.643; P < .001) between perineometry and digital assessment in the strength of pelvic floor muscles. Pelvic floor muscle training resulted in a significant increase in pelvic floor muscle pressure and strength during pregnancy. A significant positive correlation between functional evaluation of the pelvic floor muscle and perineometry was observed during pregnancy.

  4. Effects of Whey, Soy or Leucine Supplementation with 12 Weeks of Resistance Training on Strength, Body Composition, and Skeletal Muscle and Adipose Tissue Histological Attributes in College-Aged Males

    PubMed Central

    Mobley, C. Brooks; Roberson, Paul A.; Mumford, Petey W.; Romero, Matthew A.; Kephart, Wesley C.; Anderson, Richard G.; Vann, Christopher G.; Osburn, Shelby C.; Pledge, Coree D.; Young, Kaelin C.; Goodlett, Michael D.; Pascoe, David D.; Lockwood, Christopher M.; Roberts, Michael D.

    2017-01-01

    We sought to determine the effects of L-leucine (LEU) or different protein supplements standardized to LEU (~3.0 g/serving) on changes in body composition, strength, and histological attributes in skeletal muscle and adipose tissue. Seventy-five untrained, college-aged males (mean ± standard error of the mean (SE); age = 21 ± 1 years, body mass = 79.2 ± 0.3 kg) were randomly assigned to an isocaloric, lipid-, and organoleptically-matched maltodextrin placebo (PLA, n = 15), LEU (n = 14), whey protein concentrate (WPC, n = 17), whey protein hydrolysate (WPH, n = 14), or soy protein concentrate (SPC, n = 15) group. Participants performed whole-body resistance training three days per week for 12 weeks while consuming supplements twice daily. Skeletal muscle and subcutaneous (SQ) fat biopsies were obtained at baseline (T1) and ~72 h following the last day of training (T39). Tissue samples were analyzed for changes in type I and II fiber cross sectional area (CSA), non-fiber specific satellite cell count, and SQ adipocyte CSA. On average, all supplement groups including PLA exhibited similar training volumes and experienced statistically similar increases in total body skeletal muscle mass determined by dual X-ray absorptiometry (+2.2 kg; time p = 0.024) and type I and II fiber CSA increases (+394 μm2 and +927 μm2; time p < 0.001 and 0.024, respectively). Notably, all groups reported increasing Calorie intakes ~600–800 kcal/day from T1 to T39 (time p < 0.001), and all groups consumed at least 1.1 g/kg/day of protein at T1 and 1.3 g/kg/day at T39. There was a training, but no supplementation, effect regarding the reduction in SQ adipocyte CSA (−210 μm2; time p = 0.001). Interestingly, satellite cell counts within the WPC (p < 0.05) and WPH (p < 0.05) groups were greater at T39 relative to T1. In summary, LEU or protein supplementation (standardized to LEU content) does not provide added benefit in increasing whole-body skeletal muscle mass or strength above PLA following 3 months of training in previously untrained college-aged males that increase Calorie intakes with resistance training and consume above the recommended daily intake of protein throughout training. However, whey protein supplementation increases skeletal muscle satellite cell number in this population, and this phenomena may promote more favorable training adaptations over more prolonged periods. PMID:28869573

  5. Effects of Whey, Soy or Leucine Supplementation with 12 Weeks of Resistance Training on Strength, Body Composition, and Skeletal Muscle and Adipose Tissue Histological Attributes in College-Aged Males.

    PubMed

    Mobley, C Brooks; Haun, Cody T; Roberson, Paul A; Mumford, Petey W; Romero, Matthew A; Kephart, Wesley C; Anderson, Richard G; Vann, Christopher G; Osburn, Shelby C; Pledge, Coree D; Martin, Jeffrey S; Young, Kaelin C; Goodlett, Michael D; Pascoe, David D; Lockwood, Christopher M; Roberts, Michael D

    2017-09-04

    We sought to determine the effects of L-leucine (LEU) or different protein supplements standardized to LEU (~3.0 g/serving) on changes in body composition, strength, and histological attributes in skeletal muscle and adipose tissue. Seventy-five untrained, college-aged males (mean ± standard error of the mean (SE); age = 21 ± 1 years, body mass = 79.2 ± 0.3 kg) were randomly assigned to an isocaloric, lipid-, and organoleptically-matched maltodextrin placebo (PLA, n = 15), LEU ( n = 14), whey protein concentrate (WPC, n = 17), whey protein hydrolysate (WPH, n = 14), or soy protein concentrate (SPC, n = 15) group. Participants performed whole-body resistance training three days per week for 12 weeks while consuming supplements twice daily. Skeletal muscle and subcutaneous (SQ) fat biopsies were obtained at baseline (T1) and ~72 h following the last day of training (T39). Tissue samples were analyzed for changes in type I and II fiber cross sectional area (CSA), non-fiber specific satellite cell count, and SQ adipocyte CSA. On average, all supplement groups including PLA exhibited similar training volumes and experienced statistically similar increases in total body skeletal muscle mass determined by dual X-ray absorptiometry (+2.2 kg; time p = 0.024) and type I and II fiber CSA increases (+394 μm² and +927 μm²; time p < 0.001 and 0.024, respectively). Notably, all groups reported increasing Calorie intakes ~600-800 kcal/day from T1 to T39 (time p < 0.001), and all groups consumed at least 1.1 g/kg/day of protein at T1 and 1.3 g/kg/day at T39. There was a training, but no supplementation, effect regarding the reduction in SQ adipocyte CSA (-210 μm²; time p = 0.001). Interestingly, satellite cell counts within the WPC ( p < 0.05) and WPH ( p < 0.05) groups were greater at T39 relative to T1. In summary, LEU or protein supplementation (standardized to LEU content) does not provide added benefit in increasing whole-body skeletal muscle mass or strength above PLA following 3 months of training in previously untrained college-aged males that increase Calorie intakes with resistance training and consume above the recommended daily intake of protein throughout training. However, whey protein supplementation increases skeletal muscle satellite cell number in this population, and this phenomena may promote more favorable training adaptations over more prolonged periods.

  6. Impact on nutrition on muscle strength and performance in older adults

    USDA-ARS?s Scientific Manuscript database

    Muscle strength plays an important role in determining risk for falls, which result in fractures and other injuries. While bone loss has long been recognized as an inevitable consequence of aging, sarcopenia-the gradual loss of skeletal muscle mass and strength that occurs with advancing age-has rec...

  7. Sarcopenia and decreased muscle strength in the elderly woman: resistance training as a safe and effective intervention.

    PubMed

    Foster-Burns, S B

    1999-01-01

    A principle component of age-related weakness and frailty in women is sarcopenia. This decrease in skeletal muscle mass is a progressive syndrome that will affect the quality of life for elderly women by decreasing the ability to perform many activities of daily living. Strength training is known to be an effective means of increasing muscular strength and size in many populations, and can be utilized successfully to significantly improve muscle strength, muscle mass and functional mobility in elderly women up to the age of 96 years. Such exercise can minimize the syndrome of physical frailty due to decreased muscle mass and strength. Any rehabilitation or exercise program for the elderly woman would benefit from the inclusion of such a training regime.

  8. Evaluation of peripheral muscle strength of patients undergoing elective cardiac surgery: a longitudinal study

    PubMed Central

    Santos, Kelli Maria Souza; de Cerqueira Neto, Manoel Luiz; Carvalho, Vitor Oliveira; de Santana Filho, Valter Joviniano; da Silva Junior, Walderi Monteiro; Araújo Filho, Amaro Afrânio; Cerqueira, Telma Cristina Fontes; Cacau, Lucas de Assis Pereira

    2014-01-01

    Introduction Peripheral muscle strength has been little explored in the literature in the context of cardiac rehabilitation. Objective To evaluate the peripheral muscle strength of patients undergoing elective cardiac surgery. Methods This was a longitudinal observational study. The peripheral muscle strength was measured using isometric dynamometry lower limb (knee extensors and flexors) at three different times: preoperatively (M1), the day of discharge (M2) and hospital discharge (M3). Participants received physiotherapy pre and postoperatively during the days of hospitalization during the morning and afternoon. Results Twenty-two patients were evaluated. The values of peripheral muscle strength of knee extensors preoperative found were about 50% lower than those predicted for the healthy population. When comparing muscle strength prior (M1), with the remaining evaluation, found himself in a fall of 29% for the movement of knee extension and 25% for knee flexion in M2 and a decrease of 10% movement for knee extension and 13% for knee flexion in M3 when comparing with M1. Conclusion The values of peripheral muscle strength prior of the study patients were lower than predicted for the healthy population of the same age. After the surgical event this reduction is even more remarkable, being reestablished until the time of discharge, to values close to baseline. PMID:25372909

  9. Evaluation of peripheral muscle strength of patients undergoing elective cardiac surgery: a longitudinal study.

    PubMed

    Santos, Kelli Maria Souza; Cerqueira Neto, Manoel Luiz de; Carvalho, Vitor Oliveira; Santana Filho, Valter Joviniano de; Silva Junior, Walderi Monteiro da; Araújo Filho, Amaro Afrânio; Cerqueira, Telma Cristina Fontes; Cacau, Lucas de Assis Pereira

    2014-01-01

    Peripheral muscle strength has been little explored in the literature in the context of cardiac rehabilitation. To evaluate the peripheral muscle strength of patients undergoing elective cardiac surgery. This was a longitudinal observational study. The peripheral muscle strength was measured using isometric dynamometry lower limb (knee extensors and flexors) at three different times: preoperatively (M1), the day of discharge (M2) and hospital discharge (M3). Participants received physiotherapy pre and postoperatively during the days of hospitalization during the morning and afternoon. Twenty-two patients were evaluated. The values of peripheral muscle strength of knee extensors preoperative found were about 50% lower than those predicted for the healthy population. When comparing muscle strength prior (M1), with the remaining evaluation, found himself in a fall of 29% for the movement of knee extension and 25% for knee flexion in M2 and a decrease of 10% movement for knee extension and 13% for knee flexion in M3 when comparing with M1. The values of peripheral muscle strength prior of the study patients were lower than predicted for the healthy population of the same age. After the surgical event this reduction is even more remarkable, being reestablished until the time of discharge, to values close to baseline.

  10. Balance and ankle muscle strength predict spatiotemporal gait parameters in individuals with diabetic peripheral neuropathy.

    PubMed

    Camargo, Marcela R; Barela, José A; Nozabieli, Andréa J L; Mantovani, Alessandra M; Martinelli, Alessandra R; Fregonesi, Cristina E P T

    2015-01-01

    The aims of this study were to evaluate aspects of balance, ankle muscle strength and spatiotemporal gait parameters in individuals with diabetic peripheral neuropathy (DPN) and verify whether deficits in spatiotemporal gait parameters were associated with ankle muscle strength and balance performance. Thirty individuals with DPN and 30 control individuals have participated. Spatiotemporal gait parameters were evaluated by measuring the time to walk a set distance during self-selected and maximal walking speeds. Functional mobility and balance performance were assessed using the Functional Reach and the Time Up and Go tests. Ankle isometric muscle strength was assessed with a handheld digital dynamometer. Analyses of variance were employed to verify possible differences between groups and conditions. Multiple linear regression analysis was employed to uncover possible predictors of gait deficits. Gait spatiotemporal, functional mobility, balance performance and ankle muscle strength were affected in individuals with DPN. The Time Up and Go test performance and ankle muscle isometric strength were associated to spatiotemporal gait changes, especially during maximal walking speed condition. Functional mobility and balance performance are damaged in DPN and balance performance and ankle muscle strength can be used to predict spatiotemporal gait parameters in individuals with DPN. Copyright © 2015 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  11. Whole-body vibration as a potential countermeasure for dynapenia and arterial stiffness.

    PubMed

    Figueroa, Arturo; Jaime, Salvador J; Alvarez-Alvarado, Stacey

    2016-09-01

    Age-related decreases in muscle mass and strength are associated with decreased mobility, quality of life, and increased cardiovascular risk. Coupled with the prevalence of obesity, the risk of death becomes substantially greater. Resistance training (RT) has a well-documented beneficial impact on muscle mass and strength in young and older adults, although the high-intensity needed to elicit these adaptations may have a detrimental or negligible impact on vascular function, specifically on arterial stiffness. Increased arterial stiffness is associated with systolic hypertension, left ventricular hypertrophy, and myocardial ischemia. Therefore, improvements of muscle strength and arterial function are important in older adults. Recently, whole-body vibration (WBV) exercise, a novel modality of strength training, has shown to exhibit similar results on muscle strength as RT in a wide-variety of populations, with the greatest impact in elderly individuals with limited muscle function. Additionally, WBV training has been shown to have beneficial effects on vascular function by reducing arterial stiffness. This article reviews relevant publications reporting the effects of WBV on muscle strength and/or arterial stiffness. Findings from current studies suggest the use of WBV training as an alternative modality to traditional RT to countermeasure the age-related detriments in muscle strength and arterial stiffness in older adults.

  12. Early phase adaptations in muscle strength and hypertrophy as a result of low-intensity blood flow restriction resistance training.

    PubMed

    Hill, Ethan C; Housh, Terry J; Keller, Joshua L; Smith, Cory M; Schmidt, Richard J; Johnson, Glen O

    2018-06-22

    Low-intensity venous blood flow restriction (vBFR) resistance training has been shown to promote increases in muscle strength and size. Eccentric-only muscle actions are typically a more potent stimulus to increase muscle strength and size than concentric-only muscle actions performed at the same relative intensities. Therefore, the purpose of this investigation was to examine the time-course of changes in muscle strength, hypertrophy, and neuromuscular adaptations following 4 weeks of unilateral forearm flexion low-intensity eccentric vBFR (Ecc-vBFR) vs. low-intensity concentric vBFR (Con-vBFR) resistance training performed at the same relative intensity. Thirty-six women were randomly assigned to either Ecc-vBFR (n = 12), Con-vBFR (n = 12) or control (no intervention, n = 12) group. Ecc-vBFR trained at 30% of eccentric peak torque and Con-vBFR trained at 30% of concentric peak torque. All training and testing procedures were performed at an isokinetic velocity of 120° s - ¹. Muscle strength increased similarly from 0 to 2 and 4 weeks of training as a result of Ecc-vBFR (13.9 and 35.0%) and Con-vBFR (13.4 and 31.2%), but there were no changes in muscle strength for the control group. Muscle thickness increased similarly from 0 to 2 and 4 weeks of training as a result of Ecc-vBFR (11.4 and 12.8%) and Con-vBFR (9.1 and 9.9%), but there were no changes for the control group. In addition, there were no changes in any of the neuromuscular responses. The Ecc-vBFR and Con-vBFR low-intensity training induced comparable increases in muscle strength and size. The increases in muscle strength, however, were not associated with neuromuscular adaptations.

  13. Weight reduction does not induce an undesirable decrease in muscle mass, muscle strength, or physical performance in men with obesity: a pilot study.

    PubMed

    Kim, Bokun; Tsujimoto, Takehiko; So, Rina; Zhao, Xiaoguang; Oh, Sechang; Tanaka, Kiyoji

    2017-12-31

    To date, there have been no reports on whether weight reduction causes decreases in muscle mass, muscle strength, or physical performance that could lead to health problems. Thus, in this pilot study, we investigated the appropriateness of the changes in muscle mass, muscle strength and physical performance after weight reduction. Obese men who completed a weight reduction program to decrease and maintain a body mass index (BMI) of less than 25 kg/m2 for one year were recruited for the study. One year after the completion of a weight reduction program, the participants' muscle mass, muscle strength, and physical performance were compared with those in a reference group composed of individuals whose BMI was less than 25 kg/m2. Whole-body scanning was performed using dual-energy X-ray absorptiometry to analyze muscle mass. Handgrip strength and knee extensor strength were measured to evaluate arm and leg muscle strength, respectively. For physical performance, a jump test was employed. The results showed that the biceps, triceps, subscapular, and suprailiac areas of professional fashion models were significantly thinner than those of women in general (p<.001), and that their waist size was also significantly smaller (p<.001). However, hip circumference showed no significant difference. Body mass index, waist-to-hip ratio, and body fat (%) in professional fashion models were significantly lower than those in women in general (p<.001), while the body density in professional fashion models was significantly greater (p<0.001). Weight reduction participants showed an average reduction in body weight of -16.47%. Normalized arm muscle mass and handgrip strength were significantly greater in the weight reduction group than in the reference group; however, no significant differences were detected between the two groups with respect to the other variables. After one year, there were no significant differences between the two groups. ©2017 The Korean Society for Exercise Nutrition

  14. Skeletal muscle troponin as a novel biomarker to enhance assessment of the impact of strength training on fall prevention in the older adults.

    PubMed

    Abreu, Eduardo L; Cheng, An-Lin; Kelly, Patricia J; Chertoff, Keyna; Brotto, Leticia; Griffith, Elizabeth; Kinder, Glenda; Uridge, Tina; Zachow, Rob; Brotto, Marco

    2014-01-01

    Loss of muscle mass and strength (i.e., sarcopenia) in the older adults is a strong predictor of falls, with subsequent morbidity and inability to execute activities of daily living. Use of biomarkers may enhance assessment of effects of community-based exercise interventions aimed at improving muscle strength. The aim of this study was to investigate the use of troponin as a newly proposed biomarker of skeletal muscle health when determining the outcomes of strength-training programs designed for community-dwelling adults over the age of 65 years. Outcomes of two strength training programs ("Peer Exercise Program Promotes Independence" and "Stay Strong, Stay Healthy") were assessed using physical performance tests designed for senior fitness evaluation, grip strength, and changes in serum levels of skeletal muscle-specific troponin T (sTnT). Improvement in physical performance, including a significant increase in grip strength, was associated with a significant reduction in serum levels of sTnT. Findings from these studies suggest that, when "Peer Exercise Program Promotes Independence" and "Stay Strong, Stay Healthy" are implemented for at least 10 weeks, significant gains in strength are achieved. This strength improvement was associated with a reduction in serum levels of troponin, supporting the use of troponin as a novel biomarker of muscle health in the assessment of strength training programs for the older adults. Reduced sTnT after exercise intervention suggests that skeletal muscles become stronger and less susceptible to damage because of the exercise regimens.

  15. Resistance exercise training and in vitro skeletal muscle oxidative capacity in older adults.

    PubMed

    Flack, Kyle D; Davy, Brenda M; DeBerardinis, Martin; Boutagy, Nabil E; McMillan, Ryan P; Hulver, Matthew W; Frisard, Madlyn I; Anderson, Angela S; Savla, Jyoti; Davy, Kevin P

    2016-07-01

    Whether resistance exercise training (RET) improves skeletal muscle substrate oxidative capacity and reduces mitochondrial production of reactive oxygen species in older adults remains unclear. To address this, 19 older males (≥60 years) were randomized to a RET (n = 11) or to a waitlist control group (n = 8) that remained sedentary for 12 weeks. RET was comprised of three upper body and four lower body movements on resistance machines. One set of 8-12 repetitions to failure of each movement was performed on three nonconsecutive days/week. Improvements in chest press and leg press strength were assessed using a three-repetition maximum (3 RM). Body composition was assessed via dual energy X-ray absorptiometry. Muscle biopsies were obtained from the vastus lateralis muscle at baseline and at both 3 weeks and 12 weeks. Palmitate and pyruvate oxidation rates were measured from the (14)CO2 produced from [1-(14)C] palmitic acid and [U-(14)C] pyruvate, respectively, during incubation of muscle homogenates. PGC-1α, TFAM, and PPARδ levels were quantified using qRT-PCR Citrate synthase (CS) and β-HAD activities were determined spectrophotometrically. Mitochondrial production of reactive oxygen species (ROS) were assessed using the Amplex Red Hydrogen Peroxide/Peroxidase assay. There were no significant changes in body weight or body composition following the intervention. Chest press and leg press strength (3RM) increased ~34% (both P < 0.01) with RET There were no significant changes in pyruvate or fatty acid oxidation or in the expression of target genes with the intervention. There was a modest increase (P < 0.05) in βHAD activity with RET at 12 weeks but the change in CS enzyme activity was not significant. In addition, there were no significant changes in ROS production in either group following RET Taken together, the findings of this study suggest that 12 weeks of low volume RET does not increase skeletal muscle oxidative capacity or reduce ROS production in older adults. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  16. Respiratory muscle training increases respiratory muscle strength and reduces respiratory complications after stroke: a systematic review.

    PubMed

    Menezes, Kênia Kp; Nascimento, Lucas R; Ada, Louise; Polese, Janaine C; Avelino, Patrick R; Teixeira-Salmela, Luci F

    2016-07-01

    After stroke, does respiratory muscle training increase respiratory muscle strength and/or endurance? Are any benefits carried over to activity and/or participation? Does it reduce respiratory complications? Systematic review of randomised or quasi-randomised trials. Adults with respiratory muscle weakness following stroke. Respiratory muscle training aimed at increasing inspiratory and/or expiratory muscle strength. Five outcomes were of interest: respiratory muscle strength, respiratory muscle endurance, activity, participation and respiratory complications. Five trials involving 263 participants were included. The mean PEDro score was 6.4 (range 3 to 8), showing moderate methodological quality. Random-effects meta-analyses showed that respiratory muscle training increased maximal inspiratory pressure by 7 cmH2O (95% CI 1 to 14) and maximal expiratory pressure by 13 cmH2O (95% CI 1 to 25); it also decreased the risk of respiratory complications (RR 0.38, 95% CI 0.15 to 0.96) compared with no/sham respiratory intervention. Whether these effects carry over to activity and participation remains uncertain. This systematic review provided evidence that respiratory muscle training is effective after stroke. Meta-analyses based on five trials indicated that 30minutes of respiratory muscle training, five times per week, for 5 weeks can be expected to increase respiratory muscle strength in very weak individuals after stroke. In addition, respiratory muscle training is expected to reduce the risk of respiratory complications after stroke. Further studies are warranted to investigate whether the benefits are carried over to activity and participation. PROSPERO (CRD42015020683). [Menezes KKP, Nascimento LR, Ada L, Polese JC, Avelino PR, Teixeira-Salmela LF (2016) Respiratory muscle training increases respiratory muscle strength and reduces respiratory complications after stroke: a systematic review.Journal of Physiotherapy62: 138-144]. Copyright © 2016 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  17. Identification and prioritization of NUAK1 and PPP1CC as positional candidate loci for skeletal muscle strength phenotypes

    PubMed Central

    Windelinckx, An; De Mars, Gunther; Huygens, Wim; Peeters, Maarten W.; Vincent, Barbara; Wijmenga, Cisca; Lambrechts, Diether; Aerssens, Jeroen; Vlietinck, Robert; Beunen, Gaston

    2011-01-01

    Muscle strength is an important determinant in elite sports performance as well as in the activities of daily living. Muscle metabolism also plays a role in the genesis, and therefore prevention, of common pathological conditions and chronic diseases. Even though heritability estimates between 31 and 78% suggest a significant genetic component in muscle strength, only a limited number of genes influencing muscle strength have been identified. This study aimed to identify and prioritize positional candidate genes within a skeletal muscle strength quantitative trait locus on chromosome 12q22-23 for follow-up. A two-staged gene-centered fine-mapping approach using 122 single nucleotide polymorphisms (SNPs) in stage 1 identified a familybased association (n = 500) between several tagSNPs located in the ATPase, Ca2+ transporting, cardiac muscle, slow twitch 2 (ATP2A2; rs3026468), the NUAK family, SNF1-like kinase, 1 (NUAK1; rs10861553 and rs3741886), and the protein phosphatase 1, catalytic subunit, gamma isoform (PPP1CC; rs1050587 and rs7901769) genes and knee torque production (P values up to 0.00092). In stage 2, family-based association tests on additional putatively functional SNPs (e.g., exonic SNPs, SNPs in transcription factor binding sites or in conserved regions) in an enlarged sample (n = 536; 464 individuals overlap with stage 1) did not identify additional associations with muscle strength characteristics. Further in-depth analyses will be necessary to elucidate the exact role of ATP2A2, PPP1CC, and NUAK1 in muscle strength and to find out which functional polymorphisms are at the base of the interindividual strength differences. PMID:21750233

  18. Effect of resistance training on muscle strength and rate of force development in healthy older adults: A systematic review and meta-analysis.

    PubMed

    Guizelini, Pedrode Camargo; de Aguiar, Rafael Alves; Denadai, Benedito Sérgio; Caputo, Fabrizio; Greco, Camila Coelho

    2018-02-01

    Rapid force capacity, identified by rate of rise in contractile force at the onset of contraction, i.e., the rate of force development (RFD), has been considered an important neuromuscular parameter of physical fitness in elderly individuals. Randomized control studies conducted in adults have found that resistance training may elicit different outcomes in terms of RFD and muscle strength. Thus, the main purpose of this study was to review systematically the literature for studies regarding the influence of resistance training on muscle strength and RFD in elderly persons. A literature search was performed in major electronic databases from inception to March 2017. Studies including health individuals with a mean age≥60years, describing the effect of resistance training on RFD and muscle strength were found eligible. The outcomes were calculated as the difference in percentage change between control and experimental groups (% change) and data were presented as mean±95% confidence limits. Meta-analyses were performed using a random-effects model and, in addition, simple and multiple meta-regression analyses were used to identify effects of age, training type, sessions per week and training duration on % change in RFD and muscle strength. Thirteen training effects were collected from 10 studies included in the meta-analysis. The resistance training program had a moderate beneficial effect on both muscle strength (% change=18.40%, 95% CL 13.69-23.30, p<0.001) and RFD (% change=26.68, 95% CL 14.41-35.52, p<0.001). Results of the meta-regression revealed that the variables age, training type (i.e., strength and explosive), training duration (4-16weeks) and sessions per week had no significant effects on muscle strength and RFD improvement. Moreover, there was no significant relationship (p=0.073) between the changes in muscle strength and RFD. It can be concluded that explosive training and heavy strength training are effective resistance training methods aiming to improve both muscle strength and RFD after short-to-medium training period. However, muscle strength and RFD seem to adapt differently to resistance training programs, suggesting caution for their interchangeable use in clinical assessments of the elderly. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Effects of protein supplementation combined with resistance exercise on body composition and physical function in older adults: a systematic review and meta-analysis.

    PubMed

    Liao, Chun-De; Tsauo, Jau-Yih; Wu, Yen-Tzu; Cheng, Chin-Pao; Chen, Hui-Chuen; Huang, Yi-Ching; Chen, Hung-Chou; Liou, Tsan-Hon

    2017-10-01

    Background: Overweight and obese older people face a high risk of muscle loss and impaired physical function, which may contribute to sarcopenic obesity. Resistance exercise training (RET) has a beneficial effect on muscle protein synthesis and can be augmented by protein supplementation (PS). However, whether body weight affects the augmentation of muscular and functional performance in response to PS in older people undergoing RET remains unclear. Objective: This study was conducted to identify the effects of PS on the body composition and physical function of older people undergoing RET. Design: We performed a comprehensive search of online databases to identify randomized controlled trials (RCTs) reporting the efficacy of PS for lean mass gain, strength gain, and physical mobility improvements in older people undergoing RET. Results: We included 17 RCTs; the overall mean ± SD age and body mass index (BMI; in kg/m 2 ) in these RCTs were 73.4 ± 8.1 y and 29.7 ± 5.5, respectively. The participants had substantially greater lean mass and leg strength gains when PS and RET were used than with RET alone, with the standard mean differences (SMDs) being 0.58 (95% CI: 0.32, 0.84) and 0.69 (95% CI: 0.39, 0.98), respectively. The subgroup of studies with a mean BMI ≥30 exhibited substantially greater lean mass (SMD: 0.53; 95% CI: 0.19, 0.87) and leg strength (SMD: 0.88; 95% CI: 0.42, 1.34) gains in response to PS. The subgroup of studies with a mean BMI <30 also exhibited relevant gains in response to PS. Conclusions: Compared with RET alone, PS combined with RET may have a stronger effect in preventing aging-related muscle mass attenuation and leg strength loss in older people, which was found in studies with a mean BMI ≥30 and in studies with a mean BMI <30. Clinicians could use nutrition supplement and exercise strategies, especially PS plus RET, to effectively improve the physical activity and health status of all older patients. © 2017 American Society for Nutrition.

  20. Muscular coordination and strength training. Implications for injury rehabilitation.

    PubMed

    Rutherford, O M

    1988-03-01

    Strength training is commonly used in the rehabilitation of muscles atrophied as a result of injury and/or disuse. Studies on the effects of conventional leg extension training in healthy subjects have shown the changes to be very task-specific to the training manoeuvre itself. After conventional leg extension training for the quadriceps muscle the major improvement was in weightlifting ability with only small increases in isometric strength. The maximum dynamic force and power output during sprint cycling showed no improvement. These results suggest that the major benefit of this type of training is learning to coordinate the different muscle groups involved in the training movement rather than intrinsic increases in strength of the muscle group being trained. Other studies have shown changes in strength to be specific to the length and speed at which the muscle has been trained. The implication for rehabilitation is that strength training for isolated muscle groups may not be the most effective way of increasing functional ability. As the major changes are task-specific it may be better to incorporate the training into task-related practice. This would have the advantage of strengthening the muscle groups affected whilst increasing performance in those activities which are required in daily life.

  1. Exploring the Link between Serum Phosphate Levels and Low Muscle Strength, Dynapenia, and Sarcopenia.

    PubMed

    Chen, Yuan-Yuei; Kao, Tung-Wei; Chou, Cheng-Wai; Wu, Chen-Jung; Yang, Hui-Fang; Lai, Ching-Huang; Wu, Li-Wei; Chen, Wei-Liang

    2018-02-23

    Emerging evidences addressed an association between phosphate and muscle function. Because little attention was focused on this issue, the objective of our study was to explore the relationship of phosphate with muscle strength, dynapenia, and sarcopenia. From the National Health and Nutrition Examination Survey, a total of 7421 participants aged 20 years or older were included in our study with comprehensive examinations included anthropometric parameters, strength of the quadriceps muscle, and appendicular lean masses. Within the normal range of serum phosphate, we used quartile-based analyses to determine the potential relationships of serum phosphate with dynapenia, and sarcopenia through multivariate regression models. After adjusting for the pertinent variables, an inverse association between the serum phosphate quartiles and muscle strength was observed and the linear association was stronger than other anthropometric parameters. Notably, the significant association between phosphate and muscle strength was existed in >65 years old age group, not in 20-65 years old. The higher quartiles of phosphate had higher likelihood for predicting the presence of dynapenia rather than sarcopenia in entire population. Our study highlighted that higher quartiles of phosphate had significant association with lower muscle strength and higher risks for predicting the presence of dynapenia.

  2. Recovery of Muscle Strength After Intact Arthroscopic Rotator Cuff Repair According to Preoperative Rotator Cuff Tear Size.

    PubMed

    Shin, Sang-Jin; Chung, Jaeyoon; Lee, Juyeob; Ko, Young-Won

    2016-04-01

    The recovery of muscle strength after arthroscopic rotator cuff repair based on the preoperative tear size has not yet been well described. The purpose of this study was to evaluate the recovery period of muscle strength by a serial assessment of isometric strength after arthroscopic rotator cuff repair based on the preoperative tear size. The hypothesis was that muscle strength in patients with small and medium tears would recover faster than that in those with large-to-massive tears. Cohort study; Level of evidence, 3. A total of 164 patients who underwent arthroscopic rotator cuff repair were included. Isometric strength in forward flexion (FF), internal rotation (IR), and external rotation (ER) was evaluated preoperatively and at 6, 12, 18, and 24 months after surgery. Preoperative magnetic resonance imaging scans were assessed to evaluate the quality of the rotator cuff muscle, including fatty infiltration, occupation ratio, and tangent sign. Patient satisfaction as well as visual analog scale (VAS) for pain, American Shoulder and Elbow Surgeons (ASES), and Constant scores were assessed at every follow-up. Muscle strength demonstrated the slowest recovery in pain relief and the restoration of shoulder function. To reach the strength of the uninjured contralateral shoulder in all 3 planes of motion, recovery took 6 months in patients with small tears and 18 months in patients with medium tears. Patients with large-to-massive tears showed continuous improvement in strength up to 18 months; however, they did not reach the strength of the contralateral shoulder at final follow-up. At final follow-up, mean strength in FF, IR, and ER was 113.0%, 118.0%, and 112.6% of the contralateral shoulder in patients with small tears, respectively; 105.0%, 112.1%, and 102.6% in patients with medium tears, respectively; and 87.6%, 89.5%, and 85.2% in patients with large-to-massive tears, respectively. Muscle strength in any direction did not significantly correlate with postoperative patient satisfaction (P = .374, .515, and .692 for FF, IR, and ER, respectively), whereas it highly correlated with preoperative quality of the muscle. The recovery of muscle strength after arthroscopic repair was poorly correlated with patient satisfaction. This study recommends that regardless of pain relief and improved shoulder function, patients with larger than medium tears should be encouraged to continue with rehabilitation for the maximal restoration of muscle strength beyond 1 year postoperatively. © 2016 The Author(s).

  3. Functional anatomy and adaptation of male gorillas (Gorilla gorilla gorilla) with comparison to male orangutans (Pongo pygmaeus).

    PubMed

    Zihlman, Adrienne L; McFarland, Robin K; Underwood, Carol E

    2011-11-01

    Great apes diversified during the Miocene in Old World forests. Two lineages, gorillas in Africa and orangutans in Asia, have sexual dimorphisms of super-sized males, though they presumably diverged from a smaller common ancestor. We test the hypothesis that they increased in body mass independently and convergently, and that their many postcranial differences reflect locomotor differences. Whole body dissections of five adult male gorillas and four adult male orangutans allowed quantification of body mass distribution to limb segments, of body composition (muscle, bone, skin, and fat relative to total body mass), and of muscle distribution and proportions. Results demonstrate that gorilla forelimb anatomy accommodates shoulder joint mobility for vertical climbing and reaching while maintaining joint stability during quadrupedal locomotion. The heavily muscled hind limbs are equipped for propulsion and weight-bearing over relatively stable substrates on the forest floor. In contrast, orangutan forelimb length, muscle mass, and joint construction are modified for strength and mobility in climbing, bridging, and traveling over flexible supports through the forest canopy. Muscles of hip, knee, and ankle joints provide rotational and prehensile strength essential for moving on unstable and discontinuous branches. We conclude that anatomical similarities are due to common ancestry and that differences in postcranial anatomy reflect powerful selection for divergent locomotor adaptations. These data further support the evolutionary conclusion that gorillas fall with chimpanzees and humans as part of the African hominoid radiation; orangutans are a specialized outlier. Copyright © 2011 Wiley-Liss, Inc.

  4. A path model of sarcopenia on bone mass loss in elderly subjects.

    PubMed

    Rondanelli, M; Guido, D; Opizzi, A; Faliva, M A; Perna, S; Grassi, M

    2014-01-01

    Aging is associated with decreases in muscle mass, strength, power (sarcopenia) and bone mineral density (BMD). The aims of this study were to investigate in elderly the role of sarcopenia on BMD loss by a path model, including adiposity, inflammation, and malnutrition associations. Body composition and BMD were measured by dual X-ray absorptiometry in 159 elderly subjects (52 male/107 female; mean age 80.3 yrs). Muscle strength was determined with dynamometer. Serum albumin and PCR were also assessed. Structural equations examined the effect of sarcopenia (measured by Relative Skeletal Muscle Mass, Total Muscle Mass, Handgrip, Muscle Quality Score) on osteoporosis (measured by Vertebral and Femoral T-scores) in a latent variable model including adiposity (measured by Total Fat Mass, BMI, Ginoid/Android Fat), inflammation (PCR), and malnutrition (serum albumin). The sarcopenia assumed a role of moderator in the adiposity-osteoporosis relationship. Specifically, increasing the sarcopenia, the relationship adiposity-osteoporosis (β: -0.58) decrease in intensity. Adiposity also influences sarcopenia (β: -0.18). Malnutrition affects the inflammatory and the adiposity states (β: +0.61, and β: -0.30, respectively), while not influencing the sarcopenia. Thus, adiposity has a role as a mediator of the effect of malnutrition on both sarcopenia and osteoporosis. Malnutrition decreases adiposity; decreasing adiposity, in turn, increase the sarcopenia and osteoporosis. This study suggests such as in a group of elderly sarcopenia affects the link between adiposity and BMD, but not have a pure independent effect on osteoporosis.

