Preparation and properties of the multi-layer aerogel thermal insulation composites
NASA Astrophysics Data System (ADS)
Wang, Miao; Feng, Junzong; Jiang, Yonggang; Zhang, Zhongming; Feng, Jian
2018-03-01
Multi-layer insulation materials possess low radiation thermal conductivity, and excellent thermal insulation property in a vacuum environment. However, the spacers of the traditional multi-layer insulation materials are mostly loose fibers, which lead to more sensitive to the vacuum environmental of serviced. With the vacuum degree declining, gas phases thermal convection increase obviously, and the reflective screen will be severe oxidation, all of these make the thermal insulation property of traditional multi-layer insulation deteriorate, thus limits its application scope. In this paper, traditional multi-layer insulation material is combined with aerogel and obtain a new multi-layer aerogel thermal insulation composite, and the effects of the number, thickness and type of the reflective screens on the thermal insulation properties of the multi-layer composites are also studied. The result is that the thermal insulation property of the new type multi-layer aerogel composites is better than the pure aerogel composites and the traditional multi-layer insulation composites. When the 0.01 mm stainless steel foil as the reflective screen, and the aluminum silicate fiber and silica aerogel as the spacer layer, the layer density of composite with the best thermal insulation property is one layer per millimeter at 1000 °C.
NASA Technical Reports Server (NTRS)
Arnold, Steven M.; Murthy, Pappu L.; Bednarcyk, Brett A.; Lawson, John W.; Monk, Joshua D.; Bauschlicher, Charles W., Jr.
2016-01-01
Next generation ablative thermal protection systems are expected to consist of 3D woven composite architectures. It is well known that composites can be tailored to achieve desired mechanical and thermal properties in various directions and thus can be made fit-for-purpose if the proper combination of constituent materials and microstructures can be realized. In the present work, the first, multiscale, atomistically-informed, computational analysis of mechanical and thermal properties of a present day - Carbon/Phenolic composite Thermal Protection System (TPS) material is conducted. Model results are compared to measured in-plane and out-of-plane mechanical and thermal properties to validate the computational approach. Results indicate that given sufficient microstructural fidelity, along with lowerscale, constituent properties derived from molecular dynamics simulations, accurate composite level (effective) thermo-elastic properties can be obtained. This suggests that next generation TPS properties can be accurately estimated via atomistically informed multiscale analysis.
NASA Astrophysics Data System (ADS)
Goto, Shusaku; Yamano, Makoto; Morita, Sumito; Kanamatsu, Toshiya; Hachikubo, Akihiro; Kataoka, Satsuki; Tanahashi, Manabu; Matsumoto, Ryo
2017-12-01
Physical properties (bulk density and porosity) and thermal properties (thermal conductivity, heat capacity, specific heat, and thermal diffusivity) of sediment are crucial parameters for basin modeling. We measured these physical and thermal properties for mud-dominant sediment recovered from the Joetsu Basin, in the eastern margin of the Japan Sea. To determine thermal conductivity, heat capacity, and thermal diffusivity, the dual-needle probe method was applied. Grain density and grain thermal properties for the mud-dominant sediment were estimated from the measured physical and thermal properties by applying existing models of physical and thermal properties of sediment. We suggest that the grain density, grain thermal conductivity, and grain thermal diffusivity depend on the sediment mineral composition. Conversely, the grain heat capacity and grain specific heat showed hardly any dependency on the mineral composition. We propose empirical formulae for the relationships between: thermal diffusivity and thermal conductivity, and heat capacity and thermal conductivity for the sediment in the Joetsu Basin. These relationships are different from those for mud-dominant sediment in the eastern flank of the Juan de Fuca Ridge presented in previous work, suggesting a difference in mineral composition, probably mainly in the amount of quartz, between the sediments in that area and the Joetsu Basin. Similar studies in several areas of sediments with various mineral compositions would enhance knowledge of the influence of mineral composition.
Anisotropic thermal property of magnetically oriented carbon nanotube polymer composites
NASA Astrophysics Data System (ADS)
Li, Bin; Dong, Shuai; Wang, Caiping; Wang, Xiaojie; Fang, Jun
2016-04-01
This paper proposes a method for preparing multi-walled carbon nanotubea/polydimethylsiloxane (MWCNTs/PDMS) composites with enhanced thermal properties by using a high magnetic field (up to 10T). The MWCNT are oriented magnetically inside a silicone by in-situ polymerization method. The anisotropic structure would be expected to produce directional thermal conductivity. This study will provide a new approach to the development of anisotropic thermal-conductive polymer composites. Systematic studies with the preparation of silicone/graphene composites corresponding to their thermal and mechanical properties are carried out under various conditions: intensity of magnetic field, time, temperature, fillings. The effect of MWCNT/graphene content and preparation procedures on thermal conductivity of composites is investigated. Dynamic mechanical analysis (DMA) is used to reveal the mechanical properties of the composites in terms of the filling contents and magnetic field strength. The scanning electron microscope (SEM) is used to observe the micro-structure of the MWCNT composites. The alignment of MWCNTs in PDMS matrix is also studied by Raman spectroscopy. The thermal conductivity measurements show that the magnetically aligned CNT-composites feature high anisotropy in thermal conductivity.
Zhang, Guangwu; Wang, Fuzhong; Dai, Jing; Huang, Zhixiong
2016-01-01
This study investigated the effect of silane and surfactant treatments of graphene nanoplatelets (GnPs) on the mechanical and thermal properties of silicone rubber (SR) composites. GnPs were modified with aminopropyltriethoxysilane (APTES), vinyltrimethoxysilane (VTMS), and Triton X-100, and then the pristine GnPs and functionalized GnPs were individually incorporated into the SR. Compared with the pristine GnP/SR composite, the composites reinforced with modified GnP showed better tensile strength, elongation at break, and thermal conductivity properties due to better dispersion of modified GnPs and stronger interfacial interactions between the modified GnPs and matrix. The mechanical properties and thermal conductivity of the VTMS-GnP/SR composite were comparable to the properties of the Triton-GnP counterpart, but better than that of the APTES-GnP/SR composite. In addition, the VTMS-GnP/SR composite demonstrated the highest thermal stability and crystallization temperature among the four types of composites. The remarkable improvement of mechanical and thermal properties of the VTMS-GnP/SR composite was mainly due to the covalent linkage of VTMS-GnP with SR. The VTMS treatment was a more appropriate modification of GnP particles to improve the multifunctional properties of SR. PMID:28787891
Zhang, Guangwu; Wang, Fuzhong; Dai, Jing; Huang, Zhixiong
2016-02-02
This study investigated the effect of silane and surfactant treatments of graphene nanoplatelets (GnPs) on the mechanical and thermal properties of silicone rubber (SR) composites. GnPs were modified with aminopropyltriethoxysilane (APTES), vinyltrimethoxysilane (VTMS), and Triton X-100, and then the pristine GnPs and functionalized GnPs were individually incorporated into the SR. Compared with the pristine GnP/SR composite, the composites reinforced with modified GnP showed better tensile strength, elongation at break, and thermal conductivity properties due to better dispersion of modified GnPs and stronger interfacial interactions between the modified GnPs and matrix. The mechanical properties and thermal conductivity of the VTMS-GnP/SR composite were comparable to the properties of the Triton-GnP counterpart, but better than that of the APTES-GnP/SR composite. In addition, the VTMS-GnP/SR composite demonstrated the highest thermal stability and crystallization temperature among the four types of composites. The remarkable improvement of mechanical and thermal properties of the VTMS-GnP/SR composite was mainly due to the covalent linkage of VTMS-GnP with SR. The VTMS treatment was a more appropriate modification of GnP particles to improve the multifunctional properties of SR.
Composite materials for space applications
NASA Technical Reports Server (NTRS)
Rawal, Suraj P.; Misra, Mohan S.; Wendt, Robert G.
1990-01-01
The objectives of the program were to: generate mechanical, thermal, and physical property test data for as-fabricated advanced materials; design and fabricate an accelerated thermal cycling chamber; and determine the effect of thermal cycling on thermomechanical properties and dimensional stability of composites. In the current program, extensive mechanical and thermophysical property tests of various organic matrix, metal matrix, glass matrix, and carbon-carbon composites were conducted, and a reliable database was constructed for spacecraft material selection. Material property results for the majority of the as-fabricated composites were consistent with the predicted values, providing a measure of consolidation integrity attained during fabrication. To determine the effect of thermal cycling on mechanical properties, microcracking, and thermal expansion behavior, approximately 500 composite specimens were exposed to 10,000 cycles between -150 and +150 F. These specimens were placed in a large (18 cu ft work space) thermal cycling chamber that was specially designed and fabricated to simulate one year low earth orbital (LEO) thermal cycling in 20 days. With this rate of thermal cycling, this is the largest thermal cycling unit in the country. Material property measurements of the thermal cycled organic matrix composite laminate specimens exhibited less than 24 percent decrease in strength, whereas, the remaining materials exhibited less than 8 percent decrease in strength. The thermal expansion response of each of the thermal cycled specimens revealed significant reduction in hysteresis and residual strain, and the average CTE values were close to the predicted values.
Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers.
Tian, Mingwei; Qu, Lijun; Zhang, Xiansheng; Zhang, Kun; Zhu, Shifeng; Guo, Xiaoqing; Han, Guangting; Tang, Xiaoning; Sun, Yaning
2014-10-13
In this study, a wet spinning method was applied to fabricate regenerated cellulose fibers filled with low graphene loading which was systematically characterized by SEM, TEM, FTIR and XRD techniques. Subsequently, the mechanical and thermal properties of the resulting fibers were investigated. With only 0.2 wt% loading of graphene, a ∼ 50% improvement of tensile strength and 25% enhancement of Young's modulus were obtained and the modified Halpin-Tsai model was built to predict the mechanical properties of composite fibers. Thermal analysis of the composite fibers showed remarkably enhanced thermal stability and dynamic heat transfer performance of graphene-filled cellulose composite fiber, also, the presence of graphene oxide can significantly enhance the thermal conductivity of the composite fiber. This work provided a facile way to improve mechanical and thermal properties of regenerated cellulose fibers. The resultant composite fibers have potential application in thermal insulation and reinforced fibrous materials. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Albano, M.; Morles, R. B.; Cioeta, F.; Marchetti, M.
2014-06-01
Many are the materials for hot structures, but the most promising one are the carbon based composites nowadays. This is because they have good characteristics with a high stability at high temperatures, preserving their mechanical properties. Unfortunately, carbon reacts rapidly with oxygen and the composites are subjected to oxidation degradation. From this point of view CC has to be modified in order to improve its thermal and oxidative resistance. The most common solutions are the use of silicon carbide into the carbon composites matrix (SiC composites) to make the thermal properties increase and the use of coating on the surface in order to protect the composite from the space plasma effects. Here is presented an experimental study on coating effects on these composites. Thermal properties of coated and non coated materials have been studied and the thermal impact on the matrix and surface degradation is analyzed by a SEM analysis.
Investigation on Thermal Properties of Kenaf Fibre Reinforced Polyurethane Bio-Composites
NASA Astrophysics Data System (ADS)
Athmalingam, Mathan; Vicki, W. V.
2018-01-01
This research focuses on the effect of Kenaf fibre on thermal properties of Polyurethane (PU) reinforced kenaf bio-composites. The samples were prepared using the polymer casting method with different percentages of kenaf fibre content (5 wt%, 10 wt%, 15 wt%). The thermal properties of Kenaf/PU bio-composite are determined through the Thermogravimetric Analysis and Differential Scanning Calorimeter test. The TGA results revealed that 10 wt% Kenaf/PU bio-composite appeared to be more stable. DSC results show that the glass transition temperature (Tg) value of 10 wt% Kenaf/PU composite is significant to pure polyurethane. It can be said that the thermal stability of 10 wt% Kenaf/PU bio-composite exhibits higher thermal stability compared to other samples.
NASA Astrophysics Data System (ADS)
Visakh, P. M.; Nazarenko, O. B.; Sarath Chandran, C.; Melnikova, T. V.; Nazarenko, S. Yu.; Kim, J.-C.
2017-07-01
The epoxy resins are widely used in nuclear and aerospace industries. The certain properties of epoxy resins as well as the resistance to radiation can be improved by the incorporation of different fillers. This study examines the effect of electron beam irradiation on the thermal and mechanical properties of the epoxy composites filled with aluminum nanoparticles at percentage of 0.35 wt%. The epoxy composites were exposed to the irradiation doses of 30, 100 and 300 kGy using electron beam generated by the linear electron accelerator ELU-4. The effects of the doses on thermal and mechanical properties of the aluminum based epoxy composites were investigated by the methods of thermal gravimetric analysis, tensile test, and dynamic mechanical analysis. The results revealed that the studied epoxy composites showed good radiation resistance. The thermal and mechanical properties of the aluminum based epoxy composites increased with increasing the irradiation dose up to 100 kGy and decreased with further increasing the dose.
2017-03-01
polymer matrices. In addition to improving mechanical and electrical properties, these forms of carbon typically demonstrate high intrinsic thermal...conductivities, a property that could be useful in improving the thermal dissipation performance of polymer matrix composites. In this study, carbon...nanotubes, carbon nanofibers and graphene have been added to polymers and polymer matrix composites in order to study the effect on the thermal
NASA Technical Reports Server (NTRS)
Stackpoole, Margaret; Gusman, M.; Ellerby, D.; Johnson, S. M.; Arnold, Jim (Technical Monitor)
2001-01-01
The Thermal Protection Materials and Systems Branch at NASA Ames Research Center is involved in the development of a class of refractory oxidation-resistant diboride composites termed Ultra High Temperature Ceramics or UHTCs. These composites have good high temperature properties making them candidate materials for thermal protection system (TPS) applications. The current research focuses on improving processing methods to develop more reliable composites with enhanced thermal and mechanical properties. This presentation will concentrate on the processing of ZrB2/SiC composites. Some preliminary mechanical properties and oxidation data will also be presented.
Katogi, Hideaki; Takemura, Kenichi; Akiyama, Motoki
2016-01-01
This study investigated the residual tensile properties of plain woven jute fiber reinforced poly(lactic acid) (PLA) during thermal cycling. Temperature ranges of thermal cycling tests were 35–45 °C and 35–55 °C. The maximum number of cycles was 103 cycles. The quasi-static tensile tests of jute fiber, PLA, and composite were conducted after thermal cycling tests. Thermal mechanical analyses of jute fiber and PLA were conducted after thermal cycling tests. Results led to the following conclusions. For temperatures of 35–45 °C, tensile strength of composite at 103 cycles decreased 10% compared to that of composite at 0 cycles. For temperatures of 35–55 °C, tensile strength and Young’s modulus of composite at 103 cycles decreased 15% and 10%, respectively, compared to that of composite at 0 cycles. Tensile properties and the coefficient of linear expansion of PLA and jute fiber remained almost unchanged after thermal cycling tests. From observation of a fracture surface, the length of fiber pull out in the fracture surface of composite at 103 cycles was longer than that of composite at 0 cycles. Therefore, tensile properties of the composite during thermal cycling were decreased, probably because of the decrease of interfacial adhesion between the fiber and resin. PMID:28773694
Review of thermal properties of graphite composite materials
NASA Technical Reports Server (NTRS)
Kourtides, D. A.
1987-01-01
Flammability, thermal, and selected mechanical properties of composites fabricated with epoxy and other thermally stable resin matrices are described. Properties which were measured included limiting-oxygen index, smoke evolution, thermal degradation products, total-heat release, heat-release rates, mass loss, flame spread, ignition resistance, thermogravimetric analysis, and selected mechanical properties. The properties of 8 different graphite composite panels fabricated using four different resin matrices and two types of graphite reinforcement are described. The resin matrices included: XU71775/H795, a blend of vinyl polystyryl pyridine and bismaleimide; H795, a bismaleimide; Cycom 6162, a phenolic; and PSP 6022M, a polystyryl pyridine. The graphite fiber used was AS-4 in the form of either tape or fabric. The properties of these composites were compared with epoxy composites. It was determined that the blend of vinyl polystyryl pyridine and bismaleimide (XU71775/H795) with the graphite tape was the optimum design giving the lowest heat release rate.
NASA Astrophysics Data System (ADS)
Zarubin, V. S.; Sergeeva, E. S.
2018-04-01
Composite materials (composites) composed of a matrix and reinforcing components are currently widely used as structural materials for various engineering devices designed to operate under extreme thermal and mechanical loads. By modifying a composite with structure-sensitive inclusions such as single-wall carbon nanotubes, one can significantly improve the thermomechanical properties of the resulting material. The paper presents relationships obtained for the equivalent thermal conductivity coefficients of single-wall carbon nanotubes versus their chirality using a simulation model developed to simulate the heat transfer process through thermal conductivity in a transversely isotropic environment. With these coefficients, one can conventionally substitute a single-wall carbon nanotube with a continuous anisotropic fiber, thus allowing one to estimate the thermal properties of composites reinforced with objects of this sort by using the well-known models developed for fibered composites. The results presented here can be used to estimate the thermal properties of carbon nanotube-reinforced composites.
Properties of lightweight cement-based composites containing waste polypropylene
NASA Astrophysics Data System (ADS)
Záleská, Martina; Pavlíková, Milena; Pavlík, Zbyšek
2016-07-01
Improvement of buildings thermal stability represents an increasingly important trend of the construction industry. This work aims to study the possible use of two types of waste polypropylene (PP) for the development of lightweight cement-based composites with enhanced thermal insulation function. Crushed PP waste originating from the PP tubes production is used for the partial replacement of silica sand by 10, 20, 30, 40 and 50 mass%, whereas a reference mixture without plastic waste is studied as well. First, basic physical and thermal properties of granular PP random copolymer (PPR) and glass fiber reinforced PP (PPGF) aggregate are studied. For the developed composite mixtures, basic physical, mechanical, heat transport and storage properties are accessed. The obtained results show that the composites with incorporated PP aggregate exhibit an improved thermal insulation properties and acceptable mechanical resistivity. This new composite materials with enhanced thermal insulation function are found to be promising materials for buildings subsoil or floor structures.
LDEF-space environmental effects on materials: Composites and silicone coatings
NASA Technical Reports Server (NTRS)
Petrie, Brian C.
1992-01-01
The effects of long term low Earth orbit environments on thermal control coatings and organic matrix/fiber reinforced composites are discussed. Two diverse categories are reported here: silicone coatings and composites. For composites physical and structural properties were analyzed; results are reported on mass/dimensional loss, microcracking, short beam shear, coefficient of thermal expansion (CTE), and flexural properties. The changes in thermal control properties, mass, and surface chemistry and morphology are reported and analyzed for the silicone coatings.
NASA Technical Reports Server (NTRS)
Lee, Ho-Jun; Saravanos, Dimitris A.
1997-01-01
Previously developed analytical formulations for piezoelectric composite plates are extended to account for the nonlinear effects of temperature on material properties. The temperature dependence of the composite and piezoelectric properties are represented at the material level through the thermopiezoelectric constitutive equations. In addition to capturing thermal effects from temperature dependent material properties, this formulation also accounts for thermal effects arising from: (1) coefficient of thermal expansion mismatch between the various composite and piezoelectric plies and (2) pyroelectric effects on the piezoelectric material. The constitutive equations are incorporated into a layerwise laminate theory to provide a unified representation of the coupled mechanical, electrical, and thermal behavior of smart structures. Corresponding finite element equations are derived and implemented for a bilinear plate element with the inherent capability to model both the active and sensory response of piezoelectric composite laminates. Numerical studies are conducted on a simply supported composite plate with attached piezoceramic patches under thermal gradients to investigate the nonlinear effects of material property temperature dependence on the displacements, sensory voltages, active voltages required to minimize thermal deflections, and the resultant stress states.
NASA Technical Reports Server (NTRS)
Bhatt, R. T.; Palczer, A. R.
1994-01-01
Thermal expansion curves for SiC fiber-reinforced reaction-bonded Si3N4 matrix composites (SiC/RBSN) and unreinforced RBSN were measured from 25 to 1400 C in nitrogen and in oxygen. The effects of fiber/matrix bonding and cycling on the thermal expansion curves and room-temperature tensile properties of unidirectional composites were determined. The measured thermal expansion curves were compared with those predicted from composite theory. Predicted thermal expansion curves parallel to the fiber direction for both bonding cases were similar to that of the weakly bonded composites, but those normal to the fiber direction for both bonding cases resulted in no net dimensional changes at room temperature, and no loss in tensile properties from the as-fabricated condition. In contrast, thermal cycling in oxygen for both composites caused volume expansion primarily due to internal oxidation of RBSN. Cyclic oxidation affected the mechanical properties of the weakly bonded SiC/RBSN composites the most, resulting in loss of strain capability beyond matrix fracture and catastrophic, brittle fracture. Increased bonding between the SiC fiber and RBSN matrix due to oxidation of the carbon-rich fiber surface coating and an altered residual stress pattern in the composite due to internal oxidation of the matrix are the main reasons for the poor mechanical performance of these composites.
NASA Astrophysics Data System (ADS)
Siewiorek, A.; Malczyk, P.; Sobczak, N.; Sobczak, J. J.; Czulak, A.; Kozera, R.; Gude, M.; Boczkowska, A.; Homa, M.
2016-08-01
To develop an optimised manufacturing method of fly ash-reinforced metal matrix composites, the preliminary tests were performed on the cenospheres selected from fly ash (FACS) with halloysite nanotubes (HNTs) addition. The preform made out of FACS with and without the addition of HNT (with 5 and 10 wt.%) has been infiltrated by the pure aluminium (Al) via adapted gas pressure infiltration process. This paper reveals the influence of HNT addition on the microstructure (analysis was done by computed tomography and scanning electron microscopy combined with energy-dispersive x-ray spectroscopy), thermal properties (thermal expansion coefficient, thermal conductivity and specific heat) and the mechanical properties (hardness and compression test) of manufactured composites. The analysis of structure-property relationships for Al/FACS-HNT composites produced shows that the addition of 5 wt.% of HNT to FACS preform contributes to receiving of the best mechanical and structural properties of investigated composites.
Sustainable hemp-based composites for the building industry application
NASA Astrophysics Data System (ADS)
Schwarzova, Ivana; Stevulova, Nadezda; Junak, Jozef; Hospodarova, Viola
2017-07-01
Sustainability goals are essential driving principles for the development of innovative materials in the building industry. Natural plant (e.g. hemp) fibers represent an attractive alternative as reinforcing material due to its good properties and sustainability prerequisites. In this study, hemp-based composite materials, designed for building application as non-load bearing material, providing both thermal insulation and physico-mechanical properties, are presented. Composite materials were produced by bonding hemp hurds with a novel inorganic binder (MgO-based cement) and then were characterized in terms of physical properties (bulk density, water absorption), thermal properties (thermal conductivity) and mechanical properties (compressive and tensile strength). The composites exhibited promising physical, thermal and mechanical characteristics, generally comparable to commercially available products. In addition, the hemp-based composites have the advantage of a significantly low environmental impact (thanks to the nature of both the dispersed and the binding phase) and no negative effects on human health. All things considered, the composite materials seem like very promising materials for the building industry application.
NASA Astrophysics Data System (ADS)
Ruan, Mengnan; Yang, Dan; Guo, Wenli; Zhang, Liqun; Li, Shuxin; Shang, Yuwei; Wu, Yibo; Zhang, Min; Wang, Hao
2018-05-01
Surface functionalization of Al2O3 nano-particles by mussel-inspired poly(dopamine) (PDA) was developed to improve the dielectric properties, mechanical properties, and thermal conductivity properties of nitrile rubber (NBR) matrix. As strong adhesion of PDA to Al2O3 nano-particles and hydrogen bonds formed by the catechol groups of PDA and the polar acrylonitrile groups of NBR, the dispersion of Al2O3-PDA/NBR composites was improved and the interfacial force between Al2O3-PDA and NBR matrix was enhanced. Thus, the Al2O3-PDA/NBR composites exhibited higher dielectric constant, better mechanical properties, and larger thermal conductivity comparing with Al2O3/NBR composites at the same filler content. The largest thermal conductivity of Al2O3-PDA/NBR composite filled with 30 phr Al2O3-PDA was 0.21 W/m K, which was 122% times of pure NBR. In addition, the Al2O3-PDA/NBR composite filled with 30 phr Al2O3-PDA displayed a high tensile strength about 2.61 MPa, which was about 255% of pure NBR. This procedure is eco-friendly and easy handling, which provides a promising route to polymer composites in application of thermal conductivity field.
Cha, Ji Eun; Kim, Seong Yun; Lee, Seung Hee
2016-01-01
To investigate the effect of continuous multi-walled carbon nanotubes (MWCNTs) on the thermal and mechanical properties of composites, we propose a fabrication method for a buckypaper-filled flexible composite film prepared by a two-step process involving buckypaper fabrication using vacuum filtration of MWCNTs, and composite film fabrication using the dipping method. The thermal conductivity and tensile strength of the composite film filled with the buckypaper exhibited improved results, respectively 76% and 275% greater than those of the individual MWCNT-filled composite film. It was confirmed that forming continuous MWCNT fillers is an important factor which determines the physical characteristics of the composite film. In light of the study findings, composite films using buckypaper as a filler and polydimethylsiloxane (PDMS) as a flexible matrix have sufficient potential to be applied as a heat-dissipating material, and as a flexible film with high thermal conductivity and excellent mechanical properties. PMID:28335310
Quantifying Uncertainties in the Thermo-Mechanical Properties of Particulate Reinforced Composites
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Murthy, Pappu L. N.
1999-01-01
The present paper reports results from a computational simulation of probabilistic particulate reinforced composite behavior. The approach consists use of simplified micromechanics of particulate reinforced composites together with a Fast Probability Integration (FPI) technique. Sample results are presented for a Al/SiC(sub p)(silicon carbide particles in aluminum matrix) composite. The probability density functions for composite moduli, thermal expansion coefficient and thermal conductivities along with their sensitivity factors are computed. The effect of different assumed distributions and the effect of reducing scatter in constituent properties on the thermal expansion coefficient are also evaluated. The variations in the constituent properties that directly effect these composite properties are accounted for by assumed probabilistic distributions. The results show that the present technique provides valuable information about the scatter in composite properties and sensitivity factors, which are useful to test or design engineers.
Anisotropic thermal conductivity in epoxy-bonded magnetocaloric composites
NASA Astrophysics Data System (ADS)
Weise, Bruno; Sellschopp, Kai; Bierdel, Marius; Funk, Alexander; Bobeth, Manfred; Krautz, Maria; Waske, Anja
2016-09-01
Thermal management is one of the crucial issues in the development of magnetocaloric refrigeration technology for application. In order to ensure optimal exploitation of the materials "primary" properties, such as entropy change and temperature lift, thermal properties (and other "secondary" properties) play an important role. In magnetocaloric composites, which show an increased cycling stability in comparison to their bulk counterparts, thermal properties are strongly determined by the geometric arrangement of the corresponding components. In the first part of this paper, the inner structure of a polymer-bonded La(Fe, Co, Si)13-composite was studied by X-ray computed tomography. Based on this 3D data, a numerical study along all three spatial directions revealed anisotropic thermal conductivity of the composite: Due to the preparation process, the long-axis of the magnetocaloric particles is aligned along the xy plane which is why the in-plane thermal conductivity is larger than the thermal conductivity along the z-axis. Further, the study is expanded to a second aspect devoted to the influence of particle distribution and alignment within the polymer matrix. Based on an equivalent ellipsoids model to describe the inner structure of the composite, numerical simulation of the thermal conductivity in different particle arrangements and orientation distributions were performed. This paper evaluates the possibilities of microstructural design for inducing and adjusting anisotropic thermal conductivity in magnetocaloric composites.
Xu, Yingjie; Gao, Tian
2016-01-01
Carbon fiber-reinforced multi-layered pyrocarbon–silicon carbide matrix (C/C–SiC) composites are widely used in aerospace structures. The complicated spatial architecture and material heterogeneity of C/C–SiC composites constitute the challenge for tailoring their properties. Thus, discovering the intrinsic relations between the properties and the microstructures and sequentially optimizing the microstructures to obtain composites with the best performances becomes the key for practical applications. The objective of this work is to optimize the thermal-elastic properties of unidirectional C/C–SiC composites by controlling the multi-layered matrix thicknesses. A hybrid approach based on micromechanical modeling and back propagation (BP) neural network is proposed to predict the thermal-elastic properties of composites. Then, a particle swarm optimization (PSO) algorithm is interfaced with this hybrid model to achieve the optimal design for minimizing the coefficient of thermal expansion (CTE) of composites with the constraint of elastic modulus. Numerical examples demonstrate the effectiveness of the proposed hybrid model and optimization method. PMID:28773343
NASA Astrophysics Data System (ADS)
Nazarenko, O. B.; Melnikova, T. V.; Visakh, P. M.
2016-01-01
The epoxy polymers are characterized by low thermal stability and high flammability. Nanoparticles are considered to be effective fillers of polymer composites for improving their thermal and functional properties. In this work, the epoxy composites were prepared using epoxy resin ED-20, polyethylene polyamine as a hardener, aluminum nanopowder and boric acid fine powder as flame-retardant filler. The thermal characteristics of the obtained samples were studied using thermogravimetric analysis and differential scanning calorimetry. The mechanical characteristics of epoxy composites were also studied. It was found that an addition of all fillers enhances the thermal stability and mechanical characteristics of the epoxy composites. The best thermal stability showed the epoxy composite filled with boric acid. The highest flexural properties showed the epoxy composite based on the combination of boric acid and aluminum nanopowder.
Thermal and mechanical properties of 3D printed boron nitride - ABS composites
NASA Astrophysics Data System (ADS)
Quill, Tyler J.; Smith, Matthew K.; Zhou, Tony; Baioumy, Mohamed Gamal Shafik; Berenguer, Joao Paulo; Cola, Baratunde A.; Kalaitzidou, Kyriaki; Bougher, Thomas L.
2017-11-01
The current work investigates the thermal conductivity and mechanical properties of Boron Nitride (BN)-Acrylonitrile Butadiene Styrene (ABS) composites prepared using both 3D printing and injection molding. The thermally conductive, yet electrically insulating composite material provides a unique combination of properties that make it desirable for heat dissipation and packaging applications in electronics. Materials were fabricated via melt mixing on a twin-screw compounder, then injection molded or extruded into filament for fused deposition modeling (FDM) 3D printing. Compositions of up to 35 wt.% BN in ABS were prepared, and the infill orientation of the 3D printed composites was varied to investigate the effect on properties. Injection molding produced a maximum in-plane conductivity of 1.45 W/m-K at 35 wt.% BN, whereas 3D printed samples of 35 wt.% BN showed a value of 0.93 W/m-K, over 5 times the conductivity of pure ABS. The resulting thermal conductivity is anisotropic; with the through-plane thermal conductivity lower by a factor of 3 for injection molding and 4 for 3D printing. Adding BN flakes caused a modest increase in the flexural modulus, but resulted in a large decrease in the flexural strength and impact toughness. It is shown that although injection molding produces parts with superior thermal and mechanical properties, BN shows much potential as a filler material for rapid prototyping of thermally conductive composites.
NASA Astrophysics Data System (ADS)
Tadano, Makoto; Sato, Masahiro; Kuroda, Yukio; Kusaka, Kazuo; Ueda, Shuichi; Suemitsu, Takeshi; Hasegawa, Satoshi; Kude, Yukinori
1995-04-01
Carbon fiber reinforced carbon composite (C/C composite) has various superior properties, such as high specific strength, specific modulus, and fracture strength at high temperatures of more than 1800 K. Therefore, C/C composite is expected to be useful for many structural applications, such as combustion chambers of rocket engines and nose-cones of space-planes, but C/C composite lacks oxidation resistivity in high temperature environments. To meet the lifespan requirement for thermal barrier coatings, a ceramic coating has been employed in the hot-gas side wall. However, the main drawback to the use of C/C composite is the tendency for delamination to occur between the coating layer on the hot-gas side and the base materials on the cooling side during repeated thermal heating loads. To improve the thermal properties of the thermal barrier coating, five different types of 30-mm diameter C/C composite specimens constructed with functionally gradient materials (FGM's) and a modified matrix coating layer were fabricated. In this test, these specimens were exposed to the combustion gases of the rocket engine using nitrogen tetroxide (NTO) / monomethyl hydrazine (MMH) to evaluate the properties of thermal and erosive resistance on the thermal barrier coating after the heating test. It was observed that modified matrix and coating with FGM's are effective in improving the thermal properties of C/C composite.
NASA Technical Reports Server (NTRS)
Chu, Y. C.; Hefetz, M.; Rokhlin, S. I.; Baaklini, G. Y.
1992-01-01
Ultrasonic techniques are employed to develop methods for nondestructive evaluation of elastic properties and damage in SiC/RBSN composites. To incorporate imperfect boundary conditions between fibers and matrix into a micromechanical model, a model of fibers having effective anisotropic properties is introduced. By inverting Hashin's (1979) microstructural model for a composite material with microscopic constituents the effective fiber properties were found from ultrasonic measurements. Ultrasonic measurements indicate that damage due to thermal shock is located near the surface, so the surface wave is most appropriate for estimation of the ultimate strength reduction and critical temperature of thermal shock. It is concluded that bonding between laminates of SiC/RBSN composites is severely weakened by thermal oxidation. Generally, nondestructive evaluation of thermal oxidation effects and thermal shock shows good correlation with measurements previously performed by destructive methods.
Gong, Feng; Duong, Hai M.; Papavassiliou, Dimitrios V.
2016-01-01
Here, we present a review of recent developments for an off-lattice Monte Carlo approach used to investigate the thermal transport properties of multiphase composites with complex structure. The thermal energy was quantified by a large number of randomly moving thermal walkers. Different modes of heat conduction were modeled in appropriate ways. The diffusive heat conduction in the polymer matrix was modeled with random Brownian motion of thermal walkers within the polymer, and the ballistic heat transfer within the carbon nanotubes (CNTs) was modeled by assigning infinite speed of thermal walkers in the CNTs. Three case studies were conducted to validate the developed approach, including three-phase single-walled CNTs/tungsten disulfide (WS2)/(poly(ether ether ketone) (PEEK) composites, single-walled CNT/WS2/PEEK composites with the CNTs clustered in bundles, and complex graphene/poly(methyl methacrylate) (PMMA) composites. In all cases, resistance to heat transfer due to nanoscale phenomena was also modeled. By quantitatively studying the influencing factors on the thermal transport properties of the multiphase composites, it was found that the orientation, aggregation and morphology of fillers, as well as the interfacial thermal resistance at filler-matrix interfaces would limit the transfer of heat in the composites. These quantitative findings may be applied in the design and synthesis of multiphase composites with specific thermal transport properties. PMID:28335270
Properties of Polymer-Infiltrated Carbon Foams
NASA Astrophysics Data System (ADS)
Adams, W. A.; Bunning, T. J.; Farmer, B. L.; Kearns, K. M.; Anderson, D. A.; Roy, A. K.; Banerjee, T.; Jeon, H. G.
2001-03-01
There is considerable interest in extending the use-temperatures of both commodity and high performance polymers. There is also interest in improving the mechanical strength of carbon foams. Composites prepared by infiltrating carbon foam with polymers may offer significant improvements in both, the polymer helping to rigidize the foam and the foam providing thermal protection by virtue of its high thermal conductivity. The mechanical properties and thermal stability of carbon foams of various densities infiltrated with polyurethane have been studied. When used with a heat sink, the composite is able to maintain a substantial thermal gradient which provides stability of the polymer nominally above its decomposition temperature. The composite also has much improved strength properties without sacrificing tensile modulus. The composites may be very well suited for thermal management applications.
Effects of thermal cycling on composite materials for space structures
NASA Technical Reports Server (NTRS)
Tompkins, Stephen S.
1989-01-01
The effects of thermal cycling on the thermal and mechanical properties of composite materials that are candidates for space structures are briefly described. The results from a thermal analysis of the orbiting Space Station Freedom is used to define a typical thermal environment and the parameters that cause changes in the thermal history. The interactions of this environment with composite materials are shown and described. The effects of this interaction on the integrity as well as the properties of GR/thermoset, Gr/thermoplastic, Gr/metal and Gr/glass composite materials are discussed. Emphasis is placed on the effects of the interaction that are critical to precision spacecraft. Finally, ground test methodology are briefly discussed.
Thermal Shock Properties of a 2D-C/SiC Composite Prepared by Chemical Vapor Infiltration
NASA Astrophysics Data System (ADS)
Zhang, Chengyu; Wang, Xuanwei; Wang, Bo; Liu, Yongsheng; Han, Dong; Qiao, Shengru; Guo, Yong
2013-06-01
The thermal shock properties of a two-dimensional carbon fiber-reinforced silicon carbide composite with a multilayered self-healing coating (2D-C/SiC) were investigated in air. The composite was prepared by low-pressure chemical vapor infiltration. 2D-C/SiC specimens were thermally shocked for different cycles between 900 and 300 °C. The thermal shock resistance was characterized by residual tensile properties and mass variation. The change of the surface morphology and microstructural evolution of the composite were examined by a scanning electron microscope. In addition, the phase evolution on the surfaces was identified using an X-ray diffractometer. It is found that the composite retains its tensile strength within 20 thermal shock cycles. However, the modulus of 2D-C/SiC decreases gradually with increasing thermal shock cycles. Extensive pullout of fibers on the fractured surface and peeling off of the coating suggest that the damage caused by the thermal shock involves weakening of the bonding strength of coating/composite and fiber/matrix. In addition, the carbon fibers in the near-surface zone were oxidized through the matrix cracks, and the fiber/matrix interfaces delaminated when the composite was subjected to a larger number of thermal shock cycles.
NASA Astrophysics Data System (ADS)
Thaib, R.; Fauzi, H.; Ong, H. C.; Rizal, S.; Mahlia, T. M. I.; Riza, M.
2018-03-01
A composite phase change material (CPCM) of myristic acid/palmitic acid/sodium myristate (MA/PA/SM) and of myristic acid/palmitic acid/sodium laurate (MA/PA/SL) were impregnated with purified damar gum as called Shorea Javanica (SJ) to improve the thermal conductivity of CPCM. The thermal properties, thermal conductivity, and thermal stability of both CPCM have investigated by using a Differential Scanning Calorimetry (DSC) thermal analysis, hot disc thermal conductivity analyzer, and Simultaneous Thermal Analyzer (STA), simultaneously. However, a chemical compatibility between both fatty acid eutectic mixtures and SJ in composite mixtures measured by Fourier Transform Infra-Red (FT-IR) spectrophotometer. The results were obtained that the thermal conductivity of MA/PA/SM/SJ and MA/PA/SL/SJ eutectic composite phase change material (CPCM) were improved by addition 3 wt.% and 2 wt.% of Shorea javanica (SJ), respectively, without occur a significant change on thermal properties of CPCM. Moreover, the absorbance spectrum of FT-IR shows the good compatibility of SJ with both MA/PA/SM and MA/PA/SL eutectic mixtures, the composite PCM also present good thermal performance and good thermal stability. Therefore, it can be noted that the purified Shorea Javanica proposed, the as high conductive material in this study was able to improve the thermal conductivity of eutectic PCM without any significant reduction on its thermo-physical and chemical properties and can be recommended as novelty composite phase change material for thermal energy storage application.
Jun, Du; Guomin, Zhao; Mingzhu, Pan; Leilei, Zhuang; Dagang, Li; Rui, Zhang
2017-07-15
Nanocellulose reinforced poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) composites were prepared using melt compounding. The effects of nanocellulose types (CNCs and CNFs) and nanocellulose content (1, 2, 3, 4, 5, 6 and 7wt%) on the crystallization, thermal and mechanical properties of PHBV composites were systematically compared in this study. The thermal stability of PHBV composites was improved by both CNCs and CNFs. CNFs with a higher thermal stability leaded to a higher thermal stability of PHBV composites. Both CNCs and CNFs induced a reduction in the crystalline size of PHBV spherulites. Furthermore, CNCs could act as a better nucleating agent for PHBV than did CNFs. CNCs and CNFs showed reinforcing effects in PHBV composites. At the equivalent content of nanocellulose, CNCs led to a higher tensile modulus of PHBV composites than did CNFs. 1wt% CNCs/PHBV composites exhibited the most optimum mechanical properties. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pan, Hai; Xu, Mingzhen; Liu, Xiaobo
2017-12-01
PEN/NdFeB composite films were prepared by the solution casting method. The thermal properties, fracture morphology and tensile strength of the composite films were tested by DSC, TGA, SEM and electromechanical universal testing machine, respectively. The results reveal that the composite film has good thermal properties and tensile strength. Glass-transition temperature and decomposition temperatures at weight loss of 5% ot the composite films retain at 166±1 C and 462±4 C, respectively. The composite film with 5 wt.% NdFeB has the best tensile strength value for 100.5 MPa. In addition, it was found that the NdFeB filler was well dispersed in PEN matrix by SEM analysis.
Jumaidin, Ridhwan; Sapuan, Salit M; Jawaid, Mohammad; Ishak, Mohamad R; Sahari, Japar
2017-04-01
The aim of this research is to investigate the effect of sugar palm fibre (SPF) on the mechanical, thermal and physical properties of seaweed/thermoplastic sugar palm starch agar (TPSA) composites. Hybridized seaweed/SPF filler at weight ratio of 25:75, 50:50 and 75:25 were prepared using TPSA as a matrix. Mechanical, thermal and physical properties of hybrid composites were carried out. Obtained results indicated that hybrid composites display improved tensile and flexural properties accompanied with lower impact resistance. The highest tensile (17.74MPa) and flexural strength (31.24MPa) was obtained from hybrid composite with 50:50 ratio of seaweed/SPF. Good fibre-matrix bonding was evident in the scanning electron microscopy (SEM) micrograph of the hybrid composites' tensile fracture. Fourier transform infrared spectroscopy (FT-IR) analysis showed increase in intermolecular hydrogen bonding following the addition of SPF. Thermal stability of hybrid composites was enhanced, indicated by a higher onset degradation temperature (259°C) for 25:75 seaweed/SPF composites than the individual seaweed composites (253°C). Water absorption, thickness swelling, water solubility, and soil burial tests showed higher water and biodegradation resistance of the hybrid composites. Overall, the hybridization of SPF with seaweed/TPSA composites enhances the properties of the biocomposites for short-life application; that is, disposable tray, plate, etc. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jain, Naman; Singh, Vinay Kumar; Chauhan, Sakshi
2017-12-01
Basalt fiber is emerging out the new reinforcing material for composites. To overcome some of the disadvantages of fibers such as poor bonding to polymers, low thermal stability and high moisture absorption fiber characteristics are modified with chemical, thermal and additive treatments. Chemical treatment corrosive resistance to alkali and acid were investigated which were used to clean and modify the surface of fiber for higher bonding with resins. To improve the thermal stability and reduce moisture uptake thermal treatment such as plasma and non thermal plasma were used which increased the surface roughness and change the chemical composition of surface of basalt fiber. Additive treatment is used to improve the mechanical properties of fibers, in basalt fiber additive treatment was done with SiO2 additive because of its chemical composition which contains major content of SiO2. In present investigation review on the effect of different treatment such as chemical, thermal and additive were studied. Effect of these treatment on chemical composition of the surface of basalt fiber and corrosion to acidic and alkali solution were studied with their effect on mechanical properties of basalt fiber and their composite.
Thermal conductivity of tubrostratic carbon nanofiber networks
Bauer, Matthew L.; Saltonstall, Chris B.; Leseman, Zayd C.; ...
2016-01-01
Composite material systems composed of a matrix of nano materials can achieve combinations of mechanical and thermophysical properties outside the range of traditional systems. While many reports have studied the intrinsic thermal properties of individual carbon fibers, to be useful in applications in which thermal stability is critical, an understanding of heat transport in composite materials is required. In this work, air/ carbon nano fiber networks are studied to elucidate the system parameters influencing thermal transport. Sample thermal properties are measured with varying initial carbon fiber fill fraction, environment pressure, loading pressure, and heat treatment temperature through a bidirectional modificationmore » of the 3ω technique. The nanostructures of the individual fibers are characterized with small angle x-ray scattering and Raman spectroscopy providing insight to individual fiber thermal conductivity. Measured thermal conductivity varied from 0.010 W/(m K) to 0.070 W/(m K). An understanding of the intrinsic properties of the individual fibers and the interactions of the two phase composite is used to reconcile low measured thermal conductivities with predictive modeling. This methodology can be more generally applied to a wide range of fiber composite materials and their applications.« less
Thermal properties and dynamic mechanical properties of ceramic fillers filled epoxy composites
NASA Astrophysics Data System (ADS)
Saidina, D. S.; Mariatti, M.; Juliewatty, J.
2015-07-01
This present study is aimed to enhance the thermal and dynamic mechanical properties of ceramic fillers such as Calcium Copper Titanate, CaCu3Ti4O12 (CCTO) and Barium Titanate (BaTiO3) filled epoxy thin film composites. As can be seen from the results, 20 vol% BaTiO3/epoxy thin film composite showed the lowest coefficient of thermal expansion (CTE) value, the highest decomposition temperature (T5 and Tonset) and weight of residue among the composites as the filler has low CTE value, distributed homogeneously throughout the composite and less voids can be seen between epoxy resin and BaTiO3 filler.
Experimental Investigations on Thermal Conductivity of Fenugreek and Banana Composites
NASA Astrophysics Data System (ADS)
Pujari, Satish; Venkatesh, Talari; Seeli, Hepsiba
2018-04-01
The use of composite materials in manufacturing has significantly increased in the past decade. Research is being done to identify natural fibers that can be used as composites. Several natural fibers are already being used in the industry as composites. The appealing advantages of using natural fibers are reflected in lower density when compared to synthetic fibers and also in saving costs. This research paper highlights the experiment that analyses the use of biodegradable fenugreek composite as natural fiber and concludes that fenugreek natural fibers are an excellent substitute to the synthetic fibers in terms of reinforcement properties for the polymers. These fenugreek fibers are naturally sourced, renewable, cost effective and bio-friendly. In thermal energy storage systems as well as in air conditioning systems, thermal insulators are predominantly used to enhance the storage properties. An experiment was created to investigate the thermal properties of fenugreek banana composites for different fiber concentrations. The experimental results showed that the thermal conductivity of the composites decrease with an increase in the fiber content. The experimental results were compared with the theoretical models to describe the variation of thermal conductivity with the volume fraction of the fiber. Good agreement between theoretical and experimental results was observed.
NASA Technical Reports Server (NTRS)
Dunlevey, F. M.; Wallace, J. F.
1973-01-01
The effect of thermal cycling on the structure and properties of a cobalt, chromium, nickel, tantalum carbide directionally solidified eutectic composite is reported. It was determined that the stress rupture properties of the alloy were decreased by the thermal cycling. The loss in stress rupture properties varied with the number of cycles with the loss in properties after about 200 cycles being relatively high. The formation of serrations and the resulting changes in the mechanical properties of the material are discussed.
NASA Astrophysics Data System (ADS)
Haridas, Aswin; Crivoi, Alexandru; Prabhathan, P.; Chan, Kelvin; Murukeshan, V. M.
2017-06-01
The use of carbon fiber-reinforced polymer (CFRP) composite materials in the aerospace industry have far improved the load carrying properties and the design flexibility of aircraft structures. A high strength to weight ratio, low thermal conductivity, and a low thermal expansion coefficient gives it an edge for applications demanding stringent loading conditions. Specifically, this paper focuses on the behavior of CFRP composites under stringent thermal loads. The properties of composites are largely affected by external thermal loads, especially when the loads are beyond the glass temperature, Tg, of the composite. Beyond this, the composites are subject to prominent changes in mechanical and thermal properties which may further lead to material decomposition. Furthermore, thermal damage formation being chaotic, a strict dimension cannot be associated with the formed damage. In this context, this paper focuses on comparing multiple speckle image analysis algorithms to effectively characterize the formed thermal damages on the CFRP specimen. This would provide us with a fast method for quantifying the extent of heat damage in carbon composites, thus reducing the required time for inspection. The image analysis methods used for the comparison include fractal dimensional analysis of the formed speckle pattern and analysis of number and size of various connecting elements in the binary image.
Transverse thermal expansion of carbon fiber/epoxy matrix composites
NASA Technical Reports Server (NTRS)
Helmer, J. F.; Diefendorf, R. J.
1983-01-01
Thermal expansion coefficients and moduli of elasticity have been determined experimentally for a series of epoxy-matrix composites reinforced with carbon and Kevlar fibers. It is found that in the transverse direction the difference between the properties of the fiber and the matrix is not as pronounced as in the longitudinal direction, where the composite properties are fiber-dominated. Therefore, the pattern of fiber packing tends to affect transverse composite properties. The transverse properties of the composites tested are examined from the standpoint of the concept of homogeneity defined as the variation of packing (or lack thereof) throughout a sample.
Prediction of high temperature metal matrix composite ply properties
NASA Technical Reports Server (NTRS)
Caruso, J. J.; Chamis, C. C.
1988-01-01
The application of the finite element method (superelement technique) in conjunction with basic concepts from mechanics of materials theory is demonstrated to predict the thermomechanical behavior of high temperature metal matrix composites (HTMMC). The simulated behavior is used as a basis to establish characteristic properties of a unidirectional composite idealized an as equivalent homogeneous material. The ply properties predicted include: thermal properties (thermal conductivities and thermal expansion coefficients) and mechanical properties (moduli and Poisson's ratio). These properties are compared with those predicted by a simplified, analytical composite micromechanics model. The predictive capabilities of the finite element method and the simplified model are illustrated through the simulation of the thermomechanical behavior of a P100-graphite/copper unidirectional composite at room temperature and near matrix melting temperature. The advantage of the finite element analysis approach is its ability to more precisely represent the composite local geometry and hence capture the subtle effects that are dependent on this. The closed form micromechanics model does a good job at representing the average behavior of the constituents to predict composite behavior.
Varghese, Jobin; Nair, Dinesh Raghavan; Mohanan, Pezholil; Sebastian, Mailadil Thomas
2015-06-14
A low cost and low dielectric loss zirconium silicate (ZrSiO4) reinforced HDPE (high-density polyethylene) composite has been developed for antenna applications. The 0-3 type composite is prepared by dispersing ZrSiO4 fillers for various volume fractions (0.1 to 0.5) in the HDPE matrix by the melt mixing process. The composite shows good microwave dielectric properties with a relative permittivity of 5.6 and a dielectric loss of 0.003 at 5 GHz at the maximum filler loading of 0.5 volume fraction. The composite exhibits low water absorption, excellent thermal and mechanical properties. It shows a water absorption of 0.03 wt%, a coefficient of thermal expansion of 70 ppm per °C and a room temperature thermal conductivity of 2.4 W mK(-1). The composite shows a tensile strength of 22 MPa and a microhardness of 13.9 kg mm(-2) for the filler loading of 0.5 volume fraction. The HDPE-ZrSiO4 composites show good dielectric, thermal and mechanical properties suitable for microwave soft substrate applications. A microstrip patch antenna is designed and fabricated using the HDPE-0.5 volume fraction ZrSiO4 substrate and the antenna parameters are investigated.
NASA Technical Reports Server (NTRS)
Bhatt, R. T.; Phillips, R. E.
1988-01-01
The elevated temperature four-point flexural strength and the room temperature tensile and flexural strength properties after thermal shock were measured for ceramic composites consisting of 30 vol pct uniaxially aligned 142 micron diameter SiC fibers in a reaction bonded Si3N4 matrix. The elevated temperature strengths were measured after 15 min of exposure in air at temperatures to 1400 C. Thermal shock treatment was accomplished by heating the composite in air for 15 min at temperatures to 1200 C and then quenching in water at 25 C. The results indicate no significant loss in strength properties either at temperature or after thermal shock when compared with the strength data for composites in the as-fabricated condition.
LDEF-space environmental effects on materials: Composites and silicone coatings
NASA Technical Reports Server (NTRS)
Petrie, Brian C.
1991-01-01
The objective of the Lockheed experiment is to evaluate the effects of long term low Earth orbit environments on thermal control coatings and organic matrix/fiber reinforced composites. Two diverse categories are reported: silicone coatings and composites. For composites physical and structural properties were analyzed; results are reported on mass/dimensional loss, microcracking, short beam shear, CTE, and flexural properties. The changes in thermal control properties, mass, and surface chemistry and morphology are reported and analyzed for the silicon coatings.
Optical, thermal and morphological study of ZnS doped PVA polymer nano composites
NASA Astrophysics Data System (ADS)
Guruswamy, B.; Ravindrachary, V.; Shruthi, C.; Sagar, Rohan N.; Hegde, Shreedatta
2018-05-01
The effect of ZnS nano particle doping on optical, thermal properties and morphological study of the PVA polymer has been investigated using FTIR, UV-Visible and TGA, FESEM techniques. Nano sized ZnS particles were synthesized by a simple wet chemical route. Pure and ZnS/PVA nano composites were prepared using solution casting technique. The FTIR study confirms that the ZnS nano particles interacts with the OH group of PVA polymer and forms the complex. The formation of these complexes affects the optical and thermal properties of the composite. The changes in optical properties were studied using UV-Vis absorption method. The variation in thermal property was analysed using TGA results. The modified surface morphology analysis was carried out using FESEM.
Thermal Properties of Zeolite-Containing Composites
Shimonosono, Taro; Hirata, Yoshihiro; Nishikawa, Kyohei; Sameshima, Soichiro; Sodeyama, Kenichi; Masunaga, Takuro; Yoshimura, Yukio
2018-01-01
A zeolite (mordenite)–pore–phenol resin composite and a zeolite–pore–shirasu glass composite were fabricated by hot-pressing. Their thermal conductivities were measured by a laser flash method to determine the thermal conductivity of the monolithic zeolite with the proposed mixing rule. The analysis using composites is useful for a zeolite powder with no sinterability to clarify its thermal properties. At a low porosity <20%, the thermal conductivity of the composite was in excellent agreement with the calculated value for the structure with phenol resin or shirasu glass continuous phase. At a higher porosity above 40%, the measured value approached the calculated value for the structure with pore continuous phase. The thermal conductivity of the monolithic mordenite was evaluated to be 3.63 W/mK and 1.70–2.07 W/mK at room temperature for the zeolite–pore–phenol resin composite and the zeolite–pore–shirasu glass composite, respectively. The analyzed thermal conductivities of monolithic mordenite showed a minimum value of 1.23 W/mK at 400 °C and increased to 2.51 W/mK at 800 °C. PMID:29534034
NASA Astrophysics Data System (ADS)
Park, J. M.; Shin, P. S.; Kim, J. H.; Park, H. S.; Baek, Y. M.; DeVries, K. L.
2018-03-01
Interfacial and mechanical properties of thermal aged carbon fiber reinforced epoxy composites (CFRP) were evaluated using acoustic emission (AE), electrical resistance (ER), contact angle (CA) and thermogram measurements. Unidirectional (UD)-composites were aged at 200, 300, and 400 °C to produce different interfacial conditions. The interfacial degradation was identified by Fourier transform infrared (FT-IR) spectroscopy after different thermal aging. AE and ER of UD composites were measured along 0, 30, 60 and 90 °. Changes in wavespeed, with thermal aging, were calculated using wave travel time from AE source to AE sensor and the changes in ER were measured. For a thermogram evaluation, the composites were laid upon on a hotplate and the increase in the surface temperature was measured. Static contact angle were measured after different thermal aging and elapsed times to evaluate wettability. Interlaminar shear Strength (ILSS) and tensile strength at transverse direction tests were also performed to explore the effects of thermal aging on mechanical and interfacial properties. While thermal aging of CFRPs was found to affect all these properties, the changes were particularly evident at 400 °C.
Thermal Properties of Cement-Based Composites for Geothermal Energy Applications.
Bao, Xiaohua; Memon, Shazim Ali; Yang, Haibin; Dong, Zhijun; Cui, Hongzhi
2017-04-27
Geothermal energy piles are a quite recent renewable energy technique where geothermal energy in the foundation of a building is used to transport and store geothermal energy. In this paper, a structural-functional integrated cement-based composite, which can be used for energy piles, was developed using expanded graphite and graphite nanoplatelet-based composite phase change materials (CPCMs). Its mechanical properties, thermal-regulatory performance, and heat of hydration were evaluated. Test results showed that the compressive strength of GNP-Paraffin cement-based composites at 28 days was more than 25 MPa. The flexural strength and density of thermal energy storage cement paste composite decreased with increases in the percentage of CPCM in the cement paste. The infrared thermal image analysis results showed superior thermal control capability of cement based materials with CPCMs. Hence, the carbon-based CPCMs are promising thermal energy storage materials and can be used to improve the durability of energy piles.
Mechanical Properties and Thermal Shock Resistance Analysis of BNNT/Si3N4 Composites
NASA Astrophysics Data System (ADS)
Wang, Shouren; Wang, Gaoqi; Wen, Daosheng; Yang, Xuefeng; Yang, Liying; Guo, Peiquan
2018-04-01
BNNT/Si3N4 ceramic composites with different weight amount of BNNT fabricated by hot isostatic pressing were introduced. The mechanical properties and thermal shock resistance of the composites were investigated. The results showed that BNNT-added ceramic composites have a finer and more uniform microstructure than that of BNNT-free Si3N4 ceramic because of the retarding effect of BNNT on Si3N4 grain growth. The addition of 1.5 wt.% BNNT results in simultaneous increase in flexural strength, fracture toughness, and thermal shock resistance. The analysis of the results indicates that BNNT brings many thermal transport channels in the microstructure, increasing the efficiency of thermal transport, therefore results in increase of thermal shock resistance. In addition, BNNT improves the residual flexural strength of composites by crack deflection, bridging, branching and pinning, which increase the crack propagation resistance.
Thermal Properties of Cement-Based Composites for Geothermal Energy Applications
Bao, Xiaohua; Memon, Shazim Ali; Yang, Haibin; Dong, Zhijun; Cui, Hongzhi
2017-01-01
Geothermal energy piles are a quite recent renewable energy technique where geothermal energy in the foundation of a building is used to transport and store geothermal energy. In this paper, a structural–functional integrated cement-based composite, which can be used for energy piles, was developed using expanded graphite and graphite nanoplatelet-based composite phase change materials (CPCMs). Its mechanical properties, thermal-regulatory performance, and heat of hydration were evaluated. Test results showed that the compressive strength of GNP-Paraffin cement-based composites at 28 days was more than 25 MPa. The flexural strength and density of thermal energy storage cement paste composite decreased with increases in the percentage of CPCM in the cement paste. The infrared thermal image analysis results showed superior thermal control capability of cement based materials with CPCMs. Hence, the carbon-based CPCMs are promising thermal energy storage materials and can be used to improve the durability of energy piles. PMID:28772823
NASA Astrophysics Data System (ADS)
Cao, R.; Deng, Z. L.; Ma, Y. H.; Chen, X. L.
2017-06-01
In this work, ethylene vinyl acetate (EVA) is introduced to improve the properties of high-density polyethylene (HDPE)/magnesium hydroxide (MH) composites. The thermal stability, flame retardancy and mechanical properties of HDPE/EVA/MH composites are investigated and discussed. With increasing content of EVA, the limiting oxygen index (LOI) of the composites increases. The thermal stability analysis shows that the initial decomposition temperature begins at a low temperature; however, the residues of the composites at 600°C increase when HDPE is replaced by small amounts of EVA. The early degradation absorbs heat, dilute oxygen and residue. During this process, it protects the matrix inside. Compared with the HDPE/MH and EVA/MH composites, the ternary HDPE/EVA/MH composites exhibit better flame retardancy by increasing the LOI values, and reducing the heat release rate (HRR) and total heat release (THR). With increasing content of EVA, the mechanical properties can also be improved, which is attributed to the good affinity between EVA and MH particles.
Zhou, Yongcun; Yao, Yagang; Chen, Chia-Yun; Moon, Kyoungsik; Wang, Hong; Wong, Ching-ping
2014-01-01
Polymer modified fillers in composites has attracted the attention of numerous researchers. These fillers are composed of core-shell structures that exhibit enhanced physical and chemical properties that are associated with shell surface control and encapsulated core materials. In this study, we have described an apt method to prepare polyimide (PI)-modified aluminum nitride (AlN) fillers, AlN@PI. These fillers are used for electronic encapsulation in high performance polymer composites. Compared with that of untreated AlN composite, these AlN@PI/epoxy composites exhibit better thermal and dielectric properties. At 40 wt% of filler loading, the highest thermal conductivity of AlN@PI/epoxy composite reached 2.03 W/mK. In this way, the thermal conductivity is approximately enhanced by 10.6 times than that of the used epoxy matrix. The experimental results exhibiting the thermal conductivity of AlN@PI/epoxy composites were in good agreement with the values calculated from the parallel conduction model. This research work describes an effective pathway that modifies the surface of fillers with polymer coating. Furthermore, this novel technique improves the thermal and dielectric properties of fillers and these can be used extensively for electronic packaging applications. PMID:24759082
Microstructure and Mechanical Property of SiCf/SiC and Cf/SiC Composites
NASA Astrophysics Data System (ADS)
Lee, S. P.; Cho, K. S.; Lee, H. U.; Lee, J. K.; Bae, D. S.; Byun, J. H.
2011-10-01
The mechanical properties of SiC based composites reinforced with different types of fabrics have been investigated, in conjunction with the detailed analyses of their microstructures. The thermal shock properties of SiCf/SiC composites were also examined. All composites showed a dense morphology in the matrix region. Carbon coated PW-SiCf/SiC composites had a good fracture energy, even if their strength was lower than that of PW-Cf/SiC composites. SiCf/SiC composites represented a great reduction of flexural strength at the thermal shock temperature difference of 300 °C.
NASA Technical Reports Server (NTRS)
Peterson, G.P. (Bud) (Inventor); Hong, Haiping (Inventor); Salem, David R. (Inventor)
2016-01-01
Magnetically aligned carbon nanoparticle composites have enhanced electrical properties. The composites comprise carbon nanoparticles, a host material, magnetically sensitive nanoparticles and a surfactant. In addition to enhanced electrical properties, the composites can have enhanced mechanical and thermal properties.
NASA Astrophysics Data System (ADS)
Prasad Nanda, Bishnu; Satapathy, Alok
2018-03-01
This paper reports on the dielectric and thermal properties of hair fibers reinforced epoxy composites. Hair is an important part of human body which also offers protection to the human body. It is also viewed as a biological waste which is responsible for creating environmental pollution due to its low decomposition rate. But at the same time it has unique microstructural, mechanical and thermal properties. In the present work, epoxy composites are made by solution casting method with different proportions of short hair fiber (SHF). Effects of fiber content on the thermal conductivity and dielectric constant of epoxy resin are studied. Thermal conductivities of the composites are obtained using a UnithermTM Model 2022 tester. An HIOKI-3532-50 Hi Tester Elsier Analyzer is used for measuring the capacitance of the epoxy-SHF composite, from which dielectric constant (Dk) of the composite are calculated. A reduction in thermal conductivity of the composite is noticed with the increase in wt. % of fiber. The dielectric constant value of the composites also found to be significantly affected by the fiber content.
NASA Astrophysics Data System (ADS)
Samsudin, Dalina; Ismail, Hanafi; Othman, Nadras; Hamid, Zuratul Ain Abdul
2017-07-01
A study of thermal properties resulting from the utilization of Glut Palmitate (GP) on the silica filled high density polyethylene (HDPE) composites was carried out. The composites with the incorporation of GP at 0.5, 1.0, 2.0 and 3.0 phr were prepared by using an internal mixer at the temperature 180 °C and the rotor speed of 50 rpm. The thermal behaviours of the composites were then investigated using differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). It was found that the crystallinity and the thermal stability of the composites increased with the incorporation of GP. The highest crystallinity contents and decomposition temperatures were observed at the 1 phr GP loading.
NASA Astrophysics Data System (ADS)
Zhou, Ting; Cheng, Xudong; Pan, Yuelei; Li, Congcong; Gong, Lunlun; Zhang, Heping
2018-04-01
In order to maintain the integrity, glass fiber (GF) reinforced silica aerogel composites were synthesized using methltrimethoxysilane (MTMS) and water glass co-precursor by freeze drying method. The composites were characterized by scanning electron microscopy, Brunauer-Emmett-Teller analysis, uniaxial compressive test, three-point bending test, thermal conductivity analysis, contact angle test, TG-DSC analysis. It was found that the molar ratio of MTMS/water glass could significantly affect the properties of composites. The bulk density and thermal conductivity first decreased and then increased with the increasing molar ratio. The composites showed remarkable mechanical strength and flexibility compared with pure silica aerogel. Moreover, when the molar ratio is 1.8, the composites showed high specific surface area (870.9 m2/g), high contact angle (150°), great thermal stability (560 °C) and low thermal conductivity (0.0248 W/m·K). These outstanding properties indicate that GF/aerogels have broad prospects in the field of thermal insulation.
NASA Technical Reports Server (NTRS)
DellaCorte, C.; Fellenstein, J. A.
1996-01-01
This paper describes a research program in which the goal is to alter the thermal expansion coefficient of a composite solid lubricant coating, PS300, by compositional tailoring. PS300 is a plasma sprayed coating consisting of chrome oxide, silver and barium fluoride/calcium fluoride eutectic in NiCr binder. By adjusting the composition, the thermal expansion coefficient can be altered, and hence chosen, to more closely match a selected substrate preventing coating spallation at extreme temperatures. Thermal expansion coefficients (CTE) for a variety of compositions were measured from 25 to 800 C using a commercial dilatometer. The CTE's ranged from 7.0 to 13 x lO(exp -6)/deg C depending on the binder content. Subsequent tribological testing of a modified composition indicated that friction and wear properties were relatively insensitive to compositional tailoring.
Effects of thermal cycling on graphie-fiber-reinforced 6061 aluminum
NASA Technical Reports Server (NTRS)
Dries, G. A.; Tompkins, S. S.
1986-01-01
Graphite-reinforced aluminum alloy metal-matrix composites are among materials being considered for structural components in dimensionally stable space structures. This application requires materials with low values of thermal expansions and high specific stiffnesses. They must remain stable during exposures to the space environment for periods extending to 20 years. The effects of thermal cycling on the thermal expansion behavior and mechanical properties of Thornel P100 graphite 6061 aluminum composites, as fabricated and after thermal processing to eliminate thermal strain hysteresis, have been investigated. Two groups of composites were studied: one was fabricated by hot roll bonding and the other by diffusion bonding. Processing significantly reduced strain hysteresis during thermal cycling in both groups and improved the ultimate tensile strength and modulus in the diffusion-bonded composites. Thermal cycling stabilized the as-fabricated composites by reducing the residual fabrication stress and increased the matrix strength by metallurgical aging. Thermal expansion behavior of both groups after processing was insensitive to thermal cycling. Data scatter was too large to determine effects of thermal cycling on the mechanical properties. The primary effects of processing and thermal cycling can be attributed to changes in the metallurgical condition and stress state of the matrix.
A review of wood thermal pretreatments to improve wood composite properties
Manuel Raul Pelaez-Samaniego; Vikram Yadama; Eini Lowell; Raul Espinoza-Herrera
2013-01-01
The objective of this paper is to review the published literature on improving properties of wood composites through thermal pretreatment of wood. Thermal pretreatment has been conducted in moist environments using hot water or steam at temperatures up to 180 and 230 ˚C, respectively, or in dry environments using inert gases at temperatures up to 240 ...
