Sample records for compositional analysis showed

  1. Evidences of in vivo bioactivity of Fe-bioceramic composites for temporary bone implants.

    PubMed

    Ulum, Mokhamad F; Nasution, Ahmad K; Yusop, Abdul H; Arafat, Andril; Kadir, Mohammed Rafiq A; Juniantito, Vetnizah; Noviana, Deni; Hermawan, Hendra

    2015-10-01

    Iron-bioceramic composites have been developed as biodegradable implant materials with tailored degradation behavior and bioactive features. In the current work, in vivo bioactivity of the composites was comprehensively studied by using sheep animal model. Five groups of specimens (Fe-HA, Fe-TCP, Fe-BCP composites, and pure-Fe and SS316L as controls) were surgically implanted into medio proximal region of the radial bones. Real-time ultrasound analysis showed a decreased echo pattern at the peri-implant biodegradation site of the composites indicating minimal tissue response during the wound healing process. Peripheral whole blood biomarkers monitoring showed a normal dynamic change of blood cellular responses and no stress effect was observed. Meanwhile, the released Fe ion concentration was increasing along the implantation period. Histological analysis showed that the composites corresponded with a lower inflammatory giant cell count than that of SS316L. Analysis of the retrieved implants showed a thicker degradation layer on the composites compared with pure-Fe. It can be concluded that the iron-bioceramic composites are bioactive and induce a preferable wound healing process. © 2014 Wiley Periodicals, Inc.

  2. Characteristics of cellulose-microalgae composite

    NASA Astrophysics Data System (ADS)

    Hwang, Kyo-Jung; Kwon, Gu-Joong; Yang, Ji-Wook; Kim, Sung-yeol; Kim, Dae-Young

    2017-10-01

    The composites were prepared in order of mixing the cellulose with the N. commune, dissolution-regeneration procedure by LiOH/Urea aqueous solution and freeze-drying. Before the freeze-drying, internal pores of the composites were substituted with an organic solvent. SEM analysis showed that the increase of N. commune results in blockage of cellulose network structure. Brunauer-Emmett-Teller (BET) surface area analysis showed the decrease of mesopore and macropore as the N. commune ratio increases, also the decrease of the specific surface area was shown. The composites appear to have different thermogravimetric analysis properties with the pure N. commune or cellulose itself. Fourier transform infrared spectroscopy (FT-IR) spectra of the composites have specific peaks of the cellulose and N. commune, and increase of N. commune ratio results broadening of peaks relevant to proteins, lipids, and fatty acids. The composites showed higher adsorptivity as the N. commune ratio increases. Especially, the adsorptivity was higher than active carbon before 120 minutes of adsorption. The composite is expected to be used for the situations which need urgent adsorption.

  3. Characterization of poly methyl methaacrylate and reduced graphene oxide composite for application as electrolyte in dye sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Shrivatsav, Roshan; Mahalingam, Vignesh; Lakshmi Narayanan, E. R.; Naveen Balaji, N.; Balu, Murali; Krishna Prasad, R.; Kumaresan, Duraisamy

    2018-04-01

    Quasi-solid state iodide/triiodide redox electrolyte containing reduced graphene oxide and poly (methyl methaacrylate) (RGO-PMMA) composites for the fabrication of more durable, high performance dye sensitized solar cells are prepared. The morphological analysis of prepared RGO-PMMA composites showed formation of spherical like morphologies of RGO dispersed PMMA particles with their macroscopic inter-particle networks having voids. The x ray diffraction and electrical conductivity studies showed the addition of 1 wt% of filler RGO into amorphous PMMA matrix increased the electrical conductivity of the polymer composite about three orders of magnitude from 10‑7 and 10‑4 S cm‑1. Further, the photovoltaic current-voltage analysis of DSSCs with different RGO-PMMA composite based iodide/triiodide redox electrolytes showed the highest power conversion efficiency of 5.38% and the fill factor 0.63 for 2% RGO-PMMA electrolyte. The EIS analysis showed an increased recombination resistance (Rct2) at TiO2 electrode/dye/electrolyte interface due to the better electrical conductivity of RGO with good ionic conductivity in 2% RGO-PMMA composite based redox electrolyte boosted the generation of a high current density and fill factor in their DSSCs.

  4. Synthesis, Structural, Optical and Dielectric Properties of Nanostructured 0-3 PZT/PVDF Composite Films.

    PubMed

    Revathi, S; Kennedy, L John; Basha, S K Khadheer; Padmanabhan, R

    2018-07-01

    Nanostructured PbZr0.52Ti0.48O3 (PZT) powder was synthesized at 500 °C-800 °C using sol-gel route. X-ray diffraction and Rietveld analysis confirmed the formation of perovskite structure. The sample heat treated at 800 °C alone showed the formation of morphotropic phase boundary with coexistence of tetragonal and rhombohedral phase. The PZT powder and PVDF were used in 0-3 connectivity to form the PZT/PVDF composite film using solvent casting method. The composite films containing 10%, 50%, 70% and 80% volume fraction of PZT in PVDF were fabricated. The XRD spectra validated that the PZT structure remains unaltered in the composites and was not affected by the presence of PVDF. The scanning electron microscopy images show good degree of dispersion of PZT in PVDF matrix and the formation of pores at higher PZT loading. The quantitative analysis of elements and their composition were confirmed from energy dispersive X-ray analysis. The optical band gap of the PVDF film is 3.3 eV and the band gap decreased with increase in volume fraction of PZT fillers. The FTIR spectra showed the bands corresponding to different phases of PVDF (α, β, γ) and perovskite phase of PZT. The thermogravimetric analysis showed that PZT/PVDF composite films showed better thermal stability than the pure PVDF film and hydrophobicity. The dielectric constant was measured at frequency ranging from 1 Hz to 6 MHz and for temperature ranging from room temperature to 150 °C. The composite with 50% PZT filler loading shows the maximum dielectric constant at the studied frequency and temperature range with flexibility.

  5. Study of Selected Composites Copper Concentrate-Plastic Waste Using Thermal Analysis

    NASA Astrophysics Data System (ADS)

    Szyszka, Danuta

    2017-12-01

    The paper presents thermal analysis of selected composites (copper concentrate, plastic waste) in two stages. The first stage consisted in thermogravimetric analysis and differential thermal analysis on the applied plastic waste and copper concentrate, and subsequently, a comparative study has been carried out on products obtained, constituting composites of those materials. As a result of analyses, it was found that up to ca. 400 °C composites show high thermal stability, whereas above that temperature, a thermal decomposition of the composite occurs, resulting in emissions of organic compounds, i.e. hydrocarbon compounds and organic oxygenate derivatives.

  6. Structural dynamics of shroudless, hollow fan blades with composite in-lays

    NASA Technical Reports Server (NTRS)

    Aiello, R. A.; Hirschbein, M. S.; Chamis, C. C.

    1982-01-01

    Structural and dynamic analyses are presented for a shroudless, hollow titanium fan blade proposed for future use in aircraft turbine engines. The blade was modeled and analyzed using the composite blade structural analysis computer program (COBSTRAN); an integrated program consisting of mesh generators, composite mechanics codes, NASTRAN, and pre- and post-processors. Vibration and impact analyses are presented. The vibration analysis was conducted with COBSTRAN. Results show the effect of the centrifugal force field on frequencies, twist, and blade camber. Bird impact analysis was performed with the multi-mode blade impact computer program. This program uses the geometric model and modal analysis from the COBSTRAN vibration analysis to determine the gross impact response of the fan blades to bird strikes. The structural performance of this blade is also compared to a blade of similar design but with composite in-lays on the outer surface. Results show that the composite in-lays can be selected (designed) to substantially modify the mechanical performance of the shroudless, hollow fan blade.

  7. Coupled attenuation and multiscale damage model for composite structures

    NASA Astrophysics Data System (ADS)

    Moncada, Albert M.; Chattopadhyay, Aditi; Bednarcyk, Brett; Arnold, Steven M.

    2011-04-01

    Composite materials are widely used in many applications for their high strength, low weight, and tailorability for specific applications. However, the development of robust and reliable methodologies to detect micro level damage in composite structures has been challenging. For composite materials, attenuation of ultrasonic waves propagating through the media can be used to determine damage within the material. Currently available numerical solutions for attenuation induce arbitrary damage, such as fiber-matrix debonding or inclusions, to show variations between healthy and damaged states. This paper addresses this issue by integrating a micromechanics analysis to simulate damage in the form of a fiber-matrix crack and an analytical model for calculating the attenuation of the waves when they pass through the damaged region. The hybrid analysis is validated by comparison with experimental stress-strain curves and piezoelectric sensing results for attenuation measurement. The results showed good agreement between the experimental stress-strain curves and the results from the micromechanics analysis. Wave propagation analysis also showed good correlation between simulation and experiment for the tested frequency range.