  5. Surgery-Induced Changes and Early Recovery of Hip-Muscle Strength, Leg-Press Power, and Functional Performance after Fast-Track Total Hip Arthroplasty: A Prospective Cohort Study

    PubMed Central

    Holm, Bente; Thorborg, Kristian; Husted, Henrik; Kehlet, Henrik; Bandholm, Thomas

    2013-01-01

    Background By measuring very early changes in muscle strength and functional performance after fast-track total hip arthroplasty (THA), post-operative rehabilitation, introduced soon after surgery, can be designed to specifically target identified deficits. Objective(s) Firstly, to quantify changes (compared to pre-operative values) in hip muscle strength, leg-press power, and functional performance in the first week after THA, and secondly, to explore relationships between the muscle strength changes, and changes in hip pain, systemic inflammation, and thigh swelling. Design Prospective, cohort study. Setting Convenience sample of patients receiving a THA at Copenhagen University Hospital, Hvidovre, Denmark, between March and December 2011. Participants Thirty-five patients (65.9±7.2 years) undergoing THA. Main outcome measures Hip muscle strength, leg-press power, performance-based function, and self-reported disability were determined prior to, and 2 and 8 days after, THA (Day 2 and 8, respectively). Hip pain, thigh swelling, and C-Reactive Protein were also determined. Results Five patients were lost to follow-up. Hip muscle strength and leg press power were substantially reduced at Day 2 (range of reductions: 41–58%, P<0.001), but less pronounced at Day 8 (range of reductions: 23–31%, P<0.017). Self-reported symptoms and function (HOOS: Pain, Symptoms, and ADL) improved at Day 8 (P<0.014). Changes in hip pain, C-Reactive Protein, and thigh swelling were not related to the muscle strength and power losses. Conclusion(s) Hip muscle strength and leg-press power decreased substantially in the first week after THA – especially at Day 2 – with some recovery at Day 8. The muscle strength loss and power loss were not related to changes in hip pain, systemic inflammation, or thigh swelling. In contrast, self-reported symptoms and function improved. These data on surgery-induced changes in muscle strength may help design impairment-directed, post-operative rehabilitation to be introduced soon after surgery. Trial Registration ClinicalTrials.gov NCT01246674. PMID:23614020

  6. The Fate of the Iliopsoas Muscle in Long-term Follow-up After Open Reduction With a Medial Approach in Developmental Dysplasia of the Hip. Part 2: Isokinetic Muscle Strength Evaluation.

    PubMed

    Yilmaz, Serdar; Aksahin, Ertugrul; Ersoz, Murat; Bicimoglu, Ali

    2017-09-01

    The impact on long-term weakness of hip flexion of complete iliopsoas tenotomy during open reduction of developmental hip dysplasia with a medial approach has not yet been fully clarified. The purpose of this study was to investigate the isokinetic muscle strength (IMS) of hip flexor and extensor muscles in these patients and also to analyze the effect of spontaneous reattachment of the iliopsoas muscle on IMS measurements. The study included 20 patients. Earlier magnetic resonance imaging examination of all the patients revealed spontaneous reattachment of the iliopsoas in 18 (90%) patients. IMS measurements were performed at 60 and 150 degrees/s. The peak torque, total work (TW), average power (AP), work fatigue, and agonist to antagonist muscle ratio of the operated and nonoperated hips were recorded separately for flexors and extensors. The effect of iliopsoas reattachment on IMS was also evaluated. The mean follow-up period was 16.65±2.16 (13 to 20) years. Total work (P=0.013) and average power (P=0.009) of the flexor muscles and work fatigue of the extensor muscles (P=0.030) of the operated hip were significantly decreased when compared with the nonoperated hips at 150 degrees/s. There was no significant difference between the flexor muscles of the operated and nonoperated hips (P<0.05) at 60 degrees/s and extensor muscles (P<0.05) at 150 degrees/s. In addition, patients without reattachment had lower IMS in the operated hips. Flexor muscle strength was decreased in the operated hip against low resistance in long-term follow-up after iliopsoas tenotomy. This may reflect that hip muscle strength was decreased after prolonged activities such as sports. However, in forceful activities flexor muscle strength was retained due to iliopsoas reattachment. On the basis of this study we thought that spontaneous reattachment of the iliopsoas tendon substantially preserves muscle strength. Nonetheless possible efforts should be made to surgically reattach the psoas tendon to preserve strength of the muscle. Therapeutic level IV.

  7. Effect of DHEAS on skeletal muscle over the life span: the InCHIANTI study.

    PubMed

    Valenti, Giorgio; Denti, Licia; Maggio, Marcello; Ceda, GianPaolo; Volpato, Stefano; Bandinelli, Stefania; Ceresini, Graziano; Cappola, Anne; Guralnik, Jack M; Ferrucci, Luigi

    2004-05-01

    It has been suggested that the reduced production of dehydroepiandrosterone sulfate (DHEAS) may be partially responsible for the decline of muscle strength and mass that often occurs with aging. However, this hypothesis has been only tested in small series of normal volunteers, with little consideration for potential confounders. Using data from a representative sample of 558 men (20-95 years) we tested the hypothesis that circulating DHEAS is independently associated with muscle strength and mass. Data are from InCHIANTI, an epidemiological study conducted in the Chianti geographic area (Tuscany, Italy). DHEAS serum levels were related to lower extremity muscle strength assessed by hand-held dynamometry and calf muscle area estimated from quantitative computerized tomography. Confounders included age, anthropometrics, physical activity, smoking, energy and alcohol intake, albumin, lipids, interleukin-6, comorbidity, depressive symptoms, and disability in activities of daily living. In fully adjusted models predicting lower extremity muscle strength and calf muscle area, we found significant age*log DHEAS interactions, suggesting that the relationship between DHEAS levels and muscle parameters differs across the life span. In age-stratified models adjusted for confounders, serum DHEAS was an independent predictor of muscle strength (p <.02) and mass (p <.01), but only for men between 60 and 79 years of age. After adjusting these models for serum-free or bioavailable testosterone, results were unchanged. In men aged 60-79 years, circulating DHEAS is an independent correlate of muscle strength and calf muscle area. The possible causal role of declining DHEAS in age-related sarcopenia should be further explored in longitudinal studies.

  8. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review.

    PubMed

    Mitchell, W Kyle; Williams, John; Atherton, Philip; Larvin, Mike; Lund, John; Narici, Marco

    2012-01-01

    Changing demographics make it ever more important to understand the modifiable risk factors for disability and loss of independence with advancing age. For more than two decades there has been increasing interest in the role of sarcopenia, the age-related loss of muscle or lean mass, in curtailing active and healthy aging. There is now evidence to suggest that lack of strength, or dynapenia, is a more constant factor in compromised wellbeing in old age and it is apparent that the decline in muscle mass and the decline in strength can take quite different trajectories. This demands recognition of the concept of muscle quality; that is the force generating per capacity per unit cross-sectional area (CSA). An understanding of the impact of aging on skeletal muscle will require attention to both the changes in muscle size and the changes in muscle quality. The aim of this review is to present current knowledge of the decline in human muscle mass and strength with advancing age and the associated risk to health and survival and to review the underlying changes in muscle characteristics and the etiology of sarcopenia. Cross-sectional studies comparing young (18-45 years) and old (>65 years) samples show dramatic variation based on the technique used and population studied. The median of values of rate of loss reported across studies is 0.47% per year in men and 0.37% per year in women. Longitudinal studies show that in people aged 75 years, muscle mass is lost at a rate of 0.64-0.70% per year in women and 0.80-00.98% per year in men. Strength is lost more rapidly. Longitudinal studies show that at age 75 years, strength is lost at a rate of 3-4% per year in men and 2.5-3% per year in women. Studies that assessed changes in mass and strength in the same sample report a loss of strength 2-5 times faster than loss of mass. Loss of strength is a more consistent risk for disability and death than is loss of muscle mass.

  9. The physical functional capacity of frail elderly persons undergoing ambulatory rehabilitation is related to their nutritional status.

    PubMed

    Chevalier, S; Saoud, F; Gray-Donald, K; Morais, J A

    2008-12-01

    To estimate the prevalence of malnutrition in frail elders undergoing rehabilitation and the association between their nutritional status and physical function. Observational study of new participants undergoing ambulatory rehabilitation. Two Geriatric Day Hospitals (GDH) in Montreal, Quebec. 121 women and 61 men. Evaluation of nutritional status, body composition and physical function. The nutritional status was assessed with a composite index based on anthropometric measurements and serum albumin, as well as using the Mini Nutritional Assessment (MNA) questionnaire. Patients were classified as well-nourished, having mild/at risk of malnutrition or malnourished. Body composition was estimated by bioimpedance and handgrip strength and gait speed by standard methods. 13% of patients were found to be mildly malnourished, whereas 6% were malnourished. Malnourished patients were older and had worse cognition, lower BMI, and % body fat (all p<0.05). Malnourished patients and those with mild malnutrition had lower weight, triceps skinfold thickness, muscle and fat mass (all, p<0.003). Handgrip strength was different according to the nutritional status (p=0.034) and correlated with muscle mass (r=0.65, p<0.001). MNA classified 53% of patients as being at risk whereas 3% were malnourished and it correlated with gait speed (r=0.26, p=0.001). There is a high prevalence of patients in GDH at risk or with mild malnutrition. Being malnourished was associated with worse physical performance, which suggests that a nutritional intervention may be of benefit in improving their physical function.

  10. ASSOCIATION OF KNEE PAIN WITH A REDUCTION IN THIGH MUSCLE STRENGTH – A CROSS-SECTIONAL ANALYSIS INCLUDING 4553 OSTEOARTHRITIS INITIATIVE PARTICIPANTS

    PubMed Central

    Ruhdorfer, Anja; Wirth, Wolfgang; Eckstein, Felix

    2016-01-01

    Objective To cross-sectionally determine the quantitative relationship of age-adjusted, sex-specific isometric knee extensor and flexor strength to patient-reported knee pain. Methods Difference of thigh muscle strength by age, and that of age-adjusted strength per unit increase on the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) knee pain scale, was estimated from linear regression analysis of 4553 Osteoarthritis Initiative participants (58% women). Strata encompassing the minimal clinically important difference (MCID) in knee pain were compared to evaluate a potentially non-linear relationship between WOMAC pain levels and muscle strength. Results In Osteoarthritis Initiative participants without pain, the age-related difference in isometric knee extensor strength was −9.0%/−8.2% (women/men) per decade, and that of flexor strength was −11%/−6.9%. Differences in age-adjusted strength values for each unit of WOMAC pain (1/20) amounted to −1.9%/−1.6% for extensor and −2.5%/−1.7% for flexor strength. Differences in torque/weight for each unit of WOMAC pain ranged from −3.3 to − 2.1%. There was no indication of a non-linear relationship between pain and strength across the range of observed WOMAC values, and similar results were observed in women and men. Conclusion Each increase by 1/20 units in WOMAC pain was associated with a ~2% lower age-adjusted isometric extensor and flexor strength in either sex. As a reduction in muscle strength is known to prospectively increase symptoms in knee osteoarthritis and as pain appears to reduce thigh muscle strength, adequate therapy of pain and muscle strength is required in knee osteoarthritis patients to avoid a vicious circle of self-sustaining clinical deterioration. PMID:27836675

  11. [Evolution in muscle strength in critical patients with invasive mechanical ventilation].

    PubMed

    Via Clavero, G; Sanjuán Naváis, M; Menéndez Albuixech, M; Corral Ansa, L; Martínez Estalella, G; Díaz-Prieto-Huidobro, A

    2013-01-01

    To assess the evolution of muscle strength in critically ill patients with mechanical ventilation (MV) from withdrawal of sedatives to hospital discharge. A cohort study was conducted in two intensive care units in the Hospital Universitari de Bellvitge from November 2011 to March 2012. Consecutive patients with MV > 72h. Dependent outcome: Muscle strength measured with the Medical Research Council (MRC) scale beginning on the first day the patient was able to answer 3 out of 5 simple orders (day 1), every week, at ICU discharge and at hospital discharge or at day 60 Independent outcomes: factors associated with muscle strength loss, ventilator-free days, ICU length of stay and hospital length of stay. The patients were distributed into two groups (MRC< 48, MRC ≥ 48) after the first measurement. Thirty-four patients were assessed. Independent outcomes associated with muscle strength weakness were: days with cardiovascular SOFA >2 (P<.001) and days with costicosteroids (P<.001). Initial MRC in MRC<48 group was 38 (27-43), and 52 (50-54) in MRC ≥ 48. The largest muscle strength gain was obtained the first week (31% versus 52%). A MRC < 48 value was associated with more MV days (P<.007) and a longer ICU stay. (P<.003). The greatest muscle strength gain after withdrawing of the sedatives was achieved in the first week. Muscle strength loss was associated with a cardiovascular SOFA > 2 and costicosteroids. Patients with a MRC < 48 required more days with MV and a longer ICU stay. Copyright © 2013 Elsevier España, S.L. y SEEIUC. All rights reserved.

  12. Personality Typology in Relation to Muscle Strength

    PubMed Central

    Terracciano, Antonio; Milaneschi, Yuri; Metter, E. Jeffrey; Ferrucci, Luigi

    2011-01-01

    Background Physical inactivity plays a central role in the age-related decline in muscle strength, an important component in the process leading to disability. Personality, a significant determinant of health behaviors including physical activity, could therefore impact muscle strength throughout adulthood and affect the rate of muscle strength decline with aging. Personality typologies combining “high neuroticism” (N≥55), “low extraversion” (E<45), and “low conscientiousness” (C<45) have been associated with multiple risky health behaviors but have not been investigated with regards to muscle strength. Purpose The purpose of this study is to investigate associations between individual and combined typologies consisting of high N, low E, and low C and muscle strength, and whether physical activity and body mass index act as mediators. Method This cross-sectional study includes 1,220 participants from the Baltimore Longitudinal Study of Aging. Results High N was found among 18%, low E among 31%, and low C among 26% of the sample. High levels of N, particularly when combined with either low E or low C, were associated with lower muscle strength compared with having only one or none of these personality types. Facet analyses suggest an important role for the N components of depression and hostility. Physical activity level appears to partly explain some of these associations. Conclusion Findings provide support for the notion that the typological approach to personality may be useful in identifying specific personality types at risk of low muscle strength and offer the possibility for more targeted prevention and intervention programs. PMID:21614452

  13. Analysis of Outcomes of the Nutritional Status in Patients Qualified for Aortic Valve Replacement in Comparison to Healthy Elderly

    PubMed Central

    Jagielak, Dariusz; Dardzińska, Jolanta Anna; Aleksandrowicz-Wrona, Ewa; Rogowski, Jan; Gruszecka, Agnieszka; Małgorzewicz, Sylwia

    2018-01-01

    Severe aortic stenosis (AS) is associated with the reduction of muscle mass and may be associated with deterioration of nutritional status. Furthermore, malnourished cardiac patients are characterized by a higher risk of postoperative complications and mortality. The aim of this study was the evaluation and comparison of nutritional status, appetite and body composition in older people with severe aortic stenosis before aortic valve replacement and healthy elderly volunteers. One hundred and one patients, aged >65 years old with severe AS were included in the study. Nutritional status was assessed. Body composition was estimated using bioelectrical impedance analysis. Concentrations of albumin, prealbumin, triglycerides, total cholesterol and C-reactive protein were measured, and a complete blood count was done. About 40% of AS patients were at risk of malnutrition. They had decreased hand grip strength and they lost more body mass than the control group. Malnourished AS patients were older, had lower body mass indexes (BMIs) and lower aortic valve areas in comparison to well-nourished patients. Older AS patients, like their peers, show excessive body mass and, at the same time, the features of malnutrition. They have additional factors such as unintentional weight lost and decreased muscle strength which may be associated with worse outcomes. PMID:29510548

  14. Hip Strength Testing of Soccer Players With Long-Standing Hip and Groin Pain: What are the Clinical Implications of Pain During Testing?

    PubMed

    Rafn, Bolette S; Tang, Lars; Nielsen, Martin P; Branci, Sonia; Hölmich, Per; Thorborg, Kristian

    2016-05-01

    To investigate whether self-reported pain during hip strength testing correlates to a large degree with hip muscle strength in soccer players with long-standing unilateral hip and groin pain. Cross-sectional study. Clinical assessments at Sports Orthopaedic Research Center-Copenhagen (SORC-C), Arthroscopic Centre Amager, Copenhagen University Hospital, Denmark. Twenty-four male soccer players with unilateral long-standing hip and groin pain. The soccer players performed 5 reliable hip muscle strength tests (isometric hip flexion, adduction, abduction, isometric hip flexion-modified Thomas test, and eccentric hip adduction). Muscle strength was measured with a hand-held dynamometer, and the players rated the pain during testing on a numerical rating scale (0-10). In 4 tests (isometric hip adduction, abduction, flexion, and eccentric adduction), no significant correlations were found between pain during testing and hip muscle strength (Spearman rho = -0.28 to 0.06, P = 0.09-0.39). Isometric hip flexion (modified Thomas test position) showed a moderate negative correlation between pain and hip muscle strength (Spearman rho = -0.44, P = 0.016). Self-reported pain during testing does not seem to correlate with the majority of hip muscle strength tests used in soccer players with long-standing hip and groin pain.

  15. Higher blood pressure is associated with higher handgrip strength in the oldest old.

    PubMed

    Taekema, Diana G; Maier, Andrea B; Westendorp, Rudi G J; de Craen, Anton J M

    2011-01-01

    Aging is associated with progressive loss of muscle strength. Muscle tissue is vascularized by an elaborate vascular network. There is evidence that blood pressure (BP) is associated with muscle function in middle age. It is unknown how BP associates with muscle function in oldest old people. We studied the association between BP and handgrip strength in middle and old age. BP was measured automatically in middle-aged subjects and with a mercury sphygmomanometer in the oldest old. Handgrip strength was measured with a handgrip strength dynamometer. Cross-sectional measurements of handgrip strength and BP were available for 670 middle-aged subjects (mean 63.2 ± 6.6 years) and 550 oldest old subjects (all 85 years). Prospective data were available for oldest old subjects only with a 4-year follow-up at 89 years. The association between BP and handgrip strength was analyzed by linear regression analysis. In middle-aged subjects, BP and handgrip strength were not statistically significantly associated. In oldest old subjects, higher systolic BP (SBP), mean arterial pressure (MAP), and pulse pressure (PP) were associated with higher handgrip strength after adjusting for comorbidity and medication use (all P < 0.02). Furthermore, in oldest old subjects, changes in SBP, MAP, and PP after 4 years was associated with declining handgrip strength (all, P < 0.05). In oldest old, higher BP is associated with better muscle strength. Further study is necessary to investigate whether BP is a potential modifiable risk factor for prevention of age-associated decline in muscle strength.

  16. Lean muscle volume of the thigh has a stronger relationship with muscle power than muscle strength in women with knee osteoarthritis.

    PubMed

    Davison, Michael J; Maly, Monica R; Keir, Peter J; Hapuhennedige, Sandani M; Kron, Amie T; Adachi, Jonathan D; Beattie, Karen A

    2017-01-01

    Thigh lean muscle and intramuscular fat have been implicated in the impairment of physical function observed in people with knee osteoarthritis. We investigated the relationships of quadriceps and hamstrings intramuscular fat fraction and lean muscle volume with muscle power and strength, controlling for neuromuscular activation, and physical performance in women with knee OA. Women (n=20) 55years or older with symptomatic, radiographic knee osteoarthritis underwent a 3.0T magnetic resonance imaging scan of the thigh of their most symptomatic knee. Axial fat-separated images were analyzed using software to quantify intramuscular fat and lean muscle volumes of the quadriceps and hamstrings. To quantify strength and power of the knee extensors and flexors, participants performed maximum voluntary isometric contraction and isotonic knee extensions and flexions, respectively. Electromyography of the quadriceps and hamstrings was measured. Participants also completed five physical performance tests. Quadriceps and hamstrings lean muscle volumes were related to isotonic knee extensor (B=0.624; p=0.017) and flexor (B=1.518; p=0.032) power, but not knee extensor (B=0.001; p=0.615) or flexor (B=0.001; p=0.564) isometric strength. Intramuscular fat fractions were not related to isotonic knee extensor or flexor power, nor isometric strength. No relationships were found between intramuscular fat or lean muscle volume and physical performance. Muscle power may be more sensitive than strength to lean muscle mass in women with knee osteoarthritis. Thigh lean muscle mass, but neither intramuscular nor intermuscular fat, is related to knee extensor and flexor power in women with knee osteoarthritis. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Changes in physical functioning and muscle strength in men receiving androgen deprivation therapy for prostate cancer: a controlled comparison.

    PubMed

    Gonzalez, Brian D; Jim, Heather S L; Small, Brent J; Sutton, Steven K; Fishman, Mayer N; Zachariah, Babu; Heysek, Randy V; Jacobsen, Paul B

    2016-05-01

    The purpose of the study is to examine changes in muscle strength and self-reported physical functioning in men receiving androgen deprivation therapy (ADT) for prostate cancer compared to matched controls. Prostate cancer patients scheduled to begin ADT (n = 62) were assessed within 20 days of starting ADT and 6 and 12 months later. Age and geographically matched prostate cancer controls treated with prostatectomy only (n = 86) were assessed at similar time intervals. Grip strength measured upper body strength, the Chair Rise Test measured lower body strength, and the SF-12 Physical Functioning scale measured self-reported physical functioning. As expected, self-reported physical functioning and upper body muscle strength declined in ADT recipients but remained stable in prostate cancer controls. Contrary to expectations, lower body muscle strength remained stable in ADT recipients but improved in prostate cancer controls. Higher Gleason scores, more medical comorbidities, and less exercise at baseline predicted greater declines in physical functioning in ADT recipients. ADT is associated with declines in self-reported physical functioning and upper body muscle strength as well as worse lower body muscle strength relative to prostate cancer controls. These findings should be included in patient education regarding the risks and benefits of ADT. Findings also underscore the importance of conducting research on ways to prevent or reverse declines in physical functioning in this patient population.

  18. Ipsilateral hip abductor weakness after inversion ankle sprain.

    PubMed

    Friel, Karen; McLean, Nancy; Myers, Christine; Caceres, Maria

    2006-01-01

    Hip stability and strength are important for proper gait mechanics and foot position during heel strike. To determine the relationships between hip muscle strength and chronic ankle sprains and hip muscle strength and ankle range of motion. Ex post facto design with the uninvolved limb serving as the control. Laboratory. A total of 23 subjects with unilateral chronic ankle sprain were recruited. Subjects had at least 2 ipsilateral ankle sprains and were bearing full weight, with the most recent injury occurring at least 3 months earlier. They were not undergoing formal or informal rehabilitation at the time of the study. We obtained goniometric measurements for all planes of motion at the ankle. Handheld dynamometry was used to assess the strength of the hip abductor and hip extensor muscles in both limbs. Hip abductor muscle strength and plantar flexion were significantly less on the involved side than the uninvolved side (P < .001 in each case). Strength of the involved hip abductor and hip extensor muscles was significantly correlated (r = 0.539, P < .01). No significant difference was noted in hip extensor muscle strength between sides (P = .19). Our subjects with unilateral chronic ankle sprains had weaker hip abduction strength and less plantar-flexion range of motion on the involved sides. Clinicians should consider exercises to increase hip abduction strength when developing rehabilitation programs for patients with ankle sprains.

  19. Effect of neck muscle strength and anticipatory cervical muscle activation on the kinematic response of the head to impulsive loads.

    PubMed

    Eckner, James T; Oh, Youkeun K; Joshi, Monica S; Richardson, James K; Ashton-Miller, James A

    2014-03-01

    Greater neck strength and activating the neck muscles to brace for impact are both thought to reduce an athlete's risk of concussion during a collision by attenuating the head's kinematic response after impact. However, the literature reporting the neck's role in controlling postimpact head kinematics is mixed. Furthermore, these relationships have not been examined in the coronal or transverse planes or in pediatric athletes. In each anatomic plane, peak linear velocity (ΔV) and peak angular velocity (Δω) of the head are inversely related to maximal isometric cervical muscle strength in the opposing direction (H1). Under impulsive loading, ΔV and Δω will be decreased during anticipatory cervical muscle activation compared with the baseline state (H2). Descriptive laboratory study. Maximum isometric neck strength was measured in each anatomic plane in 46 male and female contact sport athletes aged 8 to 30 years. A loading apparatus applied impulsive test forces to athletes' heads in flexion, extension, lateral flexion, and axial rotation during baseline and anticipatory cervical muscle activation conditions. Multivariate linear mixed models were used to determine the effects of neck strength and cervical muscle activation on head ΔV and Δω. Greater isometric neck strength and anticipatory activation were independently associated with decreased head ΔV and Δω after impulsive loading across all planes of motion (all P < .001). Inverse relationships between neck strength and head ΔV and Δω presented moderately strong effect sizes (r = 0.417 to r = 0.657), varying by direction of motion and cervical muscle activation. In male and female athletes across the age spectrum, greater neck strength and anticipatory cervical muscle activation ("bracing for impact") can reduce the magnitude of the head's kinematic response. Future studies should determine whether neck strength contributes to the observed sex and age group differences in concussion incidence. Neck strength and impact anticipation are 2 potentially modifiable risk factors for concussion. Interventions aimed at increasing athletes' neck strength and reducing unanticipated impacts may decrease the risk of concussion associated with sport participation.

  20. Obesity decreases both whole muscle and fascicle strength in young females but only exacerbates the aging‐related whole muscle level asthenia

    PubMed Central

    Tomlinson, David J.; Erskine, Robert M.; Winwood, Keith; Morse, Christopher Ian; Onambélé, Gladys L.

    2014-01-01

    Abstract Obesity has previously been associated with greater muscle strength. Aging, on the other hand, reduces muscle specific force (the force per unit physiological cross‐sectional area [PCSA] of muscle). However, neither the effect of obesity on skeletal muscle specific force nor the combined effects of aging and obesity on this parameter are known. This study aimed to describe the interplay between body mass index (BMI)/adiposity, aging, and skeletal muscle specific force. Ninety‐four untrained healthy women categorized by age into young (Y; mean ± SD: 25.5 ± 9.0 years) versus old (O; 64.8 ± 7.2 years) were assessed for body composition, gastrocnemius medialis (GM) muscle volume (V), net maximum voluntary contraction (nMVC), and specific force (SF). The young obese, while demonstrating 71% and 29% (P < 0.001) higher V and nMVC compared to normal BMI individuals, were in fact 26% (P = 0.007) weaker than these, where V was used to scale nMVC (i.e., nMVC/V). The weakness associated with obesity was further exemplified in the 34% (P < 0.001) lower SF relative to normal BMI individuals. Similarly, ≥40% body fat was associated with 60% and 27% (P < 0.001) higher V and nMVC, but 11% and 25% (P < 0.01) lower nMVC/V and SF than <40% body fat. The aging‐related rates of decline in V (−2 cm3/year P < 0.05) and nMVC (−1.2 cm3/year P < 0.05) were highest in obesity defined by BMI. This effect was also seen when segregating by >40% adiposity. Interestingly, however, obesity appeared advantageous to the aging‐related changes in nMVC/V (P < 0.001) and SF (P < 0.001). Unlike previous reports of greater strength in the obese compared with leaner age‐matched counterparts, we in fact demonstrate that the young sedentary obese, are substantially weaker, where the volume of skeletal muscle is used to scale the maximal torque output, or forces are quantified at the fascicular level. The seemingly positive impact of obesity on rate of aging, however, is complex and warrants further investigations. PMID:24963030

  1. Obesity decreases both whole muscle and fascicle strength in young females but only exacerbates the aging-related whole muscle level asthenia.

    PubMed

    Tomlinson, David J; Erskine, Robert M; Winwood, Keith; Morse, Christopher Ian; Onambélé, Gladys L

    2014-06-24

    Obesity has previously been associated with greater muscle strength. Aging, on the other hand, reduces muscle specific force (the force per unit physiological cross-sectional area [PCSA] of muscle). However, neither the effect of obesity on skeletal muscle specific force nor the combined effects of aging and obesity on this parameter are known. This study aimed to describe the interplay between body mass index (BMI)/adiposity, aging, and skeletal muscle specific force. Ninety-four untrained healthy women categorized by age into young (Y; mean ± SD: 25.5 ± 9.0 years) versus old (O; 64.8 ± 7.2 years) were assessed for body composition, gastrocnemius medialis (GM) muscle volume (V), net maximum voluntary contraction (nMVC), and specific force (SF). The young obese, while demonstrating 71% and 29% (P < 0.001) higher V and nMVC compared to normal BMI individuals, were in fact 26% (P = 0.007) weaker than these, where V was used to scale nMVC (i.e., nMVC/V). The weakness associated with obesity was further exemplified in the 34% (P < 0.001) lower SF relative to normal BMI individuals. Similarly, ≥40% body fat was associated with 60% and 27% (P < 0.001) higher V and nMVC, but 11% and 25% (P < 0.01) lower nMVC/V and SF than <40% body fat. The aging-related rates of decline in V (-2 cm(3)/year P < 0.05) and nMVC (-1.2 cm(3)/year P < 0.05) were highest in obesity defined by BMI. This effect was also seen when segregating by >40% adiposity. Interestingly, however, obesity appeared advantageous to the aging-related changes in nMVC/V (P < 0.001) and SF (P < 0.001). Unlike previous reports of greater strength in the obese compared with leaner age-matched counterparts, we in fact demonstrate that the young sedentary obese, are substantially weaker, where the volume of skeletal muscle is used to scale the maximal torque output, or forces are quantified at the fascicular level. The seemingly positive impact of obesity on rate of aging, however, is complex and warrants further investigations. © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  2. Sarcopenic-obesity and cardiovascular disease risk in the elderly.

    PubMed

    Stephen, W C; Janssen, I

    2009-05-01

    To determine: 1) whether sarcopenic-obesity is a stronger predictor of cardiovascular disease (CVD) than either sarcopenia or obesity alone in the elderly, and 2) whether muscle mass or muscular strength is a stronger marker of CVD risk. Prospective cohort study. Participants included 3366 community-dwelling older (>or= 65 years) men and women who were free of CVD at baseline. Waist circumference (WC), bioimpedance analysis, and grip strength were used to measure abdominal obesity, whole-body muscle mass, and muscular strength, respectively. Subjects were classified as normal, sarcopenic, obese, or sarcopenic-obese based on measures of WC and either muscle mass or strength. Participants were followed for 8 years for CVD development and proportional hazard regression models were used to compare risk estimates for CVD in the four groups after adjusting for age, sex, race, income, smoking, alcohol, and cognitive status. Compared with the normal group, CVD risk was not significantly elevated within the obese, sarcopenic, or sarcopenic-obese groups as determined by WC and muscle mass. When determined by WC and muscle strength, CVD risk was not significantly increased in the sarcopenic or obese groups, but was increased by 23% (95% confidence interval: 0.99-1.54, P=0.06) within the sarcopenic-obese group. Sarcopenia and obesity alone were not sufficient to increase CVD risk. Sarcopenic-obesity, based on muscle strength but not muscle mass, was modestly associated with increased CVD risk. These findings imply that strength may be more important than muscle mass for CVD protection in old age.

  3. Assessment of foot and ankle muscle strength using hand held dynamometry in patients with established rheumatoid arthritis.

    PubMed

    Carroll, Matthew; Joyce, William; Brenton-Rule, Angela; Dalbeth, Nicola; Rome, Keith

    2013-03-22

    The foot and ankle are frequently affected in patients with rheumatoid arthritis (RA). One of the negative consequences of RA on the physical function of patients is a decrease in muscle strength. However, little is known about foot and muscle strength in this population. The aim of the study was to evaluate significant differences in foot and ankle muscle strength between patients with established RA against age and sex-matched controls using hand-held dynamometry. The maximal muscle strength of ankle plantarflexion, dorsiflexion, eversion and inversion was assessed in 14 patients with RA, mean (SD) disease duration of 22 (14.1) years, and 20 age and sex-matched control participants using hand-held dynamometry. Significant differences were observed in muscle strength between the two groups in plantarflexion (p = 0.00), eversion (p = 0.04) and inversion (p = 0.01). No significant difference was found in dorsiflexion (p > 0.05). The patients with RA displayed a significantly lower plantarflexion-dorsiflexion ratio than the control participants (p = 0.03). The results from this study showed that the RA patients displayed a significant decrease in ankle dorsiflexion, eversion and inversion when compared to the non-RA control group suggesting that foot and ankle muscle strength may be affected by the pathological processes in RA. This study is a preliminary step for the measurement of muscle impairments within the RA population.

  4. Assessment of foot and ankle muscle strength using hand held dynamometry in patients with established rheumatoid arthritis

    PubMed Central

    2013-01-01

    Background The foot and ankle are frequently affected in patients with rheumatoid arthritis (RA). One of the negative consequences of RA on the physical function of patients is a decrease in muscle strength. However, little is known about foot and muscle strength in this population. The aim of the study was to evaluate significant differences in foot and ankle muscle strength between patients with established RA against age and sex-matched controls using hand-held dynamometry. Methods The maximal muscle strength of ankle plantarflexion, dorsiflexion, eversion and inversion was assessed in 14 patients with RA, mean (SD) disease duration of 22 (14.1) years, and 20 age and sex-matched control participants using hand-held dynamometry. Results Significant differences were observed in muscle strength between the two groups in plantarflexion (p = 0.00), eversion (p = 0.04) and inversion (p = 0.01). No significant difference was found in dorsiflexion (p > 0.05). The patients with RA displayed a significantly lower plantarflexion-dorsiflexion ratio than the control participants (p = 0.03). Conclusions The results from this study showed that the RA patients displayed a significant decrease in ankle dorsiflexion, eversion and inversion when compared to the non-RA control group suggesting that foot and ankle muscle strength may be affected by the pathological processes in RA. This study is a preliminary step for the measurement of muscle impairments within the RA population. PMID:23522448

  5. Effect of strength training on regional hypertrophy of the elbow flexor muscles.

    PubMed

    Drummond, Marcos D M; Szmuchrowski, Leszek A; Goulart, Karine N O; Couto, Bruno P

    2016-10-01

    Muscle hypertrophy is the main structural adaptation to strength training. We investigated the chronic effects of strength training on muscle hypertrophy in different regions of the elbow flexor muscles. Eleven untrained men (21.8 ± 1.62 years) underwent magnetic resonance imaging to determine the proximal, medial, distal, and mean cross-sectional areas (CSA) of the elbow flexors. The volunteers completed 12 weeks of strength training. The training protocol consisted of 4 sets of 8-10 maximum repetitions of unilateral elbow flexion. The interval between sets was 120 s. The training frequency was 3 sessions per week. The magnetic resonance images verified the presence of significant and similar hypertrophy in the distal, medial, and proximal portions of the elbow flexor muscles. Muscle hypertrophy may be assessed using only the medial CSA. We should not expect different degrees of hypertrophy among the regions of the elbow flexor muscles. Muscle Nerve 54: 750-755, 2016. © 2016 Wiley Periodicals, Inc.

  6. Effect of pelvic floor muscle exercises in the treatment of urinary incontinence during pregnancy and the postpartum period.

    PubMed

    Dinc, Ayten; Kizilkaya Beji, Nezihe; Yalcin, Onay

    2009-10-01

    The aim of this study was to determine the effectiveness of pelvic floor muscle exercises on urinary incontinence during pregnancy and the postpartum period. The study was carried out on 80 pregnant women (study group, 40 subjects; control group, 40 subjects).The study group was trained by the researcher on how to do the pelvic floor muscle exercises. Both groups were evaluated for pelvic floor muscle strength and urinary complaints in their 36th to 38th week of pregnancy and postpartum sixth to eighth week. The study group had a significant decrease in urinary incontinence episodes during pregnancy and in the postpartum period, and their pelvic floor muscle strength increased to a larger extent. Control group had an increase in the postpartum muscle strength and decrease in the incontinence episodes in the postpartum period. Pelvic floor muscle exercises are quite effective in the augmentation of the pelvic floor muscle strength and consequently in the treatment of urinary incontinence.

  7. Impaired muscle strength may contribute to fatigue in patients with aneurysmal subarachnoid hemorrhage.

    PubMed

    Harmsen, Wouter J; Ribbers, Gerard M; Zegers, Bart; Sneekes, Emiel M; Praet, Stephan F E; Heijenbrok-Kal, Majanka H; Khajeh, Ladbon; van Kooten, Fop; Neggers, Sebastiaan J C M M; van den Berg-Emons, Rita J

    2017-03-01

    Patients with aneurysmal subarachnoid hemorrhage (a-SAH) show long-term fatigue and face difficulties in resuming daily physical activities. Impaired muscle strength, especially of the lower extremity, impacts the performance of daily activities and may trigger the onset of fatigue complaints. The present study evaluated knee muscle strength and fatigue in patients with a-SAH. This study included 33 patients, 6 months after a-SAH, and 33 sex-matched and age-matched healthy controls. Isokinetic muscle strength of the knee extensors and flexors was measured at 60 and 180°/s. Maximal voluntary muscle strength was defined as peak torque and measured in Newton-meter. Fatigue was examined using the Fatigue Severity Scale. In patients with a-SAH, the maximal knee extension was 22% (60°/s) and 25% (180°/s) lower and maximal knee flexion was 33% (60°/s) and 36% (180°/s) lower compared with that of matched controls (P≤0.001). The Fatigue Severity Scale score was related to maximal knee extension (60°/s: r=-0.426, P=0.015; 180°/s: r=-0.376, P=0.034) and flexion (60°/s: r=-0.482, P=0.005; 180°/s: r=-0.344, P=0.083). The knee muscle strength was 28-47% lower in fatigued (n=13) and 11-32% lower in nonfatigued (n=20) patients; deficits were larger in fatigued patients (P<0.05), particularly when the muscle strength (peak torque) was measured at 60°/s. The present results indicate that patients with a-SAH have considerably impaired knee muscle strength, which is related to more severe fatigue. The present findings are exploratory, but showed that knee muscle strength may play a role in the severity of fatigue complaints, or vice versa. Interventions targeting fatigue after a-SAH seem necessary and may consider strengthening exercise training in order to treat a debilitating condition.