Thermal Regulation of Heat Transfer Processes
2014-10-02
determine the contrasts of thermophysical properties of composites and thin films , and various approaches to regulate heat transport processes. In the...nanofluids, 2) thermal regulation of optical properties in thin film , and 3) thermal regulation of phase transition for efficient steam generation...stress generated during the crystals growth forces CNTs to contact with each other and form a conductive percolation network. Hence the composite
NASA Astrophysics Data System (ADS)
Mohammed, A. A.; Bachtiar, D.; Rejab, M. R. M.; Jiang, X. X.; Abas, Falak O.; Abass, Raghad U.; Hasany, S. F.; Siregar, Januar P.
2018-05-01
Global warming has had a great impact on environmental changes since the last decade. Eco-friendly industrial products are of great importance to sustain life on earth, including using natural composites. Natural fibers used as fillers are also environmentally valuable because of their biodegradable nature. However, compatibility issues between the fiber and its respective matrix is a major concern. The present work focused on the study of the flexural, impact, and thermal behaviors of environmentally friendly sugar palm fibers (SPF) incorporated into a composite with thermoplastic polyurethane (TPU). Two techniques (extrusion and compression molding) were used to prepare these composites. The fiber size and dosage were kept constant at 250 µm and 30 wt.% SPF, respectively. The effects of potassium permanganate (KMnO4) treatment on the flexural, impact, and thermal behaviors of the treated SPF with 6% NaOH-reinforced TPU composites were investigated. Three different concentrations of KMnO4 (0.033%, 0.066%, and 0.125%) were studied for this purpose. The characterization of the flexural and impact properties of the new TPU/SPF composites was studied as per American Society for Testing Materials ASTM standards. Thermogravimetric analysis was employed for thermal behavior analysis of the TPU/SPF composites. The best flexural strength, impact strength, and modulus properties (8.118 MPa, 55.185 kJ/m2, and 262.102 MPa, respectively) were obtained with a 0.033% KMnO4-treated sample. However, all flexural strength, impact strength, and modulus properties for the KMnO4-treated samples were lower than the sample treated only with 6% NaOH. The highest thermal stability was also shown by the sample treated with 0.033% KMnO4. Therefore, this method enhanced the thermal properties of the TPU/SPF composites with clear deterioration of the flexural and impact properties.
Simulated Data for High Temperature Composite Design
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Abumeri, Galib H.
2006-01-01
The paper describes an effective formal method that can be used to simulate design properties for composites that is inclusive of all the effects that influence those properties. This effective simulation method is integrated computer codes that include composite micromechanics, composite macromechanics, laminate theory, structural analysis, and multi-factor interaction model. Demonstration of the method includes sample examples for static, thermal, and fracture reliability for a unidirectional metal matrix composite as well as rupture strength and fatigue strength for a high temperature super alloy. Typical results obtained for a unidirectional composite show that the thermal properties are more sensitive to internal local damage, the longitudinal properties degrade slowly with temperature, the transverse and shear properties degrade rapidly with temperature as do rupture strength and fatigue strength for super alloys.
Optimal experimental designs for the estimation of thermal properties of composite materials
NASA Technical Reports Server (NTRS)
Scott, Elaine P.; Moncman, Deborah A.
1994-01-01
Reliable estimation of thermal properties is extremely important in the utilization of new advanced materials, such as composite materials. The accuracy of these estimates can be increased if the experiments are designed carefully. The objectives of this study are to design optimal experiments to be used in the prediction of these thermal properties and to then utilize these designs in the development of an estimation procedure to determine the effective thermal properties (thermal conductivity and volumetric heat capacity). The experiments were optimized by choosing experimental parameters that maximize the temperature derivatives with respect to all of the unknown thermal properties. This procedure has the effect of minimizing the confidence intervals of the resulting thermal property estimates. Both one-dimensional and two-dimensional experimental designs were optimized. A heat flux boundary condition is required in both analyses for the simultaneous estimation of the thermal properties. For the one-dimensional experiment, the parameters optimized were the heating time of the applied heat flux, the temperature sensor location, and the experimental time. In addition to these parameters, the optimal location of the heat flux was also determined for the two-dimensional experiments. Utilizing the optimal one-dimensional experiment, the effective thermal conductivity perpendicular to the fibers and the effective volumetric heat capacity were then estimated for an IM7-Bismaleimide composite material. The estimation procedure used is based on the minimization of a least squares function which incorporates both calculated and measured temperatures and allows for the parameters to be estimated simultaneously.
NASA Astrophysics Data System (ADS)
Guangfa, Gao; Yongchi, Li; Zheng, Jing; Shujie, Yuan
Fiber reinforced composite materials were applied widely in aircraft and space vehicles engineering. Aimed to an advanced glass fiber reinforced composite material, a series of experiments for measuring thermal physical properties of this material were conducted, and the corresponding performance curves were obtained through statistic analyzing. The experimental results showed good consistency. And then the thermal physical parameters such as thermal expansion coefficient, engineering specific heat and sublimation heat were solved and calculated. This investigation provides an important foundation for the further research on the heat resistance and thermodynamic performance of this material.
Processing and Properties of SiC/MoSi2-SiC Composites Fabricated by Melt Infiltration
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.; Hebsur, Mohan G.
2000-01-01
Hi-Nicalon SiC fiber reinforced MoSi2-SiC matrix composites (SiC/MoSi2-SiC) have been fabricated by the melt infiltration approach. The composite consists of approximately 60 vol%, 2-D woven BN/SiC coated Hi-Nicalon SiC fibers and approximately 40 vol% MoSi2-SiC matrix. The room temperature tensile properties and thermal conductivity of the SiC/MoSi2-SiC composites were measured and compared with those of the melt infiltrated SiC/SiC composites. The influence oi fiber architecture on tensile properties was also evaluated. Results indicate that the primary modulus, stress corresponding to deviation from linearity, and transverse thermal conductivity values for the SiC/MoSi2-SiC composites are significantly lower than those for the SiC/SiC composites. Microcracking of the matrix due to the large difference in thermal expansion between MoSi2 and SiC appears to be the reason for the lower matrix dominated properties of SiC/MoSi2-SiC composites.
NASA Astrophysics Data System (ADS)
Bagheri, Kobra; Razavi, Seyed Mohammad; Ahmadi, Seyed Javad; Kosari, Mohammadreza; Abolghasemi, Hossein
2018-05-01
Composites of unsaturated polyester containing 5 wt% nanoclay and different amounts of lead monoxide particles (0, 10, 20, and 30 wt%) were prepared. XRD patterns showed the exfoliation of nanoclay layers in the polymer. Morphological properties of the composites were studied using SEM micrographs. The prepared composites were investigated for their thermal resistance and mechanical properties using thermogravimetric analysis and tensile testing method, respectively. Addition of lead monoxide to the polymer worsened its thermal resistance and tensile properties, whereas the observed negative effects could be moderated by the clay nanoparticle. Gamma attenuation performance of the composites was evaluated by 192Ir, 137Cs, and 60Co gamma radiation sources. Linear attenuation coefficient and mass attenuation coefficient of the composites were found to be increased with the increase of PbO content. Shielding efficiency of the prepared composites was compared with some conventional shielding materials regarding their half value layer thickness. UP/nanoclay/PbO composites were found to be suitable materials for the low-energy gamma radiation shielding applications.
Research on graphite reinforced glass matrix composites
NASA Technical Reports Server (NTRS)
Prewo, K. M.; Thompson, E. R.
1981-01-01
A broad group of fibers and matrices were combined to create a wide range of composite properties. Primary material fabrication procedures were developed which readily permit the fabrication of flat plate and shaped composites. Composite mechanical properties were measured under a wide range of test conditions. Tensile, flexure mechanical fatigue, thermal fatigue, fracture toughness, and fatigue crack growth resistance were evaluated. Selected fiber-matrix combinations were shown to maintain their strength at up to 1300 K when tested in an inert atmosphere. Composite high temperature mechanical properties were shown to be limited primarily by the oxidation resistance of the graphite fibers. Composite thermal dimensional stability was measured and found to be excellent.
Significant aspects on thermal degradation of hybrid biocomposite material
NASA Astrophysics Data System (ADS)
Bavan, D. Saravana; Kumar, G. C. Mohan
2013-06-01
Interest in use of bio fibers is increasing rapidly in structural and automotive applications because of few important properties such as low density, mechanical properties, renewability, biodegradation and sustainability. The present work is focused on fabricating a hybrid bio-composite material processed through compression molding technique. Natural fibers of maize and jute with bio polymeric resin of epoxidized soya bean oil are used as a matrix in obtaining a hybrid bio composite material. Thermal degradation of the prepared material is studied through Thermal gravimetric analyzer. Chemical treatment of the fibers was performed to have a better adhesion between the fibers and the matrix. The work is also surveyed on various parameters influencing the thermal properties and other aspects for a hybrid bio composite material.
Jumaidin, Ridhwan; Sapuan, Salit M; Jawaid, Mohammad; Ishak, Mohamad R; Sahari, Japar
2017-06-01
The aim of this paper is to investigate the characteristics of thermoplastic sugar palm starch/agar (TPSA) blend containing Eucheuma cottonii seaweed waste as biofiller. The composites were prepared by melt-mixing and hot pressing at 140°C for 10min. The TPSA/seaweed composites were characterized for their mechanical, thermal and biodegradation properties. Incorporation of seaweed from 0 to 40wt.% has significantly improved the tensile, flexural, and impact properties of the TPSA/seaweed composites. Scanning electron micrograph of the tensile fracture showed homogeneous surface with formation of cleavage plane. It is also evident from TGA results that thermal stability of the composites were enhanced with addition of seaweed. After soil burial for 2 and 4 weeks, the biodegradation of the composites was enhanced with addition of seaweed. Overall, the incorporation of seaweed into TPSA enhances the properties of TPSA for short-life product application such as tray, plate, etc. Copyright © 2017 Elsevier B.V. All rights reserved.
Huang, Runzhou; Mei, Changtong; Xu, Xinwu; Kärki, Timo; Lee, Sunyoung; Wu, Qinglin
2015-01-01
Hybrid basalt fiber (BF) and Talc filled high density polyethylene (HDPE) and co-extruded wood-plastic composites (WPCs) with different BF/Talc/HDPE composition levels in the shell were prepared and their mechanical, morphological and thermal properties were characterized. Incorporating BFs into the HDPE-Talc composite substantially enhanced the thermal expansion property, flexural, tensile and dynamic modulus without causing a significant decrease in the tensile and impact strength of the composites. Strain energy estimation suggested positive and better interfacial interactions of HDPE with BFs than that with talc. The co-extruded structure design improved the mechanical properties of WPC due to the protective shell layer. The composite flexural and impact strength properties increased, and the thermal expansion decreased as BF content increased in the hybrid BF/Talc filled shells. The cone calorimetry data demonstrated that flame resistance of co-extruded WPCs was improved with the use of combined fillers in the shell layer, especially with increased loading of BFs. The combined shell filler system with BFs and Talc could offer a balance between cost and performance for co-extruded WPCs. PMID:28793726
Huang, Runzhou; Mei, Changtong; Xu, Xinwu; Kärki, Timo; Lee, Sunyoung; Wu, Qinglin
2015-12-08
Hybrid basalt fiber (BF) and Talc filled high density polyethylene (HDPE) and co-extruded wood-plastic composites (WPCs) with different BF/Talc/HDPE composition levels in the shell were prepared and their mechanical, morphological and thermal properties were characterized. Incorporating BFs into the HDPE-Talc composite substantially enhanced the thermal expansion property, flexural, tensile and dynamic modulus without causing a significant decrease in the tensile and impact strength of the composites. Strain energy estimation suggested positive and better interfacial interactions of HDPE with BFs than that with talc. The co-extruded structure design improved the mechanical properties of WPC due to the protective shell layer. The composite flexural and impact strength properties increased, and the thermal expansion decreased as BF content increased in the hybrid BF/Talc filled shells. The cone calorimetry data demonstrated that flame resistance of co-extruded WPCs was improved with the use of combined fillers in the shell layer, especially with increased loading of BFs. The combined shell filler system with BFs and Talc could offer a balance between cost and performance for co-extruded WPCs.
Dual percolation behaviors of electrical and thermal conductivity in metal-ceramic composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, K.; Zhang, Z. D.; Qian, L.
2016-02-08
The thermal and electrical properties including the permittivity spectra in radio frequency region were investigated for copper/yttrium iron garnet (Cu/YIG) composites. Interestingly, the percolation behaviors in electrical and thermal conductivity were obtained due to the formation of copper particles' networks. Beyond the electrical percolation threshold, negative permittivity was observed and plasmon frequency was reduced by several orders of magnitude. With the increase in copper content, the thermal conductivity was gradually increased; meanwhile, the phonon scattering effect and thermal resistance get enhanced, so the rate of increase in thermal conductivity gradually slows down. Hopefully, Cu/YIG composites with tunable electrical and thermalmore » properties have great potentials for electromagnetic interference shielding and electromagnetic wave attenuation.« less
NASA Astrophysics Data System (ADS)
Carson, James K.
2018-06-01
Glass spheres are often used as filler materials for composites. Comparatively few articles in the literature have been devoted to the measurement or modelling of thermal properties of composites containing glass spheres, and there does not appear to be any reported data on the measurement of thermal diffusivities over a range of filler volume fractions. In this study, the thermal diffusivities of guar-gel/glass sphere composites were measured using a transient comparative method. The addition of the glass beads to the gel increased the thermal diffusivity of the composite, more than doubling the thermal diffusivity of the composite relative to the diffusivity of the gel at the maximum glass volume fraction of approximately 0.57. Thermal conductivities of the composites were derived from the thermal diffusivity measurements, measured densities and estimated specific heat capacities of the composites. Two approaches to modelling the effective thermal diffusivity were considered.
Rubab, Zakya; Siddiqi, Humaira M.; Saeed, Shaukat
2014-01-01
This paper presents the synthesis and thermal and mechanical properties of epoxy-titania composites. First, submicron titania particles are prepared via surfactant-free sol-gel method using TiCl4 as precursor. These particles are subsequently used as inorganic fillers (or reinforcement) for thermally cured epoxy polymers. Epoxy-titania composites are prepared via mechanical mixing of titania particles with liquid epoxy resin and subsequently curing the mixture with an aliphatic diamine. The amount of titania particles integrated into epoxy matrix is varied between 2.5 and 10.0 wt.% to investigate the effect of sub-micron titania particles on thermal and mechanical properties of epoxy-titania composites. These composites are characterized by X-ray photoelectron (XPS) spectroscopy, scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric (TG), and mechanical analyses. It is found that sub-micron titania particles significantly enhance the glass transition temperature (>6.7%), thermal oxidative stability (>12.0%), tensile strength (>21.8%), and Young's modulus (>16.8%) of epoxy polymers. Epoxy-titania composites with 5.0 wt.% sub-micron titania particles perform best at elevated temperatures as well as under high stress. PMID:24578638
NASA Astrophysics Data System (ADS)
Li, Mingli; Lin, Zhibin; Wu, Lili; Wang, Jinhui; Gong, Na
2017-11-01
Enhancing the thermal efficiency to decrease the energy consumption of structures has been the topic of much research. In this study, a graphite-enabled microencapsulated phase change material (GE-MEPCM) was used in the production of a novel thermal energy storage engineered cementitious composite feathering high heat storage capacity and enhanced thermal conductivity. The surface morphology and particle size of the microencapsulated phase change material (MEPCM) were investigated by scanning electron microscopy (SEM). Thermal properties of MEPCM was determined using differential scanning calorimetry (DSC). In addition, thermal and mechanical properties of the cementitious mortar with different admixtures were explored and compared with those of a cementitious composite. It was shown that the latent heat of MEPCM was 162 J/g, offering much better thermal energy storage capacity to the cementitious composite. However, MEPCM was found to decrease the thermal conductivity of the composite, which can be effectively solved by adding natural graphite (NG). Moreover, the incorporation of MEPCM has a certain decrease in the compressive strength, mainly due to the weak interfaces between MEPCM and cement matrix.
NASA Astrophysics Data System (ADS)
Martel-Estrada, S. A.; Santos-Rodríguez, E.; Olivas-Armendáriz, I.; Cruz-Zaragoza, E.; Martínez-Pérez, C. A.
2014-07-01
The purpose of this study is to examine the effect of gamma radiation and UV radiation on the microstructure, chemical structure and thermal stability of Chitosan/Mimosa Tenuiflora and Chitosan/Mimosa Tenuiflora/MWCNT composites scaffolds produced by thermally induced phase separation. The composites were irradiated and observed to undergo radiation-induced degradation through chain scission. Morphology, thermal properties and effects on chemical and semi-crystalline structures were obtained by scanning electronic microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), FT-IR analysis and X-ray Diffraction. A relationship between radiation type and the thermal stability of the composites, were also established. This relationship allows a more accurate and precise control of the life span of Chitosan/Mimosa Tenuiflora and Chitosan/Mimosa Tenuiflora/MWCNT composites through the use of radiation in materials for use in tissue engineering.
NASA Astrophysics Data System (ADS)
Wang, Hu; Zhang, Zhao-Hui; Hu, Zheng-Yang; Song, Qi; Yin, Shi-Pan
2018-01-01
In this paper, we fabricated a novel copper matrix composites reinforced by carbon nanotubes (CNTs) using electroless deposition (ED) and spark plasma sintering technique. Microstructure, mechanical, electric conductivity, and thermal properties of the CNTs/Cu composites were investigated. The results show that a favorable interface containing C-O and O-Cu bond was formed between CNTs and matrix when the CNTs were coated with nano-Cu by ED method. Thus, we accomplished the uniformly dispersed CNTs in the CNTs/Cu powders and compacted composites, which eventually leads to the enhancement of the mechanical properties of the CNTs/Cu composites in the macro-scale environment. However, the interface structure can hinder the movement of carriers and free electrons and increase the interface thermal resistance, which leads to modest decrease of electrical and thermal conductivity of the CNTs/Cu composites.
Composite Materials for Low-Temperature Applications
NASA Technical Reports Server (NTRS)
2008-01-01
Composite materials with improved thermal conductivity and good mechanical strength properties should allow for the design and construction of more thermally efficient components (such as pipes and valves) for use in fluid-processing systems. These materials should have wide application in any number of systems, including ground support equipment (GSE), lunar systems, and flight hardware that need reduced heat transfer. Researchers from the Polymer Science and Technology Laboratory and the Cryogenics Laboratory at Kennedy Space Center were able to develop a new series of composite materials that can meet NASA's needs for lightweight materials/composites for use in fluid systems and also expand the plastic-additive markets. With respect to thermal conductivity and physical properties, these materials are excellent alternatives to prior composite materials and can be used in the aerospace, automotive, military, electronics, food-packaging, and textile markets. One specific application of the polymeric composition is for use in tanks, pipes, valves, structural supports, and components for hot or cold fluid-processing systems where heat flow through materials is a problem to be avoided. These materials can also substitute for metals in cryogenic and other low-temperature applications. These organic/inorganic polymeric composite materials were invented with significant reduction in heat transfer properties. Decreases of 20 to 50 percent in thermal conductivity versus that of the unmodified polymer matrix were measured. These novel composite materials also maintain mechanical properties of the unmodified polymer matrix. These composite materials consist of an inorganic additive combined with a thermoplastic polymer material. The intrinsic, low thermal conductivity of the additive is imparted into the thermoplastic, resulting in a significant reduction in heat transfer over that of the base polymer itself, yet maintaining most of the polymer's original properties. Normal polymer processing techniques can turn these composite materials into unique, custom parts for ground support, Shuttle, and Constellation needs. We fabricated test specimens of the composite and base materials for thermal and mechanical characterization and found that the strength of the composite material at nominal-percentage loading remained relatively unchanged from the base material.
Aluminum-titanium hydride-boron carbide composite provides lightweight neutron shield material
NASA Technical Reports Server (NTRS)
Poindexter, A. M.
1967-01-01
Inexpensive lightweight neutron shield material has high strength and ductility and withstands high internal heat generation rates without excessive thermal stress. This composite material combines structural and thermal properties of aluminum, neutron moderating properties of titanium hydride, and neutron absorbing characteristics of boron carbide.
Numerical Simulation of Thermal Response and Ablation Behavior of a Hybrid Carbon/Carbon Composite
NASA Astrophysics Data System (ADS)
Zhang, Bai; Li, Xudong
2017-09-01
The thermal response and ablation behavior of a hybrid carbon/carbon (C/C) composite are studied herein by using a numerical model. This model is based on the energy- and mass-conservation principles as well as on the calculation of the thermophysical properties of materials. The thermal response and ablation behavior are simulated from the perspective of the matrix and fiber components of a hybrid C/C composite. The thermophysical properties during ablation are calculated, and a moving boundary is implemented to consider the recession of the ablation surface. The temperature distribution, thermophysical properties, char layer thickness, linear ablation rate, mass flow rate of the pyrolysis gases, and mass loss of the hybrid C/C composite are quantitatively predicted. This numerical study describing the thermal response and ablation behavior provides a fundamental understanding of the ablative mechanism of a hybrid C/C composite, serving as a reference and basis for further designs and optimizations of thermoprotective materials.
Numerical Simulation of Thermal Response and Ablation Behavior of a Hybrid Carbon/Carbon Composite
NASA Astrophysics Data System (ADS)
Zhang, Bai; Li, Xudong
2018-06-01
The thermal response and ablation behavior of a hybrid carbon/carbon (C/C) composite are studied herein by using a numerical model. This model is based on the energy- and mass-conservation principles as well as on the calculation of the thermophysical properties of materials. The thermal response and ablation behavior are simulated from the perspective of the matrix and fiber components of a hybrid C/C composite. The thermophysical properties during ablation are calculated, and a moving boundary is implemented to consider the recession of the ablation surface. The temperature distribution, thermophysical properties, char layer thickness, linear ablation rate, mass flow rate of the pyrolysis gases, and mass loss of the hybrid C/C composite are quantitatively predicted. This numerical study describing the thermal response and ablation behavior provides a fundamental understanding of the ablative mechanism of a hybrid C/C composite, serving as a reference and basis for further designs and optimizations of thermoprotective materials.
Properties of Multifunctional Hybrid Carbon Nanotube/Carbon Fiber Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Cano, Roberto J.; Kang, Jin Ho; Grimsley, Brian W.; Ratcliffe, James G.; Siochi, Emilie J.
2016-01-01
For aircraft primary structures, carbon fiber reinforced polymer (CFRP) composites possess many advantages over conventional aluminum alloys due to their light weight, higher strength- and stiffness-to-weight ratios, and low life-cycle maintenance costs. However, the relatively low electrical and thermal conductivities of CFRP composites fail to provide structural safety in certain operational conditions such as lightning strikes. Carbon nanotubes (CNT) offer the potential to enhance the multi-functionality of composites with improved thermal and electrical conductivity. In this study, hybrid CNT/carbon fiber (CF) polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel® IM7/8852 prepreg. Resin concentrations from 1 wt% to 50 wt% were used to infuse the CNT sheets prior to composite fabrication. The interlaminar properties of the resulting hybrid composites were characterized by mode I and II fracture toughness testing. Fractographical analysis was performed to study the effect of resin concentration. In addition, multi-directional physical properties like thermal conductivity of the orthotropic hybrid polymer composite were evaluated.
Electro-optical and physic-mechanical properties of colored alicyclic polyimide
NASA Astrophysics Data System (ADS)
Kravtsova, V.; Umerzakova, M.; Korobova, N.; Timoshenkov, S.; Timoshenkov, V.; Orlov, S.; Iskakov, R.; Prikhodko, O.
2016-09-01
Main optical, thermal and mechanical properties of new compositions based on alicyclic polyimide and active bright red 6C synthetic dye have been studied. It was shown that the transmission ratio of the new material in the region of 400-900 nm and 2.0 wt.% dye concentration was around 60-70%. Thermal, mechanical and electrical properties of new colored compositions were comparable with the properties of original polyimide.
Thermal Properties of Hybrid Carbon Nanotube/Carbon Fiber Polymer
NASA Technical Reports Server (NTRS)
Kang, Jin Ho; Cano, Roberto J.; Luong, Hoa; Ratcliffe, James G.; Grimsley, Brian W.; Siochi, Emilie J.
2016-01-01
Carbon fiber reinforced polymer (CFRP) composites possess many advantages for aircraft structures over conventional aluminum alloys: light weight, higher strength- and stiffness-to-weight ratio, and low life-cycle maintenance costs. However, the relatively low thermal and electrical conductivities of CFRP composites are deficient in providing structural safety under certain operational conditions such as lightning strikes. One possible solution to these issues is to interleave carbon nanotube (CNT) sheets between conventional carbon fiber (CF) composite layers. However, the thermal and electrical properties of the orthotropic hybrid CNT/CF composites have not been fully understood. In this study, hybrid CNT/CF polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel (Registered Trademark) IM7/8852 prepreg. The CNT sheets were infused with a 5% solution of a compatible epoxy resin prior to composite fabrication. Orthotropic thermal and electrical conductivities of the hybrid polymer composites were evaluated. The interleaved CNT sheets improved the in-plane thermal conductivity of the hybrid composite laminates by about 400% and the electrical conductivity by about 3 orders of magnitude.
Thermal Analysis of Filler Reinforced Polymeric Composites
NASA Astrophysics Data System (ADS)
Ghadge, Mahesh Devidas
Improving heat dissipating property of composite materials is becoming increasingly important in domains ranging from the automotive industry, electronic devices to aeronautical industry. Effective heat dissipation is required especially in aircraft and racing tires to guarantee high performance and good service life [1]. The present study is focused on improving the thermal conductivity of Emulsion-styrene butadiene rubber (ESBR) which is a cheap alternative to other rubber composites. The disadvantages of ESBR are low thermal conductivity and high heat generation. Adding fillers with high thermal conductivity to ESBR is proposed as a technique for improving the thermal conductivity of ESBR. The purpose of the research is to predict the thermal conductivity of ESBR when filled with fillers of much higher thermal conductivity and also to find out to what extent the filler properties affect the heat transfer capabilities of the composite matrix. The influence of different filler shapes i.e. spherical, cylindrical and platelets on the overall thermal capability of composite matrix is studied, the finite element modelings are conducted using Abaqus. Three-dimensional and two-dimensional models are created in Abaqus to simulate the microstructure of the composite matrix filled with fillers. Results indicate that the overall thermal conductivity increases with increasing filler loading i.e. for a filler volume fraction of 0.27, the conductivity increased by around 50%. Filler shapes, orientation angle, and aspect ratio of the fillers significantly influences the thermal conductivity. Conductivity increases with increasing aspect ratio (length/diameter) of the cylindrical fillers since longer conductive chains are able to form at the same volume percentage as compared to spherical fillers. The composite matrix reaches maximum thermal conductivity when the cylindrical fillers are oriented in the direction of heat flow. The heat conductivity predicted by FEM for ESBR is compared with that predicted by mean field theories. At low volume fractions the FEM and mean field theory results are matching. However, at high volume fractions, the results obtained by the two methods are not in agreement. This is due to the fact that mean field theory do not consider the particle interactions happening at higher volume fractions. The present analysis can be used to tailor the thermal properties of ESBR for required thermal conductivity for a wide range of applications such as racing tires, electronic gadgets or aeronautical components. In addition, the proposed FEM models can be used to design and optimize the properties of new composite materials providing more insight into the thermal conductivity of composite polymers and aid in understanding heat transfer mechanism of reinforced polymers.
Thermal Stability and Flammability of Styrene-Butadiene Rubber-Based (SBR) Ceramifiable Composites
Anyszka, Rafał; Bieliński, Dariusz M.; Pędzich, Zbigniew; Rybiński, Przemysław; Imiela, Mateusz; Siciński, Mariusz; Zarzecka-Napierała, Magdalena; Gozdek, Tomasz; Rutkowski, Paweł
2016-01-01
Ceramifiable styrene-butadiene (SBR)-based composites containing low-softening-point-temperature glassy frit promoting ceramification, precipitated silica, one of four thermally stable refractory fillers (halloysite, calcined kaolin, mica or wollastonite) and a sulfur-based curing system were prepared. Kinetics of vulcanization and basic mechanical properties were analyzed and added as Supplementary Materials. Combustibility of the composites was measured by means of cone calorimetry. Their thermal properties were analyzed by means of thermogravimetry and specific heat capacity determination. Activation energy of thermal decomposition was calculated using the Flynn-Wall-Ozawa method. Finally, compression strength of the composites after ceramification was measured and their micromorphology was studied by scanning electron microscopy. The addition of a ceramification-facilitating system resulted in the lowering of combustibility and significant improvement of the thermal stability of the composites. Moreover, the compression strength of the mineral structure formed after ceramification is considerably high. The most promising refractory fillers for SBR-based ceramifiable composites are mica and halloysite. PMID:28773726
The thermal expansion and thermophysical properties of an aluminum and Al/B4C composite
NASA Astrophysics Data System (ADS)
Gladkovsky, S. V.; Kamantsev, I. S.; Kuteneva, S. V.; Veselova, V. E.; Ryzhkov, M. A.
2017-12-01
The paper presents results of experimental studies of the thermal expansion and thermophysical properties of an Al/B4C composite with a boron carbide content of 20 wt% and technically pure aluminum in the temperature range from 100 to 600°C to evaluate the possible use of this composite as a neutron-protective material in the nuclear industry.
Study on Thermal and Mechanical Properties of EPDM Insulation
NASA Astrophysics Data System (ADS)
Zhang, Zhong-Shui; Xu, Jin-Sheng; Chen, Xiong; Jiang, Jing
As the most common insulation material of solid rocket motors, thermal and mechanical properties of ethylene propylene diene monomer (EPDM) composite are inspected in the study. Referring to the results of thermogravimetric analysis (TGA), composition and morphology of EPDM composite in different thermal degradation degree are investigated by scanning electron microscope (SEM) to inspect the mechanism of thermal insulation. Mechanical properties of EPDM composite in the state of pyrolysis are investigated by uniaxial tensile tests. At the state of initial pyrolysis, composite belongs to the category of hyperelastic-viscoelastic material. The tendency of tensile strength increased and elongation decreased with increasing of heating temperature. Composite behaves as the linear rule at the state of late pyrolysis, which belongs to the category of bittle. The elasticity modulus of curves are almost the same while the heating temperature ranges from 200°C to 300°C, and then gradually go down. The tensile strength of pyrolytic material reach the highest at the heating temperature of 300°C, and the virgin material has the largest elongation.
NASA Technical Reports Server (NTRS)
1993-01-01
This document constitutes the final report for the study of humidity effects and loading rate on soluble core (PVA/MB composite material) mechanical and thermal properties. This report describes test results, procedures employed, and any unusual occurrences or specific observations associated with this test program.
Effect of thermal cycling on composites reinforced with two differently sized silica-glass fibers.
Meriç, Gökçe; Ruyter, I Eystein
2007-09-01
To evaluate the effects of thermal cycling on the flexural properties of composites reinforced with two differently sized fibers. Acid-washed, woven, fused silica-glass fibers, were heat-treated at 500 degrees C, silanized and sized with one of two sizing resins (linear poly(butyl methacrylate)) (PBMA), cross-linked poly(methyl methacrylate) (PMMA). Subsequently the fibers were incorporated into a polymer matrix. Two test groups with fibers and one control group without fibers were prepared. The flexural properties of the composite reinforced with linear PBMA-sized fibers were evaluated by 3-point bend testing before thermal cycling. The specimens from all three groups were thermally cycled in water (12,000 cycles, 5/55 degrees C, dwell time 30 s), and afterwards tested by 3-point bending. SEM micrographs were taken of the fibers and of the fractured fiber reinforced composites (FRC). The reduction of ultimate flexural strength after thermal cycling was less than 20% of that prior to thermal cycling for composites reinforced with linear PBMA-sized silica-glass fibers. The flexural strength of the composite reinforced with cross-linked PMMA-sized fibers was reduced to less than half of the initial value. This study demonstrated that thermal cycling differently influences the flexural properties of composites reinforced with different sized silica-glass fibers. The interfacial linear PBMA-sizing polymer acts as a stress-bearing component for the high interfacial stresses during thermal cycling due to the flexible structure of the linear PBMA above Tg. The cross-linked PMMA-sizing, however, acts as a rigid component and therefore causes adhesive fracture between the fibers and matrix after the fatigue process of thermal cycling and flexural fracture.
Study of thermal and fire behavior of wood fiber/thermoplastic composite materials
NASA Astrophysics Data System (ADS)
Oladipo, Adedejo Bukola
The fire safety characteristics of wood fiber/thermoplastic composite materials were investigated in this study. Composites comprising wood fiber fillers and polymeric binders are known to offer many advantages such as good strength to weight ratio, ease of manufacture, low cost, and the possibility for recycling. In spite of these advantages however, the fire safety question of plastic-based materials is an important one since they can, under certain conditions, drip or run, under fire, thereby potentially spreading fire from one location to the other. It is important therefore to understand the fire behavior of such a composite if the advantages it offers are to be fully utilized. To this end, numerical and experimental studies of opposed flow flame spread over the composite were conducted with emphasis on the influences of gravity, material thermal property variations, and finite-rate chemistry on the rate of spread. The thermal properties of the composite material, needed for opposed flame spread computations, were first determined using a combination of inverse heat conduction and non-linear parameter estimation procedures. The influences of wood fiber mass fraction and temperature on the effective thermal properties of the composite were established. The means for predicting the effective properties from those of the individual constituents were also examined and the results showed that the composite is close to being isotropic. The experimental and numerical methods used to determine the thermal properties of the composite were also adapted for the investigation of various proprietary automobile sound blanket materials to assess their effectiveness as thermal barriers separating the engine compartment from the passenger cabin. The results of opposed flame spread study over the composite suggests that, for opposed flow velocities lower than about 245 cm/s, finite rate chemistry will dominate the spread process when the oxygen mass fraction is 70% or less. Above this limit, heat transfer from the flame to the unburned fuel ahead seems to be the dominant factor. Also, the composite was observed to exhibit wood-like fire behavior when the wood fiber mass fraction is 40% or more.
Thermal Expansion and Thermal Conductivity of Rare Earth Silicates
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Lee, Kang N.; Bansal, Narottam P.
2006-01-01
Rare earth silicates are considered promising candidate materials for environmental barrier coatings applications at elevated temperature for ceramic matrix composites. High temperature thermophysical properties are of great importance for coating system design and development. In this study, the thermal expansion and thermal conductivity of hot-pressed rare earth silicate materials were characterized at temperatures up to 1400 C. The effects of specimen porosity, composition and microstructure on the properties were also investigated. The materials processing and testing issues affecting the measurements will also be discussed.
NASA Astrophysics Data System (ADS)
Ouyang, Xin; Cao, Peng; Zhang, Weijun; Huang, Zhaohui; Gao, Wei
2015-01-01
In this paper, we report a series of homogeneous polymeric composites with enhanced dielectric properties and thermal conductivity. The composites were constituted of polyvinylidene fluorides (PVDFs) matrix and CaCu3Ti4O12 (CCTO) monolithic or CCTO/β-SiC hybrid fillers, and prepared by simple melt blending and hot moulding technique. The influence of different types of fillers and their composition on the dielectric response and thermal conductivity of the obtained composites was studied. Results show that hybrid loading is preferred and a reasonable combination of thermal conductivity (0.80 Wṡm-1ṡK-1), dielectric constant (˜50) and dielectric loss (˜0.07) at 103 Hz was achieved in the PVDF composite containing 40 vol.% CCTO and 10 vol.% β-SiC. The strong dipolar and interfacial polarization derived from the fillers are responsible for the enhancement of the dielectric constant, while the formation of thermally conductive networks/chains by β-SiC whiskers contributes to the improved thermal conductivity.
Structural and thermal properties of silk fibroin - Silver nanoparticles composite films
NASA Astrophysics Data System (ADS)
Shivananda, C. S.; Rao B, B. Lakshmeesha; Shetty, G. Rajesh; Sangappa, Y.
2018-05-01
In this work, silk fibroin-silver nanoparticles (SF-AgNPs) composite films have been prepared by simple solution casting method. The composite films were examined for structural and thermal properties using X-ray diffraction (XRD), thermogravimatric (TGA) and differential scanning calorimetry (DSC) analysis. The XRD results showed that with the introduction of AgNPs in the silk fibroin matrix the amorphous nature of the silk fibroin decreases with increasing nanoparticles concentration. The silk fibroin films possess good thermal stability with the presence of AgNPs.
Development of AlN/Epoxy Composites with Enhanced Thermal Conductivity.
Xu, Yonggang; Yang, Chi; Li, Jun; Mao, Xiaojian; Zhang, Hailong; Hu, Song; Wang, Shiwei
2017-12-18
AlN/epoxy composites with high thermal conductivity were successfully prepared by infiltrating epoxy into AlN porous ceramics which were fabricated by gelcasting of foaming method. The microstructure, mechanical, and thermal properties of the resulting composites were investigated. The compressive strengths of the AlN/epoxy composites were enhanced compared with the pure epoxy. The AlN/epoxy composites demonstrate much higher thermal conductivity, up to 19.0 W/(m·K), compared with those by the traditional particles filling method, because of continuous thermal channels formed by the walls and struts of AlN porous ceramics. This study demonstrates a potential route to manufacture epoxy-based composites with extremely high thermal conductivity.
Development of AlN/Epoxy Composites with Enhanced Thermal Conductivity
Xu, Yonggang; Yang, Chi; Li, Jun; Zhang, Hailong; Hu, Song; Wang, Shiwei
2017-01-01
AlN/epoxy composites with high thermal conductivity were successfully prepared by infiltrating epoxy into AlN porous ceramics which were fabricated by gelcasting of foaming method. The microstructure, mechanical, and thermal properties of the resulting composites were investigated. The compressive strengths of the AlN/epoxy composites were enhanced compared with the pure epoxy. The AlN/epoxy composites demonstrate much higher thermal conductivity, up to 19.0 W/(m·K), compared with those by the traditional particles filling method, because of continuous thermal channels formed by the walls and struts of AlN porous ceramics. This study demonstrates a potential route to manufacture epoxy-based composites with extremely high thermal conductivity. PMID:29258277
NASA Astrophysics Data System (ADS)
Rasyid, M. F. Ahmad; Salim, M. S.; Akil, H. M.; Ishak, Z. A. Mohd.
2017-12-01
In the pursuit of green and more sustainable product, natural fibre reinforced composites originating from renewable resources has gained interest in recent years. These natural fibres exhibit good mechanical properties, low production costs, and good environmental properties. However, one of the disadvantages of natural fibre reinforced composites is their high flammability that limits their application in many fields. Within this research, the effect of sodium silicate on the flammability and thermal properties of flax reinforced acrylic based polyester composites has been investigated. Sodium silicate is applied as binder and flame retardant system in impregnation process of the natural flax fiber mats. The addition of sodium silicate significantly improved the flame retardant efficiency but reduced the degree of crosslinking of the composites.
Development of flax/carbon fibre hybrid composites for enhanced properties.
Dhakal, H N; Zhang, Z Y; Guthrie, R; Macmullen, J; Bennett, N
2013-07-01
Uni-directional (UD) and cross-ply (CP) cellulosic flax fibre epoxy composites were produced by hybridising UD carbon fibre prepreg onto flax system. A compression moulding technique was used to produce both flax and carbon/flax hybridised laminates. The effect of carbon fibre hybridisation on the water absorption behaviour, thermal and mechanical properties of both UD and CP flax specimens were investigated by means of water absorption, tensile, thermogravemetric analysis and flexural testing. The results showed that water absorption behaviour of hybrid samples are markedly improved compared to those without hybridisation. Similarly, the thermal stability, tensile and flexural properties of the hybrid composites are significantly improved in comparison with UD and CP flax composites without hybridisation. The experimental results suggest that cellulosic flax fibre reinforcement contributed to improve the toughness properties by promoting crack propagation whereas the carbon fibre contributed in improving thermal stability, water absorption behaviour and the overall strength and the stiffness of the hybrid composites. Copyright © 2013 Elsevier Ltd. All rights reserved.
Laser-assisted manufacturing of super-insulation materials
NASA Astrophysics Data System (ADS)
Wang, Zhen; Zhang, Tao; Park, Byung Kyu; Lee, Woo Il; Hwang, David
2017-02-01
Being lightweight materials with good mechanical and thermal properties, hollow glass micro-particles (HGMPs) have been widely studied for multiple applications. In this study, it is shown that by using reduced binder fraction diluted in solvent, enables minimal contacts among the HGMPs assisted by a natural capillary trend, as confirmed by optical and electron microscope imaging. Such material architecture fabricated in a composite level proves to have enhanced thermal insulation performance through quantitative thermal conductivity measurement. Mechanical strength has also been evaluated in terms of particle-binder bonding by tensile test via in-situ microscope inspection. Effect of laser treatment was examined for further improvement of thermal and mechanical properties by selective binder removal and efficient redistribution of remaining binder components. The fabricated composite materials have potential applications to building insulation materials for their scalable manufacturing nature, improved thermal insulation performance and reasonable mechanical strength. Further studies are needed to understand mechanical and thermal properties of the resulting composites, and key fabrication mechanisms involved with laser treatment of complex multi-component and multi-phase systems.
NASA Technical Reports Server (NTRS)
Tenney, D. R.; Tompkins, S. S.; Sykes, G. F.
1985-01-01
The effect of the space environment on: (1) thermal control coatings and thin polymer films; (2) radiation stability of 250 F and 350 F cured graphite/epoxy composites; and (3) the thermal mechanical stability of graphite/epoxy, graphite/glass composites are considered. Degradation in mechanical properties due to combined radiation and thermal cycling is highlighted. Damage mechanisms are presented and chemistry modifications to improve stability are suggested. The dimensional instabilities in graphite/epoxy composites associated with microcracking during thermal cycling is examined as well as the thermal strain hysteresis found in metal-matrix composites.
Graphene-magnesium nanocomposite: An advanced material for aerospace application
NASA Astrophysics Data System (ADS)
Das, D. K.; Sarkar, Jit
2018-02-01
This work focuses on the analytical study of mechanical and thermal properties of a nanocomposite that can be obtained by reinforcing graphene in magnesium. The estimated mechanical and thermal properties of graphene-magnesium nanocomposite are much higher than magnesium and other existing alloys used in aerospace materials. We also altered the weight percentage of graphene in the composite and observed mechanical and thermal properties of the composite increase with increase in concentration of graphene reinforcement. The Young’s modulus and thermal conductivity of graphene-magnesium nanocomposite are found to be ≥165 GPa and ≥175 W/mK, respectively. Nanocomposite material with desired properties for targeted applications can also be designed by our analytical modeling technique. This graphene-magnesium nanocomposite can be used for designing improved aerospace structure systems with enhanced properties.
Thermophysical properties of LiCoO₂-LiMn₂O₄ blended electrode materials for Li-ion batteries.
Gotcu, Petronela; Seifert, Hans J
2016-04-21
Thermophysical properties of two cathode types for lithium-ion batteries were measured by dependence on temperature. The cathode materials are commercial composite thick films containing LiCoO2 and LiMn2O4 blended active materials, mixed with additives (binder and carbon black) deposited on aluminium current collector foils. The thermal diffusivities of the cathode samples were measured by laser flash analysis up to 673 K. The specific heat data was determined based on measured composite specific heat, aluminium specific heat data and their corresponding measured mass fractions. The composite specific heat data was measured using two differential scanning calorimeters over the temperature range from 298 to 573 K. For a comprehensive understanding of the blended composite thermal behaviour, measurements of the heat capacity of an additional LiMn2O4 sample were performed, and are the first experimental data up to 700 K. Thermal conductivity of each cathode type and their corresponding blended composite layers were estimated from the measured thermal diffusivity, the specific heat capacity and the estimated density based on metallographic methods and structural investigations. Such data are highly relevant for simulation studies of thermal management and thermal runaway in lithium-ion batteries, in which the bulk properties are assumed, as a common approach, to be temperature independent.
Mechanical and thermal properties of waterborne epoxy composites containing cellulose nanocrystals
Shanhong Xu; Natalie Girouard; Gregory Schueneman; Meisha L. Shofner; J. Carson Meredith
2013-01-01
Cellulose nanocrystals (CNCs) are reinforcing fillers of emerging interest for polymers due to their high modulus and potential for sustainable production. In this study, CNC-based composites with a waterborne epoxy resin matrix were prepared and characterized to determine morphology, water content, and thermal and mechanical properties. While some CNC aggregation was...
Thermal characteristics of carbon fiber reinforced epoxy containing multi-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Lee, Jin-woo; Park, Soo-Jeong; Kim, Yun-hae; Riichi-Murakami
2018-06-01
The material with irregular atomic structures such as polymer material exhibits low thermal conductivity because of the complex structural properties. Even materials with same atomic configurations, thermal conductivity may be different based on their structural properties. It is expected that nanoparticles with conductivity will change non-conductive polymer base materials to electrical conductors, and improve the thermal conductivity even with extremely small filling amount. Nano-composite materials contain nanoparticles with a higher surface ratio which makes the higher interface percentage to the total surface of nanoparticles. Therefore, thermal resistance of the interface becomes a dominating factor determines the effective thermal conductivity in nano-composite materials. Carbon fiber has characteristic of resistance or magnetic induction and Also, Carbon nanotube (CNT) has electronic and thermal property. It can be applied for heating system. These characteristic are used as heating composite. In this research, the exothermic characteristics of Carbon fiber reinforced composite added CNT were evaluated depend on CNT length and particle size. It was found that the CNT dispersed in the resin reduces the resistance between the interfaces due to the decrease in the total resistance of the heating element due to the addition of CNTs. It is expected to improve the life and performance of the carbon fiber composite material as a result of the heating element resulting from this paper.
Bioactive Glass Fiber Reinforced Starch-Polycaprolactone Composite for Bone Applications
NASA Astrophysics Data System (ADS)
Jukola, H.; Nikkola, L.; Gomes, M. E.; Chiellini, F.; Tukiainen, M.; Kellomäki, M.; Chiellini, E.; Reis, R. L.; Ashammakhi, N.
2008-02-01
For bone regeneration and repair, combinations of different materials are often needed. Biodegradable polymers are often combined with osteoconductive materials, such as bioactive glass (BaG), which can also improve the mechanical properties of the composite. The aim of this study was to develop and characterize BaG fiber-reinforced starch-poly-ɛ-caprolactone (SPCL) composite. Sheets of SPCL (30/70 wt%) were produced using single-screw extrusion. They were then cut and compression molded in layers with BaG fibers to form composite structures of different combinations. Thermal, mechanical, and degradation properties of the composites were studied. The actual amount of BaG in the composites was determined using combustion tests. A strong endothermic peak indicating melting at about 56 °C was observed by differential scanning calorimetry (DSC) analysis. Thermal gravimetry analysis (TGA) showed that thermal decomposition of SPCL started at 325 °C with the decomposition of starch and continued at 400 °C with the degradation of polycaprolactone (PCL). Initial mechanical properties of the reinforced composites were at least 50% better than the properties of the non-reinforced composites. However, the mechanical properties of the composites after two weeks of hydrolysis were comparable to those of the non-reinforced samples. During the six weeks' hydrolysis the mass of the composites had decreased only by about 5%. The amount of glass in the composites remained the same for the six-week period of hydrolysis. In conclusion, it is possible to enhance the initial mechanical properties of SPCL by reinforcing it with BaG fibers. However, the mechanical properties of the composites are only sufficient for use as filler material and they need to be further improved to allow long-lasting bone applications.
Bioactive Glass Fiber Reinforced Starch-Polycaprolactone Composite for Bone Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jukola, H.; Nikkola, L.; Tukiainen, M.
2008-02-15
For bone regeneration and repair, combinations of different materials are often needed. Biodegradable polymers are often combined with osteoconductive materials, such as bioactive glass (BaG), which can also improve the mechanical properties of the composite. The aim of this study was to develop and characterize BaG fiber-reinforced starch-poly-{epsilon}-caprolactone (SPCL) composite. Sheets of SPCL (30/70 wt%) were produced using single-screw extrusion. They were then cut and compression molded in layers with BaG fibers to form composite structures of different combinations. Thermal, mechanical, and degradation properties of the composites were studied. The actual amount of BaG in the composites was determined usingmore » combustion tests. A strong endothermic peak indicating melting at about 56 deg. C was observed by differential scanning calorimetry (DSC) analysis. Thermal gravimetry analysis (TGA) showed that thermal decomposition of SPCL started at 325 deg. C with the decomposition of starch and continued at 400 deg. C with the degradation of polycaprolactone (PCL). Initial mechanical properties of the reinforced composites were at least 50% better than the properties of the non-reinforced composites. However, the mechanical properties of the composites after two weeks of hydrolysis were comparable to those of the non-reinforced samples. During the six weeks' hydrolysis the mass of the composites had decreased only by about 5%. The amount of glass in the composites remained the same for the six-week period of hydrolysis. In conclusion, it is possible to enhance the initial mechanical properties of SPCL by reinforcing it with BaG fibers. However, the mechanical properties of the composites are only sufficient for use as filler material and they need to be further improved to allow long-lasting bone applications.« less
Ceramic Matrix Composites: High Temperature Effects. (Latest Citations from the Aerospace Database)
NASA Technical Reports Server (NTRS)
1997-01-01
The bibliography contains citations concerning the development and testing of ceramic matrix composites for high temperature use. Tests examining effects of the high temperatures on bond strength, thermal degradation, oxidation, thermal stress, thermal fatigue, and thermal expansion properties are referenced. Applications of the composites include space structures, gas turbine and engine components, control surfaces for spacecraft and transatmospheric vehicles, heat shields, and heat exchangers.
Mechanical and thermal properties of planetologically important ices
NASA Technical Reports Server (NTRS)
Croft, Steven K.
1987-01-01
Two squences of ice composition were proposed for the icy satellites: a dense nebula model and a solar nebula model. Careful modeling of the structure, composition, and thermal history of satellites composed of these various ices requires quantitative information on the density, compressibility, thermal expansion, heat capacity, and thermal conductivity. Equations of state were fitted to the density data of the molecular ices. The unusual thermal and mechanical properties of the molecular and binary ices suggest a larger range of phenomena than previously anticipated, sufficiently complex perhaps to account for many of the unusual geologic phenomena found on the icy satellites.
NASA Astrophysics Data System (ADS)
Mohammed, M.; Rozyanty, A. R.; Beta, B. O.; Adam, T.; Osman, A. F.; Salem, I. A. S.; Dahham, O. S.; Al-Samarrai, M. N.; Mohammed, A. M.
2017-10-01
Unprecedented growing on environmental concern has put research on completive driven effort to quest for new material in various application, the effort toward producing thermally stable polymer is ever gaining considerable interest. Thus, this study proposed the integration of glass fiber with kenaf based polymer to improve thermal properties. Based on the TGA and DSC results, the composites show slow and steady initial weight loss until major weight loss at 360°C. Thus, with incorporation of glass fiber extend region of degradation until 260-360 °Cshow no exothermic or endothermic changes, this reflected that the composites thermally stability have been improved.
NASA Astrophysics Data System (ADS)
Gkikas, G.; Douka, D.-D.; Barkoula, N.-M.; Paipetis, A. S.
2013-04-01
The introduction of nanoscaled reinforcement in otherwise conventional fiber reinforced composite materials has opened an exciting new area in composites research. The unique properties of these materials combined with the design versatility of fibrous composites may offer both enhanced mechanical properties and multiple functionalities which has been a focus area of the aerospace technology on the last decades. Due to unique properties of carbon nanofillers such as huge aspect ratio, extremely large specific surface area as well as high electrical and thermal conductivity, Carbon Nanotubes have benn investigated as multifunvtional materials for electrical, thermal and mechanical applications. In this study, MWCNTs were incorporated in a typical epoxy system using a sonicator. The volume of the nanoreinforcement was 0.5 % by weight. Two different levels of sonication amplitude were used, 50% and 100% respectively. After the sonication, the hardener was introduced in the epoxy, and the system was cured according to the recommended cycle. For comparison purposes, specimens from neat epoxy system were prepared. The thermomechanical properties of the materials manufactured were investigated using a Dynamic Mechanical Analyser. The exposed specimens were subjected to thermal shock. Thermal cycles from +30 °C to -30 °C were carried out and each cycle lasted 24 hours. The thermomechanical properties were studied after 30 cycles . Furthermore, the epoxy systems prepared during the first stage of the study were used for the manufacturing of 16 plies quasi isotropic laminates CFRPs. The modified CFRPs were subjected to thermal shock. For comparison reasons unmodified CFRPs were manufactured and subjected to the same conditions. In addition, the interlaminar shear strength of the specimens was studied using 3-point bending tests before and after the thermal shock. The effect of the nanoreinforcement on the environmental degradation is critically assessed.
NASA Technical Reports Server (NTRS)
Olsen, G. C.
1981-01-01
The effects of fabrication and long term thermal exposure (up to 10,000 hours at 590 K) on two types of aluminum matrix composites were examined. An alumina/aluminum composite, was made of continuous alpha Al2O3 fibers in a matrix of commercially pure aluminum alloyed with 2.8% lithium. The mechanical properties of the material, the effect of isothermal exposure, cyclic thermal exposure, and fatigue are presented. Two degradation mechanisms are identified. One was caused by formation of a nonstoichiometric alumina during fabrication, the other by a loss of lithium to a surface reaction during long term thermal exposure. The other composite, boron/aluminum, made of boron fibers in an aluminum matrix, was investigated using five different aluminum alloys for the matrices. The mechanical properties of each material and the effect of isothermal and cyclic thermal exposure are presented. The effects of each alloy constituent on the degradation mechanisms are discussed. The effects of several reactions between alloy constituents and boron fibers on the composite properties are discussed.
NASA Astrophysics Data System (ADS)
Abdollahi Azghan, Mehdi; Eslami-Farsani, Reza
2018-02-01
The current study aimed at investigating the effects of different stacking sequences and thermal cycling on the flexural properties of fibre metal laminates (FMLs). FMLs were composed of two aluminium alloy 2024-T3 sheets and epoxy polymer-matrix composites that have four layers of basalt and/or glass fibres with five different stacking sequences. For FML samples the thermal cycle time was about 6 min for temperature cycles from 25 °C to 115 °C. Flexural properties of samples evaluated after 55 thermal cycles and compared to non-exposed samples. Surface modification of aluminium performed by electrochemical treatment (anodizing) method and aluminium surfaces have been examined by scanning electron microscopy (SEM). Also, the flexural failure mechanisms investigated by the optical microscope study of fractured surfaces. SEM images indicated that the porosity of the aluminium surface increased after anodizing process. The findings of the present study showed that flexural modulus were maximum for basalt fibres based FML, minimum for glass fibres based FML while basalt/glass fibres based FML lies between them. Due to change in the failure mechanism of basalt/glass fibres based FMLs that have glass fibres at outer layer of the polymer composite, the flexural strength of this FML is lower than glass and basalt fibres based FML. After thermal cycling, due to the good thermal properties of basalt fibres, flexural properties of basalt fibres based FML structures decreased less than other composites.
Porous composite with negative thermal expansion obtained by photopolymer additive manufacturing
NASA Astrophysics Data System (ADS)
Takezawa, Akihiro; Kobashi, Makoto; Kitamura, Mitsuru
2015-07-01
Additive manufacturing (AM) could be a novel method of fabricating composite and porous materials having various effective performances based on mechanisms of their internal geometries. Materials fabricated by AM could rapidly be used in industrial application since they could easily be embedded in the target part employing the same AM process used for the bulk material. Furthermore, multi-material AM has greater potential than usual single-material AM in producing materials with effective properties. Negative thermal expansion is a representative effective material property realized by designing a composite made of two materials with different coefficients of thermal expansion. In this study, we developed a porous composite having planar negative thermal expansion by employing multi-material photopolymer AM. After measurement of the physical properties of bulk photopolymers, the internal geometry was designed by topology optimization, which is the most effective structural optimization in terms of both minimizing thermal stress and maximizing stiffness. The designed structure was converted to a three-dimensional stereolithography (STL) model, which is a native digital format of AM, and assembled as a test piece. The thermal expansions of the specimens were measured using a laser scanning dilatometer. Negative thermal expansion corresponding to less than -1 × 10-4 K-1 was observed for each test piece of the N = 3 experiment.
The effects of temperature on fiber composite bridge decks.
DOT National Transportation Integrated Search
2009-01-01
In this study the fiber composite bridge decks were subjected to thermal gradients to obtain the temperature difference between the top and bottom surface of the decks and to determine the thermal properties of the deck. The fiber composite bridge de...
Thermal Characterization of Carbon Fiber-Reinforced Carbon Composites
NASA Astrophysics Data System (ADS)
Macias, J. D.; Bante-Guerra, J.; Cervantes-Alvarez, F.; Rodrìguez-Gattorno, G.; Arés-Muzio, O.; Romero-Paredes, H.; Arancibia-Bulnes, C. A.; Ramos-Sánchez, V.; Villafán-Vidales, H. I.; Ordonez-Miranda, J.; Li Voti, R.; Alvarado-Gil, J. J.
2018-04-01
Carbon fiber-reinforced carbon (C/C) composites consist in a carbon matrix holding carbon or graphite fibers together, whose physical properties are determined not only by those of their individual components, but also by the layer buildup and the material preparation and processing. The complex structure of C/C composites along with the fiber orientation provide an effective means for tailoring their mechanical, electrical, and thermal properties. In this work, we use the Laser Flash Technique to measure the thermal diffusivity and thermal conductivity of C/C composites made up of laminates of weaved bundles of carbon fibers, forming a regular and repeated orthogonal pattern, embedded in a graphite matrix. Our experimental data show that: i) the cross-plane thermal conductivity remains practically constant around (5.3 ± 0.4) W·m-1 K-1, within the temperature range from 370 K to 1700 K. ii) The thermal diffusivity and thermal conductivity along the cross-plane direction to the fibers axis is about five times smaller than the corresponding ones in the laminates plane. iii) The measured cross-plane thermal conductivity is well described by a theoretical model that considers both the conductive and radiative thermal contributions of the effective thermal conductivity.
Performance Properties of Graphite Reinforced Composites with Advanced Resin Matrices
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius A.
1980-01-01
This article looks at the effect of different resin matrices on thermal and mechanical properties of graphite composites, and relates the thermal and flammability properties to the anaerobic char yield of the resins. The processing parameters of graphite composites utilizing graphite fabric and epoxy or other advanced resins as matrices are presented. Thermoset resin matrices studied were: aminecured polyfunctional glycidyl aminetype epoxy (baseline), phenolicnovolac resin based on condensation of dihydroxymethyl-xylene and phenol cured with hexamine, two types of polydismaleimide resins, phenolic resin, and benzyl resin. The thermoplastic matrices studied were polyethersulfone and polyphenylenesulfone. Properties evaluated in the study included anaerobic char yield, limiting oxygen index, smoke evolution, moisture absorption, and mechanical properties at elevated temperatures including tensile, compressive, and short-beam shear strengths. Generally, it was determined that graphite composites with the highest char yield exhibited optimum fire-resistant properties.
Mechanical performance of hybrid polyester composites reinforced Cloisite 30B and kenaf fibre
NASA Astrophysics Data System (ADS)
Bonnia, N. N.; Surip, S. N.; Ratim, S.; Mahat, M. M.
2012-06-01
Hybridization of rubber toughened polyester-kenaf nanocomposite was prepared by adding various percentage of kenaf fiber with 4% Cloisite 30B in unsaturated polyester resin. Composite were prepared by adding filler to modified polyester resin subsequently cross-linked using methyl ethyl ketone peroxide and the accelerator cobalt octanoate 1%. Three per hundred rubbers (phr) of liquid natural rubber (LNR) were added in producing this composite. This composite expected to be applied in the interior of passenger cars and truck cabins. This is a quality local product from a combination of good properties polyester and high performance natural fiber, kenaf that is suitable for many applications such as in automotive sector and construction sector. The mechanical and thermal properties of composite were characterized using Durometer Shore-D hardness test, Izod impact test, Scanning electron microscopy, thermogravimetry (TGA) and differential scanning calorimetry (DSC). Result shows that addition of LNR give good properties on impact, flexural and hardness compare to without LNR composite. DSC curve shows that all composition of composites is fully cured and good in thermal properties. Addition of higher percentage of kenaf will lead the composite to elastic behavior and decrease the toughened properties of the composite. Hybrid system composite showed the flexural properties within the flexural properties of kenaf - polyester and Cloisite 30B.
Determination of petrophysical properties of sedimentary rocks by optical methods
NASA Astrophysics Data System (ADS)
Korte, D.; Kaukler, D.; Fanetti, M.; Cabrera, H.; Daubront, E.; Franko, M.
2017-04-01
Petrophysical properties of rocks (thermal diffusivity and conductivity, porosity and density) as well as the correlation between them are of great importance for many geoscientific applications. The porosity of the reservoir rocks and their permeability are the most fundamental physical properties with respect to the storage and transmission of fluids, mainly oil characterization. Accurate knowledge of these parameters for any hydrocarbon reservoir is required for efficient development, management, and prediction of future performance of the oilfield. Thus, the porosity and permeability, as well as the chemical composition must be quantified as precisely as possible. This should be done along with the thermal properties, density, conductivity, diffusivity and effusivity that are intimately related with them. For this reason, photothermal Beam Deflection Spectrometry (BDS) technique for determination of materials' thermal properties together with other methods such as Energy Dispersive X-ray Scanning Electron Microscopy (SEM-EDX) for determining the chemical composition and sample structure, as well as optical microscopy to determine the particles size, were applied for characterization of sedimentary rocks. The rocks were obtained from the Andes south flank in the Venezuela's western basin. The validation of BDS applicability for determination of petrophysical properties of three sedimentary rocks of different texture and composition (all from Late Cretaceous associated with the Luna, Capacho and Colón-Mito Juan geological formations) was performed. The rocks' thermal properties were correlated to the microstructures and chemical composition of the examined samples.
Lamb Wave Assessment of Fatigue and Thermal Damage in Composites
NASA Technical Reports Server (NTRS)
Seale, Michael D.; Smith, Barry T.; Prosser, W. H.
2004-01-01
Among the various techniques available, ultrasonic Lamb waves offer a convenient method of evaluating composite materials. Since the Lamb wave velocity depends on the elastic properties of a structure, an effective tool exists to monitor damage in composites by measuring the velocity of these waves. Lamb wave measurements can propagate over long distances and are sensitive to the desired in-plane elastic properties of the material. This paper describes two studies which monitor fatigue damage and two studies which monitor thermal damage in composites using Lamb waves. In the fatigue studies, the Lamb wave velocity is compared to modulus measurements obtained using strain gage measurements in the first experiment and the velocity is monitored along with the crack density in the second. In the thermal damage studies, one examines samples which were exposed to varying temperatures for a three minute duration and the second includes rapid thermal damage in composites by intense laser beams. In all studies, the Lamb wave velocity is demonstrated to be an excellent method to monitor damage in composites.
Ye, Rongda; Fang, Xiaoming; Zhang, Zhengguo; Gao, Xuenong
2015-01-01
Here we demonstrate the mechanical properties, thermal conductivity, and thermal energy storage performance of construction elements made of cement and form-stable PCM-Rubitherm® RT 28 HC (RT28)/expanded perlite (EP) composite phase change materials (PCMs). The composite PCMs were prepared by adsorbing RT28 into the pores of EP, in which the mass fraction of RT28 should be limited to be no more than 40 wt %. The adsorbed RT28 is observed to be uniformly confined into the pores of EP. The phase change temperatures of the RT28/EP composite PCMs are very close to that of the pure RT28. The apparent density and compression strength of the composite cubes increase linearly with the mass fraction of RT28. Compared with the thermal conductivity of the boards composed of cement and EP, the thermal conductivities of the composite boards containing RT28 increase by 15%–35% with the mass fraction increasing of RT28. The cubic test rooms that consist of six boards were built to evaluate the thermal energy storage performance, it is found that the maximum temperature different between the outside surface of the top board with the indoor temperature using the composite boards is 13.3 °C higher than that of the boards containing no RT28. The thermal mass increase of the built environment due to the application of composite boards can contribute to improving the indoor thermal comfort and reducing the energy consumption in the buildings. PMID:28793671
Ye, Rongda; Fang, Xiaoming; Zhang, Zhengguo; Gao, Xuenong
2015-11-13
Here we demonstrate the mechanical properties, thermal conductivity, and thermal energy storage performance of construction elements made of cement and form-stable PCM-Rubitherm® RT 28 HC (RT28)/expanded perlite (EP) composite phase change materials (PCMs). The composite PCMs were prepared by adsorbing RT28 into the pores of EP, in which the mass fraction of RT28 should be limited to be no more than 40 wt %. The adsorbed RT28 is observed to be uniformly confined into the pores of EP. The phase change temperatures of the RT28/EP composite PCMs are very close to that of the pure RT28. The apparent density and compression strength of the composite cubes increase linearly with the mass fraction of RT28. Compared with the thermal conductivity of the boards composed of cement and EP, the thermal conductivities of the composite boards containing RT28 increase by 15%-35% with the mass fraction increasing of RT28. The cubic test rooms that consist of six boards were built to evaluate the thermal energy storage performance, it is found that the maximum temperature different between the outside surface of the top board with the indoor temperature using the composite boards is 13.3 °C higher than that of the boards containing no RT28. The thermal mass increase of the built environment due to the application of composite boards can contribute to improving the indoor thermal comfort and reducing the energy consumption in the buildings.