  8. Comparison of individual and composite field analysis using array detector for Intensity Modulated Radiotherapy dose verification.

    PubMed

    Saminathan, Sathiyan; Chandraraj, Varatharaj; Sridhar, C H; Manickam, Ravikumar

    2012-01-01

    To compare the measured and calculated individual and composite field planar dose distribution of Intensity Modulated Radiotherapy plans. The measurements were performed in Clinac DHX linear accelerator with 6 MV photons using Matrixx device and a solid water phantom. The 20 brain tumor patients were selected for this study. The IMRT plan was carried out for all the patients using Eclipse treatment planning system. The verification plan was produced for every original plan using CT scan of Matrixx embedded in the phantom. Every verification field was measured by the Matrixx. The TPS calculated and measured dose distributions were compared for individual and composite fields. The percentage of gamma pixel match for the dose distribution patterns were evaluated using gamma histogram. The gamma pixel match was 95-98% for 41 fields (39%) and 98% for 59 fields (61%) with individual fields. The percentage of gamma pixel match was 95-98% for 5 patients and 98% for other 12 patients with composite fields. Three patients showed a gamma pixel match of less than 95%. The comparison of percentage gamma pixel match for individual and composite fields showed more than 2.5% variation for 6 patients, more than 1% variation for 4 patients, while the remaining 10 patients showed less than 1% variation. The individual and composite field measurements showed good agreement with TPS calculated dose distribution for the studied patients. The measurement and data analysis for individual fields is a time consuming process, the composite field analysis may be sufficient enough for smaller field dose distribution analysis with array detectors.

  9. Dielectric relaxation of near-percolated carbon nanofiber polypropylene composites

    NASA Astrophysics Data System (ADS)

    Paleo, A. J.; Zille, A.; Van Hattum, F. W.; Ares-Pernas, A.; Agostinho Moreira, J.

    2017-07-01

    In this work, the morphological, structural and dielectric analysis of near-percolated polypropylene (PP) composites containing carbon nanofibers (CNF) processing by melt-mixing are investigated. Whereas the morphological analysis shows that CNF exhibit some tendency to agglomerate within the PP matrix, the structural analysis showed first a general decrease in the intensity of the IR bands as a consequence of the interaction between carbon nanofibers and PP matrix and second an increase of the crystallinity degree of the PP/CNF composites when compared to the pure PP. The dielectric analysis demonstrates enhanced dielectric constants (from 2.97 for neat polymer to 9.7 for 1.9 vol% loaded composites at 200 Hz) and low dielectric losses. Furthermore, the dielectric relaxation for composites with concentrations in the vicinity of percolation is evidenced and well described by the generalized polydispersive Cole-Cole model from which the values of static dielectric constant (εs) , high frequency dielectric constant (ε∞) , distribution of relaxation time (α) and mean relaxation time (τo), are determined, suggesting that this latter analysis constitutes a strong tool for understanding the relationships between microstructure and dielectric properties in this type of polymer composites.

  10. Nutritional composition analysis of meat from human lactoferrin transgenic bulls.

    PubMed

    Zhao, Jie; Xu, Jianxiang; Wang, Jianwu; Li, Ning

    2013-01-01

    Transgenic technology has many potential advantages in food production. However, the transgenic technology process may influence the composition of food products derived from genetically engineered (GE) animals, which may be adverse to human health. Therefore, it is very important to research the compositions of GE animal products. Here, we analyzed the compositions of meat from the offspring of human lactoferrin (hLF) transgenic cows, which can express human lactoferrin proteins in their mammary gland. Six hLF transgenic bulls and three wide-type (WT) bulls, 10 months of age, were slaughtered for meat composition analysis. To determine the comparative health of hLF bulls for meat analysis, hematological analyses, organ/body weight analyses and pathology analyses were conducted. Results of the meat analysis show that there were no significant differences in the hematological parameters, organ/body weight ratios of hLF and WT bulls (P>0.05), and histopathological examination of the main organs of hLF bulls revealed no abnormalities. Nutrient parameters of meat compositions of hLF and WT bulls did not show any significant differences (P>0.05). All of these results suggest that the hLF transgene did not have an impact on the meat nutrient compositions of hLF bulls.

  11. Viscoelasticity of Axisymmetric Composite Structures: Analysis and Experimental Validation

    DTIC Science & Technology

    2013-02-01

    compressive stress at the interface between the composite and steel prior to the sheath’s cut-off. Accordingly, the viscoelastic analysis is used...The hoop-stress profile in figure 6 shows the steel region is in compression , resulting from the winding tension of composite overwrap. The stress...mechanical and thermal loads. Experimental validation of the model is conducted using a high- tensioned composite overwrapped on a steel cylinder. The creep

  12. Mechanical performance and thermal stability of glass fiber reinforced silica aerogel composites based on co-precursor method by freeze drying

    NASA Astrophysics Data System (ADS)

    Zhou, Ting; Cheng, Xudong; Pan, Yuelei; Li, Congcong; Gong, Lunlun; Zhang, Heping

    2018-04-01

    In order to maintain the integrity, glass fiber (GF) reinforced silica aerogel composites were synthesized using methltrimethoxysilane (MTMS) and water glass co-precursor by freeze drying method. The composites were characterized by scanning electron microscopy, Brunauer-Emmett-Teller analysis, uniaxial compressive test, three-point bending test, thermal conductivity analysis, contact angle test, TG-DSC analysis. It was found that the molar ratio of MTMS/water glass could significantly affect the properties of composites. The bulk density and thermal conductivity first decreased and then increased with the increasing molar ratio. The composites showed remarkable mechanical strength and flexibility compared with pure silica aerogel. Moreover, when the molar ratio is 1.8, the composites showed high specific surface area (870.9 m2/g), high contact angle (150°), great thermal stability (560 °C) and low thermal conductivity (0.0248 W/m·K). These outstanding properties indicate that GF/aerogels have broad prospects in the field of thermal insulation.

  13. Variability of chemical analysis of reinforcing bar produced in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Salman, A.; Djavanroodi, F.

    2018-04-01

    In view of the importance and demanding roles of steel rebar’s in the reinforced concrete structures, accurate information on the properties of the steels is important at the design stage. In the steelmaking process, production variations in chemical composition are unavoidable. The aim of this work is to study the variability of the chemical composition of reinforcing steel produced throughout the Saudi Arabia and asses the quality of steel rebar’s acoording to ASTM A615. 68 samples of ASTM A615 Grade 60 from different manufacturers were collected and tested using the Spectrometer test to obtain Chemical Compositions. EasyFit (5.6) software is utilized to conducted statistical analysis. Chemical compositions distributions and, control charts are generated for the compositions. Results showed that some compositions are above the upper line of the control chart. Finally, the analyses show that less than 3% of the steel failed to meet minimum ASTM standards for chemical composition.

  14. Composite Materials With Uncured Epoxy Matrix Exposed in Stratosphere During NASA Stratospheric Balloon Flight

    NASA Technical Reports Server (NTRS)

    Kondyurin, Alexey; Kondyurina, Irina; Bilek, Marcela; de Groh, Kim K.

    2013-01-01

    A cassette of uncured composite materials with epoxy resin matrixes was exposed in the stratosphere (40 km altitude) over three days. Temperature variations of -76 to 32.5C and pressure up to 2.1 torr were recorded during flight. An analysis of the chemical structure of the composites showed, that the polymer matrix exposed in the stratosphere becomes crosslinked, while the ground control materials react by way of polymerization reaction of epoxy groups. The space irradiations are considered to be responsible for crosslinking of the uncured polymers exposed in the stratosphere. The composites were cured on Earth after landing. Analysis of the cured composites showed that the polymer matrix remains active under stratospheric conditions. The results can be used for predicting curing processes of polymer composites in a free space environment during an orbital space flight.

  15. Processes and subdivisions in diogenites, a multivariate statistical analysis

    NASA Technical Reports Server (NTRS)

    Harriott, T. A.; Hewins, R. H.

    1984-01-01

    Multivariate statistical techniques used on diogenite orthopyroxene analyses show the relationships that occur within diogenites and the two orthopyroxenite components (class I and II) in the polymict diogenite Garland. Cluster analysis shows that only Peckelsheim is similar to Garland class I (Fe-rich) and the other diogenites resemble Garland class II. The unique diogenite Y 75032 may be related to type I by fractionation. Factor analysis confirms the subdivision and shows that Fe does not correlate with the weakly incompatible elements across the entire pyroxene composition range, indicating that igneous fractionation is not the process controlling total diogenite composition variation. The occurrence of two groups of diogenites is interpreted as the result of sampling or mixing of two main sequences of orthopyroxene cumulates with slightly different compositions.