  8. Relationship between Muscle Function, Muscle Typology and Postural Performance According to Different Postural Conditions in Young and Older Adults

    PubMed Central

    Paillard, Thierry

    2017-01-01

    Although motor output of the postural function clearly influences postural performance in young and older subjects, no relationship has been formally established between them. However, the relationship between lower-extremity muscle strength/power and postural performance is often pointed out, especially in older subjects. In fact, the influence of motor output may vary according to the postural condition considered (e.g., static, dynamic, challenging, disturbing). In static postural condition, there may be a relationship between lower-extremity muscle strength and postural performance when the value of muscle strength is below a certain threshold in older subjects. Above this threshold of muscle strength, this relationship may disappear. In dynamic postural condition, lower-extremity muscle power could facilitate compensatory postural actions, limiting induced body imbalance likely to generate falls in older subjects. In young subjects, there could be a relationship between very early rapid torque of the leg extensor muscles and postural performance. In the case of postural reaction to (external) perturbations, a high percentage of type II muscle fibers could be associated with the ability to react quickly to postural perturbations in young subjects, while it may enable a reduction in the risk of falls in older subjects. In practice, in older subjects, muscle strength and/or power training contributes to reducing the risk of falls, as well as slowing down the involution of muscle typology regarding type II muscle fibers. PMID:28861000

  9. Relationship between Muscle Function, Muscle Typology and Postural Performance According to Different Postural Conditions in Young and Older Adults.

    PubMed

    Paillard, Thierry

    2017-01-01

    Although motor output of the postural function clearly influences postural performance in young and older subjects, no relationship has been formally established between them. However, the relationship between lower-extremity muscle strength/power and postural performance is often pointed out, especially in older subjects. In fact, the influence of motor output may vary according to the postural condition considered (e.g., static, dynamic, challenging, disturbing). In static postural condition, there may be a relationship between lower-extremity muscle strength and postural performance when the value of muscle strength is below a certain threshold in older subjects. Above this threshold of muscle strength, this relationship may disappear. In dynamic postural condition, lower-extremity muscle power could facilitate compensatory postural actions, limiting induced body imbalance likely to generate falls in older subjects. In young subjects, there could be a relationship between very early rapid torque of the leg extensor muscles and postural performance. In the case of postural reaction to (external) perturbations, a high percentage of type II muscle fibers could be associated with the ability to react quickly to postural perturbations in young subjects, while it may enable a reduction in the risk of falls in older subjects. In practice, in older subjects, muscle strength and/or power training contributes to reducing the risk of falls, as well as slowing down the involution of muscle typology regarding type II muscle fibers.

  10. Back muscle strength, lifting, and stooped working postures.

    PubMed

    Poulsen, E; Jørgensen, K

    1971-09-01

    When lifting loads and working in a forward stooped position, the muscles of the back rather than the ligaments and bony structures of the spine should overcome the gravitational forces. Formulae, based on measurements of back muscle strength, for prediction of maximal loads to be lifted, and for the ability to sustain work in a stooped position, have been worked out and tested in practical situations. From tests with 50 male and female subjects the simplest prediction formulae for maximum loads were: max. load = 1.10 x isometric back muscle strength for men; and max. load = 0.95 x isometric back muscle strength - 8 kg for women. Some standard values for maximum lifts and permissible single and repeated lifts have been calculated for men and women separately and are given in Table 1. From tests with 65 rehabilitees it was found that the maximum isometric strength of the back muscles measured at shoulder height should exceed 2/3 of the body weight, if fatigue and/or pain in the back muscles is to be avoided during work in a standing stooped position.

  11. Quantitative MRI and strength measurements in the assessment of muscle quality in Duchenne muscular dystrophy.

    PubMed

    Wokke, B H; van den Bergen, J C; Versluis, M J; Niks, E H; Milles, J; Webb, A G; van Zwet, E W; Aartsma-Rus, A; Verschuuren, J J; Kan, H E

    2014-05-01

    The purpose of this study was to assess leg muscle quality and give a detailed description of leg muscle involvement in a series of Duchenne muscular dystrophy patients using quantitative MRI and strength measurements. Fatty infiltration, as well as total and contractile (not fatty infiltrated) cross sectional areas of various leg muscles were determined in 16 Duchenne patients and 11 controls (aged 8-15). To determine specific muscle strength, four leg muscle groups (quadriceps femoris, hamstrings, anterior tibialis and triceps surae) were measured and related to the amount of contractile tissue. In patients, the quadriceps femoris showed decreased total and contractile cross sectional area, attributable to muscle atrophy. The total, but not the contractile, cross sectional area of the triceps surae was increased in patients, corresponding to hypertrophy. Specific strength decreased in all four muscle groups of Duchenne patients, indicating reduced muscle quality. This suggests that muscle hypertrophy and fatty infiltration are two distinct pathological processes, differing between muscle groups. Additionally, the quality of remaining muscle fibers is severely reduced in the legs of Duchenne patients. The combination of quantitative MRI and quantitative muscle testing could be a valuable outcome parameter in longitudinal studies and in the follow-up of therapeutic effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Intravenous immune globulin in hereditary inclusion body myopathy: a pilot study

    PubMed Central

    Sparks, Susan; Rakocevic, Goran; Joe, Galen; Manoli, Irini; Shrader, Joseph; Harris-Love, Michael; Sonies, Barbara; Ciccone, Carla; Dorward, Heidi; Krasnewich, Donna; Huizing, Marjan; Dalakas, Marinos C; Gahl, William A

    2007-01-01

    Background Hereditary Inclusion Body Myopathy (HIBM) is an autosomal recessive, adult onset, non-inflammatory neuromuscular disorder with no effective treatment. The causative gene, GNE, codes for UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase, which catalyzes the first two reactions in the synthesis of sialic acid. Reduced sialylation of muscle glycoproteins, such as α-dystroglycan and neural cell adhesion molecule (NCAM), has been reported in HIBM. Methods We treated 4 HIBM patients with intravenous immune globulin (IVIG), in order to provide sialic acid, because IgG contains 8 μmol of sialic acid/g. IVIG was infused as a loading dose of 1 g/kg on two consecutive days followed by 3 doses of 400 mg/kg at weekly intervals. Results For all four patients, mean quadriceps strength improved from 19.0 kg at baseline to 23.2 kg (+22%) directly after IVIG loading to 25.6 kg (+35%) at the end of the study. Mean shoulder strength improved from 4.1 kg at baseline to 5.9 kg (+44%) directly after IVIG loading to 6.0 kg (+46%) at the end of the study. The composite improvement for 8 other muscle groups was 5% after the initial loading and 19% by the end of the study. Esophageal motility and lingual strength improved in the patients with abnormal barium swallows. Objective measures of functional improvement gave variable results, but the patients experienced improvements in daily activities that they considered clinically significant. Immunohistochemical staining and immunoblotting of muscle biopsies for α-dystroglycan and NCAM did not provide consistent evidence for increased sialylation after IVIG treatment. Side effects were limited to transient headaches and vomiting. Conclusion The mild benefits in muscle strength experienced by HIBM patients after IVIG treatment may be related to the provision of sialic acid supplied by IVIG. Other sources of sialic acid are being explored as treatment options for HIBM. PMID:17261181

  13. Creatine supplementation during pulmonary rehabilitation in chronic obstructive pulmonary disease

    PubMed Central

    Fuld, J; Kilduff, L; Neder, J; Pitsiladis, Y; Lean, M; Ward, S; Cotton, M

    2005-01-01

    Background: Skeletal muscle wasting and dysfunction are strong independent predictors of mortality in patients with chronic obstructive pulmonary disease (COPD). Creatine nutritional supplementation produces increased muscle mass and exercise performance in health. A controlled study was performed to look for similar effects in 38 patients with COPD. Methods: Thirty eight patients with COPD (mean (SD) forced expiratory volume in 1 second (FEV1) 46 (15)% predicted) were randomised to receive placebo (glucose polymer 40.7 g) or creatine (creatine monohydrate 5.7 g, glucose 35 g) supplements in a double blind trial. After 2 weeks loading (one dose three times daily), patients participated in an outpatient pulmonary rehabilitation programme combined with maintenance (once daily) supplementation. Pulmonary function, body composition, and exercise performance (peripheral muscle strength and endurance, shuttle walking, cycle ergometry) took place at baseline (n = 38), post loading (n = 36), and post rehabilitation (n = 25). Results: No difference was found in whole body exercise performance between the groups: for example, incremental shuttle walk distance mean –23.1 m (95% CI –71.7 to 25.5) post loading and –21.5 m (95% CI –90.6 to 47.7) post rehabilitation. Creatine increased fat-free mass by 1.09 kg (95% CI 0.43 to 1.74) post loading and 1.62 kg (95% CI 0.47 to 2.77) post rehabilitation. Peripheral muscle performance improved: knee extensor strength 4.2 N.m (95% CI 1.4 to 7.1) and endurance 411.1 J (95% CI 129.9 to 692.4) post loading, knee extensor strength 7.3 N.m (95% CI 0.69 to 13.92) and endurance 854.3 J (95% CI 131.3 to 1577.4) post rehabilitation. Creatine improved health status between baseline and post rehabilitation (St George's Respiratory Questionnaire total score –7.7 (95% CI –14.9 to –0.5)). Conclusions: Creatine supplementation led to increases in fat-free mass, peripheral muscle strength and endurance, health status, but not exercise capacity. Creatine may constitute a new ergogenic treatment in COPD. PMID:15994258

  14. Female Age-Related Differences in Biomechanics and Muscle Activity During Descents on the Outstretched Arms.

    PubMed

    Lattimer, Lauren J; Lanovaz, Joel L; Farthing, Jonathan P; Madill, Stéphanie; Kim, Soo; Robinovitch, Stephen; Arnold, Cathy

    2017-07-01

    The purposes of this study were to examine female age differences in: (1) upper extremity (UE) and trunk muscle activity, elbow joint moment, loading force, and UE energy absorption during a controlled forward body descent; and (2) UE muscle strength. Twenty young (mean 24.8 ± 3.4 years) and 20 older (68.4 ± 5.7 years) women were assessed via dynamometry for isometric, concentric, and eccentric UE strength and performed forward descents on force plates at three body lean angles (60°, 45°, and 30° from horizontal). Significant differences (p < .05) were found for muscle strength, biomechanics, and muscle activity. Concentric UE strength averaged 15% lower in older women. At 30° body lean, older women absorbed less energy. Older women had greater biceps brachii activation and less external oblique activation at all body lean angles. Age differences in muscle strength, activation, and energy absorption may contribute to fall-related injury risk.

  15. Muscle strength and golf performance: a critical review.

    PubMed

    Torres-Ronda, Lorena; Sánchez-Medina, Luis; González-Badillo, Juan J

    2011-01-01

    Golf has become an increasingly popular sport and a growing body of research trying to identify its main physical requirements is being published. The aim of this review was twofold: first, to examine the existing scientific literature regarding strength training and golf in healthy, non-injured, subjects; and second, to reach conclusions that could provide information on how to design more effective strength training programs to improve golf performance as well as directions for future research. Studies which analyzed the relationship between muscle strength, swing performance variables (club head speed, driving distance, ball speed) and skill (handicap, score) were reviewed. Changes in swing performance following different strength training programs were also investigated. Finally, a critical analysis about the methodologies used was carried out. The results of the reviewed studies seem to indicate that: 1) a positive relationship exists between handicap and swing performance (even though few studies have investigated this issue); 2) there is a positive correlation between skill (handicap and/or score) and muscle strength; and 3) there is a relationship between driving distance, swing speed, ball speed and muscle strength. Results suggest that training leg-hip and trunk power as well as grip strength is especially relevant for golf performance improvement. Studies that analyzed variations in swing performance following resistance-only training programs are scarce, thus it is difficult to prove whether the observed improvements are attributable to changes in strength levels. Many of the studies reviewed presented some methodological errors in their design and not all strength assessment protocols seemed appropriate. Further studies should determine muscle strength needs in relation to final swing performance, using well designed experiments and strict isoinertial assessment protocols which adequately relate to specific golf motion, age and skill level. More studies with elite participants, either professional or amateur, would be especially desirable. Key pointsPOSITIVE CORRELATIONS EXIST BETWEEN: 1) handicap and swing performance variables; 2) muscle strength and skill (handicap and/or golf score); and 3) driving dis-tance, swing speed, ball speed and muscle strength.Leg-hip, trunk power and grip strength seem espe-cially relevant for golf performance improvement.Further research should determine muscle strength needs in relation to final swing performance, using well designed experiments and strict assessment pro-tocols which adequately relate to specific golf mo-tion, age and skill level.

  16. Muscle Strength And Golf Performance: A Critical Review

    PubMed Central

    Torres-Ronda, Lorena; Sánchez-Medina, Luis; González-Badillo, Juan J.

    2011-01-01

    Golf has become an increasingly popular sport and a growing body of research trying to identify its main physical requirements is being published. The aim of this review was twofold: first, to examine the existing scientific literature regarding strength training and golf in healthy, non-injured, subjects; and second, to reach conclusions that could provide information on how to design more effective strength training programs to improve golf performance as well as directions for future research. Studies which analyzed the relationship between muscle strength, swing performance variables (club head speed, driving distance, ball speed) and skill (handicap, score) were reviewed. Changes in swing performance following different strength training programs were also investigated. Finally, a critical analysis about the methodologies used was carried out. The results of the reviewed studies seem to indicate that: 1) a positive relationship exists between handicap and swing performance (even though few studies have investigated this issue); 2) there is a positive correlation between skill (handicap and/or score) and muscle strength; and 3) there is a relationship between driving distance, swing speed, ball speed and muscle strength. Results suggest that training leg-hip and trunk power as well as grip strength is especially relevant for golf performance improvement. Studies that analyzed variations in swing performance following resistance-only training programs are scarce, thus it is difficult to prove whether the observed improvements are attributable to changes in strength levels. Many of the studies reviewed presented some methodological errors in their design and not all strength assessment protocols seemed appropriate. Further studies should determine muscle strength needs in relation to final swing performance, using well designed experiments and strict isoinertial assessment protocols which adequately relate to specific golf motion, age and skill level. More studies with elite participants, either professional or amateur, would be especially desirable. Key points Positive correlations exist between: 1) handicap and swing performance variables; 2) muscle strength and skill (handicap and/or golf score); and 3) driving dis-tance, swing speed, ball speed and muscle strength. Leg-hip, trunk power and grip strength seem espe-cially relevant for golf performance improvement. Further research should determine muscle strength needs in relation to final swing performance, using well designed experiments and strict assessment pro-tocols which adequately relate to specific golf mo-tion, age and skill level. PMID:24149290

  17. Relation between the Disability of the Arm, Shoulder and Hand Score and Muscle Strength in Post-Cardiac Surgery Patients.

    PubMed

    Izawa, Kazuhiro P; Kasahara, Yusuke; Hiraki, Koji; Hirano, Yasuyuki; Watanabe, Satoshi

    2017-11-27

    Background: The Disabilities of the Arm, Shoulder, and Hand (DASH) questionnaire is a valid and reliable patient-reported outcome measure. DASH can be assessed by self-reported upper extremity disability and symptoms. We aimed to examine the relationship between the physiological outcome of muscle strength and the DASH score after cardiac surgery. Methods: This cross-sectional study assessed 50 consecutive cardiac patients that were undergoing cardiac surgery. Physiological outcomes of handgrip strength and knee extensor muscle strength and the DASH score were measured at one month after cardiac surgery and were assessed. Results were analyzed using Spearman correlation coefficients. Results: The final analysis comprised 43 patients (men: 32, women: 11; age: 62.1 ± 9.1 years; body mass index: 22.1 ± 4.7 kg/m²; left ventricular ejection fraction: 53.5 ± 13.7%). Respective handgrip strength, knee extensor muscle strength, and DASH score were 27.4 ± 8.3 kgf, 1.6 ± 0.4 Nm/kg, and 13.3 ± 12.3, respectively. The DASH score correlated negatively with handgrip strength ( r = -0.38, p = 0.01) and with knee extensor muscle strength ( r = -0.32, p = 0.04). Conclusion: Physiological outcomes of both handgrip strength and knee extensor muscle strength correlated negatively with the DASH score. The DASH score appears to be a valuable tool with which to assess cardiac patients with poor physiological outcomes, particularly handgrip strength as a measure of upper extremity function, which is probably easier to follow over time than lower extremity function after patients complete cardiac rehabilitation.

  18. Assessment of Nutritional Status in Children With Chronic Kidney Disease Using Hand Grip Strength Tool.

    PubMed

    Abd El Basset Bakr, Ashraf Mohamed; Hasaneen, Bothina Mohamed; AbdelRasoul Helal Bassiouni, Dina

    2018-05-03

    Muscle status assessment is crucial for diagnosis of protein energy wasting PEW/cachexia in chronic kidney disease (CKD) population. Hand grip strength (HGS) has been used in muscle power assessment in adult CKD. However, no data is available about its usefulness in children with CKD. Hence, we aimed to study the reliability of HGS in reflecting the muscle power and thus, nutritional status in children with CKD. In this Observational cross sectional study we enrolled 73 CKD children; 45 had end stage kidney disease (ESKD) on hemodialysis (HD) and 28 had CKD but not on dialysis yet. Assessment of children's nutritional status was done through biochemical variables (serum albumin and serum cholesterol) and anthropometric measures (height and BMI). Body composition monitor (BCM) device was used for lean tissue mass (LTM) assessment whilst muscle power was tested by HGS tool. The study showed that 69.8% of CKD patients had HGS values below 10th percentile for age and sex. Moreover, HGS was observed to be more affected in CRI patients and those with non - glomerular causes. HGS was also found to be positively correlated to height but not to lean tissue mass or serum albumin. HGS tool can be used as a reliable bedside tool for nutritional assessment in children with CKD. Copyright © 2018 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  19. Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training

    PubMed Central

    Roberts, Llion A; Raastad, Truls; Markworth, James F; Figueiredo, Vandre C; Egner, Ingrid M; Shield, Anthony; Cameron-Smith, David; Coombes, Jeff S; Peake, Jonathan M

    2015-01-01

    Abstract We investigated functional, morphological and molecular adaptations to strength training exercise and cold water immersion (CWI) through two separate studies. In one study, 21 physically active men strength trained for 12 weeks (2 days per week), with either 10 min of CWI or active recovery (ACT) after each training session. Strength and muscle mass increased more in the ACT group than in the CWI group (P < 0.05). Isokinetic work (19%), type II muscle fibre cross-sectional area (17%) and the number of myonuclei per fibre (26%) increased in the ACT group (all P < 0.05), but not the CWI group. In another study, nine active men performed a bout of single-leg strength exercises on separate days, followed by CWI or ACT. Muscle biopsies were collected before and 2, 24 and 48 h after exercise. The number of satellite cells expressing neural cell adhesion molecule (NCAM) (10−30%) and paired box protein (Pax7) (20−50%) increased 24–48 h after exercise with ACT. The number of NCAM+ satellite cells increased 48 h after exercise with CWI. NCAM+- and Pax7+-positive satellite cell numbers were greater after ACT than after CWI (P < 0.05). Phosphorylation of p70S6 kinaseThr421/Ser424 increased after exercise in both conditions but was greater after ACT (P < 0.05). These data suggest that CWI attenuates the acute changes in satellite cell numbers and activity of kinases that regulate muscle hypertrophy, which may translate to smaller long-term training gains in muscle strength and hypertrophy. The use of CWI as a regular post-exercise recovery strategy should be reconsidered. Key points Cold water immersion is a popular strategy to recover from exercise. However, whether regular cold water immersion influences muscle adaptations to strength training is not well understood. We compared the effects of cold water immersion and active recovery on changes in muscle mass and strength after 12 weeks of strength training. We also examined the effects of these two treatments on hypertrophy signalling pathways and satellite cell activity in skeletal muscle after acute strength exercise. Cold water immersion attenuated long term gains in muscle mass and strength. It also blunted the activation of key proteins and satellite cells in skeletal muscle up to 2 days after strength exercise. Individuals who use strength training to improve athletic performance, recover from injury or maintain their health should therefore reconsider whether to use cold water immersion as an adjuvant to their training. PMID:26174323

  20. Screen time viewing behaviors and isometric trunk muscle strength in youth.

    PubMed

    Grøntved, Anders; Ried-Larsen, Mathias; Froberg, Karsten; Wedderkopp, Niels; Brage, Søren; Kristensen, Peter Lund; Andersen, Lars Bo; Møller, Niels Christian

    2013-10-01

    The objective of this study was to examine the association of screen time viewing behavior with isometric trunk muscle strength in youth. A cross-sectional study was carried out including 606 adolescents (14-16 yr old) participating in the Danish European Youth Heart Study, a population-based study with assessments conducted in either 1997/1998 or 2003/2004. Maximal voluntary contractions during isometric back extension and abdominal flexion were determined using a strain gauge dynamometer, and cardiorespiratory fitness (CRF) was obtained using a maximal cycle ergometer test. TV viewing time, computer use, and other lifestyle behaviors were obtained by self-report. Analyses of association of screen use behaviors with isometric trunk muscle strength were carried out using multivariable adjusted linear regression. The mean (SD) isometric strength was 0.87 (0.16) N·kg-1. TV viewing, computer use, and total screen time use were inversely associated with isometric trunk muscle strength in analyses adjusted for lifestyle and sociodemographic factors. After further adjustment for CRF and waist circumference, associations remained significant for computer use and total screen time, but TV viewing was only marginally associated with muscle strength after these additional adjustments (-0.05 SD (95% confidence interval, -0.11 to 0.005) difference in strength per 1 h·d-1 difference in TV viewing time, P = 0.08). Each 1 h·d-1 difference in total screen time use was associated with -0.09 SD (95% confidence interval, -0.14 to -0.04) lower isometric trunk muscle strength in the fully adjusted model (P = 0.001). There were no indications that the association of screen time use with isometric trunk muscle strength was attenuated among highly fit individuals (P = 0.91 for CRF by screen time interaction). Screen time use was inversely associated with isometric trunk muscle strength independent of CRF and other confounding factors.

  1. FKBP12 deficiency reduces strength deficits after eccentric contraction-induced muscle injury

    PubMed Central

    Corona, Benjamin T.; Rouviere, Clement; Hamilton, Susan L.; Ingalls, Christopher P.

    2008-01-01

    Strength deficits associated with eccentric contraction-induced muscle injury stem, in part, from excitation-contraction uncoupling. FKBP12 is a 12-kDa binding protein known to bind to the skeletal muscle sarcoplasmic reticulum Ca2+ release channel [ryanodine receptor (RyR1)] and plays an important role in excitation-contraction coupling. To assess the effects of FKBP12 deficiency on muscle injury and recovery, we measured anterior crural muscle (tibialis anterior and extensor digitorum longus muscles) strength in skeletal muscle-specific FKBP12-deficient and wild-type (WT) mice before and after a single bout of 150 eccentric contractions, as well as before and after the performance of six injury bouts. Histological damage of the tibialis anterior muscle was assessed after injury. Body weight and peak isometric and eccentric torques were lower in FKBP12-deficient mice compared with WT mice. There were no differences between FKBP12-deficient and WT mice in preinjury peak isometric and eccentric torques when normalized to body weight, and no differences in the relative decreases in eccentric torque with a single or multiple injury bouts. After a single injury bout, FKBP12-deficient mice had less initial strength deficits and recovered faster (especially females) than WT mice, despite no differences in the degree of histological damage. After multiple injury bouts, FKBP12-deficient mice recovered muscle strength faster than WT mice and exhibited significantly less histological muscle damage than WT mice. In summary, FKBP12 deficiency results in less initial strength deficits and enhanced recovery from single (especially females) and repeated bouts of injury than WT mice. PMID:18511525

  2. Exercise capacity, muscle strength and fatigue in sarcoidosis.

    PubMed

    Marcellis, R G J; Lenssen, A F; Elfferich, M D P; De Vries, J; Kassim, S; Foerster, K; Drent, M

    2011-09-01

    The aim of this case-control study was to investigate the prevalence of exercise intolerance, muscle weakness and fatigue in sarcoidosis patients. Additionally, we evaluated whether fatigue can be explained by exercise capacity, muscle strength or other clinical characteristics (lung function tests, radiographic stages, prednisone usage and inflammatory markers). 124 sarcoidosis patients (80 males) referred to the Maastricht University Medical Centre (Maastricht, the Netherlands) were included (mean age 46.6±10.2 yrs). Patients performed a 6-min walk test (6MWT) and handgrip force (HGF), elbow flexor muscle strength (EFMS), quadriceps peak torque (QPT) and hamstring peak torque (HPT) tests. Maximal inspiratory pressure (P(I,max)) was recorded. All patients completed the Fatigue Assessment Scale (FAS) questionnaire. The 6MWT was reduced in 45% of the population, while HGF, EFMS, QPT and HPT muscle strength were reduced in 15, 12, 27 and 18%, respectively. P(I,max) was reduced in 43% of the population. The majority of the patients (81%) reported fatigue (FAS ≥22). Patients with reduced peripheral muscle strength of the upper and/or lower extremities were more fatigued and demonstrated impaired lung functions, fat-free mass, P(I,max), 6MWT and quality of life. Fatigue was neither predicted by exercise capacity, nor by muscle strength. Besides fatigue, exercise intolerance and muscle weakness are frequent problems in sarcoidosis. We therefore recommend physical tests in the multidisciplinary management of sarcoidosis patients, even in nonfatigued patients.

  3. The prospective evaluation of changes in fatty infiltration and shoulder strength in nonsurgically treated rotator cuff tears.

    PubMed

    Nakamura, Yoshihiro; Yokoya, Shin; Harada, Yohei; Shiraishi, Katsunori; Adachi, Nobuo; Ochi, Mitsuo

    2017-07-01

    The purpose of this study was to evaluate the relationship of fatty infiltration in rotator cuff muscles and shoulder strength in rotator cuff tears and these changes during nonsurgical treatment. Fifty-three shoulders from 47 patients (mean age: 69.9 years) diagnosed with rotator cuff tears by magnetic resonance imaging (MRI) were treated nonsurgically. The degrees of fatty infiltration in supraspinatus (SSP) and infraspinatus (ISP) muscles were graded by the modified Goutallier classification (grade 0-1, grade 2-3, or grade 4). The isometric strength of the abductors (Abd) and external rotators (ER) were examined with a hand dynamometer. We analyzed the correlation of the modified Goutallier classification in SSP and ISP muscles with the strength of Abd and ER at initial visit. In addition, MRI and strength tests were repeated after 24 ± 6 months, and changes in fatty infiltration and strength were examined. Fatty infiltration of SSP and ISP muscles had a negative correlation with the strengths of Abd and ER at initial visit, respectively. Six of 45 shoulders (SSP grade: 0-3) and 7 of 43 shoulders (ISP grade: 0-3) had progression of fatty infiltration. Predictive factor of a progression of fatty infiltration during follow-up was decreased initial strength of Abd. There was no significant change in the strength of Abd, and the strength of ER showed significant improvement between the initial and post-treatment measurements. Even in the subgroup that had progression of fatty infiltration at follow-up, the strength of Abd and ER did not decrease significantly. Although fatty infiltration of the rotator cuff muscles exhibited a negative correlation with muscle strength, fatty infiltration and muscle weakness did not progress at the same rate. Copyright © 2017 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  4. No beneficial effects of vitamin D supplementation on muscle function or quality of life in primary hyperparathyroidism: results from a randomized controlled trial.

    PubMed

    Rolighed, Lars; Rejnmark, Lars; Sikjaer, Tanja; Heickendorff, Lene; Vestergaard, Peter; Mosekilde, Leif; Christiansen, Peer

    2015-05-01

    Impairments of muscle function and strength in patients with primary hyperparathyroidism (PHPT) are rarely addressed, although decreased muscle function may contribute to increased fracture risk. We aimed to assess the changes in muscle strength, muscle function, postural stability, quality of life (QoL), and well-being during treatment with vitamin D or placebo before and after parathyroidectomy (PTX) in PHPT patients. A randomized placebo-controlled trial. We included 46 PHPT patients, mean age 58 (range 29-77) years and 35 (76%) were women. Daily treatment with 70 μg (2800 IU) cholecalciferol or placebo for 52 weeks. Treatment was administered 26 weeks before PTX and continued for 26 weeks after PTX. Changes in QoL and measures of muscle strength and function. Preoperatively, 25-hydroxyvitamin D (25OHD) increased significantly (50-94 nmol/l) compared with placebo (57-52 nmol/l). We did not measure any beneficial effects of supplementation with vitamin D compared with placebo regarding well-being, QoL, postural stability, muscle strength, or function. In all patients, we measured marked improvements in QoL, well-being (P<0.01), muscle strength in the knee flexion and extension (P<0.001), and muscle function tests (P<0.01) after surgical cure. Postural stability improved during standing with eyes closed (P<0.05), but decreased with eyes open (P<0.05). Patients with PHPT and 25OHD levels around 50 nmol/l did not benefit from vitamin D supplementation concerning muscle strength, muscle function, postural stability, well-being, or QoL. Independent of preoperative 25OHD levels, PTX improved these parameters. © 2015 European Society of Endocrinology.

  5. The effect of high-intensity circuit training on physical fitness.

    PubMed

    Schmidt, Dan; Anderson, Kaz; Graff, Marissa; Strutz, Victoria

    2016-05-01

    The purpose of this study was to examine the effect of a high-intensity circuit training regimen, using only body weight as resistance, on physical fitness. Ninety-six recreationally active college aged subjects (53 female, 43 male) completed the study. Following baseline testing for height and weight, body composition, aerobic fitness, muscle strength and muscle endurance, subjects were randomly assigned to one of three groups: 7-minute circuit training (CT-7), 14-minute circuit training (CT-14), and a non-training control group (C). Subjects in the CT-7 group (females, N.=17; males, N.=15) were asked to complete a seven minute circuit training workout for eight weeks (three workouts per week). The CT-14 group (females, N.=15; males, N.=13) followed the same protocol as CT-7 through the first four weeks. For the second four weeks they increased exercise time to 14 minutes with the same 7 minute circuit performed twice consecutively. Subjects in group C (females, N.=21; males, N.=15) maintained their normal activity levels throughout the course of the study. There were no significant differences between the groups for any variables tested prior to the exercise intervention. A repeated measures analysis of variance revealed statistically significant improvements in muscular endurance (push-ups) for both male and female subjects in the CT-7 and CT-14 groups. Males in the two exercising groups also showed improvement in muscular strength while aerobic capacity increased for females in the CT-14 group. These results suggest that short duration, high intensity circuit training may improve muscle endurance in moderately fit populations. Slight improvements that are gender specific may also be observed in muscle strength as well as aerobic fitness.

  6. Endogenous hormones, muscle strength, and risk of fall-related fractures in older women.

    PubMed

    Sipilä, Sarianna; Heikkinen, Eino; Cheng, Sulin; Suominen, Harri; Saari, Päivi; Kovanen, Vuokko; Alén, Markku; Rantanen, Taina

    2006-01-01

    Among older people, fracture-causing fall often leads to health deterioration. The role of endogenous hormone status and muscle strength on fall-related fracture risk is unclear. This study investigates if, after adjustment for bone density, endogenous hormones and muscle strength would predict fall-related limb fracture incidence in older community-dwelling women followed-up over 10 years. As a part of a prospective population-based study, 187 75-year-old women were investigated. Serum estradiol, testosterone, sex hormone binding globulin, and dehydroepiandrosterone sulfate concentrations were analyzed, and isometric muscle strength and bone mineral density were assessed. Fall-related limb fractures were gathered from patient records. Serum estradiol concentration was a significant predictor of fall-related limb fractures. Women with serum estradiol concentrations less than 0.022 nmol/L had a 3-fold risk (relative risk 3.05; 95% confidence interval, 1.26-7.36), and women with estradiol concentrations between 0.022 and 0.066 nmol/L doubled the risk (relative risk 2.24; 95% confidence interval, 0.97-5.19) of fall-related limb fracture compared to the women with estradiol concentrations ()above 0.066 nmol/L. Adjustment for muscle strength and bone mineral density did not materially change the risk estimates. High muscle strength was associated with a low incidence of fall-related limb fractures. This study showed that in 75-year-old women higher serum estradiol concentration and greater muscle strength were independently associated with a low incidence of fall-related limb fractures even after adjustment for bone density. Our results suggest that hormonal status and muscle strength have their own separate mechanisms protecting from fall-related fractures. This finding is of importance in developing preventive strategies, but calls for further study.

  7. Creatine monohydrate supplementation during eight weeks of progressive resistance training increases strength in as little as two weeks without reducing markers of muscle damage.

    PubMed

    Kaviani, Mojtaba; Abassi, Aboozar; Chilibeck, Philip D

    2018-05-02

    Creatine supplementation (Cr) increases strength during resistance training, but the time course of this strength increase is unclear. The aim was to determine the precise time course by which Cr could increase strength and whether Cr prevents muscle damage during eight weeks of resistance training. Young males were randomized (double blind) to Cr (n=9, 0.07g/kg/d) and placebo (n=9) during 8-weeks of resistance training (3d/week). Strength was assessed across six exercises every two weeks. Venous blood samples obtained at baseline, and 24 and 48 hours after the final resistance training session were assessed for creatine kinase [CK] and lactate dehydrogenase [LDH] as measures of muscle damage. Strength was significantly higher in the Cr versus placebo group (p<0.05) after two weeks of training for three of the six exercises (bench press, leg press, shoulder press). By the end of the eight weeks of training, strength was significantly higher in the Cr versus placebo group (p<0.05) for four of the six exercises (bench press, leg press, shoulder press, and triceps extension, but not biceps curl or lat-pulldown). Creatine supplementation did not prevent muscle damage. Indeed, muscle damage markers increased in the Cr compared to placebo group (p<0.05). Cr increased muscular strength in as little as two weeks during a resistance training program; however, this was not accompanied by decreased muscle damage. Greater muscle damage with Cr may be due to a greater training intensity enabled by Cr supplementation. This might lead to greater protein turnover and enhanced muscle adaptation.

  8. Normal reference values of strength in pelvic floor muscle of women: a descriptive and inferential study.

    PubMed

    Chevalier, Francine; Fernandez-Lao, Carolina; Cuesta-Vargas, Antonio Ignacio

    2014-11-25

    To describe the clinical, functional and quality of life characteristics in women with Stress Urinary Incontinence (SUI). In addition, to analyse the relationship between the variables reported by the patients and those informed by the clinicians, and the relationship between instrumented variables and the manual pelvic floor strength assessment. Two hundred and eighteen women participated in this observational, analytical study. An interview about Urinary Incontinence and the quality of life questionnaires (EuroQoL-5D and SF-12) were developed as outcomes reported by the patients. Manual muscle testing and perineometry as outcomes informed by the clinician were assessed. Descriptive and correlation analysis were carried out. The average age of the subjects was (39.93 ± 12.27 years), (24.49 ± 3.54 BMI). The strength evaluated by manual testing of the right levator ani muscles was 7.79 ± 2.88, the strength of left levator ani muscles was 7.51 ± 2.91 and the strength assessed with the perineometer was 7.64 ± 2.55. A positive correlation was found between manual muscle testing and perineometry of the pelvic floor muscles (p < .001). No correlation was found between outcomes of quality of life reported by the patients and outcomes of functional capacity informed by the physiotherapist. A stratification of the strength of pelvic floor muscles in a normal distribution of a large sample of women with SUI was done, which provided the clinic with a baseline. There is a relationship between the strength of the pelvic muscles assessed manually and that obtained by a perineometer in women with SUI. There was no relationship between these values of strength and quality of life perceived.