NASA Astrophysics Data System (ADS)
2003-09-01
MEM03: The Second International Workshop on Mechano-Electromagnetic Properties of Composite Superconductors (Kyoto, Japan, 35 March 2003) Superconductivity is on course to be widely applied in various advanced technologies including: (1) magnetically levitated vehicles (MAGLEV), international thermonuclear experimental reactors (ITER), electric generators, high energy accelerator and magnetic resonance imaging (MRI) using metallic composite superconductors; (2) cable, fault-current-limiters (FCL), transformers, flywheels and motors by using oxide composite superconductors; (3) high field NMR and other sophisticated devices by combining both metallic and oxide superconductors. In order to create a real market for these advanced technologies using superconductivity, it is absolutely essential to develop superconducting wires/tapes with better performance. The development of accompanying assessment technologies is therefore indispensable for their R&D. Some important properties are related to the mechanical properties of the conductors. It is well known that degraded superconducting and mechanical properties (during fabrication as well as under operation) can cause serious problems, because the critical current depends sensitively on bending and tensile stresses, electromagnetic force, and mechanical and thermal cycling. Therefore he assessment of mechanical properties and the effect of strain on transport properties is crucial for improving and developing high performance superconducting devices. It is now very timely to have a meeting in order to discuss common scientific problems systematically and comprehensively. The Second International Workshop on Mechano-Electromagnetic Properties of Composite Superconductors, MEM03, was held in Kyoto, Japan, 35 March 2003, mainly to discuss the fundamentals of the following topics. Electromagnetic properties: change of critical current, RRR and ac loss due to external forces like bending, compressive and tensile stresses, electromagnetic force, and mechanical and thermal cycling. Mechanical properties: tensile and compressive properties, fatigue characteristics and fracture behaviour. Thermal properties: thermal conductivity, thermal dilatation and thermal strain. Modelling: prediction of critical current and mechanical properties of composite superconductors through statistical analysis, finite element analysis, etc. Test methods: international cooperative research work to establish test methods for assessing mechano-electromagnetic properties based on the activity of VAMAS/TWA-16. This discussion took place with respect to three types of composites: MFC (multifilamentary composite): BSCCO, MgB2, Nb-Ti, Nb3Sn and Nb3Al. CCC (coated conductor composite): YBCO and ReBCO. BCC (bulk crystal composite): YBCO and ReBCO. More than 55 researchers attended the MEM03 workshop, coming from eight different countries. A total of 42 papers were presented. In this special issue of Superconductor Science and Technology selected papers have been included that are concerned with the comprehensive scientific research subjects mentioned above. The aim of this issue is to provide a snapshot of some of the current state-of-the-art research and to promote further research into the mechano-electromagnetic properties of composite superconductors. The workshop was organized under the activities of NEDO technology quest and VAMAS/TWA-16. We wish to thank the following for their contribution to the success of the workshop: NEDO Super-ACE project, AFOSR, AOARD and IEC/TC90-JNC. Guest Editors: Kozo Osamura Hitoshi Wada Arman Nyilas Damian Hampshire
Physical and thermal behavior of cement composites reinforced with recycled waste paper fibers
NASA Astrophysics Data System (ADS)
Hospodarova, Viola; Stevulova, Nadezda; Vaclavik, Vojtech; Dvorsky, Tomas
2017-07-01
In this study, three types of recycled waste paper fibers were used to manufacture cement composites reinforced with recycled cellulosic fibers. Waste cellulosic fibers in quantity of 0.2, 0.3, and 0.5 wt.% were added to cement mixtures. Physical properties such as density, water capillarity, water absorbability and thermal conductivity of fiber cement composites were studied after 28 days of hardening. However, durability of composites was tested after their water storage up to 90 days. Final results of tested properties of fiber cement composites were compared with cement reference sample without cellulosic fibers.
Fang, Guiyin; Li, Hui; Chen, Zhi; Liu, Xu
2010-09-15
Flame retardant n-hexadecane/silicon dioxide (SiO(2)) composites as thermal energy storage materials were prepared using sol-gel methods. In the composites, n-hexadecane was used as the phase change material for thermal energy storage, and SiO(2) acted as the supporting material that is fire resistant. In order to further improve flame retardant property of the composites, the expanded graphite (EG) was added in the composites. Fourier transformation infrared spectroscope (FT-IR), X-ray diffractometer (XRD) and scanning electronic microscope (SEM) were used to determine chemical structure, crystalloid phase and microstructure of flame retardant n-hexadecane/SiO(2) composites, respectively. The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetric analysis apparatus (TGA), respectively. The SEM results showed that the n-hexadecane was well dispersed in the porous network of the SiO(2). The DSC results indicated that the melting and solidifying latent heats of the composites are 147.58 and 145.10 kJ/kg when the mass percentage of the n-hexadecane in the composites is 73.3%. The TGA results showed that the loading of the EG increased the charred residue amount of the composites at 700 degrees C, contributing to the improved thermal stability of the composites. It was observed from SEM photographs that the homogeneous and compact charred residue structure after combustion improved the flammability of the composites. Copyright 2010 Elsevier B.V. All rights reserved.
Thermal effect of diode-pumped solid state lasers based on composite crystals
NASA Astrophysics Data System (ADS)
Hao, Ming-ming; Lu, Guo-guang; Zhu, Hong-bo; Huang, Yun; En, Yun-fei
2013-12-01
Thermal effect of diode-pumped solid-state lasers (DPSSL) based on YAP/Tm:YAP composite crystal is studied by using of finite element method (FEM). It is found that the peak temperature in a composite rod decreases to less than 80% of that in a non-composite crystal. Thermal stress of composite rod is obviously reduced to less than 70% comparing with non-composite crystal. It is also demonstrated that length of thermal lens unchanged with increasing of un-doped crystal length, which means that beam quality of composite laser wouldn't be improved by non-composite crystal. Therefore, it is concluded that using composite crystal would benefit for the properties of temperature and heat stress while insignificance for beam quality of DPSSL.
NASA Astrophysics Data System (ADS)
Hussein, Seenaa I.; Abd-Elnaiem, Alaa M.; Asafa, Tesleem B.; Jaafar, Harith I.
2018-07-01
Applications of polymer-based nanocomposites continue to rise because of their special properties such as lightweight, low cost, and durability. Among the most important applications is the thermal management of high density electronics which requires effective dissipation of internally generated heat. This paper presents our experimental results on the influence of graphene, multi-walled carbon nanotubes (MWCNTs) and chopped carbon fibers on wear resistance, hardness, impact strength and thermal conductivity of epoxy resin composites. We observed that, within the range of the experimental data (epoxy resin + 1, 3, 5 wt% of graphene or 1, 3, 5 wt% MWCNT or 10, 30, 50 wt% carbon fibers), graphene-enhanced wear resistance of the nanocomposites by 75% compared to 50% and 38% obtained for MWCNT and carbon fiber composite, respectively. The impact resistance of graphene nanocomposite rose by 26% (from 7.3 to 9.2 J/m2) while that of MWCNT nanocomposite was improved by 14% (from 7.3 to 8.2 J/m2). The thermal conductivity increased 3.6-fold for the graphene nanocomposite compared to threefold for MWCNT nanocomposite and a meager 0.63-fold for carbon fiber composite. These enhancements in mechanical and thermal properties are generally linear within the experimental limits. The huge increase in thermal conductivity, especially for the graphene and MWCNT nanocomposites makes the composites readily applicable as high conductive materials for use as heat spreaders and thermal pads.
Preparation and properties of dough-modeling compound/fly ash/reclaim powder composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, W.L.
A novel composite was prepared with reclaim powder (RP) matrix, dough-modeling compound (DMC) reinforcement and fly ash (FA) filler in this article. The compatibility and crosslinking construction of the FA/RP composites were respectively, studied by the polarizing microscope and IR, the optimal formulation and experimental process were determined by measuring the mechanical properties such as shore A hardness, tensile strength, elongation at break, wear resistance and the thermal stability. The results showed that DMC/FA/RP composites exhibited extremely high mechanical and thermal properties when the mass ratio of the DMC/FA/RP composites was 45/25/100, and the cure condition is at 145 {supmore » o}C for 30 min under 9 MPa.« less
Barczewski, Mateusz; Matykiewicz, Danuta; Andrzejewski, Jacek; Skórczewska, Katarzyna
2016-05-01
The aim of this study was to produce isotactic polypropylene based composites filled with waste thermosetting bulk moulded composite (BMC). The influence of BMC waste addition (5, 10, 20 wt%) on composites structure and properties was investigated. Moreover, additional studies of chemical treatment of the filler were prepared. Modification of BMC waste by calcium stearate (CaSt) powder allows to assess the possibility of the production of composites with better dispersion of the filler and more uniform properties. The mechanical, processing, and thermal properties, as well as structural investigations were examined by means of static tensile test, Dynstat impact strength test, differential scanning calorimetry (DSC), wide angle X-ray scattering (WAXS), melt flow index (MFI) and scanning electron microscopy (SEM). Developed composites with different amounts of non-reactive filler exhibited satisfactory thermal and mechanical properties. Moreover, application of the low cost modifier (CaSt) allows to obtain composites with better dispersion of the filler and improved processability.
Application of waste bulk moulded composite (BMC) as a filler for isotactic polypropylene composites
Barczewski, Mateusz; Matykiewicz, Danuta; Andrzejewski, Jacek; Skórczewska, Katarzyna
2016-01-01
The aim of this study was to produce isotactic polypropylene based composites filled with waste thermosetting bulk moulded composite (BMC). The influence of BMC waste addition (5, 10, 20 wt%) on composites structure and properties was investigated. Moreover, additional studies of chemical treatment of the filler were prepared. Modification of BMC waste by calcium stearate (CaSt) powder allows to assess the possibility of the production of composites with better dispersion of the filler and more uniform properties. The mechanical, processing, and thermal properties, as well as structural investigations were examined by means of static tensile test, Dynstat impact strength test, differential scanning calorimetry (DSC), wide angle X-ray scattering (WAXS), melt flow index (MFI) and scanning electron microscopy (SEM). Developed composites with different amounts of non-reactive filler exhibited satisfactory thermal and mechanical properties. Moreover, application of the low cost modifier (CaSt) allows to obtain composites with better dispersion of the filler and improved processability. PMID:27222742
Min, Xin; Fang, Minghao; Huang, Zhaohui; Liu, Yan'gai; Huang, Yaoting; Wen, Ruilong; Qian, Tingting; Wu, Xiaowen
2015-08-11
Radial mesoporous silica (RMS) sphere was tailor-made for further applications in producing shape-stabilized composite phase change materials (ss-CPCMs) through a facile self-assembly process using CTAB as the main template and TEOS as SiO2 precursor. Novel ss-CPCMs composed of polyethylene glycol (PEG) and RMS were prepared through vacuum impregnating method. Various techniques were employed to characterize the structural and thermal properties of the ss-CPCMs. The DSC results indicated that the PEG/RMS ss-CPCM was a promising candidate for building thermal energy storage applications due to its large latent heat, suitable phase change temperature, good thermal reliability, as well as the excellent chemical compatibility and thermal stability. Importantly, the possible formation mechanisms of both RMS sphere and PEG/RMS composite have also been proposed. The results also indicated that the properties of the PEG/RMS ss-CPCMs are influenced by the adsorption limitation of the PEG molecule from RMS sphere with mesoporous structure and the effect of RMS, as the impurities, on the perfect crystallization of PEG.
Min, Xin; Fang, Minghao; Huang, Zhaohui; Liu, Yan’gai; Huang, Yaoting; Wen, Ruilong; Qian, Tingting; Wu, Xiaowen
2015-01-01
Radial mesoporous silica (RMS) sphere was tailor-made for further applications in producing shape-stabilized composite phase change materials (ss-CPCMs) through a facile self-assembly process using CTAB as the main template and TEOS as SiO2 precursor. Novel ss-CPCMs composed of polyethylene glycol (PEG) and RMS were prepared through vacuum impregnating method. Various techniques were employed to characterize the structural and thermal properties of the ss-CPCMs. The DSC results indicated that the PEG/RMS ss-CPCM was a promising candidate for building thermal energy storage applications due to its large latent heat, suitable phase change temperature, good thermal reliability, as well as the excellent chemical compatibility and thermal stability. Importantly, the possible formation mechanisms of both RMS sphere and PEG/RMS composite have also been proposed. The results also indicated that the properties of the PEG/RMS ss-CPCMs are influenced by the adsorption limitation of the PEG molecule from RMS sphere with mesoporous structure and the effect of RMS, as the impurities, on the perfect crystallization of PEG. PMID:26261089
PCM/wood composite to store thermal energy in passive building envelopes
NASA Astrophysics Data System (ADS)
Barreneche, C.; Vecstaudza, J.; Bajare, D.; Fernandez, A. I.
2017-10-01
The development of new materials to store thermal energy in a passive building system is a must to improve the thermal efficiency by thermal-regulating the indoor temperatures. This fact will deal with the reduction of the gap between energy supply and energy demand to achieve thermal comfort in building indoors. The aim of this work was to test properties of novel PCM/wood composite materials developed at Riga Technical University. Impregnation of PCM (phase change material) in wood increases its thermal mass and regulates temperature fluctuations during day and night. The PCM used are paraffin waxes (RT-21 and RT-27 from Rubitherm) and the wood used was black alder, the most common wood in Latvia. The PCM distribution inside wood sample has been studied as well as its thermophysical, mechanical and fire reaction properties. Developed composite materials are promising in the field of energy saving in buildings.
Thermal Performance of Composite Flexible Blanket Insulations for Hypersonic Aerospace Vehicles
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius A.
1993-01-01
This paper describes the thermal performance of a Composite Flexible Blanket Insulation (C.F.B.I.) considered for potential use as a thermal protection system or thermal insulation for future hypersonic vehicles such as the National Aerospace Plane (N.A.S.P.). Thermophysical properties for these insulations were also measured including the thermal conductivity at various temperatures and pressures and the emissivity of the fabrics used in the flexible insulations. The thermal response of these materials subjected to aeroconvective heating from a plasma arc is also described. Materials tested included two surface variations of the insulations, and similar insulations coated with a Protective Ceramic Coating (P.C.C.). Surface and backface temperatures were measured in the flexible insulations and on Fibrous Refractory Composite Insulation (F.R.C.I.) used as a calibration model. The uncoated flexible insulations exhibited good thermal performance up to 35 W/sq cm. The use of a P.C.C. to protect these insulations at higher heating rates is described. The results from a computerized thermal analysis model describing thermal response of those materials subjected to the plasma arc conditions are included. Thermal and optical properties were determined including thermal conductivity for the rigid and flexible insulations and emissivity for the insulation fabrics. These properties were utilized to calculate the thermal performance of the rigid and flexible insulations at the maximum heating rate.
NASA Astrophysics Data System (ADS)
Schuman, Yue Xu
Paraffin is known as a good energy storage phase change material (PCM) because of its high energy storage capacity and low cost. However, the leakage of liquid paraffin beyond its melting point and its low thermal conductivity hinder applications of paraffin in energy storage systems. Recently, nanomaterials have been used to create PCM composites in order to enhance their thermal properties while shape stabilizing the PCMs. However, fundamental studies on the material structures and mechanical behavior of the thermally enhanced PCM composites are limited especially at the nanoscale. In this study, we developed a PCM composite using graphene oxide aerogel (GOxA) as the reinforcing 3D network. The GOxA functions thermally as a heat transfer path and mechanically as a nanofiller to reinforce the PCM matrix. We characterized the morphology, the crystal and molecular structures as well as the multiscale mechanical and thermal behavior of the GOxA-PCM composite to evaluate the role of GOxA in the PCM composite. The molecular and diffraction characterizations imply that the GOxA network may affect the paraffin's crystallization, potentially forming an interfacial phase at the surfaces of GOxA. Furthermore, the mechanical properties were studied using nanoindentation at the nano/microscale and a digital durometer at the macroscale from 25degree C to 80 degree C. The mechanical characterizations show that the GOxA-PCM composite is 3 7x harder than pure paraffin and maintains significant strength even above paraffin's melting point due to the support from the GoxA. Moreover, the composite is much less strain-rate sensitive than paraffin. The reinforcement via GOxA is much beyond the prediction by the rule of mixture, implying a strong GOxA-paraffin interfacial bonding. Finally, a thermal scanning microscopy (SThM) along with AFM was used to study the thermal properties at microscale. AFM and thermal images indicate that GOxA-PCM has a better thermal conductivity. The latent heats and thermal conductivities were analyzed using DSC and TPS at the macroscale. Results imply that there might be an interphase between the paraffin and the GOxA resulting in a greater latent heat storage ability and better thermal conductivity of the GOxA-PCM. We believe this is the first fundamental study on the mechanical and thermal behaviors of paraffin and GOxA-PCM composite at the multiscale. The enhancement in hardness, latent heat, and thermal conductivity are expected to aid the analysis and design of thermal energy storage composites with higher performance in the future.
Tsujimoto, A; Barkmeier, W W; Takamizawa, T; Latta, M A; Miyazaki, M
The purpose of this study was to evaluate the influence of thermal cycling on the flexural properties and simulated wear of computer-aided design/computer-aided manufacturing (CAD/CAM) resin composites. The six CAD/CAM resin composites used in this study were 1) Lava Ultimate CAD/CAM Restorative (LU); 2) Paradigm MZ100 (PM); 3) CERASMART (CS); 4) Shofu Block HC (SB); 5) KATANA AVENCIA Block (KA); and 6) VITA ENAMIC (VE). Specimens were divided randomly into two groups, one of which was stored in distilled water for 24 hours, and the other of which was subjected to 10,000 thermal cycles. For each material, 15 specimens from each group were used to determine the flexural strength and modulus according to ISO 6872, and 20 specimens from each group were used to examine wear using a localized wear simulation model. The test materials were subjected to a wear challenge of 400,000 cycles in a Leinfelder-Suzuki device (Alabama machine). The materials were placed in custom-cylinder stainless steel fixtures, and simulated localized wear was generated using a stainless steel ball bearing (r=2.387 mm) antagonist in a water slurry of polymethyl methacrylate beads. Simulated wear was determined using a noncontact profilometer (Proscan 2100) with Proscan and AnSur 3D software. The two-way analysis of variance of flexural properties and simulated wear of CAD/CAM resin composites revealed that material type and thermal cycling had a significant influence (p<0.05), but there was no significant interaction (p>0.05) between the two factors. The flexural properties and maximum depth of wear facets of CAD/CAM resin composite were different (p<0.05) depending on the material, and their values were influenced (p>0.05) by thermal cycling, except in the case of VE. The volume losses in wear facets on LU, PM, and SB after 10,000 thermal cycles were significantly higher (p<0.05) than those after 24 hours of water storage, unlike CS, KA, and VE. The results of this study indicate that the flexural properties and simulated wear of CAD/CAM resin composites are different depending on the material. In addition, the flexural properties and simulated wear of CAD/CAM resin composites are influenced by thermal cycling.
Effect of surface modified kaolin on properties of polypropylene grafted maleic anhydride
NASA Astrophysics Data System (ADS)
Yang, Ni; Zhang, Zuo-Cai; Ma, Ning; Liu, Huan-Li; Zhan, Xue-Qing; Li, Bing; Gao, Wei; Tsai, Fang-Chang; Jiang, Tao; Chang, Chang-Jung; Chiang, Tai-Chin; Shi, Dean
To achieve reinforcement of mechanical and thermal performances of polypropylene (PP) product, this work aimed at fabrication of surface modified kaolin (M-kaolin) filled polypropylene grafted maleic anhydride (PP-g-MAH) composites with varying contents of fillers and investigation of their mechanical and thermal properties. And the prepared PP-g-MAH/M-kaolin composites were characterized by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Fracture analysis by SEM showed M-kaolin particles were well dispersed in the PP-g-MAH matrix. Mechanical behaviors were determined by tensile strength, tensile strain at break and impact strength analysis. Impact strength of PP-g-MAH/2 wt% M-kaolin composites was improved up to 30% comparing with unfilled composites. Thermostability had been found enhanced when M-kaolin added. The results revealed PP-g-MAH/M-kaolin composites showed the optimal thermal and mechanical properties when 2 wt% of M-kaolin was added.
Fiber-Reinforced Reactive Nano-Epoxy Composites
NASA Technical Reports Server (NTRS)
Zhong, Wei-Hong
2011-01-01
An ultra-high-molecular-weight polyethylene/ matrix interface based on the fabrication of a reactive nano-epoxy matrix with lower surface energy has been improved. Enhanced mechanical properties versus pure epoxy on a three-point bend test include: strength (25 percent), modulus (20 percent), and toughness (30 percent). Increased thermal properties include higher Tg (glass transition temperature) and stable CTE (coefficient of thermal expansion). Improved processability for manufacturing composites includes faster wetting rates on macro-fiber surfaces, lower viscosity, better resin infusion rates, and improved rheological properties. Improved interfacial adhesion properties with Spectra fibers by pullout tests include initial debonding force of 35 percent, a maximum pullout force of 25 percent, and energy to debond at 65 percent. Improved mechanical properties of Spectra fiber composites (tensile) aging resistance properties include hygrothermal effects. With this innovation, high-performance composites have been created, including carbon fibers/nano-epoxy, glass fibers/nano-epoxy, aramid fibers/ nano-epoxy, and ultra-high-molecularweight polyethylene fiber (UHMWPE).
NASA Astrophysics Data System (ADS)
Wu, Hong; Li, Yu; Teng, Min; Yang, Yu
2017-11-01
The activity of coal gangue by thermal activation and composite activation technologies was investigated. The crystal composition, framework structure and morphology change were analyzed by XRD, FT-IR and SEM, respectively. The cementitious property of coal gangue was measured by strength test. The results showed that thermal activation decomposed kaolinite in coal gangue, and formed the metastable structure with a porous state, multiple internal broken bonds and large specific surface areas. Based on thermal activation, the added lime provided the alkaline environment, then this reduced the bond energy of reactant particles and the degree of crystallinity of quartz in coal gangue. The two activation methods could effectively improve the cementitious property of coal gangue based unburned bricks, and that the composite activation technology was superior performance.
Chung, Chih-Yu; Chu, Chao-Hung; Lee, Mu-Tse; Lin, Chun-Ming; Lin, Su-Jien
2014-01-01
In this study, minor-addition elements such as Si, Co, Cr, W, Mo, and Ti were added to matrix to improve the wettability between the diamonds and Cu matrix. The pressureless liquid-phase sintering technique adopted in this study provides a low-cost method for producing diamond/Cu composites with high potential for industrial mass production. Thermal properties of the diamond/Cu-Ti composites fabricated by pressureless liquid-phase sintering at 1373 K with variation in Ti contents were thoroughly investigated. XRD and TEM analysis show that TiC layer formed in the interface between Cu and diamond. The composites exhibited thermal conductivity as high as 620 W/m · K for 50 vol% diamond/Cu-0.6 at % Ti composite with diamond particle size of 300 µm. This value comes up to 85% of the thermal conductivity calculated by the Hasselman and Johnson (H-J) theoretical analysis. Under these conditions, a suitable coefficient of thermal expansion of 6.9 ppm/K was obtained.
Chung, Chih-Yu; Chu, Chao-Hung; Lee, Mu-Tse; Lin, Chun-Ming; Lin, Su-Jien
2014-01-01
In this study, minor-addition elements such as Si, Co, Cr, W, Mo, and Ti were added to matrix to improve the wettability between the diamonds and Cu matrix. The pressureless liquid-phase sintering technique adopted in this study provides a low-cost method for producing diamond/Cu composites with high potential for industrial mass production. Thermal properties of the diamond/Cu-Ti composites fabricated by pressureless liquid-phase sintering at 1373 K with variation in Ti contents were thoroughly investigated. XRD and TEM analysis show that TiC layer formed in the interface between Cu and diamond. The composites exhibited thermal conductivity as high as 620 W/m·K for 50 vol% diamond/Cu-0.6 at % Ti composite with diamond particle size of 300 µm. This value comes up to 85% of the thermal conductivity calculated by the Hasselman and Johnson (H-J) theoretical analysis. Under these conditions, a suitable coefficient of thermal expansion of 6.9 ppm/K was obtained. PMID:24715816
Huang, Siwei; Zhou, Ling; Li, Mei-Chun; Wu, Qinglin; Kojima, Yoichi; Zhou, Dingguo
2016-01-01
Poly (vinyl pyrrolidone) (PVP)/cellulose nanocrystal (CNC)/silver nanoparticle composite fibers were prepared via electrospinning using N,N′-dimethylformamide (DMF) as a solvent. Rheology, morphology, thermal properties, mechanical properties, and antimicrobial activity of nanocomposites were characterized as a function of material composition. The PVP/CNC/Ag electrospun suspensions exhibited higher conductivity and better rheological properties compared with those of the pure PVP solution. The average diameter of the PVP electrospun fibers decreased with the increase in the amount of CNCs and Ag nanoparticles. Thermal stability of electrospun composite fibers was decreased with the addition of CNCs. The CNCs help increase the composite tensile strength, while the elongation at break decreased. The composite fibers included Ag nanoparticles showed improved antimicrobial activity against both the Gram-negative bacterium Escherichia coli (E. coli) and the Gram-positive bacterium Staphylococcus aureus (S. aureus). The enhanced strength and antimicrobial performances of PVP/CNC/Ag electrospun composite fibers make the mat material an attractive candidate for application in the biomedical field. PMID:28773644
NASA Astrophysics Data System (ADS)
Zhang, Xin; Huang, Yingqiu; Liu, Xiangyu; Yang, Lei; Shi, Changdong; Wu, Yucheng; Tang, Wenming
2018-03-01
Composites of 40Cu/Ag(Invar) were prepared via pressureless sintering and subsequent thermo-mechanical treatment from raw materials of electroless Ag-plated Invar alloy powder and electrolytic Cu powder. Microstructures and properties of the prepared composites were studied to evaluate the effect of the Ag layer on blocking Cu/Invar interfacial diffusion in the composites. The electroless-plated Ag layer was dense, uniform, continuous, and bonded tightly with the Invar alloy substrate. During sintering of the composites, the Ag layer effectively prevented Cu/Invar interfacial diffusion. During cold-rolling, the Ag layer was deformed uniformly with the Invar alloy particles. The composites exhibited bi-continuous network structure and considerably improved properties. After sintering at 775 °C and subsequent thermo-mechanical treatment, the 40Cu/Ag(Invar) composites showed satisfactory comprehensive properties: relative density of 99.0 pct, hardness of HV 253, thermal conductivity of 55.7 W/(m K), and coefficient of thermal expansion of 11.2 × 10-6/K.
Composite flexible insulation for thermal protection of space vehicles
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius A.; Tran, Huy K.; Chiu, S. Amanda
1991-01-01
A composite flexible blanket insulation (CFBI) system considered for use as a thermal protection system for space vehicles is described. This flexible composite insulation system consists of an outer layer of silicon carbide fabric, followed by alumina mat insulation, and alternating layers of aluminized polyimide film and aluminoborosilicate scrim fabric. A potential application of this composite insulation would be as a thermal protection system for the aerobrake of the aeroassist space transfer vehicle (ASTV). It would also apply to other space vehicles subject to high convective and radiative heating during atmospheric entry. The thermal performance of this composite insulation as exposed to a simulated atmospheric entry environment in a plasma arc test facility is described. Other thermophysical properties which affect the thermal response of this composite insulation is included. It shows that this composite insulation is effective as a thermal protection system at total heating rates up to 30.6 W/sq cm.
NASA Astrophysics Data System (ADS)
Mohammadi, M.; Ziaie, F.; Majdabadi, A.; Akhavan, A.; Shafaei, M.
2017-01-01
In this research work, the nano-composites of high density polyethylene/hydroxyapatite samples were manufactured via two methods: In the first method, the granules of high density polyethylene and nano-structure hydroxyapatite were processed in an internal mixer to prepare the nano-composite samples with a different weight percentage of the reinforcement phase. As for the second one, high density polyethylene was prepared in nano-powder form in boiling xylene. During this procedure, the hydroxyapatite nano-powder was added with different weight percentages to the solvent to obtain the nano-composite. In both of the procedures, the used hydroxyapatite nano-powder was synthesized via hydrolysis methods. The samples were irradiated under 10 MeV electron beam in 70-200 kGy of doses. Mechanical, thermal and morphological properties of the samples were investigated and compared. The results demonstrate that the nano-composites which we have prepared using nano-polyethylene, show better mechanical and thermal properties than the composites prepared from normal polyethylene granules, due to the better dispersion of nano-particles in the polymer matrix.
Mechanical and thermal properties of MoS2 reinforced epoxy nanocomposites
NASA Astrophysics Data System (ADS)
Madeshwaran, S. R.; Jayaganthan, R.; Velmurugan, R.; Gupta, N. K.; Manzhirov, A. V.
2018-04-01
The effects of molybdenum disulfide (MoS2) on thermal expansion and mechanical properties of epoxy composites were investigated. MoS2 nanosheets were exfoliated by ultra-sonication and reinforced into epoxy as nanofiller by mechanical stirring. Transmission electron microscopy observations demonstrated that MoS2 exhibited better dispersion in epoxy matrix. Thermal expansion measured by dilatometer has revealed that increasing MoS2 fractioninepoxy matrix significantly reduced the coefficient of thermal expansion (CTE). The 0.5wt% MoS2 incorporated epoxy composites shows 35.8% reduction in CTE as compared to neat epoxy. The addition of small fraction of MoS2(0.1wt%) in the composites increased the tensile and flexural strength 39.2% and 9.0% respectively. The glass transition temperature (Tg ) of 0.1wt% MoS2 incorporated epoxy composites shows 7.39% increase in Tg .
NASA Astrophysics Data System (ADS)
Feng, Xiaodong; Wang, Minqiang; Li, Le; Yang, Zhi; Cao, Minghui; Cheng, Z.-Y.
Pyroelectric composites of triglycine sulfate (TGS)-polyvinylidene difluoride (PVDF) doped with graphene are studied. It is found that the graphene can effectively improve the polling efficiency and thermal property of the composites so that the infrared detective performance can be significantly improved. For example, by adding about 0.83 wt.% of graphene, the infrared detective property can be improved by more than 30%. It is also found that the size of the graphene plays a critical role on the property improvement. For example, the small-sized graphene prepared by ultrasonic exfoliation (UE) method is more effective than the big-sized graphene prepared by electrochemical exfoliation (EE) method.
Fabrication of tough epoxy with shape memory effects by UV-assisted direct-ink write printing.
Chen, Kaijuan; Kuang, Xiao; Li, Vincent; Kang, Guozheng; Qi, H Jerry
2018-03-07
3D printing of epoxy-based shape memory polymers with high mechanical strength, excellent thermal stability and chemical resistance is highly desirable for practical applications. However, thermally cured epoxy in general is difficult to print directly. There have been limited numbers of successes in printing epoxy but they suffer from relatively poor mechanical properties. Here, we present an ultraviolet (UV)-assisted 3D printing of thermally cured epoxy composites with high tensile toughness via a two-stage curing approach. The ink containing UV curable resin and epoxy oligomer is used for UV-assisted direct-ink write (DIW)-based 3D printing followed by thermal curing of the part containing the epoxy oligomer. The UV curable resin forms a network by photo polymerization after the 1st stage of UV curing, which can maintain the printed architecture at an elevated temperature. The 2nd stage thermal curing of the epoxy oligomer yields an interpenetrating polymer network (IPN) composite with highly enhanced mechanical properties. It is found that the printed IPN epoxy composites enabled by the two-stage curing show isotropic mechanical properties and high tensile toughness. We demonstrated that the 3D-printed high-toughness epoxy composites show good shape memory properties. This UV-assisted DIW 3D printing via a two-stage curing method can broaden the application of 3D printing to fabricate thermoset materials with enhanced tensile toughness and tunable properties for high-performance and functional applications.
NASA Astrophysics Data System (ADS)
Sharma, Ankush; Patnaik, Amar
2018-03-01
The present investigation evaluates the effects of waste marble dust, collected from the marble industries of Rajasthan, India, on the mechanical properties of needle-punched nonwoven jute fiber/epoxy composites. The composites with varying filler contents from 0 wt.% to 30 wt.% marble dust were prepared using vacuum-assisted resin-transfer molding. The influences of the filler material on the void content, tensile strength, flexural strength, interlaminar shear strength (ILSS), and thermal conductivity of the hybrid composites have been analyzed experimentally under the desired optimal conditions. The addition of marble dust up to 30 wt.% increases the flexural strength, ILSS, and thermal conductivity, but decreases the tensile strength. Subsequently, the fractured surfaces of the particulate-filled jute/epoxy composites were analyzed microstructurally by field-emission scanning electron microscopy.
Tranchard, Pauline; Samyn, Fabienne; Duquesne, Sophie; Estèbe, Bruno; Bourbigot, Serge
2017-05-04
Thermophysical properties of a carbon-reinforced epoxy composite laminate (T700/M21 composite for aircraft structures) were evaluated using different innovative characterisation methods. Thermogravimetric Analysis (TGA), Simultaneous Thermal analysis (STA), Laser Flash analysis (LFA), and Fourier Transform Infrared (FTIR) analysis were used for measuring the thermal decomposition, the specific heat capacity, the anisotropic thermal conductivity of the composite, the heats of decomposition and the specific heat capacity of released gases. It permits to get input data to feed a three-dimensional (3D) model given the temperature profile and the mass loss obtained during well-defined fire scenarios (model presented in Part II of this paper). The measurements were optimised to get accurate data. The data also permit to create a public database on an aeronautical carbon fibre/epoxy composite for fire safety engineering.
Tensile properties of SiC/aluminum filamentary composites - Thermal degradation effects
NASA Technical Reports Server (NTRS)
Skinner, A.; Koczak, M. J.; Lawley, A.
1982-01-01
Aluminium metal matrix composites with a low cost fiber, e.g. SiC, provide for an attractive combination of high elastic modulus and longitudinal strengths coupled with a low density. SiC (volume fraction 0.55)-aluminum (6061) systems have been studied in order to optimize fiber composite strength and processing parameters. A comparison of two SiC/aluminum composites produced by AVCO and DWA is provided. Fiber properties are shown to alter composite tensile properties and fracture morphology. The room temperature tensile strengths appear to be insensitive to thermal exposures at 500 C up to 150 h. The elastic modulus of the composites also appears to be stable up to 400 C, however variations in the loss modulus are apparent. The fracture morphology reflects the quality of the interfacial bond, fiber strengths and fiber processing.
NASA Astrophysics Data System (ADS)
Wu, W. L.; Chen, Z.
A phase-change energy-storage material, silicone rubber (SR) coated n-octadecane/poly (styrene-methyl methacrylate) (SR/OD/P(St-MMA)) microcapsule composites, was prepared by mixing SR and OD/P(St-MMA) microcapsules. The microcapsule content and silicone rubber coated method were investigated. The morphology and thermal properties of the composites were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TG), differential scanning calorimetry (DSC) and heat storage properties. The results showed that the thermal and mechanical properties of SR/OD/P(St-MMA) composites were excellent when the microcapsules were coated with room temperature vulcanized silicone rubber (RTVSR), of which content was 2 phr (per hundred rubber). The enthalpy value of the composites was 67.6 J g-1 and the composites were found to have good energy storage function.
Analysis of woven and braided fabric reinforced composites
NASA Technical Reports Server (NTRS)
Naik, Rajiv A.
1994-01-01
A general purpose micromechanics analysis that discretely models the yarn architecture within the textile repeating unit cell, was developed to predict overall, three dimensional, thermal and mechanical properties. This analytical technique was implemented in a user-friendly, personal computer-based, windows compatible code called Textile Composite Analysis for Design (TEXCAD). TEXCAD was used to analyze plain, 5-harness satin, and 8-harness satin weave composites along with 2-D braided and 2x2, 2-D triaxial braided composites. The calculated overall stiffnesses correlated well with available 3-D finite element results and test data for both the woven and the braided composites. Parametric studies were performed to investigate the effects of yarn size on the yarn crimp and the overall thermal and mechanical constants for plain weave composites. The effects of braid angle were investigated for the 2-D braided composites. Finally, the effects of fiber volume fraction on the yarn undulations and the thermal and mechanical properties of 2x2, 2-D triaxial braided composites were also investigated.
NASA Astrophysics Data System (ADS)
Li, Qing; Liao, Guangfu; Zhang, Shulai; Pang, Long; Tong, Hao; Zhao, Wenzhe; Xu, Zushun
2018-01-01
A series of polyimide (PI) films, polyimide/pure silica zeolite nanoparticles (PSZN) blend films and polyimide/amine-functionalized pure silica zeolite nanoparticles (APSZN) composite films were successfully prepared by random copolycondensation. Thereinto, PSZN were synthesized by hydrothermal method. The polyimides were derived from 4,4‧-diaminodiphenyl ether (ODA), and three adjustable molar ratios (3:1, 1:1, 1:3) of 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl] propane dianhydride (BPADA) and 4,4‧-(hexafluoroisopropylidene) diphthalic anhydride (6FDA). The effects of PSZN, APSZN and different chain structure on PI films were specifically evaluated in terms of morphology, thermal, mechanical, dielectric and UV-shielding properties, etc. Comparison was given among pure PI flims, PI/PSZN blend films and PI/APSZN composite flims. The results showed that the thermal and mechanical properties of PI films were drastically impaired after adding PSZN. On the contrary, the strength, toughness and thermal stability were improved after adding APSZN. Moreover, the dielectric constants of the PI/APSZN composite flims were lowered but UV-shielding properties were enhanced. Interestingly, we found that the greatest effects were obtained through introducing APSZN in PI derived by the 1:1 ratio of BPADA:6FDA. The corresponding PI/APSZN composite flim exhibited the most reinforced and toughened properties, the largest decrement of dielectric constant and the best UV-shielding efficiency, which made the composite flim be used as ultraviolet shielding material in outer space filled with high temperature and intensive ultraviolet light. Meanwhile, this work also provided a facile way to synthesize composite materials with adjustable performance.
Thermal and mechanical analysis of PVA / sulfonated carbon nanotubes composite
NASA Astrophysics Data System (ADS)
Yadav, Vikrant; Sharma, Prem P.; Rajput, Abhishek; Kulshrestha, Vaibhav
2018-04-01
Nanocomposites of polyvinyl alcohol (PVA) and sulfonated carbon nanotubes (s-CNT) with enhanced properties were synthesized successfully. Effect of different amount of sulfonated nanotubes on thermal and mechanical properties of resultant nanocomposites derived from s-CNT and PVA were studied. Structural analysis for functionalization of CNT was done by using FTIR spectra. Thermal and mechanical analysis were done by using TGA, DSC and UTM. Nanocomposite containing s-CNT shows higher elastic moduli, higher melting temperature in consort with lower weight loss at same temperature, compared with pristine PVA. The novelty of this work is to use PVA/s-CNT based composites with improved thermomechanical properties in different nanotechnologies.
Jairo A. Diaz; Julia L. Braun; Robert J. Moon; Jeffrey P. Youngblood
2015-01-01
Simultaneous control over optical and thermal properties is particularly challenging and highly desired in fields like organic electronics. Here we incorporated cellulose nanocrystals (CNCs) into polyethylene oxide (PEO) in an attempt to preserve the iridescent CNC optical reflection given by their chiral nematic organisation, while reducing the composite thermal...
Improving Thermomechanical Properties of SiC/SiC Composites
NASA Technical Reports Server (NTRS)
DiCarlo, James A.; Bhatt, Ramakrishna T.
2006-01-01
Today, a major thrust toward improving the thermomechanical properties of engine components lies in the development of fiber-reinforced silicon carbide matrix composite materials, including SiC-fiber/SiC-matrix composites. These materials are lighter in weight and capable of withstanding higher temperatures, relative to state-of-the-art metallic alloys and oxide-matrix composites for which maximum use temperatures are in the vicinity of 1,100 C. In addition, the toughness or damage tolerance of the SiC-matrix composites is significantly greater than that of unreinforced silicon-based monolithic ceramics. For successful application in advanced engine systems, the SiC-matrix composites should be able to withstand component service stresses and temperatures for the desired component lifetimes. Inasmuch as the high-temperature structural lives of ceramic materials are typically limited by creep-induced growth of flaws, a key property required of such composite materials is high resistance to creep under conditions of use. Also, the thermal conductivity of the materials should be as high as possible so as to minimize component thermal gradients and thermal stresses. A state-of-the-art SiC-matrix composite is typically fabricated in a three-step process: (1) fabrication of a component-shaped architectural preform reinforced by thermally stable high-performance fibers, (2) chemical-vapor infiltration (CVI) of a fiber-coating material such as boron nitride (BN) into the preform, and (3) infiltration of an SiC-based matrix into the remaining porosity in the preform. Generally, the matrices of the highest-performing composites are fabricated by initial use of a CVI SiC matrix component that is typically more thermally stable and denser than matrix components formed by processes other than CVI. As such, the initial SiC matrix component made by CVI provides better environmental protection to the coated fibers embedded within it. Also, the denser CVI SiC imparts to the composite better resistance to propagation of cracks, enhanced thermal conductivity, and higher creep resistance.
Shojaeiarani, Jamileh; Bajwa, Dilpreet S; Stark, Nicole M
2018-06-15
This study systematically evaluated the influence of masterbatch preparation techniques, solvent casting and spin-coating methods, on composite properties. Composites were manufactured by combining CNCs masterbatches and PLA resin using twin screw extruder followed by injection molding. Different microscopy techniques were used to investigate the dispersion of CNCs in masterbatches and composites. Thermal, thermomechanical, and mechanical properties of composites were evaluated. Scanning electron microscopy (SEM) images showed superior dispersion of CNCs in spin-coated masterbatches compared to solvent cast masterbatches. At lower CNCs concentrations, both SEM and optical microscope images confirmed more uniform CNCs dispersion in spin-coated composites than solvent cast samples. Degree of crystallinity of PLA exhibited a major enhancement by 147% and 380% in solvent cast and spin-coated composites, respectively. Spin-coated composites with lower CNCs concentration exhibited a noticeable improvement in mechanical properties. However, lower thermal characteristics in spin-coated composites were observed, which could be attributed to the residual solvents in masterbatches. Copyright © 2018 Elsevier Ltd. All rights reserved.
Negative Thermal Expansion and Ferroelectric Oxides in Electronic Device Composites
NASA Astrophysics Data System (ADS)
Trujillo, Joy Elizabeth
Electronic devices increasingly pervade our daily lives, driving the need to develop components which have material properties that can be designed to target a specific need. The principle motive of this thesis is to investigate the effects of particle size and composition on three oxides which possess electronic and thermal properties essential to designing improved ceramic composites for more efficient, high energy storage devices. A metal matrix composite project used the negative thermal expansion oxide, ZrW2O 8, to offset the high thermal expansion of the metal matrix without sacrificing high thermal conductivity. Composite preparation employed a powder mixing technique to achieve easy composition control and homogenous phase distribution in order to build composites which target a specific coefficient of thermal expansion (CTE). A tailorable CTE material is desirable for overcoming thermomechanical failure in heat sinks or device casings. This thesis also considers the particle size effect on dielectric properties in a common ferroelectric perovskite, Ba1-xSrxTiO 3. By varying the Ba:Sr ratio, the Curie temperature can be adjusted and by reducing the particle size, the dielectric constant can be increased and hysteresis decreased. These conditions could yield anonymously large dielectric constants near room temperature. However, the ferroelectric behavior has been observed to cease below a minimum size of a few tens of nanometers in bulk or thin film materials. Using a new particle slurry approach, electrochemical impedance spectroscopy allows dielectric properties to be determined for nanoparticles, as opposed to conventional methods which measure only bulk or thin film dielectric properties. In this manner, Ba1-xSrxTiO3 was investigated in a new size regime, extending the theory on the ferroelectric behavior to < 10 nm diameter. This knowledge will improve the potential to incorporate high dielectric constant, low loss ferroelectric nanoparticles in many complex composites. Finally, powder composite processing and impedance spectroscopy techniques were combined to investigate the SrTiO3/(Y2O3) x(ZrO2)1-x (STO/YSZ) oxide system. Thin film heterostructures of STO/YSZ are used in electrochemical energy devices due to their enhanced interfacial ionic conductivity. This work investigated whether this ionic conductivity enhancement could be observed in bulk sintered architectures, which may lead to new device designs for energy storage needs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Tianbing, E-mail: tianbing_1988@sina.com
15% vol. SiC{sub p}/2009 composites prepared by powder metallurgy were quenched in room temperature water and 20% polyethylene glycol (PEG) solution respectively, then aged naturally. The influence of quenching agent on microstructure, properties and thermal stress of SiC{sub p}/2009 composites were investigated by means of scanning/transmission electron microscope, hardness and tensile test. The results showed that the number of precipitated phase in water quenched composites increased, with much finer in size and more homogeneous in distribution compared with 20% PEG quenched one. Meanwhile, the density of dislocation in composites by water quenching was also much higher. Intergranular corrosion did notmore » occur with the two quenching agents. The 20% PEG quenched composites exhibited slight lower hardness and higher electrical conductivity than that of water quenched one. The two quenched composites showed same level in tensile strength, but the yield strength of water-quenched composites was higher (8 MPa, 3%). The usage of 20% PEG reduced thermal stress and minimized warping deformation of the parts, it is a more suitable quenching agent for SiC{sub p}/2009 composites in engineering application fields. - Highlights: •SiC{sub p}/2009 composites quenched by water and 20% PEG solution were investigated. •Aging precipitation behavior of SiC{sub p}/2009 composites is sensitive to quenchant. •Influence of quenching agent on properties of SiC{sub p}/2009 composites are minimal. •Quenching with 20% PEG reduces thermal stress of SiC{sub p}/2009 composites remarkably. •20% PEG is a more suitable quenching agent for SiC{sub p}/2009 composites than water.« less
Carbon nanotube/paraffin/montmorillonite composite phase change material for thermal energy storage.
Li, Min; Guo, Qiangang; Nutt, Steven
2017-04-01
A composite phase change material (PCM) comprised of organic montmorillonite (OMMT)/paraffin/grafted multi-walled nanotube (MWNT) is synthesized via ultrasonic dispersion and liquid intercalation. The microstructure of the composite PCM has been characterized to determine the phase distribution, and thermal properties (latent heat and thermal conductivity) have been measured by differential scanning calorimetry (DSC) and a thermal constant analyzer. The results show that paraffin molecules are intercalated in the montmorillonite layers and the grafted MWNTs are dispersed in the montmorillonite layers. The latent heat is 47.1 J/g, and the thermal conductivity of the OMMT/paraffin/grafted MWNT composites is 34% higher than that of the OMMT/paraffin composites and 65% higher than that of paraffin.
NASA Astrophysics Data System (ADS)
Li, Lan; Zheng, Huai; Yuan, Chao; Hu, Run; Luo, Xiaobing
2016-12-01
The silicone/phosphor composite is widely used in light emitting diode (LED) packaging. The composite thermal properties, especially the effective thermal conductivity, strongly influence the LED performance. In this paper, a lattice Boltzmann model was presented to predict the silicone/phosphor composite effective thermal conductivity. Based on the present lattice Boltzmann model, a random generation method was established to describe the phosphor particle distribution in composite. Benchmarks were conducted by comparing the simulation results with theoretical solutions for simple cases. Then the model was applied to analyze the effective thermal conductivity of the silicone/phosphor composite and its size effect. The deviations between simulation and experimental results are <7 %, when the phosphor volume fraction varies from 0.038 to 0.45. The simulation results also indicate that effective thermal conductivity of the composite with larger particles is higher than that with small particles at the same volume fraction. While mixing these two sizes of phosphor particles provides an extra enhancement for the effective thermal conductivity.
Composite flexible insulation for thermal protection of space vehicles
NASA Astrophysics Data System (ADS)
Kourtides, Demetrius A.; Tran, Huy K.; Chiu, S. Amanda
1992-09-01
A composite flexible blanket insulation (CFBI) system considered for use as a thermal protection system for space vehicles is described. This flexible composite insulation system consists of an outer layer of silicon carbide fabric, followed by alumina mat insulation, and alternating layers of aluminized polyimide film and aluminoborosilicate scrim fabric. A potential application of this composite insulation would be as a thermal protection system for the aerobrake of the Aeroassist Space Transfer Vehicle (ASTV). It would also apply to other space vehicles subject to high convective and radiative heating during atmospheric entry. The thermal performance of this composite insulation as exposed to a simulated atmospheric entry environment in a plasma arc test facility is described. Other thermophysical properties which affect the thermal response of this system are also described. Analytical modeling describing the thermal performance of this composite insulation is included. It shows that this composite insulation is effective as a thermal protection system at total heating rates up to 30.6 W/sq cm.
Krishnaiah, Prakash; Ratnam, Chantara Thevy; Manickam, Sivakumar
2017-01-01
In this investigation, sisal fibres were treated with the combination of alkali and high intensity ultrasound (HIU) and their effects on the morphology, thermal properties of fibres and mechanical properties of their reinforced PP composites were studied. FTIR and FE-SEM results confirmed the removal of amorphous materials such as hemicellulose, lignin and other waxy materials after the combined treatments of alkali and ultrasound. X-ray diffraction analysis revealed an increase in the crystallinity of sisal fibres with an increase in the concentration of alkali. Thermogravimetric results revealed that the thermal stability of sisal fibres obtained with the combination of both alkali and ultrasound treatment was increased by 38.5°C as compared to the untreated fibres. Morphology of sisal fibre reinforced composites showed good interfacial interaction between fibres and matrix after the combined treatment. Tensile properties were increased for the combined treated sisal fibres reinforced PP composites as compared to the untreated and pure PP. Tensile modulus and strength increased by more than 50% and 10% respectively as compared to the untreated sisal fibre reinforced composite. It has been found that the combined treatment of alkali and ultrasound is effective and useful to remove the amorphous materials and hence to improve the mechanical and thermal properties. Copyright © 2016 Elsevier B.V. All rights reserved.
Chi, Qingguo; Ma, Tao; Dong, Jiufeng; Cui, Yang; Zhang, Yue; Zhang, Changhai; Xu, Shichong; Wang, Xuan; Lei, Qingquan
2017-06-08
Iron Oxide (Fe 3 O 4 ) nanoparticles were deposited on the surface of low density polyethylene (LDPE) particles by solvothermal method. A magnetic field was introduced to the preparation of Fe 3 O 4 /LDPE composites, and the influences of the magnetic field on thermal conductivity and dielectric properties of composites were investigated systematically. The Fe 3 O 4 /LDPE composites treated by a vertical direction magnetic field exhibited a high thermal conductivity and a large dielectric constant at low filler loading. The enhancement of thermal conductivity and dielectric constant is attributed to the formation of the conductive chains of Fe 3 O 4 in LDPE matrix under the action of the magnetic field, which can effectively enhance the heat flux and interfacial polarization of the Fe 3 O 4 /LDPE composites. Moreover, the relatively low dielectric loss and low conductivity achieved are attributed to the low volume fraction of fillers and excellent compatibility between Fe 3 O 4 and LDPE. Of particular note is the dielectric properties of Fe 3 O 4 /LDPE composites induced by the magnetic field also retain good stability across a wide temperature range, and this contributes to the stability and lifespan of polymer capacitors. All the above-mentioned properties along with the simplicity and scalability of the preparation for the polymer nanocomposites make them promising for the electronics industry.
Graphite fiber/copper matrix composites for space power heat pipe fin applications
NASA Astrophysics Data System (ADS)
McDanels, David L.; Baker, Karl W.; Ellis, David L.
1991-01-01
High specific thermal conductivity (thermal conductivity divided by density) is a major design criterion for minimizing system mass for space power systems. For nuclear source power systems, graphite fiber reinforced copper matrix (Gr/Cu) composites offer good potential as a radiator fin material operating at service temperatures above 500 K. Specific thermal conductivity in the longitudinal direction is better than beryllium and almost twice that of copper. The high specific thermal conductivity of Gr/Cu offers the potential of reducing radiator mass by as much as 30 percent. Gr/Cu composites also offer the designer a range of available properties for various missions and applications. The properties of Gr/Cu are highly anisotropic. Longitudinal elastic modulus is comparable to beryllium and about three times that of copper. Thermal expansion in the longitudinal direction is near zero, while it exceeds that of copper in the transverse direction.
NASA Astrophysics Data System (ADS)
Kumar, Manoj; Khan, Gufran S.; Shakher, Chandra
2015-08-01
In the present work, application of digital speckle pattern interferometry (DSPI) was applied for the measurement of mechanical/elastic and thermal properties of fibre reinforced plastics (FRP). Digital speckle pattern interferometric technique was used to characterize the material constants (Poisson's ratio and Young's modulus) of the composite material. Poisson ratio based on plate bending and Young's modulus based on plate vibration of material are measured by using DSPI. In addition to this, the coefficient of thermal expansion of composite material is also measured. To study the thermal strain analysis, a single DSPI fringe pattern is used to extract the phase information by using Riesz transform and the monogenic signal. The phase extraction from a single DSPI fringe pattern by using Riesz transform does not require a phase-shifting system or spatial carrier. The elastic and thermal parameters obtained from DSPI are in close agreement with the theoretical predictions available in literature.
Thermal Cycling of Thermal Control Paints on Carbon-Carbon and Carbon-Polyimide Composites
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.
2006-01-01
Carbon-carbon composites and carbon-polyimide composites are being considered for space radiator applications owing to their light weight and high thermal conductivity. For those radiator applications where sunlight will impinge on the surface, it will be necessary to apply a white thermal control paint to minimize solar absorptance and enhance infrared emittance. Several currently available white thermal control paints were applied to candidate carbon-carbon and carbon-polyimide composites and were subjected to vacuum thermal cycling in the range of -100 C to +277 C. The optical properties of solar absorptance and infrared emittance were evaluated before and after thermal cycling. In addition, adhesion of the paints was evaluated utilizing a tape test. The test matrix included three composites: resin-derived carbon-carbon and vapor infiltrated carbon-carbon, both reinforced with pitch-based P-120 graphite fibers, and a polyimide composite reinforced with T-650 carbon fibers, and three commercially available white thermal control paints: AZ-93, Z-93-C55, and YB-71P.
Mu, Boyuan; Li, Min
2018-06-11
In this study, tetradecanol/graphene aerogel form-stable composite phase change materials were prepared by physical absorption. Two kinds of graphene aerogels were prepared using vitamin C and ethylenediamine to enhance the thermal conductivity of tetradecanol and prevent its leakage during phase transition. The form-stable composite phase change material exhibited excellent thermal energy storage capacity. The latent heat of the tetradecanol/graphene aerogel composite phase change materials with 5 wt.% graphene aerogel was similar to the theoretical latent heat of pure tetradecanol. The thermal conductivity of the tetradecanol/graphene aerogel composite phase change material improved gradually as the graphene aerogel content increased. The prepared tetradecanol/graphene aerogel composite phase change materials exhibited good thermal reliability and thermal stability, and no chemical reaction occurred between tetradecanol and the graphene aerogel. In addition, the latent heat and thermal conductivity of the tetradecanol/ethylenediamine-graphene aerogel composites were higher than those of tetradecanol/vitamin C-graphene aerogel composites, and the flexible shape of the ethylenediamine-graphene aerogel is suitable for application of the tetradecanol/ethylenediamine-graphene aerogel composite.
Alhashimi, Raghad Abdulrazzaq; Mannocci, Francesco; Sauro, Salvatore
2017-05-01
To evaluate the bioactivity and the cytocompatibility of experimental Bioglass-reinforced polyethylene-based root-canal filling materials. The thermal properties of the experimental materials were also evaluated using differential scanning calorimetry, while their radiopacity was assessed using a grey-scale value (GSV) aluminium step wedge and a phosphor plate digital system. Bioglass 45S5 (BAG), polyethylene and Strontium oxide (SrO) were used to create tailored composite fibres. The filler distribution within the composites was assessed using SEM, while their bioactivity was evaluated through infrared spectroscopy (FTIR) after storage in simulated body fluid (SBF). The radiopacity of the composite fibres and their thermal properties were determined using differential scanning calorimetry (DSC). The cytocompatibility of the experimental composites used in this study was assessed using human osteoblasts and statistically analysed using the Pairwise t-test (p<0.05). Bioglass and SrO fillers were well distributed within the resin matrix and increased both the thermal properties and the radiopacity of the polyethylene matrix. The FTIR showed a clear formation of calcium-phosphates, while, MTT and AlamrBlue tests demonstrated no deleterious effects on the metabolic activity of the osteoblast-like cells. BAG-reinforced polyethylene composites may be suitable as obturation materials for endodontic treatment. Since their low melting temperature, such innovative composites may be easily removed in case of root canal retreatment. Moreover, their biocompatibility and bioactivity may benefit proliferation of human osteoblast cells at the periapical area of the root. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Soltani, Z.; Ziaie, F.; Ghaffari, M.; Afarideh, H.; Ehsani, M.
2013-02-01
In this work the nano-composite samples were prepared using the LDPE filled with different weight percentages of hydroxyapatite powder which was synthesized via hydrolysis method. The samples were subjected to irradiation under 10 MeV electron beam in 75-250 kGy doses. Mechanical and thermal properties as well as the morphology of the nano-composite samples were investigated and compared. The hot-set and swelling tests confirmed the radiation crosslinking induced in the polymer matrix especially between the matrix and reinforcement phase. The result indicates that the mechanical and thermal parameters are strongly dependent on the hydroxyapatite content in comparison to radiation.
Thermal Properties of Capparis Decidua (ker) Fiber Reinforced Phenol Formaldehyde Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, G. P.; Mangal, Ravindra; Bhojak, N.
2010-06-29
Simultaneous measurement of effective thermal conductivity ({lambda}), effective thermal diffusivity ({kappa}) and specific heat of Ker fiber reinforced phenol formaldehyde composites have been studied by transient plane source (TPS) technique. The samples of different weight percentage typically (5, 10, 15, 20 and 25%) have been taken. It is found that values of effective thermal conductivity and effective thermal diffusivity of the composites decrease, as compared to pure phenol formaldehyde, as the fraction of fiber loading increases. Experimental data is fitted on Y. Agari model. Values of thermal conductivity of composites are calculated with two models (Rayleigh, Maxwell and Meredith-Tobias model).more » Good agreement between theoretical and experimental result has been found.« less
Fabrication of Cellulose Nanofiber/AlOOH Aerogel for Flame Retardant and Thermal Insulation
Fan, Bitao; Chen, Shujun; Yao, Qiufang; Sun, Qingfeng; Jin, Chunde
2017-01-01
Cellulose nanofiber/AlOOH aerogel for flame retardant and thermal insulation was successfully prepared through a hydrothermal method. Their flame retardant and thermal insulation properties were investigated. The morphology image of the cellulose nanofiber/AlOOH exhibited spherical AlOOH with an average diameter of 0.5 μm that was wrapped by cellulose nanofiber or adhered to them. Cellulose nanofiber/AlOOH composite aerogels exhibited excellent flame retardant and thermal insulation properties through the flammability test, which indicated that the as-prepared composite aerogels would have a promising future in the application of some important areas such as protection of lightweight construction materials. PMID:28772670
Vapor Grown Carbon Fiber/Phenolic Matrix Composites for Rocket Nozzles and Heat Shields
NASA Technical Reports Server (NTRS)
Patton, R. D.; Pittman, C. U., Jr.; Wang, L.; Day, A.; Hill, J. R.
2001-01-01
The ablation and mechanical and thermal properties of vapor grown carbon fiber (VGCF)/phenolic resin composites were evaluated to determine the potential of using this material in solid rocket motor nozzles. Composite specimens with varying VGCF loading (30%-50% wt) including one sample with ex-rayon carbon fiber plies were prepared and exposed to a plasma torch for 20 s with a heat flux of 16.5 MW/sq m at approximately 1650 C. Low erosion rates and little char formation were observed, confirming that these materials were promising for rocket motor nozzle materials. When fiber loadings increased, mechanical properties and ablative properties improved. The VGCF composites had low thermal conductivities (approximately 0.56 W/m-C) indicating they were good insulating materials. If a 65% fiber loading in VGCF composite can be achieved, then ablative properties are projected to be comparable to or better than the composite material currently used on the Space Shuttle Reusable Solid Rocket Motor (RSRM).
Kaith, B S; Jindal, R; Jana, A K; Maiti, M
2010-09-01
In this paper, corn starch based green composites reinforced with graft copolymers of Saccharum spontaneum L. (Ss) fiber and methyl methacrylates (MMA) and its mixture with acrylamide (AAm), acrylonitrile (AN), acrylic acid (AA) were prepared. Resorcinol-formaldehyde (Rf) was used as the cross-linking agent in corn starch matrix and different physico-chemical, thermal and mechanical properties were evaluated. The matrix and composites were found to be thermally more stable than the natural corn starch backbone. Further the matrix and composites were subjected for biodegradation studies through soil composting method. Different stages of biodegradation were evaluated through FT-IR and scanning electron microscopic (SEM) techniques. S. spontaneum L fiber-reinforced composites were found to exhibit better tensile strength. On the other hand Ss-g-poly (MMA) reinforced composites showed maximum compressive strength and wear resistance than other graft copolymers reinforced composite and the basic matrix. (c) 2010 Elsevier Ltd. All rights reserved.
Processing and characterization of bio-based composites
NASA Astrophysics Data System (ADS)
Lu, Hong
Much research has focused on bio-based composites as a potential material to replace petroleum-based plastics. Considering the high price of Polyhydroxyalkanoates (PHAs), PHA/ Distiller's Dried Grains with Solubles (DDGS) composite is a promising economical and high-performance biodegradable material. In this paper, we discuss the effect of DDGS on PHA composites in balancing cost with material performance. Poly (lactic acid) PLA/DDGS composite is another excellent biodegradable composite, although as a bio-based polymer its degradation time is relatively long. The goal of this research is therefore to accelerate the degradation process for this material. Both bio-based composites were extruded through a twin-screw microcompounder, and the two materials were uniformly mixed. The morphology of the samples was examined using a Scanning Electron Microscope (SEM); thermal stability was determined with a Thermal Gravimetric Analyzer (TGA); other thermal properties were studied using Differential Scanning Calorimetry (DSC) and a Dynamic Mechanical Analyzer (DMA). Viscoelastic properties were also evaluated using a Rheometer.
Influence of nanoclay on properties of HDPE/wood composites
Yong Lei; Qinglin Wu; Craig M. Clemons; Fei Yao; Yanjun Xu
2007-01-01
Composites based on high density polyethylene (HDPE), pine flour, and organic clay were made by melt compounding and then injection molding. The influence of clay on crystallization behavior, mechanical properties, water absorption, and thermal stability of HDPE/pine composites was investigated. The HDPE/pine composites containing exfoliated clay were made by a two-...
NASA Astrophysics Data System (ADS)
Alifanov, O. M.; Budnik, S. A.; Mikhaylov, V. V.; Nenarokomov, A. V.; Titov, D. M.; Yudin, V. M.
2007-06-01
An experimental-computational system, which is developed at the Thermal Laboratory, Department Space Systems Engineering, Moscow Aviation Institute (MAI), is presented for investigating the thermal properties of composite materials by methods of inverse heat transfer problems. The system is aimed at investigating the materials in conditions of unsteady contact and/or radiation heating over a wide range of temperature changes and heating rates in a vacuum, air and inert gas medium. The paper considers the hardware components of the system, including the experiment facility and the automated system of control, measurement, data acquisition and processing, as well as the aspects of methodical support of thermal tests. In the next part the conception and realization of a computer code for experimental data processing to estimate the thermal properties of thermal-insulating materials is given. The most promising direction in further development of methods for non-destructive composite materials using the procedure of solving inverse problems is the simultaneous determination of a combination of their thermal and radiation properties. The general method of iterative regularization is concerned with application to the estimation of materials properties (e.g., example: thermal conductivity λ(T) and heat capacity C(T)). Such problems are of great practical importance in the study of material properties used as non-destructive surface shield in objects of space engineering, power engineering, etc. In the third part the results of practical implementation of hardware and software presented in the previous two parts are given for the estimating of thermal properties of thermal-insulating materials. The main purpose of this study is to confirm the feasibility and effectiveness of the methods developed and hardware equipment for determining thermal properties of particular modern high porous materials.
NASA Technical Reports Server (NTRS)
Devincent, Sandra Marie
1995-01-01
Graphite surfaces are not wet by pure copper. This lack of wetting has been responsible for a debonding phenomenon that has been found in continuous graphite fiber reinforced copper matrix composites subjected to elevated temperatures. By suitably alloying copper, its ability to wet graphite surfaces can be enhanced. Information obtained during sessile drop testing has led to the development of a copper-chromium alloy that suitably wets graphite. Unidirectionally reinforced graphite/copper composites have been fabricated using a pressure infiltration casting procedure. P100 pitch-based fibers have been used to reinforce copper and copper-chromium alloys. X-ray radiography and optical microscopy have been used to assess the fiber distribution in the cast composites. Scanning electron microscopy and Auger electron spectroscopy analyses were conducted to study the distribution and continuity of the chromium carbide reaction phase that forms at the fiber/matrix interface in the alloyed matrix composites. The effects of the chromium in the copper matrix on the mechanical and thermal properties of P100Gr/Cu composites have been evaluated through tensile testing, three-point bend testing, thermal cycling and thermal conductivity calculations. The addition of chromium has resulted in an increased shear modulus and essentially zero thermal expansion in the P100Gr/Cu-xCr composites through enhanced fiber/matrix bonding. The composites have longitudinal tensile strengths in excess of 700 MPa with elastic moduli of 393 GPa. After 100 hr at 760 deg C 84 percent of the as-cast strength is retained in the alloyed matrix composites. The elastic moduli are unchanged by the thermal exposure. It has been found that problems with spreading of the fiber tows strongly affect the long transverse tensile properties and the short transverse thermal conductivity of the P100Gr/Cu-xCr composites. The long transverse tensile strength is limited by rows of touching fibers which are paths of easy crack propagation under low tensile loads. The short transverse thermal conductivity is dictated by the fiber/matrix interface. Conduction across this interface has been estimated to be two orders of magnitude lower than that across the composite. This is due to the mechanical, and not chemical, nature of Gr/Cu bond.
NASA Technical Reports Server (NTRS)
Jansson, S.; Leckie, F. A.
1990-01-01
The potential of using an interface layer to reduce thermal stresses in the matrix of composites with a mismatch in coefficients of thermal expansion of fiber and matrix was investigated. It was found that compliant layers, with properties of readily available materials, do not have the potential to reduce thermal stresses significantly. However, interface layers with high coefficient of thermal expansion can compensate for the mismatch and reduce thermal stresses in the matrix significantly.
Investigation on thermal properties of heat storage composites containing carbon fibers
NASA Astrophysics Data System (ADS)
Wang, Jifen; Xie, Huaqing; Xin, Zhong; Li, Yang; Yin, Chou
2011-11-01
We prepared a series of thermal performance-enhanced heat storage composite phase change materials containing carbon fibers. It revealed that the composites have reduced both melting point and latent heat capacity with an increase in the mass fraction of the carbon fibers (CF) or mechano-chemical treated CF (M-CF). Composites have enhanced thermal conductivities compared to palmitic acid (PA), with the enhancement ratios increasing with the mass fraction of additives. M-CF/PA enhances more thermal conductivity than CF/PA does when they contain the same additives and are at the same temperature. Thermal conductivity enhancement of 0.5 wt. % M-CF/PA is 239.2% in liquid state, compared with PA.
NASA Astrophysics Data System (ADS)
Chen, Chunlin; He, Yi; Xiao, Guoqing; Xia, Yunqin; Li, Hongjie; He, Ze
2018-06-01
By the way of hydrothermal reaction, the MoS2 nanoparticles were loaded on the surface of GO sheets uniformly. Then, the MoS2-RGO composites were modified with γ-(2,3-epoxypropoxy)propytrimethoxysilane (KH560), and followed by preparing the MoS2-RGO/epoxy composite coatings. The morphology and structure of MoS2-RGO were characterized though SEM, TEM, FT-IR and XPS. Besides, the corrosion resistance properties of the as-prepared MoS2-RGO/epoxy composite coatings were characterized by means of electrochemical impedance spectroscopy (EIS) and polarization curves analysis, and then the thermal stability and water permeability resistance of coatings were characterized. The results showed that the MoS2 could be loaded on the surface of GO uniformly when the ratio between MoS2 and GO is 1:1. The anti-corrosion property and permeability resistance of the MoS2-RGO/epoxy composites coating was enhanced significantly due to its excellent barrier property. Besides, the thermal property analysis exhibits that the lamellar structure of MoS2, GO and MoS2-RGO can effectively block the escape of the pyrolysis products, resulting in the maximum thermal weightlessness reduced.