  16. Preparation, characterization, and in vitro release of gentamicin from coralline hydroxyapatite-alginate composite microspheres.

    PubMed

    Sivakumar, M; Rao, K Panduranga

    2003-05-01

    In this work, composite microspheres were prepared from bioactive ceramics such as coralline hydroxyapatite [Ca(10)(PO(4))(6)(OH)(2)] granules, a biodegradable polymer, sodium alginate, and an antibiotic, gentamicin. Previously, we have shown a gentamicin release from coralline hydroxyapatite granules-chitosan composite microspheres. In the present investigation, we attempted to prepare composite microspheres containing coralline hydroxyapatite granules and sodium alginate by the dispersion polymerization technique with gentamicin incorporated by absorption method. The crystal structure of the composite microspheres was analyzed using X-ray powder diffractometer. Fourier transform infrared spectra clearly indicated the presence of per-acid of sodium alginate, phosphate, and hydroxyl groups in the composite microspheres. Scanning electron micrographs and optical micrographs showed that the composite microspheres were spherical in shape and porous in nature. The particle size of composite microspheres was analyzed, and the average size was found to be 15 microns. The thermal behavior of composite microspheres was studied using thermogravimetric analysis and differential scanning calorimetric analysis. The cumulative in vitro release profile of gentamicin from composite microspheres showed near zero order patterns. Copyright 2003 Wiley Periodicals, Inc.

  17. Preparation, characterization and in vitro release of gentamicin from coralline hydroxyapatite-gelatin composite microspheres.

    PubMed

    Sivakumar, M; Panduranga Rao, K

    2002-08-01

    Composite microspheres have been prepared from bioactive ceramics such as coralline hydroxyapatite [CHA, Ca10(PO4)6(OH)2] granules, a biodegradable polymer, gelatin and an antibiotic, gentamicin. In our earlier work, we have shown a gentamicin release from CHA granules--chitosan composite microspheres. In the present investigation, an attempt was made to prepare the composite microspheres containing coralline hydroxyapatite and gelatin (CHA-G), which were prepared by the dispersion polymerization technique and the gentamicin was incorporated by the absorption method. The crystal structure of the composite microspheres was analyzed using X-ray powder diffractometer. The Fourier transformed infrared spectrum clearly indicated the presence of amide and hydroxyl groups in the composite microspheres. Scanning electron micrographs and optical micrographs show that the composite microspheres are spherical in shape and porous in nature. The particle size of composite microspheres was analyzed and the average size was found to be 16 microm. The thermal behavior of composite microspheres was studied using thermogravimetric analysis and differential scanning calorimetric analysis. The cumulative in vitro release profile of gentamicin from composite microspheres showed near zero order patterns.

  18. Flame retardancy and thermal behavior of intumescent flame-retardant EVA composites with an efficient triazine-based charring agent

    NASA Astrophysics Data System (ADS)

    Xu, Bo; Ma, Wen; Wu, Xiao; Qian, Lijun; Jiang, Shan

    2018-04-01

    Intumescent flame retardant (IFR) EVA composites were prepared based on a hyperbranched triazine charring-foaming agent (HTCFA) and ammonium polyphosphate (APP). The synergistic effect of HTCFA and APP on the flame retardancy and thermal behavior of the composites were investigated through flammability tests, cone calorimeter measurements, thermogravimetric analysis (TGA) including evolved gas analysis (TG-IR) and residue analysis (Fourier transform infrared (FTIR), laser Raman spectroscopy (LRS), x-ray Photoelectron Spectroscopy (XPS) and scanning electron microscopy (SEM)). The flammability test results showed HTCFA/APP (1/3) system presented the best synergistic effect in flame-retardant EVA composites with the highest LOI value and UL-94 V-0 rating. As for cone calorimeter results, IFR changed the combustion behavior of EVA and resulted in remarkable decrease of flammability and smoke product. TGA results showed the synergistic effect between APP and HTCFA could strengthen the char-forming ability of composites. TG-IR results indicated the melt viscosities and gas release with increasing temperature were well-correlated for EVA/IFR composite. The residue analysis results from SEM, LRS, FT-IR and XPS revealed IFR promoted forming more compact graphitic char layer, connected by rich P–O–C and P–N structures.

  19. Chemical composition and strength of dolomite geopolymer composites

    NASA Astrophysics Data System (ADS)

    Aizat, E. A.; Al Bakri, A. M. M.; Liew, Y. M.; Heah, C. Y.

    2017-09-01

    The chemical composition of dolomite and the compressive strength of dolomite geopolymer composites were studied. The both composites prepared with mechanical mixer manufactured by with rotor speed of 350 rpm and curing in the oven for 24 hours at 80˚C. XRF analysis showThe dolomite raw materials contain fewer amounts of Si and Al but high Ca in its composition. Dolomite geopolymer composites with 20M of NaOH shows greater and optimum compressive strength compared to dolomite geopolymer with other NaOH molarity. This indicated better interaction of dolomite raw material and alkaline activator need high molarity of NaOH in order to increase the reactivity of dolomite.

  20. Nonlinear analysis of AS4/PEEK thermoplastic composite laminate using a one parameter plasticity model

    NASA Technical Reports Server (NTRS)

    Sun, C. T.; Yoon, K. J.

    1990-01-01

    A one-parameter plasticity model was shown to adequately describe the orthotropic plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The nonlinear stress-strain relations were measured and compared with those predicted by the finite element analysis using the one-parameter elastic-plastic constitutive model. The results show that the one-parameter orthotropic plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.

  1. Elastic-plastic analysis of AS4/PEEK composite laminate using a one-parameter plasticity model

    NASA Technical Reports Server (NTRS)

    Sun, C. T.; Yoon, K. J.

    1992-01-01

    A one-parameter plasticity model was shown to adequately describe the plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The elastic-plastic stress-strain relations of coupon specimens were measured and compared with those predicted by the finite element analysis using the one-parameter plasticity model. The results show that the one-parameter plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.

  2. Effect of surface modified kaolin on properties of polypropylene grafted maleic anhydride

    NASA Astrophysics Data System (ADS)

    Yang, Ni; Zhang, Zuo-Cai; Ma, Ning; Liu, Huan-Li; Zhan, Xue-Qing; Li, Bing; Gao, Wei; Tsai, Fang-Chang; Jiang, Tao; Chang, Chang-Jung; Chiang, Tai-Chin; Shi, Dean

    To achieve reinforcement of mechanical and thermal performances of polypropylene (PP) product, this work aimed at fabrication of surface modified kaolin (M-kaolin) filled polypropylene grafted maleic anhydride (PP-g-MAH) composites with varying contents of fillers and investigation of their mechanical and thermal properties. And the prepared PP-g-MAH/M-kaolin composites were characterized by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Fracture analysis by SEM showed M-kaolin particles were well dispersed in the PP-g-MAH matrix. Mechanical behaviors were determined by tensile strength, tensile strain at break and impact strength analysis. Impact strength of PP-g-MAH/2 wt% M-kaolin composites was improved up to 30% comparing with unfilled composites. Thermostability had been found enhanced when M-kaolin added. The results revealed PP-g-MAH/M-kaolin composites showed the optimal thermal and mechanical properties when 2 wt% of M-kaolin was added.

  3. Self-standing paper based anodes prepared from siliconcarbonitride-MoS2 composite for Li-ion battery applications

    NASA Astrophysics Data System (ADS)

    David, Lamuel; Singh, Gurpreet

    2013-03-01

    We study synthesis of free-standing polymer derived SiCN/ MoS2 composite paper anode for Li-ion battery application. This was achieved following a two-step approach: First, polysilazane was interfaced with exfoliated MoS2 nanosheets which upon pyrolysis resulted in SiCN/MoS2 composite. Second, dispersion of SiCN/MoS2 in isopropanol was vacuum filtered resulting in formation of a self-standing composite paper. Physical and chemical characterization of the composite was carried out by use of electron microscopy, Fourier transform infrared spectroscopy (FT-IR) and Thermo-gravimetric analysis (TGA). FT-IR data indicated complete conversion of polysilazane precursor to SiCN ceramic, while electron microscopy confirmed layered structure of the paper. Thermo-gravimetric analysis showed enhanced thermodynamic stability of the composite paper up to 800 °C. Electrochemical analysis of SiCN/MoS2 composite paper anodes showed that Li-ion can reversible intercalate in the voltage range of 0-2.5 V with a first cycle discharge capacity of 770 mAh/g at a current density of 100 mA/g.