  9. Muscle strength response to strength training is influenced by insulin-like growth factor 1 genotype in older adults.

    PubMed

    Kostek, Matthew C; Delmonico, Matthew J; Reichel, Jonathan B; Roth, Stephen M; Douglass, Larry; Ferrell, Robert E; Hurley, Ben F

    2005-06-01

    Strength training (ST) is considered an intervention of choice for the prevention and treatment of sarcopenia. Reports in the literature have suggested that the insulin-like growth factor I protein (IGF-I) plays a major role in ST-induced skeletal muscle hypertrophy and strength improvements. A microsatellite repeat in the promoter region of the IGF1 gene has been associated with IGF-I blood levels and phenotypes related to IGF-I in adult men and women. To examine the influence of this polymorphism on muscle hypertrophic and strength responses to ST, we studied 67 Caucasian men and women before and after a 10-wk single-leg knee-extension ST program. One repetition maximum strength, muscle volume via computed tomography, and muscle quality were assessed at baseline and after 10 wk of training. The IGF1 repeat promoter polymorphism and three single-nucleotide polymorphisms were genotyped. For the promoter polymorphism, subjects were grouped as homozygous for the 192 allele, heterozygous, or noncarriers of the 192 allele. After 10 wk of training, 1-repetition maximum, muscle volume, and muscle quality increased significantly for all groups combined (P < 0.001). However, carriers of the 192 allele gained significantly more strength with ST than noncarriers of the 192 allele (P = 0.02). There was also a nonsignificant trend for a greater increase in muscle volume in 192 carriers than noncarriers (P = 0.08). No significant associations were observed for the other polymorphisms studied. Thus these data suggest that the IGF1 promoter polymorphism may influence the strength response to ST. Larger sample sizes should be used in future studies to verify these results.

  10. Bone strength and muscle properties in postmenopausal women with and without a recent distal radius fracture.

    PubMed

    Crockett, K; Arnold, C M; Farthing, J P; Chilibeck, P D; Johnston, J D; Bath, B; Baxter-Jones, A D G; Kontulainen, S A

    2015-10-01

    Distal radius (wrist) fracture (DRF) in women over age 50 years is an early sign of bone fragility. Women with a recent DRF compared to women without DRF demonstrated lower bone strength, muscle density, and strength, but no difference in dual-energy x-ray absorptiometry (DXA) measures, suggesting DXA alone may not be a sufficient predictor for DRF risk. The objective of this study was to investigate differences in bone and muscle properties between women with and without a recent DRF. One hundred sixty-six postmenopausal women (50-78 years) were recruited. Participants were excluded if they had taken bone-altering medications in the past 6 months or had medical conditions that severely affected daily living or the upper extremity. Seventy-seven age-matched women with a fracture in the past 6-24 months (Fx, n = 32) and without fracture (NFx, n = 45) were measured for bone and muscle properties using the nondominant (NFx) or non-fractured limb (Fx). Peripheral quantitative computed tomography (pQCT) was used to estimate bone strength in compression (BSIc) at the distal radius and tibia, bone strength in torsion (SSIp) at the shaft sites, muscle density, and area at the forearm and lower leg. Areal bone mineral density at the ultradistal forearm, spine, and femoral neck was measured by DXA. Grip strength and the 30-s chair stand test were used as estimates of upper and lower extremity muscle strength. Limb-specific between-group differences were compared using multivariate analysis of variance (MANOVA). There was a significant group difference (p < 0.05) for the forearm and lower leg, with the Fx group demonstrating 16 and 19% lower BSIc, 3 and 6% lower muscle density, and 20 and 21% lower muscle strength at the upper and lower extremities, respectively. There were no differences between groups for DXA measures. Women with recent DRF had lower pQCT-derived estimated bone strength at the distal radius and tibia and lower muscle density and strength at both extremities.

  11. No difference in long-term trunk muscle strength, cross-sectional area, and density in patients with chronic low back pain 7 to 11 years after lumbar fusion versus cognitive intervention and exercises.

    PubMed

    Froholdt, Anne; Holm, Inger; Keller, Anne; Gunderson, Ragnhild B; Reikeraas, Olav; Brox, Jens I

    2011-08-01

    Reduced muscle strength and density observed at 1 year after lumbar fusion may deteriorate more in the long term. To compare the long-term effect of lumbar fusion and cognitive intervention and exercises on muscle strength, cross-sectional area, density, and self-rated function in patients with chronic low back pain (CLBP) and disc degeneration. Randomized controlled study with a follow-up examination at 8.5 years (range, 7-11 years). Patients with CLBP and disc degeneration randomized to either instrumented posterolateral fusion of one or both of the two lower lumbar levels or a 3-week cognitive intervention and exercise program were included. Isokinetic muscle strength was measured by a Cybex 6000 (Cybex-Lumex, Inc., Ronkonkoma, NY, USA). All patients had previous experience with the test procedure. The back extension (E) flexion (F) muscles were tested, and the E/F ratios were calculated. Cross-sectional area and density of the back muscles were measured at the L3-L4 segment by computed tomography. Patients rated their function by the General Function Score. Trunk muscle strength, cross-sectional area, density, and self-rated function. Fifty-five patients (90%) were included at long-term follow-up. There were no significant differences in cross-sectional area, density, muscle strength, or self-rated function between the two groups. The cognitive intervention and exercise group increased trunk muscle extension significantly (p<.05), and both groups performed significantly better on trunk muscle flexion tests (p<.01) at long-term follow-up. On average, self-rated function improved by 56%, cross-sectional area was reduced by 8.5%, and muscle density was reduced by 27%. Although this study did not assess the morphology of muscles likely damaged by surgery, trunk muscle strength and cross-sectional area above the surgical levels are not different between those who had lumbar fusion or cognitive intervention and exercises at 7- to 11-year follow-up. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Factors Associated With Changes in Body Composition Shortly After Orthotopic Liver Transplantation: The Potential Influence of Immunosuppressive Agents.

    PubMed

    Brito-Costa, Ana; Pereira-da-Silva, Luís; Papoila, Ana Luísa; Alves, Marta; Mateus, Élia; Nolasco, Fernando; Barroso, Eduardo

    2016-08-01

    This study aimed to determine factors associated with body composition changes shortly after liver transplantation (LTx), including the influence of immunosuppressive agents. The combined resting energy expenditure (REE) and handgrip strength provided a valuable assessment in data interpretation of body composition. This observational single-center study included a cohort of consecutive end-stage liver disease patients with indications for LTx over 2 years. Cyclosporine was preferred for diabetic, hepatitis C-infected, and human immunodeficiency virus-infected patients per the transplant center protocol. Subjective Global Assessment, handgrip strength, multifrequency bioelectrical impedance analysis, and REE measurements were collected. The assessments were performed before LTx (T0) and at medians of 9 (T1) and 36 (T2) days after LTx. The fat mass index (FMI) and lean mass index (LMI) were surrogates of adiposity and skeletal muscle, respectively. Multiple linear regression analysis was used. Fifty-six patients with a mean age of 53.7 (8.5) years were included; 87.5% were men. Preoperative Subjective Global Assessment undernourishment (β-estimate = 17.9; P = 0.004) and of drug addiction absence (β estimate = 14.6; P = 0.049) were associated with FMI increase. Higher REE at T1 (per 100 kcal) was associated with LMI increase (β estimate = 1.70; P = 0.012) and body cell mass increase (β estimate = 1.60; P = 0.049). The cyclosporine-based regimen was associated with FMI decrease (β estimate = -25.64; P < 0.001) and LMI increase (β estimate = 23.76; P < 0.001) when compared with a tacrolimus-based regimen. Steroids did not affect body composition. The cyclosporine-based regimen was independently associated with decreased adiposity and increased skeletal muscle compared with the tacrolimus-based regimen. Future randomized controlled trials are needed to confirm these findings.

  13. Ipsilateral Hip Abductor Weakness After Inversion Ankle Sprain

    PubMed Central

    Friel, Karen; McLean, Nancy; Myers, Christine; Caceres, Maria

    2006-01-01

    Context: Hip stability and strength are important for proper gait mechanics and foot position during heel strike. Objective: To determine the relationships between hip muscle strength and chronic ankle sprains and hip muscle strength and ankle range of motion. Design: Ex post facto design with the uninvolved limb serving as the control. Setting: Laboratory. Patients or Other Participants: A total of 23 subjects with unilateral chronic ankle sprain were recruited. Subjects had at least 2 ipsilateral ankle sprains and were bearing full weight, with the most recent injury occurring at least 3 months earlier. They were not undergoing formal or informal rehabilitation at the time of the study. Main Outcome Measure(s): We obtained goniometric measurements for all planes of motion at the ankle. Handheld dynamometry was used to assess the strength of the hip abductor and hip extensor muscles in both limbs. Results: Hip abductor muscle strength and plantar flexion were significantly less on the involved side than the uninvolved side (P < .001 in each case). Strength of the involved hip abductor and hip extensor muscles was significantly correlated (r = 0.539, P < .01). No significant difference was noted in hip extensor muscle strength between sides (P = .19). Conclusions: Our subjects with unilateral chronic ankle sprains had weaker hip abduction strength and less plantar-flexion range of motion on the involved sides. Clinicians should consider exercises to increase hip abduction strength when developing rehabilitation programs for patients with ankle sprains. PMID:16619098

  14. Effect of high-intensity home-based respiratory muscle training on strength of respiratory muscles following a stroke: a protocol for a randomized controlled trial.

    PubMed

    Menezes, Kênia Kiefer Parreiras De; Nascimento, Lucas Rodrigues; Polese, Janaine Cunha; Ada, Louise; Teixeira-Salmela, Luci Fuscaldi

    Respiratory muscle training has shown to increase strength of the respiratory muscles following a stroke. However, low duration and/or intensity of training may be responsible for the small effect size seen and/or absence of carry-over effects to an activity, e.g., walking. Therefore, an investigation of the effects of long-duration, high-intensity respiratory muscle training is warranted. This proposed protocol for a randomized clinical trial will examine the efficacy of high-intensity respiratory muscle training to increase strength and improve activity following a stroke. This study will be a two-arm, prospectively registered, randomized controlled trial, with blinded assessors. Thirty-eight individuals who have suffered a stroke will participate. The experimental group will undertake a 40-min of respiratory muscle training program, seven days/week, for eight weeks in their homes. Training loads will be increased weekly. The control group will undertake a sham respiratory muscle training program with equivalent duration and scheduling of training. The primary outcome will be the strength of the inspiratory muscles, measured as maximal inspiratory pressure. Secondary outcomes will include expiratory muscle strength, inspiratory muscle endurance, dyspnea, respiratory complications, and walking capacity. Outcomes will be collected by a researcher blinded to group allocation at baseline (Week 0), after intervention (Week 8), and one month beyond intervention (Week 12). High-intensity respiratory muscle training may have the potential to optimize the strength of the respiratory muscles following a stroke. If benefits are carried over to activity, the findings may have broader implications, since walking capacity has been shown to predict physical activity and community participation on this population. Copyright © 2017 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  15. Effect of surgical closing in total knee arthroplasty at flexion or extension: a prospective, randomized study.

    PubMed

    Kömürcü, Erkam; Yüksel, Halil Yalçın; Ersöz, Murat; Aktekin, Cem Nuri; Hapa, Onur; Çelebi, Levent; Akbal, Ayla; Biçimoğlu, Ali

    2014-12-01

    The aim of this study was to evaluate the effect of knee position during wound closure (flexed vs. extended) in total knee arthroplasty on knee strength and function, as determined by knee society scores and isokinetic testing of extensor and flexor muscle groups. In a prospective, randomized, double-blind trial, 29 patients were divided in two groups: for Group 1 patients, surgical closing was performed with the knee extended, and for Group 2 patients, the knee flexed at 90°. All the patients were treated with the same anaesthesia method, surgical team, surgical technique, prosthesis type, and rehabilitation process. American Knee Society Score values and knee flexion degrees were recorded. Isokinetic muscle strength measurements of both knees in flexion and extension were taken using 60° and 180°/s angular velocity. The peak torque and total work values, isokinetic muscle strength differences, and total work difference values were calculated for surgically repaired and healthy knees. No significant difference in the mean American Knee Society Score values and knee flexion degrees was observed between the two groups. However, using isokinetic evaluation, a significant difference was found in the isokinetic muscle strength differences and total work difference of the flexor muscle between the two groups when patients were tested at 180°/s. Less loss of strength was detected in the isokinetic muscle strength differences of the flexor muscle in Group 2 (-4.2%) than in Group 1 (-23.1%). For patients undergoing total knee arthroplasty, post-operative flexor muscle strength is improved if the knee is flexed during wound closure. II.

  16. Acceleration effects on neck muscle strength: pilots vs. non-pilots.

    PubMed

    Seng, Kok-Yong; Lam, Pin-Min; Lee, Vee-Sin

    2003-02-01

    Conditioning of neck muscles, if any, due to repeated exposures to +Gz forces has received little research attention. This study was conducted to evaluate and compare the neck muscle strength of test volunteers representative of the general populations of fighter aircraft pilots and non-pilots. The tests were performed using a special attachment device on a computerized dynamometer. Ten pilots and ten non-pilots volunteered as test subjects. Each individual's maximal isometric neck muscle strength was evaluated in the extension, flexion, and left and right lateral bending directions in a single day. Peak values from the measurements were used for data analysis. Overall neck strength was calculated as the mean values for the four directions in each group. The overall muscular strength of the necks of pilots did not differ significantly from that of non-pilots, nor did exposure to +Gz forces lead to specific changes in isometric muscle strength across any of the four principal directions. Neck muscle strength in the four measured directions pooled across the two subgroups were statistically significant. The widespread practice of adopting protective head-positioning strategies to minimize neck strains, coupled with results from this research study, suggest that the neck muscles are subjected to reduced in-flight strengthening workouts during exposures to +Gz forces. To maximize in-flight performance and minimize +Gz-induced neck injuries, fighter pilots should be encouraged to perform on-land neck muscle strengthening exercise and in-flight head-positioning techniques. More research is needed to fine-tune this countermeasure strategy against cervical spine injury.

  17. Persistence of long term isokinetic strength deficits in subjects with lateral ankle sprain as measured with a protocol including maximal preloading.

    PubMed

    Perron, Marc; Moffet, Hélène; Nadeau, Sylvie; Hébert, Luc J; Belzile, Sylvain

    2014-12-01

    The assessment of muscle function is a cornerstone in the management of subjects who have sustained a lateral ankle sprain. The ankle range of motion being relatively small, the use of preloading allows to measure maximal strength throughout the whole amplitude and therefore to better characterize ankle muscles weaknesses. This study aimed to assess muscle strength of the injured and uninjured ankles in subjects with a lateral ankle sprain, to document the timeline of strength recovery, and to determine the influence of sprain grade on strength loss. Maximal torque of the periarticular muscles of the ankle in a concentric mode using a protocol with maximal preloading was tested in 32 male soldiers at 8 weeks and 6 months post-injury. The evertor muscles of the injured ankles were weaker than the uninjured ones at 8 weeks and 6 months post-injury (P<0.0001, effect size=0.31-0.42). Muscle weaknesses also persisted in the plantarflexors of the injured ankles at 8 weeks (P=0.0014, effect size=0.52-0.58) while at 6 months, only the subjects with a grade II sprain displayed such weaknesses (P<0.0001, effect size 0.27-0.31). The strength of the invertor and dorsiflexor muscles did not differ between sides. The use of an isokinetic protocol with preloading demonstrates significant but small strength deficits in the evertor and plantarflexor muscles. These impairments may contribute to the high incidence of recurrence of lateral ankle sprain in very active individuals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Effects of different strength training frequencies on maximum strength, body composition and functional capacity in healthy older individuals.

    PubMed

    Turpela, Mari; Häkkinen, Keijo; Haff, Guy Gregory; Walker, Simon

    2017-11-01

    There is controversy in the literature regarding the dose-response relationship of strength training in healthy older participants. The present study determined training frequency effects on maximum strength, muscle mass and functional capacity over 6months following an initial 3-month preparatory strength training period. One-hundred and six 64-75year old volunteers were randomly assigned to one of four groups; performing strength training one (EX1), two (EX2), or three (EX3) times per week and a non-training control (CON) group. Whole-body strength training was performed using 2-5 sets and 4-12 repetitions per exercise and 7-9 exercises per session. Before and after the intervention, maximum dynamic leg press (1-RM) and isometric knee extensor and plantarflexor strength, body composition and quadriceps cross-sectional area, as well as functional capacity (maximum 7.5m forward and backward walking speed, timed-up-and-go test, loaded 10-stair climb test) were measured. All experimental groups increased leg press 1-RM more than CON (EX1: 3±8%, EX2: 6±6%, EX3: 10±8%, CON: -3±6%, P<0.05) and EX3 improved more than EX1 (P=0.007) at month 9. Compared to CON, EX3 improved in backward walk (P=0.047) and EX1 in timed-up-and-go (P=0.029) tests. No significant changes occurred in body composition. The present study found no evidence that higher training frequency would induce greater benefit to maximum walking speed (i.e. functional capacity) despite a clear dose-response in dynamic 1-RM strength, at least when predominantly using machine weight-training. It appears that beneficial functional capacity improvements can be achieved through low frequency training (i.e. 1-2 times per week) in previously untrained healthy older participants. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Strength, power output and symmetry of leg muscles: effect of age and history of falling.

    PubMed

    Perry, Mark C; Carville, Serena F; Smith, I Christopher H; Rutherford, Olga M; Newham, Di J

    2007-07-01

    Risk factors for medically unexplained falls may include reduced muscle power, strength and asymmetry in the lower limbs. Conflicting reports exist about strength and there is little information about power and symmetry. Forty-four healthy young people (29.3 +/- 0.6 years), 44 older non-fallers (75.9 +/- 0.6 years), and 34 older fallers (76.4 +/- 0.8 years) were studied. Isometric, concentric and eccentric strength of the knee and ankle muscles and leg extension power were measured bilaterally. The younger group was stronger in all muscles and types of contraction than both older groups (P < 0.02-0.0001). Strength differences between the older groups occasionally reached significance in individual muscles and types of contraction but overall the fallers had 85% of the strength and 79% of the power of the non-fallers (P < 0.001). Young subjects generated more power than both older groups (P < 0.0001) and the fallers generated less than the non-fallers (P = 0.03). Strength symmetry showed an inconsistent age effect in some muscles and some contraction types. This was similar overall in the two older groups. Both older groups had greater asymmetry in power than the young (P < 0.02-0.004). Power asymmetry tended to be greater in the fallers than the non-fallers but this did not reach significance. These data do not support the suggestion that asymmetry of strength and power are associated with either increasing age or fall history. Power output showed clear differences between age groups and fall status and appears to be the most relevant measurement of fall risk and highlights the cumulative effects on function of small changes in strength in individual muscle groups.

  20. The healthy Nordic diet predicts muscle strength 10 years later in old women, but not old men.

    PubMed

    Perälä, Mia-Maria; von Bonsdorff, Mikaela B; Männistö, Satu; Salonen, Minna K; Simonen, Mika; Kanerva, Noora; Rantanen, Taina; Pohjolainen, Pertti; Eriksson, Johan G

    2017-07-01

    a number of nutrients have been found to be associated with better muscle strength and mass; however, the role of the whole diet on muscle strength and mass remains still unknown. to examine whether the healthy Nordic diet predicts muscle strength, and mass 10 years later among men and women. about 1,072 participants belong to the Helsinki Birth Cohort Study, born 1934-44. Diet was assessed with a validated food-frequency questionnaire during 2001-04. The Nordic diet score (NDS) was calculated. The score included Nordic fruits, vegetables, cereals, ratio of polyunsaturated to saturated fatty acids, low-fat milk, fish, red meat, total fat and alcohol. Higher scores indicated better adherence to the healthy Nordic diet. Hand grip strength, leg strength (knee extension) and muscle mass were measured during the follow-up, between 2011 and 2013. in women, each 1-unit increase in the NDS was related to 1.83 N greater leg strength (95% confidence interval [CI] 0.14-3.51; P = 0.034), and 1.44 N greater hand grip strength (95% CI: 0.04-2.84; P = 0.044). Women in the highest quartile of the NDS had on average 20.0 N greater knee extension results, and 14.2 N greater hand grip results than those in the lowest quartile. No such associations were observed among men. The NDS was not significantly related to muscle mass either in men or women. adherence to the healthy Nordic diet seems to protect from weaker muscle strength in old women. Therefore, the healthy Nordic diet may help to prevent disability. © The Author 2017. Published by Oxford University Press on behalf of the British Geriatrics Society.All rights reserved. For permissions, please email: journals.permissions@oup.com

  1. Strength and muscle mass loss with aging process. Age and strength loss.

    PubMed

    Keller, Karsten; Engelhardt, Martin

    2013-10-01

    aging process is associated with changes in muscle mass and strength with decline of muscle strength after the 30(th) life year. The aim of this study was to investigate these changes in muscle mass and strength. for this analysis 26 participants were subdivided in two groups. Group 1 comprises participants aged <40 years (n=14), group 2 those >40 years (n=12). We assessed anthropometrics, range of motions, leg circumferences and isometric strength values of the knee joints. besides comparable anthropometrics, circumferences and strength were higher in group 1 than in group 2. Circumference of upper leg (20 cm above knee articular space) showed for right leg a trend to a significant (median: 54.45 cm (1(st) quartile: 49.35/3(rd) quartile: 57.78) vs 49.80 cm (49.50/50.75), p=0.0526) and for left leg a significant 54.30 cm (49.28/58.13) vs 49.50 cm (48.00/52.53), p=0.0356) larger circumference in group 1. Isometric strength was in 60° knee flexion significantly higher in group 1 than in group 2 for right (729.88N (561.47/862.13) vs 456.92N (304.67/560.12), p=0.00448) and left leg (702.49N (581.36/983.87) vs 528.49N (332.95/648.58), p=0.0234). aging process leads to distinct muscle mass and strength loss. Muscle strength declines from people aged <40 years to those >40 years between 16.6% and 40.9%.

  2. Isometric muscle strength and mobility capacity in children with cerebral palsy.

    PubMed

    Dallmeijer, Annet J; Rameckers, Eugene A; Houdijk, Han; de Groot, Sonja; Scholtes, Vanessa A; Becher, Jules G

    2017-01-01

    To determine the relationship between isometric leg muscle strength and mobility capacity in children with cerebral palsy (CP) compared to typically developing (TD) peers. Participants were 62 children with CP (6-13 years), able to walk with (n = 10) or without (n = 52) walking aids, and 47 TD children. Isometric muscle strength of five muscle groups of the leg was measured using hand-held dynamometry. Mobility capacity was assessed with the 1-min walk, the 10-m walk, sit-to-stand, lateral-step-up and timed-stair tests. Isometric strength of children with CP was reduced to 36-82% of TD. When adjusted for age and height, the percentage of variance in mobility capacity that was explained by isometric strength of the leg muscles was 21-24% (walking speed), 25% (sit-to-stand), 28% (lateral-step-up) and 35% (timed-stair) in children with CP. Hip abductors and knee flexors had the largest contribution to the explained variance, while knee extensors showed the weakest correlation. Weak or no associations were found between strength and mobility capacity in TD children. Isometric strength, especially hip abductor and knee flexor strength, is moderately related to mobility capacity in children with CP, but not in TD children. To what extent training of these muscle groups will lead to better mobility capacity needs further study. Implications for Rehabilitation Strength training in children with cerebral palsy (CP) may be targeted more specifically at hip abductors and knee flexors. The moderate associations imply that large improvements in mobility capacity may not be expected when strength increases.

  3. Effect of neuromuscular electrical stimulation on facial muscle strength and oral function in stroke patients with facial palsy

    PubMed Central

    Choi, Jong-Bae

    2016-01-01

    [Purpose] The aim of this study was to investigate the effect of neuromuscular electrical stimulation on facial muscle strength and oral function in stroke patients with facial palsy. [Subjects and Methods] Nine subjects received the electrical stimulation and traditional dysphagia therapy. Electrical stimulation was applied to stimulate each subject’s facial muscles 30 minutes a day, 5 days a week, for 4 weeks. [Results] Subjects showed significant improvement in cheek and lip strength and oral function after the intervention. [Conclusion] This study demonstrates that electrical stimulation improves facial muscle strength and oral function in stroke patients with dysphagia. PMID:27799689

  4. Effects of Elastic Resistance Exercise on Muscle Strength and Functional Performance in Healthy Adults: A Systematic Review and Meta-Analysis.

    PubMed

    de Oliveira, Poliana Alves; Blasczyk, Juscelino Castro; Souza Junior, Gerson; Lagoa, Karina Ferreira; Soares, Milene; de Oliveira, Ricardo Jacó; Filho, Paulo José Barbosa Gutierres; Carregaro, Rodrigo Luiz; Martins, Wagner Rodrigues

    2017-04-01

    Elastic Resistance Exercise (ERE) has already demonstrated its effectiveness in older adults and, when combined with the resistance generated by fixed loads, in adults. This review summarizes the effectiveness of ERE performed as isolated method on muscle strength and functional performance in healthy adults. A database search was performed (MEDLine, Cochrane Library, PEDro and Web of Knowledge) to identify controlled clinical trials in English language. The mean difference (MD) with 95% confidence intervals (CIs) and overall effect size were calculated for all comparisons. The PEDro scale was used assess the methodological quality. From the 93 articles identified by the search strategy, 5 met the inclusion criteria, in which 3 presented high quality (PEDro > 6). Meta-analyses demonstrated that the effects of ERE were superior when compared with passive control on functional performance and muscle strength. When compared with active controls, the effect of ERE was inferior on function performance and with similar effect on muscle strength. ERE are effective to improve functional performance and muscle strength when compared with no intervention, in healthy adults. ERE are not superior to other methods of resistance training to improve functional performance and muscle strength in health adults.

  5. Correlations among visual analogue scale, neck disability index, shoulder joint range of motion, and muscle strength in young women with forward head posture.

    PubMed

    Shin, Young Jun; Kim, Won Hyo; Kim, Seong Gil

    2017-08-01

    This study investigated the correlation between the neck disability index (NDI) and visual analogue scale (VAS), which are indicators of neck pain, shoulder joint range of motion (ROM), and muscle strength in women with a slight forward head posture. This study was carried out on 42 female college students attending Uiduk University in Gyeongju, Korea. The neck pain and disability index for each subject was measured using VAS and NDI, respectively. Two physiotherapists measured the shoulder joint ROM and muscle strengths of the subjects using a goniometer and a dynamometer, respectively. External rotation, internal rotation, and abduction of the shoulder joint were measured for each subject. A significant negative correlation between neck pain and shoulder joint ROM in external rotation and the muscle strength of the shoulder joint in abduction was found in the subjects. In addition, a significant positive correlation was observed between ROM in external rotation and muscle strength in abduction. This study showed a significant negative correlation between neck pain and ROM in external rotation as well as between neck pain and the muscle strength in abduction.

  6. Sarcopenia, Dynapenia, and the Impact of Advancing Age on Human Skeletal Muscle Size and Strength; a Quantitative Review

    PubMed Central

    Mitchell, W. Kyle; Williams, John; Atherton, Philip; Larvin, Mike; Lund, John; Narici, Marco

    2012-01-01

    Changing demographics make it ever more important to understand the modifiable risk factors for disability and loss of independence with advancing age. For more than two decades there has been increasing interest in the role of sarcopenia, the age-related loss of muscle or lean mass, in curtailing active and healthy aging. There is now evidence to suggest that lack of strength, or dynapenia, is a more constant factor in compromised wellbeing in old age and it is apparent that the decline in muscle mass and the decline in strength can take quite different trajectories. This demands recognition of the concept of muscle quality; that is the force generating per capacity per unit cross-sectional area (CSA). An understanding of the impact of aging on skeletal muscle will require attention to both the changes in muscle size and the changes in muscle quality. The aim of this review is to present current knowledge of the decline in human muscle mass and strength with advancing age and the associated risk to health and survival and to review the underlying changes in muscle characteristics and the etiology of sarcopenia. Cross-sectional studies comparing young (18–45 years) and old (>65 years) samples show dramatic variation based on the technique used and population studied. The median of values of rate of loss reported across studies is 0.47% per year in men and 0.37% per year in women. Longitudinal studies show that in people aged 75 years, muscle mass is lost at a rate of 0.64–0.70% per year in women and 0.80–00.98% per year in men. Strength is lost more rapidly. Longitudinal studies show that at age 75 years, strength is lost at a rate of 3–4% per year in men and 2.5–3% per year in women. Studies that assessed changes in mass and strength in the same sample report a loss of strength 2–5 times faster than loss of mass. Loss of strength is a more consistent risk for disability and death than is loss of muscle mass. PMID:22934016

  7. Upper limb strength estimation of physically impaired persons using a musculoskeletal model: A sensitivity analysis.

    PubMed

    Carmichael, Marc G; Liu, Dikai

    2015-01-01

    Sensitivity of upper limb strength calculated from a musculoskeletal model was analyzed, with focus on how the sensitivity is affected when the model is adapted to represent a person with physical impairment. Sensitivity was calculated with respect to four muscle-tendon parameters: muscle peak isometric force, muscle optimal length, muscle pennation, and tendon slack length. Results obtained from a musculoskeletal model of average strength showed highest sensitivity to tendon slack length, followed by muscle optimal length and peak isometric force, which is consistent with existing studies. Muscle pennation angle was relatively insensitive. The analysis was repeated after adapting the musculoskeletal model to represent persons with varying severities of physical impairment. Results showed that utilizing the weakened model significantly increased the sensitivity of the calculated strength at the hand, with parameters previously insensitive becoming highly sensitive. This increased sensitivity presents a significant challenge in applications utilizing musculoskeletal models to represent impaired individuals.

  8. Characterization of Strength and Function in Ambulatory Adults With GNE Myopathy.

    PubMed

    Argov, Zohar; Bronstein, Faye; Esposito, Alicia; Feinsod-Meiri, Yael; Florence, Julaine M; Fowler, Eileen; Greenberg, Marcia B; Malkus, Elizabeth C; Rebibo, Odelia; Siener, Catherine S; Caraco, Yoseph; Kolodny, Edwin H; Lau, Heather A; Pestronk, Alan; Shieh, Perry; Skrinar, Alison M; Mayhew, Jill E

    2017-09-01

    To characterize the pattern and extent of muscle weakness and impact on physical functioning in adults with GNEM. Strength and function were assessed in GNEM subjects (n = 47) using hand-held dynamometry, manual muscle testing, upper and lower extremity functional capacity tests, and the GNEM-Functional Activity Scale (GNEM-FAS). Profound upper and lower muscle weakness was measured using hand-held dynamometry in a characteristic pattern, previously described. Functional tests and clinician-reported outcomes demonstrated the consequence of muscle weakness on physical functioning. The characteristic pattern of upper and lower muscle weakness associated with GNEM and the resulting functional limitations can be reliably measured using these clinical outcome assessments of muscle strength and function.

  9. Fall and Fracture Risk in Sarcopenia and Dynapenia With and Without Obesity: the Role of Lifestyle Interventions.

    PubMed

    Scott, David; Daly, Robin M; Sanders, Kerrie M; Ebeling, Peter R

    2015-08-01

    Due to their differing etiologies and consequences, it has been proposed that the term "sarcopenia" should revert to its original definition of age-related muscle mass declines, with a separate term, "dynapenia", describing muscle strength and function declines. There is increasing interest in the interactions of sarcopenia and dynapenia with obesity. Despite an apparent protective effect of obesity on fracture, increased adiposity may compromise bone health, and the presence of sarcopenia and/or dynapenia ("sarcopenic obesity" and "dynapenic obesity") may exacerbate the risk of falls and fracture in obese older adults. Weight loss interventions are likely to be beneficial for older adults with sarcopenic and dynapenic obesity but may result in further reductions in muscle and bone health. The addition of exercise including progressive resistance training and nutritional strategies, including protein and vitamin D supplementation, may optimise body composition and muscle function outcomes thereby reducing falls and fracture risk in this population.

  10. Inflammatory and Physiological Consequences of Debridement of Fibrous Tissue after Volumetric Muscle Loss Injury

    PubMed Central

    Corona, Benjamin T.; Rivera, Jessica C.

    2017-01-01

    Abstract Volumetric muscle loss (VML) injuries present chronic loss of muscle fibers followed by expansive fibrotic tissue deposition. Regenerative medicine therapies are under development to promote regeneration. However, mitigation of the expansive fibrous tissue is required for integration with the remaining muscle. Using a porcine VML model, delayed debridement of injury fibrosis was performed 3 months post‐VML and observed for an additional 4 weeks. A second group underwent the initial VML and was observed for 4 weeks, allowing comparison of initial fibrosis formation and debrided groups. The following salient observations were made: (i) debridement neither exacerbated nor ameliorated strength deficits; (ii) debridement results in recurrent fibrotic tissue deposition of a similar magnitude and composition as acute VML injury; and (iii) similarly upregulated transcriptional fibrotic and transcriptional pathways persist 4 weeks after initial VML or delayed debridement. This highlights the need for future studies to investigate adjunctive antifibrotic treatments for the fibrosed musculature. PMID:29193769

  11. Human Muscle Fiber

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The stimulus of gravity affects RNA production, which helps maintain the strength of human muscles on Earth (top), as seen in this section of muscle fiber taken from an astronaut before spaceflight. Astronauts in orbit and patients on Earth fighting muscle-wasting diseases need countermeasures to prevent muscle atrophy, indicated here with white lipid droplets (bottom) in the muscle sample taken from the same astronaut after spaceflight. Kerneth Baldwin of the University of California, Irvine, is conducting research on how reducing the stimulus of gravity affects production of the RNA that the body uses as a blueprint for making muscle proteins. Muscle proteins are what give muscles their strength, so when the RNA blueprints aren't available for producing new proteins to replace old ones -- a situation that occurs in microgravity -- the muscles atrophy. When the skeletal muscle system is exposed to microgravity during spaceflight, the muscles undergo a reduced mass that translates to a reduction in strength. When this happens, muscle endurance decreases and the muscles are more prone to injury, so individuals could have problems in performing extravehicular activity [space walks] or emergency egress because their bodies are functionally compromised.

  12. Treadmill walking in water induces greater respiratory muscle fatigue than treadmill walking on land in healthy young men.

    PubMed

    Yamashina, Yoshihiro; Yokoyama, Hisayo; Naghavi, Nooshin; Hirasawa, Yoshikazu; Takeda, Ryosuke; Ota, Akemi; Imai, Daiki; Miyagawa, Toshiaki; Okazaki, Kazunobu

    2016-05-01

    The purpose of the present study was to investigate the effect of walking in water on respiratory muscle fatigue compared with that of walking on land at the same exercise intensity. Ten healthy males participated in 40-min treadmill walking trials on land and in water at an intensity of 60% of peak oxygen consumption. Respiratory function and respiratory muscle strength were evaluated before and after walking trials. Inspiratory muscle strength and forced expiratory volume in 1 s were significantly decreased immediately after walking in water, and expiratory muscle strength was significantly decreased immediately and 5 min after walking in water compared with the baseline. The decreases of inspiratory and expiratory muscle strength were significantly greater compared with that after walking on land. In conclusion, greater inspiratory and expiratory muscle fatigue was induced by walking in water than by walking on land at the same exercise intensity in healthy young men.

  13. Effect of vibration on muscle strength imbalance in lower extremity using multi-control whole body vibration platform.

    PubMed

    Yu, Chang Ho; Seo, Shin Bae; Kang, Seung Rok; Kim, Kyung; Kwon, Tae Kyu

    2015-01-01

    This study shows the improvement of muscle activity and muscle strength imbalance in the lower extremities through independent exercise loads in vibration platform. Twenty females of age 20 participated in this study. The subjects were divided into WBV group, with more than 10% of muscle strength imbalance between left and right the lower extremities, and control group, with less than 10% of muscle strength imbalance between left and right the lower extremities. As the prior experiment showed, different exercise postures provide different muscular activities. As a result, the highest muscular activity was found to be in the low squat posture. Therefore, the LS posture was selected for the exercise in this experiment. Vibration intensities were applied to dominant muscle and non-dominant muscle, and the vibration frequency was fixed at 25Hz for the WBV group. The control group was asked to perform the same exercise as the WBV group, without stimulated vibration. This exercise was conducted for a total of 4 weeks. As a result, the WBV group which showed an average deviation of 16% before the experiment, tended to decrease approximately to 5%. In this study, vibration exercise using load deviation is shown to be effective in improving the muscle strength imbalance.