Carbon fiber composites for cryogenic filament-wound vessels
NASA Technical Reports Server (NTRS)
Larsen, J. V.; Simon, R. A.
1972-01-01
Advanced unidirectional and bidirectional carbon fiber/epoxy resin composites were evaluated for physical and mechanical properties over a cryogenic to room temperature range for potential application to cryogenic vessels. The results showed that Courtaulds HTS carbon fiber was the superior fiber in terms of cryogenic strength properties in epoxy composites. Of the resin systems tested in ring composites, CTBN/ERLB 4617 exhibited the highest composite strengths at cryogenic temperatures, but very low interlaminar shear strengths at room temperature. Tests of unidirectional and bidirectional composite bars showed that the Epon 828/Empol 1040 resin was better at all test temperatures. Neither fatigue cycling nor thermal shock had a significant effect on composite strengths or moduli. Thermal expansion measurements gave negative values in the fiber direction and positive values in the transverse direction of the composites.
Tranchard, Pauline; Samyn, Fabienne; Duquesne, Sophie; Estèbe, Bruno; Bourbigot, Serge
2017-01-01
Thermophysical properties of a carbon-reinforced epoxy composite laminate (T700/M21 composite for aircraft structures) were evaluated using different innovative characterisation methods. Thermogravimetric Analysis (TGA), Simultaneous Thermal analysis (STA), Laser Flash analysis (LFA), and Fourier Transform Infrared (FTIR) analysis were used for measuring the thermal decomposition, the specific heat capacity, the anisotropic thermal conductivity of the composite, the heats of decomposition and the specific heat capacity of released gases. It permits to get input data to feed a three-dimensional (3D) model given the temperature profile and the mass loss obtained during well-defined fire scenarios (model presented in Part II of this paper). The measurements were optimised to get accurate data. The data also permit to create a public database on an aeronautical carbon fibre/epoxy composite for fire safety engineering. PMID:28772854
Wang, Fangfang; Zeng, Xiaoliang; Yao, Yimin; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping
2016-01-19
Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride nanosheets as fillers could effectively enhance the thermal conductivity of polymer, thanks to the bridging connections of silver nanoparticles among boron nitride nanosheets. The thermal conductivity of the composite is significantly increased from 1.63 W/m-K for the composite filled with the silver nanoparticle-deposited boron nitride nanosheets to 3.06 W/m-K at the boron nitride nanosheets loading of 25.1 vol %. In addition, the electrically insulating properties of the composite are well preserved. Fitting the measured thermal conductivity of epoxy composite with one physical model indicates that the composite with silver nanoparticle-deposited boron nitride nanosheets outperforms the one with boron nitride nanosheets, owning to the lower thermal contact resistance among boron nitride nanosheets' interfaces. The finding sheds new light on enhancement of thermal conductivity of the polymeric composites which concurrently require the electrical insulation.
Wang, Fangfang; Zeng, Xiaoliang; Yao, Yimin; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping
2016-01-01
Polymer composites with high thermal conductivity have recently attracted much attention, along with the rapid development of the electronic devices toward higher speed and performance. However, a common method to enhance polymer thermal conductivity through an addition of high thermally conductive fillers usually cannot provide an expected value, especially for composites requiring electrical insulation. Here, we show that polymeric composites with silver nanoparticle-deposited boron nitride nanosheets as fillers could effectively enhance the thermal conductivity of polymer, thanks to the bridging connections of silver nanoparticles among boron nitride nanosheets. The thermal conductivity of the composite is significantly increased from 1.63 W/m-K for the composite filled with the silver nanoparticle-deposited boron nitride nanosheets to 3.06 W/m-K at the boron nitride nanosheets loading of 25.1 vol %. In addition, the electrically insulating properties of the composite are well preserved. Fitting the measured thermal conductivity of epoxy composite with one physical model indicates that the composite with silver nanoparticle-deposited boron nitride nanosheets outperforms the one with boron nitride nanosheets, owning to the lower thermal contact resistance among boron nitride nanosheets’ interfaces. The finding sheds new light on enhancement of thermal conductivity of the polymeric composites which concurrently require the electrical insulation. PMID:26783258
Fabrication of high thermal conductivity arrays of carbon nanotubes and their composites
Geohegan, David B [Knoxville, TN; Ivanov, Ilya N [Knoxville, TN; Puretzky, Alexander A [Knoxville, TN
2010-07-27
Methods and apparatus are described for fabrication of high thermal conductivity arrays of carbon nanotubes and their composites. A composition includes a vertically aligned nanotube array including a plurality of nanotubes characterized by a property across substantially all of the vertically aligned nanotube array. A method includes depositing a vertically aligned nanotube array that includes a plurality of nanotubes; and controlling a deposition rate of the vertically aligned nanotubes array as a function of an in situ monitored property of the plurality of nanotubes.
Wang, Enyu; Kong, Xiangfei; Rong, Xian; Yao, Chengqiang; Yang, Hua; Qi, Chengying
2016-01-01
Phase change material (PCM) used in buildings can reduce the building energy consumption and indoor temperature fluctuation. A composite PCM has been fabricated by the binary eutectic mixture of tetradecanol (TD) and lauric acid (LA) absorbed into the expanded perlite (EP) using vacuum impregnation method, and its thermal conductivity was promoted by aluminium powder (AP) additive. Besides, the styrene-acrylic emulsion has been mixed with the composite PCM particles to form the protective film, so as to solve the problem of leakage. Thus, a novel PCM panel (PCMP) has been prepared using compression moulding forming method. The thermal property, microstructure characteristic, mechanical property, thermal conductivity, thermal reliability and leakage of the composite PCM have been investigated and analysed. Meanwhile, the thermal performance of the prepared PCMP was tested through PCMPs installed on the inside wall of a cell under outdoor climatic conditions. The composite PCM has a melting temperature of 24.9 °C, a freezing temperature of 25.2 °C, a melting latent heat of 78.2 J/g and a freezing latent heat of 81.3 J/g. The thermal conductivity test exposed that the thermal conductivity has been enhanced with the addition of AP and the latent heat has been decreased, but it still remains in a high level. The leakage test result has proven that liquid PCM leaking has been avoided by the surface film method. The thermal performance experiment has shown the significant function of PCMP about adjusting the indoor temperature and reducing the heats transferring between the wall inside and outside. In view of the thermal performance, mechanical property and thermal reliability results, it can be concluded that the prepared PCMP has a promising building application potential. PMID:28774020
Multi-objective optimization of composite structures. A review
NASA Astrophysics Data System (ADS)
Teters, G. A.; Kregers, A. F.
1996-05-01
Studies performed on the optimization of composite structures by coworkers of the Institute of Polymers Mechanics of the Latvian Academy of Sciences in recent years are reviewed. The possibility of controlling the geometry and anisotropy of laminar composite structures will make it possible to design articles that best satisfy the requirements established for them. Conflicting requirements such as maximum bearing capacity, minimum weight and/or cost, prescribed thermal conductivity and thermal expansion, etc. usually exist for optimal design. This results in the multi-objective compromise optimization of structures. Numerical methods have been developed for solution of problems of multi-objective optimization of composite structures; parameters of the structure of the reinforcement and the geometry of the design are assigned as controlling parameters. Programs designed to run on personal computers have been compiled for multi-objective optimization of the properties of composite materials, plates, and shells. Solutions are obtained for both linear and nonlinear models. The programs make it possible to establish the Pareto compromise region and special multicriterial solutions. The problem of the multi-objective optimization of the elastic moduli of a spatially reinforced fiberglass with stochastic stiffness parameters has been solved. The region of permissible solutions and the Pareto region have been found for the elastic moduli. The dimensions of the scatter ellipse have been determined for a multidimensional Gaussian probability distribution where correlation between the composite's properties being optimized are accounted for. Two types of problems involving the optimization of a laminar rectangular composite plate are considered: the plate is considered elastic and anisotropic in the first case, and viscoelastic properties are accounted for in the second. The angle of reinforcement and the relative amount of fibers in the longitudinal direction are controlling parameters. The optimized properties are the critical stresses, thermal conductivity, and thermal expansion. The properties of a plate are determined by the properties of the components in the composite, eight of which are stochastic. The region of multi-objective compromise solutions is presented, and the parameters of the scatter ellipses of the properties are given.
Analysis of thermal mechanical fatigue in titanium matrix composites
NASA Technical Reports Server (NTRS)
Johnson, W. Steven; Mirdamadi, Massoud
1993-01-01
Titanium metal matrix composites are being evaluated for structural applications on advanced hypersonic vehicles. These composites are reinforced with ceramic fibers such as silicon carbide, SCS-6. This combination of matrix and fiber results in a high stiffness, high strength composite that has good retention of properties even at elevated temperatures. However, significant thermal stresses are developed within the composite between the fiber and the matrix due to the difference in their respective coefficients of thermal expansion. In addition to the internal stresses that are generated due to thermal cycling, the overall laminate will be subjected to considerable mechanical loads during the thermal cycling. In order to develop life prediction methodology, one must be able to predict the stresses and strains that occur in the composite's constituents during the complex loading. Thus the purpose is to describe such an analytical tool, VISCOPLY.
Mengeloglu, Fatih; Karakus, Kadir
2008-01-01
Thermal behaviors of wheat straw flour (WF) filled thermoplastic composites were measured applying the thermogravimetric analysis and differential scanning calorimetry. Morphology and mechanical properties were also studied using scanning electron microscope and universal testing machine, respectively. Presence of WF in thermoplastic matrix reduced the degradation temperature of the composites. One for WF and one for thermoplastics, two main decomposition peaks were observed. Morphological study showed that addition of coupling agent improved the compatibility between WFs and thermoplastic. WFs were embedded into the thermoplastic matrix indicating improved adhesion. However, the bonding was not perfect because some debonding can also be seen on the interface of WFs and thermoplastic matrix. In the case of mechanical properties of WF filled recycled thermoplastic, HDPE and PP based composites provided similar tensile and flexural properties. The addition of coupling agents improved the properties of thermoplastic composites. MAPE coupling agents performed better in HDPE while MAPP coupling agents were superior in PP based composites. The composites produced with the combination of 50-percent mixture of recycled HDPE and PP performed similar with the use of both coupling agents. All produced composites provided flexural properties required by the ASTM standard for polyolefin-based plastic lumber decking boards. PMID:27879719
Gulotty, Richard; Castellino, Micaela; Jagdale, Pravin; Tagliaferro, Alberto; Balandin, Alexander A
2013-06-25
Carboxylic functionalization (-COOH groups) of carbon nanotubes is known to improve their dispersion properties and increase the electrical conductivity of carbon-nanotube-polymer nanocomposites. We have studied experimentally the effects of this type of functionalization on the thermal conductivity of the nanocomposites. It was found that while even small quantities of carbon nanotubes (~1 wt %) can increase the electrical conductivity, a larger loading fraction (~3 wt %) is required to enhance the thermal conductivity of nanocomposites. Functionalized multi-wall carbon nanotubes performed the best as filler material leading to a simultaneous improvement of the electrical and thermal properties of the composites. Functionalization of the single-wall carbon nanotubes reduced the thermal conductivity enhancement. The observed trends were explained by the fact that while surface functionalization increases the coupling between carbon nanotube and polymer matrix, it also leads to formation of defects, which impede the acoustic phonon transport in the single-wall carbon nanotubes. The obtained results are important for applications of carbon nanotubes and graphene flakes as fillers for improving thermal, electrical and mechanical properties of composites.
High heat flux composites for plasma-facing materials
NASA Astrophysics Data System (ADS)
Ting, J.-M.; Lake, M. L.
1994-09-01
Vapor grown carbon fiber (VGCF) has been shown to have the highest thermal conductivity of all carbon fiber currently available. This property holds potential of increasing the thickness and longevity of fusion reactor plasma-facing materials. The use of VGCF as a reinforcement in carbon/carbon composites has been explored, as well as methods of joining these plasma-facing materials to copper alloy heat pipes. In extensive study of VGCF/carbon matrix composites, the influence of fiber volume fraction, density, densification method, and heat treatment on composite properties were investigated. Joining of VGCF/carbon composites to copper and beryllium to copper using a novel alloying method was studied. The joint interface was examined by RBS analysis and thermal conductance.
NASA Astrophysics Data System (ADS)
Daud, Shuhairiah; Ismail, Hanafi; Bakar, Azhar Abu
2017-07-01
The effect of partial replacement of palm kernel shell powder by carbon black (CB) and halloysite nanotube (HNT) on the tensile properties, rubber-filler interaction, thermal properties and morphological studies of natural rubber (NR) composites were investigated. Four different compositions of NR/PKS/CB and NR/PKS/HNT composites i.e 20/0, 15/5, 10/10,5/15 and 0/20 parts per hundred rubber (phr) were prepared on a two roll mill. The results showed that the tensile strength and modulus at 100% elongation (M100) and 300% elongation (M300) were higher for NR/PKS/CB compared to NR/PKS/HNT composites. NR/PKS/CB composites had the lowest elongation at break (Eb). The effect of commercial fillers in NR/PKS composites on tensile properties was confirmed by the rubber-filler interaction and scanning electron microscopy (SEM) study. The thermal stability of PKS filled NR composites with partially replaced by commercial fillers also determined by Thermo gravimetric Analysis (TGA).
Kim, Suhyun; Kim, Moon Il; Shon, Minyoung; Seo, Bongkuk; Lim, Choongsun
2018-09-01
Epoxy resins are widely used in various industrial fields due to their low cost, good workability, heat resistance, and good mechanical strength. However, they suffer from brittleness, an issue that must be addressed for further applications. To solve this problem, additional fillers are needed to improve the mechanical and thermal properties of the resins; zirconia is one such filler. However, it has been reported that aggregation may occur in the epoxy composites as the amount of zirconia increases, preventing enhancement of the mechanical strength of the epoxy composites. Herein, to reduce the aggregation, zirconia was well dispersed on halloysite nanotubes (HNTs), which have high thermal and mechanical strength, by a conventional wet impregnation method. The HNTs were impregnated with zirconia at different loadings using zirconyl chloride octahydrate as a precursor. The mechanical and thermal strengths of the epoxy composites with these fillers were investigated. The zirconia-impregnated HNTs (Zr/HNT) were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and tunneling electron microscopy (TEM). The hardening conditions of the epoxy composites were analyzed by differential scanning calorimetry (DSC). The thermal strength of the epoxy composites was studied by thermomechanical analysis (TMA) and micro-calorimetry and the mechanical strength of the epoxy composites (flexural strength and tensile strength) was studied by using a universal testing machine (UTM). The mechanical and thermal strengths of the epoxy composites with Zr/HNT were improved compared to those of the epoxy composite with HNT, and also increased as the zirconia loading on HNT increased.
NASA Astrophysics Data System (ADS)
Goto, Taku; Iida, Masaki; Tan, Helen; Liu, Chang; Mayumi, Koichi; Maeda, Rina; Kitahara, Koichi; Hatakeyama, Kazuto; Ito, Tsuyohito; Shimizu, Yoshiki; Yokoyama, Hideaki; Kimura, Kaoru; Ito, Kohzo; Hakuta, Yukiya; Terashima, Kazuo
2018-03-01
We have developed a thermally conductive flexible elastomer as a composite material with slide-ring (SR) materials and boron nitride (BN) particles surface-modified via plasma in solution. This composite shows excellent properties as a flexible insulator for thermal management. Surface modification of BN particles using plasma in solution increases the tensile strength, extension ratio at break, toughness, and rubber characteristics of the composites, compared to SR and non-modified BN, while the Young's modulus values are identical. Furthermore, the thermal conductivity also improved as a result of plasma surface modification.
Using of Aerogel to Improve Thermal Insulating Properties of Windows
NASA Astrophysics Data System (ADS)
Valachova, Denisa; Zdrazilova, Nada; Panovec, Vladan; Skotnicova, Iveta
2018-06-01
For the best possible thermal-technical properties of building structures it is necessary to use materials with very low thermal conductivity. Due to the increasing thermal-technical requirements for building structures, the insulating materials are developed. One of the modern thermal insulating materials is so-called aerogel. Unfortunately, this material is not used in the field of external thermal insulation composite systems because of its price and its properties. The aim of this paper is to present possibilities of using this insulating material in the civil engineering - specifically a usage of aerogel in the production of windows.
Fiber Composite Sandwich Thermostructural Behavior: Computational Simulation
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Aiello, R. A.; Murthy, P. L. N.
1986-01-01
Several computational levels of progressive sophistication/simplification are described to computationally simulate composite sandwich hygral, thermal, and structural behavior. The computational levels of sophistication include: (1) three-dimensional detailed finite element modeling of the honeycomb, the adhesive and the composite faces; (2) three-dimensional finite element modeling of the honeycomb assumed to be an equivalent continuous, homogeneous medium, the adhesive and the composite faces; (3) laminate theory simulation where the honeycomb (metal or composite) is assumed to consist of plies with equivalent properties; and (4) derivations of approximate, simplified equations for thermal and mechanical properties by simulating the honeycomb as an equivalent homogeneous medium. The approximate equations are combined with composite hygrothermomechanical and laminate theories to provide a simple and effective computational procedure for simulating the thermomechanical/thermostructural behavior of fiber composite sandwich structures.
Long-lived thermal control materials for high temperature and deep space applications
NASA Technical Reports Server (NTRS)
Whitt, Robin; O'Donnell, Tim
1988-01-01
Considerable effort has been put into developing thermal-control materials for the Galileo space-craft. This paper presents a summary of these findings to date with emphasis on requirements, testing and results for the post-Challenger Galileo mission. Polyimide film (Kapton), due to its inherent stability in vacuum, UV, and radiation environments, combined with good mechanical properties over a large temperature range, has been the preferred substrate for spacecraft thermal control materials. Composite outer layers, using Kapton substrates, can be fabricated to meet the requirements of severe space environments. Included in the processing of Kapton-based composite outer layers can be the deposition of metal oxide, metallic and/or polymeric thin-film coatings to provide desirable electrical, optical and thermo-optical properties. In addition, reinforcement of Kapton substrates with fabrics and films is done to improve mechanical properties. Also these substrates can be filled with varying amounts of carbon to achieve particular electrical properties. The investigation and material development reported on here has led to improved thermo-gravimetric stability, surface conductivity, RF transparency, radiation and UV stability, flammability and handle-ability of outer layer thermal control materials for deep space and near-sun spacecraft. Designing, testing, and qualifying composite thermal-control film materials to meet the requirements of the Galileo spacecraft is the scope of this paper.
Enhancement of Spartium junceum L. fibres properties
NASA Astrophysics Data System (ADS)
Kovačević, Z.; Bischof, S.; Antonović, A.
2017-10-01
Properties of lignocellulosic Spartium junceum L. (SJL) fibres were investigated in order to use them as reinforcement in composite material production. The fibres were obtained by microwave maceration process and additionally modified with NaOH, nanoclay and citric acid with the aim to improve their mechanical, thermal and other physical-chemical properties. Tensile and thermal properties of these natural fibres were enhanced by the different modification treatment which is investigated by the Vibrodyn/Vibroskop method and thermogravimetric analysis (TGA), whilst determination of chemical composition and fibre’s surface properties were explored using scanning electron microscope (SEM), electron dispersive spectroscopy (EDS) and elektrokinetic analyser. All the results show great improvement of nanoclay/citric acid modified SJL properties.
Isothermal and hygrothermal agings of hybrid glass fiber/carbon fiber composite
NASA Astrophysics Data System (ADS)
Barjasteh, Ehsan
New applications of fiber-reinforced polymer composites (FRPCs) are arising in non-traditional sectors of industry, such as civil infrastructure, automotive, and power distribution. For example, composites are being used in place of steel to support high-voltage overhead conductors. In this application, conductive strands of aluminum are wrapped around a solid composite rod comprised of unidirectional carbon and glass fibers in an epoxy matrix, which is commercially called ACCC conductor. Composite-core conductors such as these are expected to eventually replace conventional steel-reinforced conductors because of the reduced sag at high temperatures, lower weight, higher ampacity, and reduced line losses. Despite the considerable advantages in mechanical performance, long-term durability of composite conductors is a major concern, as overhead conductors are expected to retain properties (with minimal maintenance) over a service life that spans multiple decades. These concerns stem from the uncertain effects of long-term environmental exposure, which includes temperature, moisture, radiation, and aggressive chemicals, all of which can be exacerbated by cyclic loads. In general, the mechanical and physical properties of polymer composites are adversely affected by such environmental factors. Consequently, the ability to forecast changes in material properties as a function of environmental exposure, particularly bulk mechanical properties, which are affected by the integrity of fiber-matrix interfaces, is required to design for extended service lives. Polymer composites are susceptible to oxidative degradation at high temperatures approaching but not quite reaching the glass transition temperature ( Tg). Although the fibers are stable at such temperatures, the matrix and especially the fiber-matrix interface can undergo degradation that affects the physical and mechanical properties of the structure over time. Therefore, as a first step, the thermal aging of an anhydride/epoxy network used in composite-reinforced conductor cables was investigated to determine the extent of thermal oxidative (surface effect) and non-oxidative (bulk effect) degradation. Thermal oxidation tests were performed in air-circulating and vacuum ovens at 180°C and 200ºC (the maximum emergency temperature for ACCC conductors). The extent of oxidation during aging was determined by monitoring the thickness of the oxidized layer. Results showed that the oxidized layer thickness did not increase monotonically as a function of exposure time, and even decreased for a limited period of time. A phenomenological reaction-diffusion model was implemented to predict the thickness of oxidized layer, and the calculated results were compared with measurements for aging times up to 10,000 hours. The accuracy of the reaction-diffusion-based thickness values for the isothermally aged epoxy specimen was affected by the permeability properties of the oxidized material, and to a lesser extent by the degree of oxidation. The diffusivity varied because of changes in the density of the oxidized layer, the macro-void content, crack formation, and the molecular structures. To investigate the effects on diffusivity, the morphology of the oxidized layer and the void content was monitored over time. In addition, the density of the oxidized specimens was calculated by direct measurements of volume and weight during exposure. An empirically based volume-loss model was developed to predict the changes in volume of the specimen as a function of aging times and hence to predict the effects on the oxidized layer thickness. Volume-loss measurements provide an indication of material degradation by demonstrating a direct measurement of shrinkage rates and insight into crack initiation, as opposed to typical weight-loss measurements that provide no insight into material failure. Thermal oxidation of a unidirectional carbon-fiber/glass-fiber hybrid composite was also investigated in this study. The aim was to determine oxidation kinetics, degradation mechanisms, oxidation thickness growth (a damage indicator), and oxidation effects on mechanical property. The epoxy composite rods were comprised of a carbon-fiber core and a glass-fiber shell. The thickness of the oxidized layer (TOL) was measured experimentally for samples exposed to 180ºC and 200ºC for up to 8,736 hours. A reaction-diffusion model was developed for each of the two hybrid sections to obtain the oxygen-concentration profile and the TOL within the composite rods. The TOL values measured experimentally were similar to the modeling predictions. The glass-fiber shell functioned as a protective layer, limiting the oxidation of the carbon-fiber core. The domain validity for the reaction-diffusion model was determined from gravimetric experiments by measuring the weight-loss of hybrid composite samples exposed isothermally in air and in vacuum at 200°C for up to 13,104 hours (1.5 years). The results showed that after prolonged thermal exposure, the degradation mechanism changed from thermal oxidation to thermal degradation. Thermogravimetric analysis (TGA) was performed to determine the thermal degradation and stability of the aged composite. The results indicated that the onset temperature of matrix degradation increased by increasing exposure time. Inorganic fillers are widely used in pultruded parts to facilitate pultrusion, especially for long production runs. Therefore, another scope of this study was to investigate the effects of filler on oxidation kinetics and degradation mechanisms during thermal aging of prultruded composite rods. Similar aging tests and oxidation modeling to those for the unfilled composites were performed. The predicted and measured TOL values for filled composites were slightly less than those for unfilled composites. The addition of kaolin fillers did not affect the oxidation mechanism or the reaction rate of the epoxy matrix, although it did cause a slight decrease in the oxygen-transport properties (diffusivity and solubility of oxygen). The effect of thermal aging on mechanical properties of the aged composites was investigated. A relationship was derived relating TOL to tensile strength of the hybrid composite. The tensile strength remained essentially unchanged by thermal oxidation after 52 weeks of exposure. On the contrary, the oxidation resulted in a decrease in short-beam-shear (SBS) strength (a matrix-dominated property) due to degradation of matrix and fiber/matrix interface strength. However, the filled composites showed a lower reduction in SBS strength than that of the unfilled one for an identical duration of exposure. In addition, the effect of thermal aging on glass transition temperature (T g) was determined for isothermal exposures at 180ºC and 200ºC. The simultaneous effects of post-curing and thermal degradation resulted in the change in Tg during exposure. Another study on the composite rod was performed to investigate the sorption kinetics and the effects of moisture on mechanical and physical properties. Sorption curves were obtained for both hybrid and non-hybrid composite rods to determine characteristic parameters, including the diffusion coefficient (D) and the maximum moisture uptake (Minfinity ). The moisture uptake for the hybrid composites generally exhibited Fickian behavior (no hybridization effects), behaving much like non-hybrid composites. A two-dimensional diffusion model was employed to calculate moisture diffusivities in the longitudinal direction. Interfaces and thermally-induced residual stresses affected the moisture diffusion. In addition, the effect of hygrothermal aging on glass transition temperature (Tg), short beam shear strength (SBS), and tensile strength was determined for hygrothermal exposure at 60°C and 85% relative humidity (RH). Property retention and reversibility of property degradation was also measured. Microscopic inspection revealed no evidence of damage. Prediction of the lifetime of carbon-fiber/fiberglass (GF/CF) hybrid composites under various loads and service life conditions requires fundamental knowledge about the degradation mechanisms associated with overhead conductors with the hybrid GF/CF composite cores. This study provides adequate information on mechanical and thermal behaviors of the composite core under prolong isothermal and hygrothermal exposure, which is necessary for defining a lifetime model.
Phase-Transformation-Induced Extra Thermal Expansion Behavior of (SrxBa1-x)TiO3/Cu Composite.
Sheng, Jie; Wang, Lidong; Li, Shouwei; Yin, Benke; Liu, Xiangli; Fei, Wei-Dong
2016-06-03
The properties of metal matrix composites (MMCs) can be optimized effectively through adjusting the type or the volume fraction of reinforcement. Generally, the coefficient of thermal expansion (CTE) of MMCs can be reduced by increasing the volume fraction of the reinforcement with lower CTE than metal matrix. However, it is great challenge to fabricate low CTE MMCs with low reinforcement volume fraction because of the limitation of reinforcement CTEs. SrxBa1-xTiO3 (SBT) powder presents negative thermal expansion behavior during the phase transformation from tetragonal to cubic phase. Here, we demonstrate that the phase transformation of SBT can be utilized to reduce and design the thermal expansion properties of SBT particle-reinforced Cu (SBT/Cu) composite, and ultralow CTE can be obtained in SBT/Cu composite. The X-ray diffraction analysis on heating indicates that the temperature range of phase transformation is extended greatly, therefore, the low CTE can be achieved within wide temperature range. Landau-Devonshire theory study on the phase transformation behaviors of SBT particles in the composite indicates that thermal mismatch stress significantly affects the Curie temperature of SBT particles and the CTE of the composite. The results given in the present study provide a new approach to design the MMCs with low CTE.
ABLATIVE COMPOSITES FOR LIFTING REENTRY THERMAL PROTECTION.
MECHANICAL PROPERTIES, THERMAL CONDUCTIVITY, ABLATION, DENSITY, TABLES(DATA), SPECIFIC HEAT, THERMOGRAVIMETRIC ANALYSIS, CORROSION RESISTANCE, COLORIMETRY , HEAT RESISTANT MATERIALS, ATMOSPHERE ENTRY.
Mechanical, Thermal and Dynamic Mechanical Properties of PP/GF/xGnP Nanocomposites
NASA Astrophysics Data System (ADS)
Ashenai Ghasemi, F.; Ghorbani, A.; Ghasemi, I.
2017-03-01
The mechanical, thermal, and dynamic mechanical properties of ternary nanocomposites based on polypropylene, short glass fibers, and exfoliated graphene nanoplatelets were studied. To investigate the mechanical properties, uniaxial tensile and Charpy impact tests were carried out. To study the crystallinity of the compositions, a DSC test was performed. A dynamic mechanical analysis was used to characterize the storage modulus and loss factor (tan δ). The morphology of the composites was studied by a scanning electron microscope (SEM). The results obtained are presented in tables and graphics.
NASA Astrophysics Data System (ADS)
Matsumoto, K.; Murayama, D.; Takeshita, M.; Ura, Y.; Abe, S.; Numazawa, T.; Takata, H.; Matsumoto, Y.; Kuriiwa, T.
2017-09-01
Magnetic materials with large magnetocaloric effect are significantly important for magnetic refrigeration. La(Fe0.88Si0.12)13 compounds are one of the promising magnetocaloric materials that have a first order magnetic phase transition. Transition temperature of hydrogenated La(Fe0.88Si0.12)13 increased up to room temperature region while keeping metamagnetic transition properties. From view point of practical usage, bonded composite are very attractive and their properties are important. We made epoxy bonded La(Fe0.88Si0.12)13 hydrides. Magnetocaloric effect was studied by measuring specific heat, magnetization, and temperature change in adiabatic demagnetization. The composite had about 20% smaller entropy change from the hydrogenated La(Fe0.88Si0.12)13 powder in 2 T. Thermal conductivity of the composite was several times smaller than La(Fe,Si)13. The small thermal conductivity was explained due to the small thermal conductivity of epoxy. Thermal conductivity was observed to be insensitive to magnetic field in 2 T. Thermal expansion and magnetostriction of the composite material were measured. The composite expanded about 0.25% when it entered into ferromagnetic phase. Magnetostriction of the composite in ferromagnetic phase was about 0.2% in 5 T and much larger than that in paramagnetic phase. The composite didn’t break after about 100 times magnetic field changes in adiabatic demagnetization experiment even though it has magnetostriction.
Innovative Approach for High Strength, High Thermal Conductive Composite Materials: Data Base
2013-11-01
pitch fiber types, from which we were able to down select K6356U pitch fiber with balanced TC and strength properties. A prepreg processing line was...Creating a robust prepreg processing line to infuse unidirectional pitch fiber tape that can be used with other fibers…Pan-based carbon or glass...pitch fiber composites • Compression molding process outperforms autoclaving in mechanical and thermal properties using the same prepreg material and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smedskjaer, Morten M., E-mail: mos@bio.aau.dk; Bauchy, Mathieu; Mauro, John C.
The properties of glass are determined not only by temperature, pressure, and composition, but also by their complete thermal and pressure histories. Here, we show that glasses of identical composition produced through thermal annealing and through quenching from elevated pressure can result in samples with identical density and mean interatomic distances, yet different bond angle distributions, medium-range structures, and, thus, macroscopic properties. We demonstrate that hardness is higher when the density increase is obtained through thermal annealing rather than through pressure-quenching. Molecular dynamics simulations reveal that this arises because pressure-quenching has a larger effect on medium-range order, while annealing hasmore » a larger effect on short-range structures (sharper bond angle distribution), which ultimately determine hardness according to bond constraint theory. Our work could open a new avenue towards industrially useful glasses that are identical in terms of composition and density, but with differences in thermodynamic, mechanical, and rheological properties due to unique structural characteristics.« less
Nanoindentation and thermal characterization of poly (vinylidenefluoride)/MWCNT nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eggedi, Obulapathi; Valiyaneerilakkal, Uvais; Varghese, Soney, E-mail: soneyva@nitc.ac.in
2014-04-15
We report the preparation, thermal and micro/nanomechanical behavior of poly (vinylidine diflouride) (PVDF)/multiwalled carbon nanotube (MWCNT) nanocomposites. It has been found that the addition of MWCNT considerably enhances the β-phase formation, thermal and mechanical properties of PVDF. Atomic force microscope (AFM) studies have been performed on the composites under stress conditions to measure the mechanical properties. The nanoscale mechanical properties of the composites like Young's modulus and hardness of the nanocomposites were investigated by nanoindentation technique. Morphological studies of the nanocomposites were also studied, observations show a uniform distribution of MWCNT in the matrix and interfacial adhesion between PVDF andmore » MWCNT was achieved, which was responsible for enhancement in the hardness and Young's modulus. Differential scanning calorimetry (DSC) studies indicate that the melting temperature of the composites have been slightly increased while the heat of fusion markedly decreased with increasing MWCNT content.« less
Bio-composites of cassava starch-green coconut fiber: part II-Structure and properties.
Lomelí-Ramírez, María Guadalupe; Kestur, Satyanarayana G; Manríquez-González, Ricardo; Iwakiri, Setsuo; de Muniz, Graciela Bolzon; Flores-Sahagun, Thais Sydenstricker
2014-02-15
Development of any new material requires its complete characterization to find potential applications. In that direction, preparation of bio-composites of cassava starch containing up to 30 wt.% green coconut fibers from Brazil by thermal molding process was reported earlier. Their characterization regarding physical and tensile properties of both untreated and treated matrices and their composites were also reported. Structural studies through FTIR and XRD and thermal stability of the above mentioned composites are presented in this paper. FT-IR studies revealed decomposition of components in the matrix; the starch was neither chemically affected nor modified by either glycerol or the amount of fiber. XRD studies indicated increasing crystallinity of the composites with increasing amount of fiber content. Thermal studies through TGA/DTA showed improvement of thermal stability with increasing amount of fiber incorporation, while DMTA showed increasing storage modulus, higher glass transition temperature and lower damping with increasing fiber content. Improved interfacial bonding between the matrix and fibers could be the cause for the above results. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tejado, E.; Müller, A. v.; You, J.-H.; Pastor, J. Y.
2018-01-01
Copper and its alloys are used as heat sink materials for next generation fusion devices and will be joined to tungsten as an armour material. However, the joint of W and Cu experiences high thermal stresses when exposed to high heat loads so an interlayer material could effectively ensure the lifetime of the component by reducing the thermal mismatch. Many researchers have published results on the production of W-Cu composites aiming attention at its thermal conductivity; nevertheless, the mechanical performance of these composites remains poor. This paper reports the characterization of the thermo-mechanical behaviour of W-Cu composites produced via a liquid Cu melt infiltration of porous W preform. This technique was applied to produce composites with 15, 30 and 40 wt% Cu. The microstructure, thermal properties, and mechanical performance were investigated and measured from RT to 800 °C. The results demonstrated that high densification and superior mechanical properties can indeed be achieved via this manufacturing route. The mechanical properties (elastic modulus, fracture toughness, and strength) of the composites show a certain dependency on the Cu content; fracture mode shifts from the dominantly brittle fracture of W particles with constrained deformation of the Cu phase at low Cu content to the predominance of the ductile fracture of Cu when its ratio is higher. Though strong degradation is observed at 800 °C, the mechanical properties at operational temperatures, i.e. below 350 °C, remain rather high-even better than W/Cu materials reported previously. In addition, we demonstrated that the elastic modulus, and therefore the coefficient of thermal expansion, can be tailored via control of the W skeleton's porosity. As a result, the W-Cu composites presented here would successfully drive away heat produced in the fusion chamber avoiding the mismatch between materials while contributing to the structural support of the system.
NASA Technical Reports Server (NTRS)
Stanley, D. C.; Huff, T. L.
2003-01-01
The purpose of this research effort was to: (1) provide a concise and well-defined property profile of current and developing composite materials using thermal and chemical characterization techniques and (2) optimize analytical testing requirements of materials. This effort applied a diverse array of methodologies to ascertain composite material properties. Often, a single method of technique will provide useful, but nonetheless incomplete, information on material composition and/or behavior. To more completely understand and predict material properties, a broad-based analytical approach is required. By developing a database of information comprised of both thermal and chemical properties, material behavior under varying conditions may be better understood. THis is even more important in the aerospace community, where new composite materials and those in the development stage have little reference data. For example, Fourier transform infrared (FTIR) spectroscopy spectral databases available for identification of vapor phase spectra, such as those generated during experiments, generally refer to well-defined chemical compounds. Because this method renders a unique thermal decomposition spectral pattern, even larger, more diverse databases, such as those found in solid and liquid phase FTIR spectroscopy libraries, cannot be used. By combining this and other available methodologies, a database specifically for new materials and materials being developed at Marshall Space Flight Center can be generated . In addition, characterizing materials using this approach will be extremely useful in the verification of materials and identification of anomalies in NASA-wide investigations.
NASA Astrophysics Data System (ADS)
Poveda, Ronald Leonel
The tailorability of composite materials is crucial for use in a wide array of real-world applications, which range from heat-sensitive computer components to fuselage reinforcement on commercial aircraft. The mechanical, electrical, and thermal properties of composites are highly dependent on their material composition, method of fabrication, inclusion orientation, and constituent percentages. The focus of this work is to explore carbon nanofibers (CNFs) as potential nanoscale reinforcement for hollow particle filled polymer composites referred to as syntactic foams. In the present study, polymer composites with high weight fractions of CNFs, ranging from 1-10 wt.%, are used for quasi-static and high strain rate compression analysis, as well as for evaluation and characterization of thermal and electrical properties. It is shown that during compressive characterization of vapor grown carbon nanofiber (CNF)/epoxy composites in the strain rate range of 10-4-2800 s-1, a difference in the fiber failure mechanism is identified based on the strain rate. Results from compression analyses show that the addition of fractions of CNFs and glass microballoons varies the compressive strength and elastic modulus of epoxy composites by as much as 53.6% and 39.9%. The compressive strength and modulus of the syntactic foams is also shown to generally increase by a factor of 3.41 and 2.96, respectively, with increasing strain rate when quasi-static and high strain rate testing data are compared, proving strain rate sensitivity of these reinforced composites. Exposure to moisture over a 6 month period of time is found to reduce the quasi-static and high strain rate strength and modulus, with a maximum of 7% weight gain with select grades of CNF/syntactic foam. The degradation of glass microballoons due to dealkalization is found to be the primary mechanism for reduced mechanical properties, as well as moisture diffusion and weight gain. In terms of thermal analysis results, the coefficient of thermal expansion (CTE) of CNF/epoxy and CNF/syntactic foam composites reinforced with glass microballoons decrease by as much as 11.6% and 38.4%. The experimental CTE values for all of the composites also fit within the bounds of established analytical models predicting the CTE of fiber and particle-reinforced composites. Further thermal studies through dynamic mechanical analysis demonstrated increased thermal stability and damping capability, where the maximum use and glass transition temperatures increase as much as 27.1% and 25.0%, respectively. The electrical properties of CNF reinforced composites are evaluated as well, where the electrical impedance decreases and the dielectric constant increases with addition of CNFs. Such behavior occurs despite the presence of epoxy and glass microballoons, which serve as insulative phases. Such results are useful in design considerations of lightweight composite materials used in weight saving, compressive strength, and damage tolerance applications, such as lightweight aircraft structure reinforcement, automobile components, and buoyancy control with marine submersibles. The results of the analyses have also evaluated certain factors for environmental exposure and temperature extremes, as well as considerations for electronics packaging, all of which have also played a role in shaping avant-garde composite structure designs for efficient, versatile, and long-life service use.
Thermal stresses in composite tubes using complementary virtual work
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Cooper, D. E.
1988-01-01
This paper addresses the computation of thermally induced stresses in layered, fiber-reinforced composite tubes subjected to a circumferential gradient. The paper focuses on using the principle of complementary virtual work, in conjunction with a Ritz approximation to the stress field, to study the influence on the predicted stresses of including temperature-dependent material properties. Results indicate that the computed values of stress are sensitive to the temperature dependence of the matrix-direction compliance and matrix-direction thermal expansion in the plane of the lamina. There is less sensitivity to the temperature dependence of the other material properties.
Native Cellulose: Structure, Characterization and Thermal Properties
Poletto, Matheus; Ornaghi Júnior, Heitor L.; Zattera, Ademir J.
2014-01-01
In this work, the relationship between cellulose crystallinity, the influence of extractive content on lignocellulosic fiber degradation, the correlation between chemical composition and the physical properties of ten types of natural fibers were investigated by FTIR spectroscopy, X-ray diffraction and thermogravimetry techniques. The results showed that higher extractive contents associated with lower crystallinity and lower cellulose crystallite size can accelerate the degradation process and reduce the thermal stability of the lignocellulosic fibers studied. On the other hand, the thermal decomposition of natural fibers is shifted to higher temperatures with increasing the cellulose crystallinity and crystallite size. These results indicated that the cellulose crystallite size affects the thermal degradation temperature of natural fibers. This study showed that through the methods used, previous information about the structure and properties of lignocellulosic fibers can be obtained before use in composite formulations. PMID:28788179
On thermal edge effects in composite laminates
NASA Technical Reports Server (NTRS)
Herakovich, C. T.
1976-01-01
Results are presented for a finite-element investigation of the combined influence of edge effects due to mechanical and thermal mismatch in composite laminates with free edges. Laminates of unidirectional boron/epoxy symmetrically bonded to sheets of aluminum and titanium were studied. It is shown that interlaminar thermal stresses may be more significant than the interlaminar stresses due to loading only. In addition, the stresses due to thermal mismatch may be of the same sign as those due to Poisson's mismatch or they may be of opposite sign depending upon material properties, stacking sequence, and direction of loading. The paper concludes with a brief discussion of thermal stresses in all-composite laminates.
Investigation on Rubber-Modified Polybenzoxazine Composites for Lubricating Material Applications
NASA Astrophysics Data System (ADS)
Jubsilp, Chanchira; Taewattana, Rapiphan; Takeichi, Tsutomu; Rimdusit, Sarawut
2015-10-01
Effects of liquid amine-terminated butadiene-acrylonitrile (ATBN) on the properties of bisphenol-A/aniline-based polybenzoxazine (PBA-a) composites were investigated. Liquid ATBN decreased gel time and lowered curing temperature of the benzoxazine resin (BA-a). The PBA-a/ATBN-based self-lubricating composites resulted in substantial enhancement regarding their tribological, mechanical, and thermal properties. The inclusion of the ATBN at 5% by weight was found decreasing the friction coefficient and improved wear resistance of the PBA-a/ATBN composites. Flexural modulus and glass transition temperature of the PBA-a composite samples added the ATBN was constant within the range of 1-5% by weight. A plausible wear mechanism of the composites is proposed based on their worn surface morphologies. Based on the findings in this work, it seems that the obtained PBA-a/ATBN self-lubricating composites would have high potential to be used for bearing materials where low friction coefficient, high wear resistance, and modulus with good thermal property are required.
Fabrication and Characterization of Silicon Carbide Epoxy Composites
NASA Astrophysics Data System (ADS)
Townsend, James
Nanoscale fillers can significantly enhance the performance of composites by increasing the extent of filler-to-matrix interaction. Thus far, the embedding of nanomaterials into composites has been achieved, but the directional arrangement has proved to be a challenging task. Even with advances in in-situ and shear stress induced orientation, these methods are both difficult to control and unreliable. Therefore, the fabrication of nanomaterials with an ability to orient along a magnetic field is a promising pathway to create highly controllable composite systems with precisely designed characteristics. To this end, the goal of this dissertation is to develop magnetically active nanoscale whiskers and study the effect of the whiskers orientation in a polymer matrix on the nanocomposite's behavior. Namely, we report the surface modification of silicon carbide whiskers (SiCWs) with magnetic nanoparticles and fabrication of SiC/epoxy composite materials. The magnetic nanoparticles attachment to the SiCWs was accomplished using polyelectrolyte polymer-to-polymer complexation. The "grafting to" and adsorption techniques were used to attach the polyelectrolytes to the surface of the SiCWs and magnetic nanoparticles. The anchored polyelectrolytes were polyacrylic acid (PAA) and poly(2-vinylpyridine) (P2VP). Next, the SiC/epoxy composites incorporating randomly oriented and magnetically oriented whiskers were fabricated. The formation of the composite was studied to determine the influence of the whiskers' surface composition on the epoxy curing reaction. After curing, the composites' thermal and thermo-mechanical properties were studied. These properties were related to the dispersion and orientation of the fillers in the composite samples. The obtained results indicated that the thermal and thermo-mechanical properties could be improved by orienting magnetically-active SiCWs inside the matrix. Silanization, "grafting to", adsorption, and complexation were used to modify the surface of SiCWs to further investigate the epoxy nanocomposite system. The process of composites formation was studied to evaluate the effects of the surface modification on the epoxy curing reaction. The obtained composites were tested and analyzed to assess their thermal and thermo-mechanical properties. These properties were related to the dispersion and surface chemical composition of the fillers in the nanocomposites. It was determined that magnetically modified SiCWs have lower ability for interfacial stress transfer in the composite systems under consideration. The final portion of this work was focused on reinforcing the magnetic layer of the SiCWs. This was accomplished by structurally toughening the magnetic layer with poly(glycidyl methacrylate) (PGMA) layer. As a result, the thermal and mechanical properties of the magnetic composite system were improved significantly.
Evolution of Elemental Composition and Morphology in Fusion Reactor's First Wall
NASA Astrophysics Data System (ADS)
Kim, Yong W.
2007-11-01
Forcing of a multi-element alloy by a gradient field can modify the spatial profile of its elemental composition. The gradient field may be in the imposed temperature or the flux of impinging particles. In a fusion device, both scenarios apply. The consequences must be well understood because they change the thermal transport properties as well as the strength, corrosion and wear characteristics of the first wall materials. Given the large number of directions material evolution can take, new robust methods of near-surface composition analyses are needed. This paper presents a new measurement methodology and requisite instrumentation, which can provide measures of local elemental composition and transport properties simultaneously by time-resolved spectroscopy of laser-produced plasma (LPP) plume emissions from the specimen surfaces. The studies to date show that the composition profiles can be modified thermally in a reproducible manner; disparate thermal transport of constituent atoms can incur modifications of near-surface composition profiles.[Y.W. Kim, Int. J. Thermophysics 28, 732 (2007)] Also, disparate fluxes of fuel particles, fusion products and impurities force the first walls in myriad ways. Repetitive application of the LPP analysis can resolve the near-surface composition profile as well as transport properties over several microns with depth resolutions to 20 nm. Work supported in part by NSF-DMR.
NASA Technical Reports Server (NTRS)
1993-01-01
This document constitutes the final report for the study of humidity effects and loading rate on soluble core (PVA/MB composite material) mechanical and thermal properties under Contract No. 100345. This report describes test results procedures employed, and any unusual occurrences or specific observations associated with this test program. The primary objective of this work was to determine if cured soluble core filler material regains its tensile and compressive strength after exposure to high humidity conditions and following a drying cycle. Secondary objectives include measurements of tensile and compressive modulus, and Poisson's ratio, and coefficient of thermal expansion (CTE) for various moisture exposure states. A third objective was to compare the mechanical and thermal properties of the composite using 'SG' and 'CG' type extendospheres. The proposed facility for the manufacture of soluble cores at the Yellow Creek site incorporates no capability for the control of humidity. Recent physical property tests performed with the soluble core filler material showed that prolonged exposure to high humidity significantly degradates in strength. The purpose of these tests is to determine if the product, process or facility designs require modification to avoid imparting a high risk condition to the ASRM.
Crack propagation in functionally graded strip under thermal shock
NASA Astrophysics Data System (ADS)
Ivanov, I. V.; Sadowski, T.; Pietras, D.
2013-09-01
The thermal shock problem in a strip made of functionally graded composite with an interpenetrating network micro-structure of Al2O3 and Al is analysed numerically. The material considered here could be used in brake disks or cylinder liners. In both applications it is subjected to thermal shock. The description of the position-dependent properties of the considered functionally graded material are based on experimental data. Continuous functions were constructed for the Young's modulus, thermal expansion coefficient, thermal conductivity and thermal diffusivity and implemented as user-defined material properties in user-defined subroutines of the commercial finite element software ABAQUS™. The thermal stress and the residual stress of the manufacturing process distributions inside the strip are considered. The solution of the transient heat conduction problem for thermal shock is used for crack propagation simulation using the XFEM method. The crack length developed during the thermal shock is the criterion for crack resistance of the different graduation profiles as a step towards optimization of the composition gradient with respect to thermal shock sensitivity.
Thermal Exposure Effects on Properties of Al-Li Alloy Plate Products
NASA Technical Reports Server (NTRS)
Shah, Sandeep; Wells, Douglas; Wagner, John; Babel, Henry
2003-01-01
The objective of this viewgraph representation is to evaluate the effects of thermal exposure on the mechanical properties of both production mature and developmental Al-Li alloys. The researchers find for these alloys, the data clearly shows that there is no deficit in mechanical properties at lower exposure temperatures in some cases, and a signficant deficit in mechanical properties at higher exposure temperatures in all cases. Topics considered include: Al-Li alloys composition, key characteristics of Al-Li alloys and thermal exposure matrix.
NASA Astrophysics Data System (ADS)
Xu, Zh. H.; Kong, Zh. N.
2014-07-01
Natural rubber (NR) and polyethylene (PE) composites were compounded with chemically treated coir fibers by using a heated two-roll mill. Two chemical treatments of the fibers — by silane and sodium hydroxide — were carried out to improve the interfacial adhesion between them and the polyethylene matrix. The mechanical properties of the composites obtained were evaluated and compared with those made from a neat polymer and untreated fibers. The mechanical properties of the composites, such as the tensile strength, Young's modulus, and the elongation at break, were examined, and their shrinkage and flame retardant characteristics were measured. From these experiments, the effect of plasma treatment on the mechanical-physical behavior of coconut-fiberreinforced NR/PE composites was identified. In addition, their thermal characteristics were evaluated, and the results showed a slight decrease in them with increasing content of coir fibers.
Characterizing the Properties of a Woven SiC/SiC Composite Using W-CEMCAN Computer Code
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Mital, Subodh K.; DiCarlo, James A.
1999-01-01
A micromechanics based computer code to predict the thermal and mechanical properties of woven ceramic matrix composites (CMC) is developed. This computer code, W-CEMCAN (Woven CEramic Matrix Composites ANalyzer), predicts the properties of two-dimensional woven CMC at any temperature and takes into account various constituent geometries and volume fractions. This computer code is used to predict the thermal and mechanical properties of an advanced CMC composed of 0/90 five-harness (5 HS) Sylramic fiber which had been chemically vapor infiltrated (CVI) with boron nitride (BN) and SiC interphase coatings and melt-infiltrated (MI) with SiC. The predictions, based on the bulk constituent properties from the literature, are compared with measured experimental data. Based on the comparison. improved or calibrated properties for the constituent materials are then developed for use by material developers/designers. The computer code is then used to predict the properties of a composite with the same constituents but with different fiber volume fractions. The predictions are compared with measured data and a good agreement is achieved.
NASA Technical Reports Server (NTRS)
Jabs, Heinrich
1992-01-01
Assessments of the behavior of the carbon/epoxy composites in space conditions are described. After an exposure of five years, the mechanical characteristics and the coefficient of thermal expansion are measured and compared to reference values.
Gaaz, Tayser Sumer; Sulong, Abu Bakar; Ansari, M. N. M.; Kadhum, Abdul Amir H.; Nassir, Mohamed H.
2017-01-01
The advancements in material science and technology have made polyurethane (PU) one of the most important renewable polymers. Enhancing the physio-chemical and mechanical properties of PU has become the theme of this and many other studies. One of these enhancements was carried out by adding starch to PU to form new renewable materials called polyurethane-starch composites (PUS). In this study, PUS composites are prepared by adding starch at 0.5, 1.0, 1.5, and 2.0 wt.% to a PU matrix. The mechanical, thermal, and morphological properties of PU and PUS composites were investigated. Scanning electron microscope (SEM) images of PU and PUS fractured surfaces show cracks and agglomeration in PUS at 1.5 wt.% starch. The thermo-mechanical properties of the PUS composites were improved as starch content increased to 1.5 wt.% and declined by more starch loading. Despite this reduction, the mechanical properties were still better than that of neat PU. The mechanical strength increased as starch content increased to 1.5 wt.%. The tensile, flexural, and impact strengths of the PUS composites were found to be 9.62 MPa, 126.04 MPa, and 12.87 × 10−3 J/mm2, respectively, at 1.5 wt.% starch. Thermal studies showed that the thermal stability and crystallization temperature of the PUS composites increased compared to that of PU. The loss modulus curves showed that neat PU crystallizes at 124 °C and at 127 °C for PUS-0.5 wt.% and rises with increasing loading from 0.5 to 2 wt.%. PMID:28773134
Gaaz, Tayser Sumer; Sulong, Abu Bakar; Ansari, M N M; Kadhum, Abdul Amir H; Al-Amiery, Ahmed A; Nassir, Mohamed H
2017-07-10
The advancements in material science and technology have made polyurethane (PU) one of the most important renewable polymers. Enhancing the physio-chemical and mechanical properties of PU has become the theme of this and many other studies. One of these enhancements was carried out by adding starch to PU to form new renewable materials called polyurethane-starch composites (PUS). In this study, PUS composites are prepared by adding starch at 0.5, 1.0, 1.5, and 2.0 wt.% to a PU matrix. The mechanical, thermal, and morphological properties of PU and PUS composites were investigated. Scanning electron microscope (SEM) images of PU and PUS fractured surfaces show cracks and agglomeration in PUS at 1.5 wt.% starch. The thermo-mechanical properties of the PUS composites were improved as starch content increased to 1.5 wt.% and declined by more starch loading. Despite this reduction, the mechanical properties were still better than that of neat PU. The mechanical strength increased as starch content increased to 1.5 wt.%. The tensile, flexural, and impact strengths of the PUS composites were found to be 9.62 MPa, 126.04 MPa, and 12.87 × 10 -3 J/mm², respectively, at 1.5 wt.% starch. Thermal studies showed that the thermal stability and crystallization temperature of the PUS composites increased compared to that of PU. The loss modulus curves showed that neat PU crystallizes at 124 °C and at 127 °C for PUS-0.5 wt.% and rises with increasing loading from 0.5 to 2 wt.%.
Thermal stability of poly(ethylene-co-vinyl acetate) based materials
Patel, Mogon; Pitts, Simon; Beavis, Peter; ...
2013-03-26
The thermal stability properties of poly (ethylene-co-vinyl acetate) composites have been studied in support of our core programmes in materials qualification and life assessment. The material is used as a binder phase for boron particles in highly filled (70 wt %) composites. Our studies show that the uncured resin readily accumulates acetic acid through hydrolysis of the pendent acetate groups which alters the acidity (pH) of the material. Thermal desorption studies in combination with gas-chromatography-mass spectrometry show that the resin readily evolves acetic acid when thermally aged to temperatures up to 75°C. Gel Permeation Chromatography (GPC) suggests that thermal ageingmore » induces a gradual reduction in resin molecular weight and confirms the susceptibility of the material to chain scission. Heating at elevated temperatures in excess of 300oC is required to induce significant changes in the carbon skeleton through deacetylation and dehydration processes and the production of unsaturated main chain double bonds. Overall, the mechanical response of these filled composites are found to be relatively complex with the extent of polymer-filler interactions possibly playing an important role in determining key engineering properties. Mechanical property studies confirm a small but significant decrease in modulus presumably linked to thermally induced chain scission of the EVA binder.« less
Thermal properties of alkali-activated aluminosilicates
NASA Astrophysics Data System (ADS)
Florian, Pavel; Valentova, Katerina; Fiala, Lukas; Zmeskal, Oldrich
2017-07-01
The paper is focused on measurements and evaluation of thermal properties of alkali-activated aluminosilicates (AAA) with various carbon admixtures. Such composites consisting of blast-furnace slag, quartz sand, water glass as alkali activator and small amount of electrically conductive carbon admixture exhibit better electric and thermal properties than the reference material. Such enhancement opens up new practical applications, such as designing of snow-melting, de-icing or self-sensing systems that do not need any external sensors to detect current condition of building material. Thermal properties of the studied materials were measured by the step-wise transient method and mutually compared.
NASA Technical Reports Server (NTRS)
Jabs, Heinrich
1991-01-01
The experiment objectives are: to detect a variation of the coefficient of thermal expansion (CTE) of composite samples; to detect an evolution of mechanical properties; to compare the behavior of two epoxy resins. The CTE is measured by interferometric method in a vacuum chamber. The following mechanical tests are achieved on the samples: interlaminar shear strength; flexural strength; flatwise tensile strength. The results are reported.
Exploring the influence of texture and composition on the thermal transport properties of mudstones
NASA Astrophysics Data System (ADS)
Kenderes, S. M.; Hofmeister, A. M.; Merriman, J. D.; Whittington, A. G.
2017-12-01
The thermal history of sedimentary basins depends strongly on the thermal transport properties of the rocks within the basin. Mudstones are compositionally diverse, varying both chemically and with modal mineralogy, which are known to affect the thermal transport properties of earth materials. To explore the influence of composition and texture on the thermal transport properties of mudstones, we have measured the thermal diffusivity (D) and isobaric heat capacity (CP) of 12 mudstones using the contact-free laser flash analysis (LFA) and differential scanning calorimetry (DSC). At 20°C, D values of the shales range from 0.318 to 1.214 mm2·s-1 and CP values range from 799 to 918 J·kg-1·°C-1 and at 300°C, D values range from 0.227 to 0.582 mm2·s-1 and CP values range from 1095 to 1344 J·kg-1·°C-1. The mudstones with the highest D values, and lowest CP values are green micaceous or calcareous siltstones respectively, whereas the mudstones with the lowest D values, and highest CP values are black, claystones with 9% organic carbon. This suggests that organic carbon content and, to a lesser extent, the grainsize influence the thermal transport properties of these rocks. The lower D values and higher CP values cause organic rich claystones to absorb and transmit heat differently than other types of mudstones. This is especially true at lower temperatures, where the difference in D values is much greater than at higher temperatures. Additionally, when compared to other sedimentary rocks, shales generally have lower D values and higher CP values. These results also highlight the necessity of using rock type specific values in heat transport numerical models.
Composite materials research and education program: The NASA-Virginia Tech composites program
NASA Technical Reports Server (NTRS)
Herakovich, C. T.
1980-01-01
Major areas of study include: (1) edge effects in finite width laminated composites subjected to mechanical, thermal and hygroscopic loading with temperature dependent material properties and the influence of edge effects on the initiation of failure; (2) shear and compression testing of composite materials at room and elevated temperatures; (3) optical techniques for precise measurement of coefficients of thermal expansion of composites; (4) models for the nonlinear behavior of composites including material nonlinearity and damage accumulation and verification of the models under biaxial loading; (5) compressive failure of graphite/epoxy plates with circular holes and the buckling of composite cylinders under combined compression and torsion; (6) nonlinear mechanical properties of borsic/aluminum, graphite/polyimide and boron/aluminum; (7) the strength characteristics of spliced sandwich panels; and (8) curved graphite/epoxy panels subjected to internal pressure.
Fabrication and thermophysical property characterization of UN/U 3Si 2 composite fuel forms
White, Joshua Taylor; Travis, Austin William; Dunwoody, John Tyler; ...
2017-09-21
High uranium density composite fuels composed of UN and U 3Si 2 have been fabricated using a liquid phase sintering route at temperatures between 1873 K and 1973 K and spanning compositions of 10 vol% to 40 vol% U 3Si 2. Microstructural analysis and phase characterization revealed the formation of an U-Si-N phase of unknown structure. Microcracking was observed in the U-Si portion of the composite microstructure that likely originates from the mismatched coefficient of thermal expansion between the UN and U 3Si 2 leading to stresses on heating and cooling of the composite. Thermal expansion coefficient, thermal diffusivity, andmore » thermal conductivity were characterized for each of the compositions as a function of temperature to 1673 K. Hysteresis is observed in the thermal diffusivity for the 20 vol% through 40 vol% specimens between room temperature and 1273 K, which is attributed to the microcracking in the U-Si phase. Thermal conductivity of the composites was modeled using the MOOSE framework based on the collected microstructure data. In conclusion, the impact of irradiation on thermal conductivity was also simulated for this class of composite materials.« less
Fabrication and thermophysical property characterization of UN/U 3Si 2 composite fuel forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Joshua Taylor; Travis, Austin William; Dunwoody, John Tyler
High uranium density composite fuels composed of UN and U 3Si 2 have been fabricated using a liquid phase sintering route at temperatures between 1873 K and 1973 K and spanning compositions of 10 vol% to 40 vol% U 3Si 2. Microstructural analysis and phase characterization revealed the formation of an U-Si-N phase of unknown structure. Microcracking was observed in the U-Si portion of the composite microstructure that likely originates from the mismatched coefficient of thermal expansion between the UN and U 3Si 2 leading to stresses on heating and cooling of the composite. Thermal expansion coefficient, thermal diffusivity, andmore » thermal conductivity were characterized for each of the compositions as a function of temperature to 1673 K. Hysteresis is observed in the thermal diffusivity for the 20 vol% through 40 vol% specimens between room temperature and 1273 K, which is attributed to the microcracking in the U-Si phase. Thermal conductivity of the composites was modeled using the MOOSE framework based on the collected microstructure data. In conclusion, the impact of irradiation on thermal conductivity was also simulated for this class of composite materials.« less
NASA Astrophysics Data System (ADS)
Qian, Yong; Lan, Yanfei; Xu, Jianping; Ye, Fucheng; Dai, Shizhen
2014-09-01
In this study, a facile and effective strategy is proposed to fabricate polyimide (PI)-based nanocomposites containing functionalized graphene oxide (FGO) nanosheets by in-situ polymerization and thermal imidization. Highly dispersed CIGO which was firstly obtained by graphene oxide (GO) functionalized with cyclohexyl isocyanate (CI) exhibited excellent dispersibility and compatibility in polyamic acid (PAA, precursor of PI) matrix via in-situ polymerization. Then the CIGO sheets were partially thermally reduced efficiently to FGO during the thermal imidization process of PAA. The incorporation of FGO sheets significantly affected the macroscopic properties of the PI-based composites. A 56.5% increase in the tensile strength and a 43.8% improvement in the Young's modulus were achieved for 2.0 wt% FGO loading. Furthermore, the thermal stability and glass transition temperature (Tg) were improved by adding FGO. In addition, the hydrophobic behavior of the PI-FGO composite clearly improved because of the excellent hydrophobic properties of FGO. The success of this approach provides a good rational for developing high-performance polymer-based composite materials.
Investigation of thermal fatigue in fiber composite materials. [(thermal cycling tests)
NASA Technical Reports Server (NTRS)
Fahmy, A. A.; Cunningham, T. G.
1976-01-01
Graphite-epoxy laminates were thermally cycled to determine the effects of thermal cycles on tensile properties and thermal expansion coefficients of the laminates. Three 12-ply laminate configurations were subjected to up to 5,000 thermal cycles. The cumulative effect of the thermal cycles was determined by destructive inspection (electron micrographs and tensile tests) of samples after progressively larger numbers of cycles. After thermal cycling, the materials' tensile strengths, moduli, and thermal expansion coefficients were significantly lower than for the materials as fabricated. Most of the degradation of properties occurred after only a few cycles. The property degradation was attributed primarily to the progressive development of matrix cracks whose locations depended upon the layup orientation of the laminate.
Thermoelectric properties of higher manganese silicide/multi-walled carbon nanotube composites.
Truong, D Y Nhi; Kleinke, Holger; Gascoin, Franck
2014-10-28
Composites made of Higher Manganese Silicide (HMS)-based compound MnSi1.75Ge0.02 and multi-walled carbon nanotubes (MWCNTs) were prepared by an easy and effective method including mechanical milling under mild conditions and reactive spark plasma sintering. SEM compositional mappings show a homogeneous dispersion of MWCNTs in the HMS matrix. Electronic and thermal transport properties were measured from room temperature to 875 K. While power factors are virtually unchanged by the addition of MWCNTs, the lattice thermal conductivity is significantly reduced by about 30%. As a consequence, the maximum figure of merit for the composites with 1 wt% MWCNTs is improved by about 20% compared to the MWCNT free HMS-based sample.
Damage tolerant functionally graded materials for advanced wear and friction applications
NASA Astrophysics Data System (ADS)
Prchlik, Lubos
The research work presented in this dissertation focused on processing effects, microstructure development, characterization and performance evaluation of composite and graded coatings used for friction and wear control. The following issues were addressed. (1) Definition of prerequisites for a successful composite and graded coating formation by means of thermal spraying. (2) Improvement of characterization methods available for homogenous thermally sprayed coating and their extension to composite and graded materials. (3) Development of novel characterization methods specifically for FGMs, with a focus on through thickness property measurement by indentation and in-situ curvature techniques. (4) Design of composite materials with improved properties compared to homogenous coatings. (5) Fabrication and performance assessment of FGM with improved wear and impact damage properties. Materials. The materials studied included several material systems relevant to low friction and contact damage tolerant applications: MO-Mo2C, WC-Co cermets as materials commonly used sliding components of industrial machinery and NiCrAlY/8%-Yttria Partially Stabilized Zirconia composites as a potential solution for abradable sections of gas turbines and aircraft engines. In addition, uniform coatings such as molybdenum and Ni5%Al alloy were evaluated as model system to assess the influence of microstructure variation onto the mechanical property and wear response. Methods. The contact response of the materials was investigated through several techniques. These included methods evaluating the relevant intrinsic coating properties such as elastic modulus, residual stress, fracture toughness, scratch resistance and tests measuring the abrasion and friction-sliding behavior. Dry-sand and wet two-body abrasion testing was performed in addition to traditional ball on disc sliding tests. Among all characterization techniques the spherical indentation deserved most attention and enabled to measure elastic-plastic properties of uniform and graded structures. In-situ curvature method used for residual stress and elastic modulus measurement was extended from uniform coatings to coatings with compositional/property gradients. Properties of composite and graded materials were measured using the inverse analysis. Conclusions. The specifics of the elastic-plastic response for thermally sprayed coatings were demonstrated. These included the strain dependence of elastic modulus and damage accumulation related to unloading/reloading loop formation. The measurement of elastic-plastic characteristics of composite coatings revealed the mixing and bonding mechanisms unique for thermally sprayed materials. Microstructural and compositional factors governing the frictional vs. abrasion response of carbide-metallic composite coatings were described. The measurement of abrasion resistance and friction sliding properties demonstrated that grading of cermet and ceramic coatings by adding moderate amount of metallic alloys can enhance elastic-properties radically and have a beneficial effect onto the coating performance.
The composition effect on the thermal and optical properties across CdZnTe crystals
NASA Astrophysics Data System (ADS)
Strzałkowski, K.
2016-11-01
Cd1-x Zn x Te mixed crystals investigated in this work were grown from the melt using the vertical Bridgman-Stockbarger method in the whole range of composition 0 < x < 1 that is from one binary crystal (CdTe) to another (ZnTe). The real composition of grown crystals was measured with the SEM/EDS method along the growth axis. The segregation coefficient of Zn in a CdTe matrix has been evaluated as being close to unity. The energy gap as a function of the composition was determined from transmission spectroscopy. Thanks to that, the bowing parameter of this ternary alloy was found to be 0.458. In this work the systematical study of thermal properties of Cd1-x Zn x Te alloys from one binary crystal (CdTe) to another (ZnTe) grown by the vertical Bridgman technique were undertaken for the first time. The thermal diffusivity and effusivity of the investigated crystals were derived from the experimental data and allowed the thermal conductivity to be calculated. Diagrams of the thermal conductivity versus composition were analyzed applying the model for mixed semiconducting crystals given by Sadao Adachi. Thanks to that, the contribution of the thermal resistivity arising from the lattice disorder to the total resistivity of the crystal has been determined.