  4. Analysis of high velocity impact on hybrid composite fan blades

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1979-01-01

    Recent developments in the analysis of high velocity impact of composite blades are described, using a computerized capability which consists of coupling a composites mechanics code with the direct-time integration features of NASTRAN. The application of the capability to determine the linear dynamic response of an interply hybrid composite aircraft engine fan blade is described in detail. The results also show that the impact stresses reach sufficiently high magnitudes to cause failures in the impact region at early times of the impact event.

  5. A spectroscopic analysis of Martian crater central peaks: Formation of the ancient crust

    NASA Astrophysics Data System (ADS)

    Skok, J. R.; Mustard, J. F.; Tornabene, L. L.; Pan, C.; Rogers, D.; Murchie, S. L.

    2012-11-01

    The earliest formed crust on a single plate planet such as Mars should be preserved, deeply buried under subsequent surface materials. Mars' extensive cratering history would have fractured and disrupted the upper layers of this ancient crust. Large impacts occurring late in Martian geologic history would have excavated and exposed this deeply buried material. We report the compositional analysis of unaltered mafic Martian crater central peaks with high-resolution spectral data that was used to characterize the presence, distribution and composition of mafic mineralogy. Reflectance spectra of mafic outcrops are modeled with the Modified Gaussian Model (MGM) to determine cation composition of olivine and pyroxene mineral deposits. Observations show that central peaks with unaltered mafic units are only observed in four general regions of Mars. Each mafic unit exhibits spectrally unmixed outcrops of olivine or pyroxene, indicating dunite and pyroxenite dominated compositions instead of basaltic composition common throughout much of the planet. Compositional analysis shows a wide range of olivine Fo# ranging from Fo60 to Fo5. This variation is best explained by a high degree of fractionation in a slowly cooling, differentiating magma body. Pyroxene analysis shows that all the sites in the Southern Highlands are consistent with moderately Fe-rich, low-Ca pyroxene. Mineral segregation in the ancient crust could be caused by cumulate crystallization and settling in a large, potentially global, lava lake or near surface plutons driven by a hypothesized early Martian mantle overturn.

  6. Phantom Effects in Multilevel Compositional Analysis: Problems and Solutions

    ERIC Educational Resources Information Center

    Pokropek, Artur

    2015-01-01

    This article combines statistical and applied research perspective showing problems that might arise when measurement error in multilevel compositional effects analysis is ignored. This article focuses on data where independent variables are constructed measures. Simulation studies are conducted evaluating methods that could overcome the…

  7. Development of Ni-Ferrite-Based PVDF Nanomultiferroics

    NASA Astrophysics Data System (ADS)

    Behera, C.; Choudhary, R. N. P.; Das, Piyush R.

    2017-10-01

    Thin-film polyvinylidene fluoride (PVDF)-spinel ferrite nanocomposites with 0-3 connectivity and varying composition, i.e., (1 - x)PVDF- xNiFe2O4 ( x = 0.05, 0.1, 0.15), have been fabricated by a solution-casting route. The basic crystal data and microstructure of the composite samples were obtained by x-ray powder diffraction analysis and scanning electron microscopy, respectively. Preliminary structural analysis showed the presence of polymeric electroactive β-phase of PVDF (matrix) and spinel ferrite (filler) phase in the composites. The composites were found to be flexible with high relative dielectric constant ( ɛ r) and low loss tangent (tan δ). Detailed studies of their electrical characteristics using complex impedance spectroscopy showed the contributions of bulk (grains) and grain boundaries in the resistive and capacitive properties of the composites. Study of the frequency-dependent electrical conductivity at different temperatures showed that Jonscher's power law could be used to interpret the transport properties of the composites. Important experimental data and results obtained from magnetic as well ferroelectric hysteresis loops and the first-order magnetoelectric coefficient suggest the suitability of some of these composites for fabrication of multifunctional devices. The low electrical conductivity, high dielectric constant, and low loss tangent suggest that such composites could be used in capacitor devices.

  8. Application of the boundary element method to the micromechanical analysis of composite materials

    NASA Technical Reports Server (NTRS)

    Goldberg, R. K.; Hopkins, D. A.

    1995-01-01

    A new boundary element formulation for the micromechanical analysis of composite materials is presented in this study. A unique feature of the formulation is the use of circular shape functions to convert the two-dimensional integrations of the composite fibers to one-dimensional integrations. To demonstrate the applicability of the formulations, several example problems including elastic and thermal analysis of laminated composites and elastic analyses of woven composites are presented and the boundary element results compared to experimental observations and/or results obtained through alternate analytical procedures. While several issues remain to be addressed in order to make the methodology more robust, the formulations presented here show the potential in providing an alternative to traditional finite element methods, particularly for complex composite architectures.

  9. Color stability of silorane-based composites submitted to accelerated artificial ageing--an in situ study.

    PubMed

    Pires-de-Souza, Fernanda de Carvalho Panzeri; Garcia, Lucas da Fonseca Roberti; Roselino, Lourenço de Moraes Rego; Naves, Lucas Zago

    2011-07-01

    To assess the in situ color stability, surface and the tooth/restoration interface degradation of a silorane-based composite (P90, 3M ESPE) after accelerated artificial ageing (AAA), in comparison with other dimethacrylate monomer-based composites (Z250/Z350, 3M ESPE and Esthet-X, Dentsply). Class V cavities (25 mm(2) × 2 mm deep) were prepared in 48 bovine incisors, which were randomly allocated into 4 groups of 12 specimens each, according to the type of restorative material used. After polishing, 10 specimens were submitted to initial color readings (Easyshade, Vita) and 2 to analysis by scanning electronic microscopy (SEM). Afterwards, the teeth were submitted to AAA for 384 h, which corresponds to 1 year of clinical use, after which new color readings and microscopic images were obtained. The values obtained for the color analysis were submitted to statistical analysis (1-way ANOVA, Tukey, p<0.05). With regard to color stability, it was verified that all the composites showed color alteration above the clinically acceptable levels (ΔE ≥ 3.3), and that the silorane-based composite showed higher ΔE (18.6), with a statistically significant difference in comparison with the other composites (p<0.05). The SEM images showed small alterations for the dimethacrylate-based composites after AAA and extensive degradation for the silorane-based composite with a rupture at the interface between the matrix/particle. It may be concluded that the silorane-based composite underwent greater alteration with regard to color stability and greater surface and tooth/restoration interface degradation after AAA. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Novel green nano composites films fabricated by indigenously synthesized graphene oxide and chitosan.

    PubMed

    Khan, Younus H; Islam, Atif; Sarwar, Afsheen; Gull, Nafisa; Khan, Shahzad M; Munawar, Muhammad A; Zia, Saba; Sabir, Aneela; Shafiq, Muhammad; Jamil, Tahir

    2016-08-01

    Graphene oxide (GO) was indigenously synthesized from graphite using standard Hummers method. Chitosan-graphene oxide green composite films were fabricated by mixing aqueous solution of chitosan and GO using dilute acetic acid as a solvent for chitosan. Chitosan of different viscosity and calculated molecular weight was used keeping amount of GO constant in each composite film. The structural properties, thermal stability and mechanical properties of the composite films were investigated using Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and tensile test. FTIR studies revealed the successful synthesis of GO from graphite powder and it was confirmed that homogenous blending of chitosan and GO was promising due to oxygenated functional groups on the surface of GO. XRD indicated effective conversion of graphite to GO as its strong peak observed at 11.06° as compared to pristine graphite which appeared at 26°. Moreover, mechanical analysis confirmed the effect of molecular weight on the mechanical properties of chitosan-GO composites showing that higher molecular weight chitosan composite (GOCC-1000) showed best strength (higher than 3GPa) compared to other composite films. Thermal stability of GOCC-1000 was enhanced for which residual content increased up to 56% as compared to the thermal stability of GOCC-200 whose residue was restricted to only 24%. The morphological analysis of the composites sheets by SEM was smooth having dense structure and showed excellent interaction, miscibility, compatibility and dispersion of GO with chitosan. The prepared composite films find their applications as biomaterials in different biomedical fields. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Progressive Fracture of Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon

    2008-01-01

    A new approach is described for evaluating fracture in composite structures. This approach is independent of classical fracture mechanics parameters like fracture toughness. It relies on computational simulation and is programmed in a stand-alone integrated computer code. It is multiscale, multifunctional because it includes composite mechanics for the composite behavior and finite element analysis for predicting the structural response. It contains seven modules; layered composite mechanics (micro, macro, laminate), finite element, updating scheme, local fracture, global fracture, stress based failure modes, and fracture progression. The computer code is called CODSTRAN (Composite Durability Structural ANalysis). It is used in the present paper to evaluate the global fracture of four composite shell problems and one composite built-up structure. Results show that the composite shells and the built-up composite structure global fracture are enhanced when internal pressure is combined with shear loads.