  14. Relation between the Disability of the Arm, Shoulder and Hand Score and Muscle Strength in Post-Cardiac Surgery Patients

    PubMed Central

    Kasahara, Yusuke; Hiraki, Koji; Hirano, Yasuyuki; Watanabe, Satoshi

    2017-01-01

    Background: The Disabilities of the Arm, Shoulder, and Hand (DASH) questionnaire is a valid and reliable patient-reported outcome measure. DASH can be assessed by self-reported upper extremity disability and symptoms. We aimed to examine the relationship between the physiological outcome of muscle strength and the DASH score after cardiac surgery. Methods: This cross-sectional study assessed 50 consecutive cardiac patients that were undergoing cardiac surgery. Physiological outcomes of handgrip strength and knee extensor muscle strength and the DASH score were measured at one month after cardiac surgery and were assessed. Results were analyzed using Spearman correlation coefficients. Results: The final analysis comprised 43 patients (men: 32, women: 11; age: 62.1 ± 9.1 years; body mass index: 22.1 ± 4.7 kg/m2; left ventricular ejection fraction: 53.5 ± 13.7%). Respective handgrip strength, knee extensor muscle strength, and DASH score were 27.4 ± 8.3 kgf, 1.6 ± 0.4 Nm/kg, and 13.3 ± 12.3, respectively. The DASH score correlated negatively with handgrip strength (r = −0.38, p = 0.01) and with knee extensor muscle strength (r = −0.32, p = 0.04). Conclusion: Physiological outcomes of both handgrip strength and knee extensor muscle strength correlated negatively with the DASH score. The DASH score appears to be a valuable tool with which to assess cardiac patients with poor physiological outcomes, particularly handgrip strength as a measure of upper extremity function, which is probably easier to follow over time than lower extremity function after patients complete cardiac rehabilitation. PMID:29186880

  15. Aged Muscle Demonstrates Fiber-Type Adaptations in Response to Mechanical Overload, in the Absence of Myofiber Hypertrophy, Independent of Satellite Cell Abundance

    PubMed Central

    Lee, Jonah D.; Fry, Christopher S.; Mula, Jyothi; Kirby, Tyler J.; Jackson, Janna R.; Liu, Fujun; Yang, Lin; Dupont-Versteegden, Esther E.; McCarthy, John J.

    2016-01-01

    Although sarcopenia, age-associated loss of muscle mass and strength, is neither accelerated nor exacerbated by depletion of muscle stem cells, satellite cells, we hypothesized that adaptation in sarcopenic muscle would be compromised. To test this hypothesis, we depleted satellite cells with tamoxifen treatment of Pax7CreER-DTA mice at 4 months of age, and 20 months later subjected the plantaris muscle to 2 weeks of mechanical overload. We found myofiber hypertrophy was impaired in aged mice regardless of satellite cell content. Even in the absence of growth, vehicle-treated mice mounted a regenerative response, not apparent in tamoxifen-treated mice. Further, myonuclear accretion occurred in the absence of growth, which was prevented by satellite cell depletion, demonstrating that myonuclear addition is insufficient to drive myofiber hypertrophy. Satellite cell depletion increased extracellular matrix content of aged muscle that was exacerbated by overload, potentially limiting myofiber growth. These results support the idea that satellite cells regulate the muscle environment, and that their loss during aging may contribute to fibrosis, particularly during periods of remodeling. Overload induced a fiber-type composition improvement, independent of satellite cells, suggesting that aged muscle is very responsive to exercise-induced enhancement in oxidative capacity, even with an impaired hypertrophic response. PMID:25878030

  16. Analysis of postural control and muscular performance in young and elderly women in different age groups.

    PubMed

    Gomes, Matheus M; Reis, Júlia G; Carvalho, Regiane L; Tanaka, Erika H; Hyppolito, Miguel A; Abreu, Daniela C C

    2015-01-01

    muscle strength and power are two factors affecting balance. The impact of muscle strength and power on postural control has not been fully explored among different age strata over sixty. the aim of the present study was to assess the muscle strength and power of elderly women in different age groups and determine their correlation with postural control. eighty women were divided into four groups: the young 18-30 age group (n=20); the 60-64 age group (n=20); the 65-69 age group (n=20); and the 70-74 age group (n=20). The participants underwent maximum strength (one repetition maximum or 1-RM) and muscle power tests to assess the knee extensor and flexor muscles at 40%, 70%, and 90% 1-RM intensity. The time required by participants to recover their balance after disturbing their base of support was also assessed. the elderly women in the 60-64, 65-69, and 70-74 age groups exhibited similar muscle strength, power, and postural control (p>0.05); however, these values were lower than those of the young group (p<0.05) as expected. There was a correlation between muscle strength and power and the postural control performance (p<0.05). despite the age difference, elderly women aged 60 to 74 years exhibited similar abilities to generate strength and power with their lower limbs, and this ability could be one factor that explains the similar postural control shown by these women.

  17. Evaluation of Skeletal Muscle Function in Lung Transplant Candidates.

    PubMed

    Rozenberg, Dmitry; Singer, Lianne G; Herridge, Margaret; Goldstein, Roger; Wickerson, Lisa; Chowdhury, Noori A; Mathur, Sunita

    2017-09-01

    Lung transplantation (LTx) is offered to older and more complex patients who may be at higher risk of skeletal muscle dysfunction, but the clinical implications of this remain uncertain. The study aims were to characterize deficits in skeletal muscle mass, strength and physical performance, and examine the associations of these deficits with clinical outcomes. Fifty LTx candidates (58% men; age, 59 ± 9 years) were prospectively evaluated for skeletal muscle deficits: muscle mass using bioelectrical impedance, quadriceps, respiratory muscle and handgrip strength, and physical performance with the Short Physical Performance Battery. Comparisons between number of muscle deficits (low muscle mass, quadriceps strength and physical performance) and 6-minute walk distance (6MWD), London Chest Activity of Daily Living Questionnaire, and quality of life were assessed using one-way analysis of variance. Associations with pretransplant and posttransplant delisting/mortality, hospital duration, and 3-month posttransplant 6MWD were evaluated using Fisher exact test and Spearman correlation. Deficits in quadriceps strength (n = 27) and physical performance (n = 24) were more common than muscle mass (n = 8). LTx candidates with 2 or 3 muscle deficits (42%) compared with those without any deficits (26%) had worse 6MWD = -109 m (95% confidence interval [CI], -175 to -43), London Chest Activity of Daily Living Questionnaire = 18 (95% CI, 7-30), and St. George's Activity Domain = 12 (95% CI, 2-21). Number of muscle deficits was associated with posttransplant hospital stay (r = 0.34, P = 0.04), but not with delisting/mortality or posttransplant 6MWD. Deficits in quadriceps muscle strength and physical performance are common in LTx candidates and further research is needed to assess whether modifying muscle function pretransplant can lead to improved clinical outcomes.

  18. Relation between systemic inflammatory markers, peripheral muscle mass, and strength in limb muscles in stable COPD patients.

    PubMed

    Ferrari, Renata; Caram, Laura M O; Faganello, Marcia M; Sanchez, Fernanda F; Tanni, Suzana E; Godoy, Irma

    2015-01-01

    The aim of this study was to investigate the association between systemic inflammatory mediators and peripheral muscle mass and strength in COPD patients. Fifty-five patients (69% male; age: 64±9 years) with mild/very severe COPD (defined as forced expiratory volume in the first second [FEV1] =54%±23%) were evaluated. We evaluated serum concentrations of IL-8, CRP, and TNF-α. Peripheral muscle mass was evaluated by computerized tomography (CT); midthigh cross-sectional muscle area (MTCSA) and midarm cross-sectional muscle area (MACSA) were obtained. Quadriceps, triceps, and biceps strength were assessed through the determination of the one-repetition maximum. The multiple regression results, adjusted for age, sex, and FEV1%, showed positive significant association between MTCSA and leg extension (0.35 [0.16, 0.55]; P=0.001), between MACSA and triceps pulley (0.45 [0.31, 0.58]; P=0.001), and between MACSA and biceps curl (0.34 [0.22, 0.47]; P=0.001). Plasma TNF-α was negatively associated with leg extension (-3.09 [-5.99, -0.18]; P=0.04) and triceps pulley (-1.31 [-2.35, -0.28]; P=0.01), while plasma CRP presented negative association with biceps curl (-0.06 [-0.11, -0.01]; P=0.02). Our results showed negative association between peripheral muscle mass (evaluated by CT) and muscle strength and that systemic inflammation has a negative influence in the strength of specific groups of muscles in individuals with stable COPD. This is the first study showing association between systemic inflammatory markers and strength in upper limb muscles.

  19. Association between sarcopenia and higher-level functional capacity in daily living in community-dwelling elderly subjects in Japan.

    PubMed

    Tanimoto, Yoshimi; Watanabe, Misuzu; Sun, Wei; Sugiura, Yumiko; Tsuda, Yuko; Kimura, Motoshi; Hayashida, Itsushi; Kusabiraki, Toshiyuki; Kono, Koichi

    2012-01-01

    This study aimed to determine the association between sarcopenia, defined by muscle mass, muscle strength, and physical performance, and higher-level functional capacity in community-dwelling Japanese elderly people. Subjects were 1158 elderly, community-dwelling Japanese people aged 65 or older. We used bioelectrical impedance analysis to measure muscle mass, grip strength to measure muscle strength, and usual walking speed to measure physical performance. Sarcopenia was characterized by low muscle mass, plus low muscle strength or low physical performance. Subjects without low muscle mass, low muscle strength, and low physical performance were classified as "normal." Examination of higher-level functional capacity was performed using the Tokyo Metropolitan Institute of Gerontology Index of Competence (TMIG-IC). The TMIG-IC is a 13-item questionnaire completed by the subject; it contains five questions on self-maintenance and four questions each on intellectual activity and social role. Sarcopenia was identified in 11.3% and 10.7% of men and women, respectively. The percentage of disability for instrumental activities of daily living (IADL) was 39.0% in men with sarcopenia and 30.6% in women with sarcopenia. After adjustment for age, in men, sarcopenia was significantly associated with IADL disability compared with intermediate and normal subjects. In women, sarcopenia was significantly associated with every subscale of the TMIG-IC disability compared with intermediate and normal subjects. This study revealed that sarcopenia, defined by muscle mass, muscle strength, and physical performance, had a significant association with disability in higher-level functional capacity in elderly Japanese subjects. Interventions to prevent sarcopenia may prevent higher-level functional disability among elderly people. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Normal isometric strength of rotatorcuff muscles in adults.

    PubMed

    Chezar, A; Berkovitch, Y; Haddad, M; Keren, Y; Soudry, M; Rosenberg, N

    2013-01-01

    The most prevalent disorders of the shoulder are related to the muscles of rotator cuff. In order to develop a mechanical method for the evaluation of the rotator cuff muscles, we created a database of isometric force generation by the rotator cuff muscles in normal adult population. We hypothesised the existence of variations according to age, gender and dominancy of limb. A total of 400 healthy adult volunteers were tested, classified into groups of 50 men and women for each decade of life. Maximal isometric force was measured at standardised positions for supraspinatus, infraspinatus and subscapularis muscles in both shoulders in every person. Torque of the force was calculated and normalised to lean body mass. The profiles of mean torque-time curves for each age and gender group were compared. Our data showed that men gradually gained maximal strength in the fifth decade, and showed decreased strength in the sixth. In women the maximal strength was gained in the fourth decade with gradual decline to the sixth decade of life. The dominant arm was stronger in most of the tested groups. The torque profiles of the rotator cuff muscles in men at all ages were significantly higher than that in women. We found previously unrecognised variations of rotator cuff muscles' isometric strength according to age, gender and dominancy in a normal population. The presented data may serve as a basis for the future studies for identification of the abnormal patterns of muscle isometric strength in patients with pathology of the rotator cuff muscles. Cite this article: Bone Joint Res 2013;2:214-19.

  1. Maximal isometric muscle strength values obtained By hand-held dynamometry in children between 6 and 15 years of age.

    PubMed

    Escobar, Raul G; Munoz, Karin T; Dominguez, Angelica; Banados, Pamela; Bravo, Maria J

    2017-01-01

    In this study we aimed to determine the maximal isometric muscle strength of a healthy, normal-weight, pediatric population between 6 and 15 years of age using hand-held dynamometry to establish strength reference values. The secondary objective was determining the relationship between strength and anthropometric parameters. Four hundred normal-weight Chilean children, split into 10 age groups, separated by 1-year intervals, were evaluated. Each age group included between 35 and 55 children. The strength values increased with increasing age and weight, with a correlation of 0.83 for age and 0.82 for weight. The results were similar to those reported in previous studies regarding the relationships among strength, age, and anthropometric parameters, but the reported strength differed. These results provide normal strength parameters for healthy and normal-weight Chilean children between 6 and 15 years of age and highlight the relevance of ethnicity in defining reference values for muscle strength in a pediatric population. Muscle Nerve 55: 16-22, 2017. © 2016 Wiley Periodicals, Inc.

  2. Examination of the pronator quadratus muscle during hardware removal procedures after volar plating for distal radius fractures.

    PubMed

    Nho, Jae-Hwi; Gong, Hyun Sik; Song, Cheol Ho; Wi, Seung Myung; Lee, Young Ho; Baek, Goo Hyun

    2014-09-01

    It is not clear whether the pronator quadratus (PQ) muscle actually heals and provides a meaningful pronation force after volar plating for distal radius fractures (DRFs). We aimed to determine whether the length of the PQ muscle, which is dissected and then repaired during volar plating for a DRF, affects the forearm rotation strength and clinical outcomes. We examined 41 patients who requested hardware removal after volar plating. We measured the isokinetic forearm rotation strength and clinical outcomes including grip strength, wrist range of motion, and disabilities of the arm, shoulder and hand (DASH) scores at 6 months after fracture fixation. During the hardware removal surgery, which was performed at an average of 9 months (range, 8.3 to 11.5 months) after fracture fixation, we measured the PQ muscle length. The average PQ muscle length was 68% of the normal muscle length, and no significant relationship was found between the PQ muscle length and the outcomes including isokinetic forearm rotation strength, grip strength, wrist range of motion, and DASH scores. This study demonstrates that the length of the healed PQ muscle does not affect isokinetic forearm rotation strength and clinical outcomes after volar plating for DRFs. The results of this study support our current practice of loose repair of the PQ that is performed by most of the surgeons to prevent tendon irritation over the plate, and suggest that tight repair of the PQ is not necessary for achieving improved forearm function.

  3. Pelvic floor muscle training increases pelvic floor muscle strength more in post-menopausal women who are not using hormone therapy than in women who are using hormone therapy: a randomised trial.

    PubMed

    Ignácio Antônio, Flávia; Herbert, Robert D; Bø, Kari; Rosa-E-Silva, Ana Carolina Japur Sá; Lara, Lúcia Alves Silva; Franco, Maira de Menezes; Ferreira, Cristine Homsi Jorge

    2018-06-15

    Are there differences in the effectiveness of pelvic floor muscle training on pelvic floor muscle strength and urinary incontinence symptoms in postmenopausal women who are and are not using hormone therapy? Randomised, controlled trial with concealed allocation, blinded assessors, and intention-to-treat analysis. Ninety-nine postmenopausal women, 38 of whom were using daily systemic oestrogen/progestogen therapy. The experimental group (n=51) received an intensive supervised pelvic floor muscle training protocol, and the control group (n=48) received no intervention. The randomisation was stratified by hormone therapy use. Change in pelvic floor muscle strength assessed with manometry at 12 weeks. Prevalence and severity of urinary incontinence symptoms were assessed using questionnaires. Eighty-eight women provided data that could be included in the analysis. Pelvic floor muscle training increased pelvic floor muscle strength by 8.0 cmH 2 O (95% CI 3.4 to 12.6) in women not using hormone therapy and by -0.9 cmH 2 0 (95% CI -6.5 to 4.8) in women using hormone therapy (interaction p=0.018). A sensitivity analysis showed that the greater training effect in women who were not using hormone therapy was still apparent if the analysis was conducted on percentage change in strength rather than absolute change in strength. There was also a significantly greater effect of training in women not using hormone therapy on prevalence of urinary incontinence symptoms (ratio of odds ratios=7.4; interaction p=0.028). The difference in effects on severity of urinary incontinence symptoms was not statistically significant (interaction p=0.37). Pelvic floor muscle training increases pelvic floor muscle strength more in women who are not using hormone therapy than in women using hormone therapy. ClinicalTrials.gov NCT02549729. [Ignácio Antônio F, Herbert RD, Bø K, Rosa-e-Silva ACJS, Lara LAS, Franco MdM, Ferreira CHJ (2018) Pelvic floor muscle training increases pelvic floor muscle strength more in post-menopausal women who are not using hormone therapy than in women who are using hormone therapy: a randomised trial. Journal of Physiotherapy XX: XX-XX]. Copyright © 2018 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  4. Health Benefits of an Innovative Exercise Program for Mitochondrial Disorders.

    PubMed

    Fiuza-Luces, Carmen; Díez-Bermejo, Jorge; Fernández-DE LA Torre, Miguel; Rodríguez-Romo, Gabriel; Sanz-Ayán, Paz; Delmiro, Aitor; Munguía-Izquierdo, Diego; Rodríguez-Gómez, Irene; Ara, Ignacio; Domínguez-González, Cristina; Arenas, Joaquín; Martín, Miguel A; Lucia, Alejandro; Morán, María

    2018-06-01

    We determined the effects of an innovative 8-wk exercise intervention (aerobic, resistance, and inspiratory muscle training) for patients with mitochondrial disease. Several end points were assessed in 12 patients (19-59 yr, 4 women) at pretraining, posttraining, and after 4-wk detraining: aerobic power, muscle strength/power and maximal inspiratory pressure (main end points), ability to perform activities of daily living, body composition, quality of life, and blood myokines (secondary end points). The program was safe, with patients' adherence being 94% ± 5%. A significant time effect was found for virtually all main end points (P ≤ 0.004), indicating a training improvement. Similar findings (P ≤ 0.003) were found for activities of daily living tests, total/trunk/leg lean mass, total fat mass, femoral fracture risk, and general health perception. No differences were found for blood myokines, except for an acute exertional increase in interleukin 8 at posttraining/detraining (P = 0.002) and in fatty acid binding protein 3 at detraining (P = 0.002). An intervention including novel exercises for mitochondrial disease patients (e.g., inspiratory muscle training) produced benefits in numerous indicators of physical capacity and induced a previously unreported shift toward a healthier body composition phenotype.

  5. Biotechnology

    NASA Image and Video Library

    2003-01-22

    The stimulus of gravity affects RNA production, which helps maintain the strength of human muscles on Earth (top), as seen in this section of muscle fiber taken from an astronaut before spaceflight. Astronauts in orbit and patients on Earth fighting muscle-wasting diseases need countermeasures to prevent muscle atrophy, indicated here with white lipid droplets (bottom) in the muscle sample taken from the same astronaut after spaceflight. Kerneth Baldwin of the University of California, Irvine, is conducting research on how reducing the stimulus of gravity affects production of the RNA that the body uses as a blueprint for making muscle proteins. Muscle proteins are what give muscles their strength, so when the RNA blueprints aren't available for producing new proteins to replace old ones -- a situation that occurs in microgravity -- the muscles atrophy. When the skeletal muscle system is exposed to microgravity during spaceflight, the muscles undergo a reduced mass that translates to a reduction in strength. When this happens, muscle endurance decreases and the muscles are more prone to injury, so individuals could have problems in performing extravehicular activity [space walks] or emergency egress because their bodies are functionally compromised.

  6. Cellular and Morphological Alterations in the Vastus Lateralis Muscle as the Result of ACL Injury and Reconstruction.

    PubMed

    Noehren, Brian; Andersen, Anders; Hardy, Peter; Johnson, Darren L; Ireland, Mary Lloyd; Thompson, Katherine L; Damon, Bruce

    2016-09-21

    Individuals who have had an anterior cruciate ligament (ACL) tear and reconstruction continue to experience substantial knee extensor strength loss despite months of physical therapy. Identification of the alterations in muscle morphology and cellular composition are needed to understand potential mechanisms of muscle strength loss, initially as the result of the injury and subsequently from surgery and rehabilitation. We performed diffusion tensor imaging-magnetic resonance imaging and analyzed muscle biopsies from the vastus lateralis of both the affected and unaffected limbs before surgery and again from the reconstructed limb following the completion of rehabilitation. Immunohistochemistry was done to determine fiber type and size, Pax-7-positive (satellite) cells, and extracellular matrix (via wheat germ agglutinin straining). Using the diffusion tensor imaging data, the fiber tract length, pennation angle, and muscle volume were determined, yielding the physiological cross-sectional area (PCSA). Paired t tests were used to compare the effects of the injury between injured and uninjured limbs and the effects of surgery and rehabilitation within the injured limb. We found significant reductions before surgery in type-IIA muscle cross-sectional area (CSA; p = 0.03), extracellular matrix (p < 0.01), satellite cells per fiber (p < 0.01), pennation angle (p = 0.03), muscle volume (p = 0.02), and PCSA (p = 0.03) in the injured limb compared with the uninjured limb. Following surgery, these alterations in the injured limb persisted and the frequency of the IIA fiber type decreased significantly (p < 0.01) and that of the IIA/X hybrid fiber type increased significantly (p < 0.01). Significant and prolonged differences in muscle quality and morphology occurred after ACL injury and persisted despite reconstruction and extensive physical therapy. These results suggest the need to develop more effective early interventions following an ACL tear to prevent deleterious alterations within the quadriceps. Copyright © 2016 by The Journal of Bone and Joint Surgery, Incorporated.

  7. Pre-Training Muscle Characteristics of Subjects Who Are Obese Determine How Well Exercise Training Will Improve Their Insulin Responsiveness.

    PubMed

    Stuart, Charles A; Lee, Michelle L; South, Mark A; Howell, Mary E A; Cartwright, Brian M; Ramsey, Michael W; Stone, Michael H

    2017-03-01

    Stuart, CA, Lee, ML, South, MA, Howell, MEA, Cartwright, BM, Ramsey, MW, and Stone, MH. Pre-training muscle characteristics of subjects who are obese determine how well exercise training will improve their insulin responsiveness. J Strength Cond Res 31(3): 798-808, 2017-Only half of prediabetic subjects who are obese who underwent exercise training without weight loss increased their insulin responsiveness. We hypothesized that those who improved their insulin responsiveness might have pretraining characteristics favoring a positive response to exercise training. Thirty nondiabetic subjects who were obese volunteered for 8 weeks of either strength training or endurance training. During training, subjects increased their caloric intake to prevent weight loss. Insulin responsiveness by euglycemic clamps and muscle fiber composition, and expression of muscle key biochemical pathways were quantified. Positive responders initially had 52% higher intermediate muscle fibers (fiber type IIa) with 27% lower slow-twitch fibers (type I) and 23% lower expression of muscle insulin receptors. Whether after weight training or stationary bike training, positive responders' fiber type shifted away from type I and type IIa fibers to an increased proportion of type IIx fibers (fast twitch). Muscle insulin receptor expression and glucose transporter type 4 (GLUT4) expression increased in all trained subjects, but these moderate changes did not consistently translate to improvement in whole-body insulin responsiveness. Exercise training of previously sedentary subjects who are obese can result in muscle remodeling and increased expression of key elements of the insulin pathway, but in the absence of weight loss, insulin sensitivity improvement was modest and limited to about half of the participants. Our data suggest rather than responders being more fit, they may have been less fit, only catching up to the other half of subjects who are obese whose insulin responsiveness did not increase beyond their pretraining baseline.

  8. Effects of humeral head compression taping on the isokinetic strength of the shoulder external rotator muscle in patients with rotator cuff tendinitis.

    PubMed

    Kim, Moon-Hwan; Oh, Jae-Seop

    2015-01-01

    [Purpose] The purpose of this study was to examine the effects of humeral head compression taping (HHCT) on the strength of the shoulder external rotator muscle in patients with rotator cuff tendinitis. [Subjects and Methods] Twenty patients with rotator cuff tendinitis were recruited. The shoulder external rotator strength was measured using a Biodex isokinetic dynamometer system. A paired t-test was performed to evaluate within-group differences in the strength of the shoulder external rotator muscle. [Results] Significantly higher shoulder external rotator peak torque and peak torque per body weight were found in the HHCT condition than in the no-taping condition. [Conclusion] HHCT may effectively increase the shoulder external rotator muscle strength in patients with rotator cuff tendinitis.

  9. Regular exercisers have stronger pelvic floor muscles than nonregular exercisers at midpregnancy.

    PubMed

    Bø, Kari; Ellstrøm Engh, Marie; Hilde, Gunvor

    2018-04-01

    Today all healthy pregnant women are encouraged to be physically active throughout pregnancy, with recommendations to participate in at least 30 minutes of aerobic activity on most days of the week in addition to performing strength training of the major muscle groups 2-3 days per week and also pelvic floor muscle training. There is, however, an ongoing debate whether general physical activity enhances or declines pelvic floor muscle function. The objectives of the study were to compare vaginal resting pressure, pelvic floor muscle strength, and endurance in regular exercisers (exercise ≥30 minutes 3 or more times per week) and nonexercisers at midpregnancy. Furthermore, another objective was to assess whether regular general exercise or pelvic floor muscle strength was associated with urinary incontinence. This was a cross-sectional study at mean gestational week 20.9 (±1.4) including 218 nulliparous pregnant women, with a mean age of 28.6 years (range, 19-40 years) and prepregnancy body mass index of 23.9 kg/m 2 (SD, 4.0). Vaginal resting pressure, pelvic floor muscle strength, and pelvic floor muscle endurance were measured by a high-precision pressure transducer connected to a vaginal balloon. The International Consultation on Incontinence Questionnaire Urinary Incontinence Short Form was used to assess urinary incontinence. Differences between groups were analyzed using an independent-sample Student t test. Linear regression analysis was conducted to adjust for prepregnancy body mass index, age, smoking during pregnancy, and regular pelvic floor muscle training during pregnancy. The significance value was set to P ≤ .05. Regular exercisers had statistically significant stronger (mean 6.4 cm H 2 O [95% confidence interval, 1.7-11.2]) and more enduring (mean 39.9 cm H 2 Osec [95% confidence interval, 42.2-75.7]) pelvic floor muscles. Only pelvic floor muscle strength remained statistically significant, when adjusting for possible confounders. Pelvic floor muscle strength and not regular general exercise was associated with urinary continence (adjusted B, -6.4 [95% confidence interval, -11.5 to -1.4]). Regular exercisers at midpregnancy have stronger pelvic floor muscles than their sedentary counterparts. However, pelvic floor muscle strength and not regular general exercise was associated with urinary incontinence. There is a need for additional studies in elite athletes and women performing more strenuous exercise regimens. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Relationship between body composition, leg strength, anaerobic power, and on-ice skating performance in division I men's hockey athletes.

    PubMed

    Potteiger, Jeffrey A; Smith, Dean L; Maier, Mark L; Foster, Timothy S

    2010-07-01

    The purpose of this study was to examine relationships between laboratory tests and on-ice skating performance in division I men's hockey athletes. Twenty-one men (age 20.7 +/- 1.6 years) were assessed for body composition, isokinetic force production in the quadriceps and hamstring muscles, and anaerobic muscle power via the Wingate 30-second cycle ergometer test. Air displacement plethysmography was used to determine % body fat (%FAT), fat-free mass (FFM), and fat mass. Peak torque and total work during 10 maximal effort repetitions at 120 degrees .s were measured during concentric muscle actions using an isokinetic dynamometer. Muscle power was measured using a Monark cycle ergometer with resistance set at 7.5% of body mass. On-ice skating performance was measured during 6 timed 89-m sprints with subjects wearing full hockey equipment. First length skate (FLS) was 54 m, and total length skate (TLS) was 89 m with fastest and average skating times used in the analysis. Correlation coefficients were used to determine relationships between laboratory testing and on-ice performance. Subjects had a body mass of 88.8 +/- 7.8 kg and %FAT of 11.9 +/- 4.6. First length skate-Average and TLS-Average skating times were moderately correlated to %FAT ([r = 0.53; p = 0.013] and [r = 0.57; p = 0.007]) such that a greater %FAT was related to slower skating speeds. First length skate-Fastest was correlated to Wingate percent fatigue index (r = -0.48; p = 0.027) and FLS-Average was correlated to Wingate peak power per kilogram body mass (r = -0.43; p = 0.05). Laboratory testing of select variables can predict skating performance in ice hockey athletes. This information can be used to develop targeted and effective strength and conditioning programs that will improve on-ice skating speed.

  11. Prediction of Postoperative Clinical Recovery of Drop Foot Attributable to Lumbar Degenerative Diseases, via a Bayesian Network.

    PubMed

    Takenaka, Shota; Aono, Hiroyuki

    2017-03-01

    Drop foot resulting from degenerative lumbar diseases can impair activities of daily living. Therefore, predictors of recovery of this symptom have been investigated using univariate or/and multivariate analyses. However, the conclusions have been somewhat controversial. Bayesian network models, which are graphic and intuitive to the clinician, may facilitate understanding of the prognosis of drop foot resulting from degenerative lumbar diseases. (1) To show a layered correlation among predictors of recovery from drop foot resulting from degenerative lumbar diseases; and (2) to develop support tools for clinical decisions to treat drop foot resulting from lumbar degenerative diseases. Between 1993 and 2013, we treated 141 patients with decompressive lumbar spine surgery who presented with drop foot attributable to degenerative diseases. Of those, 102 (72%) were included in this retrospective study because they had drop foot of recent development and had no diseases develop that affect evaluation of drop foot after surgery. Specifically, 28 (20%) patients could not be analyzed because their records were not available at a minimum of 2 years followup after surgery and 11 (8%) were lost owing to postoperative conditions that affect the muscle strength evaluation. Eight candidate variables were sex, age, herniated soft disc, duration of the neurologic injury (duration), preoperative tibialis anterior muscle strength (pretibialis anterior), leg pain, cauda equina syndrome, and number of involved levels. Manual muscle testing was used to assess the tibialis anterior muscle strength. Drop foot was defined as a tibialis anterior muscle strength score of less than 3 of 5 (5 = movement against gravity and full resistance, 4 = movement against gravity and moderate resistance, 3 = movement against gravity through full ROM, 3- = movement against gravity through partial ROM, 2 = movement with gravity eliminated through full ROM, 1 = slight contraction but no movement, and 0 = no contraction). The two outcomes of interest were postoperative tibialis anterior muscle strength (posttibialis anterior) of 3 or greater and posttibialis anterior strength of 4 or greater at 2 years after surgery. We developed two separate Bayesian network models with outcomes of interest for posttibialis anterior strength of 3 or greater and posttibialis anterior strength of 4 or greater. The two outcomes correspond to "good" and "excellent" results based on previous reports, respectively. Direct predictors are defined as variables that have the tail of the arrow connecting the outcome of interest, whereas indirect predictors are defined as variables that have the tail of the arrow connecting either direct predictors or other indirect predictors that have the tail of the arrow connecting direct predictors. Sevenfold cross validation and receiver-operating characteristic (ROC) curve analyses were performed to evaluate the accuracy and robustness of the Bayesian network models. Both of our Bayesian network models showed that weaker muscle power before surgery (pretibialis anterior ≤ 1) and longer duration of neurologic injury before treatment (> 30 days) were associated with a decreased likelihood of return of function by 2 years. The models for posttibialis anterior muscle strength of 3 or greater and posttibialis anterior muscle strength of 4 or greater were the same in terms of the graphs, showing that the two direct predictors were pretibialis anterior muscle strength (score ≤ 1 or ≥ 2) and duration (≤ 30 days or > 30 days). Age, herniated soft disc, and leg pain were identified as indirect predictors. We developed a decision-support tool in which the clinician can enter pretibialis anterior muscle strength and duration, and from this obtain the probability estimates of posttibialis anterior muscle strength. The probability estimates of posttibialis anterior muscle strength of 3 or greater and posttibialis anterior muscle strength of 4 or greater were 94% and 85%, respectively, in the most-favorable conditions (pretibialis anterior ≥ 2; duration ≤ 30 days) and 18% and 14%, respectively, in the least-favorable conditions (pretibialis anterior ≤ 1; duration > 30 days). On the sevenfold cross validation, the area under the ROC curve yielded means of 0.78 (95% CI, 0.68-0.87) and 0.74 (95% CI, 0.64-0.84) for posttibialis anterior muscle strength of 3 or greater and posttibialis anterior muscle strength of 4 or greater, respectively. The results of this study suggest that the clinician can understand intuitively the layered correlation among predictors by Bayesian network models. Based on the models, the decision-support tool successfully provided the probability estimates of posttibialis anterior muscle strength to treat drop foot attributable to lumbar degenerative diseases. These models were shown to be robust on the internal validation but should be externally validated in other populations. Level III, therapeutic study.

  12. Relationship between dynapenia and cardiorespiratory functions in healthy postmenopausal women: novel clinical criteria.

    PubMed

    Barbat-Artigas, Seébastien; Dupontgand, Sophie; Fex, Annie; Karelis, Antony D; Aubertin-Leheudre, Mylène

    2011-04-01

    Muscle strength seems to be a better indicator of physical limitations than skeletal muscle mass is. The purpose of this study was to investigate, using a new developed clinical tool, the relationship between type I dynapenia and cardiorespiratory functions in postmenopausal women. Forty-six postmenopausal women were recruited and divided into two groups (dynapenic vs nondynapenic). Body composition (bioelectrical impedancemetry), muscle strength (dynamometer), cardiorespiratory functions (maximum oxygen consumption and forced expiratory volume in 1 second), resting energy expenditure (indirect calorimetry), and dietary intake (3-d dietary journal) were measured. Type I dynapenia was defined as less than 1.53 kg per skeletal muscle mass (kg) based on handgrip dynamometer. Significant differences were found between dynapenic (n=23) and nondynapenic (n=23) postmenopausal women for cardiorespiratory functions (maximum oxygen consumption, P=0.003; and forced expiratory volume in 1 second, P=0.046). We observed no differences between groups for age, age at menopause, use of hormone therapy, body mass index, waist circumference, fat mass, resting energy expenditure, and total energy intake, which are known to be potential confounders. No differences were observed for cardiorespiratory functions when our population was divided into sarcopenic and nonsarcopenic groups. Type I dynapenic women have significantly poorer cardiorespiratory functions that do nondynapenic women even if they presented the same skeletal muscle mass index. Thus, based on our results, dynapenia could potentially be used as a marker of cardiorespiratory functions. The clinical method developed to identify dynapenic women could be used by health professionals. © 2011 by The North American Menopause Society

  13. Aerobic circuit exercise training: effect on adolescents with well-controlled insulin-dependent diabetes mellitus.

    PubMed

    Mosher, P E; Nash, M S; Perry, A C; LaPerriere, A R; Goldberg, R B

    1998-06-01

    To test the safety and effects of exercise conditioning on cardiorespiratory fitness, body composition, muscle strength, glucose regulation, and lipid/cholesterol levels. Ten male adolescents with insulin-dependent diabetes mellitus (IDDM) and 10 adolescent nondiabetic (ND) subjects. Pretest, posttest intervention trial with control group. University-based human performance laboratory. Mixed endurance and calisthenic/strength activities performed at a rapid pace three times weekly for 12 weeks. Only one subject with IDDM experienced hypoglycemia after a single exercise session. Both subject groups improved their cardiorespiratory endurance (p < .05). Lean body mass of IDDM subjects increased by 3.5% (p < .05). Subjects with and without IDDM lowered their percent body fat (p < .05 and .001, respectively). Strength improvement of IDDM subjects ranged from 13.7% (p < .001) to 44.4% (p < .01), depending upon the maneuver. Fasting blood plasma glucose for all subjects was unchanged by training, but glycosylated hemoglobin A1c of IDDM subjects was reduced by .96 percentage point (p < .05). Reductions of HbA1c benefitted subjects exhibiting poor preconditioning glycemic control. Low-density lipoprotein cholesterol was decreased in subjects with IDDM (p < .05), but not total cholesterol or triglycerides. Adolescents with IDDM undergoing aerobic circuit training improve their cardiorespiratory endurance, muscle strength, lipid profile, and glucose regulation. Aerobic circuit training is safe for properly trained and monitored adolescent diabetics.

  14. Does pelvic floor muscle training abolish symptoms of urinary incontinence? A randomized controlled trial.

    PubMed

    Celiker Tosun, O; Kaya Mutlu, E; Ergenoglu, A M; Yeniel, A O; Tosun, G; Malkoc, M; Askar, N; Itil, I M

    2015-06-01

    To determine whether symptoms of urinary incontinence is reduced by pelvic floor muscle training, to determine whether urinary incontinence can be totally eliminated by strengthening the pelvic floor muscle to grade 5 on the Oxford scale. Prospective randomized controlled clinical trial. Outpatient urogynecology department. One hundred thirty cases with stress and mixed urinary incontinence. All participants were randomly allocated to the pelvic floor muscle training group or control group. A 12-week home based exercise program, prescribed individually, was performed by the pelvic floor muscle training group. Urinary incontinence symptoms (Incontinence Impact Questionnaire-7, Urogenital Distress Inventory-6, bladder diary, stop test and pad test) were assessed, and the pelvic floor muscle strength was measured for (PERFECT testing, perineometric and ultrasound) all participants before and after 12 weeks of treatment. The pelvic floor muscle training group had significant improvement in their symptoms of urinary incontinence (P=0.001) and an increase in pelvic floor muscle strength (P=0.001, by the dependent t test) compared with the control group. All the symptoms of urinary incontinence were significantly decreased in the patients that had reached pelvic floor muscle strength of grade 5 and continued the pelvic floor muscle training (P<0.05). The study demonstrated that pelvic floor muscle training is effective in reducing the symptoms of stress and mixed urinary incontinence and in increasing pelvic floor muscle strength. © The Author(s) 2014.