NASA Astrophysics Data System (ADS)
He, Y.; Farokhzadeh, K.; Edrisy, A.
2017-04-01
Perfluoroalkoxy (PFA) is a potential polymer coating material for low-temperature waste heat recovery in heat exchangers. Nonetheless, poor thermal conductivity, low strength and susceptibility to surface degradation by erosion/wear pose restrictions in its application. In this study, four types of fillers, namely graphite, silicon carbide, alumina and boron nitride, were introduced to enhance the thermal, mechanical and tribological properties in PFA coatings. The thermal diffusivity and specific heat capacity of the composites (reinforced with 20 wt.% filler) were also measured using laser flash and differential scanning calorimetry techniques, respectively. The results indicated that the addition of graphite or boron nitride increased the thermal conductivity of PFA by at least 2.8 orders of magnitude, while the composites with the same weight fraction of alumina or silicon carbide showed 20-80% rise in thermal conductivity. The micromechanical deformation and tribological behavior of composite coatings, electrostatically sprayed on steel substrates, were investigated by means of instrumented indentation and scratch tests. The deformation response and friction characteristics were investigated, and the failure mechanisms were identified. Surface hardness, roughness and structure of fillers influenced the sliding performance of the composite coatings. PFA coatings filled with Al2O3 or SiC particles showed high load-bearing capacity under sliding conditions. Conversely, BN- and graphite-filled PFA coatings exhibited lower interfacial adhesion to steel substrate and were prone to failure at relatively lower applied loads.
Influence of SiO2 Addition on Properties of PTFE/TiO2 Microwave Composites
NASA Astrophysics Data System (ADS)
Yuan, Ying; Wang, Jie; Yao, Minghao; Tang, Bin; Li, Enzhu; Zhang, Shuren
2018-01-01
Composite substrates for microwave circuit applications have been fabricated by filling polytetrafluoroethylene (PTFE) polymer matrix with ceramic powder consisting of rutile TiO2 ( D 50 ≈ 5 μm) partially substituted with fused amorphous SiO2 ( D 50 ≈ 8 μm) with composition x vol.% SiO2 + (50 - x) vol.% TiO2 ( x = 0, 3, 6, 9, 12), and the effects of SiO2 addition on characteristics such as the density, moisture absorption, microwave dielectric properties, and thermal properties systematically investigated. The results show that the filler was well distributed throughout the matrix. High dielectric constant ( ɛ r > 7.19) and extremely low moisture absorption (<0.02%) were obtained, resulting from the relatively high density of the composites. The ceramic particles served as barriers and improved the thermal stability of the PTFE polymer, retarding its decomposition. The temperature coefficient of dielectric constant ( τ ɛ ) of the composites shifted toward the positive direction (from - 309 ppm/°C to - 179 ppm/°C) as the SiO2 content was increased, while the coefficient of thermal expansion remained almost unchanged (˜ 35 ppm/°C).
Novel Formulations of Phase Change Materials—Epoxy Composites for Thermal Energy Storage
Alvarez Feijoo, Miguel Angel
2018-01-01
This research aimed to evaluate the thermal properties of new formulations of phase change materials (PCMs)-epoxy composites, containing a thickening agent and a thermally conductive phase. The composite specimens produced consisted of composites fabricated using (a) inorganic PCMs (hydrated salts), epoxy resins and aluminum particulates or (b) organic PCM (paraffin), epoxy resins, and copper particles. Differential Scanning Calorimetry (DSC) was used to analyze the thermal behavior of the samples, while hardness measurements were used to determine changes in mechanical properties at diverse PCM and conductive phase loading values. The results indicate that the epoxy matrix can act as a container for the PCM phase without hindering the heat-absorbing behavior of the PCMs employed. Organic PCMs presented reversible phase transformations over multiple cycles, an advantage that was lacking in their inorganic counterparts. The enthalpy of the organic PCM-epoxy specimens increased linearly with the PCM content in the matrix. The use of thickening agents prevented phase segregation issues and allowed the fabrication of specimens containing up to 40% PCM, a loading significantly higher than others reported. The conductive phase seemed to improve the heat transfer and the mechanical properties of the composites when present in low percentages (<10 wt %); however, given its mass, the enthalpy detected in the composites was reduced as their loading further increased. The conductive phase combination (PCM + epoxy resin + hardener + thickening agent) presents great potential as a heat-absorbing material at the temperatures employed. PMID:29373538
NASA Astrophysics Data System (ADS)
Soltani, Zahra; Beigzadeh, Amirmohammad; Ziaie, Farhood; Asadi, Eskandar
2016-10-01
In this paper the effects of particle size and weight percentage of the reinforcement phase on the absorption ability of thermal neutron by HDPE/B4C composites were investigated by means of Monte-Carlo simulation method using MCNP code and experimental studies. The composite samples were prepared using the HDPE filled with different weight percentages of Boron carbide powder in the form of micro and nano particles. Micro and nano composite were prepared under the similar mixing and moulding processes. The samples were subjected to thermal neutron radiation. Neutron shielding efficiency in terms of the neutron transmission fractions of the composite samples were investigated and compared with simulation results. According to the simulation results, the particle size of the radiation shielding material has an important role on the shielding efficiency. By decreasing the particle size of shielding material in each weight percentages of the reinforcement phase, better radiation shielding properties were obtained. It seems that, decreasing the particle size and homogeneous distribution of nano forms of B4C particles, cause to increase the collision probability between the incident thermal neutron and the shielding material which consequently improve the radiation shielding properties. So, this result, propose the feasibility of nano composite as shielding material to have a high performance shielding characteristic, low weight and low thick shielding along with economical benefit.
Novel Formulations of Phase Change Materials-Epoxy Composites for Thermal Energy Storage.
Arce, Maria Elena; Alvarez Feijoo, Miguel Angel; Suarez Garcia, Andres; Luhrs, Claudia C
2018-01-26
This research aimed to evaluate the thermal properties of new formulations of phase change materials (PCMs)-epoxy composites, containing a thickening agent and a thermally conductive phase. The composite specimens produced consisted of composites fabricated using (a) inorganic PCMs (hydrated salts), epoxy resins and aluminum particulates or (b) organic PCM (paraffin), epoxy resins, and copper particles. Differential Scanning Calorimetry (DSC) was used to analyze the thermal behavior of the samples, while hardness measurements were used to determine changes in mechanical properties at diverse PCM and conductive phase loading values. The results indicate that the epoxy matrix can act as a container for the PCM phase without hindering the heat-absorbing behavior of the PCMs employed. Organic PCMs presented reversible phase transformations over multiple cycles, an advantage that was lacking in their inorganic counterparts. The enthalpy of the organic PCM-epoxy specimens increased linearly with the PCM content in the matrix. The use of thickening agents prevented phase segregation issues and allowed the fabrication of specimens containing up to 40% PCM, a loading significantly higher than others reported. The conductive phase seemed to improve the heat transfer and the mechanical properties of the composites when present in low percentages (<10 wt %); however, given its mass, the enthalpy detected in the composites was reduced as their loading further increased. The conductive phase combination (PCM + epoxy resin + hardener + thickening agent) presents great potential as a heat-absorbing material at the temperatures employed.
Thermal Conductivity of Carbon Nanotube Composite Films
NASA Technical Reports Server (NTRS)
Ngo, Quoc; Cruden, Brett A.; Cassell, Alan M.; Walker, Megan D.; Koehne, Jessica E.; Meyyappan, M.; Li, Jun; Yang, Cary Y.
2004-01-01
State-of-the-art ICs for microprocessors routinely dissipate power densities on the order of 50 W/sq cm. This large power is due to the localized heating of ICs operating at high frequencies, and must be managed for future high-frequency microelectronic applications. Our approach involves finding new and efficient thermally conductive materials. Exploiting carbon nanotube (CNT) films and composites for their superior axial thermal conductance properties has the potential for such an application requiring efficient heat transfer. In this work, we present thermal contact resistance measurement results for CNT and CNT-Cu composite films. It is shown that Cu-filled CNT arrays enhance thermal conductance when compared to as-grown CNT arrays. Furthermore, the CNT-Cu composite material provides a mechanically robust alternative to current IC packaging technology.
Kim, Jong Won; Lee, Joon Seok
2016-01-01
Generally, to produce film-type thermoplastic composites with good mechanical properties, high-performance reinforcement films are used. In this case, films used as a matrix are difficult to impregnate into tow due to their high melt viscosity and high molecular weight. To solve the problem, in this paper, three polypropylene (PP) films with different melt viscosities were used separately to produce film-type thermoplastic composites. A film with a low melt viscosity was stacked so that tow was impregnated first and a film with a higher melt viscosity was then stacked to produce the composite. Four different composites were produced by regulating the pressure rising time. The thickness, density, fiber volume fraction (Vf), and void content (Vc) were analyzed to identify the physical properties and compare them in terms of film stacking types. The thermal properties were identified by using differential scanning calorimetry (DSC) and dynamical mechanical thermal analysis (DMTA). The tensile property, flexural property, interlaminar shear strength (ILSS), and scanning electron microscopy (SEM) were performed to identify the mechanical properties. For the films with low molecular weight, impregnation could be completed fast but showed low strength. Additionally, the films with high molecular weight completed impregnation slowly but showed high strength. Therefore, appropriate films should be used considering the forming process time and their mechanical properties to produce film-type composites. PMID:28773572
NASA Astrophysics Data System (ADS)
Huang, Shuigen; Vanmeensel, Kim; van der Biest, Omer; Vleugels, Jozef
2011-03-01
ZrO2-WC composites exhibit comparable mechanical properties as traditional WC-Co materials, which provides an opportunity to partially replace WC-Co for some applications. In this study, 2 mol.% Y2O3 stabilized ZrO2 composites with 40 vol.% WC were consolidated in the 1150°C-1850°C range under a pressure of 60 MPa by pulsed electric current sintering (PECS). The densification behavior, microstructure and phase constitution of the composites were investigated to clarify the role of the sintering temperature on the grain growth, mechanical properties and thermal stability of ZrO2 and WC components. Analysis results indicated that the composites sintered at 1350°C and 1450°C exhibited the highest tetragonal ZrO2 phase transformability, maximum toughness, and hardness and an optimal flexural strength. Chemical reaction of ZrO2 and C, originating from the graphite die, was detected in the composite PECS for 20 min at 1850°C in vacuum.
Properties of cellulose/Thespesia lampas short fibers bio-composite films.
Ashok, B; Reddy, K Obi; Madhukar, K; Cai, J; Zhang, L; Rajulu, A Varada
2015-01-01
Cellulose was dissolved in pre cooled environment friendly solvent (aq.7% sodium hydroxide+12% urea) and regenerated with 5%H2SO4 as coagulation bath. Using cellulose as matrix and alkali treated short natural fibers extracted from the newly identified Thespesia lampas plant as fillers the green composite films were prepared. The films were found to be non toxic. The effect of fiber loading on the tensile properties and thermal stability was studied. The fractographs indicated better interfacial bonding between the fibers and cellulose. The crystallinity of the composite films was found to be lower than the matrix and decreased with increasing fiber content. In spite of better interfacial bonding, the tensile properties of the composites were found to be lower than those of the matrix and decreased with increasing fiber content and this behavior was attributed to the random orientation of the fibers in the composites. The thermal stability of the composite films was higher than the matrix and increased with fiber content. Copyright © 2015 Elsevier Ltd. All rights reserved.
Electron Beam Exposure of Thermal Control Paints on Carbon-Carbon and Carbon-Polyimide Composites
NASA Technical Reports Server (NTRS)
Jaworske, Donald A.
2006-01-01
Carbon-carbon and carbon-polyimide composites are being considered for use as radiator face sheets or fins for space radiator applications. Several traditional white thermal control paints are being considered for the surface of the composite face sheets or fins. One threat to radiator performance is high energy electrons. The durability of the thermal control paints applied to the carbon-carbon and carbon-polyimide composites was evaluated after extended exposure to 4.5 MeV electrons. Electron exposure was conducted under argon utilizing a Mylar(TradeMark) bag enclosure. Solar absorptance and infrared emittance was evaluated before and after exposure to identify optical properties degradation. Adhesion of the paints to the carbon-carbon and carbon-polyimide composite substrates was also of interest. Adhesion was evaluated on pristine and electron beam exposed coupons using a variation of the ASTM D-3359 tape test. Results of the optical properties evaluation and the adhesion tape tests are summarized.
Thermal-mechanical properties of epoxy-impregnated Bi-2212/Ag composite
Li, Pei; Wang, Yang; Fermi National Accelerator Lab.; ...
2014-11-26
In this study, knowledge of the thermal-mechanical properties of epoxy/superconductor/insulation composite is important for designing, fabricating, and operating epoxy impregnated high field superconducting magnets near their ultimate potentials. We report measurements of the modulus of elasticity, Poisson's ratio, and the coefficient of thermal contraction of epoxy-impregnated composite made from the state-of-the-art powder-in-tube multifilamentary Ag/Bi 2Sr 2CaCu 2O x round wire at room temperature and cryogenic temperatures. Stress-strain curves of samples made from single-strand and Rutherford cables were tested under both monotonic and cyclic compressive loads, with single strands insulated using a thin TiO 2 insulation coating and the Rutherford cablemore » insulated with a braided ceramic sleeve.« less
The thermal and mechanical stability of composite materials for space structures
NASA Technical Reports Server (NTRS)
Tompkins, S. S.; Sykes, G. F.; Bowles, D. E.
1985-01-01
A continuing research objective of the National Aeronautical and Space Administration (NASA) is to develop advanced composite materials for space structures. The thrust of this research is to gain fundamental understanding of the performance of advanced composites in the space environment. The emphasis has been to identify and model changes in the thermal-physical properties due to induced damage and develop improved materials.
NASA Astrophysics Data System (ADS)
Lian, Youyun; Liu, Xiang; Feng, Fan; Song, Jiupeng; Yan, Binyou; Wang, Yingmin; Wang, Jianbao; Chen, Jiming
2017-12-01
The effects of the addition of Y2O3 and hot-deformation on the mechanical properties of tungsten (W) have been studied. The processing route comprises a doping technique for the distribution of Y2O3 particles in a tungsten matrix, conventional sintering in a hydrogen environment, and high-energy-rate forging (HERF). The microstructure of the composite was characterized by using transmission electron microscopy and electron backscattering diffraction imaging technique, and its mechanical properties were studied by means of tensile testing. The thermal shock response of the HERF processed W-Y2O3 was evaluated by applying edge-localized mode-like loads (100 pulses) with a pulse duration of 1 ms and an absorbed power density of up to 1 GW m-2 at various temperatures between room temperature and 200 °C. HERF processing has produced elongated W grains with preferred orientations and a high density of structure defects in the composite. The composite material exhibits high tensile strength and good ductility, and a thermal shock cracking threshold lower than 100 °C.
Thermodynamic properties and transport coefficients of two-temperature helium thermal plasmas
NASA Astrophysics Data System (ADS)
Guo, Xiaoxue; Murphy, Anthony B.; Li, Xingwen
2017-03-01
Helium thermal plasmas are in widespread use in arc welding and many other industrial applications. Simulation of these processes relies on accurate plasma property data, such as plasma composition, thermodynamic properties and transport coefficients. Departures from LTE (local thermodynamic equilibrium) generally occur in some regions of helium plasmas. In this paper, properties are calculated allowing for different values of the electron temperature, T e, and heavy-species temperature, T h, at atmospheric pressure from 300 K to 30 000 K. The plasma composition is first calculated using the mass action law, and the two-temperature thermodynamic properties are then derived. The viscosity, diffusion coefficients, electrical conductivity and thermal conductivity of the two-temperature helium thermal plasma are obtained using a recently-developed method that retains coupling between electrons and heavy species by including the electron-heavy-species collision term in the heavy-species Boltzmann equation. It is shown that the viscosity and the diffusion coefficients strongly depend on non-equilibrium ratio θ (θ ={{T}\\text{e}}/{{T}\\text{h}} ), through the plasma composition and the collision integrals. The electrical conductivity, which depends on the electron number density and ordinary diffusion coefficients, and the thermal conductivity have similar dependencies. The choice of definition of the Debye length is shown to affect the electrical conductivity significantly for θ > 1. By comparing with literature data, it is shown that the coupling between electrons and heavy species has a significant influence on the electrical conductivity, but not on the viscosity. Plasma properties are tabulated in the supplementary data.
NASA Astrophysics Data System (ADS)
Schindler, Stefan; Mergheim, Julia; Zimmermann, Marco; Aurich, Jan C.; Steinmann, Paul
2017-01-01
A two-scale material modeling approach is adopted in order to determine macroscopic thermal and elastic constitutive laws and the respective parameters for metal matrix composite (MMC). Since the common homogenization framework violates the thermodynamical consistency for non-constant temperature fields, i.e., the dissipation is not conserved through the scale transition, the respective error is calculated numerically in order to prove the applicability of the homogenization method. The thermomechanical homogenization is applied to compute the macroscopic mass density, thermal expansion, elasticity, heat capacity and thermal conductivity for two specific MMCs, i.e., aluminum alloy Al2024 reinforced with 17 or 30 % silicon carbide particles. The temperature dependency of the material properties has been considered in the range from 0 to 500°C, the melting temperature of the alloy. The numerically determined material properties are validated with experimental data from the literature as far as possible.
Sodium alginate/graphene oxide composite films with enhanced thermal and mechanical properties.
Ionita, Mariana; Pandele, Madalina Andreea; Iovu, Horia
2013-04-15
Sodium alginate/graphene oxide (Al/GO) nanocomposite films with different loading levels of graphene oxide were prepared by casting from a suspension of the two components. The structure, morphologies and properties of Al/GO films were characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning (SEM) and transmission electron microscopy (TEM), thermal gravimetric (TG) analysis, and tensile tests. The results revealed that hydrogen bonding and high interfacial adhesion between GO filler and Al matrix significantly changed thermal stability and mechanical properties of the nanocomposite films. The tensile strength (σ) and Young's modulus (E) of Al films containing 6 wt% GO increased from 71 MPa and 0.85 GPa to 113 MPa and 4.18 GPa, respectively. In addition, TG analysis showed that the thermal stability of Al/GO composite films was better than that of neat Al film. Copyright © 2013 Elsevier Ltd. All rights reserved.
Thermomechanical Performance of C and SiC Multilayer, Fiber-Reinforced, CVI SiC Matrix Composites
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.; Singh, Mrityunjay
2004-01-01
Hybrid fiber approaches have been attempted in the past to alloy desirable properties of different fiber-types for mechanical properties, thermal stress management, and oxidation resistance. Such an approach has potential for the CrSiC and SiCrSiC composite systems. SiC matrix composites with different stacking sequences of woven C fiber (T300) layers and woven Sic fiber (Hi-NicalonTM) layers were fabricated using the standard CVI process. Delamination occurred to some extent due to thermal mismatch for all of the composites. However, for the composites with a more uniform stacking sequence, minimal delamination occurred, enabling tensile properties to be determined at room temperature and elevated temperatures (stress-rupture in air). Composites were seal-coated with a CVI SiC layer as well as a proprietary C-B-Si (CBS) layer. Definite improvement in rupture behavior was observed in air for composites with increasing SiC fiber content and a CBS layer. The results will be compared to standard C fiber reinforced CVI SiC matrix and Hi-Nicalon reinforced CVI SiC matrix composites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Qiping; He, Xinbo, E-mail: xb_he@163.com; Ren, Shubin
2015-07-15
An effective method for preparing tungsten carbide coating on diamond surfaces was proposed to improve the interface bonding between diamond and copper. The WC coating was formed on the diamond surfaces with a reaction medium of WO{sub 3} in mixed molten NaCl–KCl salts and the copper–diamond composites were obtained by vacuum pressure infiltration of WC-coated diamond particles with pure copper. The microstructure of interface bonding between diamond and copper was discussed. Thermal conductivity and thermal expansion behavior of the obtained copper–diamond composites were investigated. Results indicated that the thermal conductivity of as-fabricated composite reached 658 W m{sup −} {sup 1}more » K{sup −} {sup 1}. Significant reduction in coefficient of thermal expansion of the composite compared with that of pure copper was obtained. - Highlights: • WC coating was successfully synthesized on diamond particles in molten salts. • WC coating obviously promoted the wettability of diamond and copper matrix. • WC coating greatly enhanced the thermal conductivity of Cu–diamond composite. • The composites are suitable candidates for heat sink applications.« less
Phase-Transformation-Induced Extra Thermal Expansion Behavior of (SrxBa1–x)TiO3/Cu Composite
Sheng, Jie; Wang, Lidong; Li, Shouwei; Yin, Benke; Liu, Xiangli; Fei, Wei-Dong
2016-01-01
The properties of metal matrix composites (MMCs) can be optimized effectively through adjusting the type or the volume fraction of reinforcement. Generally, the coefficient of thermal expansion (CTE) of MMCs can be reduced by increasing the volume fraction of the reinforcement with lower CTE than metal matrix. However, it is great challenge to fabricate low CTE MMCs with low reinforcement volume fraction because of the limitation of reinforcement CTEs. SrxBa1−xTiO3 (SBT) powder presents negative thermal expansion behavior during the phase transformation from tetragonal to cubic phase. Here, we demonstrate that the phase transformation of SBT can be utilized to reduce and design the thermal expansion properties of SBT particle-reinforced Cu (SBT/Cu) composite, and ultralow CTE can be obtained in SBT/Cu composite. The X-ray diffraction analysis on heating indicates that the temperature range of phase transformation is extended greatly, therefore, the low CTE can be achieved within wide temperature range. Landau-Devonshire theory study on the phase transformation behaviors of SBT particles in the composite indicates that thermal mismatch stress significantly affects the Curie temperature of SBT particles and the CTE of the composite. The results given in the present study provide a new approach to design the MMCs with low CTE. PMID:27255420
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Jiazhuo; Zhang, Kun; Zhao, Qinghua
Novel LDH intercalated with organic aliphatic long-chain anion was large-scale synthesized innovatively by high-energy ball milling in one pot. The linear low density polyethylene (LLDPE)/layered double hydroxides (LDH) composite films with enhanced heat retention, thermal, mechanical, optical and water vapor barrier properties were fabricated by melt blending and blowing process. FT IR, XRD, SEM results show that LDH particles were dispersed uniformly in the LLDPE composite films. Particularly, LLDPE composite film with 1% LDH exhibited the optimal performance among all the composite films with a 60.36% enhancement in the water vapor barrier property and a 45.73 °C increase in themore » temperature of maximum mass loss rate compared with pure LLDPE film. Furthermore, the improved infrared absorbance (1180–914 cm{sup −1}) of LLDPE/LDH films revealed the significant enhancement of heat retention. Therefore, this study prompts the application of LLDPE/LDH films as agricultural films with superior heat retention. - Graphical abstract: The fabrication process of LLDPE/LDH composite films. - Highlights: • LDH with basal spacing of 4.07 nm was synthesized by high-energy ball milling. • LLDPE composite films with homogeneous LDH dispersion were fabricated. • The properties of LLDPE/LDH composite films were improved. • LLDPE/LDH composite films show superior heat retention property.« less
NASA Astrophysics Data System (ADS)
Brzyski, Przemysław; Widomski, Marcin
2017-07-01
The use of waste plants in building materials production is consistent with the principles of sustainable development, including waste management, CO2 balance, biodegradability of the material e.g. after building demolition. The porous structure of plant materials determines their usability as the insulation materials. An example of plant applicable in the construction industry is the industrial hemp. The shives are produced from the wooden core of the hemp stem as lightweight insulating filler in the composite based on lime binder. The discussed hemp-lime composite, due to the presence of lightweight, porous organic aggregates exhibits satisfactory thermal insulation properties and is used as filling and insulation of walls (as well as roofs and floors) in buildings of the wooden frame construction. The irregular shape of shives and their low density causes nonhomogenous compaction of composite and the formation of voids between the randomly arranged shives. In this paper the series of hemp-lime composites were tested. Apart from hemp shives, an additional aggregate - expanded perlite was used as a fine, lightweight, thermal insulating filler. Application of the additional aggregate was aimed to fill the voids between hemp shives and to investigate its influence on the physical properties of composite: apparent density, total porosity, water absorption and thermal conductivity.
Interpenetrating polymer networks from acetylene terminated materials
NASA Technical Reports Server (NTRS)
Connell, J. W.; Hergenrother, P. M.
1989-01-01
As part of a program to develop high temperature/high performance structural resins for aerospace applications, the chemistry and properties of a novel class of interpenetrating polymer networks (IPNs) were investigated. These IPNs consist of a simple diacetylenic compound (aspartimide) blended with an acetylene terminated arylene ether oligomer. Various compositional blends were prepared and thermally cured to evaluate the effect of crosslink density on resin properties. The cured IPNs exhibited glass transition temperatures ranging from 197 to 254 C depending upon the composition and cure temperature. The solvent resistance, fracture toughness and coefficient of thermal expansion of the cured blends were related to the crosslink density. Isothermal aging of neat resin moldings, adhesive and composite specimens showed a postcure effect which resulted in improved elevated temperature properties. The chemistry, physical and mechanical properties of these materials will be discussed.
Reinforcement of nylon 6,6/nylon 6,6 grafted nanodiamond composites by in situ reactive extrusion.
Choi, Eun-Yeob; Kim, Kiho; Kim, Chang-Keun; Kang, Eunah
2016-11-14
Nanodiamond (ND), an emerging new carbon material, was exploited to reinforce nylon 6,6 (PA66) polymer composites. Surface modified nanodiamonds with acyl chloride end groups were employed to chemically graft into PA66, enhancing the interfacial adhesion and thus the mechanical properties. The ND grafted PA66 (PA66-g-ND) reinforced PA66 composite prepared by in situ reactive extrusion exhibited increased tensile strength and modulus. The tensile strength and modulus of PA66/3 wt.% PA66-g-ND composites were enhanced by 11.6 and 20.8%, respectively when compared to those of the bare PA66 matrix. Even the PA66/pristine ND composites exhibited enhanced mechanical properties. The PA66-g-ND and the homogeneously dispersed PA66-g-ND in PA66 matrix were examined using X-ray photoelectron spectroscopy, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy techniques. The mechanical properties and thermal conductivities of the nanodiamond incorporated PA66 composites were also explored. The enhanced mechanical properties and thermal conductivities of the PA66-g-ND/PA66 composites make them potential materials for new applications as functional engineered thermoplastics.
Performance of waste-paper/PETG wood–plastic composites
NASA Astrophysics Data System (ADS)
Huang, Lijie; An, Shuxiang; Li, Chunying; Huang, Chongxing; Wang, Shuangfei; Zhang, Xiaoxiao; Xu, Mingzi; Chen, Jie; Zhou, Lei
2018-05-01
Wood-plastic composites were prepared from polyethylene terephthalate- 1,4-cyclohexanedimethanol ester (PETG) and waste-paper fiber that was unmodified, modified with alkyl-ketene-dimer (AKD), and modified with a silane-coupling agent. The mechanical properties, water absorption properties, surface structure, and thermal properties of the three prepared materials were compared. The results showed that the optimum amount of waste-paper powder is 10 wt%, while that of the waste-paper particles is 60-80 mesh. The use of AKD and coupling agent KH550 can reduce the water absorption of the composite; however, the reductive effect of the coupling agent is better, in that it is reduced by 0.3%. Modification using a 1-wt% KH550 coupling agent can effectively increase the tensile strength of a composite from 31.36 to 41.67 MPa (increase of 32.8%), while the bending strength increased from 86.47 to 98.31 MPa (increase of 13.7%). This also enhances the thermal stability of the composites. With the addition of the coupling agent, the composite material maintains good mechanical properties even after being immersed in water; this can enable the safe use of these composite materials in outdoor environments.
Reinforcement of nylon 6,6/nylon 6,6 grafted nanodiamond composites by in situ reactive extrusion
NASA Astrophysics Data System (ADS)
Choi, Eun-Yeob; Kim, Kiho; Kim, Chang-Keun; Kang, Eunah
2016-11-01
Nanodiamond (ND), an emerging new carbon material, was exploited to reinforce nylon 6,6 (PA66) polymer composites. Surface modified nanodiamonds with acyl chloride end groups were employed to chemically graft into PA66, enhancing the interfacial adhesion and thus the mechanical properties. The ND grafted PA66 (PA66-g-ND) reinforced PA66 composite prepared by in situ reactive extrusion exhibited increased tensile strength and modulus. The tensile strength and modulus of PA66/3 wt.% PA66-g-ND composites were enhanced by 11.6 and 20.8%, respectively when compared to those of the bare PA66 matrix. Even the PA66/pristine ND composites exhibited enhanced mechanical properties. The PA66-g-ND and the homogeneously dispersed PA66-g-ND in PA66 matrix were examined using X-ray photoelectron spectroscopy, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy techniques. The mechanical properties and thermal conductivities of the nanodiamond incorporated PA66 composites were also explored. The enhanced mechanical properties and thermal conductivities of the PA66-g-ND/PA66 composites make them potential materials for new applications as functional engineered thermoplastics.
Reinforcement of nylon 6,6/nylon 6,6 grafted nanodiamond composites by in situ reactive extrusion
Choi, Eun-Yeob; Kim, Kiho; Kim, Chang-Keun; Kang, Eunah
2016-01-01
Nanodiamond (ND), an emerging new carbon material, was exploited to reinforce nylon 6,6 (PA66) polymer composites. Surface modified nanodiamonds with acyl chloride end groups were employed to chemically graft into PA66, enhancing the interfacial adhesion and thus the mechanical properties. The ND grafted PA66 (PA66-g-ND) reinforced PA66 composite prepared by in situ reactive extrusion exhibited increased tensile strength and modulus. The tensile strength and modulus of PA66/3 wt.% PA66-g-ND composites were enhanced by 11.6 and 20.8%, respectively when compared to those of the bare PA66 matrix. Even the PA66/pristine ND composites exhibited enhanced mechanical properties. The PA66-g-ND and the homogeneously dispersed PA66-g-ND in PA66 matrix were examined using X-ray photoelectron spectroscopy, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy techniques. The mechanical properties and thermal conductivities of the nanodiamond incorporated PA66 composites were also explored. The enhanced mechanical properties and thermal conductivities of the PA66-g-ND/PA66 composites make them potential materials for new applications as functional engineered thermoplastics. PMID:27841314
Time-temperature-stress capabilities of composites for supersonic cruise aircraft applications
NASA Technical Reports Server (NTRS)
Haskins, J. F.; Kerr, J. R.; Stein, B. A.
1976-01-01
A range of baseline properties was determined for representatives of 5 composite materials systems: B/Ep, Gr/Ep, B/PI, Gr/PI, and B/Al. Long-term exposures are underway in static thermal environments and in ones which simultaneously combine programmed thermal histories and mechanical loading histories. Selected results from the environmental exposure studies with emphasis placed on the 10,000-hour thermal aging data are presented. Results of residual strength determinations and changes in physcial and chemical properties during high temperature aging are discussed and illustrated using metallographic, fractographic and thermomechanical analyses. Some initial results of the long-term flight simulation tests are also included.
Reduce the Sensitivity of CL-20 by Improving Thermal Conductivity Through Carbon Nanomaterials.
Wang, Shuang; An, Chongwei; Wang, Jingyu; Ye, Baoyun
2018-03-27
The graphene (rGO) and carbon nanotube (CNT) were adopted to enhance the thermal conductivity of CL-20-based composites as conductive fillers. The microstructure features were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD), and tested the properties by differential scanning calorimeter (DSC), static electricity accumulation, special height, thermal conductivity, and detonation velocity. The results showed that the mixture of rGO and CNT had better effect in thermal conductivity than rGO or CNT alone under the same loading (1 wt%) and it formed a three-dimensional heat-conducting network structure to improve the heat property of the system. Besides, the linear fit proved that the thermal conductivity of the CL-20-based composites were negatively correlated with the impact sensitivity, which also explained that the impact sensitivity was significantly reduced after the thermal conductivity increased and the explosive still maintained better energy.
Reduce the Sensitivity of CL-20 by Improving Thermal Conductivity Through Carbon Nanomaterials
NASA Astrophysics Data System (ADS)
Wang, Shuang; An, Chongwei; Wang, Jingyu; Ye, Baoyun
2018-03-01
The graphene (rGO) and carbon nanotube (CNT) were adopted to enhance the thermal conductivity of CL-20-based composites as conductive fillers. The microstructure features were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD), and tested the properties by differential scanning calorimeter (DSC), static electricity accumulation, special height, thermal conductivity, and detonation velocity. The results showed that the mixture of rGO and CNT had better effect in thermal conductivity than rGO or CNT alone under the same loading (1 wt%) and it formed a three-dimensional heat-conducting network structure to improve the heat property of the system. Besides, the linear fit proved that the thermal conductivity of the CL-20-based composites were negatively correlated with the impact sensitivity, which also explained that the impact sensitivity was significantly reduced after the thermal conductivity increased and the explosive still maintained better energy.
NASA Astrophysics Data System (ADS)
Zhao, Shizhen; Bai, Lu; Zheng, Junping
2018-01-01
Thermal exfoliation, as an effective and easily scalable method, was widely used to produce graphene (GE). In order to prevent the severe stacking of GE sheets after thermal exfoliation process, a facile technique was used to solve this problem through the barrier effect of carbon nanotubes (CNTs). Two kinds of CNTs with different aspect ratios (AR) were taken to prepare CNTs-GE hybrids using this technique, and then the effect of AR of CNTs (namely CNTs-L for low AR and CNTs-H for high AR) in the hybrids on the performance of silicone rubber (SR) composites was investigated. The results indicate that the presence of CNTs can effectively impede the stacking of GE sheets and the hybrids are dispersed uniformly in the SR matrix. With the addition of CNTs-GE hybrids, the resulted SR composites exhibit greatly improved electrical and thermal properties, especially for the composites filled with CNTs-H-GE hybrid. At the hybrids content of 3.0 wt%, the volume resistivity of CNTs-H-GE/SR composite is 5 × 104 Ω cm (about 10 orders of magnitude decrease compared with pure SR). And the thermal conductivity increases by 78% compared to the pure SR. But as for the CNTs-L-GE/SR composite, the corresponding values are 3 × 106 Ω cm and 59%, respectively. In terms of thermal stability, the CNTs-H-GE/SR composite containing 1.0 wt% hybrid exhibits the maximum improvement of initial degradation temperature (419 °C) compared with the CNTs-L-GE/SR composite (393 °C) and pure SR (365 °C).
Influence of high loading of cellulose nanocrystals in polyacrylonitrile composite films
Jeffrey Luo; Huibin Chang; Amir A. Bakhtiary Davijani; H. Clive Liu; Po-Hsiang Wang; Robert J. Moon; Satish Kumar
2017-01-01
Polyacrylonitrile-co-methacrylic acid (PAN-co-MAA) and cellulose nanocrystal (CNC) composite films were produced with up to 40 wt% CNC loading through the solution casting method. The rheological properties of the solution/suspensions and the structural, optical, thermal, and mechanical properties of the resulting films were investigated. The viscosity of the composite...
Thermoelectric properties of SrTiO3 nano-particles dispersed indium selenide bulk composites
NASA Astrophysics Data System (ADS)
Lee, Min Ho; Rhyee, Jong-Soo; Vaseem, Mohammad; Hahn, Yoon-Bong; Park, Su-Dong; Jin Kim, Hee; Kim, Sung-Jin; Lee, Hyeung Jin; Kim, Chilsung
2013-06-01
We investigated the thermoelectric properties of the InSe, InSe/In4Se3 composite, and SrTiO3 (STO) nano-particles dispersed InSe/In4Se3 bulk composites. The electrical conductivity of the InSe/In4Se3 composite with self-assembled phase separation is significantly increased compared with those of InSe and In4Se3-δ implying the enhancement of surface conductivity between grain boundaries. The thermal conductivity of InSe/In4Se3 composite is decreased compared to those of InSe. When the STO nano-particle dispersion was employed in the InSe/In4Se3 composite, a coherent interface was observed between nano-particle precipitates and the InSe bulk matrix with a reduction of the thermal conductivity.
2007-12-01
and thermal properties of composites. Ch. 3 in Fibre Composite Hybrid Materials. Hancox NL (Ed). Applied Science Publishers, London, 1981. 95...Kretsis G. A review of the tensile, compressive, flexural and shear properties of hybrid fibre -reinforced plastics. Composites 1987; 18: 13-23. 96...advanced degrees in engineering. Page 3 3. Technical Background 3.1: Usage of composites in Army ground vehicles The use of high
Effects of Thermal Exposure on Properties of Al-Li Alloys
NASA Technical Reports Server (NTRS)
Shah, Sandeep; Wells, Doug; Stanton, William; Lawless, Kirby; Russell, Carolyn; Wagner, John; Domack, Marcia; Babel, Henry; Farahmand, Bahram; Schwab, David;
2002-01-01
This paper presents viewgraphs on the effects of thermal exposure on the mechanical properties of both developmental and production mature Al-Li alloys. The topics include: 1) Aluminum-Lithium Alloys Composition and Features; 2) Key Characteristics of Al-Li Alloys; 3) Research Approach; 4) Available and Tested Material; and 5) Thermal Exposure Matrix. The alloy temperatures, gage thickness and product forms show that there is no deficit in mechanical properties at lower exposure temperatures in some cases, and a significant deficit in mechanical properties at higher exposure temperatures in all cases.
Thermal Conductivity on the Nanofluid of Graphene and Silver Nanoparticles Composite Material.
Myekhlai, Munkhshur; Lee, Taejin; Baatar, Battsengel; Chung, Hanshik; Jeong, Hyomin
2016-02-01
The composite material consisted of graphene (GN) and silver nanoparticles (AgNPs) has been essential topic in science and industry due to its unique thermal, electrical and antibacterial proper- ties. However, there are scarcity studies based on their thermal properties of nanofluids. Therefore, GN-AgNPs composite material was synthesized using facile and environment friendly method and further nanofluids were prepared by ultrasonication in this study. The morphological and structural investigations were carried out using scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD) as well as ultra violet (UV)-visible spectroscopy. Furthermore, thermal conductivity measurements were performed for as-prepared nanofluids. As a result of thermal conductivity study, GN-AgNPs composite material was considerably enhanced the thermal conductivity of base fluid (water) by to 6.59% for the nanofluid (0.2 wt% GN and 0.4 wt% AgNPs).
Structural materials from lunar simulants through thermal liquefaction
NASA Technical Reports Server (NTRS)
Desai, Chandra S.; Girdner, Kirsten
1992-01-01
Thermal liquefaction that allows development of intermediate ceramic composites from a lunar simulant with various admixtures is used to develop structural materials for construction on the moon. Bending and compressive properties of resulting composites are obtained from laboratory tests and evaluated with respect to the use of three different types and fibers.
Mechanical Characterization of Baslat Based Natural Hybrid Composites for Aerospace Applications
NASA Astrophysics Data System (ADS)
Alexander, J.; Elphej Churchill, S. J.
2017-05-01
Advanced composites have attracted aircraft designers due to its high strength to weight ratio, high stiffness to weight ratio, tailoring properties, hybridization of opposites etc. Moreover the cost reduction is also another important requirement of structural components. Basalt fibers are new entry in structural field which has excellent properties more or less equivalent to GFRP composites. Using these basalt fibres, new hybrid composites were developed by combining basalt fibres with natural fibres. The mechanical and thermal properties were determined and compared with BFRP and GFRP composites. Results proved that hybrid composites have some good qualities.
Zhang, Xiao; Tan, Wei; Smail, Fiona; De Volder, Michael; Fleck, Norman; Boies, Adam
2018-06-19
Some assemblies of nanomaterials, like carbon nanotube (CNT) sheet or film, always show outstanding and anisotropic thermal properties. However, there is still a lack of comprehensive thermal conductivity (κ) characterizations on CNT sheets, as well as lack of estimations of their true contributions on thermal enhancement of polymer composites when used as additives. Always, these characterizations were hindered by the low heat capacity, anisotropic thermal properties or low electrical conductivity of assemblies and their nanocomposites. And the transient κ measurement and calculations were also hampered by accurate determination of parameters, like specific heat capacity, density and cross-section, which could be difficult and controversial for nanomaterials, like CNT sheets. Here, to measure anisotropic κ of CNT sheets directly with high fidelity, we modified the conventional steady-state method by measuring under vacuum and by infrared camera, and then comparing temperature profiles on both reference standard material and a CNT sheet sample. The highly anisotropic thermal conductivities of CNT sheets were characterized comprehensively, with κ/ρ in alignment direction as ~95 mW·m^2/(K·kg). Furthermore, by comparing the measured thermal properties of different CNT-epoxy resin composites, the heat conduction pathway created by the CNT hierarchical network was demonstrated to remain intact after the in-situ polymerization and curing process. The reliable and direct κ measurement rituals used here, dedicated to nanomaterials, will be also essential to assist in assemblies' application to heat dissipation and composite thermal enhancement. © 2018 IOP Publishing Ltd.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Bhatt, Ramakrishna T.; Harder, Bryan
2016-01-01
This paper presents the developments of thermo-mechanical testing approaches and durability performance of environmental barrier coatings (EBCs) and EBC coated SiCSiC ceramic matrix composites (CMCs). Critical testing aspects of the CMCs will be described, including state of the art instrumentations such as temperature, thermal gradient, and full field strain measurements; materials thermal conductivity evolutions and thermal stress resistance; NDE methods; thermo-mechanical stress and environment interactions associated damage accumulations. Examples are also given for testing ceramic matrix composite sub-elements and small airfoils to help better understand the critical and complex CMC and EBC properties in engine relevant testing environments.
Micromechanical models for textile structural composites
NASA Technical Reports Server (NTRS)
Marrey, Ramesh V.; Sankar, Bhavani V.
1995-01-01
The objective is to develop micromechanical models for predicting the stiffness and strength properties of textile composite materials. Two models are presented to predict the homogeneous elastic constants and coefficients of thermal expansion of a textile composite. The first model is based on rigorous finite element analysis of the textile composite unit-cell. Periodic boundary conditions are enforced between opposite faces of the unit-cell to simulate deformations accurately. The second model implements the selective averaging method (SAM), which is based on a judicious combination of stiffness and compliance averaging. For thin textile composites, both models can predict the plate stiffness coefficients and plate thermal coefficients. The finite element procedure is extended to compute the thermal residual microstresses, and to estimate the initial failure envelope for textile composites.
Kim, Gyungbok; Ryu, Seung Han; Lee, Jun-Tae; Seong, Ki-Hun; Lee, Jae Eun; Yoon, Phil-Joong; Kim, Bum-Sung; Hussain, Manwar; Choa, Yong-Ho
2013-11-01
We report here in the fabrication of enhanced thermal conductive pathway nanocomposites of boron nitride (BN)-coated polymethylsilsesquioxane (PMSQ) composite beads using isopropyl alcohol (IPA) as a mixing medium. Exfoliated and size-reduced boron nitride particles were successfully coated on the PMSQ beads and explained by surface charge differences. A homogeneous dispersion and coating of BN on the PMSQ beads using IPA medium was confirmed by SEM. Each condition of the composite powder was carried into the stainless still mould and then hot pressed in an electrically heated hot press machine. Three-dimensional percolation networks and conductive pathways created by exfoliated BN were precisely formed in the nanocomposites. The thermal conductivity of nanocomposites was measured by multiplying specific gravity, specific heat, and thermal diffusivity, based upon the laser flash method. Densification of the composite resulted in better thermal properties. For an epoxy reinforced composite with 30 vol% BN and PMSQ, a thermal conductivity of nine times higher than that of pristine PMSQ was observed.
NASA Astrophysics Data System (ADS)
D'Alessandro, A.; Pisello, A. L.; Sambuco, Sara; Ubertini, F.; Asdrubali, F.; Materazzi, A. L.; Cotana, F.
2016-04-01
The recent progress of Nanotechnology allowed the development of new smart materials in several fields of engineering. In particular, innovative construction materials with multifunctional enhanced properties can be produced. The paper presents an experimental characterization on cement-matrix pastes doped with Carbon Nanotubes, Carbon Nano-fibers, Carbon Black and Graphene Nano-platelets. Both electro-mechanical and thermo-physical investigations have been carried out. The conductive nano-inclusions provide the cementitious matrix with piezo-resistive properties allowing the detection of external strain and stress changes. Thereby, traditional building materials, such as concrete and cementitious materials in general, would be capable of self-monitoring the state of deformation they are subject to, giving rise to diffuse sensing systems of structural integrity. Besides supplying self-sensing abilities, carbon nano-fillers may change mechanical, physical and thermal properties of cementitious composites. The experimental tests of the research have been mainly concentrated on the thermal conductivity and the optical properties of the different nano-modified materials, in order to make a critical comparison between them. The aim of the work is the characterization of an innovative multifunctional composite capable of combining self-monitoring properties with proper mechanical and thermal-energy efficiency characteristics. The potential applications of these nano-modified materials cover a wide range of possibilities, such as structural elements, floors, geothermal piles, radiant systems and more.
Thermal properties of poly(3-hydroxybutyrate)/vegetable fiber composites
NASA Astrophysics Data System (ADS)
Vitorino, Maria B. C.; Reul, Lízzia T. A.; Carvalho, Laura H.; Canedo, Eduardo L.
2015-05-01
The present work studies the thermal properties of composites of poly(3-hydroxybutyrate) (PHB) - a fully biodegradable semi-crystalline thermo-plastic obtained from renewable resources through low-impact biotechno-logical process, biocompatible and non-toxic - and vegetable fiber from the fruit (coconut) of babassu palm tree. PHB is a highly crystalline resin and this characteristic leads to suboptimal properties in some cases. Consequently, thermal properties, in particular those associated with the crystallization of the matrix, are important to judge the suitability of the compounds for specific applications. PHB/babassu composites with 0-50% load were prepared in an internal mixer. Two different types of babassu fibers with two different particle size ranges were compounded with PHB and test specimens molded by compression. Melting and crystallization behavior were studied by differential scanning calorimetry (DSC) at heating/cooling rates between 2 and 30°C/min. Several parameters, including melting point, crystallization temperature, crystallinity, and rate of crystallization, were estimated as functions of load and heating/cooling rates. Results indicate that fibers do not affect the melting process, but facilitate crystallization from the melt. Crystallization temperatures are 30 to 40°C higher for the compounds compared with the neat resin. However, the amount of fiber added has little effect on crystallinity and the degree of crystallinity is hardly affected by the load. Fiber type and initial particle size do not have a significant effect on thermal properties.
Combined micromechanical and fabrication process optimization for metal-matrix composites
NASA Technical Reports Server (NTRS)
Morel, M.; Saravanos, D. A.; Chamis, C. C.
1991-01-01
A method is presented to minimize the residual matrix stresses in metal matrix composites. Fabrication parameters such as temperature and consolidation pressure are optimized concurrently with the characteristics (i.e., modulus, coefficient of thermal expansion, strength, and interphase thickness) of a fiber-matrix interphase. By including the interphase properties in the fabrication process, lower residual stresses are achievable. Results for an ultra-high modulus graphite (P100)/copper composite show a reduction of 21 percent for the maximum matrix microstress when optimizing the fabrication process alone. Concurrent optimization of the fabrication process and interphase properties show a 41 percent decrease in the maximum microstress. Therefore, this optimization method demonstrates the capability of reducing residual microstresses by altering the temperature and consolidation pressure histories and tailoring the interphase properties for an improved composite material. In addition, the results indicate that the consolidation pressures are the most important fabrication parameters, and the coefficient of thermal expansion is the most critical interphase property.
NASA Technical Reports Server (NTRS)
Morel, M.; Saravanos, D. A.; Chamis, Christos C.
1990-01-01
A method is presented to minimize the residual matrix stresses in metal matrix composites. Fabrication parameters such as temperature and consolidation pressure are optimized concurrently with the characteristics (i.e., modulus, coefficient of thermal expansion, strength, and interphase thickness) of a fiber-matrix interphase. By including the interphase properties in the fabrication process, lower residual stresses are achievable. Results for an ultra-high modulus graphite (P100)/copper composite show a reduction of 21 percent for the maximum matrix microstress when optimizing the fabrication process alone. Concurrent optimization of the fabrication process and interphase properties show a 41 percent decrease in the maximum microstress. Therefore, this optimization method demonstrates the capability of reducing residual microstresses by altering the temperature and consolidation pressure histories and tailoring the interphase properties for an improved composite material. In addition, the results indicate that the consolidation pressures are the most important fabrication parameters, and the coefficient of thermal expansion is the most critical interphase property.
Edhirej, Ahmed; Sapuan, S M; Jawaid, Mohammad; Zahari, Nur Ismarrubie
2017-08-01
A hybrid composite was prepared from cassava bagasse (CB) and sugar palm fiber (SPF) using casting technique with cassava starch (CS) as matrix and fructose as a plasticizer. Different loadings of SPF (2, 4, 6 and 8% w/w of dry starch) were added to the CS/CB composite film containing 6% CB. The addition of SPF significantly influenced the physical properties. It increased the thickness while decreasing the density, water content, water solubility and water absorption. However, no significant effect was noticed on the thermal properties of the hybrid composite film. The incorporation of SPF increased the relative crystallinity up to 47%, compared to 32% of the CS film. SEM micrographs indicated that the filler was incorporated in the matrix. The film with a higher concentration of SPF (CS-CB/SPF8) showed a more heterogeneous surface. It could be concluded that the incorporation of SPF led to changes in cassava starch film properties, potentially affecting the film performances. Copyright © 2017 Elsevier B.V. All rights reserved.
3D composites based on the blends of chitosan and collagen with the addition of hyaluronic acid.
Sionkowska, Alina; Kaczmarek, Beata; Lewandowska, Katarzyna; Grabska, Sylwia; Pokrywczyńska, Marta; Kloskowski, Tomasz; Drewa, Tomasz
2016-08-01
3D porous composites based on blends of chitosan, collagen and hyaluronic acid were obtained through the lyophilization process. Mechanical properties, swelling behavior and thermal stability of the blends were studied. Moreover, SEM images were taken and the structure of the blends was studied. Biological properties of the materials obtained were investigated by analyzing of proliferation rate of fibroblast cells incubated with biomaterial extract using MTT assay (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide). The results showed that the properties of 3D composites based on the blends of chitosan and collagen were altered after the addition 1%, 2% and 5% of hyaluronic acid. Mechanical properties and thermal stability of chitosan/collagen blends were improved in the presence of hyaluronic acid in the composite. New 3D materials based on the blends of chitosan, collagen and hyaluronic acid were non-toxic and did not significantly affect cell morphology. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ngoc A.; Bowland, Christopher C.; Naskar, Amit K.
Here, the article presents different mechanical, thermal and rheological data corresponding to the morphological formation within various renewable lignin-based composites containing acrylonitrile butadiene styrene (ABS), acrylonitrile butadiene rubber (NBR41, 41 mol% nitrile content), and carbon fibers (CFs). The data of 3D-printing properties and morphology of 3D-printed layers of selected lignin-based composites are revealed.
Nguyen, Ngoc A.; Bowland, Christopher C.; Naskar, Amit K.
2018-05-29
Here, the article presents different mechanical, thermal and rheological data corresponding to the morphological formation within various renewable lignin-based composites containing acrylonitrile butadiene styrene (ABS), acrylonitrile butadiene rubber (NBR41, 41 mol% nitrile content), and carbon fibers (CFs). The data of 3D-printing properties and morphology of 3D-printed layers of selected lignin-based composites are revealed.
Vasileiou, Alexandros A; Kontopoulou, Marianna; Docoslis, Aristides
2014-02-12
Graphene was prepared by low temperature vacuum-assisted thermal exfoliation of graphite oxide. The resulting thermally reduced graphene oxide (TRGO) had a specific surface area of 586 m(2)/g and consisted of a mixture of single-layered and multilayered graphene. The TRGO was added to maleated linear low-density polyethylene LLDPE and to its derivatives with pyridine aromatic groups by melt compounding. The LLDPE/TRGO composites exhibited very low electrical percolation thresholds, between 0.5 and 0.9 vol %, depending on the matrix viscosity and the type of functional groups. The dispersion of the TRGO in the compatibilized composites was improved significantly, due to enhanced noncovalent interactions between the aromatic moieties grafted onto the polymer matrix and the filler. Better dispersion resulted in a slight increase in the rheological and electrical percolation thresholds, and to significant improvements in mechanical properties and thermal conductivity, compared to the noncompatibilized composites. The presence of high surface area nanoplatelets within the polymer also resulted in a substantially improved thermal stability. Compared to their counterparts containing multiwalled carbon nanotubes, LLDPE/TRGO composites had lower percolation thresholds. Therefore, lower amounts of TRGO were sufficient to impart electrical conductivity and modulus improvements, without compromising the ductility of the composites.
Thermal properties of graphite oxide, thermally reduced graphene and chemically reduced graphene
NASA Astrophysics Data System (ADS)
Jankovský, Ondřej; Sedmidubský, David; Lojka, Michal; Sofer, Zdeněk
2017-07-01
We compared thermal behavior and other properties of graphite oxide, thermally reduced graphene and chemically reduced graphene. Graphite was oxidized according to the Hofmann method using potassium chlorate as oxidizing agent in strongly acidic environment. In the next step, the formed graphite oxide was chemically or thermally reduced yielding graphene. The mechanism of thermal reduction was studied using STA-MS. Graphite oxide and both thermally and chemically reduced graphenes were analysed by SEM, EDS, elemental combustion analysis, XPS, Raman spectroscopy, XRD and BET. These findings will help for the large scale production of graphene with appropriate chemical composition.
NASA Astrophysics Data System (ADS)
Barcelos, Mariana A.; Ribeiro, Carolina Gomes D.; Ferreira, Jordana; Vieira, Janaina da S.; Margem, Frederico M.; Monteiro, Sergio N.
Epoxy composites reinforced with natural lignocellulosic fibers have, in recent times, been gaining attention in engineering areas as lighter and cheaper alternatives for traditional composites such as the "fiberglass". The curaua fiber is the one strongest today being considered as reinforcement of composites for automobile interior parts. In fact, several studies are currently being dedicated to curaua fiber composites since physical and mechanical properties are required for practical uses. In this work, the thermal behavior of epoxy composites reinforced with up to 30 % in volume of curaua fibers was investigated by differential scanning calorimetry, DSC. The results showed endothermic and exothermic events associated with water release and possible molecular chain amorphous transformation. Comparison with similar composites permitted to propose mechanism that explains this DSC thermal behavior.
Dispersion and Mechanical Properties of Carbon Nanotube/Polymer Composites via Melt Compounding
NASA Astrophysics Data System (ADS)
Gorga, Russell; Cohen, Robert
2003-03-01
This work is focused on the fabrication of carbon nanotube/ polymer composites via melt compounding. The main objective of this work is to realize the outstanding properties of carbon nanotubes (high modulus, high thermal and electrical conductivity, elastic buckling) at the macroscopic level by blending carbon nanotubes into a polymer matrix. The challenge lies in dispersing these one dimensional nanoparticles in the polymer matrix. Dispersion of the nanotubes in the composites is analyzed via transmission and scanning electron microscopy. Mechanical properties as well as electrical and thermal conductivity are measured as a function of nanotube loading, orientation, and extrusion conditions. Multi-wall nanotube loadings in the range of 1 and 10 wtconcave-downward departures from the linear stress-strain behavior of the unmodified polymer below 5observations are discussed in the context of possible deformation mechanisms for the nanotube composites.
The Microwave Assisted Composite Manufacturing and Repair (MACMAR) Project
NASA Technical Reports Server (NTRS)
Falker, John; Terrier, Douglas; Clayton, Ronald G.; Worthy, Erica; Sosa, Edward
2015-01-01
The inherent microwave property of carbon nanotubes (CNTs) generates the thermal energy required to induce reversible polymerization of the matrix in these self-healing composites. Microwaves will be used to demonstrate advanced composite manufacturing and repair using self-healing composites.
Shape Memory Polyurethane Materials Containing Ferromagnetic Iron Oxide and Graphene Nanoplatelets.
Urban, Magdalena; Strankowski, Michał
2017-09-14
Intelligent materials, such as memory shape polymers, have attracted considerable attention due to wide range of possible applications. Currently, intensive research is underway, in matters of obtaining memory shape materials that can be actuated via inductive methods, for example with help of magnetic field. In this work, an attempt was made to develop a new polymer composite-polyurethane modified with graphene nanoplates and ferromagnetic iron oxides-with improved mechanical properties and introduced magnetic and memory shape properties. Based on the conducted literature review, gathered data were compared to the results of similar materials. Obtained materials were tested for their thermal, rheological, mechanical and shape memory properties. Structure of both fillers and composites were also analyzed using various spectroscopic methods. The addition of fillers to the polyurethane matrix improved the mechanical and shape memory properties, without having a noticeable impact on thermal properties. As it was expected, the high content of fillers caused a significant change in viscosity of filled prepolymers (during the synthesis stage). Each of the studied composites showed better mechanical properties than the unmodified polyurethanes. The addition of magnetic particles introduced additional properties to the composite, which could significantly expand the functionality of the materials developed in this work.
Fabrication of aluminum-carbon composites
NASA Technical Reports Server (NTRS)
Novak, R. C.
1973-01-01
A screening, optimization, and evaluation program is reported of unidirectional carbon-aluminum composites. During the screening phase both large diameter monofilament and small diameter multifilament reinforcements were utilized to determine optimum precursor tape making and consolidation techniques. Difficulty was encountered in impregnating and consolidating the multifiber reinforcements. Large diameter monofilament reinforcement was found easier to fabricate into composites and was selected to carry into the optimization phase in which the hot pressing parameters were refined and the size of the fabricated panels was scaled up. After process optimization the mechanical properties of the carbon-aluminum composites were characterized in tension, stress-rupture and creep, mechanical fatigue, thermal fatigue, thermal aging, thermal expansion, and impact.
The energetics of adhesion in composite materials
NASA Astrophysics Data System (ADS)
Harding, Philip Hiram
Composite materials are used throughout modern society, and often the most important parameter in determining their properties is the adhesion at material interfaces within the composite. A broad investigation is completed, the global objective of which is to develop understanding of the role of adhesion in composite materials. The scope of this study ranges from macroscopic effects of adhesion on filled polymer composites to microscopic adhesion measurements with engineered interfaces. The surface of a filler material is systematically modified and surface characterization techniques are used to quantify the influence of the surface treatments on surface energetics and wetting properties. Filled polymer composites are prepared and composite mechanical properties determined with beam deflection tests. Filler surface treatments significantly alter the composite yield stress for composites which fail interfacially and are observed to increase or decrease mechanical strength, depending on the chemical nature of the modification. Thermodynamic adhesion mechanisms active at the filler-matrix interfaces are then explored by making direct interfacial strength measurements whereby a single spherical particle is introduced into the polymeric matrix. Interfacial strength is determined by submitting the single-particle composite (SPC) to uni-axial tension and relating the macroscopic stress at interfacial failure to that experienced at the interface. The technique provides a measurement of interfacial strength between two elastic materials, one unaffected by frictional forces, viscoelasticity, and thermal stresses. The SPC measurements are used to verify proposed adhesion mechanisms at the various filler-polymer interfaces and establish the role of adhesion in the filled polymer composites. The SPC technique is then used to investigate the adhesion promotion mechanism of organofunctional silanes, which are shown to be controlled by the compatibility and penetration of the silane organofunctional group. The effects of thermal residual stresses on interfacial strength are also investigated using the SPC technique. Processing conditions, i.e., time-temperature profiles, are used to systematically vary the thermal residual stresses within the polymeric matrix. The interfaces studied are deleteriously affected by increases in thermal residual stresses.
Method Developed for Improving the Thermomechanical Properties of Silicon Carbide Matrix Composites
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.; DiCarlo, James A.
2004-01-01
Today, a major thrust for achieving engine components with improved thermal capability is the development of fiber-reinforced silicon-carbide (SiC) matrix composites. These materials are not only lighter and capable of higher use temperatures than state-of-the-art metallic alloys and oxide matrix composites (approx. 1100 C), but they can provide significantly better static and dynamic toughness than unreinforced silicon-based monolithic ceramics. However, for successful application in advanced engine systems, the SiC matrix composites should be able to withstand component service stresses and temperatures for the desired component lifetime. Since the high-temperature structural life of ceramic materials is typically controlled by creep-induced flaw growth, a key composite property requirement is the ability to display high creep resistance under these conditions. Also, because of the possibility of severe thermal gradients in the components, the composites should provide maximum thermal conductivity to minimize the development of thermal stresses. State-of-the-art SiC matrix composites are typically fabricated via a three-step process: (1) fabrication of a component-shaped architectural preform reinforced by high-performance fibers, (2) chemical vapor infiltration of a fiber coating material such as boron nitride (BN) into the preform, and (3) infiltration of a SiC matrix into the remaining porous areas in the preform. Generally, the highest performing composites have matrices fabricated by the CVI process, which produces a SiC matrix typically more thermally stable and denser than matrices formed by other approaches. As such, the CVI SiC matrix is able to provide better environmental protection to the coated fibers, plus provide the composite with better resistance to crack propagation. Also, the denser CVI SiC matrix should provide optimal creep resistance and thermal conductivity to the composite. However, for adequate preform infiltration, the CVI SiC matrix process typically has to be conducted at temperatures below 1100 C, which results in a SiC matrix that is fairly dense, but contains metastable atomic defects and is nonstoichiometric because of a small amount of excess silicon. Because these defects typically exist at the matrix grain boundaries, they can scatter thermal phonons and degrade matrix creep resistance by enhancing grain-boundary sliding. To eliminate these defects and improve the thermomechanical properties of ceramic composites with CVI SiC matrices, researchers at the NASA Glenn Research Center developed a high-temperature treatment process that can be used after the CVI SiC matrix is deposited into the fiber preform.
Prediction of properties of intraply hybrid composites
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Sinclair, J. H.
1979-01-01
Equations based on the mixtures rule are presented for predicting the physical, thermal, hygral, and mechanical properties of unidirectional intraply hybrid composites (UIHC) from the corresponding properties of their constituent composites. Bounds were derived for uniaxial longitudinal strengths, tension, compression, and flexure of UIHC. The equations predict shear and flexural properties which agree with experimental data from UIHC. Use of these equations in a composites mechanics computer code predicted flexural moduli which agree with experimental data from various intraply hybrid angleplied laminates (IHAL). It is indicated, briefly, how these equations can be used in conjunction with composite mechanics and structural analysis during the analysis/design process.
NASA Astrophysics Data System (ADS)
Wetjen, Morten; Kim, Guk-Tae; Joost, Mario; Appetecchi, Giovanni B.; Winter, Martin; Passerini, Stefano
2014-01-01
Poly(ethylene oxide)-lithium bis(trifluoromethanesulfonyl)imide N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PEO-LiTFSI-Pyr14TFSI)-based 4 V-class composite cathodes, incorporating either Li(Ni1/3Co1/3Mn1/3)O2 or Li(Ni0.8Co0.15Al0.05)O2 were prepared by a hot-pressing process and successively investigated in terms of their morphological, thermal, and electrochemical properties. Thereby, excellent mechanical and thermal properties could be demonstrated for all composite cathodes. The electrochemical performance of truly dry all-solid-state Li/P(EO)10LiTFSI-(Pyr14TFSI)2/composite cathode batteries at temperatures as low as 40 °C revealed high delivered capacities. However, in comparison with LiFePO4, the 4 V-class composite cathodes also indicated much lower capacity retention. In-depth investigations on the interfacial properties of Li(Ni0.8Co0.15Al0.05)O2 composite cathodes revealed a strong dependence on the anodic cut-off potential and the presence of current flow through the cell, whereby different degradation mechanisms could be characterized upon cycling, according to which the finite growth of a surface films at both electrode/polymer electrolyte interfaces inhibited continuous decomposition of the polymer electrolyte even at potentials as high as 4.3 V. Moreover, the presence of Pyr14TFSI in the 4 V-class composite cathodes sustainably reduced the cathode interfacial resistance and presumably diminished the corrosion of the aluminum current collector.
Thermal design of composite material high temperature attachments
NASA Technical Reports Server (NTRS)
1972-01-01
An evaluation has been made of the thermal aspects of utilizing advanced filamentary composite materials as primary structures on the shuttle vehicle. The technical objectives of this study are to: (1) establish and design concepts for maintaining material temperatures within allowable limits at TPS attachments and or penetrations applicable to the space shuttle; and (2) verify the thermal design analysis by testing selected concepts. Specific composite materials being evaluated are boron epoxy, graphite/epoxy, boron polyimide, and boron aluminum; graphite/polyimide has been added to this list for property data identification and preliminary evaluation of thermal design problems. The TPS standoff to composite structure attachment over-temperature problem is directly related to TPS maximum surface temperature. To provide a thermally comprehensive evaluation of attachment temperature characteristics, maximum surface temperatures of 900 F, 1200 F, 1800 F, 2500 F and 3000 F are considered in this study. This range of surface temperatures and the high and low maximum temperature capability of the selected composite materials will result in a wide range of thermal requirements for composite/TPS standoff attachments.
NASA Astrophysics Data System (ADS)
Santamarta, Ruben; Evirgen, Alper; Perez-Sierra, Aquilina M.; Pons, Jaume; Cesari, Eduard; Karaman, Ibrahim; Noebe, Ron D.
2015-11-01
Among all the promising high-temperature shape memory alloys (HTSMAs), the Ni-Mn-Ga and the Ni-Ti-Hf/Zr systems exhibit interesting shape memory and superelastic properties that may place them in a good position for potential applications. The present work shows that thermal treatments play a crucial role in controlling the martensitic phase transformation characteristics of both systems, but in different ways. On one hand, the equilibrium phase diagram of the Ni-Mn-Ga family allows selecting compositions with high transformation temperatures and outstanding thermal stability at relatively high temperatures in air, showing no significant changes in the transformation behavior for continuous aging up to ˜5 years at 500 °C. Moreover, the excellent thermal stability correlates with a good thermal cyclic stability and an exceptional oxidation resistance of the parent phase. On the other hand, precipitation processes controlled by thermal treatments are needed to manipulate the transformation temperatures, mechanical properties, and thermal stability of Ni-rich Ni-Ti-Hf/Zr alloys to become HTSMAs. These changes in the functional properties are a consequence of the competition between the mechanical and compositional effects of the precipitates on the martensitic transformation.
SiC/SiC Composites for 1200 C and Above
NASA Technical Reports Server (NTRS)
DiCarlo, J. A.; Yun, H.-M.; Morscher, G. N.; Bhatt, R. T.