  12. Finite element analysis of composite beam-to-column connection with cold-formed steel section

    NASA Astrophysics Data System (ADS)

    Firdaus, Muhammad; Saggaff, Anis; Tahir, Mahmood Md

    2017-11-01

    Cold-formed steel (CFS) sections are well known due to its lightweight and high structural performance which is very popular for building construction. Conventionally, they are used as purlins and side rails in the building envelopes of the industrial buildings. Recent research development on cold-formed steel has shown that the usage is expanded to the use in composite construction. This paper presents the modelling of the proposed composite connection of beam-to-column connection where cold-formed steel of lipped steel section is positioned back-to-back to perform as beam. Reinforcement bars is used to perform the composite action anchoring to the column and part of it is embedded into a slab. The results of the finite element and numerical analysis has showed good agreement. The results show that the proposed composite connection contributes to significant increase to the moment capacity.

  13. Effect of reaction time and polyethylene glycol monooleate-isocyanate composition on the properties of polyurethane-polysiloxane modified epoxy

    NASA Astrophysics Data System (ADS)

    Triwulandari, Evi; Ramadhan, Mohammad Kemilau; Ghozali, Muhammad

    2017-11-01

    Polyurethane-polysiloxane modified epoxy based on polyethylene glycol monooleate (PSME-PEGMO) was synthesized. Polyethylene glycol monooleate (PEGMO) for the synthesis of PSME-GMO was synthesized via esterification between oleic acid and polyethylene glycol by using sodium hydroxide as catalyst. Synthesis of PSME-PEGMO was conducted by reacting epoxy, isocyanate, PEGMO, and polysiloxane (hydrolyzed and condensable 3-glycidyloxypropyltrimethoxysilane) simultaneously in one step. This synthesis was carried out by varied the reaction time (1, 2, 3 hours), PEGMO-isocyanate composition (PI composition: 10 and 20 % toward epoxy), and isocyanate/PEGMO ratio (NCO/OH ratio: 1.5 and 2.5). Characterization of PSME-PEGMO was conducted by determining the isocyanate conversion, viscosity analysis, mechanical properties (tensile strength and elongation at break) and thermal analysis using thermogravimetric analysis (TGA). The data show that the PI composition and NCO/OH ratio does not affect the isocyanate conversion linearly. The viscosity of PSME-PEGMO product at ratio and composition variation show has tended to increase with increasing of reaction time. The highest tensile strength and elongation at break PSME-PEGMO was shown by PI composition 20%, NCO/OH ratio 2.5 and reaction time 3 hours.

  14. Structural Acoustic Physics Based Modeling of Curved Composite Shells

    DTIC Science & Technology

    2017-09-19

    Results show that the finite element computational models accurately match analytical calculations, and that the composite material studied in this...products. 15. SUBJECT TERMS Finite Element Analysis, Structural Acoustics, Fiber-Reinforced Composites, Physics-Based Modeling 16. SECURITY...2 4 FINITE ELEMENT MODEL DESCRIPTION

  15. Statistical analysis of solid waste composition data: Arithmetic mean, standard deviation and correlation coefficients.

    PubMed

    Edjabou, Maklawe Essonanawe; Martín-Fernández, Josep Antoni; Scheutz, Charlotte; Astrup, Thomas Fruergaard

    2017-11-01

    Data for fractional solid waste composition provide relative magnitudes of individual waste fractions, the percentages of which always sum to 100, thereby connecting them intrinsically. Due to this sum constraint, waste composition data represent closed data, and their interpretation and analysis require statistical methods, other than classical statistics that are suitable only for non-constrained data such as absolute values. However, the closed characteristics of waste composition data are often ignored when analysed. The results of this study showed, for example, that unavoidable animal-derived food waste amounted to 2.21±3.12% with a confidence interval of (-4.03; 8.45), which highlights the problem of the biased negative proportions. A Pearson's correlation test, applied to waste fraction generation (kg mass), indicated a positive correlation between avoidable vegetable food waste and plastic packaging. However, correlation tests applied to waste fraction compositions (percentage values) showed a negative association in this regard, thus demonstrating that statistical analyses applied to compositional waste fraction data, without addressing the closed characteristics of these data, have the potential to generate spurious or misleading results. Therefore, ¨compositional data should be transformed adequately prior to any statistical analysis, such as computing mean, standard deviation and correlation coefficients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. [Preparation of ibuprofen/EC-PVP sustained-release composite particles by supercritical CO2 anti-solvent technology].

    PubMed

    Cai, Jin-Yuan; Huang, De-Chun; Wang, Zhi-Xiang; Dang, Bei-Lei; Wang, Qiu-Ling; Su, Xin-Guang

    2012-06-01

    Ibuprofen/ethyl-cellulose (EC)-polyvinylpyrrolidone (PVP) sustained-release composite particles were prepared by using supercritical CO2 anti-solvent technology. With drug loading as the main evaluation index, orthogonal experimental design was used to optimize the preparation process of EC-PVP/ibuprofen composite particles. The experiments such as encapsulation efficiency, particle size distribution, electron microscope analysis, infrared spectrum (IR), differential scanning calorimetry (DSC) and in vitro dissolution were used to analyze the optimal process combination. The orthogonal experimental optimization process conditions were set as follows: crystallization temperature 40 degrees C, crystallization pressure 12 MPa, PVP concentration 4 mgmL(-1), and CO2 velocity 3.5 Lmin(-1). Under the optimal conditions, the drug loading and encapsulation efficiency of ibuprofen/EC-PVP composite particles were 12.14% and 52.21%, and the average particle size of the particles was 27.621 microm. IR and DSC analysis showed that PVP might complex with EC. The experiments of in vitro dissolution showed that ibuprofen/EC-PVP composite particles had good sustained-release effect. Experiment results showed that, ibuprofen/EC-PVP sustained-release composite particles can be prepared by supercritical CO2 anti-solvent technology.

  17. Adhesive properties and adhesive joints strength of graphite/epoxy composites

    NASA Astrophysics Data System (ADS)

    Rudawska, Anna; Stančeková, Dana; Cubonova, Nadezda; Vitenko, Tetiana; Müller, Miroslav; Valášek, Petr

    2017-05-01

    The article presents the results of experimental research of the adhesive joints strength of graphite/epoxy composites and the results of the surface free energy of the composite surfaces. Two types of graphite/epoxy composites with different thickness were tested which are used to aircraft structure. The single-lap adhesive joints of epoxy composites were considered. Adhesive properties were described by surface free energy. Owens-Wendt method was used to determine surface free energy. The epoxy two-component adhesive was used to preparing the adhesive joints. Zwick/Roell 100 strength device were used to determination the shear strength of adhesive joints of epoxy composites. The strength test results showed that the highest value was obtained for adhesive joints of graphite-epoxy composite of smaller material thickness (0.48 mm). Statistical analysis of the results obtained, the study showed statistically significant differences between the values of the strength of the confidence level of 0.95. The statistical analysis of the results also showed that there are no statistical significant differences in average values of surface free energy (0.95 confidence level). It was noted that in each of the results the dispersion component of surface free energy was much greater than polar component of surface free energy.

  18. Effect of acidity on the citrate-nitrate combustion synthesis of alumina-zirconia composite powder

    NASA Astrophysics Data System (ADS)

    Chandradass, J.; Kim, Ki Hyeon

    2009-12-01

    Alumina-zirconia composite powders were produced by sol-gel autocombustion. 20 wt.% ZrO2-Al2O3 mixture precursor solutions were chelated by citric acid ions at different pH. DTA analysis shows sluggish decomposition at low pH, whereas there was rapid decomposition at high pH = 9. XRD patterns of the calcined powders showed that well crystallized powder with 100 % tetragonal phase and α-alumina phase is produced when pH = 0.58 (without ammonia addition). TEM characterization of composite powders revealed homogenous distribution of nanosized zirconia particles in the alumina matrix. FTIR analysis shows peaks at 590 cm-1 and 454 cm-1, which are identified as the characteristic absorption bands of Zr-O and Al-O.

  19. Impact analysis of natural fiber and synthetic fiber reinforced polymer composite

    NASA Astrophysics Data System (ADS)

    Sangamesh, Ravishankar, K. S.; Kulkarni, S. M.

    2018-05-01

    Impact analysis of the composite structure is essential for many fields like automotive, aerospace and naval structure which practically difficult to characterize. In the present study impact analysis of carbon-epoxy (CE) and jute-epoxy (JE) laminates were studied for three different thicknesses. The 3D finite element model was adopted to study the impact forces experienced, energy absorption and fracture behavior of the laminated composites. These laminated composites modeled as a 3D deformable solid element and an impactor at a constant velocity were modeled as a discrete rigid element. The energy absorption and fracture behaviors for various material combinations and thickness were studied. The fracture behavior of these composite showed progressive damage with matrix failure at the initial stage followed by complete fiber breakage.