  15. Effects of Strength vs. Ballistic-Power Training on Throwing Performance

    PubMed Central

    Zaras, Nikolaos; Spengos, Konstantinos; Methenitis, Spyridon; Papadopoulos, Constantinos; Karampatsos, Giorgos; Georgiadis, Giorgos; Stasinaki, Aggeliki; Manta, Panagiota; Terzis, Gerasimos

    2013-01-01

    The purpose of the present study was to investigate the effects of 6 weeks strength vs. ballistic-power (Power) training on shot put throwing performance in novice throwers. Seventeen novice male shot-put throwers were divided into Strength (N = 9) and Power (n = 8) groups. The following measurements were performed before and after the training period: shot put throws, jumping performance (CMJ), Wingate anaerobic performance, 1RM strength, ballistic throws and evaluation of architectural and morphological characteristics of vastus lateralis. Throwing performance increased significantly but similarly after Strength and Power training (7.0-13.5% vs. 6.0-11.5%, respectively). Muscular strength in leg press increased more after Strength than after Power training (43% vs. 21%, respectively), while Power training induced an 8.5% increase in CMJ performance and 9.0 - 25.8% in ballistic throws. Peak power during the Wingate test increased similarly after Strength and Power training. Muscle thickness increased only after Strength training (10%, p < 0.05). Muscle fibre Cross Sectional Area (fCSA) increased in all fibre types after Strength training by 19-26% (p < 0.05), while only type IIx fibres hypertrophied significantly after Power training. Type IIx fibres (%) decreased after Strength but not after Power training. These results suggest that shot put throwing performance can be increased similarly after six weeks of either strength or ballistic power training in novice throwers, but with dissimilar muscular adaptations. Key points Ballistic-power training with 30% of 1RM is equally effective in increasing shot put performance as strength training, in novice throwers, during a short training cycle of six weeks. In novice shot putters with relatively low initial muscle strength/mass, short-term strength training might be more important since it can increase both muscle strength and shot put performance. The ballistic type of power training resulted in a significant increase of the mass of type IIx muscle fibres and no change in their proportion. Thus, this type of training might be used effectively during the last weeks before competition, when the strength training load is usually reduced, in order to increase muscle power and shot put performance in novice shot putters. PMID:24149736

  16. Effects of Strength vs. Ballistic-Power Training on Throwing Performance.

    PubMed

    Zaras, Nikolaos; Spengos, Konstantinos; Methenitis, Spyridon; Papadopoulos, Constantinos; Karampatsos, Giorgos; Georgiadis, Giorgos; Stasinaki, Aggeliki; Manta, Panagiota; Terzis, Gerasimos

    2013-01-01

    The purpose of the present study was to investigate the effects of 6 weeks strength vs. ballistic-power (Power) training on shot put throwing performance in novice throwers. Seventeen novice male shot-put throwers were divided into Strength (N = 9) and Power (n = 8) groups. The following measurements were performed before and after the training period: shot put throws, jumping performance (CMJ), Wingate anaerobic performance, 1RM strength, ballistic throws and evaluation of architectural and morphological characteristics of vastus lateralis. Throwing performance increased significantly but similarly after Strength and Power training (7.0-13.5% vs. 6.0-11.5%, respectively). Muscular strength in leg press increased more after Strength than after Power training (43% vs. 21%, respectively), while Power training induced an 8.5% increase in CMJ performance and 9.0 - 25.8% in ballistic throws. Peak power during the Wingate test increased similarly after Strength and Power training. Muscle thickness increased only after Strength training (10%, p < 0.05). Muscle fibre Cross Sectional Area (fCSA) increased in all fibre types after Strength training by 19-26% (p < 0.05), while only type IIx fibres hypertrophied significantly after Power training. Type IIx fibres (%) decreased after Strength but not after Power training. These results suggest that shot put throwing performance can be increased similarly after six weeks of either strength or ballistic power training in novice throwers, but with dissimilar muscular adaptations. Key pointsBallistic-power training with 30% of 1RM is equally effective in increasing shot put performance as strength training, in novice throwers, during a short training cycle of six weeks.In novice shot putters with relatively low initial muscle strength/mass, short-term strength training might be more important since it can increase both muscle strength and shot put performance.The ballistic type of power training resulted in a significant increase of the mass of type IIx muscle fibres and no change in their proportion. Thus, this type of training might be used effectively during the last weeks before competition, when the strength training load is usually reduced, in order to increase muscle power and shot put performance in novice shot putters.

  17. Effect of traditional resistance and power training using rated perceived exertion for enhancement of muscle strength, power, and functional performance.

    PubMed

    Tiggemann, Carlos Leandro; Dias, Caroline Pieta; Radaelli, Regis; Massa, Jéssica Cassales; Bortoluzzi, Rafael; Schoenell, Maira Cristina Wolf; Noll, Matias; Alberton, Cristine Lima; Kruel, Luiz Fernando Martins

    2016-04-01

    The present study compared the effects of 12 weeks of traditional resistance training and power training using rated perceived exertion (RPE) to determine training intensity on improvements in strength, muscle power, and ability to perform functional task in older women. Thirty healthy elderly women (60-75 years) were randomly assigned to traditional resistance training group (TRT; n = 15) or power training group (PT; n = 15). Participants trained twice a week for 12 weeks using six exercises. The training protocol was designed to ascertain that participants exercised at an RPE of 13-18 (on a 6-20 scale). Maximal dynamic strength, muscle power, and functional performance of lower limb muscles were assessed. Maximal dynamic strength muscle strength leg press (≈58 %) and knee extension (≈20 %) increased significantly (p < 0.001) and similarly in both groups after training. Muscle power also increased with training (≈27 %; p < 0.05), with no difference between groups. Both groups also improved their functional performance after training period (≈13 %; p < 0.001), with no difference between groups. The present study showed that TRT and PT using RPE scale to control intensity were significantly and similarly effective in improving maximal strength, muscle power, and functional performance of lower limbs in elderly women.

  18. Elbow flexor and extensor muscle weakness in lateral epicondylalgia.

    PubMed

    Coombes, Brooke K; Bisset, Leanne; Vicenzino, Bill

    2012-05-01

    To evaluate whether deficits of elbow flexor and extensor muscle strength exist in lateral epicondylalgia (LE) in comparison with a healthy control population. Cross-sectional study. 150 participants with unilateral LE were compared with 54 healthy control participants. Maximal isometric elbow flexion and extension strength were measured bilaterally using a purpose-built standing frame such that gripping was avoided. The authors found significant side differences in elbow extensor (-6.54 N, 95% CI -11.43 to -1.65, p=0.008, standardised mean difference (SMD) -0.45) and flexor muscle strength (-11.26 N, 95% CI -19.59 to -2.94, p=0.009, SMD -0.46) between LE and control groups. Within the LE group, only elbow extensor muscle strength deficits between sides was significant (affected-unaffected: -2.94 N, 95% CI -5.44 to -0.44). Small significant deficits of elbow extensor and flexor muscle strength exist in the affected arm of unilateral LE in comparison with healthy controls. Notably, comparing elbow strength between the affected and unaffected sides in unilateral epicondylalgia is likely to underestimate these deficits. Trial Registration Australian New Zealand Clinical Trials Register ACTRN12609000051246.

  19. Strength and ability to implement the activities of daily living in elderly resident in rural areas.

    PubMed

    Vasconcelos Rocha, Saulo; Souza Dos Santos, Samara; Carneiro Vasconcelos, Lélia Renata; Alves Dos Santos, Clarice

    2016-09-30

    To examine the association between muscle strength and the ability to perform basic and instrumental activities of daily living in elderly resident in rural areas of Jequie, Brazil. We performed a cross-sectional design study with a population of 104 individuals aged sixty or older, registered in the Family Health Unit of the district of Itajuru, Jequie-Brazil. Data collection was performed using a standardized instrument used as an interview, followed by the application of tests (bending arm with dumbbell and rising from a chair 30 sec). The basic and instrumental activities of daily living were investigated through the Katz and Lawton scales, respectively. The chi-square test with p ≤0.05 was used as a measure of statistical significance for bivariate analyzes between muscle strength and ability to perform daily activities. The results showed a significant association between muscle strength and dynamic ability to perform activities of daily living. Reduced muscle strength is an important predictor of the functional ability of the elderly. Accordingly, it is recommended to observe muscle strength in actions directed at the elderly.

  20. Hip muscle strength is decreased in middle-aged recreational male athletes with midportion Achilles tendinopathy: A cross-sectional study.

    PubMed

    Habets, B; Smits, H W; Backx, F J G; van Cingel, R E H; Huisstede, B M A

    2017-05-01

    Investigating differences in hip muscle strength between athletes with Achilles tendinopathy (AT) and asymptomatic controls. Cross-sectional case-control study. Sports medical center. Twelve recreational male athletes with mid-portion AT and twelve matched asymptomatic controls. Isometric strength of the hip abductors, external rotators, and extensors was measured using a handheld dynamometer. Functional hip muscle performance was evaluated with the single-leg squat. The Victorian Institute of Sport Assessment-Achilles (VISA-A) questionnaire was completed to determine clinical severity of symptoms. Compared to controls, participants with AT demonstrated 28.9% less isometric hip abduction strength (p = 0.012), 34.2% less hip external rotation strength (p = 0.010), and 28.3% less hip extension strength (p = 0.034) in the injured limb. Similar differences were found for the non-injured limb (26.7-41.8%; p < 0.03). No significant differences were found in functional hip muscle performance between the injured and non-injured limb or between the groups, and no significant correlation was found between hip muscle strength and VISA-A scores. Recreational male athletes with chronic mid-portion AT demonstrated bilateral weakness of hip abductors, external rotators, and extensors compared to their asymptomatic counterparts. These findings suggest that hip muscle strength may be important in the assessment and rehabilitation of those with AT. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Upper Extremity Muscle Volumes and Functional Strength After Resistance Training in Older Adults

    PubMed Central

    Daly, Melissa; Vidt, Meghan E.; Eggebeen, Joel D.; Simpson, W. Greg; Miller, Michael E.; Marsh, Anthony P.; Saul, Katherine R.

    2014-01-01

    Aging leads to a decline in strength and an associated loss of independence. The authors examined changes in muscle volume, maximum isometric joint moment, functional strength, and 1-repetition maximum (1RM) after resistance training (RT) in the upper extremity of older adults. They evaluated isometric joint moment and muscle volume as predictors of functional strength. Sixteen healthy older adults (average age 75 ± 4.3 yr) were randomized to a 6-wk upper extremity RT program or control group. The RT group increased 1RM significantly (p < .01 for all exercises). Compared with controls, randomization to RT led to greater functional pulling strength (p = .003), isometric shoulder-adduction moment (p = .041), elbow-flexor volume (p = .017), and shoulder-adductor volume (p = .009). Shoulder-muscle volumes and isometric moments were good predictors of functional strength. The authors conclude that shoulder strength is an important factor for performing functional reaching and pulling tasks and a key target for upper extremity RT interventions. PMID:22952203

  2. Myostatin-like proteins regulate synaptic function and neuronal morphology.

    PubMed

    Augustin, Hrvoje; McGourty, Kieran; Steinert, Joern R; Cochemé, Helena M; Adcott, Jennifer; Cabecinha, Melissa; Vincent, Alec; Halff, Els F; Kittler, Josef T; Boucrot, Emmanuel; Partridge, Linda

    2017-07-01

    Growth factors of the TGFβ superfamily play key roles in regulating neuronal and muscle function. Myostatin (or GDF8) and GDF11 are potent negative regulators of skeletal muscle mass. However, expression of myostatin and its cognate receptors in other tissues, including brain and peripheral nerves, suggests a potential wider biological role. Here, we show that Myoglianin (MYO), the Drosophila homolog of myostatin and GDF11, regulates not only body weight and muscle size, but also inhibits neuromuscular synapse strength and composition in a Smad2-dependent manner. Both myostatin and GDF11 affected synapse formation in isolated rat cortical neuron cultures, suggesting an effect on synaptogenesis beyond neuromuscular junctions. We also show that MYO acts in vivo to inhibit synaptic transmission between neurons in the escape response neural circuit of adult flies. Thus, these anti-myogenic proteins act as important inhibitors of synapse function and neuronal growth. © 2017. Published by The Company of Biologists Ltd.

  3. Hip Abductor Muscle Volume and Strength Differences Between Women With Chronic Hip Joint Pain and Asymptomatic Controls.

    PubMed

    Mastenbrook, Matthew J; Commean, Paul K; Hillen, Travis J; Salsich, Gretchen B; Meyer, Gretchen A; Mueller, Michael J; Clohisy, John C; Harris-Hayes, Marcie

    2017-12-01

    Study Design Secondary analysis, cross-sectional study. Background Chronic hip joint pain (CHJP) can lead to limitations in activity participation, but the musculoskeletal factors associated with the condition are relatively unknown. Understanding the factors associated with CHJP may help develop rehabilitation strategies to improve quality of life of individuals with long-term hip pain. Objectives To compare measures of hip abductor muscle volume and hip abductor muscle strength between women with CHJP and asymptomatic controls. Methods Thirty women, 15 with CHJP and 15 matched asymptomatic controls (age range, 18-40 years), participated in this study. Magnetic resonance imaging was used to determine the volume of the primary hip abductor muscles, consisting of the gluteus medius, gluteus minimus, a small portion of the gluteus maximus, and the tensor fascia latae, within a defined region of interest. Break tests were performed using a handheld dynamometer to assess hip abductor strength. During the strength test, the participant was positioned in sidelying with the involved hip in 15° of abduction. Independent-samples t tests were used to compare muscle volume and strength values between those with CHJP and asymptomatic controls. Results Compared to asymptomatic controls, women with CHJP demonstrated significantly increased gluteal muscle volume (228 ± 40 cm 3 versus 199 ± 29 cm 3 , P = .032), but decreased hip abductor strength (74.6 ± 16.8 Nm versus 93.6 ± 20.2 Nm, P = .009). There were no significant differences in tensor fascia lata muscle volume between the 2 groups (P = .640). Conclusion Women with CHJP appear to have larger gluteal muscle volume, but decreased hip abductor strength, compared to asymptomatic controls. J Orthop Sports Phys Ther 2017;47(12):923-930. Epub 9 Oct 2017. doi:10.2519/jospt.2017.7380.

  4. Longer Interset Rest Periods Enhance Muscle Strength and Hypertrophy in Resistance-Trained Men.

    PubMed

    Schoenfeld, Brad J; Pope, Zachary K; Benik, Franklin M; Hester, Garrett M; Sellers, John; Nooner, Josh L; Schnaiter, Jessica A; Bond-Williams, Katherine E; Carter, Adrian S; Ross, Corbin L; Just, Brandon L; Henselmans, Menno; Krieger, James W

    2016-07-01

    Schoenfeld, BJ, Pope, ZK, Benik, FM, Hester, GM, Sellers, J, Nooner, JL, Schnaiter, JA, Bond-Williams, KE, Carter, AS, Ross, CL, Just, BL, Henselmans, M, and Krieger, JW. Longer interset rest periods enhance muscle strength and hypertrophy in resistance-trained men. J Strength Cond Res 30(7): 1805-1812, 2016-The purpose of this study was to investigate the effects of short rest intervals normally associated with hypertrophy-type training versus long rest intervals traditionally used in strength-type training on muscular adaptations in a cohort of young, experienced lifters. Twenty-one young resistance-trained men were randomly assigned to either a group that performed a resistance training (RT) program with 1-minute rest intervals (SHORT) or a group that employed 3-minute rest intervals (LONG). All other RT variables were held constant. The study period lasted 8 weeks with subjects performing 3 total body workouts a week comprised 3 sets of 8-12 repetition maximum (RM) of 7 different exercises per session. Testing was performed prestudy and poststudy for muscle strength (1RM bench press and back squat), muscle endurance (50% 1RM bench press to failure), and muscle thickness of the elbow flexors, triceps brachii, and quadriceps femoris by ultrasound imaging. Maximal strength was significantly greater for both 1RM squat and bench press for LONG compared to SHORT. Muscle thickness was significantly greater for LONG compared to SHORT in the anterior thigh, and a trend for greater increases was noted in the triceps brachii (p = 0.06) as well. Both groups saw significant increases in local upper body muscle endurance with no significant differences noted between groups. This study provides evidence that longer rest periods promote greater increases in muscle strength and hypertrophy in young resistance-trained men.

  5. Effects of Added Resistance Training on Physical Fitness, Body Composition, and Serum Hormone Concentrations During Eight Weeks of Special Military Training Period.

    PubMed

    Vaara, Jani P; Kokko, Juha; Isoranta, Manne; Kyröläinen, Heikki

    2015-11-01

    A high volume of military training has been shown to compromise muscle strength development. We examined effects of added low-volume resistance training during special military training (ST) period, which took place after basic training period. Male conscripts (n = 25) were assigned to standardized ST with added resistance training group (TG, n = 13) and group with standardized ST only (control) (CG, n = 12). Standardized ST with added resistance training group performed 2 resistance training sessions per week for 8 weeks: hypertrophic strength (weeks 1-3), maximal strength (weeks 4-6) and power training (weeks 7-8). Maximal strength tests, load carriage performance (3.2 km, 27 kg), and hormone concentrations were measured before and after ST (mean ± SD). Both groups improved similarly in their load carriage performance time (TG: 1,162 ± 116 seconds vs. 1,047 ± 81 seconds; CG: 1,142 ± 95 seconds vs. 1,035 ± 81 seconds) (p < 0.001) but decreased maximal strength of the lower extremities (TG: 5,250 ± 1,110 N vs. 4,290 ± 720 N; CG: 5,170 ± 1,050 N vs. 4,330 ± 1,230 N) and back muscles (TG: 4,290 ± 990 N vs. 3,570 ± 48 N; CG: 3,920 ± 72 N vs. 3,410 ± 53 N) (p ≤ 0.05). Maximal strength of the upper extremities improved in CG (1,040 ± 200 N vs. 1,140 ± 200 N) (p ≤ 0.05) but not in TG. Maximal strength of the abdominal muscles improved in TG (3,260 ± 510 N vs. 3,740 ± 75 N) (p ≤ 0.05) but not in CG. Testosterone concentration increased in CG (15.2 ± 3.6 nmol·L⁻¹ vs. 21.6 ± 5.0 nmol·L⁻¹) (p < 0.01) but not in TG (18.6 ± 4.3 nmol·L⁻¹ vs. 19.5 ± 9.4 nmol·L⁻¹). In conclusion, interference with strength gains might be related to the high volume of aerobic activities and too low volume of resistance training during ST. To develop strength characteristics, careful periodization and individualization should be adopted in ST.

  6. High-intensity body weight training is comparable to combined training in changes in muscle mass, physical performance, inflammatory markers and metabolic health in postmenopausal women at high risk for type 2 diabetes mellitus: A randomized controlled clinical trial.

    PubMed

    Martins, Fernanda Maria; de Paula Souza, Aletéia; Nunes, Paulo Ricardo Prado; Michelin, Márcia Antoniazi; Murta, Eddie Fernando Candido; Resende, Elisabete Aparecida Mantovani Rodrigues; de Oliveira, Erick Prado; Orsatti, Fábio Lera

    2018-07-01

    This study compared the effects of 12 weeks of high-intensity interval body weight training (HIBWT) with combined training (COMT; aerobic and resistance exercises on body composition, a 6-minute walk test (6MWT; physical performance), insulin resistance (IR) and inflammatory markers in postmenopausal women (PW) at high risk of type 2 diabetes mellitus (TDM2). In this randomized controlled clinical study, 16 PW at high risk of TDM2 were randomly allocated into two groups: HIBWT (n = 8) and COMT (n = 8). The HIBWT group performed a training protocol (length time ~28 min) consisting of ten sets of 60 s of high intensity exercise interspersed by a recovery period of 60 s of low intensity exercise. The COMT group performed a training protocol (length time ~60 min) consisting of a 30 min walk of moderate intensity following by five resistance exercises. All training sessions were performed in the university gym facility three days a week (no consecutive days) for 12 weeks. All outcomes (body composition, muscle function, and IR and inflammatory markers) were assessed at the baseline and at the end of the study. Both groups increased (P < 0.05) muscle mass index (MMI), 6MWT, and interleukin 1 receptor antagonist and decreased fasting glucose, glycated hemoglobin , Insulin, HOMA-IR, and monocyte chemoattractant protein-1 (trend, P = 0.056). HIBWT effects were indistinguishable (P > 0.05) from the effects of COMT. There was a significant (P < 0.05) interaction of time by the group in muscle strength, indicating that only the COMT increased the muscle strength. This study suggests that changes in HOMA, IL-1ra, 6MWT, and MMI with HITBW are similar when compared to COMT in PW at high risk of TDM2. The patients were part of a 12-week training study (ClinicalTrials.gov Identifier: NCT03200639). Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Nutritional status, body composition, and quality of life in community-dwelling sarcopenic and non-sarcopenic older adults: A case-control study.

    PubMed

    Verlaan, Sjors; Aspray, Terry J; Bauer, Juergen M; Cederholm, Tommy; Hemsworth, Jaimie; Hill, Tom R; McPhee, Jamie S; Piasecki, Mathew; Seal, Chris; Sieber, Cornel C; Ter Borg, Sovianne; Wijers, Sander L; Brandt, Kirsten

    2017-02-01

    Sarcopenia, the age-related decrease in muscle mass, strength, and function, is a main cause of reduced mobility, increased falls, fractures and nursing home admissions. Cross-sectional and prospective studies indicate that sarcopenia may be influenced in part by reversible factors like nutritional intake. The aim of this study was to compare functional and nutritional status, body composition, and quality of life of older adults between age and sex-matched older adults with and without sarcopenia. In a multi-centre setting, non-sarcopenic older adults (n = 66, mean ± SD: 71 ± 4 y), i.e. Short Physical Performance Battery (SPPB): 11-12 and normal skeletal muscle mass index, were recruited to match 1:1 by age and sex to previously recruited adults with sarcopenia: SPPB 4-9 and low skeletal muscle mass index. Health-related quality of life, self-reported physical activity levels and dietary intakes were measured using the EQ-5D scale and index, Physical Activity Scale for the Elderly (PASE), and 3-day prospective diet records, respectively. Concentrations of 25-OH-vitamin D, α-tocopherol (adjusted for cholesterol), folate, and vitamin B-12 were assessed in serum samples. In addition to the defined components of sarcopenia, i.e. muscle mass, strength and function, reported physical activity levels and health-related quality of life were lower in the sarcopenic adults (p < 0.001). For similar energy intakes (mean ± SD: sarcopenic, 1710 ± 418; non-sarcopenic, 1745 ± 513, p = 0.50), the sarcopenic group consumed less protein/kg (-6%), vitamin D (-38%), vitamin B-12 (-22%), magnesium (-6%), phosphorus (-5%), and selenium (-2%) (all p < 0.05) compared to the non-sarcopenic controls. The serum concentration of vitamin B-12 was 15% lower in the sarcopenic group (p = 0.015), and all other nutrient concentrations were similar between groups. In non-malnourished older adults with and without sarcopenia, we observed that sarcopenia substantially impacted self-reported quality of life and physical activity levels. Differences in nutrient concentrations and dietary intakes were identified, which might be related to the differences in muscle mass, strength and function between the two groups. This study provides information to help strengthen the characterization of this geriatric syndrome sarcopenia and indicates potential target areas for nutritional interventions. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Characterization of Strength and Function in Ambulatory Adults With GNE Myopathy

    PubMed Central

    Argov, Zohar; Bronstein, Faye; Esposito, Alicia; Feinsod-Meiri, Yael; Florence, Julaine M.; Fowler, Eileen; Greenberg, Marcia B.; Malkus, Elizabeth C.; Rebibo, Odelia; Siener, Catherine S.; Caraco, Yoseph; Kolodny, Edwin H.; Lau, Heather A.; Pestronk, Alan; Shieh, Perry; Mayhew, Jill E.

    2017-01-01

    Abstract Objective: To characterize the pattern and extent of muscle weakness and impact on physical functioning in adults with GNEM. Methods: Strength and function were assessed in GNEM subjects (n = 47) using hand-held dynamometry, manual muscle testing, upper and lower extremity functional capacity tests, and the GNEM-Functional Activity Scale (GNEM-FAS). Results: Profound upper and lower muscle weakness was measured using hand-held dynamometry in a characteristic pattern, previously described. Functional tests and clinician-reported outcomes demonstrated the consequence of muscle weakness on physical functioning. Conclusions: The characteristic pattern of upper and lower muscle weakness associated with GNEM and the resulting functional limitations can be reliably measured using these clinical outcome assessments of muscle strength and function. PMID:28827485

  9. The effect of low back pain on trunk muscle size/function and hip strength in elite football (soccer) players.

    PubMed

    Hides, Julie A; Oostenbroek, Tim; Franettovich Smith, Melinda M; Mendis, M Dilani

    2016-12-01

    Low back pain (LBP) is a common problem in football (soccer) players. The effect of LBP on the trunk and hip muscles in this group is unknown. The relationship between LBP and trunk muscle size and function in football players across the preseason was examined. A secondary aim was to assess hip muscle strength. Twenty-five elite soccer players participated in the study, with assessments conducted on 23 players at both the start and end of the preseason. LBP was assessed with questionnaires and ultrasound imaging was used to assess size and function of trunk muscles at the start and end of preseason. Dynamometry was used to assess hip muscle strength at the start of the preseason. At the start of the preseason, 28% of players reported the presence of LBP and this was associated with reduced size of the multifidus, increased contraction of the transversus abdominis and multifidus muscles. LBP decreased across the preseason, and size of the multifidus muscle improved over the preseason. Ability to contract the abdominal and multifidus muscles did not alter across the preseason. Asymmetry in hip adductor and abductor muscle strength was found between players with and without LBP. Identifying modifiable factors in players with LBP may allow development of more targeted preseason rehabilitation programmes.

  10. Skeletal muscle relaxant effect of a standardized extract of Valeriana officinalis L. after acute administration in mice.

    PubMed

    Caudal, Dorian; Guinobert, Isabelle; Lafoux, Aude; Bardot, Valérie; Cotte, César; Ripoche, Isabelle; Chalard, Pierre; Huchet, Corinne

    2018-04-01

    Valeriana officinalis L. root extracts are traditionally taken for their sedative and anxiolytic properties and are also used for muscle relaxation. Relaxant effects were clearly observed on smooth muscle whereas data on effects on skeletal muscle are scarce and inconsistent. The aim of this study was to assess whether a standardized extract (SE) of V. officinalis had myorelaxant effects by decreasing skeletal muscle strength and/or neuromuscular tone in mice. Mice received an acute dose of V. officinalis SE (2 or 5 g/kg per os) or tetrazepam (10 mg/kg ip), a standard myorelaxant drug. Thirty minutes later, the maximal muscle strength was measured using a grip test, while global skeletal muscle function (endurance and neuromuscular tone) was assessed in a wire hanging test. Compared to tetrazepam, both doses of V. officinalis SE induced a pronounced decrease in skeletal muscle strength without any significant effects on endurance and neuromuscular tone. This study provides clear evidence that the extract of V. officinalis tested has a relaxant effect on skeletal muscle. By decreasing skeletal muscle strength without impacting endurance and neuromuscular tone, V. officinalis SE could induce less undesirable side effects than standard myorelaxant agents, and be particularly useful for avoiding falls in the elderly.

  11. Baseline and longitudinal change in isometric muscle strength prior to radiographic progression in osteoarthritic and pre-osteoarthritic knees--data from the Osteoarthritis Initiative.

    PubMed

    Eckstein, F; Hitzl, W; Duryea, J; Kent Kwoh, C; Wirth, W

    2013-05-01

    To test whether cross-sectional or longitudinal measures of thigh muscle isometric strength differ between knees with and without subsequent radiographic progression of knee osteoarthritis (KOA), with particular focus on pre-osteoarthritic female knees (knees with risk factors but without definite radiographic KOA). Of 4,796 Osteoarthritis Initiative participants, 2,835 knees with Kellgren Lawrence grade (KLG) 0-3 had central X-ray readings, annual quantitative joint space width (JSW) and isometric muscle strength measurements (Good strength chair). Separate slope analysis of covariance (ANCOVA) models were used to determine differences in strength between "progressor" and "non-progressor" knees, after adjusting for age, body mass index, and pain. 466 participant knees exceeded the smallest detectable JSW change during each of two observation intervals (year 2→4 and year 1→3) and were classified as progressors (213 women, 253 men; 128 KLG0/1, 330 KLG2/3); 946 participant knees did not exceed this threshold in either interval and were classified as non-progressors (588 women, 358 from men; 288KLG0/1, 658KLG2/3). Female progressor knees, including those with KLG0/1, tended to have lower extensor and flexor strength at year 2 and at baseline than those without progression, but the difference was not significant after adjusting for confounders. No significant difference was observed in longitudinal change of muscle strength (baseline→year 2) prior to radiographic progression. No significant differences were found for muscle strength in men, and none for change in strength concomitant with progression. This study provides no strong evidence that (changes in) isometric muscle strength precedes or is associated with structural (radiographic) progression of KOA. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  12. Baseline and Longitudinal Change in Isometric Muscle Strength Prior to Radiographic Progression in Osteoarthritic and Pre-Osteoarthritic Knees- Data from the Osteoarthritis Initiative

    PubMed Central

    Eckstein, Felix; Hitzl, Wolfgang; Duryea, Jeff; Kwoh, C. Kent; Wirth, Wolfgang

    2013-01-01

    OBJECTIVE To test whether cross-sectional or longitudinal measures of thigh muscle isometric strength differ between knees with and without subsequent radiographic progression of knee osteoarthritis (KOA), with particular focus on pre-osteoarthritic female knees (knees with risk factors but without definite radiographic KOA). METHODS Of 4796 Osteoarthritis Initiative participants, 2835 knees with Kellgren Lawrence grade (KLG) 0–3 had central X-ray readings, annual quantitative joint space width (JSW) and isometric muscle strength measurements (Good strength chair). Separate slope ANCOVA models were used to determine differences in strength between “progressor” and “non- progressor” knees, after adjusting for age, body mass index, and pain. RESULTS 466 participant knees exceeded the smallest detectable JSW change during each of two observation intervals (year 2→4 and year 1→3) and were classified as progressors (213 women, 253 men; 128 KLG0/1, 330 KLG2/3); 946 participant knees did not exceed this threshold in either interval and were classified as non-progressors (588 women, 358 from men; 288KLG0/1, 658KLG2/3). Female progressor knees, including those with KLG0/1, tended to have lower extensor and flexor strength at year2 and at baseline than those without progression, but the difference was not significant after adjusting for confounders. No significant difference was observed in longitudinal change of muscle strength (baseline→year2) prior to radiographic progression. No significant differences were found for muscle strength in men, and none for change in strength concomitant with progression. CONCLUSION This study provides no strong evidence that (changes in) isometric muscle strength precedes or is associated with structural (radiographic) progression of KOA. PMID:23473978

  13. Cross-sectional association between muscle strength and self-reported physical function in 195 hip osteoarthritis patients.

    PubMed

    Hall, Michelle; Wrigley, Tim V; Kasza, Jessica; Dobson, Fiona; Pua, Yong Hao; Metcalf, Ben R; Bennell, Kim L

    2017-02-01

    This study aimed to evaluate associations between strength of selected hip and knee muscles and self-reported physical function, and their clinical relevance, in men and women with hip osteoarthritis (OA). Cross-sectional data from 195 participants with symptomatic hip OA were used. Peak isometric torque of hip extensors, flexors, and abductors, and knee extensors were measured, along with physical function using the Western Ontario and McMaster Universities Osteoarthritis Index questionnaire. Separate linear regressions in men and women were used to determine the association between strength and physical function accounting for age, pain, and radiographic disease severity. Subsequently, magnitudes of strength associated with estimates of minimal clinically important improvement (MCII) in physical function were estimated according to severity of difficulty with physical function. For men, greater strength of the hip extensors, hip flexors and knee extensors were each associated with better physical function. For women, greater muscle strength of all tested muscles were each associated with better physical function. For men and women, increases in muscle strength between 17-32%, 133-223%, and 151-284% may be associated with estimates of MCII in physical function for those with mild, moderate, and severe physical dysfunction, respectively. Greater isometric strength of specific hip and thigh muscle groups may be associated with better self-reported physical function in men and women. In people with mild physical dysfunction, an estimate of MCII in physical function may be associated with attainable increases in strength. However, in patients with more severe dysfunction, greater and perhaps unattainable strength increases may be associated with an estimate of MCII in physical function. Longitudinal studies are required to validate these observations. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Alterations of the in vivo torque-velocity relationship of human skeletal muscle following 30 days exposure to simulated microgravity

    NASA Technical Reports Server (NTRS)

    Dudley, Gary A.; Duvoisin, Marc; Convertino, Victor A.; Buchanan, Paul

    1989-01-01

    The effect of a continuous 30-d-long 6-deg headdown bedrest (BR) on the force output ability of skeletal muscles was investigated in human subjects by measuring peak angle specific torque of the knee extensor (KE) and knee flexor (KF) muscle groups of both limbs during unilateral efforts at four speeds (0.52. 1.74, 2.97, and 4.19 rad/sec) during eccentric action. It was found that, for the KE muscle group, the headdown BR resulted in decreases, by 19 percent on the average, of peak angle specific torque; on the other hand, the strength of the KF muscles was not altered significantly. A post-BR recovery for 30 days was found to restore muscle strength of the KE muscle group to about 92 percent of the pre-BR values. Changes of strength were not affected by the type of speed of muscle action.

  15. NemaFlex: a microfluidics-based technology for standardized measurement of muscular strength of C. elegans.

    PubMed

    Rahman, Mizanur; Hewitt, Jennifer E; Van-Bussel, Frank; Edwards, Hunter; Blawzdziewicz, Jerzy; Szewczyk, Nathaniel J; Driscoll, Monica; Vanapalli, Siva A

    2018-06-12

    Muscle strength is a functional measure of quality of life in humans. Declines in muscle strength are manifested in diseases as well as during inactivity, aging, and space travel. With conserved muscle biology, the simple genetic model C. elegans is a high throughput platform in which to identify molecular mechanisms causing muscle strength loss and to develop interventions based on diet, exercise, and drugs. In the clinic, standardized strength measures are essential to quantitate changes in patients; however, analogous standards have not been recapitulated in the C. elegans model since force generation fluctuates based on animal behavior and locomotion. Here, we report a microfluidics-based system for strength measurement that we call 'NemaFlex', based on pillar deflection as the nematode crawls through a forest of pillars. We have optimized the micropillar forest design and identified robust measurement conditions that yield a measure of strength that is independent of behavior and gait. Validation studies using a muscle contracting agent and mutants confirm that NemaFlex can reliably score muscular strength in C. elegans. Additionally, we report a scaling factor to account for animal size that is consistent with a biomechanics model and enables comparative strength studies of mutants. Taken together, our findings anchor NemaFlex for applications in genetic and drug screens, for defining molecular and cellular circuits of neuromuscular function, and for dissection of degenerative processes in disuse, aging, and disease.

  16. Whey protein, amino acids, and vitamin D supplementation with physical activity increases fat-free mass and strength, functionality, and quality of life and decreases inflammation in sarcopenic elderly.

    PubMed

    Rondanelli, Mariangela; Klersy, Catherine; Terracol, Gilles; Talluri, Jacopo; Maugeri, Roberto; Guido, Davide; Faliva, Milena A; Solerte, Bruno S; Fioravanti, Marisa; Lukaski, Henry; Perna, Simone

    2016-03-01

    Interventions to attenuate the adverse effects of age-related loss of skeletal muscle and function include increased physical activity and nutritional supplementation. This study tested the hypothesis that nutritional supplementation with whey protein (22 g), essential amino acids (10.9 g, including 4 g leucine), and vitamin D [2.5 μg (100 IU)] concurrent with regular, controlled physical activity would increase fat-free mass, strength, physical function, and quality of life, and reduce the risk of malnutrition in sarcopenic elderly persons. A total of 130 sarcopenic elderly people (53 men and 77 women; mean age: 80.3 y) participated in a 12-wk randomized, double-blind, placebo-controlled supplementation trial. All participants concurrently took part in a controlled physical activity program. We examined body composition with dual-energy X-ray absorptiometry, muscle strength with a handgrip dynamometer, and blood biochemical indexes of nutritional and health status, and evaluated global nutritional status, physical function, and quality of life before and after the 12 wk of intervention. Compared with physical activity and placebo, supplementation plus physical activity increased fat-free mass (1.7-kg gain, P < 0.001), relative skeletal muscle mass (P = 0.009), android distribution of fat (P = 0.021), handgrip strength (P = 0.001), standardized summary scores for physical components (P = 0.030), activities of daily living (P = 0.001), mini nutritional assessment (P = 0.003), and insulin-like growth factor I (P = 0.002), and lowered C-reactive protein (P = 0.038). Supplementation with whey protein, essential amino acids, and vitamin D, in conjunction with age-appropriate exercise, not only boosts fat-free mass and strength but also enhances other aspects that contribute to well-being in sarcopenic elderly. This trial was registered at clinicaltrials.gov as NCT02402608. © 2016 American Society for Nutrition.