2004-01-01
The successful replacement of metal alloys by ceramic matrix composites (CMC) in high-temperature engine components will require the development of constituent materials and processes that can provide CMC systems with enhanced thermal capability along with the key thermostructural properties required for long-term component service. This chapter presents information concerning processes and properties for five silicon carbide (SiC) fiber-reinforced SiC matrix composite systems recently developed by NASA that can operate under mechanical loading and oxidizing conditions for hundreds of hours at 1204, 1315, and 1427 C, temperatures well above current metal capability. This advanced capability stems in large part from specific NASA-developed processes that significantly improve the creep-rupture and environmental resistance of the SiC fiber as well as the thermal conductivity, creep resistance, and intrinsic thermal stability of the SiC matrices.
NASA Astrophysics Data System (ADS)
Li, Zhipeng; Zhang, Yanxia; Liang, Shaolei; Li, Guangfen
2018-05-01
We prepared nanocomposites of multi-walled carbon nanotube (MWCNT)/polystyrene via a solution casting method, where deionized water was used as coagulation bath. The influences of the type of MWCNTs and existence of surfactant on surface morphology, thermal properties and mechanical properties of MWCNT/polystyrene composites were extensively investigated. The pristine and two functionalized MWCNTs with the loading of 5 wt% were chosen for comparison. Both scanning electron microscopy and mercury intrusion porosimetry show that the composites without surfactant contain fewer pores and thus have higher bulk density, tensile strength, as well as low surface hydrophobicity. However, the porous structures within micro-range appear in all surfactant-treated composites, which decrease the bulk density and the tensile strength of their composites. This especially pronounced for the MWCNT-OH composite as the smallest pore size/highest porosity is found in the composites with loading of 5 wt% MWCNT-OH due to the higher content of hydroxyl groups. Despite the glass transition temperatures (Tg) of all the surfactant-treated composites lower compared with Tg for pure polystyrene, they increase for MWCNTs and MWCNT-OH composite without surfactant.
Light scattering methods to test inorganic PCMs for application in buildings
NASA Astrophysics Data System (ADS)
De Paola, M. G.; Calabrò, V.; De Simone, M.
2017-10-01
Thermal performance and stability over time are key parameters for the characterization and application of PCMs in the building sector. Generally, inorganic PCMs are dispersions of hydrated salts and additives in water that counteract phase segregation phenomena and subcooling. Traditional methods or in “house” methods can be used for evaluating thermal properties, while stability can be estimated over time by using optical techniques. By considering this double approach, in this work thermal and structural analyses of Glauber salt based composite PCMs are conducted by means of non-conventional equipment: T-history method (thermal analysis) and Turbiscan (stability analysis). Three samples with the same composition (Glauber salt with additives) were prepared by using different sonication times and their thermal performances were compared by testing both the thermal cycling and the thermal properties. The stability of the mixtures was verified by the identification of destabilization phenomena, the evaluation of the migration velocities of particles and the estimation of variation of particle size.
Prospect of Thermal Insulation by Silica Aerogel: A Brief Review
NASA Astrophysics Data System (ADS)
Hasan, Mohammed Adnan; Sangashetty, Rashmi; Esther, A. Carmel Mary; Patil, Sharanabasappa B.; Sherikar, Baburao N.; Dey, Arjun
2017-10-01
Silica aerogel is a unique ultra light weight nano porous material which offers superior thermal insulation property as compared to the conventional thermal insulating materials. It can be applied not only for ground and aerospace applications but also in low and high temperatures and pressure regimes. Aerogel granules and monolith are synthesized by the sol-gel route while aerogel based composites are fabricated by the reinforcement of fibers, particle and opacifiers. Due to the characteristic brittleness (i.e., poor mechanical properties) of monolith or bulk aerogel, it is restricted in several applications. To improve the mechanical integrity and flexibility, usually different fibers are reinforced with aerogel and hence it can be used as flexible thermal insulation blankets. Further, to achieve effective thermal insulation behaviour particularly at high temperature, often opacifiers are doped with silica aerogel. In the present brief review, the prospects of bulk aerogel and aerogel based composites are discussed for the application of thermal insulation and thermal stability.
Ultra-low temperature curable nano-silver conductive adhesive for piezoelectric composite material
NASA Astrophysics Data System (ADS)
Yan, Chao; Liao, Qingwei; Zhou, Xingli; Wang, Likun; Zhong, Chao; Zhang, Di
2018-01-01
Limited by the low thermal resistance of composite material, ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conduction treatment of piezoelectric composite material. An ultra-low temperature curable nano-silver conductive adhesive with high adhesion strength for the applications of piezoelectric composite material was investigated. The crystal structure of cured adhesive, SEM/EDS analysis, thermal analysis, adhesive properties and conductive properties of different content of nano-silver filler or micron-silver doping samples were studied. The results show that with 60 wt.% nano-silver filler the ultra-low temperature curable conductive silver adhesive had the relatively good conductivity as volume resistivity of 2.37 × 10-4 Ω cm, and good adhesion strength of 5.13 MPa. Minor micron-doping (below 15 wt.%) could improve conductivity, but would decrease other properties. The ultra-low temperature curable nano-silver conductive adhesive could successfully applied to piezoelectric composite material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karina, Wiwiek, E-mail: wiekarina@gmail.com; Heraldy, Eddy, E-mail: eheraldy@gmail.com; Pramono, Edi
Ca-Mg-Al hydrotalcite-like compound (Ca-Mg-Al HTlc) was prepared by co-precipitation method using brine water that is well known as the desalination process waste water. The structure of Ca-Mg-Al HTlc was determined by X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) analysis. Ca-Mg-Al HTlc was studied as a non-halogenated filler in ethylene vinyl acetate (EVA) matrix. Composites with different filler concentrations were prepared to evaluate the influence of Ca-Mg-Al HTlc on thermal and mechanical properties of EVA.The presence of Ca-Mg-Al HTlc in the composite has been confirmed by FTIR analysis. Thermal properties of composites show significant reduction of degradation temperature as wellmore » as the loading of HTlc in EVA. However, the total enthalpies combustion of composites with 1% and 5% HTlc loadings higher compared to neat EVA. Further, mechanical properties were determined by tensile test. The result shows that tensile strength and elongation at break of composites decrease relatively by Ca-Mg-Al HTlc addition.« less
NASA Astrophysics Data System (ADS)
Hakim, I.; May, D.; Abo Ras, M.; Meyendorf, N.; Donaldson, S.
2016-04-01
On the present work, samples of carbon fiber/epoxy composites with different void levels were fabricated using hand layup vacuum bagging process by varying the pressure. Thermal nondestructive methods: thermal conductivity measurement, pulse thermography, pulse phase thermography and lock-in-thermography, and mechanical testing: modes I and II interlaminar fracture toughness were conducted. Comparing the parameters resulted from the thermal nondestructive testing revealed that voids lead to reductions in thermal properties in all directions of composites. The results of mode I and mode II interlaminar fracture toughness showed that voids lead to reductions in interlaminar fracture toughness. The parameters resulted from thermal nondestructive testing were correlated to the results of mode I and mode II interlaminar fracture toughness and voids were quantified.
NASA Astrophysics Data System (ADS)
Kahar, A. W. M.; Ann, L. Ju
2017-06-01
In this study, the influence of banana fibre (BF) loading using sodium hydroxide (NaOH) pre-treated and succinic anhydride-treated (SA) BF on the mechanical properties of linear low-density polyethylene (LLDPE)/thermoplastic starch (TPS) matrix is investigated. LLDPE/TPS/BF composites were developed under different BF conditions, with and without chemical modifications with the BF content ranging from 5% to 30% based on the total composite. The tensile strength showed an increase with an increase of fibre content up to 10%, thereby decreasing gradually beyond this level. NaOH pre-treated and SA treated BF added with LLDPE/TPS composite displays a higher tensile strength as compared to untreated BF in LLDPE/TPS composites. Thermal behaviour of the BF incorporated in LLDPE/TPS composite was characterised using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). This showed that SA treated BF exhibits better thermal stability, compared to other composites. This is because of the improvement in interfacial adhesion existing between both the fibre and matrix. In addition, a morphology study confirmed that pre-treated and treated BF had excellent interfacial adhesion with LLDPE/TPS matrix, leading to better mechanical properties of resultant composites.
The effect of thermal exposure on the mechanical properties of aluminum-graphite composites
NASA Technical Reports Server (NTRS)
Khan, I. H.
1975-01-01
The mechanical properties of aluminum-graphite composites were measured at room temperature in the as-received condition, after elevated temperature exposure and after thermal cycling. The composites were fabricated by solid-state diffusion bonding of liquid-phase Al-infiltrated Thornel 50 fibers. The results showed that the maximum longitudinal tensile strength of the as-received material was 80,000 psi, which corresponds well with the rule of mixture value. The composite strength was observed to vary widely, depending on the extent of wetting of the fibers by the aluminum. The strength of the composites in the transverse direction was generally very low, due to poor interfacial bonding. Aluminum carbide (Al4C3) formed at the surface of the fibers at temperatures greater than 500 C. Development of the carbide was shown to be diffusion-controlled and was dependent on the time and temperature used. It was shown that the tensile strength was virtually unaffected by heat-treatment up to 500 C; beyond that temperature a drastic degradation of tensile strength occurred. Thermal cycling of the composites below 500 C resulted in an observable degradation of the composite strength.
Yang, Shuangqiao; Bai, Shibing; Wang, Qi
2016-11-01
In this study nonmetals recycled from waste printed circuit boards (NPCB) is used as reinforce fillers in high-density polyethylene (HDPE) composites. The morphology, mechanical and thermal oxidative aging properties of NPCB reinforced HDPE composites are assessed and it compared with two other commercial functional filler for the first time. Mechanical test results showed that NPCB could be used as reinforcing fillers in the HDPE composites and mechanical properties especially for stiffness is better than other two commercial fillers. The improved mechanical property was confirmed by the higher aspect ratio and strong interfacial adhesion in scanning electron microscopy (SEM) studies. The heat deflection temperature (HDT) test showed the presence of fiberglass in NPCB can improve the heat resistance of composite for their potential applications. Meanwhile, the oxidation induction time (OIT) and the Fourier transform infrared (FTIR) spectroscopy results showed that NPCB has a near resistance to oxidation as two other commercial fillers used in this paper. The above results show the reuse of NPCB in the HDPE composites represents a promising way for resolving both the environmental pollution and the high-value reuse of resources. Copyright © 2015. Published by Elsevier Ltd.
Facile growth of barium oxide nanorods: structural and optical properties.
Ahmad, Naushad; Wahab, Rizwan; Alam, Manawwer
2014-07-01
This paper reports a large-scale synthesis of barium oxide nanorods (BaO-NRs) by simple solution method at a very low-temperature of - 60 degrees C. The as-grown BaO-NRs were characterized in terms of their morphological, structural, compositional, optical and thermal properties. The morphological characterizations of as-synthesized nanorods were done by scanning electron microscopy (SEM) which confirmed that the synthesized products are rod shaped and grown in high density. The nanorods exhibits smooth and clean surfaces throughout their lengths. The crystalline property of the material was analyzed with X-ray diffraction pattern (XRD). The compositional and thermal properties of synthesized nanorods were observed via Fourier transform infrared (FTIR) spectroscopy and thermogravimetric analysis which confirmed that the synthesized nanorods are pure BaO and showed good thermal stability. The nanorods exhibited good optical properties as was confirmed from the room-temperature UV-vis spectroscopy. Finally, a plausible mechanism for the formation of BaO-NRs is also discussed in this paper.
Fabrication of near-net shape graphite/magnesium composites for large mirrors
NASA Astrophysics Data System (ADS)
Wendt, Robert; Misra, Mohan
1990-10-01
Successful development of space-based surveillance and laser systems will require large precision mirrors which are dimensionally stable under thermal, static, and dynamic (i.e., structural vibrations and retargeting) loading conditions. Among the advanced composites under consideration for large space mirrors, graphite fiber reinforced magnesium (Gr/Mg) is an ideal candidate material that can be tailored to obtain an optimum combination of properties, including a high modulus of elasticity, zero coefficient of thermal expansion, low density, and high thermal conductivity. In addition, an innovative technique, combining conventional filament winding and vacuum casting has been developed to produce near-net shape Gr/Mg composites. This approach can significantly reduce the cost of fabricating large mirrors by decreasing required machining. However, since Gr/Mg cannot be polished to a reflective surface, plating is required. This paper will review research at Martin Marietta Astronautics Group on Gr/Mg mirror blank fabrication and measured mechanical and thermal properties. Also, copper plating and polishing methods, and optical surface characteristics will be presented.
Composite Materials with Magnetically Aligned Carbon Nanoparticles and Methods of Preparation
NASA Technical Reports Server (NTRS)
Salem, David R. (Inventor); Hong, Haiping (Inventor); Peterson, G.P. (Bud) (Inventor)
2018-01-01
The present invention relates to magnetically aligned carbon nanoparticle composites and methods of preparing the same. The composites comprise carbon nanoparticles, host material, magnetically sensitive nanoparticles and surfactant. The composites may have enhanced mechanical, thermal, and/or electrical properties.
Multifunctional Hybrid Carbon Nanotube/Carbon Fiber Polymer Composites
NASA Technical Reports Server (NTRS)
Kang, Jin Ho; Cano, Roberto J.; Ratcliffe, James G.; Luong, Hoa; Grimsley, Brian W.; Siochi, Emilie J.
2016-01-01
For aircraft primary structures, carbon fiber reinforced polymer (CFRP) composites possess many advantages over conventional aluminum alloys due to their light weight, higher strengthand stiffness-to-weight ratio, and low life-cycle maintenance costs. However, the relatively low electrical and thermal conductivities of CFRP composites fail to provide structural safety in certain operational conditions such as lightning strikes. Despite several attempts to solve these issues with the addition of carbon nanotubes (CNT) into polymer matrices, and/or by interleaving CNT sheets between conventional carbon fiber (CF) composite layers, there are still interfacial problems that exist between CNTs (or CF) and the resin. In this study, hybrid CNT/CF polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel® IM7/8852 prepreg. Resin concentrations from 1 wt% to 50 wt% were used to infuse the CNT sheets prior to composite fabrication. The interlaminar properties of the resulting hybrid composites were characterized by mode I and II fracture toughness testing (double cantilever beam and end-notched flexure test). Fractographical analysis was performed to study the effect of resin concentration. In addition, multi-directional physical properties like thermal conductivity of the orthotropic hybrid polymer composite were evaluated. Interleaving CNT sheets significantly improved the in-plane (axial and perpendicular direction of CF alignment) thermal conductivity of the hybrid composite laminates by 50 - 400%.
NASA Astrophysics Data System (ADS)
Alifanov, O. M.; Budnik, S. A.; Nenarokomov, A. V.; Netelev, A. V.; Titov, D. M.
2013-04-01
In many practical situations it is impossible to measure directly thermal and thermokinetic properties of analyzed composite materials. The only way that can often be used to overcome these difficulties is indirect measurements. This type of measurements is usually formulated as the solution of inverse heat transfer problems. Such problems are ill-posed in mathematical sense and their main feature shows itself in the solution instabilities. That is why special regularizing methods are needed to solve them. The general method of iterative regularization is concerned with application to the estimation of materials properties. The objective of this paper is to estimate thermal and thermokinetic properties of advanced materials using the approach based on inverse methods. An experimental-computational system is presented for investigating the thermal and kinetics properties of composite materials by methods of inverse heat transfer problems and which is developed at the Thermal Laboratory of Department Space Systems Engineering, of Moscow Aviation Institute (MAI). The system is aimed at investigating the materials in conditions of unsteady contact and/or radiation heating over a wide range of temperature changes and heating rates in a vacuum, air and inert gas medium.
Characterization of Hybrid CNT Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Grimsley, Brian W.; Cano, Roberto J.; Kinney, Megan C.; Pressley, James; Sauti, Godfrey; Czabaj, Michael W.; Kim, Jae-Woo; Siochi, Emilie J.
2015-01-01
Carbon nanotubes (CNTs) have been studied extensively since their discovery and demonstrated at the nanoscale superior mechanical, electrical and thermal properties in comparison to micro and macro scale properties of conventional engineering materials. This combination of properties suggests their potential to enhance multi-functionality of composites in regions of primary structures on aerospace vehicles where lightweight materials with improved thermal and electrical conductivity are desirable. In this study, hybrid multifunctional polymer matrix composites were fabricated by interleaving layers of CNT sheets into Hexcel® IM7/8552 prepreg, a well-characterized toughened epoxy carbon fiber reinforced polymer (CFRP) composite. The resin content of these interleaved CNT sheets, as well as ply stacking location were varied to determine the effects on the electrical, thermal, and mechanical performance of the composites. The direct-current electrical conductivity of the hybrid CNT composites was characterized by in-line and Montgomery four-probe methods. For [0](sub 20) laminates containing a single layer of CNT sheet between each ply of IM7/8552, in-plane electrical conductivity of the hybrid laminate increased significantly, while in-plane thermal conductivity increased only slightly in comparison to the control IM7/8552 laminates. Photo-microscopy and short beam shear (SBS) strength tests were used to characterize the consolidation quality of the fabricated laminates. Hybrid panels fabricated without any pretreatment of the CNT sheets resulted in a SBS strength reduction of 70 percent. Aligning the tubes and pre-infusing the CNT sheets with resin significantly improved the SBS strength of the hybrid composite To determine the cause of this performance reduction, Mode I and Mode II fracture toughness of the CNT sheet to CFRP interface was characterized by double cantilever beam (DCB) and end notch flexure (ENF) testing, respectively. Results are compared to the control IM7/8552 laminate.
Composite-Material Point-Stress Analysis
NASA Technical Reports Server (NTRS)
Spears, F., S.
1982-01-01
PSANAL computes composite-laminate elastic and thermal properties and allowable load levels for any combination of applied membrane and bending loads occurring at a point. Basic linear orthotropic stress/ strain relationships and standard composite-laminate theory formulas are utilized.
Analysis of Cement-Based Pastes Mixed with Waste Tire Rubber
NASA Astrophysics Data System (ADS)
Sola, O. C.; Ozyazgan, C.; Sayin, B.
2017-03-01
Using the methods of thermal gravimetry, differential thermal analysis, Furier transform infrared analysis, and capillary absorption, the properties of a cement composite produced by introducing waste tyre rubber into a cement mixture were investigated. It was found that the composite filled with the rubber had a much lower water absorption ability than the unfilled one.
Maghemite based silicone composite for arterial embolization hyperthermia.
Smolkova, Ilona S; Kazantseva, Natalia E; Makoveckaya, Kira N; Smolka, Petr; Saha, Petr; Granov, Anatoly M
2015-03-01
Maghemite nanoparticle based silicone composite for application in arterial embolization hyperthermia is developed. It possesses embolization ability, high heating efficiency in alternating magnetic fields and radiopaque property. The initial components of the composite are selected so that the material stays liquid for 20min, providing the opportunity for transcatheter transportation and filling of the tumour vascular system. After this induction period the viscosity increases rapidly and soft embolus is formed which is able to occlude the tumour blood vessels. The composite is thermally stable up to 225°C, displays rubber-elastic properties and has a thermal expansion coefficient higher than that of blood. Maghemite nanoparticles uniformly distributed in the composite provide its rapid heating (tens of °Cmin(-1)) due to Neel magnetization relaxation. Required X-ray contrast of composite is achieved by addition of potassium iodide. Copyright © 2014 Elsevier B.V. All rights reserved.
Probabilistic Micromechanics and Macromechanics for Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Mital, Subodh K.; Shah, Ashwin R.
1997-01-01
The properties of ceramic matrix composites (CMC's) are known to display a considerable amount of scatter due to variations in fiber/matrix properties, interphase properties, interphase bonding, amount of matrix voids, and many geometry- or fabrication-related parameters, such as ply thickness and ply orientation. This paper summarizes preliminary studies in which formal probabilistic descriptions of the material-behavior- and fabrication-related parameters were incorporated into micromechanics and macromechanics for CMC'S. In this process two existing methodologies, namely CMC micromechanics and macromechanics analysis and a fast probability integration (FPI) technique are synergistically coupled to obtain the probabilistic composite behavior or response. Preliminary results in the form of cumulative probability distributions and information on the probability sensitivities of the response to primitive variables for a unidirectional silicon carbide/reaction-bonded silicon nitride (SiC/RBSN) CMC are presented. The cumulative distribution functions are computed for composite moduli, thermal expansion coefficients, thermal conductivities, and longitudinal tensile strength at room temperature. The variations in the constituent properties that directly affect these composite properties are accounted for via assumed probabilistic distributions. Collectively, the results show that the present technique provides valuable information about the composite properties and sensitivity factors, which is useful to design or test engineers. Furthermore, the present methodology is computationally more efficient than a standard Monte-Carlo simulation technique; and the agreement between the two solutions is excellent, as shown via select examples.
Thermal Degradation and Combustion Behavior of Polypropylene/MWCNT Composites
NASA Astrophysics Data System (ADS)
Zaikov, G. E.; Rakhimkulov, A. D.; Lomakin, S. M.; Dubnikova, I. L.; Shchegolikhin, A. N.; Davidov, E. Ya.
2010-06-01
Studies of thermal and fire-resistant properties of the polypropylene/multi-walled carbon nanotube composites (PP/MWCNT) prepared by means of melt intercalation are discussed. The sets of the data acquired with the aid of non-isothermal TG experiments have been treated by the model kinetic analysis. The thermal-oxidative degradation behavior of PP/MWCNT and stabilizing effect caused by addition of MWCNT has been investigated by means of TGA and EPR spectroscopy. The results of cone calorimetric tests lead to the conclusion that char formation plays a key role in the mechanism of flame retardation for nanocomposites. This could be explained by the specific antioxidant properties and high thermal conductivity of MWCNT which determine high-performance carbonization during thermal degradation process. Comparative analysis of the flammability characteristics for PP-clay/MWCNT nanocomposites was provided in order to emphasize the specific behavior of the nanocomposites under high-temperature tests.
Biasetto, L; Corradetti, S; Carturan, S; Eloirdi, R; Amador-Celdran, P; Staicu, D; Blanco, O Dieste; Andrighetto, A
2018-05-29
The development of tailored targets for the production of radioactive isotopes represents an active field in nuclear research. Radioactive beams find applications in nuclear medicine, in astrophysics, matter physics and materials science. In this work, we study the use of graphene both as carbon source for UO 2 carbothermal reduction to produce UC x targets, and also as functional properties booster. At fixed composition, the UC x target grain size, porosity and thermal conductivity represent the three main points that affect the target production efficiency. UC x was synthesized using both graphite and graphene as the source of carbon and the target properties in terms of composition, grain size, porosity, thermal diffusivity and thermal conductivity were studied. The main output of this work is related to the remarkable enhancement achieved in thermal conductivity, which can profitably improve thermal dissipation during operational stages of UC x targets.
Electrical and Thermal Transport Property Studies of High-Temperature Thermoelectric Materials.
1984-12-15
Transport Property Studies of High-Temperature Thermoelectric Mateial 12. PERSONAL AUTHIOR(S) 113. TYPE OF REPORT 13b. TIME COVERED Ai DATE OF REPORtT (Yr...with an ABO(3 perovskite structure. Transport properties have been determined for various doping ele- ments and for different compositions. These data...THERMAL TRANSPORT PROPERTY STUDIES Unannounced [j OF HIGH-TEMPERATURE THERMOELECTRIC MATERIALS Justi±icI iou. CONTRACT F-49620-83-0109 DEF By-- Battelle
Composite patterning devices for soft lithography
Rogers, John A.; Menard, Etienne
2007-03-27
The present invention provides methods, devices and device components for fabricating patterns on substrate surfaces, particularly patterns comprising structures having microsized and/or nanosized features of selected lengths in one, two or three dimensions. The present invention provides composite patterning devices comprising a plurality of polymer layers each having selected mechanical properties, such as Young's Modulus and flexural rigidity, selected physical dimensions, such as thickness, surface area and relief pattern dimensions, and selected thermal properties, such as coefficients of thermal expansion, to provide high resolution patterning on a variety of substrate surfaces and surface morphologies.
Microstructural analysis of W-SiCf/SiC composite
NASA Astrophysics Data System (ADS)
Yoon, Hanki; Oh, Jeongseok; Kim, Gonho; Kim, Hyunsu; Takahashi, Heishichiro; Kohyama, Akira
2015-03-01
Continuous silicon carbide fiber-reinforced silicon carbide (SiCf/SiC) composites are promising structure candidates for future fusion power systems such as gas coolant fast channels, extreme high temperature reactor and fusion reactors, because of their intrinsic properties such as excellent mechanical properties, high thermal conductivity, good thermal-shock resistance as well as excellent physical and chemical stability in various environments under elevated temperature conditions. In this study, bonding of tungsten and SiCf/SiC was produced by hot-press method. Microstructure analyses were performed using SEM and TEM.
ICAN: A versatile code for predicting composite properties
NASA Technical Reports Server (NTRS)
Ginty, C. A.; Chamis, C. C.
1986-01-01
The Integrated Composites ANalyzer (ICAN), a stand-alone computer code, incorporates micromechanics equations and laminate theory to analyze/design multilayered fiber composite structures. Procedures for both the implementation of new data in ICAN and the selection of appropriate measured data are summarized for: (1) composite systems subject to severe thermal environments; (2) woven fabric/cloth composites; and (3) the selection of new composite systems including those made from high strain-to-fracture fibers. The comparisons demonstrate the versatility of ICAN as a reliable method for determining composite properties suitable for preliminary design.
Properties and Residual Stresses in Angle-Ply Polymer Matrix Composites
1982-03-01
AMMRC TR 82-12 PROPERTIES AND RES l DUAL STRESSES IN ANGLE-PLY POLYMER MATR l X COMPOSITES March 1982 ABDEL A. FAHMY,, HARVEY A. WEST, and MARK...m D.e. Enl.r.d) PROPERTIES AND RESIDUAL STRESSES I N ANGLE-PLY F i n a l Report POLYMER MATRIX COMPOSITES REPORTDOCUMENTATlON PAGE I 7. AUTHOR...SUPPLEMENTARV NOTES L 19. KEY WORDS (Comclrm. m r.r.r. wd. 11 ner..sw and idenllfy by blocb nmb-r) Composites Thermal expansion Epoxy l a m i n a t e s
Ultra High Temperature Ceramics' Processing Routes and Microstructures Compared
NASA Technical Reports Server (NTRS)
Gusman, Michael; Stackpoole, Mairead; Johnson, Sylvia; Gasch, Matt; Lau, Kai-Hung; Sanjurjo, Angel
2009-01-01
Ultra High Temperature Ceramics (UHTCs), such as HfB2 and ZrB2 composites containing SiC, are known to have good thermal shock resistance and high thermal conductivity at elevated temperatures. These UHTCs have been proposed for a number of structural applications in hypersonic vehicles, nozzles, and sharp leading edges. NASA Ames is working on controlling UHTC properties (especially, mechanical properties, thermal conductivity, and oxidation resistance) through processing, composition, and microstructure. In addition to using traditional methods of combining additives to boride powders, we are preparing UHTCs using coat ing powders to produce both borides and additives. These coatings and additions to the powders are used to manipulate and control grain-boundary composition and second- and third-phase variations within the UHTCs. Controlling the composition of high temperature oxidation by-products is also an important consideration. The powders are consolidated by hot-pressing or field-assisted sintering (FAS). Comparisons of microstructures and hardness data will be presented.
Fly ash reinforced thermoplastic vulcanizates obtained from waste tire powder.
Sridhar, V; Xiu, Zhang Zhen; Xu, Deng; Lee, Sung Hyo; Kim, Jin Kuk; Kang, Dong Jin; Bang, Dae-Suk
2009-03-01
Novel thermoplastic composites made from two major industrial and consumer wastes, fly ash and waste tire powder, have been developed. The effect of increasing fly ash loadings on performance characteristics such as tensile strength, thermal, dynamic mechanical and magnetic properties has been investigated. The morphology of the blends shows that fly ash particles have more affinity and adhesion towards the rubbery phase when compared to the plastic phase. The fracture surface of the composites shows extensive debonding of fly ash particles. Thermal analysis of the composites shows a progressive increase in activation energy with increase in fly ash loadings. Additionally, morphological studies of the ash residue after 90% thermal degradation shows extensive changes occurring in both the polymer and filler phases. The processing ability of the thermoplastics has been carried out in a Monsanto processability testing machine as a function of shear rate and temperature. Shear thinning behavior, typical of particulate polymer systems, has been observed irrespective of the testing temperatures. Magnetic properties and percolation behavior of the composites have also been evaluated.
Properties Of Carbon/Carbon and Carbon/Phenolic Composites
NASA Technical Reports Server (NTRS)
Mathis, John R.; Canfield, A. R.
1993-01-01
Report presents data on physical properties of carbon-fiber-reinforced carbon-matrix and phenolic-matrix composite materials. Based on tests conducted on panels, cylinders, blocks, and formed parts. Data used by designers to analyze thermal-response and stress levels and develop structural systems ensuring high reliability at minimum weight.
USDA-ARS?s Scientific Manuscript database
Bio(nano)composites comprising agricultural-based polymers blended with biodegradable plant-based fillers and clays were produced to develop novel hydrophobic, yet biodegradable materials that have properties comparable to those of petroleum-based plastics. Poly (lactic acid) (PLA), wheat vital glut...
Pan, Pan; Wu, Shaopeng; Hu, Xiaodi; Liu, Gang; Li, Bo
2017-02-23
Conductive asphalt concrete with high thermal conductivity has been proposed to improve the solar energy collection and snow melting efficiencies of asphalt solar collector (ASC). This paper aims to provide some insight into choosing the basic materials for preparation of conductive asphalt concrete, as well as determining the evolution of thermal characteristics affected by environmental factors. The thermal properties of conductive asphalt concrete were studied by the Thermal Constants Analyzer. Experimental results showed that aggregate and conductive filler have a significant effect on the thermal properties of asphalt concrete, while the effect of asphalt binder was not evident due to its low proportion. Utilization of mineral aggregate and conductive filler with higher thermal conductivity is an efficient method to prepare conductive asphalt concrete. Moreover, change in thermal properties of asphalt concrete under different temperature and moisture conditions should be taken into account to determine the actual thermal properties of asphalt concrete. There was no noticeable difference in thermal properties of asphalt concrete before and after aging. Furthermore, freezing-thawing cycles strongly affect the thermal properties of conductive asphalt concrete, due to volume expansion and bonding degradation.
Pan, Pan; Wu, Shaopeng; Hu, Xiaodi; Liu, Gang; Li, Bo
2017-01-01
Conductive asphalt concrete with high thermal conductivity has been proposed to improve the solar energy collection and snow melting efficiencies of asphalt solar collector (ASC). This paper aims to provide some insight into choosing the basic materials for preparation of conductive asphalt concrete, as well as determining the evolution of thermal characteristics affected by environmental factors. The thermal properties of conductive asphalt concrete were studied by the Thermal Constants Analyzer. Experimental results showed that aggregate and conductive filler have a significant effect on the thermal properties of asphalt concrete, while the effect of asphalt binder was not evident due to its low proportion. Utilization of mineral aggregate and conductive filler with higher thermal conductivity is an efficient method to prepare conductive asphalt concrete. Moreover, change in thermal properties of asphalt concrete under different temperature and moisture conditions should be taken into account to determine the actual thermal properties of asphalt concrete. There was no noticeable difference in thermal properties of asphalt concrete before and after aging. Furthermore, freezing–thawing cycles strongly affect the thermal properties of conductive asphalt concrete, due to volume expansion and bonding degradation. PMID:28772580
Self-healing polymers and composites based on thermal activation
NASA Astrophysics Data System (ADS)
Wang, Ying; Bolanos, Ed; Wudl, Fred; Hahn, Thomas; Kwok, Nathan
2007-04-01
Structural polymer composites are susceptible to premature failure in the form of microcracks in the matrix. Although benign initially when they form, these matrix cracks tend to coalesce and lead in service to critical damage modes such as ply delamination. The matrix cracks are difficult to detect and almost impossible to repair because they form inside the composite laminate. Therefore, polymers with self-healing capability would provide a promising potential to minimize maintenance costs while extending the service lifetime of composite structures. In this paper we report on a group of polymers and their composites which exhibit mendable property upon heating. The failure and healing mechanisms of the polymers involve Diels-Alder (DA) and retro-Diels-Alder (RDA) reactions on the polymer back-bone chain, which are thermally reversible reactions requiring no catalyst. The polymers exhibited good healing property in bulk form. Composite panels were prepared by sandwiching the monomers between carbon fiber fabric layers and cured in autoclave. Microcracks were induced on the resin-rich surface of composite with Instron machine at room temperature by holding at 1% strain for 1 min. The healing ability of the composite was also demonstrated by the disappearance of microcracks after heating. In addition to the self-healing ability, the polymers and composites also exhibited shape memory property. These unique properties may provide the material multi-functional applications. Resistance heating of traditional composites and its applicability in self-healing composites is also studied to lay groundwork for a fully integrated self-healing composite.
Poulose, Anesh Manjaly; Elnour, Ahmed Yagoub; Anis, Arfat; Shaikh, Hamid; Al-Zahrani, S M; George, Justin; Al-Wabel, Mohammad I; Usman, Adel R; Ok, Yong Sik; Tsang, Daniel C W; Sarmah, Ajit K
2018-04-01
The application of biochar (BC) as a filler in polymers can be viewed as a sustainable approach that incorporates pyrolysed waste based value-added material and simultaneously mitigate bio-waste in a smart way. The overarching aim of this work was to investigate the electrical, mechanical, thermal and rheological properties of biocomposite developed by utilizing date palm waste-derived BC for the reinforcing of polypropylene (PP) matrix. Date palm waste derived BC prepared at (700 and 900°C) were blended at different proportions with polypropylene and the resultant composites (BC/PP) were characterized using an array of techniques (scanning electron microscope, energy-dispersive X-ray spectroscopy and Fourier transform infra-red spectroscopy). Additionally the thermal, mechanical, electrical and rheological properties of the BC/PP composites were evaluated at different loading of BC content (from 0 to15% w/w). The mechanical properties of BC/PP composites showed an improvement in the tensile modulus while that of electrical characterization revealed an enhanced electrical conductivity with increased BC loading. Although the BC incorporation into the PP matrix has significantly reduced the total crystallinity of the resulted composites, however; a positive effect on the crystallization temperature (T c ) was observed. The rheological characterization of BC/PP composites revealed that the addition of BC had minimal effect on the storage modulus (G') compared to the neat (PP). Copyright © 2017 Elsevier B.V. All rights reserved.
Organic/Inorganic Polymeric Composites for Heat-Transfer Reduction
NASA Technical Reports Server (NTRS)
Smith, Trent; Williams, Martha
2008-01-01
Organic/inorganic polymeric composite materials have been invented with significant reduction in heat-transfer properties. Measured decreases of 20-50 percent in thermal conductivity versus that of the unmodified polymer matrix have been attained. These novel composite materials also maintain mechanical properties of the unmodified polymer matrix. The present embodiments are applicable, but not limited to: racing applications, aerospace applications, textile industry, electronic applications, military hardware improvements, and even food service industries. One specific application of the polymeric composition is for use in tanks, pipes, valves, structural supports, and components for hot or cold fluid process systems where heat flow through materials is problematic and not desired. With respect to thermal conductivity and physical properties, these materials are superior alternatives to prior composite materials. These materials may prove useful as substitutes for metals in some cryogenic applications. A material of this type can be made from a blend of thermoplastics, elastomers, and appropriate additives and processed on normal polymer processing equipment. The resulting processed organic/inorganic composite can be made into fibers, molded, or otherwise processed into useable articles.
Micromechanics for particulate reinforced composites
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Goldberg, Robert K.; Mital, Subodh K.
1996-01-01
A set of micromechanics equations for the analysis of particulate reinforced composites is developed using the mechanics of materials approach. Simplified equations are used to compute homogenized or equivalent thermal and mechanical properties of particulate reinforced composites in terms of the properties of the constituent materials. The microstress equations are also presented here to decompose the applied stresses on the overall composite to the microstresses in the constituent materials. The properties of a 'generic' particulate composite as well as those of a particle reinforced metal matrix composite are predicted and compared with other theories as well as some experimental data. The micromechanics predictions are in excellent agreement with the measured values.
NASA Technical Reports Server (NTRS)
Zhu, Dongming; Halbig, Michael; Jaskowiak, Martha; Hurst, Janet; Bhatt, Ram; Fox, Dennis S.
2014-01-01
This paper describes recent development of environmental barrier coatings on SiC/SiC ceramic matrix composites. The creep and fatigue behavior at aggressive long-term high temperature conditions have been evaluated and highlighted. Thermal conductivity and high thermal gradient cyclic durability of environmental barrier coatings have been evaluated. The damage accumulation and complex stress-strain behavior environmental barrier coatings on SiCSiC ceramic matrix composite turbine airfoil subelements during the thermal cyclic and fatigue testing of have been also reported.
High Temperature Properties of an Alumina Enhanced Thermal Barrier
NASA Technical Reports Server (NTRS)
Leiser, Daniel B.; Smith, Marnell; Keating, Elizabeth A.
1987-01-01
The heatshield material requirements for future space vehicles (Aerobraking Orbital Transfer Vehicle & National Aerospace Plane) will depend upon the desired flight capability, configuration and location on the vehicle. These requirements will be more demanding and different from those derived for the materials used in the Shuttle Orbiter thermal protection system. Research was therefore initiated into improving the thermal efficiency of this class of materials by first characterizing their thermal and structural capabilities. Alternate material systems have been developed, tested, and compared with the baseline Shuttle system. This research resulted in the development of several very low density, high porosity (80-90%) materials with enhanced durability and temperature capability. One of the developments was a family of materials referred to as Fibrous Refractory Composite Insulation (FRCI) utilizing a mixture of fibers, each serving a unique purpose. One composition of the FRCI family with two fibers was adopted as a baseline material for use on the third and fourth Orbiters in selected areas due to its strength at a lower density compared to earlier materials. A further improvement in the FRCI family of materials is the Alumina Enhanced Thermal Barrier (AETB), a three-fiber composite. It has a higher temperature capability (composition dependent) than the baseline FRCI as proven by convective heating tests of one composition. AETB was studied to better characterize its performance at high temperature and the mechanisms by which its properties change. In conclusion, the shrinkage of AETB is a factor of six better than baseline FRCI at 1260 C (2300 F) with about a 20% improvement in mechanical properties. This improvement could translate into a 110 C (200 F) higher temperature capability in use as a heat shield material, but further testing in a convective heating environment is required to determine the actual improvement attainable.
Thermally Activated Composite with Two-Way and Multi-Shape Memory Effects
Basit, Abdul; L’Hostis, Gildas; Pac, Marie José; Durand, Bernard
2013-01-01
The use of shape memory polymer composites is growing rapidly in smart structure applications. In this work, an active asymmetric composite called “controlled behavior composite material (CBCM)” is used as shape memory polymer composite. The programming and the corresponding initial fixity of the composite structure is obtained during a bending test, by heating CBCM above thermal glass transition temperature of the used Epoxy polymer. The shape memory properties of these composites are investigated by a bending test. Three types of recoveries are conducted, two classical recovery tests: unconstrained recovery and constrained recovery, and a new test of partial recovery under load. During recovery, high recovery displacement and force are produced that enables the composite to perform strong two-way actuations along with multi-shape memory effect. The recovery force confirms full recovery with two-way actuation even under a high load. This unique property of CBCM is characterized by the recovered mechanical work. PMID:28788316
Lattice thermal conductivity of silicate glasses at high pressures
NASA Astrophysics Data System (ADS)
Chang, Y. Y.; Hsieh, W. P.
2016-12-01
Knowledge of the thermodynamic and transport properties of magma holds the key to understanding the thermal evolution and chemical differentiation of Earth. The discovery of the remnant of a deep magma ocean above the core mantle boundary (CMB) from seismic observations suggest that the CMB heat flux would strongly depend on the thermal conductivity, including lattice (klat) and radiative (krad) components, of dense silicate melts and major constituent minerals around the region. Recent measurements on the krad of dense silicate glasses and lower-mantle minerals show that krad of dense silicate glasses could be significantly smaller than krad of the surrounding solid mantle phases, and therefore the dense silicate melts would act as a thermal insulator in deep lower mantle. This conclusion, however, remains uncertain due to the lack of direct measurements on the lattice thermal conductivity of silicate melts under relevant pressure-temperature conditions. Besides the CMB, magmas exist in different circumstances beneath the surface of the Earth. Chemical compositions of silicate melts vary with geological and geodynamic settings of the melts and have strong influences on their thermal properties. In order to have a better view of heat transport within the Earth, it is important to study compositional and pressure dependences of thermal properties of silicate melts. Here we report experimental results on lattice thermal conductivities of silicate glasses with basaltic and rhyolitic compositions up to Earth's lower mantle pressures using time-domain thermoreflectance coupled with diamond-anvil cell techniques. This study not only provides new data for the thermal conductivity of silicate melts in the Earth's deep interior, but is crucial for further understanding of the evolution of Earth's complex internal structure.
NASA Astrophysics Data System (ADS)
Ketabchi, Mohammad Reza; Khalid, Mohammad; Thevy Ratnam, Chantara; Walvekar, Rashmi
2016-12-01
Different approaches have been attempted to use biomass as filler for production of biodegradable polymer composites. In this study, cellulose nanoparticles (CNP) extracted from kenaf fibres were used to produce polylactic acid (PLA) based biodegradable nanocomposites. CNP concentration was varied from 1-5 wt. % and blended with PLA using Brabender twin-screw compounder. Effects of CNP loading on the mechanical, thermal and dynamic properties of PLA were investigated. Studies on the morphological properties and influence of CNP loading on the properties of CNP/PLA nanocomposite were also conducted. The results show an adequate compatibility between CNP and PLA matrix. Moreover, addition of 3 wt. % of CNP improved the PLA tensile strength by 25%.
Thermal shock resistance of ceramic matrix composites
NASA Technical Reports Server (NTRS)
Carper, D. M.; Nied, H. F.
1993-01-01
The experimental and analytical investigation of the thermal shock phenomena in ceramic matrix composites is detailed. The composite systems examined were oxide-based, consisting of an aluminosilicate matrix with either polycrystalline aluminosilicate or single crystal alumina fiber reinforcement. The program was divided into three technical tasks; baseline mechanical properties, thermal shock modeling, and thermal shock testing. The analytical investigation focused on the development of simple expressions for transient thermal stresses induced during thermal shock. The effect of various material parameters, including thermal conductivity, elastic modulus, and thermal expansion, were examined analytically for their effect on thermal shock performance. Using a simple maximum stress criteria for each constituent, it was observed that fiber fracture would occur only at the most extreme thermal shock conditions and that matrix fracture, splitting parallel to the reinforcing fiber, was to be expected for most practical cases. Thermal shock resistance for the two material systems was determined experimentally by subjecting plates to sudden changes in temperature on one surface while maintaining the opposite surface at a constant temperature. This temperature change was varied in severity (magnitude) and in number of shocks applied to a given sample. The results showed that for the most severe conditions examined that only surface matrix fracture was present with no observable fiber fracture. The impact of this damage on material performance was limited to the matrix dominated properties only. Specifically, compression strength was observed to decrease by as much as 50 percent from the measured baseline.
Damage-tolerant metallic composites via melt infiltration of additively manufactured preforms
Pawlowski, Alexander E.; Cordero, Zachary C.; French, Matthew R.; ...
2017-04-22
A facile two-step approach for 3D printing metal-metal composites with precisely controlled microstructures is described. Composites made with this approach exhibit tailorable thermal and mechanical properties as well as exceptional damage tolerance.
Damage-tolerant metallic composites via melt infiltration of additively manufactured preforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawlowski, Alexander E.; Cordero, Zachary C.; French, Matthew R.
A facile two-step approach for 3D printing metal-metal composites with precisely controlled microstructures is described. Composites made with this approach exhibit tailorable thermal and mechanical properties as well as exceptional damage tolerance.
Composite Materials Based on Hemp and Flax for Low-Energy Buildings.
Brzyski, Przemysław; Barnat-Hunek, Danuta; Suchorab, Zbigniew; Łagód, Grzegorz
2017-05-07
The article presents the results obtained in the course of a study on prospective application of flax/hemp wastes as a filling material of lime-based composites in the construction of low-energy buildings. The utilized filler comprised the hydrated lime with clay and Portland cement used as additives. The analysis involved evaluation of such properties as porosity, density, thermal conductivity, absorptivity, permeability, as well as compressive and flexural strength. Depending on the quantity of the filler, the properties of the composite changed. This, in turn, enabled to evaluate whether the utilized composite met the thermal requirements established for low-energy buildings. Afterwards, the obtained data were cross-referenced with the results gathered in the case of a room built of autoclaved aerated concrete. In order to prevent reaching the critical surface humidity, the internal surface temperature had to be calculated. Moreover, the chances of interstitial condensation occurring in the wall made of the analyzed lime-flax-hemp composite were determined as well. The study showed that the composite exhibits low strength, low density, low thermal conductivity, and high absorptivity. The external walls made of the lime-flax-hemp composite receive a limited exposure to condensation, but not significant enough to constitute any threat. The requirements established for low-energy buildings can be met by using the analyzed composite.
Development of sugar palm yarn/glass fibre reinforced unsaturated polyester hybrid composites
NASA Astrophysics Data System (ADS)
Nurazzi, N. Mohd; Khalina, A.; Sapuan, S. Mohd; Rahmah, M.
2018-04-01
This study investigates the effect of fibre hybridization for sugar palm yarn fibre with glass fibre reinforced with unsaturated polyester composites. In this work, unsaturated polyester resin are reinforced with fibre at a ratio of 70:30 wt% and 60:40 wt%. The hybrid composites were characterized in terms of physical (density and water absorption), mechanical (tensile, flexural and compression) and thermal properties through thermal gravimetry analysis (TGA). Density determination showed that density increased with higher wt% of glass fibre. The inherently higher density of glass fibre increased the density of hybrid composite. Resistance to water absorption is improved upon the incorporation of glass fibre and the hybrid composites were found to reach equilibrium absorption at days 4 and 5. As for mechanical performance, the highest tensile strength, tensile modulus, flexural strength, flexural modulus and compression strength were obtained from 40 wt% of fibres reinforcement with ratio of 50:50 wt% of sugar palm yarn fibre and glass fibre reinforced unsaturated polyester composites. The increase of glass fibre loading had a synergistic effect on the mechanical properties to the composites structure due to its superior strength and modulus. The thermal stability of hybrid composites was improved by the increase of onset temperature and the reduction of residues upon increase in temperature.
NASA Astrophysics Data System (ADS)
Parali, Levent; Kurbanov, Mirza A.; Bayramov, Azad A.; Tatardar, Farida N.; Sultanakhmedova, Ramazanova I.; Xanlar, Huseynova Gulnara
2015-11-01
High-density polymer composites with semiconductor or dielectric fillers such as aluminum nitride (AIN), aluminum oxide (Al2O3), titanium carbide (TiC), titanium nitride (TiN), boron nitride (BN), silicon nitride (Si3N4), and titanium carbonitride (TiCN) were prepared by the hot pressing method. Each powder phase of the composites was exposed to an electric discharge plasma process before composite formation. The effects of the electric discharge plasma process and the filler content (volume fraction) on the thermal conductivity, volt-ampere characteristics, thermally stimulated depolarization current, as well as electrical and mechanical strength were investigated. The results of the study indicate that, with increasing filler volume fraction, the thermal conductivity of the samples also increased. Furthermore, the thermal conductivity, and electrophysical and mechanical properties of the high-density polyethylene + 70% BN composite modified using the electric discharge plasma showed improvement when compared with that without electric discharge plasma treatment.
D'Alpino, Paulo Henrique Perlatti; Vismara, Marcus Vinícius Gonçalves; Mello, Luciano Marcelo de Medeiros; Di Hipólito, Vinicius; González, Alejandra Hortencia Miranda; Graeff, Carlos Frederico de Oliveira
2014-07-01
This study evaluated the mechanical, thermal, and morphological characteristics of different classifications of dental composites as a function of the material condition (new, aged and expired). Specimens were obtained according to these factors: Composites: Filtek P60, Filtek Z250, Filtek Z350XT, and Filtek Silorane; and Material conditions: new, aged, and expired. The syringe composites underwent an accelerated aging protocol (Arrhenius model). The flexural strength (FS) and flexural modulus (E) were obtained. The thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were also performed and the glass transition temperature (Tg) and the weight loss calculated. Topographic analysis of the composites was performed under SEM. The material conditions influenced the mechanical properties of the composites. The silorane composite exhibited a characteristic thermal behavior different from that of the methacrylates. In general, the Tg increased after the accelerated aging protocol and decreased for expired ones, compared to the new composites. A significant increase in FS of Filtek Z350XT after aging was accompanied by an increase in the Tg. The filler packings were in accordance with the manufacture׳s information. The topographic aspects of the composites were modified as a function of the material condition. The mechanical properties of the composites following a simplified protocol of accelerated aging varied as a function of the expiration date. The silorane composite presented a characteristic thermal behavior. Although the dental manufacturers may not be able to control variables as storage temperature and transportation conditions, these effects on the composite clinical performance can be minimized if properly considered. Copyright © 2014 Elsevier Ltd. All rights reserved.
Li, Chuanchang; Fu, Liangjie; Ouyang, Jing; Yang, Huaming
2013-01-01
A novel mineral-based composite phase change materials (PCMs) was prepared via vacuum impregnation method assisted with microwave-acid treatment of the graphite (G) and bentonite (B) mixture. Graphite and microwave-acid treated bentonite mixture (GBm) had more loading capacity and higher crystallinity of stearic acid (SA) in the SA/GBm composite. The SA/GBm composite showed an enhanced thermal storage capacity, latent heats for melting and freezing (84.64 and 84.14 J/g) was higher than those of SA/B sample (48.43 and 47.13 J/g, respectively). Addition of graphite was beneficial to the enhancement in thermal conductivity of the SA/GBm composite, which could reach 0.77 W/m K, 31% higher than SA/B and 196% than pure SA. Furthermore, atomic-level interfaces between SA and support surfaces were depicted, and the mechanism of enhanced thermal storage properties was in detail investigated.
Thermal response of a 4D carbon/carbon composite with volume ablation: a numerical simulation study
NASA Astrophysics Data System (ADS)
Zhang, Bai; Li, Xudong
2018-02-01
As carbon/carbon composites usually work at high temperature environments, material ablation inevitably occurs, which further affects the system stability and safety. In this paper, the thermal response of a thermoprotective four-directional carbon/carbon (4D C/C) composite is studied herein using a numerical model focusing on volume ablation. The model is based on energy- and mass-conservation principles as well as on the thermal decomposition equation of solid materials. The thermophysical properties of the C/C composite during the ablation process are calculated, and the thermal response during ablation, including temperature distribution, density, decomposition rate, char layer thickness, and mass loss, are quantitatively predicted. The present numerical study provides a fundamental understanding of the ablative mechanisms of a 4D C/C composite, serving as a reference and basis for further designs and optimizations of thermoprotective materials.
Thermally stable, plastic-bonded explosives
Benziger, Theodore M.
1979-01-01
By use of an appropriate thermoplastic rubber as the binder, the thermal stability and thermal stress characteristics of plastic-bonded explosives may be greatly improved. In particular, an HMX-based explosive composition using an oil-extended styrene-ethylenebutylene-styrene block copolymer as the binder exhibits high explosive energy and thermal stability and good handling safety and physical properties.
Thermal properties of polyethylene reinforced with recycled–poly (ethylene terephthalate) flakes.
NASA Astrophysics Data System (ADS)
Ruqiyah Nik Hassan, Nik; Mazni Ismail, Noor; Ghazali, Suriati; Nuruzzaman, Dewan Muhammad
2018-04-01
In this study, recycled plastic bottles (RPET) were used as a filler in high density polyethylene (HDPE) thermoplastic. The plastic sheet of RPET/HDPE was prepared by using hot and cold press machine. The effects of RPET addition and hot press process to the thermal properties of the composite RPET/HDPE were investigated using differential scanning calorimetry (DSC) and thermogravimetric (TGA). Results from DSC analysis show that the melting point of HDPE slightly shifted to a higher temperature for about 2°C to 4°C with the addition of RPET as a filler. The starting degradation temperature of RPET/HDPE composite examined from TGA analysis also seen to be slightly increased. It was observed that the incorporation of recycled PET flakes into HDPE is achievable using hot press process with slight improvement seen in both melting point and thermal stability of the composite compared to the neat HDPE.
NASA Technical Reports Server (NTRS)
Bhatt, R. T.; Grimes, H. H.
1982-01-01
The effects of isothermal and cyclic exposure on the room temperature axial and transverse tensile strength and dynamic flexural modulus of 35 volume percent and 55 volume percent FP-Al2O3/EZ 33 magnesium composites were studied. The composite specimens were continuously heated in a sand bath maintained at 350 C for up to 150 hours or thermally cycled between 50 and 250 C or 50 and 350 C for up to 3000 cycles. Each thermal cycle lasted for a total of six minutes with a hold time of two minutes at the maximum temperature. Results indicate to significant loss in the room temperature axial tensile strength and dynamic flexural modulus of composites thermally cycled between 50 and 250 C or of composites isothermally heated at 350 C for up to 150 hours from the strength and modulus data for the untreated, as fabricated composites. In contrast, thermal cycling between 50 and 350 C caused considerable loss in both room temperature strength and modulus. Fractographic analysis and measurement of composite transverse strength and matrix hardness of thermally cycled and isothermally heated composites indicated matrix softening and fiber/matrix debonding due to void growth at the interface and matrix cracking as the likely causes of the strength and modulus loss behavior.
Prediction of coefficients of thermal expansion for unidirectional composites
NASA Technical Reports Server (NTRS)
Bowles, David E.; Tompkins, Stephen S.
1989-01-01
Several analyses for predicting the longitudinal, alpha(1), and transverse, alpha(2), coefficients of thermal expansion of unidirectional composites were compared with each other, and with experimental data on different graphite fiber reinforced resin, metal, and ceramic matrix composites. Analytical and numerical analyses that accurately accounted for Poisson restraining effects in the transverse direction were in consistently better agreement with experimental data for alpha(2), than the less rigorous analyses. All of the analyses predicted similar values of alpha(1), and were in good agreement with the experimental data. A sensitivity analysis was conducted to determine the relative influence of constituent properties on the predicted values of alpha(1), and alpha(2). As would be expected, the prediction of alpha(1) was most sensitive to longitudinal fiber properties and the prediction of alpha(2) was most sensitive to matrix properties.
Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability.
Školáková, Andrea; Novák, Pavel; Mejzlíková, Lucie; Průša, Filip; Salvetr, Pavel; Vojtěch, Dalibor
2017-11-05
In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics.
Structure and Mechanical Properties of Al-Cu-Fe-X Alloys with Excellent Thermal Stability
Školáková, Andrea; Novák, Pavel; Mejzlíková, Lucie; Průša, Filip; Salvetr, Pavel; Vojtěch, Dalibor
2017-01-01
In this work, the structure and mechanical properties of innovative Al-Cu-Fe based alloys were studied. We focused on preparation and characterization of rapidly solidified and hot extruded Al-Cu-Fe, Al-Cu-Fe-Ni and Al-Cu-Fe-Cr alloys. The content of transition metals affects mechanical properties and structure. For this reason, microstructure, phase composition, hardness and thermal stability have been investigated in this study. The results showed exceptional thermal stability of these alloys and very good values of mechanical properties. Alloying by chromium ensured the highest thermal stability, while nickel addition refined the structure of the consolidated alloy. High thermal stability of all tested alloys was described in context with the transformation of the quasicrystalline phases to other types of intermetallics. PMID:29113096
NASA Astrophysics Data System (ADS)
Meshgin, Pania
2011-12-01
This research focuses on two important subjects: (1) Characterization of heterogeneous microstructure of multi-phase composites and the effect of microstructural features on effective properties of the material. (2) Utilizations of phase change materials and recycled rubber particles from waste tires to improve thermal properties of insulation materials used in building envelopes. Spatial pattern of multi-phase and multidimensional internal structures of most composite materials are highly random. Quantitative description of the spatial distribution should be developed based on proper statistical models, which characterize the morphological features. For a composite material with multi-phases, the volume fraction of the phases as well as the morphological parameters of the phases have very strong influences on the effective property of the composite. These morphological parameters depend on the microstructure of each phase. This study intends to include the effect of higher order morphological details of the microstructure in the composite models. The higher order statistics, called two-point correlation functions characterize various behaviors of the composite at any two points in a stochastic field. Specifically, correlation functions of mosaic patterns are used in the study for characterizing transport properties of composite materials. One of the most effective methods to improve energy efficiency of buildings is to enhance thermal properties of insulation materials. The idea of using phase change materials and recycled rubber particles such as scrap tires in insulation materials for building envelopes has been studied.
Byun, Youngjae; Rodriguez, Katia; Han, Jung H; Kim, Young Teck
2015-11-01
The effects of the incorporation of PLA-β-cyclodextrin-inclusion complex (IC) and β-cyclodextrin (β-CD) on biopolyester PLA films were investigated. Thermal stability, surface morphology, barrier, and mechanical properties of the films were measured at varying IC (1, 3, 5, and 7%) and β-CD (1 and 5%) concentrations. The PLA-IC-composite films (IC-PLA-CFs) showed uniform morphological structure, while samples containing β-CD (β-CD-PLA-CFs) showed high agglomeration of β-CD due to poor interfacial interaction between β-CD and PLA moieties. According to the thermal property analysis, the 5% IC-PLA-CFs showed 6.6 times lower dimensional changes (6.5%) at the temperature range of 20-80°C than that of pure PLA film (43.0%). The increase of IC or β-CD content in the PLA-composite films shifted the glass transition and crystallization temperature to higher temperature regions. The crystallinity of both composite films improved by increasing IC or β-CD content. Both composite films had higher oxygen and water vapor permeability as IC or β-CD content increased in comparison to pure PLA film. All the composite films had less flexibility and lower tensile strength than the pure PLA film. In conclusion, this study shows that the IC technique is valuable to improve the thermal expansion stability of PLA-based films. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maienschein, J L; Wardell, J F; Weese, R K
The violence of thermal explosions with energetic materials is affected by many material properties, including mechanical and thermal properties, thermal ignition kinetics, and deflagration behavior. These properties must be characterized for heated samples as well as pristine materials. We present available data for these properties for two HMX-based formulations--LX-04 and PBX-9501, and two RDX-based formulations--Composition B and PBXN-109. We draw upon separately published data on the thermal explosion violence with these materials to compare the material properties with the observed violence. We have the most extensive data on deflagration behavior of these four formulations, and we discuss the correlation ofmore » the deflagration data with the violence results. The data reported here may also be used to develop models for application in simulation codes such as ALE3D to calculate and Dredict thermal explosion violence.« less
Huang, Runzhou; Xu, Xinwu; Lee, Sunyoung; Zhang, Yang; Kim, Birm-June; Wu, Qinglin
2013-01-01
The effect of individual and combined talc and glass fibers (GFs) on mechanical and thermal expansion performance of the filled high density polyethylene (HDPE) composites was studied. Several published models were adapted to fit the measured tensile modulus and strength of various composite systems. It was shown that the use of silane-modified GFs had a much larger effect in improving mechanical properties and in reducing linear coefficient of thermal expansion (LCTE) values of filled composites, compared with the use of un-modified talc particles due to enhanced bonding to the matrix, larger aspect ratio, and fiber alignment for GFs. Mechanical properties and LCTE values of composites with combined talc and GF fillers varied with talc and GF ratio at a given total filler loading level. The use of a larger portion of GFs in the mix can lead to better composite performance, while the use of talc can help lower the composite costs and increase its recyclability. The use of 30 wt % combined filler seems necessary to control LCTE values of filled HDPE in the data value range generally reported for commercial wood plastic composites. Tensile modulus for talc-filled composite can be predicted with rule of mixture, while a PPA-based model can be used to predict the modulus and strength of GF-filled composites. PMID:28788322
Graphene Nanoplatelet Reinforced Tantalum Carbide
2015-08-27
testing showed an increase in thermal conductivity in GNP reinforced composites resulting in a reduction of peak sample surface temperature. This study...showed an increase in thermal conductivity in GNP reinforced composites resulting in a reduction of peak sample surface temperature. This study resulted...Wetting angle measurements are conducted to demonstrate the effectiveness of the PLC coating . Mechanical properties of the GrF-PLC hybrid are
Applications of Polymer Matrix Syntactic Foams
NASA Astrophysics Data System (ADS)
Gupta, Nikhil; Zeltmann, Steven E.; Shunmugasamy, Vasanth Chakravarthy; Pinisetty, Dinesh
2013-11-01
A collection of applications of polymer matrix syntactic foams is presented in this article. Syntactic foams are lightweight porous composites that found their early applications in marine structures due to their naturally buoyant behavior and low moisture absorption. Their light weight has been beneficial in weight sensitive aerospace structures. Syntactic foams have pushed the performance boundaries for composites and have enabled the development of vehicles for traveling to the deepest parts of the ocean and to other planets. The high volume fraction of porosity in syntactic foams also enabled their applications in thermal insulation of pipelines in oil and gas industry. The possibility of tailoring the mechanical and thermal properties of syntactic foams through a combination of material selection, hollow particle volume fraction, and hollow particle wall thickness has helped in rapidly growing these applications. The low coefficient of thermal expansion and dimensional stability at high temperatures are now leading their use in electronic packaging, composite tooling, and thermoforming plug assists. Methods have been developed to tailor the mechanical and thermal properties of syntactic foams independent of each other over a wide range, which is a significant advantage over other traditional particulate and fibrous composites.
NASA Technical Reports Server (NTRS)
Gordon, S.; Mcbride, B.; Zeleznik, F. J.
1984-01-01
An addition to the computer program of NASA SP-273 is given that permits transport property calculations for the gaseous phase. Approximate mixture formulas are used to obtain viscosity and frozen thermal conductivity. Reaction thermal conductivity is obtained by the same method as in NASA TN D-7056. Transport properties for 154 gaseous species were selected for use with the program.
Versatile composite resins simplifying the practice of restorative dentistry.
Margeas, Robert
2014-01-01
After decades of technical development and refinement, composite resins continue to simplify the practice of restorative dentistry, offering clinicians versatility, predictability, and enhanced physical properties. With a wide range of products available today, composite resins are a reliable, conservative, multi-functional restorative material option. As manufacturers strive to improve such properties as compression strength, flexural strength, elastic modulus, coefficient of thermal expansion, water sorption, and wear resistance, several classification systems of composite resins have been developed.
Kong, Xiangfei; Zhong, Yuliang; Rong, Xian; Min, Chunhua; Qi, Chengying
2016-01-25
This study is focused on the preparation and performance of a building energy storage panel (BESP). The BESP was fabricated through a mold pressing method based on phase change material particle (PCMP), which was prepared in two steps: vacuum absorption and surface film coating. Firstly, phase change material (PCM) was incorporated into expanded perlite (EP) through a vacuum absorption method to obtain composite PCM; secondly, the composite PCM was immersed into the mixture of colloidal silica and organic acrylate, and then it was taken out and dried naturally. A series of experiments, including differential scanning calorimeter (DSC), scanning electron microscope (SEM), best matching test, and durability test, have been conducted to characterize and analyze the thermophysical property and reliability of PCMP. Additionally, the thermal performance of BESP was studied through a dynamic thermal property test. The results have showed that: (1) the surface film coating procedure can effectively solve the leakage problem of composite phase change material prepared by vacuum impregnation; (2) the optimum adsorption ratio for paraffin and EP was 52.5:47.5 in mass fraction, and the PCMP has good thermal properties, stability, and durability; and (3) in the process of dynamic thermal performance test, BESP have low temperature variation, significant temperature lagging, and large heat storage ability, which indicated the potential of BESP in the application of building energy efficiency.
Kong, Xiangfei; Zhong, Yuliang; Rong, Xian; Min, Chunhua; Qi, Chengying
2016-01-01
This study is focused on the preparation and performance of a building energy storage panel (BESP). The BESP was fabricated through a mold pressing method based on phase change material particle (PCMP), which was prepared in two steps: vacuum absorption and surface film coating. Firstly, phase change material (PCM) was incorporated into expanded perlite (EP) through a vacuum absorption method to obtain composite PCM; secondly, the composite PCM was immersed into the mixture of colloidal silica and organic acrylate, and then it was taken out and dried naturally. A series of experiments, including differential scanning calorimeter (DSC), scanning electron microscope (SEM), best matching test, and durability test, have been conducted to characterize and analyze the thermophysical property and reliability of PCMP. Additionally, the thermal performance of BESP was studied through a dynamic thermal property test. The results have showed that: (1) the surface film coating procedure can effectively solve the leakage problem of composite phase change material prepared by vacuum impregnation; (2) the optimum adsorption ratio for paraffin and EP was 52.5:47.5 in mass fraction, and the PCMP has good thermal properties, stability, and durability; and (3) in the process of dynamic thermal performance test, BESP have low temperature variation, significant temperature lagging, and large heat storage ability, which indicated the potential of BESP in the application of building energy efficiency. PMID:28787870
Sulfur-Containing Organic-Inorganic Hybrid Gel Compositions and Aerogels
NASA Technical Reports Server (NTRS)
Evans, Owen R (Inventor); Deshpande, Kiranmayi (Inventor); Dong, Wenting (Inventor)
2017-01-01
Methods and materials are described for preparing organic-inorganic hybrid gel compositions where a sulfur-containing cross-linking agent covalently links the organic and inorganic components. The gel compositions are further dried to provide porous gel compositions and aerogels. The mechanical and thermal properties of the dried gel compositions are also disclosed.
Sulfur-Containing Organic-Inorganic Hybrid Gel Compositions and Aerogels
NASA Technical Reports Server (NTRS)
Deshpande, Kiranmayi (Inventor); Evans, Owen R. (Inventor); Dong, Wenting (Inventor)
2015-01-01
Methods and materials are described for preparing organic-inorganic hybrid gel compositions where a sulfur-containing cross-linking agent covalently links the organic and inorganic components. The gel compositions are further dried to provide porous gel compositions and aerogels. The mechanical and thermal properties of the dried gel compositions are also disclosed.
Effect of refining variables on the properties and composition of JP-5
NASA Technical Reports Server (NTRS)
Lieberman, M.; Taylor, W. F.
1980-01-01
Potential future problem areas that could arise from changes in the composition, properties, and potential availability of JP-5 produced in the near future are identified. Potential fuel problems concerning thermal stability, lubricity, low temperature flow, combustion, and the effect of the use of specific additives on fuel properties and performance are discussed. An assessment of available crudes and refinery capabilities is given.
NASA Astrophysics Data System (ADS)
Jimbou, R.; Kodama, K.; Saidoh, M.; Suzuki, Y.; Nakagawa, M.; Morita, K.; Tsuchiya, B.
1997-02-01
The thermal conductivity of the composite hot-pressed at 2100°C including B 4C and carbon fibers with a thermal conductivity of 1100 W/ m· K was nearly the same as that of the composite including carbon fibers with a thermal conductivity of 600 W/ m· K. This resulted from the higher amount of B diffused into the carbon fibers through the larger interface. The B 4C content in the composite can be reduced from 35 to 20 vol% which resulted from the more uniform distribution of B 4C by stacking the flat cloth woven of carbon fibers (carbon fiber plain fabrics) than in the composite with 35 vol% B 4C including curled carbon fiber plain fabrics. The decrease in the B 4C content does not result in the degradation of D (deuterium)-retention characteristics or D-recycling property, but will bring about the decreased amount of the surface layer to be melted under the bombardment of high energy hydrogen ions such as disruptions because of higher thermal conduction of the composite.