  20. Compositional analysis of dilute nitride doped indium antimonide bulk crystal by VDS technique

    NASA Astrophysics Data System (ADS)

    Deshpande, Manisha; Maske, Dilip; Choudhari, Rashmi; Arora, Brij Mohan; Gadkari, Dattatray

    2016-05-01

    Dilute nitrides are suitable materials for fabrication of devices in detection of long wavelength infrared region. Dilute nitride doped Indium antimonide bulk crystals were grown using vertical directional solidification technique. The compositional characteristics of the crystals were carried out using EDS. The analysis was simulated and compared with observations using DTSA II software for accuracy. The ingots have uniform composition of Indium and Antimony. The actual nitrogen composition measured using EDS was 0.136% for doped nitrogen composition 0.1% except near conical end where it was 0.1%. The study of bonding between nitrogen, Indium and antimony was carried out using SIMS. The analysis shows strong presence of In-N bonding along with In-Sb bonds which indicates nitrogen has replaced antimony atoms in crystal lattice.

  1. Searching for a neurologic injury's Wechsler Adult Intelligence Scale-Third Edition profile.

    PubMed

    Gonçalves, Marta A; Moura, Octávio; Castro-Caldas, Alexandre; Simões, Mário R

    2017-01-01

    This study aimed to investigate the presence of a Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) cognitive profile in a Portuguese neurologic injured sample. The Portuguese WAIS-III was administered to 81 mixed neurologic patients and 81 healthy matched controls selected from the Portuguese standardization sample. Although the mixed neurologic injury group performed significantly lower than the healthy controls for the majority of the WAIS-III scores (i.e., composite measures, discrepancies, and subtests), the mean scores were within the normal range and, therefore, at risk of being unobserved in a clinical evaluation. ROC curves analysis showed poor to acceptable diagnostic accuracy for the WAIS-III composite measures and subtests (Working Memory Index and Digit Span revealed the highest accuracy for discriminating between participants, respectively). Multiple regression analysis showed that both literacy and the presence of brain injury were significant predictors for all of the composite measures. In addition, multiple regression analysis also showed that literacy, age of injury onset, and years of survival predicted all seven composite measures for the mixed neurologic injured group. Despite the failure to find a WAIS-III cognitive profile for mixed neurologic patients, the results showed a significant influence of brain lesion and literacy in the performance of the WAIS-III.

  2. Abutment design for implant-supported indirect composite molar crowns: reliability and fractography.

    PubMed

    Bonfante, Estevam Augusto; Suzuki, Marcelo; Lubelski, William; Thompson, Van P; de Carvalho, Ricardo Marins; Witek, Lukasz; Coelho, Paulo G

    2012-12-01

    To investigate the reliability of titanium abutments veneered with indirect composites for implant-supported crowns and the possibility to trace back the fracture origin by qualitative fractographic analysis. Large base (LB) (6.4-mm diameter base, with a 4-mm high cone in the center for composite retention), small base (SB-4) (5.2-mm base, 4-mm high cone), and small base with cone shortened to 2 mm (SB-2) Ti abutments were used. Each abutment received incremental layers of indirect resin composite until completing the anatomy of a maxillary molar crown. Step-stress accelerated-life fatigue testing (n = 18 each) was performed in water. Weibull curves with use stress of 200 N for 50,000 and 100,000 cycles were calculated. Probability Weibull plots examined the differences between groups. Specimens were inspected in light-polarized and scanning electron microscopes for fractographic analysis. Use level probability Weibull plots showed Beta values of 0.27 for LB, 0.32 for SB-4, and 0.26 for SB-2, indicating that failures were not influenced by fatigue and damage accumulation. The data replotted as Weibull distribution showed no significant difference in the characteristic strengths between LB (794 N) and SB-4 abutments (836 N), which were both significantly higher than SB-2 (601 N). Failure mode was cohesive within the composite for all groups. Fractographic markings showed that failures initiated at the indentation area and propagated toward the margins of cohesively failed composite. Reliability was not influenced by abutment design. Qualitative fractographic analysis of the failed indirect composite was feasible. © 2012 by the American College of Prosthodontists.

  3. Static and Dynamic Mechanical Properties of Graphene Oxide-Incorporated Woven Carbon Fiber/Epoxy Composite

    NASA Astrophysics Data System (ADS)

    Adak, Nitai Chandra; Chhetri, Suman; Kim, Nam Hoon; Murmu, Naresh Chandra; Samanta, Pranab; Kuila, Tapas

    2018-03-01

    This study investigates the synergistic effects of graphene oxide (GO) on the woven carbon fiber (CF)-reinforced epoxy composites. The GO nanofiller was incorporated into the epoxy resin with variations in the content, and the CF/epoxy composites were manufactured using a vacuum-assisted resin transfer molding process and then cured at 70 and 120 °C. An analysis of the mechanical properties of the GO (0.2 wt.%)/CF/epoxy composites showed an improvement in the tensile strength, Young's modulus, toughness, flexural strength and flexural modulus by 34, 20, 83, 55 and 31%, respectively, when compared to the CF/epoxy composite. The dynamic mechanical analysis of the composites exhibited an enhancement of 56, 114 and 22% in the storage modulus, loss modulus and damping capacity (tan δ), respectively, at its glass transition temperature. The fiber-matrix interaction was studied using a Cole-Cole plot analysis.

  4. Composition Analysis of III-Nitrides at the Nanometer Scale: Comparison of Energy Dispersive X-ray Spectroscopy and Atom Probe Tomography.

    PubMed

    Bonef, Bastien; Lopez-Haro, Miguel; Amichi, Lynda; Beeler, Mark; Grenier, Adeline; Robin, Eric; Jouneau, Pierre-Henri; Mollard, Nicolas; Mouton, Isabelle; Monroy, Eva; Bougerol, Catherine

    2016-12-01

    The enhancement of the performance of advanced nitride-based optoelectronic devices requires the fine tuning of their composition, which has to be determined with a high accuracy and at the nanometer scale. For that purpose, we have evaluated and compared energy dispersive X-ray spectroscopy (EDX) in a scanning transmission electron microscope (STEM) and atom probe tomography (APT) in terms of composition analysis of AlGaN/GaN multilayers. Both techniques give comparable results with a composition accuracy better than 0.6 % even for layers as thin as 3 nm. In case of EDX, we show the relevance of correcting the X-ray absorption by simultaneous determination of the mass thickness and chemical composition at each point of the analysis. Limitations of both techniques are discussed when applied to specimens with different geometries or compositions.

  5. Buckling of Cracked Laminated Composite Cylindrical Shells Subjected to Combined Loading

    NASA Astrophysics Data System (ADS)

    Allahbakhsh, Hamidreza; Shariati, Mahmoud

    2013-10-01

    A series of finite element analysis on the cracked composite cylindrical shells under combined loading is carried out to study the effect of loading condition, crack size and orientation on the buckling behavior of laminated composite cylindrical shells. The interaction buckling curves of cracked laminated composite cylinders subject to different combinations of axial compression, bending, internal pressure and external pressure are obtained, using the finite element method. Results show that the internal pressure increases the critical buckling load of the CFRP cylindrical shells and bending and external pressure decrease it. Numerical analysis show that axial crack has the most detrimental effect on the buckling load of a cylindrical shell and results show that for lower values of the axial compressive load and higher values of the external pressure, the buckling is usually in the global mode and for higher values of axial compressive load and lower levels of external pressure the buckling mode is mostly in the local mode.