  17. Effects of caffeine intake on muscle strength and power: a systematic review and meta-analysis.

    PubMed

    Grgic, Jozo; Trexler, Eric T; Lazinica, Bruno; Pedisic, Zeljko

    2018-01-01

    Caffeine is commonly used as an ergogenic aid. Literature about the effects of caffeine ingestion on muscle strength and power is equivocal. The aim of this systematic review and meta-analysis was to summarize results from individual studies on the effects of caffeine intake on muscle strength and power. A search through eight databases was performed to find studies on the effects of caffeine on: (i) maximal muscle strength measured using 1 repetition maximum tests; and (ii) muscle power assessed by tests of vertical jump. Meta-analyses of standardized mean differences (SMD) between placebo and caffeine trials from individual studies were conducted using the random effects model. Ten studies on the strength outcome and ten studies on the power outcome met the inclusion criteria for the meta-analyses. Caffeine ingestion improved both strength (SMD = 0.20; 95% confidence interval [CI]: 0.03, 0.36; p  = 0.023) and power (SMD = 0.17; 95% CI: 0.00, 0.34; p  = 0.047). A subgroup analysis indicated that caffeine significantly improves upper (SMD = 0.21; 95% CI: 0.02, 0.39; p  = 0.026) but not lower body strength (SMD = 0.15; 95% CI: -0.05, 0.34; p  = 0.147). The meta-analyses showed significant ergogenic effects of caffeine ingestion on maximal muscle strength of upper body and muscle power. Future studies should more rigorously control the effectiveness of blinding. Due to the paucity of evidence, additional findings are needed in the female population and using different forms of caffeine, such as gum and gel.

  18. Role of maximal inspiratory presure in the evaluetion of respiratory muscle strength in asthmatics - Systematic review.

    PubMed

    Cavalcante Marcelino, Alessandra M F; da Silva, Hilton Justino

    2010-01-01

    Asthma is a chronic illness of the airways that can reduce respiratory muscle strength due to the resulting hyperinflation or treatment with corticosteroids. One of the ways to evaluate this respiratory muscular weakness is the Maximal Inspiratory Pressure (PImax). A systematic review of the databases PUBMED/MEDLINE, LILACS and SCIELO was carried through, using the key words: Asthma, respiratory muscle and muscle strength. Fifty were found and six articles that evaluated the PImax in asthmatics, from these, thirty were excluded, making a total of twenty six articles. Through the present revision we show the effectiveness of PImax in evaluating respiratory muscle strength in asthmatics. More studies are needed, however, fot better understanding of the asthmatic individual. Rev Port Pneumol 2010; XVI (3): 463-470. © 2010 Sociedade Portuguesa de Pneumologia/SPP.

  19. The effects of short-term exercise training on peak-torque are time- and fiber-type dependent.

    PubMed

    Ureczky, Dóra; Vácz, Gabriella; Costa, Andreas; Kopper, Bence; Lacza, Zsombor; Hortobágyi, Tibor; Tihanyi, József

    2014-08-01

    We examined the susceptibility of fast and slow twitch muscle fibers in the quadriceps muscle to eccentric exercise-induced muscle damage. Nine healthy men (age: 22.5 ± 1.6 years) performed maximal eccentric quadriceps contractions at 120°·s-1 over a 120° of knee joint range of motion for 6 consecutive days. Biopsies were taken from the vastus lateralis muscle before repeated bouts of eccentric exercise on the third and seventh day. Immunohistochemical procedures were used to determine fiber composition and fibronectin activity. Creatine kinase (CK) and lactate dehydrogenase (LDH) were determined in serum. Average torque was calculated in each day for each subject. Relative to baseline, average torque decreased 37.4% till day 3 and increased 43.0% from the day 3 to day 6 (p < 0.001). Creatine kinase and LDH were 70.6 and 1.5 times higher on day 3 and 75.5 and 1.4 times higher on day 6. Fibronectin was found in fast fibers in subjects with high CK level on day 3 and 7 after exercise, but on day 7, fibronectin seemed in both slow and fast fibers except in muscles of 2 subjects with high fast fiber percentage. Peak torque and muscle fiber-type composition measured at baseline showed a strong positive association on day 3 (r = 0.76, p < 0.02) and strong negative association during recovery between day 3 and day 6 (r = -0.76, p < 0.02), and day 1 and day 6 (r = 0.84, p < 0.001). We conclude that the damage of fast fibers preceded the damage of slow fibers, and muscles with slow fiber dominance were more susceptible to repeated bouts of eccentric exercise than fast fiber dominance muscles. The data suggest that the responses to repeated bouts of eccentric exercise are fiber-type-dependent in the quadriceps muscle, which can be the basis for the design of individualized strength training protocols.

  20. High and odd impact exercise training improved physical function and fall risk factors in community-dwelling older men

    PubMed Central

    Allison, Sarah J.; Brooke-Wavell, Katherine; Folland, Jonathan

    2018-01-01

    High impact exercise programmes can improve bone strength, but little is known about whether this type of training further benefits fracture risk by improving physical function in older people. Objectives: This study investigated the influence of high impact exercise on balance, muscle function and morphology in older men. Methods: Fifty, healthy men (65-80 years) were assigned to a 6-month multidirectional hopping programme (TG) and twenty age and physical activity matched volunteers served as controls (CG). Before and after training, muscle function (hop performance, leg press and plantar- and dorsiflexion strength) and physiological determinants (muscle thickness and architecture) as well as balance control (sway path, one leg stance duration) were measured. Resting gastrocnemius medialis (GM) muscle thickness and architecture were assessed using ultrasonography. Results: Significant improvements in hop impulse (+12%), isometric leg-press strength (+4%) and ankle plantarflexion strength (+11%), dorsiflexor strength (+20%) were found in the TG compared to the CG (ANOVA interaction, P<0.05) and unilateral stance time improved over time for TG. GM muscle thickness indicated modest hypertrophy (+4%), but muscle architecture was unchanged. Conclusion: The positive changes in strength and balance after high impact and odd impact training would be expected to improve physical function in older adults. PMID:29504585

  1. High and odd impact exercise training improved physical function and fall risk factors in community-dwelling older men.

    PubMed

    Allison, Sarah J; Brooke-Wavell, Katherine; Folland, Jonathan

    2018-03-01

    High impact exercise programmes can improve bone strength, but little is known about whether this type of training further benefits fracture risk by improving physical function in older people. This study investigated the influence of high impact exercise on balance, muscle function and morphology in older men. Fifty, healthy men (65-80 years) were assigned to a 6-month multidirectional hopping programme (TG) and twenty age and physical activity matched volunteers served as controls (CG). Before and after training, muscle function (hop performance, leg press and plantar- and dorsiflexion strength) and physiological determinants (muscle thickness and architecture) as well as balance control (sway path, one leg stance duration) were measured. Resting gastrocnemius medialis (GM) muscle thickness and architecture were assessed using ultrasonography. Significant improvements in hop impulse (+12%), isometric leg-press strength (+4%) and ankle plantarflexion strength (+11%), dorsiflexor strength (+20%) were found in the TG compared to the CG (ANOVA interaction, P⟨0.05) and unilateral stance time improved over time for TG. GM muscle thickness indicated modest hypertrophy (+4%), but muscle architecture was unchanged. The positive changes in strength and balance after high impact and odd impact training would be expected to improve physical function in older adults.

  2. Pelvic floor muscle strength of women consulting at the gynecology outpatient clinics and its correlation with sexual dysfunction: A cross-sectional study.

    PubMed

    Ozdemir, Filiz Ciledag; Pehlivan, Erkan; Melekoglu, Rauf

    2017-01-01

    To investigate the pelvic floor muscle strength of the women andevaluateits possible correlation with sexual dysfunction. In this cross-sectional type study, stratified clusters were used for the sampling method. Index of Female Sexual Function (IFSF) worksheetwere used for questions on sexual function. The pelvic floor muscle strength of subjects was assessed byperineometer. The chi-squared test, logistic regression and Pearson's correlation analysis were used for the statistical analysis. Four hundred thirty primiparous women, mean age 38.5 participated in this study. The average pelvic floor muscle strength value was found 31.4±9.6 cm H 2 O and the average Index of Female Sexual Function (IFSF) score was found 26.5±6.9. Parity (odds ratio OR=5.546) and age 40 or higher (OR=3.484) were found correlated with pelvic floor muscle weakness (p<0.05). The factors directly correlated with sexual dysfunction were found being overweight (OR=2.105) and age 40 or higher (OR=2.451) (p<0.05). Pearson's correlation analysis showed that there was a statistically significantlinear correlation between the muscular strength of the pelvic floor and sexual function (p=0.001). The results suggested subjects with decreased pelvic floor muscle strength value had higher frequency of sexual dysfunction.

  3. Quality of life in patients with myotonic dystrophy type 2.

    PubMed

    Rakocevic Stojanovic, Vidosava; Peric, Stojan; Paunic, Teodora; Pesovic, Jovan; Vujnic, Milorad; Peric, Marina; Nikolic, Ana; Lavrnic, Dragana; Savic Pavicevic, Dusanka

    2016-06-15

    To analyze quality of life (QoL) in a large cohort of myotonic dystrophy type 2 (DM2) patients in comparison to DM1 control group using both generic and disease specific questionnaires. In addition, we intended to identify different factors that might affect QoL of DM2 subjects. 49 DM2 patients were compared with 42 adult-onset DM1 patients. Patients completed SF-36 questionnaire and individualized neuromuscular quality of life questionnaire (INQoL). Following measures were also included: Medical Research Council 0-5 point scale for muscle strength, Addenbrooke's cognitive examination revised for cognitive status, Hamilton rating scale for depression, Krupp's fatigue severity scale and daytime sleepiness scale (DSS) RESULTS: SF-36 total score and physical composite score did not differ between DM1 and DM2 patients (p>0.05). However, role emotional and mental composite score were better in DM2 (p<0.05). INQoL total score was similar in both groups (p>0.05), although DM2 patients showed less impairment in independence (p<0.05) and body image domains (p<0.01). Regarding symptoms assessed by INQoL, DM2 patients showed less severe complaint of myotonia (p<0.01). Multiple linear regression analysis showed that significant predictors of worse QoL in DM2 patients were older age, worse muscle strength and higher level of fatigue. QoL reports of DM2 patients with the most severe form of the disease are comparable to those of DM1 patients. Special attention of clinicians should be paid to DM2 patients with older age, more severe muscle weakness and higher level of fatigue since they may be at higher risk to have worse QoL. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Different nutritional assessment tools as predictors of postoperative complications in patients undergoing colorectal cancer resection.

    PubMed

    Maurício, Sílvia Fernandes; Xiao, Jingjie; Prado, Carla M; Gonzalez, Maria Cristina; Correia, Maria Isabel Toulson Davisson

    2017-09-04

    Malnutrition in patients with colorectal cancer contributes to increased postoperative complications. The aim of the study was to evaluate the prognostic value of several nutritional assessment parameters: body mass index versus percentage of weight loss grading system (BMI/%WL); Patient-Generated Subjective Global Assessment (PG-SGA); standardized phase angle (SPA) by BIA; muscle strength by handgrip strength; muscle mass by computerized tomography; and the combination of muscle mass and strength in patients undergoing resection surgery. Patients diagnosed with cancer of the colon or rectum, who were over 18 years old and were scheduled to undergo surgical treatment were invited to participate. Postoperative complications were assessed from the first day post-surgery until discharge. Complications classified as Grade II or above according to the Clavien-Dindo classification were considered. Chi-square test or Fisher's exact test, bivariate analysis, Poisson regression and receiver operator characteristic (ROC) curve were utilized and p < 0.05 was considered significant. 84 patients were evaluated, with 28 (33.3%) presenting with Grade II postoperative complications. SPA showed no association with postoperative complications (p = 0.199). In multivariate analysis, low skeletal muscle mass showed a relative risk (RR) of 1.80 (CI: 1.02-3.17), BMI/%WL equal or higher than grade 3 had a RR of 1.90 (95% CI: 1.22-3.39). PG-SGA classified as malnutrition showed a RR of 2.08 (95% CI: 1.06-4.06); and low muscle mass plus low muscle strength showed a RR 2.13 (95% CI: 1.23-3.69). Low strength alone was not associated with postoperative complications after controlling for confounding factors (p = 0.16; 95% CI: 0.83-2.77). Low muscle mass in combination with low strength showed the highest predictive power for postoperative complications (AUC: 0.68; CI: 0.56-0.80). BMI/%WL > grade 3, PG-SGA defined malnutrition, low muscle mass and low muscle mass plus low strength were independent risk factors for complications controlling for confounding factors. However, low muscle mass in combination with low muscle strength were the strongest variables associated with complications. NCT02901132 (www.clinicaltrials.gov). Copyright © 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  5. Insulin resistance and muscle strength in older persons.

    PubMed

    Abbatecola, Angela M; Ferrucci, Luigi; Ceda, Gianpaolo; Russo, Cosimo R; Lauretani, Fulvio; Bandinelli, Stefania; Barbieri, Michelangela; Valenti, Giorgio; Paolisso, Giuseppe

    2005-10-01

    The functional consequences of an age-related insulin resistance (IR) state on muscle functioning are unknown. Because insulin is needed for adequate muscle function, an age-related insulin-resistant state may also be a determining factor. We evaluated the relationship between IR and handgrip muscle strength in men and women from a large population-based study (n = 968). The degree of IR was evaluated by the homeostasis model assessment (HOMA) and muscle strength was assessed using handgrip. Simple sex-stratified correlations demonstrated that, in men, body mass index-adjusted handgrip strength correlated positively with physical activity (r = 0.321; p < .001), muscle area (r = 0.420; p < .001), muscle density (r = 0.263; p = .001), plasma albumin (r = 0.156; p = .001), insulin-like growth factor-1 (r = 0.258; p < .001), calcium (r = 0.140; p = .006), and testosterone (r = 0.325; p < .001) concentrations, whereas a negative association was found for age (r = -0.659; p < .001) and myoglobin plasma levels (r = -0.164; p =.001). In women, body mass index-adjusted handgrip strength correlated positively with physical activity (r = 0.280; p < .001), muscle area (r = 0.306; p < .001), muscle density (r = 0.341; p = .001), plasma albumin (r = 0.140; p =.001), and insulin-like growth factor-1 (r = 0.300; p < .001), whereas a negative association was found for age (r = -0.563; p < .001), myoglobin levels (r = -0.164; p = .001), and IR (r = -0.130; p = .04). Sex-stratified analyses adjusted for multiple confounders showed that the relationship between IR and handgrip strength was found significant in women, whereas it was negligible and not significant in men.

  6. Respiratory weakness in patients with chronic neck pain.

    PubMed

    Dimitriadis, Zacharias; Kapreli, Eleni; Strimpakos, Nikolaos; Oldham, Jacqueline

    2013-06-01

    Respiratory muscle strength is one parameter that is currently proposed to be affected in patients with chronic neck pain. This study was aimed at examining whether patients with chronic neck pain have reduced respiratory strength and with which neck pain problems their respiratory strength is associated. In this controlled cross-sectional study, 45 patients with chronic neck pain and 45 healthy well-matched controls were recruited. Respiratory muscle strength was assessed through maximal mouth pressures. The subjects were additionally assessed for their pain intensity and disability, neck muscle strength, endurance of deep neck flexors, neck range of movement, forward head posture and psychological states. Paired t-tests showed that patients with chronic neck pain have reduced Maximal Inspiratory (MIP) (r = 0.35) and Maximal Expiratory Pressures (MEP) (r = 0.39) (P < 0.05). Neck muscle strength (r > 0.5), kinesiophobia (r < -0.3) and catastrophizing (r < -0.3) were significantly associated with maximal mouth pressures (P < 0.05), whereas MEP was additionally negatively correlated with neck pain and disability (r < -0.3, P < 0.05). Neck muscle strength was the only predictor that remained as significant into the prediction models of MIP and MEP. It can be concluded that patients with chronic neck pain present weakness of their respiratory muscles. This weakness seems to be a result of the impaired global and local muscle system of neck pain patients, and psychological states also appear to have an additional contribution. Clinicians are advised to consider the respiratory system of patients with chronic neck pain during their usual assessment and appropriately address their treatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Analysis of postural control and muscular performance in young and elderly women in different age groups

    PubMed Central

    Gomes, Matheus M.; Reis, Júlia G.; Carvalho, Regiane L.; Tanaka, Erika H.; Hyppolito, Miguel A.; Abreu, Daniela C. C.

    2015-01-01

    BACKGROUND: muscle strength and power are two factors affecting balance. The impact of muscle strength and power on postural control has not been fully explored among different age strata over sixty. OBJECTIVES: the aim of the present study was to assess the muscle strength and power of elderly women in different age groups and determine their correlation with postural control. METHOD: eighty women were divided into four groups: the young 18-30 age group (n=20); the 60-64 age group (n=20); the 65-69 age group (n=20); and the 70-74 age group (n=20). The participants underwent maximum strength (one repetition maximum or 1-RM) and muscle power tests to assess the knee extensor and flexor muscles at 40%, 70%, and 90% 1-RM intensity. The time required by participants to recover their balance after disturbing their base of support was also assessed. RESULTS: the elderly women in the 60-64, 65-69, and 70-74 age groups exhibited similar muscle strength, power, and postural control (p>0.05); however, these values were lower than those of the young group (p<0.05) as expected. There was a correlation between muscle strength and power and the postural control performance (p<0.05). CONCLUSION: despite the age difference, elderly women aged 60 to 74 years exhibited similar abilities to generate strength and power with their lower limbs, and this ability could be one factor that explains the similar postural control shown by these women. PMID:25651132

  8. Strength and fatigability of selected muscles in upper limb: assessing muscle imbalance relevant to tennis elbow.

    PubMed

    Alizadehkhaiyat, O; Fisher, A C; Kemp, G J; Frostick, S P

    2007-08-01

    The aetiology of tennis elbow has remained uncertain for more than a century. To examine muscle imbalance as a possible pathophysiological factor requires a reliable method of assessment. This paper describes the development of such a method and its performance in healthy subjects. We propose a combination of surface and fine-wire EMG of shoulder and forearm muscles and wrist strength measurements as a reliable tool for assessing muscle imbalance relevant to the pathophysiology of tennis elbow. Six healthy volunteers participated. EMG data were acquired at 50% maximal voluntary isometric contraction from five forearm muscles during grip and three shoulder muscles during external rotation and abduction, and analysed using normalized median frequency slope as a fatigue index. Wrist extension/flexion strength was measured using a purpose-built dynamometer. Significant negative slope of median frequency was found for all muscles, with good reproducibility, and no significant difference in slope between the different muscles of the shoulder and the wrist. (Amplitude slope showed high variability and was therefore unsuitable for this purpose.) Wrist flexion was 27+/-8% stronger than extension (mean+/-SEM, p=0.006). This is a reliable method for measuring muscle fatigue in forearm and shoulder. EMG and wrist strength studies together can be used for assessing and identifying the muscle balance in the wrist-forearm-shoulder chain.

  9. Morphologic Characteristics and Strength of the Hamstring Muscles Remain Altered at 2 Years After Use of a Hamstring Tendon Graft in Anterior Cruciate Ligament Reconstruction.

    PubMed

    Konrath, Jason M; Vertullo, Christopher J; Kennedy, Ben A; Bush, Hamish S; Barrett, Rod S; Lloyd, David G

    2016-10-01

    The hamstring tendon graft used in anterior cruciate ligament (ACL) reconstruction has been shown to lead to changes to the semitendinosus and gracilis musculature. We hypothesized that (1) loss of donor muscle size would significantly correlate with knee muscle strength deficits, (2) loss of donor muscle size would be greater for muscles that do not experience tendon regeneration, and (3) morphological adaptations would also be evident in nondonor knee muscles. Cross-sectional study; Level of evidence, 3. Twenty participants (14 men and 6 women, mean age 29 ± 7 years, mean body mass 82 ± 15 kg) who had undergone an ACL reconstruction with a hamstring tendon graft at least 2 years previously underwent bilateral magnetic resonance imaging and subsequent strength testing. Muscle and tendon volumes, peak cross-sectional areas (CSAs), and lengths were determined for 12 muscles and 6 functional muscle groups of the surgical and contralateral limbs. Peak isokinetic concentric strength was measured in knee flexion/extension and internal/external tibial rotation. Only 35% of the patients showed regeneration of both the semitendinosus and gracilis tendons. The regenerated tendons were longer with larger volume and CSA compared with the contralateral side. Deficits in semitendinosus and gracilis muscle size were greater for muscles in which tendons did not regenerate. In addition, combined hamstring muscles (semitendinosus, semimembranosus, and biceps femoris) and combined medial knee muscles (semitendinosus, semimembranosus, gracilis, vastus medialis, medial gastrocnemius, and sartorius) on the surgical side were reduced in volume by 12% and 10%, respectively. A 7% larger volume was observed in the surgical limb for the biceps femoris muscle and corresponded with a lower internal/external tibial rotation strength ratio. The difference in volume, peak CSA, and length of the semitendinosus and gracilis correlated significantly with the deficit in knee flexion strength, with Pearson correlations of 0.51, 0.57, and 0.61, respectively. The muscle-tendon properties of the semitendinosus and gracilis are substantially altered after harvesting, and these alterations may contribute to knee flexor weakness in the surgical limb. These deficits are more pronounced in knees with tendons that do not regenerate and are only partially offset by compensatory hypertrophy of other hamstring muscles. © 2016 The Author(s).

  10. ACTN3 R577X Polymorphism and Neuromuscular Response to Resistance Training

    PubMed Central

    Gentil, Paulo; Pereira, Rinaldo W.; Leite, Tailce K.M.; Bottaro, Martim

    2011-01-01

    The R577X polymorphism at the ACTN3 gene has been associated with muscle strength, hypertrophy and athletic status. The X allele, which is associated with the absence of ACTN3 protein is supposed to impair performance of high force/velocity muscle contractions. The purpose of the present study was to investigate the association of the R577X polymorphism with the muscle response to resistance training in young men. One hundred forty one men performed two resistance training sessions per week for 11 weeks. Participants were tested for 1RM bench press, knee extensors peak torque, and knee extensors muscle thickness at baseline and after the training period. Genotyping was conducted using de DdeI restriction enzyme. Genotype distribution was 34.4% for RR, 47% for RX and 18.6% for the XX genotype. According to the results, the R577X polymorphism at the ACTN3 gene is not associated with baseline muscle strength or with the muscle strength response to resistance training. However, only carriers of the R allele showed increases in muscle thickness in response to training. Key points ACTN3 Genotype distribution in the present study was similar to others populations (34.4% for RR, 47% for RX, and 18.6% for the XX). The R577X polymorphism at the ACTN3 gene is not associated with baseline muscle strength or with the muscle strength response to resistance training. It appears that the R allele carriers respond better to muscle thickness gains in response to training. PMID:24149888

  11. ACTN3 R577X Polymorphism and Neuromuscular Response to Resistance Training.

    PubMed

    Gentil, Paulo; Pereira, Rinaldo W; Leite, Tailce K M; Bottaro, Martim

    2011-01-01

    The R577X polymorphism at the ACTN3 gene has been associated with muscle strength, hypertrophy and athletic status. The X allele, which is associated with the absence of ACTN3 protein is supposed to impair performance of high force/velocity muscle contractions. The purpose of the present study was to investigate the association of the R577X polymorphism with the muscle response to resistance training in young men. One hundred forty one men performed two resistance training sessions per week for 11 weeks. Participants were tested for 1RM bench press, knee extensors peak torque, and knee extensors muscle thickness at baseline and after the training period. Genotyping was conducted using de DdeI restriction enzyme. Genotype distribution was 34.4% for RR, 47% for RX and 18.6% for the XX genotype. According to the results, the R577X polymorphism at the ACTN3 gene is not associated with baseline muscle strength or with the muscle strength response to resistance training. However, only carriers of the R allele showed increases in muscle thickness in response to training. Key pointsACTN3 Genotype distribution in the present study was similar to others populations (34.4% for RR, 47% for RX, and 18.6% for the XX).The R577X polymorphism at the ACTN3 gene is not associated with baseline muscle strength or with the muscle strength response to resistance training.It appears that the R allele carriers respond better to muscle thickness gains in response to training.

  12. Balance and muscle power of children with Charcot-Marie-Tooth.

    PubMed

    Silva, Tais R; Testa, Amanda; Baptista, Cyntia R J A; Marques, Wilson; Mattiello-Sverzut, Ana C

    2014-01-01

    In certain diseases, functional constraints establish a greater relationship with muscle power than muscle strength. However, in hereditary peripheral polyneuropathies, no such relationship was found in the literature. In children with Charcot-Marie-Tooth (CMT), to identify the impact of muscle strength and range of movement on the static/dynamic balance and standing long jump based on quantitative and functional variables. The study analyzed 19 participants aged between 6 and 16 years, of both genders and with clinical diagnoses of CMT of different subtypes. Anthropometric data, muscle strength of the lower limbs (hand-held dynamometer), ankle and knee range of movement, balance (Pediatric Balance Scale) and standing long jump distance were obtained by standardized procedures. For the statistical analysis, Pearson and Spearman correlation coefficients were used. There was a strong positive correlation between balance and the muscle strength of the right plantar flexors (r=0.61) and dorsiflexors (r=0.59) and a moderate correlation between balance and the muscle strength of inversion (r=0.41) and eversion of the right foot (r=0.44). For the long jump and range of movement, there was a weak positive correlation with right and left plantar flexion (r=0.20 and r=0.12, respectively) and left popliteal angle (r=0.25), and a poor negative correlation with left dorsiflexion (r=-0.15). The data on the patients analyzed suggests that the maintenance of distal muscle strength favors performance during balance tasks, while limitations in the range of movement of the legs seem not to be enough to influence the performance of the horizontal long jump.

  13. The impact of type 1 diabetes and diabetic polyneuropathy on muscle strength and fatigability.

    PubMed

    Orlando, Giorgio; Balducci, Stefano; Bazzucchi, Ilenia; Pugliese, Giuseppe; Sacchetti, Massimo

    2017-06-01

    Although it is widely accepted that diabetic polyneuropathy (DPN) is linked to a marked decline in neuromuscular performance, information on the possible impact of type 1 diabetes (T1D) on muscle strength and fatigue remains unclear. The purpose of this study was to investigate the effects of T1D and DPN on strength and fatigability in knee extensor muscles. Thirty-one T1D patients (T1D), 22 T1D patients with DPN (DPN) and 23 matched healthy control participants (C) were enrolled. Maximal voluntary contraction (MVC) and endurance time at an intensity level of 50% of the MVC were assessed at the knee extensor muscles with an isometric dynamometer. Clinical characteristics of diabetic patients were assessed by considering a wide range of vascular and neurological parameters. DPN group had lower knee extensor muscles strength than T1D (-19%) and the C group (-37.5%). T1D group was 22% weaker when compared to the C group. Lower body muscle fatigability of DPN group was 22 and 45.5% higher than T1D and C group, respectively. T1D group possessed a higher fatigability (29.4%) compared to C group. A correlation was found between motor and sensory nerve conduction velocity and muscle strength and fatigability. Patients with T1D are characterised by both a higher fatigability and a lower muscle strength, which are aggravated by DPN. Our data suggest that factors other than nervous damage play a role in the pathogenesis of such defect.

  14. Reference values for muscle strength: a systematic review with a descriptive meta-analysis.

    PubMed

    Benfica, Poliana do Amaral; Aguiar, Larissa Tavares; Brito, Sherindan Ayessa Ferreira de; Bernardino, Luane Helena Nunes; Teixeira-Salmela, Luci Fuscaldi; Faria, Christina Danielli Coelho de Morais

    2018-05-03

    Muscle strength is an important component of health. To describe and evaluate the studies which have established the reference values for muscle strength on healthy individuals and to synthesize these values with a descriptive meta-analysis approach. A systematic review was performed in MEDLINE, LILACS, and SciELO databases. Studies that investigated the reference values for muscle strength of two or more appendicular/axial muscle groups of health individuals were included. Methodological quality, including risk of bias was assessed by the QUADAS-2. Data extracted included: country of the study, sample size, population characteristics, equipment/method used, and muscle groups evaluated. Of the 414 studies identified, 46 were included. Most of the studies had adequate methodological quality. Included studies evaluated: appendicular (80.4%) and axial (36.9%) muscles; adults (78.3%), elderly (58.7%), adolescents (43.5%), children (23.9%); isometric (91.3%) and isokinetic (17.4%) strength. Six studies (13%) with similar procedures were synthesized with meta-analysis. Generally, the coefficient of variation values that resulted from the meta-analysis ranged from 20.1% to 30% and were similar to those reported by the original studies. The meta-analysis synthesized the reference values of isometric strength of 14 muscle groups of the dominant/non-dominant sides of the upper/lower limbs of adults/elderly from developed countries, using dynamometers/myometer. Most of the included studies had adequate methodological quality. The meta-analysis provided reference values for the isometric strength of 14 appendicular muscle groups of the dominant/non-dominant sides, measured with dynamometers/myometers, of men/women, of adults/elderly. These data may be used to interpret the results of the evaluations and establish appropriate treatment goals. Copyright © 2018 Associação Brasileira de Pesquisa e Pós-Graduação em Fisioterapia. Publicado por Elsevier Editora Ltda. All rights reserved.

  15. [Factors related to sarcopenia in community-dwelling elderly subjects in Japan].

    PubMed

    Tanimoto, Yoshimi; Watanabe, Misuzu; Sugiura, Yumiko; Hayashida, Itsushi; Kusabiraki, Toshiyuki; Kono, Koichi

    2013-01-01

    This study aimed at determining the factors associated with sarcopenia, defined as low muscle mass and strength and low physical performance, in community-dwelling elderly subjects in Japan. The subjects included 1,074 elderly, community-dwelling Japanese people aged 65 years or older. We measured appendicular muscle mass (AMM) by bioelectrical impedance analysis, grip strength, and usual walking speed. A low muscle mass was defined by the AMM index (AMI, weight [kg]/height [m(2)] as >2 standard deviations below the mean AMI for normal young subjects. The lowest quartile for grip strength and usual walking speed were classified as low muscle strength and low physical performance, respectively. "Sarcopenia" was characterized by a low muscle mass, combined with either a low muscle strength or low physical performance. Subjects without low muscle mass or strength and low physical performance were classified as "normal." Subjects were classified as being "intermediate" if they were neither "sarcopenic" nor "normal." Items in the questionnaire included residential status, past medical history, admission during the past year, smoking and drinking habits, leisure-time physical activity, health status, depression, masticatory ability, and dietary variety score. Sarcopenia was identified in 13.7% of men and 15.5% of women. Among men, a large proportion of subjects with sarcopenia had poor masticatory ability and a low dietary variety score compared with normal or intermediate subjects. Among women, a large proportion of the subjects with sarcopenia lived alone, had poor exercise habits, considered themselves to be unhealthy, and had poor masticatory ability compared with normal or intermediate subjects. A multiple logistic regression analysis showed that age and dietary variety in men and age and masticatory ability in women were associated with sarcopenia. The present study carried out in Japan showed that sarcopenia, assessed by muscle mass, muscle strength, and physical performance, was associated with age, dietary variety score (in men), and masticatory ability (in women).

  16. Sporadic inclusion body myositis: pilot study on the effects of a home exercise program on muscle function, histopathology and inflammatory reaction.

    PubMed

    Arnardottir, Snjolaug; Alexanderson, Helene; Lundberg, Ingrid E; Borg, Kristian

    2003-01-01

    To evaluate the safety and effect of a home training program on muscle function in 7 patients with sporadic inclusion body myositis. The patients performed exercise 5 days a week over a 12-week period. Safety was assessed by clinical examination, repeated muscle biopsies and serum levels of creatine kinase. Muscle strength was evaluated by clinical examination, dynamic dynamometer and by a functional index in myositis. Strength was not significantly improved after the exercise, however none of the patients deteriorated concerning muscle function. The histopathology was unchanged and there were no signs of increased muscle inflammation or of expression of cytokines and adhesion molecules in the muscle biopsies. Creatine kinase levels were unchanged. A significant decrease was found in the areas that were positively stained for EN-4 (a marker for endothelial cells) in the muscle biopsies after training. The home exercise program was considered as not harmful to the muscles regarding muscle inflammation and function. Exercise may prevent loss of muscle strength due to disease and/or inactivity.

  17. PROGRESSIVE RESISTANCE VOLUNTARY WHEEL RUNNING IN THE mdx MOUSE

    PubMed Central

    Call, Jarrod A.; McKeehen, James N.; Novotny, Susan A.; Lowe, Dawn A.

    2012-01-01

    Exercise training has been minimally explored as a therapy to mitigate the loss of muscle strength for individuals with Duchenne muscular dystrophy (DMD). Voluntary wheel running is known to elicit beneficial adaptations in the mdx mouse model for DMD. The aim of this study was to examine progressive resistance wheel running in mdx mice by comprehensively testing muscle function before, during, and after a 12-week training period. Male mdx mice at ~4 weeks age were randomized into three groups: Sedentary, Free Wheel, and Resist Wheel. Muscle strength was assessed via in vivo dorsiflexion torque, grip strength, and whole body tension intermittently throughout the training period. Contractility of isolated soleus muscles was analyzed at the study’s conclusion. Both Free and Resist Wheel mice had greater grip strength (~22%) and soleus muscle specific tetanic force (26%) compared with Sedentary mice. This study demonstrates that two modalities of voluntary exercise are beneficial to dystrophic muscle and may help establish parameters for an exercise prescription for DMD. PMID:21104862

  18. The variation of the strength of neck extensor muscles and semispinalis capitis muscle size with head and neck position.

    PubMed

    Rezasoltani, A; Nasiri, R; Faizei, A M; Zaafari, G; Mirshahvelayati, A S; Bakhshidarabad, L

    2013-04-01

    Semispinalis capitis muscle (SECM) is a massive and long cervico-thoracic muscle which functions as a main head and neck extensor muscle. The aim of this study was to detect the effect of head and neck positions on the strength of neck extensor muscles and size of SECM in healthy subjects. Thirty healthy women students voluntarily participated in this study. An ultrasonography apparatus (Hitachi EUB 525) and a system of tension-meter were used to scan the right SECM at the level of third cervical spine and to measure the strength of neck extensor muscles at three head and neck positions. Neck extensor muscles were stronger in neutral than flexion or than extension positions while the size of SECM was larger in extension than neutral or than flexion position. The force generation capacity of the main neck extensor muscle was lower at two head and neck flexion and extension positions than neutral position. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Shank Muscle Strength Training Changes Foot Behaviour during a Sudden Ankle Supination

    PubMed Central

    Hagen, Marco; Lescher, Stephanie; Gerhardt, Andreas; Lahner, Matthias; Felber, Stephan; Hennig, Ewald M.