The calculation of thermophysical properties of nickel plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apfelbaum, E. M.
2015-09-15
The thermophysical properties of Nickel plasma have been calculated for the temperatures 10–60 kK and densities less than 1 g/cm{sup 3}. These properties are the pressure, internal energy, heat capacity, and the electronic transport coefficients (electrical conductivity, thermal conductivity, and thermal power). The thermodynamic values have been calculated by means of the chemical model, which also allows one to obtain the ionic composition of considered plasma. The composition has been used to calculate the electronic transport coefficients within the relaxation time approximation. The results of the present investigation have been compared with the calculations of other researchers and available data ofmore » measurements.« less
Thermal/acoustical aircraft insulation material
NASA Technical Reports Server (NTRS)
Struzik, E. A.; Kunz, R.; Lin, R.
1975-01-01
Attempts made to improve the acoustical properties of low density Fiberfrax foam, an aircraft insulation material, are reported. Characterizations were also made of the physical and thermal properties. Two methods, optimization of fiber blend composition and modification of the foam fabrication process, were examined as possible means of improving foam acoustics. Flame impingement tests were also made; results show performance was satisfactory.
NASA Technical Reports Server (NTRS)
Coguill, Scott L.; Adams, Donald F.
1989-01-01
The mechanical and physical properties of three neat matrix materials, i.e., PEEK (polyetheretherketone) thermoplastic, Hexcel F155 rubber-toughened epoxy and Hercules 8551-7 rubber-toughened epoxy, were experimentally determined. Twelve unidirectional carbon fiber composites, incorporating matrix materials characterized in this or earlier studies (with one exception; the PISO(sub 2)-TPI matrix itself was not characterized), were also tested. These composite systems included AS4/2220-1, AS4/2220-3, T500/R914, IM6/HX1504, T300/4901A (MDA), T700/4901A (MDA), T300/4901B (MPDA), T700/4901B (MPDA), APC2 (AS4/PEEK, ICI), APC2 (AS4/PEEK, Langley Research Center), AS4/8551-7, and AS4/PISO(sub 2)-TPI. For the neat matrix materials, the tensile, shear, fracture toughness, coefficient of thermal expansion, and coefficient of moisture expansion properties were measured as a function of both temperature and moisture content. For the unidirectional composites, axial and transverse tensile, longitudinal shear, coefficient of thermal expansion, and coefficient of moisture expansion properties were determined, at room temperature and 100 C.
[In Situ Polymerization and Characterization of Hydroxyapatite/polyurethane Implanted Material].
Gu, Muqing; Xiao, Fengjuan; Liang, Ye; Yue, Lin; Li, Song; Li, Lanlan; Feng, Feifei
2015-08-01
In order to improve the interfacial bonding strength of hydroxyapatite/polyurethane implanted material and dispersion of hydroxyapatite in the polyurethane matrix, we in the present study synthesized nano-hydroxyapatite/polyurethane composites by in situ polymerization. We then characterized and analyzed the fracture morphology, thermal stability, glass transition temperature and mechanical properties. We seeded MG63 cells on composites to evaluate the cytocompatibility of the composites. In situ polymerization could improve the interfacial bonding strength, ameliorate dispersion of hydroxyapatite in the properties of the composites. After adding 20 wt% hydroxyapatite into the polyurethane, the thermal stability was improved and the glass transition temperatures were increased. The tensile strength and maximum elongation were 6.83 MPa and 861.17%, respectively. Compared with those of pure polyurethane the tensile strength and maximum elongation increased by 236.45% and 143.30%, respectively. The composites were helpful for cell adhesion and proliferation in cultivation.
Liu, Hai; Gong, Chunli; Wang, Jie; Liu, Xiaoyan; Liu, Huanli; Cheng, Fan; Wang, Guangjin; Zheng, Genwen; Qin, Caiqin; Wen, Sheng
2016-01-20
Silica-coated carbon nanotubes (SCNTs), which were obtained by a simple sol-gel method, were utilized in preparation of chitosan/SCNTs (CS/SCNTs) composite membranes. The thermal and oxidative stability, morphology, mechanical properties, water uptake and proton conductivity of CS/SCNTs composite membranes were investigated. The insulated and hydrophilic silica layer coated on CNTs eliminates the risk of electronic short-circuiting and enhances the interaction between SCNTs and chitosan to ensure the homogenous dispersion of SCNTs, although the water uptake of CS/SCNTs membranes is reduced owing to the decrease of the effective number of the amino functional groups of chitosan. The CS/SCNTs composite membranes are superior to the pure CS membrane in thermal and oxidative stability, mechanical properties and proton conductivity. The results of this study suggest that CS/SCNTs composite membranes exhibit promising potential for practical application in proton exchange membranes. Copyright © 2015 Elsevier Ltd. All rights reserved.
High Thermal Conductivity NARloy-Z-Diamond Composite Liner for Advanced Rocket Engines
NASA Technical Reports Server (NTRS)
Bhat, Biliyar; Greene, Sandra
2015-01-01
NARloy-Z (Cu-3Ag-0.5Zr) alloy is state-of-the-art combustion chamber liner material used in liquid propulsion engines such as the RS-68 and RS-25. The performance of future liquid propulsion systems can be improved significantly by increasing the heat transfer through the combustion chamber liner. Prior work1 done at NASA Marshall Space Flight Center (MSFC) has shown that the thermal conductivity of NARloy-Z alloy can be improved significantly by embedding high thermal conductivity diamond particles in the alloy matrix to form NARloy-Z-diamond composite (fig. 1). NARloy-Z-diamond composite containing 40vol% diamond showed 69% higher thermal conductivity than NARloy-Z. It is 24% lighter than NARloy-Z and hence the density normalized thermal conductivity is 120% better. These attributes will improve the performance and life of the advanced rocket engines significantly. The research work consists of (a) developing design properties (thermal and mechanical) of NARloy-Z-D composite, (b) fabrication of net shape subscale combustion chamber liner, and (c) hot-fire testing of the liner to test performance. Initially, NARloy-Z-D composite slabs were made using the Field Assisted Sintering Technology (FAST) for the purpose of determining design properties. In the next step, a cylindrical shape was fabricated to demonstrate feasibility (fig. 3). The liner consists of six cylinders which are sintered separately and then stacked and diffusion bonded to make the liner (fig. 4). The liner will be heat treated, finish-machined, and assembled into a combustion chamber and hot-fire tested in the MSFC test facility (TF 115) to determine perform.
Fabrication and Characterization of High Temperature Resin/Carbon Nanofiber Composites
NASA Technical Reports Server (NTRS)
Ghose, Sayata; Watson, Kent A.; Working, Dennis C.; Criss, Jim M.; Siochi, Emilie J.; Connell, John W.
2005-01-01
Multifunctional composites present a route to structural weight reduction. Nanoparticles such as carbon nanofibers (CNF) provide a compromise as a lower cost nanosize reinforcement that yields a desirable combination of properties. Blends of PETI-330 and CNFs were prepared and characterized to investigate the potential of CNF composites as a high performance structural medium. Dry mixing techniques were employed and the effect of CNF loading level on melt viscosity was determined. The resulting powders were characterized for degree of mixing, thermal and rheological properties. Based on the characterization results, samples containing 30 and 40 wt% CNF were scaled up to approx.300 g and used to fabricate moldings 10.2 cm x 15.2 cm x 0.32 cm thick. The moldings were fabricated by injecting the mixtures at 260-280 C into a stainless steel tool followed by curing for 1 h at 371 C. The tool was designed to impart high shear during the process in an attempt to achieve some alignment of CNFs in the flow direction. Moldings were obtained that were subsequently characterized for thermal, mechanical and electrical properties. The degree of dispersion and alignment of CNFs were investigated using high-resolution scanning electron microscopy. The preparation and preliminary characterization of PETI-330/CNF composites are discussed. Keywords: resins, carbon nanofibers, scanning electron microscopy, electrical properties, thermal conductivity,injection
Viscous and thermal modelling of thermoplastic composites forming process
NASA Astrophysics Data System (ADS)
Guzman, Eduardo; Liang, Biao; Hamila, Nahiene; Boisse, Philippe
2016-10-01
Thermoforming thermoplastic prepregs is a fast manufacturing process. It is suitable for automotive composite parts manufacturing. The simulation of thermoplastic prepreg forming is achieved by alternate thermal and mechanical analyses. The thermal properties are obtained from a mesoscopic analysis and a homogenization procedure. The forming simulation is based on a viscous-hyperelastic approach. The thermal simulations define the coefficients of the mechanical model that depend on the temperature. The forming simulations modify the boundary conditions and the internal geometry of the thermal analyses. The comparison of the simulation with an experimental thermoforming of a part representative of automotive applications shows the efficiency of the approach.
Influence of porosity on thermophysical properties of a composite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grishaeva, N. Yu., E-mail: anohina@mail2000.ru; Ljukshin, B. A., E-mail: lba2008@yandex.ru; Bochkareva, S. A., E-mail: svetlanab7@yandex.ru
2015-10-27
In many modern information systems, the heat generated during the operation of electronic devices is usually dissipated by heat-conductive pads between the casing of the respective equipment and a massive base (platform). For newly developed pads, the promising materials are composites on the basis of various types of silicone rubber. At the same time, during the production of the pads without a vacuum setup, the material can contain air bubbles, which causes the porosity potentially negative for the thermal properties of the material. This work studies the thermal conductivity depending on the degree of silicone matrix filling by copper particles,more » introduced to improve thermal conductivity, and by air bubbles that are considered as reinforcing inclusions.« less
Finite Element Model Characterization Of Nano-Composite Thermal And Environmental Barrier Coatings
NASA Technical Reports Server (NTRS)
Yamada, Yoshiki; Zhu, Dongming
2011-01-01
Thermal and environmental barrier coatings have been applied for protecting Si based ceramic matrix composite components from high temperature environment in advanced gas turbine engines. It has been found that the delamination and lifetime of T/EBC systems generally depend on the initiation and propagation of surface cracks induced by the axial mechanical load in addition to severe thermal loads. In order to prevent T/EBC systems from surface cracking and subsequent delamination due to mechanical and thermal stresses, T/EBC systems reinforced with nano-composite architectures have showed promise to improve mechanical properties and provide a potential crack shielding mechanism such as crack bridging. In this study, a finite element model (FEM) was established to understand the potential beneficial effects of nano-composites systems such as SiC nanotube-reinforced oxide T/EBC systems.
NASA Technical Reports Server (NTRS)
Funk, Joan G.; Sykes, George F., Jr.
1989-01-01
The effects of simulated space environmental parameters on microdamage induced by the environment in a series of commercially available graphite-fiber-reinforced composite materials were determined. Composites with both thermoset and thermoplastic resin systems were studied. Low-Earth-Orbit (LEO) exposures were simulated by thermal cycling; geosynchronous-orbit (GEO) exposures were simulated by electron irradiation plus thermal cycling. The thermal cycling temperature range was -250 F to either 200 F or 150 F. The upper limits of the thermal cycles were different to ensure that an individual composite material was not cycled above its glass transition temperature. Material response was characterized through assessment of the induced microcracking and its influence on mechanical property changes at both room temperature and -250 F. Microdamage was induced in both thermoset and thermoplastic advanced composite materials exposed to the simulated LEO environment. However, a 350 F cure single-phase toughened epoxy composite was not damaged during exposure to the LEO environment. The simuated GEO environment produced microdamage in all materials tested.
NASA Astrophysics Data System (ADS)
Gheribi, Aïmen E.; Poncsák, Sándor; Guérard, Sébastien; Bilodeau, Jean-François; Kiss, László; Chartrand, Patrice
2017-03-01
During aluminium electrolysis, a ledge of frozen electrolytes is generally formed, attached to the sides of the cells. This ledge acts as a protective layer, preventing erosion and chemical attacks of both the electrolyte melt and the liquid aluminium on the side wall materials. The control of the sideledge thickness is thus essential in ensuring a reasonable lifetime for the cells. The key property for modelling and predicting the sideledge thickness as a function of temperature and electrolyte composition is the thermal conductivity. Unfortunately, almost no data is available on the thermal conductivity of the sideledge. The aim of this work is to alleviate this lack of data. For seven different samples of sideledge microstructures, recovered from post-mortem industrial electrolysis cells, the thermal diffusivity, the density, and the phase compositions were measured in the temperature range of 423 K to 873 K. The thermal diffusivity was measured with a laser flash technique and the average phase compositions by X-ray diffraction analysis. The thermal conductivity of the sideledge is deduced from the present experimental thermal diffusivity and density, and the thermodynamically assessed heat capacity. In addition to the present experimental work, a theoretical model for the prediction of the effective thermal transport properties of the sideledge microstructure is also proposed. The proposed model considers an equivalent microstructure and depends on phase fractions, porosity, and temperature. The strength of the model lies in the fact that only a few key physical properties are required for its parametrization and they can be predicted with a good accuracy via first principles calculations. It is shown that the theoretical predictions are in a good agreement with the present experimental measurements.
A composite material based on recycled tires
NASA Astrophysics Data System (ADS)
Malers, L.; Plesuma, R.; Locmele, L.
2009-01-01
The present study is devoted to the elaboration and investigation of a composite material based on mechanically grinded recycled tires and a polymer binder. The correlation between the content of the binder, some technological parameters, and material properties of the composite was clarified. The apparent density, the compressive stress at a 10% strain, the compressive elastic modulus in static and cyclic loadings, and the insulating properties (acoustic and thermal) were the parameters of special interest of the present investigation. It is found that a purposeful variation of material composition and some technological parameters leads to multifunctional composite materials with different and predictable mechanical and insulation properties.
ERIC Educational Resources Information Center
D'Amelia, Ronald P.; Clark, Daniel; Nirode, William
2012-01-01
An alloy is an intimate association of two or more metals, with or without a definite composition, which has metallic properties. Heterogeneous alloys, such as tin-lead (Sn/Pb) solders, consist of a mixture of crystalline phases with different compositions. A homogeneous alloy with a unique composition having the lowest possible melting point is…
Preparation and properties studies of UV-curable silicone modified epoxy resin composite system.
Yu, Zhouhui; Cui, Aiyong; Zhao, Peizhong; Wei, Huakai; Hu, Fangyou
2018-01-01
Modified epoxy suitable for ultraviolet (UV) curing is prepared by using organic silicon toughening. The curing kinetics of the composite are studied by dielectric analysis (DEA), and the two-phase compatibility of the composite is studied by scanning electron microscopy (SEM). The tensile properties, heat resistance, and humidity resistance of the cured product are explored by changing the composition ratio of the silicone and the epoxy resin. SEM of silicone/epoxy resin shows that the degree of cross-linking of the composites decreases with an increase of silicone resin content. Differential thermal analysis indicates that the glass transition temperature and the thermal stability of the composites decrease gradually with an increase of silicone resin content. The thermal degradation rate in the high temperature region, however, first decreases and then increases. In general, after adding just 10%-15% of the silicone resin and exposing to light for 15 min, the composite can still achieve a better curing effect. Under such conditions, the heat resistance of the cured product decreases a little. The tensile strength is kept constant so that elongation at breakage is apparently improved. The change rate after immersion in distilled water at 60°C for seven days is small, which shows excellent humidity resistance.
Tribological properties of thermally sprayed TiAl-Al2O3 composite coating
NASA Astrophysics Data System (ADS)
Salman, A.; Gabbitas, B.; Li, J.; Zhang, D.
2009-08-01
The use of thermal spray coatings provides protection to the surfaces operating in severe environments. The main goal of the current work is to investigate the possibility of using a high velocity oxy fuel (HVOF) thermally sprayed wear resistant TiAl/Al2O3 coating on tool steel (H13) which is used for making dies for aluminium high pressure die casting. A feedstock of TiAl/Al2O3 composite powder was produced from a mixture of Al and TiO2 powders by high energy mechanical milling, followed by a thermal reaction process. The feedstock was then thermally sprayed using a high velocity oxy-fuel (HVOF) technique onto H13 steel substrates to produce a composite coating. The present study describes and compares the tribological properties such as friction and sliding wear rate of the coating both at room and high temperature (700°C). The results showed that the composite coating has lower wear rate at high temperature (700°C) than the uncoated H13 sample. At Room temperature without using lubricant there is no much significant difference between the wear rate of the coated and uncoated samples. The experimental results showed that the composite coating has great potential for high temperature application due to its lower wear rate at high temperature in comparison with the uncoated sample at the same temperature. The composite coating was characterized using scanning electron microscopy (SEM), optical microscopy and X-ray diffractometry (XRD). This paper reports the experimental observations and discusses the wear resistance performance of the coatings at room and high temperatures.
Tribological Properties of Ti(Al,O)/Al2O3 Composite Coating by Thermal Spraying
NASA Astrophysics Data System (ADS)
Salman, Asma; Gabbitas, Brian; Cao, Peng; Zhang, Deliang
The use of thermal spray coatings provides protection to the surfaces operating in severe environments. The main goal of the current work is to investigate the possibility of using a high velocity air fuel (HVAF) thermally sprayed wear resistant Ti(Al,O)/Al2O3 coating on tool steel (H13) which is used for making dies for aluminium high pressure die casting and dummy blocks aluminium extrusion. A feedstock of Ti(Al,O)/Al2O3 composite powder was produced from a mixture of Al and TiO2 powders by high energy mechanical milling, followed by a thermal reaction process. The feedstock was then thermally sprayed using a high velocity air-fuel (HVAF) technique onto H13 steel substrates to produce a composite coating. The present study describes and compares the tribological properties such as friction and sliding wear rate of the coating both at room and high temperature (700°C). The wear resistance of the coating was investigated by a tribometer using a spherical ended alumina pin as a counter body under dry and lubricating conditions. The results showed that composite coating has lower wear rate at high temperature than at room temperature without using lubricant. The composite coating was characterized using scanning electron microscopy (SEM), optical microscopy and X-ray diffractometry (XRD). This paper reports the experimental observations and discusses the wear resistance performance of the coatings at room and high temperatures.
Thermal shock effect on Mechanical and Physical properties of pre-moisture treated GRE composite
NASA Astrophysics Data System (ADS)
Chakraverty, A. P.; Panda, A. B.; Mohanty, U. K.; Mishra, S. C.; Biswal, B. B.
2018-03-01
Many practical situations may be encountered under which a GFRP (Glass fibre reinforced polymer) composite, during its service life, is exposed to the severities of sudden temperature fluctuations. Moisture absorption of GRE (Glass fibre reinforced epoxy) composites followed by various gradients of temperature fluctuations may cause thermo- mechanical degradation. It is on this context, the hand layed GRE composite samples are exposed to up-thermal shock (-40°C to +50°C) and down-thermal shock (+50°C to -40°C) for various time interval after several periods of moisture (hydrothermal/hygrothermal) conditioning. The thermally shocked GRE specimens are put to 3-point bend test to divulge inter laminar shear strength (ILSS). Least ILSS values are recorded for the samples with maximum period of moisture treatments under with both up-thermal and down-thermal shock conditions. Lower glass transition temperature (Tg) values, as revealed through the low temperature DSC test, are exhibited at maximum durations of both up-thermal and down-thermal shock for the samples with higher periods of hygrothermal/hydrothermal treatments. SEM fractographs of representative GRE specimens after optimum period of moisture treatments and thermal shock show the various modes of failures.
Continuous fiber-reinforced titanium aluminide composites
NASA Technical Reports Server (NTRS)
Mackay, R. A.; Brindley, P. K.; Froes, F. H.
1991-01-01
An account is given of the fabrication techniques, microstructural characteristics, and mechanical behavior of a lightweight, high service temperature SiC-reinforced alpha-2 Ti-14Al-21Nb intermetallic-matrix composite. Fabrication techniques under investigation to improve the low-temperature ductility and environmental resistance of this material system, while reducing manufacturing costs to competitive levels, encompass powder-cloth processing, foil-fiber-foil processing, and thermal-spray processing. Attention is given to composite microstructure problems associated with fiber distribution and fiber-matrix interfaces, as well as with mismatches of thermal-expansion coefficient; major improvements are noted to be required in tensile properties, thermal cycling effects, mechanical damage, creep, and environmental effects.
NASA Technical Reports Server (NTRS)
Bhat, Biliyar N.; Ellis, David; Singh, Jogender
2014-01-01
Advanced high thermal conductivity materials research conducted at NASA Marshall Space Flight Center (MSFC) with state of the art combustion chamber liner material NARloy-Z showed that its thermal conductivity can be increased significantly by adding diamond particles and sintering it at high temperatures. For instance, NARloy-Z containing 40 vol. percent diamond particles, sintered at 975C to full density by using the Field assisted Sintering Technology (FAST) showed 69 percent higher thermal conductivity than baseline NARloy-Z. Furthermore, NARloy-Z-40vol. percent D is 30 percent lighter than NARloy-Z and hence the density normalized thermal conductivity is 140 percent better. These attributes will improve the performance and life of the advanced rocket engines significantly. By one estimate, increased thermal conductivity will directly translate into increased turbopump power up to 2X and increased chamber pressure for improved thrust and ISP, resulting in an expected 20 percent improvement in engine performance. Follow on research is now being conducted to demonstrate the benefits of this high thermal conductivity NARloy-Z-D composite for combustion chamber liner applications in advanced rocket engines. The work consists of a) Optimizing the chemistry and heat treatment for NARloy-Z-D composite, b) Developing design properties (thermal and mechanical) for the optimized NARloy-Z-D, c) Fabrication of net shape subscale combustion chamber liner, and d) Hot fire testing of the liner for performance. FAST is used for consolidating and sintering NARlo-Z-D. The subscale cylindrical liner with built in channels for coolant flow is also fabricated near net shape using the FAST process. The liner will be assembled into a test rig and hot fire tested in the MSFC test facility to determine performance. This paper describes the development of this novel high thermal conductivity NARloy-Z-D composite material, and the advanced net shape technology to fabricate the combustion chamber liner. Properties of optimized NARloy-Z-D composite material will also be presented.
Wang, Jing; Schlagenhauf, Lukas; Setyan, Ari
2017-02-20
Composite materials with fibrous reinforcement often provide superior mechanical, thermal, electrical and optical properties than the matrix. Asbestos, carbon fibers and carbon nanotubes (CNTs) have been widely used in composites with profound impacts not only on technology and economy but also on human health and environment. A large number of studies have been dedicated to the release of fibrous particles from composites. Here we focus on the transformation of the fibrous fillers after their release, especially the change of the properties essential for the health impacts. Asbestos fibers exist in a large number of products and the end-of-the-life treatment of asbestos-containing materials poses potential risks. Thermal treatment can transform asbestos to non-hazardous phase which provides opportunities of safe disposal of asbestos-containing materials by incineration, but challenges still exist. Carbon fibers with diameters in the range of 5-10 μm are not considered to be respirable, however, during the release process from composites, the carbon fibers may be split along the fiber axis, generating smaller and respirable fibers. CNTs may be exposed on the surface of the composites or released as free standing fibers, which have lengths shorter than the original ones. CNTs have high thermal stability and may be exposed after thermal treatment of the composites and still keep their structural integrity. Due to the transformation of the fibrous fillers during the release process, their toxicity may be significantly different from the virgin fibers, which should be taken into account in the risk assessment of fiber-containing composites.
Zhang, Baoxi; Zhang, Xinghong; Hong, Changqing; Qiu, Yunfeng; Zhang, Jia; Han, Jiecai; Hu, PingAn
2016-05-11
The central problem of using ceramic as a structural material is its brittleness, which associated with rigid covalent or ionic bonds. Whiskers or fibers of strong ceramics such as silicon carbide (SiC) or silicon nitride (Si3N4) are widely embedded in a ceramic matrix to improve the strength and toughness. The incorporation of these insulating fillers can impede the thermal flow in ceramic matrix, thus decrease its thermal shock resistance that is required in some practical applications. Here we demonstrate that the toughness and thermal shock resistance of zirconium diboride (ZrB2)/SiC composites can be improved simultaneously by introducing graphene into composites via electrostatic assembly and subsequent sintering treatment. The incorporated graphene creates weak interfaces of grain boundaries (GBs) and optimal thermal conductance paths inside composites. In comparison to pristine ZrB2-SiC composites, the toughness of (2.0%) ZrB2-SiC/graphene composites exhibited a 61% increasing (from 4.3 to 6.93 MPa·m(1/2)) after spark plasma sintering (SPS); the retained strength after thermal shock increased as high as 74.8% at 400 °C and 304.4% at 500 °C. Present work presents an important guideline for producing high-toughness ceramic-based composites with enhanced thermal shock properties.
Khan, Younus H; Islam, Atif; Sarwar, Afsheen; Gull, Nafisa; Khan, Shahzad M; Munawar, Muhammad A; Zia, Saba; Sabir, Aneela; Shafiq, Muhammad; Jamil, Tahir
2016-08-01
Graphene oxide (GO) was indigenously synthesized from graphite using standard Hummers method. Chitosan-graphene oxide green composite films were fabricated by mixing aqueous solution of chitosan and GO using dilute acetic acid as a solvent for chitosan. Chitosan of different viscosity and calculated molecular weight was used keeping amount of GO constant in each composite film. The structural properties, thermal stability and mechanical properties of the composite films were investigated using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and tensile test. FTIR studies revealed the successful synthesis of GO from graphite powder and it was confirmed that homogenous blending of chitosan and GO was promising due to oxygenated functional groups on the surface of GO. XRD indicated effective conversion of graphite to GO as its strong peak observed at 11.06° as compared to pristine graphite which appeared at 26°. Moreover, mechanical analysis confirmed the effect of molecular weight on the mechanical properties of chitosan-GO composites showing that higher molecular weight chitosan composite (GOCC-1000) showed best strength (higher than 3GPa) compared to other composite films. Thermal stability of GOCC-1000 was enhanced for which residual content increased up to 56% as compared to the thermal stability of GOCC-200 whose residue was restricted to only 24%. The morphological analysis of the composites sheets by SEM was smooth having dense structure and showed excellent interaction, miscibility, compatibility and dispersion of GO with chitosan. The prepared composite films find their applications as biomaterials in different biomedical fields. Copyright © 2016 Elsevier Ltd. All rights reserved.
SiC/SiC Composites: The Effect of Fiber Type and Fiber Architecture on Mechanical Properties
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.
2008-01-01
Woven SiC/SiC composites represent a broad family of composites with a broad range of properties which are of interest for many energy-based and aero-based applications. Two important features of SiC/SiC composites which one must consider are the reinforcing fibers themselves and the fiber-architecture they are formed into. The range of choices for these two features can result in a wide range of elastic, mechanical, thermal, and electrical properties. In this presentation, it will be demonstrated how the effect of fiber-type and fiber architecture effects the important property of "matrix cracking stress" for slurry-cast melt-infiltrated SiC matrix composites, which is often considered to be a critical design parameter for this system of composites.
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Pindera, Marek-Jerzy
1994-01-01
Two micromechanical models were developed to investigate the thermal expansion of graphite/copper (Gr/Cu) composites. The models incorporate the effects of temperature-dependent material properties, matrix inelasticity, initial residual stresses due to processing history, and nonuniform fiber distribution. The first model is based on the multiple concentric cylinder geometry, with each cylinder treated as a two-phase composite with a characteristic fiber volume fractions. By altering the fiber volume fraction of the individual cylinders, unidirectional composites with radially nonuniform fiber distributions can be investigated using this model. The second model is based on the inelastic lamination theory. By varying the fiber content in the individual laminae, composites with nonuniform fiber distribution in the thickness direction can be investigated. In both models, the properties of the individual regions (cylinders or laminae) are calculated using the method of cells micromechanical model. Classical incremental plasticity theory is used to model the inelastic response of the copper matrix at the microlevel. The models were used to characterize the effects of nonuniform fiber distribution on the thermal expansion of Gr/Cu. These effects were compared to the effects of matrix plasticity, choice of stress-free temperature, and slight fiber misalignment. It was found that the radially nonuniform fiber distribution has little effect on the thermal expansion of Gr/Cu but could become significant for composites with large fiber-matrix transverse CTE and Young's modulus mismatch. The effect of nonuniform fiber distribution in the through-thickness direction of a laminate was more significant, but only approached that of the stress-free temperature for the most extreme cases that include large amounts of bending. Subsequent comparison with experimental thermal expansion data indicated the need for more accurate characterization of the graphite fiber thermomechanical properties. Correlation with cyclic data revealed the presence of a mechanism not considered in the developed models. The predicted response did, however, exhibit ratcheting behavior that has been observed experimentally in Gr/Cu. Finally, simulation of the actual fiber distribution of particular specimens had little effect on the predicted thermal expansion.
Bio-composites based on cellulose acetate and kenaf fibers: Processing and properties
NASA Astrophysics Data System (ADS)
Pang, C.; Shanks, R. A.; Daver, F.
2014-05-01
Research on bio-composites is important because of its positive environmental impact. In this study, bio-composites based on plasticised cellulose acetate and kenaf fibers were prepared by solution casting and compression moulding methods. The fibers were chemically treated to remove lignin, hemicellulose and impurities. Mechanical, morphological and thermal properties of the bio-composites were studied. Introduction of chopped kenaf fibers increased the storage modulus. The flexural storage modulus of the composite was affected with the introduction of moisture. Moisture behaved similar to the effect of plasticiser, it reduced the modulus.
Mechanism-Based Design for High-Temperature, High-Performance Composites. Book 1
1997-09-01
with low thermal expansion and stiffness. Despite their importance in determining the performance of CMC structures, thermal properties have...continuous fibers Cox and Zok 669 account for degradation in the thermal expansion and conductivity of cross-ply laminates in the presence of...inherent disadvantages persist. Oxides generally exhibit higher thermal expansion and lower thermal conductivity than SiC-based CMCs and will
Reinholz, Emilee L.; Roberts, Scott A.; Apblett, Christopher A.; ...
2016-06-11
The electrical conductivity is key to the performance of thermal battery cathodes. In this work we present the effects of manufacturing and processing conditions on the electrical conductivity of Li/FeS2 thermal battery cathodes. Finite element simulations were used to compute the conductivity of three-dimensional microcomputed tomography cathode microstructures and compare results to experimental impedance spectroscopy measurements. A regression analysis reveals a predictive relationship between composition, processing conditions, and electrical conductivity; a trend which is largely erased after thermally-induced deformation. Moreover, the trend applies to both experimental and simulation results, although is not as apparent in simulations. This research is amore » step toward a more fundamental understanding of the effects of processing and composition on thermal battery component microstructure, properties, and performance.« less
Effect of Aggressive Environments on Mechanical Performance of Fibre Ceramic Composites
2007-07-01
the ends. The ASTM standard test method for tensile properties of fibre–resin composites has the designation D3039-76. It recommends that the...Arendts, F.J., Theuer, A., Maile, K., Kuhnle, J., Neuer, G., Brandt, R., Thermomechanical and Thermophysical properties of liquid Siliconized C/C...atmosphere by the flame of oxy-acetylene gas. The changes in microhardness, XRD pattern and thermal properties are appeared because of delamination
Zhang, Daohai; He, Min; He, Weidi; Zhou, Ying; Qin, Shuhao; Yu, Jie
2017-01-01
In this work, the long glass fibre-reinforced poly(butylene terephthalate) (PBT) composites filled with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) were prepared by melt blending, and the influence of thermo-oxidative ageing on the static and dynamic mechanical properties, thermal behaviours and morphology of composites with different ageing time at 120 °C were investigated and analysed. The results showed that the mechanical properties decreased in the primary stage of ageing, while embrittlement occurs in the later period, and the crystallinity of PBT decreases first, and then recovers to some extent. The scanning electron microscopy (SEM) photos of the samples indicated that the obvious crack appeared on the sample surface and a deeper, broader crack occurred with a longer ageing time. The results of energy dispersive X-ray analysis (EDAX) proved the DOPO filler diffused to the sample surface by measuring the content of phosphorus. Thermal gravimetric analysis (TGA) curves showed that the thermal stabilities of composites increased with longer ageing time, as did the values of the limited oxygen index (LOI). Meanwhile, the results of dynamic mechanical analysis (DMA) indicated that the glass transition temperature shifted to a higher temperature after ageing due to the effect of crosslinking, and both the crosslinking and degradation of PBT molecular chains act as the main factors in the whole process of thermo-oxidative ageing. PMID:28772860
Zhang, Daohai; He, Min; He, Weidi; Zhou, Ying; Qin, Shuhao; Yu, Jie
2017-05-04
In this work, the long glass fibre-reinforced poly(butylene terephthalate) (PBT) composites filled with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) were prepared by melt blending, and the influence of thermo-oxidative ageing on the static and dynamic mechanical properties, thermal behaviours and morphology of composites with different ageing time at 120 °C were investigated and analysed. The results showed that the mechanical properties decreased in the primary stage of ageing, while embrittlement occurs in the later period, and the crystallinity of PBT decreases first, and then recovers to some extent. The scanning electron microscopy (SEM) photos of the samples indicated that the obvious crack appeared on the sample surface and a deeper, broader crack occurred with a longer ageing time. The results of energy dispersive X-ray analysis (EDAX) proved the DOPO filler diffused to the sample surface by measuring the content of phosphorus. Thermal gravimetric analysis (TGA) curves showed that the thermal stabilities of composites increased with longer ageing time, as did the values of the limited oxygen index (LOI). Meanwhile, the results of dynamic mechanical analysis (DMA) indicated that the glass transition temperature shifted to a higher temperature after ageing due to the effect of crosslinking, and both the crosslinking and degradation of PBT molecular chains act as the main factors in the whole process of thermo-oxidative ageing.
Piezoelectric and mechanical properties of fatigue resistant, self-healing PZT-ionomer composites
NASA Astrophysics Data System (ADS)
James, N. K.; Lafont, U.; van der Zwaag, S.; Groen, W. A.
2014-05-01
Piezoelectric ceramic-polymer composites with 0-3 connectivity were fabricated using lead zirconium titanate (PZT) powder dispersed in an ionomer (Zn ionomer) and its reference ethylene methacrylic acid copolymer (EMAA) polymer matrix. The PZT-Zn ionomer and PZT-EMAA composites were prepared by melt extrusion followed by hot pressing. The effects of poling conditions such as temperature, time and electric field on the piezoelectric properties of the composites were investigated. The experimentally observed piezoelectric charge coefficient and dielectric constant of the composites were compared with theoretical models. The results show that PZT-Zn ionomer composites have better piezoelectric properties compared to PZT-EMAA composites. The static and fatigue properties of the composites were investigated. The PZT-Zn ionomer composites were found to have excellent fatigue resistance even at strain levels of 4%. Due to the self-healing capabilities of the ionomer matrix, the loss of piezoelectric properties after high strain tensile cyclic loading could be partially recovered by thermal healing.
1985-08-16
of the thermal interaction of polonium - 210 with palladium and iridium. The vacuum-thermal method of direct synthesis was used, a study of the...ZHURNAL -PRIKLADNOY KHIMII, No k, Apr 85) Ik CATALYSIS Effect of Intermetallic Compounds Zr-Co Composition on Their Catalytic Properties in...KHIMICHESKAYA, No U, Apr 85) IT Effect of Stabilization on Adsorption and Catalytic Properties of Electrodeposited Platinum Catalysts (T. M. Grishina, Ye. V
Thermal Applications for Advanced Metallic Materials (Preprint)
2007-01-01
Mondolfo, L.E., Aluminum Alloys-Structure and Properties . 1976: Butterworths. 21. Tritt, T.M. and M.A. Subramanian, Thermoelectric Materials...for Potential Thermoelectric Applications. MRS Bulletin, 2006. 31(March): p. 206-210. 32. Rao, A.M., X. Ji, and T.M. Tritt, Properties of...conductivity metallic composites; lightweight metallic phase-change materials for managing thermal transients; high-efficiency thermoelectric materials for
Multifunctional smart composites with integrated carbon nanotube yarn and sheet
NASA Astrophysics Data System (ADS)
Chauhan, Devika; Hou, Guangfeng; Ng, Vianessa; Chaudhary, Sumeet; Paine, Michael; Moinuddin, Khwaja; Rabiee, Massoud; Cahay, Marc; Lalley, Nicholas; Shanov, Vesselin; Mast, David; Liu, Yijun; Yin, Zhangzhang; Song, Yi; Schulz, Mark
2017-04-01
Multifunctional smart composites (MSCs) are materials that combine the good electrical and thermal conductivity, high tensile and shear strength, good impact toughness, and high stiffness properties of metals; the light weight and corrosion resistance properties of composites; and the sensing or actuation properties of smart materials. The basic concept for MSCs was first conceived by Daniel Inman and others about 25 years ago. Current laminated carbon and glass fiber polymeric composite materials have high tensile strength and are light in weight, but they still lack good electrical and thermal conductivity, and they are sensitive to delamination. Carbon nanotube yarn and sheets are lightweight, electrically and thermally conductive materials that can be integrated into laminated composite materials to form MSCs. This paper describes the manufacturing of high quality carbon nanotube yarn and sheet used to form MSCs, and integrating the nanotube yarn and sheet into composites at low volume fractions. Various up and coming technical applications of MSCs are discussed including composite toughening for impact and delamination resistance; structural health monitoring; and structural power conduction. The global carbon nanotube overall market size is estimated to grow from 2 Billion in 2015 to 5 Billion by 2020 at a CAGR of 20%. Nanotube yarn and sheet products are predicted to be used in aircraft, wind machines, automobiles, electric machines, textiles, acoustic attenuators, light absorption, electrical wire, sporting equipment, tires, athletic apparel, thermoelectric devices, biomedical devices, lightweight transformers, and electromagnets. In the future, due to the high maximum current density of nanotube conductors, nanotube electromagnetic devices may also become competitive with traditional smart materials in terms of power density.
Santos, Moliria V; Tercjak, Agnieszka; Gutierrez, Junkal; Barud, Hernane S; Napoli, Mariana; Nalin, Marcelo; Ribeiro, Sidney J L
2017-07-15
The preparation of composite materials has gained tremendous attention due to the potential synergy of the combined materials. Here we fabricate novel thermal/electrical responsive photonic composite films combining cellulose nanocrystals (CNC) with a low molecular weight nematic liquid crystal (NLC), 4'-(hexyloxy)-4-biphenylcarbonitrile (HOBC). The obtained composite material combines both intense structural coloration of photonic cellulose and thermal and conductive properties of NLC. Scanning electron microscopy (SEM) results confirmed that liquid crystals coated CNC films maintain chiral nematic structure characteristic of CNC film and simultaneously, transversal cross-section scanning electron microscopy images indicated penetration of liquid crystals through the CNC layers. Investigated composite film maintain NLC optical properties being switchable as a function of temperature during heating/cooling cycles. The relationship between the morphology and thermoresponsive in the micro/nanostructured materials was investigated by using transmission optical microscopy (TOM). Conductive response of the composite films was proved by Electrostatic force microscopy (EFM) measurement. Designed thermo- and electro-responsive materials open novel simple pathway of fabrication of CNC-based materials with tunable properties. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Chen, Hong-Yu; Luo, Lai-Ma; Zan, Xiang; Xu, Qiu; Tokunaga, Kazutoshi; Liu, Jia-Qin; Zhu, Xiao-Yong; Cheng, Ji-Gui; Wu, Yu-Cheng
2018-02-01
The transient thermal shock behaviors of W-ZrC/Sc2O3 composites with different ZrC contents were evaluated using transient thermal shock test by electron and laser beams. The effects of different ZrC doping contents on the surface morphology and thermal shock resistance of W-ZrC/Sc2O3 composites were then investigated. Similarity and difference between effects of electron and laser beam transient heat loading were also discussed in this study. Repeated heat loading resulted in thermal fatigue of the irradiated W-ZrC/Sc2O3 samples by thermal stress, leading to the rough surface morphologies with cracks. After different transient thermal tests, significant surface roughening, cracks, surface melting, and droplet ejection occurred. W-2vol.%Sc2O3 sample has superior thermal properties and greater resistance to surface modifications under transient thermal shock, and with the increasing ZrC content in W alloys, thermal shock resistance of W-Zr/Sc2O3 sample tends to be unsatisfied.
Temperature rise during polymerization of different cavity liners and composite resins
Karatas, Ozcan; Turel, Verda; Bayindir, Yusuf Ziya
2015-01-01
Objective: The purpose of this study was to evaluate the thermal insulating properties of different light curing cavity liners and composite resins during light emitting diode (LED) curing. Materials and Methods: Sixty-four dentin discs, 1 mm thick and 8 mm in diameter, were prepared. Specimens were divided into four groups. Calcium hydroxide (Ca[OH]2), resin-modified glass ionomer cement, flowable composite and adhesive systems were applied to dentin discs according to the manufacturers’ instructions. The rise in temperature during polymerization with a LED curing unit (LCU) was measured using a K-type thermocouple connected to a data logger. Subsequently, all specimens were randomly divided into one of two groups. A silorane-based composite resin and a methacrylate-based composite resin were applied to the specimens. Temperature rise during polymerization of composite resins with LCU were then measured again. Data were analyzed using one-way ANOVA and post hoc Tukey analyses. Results: There were significant differences in temperature rise among the liners, adhesives, and composite resins (P < 0.05). Silorane-based composite resin exhibited significantly greater temperature rises than methacrylate-based resin (P < 0.05). The smallest temperature rises were observed in Ca(OH)2 specimens. Conclusion: Thermal insulating properties of different restorative materials are important factors in pulp health. Bonding agents alone are not sufficient to protect pulp from thermal stimuli throughout curing. PMID:26751112
Composite Materials Based on Hemp and Flax for Low-Energy Buildings
Brzyski, Przemysław; Barnat-Hunek, Danuta; Suchorab, Zbigniew; Łagód, Grzegorz
2017-01-01
The article presents the results obtained in the course of a study on prospective application of flax/hemp wastes as a filling material of lime-based composites in the construction of low-energy buildings. The utilized filler comprised the hydrated lime with clay and Portland cement used as additives. The analysis involved evaluation of such properties as porosity, density, thermal conductivity, absorptivity, permeability, as well as compressive and flexural strength. Depending on the quantity of the filler, the properties of the composite changed. This, in turn, enabled to evaluate whether the utilized composite met the thermal requirements established for low-energy buildings. Afterwards, the obtained data were cross-referenced with the results gathered in the case of a room built of autoclaved aerated concrete. In order to prevent reaching the critical surface humidity, the internal surface temperature had to be calculated. Moreover, the chances of interstitial condensation occurring in the wall made of the analyzed lime–flax–hemp composite were determined as well. The study showed that the composite exhibits low strength, low density, low thermal conductivity, and high absorptivity. The external walls made of the lime–flax–hemp composite receive a limited exposure to condensation, but not significant enough to constitute any threat. The requirements established for low-energy buildings can be met by using the analyzed composite. PMID:28772871
Designing with figer-reinforced plastics (planar random composites)
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1982-01-01
The use of composite mechanics to predict the hygrothermomechanical behavior of planar random composites (PRC) is reviewed and described. These composites are usually made from chopped fiber reinforced resins (thermoplastics or thermosets). The hygrothermomechanical behavior includes mechanical properties, physical properties, thermal properties, fracture toughness, creep and creep rupture. Properties are presented in graphical form with sample calculations to illustrate their use. Concepts such as directional reinforcement and strip hybrids are described. Typical data that can be used for preliminary design for various PRCs are included. Several resins and molding compounds used to make PRCs are described briefly. Pertinent references are cited that cover analysis and design methods, materials, data, fabrication procedures and applications.
NASA Technical Reports Server (NTRS)
Elberg, R.
1984-01-01
This experiment has three objectives. The first and main objective is to detect a possible variation in the coefficient of thermal expansion of composite samples during a 1-year exposure to the near-Earth orbital environment. A second objective is to detect a possible change in the mechanical integrity of composite products, both simple elements and honeycomb sandwich assemblies. A third objective is to compare the behavior of two epoxy resins commonly used in space structural production. The experimental approach is to passively expose samples of epoxy matrix composite materials to the space environment and to compare preflight and postflight measurements of mechanical properties. The experiment will be located in one of the three FRECOPA (French cooperative payload) boxes in a 12-in.-deep peripheral tray that contains nine other experiments from France. The FRECOPA box will protect the samples from contamination during the launch and reentry phases of the mission. The coefficients of thermal expansion are measured on Earth before and after space exposure.
Shape Memory Polyurethane Materials Containing Ferromagnetic Iron Oxide and Graphene Nanoplatelets
Urban, Magdalena
2017-01-01
Intelligent materials, such as memory shape polymers, have attracted considerable attention due to wide range of possible applications. Currently, intensive research is underway, in matters of obtaining memory shape materials that can be actuated via inductive methods, for example with help of magnetic field. In this work, an attempt was made to develop a new polymer composite—polyurethane modified with graphene nanoplates and ferromagnetic iron oxides—with improved mechanical properties and introduced magnetic and memory shape properties. Based on the conducted literature review, gathered data were compared to the results of similar materials. Obtained materials were tested for their thermal, rheological, mechanical and shape memory properties. Structure of both fillers and composites were also analyzed using various spectroscopic methods. The addition of fillers to the polyurethane matrix improved the mechanical and shape memory properties, without having a noticeable impact on thermal properties. As it was expected, the high content of fillers caused a significant change in viscosity of filled prepolymers (during the synthesis stage). Each of the studied composites showed better mechanical properties than the unmodified polyurethanes. The addition of magnetic particles introduced additional properties to the composite, which could significantly expand the functionality of the materials developed in this work. PMID:28906445
Developing polymer composite materials: carbon nanotubes or graphene?
Sun, Xuemei; Sun, Hao; Li, Houpu; Peng, Huisheng
2013-10-04
The formation of composite materials represents an efficient route to improve the performances of polymers and expand their application scopes. Due to the unique structure and remarkable mechanical, electrical, thermal, optical and catalytic properties, carbon nanotube and graphene have been mostly studied as a second phase to produce high performance polymer composites. Although carbon nanotube and graphene share some advantages in both structure and property, they are also different in many aspects including synthesis of composite material, control in composite structure and interaction with polymer molecule. The resulting composite materials are distinguished in property to meet different applications. This review article mainly describes the preparation, structure, property and application of the two families of composite materials with an emphasis on the difference between them. Some general and effective strategies are summarized for the development of polymer composite materials based on carbon nanotube and graphene. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Simulating Microfracture In Metal-Matrix Composites
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Chamis, Christos C.; Gotsis, Pascal K.
1994-01-01
Computational procedures developed for simulating microfracture in metal-matrix/fiber composite materials under mechanical and/or thermal loads at ambient and high temperatures. Procedures evaluate microfracture behavior of composites, establish hierarchies and sequences of fracture modes, and examine influences of compliant layers and partial debonding on properties of composites and on initiation of microfractures in them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lach, Timothy G.; Byun, Thak Sang; Leonard, Keith J.
We performed mechanical testing and microstructural characterization on short-term thermally aged cast austenitic stainless steels (CASS) to understand the severity and mechanisms of thermal-aging degradation experienced during extended operation of light water reactor (LWR) coolant systems. Four CASS materials–CF3, CF3M, CF8, and CF8M–were thermally aged for 1500 h at 290 °C, 330 °C, 360 °C, and 400 °C. All four alloys experienced insignificant change in strength and ductility properties but a significant reduction in absorbed impact energy. The primary microstructural and compositional changes during thermal aging were spinodal decomposition of the δ-ferrite into α/α', precipitation of G-phase in the δ-ferrite,more » segregation of solute to the austenite/ferrite interphase boundary, and growth of M 23C 6 carbides on the austenite/ferrite interphase boundary. These changes were shown to be highly dependent on chemical composition, particularly the concentration of C and Mo, and aging temperature. Finally, the low C, high Mo CF3M alloys experienced the most spinodal decomposition and G-phase precipitation coinciding the largest reduction in impact properties.« less
NASA Astrophysics Data System (ADS)
Lach, Timothy G.; Byun, Thak Sang; Leonard, Keith J.
2017-12-01
Mechanical testing and microstructural characterization were performed on short-term thermally aged cast austenitic stainless steels (CASS) to understand the severity and mechanisms of thermal-aging degradation experienced during extended operation of light water reactor (LWR) coolant systems. Four CASS materials-CF3, CF3M, CF8, and CF8M-were thermally aged for 1500 h at 290 °C, 330 °C, 360 °C, and 400 °C. All four alloys experienced insignificant change in strength and ductility properties but a significant reduction in absorbed impact energy. The primary microstructural and compositional changes during thermal aging were spinodal decomposition of the δ-ferrite into α/α‧, precipitation of G-phase in the δ-ferrite, segregation of solute to the austenite/ferrite interphase boundary, and growth of M23C6 carbides on the austenite/ferrite interphase boundary. These changes were shown to be highly dependent on chemical composition, particularly the concentration of C and Mo, and aging temperature. The low C, high Mo CF3M alloys experienced the most spinodal decomposition and G-phase precipitation coinciding the largest reduction in impact properties.
Lach, Timothy G.; Byun, Thak Sang; Leonard, Keith J.
2017-07-31
We performed mechanical testing and microstructural characterization on short-term thermally aged cast austenitic stainless steels (CASS) to understand the severity and mechanisms of thermal-aging degradation experienced during extended operation of light water reactor (LWR) coolant systems. Four CASS materials–CF3, CF3M, CF8, and CF8M–were thermally aged for 1500 h at 290 °C, 330 °C, 360 °C, and 400 °C. All four alloys experienced insignificant change in strength and ductility properties but a significant reduction in absorbed impact energy. The primary microstructural and compositional changes during thermal aging were spinodal decomposition of the δ-ferrite into α/α', precipitation of G-phase in the δ-ferrite,more » segregation of solute to the austenite/ferrite interphase boundary, and growth of M 23C 6 carbides on the austenite/ferrite interphase boundary. These changes were shown to be highly dependent on chemical composition, particularly the concentration of C and Mo, and aging temperature. Finally, the low C, high Mo CF3M alloys experienced the most spinodal decomposition and G-phase precipitation coinciding the largest reduction in impact properties.« less
NASA Astrophysics Data System (ADS)
de Assis, Foluke S.; Netto, Pedro A.; Margem, Frederico M.; Monteiro, Artur R. P. Junior Sergio N.
Synthetic fibers are being replaced gradually by natural materials such as lignocellulosic fibers. Compared to synthetic fibers, natural fibers have shown advantages in technical aspects such as environmental and economic. So there is a growing international interest in the use of those fibers. The banana fiber presents significant properties to be studied, but until now few thermal properties on banana fiber as reinforcement of polyester matrix were performed. The present work had as its objective to investigate, by photoacoustic spectroscopy and photothermal techniques the thermal properties of diffusivity, specific heat capacity and conductivity for polyester composites reinforced with banana fibers. In the polyester matrix will be added up to 30% in volume of continuous and aligned banana fibers. These values show that the incorporation of banana fibers in the polyester matrix changes its thermal properties.
NASA Technical Reports Server (NTRS)
Zhang, Chao; Binienda, Wieslaw K.; Morscher, Gregory; Martin, Richard E.
2012-01-01
The microcrack distribution and mass change in PR520/T700s and 3502/T700s carbon/epoxy braided composites exposed to thermal cycling was evaluated experimentally. Acoustic emission was utilized to record the crack initiation and propagation under cyclic thermal loading between -55 C and 120 C. Transverse microcrack morphology was investigated using X-ray Computed Tomography. Different performance of two kinds of composites was discovered and analyzed. Based on the observations of microcrack formation, a meso-mechanical finite element model was developed to obtain the resultant mechanical properties. The simulation results exhibited a decrease in strength and stiffness with increasing crack density. Strength and stiffness reduction versus crack densities in different orientations were compared. The changes of global mechanical behavior in both axial and transverse loading conditions were studied. Keywords: Thermal cycles; Microcrack; Finite Element Model; Braided Composite
Nguyen, Ngoc A; Bowland, Christopher C; Naskar, Amit K
2018-08-01
The article presents different mechanical, thermal and rheological data corresponding to the morphological formation within various renewable lignin-based composites containing acrylonitrile butadiene styrene (ABS), acrylonitrile butadiene rubber (NBR41, 41 mol% nitrile content), and carbon fibers (CFs). The data of 3D-printing properties and morphology of 3D-printed layers of selected lignin-based composites are revealed. This data is related to our recent research article entitled "A general method to improve 3D-printability and inter-layer adhesion in lignin-based composites" (Nguyen et al., 2018 [1]).
NASA Astrophysics Data System (ADS)
Yoon, Joonsung
The primary objective of this research is to investigate the morphological and mechanical properties of composite materials and porous materials prepared by thermally induced phase separation. High melting crystallizable diluents were mixed with polymers so that the phase separation would be induced by the solidification of the diluents upon cooling. Theoretical phase diagrams were calculated using Flory-Huggins solution thermodynamics which show good agreement with the experimental results. Porous materials were prepared by the extraction of the crystallized diluents after cooling the mixtures (hexamethylbenzene/polyethylene and pyrene/polyethylene). Anisotropic structures show strong dependence on the identity of the diluents and the composition of the mixtures. Anisotropic crystal growth of the diluents was studied in terms of thermodynamics and kinetics using DSC, optical microscopy and SEM. Microstructures of the porous materials were explained in terms of supercooling and dendritic solidification. Dual functionality of the crystallizable diluents for composite materials was evaluated using isotactic polypropylene (iPP) and compatible diluents that crystallize upon cooling. The selected diluents form homogeneous mixtures with iPP at high temperature and lower the viscosity (improved processability), which undergo phase separation upon cooling to form solid particles that function as a toughening agent at room temperature. Tensile properties and morphology of the composites showed that organic crystalline particles have the similar effect as rigid particles to increase toughness; de-wetting between the particle and iPP matrix occurs at the early stage of deformation, followed by unhindered plastic flow that consumes significant amount of fracture energy. The effect of the diluents, however, strongly depends on the identity of the diluents that interact with the iPP during solidification step, which was demonstrated by comparing tetrabromobisphenol-A and phthalic anhydride. A simple method to prepare composite surfaces that can change the wettability in response to the temperature change was proposed and evaluated. Composite surfaces prepared by nanoporous alumina templates filled with polymers showed surface morphology and wettability that depend on temperature. This effect is attributed to the significant difference in thermal conductivity and the thermal expansion coefficient between the alumina and the polymers. The reversibility in thermal response depends on the properties of the polymers.
Guillen, Donna Post; Harris, William H.
2016-05-11
A metal matrix composite (MMC) material comprised of hafnium aluminide (Al3Hf) intermetallic particles in an aluminum matrix has been identified as a promising material for fast-flux irradiation testing applications. This material can filter thermal neutrons while simultaneously providing high rates of conductive cooling for experiment capsules. Our purpose is to investigate effects of Hf-Al material composition and neutron irradiation on thermophysical properties, which were measured before and after irradiation. When performing differential scanning calorimetry (DSC) on the irradiated specimens, a large exotherm corresponding to material annealment was observed. Thus, a test procedure was developed to perform DSC and laser flashmore » analysis (LFA) to obtain the specific heat and thermal diffusivity of pre- and post-annealment specimens. This paper presents the thermal properties for three states of the MMC material: (1) unirradiated, (2) as-irradiated, and (3) irradiated and annealed. Microstructure-property relationships were obtained for the thermal conductivity. These relationships are useful for designing components from this material to operate in irradiation environments. Furthermore, the ability of this material to effectively conduct heat as a function of temperature, volume fraction Al 3Hf, radiation damage and annealing is assessed using the MOOSE suite of computational tools.« less
NASA Astrophysics Data System (ADS)
Mu, Mulan; Wan, Chaoying; McNally, Tony
2017-12-01
The outstanding thermal conductivity (λ) of graphene and its derivatives offers a potential route to enhance the thermal conductivity of epoxy resins. Key challenges still need to be overcome to ensure effective dispersion and distribution of 2D graphitic fillers throughout the epoxy matrix. 2D filler type, morphology, surface chemistry and dimensions are all important factors in determining filler thermal conductivity and de facto the thermal conductivity of the composite material. To achieve significant enhancement in the thermal conductivity of epoxy composites, different strategies are required to minimise phonon scattering at the interface between the nano-filler and epoxy matrix, including chemical functionalisation of the filler surfaces such that interactions between filler and matrix are promoted and interfacial thermal resistance (ITR) reduced. The combination of graphitic fillers with dimensions on different length scales can potentially form an interconnected multi-dimensional filler network and, thus contribute to enhanced thermal conduction. In this review, we describe the relevant properties of different 2D nano-structured graphitic materials and the factors which determine the translation of the intrinsic thermal conductivity of these 2D materials to epoxy resins. The key challenges and perspectives with regard achieving epoxy composites with significantly enhanced thermal conductivity on addition of 2D graphitic materials are presented.
2012-04-01
vapor infiltration on erosion and thermal properties of porous carbon/carbon composite on thermal insulation . Carbon, (38):441– 449, 2000. [14] J. Mueller...Thermal Energy Storage and Thermal Electric Conversion 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...with thermo-acoustic instabilities. Results will be reported on the flame structure, liquid core length and spreading rate, and comparison with data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janke, C.J.
Electron beam (EB) curing is a technology that promises, in certain applications, to deliver lower cost and higher performance polymer matrix composite (PMC) structures compared to conventional thermal curing processes. PMCs enhance performance by making products lighter, stronger, more durable, and less energy demanding. They are essential in weight- and performance-dominated applications. Affordable PMCs can enhance US economic prosperity and national security. US industry expects rapid implementation of electron beam cured composites in aircraft and aerospace applications as satisfactory properties are demonstrated, and implementation in lower performance applications will likely follow thereafter. In fact, at this time and partly becausemore » of discoveries made in this project, field demonstrations are underway that may result in the first fielded applications of electron beam cured composites. Serious obstacles preventing the widespread use of electron beam cured PMCs in many applications are their relatively poor interfacial properties and resin toughness. The composite shear strength and resin toughness of electron beam cured carbon fiber reinforced epoxy composites were about 25% and 50% lower, respectively, than those of thermally cured composites of similar formulations. The essential purpose of this project was to improve the mechanical properties of electron beam cured, carbon fiber reinforced epoxy composites, with a specific focus on composite shear properties for high performance aerospace applications. Many partners, sponsors, and subcontractors participated in this project. There were four government sponsors from three federal agencies, with the US Department of Energy (DOE) being the principal sponsor. The project was executed by Oak Ridge National Laboratory (ORNL), NASA and Department of Defense (DOD) participants, eleven private CRADA partners, and two subcontractors. A list of key project contacts is provided in Appendix A. In order to properly manage the large project team and properly address the various technical tasks, the CRADA team was organized into integrated project teams (IPT's) with each team focused on specific research areas. Early in the project, the end user partners developed ''exit criteria'', recorded in Appendix B, against which the project's success was to be judged. The project team made several important discoveries. A number of fiber coatings or treatments were developed that improved fiber-matrix adhesion by 40% or more, according to microdebond testing. The effects of dose-time and temperature-time profiles during the cure were investigated, and it was determined that fiber-matrix adhesion is relatively insensitive to the irradiation procedure, but can be elevated appreciably by thermal postcuring. Electron beam curable resin properties were improved substantially, with 80% increase in electron beam 798 resin toughness, and {approx}25% and 50% improvement, respectively, in ultimate tensile strength and ultimate tensile strain vs. earlier generation electron beam curable resins. Additionally, a new resin electron beam 800E was developed with generally good properties, and a very notable 120% improvement in transverse composite tensile strength vs. earlier generation electron beam cured carbon fiber reinforced epoxies. Chemical kinetics studies showed that reaction pathways can be affected by the irradiation parameters, although no consequential effects on material properties have been noted to date. Preliminary thermal kinetics models were developed to predict degree of cure vs. irradiation and thermal parameters. These models are continually being refined and validated. Despite the aforementioned impressive accomplishments, the project team did not fully realize the project objectives. The best methods for improving adhesion were combined with the improved electron beam 3K resin to make prepreg and uni-directional test laminates from which composite properties could be determined. Nevertheless, only minor improvements in the composite shear strength, and moderate improvements in the transverse tensile strength, were achieved. The project team was not satisfied with the laminate quality achieved, and low quality (specifically, high void fraction) laminates will compromise the composite properties. There were several problems with the prepregging and fabrication, many of them related to the use of new fiber treatments.« less
DeFrates, Kelsey; Markiewicz, Theodore; Callaway, Kayla; Xue, Ye; Stanton, John; Salas-de la Cruz, David; Hu, Xiao
2017-11-01
Biomaterials made from natural proteins and polysaccharides have become increasingly popular in the biomedical field due to their good biocompatibility and tunable biodegradability. However, the low miscibility of polysaccharides with proteins presents challenges in the creation of protein-polysaccharide composite materials. In this study, neat 1-allyl-3-methylimidazolium chloride (AMIMCl) ionic liquid was used to regenerate Thailand gold Bombyx mori silk and microcrystalline cellulose blended films. This solvent was found to not only effectively dissolve both natural polymers, but also preserve the structure and integrity of the polymers. A single glass transition temperature for each blend was found in DSC curves, indicating good miscibility between the Thai silk and cellulose molecules. The structural composition as well as the morphology and thermal stability of blend films were then determined using FTIR, SEM and TGA. It was found that by varying the ratio of Thai silk to cellulose, the thermal and physical properties of the material could be tuned. Blended films tended to be more thermally stable which could be due to the presence of hydrophobic-hydrophobic or electrostatic interactions between the silk and cellulose. These studies offered a new pathway to understand the tunable properties of protein-polysaccharide composite biomaterials with controllable physical and biological properties. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gao, Jiangshan; He, Yan; Gong, Xiubin
2018-06-01
The original equipment and method for orienting multi-walled carbon nanotubes (MWCNTs) in natural rubber (NR) by alternating current (AC) electric field were reported in the present study. MWCNTs with various volume fractions were dispersed in the mixture latex which composed of natural rubber, additives and methylbenzene. The application of AC electric field during nanocomposites curing process was used to induce the formation of aligned conductive nanotube networks between the electrodes. The aligned MWCNTs in the composites have a better orientation performance and dispersion quality than these of random MWCNTs by analyzing TEM and SEM images. The effects of MWCNTs anisotropy on thermal conductivity, dielectric properties, and dynamic mechanical properties of NR were studied. The mean value of thermal conductivity of composites loading with aligned MWCNTs was 8.67% higher than that of composites with random MWCNTs due to the anisotropy of aligned MWCNTs. The compounds with aligned MWCNTs possessed low dielectric constant, loss tangents and conductivity, namely a good insulativity. The compounds loading with aligned MWCNTs had lower loss modulus and better dynamic mechanical properties than those with random MWCNTs. This method can make full use of the high thermal conductivity of MWCNTs axis, and expand the application areas of natural rubber like conducting heat in a certain direction with a high efficiency.
NASA Technical Reports Server (NTRS)
Bowles, K. J.
1992-01-01
A number of studies have investigated the thermooxidative behavior of polymer matrix composites. Two significant observations have been made from these research efforts: (1) fiber reinforcement has a significant effect on composite thermal stability; and (2) geometric effects must be considered when evaluating thermal aging data. The polyimide PMR-15 was the matrix material used in these studies. The control composite material was reinforced with Celion 6000 graphite fiber. T-4OR graphite fibers, along with some very stable ceramic fibers were selected as reinforcing fibers because of their high thermal stability. The ceramic fibers were Nicalon (silicon carbide) and Nextel 312 (alumina-silica-boron oxide). The mechanical properties of the two graphite fiber composites were significantly different, probably owing to variations in interfacial bonding between the fibers and the polyimide matrix. Three oxidation mechanisms were observed: (1) the preferential oxidation of the Celion 6000 fiber ends at cut surfaces, leaving a surface of matrix material with holes where the fiber ends were originally situated; (2) preferential oxidation of the composite matrix; and (3) interfacial degradation by oxidation. The latter two mechanisms were also observed on fiber end cut surfaces. The fiber and interface attacks appeared to initiate interfiber cracking along these surfaces.
NASA Astrophysics Data System (ADS)
Taewattana, Rapiphan; Jubsilp, Chanchira; Suwanmala, Phiriyatorn; Rimdusit, Sarawut
2018-04-01
Three types of ultrafine fully vulcanized powdered rubbers (UFRs), i.e. natural rubber (NR), carboxylated nitrile-butadiene rubber (XNBR), and carboxylated styrene-butadiene rubber (XSBR) were prepared by combined technology between gamma irradiation for crosslinking and spray drying. The effects of doses in a range of 0-250 kGy on swelling ratio, crosslink density, and thermal stability of UFRs were investigated. Smaller particle size of UFRs was obtained at higher dose. A decrease in the swelling ratio and an increase in crosslink density were well corresponded to crosslinking effect related with absorbed dose. The increase in dose was also found to improve thermal performance of URFs. The influence of irradiated UFRs on impact resistance and glass transition temperature (Tg) of polybenzoxazine composites was also evaluated. The highest impact resistance of the composites belonged to the composite filled with irradiated UFXNBR at 200 kGy. While the significantly enhanced Tg of the composite was obtained by an addition of irradiated UFRs with higher doses, i.e. Tg = 173 °C for the composite filled with irradiated UFXNBR at 250 kGy. As a consequence, the UFRs can be used to effectively modify thermal and mechanical properties, especially impact resistance of polybenzoxazine composites.
Starch/polycaprolactone-containing composites reinforced with pre-treated sisal fibers
USDA-ARS?s Scientific Manuscript database
Composites based on thermoplastic cornstarch (TPS) and polycaprolactone (PCL) were reinforced with 5, 10 and 20% (wt%) of pretreated sisal fiber. The impact of the addition of sisal fiber on the mechanical, thermal and morphological properties of composites was investigated. Addition of 5-10% fibers...
Embrey, Leslie; Nautiyal, Pranjal; Loganathan, Archana; Idowu, Adeyinka; Boesl, Benjamin; Agarwal, Arvind
2017-11-15
Three-dimensional (3D) macroporous graphene foam based multifunctional epoxy composites are developed in this study. Facile dip-coating and mold-casting techniques are employed to engineer microstructures with tailorable thermal, mechanical, and electrical properties. These processing techniques allow capillarity-induced equilibrium filling of graphene foam branches, creating epoxy/graphene interfaces with minimal separation. Addition of 2 wt % graphene foam enhances the glass transition temperature of epoxy from 106 to 162 °C, improving the thermal stability of the polymer composite. Graphene foam aids in load-bearing, increasing the ultimate tensile strength by 12% by merely 0.13 wt % graphene foam in an epoxy matrix. Digital image correlation (DIC) analysis revealed that the graphene foam cells restrict and confine the deformation of the polymer matrix, thereby enhancing the load-bearing capability of the composite. Addition of 0.6 wt % graphene foam also enhances the flexural strength of the pure epoxy by 10%. A 3D network of graphene branches is found to suppress and deflect the cracks, arresting mechanical failure. Dynamic mechanical analysis (DMA) of the composites demonstrated their vibration damping capability, as the loss tangent (tan δ) jumps from 0.1 for the pure epoxy to 0.24 for ∼2 wt % graphene foam-epoxy composite. Graphene foam branches also provide seamless pathways for electron transfer, which induces electrical conductivity exceeding 450 S/m in an otherwise insulator epoxy matrix. The epoxy-graphene foam composite exhibits a gauge factor as high as 4.1, which is twice the typical gauge factor for the most common metals. Simultaneous improvement in thermal, mechanical, and electrical properties of epoxy due to 3D graphene foam makes epoxy-graphene foam composite a promising lightweight and multifunctional material for aiding load-bearing, electrical transport, and motion sensing in aerospace, automotive, robotics, and smart device structures.