  6. Proximate, Antinutrients and Mineral Composition of Raw and Processed (Boiled and Roasted) Sphenostylis stenocarpa Seeds from Southern Kaduna, Northwest Nigeria

    PubMed Central

    Ndidi, Uche Samuel; Ndidi, Charity Unekwuojo; Olagunju, Abbas; Muhammad, Aliyu; Billy, Francis Graham; Okpe, Oche

    2014-01-01

    This research was aimed at evaluating the proximate composition, level of anti-nutrients, and the mineral composition of raw and processed Sphenostylis stenocarpa seeds and at examining the effect of processing on the parameters. From the proximate composition analysis, the ash content showed no significant difference (P > 0.05) between the processed and unprocessed (raw) samples. However, there was significant difference (P < 0.05) in the levels of moisture, crude lipid, nitrogen-free extract, gross energy, true protein, and crude fiber between the processed and unprocessed S. stenocarpa. Analyses of the antinutrient composition show that the processed S. stenocarpa registered significant reduction in levels of hydrogen cyanide, trypsin inhibitor, phytate, oxalate, and tannins compared to the unprocessed. Evaluation of the mineral composition showed that the level of sodium, calcium, and potassium was high in both the processed and unprocessed sample (150–400 mg/100 g). However, the level of iron, copper, zinc, and magnesium was low in both processed and unprocessed samples (2–45 mg/100 g). The correlation analysis showed that tannins and oxalate affected the levels of ash and nitrogen-free extract of processed and unprocessed seeds. These results suggest that the consumption of S. stenocarpa will go a long way in reducing the level of malnutrition in northern Nigeria. PMID:24967265

  7. Multiscale Multifunctional Progressive Fracture of Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Minnetyan, L.

    2012-01-01

    A new approach is described for evaluating fracture in composite structures. This approach is independent of classical fracture mechanics parameters like fracture toughness. It relies on computational simulation and is programmed in a stand-alone integrated computer code. It is multiscale, multifunctional because it includes composite mechanics for the composite behavior and finite element analysis for predicting the structural response. It contains seven modules; layered composite mechanics (micro, macro, laminate), finite element, updating scheme, local fracture, global fracture, stress based failure modes, and fracture progression. The computer code is called CODSTRAN (Composite Durability Structural ANalysis). It is used in the present paper to evaluate the global fracture of four composite shell problems and one composite built-up structure. Results show that the composite shells. Global fracture is enhanced when internal pressure is combined with shear loads. The old reference denotes that nothing has been added to this comprehensive report since then.

  8. Stress Analysis and Fracture in Nanolaminate Composites

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2008-01-01

    A stress analysis is performed on a nanolaminate subjected to bending. A composite mechanics computer code that is based on constituent properties and nanoelement formulation is used to evaluate the nanolaminate stresses. The results indicate that the computer code is sufficient for the analysis. The results also show that when a stress concentration is present, the nanolaminate stresses exceed their corresponding matrix-dominated strengths and the nanofiber fracture strength.

  9. Development of high energy density supercapacitor through hydrothermal synthesis of RGO/nano-structured cobalt sulphide composites

    NASA Astrophysics Data System (ADS)

    Jana, Milan; Saha, Sanjit; Samanta, Pranab; Murmu, Naresh Chandra; Kim, Nam Hoon; Kuila, Tapas; Lee, Joong Hee

    2015-02-01

    Co9S8/reduced graphene oxide (RGO) composites were prepared on nickel foam substrate through hydrothermal reaction and used directly as supercapacitor electrode. The field emission scanning electron microscopy analysis of the composites showed the formation of Co9S8 nano-rods on the RGO surfaces. The average crystal size of the Co9S8 nano rods grown on the RGO sheets were ˜25-36 nm as calculated from x-ray diffraction analysis. The reduction of graphene oxide (GO) was confirmed by Raman and x-ray photoelectron spectroscopy analysis. The electrical conductivity of the Co9S8/RGO composite was recorded as 1690 S m-1 at room temperature, which is much higher than that of pure GO further confirming the hydrothermal reduction of GO. Cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy were investigated to check the electrochemical performances of the Co9S8/RGO composites. The Co9S8/RGO composites supported on nickel foam showed very high specific capacitance (Sc)(1349 F g-1 at a current density of 2.2 A g-1), energy density (68.6 W h kg-1) and power density (1319 W kg-1) in 6 M KOH electrolyte. The retention in Sc of the composite electrode was found to be ˜96% after 1000 charge-discharge cycles.

  10. Characterization of ginger essential oil/palygorskite composite (GEO-PGS) and its anti-bacteria activity.

    PubMed

    Lei, Hong; Wei, Qiaonian; Wang, Qing; Su, Anxiang; Xue, Mei; Liu, Qin; Hu, Qiuhui

    2017-04-01

    To explore a novel kind of anti-bacterial composite material having the excellent antibacterial ability, stability and specific-targeting capability, palygorskite (PGS) was used as the carrier of ginger essential oil (GEO) and a novel kind of composite GEO-PGS was prepared by ion exchange process. The characterization and the antibacterial activity of GEO-PGS was investigated in this study. Results of FTIR, XPS, XRD,TG analysis and SEM observation demonstrated the combination of GEO and PGS, GEO was absorbed on the surface of PGS, and the content of GEO in the composite was estimated to be 18.66%. Results of minimal inhibitory concentration (MIC) analysis, growth curve and Gram staining analysis of Staphylococci aureus and Escherichia coli exposed to GEO-PGS showed that GEO-PGS had much higher antibacterial activity than GEO, and GEO-PGS had the specific-targeting antibacterial capability. Moreover, GEO-PGS showed the characteristics of thermo-stability, acidity and alkalinity-resistance in exerting its anti-bacteria activity. In conclusion, the novel composite GEO-PGS combined the bacteria-absorbent activity of PGS and the antibacterial activity of GEO, suggesting the great potential application of GEO-PGS as the novel composite substance with high antibacterial activity. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Scintillation screen applications in a vacuum arc ion source with composite hydride cathode

    NASA Astrophysics Data System (ADS)

    Wang, X. H.; Tuo, X. G.; Yang, Z.; Peng, Y. F.; Li, J.; Lv, H. Y.; Li, J. H.; Long, J. D.

    2018-05-01

    Vacuum arc ion source with composite hydride cathode was developed to produce intense ion beams which can be applied in particle accelerator injections. Beam profile and beam composition are two fundamental parameters of the beam for the vacuum arc ion source in such specific applications. An aluminum-coated scintillation screen with an ICCD camera readout was used to show the space-time distribution of the beam directly. A simple magnetic analysis assembly with the scintillation screen shows the beam composition information of this kind ion source. Some physical and technical issues are discussed and analyzed in the text.

  12. Performance analysis of smart laminated composite plate integrated with distributed AFC material undergoing geometrically nonlinear transient vibrations

    NASA Astrophysics Data System (ADS)

    Shivakumar, J.; Ashok, M. H.; Khadakbhavi, Vishwanath; Pujari, Sanjay; Nandurkar, Santosh

    2018-02-01

    The present work focuses on geometrically nonlinear transient analysis of laminated smart composite plates integrated with the patches of Active fiber composites (AFC) using Active constrained layer damping (ACLD) as the distributed actuators. The analysis has been carried out using generalised energy based finite element model. The coupled electromechanical finite element model is derived using Von Karman type nonlinear strain displacement relations and a first-order shear deformation theory (FSDT). Eight-node iso-parametric serendipity elements are used for discretization of the overall plate integrated with AFC patch material. The viscoelastic constrained layer is modelled using GHM method. The numerical results shows the improvement in the active damping characteristics of the laminated composite plates over the passive damping for suppressing the geometrically nonlinear transient vibrations of laminated composite plates with AFC as patch material.

  13. Compositional analysis of dilute nitride doped indium antimonide bulk crystal by VDS technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deshpande, Manisha, E-mail: manishauj@gmail.com; Department of Physics, Mithibai College, Vile Parle; Maske, Dilip

    2016-05-06

    Dilute nitrides are suitable materials for fabrication of devices in detection of long wavelength infrared region. Dilute nitride doped Indium antimonide bulk crystals were grown using vertical directional solidification technique. The compositional characteristics of the crystals were carried out using EDS. The analysis was simulated and compared with observations using DTSA II software for accuracy. The ingots have uniform composition of Indium and Antimony. The actual nitrogen composition measured using EDS was 0.136% for doped nitrogen composition 0.1% except near conical end where it was 0.1%. The study of bonding between nitrogen, Indium and antimony was carried out using SIMS.more » The analysis shows strong presence of In-N bonding along with In-Sb bonds which indicates nitrogen has replaced antimony atoms in crystal lattice.« less

  14. Probabilistic sizing of laminates with uncertainties

    NASA Technical Reports Server (NTRS)

    Shah, A. R.; Liaw, D. G.; Chamis, C. C.

    1993-01-01

    A reliability based design methodology for laminate sizing and configuration for a special case of composite structures is described. The methodology combines probabilistic composite mechanics with probabilistic structural analysis. The uncertainties of constituent materials (fiber and matrix) to predict macroscopic behavior are simulated using probabilistic theory. Uncertainties in the degradation of composite material properties are included in this design methodology. A multi-factor interaction equation is used to evaluate load and environment dependent degradation of the composite material properties at the micromechanics level. The methodology is integrated into a computer code IPACS (Integrated Probabilistic Assessment of Composite Structures). Versatility of this design approach is demonstrated by performing a multi-level probabilistic analysis to size the laminates for design structural reliability of random type structures. The results show that laminate configurations can be selected to improve the structural reliability from three failures in 1000, to no failures in one million. Results also show that the laminates with the highest reliability are the least sensitive to the loading conditions.

  15. Computational simulation of matrix micro-slip bands in SiC/Ti-15 composite

    NASA Technical Reports Server (NTRS)

    Mital, S. K.; Lee, H.-J.; Murthy, P. L. N.; Chamis, C. C.