    2015-01-01

    Background The peroneal muscles are the most effective lateral stabilisers whose tension braces the ankle joint complex against excessive supination. The purpose of this study was to identify the morphological and biomechanical effects of two machine-based shank muscle training methods. Methods Twenty-two healthy male recreationally active sports students performed ten weeks of single-set high resistance strength training with 3 training sessions per week. The subjects conducted subtalar pronator/supinator muscle training (ST) with the right leg by using a custom-made apparatus; the left foot muscles were exercised with machine-based talocrural plantar and dorsiflexor training (TT). Muscle strength (MVIC), muscle volume and foot biomechanics (rearfoot motion, ground reaction forces, muscle reaction times) during a sudden ankle supination were recorded before and after the intervention. Results Compared to TT, ST resulted in significantly higher pronator (14% vs. 8%, P<0.01) and supinator MVIC (25% vs. 12%, P<0.01). During sudden foot inversions, both ST and TT resulted in reduced supination velocity (-12%; P<0.01). The muscle reaction onset time was faster after the training in peroneus longus (PL) (P<0.01). Muscle volume of PL (P<0.01) and TA (P<0.01) increased significantly after both ST and TT. Conclusion After both ST and TT, the ankle joint complex is mechanically more stabilised against sudden supinations due to the muscle volume increase of PL and TA. As the reduced supination velocities indicate, the strength training effects are already present during free-fall. According to a sudden ankle supination in standing position, both machine-based dorsiflexor and pronator strength training is recommended for enhancing the mechanical stability of the ankle. PMID:26110847

  20. Preserving Healthy Muscle during Weight Loss123

    PubMed Central

    Cava, Edda; Yeat, Nai Chien; Mittendorfer, Bettina

    2017-01-01

    Weight loss is the cornerstone of therapy for people with obesity because it can ameliorate or completely resolve the metabolic risk factors for diabetes, coronary artery disease, and obesity-associated cancers. The potential health benefits of diet-induced weight loss are thought to be compromised by the weight-loss–associated loss of lean body mass, which could increase the risk of sarcopenia (low muscle mass and impaired muscle function). The objective of this review is to provide an overview of what is known about weight-loss–induced muscle loss and its implications for overall physical function (e.g., ability to lift items, walk, and climb stairs). The currently available data in the literature show the following: 1) compared with persons with normal weight, those with obesity have more muscle mass but poor muscle quality; 2) diet-induced weight loss reduces muscle mass without adversely affecting muscle strength; 3) weight loss improves global physical function, most likely because of reduced fat mass; 4) high protein intake helps preserve lean body and muscle mass during weight loss but does not improve muscle strength and could have adverse effects on metabolic function; 5) both endurance- and resistance-type exercise help preserve muscle mass during weight loss, and resistance-type exercise also improves muscle strength. We therefore conclude that weight-loss therapy, including a hypocaloric diet with adequate (but not excessive) protein intake and increased physical activity (particularly resistance-type exercise), should be promoted to maintain muscle mass and improve muscle strength and physical function in persons with obesity. PMID:28507015

  1. Lower limb strength in professional soccer players: profile, asymmetry, and training age.

    PubMed

    Fousekis, Konstantinos; Tsepis, Elias; Vagenas, George

    2010-01-01

    Kicking and cutting skills in soccer are clearly unilateral, require asymmetrical motor patterns and lead to the development of asymmetrical adaptations in the musculoskeletal function of the lower limbs. Assuming that these adaptations constitute a chronicity-dependent process, this study examined the effects of professional training age (PTA) on the composite strength profile of the knee and ankle joint in soccer players. One hundred soccer players (n=100) with short (5-7 years), intermediate (8-10 years) and long (>11 years) PTA were tested bilaterally for isokinetic concentric and eccentric strength of the knee and ankle muscles. Knee flexion-extension was tested concentrically at 60°, 180° and 300 °/sec and eccentrically at 60° and 180 °/sec. Ankle dorsal and plantar flexions were tested at 60 °/sec for both the concentric and eccentric mode of action. Bilaterally averaged muscle strength [(R+L)/2] increased significantly from short training age to intermediate and stabilized afterwards. These strength adaptations were mainly observed at the concentric function of knee extensors at 60°/sec (p = 0. 023), knee flexors at 60°/sec (p = 0.042) and 180°/sec (p = 0.036), and ankle plantar flexors at 60o/sec (p = 0.044). A linear trend of increase in isokinetic strength with PTA level was observed for the eccentric strength of knee flexors at 60°/sec (p = 0.02) and 180°/sec (p = 0.03). Directional (R/L) asymmetries decreased with PTA, with this being mainly expressed in the concentric function of knee flexors at 180°/sec (p = 0.04) and at 300 °/sec (p = 0.03). These findings confirm the hypothesis of asymmetry in the strength adaptations that take place at the knee and ankle joint of soccer players mainly along with short and intermediate PTA. Players with a longer PTA seem to adopt a more balanced use of their lower extremities to cope with previously developed musculoskeletal asymmetries and possibly reduce injury risk. This has certain implications regarding proper training and injury prevention in relation to professional experience in soccer. Key pointsMuscle strength increased from the low (5-7 years) to the intermediate professional training age (8-10 years) and stabilized thereafter.Soccer practicing and competition at the professional level induces critical strength adaptations (asymmetries) regarding the function of the knee and ankle musculature.Soccer players with long professional training age showed a tendency for lower isokinetic strength asymmetries than players with intermediate and short professional training age.

  2. Ischemic conditioning increases strength and volitional activation of paretic muscle in chronic stroke: a pilot study.

    PubMed

    Hyngstrom, Allison S; Murphy, Spencer A; Nguyen, Jennifer; Schmit, Brian D; Negro, Francesco; Gutterman, David D; Durand, Matthew J

    2018-05-01

    Ischemic conditioning (IC) on the arm or leg has emerged as an intervention to improve strength and performance in healthy populations, but the effects on neurological populations are unknown. The purpose of this study was to quantify the effects of a single session of IC on knee extensor strength and muscle activation in chronic stroke survivors. Maximal knee extensor torque measurements and surface EMG were quantified in 10 chronic stroke survivors (>1 yr poststroke) with hemiparesis before and after a single session of IC or sham on the paretic leg. IC consisted of 5 min of compression with a proximal thigh cuff (inflation pressure = 225 mmHg for IC or 25 mmHg for sham) followed by 5 min of rest. This was repeated five times. Maximal knee extensor strength, EMG magnitude, and motor unit firing behavior were measured before and immediately after IC or sham. IC increased paretic leg strength by 10.6 ± 8.5 Nm, whereas no difference was observed in the sham group (change in sham = 1.3 ± 2.9 Nm, P = 0.001 IC vs. sham). IC-induced increases in strength were accompanied by a 31 ± 15% increase in the magnitude of muscle EMG during maximal contractions and a 5% decrease in motor unit recruitment thresholds during submaximal contractions. Individuals who had the most asymmetry in strength between their paretic and nonparetic legs had the largest increases in strength ( r 2  = 0.54). This study provides evidence that a single session of IC can increase strength through improved muscle activation in chronic stroke survivors. NEW & NOTEWORTHY Present rehabilitation strategies for chronic stroke survivors do not optimally activate paretic muscle, and this limits potential strength gains. Ischemic conditioning of a limb has emerged as an effective strategy to improve muscle performance in healthy individuals but has never been tested in neurological populations. In this study, we show that ischemic conditioning on the paretic leg of chronic stroke survivors can increase leg strength and muscle activation while reducing motor unit recruitment thresholds.

  3. Strength characterization of knee flexor and extensor muscles in Prader-Willi and obese patients.

    PubMed

    Capodaglio, Paolo; Vismara, Luca; Menegoni, Francesco; Baccalaro, Gabriele; Galli, Manuela; Grugni, Graziano

    2009-05-06

    despite evidence of an obesity-related disability, there is a lack of objective muscle functional data in overweight subjects. Only few studies provide instrumental strength measurements in non-syndromal obesity, whereas no data about Prader-Willi syndrome (PWS) are reported. The aim of our study was to characterize the lower limb muscle function of patients affected by PWS as compared to non-syndromal obesity and normal-weight subjects. We enrolled 20 obese (O) females (age: 29.1 +/- 6.5 years; BMI: 38.1 +/- 3.1), 6 PWS females (age: 27.2 +/- 4.9 years; BMI: 45.8 +/- 4.4) and 14 healthy normal-weight (H) females (age: 30.1 +/- 4.7 years; BMI: 21 +/- 1.6). Isokinetic strength during knee flexion and extension in both lower limbs at the fixed angular velocities of 60 degrees /s, 180 degrees /s, 240 degrees /s was measured with a Cybex Norm dynamometer. the H, O and PWS populations appear to be clearly stratified with regard to muscle strength.: PWS showed the lowest absolute peak torque (PT) for knee flexor and extensor muscles as compared to O (-55%) and H (-47%) (P = 0.00001). O showed significantly higher strength values than H as regard to knee extension only (P = 0.0014). When strength data were normalised by body weight, PWS showed a 50% and a 70% reduction in PT as compared to O and H, respectively. Knee flexors strength values were on average half of those reported for extension in all of the three populations. the novel aspect of our study is the determination of objective measures of muscle strength in PWS and the comparison with O and H patients. The objective characterization of muscle function performed in this study provides baseline and outcome measures that may quantify specific strength deficits amendable with tailored rehabilitation programs and monitor effectiveness of treatments.

  4. Strength characterization of knee flexor and extensor muscles in Prader-Willi and obese patients

    PubMed Central

    Capodaglio, Paolo; Vismara, Luca; Menegoni, Francesco; Baccalaro, Gabriele; Galli, Manuela; Grugni, Graziano

    2009-01-01

    Background despite evidence of an obesity-related disability, there is a lack of objective muscle functional data in overweight subjects. Only few studies provide instrumental strength measurements in non-syndromal obesity, whereas no data about Prader-Willi syndrome (PWS) are reported. The aim of our study was to characterize the lower limb muscle function of patients affected by PWS as compared to non-syndromal obesity and normal-weight subjects. Methods We enrolled 20 obese (O) females (age: 29.1 ± 6.5 years; BMI: 38.1 ± 3.1), 6 PWS females (age: 27.2 ± 4.9 years; BMI: 45.8 ± 4.4) and 14 healthy normal-weight (H) females (age: 30.1 ± 4.7 years; BMI: 21 ± 1.6). Isokinetic strength during knee flexion and extension in both lower limbs at the fixed angular velocities of 60°/s, 180°/s, 240°/s was measured with a Cybex Norm dynamometer. Results the H, O and PWS populations appear to be clearly stratified with regard to muscle strength.: PWS showed the lowest absolute peak torque (PT) for knee flexor and extensor muscles as compared to O (-55%) and H (-47%) (P = 0.00001). O showed significantly higher strength values than H as regard to knee extension only (P = 0.0014). When strength data were normalised by body weight, PWS showed a 50% and a 70% reduction in PT as compared to O and H, respectively. Knee flexors strength values were on average half of those reported for extension in all of the three populations. Conclusion the novel aspect of our study is the determination of objective measures of muscle strength in PWS and the comparison with O and H patients. The objective characterization of muscle function performed in this study provides baseline and outcome measures that may quantify specific strength deficits amendable with tailored rehabilitation programs and monitor effectiveness of treatments. PMID:19419559

  5. Mirror Therapy with Neuromuscular Electrical Stimulation for improving motor function of stroke survivors: A pilot randomized clinical study.

    PubMed

    Lee, DongGeon; Lee, GyuChang; Jeong, JiSim

    2016-07-27

    This study was to investigate the effects of Mirror Therapy (MT) combined with Neuromuscular Electrical Stimulation (NMES) on muscle strength and tone, motor function, balance, and gait ability in stroke survivors with hemiplegia. This study was a randomized controlled trial. Twenty-seven hemiplegic stroke survivors from a rehabilitation center participated in the study. The participants were randomly assigned to either an experimental or a control group. The experimental group (n = 14) underwent MT combined with NMES and conventional physical therapy, and the control group (n = 13) underwent conventional physical therapy alone. Muscle strength and tone, balance, and gait ability were examined at baseline and after 4 weeks of intervention. A hand-held dynamometer was used to assess muscle strength, the Modified Ashworth Scale (MAS) was used to assess muscle tone, the Berg Balance Scale (BBS) and Timed Up and Go test (TUG) were used to ascertain balance, and the 6-m Walk Test (6mWT) was used to examine gait ability. After the intervention, compared to baseline values, there were significant improvements in muscle strength and MAS, BBS, TUG, and 6mWT values in the experimental group (P< 0.05). In addition, at post-intervention, there were significant differences between the two groups in muscle strength and BBS (P< 0.05). MT combined with NMES may effectively improve muscle strength and balance in hemiplegic stroke survivors. However, further studies are necessary to demonstrate brain reorganization after MT combined with NMES.

  6. Muscle strength and knee range of motion after femoral lengthening.

    PubMed

    Bhave, Anil; Shabtai, Lior; Woelber, Erik; Apelyan, Arman; Paley, Dror; Herzenberg, John E

    2017-04-01

    Background and purpose - Femoral lengthening may result in decrease in knee range of motion (ROM) and quadriceps and hamstring muscle weakness. We evaluated preoperative and postoperative knee ROM, hamstring muscle strength, and quadriceps muscle strength in a diverse group of patients undergoing femoral lengthening. We hypothesized that lengthening would not result in a significant change in knee ROM or muscle strength. Patients and methods - This prospective study of 48 patients (mean age 27 (9-60) years) compared ROM and muscle strength before and after femoral lengthening. Patient age, amount of lengthening, percent lengthening, level of osteotomy, fixation time, and method of lengthening were also evaluated regarding knee ROM and strength. The average length of follow-up was 2.9 (2.0-4.7) years. Results - Mean amount of lengthening was 5.2 (2.4-11.0) cm. The difference between preoperative and final knee flexion ROM was 2° for the overall group. Congenital shortening cases lost an average of 5% or 6° of terminal knee flexion, developmental cases lost an average of 3% or 4°, and posttraumatic cases regained all motion. The difference in quadriceps strength at 45° preoperatively and after lengthening was not statistically or clinically significant (2.7 Nm; p = 0.06). Age, amount of lengthening, percent lengthening, osteotomy level, fixation time, and lengthening method had no statistically significant influence on knee ROM or quadriceps strength at final follow-up. Interpretation - Most variables had no effect on ROM or strength, and higher age did not appear to be a limiting factor for femoral lengthening. Patients with congenital causes were most affected in terms of knee flexion.

  7. Intra-rater Reliability of Arm and Hand Muscle Strength Measurements in Persons With Late Effects of Polio.

    PubMed

    Brogårdh, Christina; Flansbjer, Ulla-Britt; Carlsson, Håkan; Lexell, Jan

    2015-10-01

    Muscle weakness in the upper limb is common in persons with late effects of polio. To be able to measure muscle strength and follow changes over time, reliable measurements are needed. To evaluate the intra-rater reliability of isometric and isokinetic arm and hand muscle strength measurements in persons with late effects of polio. A test-retest design. A university hospital outpatient clinic. Twenty-eight persons (mean age 68 years, SD 11 years) with late effects of polio in their upper limbs. Isometric shoulder abduction, isokinetic concentric elbow flexion and extension, isometric elbow flexion, and isometric grip strength were measured twice, 14 days apart. Reliability was evaluated with the intra-class correlation coefficient, the mean difference between the test sessions (d¯), together with the 95% confidence intervals for d¯ , the standard error of measurement (SEM and SEM%), the smallest real difference (SRD and SRD%), and Bland-Altman graphs. A fixed dynamometer (Biodex) was used to measure arm strength and an electronic dynamometer (GRIP-it) was used to measure grip strength. Intra-rater reliability was high, with intra-class correlation coefficients between 0.87 and 0.98. The SEM%, representing the smallest change for a group of persons, ranged from 7%-24% for all strength measurements, and the SRD%, representing the smallest change for an individual person, ranged from 20%-67%. Muscle strength in the upper limbs can be reliably measured in persons with late effects of polio. However, the measurement errors indicate that the method is more suitable to detect changes in muscle strength for a group of persons than for an individual person. Copyright © 2015 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  8. The mediating role of C-reactive protein and handgrip strength between obesity and walking limitation.

    PubMed

    Stenholm, Sari; Rantanen, Taina; Heliövaara, Markku; Koskinen, Seppo

    2008-03-01

    To study the association between different obesity indicators and walking limitation and to examine the role of C-reactive protein (CRP) and handgrip strength in that association. A cross-sectional, population-based study. The Health 2000 Survey with a representative sample of the Finnish population. Subjects aged 55 and older with complete data on body composition, CRP, handgrip strength, and walking limitation (N=2,208). Body composition, anthropometrics, CRP, medical conditions, handgrip strength, and maximal walking speed were measured in the health examination. Walking limitation was defined as maximal walking speed less than 1.2 m/s or difficulty walking half a kilometer. The two highest quartiles of body fat percentage and CRP and the two lowest quartiles of handgrip strength were all significantly associated with greater risk of walking limitation when chronic diseases and other covariates were taken into account. In addition, high CRP and low handgrip strength partially explained the association between high body fat percentage and walking limitation, but the risk of walking limitation remained significantly greater in persons in the two highest quartiles than in those in the lowest quartile of body fat percentage (odds ratio (OR)=1.75, 95% confidence interval (CI)=1.19-2.57 and OR=2.80, 95% CI 1.89-4.16). The prevalence of walking limitation was much higher in persons who simultaneously had high body fat percentage and low handgrip strength (61%) than in those with a combination of low body fat percentage and high handgrip strength (7%). Using body mass index and waist circumference as indicators of obesity yielded similar results as body fat percentage. Low-grade inflammation and muscle strength may partially mediate the association between obesity and walking limitation. Longitudinal studies and intervention trials are needed to verify this pathway.

  9. Impaired hip muscle strength in patients with femoroacetabular impingement syndrome.

    PubMed

    Kierkegaard, Signe; Mechlenburg, Inger; Lund, Bent; Søballe, Kjeld; Dalgas, Ulrik

    2017-12-01

    Patients with femoroacetabular impingement (FAI) experience hip pain as well as decreased function and lowered quality of life. The aim was to compare maximal isometric and isokinetic muscle strength (MVC) during hip flexion and extension and rate of force development (RFD) during extension between patients with FAI and a matched reference group. Secondary, the aim was to compare patient hips and subgroups defined by gender and age as well as to investigate associations between hip muscle strength and self-reported outcomes. Design Cross-sectional, comparative study Methods Sixty patients (36±9 years, 63% females) and 30 age and gender matched reference persons underwent MVC tests in an isokinetic dynamometer. During hip flexion and extension, patients' affected hip showed a strength deficit of 15-21% (p<0.001) and 10-25% (p<0.03) compared with reference MVC, respectively. The affected hip of the patients was significantly weaker than their contralateral hip. RFD was significantly decreased for both patient hips compared to the reference group (p<0.05). While age had less effect on MVC, female patients were more affected than male patients. Self-reported measures were associated with isometric hip muscle strength. Patients with FAI demonstrate decreased hip flexion and extension strength when compared to (1) reference persons and (2) their contralateral hip. There seems to be a gender specific affection which should be investigated further and addressed when planning training protocols. Furthermore, self-reported measures were associated with isometric muscle strength, which underlines the clinical importance of the reduced muscle strength. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  10. Immediate effects of kinesiotaping on quadriceps muscle strength: a single-blind, placebo-controlled crossover trial.

    PubMed

    Vercelli, Stefano; Sartorio, Francesco; Foti, Calogero; Colletto, Lorenzo; Virton, Domenico; Ronconi, Gianpaolo; Ferriero, Giorgio

    2012-07-01

    To investigate the immediate effects on maximal muscle strength of kinesiotaping (KT) applied to the dominant quadriceps of healthy subjects. Single-blind, placebo-controlled crossover trial. "Salvatore Maugeri" Foundation. With ethical approval and informed consent, a convenience sample of 36 healthy volunteers were recruited. Two subjects did not complete the sessions and were excluded from the analysis. Subjects were tested across 3 different sessions, randomly receiving 2 experimental KT conditions applied with the aim of enhancing and inhibiting muscle strength and a sham KT application. Quadriceps muscle strength was measured by means of an isokinetic maximal test performed at 60 and 180 degrees per second. Two secondary outcome measures were performed: the single-leg triple hop for distance to measure limb performance and the Global Rating of Change Scale (GRCS) to calculate agreement between KT application and subjective perception of strength. Compared with baseline, none of the 3 taping conditions showed a significant change in muscle strength and performance (all P > 0.05). Effect size was very low under all conditions (≤0.08). Very few subjects showed an individual change greater than the minimal detectable change. Global Rating of Change Scale scores demonstrated low to moderate agreement with the type of KT applied, but some placebo effects were reported independently of condition. Our findings indicated no significant effect in the maximal quadriceps strength immediately after the application of inhibition, facilitation, or sham KT. These results do not support the use of KT applied in this way to change maximal muscle strength in healthy people.

  11. Shoulder muscle strength in paraplegics before and after kayak ergometer training.

    PubMed

    Bjerkefors, Anna; Jansson, Anna; Thorstensson, Alf

    2006-07-01

    The purpose was to investigate if shoulder muscle strength in post-rehabilitated persons with spinal cord injury (SCI) was affected by kayak ergometer training and to compare shoulder strength in persons with SCI and able-bodied persons. Ten persons with SCI (7 males and 3 females, injury levels T3-T12) performed 60 min kayak ergometer training three times a week for 10 weeks with progressively increased intensity. Maximal voluntary concentric contractions were performed during six shoulder movements: flexion and extension (range of motion 65 degrees ), abduction and adduction (65 degrees ), and external and internal rotation (60 degrees ), with an angular velocity of 30 degrees s(-1). Position specific strength was assessed at three shoulder angles (at the beginning, middle and end of the range of motion) in the respective movements. Test-retests were performed for all measurements before the training and the mean intraclass correlation coefficient was 0.941 (95% CI 0.928-0.954). There was a main effect of kayak ergometer training with increased shoulder muscle strength after training in persons with SCI. The improvements were independent of shoulder movement, and occurred in the beginning and middle positions. A tendency towards lower shoulder muscle strength was observed in the SCI group compared to a matched reference group of able-bodied persons. Thus, it appears that post-rehabilitated persons with SCI have not managed to fully regain/maintain their shoulder muscle strength on a similar level as that of able-bodied persons, and are able to improve their shoulder muscle strength after a period of kayak ergometer training.

  12. Strength of knee flexors of the paretic limb as an important determinant of functional status in post-stroke rehabilitation.

    PubMed

    Kostka, Joanna; Czernicki, Jan; Pruszyńska, Magdalena; Miller, Elżbieta

    The purpose of the study was to assess the effectiveness of the multi-modal exercise program (MMEP) in patients after stroke, and to identify muscles that are the best predictors of functional performance and changes in functional status in a 3-week rehabilitation program. Thirty-one post-stroke patients (60.6±12.7 years) participating in a 3-week MMEP took part in the study. Measurements of extensor and flexor strength of the knee (F ext , F flex ) were done. Functional performance was measured using Timed Up & Go test (TUG), 6-Minute Walk Test (6-MWT) and Tinetti Test. The rehabilitation program improved all the results of functional tests, as well as the values of strength in the patients. Both baseline and post-rehabilitation functional status was associated with knee flexor and extensor muscle strength of paretic but not of non-paretic limbs. At baseline examination muscle strength difference between both F flex kg -1 and F ext kg -1 had an influence on functional status. After rehabilitation the effect of muscle strength difference on functional status was not evident for F ext kg -1 and, interestingly, even more prominent for F flex kg -1 . MMEP can effectively increase muscle strength and functional capacity in post-stroke patients. Knee flexor muscle strength of the paretic limb and the knee flexor difference between the limbs is the best predictor of functional performance in stroke survivors. Copyright © 2017 Polish Neurological Society. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  13. Preferential reduction of quadriceps over respiratory muscle strength and bulk after lung transplantation for cystic fibrosis.

    PubMed

    Pinet, C; Scillia, P; Cassart, M; Lamotte, M; Knoop, C; Mélot, C; Estenne, M

    2004-09-01

    In the absence of complications, recipients of lung transplants for cystic fibrosis have normal pulmonary function but the impact of the procedure on the strength and bulk of respiratory and limb muscles has not been studied. Twelve stable patients who had undergone lung transplantation for cystic fibrosis 48 months earlier (range 8-95) and 12 normal subjects matched for age, height, and sex were studied. The following parameters were measured: standard lung function, peak oxygen uptake by cycle ergometry, diaphragm surface area by computed tomographic (CT) scanning, diaphragm and abdominal muscle thickness by ultrasonography, twitch transdiaphragmatic and gastric pressures, quadriceps isokinetic strength, and quadriceps cross section by CT scanning, and lean body mass. Diaphragm mass was computed from diaphragm surface area and thickness. Twitch transdiaphragmatic and gastric pressures, diaphragm mass, and abdominal muscle thickness were similar in the two groups but quadriceps strength and cross section were decreased by nearly 30% in the patients. Patients had preserved quadriceps strength per unit cross section but reduced quadriceps cross section per unit lean body mass. The cumulative dose of corticosteroids was an independent predictor of quadriceps atrophy. Peak oxygen uptake showed positive correlations with quadriceps strength and cross section in the two groups, but peak oxygen uptake per unit quadriceps strength or cross section was reduced in the patient group. The diaphragm and abdominal muscles have preserved strength and bulk in patients transplanted for cystic fibrosis but the quadriceps is weak due to muscle atrophy. This atrophy is caused in part by corticosteroid therapy and correlates with the reduction in exercise capacity.

  14. Soleus Atrophy Is Common After the Nonsurgical Treatment of Acute Achilles Tendon Ruptures: A Randomized Clinical Trial Comparing Surgical and Nonsurgical Functional Treatments.

    PubMed

    Heikkinen, Juuso; Lantto, Iikka; Flinkkila, Tapio; Ohtonen, Pasi; Niinimaki, Jaakko; Siira, Pertti; Laine, Vesa; Leppilahti, Juhana

    2017-05-01

    It remains controversial whether nonsurgical or surgical treatment provides better calf muscle strength recovery after an acute Achilles tendon rupture (ATR). Recent evidence has suggested that surgery might surpass nonsurgical treatment in restoring strength after an ATR. To assess whether magnetic resonance imaging (MRI) findings could explain calf muscle strength deficits and the difference between nonsurgical and surgical treatments in restoring calf muscle strength. Randomized controlled trial; Level of evidence, 1. From 2009 to 2013, 60 patients with acute ATRs were randomized to surgery or nonsurgical treatment with an identical rehabilitation protocol. The primary outcome measure was the volume of calf muscles assessed using MRI at 3 and 18 months. The secondary outcome measures included fatty degeneration of the calf muscles and length of the affected Achilles tendon. Additionally, isokinetic plantarflexion strength was measured in both legs. At 3 months, the study groups showed no differences in muscle volumes or fatty degeneration. However, at 18 months, the mean differences between affected and healthy soleus muscle volumes were 83.2 cm 3 (17.7%) after surgery and 115.5 cm 3 (24.8%) after nonsurgical treatment (difference between means, 33.1 cm 3 ; 95% CI, 1.3-65.0; P = .042). The study groups were not substantially different in the volumes or fatty degeneration of other muscles. From 3 to 18 months, compensatory hypertrophy was detected in the flexor hallucis longus (FHL) and deep flexors in both groups. In the nonsurgical treatment group, the mean difference between affected and healthy FHL muscle volumes was -9.3 cm 3 (12%) and in the surgical treatment group was -8.4 cm 3 (10%) ( P ≤ .001). At 18 months, Achilles tendons were, on average, 19 mm longer in patients treated nonsurgically compared with patients treated surgically ( P < .001). At 18 months, surgically treated patients demonstrated 10% to 18% greater strength results ( P = .037). Calf muscle isokinetic strength deficits for the entire range of ankle motion correlated with soleus atrophy (ρ = 0.449-0.611; P < .001). Treating ATRs nonsurgically with a functional rehabilitation protocol resulted in greater soleus muscle atrophy compared with surgical treatment. The mean Achilles tendon length was 19 mm longer after nonsurgical treatment than after the surgical treatment of ATRs. These structural changes partly explained the 10% to 18% greater calf muscle strength observed in patients treated with surgery compared with those treated nonsurgically. Registration: NCT02012803 ( ClinicalTrials.gov identifier).

  15. Low agreement between the fitnessgram criterion references for adolescents

    PubMed Central

    Coledam, Diogo Henrique Constantino; Batista, João Pedro; Glaner, Maria Fátima

    2015-01-01

    OBJECTIVE: To analyze the association and agreement of fitnessgram reference criteria (RC) for cardiorespiratory fitness, body mass index (BMI) and strength in youth. METHODS: The study included 781 youth, 386 females, aged 10 to 18 years of Londrina-PR. It were performed cardiorespiratory fitness and muscular strength tests and was calculated body mass index. The association between the tests was analyzed using Poisson regression to obtain prevalence ratio (PR) and confidence intervals of 95%, while agreement of the reference criteria was tested by Kappa index. RESULTS: Significant associations were found between cardiorespiratory fitness and BMI (PR=1,49, 1,27-1,75), muscle strength and BMI (PR=1,55, 1,17-2,08), cardiorespiratory fitness and muscle strength (PR=1,81, 1,47-2,24). The agreement between reference criteria ranged from weak to fair, 48.8% (k=0.05, p=0.10) for cardiorespiratory fitness and BMI, 52.9% (k=0.09, p=0.001) for muscle strength and BMI and 38.4% (k=0.22, p<0.001) for cardiorespiratory fitness and muscle strength. CONCLUSIONS: Although RC for cardiorespiratory fitness, muscle strength and BMI are associated, the agreement between them ranged from weak to fair. To evaluate health related physical fitness it is suggest the execution of all tests, since each test has specific characteristics. PMID:25649383

  16. Short physical performance battery for middle-aged and older adult cardiovascular disease patients: implication for strength tests and lower extremity morphological evaluation.

    PubMed

    Yasuda, Tomohiro; Fukumura, Kazuya; Nakajima, Toshiaki

    2017-04-01

    [Purpose] To examine if the SPPB is higher with healthy subjects than outpatients, which was higher than inpatients and if the SPPB can be validated assessment tool for strength tests and lower extremity morphological evaluation in cardiovascular disease patients. [Subjects and Methods] Twenty-four middle aged and older adults with cardiovascular disease were recruited from inpatient and outpatient facilities and assigned to separate experimental groups. Twelve age-matched healthy volunteers were assigned to a control group. SPPB test was used to assess balance and functional motilities. The test outcomes were compared with level of care (inpatient vs. outpatient), physical characteristics, strength and lower extremity morphology. [Results] Total SPPB scores, strength tests (knee extensor muscle strength), and lower extremity morphological evaluation (muscle thickness of anterior and posterior mid-thigh and posterior lower-leg) were greater in healthy subjects and outpatients groups compared with inpatients. To predict total Short Physical Performance Battery scores, the predicted knee extension and anterior mid-thigh muscle thickness were calculated. [Conclusion] The SPPB is an effective tool as the strength tests and lower extremity morphological evaluation for middle-aged and older adult cardiovascular disease patients. Notably, high knee extensor muscle strength and quadriceps femoris muscle thickness are positively associated with high SPPB scores.

  17. Relationship between grip, pinch strengths and anthropometric variables, types of pitch throwing among Japanese high school baseball pitchers.

    PubMed

    Tajika, Tsuyoshi; Kobayashi, Tsutomu; Yamamoto, Atsushi; Shitara, Hitoshi; Ichinose, Tsuyoshi; Shimoyama, Daisuke; Okura, Chisa; Kanazawa, Saeko; Nagai, Ayako; Takagishi, Kenji

    2015-03-01

    Grip and pinch strength are crucially important attributes and standard parameters related to the functional integrity of the hand. It seems significant to investigate normative data for grip and pinch strength of baseball players to evaluate their performance and condition. Nevertheless, few reports have explained the association between grip and pinch strength and anthropometric variables and types of pitch throwing for baseball pitchers. The aim of this study was to measure and evaluate clinical normative data for grip and tip, key, palmar pinch strength and to assess the relationship between these data and anthropometric variables and types of pitch throwing among Japanese high-school baseball pitchers. One hundred-thirty three healthy high school baseball pitchers were examined and had completed a self-administered questionnaire including items related to age, hand dominance, throwing ratio of type of pitch. A digital dynamometer was used to measure grip strength and a pinch gauge to measure tip, key and palmer pinch in both dominant and nondominant side. Body composition was measured by the multi frequency segmental body composition analyzer. Grip strength and tip and palmer pinch strength in dominant side were statistically greater than them in nondominant side (P < 0.05). There were significant associations between grip strength and height (r = 0.33, P < 0.001), body mass (r = 0.50, P < 0.001), BMI (r = 0.37, P < 0.001), muscle mass of upper extremity (r = 0.56, P < 0.001), fat free mass (r = 0.57, P < 0.001), fat mass (r = 0.22, P < 0.05) in dominant side. A stepwise multiple regression analysis revealed that fat free mass and tip, palmer, key pinch strength were predictors of grip strength in dominant side. No statistical significant correlations were found between the throwing ratio of types of pitches thrown and grip strength and tip, key, palmar pinch strength. Our result provides normative values and evidences for grip and pinch strengths in high school baseball pitchers.

  18. Normative Quadriceps and Hamstring Muscle Strength Values for Female, Healthy, Elite Handball and Football Players.

    PubMed

    Risberg, May A; Steffen, Kathrin; Nilstad, Agnethe; Myklebust, Grethe; Kristianslund, Eirik; Moltubakk, Marie M; Krosshaug, Tron

    2018-05-23

    Risberg, MA, Steffen, K, Nilstad, A, Myklebust, G, Kristianslund, E, Moltubakk, MM, and Krosshaug, T. Normative quadriceps and hamstring muscle strength values for female, healthy, elite handball and football players. J Strength Cond Res XX(X): 000-000, 2018-This study presents normative values for isokinetic knee extension and flexion muscle strength tests in 350 elite, female, handball (n = 150) and football (n = 200) players. Isokinetic concentric muscle strength tests at 60°·sec were recorded bilaterally using a dynamometer. Peak torque (in Newton meter [N·m]), body mass normalized peak torque (N·m·kg), and hamstring to quadriceps ratio (H:Q ratio) for dominant and nondominant legs were recorded. The female elite players were 20.9 ± 4.0 years, started playing at the elite level at the age of 18.2 ± 2.7 years, with a mean of 9.7 ± 2.2 hours of weekly in-season training. Handball players demonstrated greater quadriceps muscle strength compared with football players (11.0%) (p < 0.001), also when normalized to body mass (4.1%) (p = 0.012), but not for weight-adjusted hamstring muscle strength. The H:Q ratio was higher on the dominant compared with the nondominant leg for handball players only (p = 0.012).The H:Q ratio was significantly lower for handball players (0.58) compared with football players (0.60) (p < 0.02). These normative values for isokinetic knee extension and flexion torques of healthy, elite, female handball and football players can be used to set rehabilitation goals for muscle strength after injury and enable comparison with uninjured legs. Significantly greater quadriceps muscle strength was found for handball players compared with football players, also when normalized to body mass.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

  19. Short-Term Unilateral Resistance Training Results in Cross Education of Strength Without Changes in Muscle Size, Activation, or Endocrine Response.

    PubMed

    Beyer, Kyle S; Fukuda, David H; Boone, Carleigh H; Wells, Adam J; Townsend, Jeremy R; Jajtner, Adam R; Gonzalez, Adam M; Fragala, Maren S; Hoffman, Jay R; Stout, Jeffrey R

    2016-05-01

    Short-term unilateral resistance training results in cross education of strength without changes in muscle size, activation, or endocrine response. J Strength Cond Res 30(5): 1213-1223, 2016-The purpose of this study was to assess the cross education of strength and changes in the underlying mechanisms (muscle size, activation, and hormonal response) after a 4-week unilateral resistance training (URT) program. A group of 9 untrained men completed a 4-week URT program on the dominant leg (DOM), whereas cross education was measured in the nondominant leg (NON); and were compared with a control group (n = 8, CON). Unilateral isometric force (PKF), leg press (LP) and leg extension (LE) strength, muscle size (by ultrasonography) and activation (by electromyography) of the rectus femoris and vastus lateralis, and the hormonal response (testosterone, growth hormone, insulin, and insulin-like growth factor-1) were tested pretraining and posttraining. Group × time interactions were present for PKF, LP, LE, and muscle size in DOM and for LP in NON. In all interactions, the URT group improved significantly better than CON. There was a significant acute hormonal response to URT, but no chronic adaptation after the 4-week training program. Four weeks of URT resulted in an increase in strength and size of the trained musculature, and cross education of strength in the untrained musculature, which may occur without detectable changes in muscle size, activation, or the acute hormonal response.

  20. The effects of low-volume resistance training with and without advanced techniques in trained subjects.

    PubMed

    Gieβsing, Jùrgen; Fisher, James; Steele, James; Rothe, Frank; Raubold, Kristin; Eichmann, Björn

    2016-03-01

    This study examined low-volume resistance training (RT) in trained participants with and without advanced training methods. Trained participants (RT experience 4±3 years) were randomised to groups performing single-set RT: ssRM (N.=21) performing repetitions to self-determined repetition maximum (RM), ssMMF (N.=30) performing repetitions to momentary muscular failure (MMF), and ssRP (N.=28) performing repetitions to self-determined RM using a rest pause (RP) method. Each performed supervised RT twice/week for 10 weeks. Outcomes included maximal isometric strength and body composition using bioelectrical impedance analysis. The ssRM group did not significantly improve in any outcome. The ssMMF and ssRP groups both significantly improved strength (p < 0.05). Magnitude of changes using effect size (ES) was examined between groups. Strength ES's were considered large for ssMMF (0.91 to 1.57) and ranging small to large for ssRP (0.42 to 1.06). Body composition data revealed significant improvements (P<0.05) in muscle and fat mass and percentages for whole body, upper limbs and trunk for ssMMF, but only upper limbs for ssRP. Body composition ES's ranged moderate to large for ssMMF (0.56 to 1.27) and ranged small to moderate for ssRP (0.28 to 0.52). ssMMF also significantly improved (P<0.05) total abdominal fat and increased intracellular water with moderate ES's (-0.62 and 0.56, respectively). Training to self-determined RM is not efficacious for trained participants. Training to MMF produces greatest improvements in strength and body composition, however, RP style training does offer some benefit.

Top