Li, Chuanchang; Fu, Liangjie; Ouyang, Jing; Yang, Huaming
2013-01-01
A novel mineral-based composite phase change materials (PCMs) was prepared via vacuum impregnation method assisted with microwave-acid treatment of the graphite (G) and bentonite (B) mixture. Graphite and microwave-acid treated bentonite mixture (GBm) had more loading capacity and higher crystallinity of stearic acid (SA) in the SA/GBm composite. The SA/GBm composite showed an enhanced thermal storage capacity, latent heats for melting and freezing (84.64 and 84.14 J/g) was higher than those of SA/B sample (48.43 and 47.13 J/g, respectively). Addition of graphite was beneficial to the enhancement in thermal conductivity of the SA/GBm composite, which could reach 0.77 W/m K, 31% higher than SA/B and 196% than pure SA. Furthermore, atomic-level interfaces between SA and support surfaces were depicted, and the mechanism of enhanced thermal storage properties was in detail investigated. PMID:23712069
NASA Astrophysics Data System (ADS)
Suryanegara, L.; Nugraha, R. A.; Achmadi, S. S.
2017-07-01
Polylactic acid (PLA) is the most representative sustainable and bio-based polymer environmentally friendly that has a great potential to replace petroleum-based plastics. However, brittleness, low heat resistance, and slow crystallization limit the wide application of PLA. One of strategies to improve PLA properties is by reinforcing with microfibrillated cellulose (MFC). Unfortunately, the hydrophilic properties of MFC make it difficult to attain good dispersion in a hydrophobic PLA matrix. Therefore, modification of MFC was needed to increase its compatibility with PLA in the composite formation. In this experiment, MFC was modified with partial acetylation (degree of substitution: 1) and further grafted with lactide monomers through ring-opening polymerization using Sn(Oct)2 catalyst. The result of acetylation and grafting were verified by infrared spectra. Composites were prepared by mixing PLA (molecular weight of 200,000) and the modified MFC at 9:1 ratio through organic solvent method. Followed by 8 min-kneading and hot pressing at 180°C, the resulted composites were evaluated for their mechanical and thermal properties. Thermal characterization carried out using differential scanning calorimetry measurements showed that the presence of modified MFC increased the temperature of glass transition and accelerated the crystallization of PLA. Mechanical properties measurement showed that the presence of modified MFC enhanced the elongation at break (1.1 to 1.8%), tensile strength (14.9 to 25.7 MPa), and modulus of elasticity (1.7 to 2.1 GPa). These results demonstrated that the modified MFC could extend the application of PLA in industry.
An Evaluation on the Smart Composite Damaged by Thermal Shock
NASA Astrophysics Data System (ADS)
Lee, Jin Kyung; Lee, Sang Pill; Park, Young Chul; Lee, Joon Hyun
A shape memory alloy (SMA) as part of some products and system has been used to keep their shape at any specified temperature. By using this characteristic of the shape memory alloy it can be solved the problem of the residual stress by difference of coefficients of thermal expansion between reinforcement and matrix within composite. In this study, TiNi/Al6061 shape memory alloy composite was fabricated through hot press method, and the optimal fabrication condition was created. The bonding effect of the matrix and the reinforcement within the SMA composite was strengthened by cold rolling. The SMA composite can be applied as the part of airplane and vessel, and used under tough condition of repetitive thermal shock cycles of high and low temperatures. Therefore, the thermal shock test was performed for the SMA composite, and mechanical properties were evaluated. The tensile strength of the SMA composite showed a slight decline with the thermal shock cycles. In addition, acoustic emission (AE) technique was used to quantify the microscopic damage behavior of cold rolled TiNi/Al6061 shape memory alloy composite that underwent thermal shock cycles. The damage degree on the specimen that underwent thermal shock cycles was discussed. Actually AE parameters such as AE event, count and energy was analyzed, and these parameters was useful to evaluate the damage behavior and degree of the SMA composite. The waveform of the signal caused by debonding was pulse type, and showed the frequency range of 160 kHz, however, the signal by the fiber fracture showed the pulse type of high magnitude and frequency range of 220 kH.
Thermal properties of zirconium diboride -- transition metal boride solid solutions
NASA Astrophysics Data System (ADS)
McClane, Devon Lee
This research focuses on the thermal properties of zirconium diboride (ZrB2) based ceramics. The overall goal was to improve the understanding of how different transition metal (TM) additives influence thermal transport in ZrB2. To achieve this, ZrB2 with 0.5 wt% carbon, and 3 mol% of individual transition metal borides, was densified by hot-press sintering. The transition metals that were investigated were: Y, Ti, Hf, V, Nb, Ta, Cr, Mo, W, and Re. The room temperature thermal diffusivities of the compositions ranged from 0.331 cm2/s for nominally pure ZrB2 to 0.105 cm2/s for (Zr,Cr)B2 and converged around 0.155cm2/s at higher temperatures for all compositions. Thermal conductivities were calculated from the diffusivities, using temperature-dependent values for density and heat capacity. The electron contribution to thermal conductivity was calculated from measured electrical resistivity according to the Wiedemann-Franz law. The phonon contribution to thermal conductivity was calculated by subtracting the electron contribution from the total thermal conductivity. Rietveld refinement of x-ray diffraction data was used to determine the lattice parameters of the compositions. The decrease in thermal conductivity for individual additives correlated directly to the metallic radius of the additive. Additional strain appeared to exist for additives when the stable TM boride for that metal had different crystal symmetries than ZrB2. This research provided insight into how additives and impurities affect thermal transport in ZrB2. The research potentially offers a basis for future modeling of thermal conductivity in ultra-high temperature ceramics based on the correlation between metallic radius and the decrease in thermal conductivity.
PMR-15/Layered Silicate Nanocomposites For Improved Thermal Stability And Mechanical Properties
NASA Technical Reports Server (NTRS)
Campbell, Sandi; Scheiman, Daniel; Faile, Michael; Papadopoulos, Demetrios; Gray, Hugh R. (Technical Monitor)
2002-01-01
Montmorillonite clay was organically modified by co-exchange of an aromatic diamine and a primary alkyl amine. The clay was dispersed into a PMR (Polymerization of Monomer Reactants)-15 matrix and the glass transition temperature and thermal oxidative stability of the resulting nanocomposites were evaluated. PMR-15/ silicate nanocomposites were also investigated as a matrix material for carbon fabric reinforced composites. Dispersion of the organically modified silicate into the PMR-15 matrix enhanced the thermal oxidative stability, the flexural strength, flexural modulus, and interlaminar shear strength of the polymer matrix composite.
Ceramic sealants prepared by polymer pyrolysis
NASA Astrophysics Data System (ADS)
Hong, Sung Jin; Kim, Deug Joong; Yoo, Young Sung
2011-02-01
The formation and properties of ceramic seals for SOFC applications prepared by polymer pyrolysis are investigated. A mixture with polymethylsiloxane and fillers are pyrolyzed in a N2 atmosphere. The coefficient of thermal expansion of the ceramic composites was controlled by fillers with a high coefficient of thermal expansion such as AlCo. The morphology of the ceramic composites derived from the mixture with polymethylsiloxane and fillers is composed of fillers embedded in a Si-O-C glass matrix. The thermal expansion behavior and sealing characteristics are measured and discussed
Physicochemical properties of quinoa flour as affected by starch interactions.
Li, Guantian; Zhu, Fan
2017-04-15
There has been growing interest in whole grain quinoa flour for new product development due to the unique nutritional benefits. The quality of quinoa flour is much determined by the properties of its major component starch as well as non-starch components. In this study, composition and physicochemical properties of whole grain flour from 7 quinoa samples have been analyzed. Flour properties have been correlated to the flour composition and the properties of isolated quinoa starches through chemometrics. Great variations in chemical composition, swelling power, water soluble index, enzyme susceptibility, pasting, gel texture, and thermal properties of the flour have been observed. Correlation analysis showed that thermal properties and enzyme susceptibility of quinoa flour are highly influenced by the starch. Interactions of starch with non-starch components, including lipids, protein, dietary fibre, phenolics, and minerals, greatly impacted the flour properties. For example, peak gelatinization temperature of the flour is positively correlated to that of the starch (r=0.948, p<0.01) and negatively correlated to the lipid content (r=-0.951, p<0.01). Understanding the roles of starch and other components in physicochemical properties of quinoa flour provides a basis for better utilization of this specialty crop. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pandey, Pankaj; Bajwa, Dilpreet; Ulven, Chad; Bajwa, Sreekala
2016-01-01
In this study, six combinations of flax, hemp, and glass fiber were investigated for a hybrid reinforcement system in a polyurethane (PU) composite. The natural fibers were combined with glass fibers in a PU composite in order to achieve a better mechanical reinforcement in the composite material. The effect of fiber hybridization in PU composites was evaluated through physical and mechanical properties such as water absorption (WA), specific gravity (SG), coefficient of linear thermal expansion (CLTE), flexural and compression properties, and hardness. The mechanical properties of hybridized samples showed mixed trends compared to the unhybridized samples, but hybridization with glass fiber reduced water absorption by 37% and 43% for flax and hemp-agave PU composites respectively. PMID:28773512
Effect of processing method on the mechanical and thermal of Silvergrass/HDPE composites
NASA Astrophysics Data System (ADS)
Liu, Bing; Jin, Yueqiang; Wang, Shuying
2017-05-01
This paper investigates the effect of compression and injection molding methods on properties of Silvergrass-HDPE (High Density Polyethylene) composites, with respect to mechanical behaviors. Maleated polyethylene (MAPE) was added in the composite and improved the mechanical property of the composite. The research founds MAPE can improve the mechanical property because it improved the interfacial compatibility as a coupling agent. When added a content of 8% of MAPE, Silvergrass-HDPE composites made from compression molding shows a better mechanical performance in tensile strength and flexural strength than that made from injection molding, with increasing Silvergrass fiber content from 30% to 50%. However, the WPCs (wood plastics composites) made from injection molding had a lower degree of crystallinity with or without MAPE treatment.
USDA-ARS?s Scientific Manuscript database
Stable starch-oil composites can be prepared from renewable resources by excess steam jet-cooking aqueous slurries of starch and vegetable oils or other hydrophobic materials. Fatty acids such as stearic acid are promising phase change materials (PCMs) for latent heat thermal energy storage applica...
High-Strength Konjac Glucomannan/Silver Nanowires Composite Films with Antibacterial Properties
Lei, Jia; Zhou, Lei; Tang, Yongjian; Luo, Yong; Duan, Tao; Zhu, Wenkun
2017-01-01
Robust, high-strength and environmentally friendly antibacterial composite films were prepared by simply blending konjac glucomannan (KGM) and silver nanowires (Ag NWs) in an aqueous system. The samples were then characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), thermal gravimetric analysis, mechanical property tests, Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS) and antimicrobial tests. The results showed that there was a high ratio of Ag NWs uniformly distributed in the composite films, which was vital for mechanical reinforcement and stable antibacterial properties. The enhanced thermal stability and mechanical intensity increased, while the elongation at break was reduced with an increase in the amount of Ag NWs found in the composite films. When the percentage of Ag NWs in the composite films reached 5%, the tensile strength was 148.21 MPa, Young’s modulus was 13.79 GPa and the ultimate strain was 25.28%. Antibacterial tests showed that the KGM films had no antibacterial effect. After the addition of Ag NWs, the composite films had an obvious inhibitory effect on bacteria, with the uniform dispersion of Ag NWs promoting the antibacterial effect to a certain degree. These results indicated that these composite films would have a potential application in the fields of environmentally friendly packaging or medicine. PMID:28772883
Research on graphite reinforced glass matrix composites
NASA Technical Reports Server (NTRS)
Bacon, J. F.; Prewo, K. M.; Thompson, E. R.
1978-01-01
A composite that can be used at temperatures up to 875 K with mechanical properties equal or superior to graphite fiber reinforced epoxy composites is presented. The composite system consist of graphite fiber, uniaxially or biaxially, reinforced borosilicate glass. The mechanical and thermal properties of such a graphite fiber reinforced glass composite are described, and the system is shown to offer promise as a high performance structural material. Specific properties that were measured were: a modified borosilicate glass uniaxially reinforced by Hercules HMS graphite fiber has a three-point flexural strength of 1030 MPa, a four-point flexural strength of 964 MPa, an elastic modulus of 199 GPa and a failure strain of 0.0052. The preparation and properties of similar composites with Hercules HTS, Celanese DG-102, Thornel 300 and Thornel Pitch graphite fibers are also described.
Spectroscopic and thermal properties of Sm3+ doped iron lead bismuthate glasses
NASA Astrophysics Data System (ADS)
Narwal, P.; Yadav, A.; Dahiya, M. S.; Vishal, Rohit, Agarwal, A.; Khasa, S.
2018-05-01
The results of the structural, physical, thermal and electrical properties of the glass compositions xFe2O3•(100-x)(3Bi2O3•PbO)• Sm2O3(1 mol%) where x=0, 1, 5, 10, 12, 15 mol% prepared via melt quench technique were studied. The synthesized compositions were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and differential thermal analysis (DTA). The IR study reveals that present system is build up with lead in tetrahedral coordination and bismuth in trigonal as well as octahedral coordination. Density and molar volume have been calculated using Archimedes principle, and the variation in their values has been correlated with structural changes in the glass matrix based on the IR study. The variation in the characteristic temperatures (glass transition temperature Tg, crystallization temperature Tp and melting temperature Tm) with different heating rate and change in the composition of iron oxide were analyzed and reported in the present study.
Improved Silica Aerogel Composite Materials
NASA Technical Reports Server (NTRS)
Paik, Jong-Ah; Sakamoto, Jeffrey; Jones, Steven
2008-01-01
A family of aerogel-matrix composite materials having thermal-stability and mechanical- integrity properties better than those of neat aerogels has been developed. Aerogels are known to be excellent thermal- and acoustic-insulation materials because of their molecular-scale porosity, but heretofore, the use of aerogels has been inhibited by two factors: (1) Their brittleness makes processing and handling difficult. (2) They shrink during production and shrink more when heated to high temperatures during use. The shrinkage and the consequent cracking make it difficult to use them to encapsulate objects in thermal-insulation materials. The underlying concept of aerogel-matrix composites is not new; the novelty of the present family of materials lies in formulations and processes that result in superior properties, which include (1) much less shrinkage during a supercritical-drying process employed in producing a typical aerogel, (2) much less shrinkage during exposure to high temperatures, and (3) as a result of the reduction in shrinkage, much less or even no cracking.
NASA Astrophysics Data System (ADS)
Sharma, Nitin; Ranjan Mahapatra, Trupti; Panda, Subrata Kumar; Sahu, Pruthwiraj
2018-03-01
In this article, the acoustic radiation characteristics of laminated and sandwich composite spherical panels subjected to harmonic point excitation under thermal environment are investigated. The finite element (FE) simulation model of the vibrating panel structure is developed in ANSYS using ANSYS parametric design language (APDL) code. Initially, the critical buckling temperatures of the considered structures are obtained and the temperature loads are assorted accordingly. Then, the modal analysis of the thermally stressed panels is performed and the thermo-elastic free vibration responses so obtained are validated with the benchmark solutions. Subsequently, an indirect boundary element (BE) method is utilized to conduct a coupled FE-BE analysis to compute the sound radiation properties of panel structure. The agreement of the present sound power responses with the existing results available in the published literature establishes the validity of the proposed scheme. Finally, the current standardised scheme is extended to solve several numerical examples to bring out the influence of various parameters on the thermo-acoustic characteristics of laminated composite panels.
Effect of gamma irradiation on ethylene propylene diene terpolymer rubber composites
NASA Astrophysics Data System (ADS)
Abou Zeid, M. M.; Rabie, S. T.; Nada, A. A.; Khalil, A. M.; Hilal, R. H.
2008-01-01
Composites of ethylene propylene dine terpolymer rubber (EPDM), high density polyethylene (HDPE) and ground tire rubber powder (GTR) at different ratios were subjected to gamma irradiation at various doses up to 250 kGy. The physical, mechanical and thermal properties were investigated as a function of irradiation dose and blend composition. Gamma irradiation led to a significant improvement in the properties for all blend compositions. The results indicate that the improvement in properties is inversely proportional to the substituted ratio of GTR, attributed to the development of an interfacial adhesion between GTR and blend components. The results were confirmed by examining the fracture surfaces by scanning electron microscopy.
dos Reis, Andréa Cândido; de Castro, Denise Tornavoi; Schiavon, Marco Antônio; da Silva, Leandro Jardel; Agnelli, José Augusto Marcondes
2013-01-01
The aim of this study was to investigate the influence of accelerated artificial aging (AAA) on the microstructure and mechanical properties of the Filtek Z250, Filtek Supreme, 4 Seasons, Herculite, P60, Tetric Ceram, Charisma and Filtek Z100. composite resins. The composites were characterized by Fourier-transform Infrared spectroscopy (FTIR) and thermal analyses (Differential Scanning Calorimetry - DSC and Thermogravimetry - TG). The microstructure of the materials was examined by scanning electron microscopy. Surface hardness and compressive strength data of the resins were recorded and the mean values were analyzed statistically by ANOVA and Tukey's test (α=0.05). The results showed significant differences among the commercial brands for surface hardness (F=86.74, p<0.0001) and compressive strength (F=40.31, p<0.0001), but AAA did not affect the properties (surface hardness: F=0.39, p=0.53; compressive strength: F=2.82, p=0.09) of any of the composite resins. FTIR, DSC and TG analyses showed that resin polymerization was complete, and there were no differences between the spectra and thermal curve profiles of the materials obtained before and after AAA. TG confirmed the absence of volatile compounds and evidenced good thermal stability up to 200 °C, and similar amounts of residues were found in all resins evaluated before and after AAA. The AAA treatment did not significantly affect resin surface. Therefore, regardless of the resin brand, AAA did not influence the microstructure or the mechanical properties.
Kandola, Baljinder K.; Luangtriratana, Piyanuch; Duquesne, Sophie; Bourbigot, Serge
2015-01-01
Intumescent coatings are commonly used as passive fire protection systems for steel structures. The purpose of this work is to explore whether these can also be used effectively on glass fibre-reinforced epoxy (GRE) composites, considering the flammability of the composites compared to non-flammable steel substrate. The thermal barrier and reaction-to-fire properties of three commercial intumescent coatings on GRE composites have been studied using a cone calorimeter. Their thermophysical properties in terms of heating rate and/or temperature dependent char expansion ratios and thermal conductivities have been measured and correlated. It has been suggested that these two parameters can be used to design coatings to protect composite laminates of defined thicknesses for specified periods of time. The durability of the coatings to water absorption, peeling, impact, and flexural loading were also studied. A strong adhesion between all types of coatings and the substrate was observed. Water soaking had a little effect on the fire performance of epoxy based coatings. All types of 1 mm thick coatings on GRE helped in retaining ~90% of the flexural property after 2 min exposure to 50 kW/m2 heat flux whereas the uncoated laminate underwent severe delamination and loss in structural integrity after 1 min. PMID:28793500
Interlaminar fracture toughness of thermoplastic composites
NASA Technical Reports Server (NTRS)
Hinkley, J. A.; Johnston, N. J.; Obrien, T. K.
1988-01-01
Edge delamination tension and double cantilever beam tests were used to characterize the interlaminar fracture toughness of continuous graphite-fiber composites made from experimental thermoplastic polyimides and a model thermoplastic. Residual thermal stresses, known to be significant in materials processed at high temperatures, were included in the edge delamination calculations. In the model thermoplastic system (polycarbonate matrix), surface properties of the graphite fiber were shown to be significant. Critical strain energy release rates for two different fibers having similar nominal tensile properties differed by 30 to 60 percent. The reason for the difference is not clear. Interlaminar toughness values for the thermoplastic polyimide composites (LARC-TPI and polyimidesulfone) were 3 to 4 in-lb/sq in. Scanning electron micrographs of the EDT fracture surfaces suggest poor fiber/matrix bonding. Residual thermal stresses account for up to 32 percent of the strain energy release in composites made from these high-temperature resins.
Conductivity study of thermally stabilized RuO2/polythiophene nanocomposites
NASA Astrophysics Data System (ADS)
Hebbar, Vidyashree; Bhajantri, R. F.
2018-04-01
The polymer nanocomposites of Ruthenium oxide (RuO2) filled polythiophene (PT) were synthesized by polymerization using chemical method. The purity of the synthesized polymer composite is verified using X-Ray diffraction (XRD). The structural discrepancies of the RuO2 filled PT composites are studied by Fourier transform infrared (FT-IR) spectroscopy. The phase transition and thermal stability of the prepared composite is revised by thermal characterization such as differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The DC conductivity of RuO2 filled PT composite in the form of pellets is calculated using current-voltage (I-V) characterization by two-probe method. The enhancement in conductivity with increased RuO2 content in PT matrix is examined, which is the required property for electrical and electronic applications in supercapacitors.
Thermal and mechanical behavior of metal matrix and ceramic matrix composites
NASA Technical Reports Server (NTRS)
Kennedy, John M. (Editor); Moeller, Helen H. (Editor); Johnson, W. S. (Editor)
1990-01-01
The present conference discusses local stresses in metal-matrix composites (MMCs) subjected to thermal and mechanical loads, the computational simulation of high-temperature MMCs' cyclic behavior, an analysis of a ceramic-matrix composite (CMC) flexure specimen, and a plasticity analysis of fibrous composite laminates under thermomechanical loads. Also discussed are a comparison of methods for determining the fiber-matrix interface frictional stresses of CMCs, the monotonic and cyclic behavior of an SiC/calcium aluminosilicate CMC, the mechanical and thermal properties of an SiC particle-reinforced Al alloy MMC, the temperature-dependent tensile and shear response of a graphite-reinforced 6061 Al-alloy MMC, the fiber/matrix interface bonding strength of MMCs, and fatigue crack growth in an Al2O3 short fiber-reinforced Al-2Mg matrix MMC.
Micromechanics thermal stress analysis of composites for space structure applications
NASA Technical Reports Server (NTRS)
Bowles, David E.
1991-01-01
This paper presents results from a finite element micromechanics analysis of thermally induced stresses in composites at cryogenic temperatures typical of spacecraft operating environments. The influence of microstructural geometry, constituent and interphase properties, and laminate orientation were investigated. Stress field results indicated that significant matrix stresses occur in composites exposed to typical spacecraft thermal excursions; these stresses varied with laminate orientation and circumferential position around the fiber. The major difference in the predicted response of unidirectional and multidirectional laminates was the presence of tensile radial stresses, at the fiber/matrix interface, in multidirectional laminates with off-axis ply angles greater than 15 deg. The predicted damage initiation temperatures and modes were in good agreement with experimental data for both low (207 GPa) and high (517 GPa) modulus carbon fiber/epoxy composites.
Uncertainties in the Thermal and Mechanical Properties of Particulate Composites Quantified
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Mital, Subodh K.
2001-01-01
Particle-reinforced composites are candidate materials for a wide variety of aerospace and nonaerospace applications. The high costs and technical difficulties involved with the use of many fiber-reinforced composites often limit their use in many applications. Consequently, particulate composites have emerged as viable alternatives to conventional fiber-reinforced composites. Particulate composites can be processed to near net shapepotentially reducing the manufacturing costs. They are candidate materials where shock or impact properties are important. For example, particle-reinforced metal matrix composites have shown great potential for many automotive applications. Typically, these materials are aluminum matrix reinforced with SiC or TiC particles. Reinforced concrete can also be thought of as a particle-reinforced composite. In situ ceramics can be modeled as particulate composites and are candidate materials for many high-temperature applications. The characterization of these materials is fundamental to their reliable use. It has been observed that the overall properties of these composites exhibit scatter because of the uncertainty in the constituent material properties, and fabrication-related parameters.
Synthesis, Structure, Te Alloying, and Physical Properties of CuSbS 2
Hobbis, Dean; Wei, Kaya; Wang, Hsin; ...
2017-10-30
Materials with very low thermal conductivities continue to be of interest for a variety of applications. In this paper, we synthesized CuSbS 2 employing a mechanical alloying technique in order to investigate its physical properties. The trigonal pyramid arrangement of the S atoms around the Sb atoms allows for lone-pair electron formation that results in very low thermal conductivity. Finally, in addition to thermal properties, the structural, electrical, and optical properties, as well as compositional stability measurements, are also discussed. CuSbS 1.8Te 0.2 was similarly synthesized and characterized in order to compare its structural and transport properties with that ofmore » CuSbS 2, in addition to investigating the effect of Te alloying on these properties.« less
Synthesis, Structure, Te Alloying, and Physical Properties of CuSbS 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hobbis, Dean; Wei, Kaya; Wang, Hsin
Materials with very low thermal conductivities continue to be of interest for a variety of applications. In this paper, we synthesized CuSbS 2 employing a mechanical alloying technique in order to investigate its physical properties. The trigonal pyramid arrangement of the S atoms around the Sb atoms allows for lone-pair electron formation that results in very low thermal conductivity. Finally, in addition to thermal properties, the structural, electrical, and optical properties, as well as compositional stability measurements, are also discussed. CuSbS 1.8Te 0.2 was similarly synthesized and characterized in order to compare its structural and transport properties with that ofmore » CuSbS 2, in addition to investigating the effect of Te alloying on these properties.« less
Ganji, Yasaman; Kasra, Mehran; Salahshour Kordestani, Soheila; Bagheri Hariri, Mohiedin
2014-09-01
Gold nanotubes/nanowires (GNT/NW) were synthesized by using the template-assisted electrodeposition technique and mixed with castor oil-polyethylene glycol based polyurethane (PU) to fabricate porous composite scaffolds for biomedical application. 100 and 50 ppm of GNT/NW were used to synthesize composites. The composite scaffolds were characterized by Fourier transform infrared spectroscopy, dynamic mechanical thermal analysis, differential scanning calorimetry, and scanning electron microscopy. Cell attachment on polyurethane-GNT/NW composites was investigated using fat-derived mesenchymal stem cells. Addition of 50 or 100 ppm GNT/NW had significant effects on thermal, mechanical, and cell attachment of polyurethane. Higher crosslink density and better cell attachment and proliferation were observed in polyurethane containing 50 ppm GNT/NW. The results revealed that GNT/NW formed hydrogen bonding with the polyurethane matrix and improved the thermomechanical properties of nanocomposites. Compared with pure PU, better cellular attachment on polyurethane-GNT/NW composites was observed resulting from the improved surface properties of composites. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Qutub, Nida; Pirzada, Bilal Masood; Umar, Khalid; Mehraj, Owais; Muneer, M.; Sabir, Suhail
2015-11-01
CdS/ZnS sandwich and core-shell nanocomposites were synthesized by a simple and modified Chemical Precipitation method under ambient conditions. The synthesized composites were characterized by XRD, SEM, TEM, EDAX and FTIR. Optical properties were analyzed by UV-vis. Spectroscopy and the photoluminescence study was done to monitor the recombination of photo-generated charge-carriers. Thermal stability of the synthesized composites was analyzed by Thermal Gravimetric Analysis (TGA). XRD revealed the formation of nanocomposites as mixed diffraction peaks were observed in the XRD pattern. SEM and TEM showed the morphology of the nanocomposites particles and their fine particle size. EDAX revealed the appropriate molar ratios exhibited by the constituent elements in the composites and FTIR gave some characteristic peaks which indicated the formation of CdS/ZnS nanocomposites. Electrochemical Impedance Spectroscopy was done to study charge transfer properties along the nanocomposites. Photocatalytic properties of the synthesized composites were monitored by the photocatalytic kinetic study of Acid Blue dye and p-chlorophenol under visible light irradiation. Results revealed the formation of stable core-shell nanocomposites and their efficient photocatalytic properties.
Fabrication and testing of fire resistant graphite composite panels
NASA Technical Reports Server (NTRS)
Roper, W. D.
1986-01-01
Eight different graphite composite panels were fabricated using four different resin matrices. The resin matrices included Hercules 71775, a blend of vinylpolystyrpyridine and bismaleimide, H795, a bismaleimide, Cycom 6162, a phenolic, and PSP 6022m, a polystyrylpyridine. Graphite panels were fabricated using fabric or unidirectional tape. Described are the processes for preparing these panels and some of their mechanical, thermal and flammability properties. Panel properties are compared with state-of-the-art epoxy fiberglass composite panels.
Plaster-based magnetite composite materials in construction
NASA Astrophysics Data System (ADS)
Klimenko, V. G.; Kashin, G. A.; Prikaznova, T. A.
2018-03-01
Calculation and experimental data demonstrate the possibility of using iron-ore concentrate of Lebedinsky Mining and Processing Plant (Lebedinsky GOK) in the production of plaster concrete. Their physical-mechanical, thermal and radiation protective properties were studied. Structurization mechanisms in plaster magnetite systems depending on the type of plaster binder, textures and the structure of plaster crystals providing for the design of composite materials with predetermined properties are suggested. Composite materials to ensure protection against X-ray radiation are obtained.
Low temperature synthesis of Ru-Cu alloy nanoparticles with the compositions in the miscibility gap
NASA Astrophysics Data System (ADS)
Martynova, S. A.; Filatov, E. Yu.; Korenev, S. V.; Kuratieva, N. V.; Sheludyakova, L. A.; Plusnin, P. E.; Shubin, Yu. V.; Slavinskaya, E. M.; Boronin, A. I.
2014-04-01
A complex salt [Ru(NH3)5Cl][Cu(C2O4)2H2O]-the precursor of nanoalloys combining ruthenium and copper was prepared. It crystallizes in the monoclinic space group P21/n. Thermal properties of the prepared salt were examined in different atmospheres (helium, hydrogen, oxygen). Thermal decomposition of the precursor in inert atmosphere was thoroughly examined and the intermediate products were characterized. Experimental conditions for preparation of copper-rich (up to 12 at% of copper) metastable solid solution CuxRu1-x (based on Ru structure) were optimized, what is in sharp contrast to the bimetallic miscibility gap known for the bulk counterparts in a wide composition range. Catalytic properties of copper-ruthenium oxide composite were tested in catalytic oxidation of CO.
Influence of carbides and microstructure of CoCrMo alloys on their metallic dissolution resistance.
Valero-Vidal, C; Casabán-Julián, L; Herraiz-Cardona, I; Igual-Muñoz, A
2013-12-01
CoCrMo alloys are passive and biocompatible materials widely used as joint replacements due to their good mechanical properties and corrosion resistance. Electrochemical behaviour of thermal treated CoCrMo alloys with different carbon content in their bulk alloy composition has been analysed. Both the amount of carbides in the CoCrMo alloys and the chemical composition of the simulated body fluid affect the electrochemical properties of these biomedical alloys, thus passive dissolution rate was influenced by the mentioned parameters. Lower percentage of carbon in the chemical composition of the bulk alloy and thermal treatments favour the homogenization of the surface (less amount of carbides), thus increasing the availability of Cr to form the oxide film and improving the corrosion resistance of the alloy. © 2013.
Stress Rupture Behavior of Silicon Carbide Coated, Low Modulus Carbon/Carbon Composites. M.S. Thesis
NASA Technical Reports Server (NTRS)
Rozak, Gary A.; Wallace, John F.
1988-01-01
The disadvantages of carbon-carbon composites, in addition to the oxidation problem, are low thermal expansion, expensive fabrication procedures, and poor off axis properties. The background of carbon-carbon composites, their fabrication, oxidation, oxidation protection and mechanical testing in flexure are discussed.
NASA Astrophysics Data System (ADS)
Dang, Xudan; Wei, Meng; Fan, Bingbing; Guan, Keke; Zhang, Rui; Long, Weimin; Zhang, Hongsong
2017-06-01
In situ synthesis of mullite whisker was introduced to Al2O3-SiC composite by microwave sintering. The effects of sintering parameters (sintering temperature, holding time and SiC particle size) on thermal shock resistance of Al2O3-SiC composite were also studied in this paper. Original SiC particles coated with SiO2 by a sol-gel method were reacted with Al2O3 particles, resulting in the in situ growth of mullite. The phase composition was identified by x-ray diffraction (XRD). The bridging of mullite whisker between Al2O3 and SiC particles was observed by scanning electron microscopy (SEM) analysis. The thermal shock resistance of samples was investigated through the combination of water quenching and three-point bending methods. The results show that the thermal shock resistance of Al2O3-SiC composite with mullite whisker reinforced remarkably, indicating better mechanical properties than the Al2O3-SiC composite without mullite whisker. Finally, the optimum process parameters (the sintering temperature of 1500 °C, the holding time of 30 min, and the SiC particle size of 5 µm) for toughening Al2O3-SiC composite by in situ synthesized mullite whisker were obtained.
NASA Astrophysics Data System (ADS)
Chuang, Wang; Geng-sheng, Jiao; Lei, Peng; Bao-lin, Zhu; Ke-zhi, Li; Jun-long, Wang
2018-06-01
The surface of nano-silicon dioxide (nano-SiO2) particles was modified by small molecular coupling agent KH-560 and macromolecular coupling agent SEA-171, respectively, to change the surface activity and structure. The modified nano-SiO2 was then used for reinforcing cyanate ester resin (CE). Influences of the content of nano-SiO2 and the interfacial structure over the thermal and frictional properties of nano-SiO2/CE composites were investigated. The mechanism of the surface modification of silicon dioxide by KH-560 and SEA-171 was discussed. The experimental results show that the addition of coupling agents increased the interfacial bonding between nano-SiO2 particles and the CE resin so that the heat resistance and friction properties of the composites were improved. After surface treatment of nano-SiO2 by SEA-171, the thermal decomposition temperature of the 3.0 wt% nano-SiO2/CE composites increased nearly by 75 °C and the frictional coefficient was reduced by 25% compared with that of the pure CE, and the wear resistance increased by 77%.
Micromechanical combined stress analysis: MICSTRAN, a user manual
NASA Technical Reports Server (NTRS)
Naik, R. A.
1992-01-01
Composite materials are currently being used in aerospace and other applications. The ability to tailor the composite properties by the appropriate selection of its constituents, the fiber and matrix, is a major advantage of composite materials. The Micromechanical Combined Stress Analysis (MICSTRAN) code provides the materials engineer with a user-friendly personal computer (PC) based tool to calculate overall composite properties given the constituent fiber and matrix properties. To assess the ability of the composite to carry structural loads, the materials engineer also needs to calculate the internal stresses in the composite material. MICSTRAN is a simple tool to calculate such internal stresses with a composite ply under combined thermomechanical loading. It assumes that the fibers have a circular cross-section and are arranged either in a repeating square or diamond array pattern within a ply. It uses a classical elasticity solution technique that has been demonstrated to calculate accurate stress results. Input to the program consists of transversely isotropic fiber properties and isotropic matrix properties such as moduli, Poisson's ratios, coefficients of thermal expansion, and volume fraction. Output consists of overall thermoelastic constants and stresses. Stresses can be computed under the combined action of thermal, transverse, longitudinal, transverse shear, and longitudinal shear loadings. Stress output can be requested along the fiber-matrix interface, the model boundaries, circular arcs, or at user-specified points located anywhere in the model. The MICSTRAN program is Windows compatible and takes advantage of the Microsoft Windows graphical user interface which facilitates multitasking and extends memory access far beyond the limits imposed by the DOS operating system.
Advanced SiC/SiC Ceramic Composites For Gas-Turbine Engine Components
NASA Technical Reports Server (NTRS)
Yun, H. M.; DiCarlo, J. A.; Easler, T. E.
2004-01-01
NASA Glenn Research Center (GRC) is developing a variety of advanced SiC/SiC ceramic composite (ASC) systems that allow these materials to operate for hundreds of hours under stress in air at temperatures approaching 2700 F. These SiC/SiC composite systems are lightweight (approximately 30% metal density) and, in comparison to monolithic ceramics and carbon fiber-reinforced ceramic composites, are able to reliably retain their structural properties for long times under aggressive gas-turbine engine environments. The key for the ASC systems is related first to the NASA development of the Sylramic-iBN Sic fiber, which displays higher thermal stability than any other SiC- based ceramic fibers and possesses an in-situ grown BN surface layer for higher environmental durability. This fiber is simply derived from Sylramic Sic fiber type that is currently produced at ATK COI Ceramics (COIC). Further capability is then derived by using chemical vapor infiltration (CVI) and/or polymer infiltration and pyrolysis (PIP) to form a Sic-based matrix with high creep and rupture resistance as well as high thermal conductivity. The objectives of this study were (1) to optimize the constituents and processing parameters for a Sylramic-iBN fiber reinforced ceramic composite system in which the Sic-based matrix is formed at COIC almost entirely by PIP (full PIP approach), (2) to evaluate the properties of this system in comparison to other 2700 F Sylramic-iBN systems in which the matrix is formed by full CVI and CVI + PIP, and (3) to examine the pros and cons of the full PIP approach for fabricating hot-section engine components. A key goal is the development of a composite system with low porosity, thereby providing high modulus, high matrix cracking strength, high interlaminar strength, and high thermal conductivity, a major property requirement for engine components that will experience high thermal gradients during service. Other key composite property goals are demonstration at high temperatures of high environmental resistance and high creep resistance, which in turn will result in long component life. Data are presented from a variety of laboratory tests on simple two-dimensional panels that examine these properties and compare the performance of the optimized full PIP system with those of the full CVI and CVI + PIP hybrid systems. Underlying mechanisms for performance differences in the various systems are discussed. Remaining issues for further property enhancement and for application of the full PIP approach for engine components are also discussed, as well as on-going approaches at NASA to solve these issues.
SiC/SiC Cladding Materials Properties Handbook
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snead, Mary A.; Katoh, Yutai; Koyanagi, Takaaki
When a new class of material is considered for a nuclear core structure, the in-pile performance is usually assessed based on multi-physics modeling in coordination with experiments. This report aims to provide data for the mechanical and physical properties and environmental resistance of silicon carbide (SiC) fiber–reinforced SiC matrix (SiC/SiC) composites for use in modeling for their application as accidenttolerant fuel cladding for light water reactors (LWRs). The properties are specific for tube geometry, although many properties can be predicted from planar specimen data. This report presents various properties, including mechanical properties, thermal properties, chemical stability under normal and offnormalmore » operation conditions, hermeticity, and irradiation resistance. Table S.1 summarizes those properties mainly for nuclear-grade SiC/SiC composites fabricated via chemical vapor infiltration (CVI). While most of the important properties are available, this work found that data for the in-pile hydrothermal corrosion resistance of SiC materials and for thermal properties of tube materials are lacking for evaluation of SiC-based cladding for LWR applications.« less
Effect of lightning strike on bromine intercalated graphite fiber/epoxy composites
NASA Technical Reports Server (NTRS)
Gaier, James R.; Slabe, Melissa E.; Brink, Norman O.
1991-01-01
Laminar composites were fabricated from pristine and bromine intercalated pitch based graphite fibers. It was found that laminar composites could be fabricated using either pristine or intercalated graphite fibers using standard fabrication techniques. The intercalated graphite fiber composites had electrical properties which were markedly improved over both the corresponding pitch based and polyacrylonitrile (PAN) based composites. Despite composites resistivities more than an order of magnitude lower for pitch based fiber composites, the lightning strike resistance was poorer than that of the Pan based fiber composites. This leads to the conclusion that the mechanical properties of the pitch fibers are more important than electrical or thermal properties in determining the lightning strike resistance. Based on indicated lightning strike tolerance for high elongation to failure materials, the use of vapor grown, rather than pitch based graphite fibers appears promising.
Gabriel, Laís P; Santos, Maria Elizabeth M Dos; Jardini, André L; Bastos, Gilmara N T; Dias, Carmen G B T; Webster, Thomas J; Maciel Filho, Rubens
2017-01-01
In this work, thermoset polyurethane composites were prepared by the addition of hydroxyapatite nanoparticles using the reactants polyol polyether and an aliphatic diisocyanate. The polyol employed in this study was extracted from the Euterpe oleracea Mart. seeds from the Amazon Region of Brazil. The influence of hydroxyapatite nanoparticles on the structure and morphology of the composites was studied using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), the structure was evaluated by Fourier transform infrared spectroscopy (FT-IR), thermal properties were analyzed by thermogravimetry analysis (TGA), and biological properties were studied by in vitro and in vivo studies. It was found that the addition of HA nanoparticles promoted fibroblast adhesion while in vivo investigations with histology confirmed that the composites promoted connective tissue adherence and did not induce inflammation. In this manner, this study supports the further investigation of bio-based, polyurethane/hydroxyapatite composites as biocompatible scaffolds for numerous tissue engineering applications. Copyright © 2016 Elsevier Inc. All rights reserved.
Montmorillonite/graphene oxide/chitosan composite: Synthesis, characterization and properties.
Yadav, Mithilesh; Ahmad, Sharif
2015-08-01
The present work reports the successful preparation, thermal and mechanical characterization of high performance films of Na(+) montmorillonite (MMT)/graphene oxide (GO)/chitosan (CS) composite using simple solution mixing evaporation method. The formations of films were verified by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy. The thermal stability and mechanical properties of these films were investigated by thermogravimetric analysis (TGA) and mechanical testing (Instron 8871). The results obtained from these studies revealed that the composites of chitosan, MMT, and graphene oxide were homogeneous in nature. A synergistic effect of MMT and GO reinforcing on chitosan matrix was observed for the first time, in case of 5 wt.% MMT and 1 wt.% GO. The tensile strength of (5 wt.%) MMT/(1 wt.%) GO/CS composite was formed 9±0.23% and 27±0.25% higher than that of the (1 wt.%) GO/CS composite and chitosan, respectively. Copyright © 2015 Elsevier B.V. All rights reserved.
Chen, Roland K; Shih, A J
2013-08-21
This study develops a new class of gellan gum-based tissue-mimicking phantom material and a model to predict and control the elastic modulus, thermal conductivity, and electrical conductivity by adjusting the mass fractions of gellan gum, propylene glycol, and sodium chloride, respectively. One of the advantages of gellan gum is its gelling efficiency allowing highly regulable mechanical properties (elastic modulus, toughness, etc). An experiment was performed on 16 gellan gum-based tissue-mimicking phantoms and a regression model was fit to quantitatively predict three material properties (elastic modulus, thermal conductivity, and electrical conductivity) based on the phantom material's composition. Based on these material properties and the regression model developed, tissue-mimicking phantoms of porcine spinal cord and liver were formulated. These gellan gum tissue-mimicking phantoms have the mechanical, thermal, and electrical properties approximately equivalent to those of the spinal cord and the liver.
Effect of Minor Titanium Addition on Copper/Diamond Composites Prepared by Hot Forging
NASA Astrophysics Data System (ADS)
Yang, Fei; Sun, Wei; Singh, Ajit; Bolzoni, Leandro
2018-03-01
Copper/diamond composites have great potential to lead the next generation of advanced heat sink materials for use in high-power electronic devices and high-density integrated circuits because of their potential excellent properties of high thermal conductivity and close thermal expansion to the chip materials (e.g., Si, InP, GaAs). However, the poor wettability between copper and diamond presents a challenge for synthesizing copper/diamond composites with effective metallurgical bonding and satisfied thermal performance. In this article, copper/diamond composites were successfully prepared by hot forging of elemental copper and artificial diamond powders with small amounts (0 vol.%, 3 vol.% and 5 vol.%) of titanium additives. Microstructure observation and mechanical tests showed that adding minor titanium additions in the copper/diamond composite resulted in fewer cracks in the composites' microstructure and significantly improved the bonding between the copper and diamond. The strongest bonding strength was achieved for the copper/diamond composite with 3 vol.% titanium addition, and the possible reasons were discussed.
Wang, Shaoxu; Li, Yan; Huang, Zihang; Li, Hui
2013-12-01
A simple route of in situ polymerization by the chemical oxidation method was successfully employed to synthesize polyaniline/dysprosium oxide (PANI/Dy2O3) composites. The synthesized materials were characterized by Fourier transform infrared spectra and X-ray diffraction. The thermal stability of the composite was studied by thermogravimetry (TG). The electrochemical performance of the composites was investigated by cyclic voltammetry and alternating current impedance spectroscopy with a three-electrode system. TG results suggested that the thermal stability of PANI/Dy2O3 composites showed a tendency to first increase and then decrease with increasing Dy2O3 amount. Electrochemical experiments indicated that the composite electrodes showed a lower capacitance than that of pure PANI, which may be attributed to the interaction between PANI and Dy2O3 in the composites. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Oddone, Valerio; Boerner, Benji; Reich, Stephanie
2017-12-01
High thermal conductivity, low thermal expansion and low density are three important features in novel materials for high performance electronics, mobile applications and aerospace. Spark plasma sintering was used to produce light metal-graphite composites with an excellent combination of these three properties. By adding up to 50 vol.% of macroscopic graphite flakes, the thermal expansion coefficient of magnesium and aluminum alloys was tuned down to zero or negative values, while the specific thermal conductivity was over four times higher than in copper. No degradation of the samples was observed after thermal stress tests and thermal cycling. Tensile strength and hardness measurements proved sufficient mechanical stability for most thermal management applications. For the production of the alloys, both prealloyed powders and elemental mixtures were used; the addition of trace elements to cope with the oxidation of the powders was studied.
Oddone, Valerio; Boerner, Benji; Reich, Stephanie
2017-01-01
Abstract High thermal conductivity, low thermal expansion and low density are three important features in novel materials for high performance electronics, mobile applications and aerospace. Spark plasma sintering was used to produce light metal–graphite composites with an excellent combination of these three properties. By adding up to 50 vol.% of macroscopic graphite flakes, the thermal expansion coefficient of magnesium and aluminum alloys was tuned down to zero or negative values, while the specific thermal conductivity was over four times higher than in copper. No degradation of the samples was observed after thermal stress tests and thermal cycling. Tensile strength and hardness measurements proved sufficient mechanical stability for most thermal management applications. For the production of the alloys, both prealloyed powders and elemental mixtures were used; the addition of trace elements to cope with the oxidation of the powders was studied. PMID:28458742
Oddone, Valerio; Boerner, Benji; Reich, Stephanie
2017-01-01
High thermal conductivity, low thermal expansion and low density are three important features in novel materials for high performance electronics, mobile applications and aerospace. Spark plasma sintering was used to produce light metal-graphite composites with an excellent combination of these three properties. By adding up to 50 vol.% of macroscopic graphite flakes, the thermal expansion coefficient of magnesium and aluminum alloys was tuned down to zero or negative values, while the specific thermal conductivity was over four times higher than in copper. No degradation of the samples was observed after thermal stress tests and thermal cycling. Tensile strength and hardness measurements proved sufficient mechanical stability for most thermal management applications. For the production of the alloys, both prealloyed powders and elemental mixtures were used; the addition of trace elements to cope with the oxidation of the powders was studied.
Multi-layer structures with thermal and acoustic properties for building rehabilitation
NASA Astrophysics Data System (ADS)
Bessa, J.; Mota, C.; Cunha, F.; Merino, F.; Fangueiro, R.
2017-10-01
This work compares the use of different sustainable materials in the design of multilayer structures for the rehabilitation of buildings in terms of thermal and acoustic properties. These structures were obtained by compression moulding and thermal and acoustic tests were further carried out for the quantification of the respective insulation properties of composite materials obtained. The experimental results show that the use of polyurethane (PUR) foams and jute fabric reinforcing biocomposites promotes interesting properties of thermal and acoustic insulation. A multi-layer structure composed by PUR foam on the intermediate layer revealed thermal resistances until 0.272 m2 K W-1. On the other hand, the use of jute fabric reinforcing biocomposites on exterior layer promoted a noise reduction at 500 Hz until 8.3 dB. These results allow to conclude that the use of PUR foams and jute fabric reinforcing biocomposites can be used successfully in rehabilitation of buildings, when the thermal and acoustic insulation is looked for.
NASA Astrophysics Data System (ADS)
Zarubin, V. S.; Sergeeva, E. S.
2017-11-01
This paper outlines simulation models that represent the quantitative interdependencies between the thermal conductivity and the thermoelastic properties of composites, on the one hand, and their porous structure and matrix properties, as well as the volume fraction of their reinforcing inclusions, on the other hand. As the reinforcing inclusions, randomly-oriented anisotropic single-wall carbon nanotubes (SWNT) are taken. The key means for constructing the simulation models are the self-matching method and the dual variational formulation of the thermal conductivity/thermoelasticity problem for a non-homogeneous solid body. With the simulation models presented below, it is possible to estimate the effect the nanocomposite porosity has on the thermoelastic properties and thermal conductivity of nanocomposites.
NASA Astrophysics Data System (ADS)
Deierling, Phillip Eugene
Airframes operating in the hypersonic regime are subjected to complex structural and thermal loads. Structural loads are a result of aggressive high G maneuvers, rapid vehicle acceleration and deceleration, and dynamic pressure, while thermal loads are a result of aerodynamic heating. For such airframes, structural members are typically constructed from steel, titanium and nickel alloys. However, with most materials, rapid elevations in temperature lead to undesirable changes in material properties. In particular, reductions in strength and stiffness are observed, along with an increase in thermal conductivity, specific heat and thermal expansion. Thus, hypersonic airframes are typically designed with external insulation, active cooling or a thermal protection system (TPS) added to the structure to protect the underling material from the effects of temperature. Such thermal protection may consist of adhesively bonded, pinned, and bolted thermal protection layers over exterior panels. These types of attachments create abrupt changes in thermal expansion and stiffness that make the structure susceptible to cracking and debonding as well as adding mass to the airframe. One of the promising materials concepts for extreme environments that was introduced in the past is the so-called Spatially Tailored Advanced Thermal Structures (STATS). The concept of STATS is rooted in functionally graded materials (FGMs), in which a directional variation of material properties exists. These materials are essentially composites and consist of two or more phases of distinct materials in which the volume fractions of each phase continuously change in space. Here, the graded material will serve a dual-purpose role as both the structural/skin member and thermal management with the goal of reducing the weight of the structure while maintaining structural soundness. This is achieved through the ability to tailor material properties to create a desired or enhanced thermomechanical response through spatial variation (e.g. grading). The objective of this study is to present a computational framework for modeling and evaluating the thermomechanical response of STATS and FGMs for highly maneuverable hypersonic (Mach > 5) airframes. To meet the objective of this study, four key steps have been defined to study the thermomechanical response of such materials in extreme environments. They involve: (1) modeling of graded microstructures; (2) validation of analytical and numerical modeling techniques for graded microstructures; (3) determination of effective properties of variable composition composites; (4) parametric studies to evaluate the performance of FGMs for use in the hypersonic operating environment; (5) optimization of the material spatial grading in hypersonic panels aiming to improve the thermomechanical performance. Modeling of graded microstructures, representing particulate reinforced FGMs, has been accomplished using power law distribution functions to specify the spatial variation of the constituents. Artificial microstructures consisting of disks and spheres have been generated using developed algorithms. These algorithms allow for the creation of dense packing fractions up to 0.61 and 0.91 for 2D and 3D geometry, respectively. Effective properties of FGMs are obtained using micromechanics models and finite element analysis of representative volume elements (RVEs). Two approaches have been adopted and compared to determine the proper RVE for materials with graded microstructures. In the first approach, RVEs are generated by considering regions that have a uniform to slow variation in material composition (i.e., constant volume fraction), resulting in statistically homogenous piecewise RVEs of the graded microstructure neglecting interactions from neighboring cells. In the second approach, continuous RVEs are generated by considering the entire FGM. Here it is presumed that modeling of the complete variation in a microstructure may influence the surrounding layers due to the interactions of varying material composition, particularly when there is a steep variation in material composition along the grading direction. To determine these effects of interlayer interactions, FGM microstructures were generated using three different types of material grading functions, linear, quadratic and square root, providing uniform, gradual and steep variations, respectively. Two- and three-dimensional finite element analysis was performed to determine the effective temperature-dependent material properties of the composite over a wide temperature range. The outcome of the computational analysis show that the similar effective properties are obtained by each of the modeling approaches. Furthermore, the obtained computational results for effective elastic, thermal, and thermal expansion properties are consistent with the known analytical bounds. Resulting effective temperature-dependent material properties were used to evaluate the time-dependent thermostructural response and effectiveness of FGM structural panels. Structural panels are subjected to time- and spatial-dependent thermal and mechanical loads resulting from hypersonic flight over a representative trajectory. Mechanical loads are the by-product of aggressive maneuvering at high air speeds and angles of attack. Thermal loads as a result of aerodynamic heating are applied to the material systems as laminar, turbulent and transitional heat flux on the outer surface. Laminar and turbulent uniform heat fluxes are used to evaluate the effectiveness of FGM panels graded in the through-thickness direction only. Transitional heat fluxes are used to evaluate the effectiveness of FGMs graded in two principal directions, e.g., through-thickness and the surface parallel to flow. The computational results indicate that when subjected to uniform surface heat flux, the graded material system can eliminate through-thickness temperature gradients that are otherwise present in traditional thermal protection systems. Furthermore, two-dimensional graded material systems can also eliminate through-thickness temperature gradients and significantly reduce in-plane surface temperature gradients when subjected to non-uniform surface aerodynamic heating.
O’Brien, Victor; Chang, Andrew; Blanco, Matthew; Zabalegui, Aitor; Lee, Hohyun; Asuri, Prashanth
2015-01-01
Current studies investigating properties of nanoparticle-reinforced polymers have shown that nanocomposites often exhibit improved properties compared to neat polymers. However, over two decades of research, using both experimental studies and modeling analyses, has not fully elucidated the mechanistic underpinnings behind these enhancements. Moreover, few studies have focused on developing an understanding among two or more polymer properties affected by incorporation of nanomaterials. In our study, we investigated the elastic and thermal properties of poly(acrylamide) hydrogels containing silica nanoparticles. Both nanoparticle concentration and size affected hydrogel properties, with similar trends in enhancements observed for elastic modulus and thermal diffusivity. We also observed significantly lower swellability for hydrogel nanocomposites relative to neat hydrogels, consistent with previous work suggesting that nanoparticles can mediate pseudo crosslinking within polymer networks. Collectively, these results indicate the ability to develop next-generation composite materials with enhanced mechanical and thermal properties by increasing the average crosslinking density using nanoparticles. PMID:26301505
Soft Multifunctional Composites and Emulsions with Liquid Metals.
Kazem, Navid; Hellebrekers, Tess; Majidi, Carmel
2017-07-01
Binary mixtures of liquid metal (LM) or low-melting-point alloy (LMPA) in an elastomeric or fluidic carrier medium can exhibit unique combinations of electrical, thermal, and mechanical properties. This emerging class of soft multifunctional composites have potential applications in wearable computing, bio-inspired robotics, and shape-programmable architectures. The dispersion phase can range from dilute droplets to connected networks that support electrical conductivity. In contrast to deterministically patterned LM microfluidics, LMPA- and LM-embedded elastomer (LMEE) composites are statistically homogenous and exhibit effective bulk properties. Eutectic Ga-In (EGaIn) and Ga-In-Sn (Galinstan) alloys are typically used due to their high conductivity, low viscosity, negligible nontoxicity, and ability to wet to nonmetallic materials. Because they are liquid-phase, these alloys can alter the electrical and thermal properties of the composite while preserving the mechanics of the surrounding medium. For composites with LMPA inclusions (e.g., Field's metal, Pb-based solder), mechanical rigidity can be actively tuned with external heating or electrical activation. This progress report, reviews recent experimental and theoretical studies of this emerging class of soft material architectures and identifies current technical challenges and opportunities for further advancement. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fabrication of TiCx-TiB2/Al Composites for Application as a Heat Sink
Shu, Shili; Yang, Hongyu; Tong, Cunzhu; Qiu, Feng
2016-01-01
Metal matrix composites reinforced with ceramic particles have become the most attractive material in the research and development of new materials for thermal management applications. In this work, 40–60 vol. % TiCx-TiB2/Al composites were successfully fabricated by the method of combustion synthesis and hot press consolidation in an Al-Ti-B4C system. The effect of the TiCx-TiB2 content on the microstructure and compression properties of the composites was investigated. Moreover, the abrasive wear behavior and thermo-physics properties of the TiCx-TiB2/Al composite were studied and compared with the TiCx/Al composite. The compression properties, abrasive wear behavior and thermo-physics properties of the TiCx-TiB2/Al composite are all better than those of the TiCx/Al composite, which confirms that the TiCx-TiB2/Al composite is more appropriate for application as a heat sink. PMID:28773765
Fabrication of TiCx-TiB₂/Al Composites for Application as a Heat Sink.
Shu, Shili; Yang, Hongyu; Tong, Cunzhu; Qiu, Feng
2016-07-29
Metal matrix composites reinforced with ceramic particles have become the most attractive material in the research and development of new materials for thermal management applications. In this work, 40-60 vol. % TiC x -TiB₂/Al composites were successfully fabricated by the method of combustion synthesis and hot press consolidation in an Al-Ti-B₄C system. The effect of the TiC x -TiB₂ content on the microstructure and compression properties of the composites was investigated. Moreover, the abrasive wear behavior and thermo-physics properties of the TiC x -TiB₂/Al composite were studied and compared with the TiC x /Al composite. The compression properties, abrasive wear behavior and thermo-physics properties of the TiC x -TiB₂/Al composite are all better than those of the TiC x /Al composite, which confirms that the TiC x -TiB₂/Al composite is more appropriate for application as a heat sink.
Mechanical properties and shape memory effect of thermal-responsive polymer based on PVA
NASA Astrophysics Data System (ADS)
Lin, Liulan; Zhang, Lingfeng; Guo, Yanwei
2018-01-01
In this study, the effect of content of glutaraldehyde (GA) on the shape memory behavior of a shape memory polymer based on polyvinyl alcohol chemically cross-linked with GA was investigated. Thermal-responsive shape memory composites with three different GA levels, GA-PVA (3 wt%, 5 wt%, 7 wt%), were prepared by particle melting, mold forming and freeze-drying technique. The mechanical properties, thermal properties and shape memory behavior were measured by differential scanning calorimeter, physical bending test and cyclic thermo-mechanical test. The addition of GA to PVA led to a steady shape memory transition temperature and an improved mechanical compressive strength. The composite with 5 wt% of GA exhibited the best shape recoverability. Further increase in the crosslinking agent content of GA would reduce the recovery force and prolong the recovery time due to restriction in the movement of the soft PVA chain segments. These results provide important information for the study on materials in 4D printing.
Prediction of Material Properties of Nanostructured Polymer Composites Using Atomistic Simulations
NASA Technical Reports Server (NTRS)
Hinkley, J.A.; Clancy, T.C.; Frankland, S.J.V.
2009-01-01
Atomistic models of epoxy polymers were built in order to assess the effect of structure at the nanometer scale on the resulting bulk properties such as elastic modulus and thermal conductivity. Atomistic models of both bulk polymer and carbon nanotube polymer composites were built. For the bulk models, the effect of moisture content and temperature on the resulting elastic constants was calculated. A relatively consistent decrease in modulus was seen with increasing temperature. The dependence of modulus on moisture content was less consistent. This behavior was seen for two different epoxy systems, one containing a difunctional epoxy molecule and the other a tetrafunctional epoxy molecule. Both epoxy structures were crosslinked with diamine curing agents. Multifunctional properties were calculated with the nanocomposite models. Molecular dynamics simulation was used to estimate the interfacial thermal (Kapitza) resistance between the carbon nanotube and the surrounding epoxy matrix. These estimated values were used in a multiscale model in order to predict the thermal conductivity of a nanocomposite as a function of the nanometer scaled molecular structure.
NASA Astrophysics Data System (ADS)
Singh Mehta, Niraj; Sahu, Praveen Kumar; Ershad, Md; Saxena, Vipul; Pyare, Ram; Ranjan Majhi, Manas
2018-01-01
In the present study, the effect of ZrO2 on the sintering, strength and dielectric behavior of electrical ceramic porcelain insulator with substituting alumina content by zirconia (in weight percentage from 0% to 30%) is investigated. The different composition of samples containing different zirconia (ZrO2) contents of 0, 10, 20, and 30 wt% are prepared using the uniaxial pressure technique applying 160 MPa pressure. Further, the prepared samples are also analyzed for sintering temperatures (1350 °C), and effects are observed on mechanical and electric properties of porcelain insulator. Different characterizations such as Dilatometer, x-ray diffraction, scanning electron microscopy and differential thermal analysis/thermo gravimetric analysis were used to evaluate the thermal, phase detection, micro structural and weight loss changes by increasing concentration of ZrO2 on base porcelain composition. At 1350 °C, for the composition having 20 wt% ZrO2 with 10 wt% alumina, the maximum density was observed 2.81 g cm-3 with a porosity of 2.23%. The highest tensile strength of 41 ± 3 MPa is observed for the same sample composition. The minimum value of thermal expansion coefficient is found to be in the range of 10-6 for the sample with 30 wt% ZrO2 content sintered at 1350 °C compared to other prepared samples. Similarly, the highest dielectric value (5.1-4.4) having dielectric loss (0.08-0.12) is achieved for the sample with 30 wt% ZrO2 content sintered at 1350 °C in the frequency range of 4-20 GHz at room temperature. According to the mechanical properties, the composition having 20 wt% ZrO2 on base ceramic porcelain composition has enormous potential to serve as a high strength refractory material. For dielectric properties, the composition having 30 wt% ZrO2 is more suitable for the electrical application.
NASA Technical Reports Server (NTRS)
Price, H. G., Jr.; Schacht, R. L.; Quentmeyer, R. J.
1973-01-01
An experimental investigation of the structural integrity and effective thermal conductivity of three metallic-ceramic composite coatings was conducted. These coatings were plasma sprayed onto the combustion side of water-cooled, 12.7-centimeter throat diameter, hydrogen-oxygen rocket thrust chambers operating at 2.07 to 4.14 meganewtons per square meter chamber pressure. The metallic-ceramic composites functioned for six to 17 cycles and for as long as 213 seconds of rocket operations and could have probably provided their insulating properties for many additional cycles. The effective thermal conductivity of all the coatings was in the range of 0.7472 to 4.483 w/(m)(K), which makes the coatings a very effective thermal barrier. Photomicrographic studies of cross-sectioned coolant tubes seem to indicate that the effective thermal conductivity of the coatings is controlled by contact resistance between the particles, as a result of the spraying process, and not the thermal conductivity of the bulk materials.
Thermoplastic/Nanotube Composite Fibers
NASA Astrophysics Data System (ADS)
Haggenmueller, Reto; Fischer, John; Winey, Karen
2000-03-01
A combination of solvent casting and melt mixing methods are used to compound selected thermoplastics with single-wall carbon nanotubes. Subsequently, melt extrusion is used to form thermoplastic-nanotube composite fibers. The structural characteristics are investigated by electron microscopy and x-ray scattering methods. In addition the electrical, thermal and mechanical properties were measured. Correlations are sought between the viscoelastic properties of the compounded materials, the nanotube loading and elongation ratio after spinning, and the properties of the resultant fibers.
1992-08-01
space applications. Prior to being used to replace current metal superalloys and monolithic ceramics, the mechanical and thermal properties of CMCs...many investigations of the general mechanical properties of ceramic composites have been performed (see sources 2-10 for a briej sampling), the room...Review of Materials Science, Vol. 17, 1987, pp. 341-383. 7 Thouless, M.D., and Evans, A.G., "Effects of Pull-Out on the Mechanical Properties of
Strzemiecka, Beata; Klapiszewski, Łukasz; Jamrozik, Artur; Szalaty, Tadeusz J.; Matykiewicz, Danuta; Sterzyński, Tomasz; Voelkel, Adam; Jesionowski, Teofil
2016-01-01
Functional lignin–SiO2 hybrid fillers were prepared for potential application in binders for phenolic resins, and their chemical structure was characterized. The properties of these fillers and of composites obtained from them with phenolic resin were compared with those of systems with lignin or silica alone. The chemical structure of the materials was investigated by Fourier transform infrared spectroscopy (FT-IR) and carbon-13 nuclear magnetic resonance spectroscopy (13C CP MAS NMR). The thermal stability of the new functional fillers was examined by thermogravimetric analysis–mass spectrometry (TG-MS). Thermo-mechanical properties of the lignin–silica hybrids and resin systems were investigated by dynamic mechanical thermal analysis (DMTA). The DMTA results showed that abrasive composites with lignin–SiO2 fillers have better thermo-mechanical properties than systems with silica alone. Thus, fillers based on lignin might provide new, promising properties for the abrasive industry, combining the good properties of lignin as a plasticizer and of silica as a filler improving mechanical properties. PMID:28773639
Measurement of Thermal Properties of Triticale Starch Films Using Photothermal Techniques
NASA Astrophysics Data System (ADS)
Correa-Pacheco, Z. N.; Cruz-Orea, A.; Jiménez-Pérez, J. L.; Solorzano-Ojeda, S. C.; Tramón-Pregnan, C. L.
2015-06-01
Nowadays, several commercially biodegradable materials have been developed with mechanical properties similar to those of conventional petrochemical-based polymers. These materials are made from renewable sources such as starch, cellulose, corn, and molasses, being very attractive for numerous applications in the plastics, food, and paper industries, among others. Starches from maize, rice, wheat, and potato are used in the food industry. However, other types of starches are not used due to their low protein content, such as triticale. In this study, starch films, processed using a single screw extruder with different compositions, were thermally and structurally characterized. The thermal diffusivity, thermal effusivity, and thermal conductivity of the biodegradable films were determined using photothermal techniques. The thermal diffusivity was measured using the open photoacoustic cell technique, and the thermal effusivity was obtained by the photopyroelectric technique in an inverse configuration. The results showed differences in thermal properties for the films. Also, the films microstructures were observed by scanning electron microscopy, transmission electron microscopy, and the crystalline structure determined by X-ray diffraction.
A thermoplastic polyimidesulfone. [synthesis of processable and solvent resistant system
NASA Technical Reports Server (NTRS)
St. Clair, T. L.; Yamaki, D. A.
1984-01-01
A polymer system has been prepared which has the excellent thermoplastic properties generally associated with polysulfones, and the solvent resistance and thermal stability of aromatic polyimides. This material, with improved processability over the base polyimide, can be processed in the 260-325 C range in such a manner as to yield high quality, tough unfilled moldings; strong, high-temperature-resistant adhesive bonds; and well consolidated, graphite-fiber-reinforced moldings (composites). The unfilled moldings have physical properties that are similar to aromatic polysulfones which demonstrates the potential as an engineering thermoplastic. The adhesive bonds exhibit excellent retention of initial strength levels even after thermal aging for 5000 hours at 232 C. The graphite-fiber-reinforced moldings have mechanical properties which makes this polymer attractive for the fabrication of structural composites.