    1992-01-01

    Computational simulation procedures are used to identify the key deformation mechanisms for (0)(sub 8) and (90)(sub 8) SiC/Ti-15 metal matrix composites. The computational simulation procedures employed consist of a three-dimensional finite-element analysis and a micromechanics based computer code METCAN. The interphase properties used in the analysis have been calibrated using the METCAN computer code with the (90)(sub 8) experimental stress-strain curve. Results of simulation show that although shear stresses are sufficiently high to cause the formation of some slip bands in the matrix concentrated mostly near the fibers, the nonlinearity in the composite stress-strain curve in the case of (90)(sub 8) composite is dominated by interfacial damage, such as microcracks and debonding rather than microplasticity. The stress-strain curve for (0)(sub 8) composite is largely controlled by the fibers and shows only slight nonlinearity at higher strain levels that could be the result of matrix microplasticity.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karina, Wiwiek, E-mail: wiekarina@gmail.com; Heraldy, Eddy, E-mail: eheraldy@gmail.com; Pramono, Edi

    Ca-Mg-Al hydrotalcite-like compound (Ca-Mg-Al HTlc) was prepared by co-precipitation method using brine water that is well known as the desalination process waste water. The structure of Ca-Mg-Al HTlc was determined by X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) analysis. Ca-Mg-Al HTlc was studied as a non-halogenated filler in ethylene vinyl acetate (EVA) matrix. Composites with different filler concentrations were prepared to evaluate the influence of Ca-Mg-Al HTlc on thermal and mechanical properties of EVA.The presence of Ca-Mg-Al HTlc in the composite has been confirmed by FTIR analysis. Thermal properties of composites show significant reduction of degradation temperature as wellmore » as the loading of HTlc in EVA. However, the total enthalpies combustion of composites with 1% and 5% HTlc loadings higher compared to neat EVA. Further, mechanical properties were determined by tensile test. The result shows that tensile strength and elongation at break of composites decrease relatively by Ca-Mg-Al HTlc addition.« less

  17. Development of AlN and TiB2 Composites with Nb2O5, Y2O3 and ZrO2 as Sintering Aids

    PubMed Central

    González, José C.; Rodríguez, Miguel Á.; Figueroa, Ignacio A.; Villafuerte-Castrejón, María-Elena; Díaz, Gerardo C.

    2017-01-01

    The synthesis of AlN and TiB2 by spark plasma sintering (SPS) and the effect of Nb2O5, Y2O3 and ZrO2 additions on the mechanical properties and densification of the produced composites is reported and discussed. After the SPS process, dense AlN and TiB2 composites with Nb2O5, Y2O3 and ZrO2 were successfully prepared. X-ray diffraction analysis showed that in the AlN composites, the addition of Nb2O5 gives rise to Nb4N3 during sintering. The compound Y3Al5O12 (YAG) was observed as precipitate in the sample with Y2O3. X-ray diffraction analysis of the TiB2 composites showed TiB2 as a single phase in these materials. The maximum Vickers and toughness values were 14.19 ± 1.43 GPa and 27.52 ± 1.75 GPa for the AlN and TiB2 composites, respectively. PMID:28772681

  18. Effect of tooth brush abrasion and thermo-mechanical loading on direct and indirect veneer restorations.

    PubMed

    Rosentritt, Martin; Sawaljanow, Alexander; Behr, Michael; Kolbeck, Carola; Preis, Verena

    2015-01-01

    This study investigated toothbrush abrasion and in vitro aging on ceramic (indirect technique) and composite veneers (direct technique). Identical composite and individual human incisors were restored with industrially preformed composite veneers, indirectly produced ceramic veneers, and direct composite restorations. Surface roughness was determined before and after tooth brushing. A 5-year period of oral service was simulated by thermal cycling and mechanical loading (TCML). After TCML, all specimens were examined with microscopy and scanning electron microscopy. Specimens without failures during TCML were loaded until failure. analysis of variance; Bonferroni's post hoc analysis, Kaplan-Meier-Log Rank test (α = 0.05). Tooth brushing yielded a non-significant increase (p = 0.560) in roughness in all materials (industrial veneer, 0.12+/-0.07 μm, direct restoration, 0.18+/-0.14 μm, ceramic, 0.35+/-0.16 μm). No significant differences in roughness could be determined between the materials, neither before nor after testing (p < 0.001). After TCML of artificial teeth, direct and preformed composite veneers on composite teeth showed no failures or damages. Two ceramic veneers showed cracking in the labial area. After TCML of human teeth, transmission microscopy indicated a facial crack in a ceramic veneer and chipping in the cervical area of a preformed veneer. Two direct composite veneers lost retention. No significantly different survival rates were found between the three veneer groups. Fracture force on human teeth varied between 527.8+/-132.4 N (ceramic), 478.3+/-165.4 N (preformed composite), and 605.0+/-263.5 N (direct composite). All materials revealed comparable wear resistance. Indirect ceramic, direct restorative composite, and preformed composite veneers showed comparable failure rates and satisfying longevity. The results indicate similar longevity of the chosen materials for veneer restorations.

  19. Impact Strength and Flexural Properties Enhancement of Methacrylate Silane Treated Oil Palm Mesocarp Fiber Reinforced Biodegradable Hybrid Composites

    PubMed Central

    Ibrahim, Nor Azowa; Ariffin, Hidayah; Yunus, Wan Md. Zin Wan

    2014-01-01

    Natural fiber as reinforcement filler in polymer composites is an attractive approach due to being fully biodegradable and cheap. However, incompatibility between hydrophilic natural fiber and hydrophobic polymer matrix restricts the application. The current studies focus on the effects of incorporation of silane treated OPMF into polylactic acid (PLA)/polycaprolactone (PCL)/nanoclay/OPMF hybrid composites. The composites were prepared by melt blending technique and characterize the composites with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectra indicated that peak shifting occurs when silane treated OPMF was incorporated into hybrid composites. Based on mechanical properties results, incorporation of silane treated OPMF enhances the mechanical properties of unmodified OPMF hybrid composites with the enhancement of flexural and impact strength being 17.60% and 48.43%, respectively, at 10% fiber loading. TGA thermogram shows that incorporation of silane treated OPMF did not show increment in thermal properties of hybrid composites. SEM micrographs revealed that silane treated OPMF hybrid composites show good fiber/matrix adhesion as fiber is still embedded in the matrix and no cavity is present on the surface. Water absorption test shows that addition of less hydrophilic silane treated OPMF successfully reduces the water uptake of hybrid composites. PMID:25254230

  20. Impact strength and flexural properties enhancement of methacrylate silane treated oil palm mesocarp fiber reinforced biodegradable hybrid composites.

    PubMed

    Eng, Chern Chiet; Ibrahim, Nor Azowa; Zainuddin, Norhazlin; Ariffin, Hidayah; Yunus, Wan Md Zin Wan

    2014-01-01

    Natural fiber as reinforcement filler in polymer composites is an attractive approach due to being fully biodegradable and cheap. However, incompatibility between hydrophilic natural fiber and hydrophobic polymer matrix restricts the application. The current studies focus on the effects of incorporation of silane treated OPMF into polylactic acid (PLA)/polycaprolactone (PCL)/nanoclay/OPMF hybrid composites. The composites were prepared by melt blending technique and characterize the composites with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectra indicated that peak shifting occurs when silane treated OPMF was incorporated into hybrid composites. Based on mechanical properties results, incorporation of silane treated OPMF enhances the mechanical properties of unmodified OPMF hybrid composites with the enhancement of flexural and impact strength being 17.60% and 48.43%, respectively, at 10% fiber loading. TGA thermogram shows that incorporation of silane treated OPMF did not show increment in thermal properties of hybrid composites. SEM micrographs revealed that silane treated OPMF hybrid composites show good fiber/matrix adhesion as fiber is still embedded in the matrix and no cavity is present on the surface. Water absorption test shows that addition of less hydrophilic silane treated OPMF successfully reduces the water uptake of hybrid composites.

  1. Morphology-Property relationship of high density Polyethylene/Hevea Brasiliensis Leaves/Imperata cylindrica hybrid composite: Impact strength

    NASA Astrophysics Data System (ADS)

    Rashidi, A. R.; Muhammad, A.; Roslan, A.

    2017-09-01

    This research studies about the Hevea Brasiliensis Leaves and Imperata Cylindrica that was used as filler in High Density Polyethylene (HDPE). The fillers content were varied in the composite by 5 wt%, 15 wt% and 25 wt% respectively. This polymer composite are being studied by using Impact Test and Scanning Electron Microscopy (SEM). The analysis show that the impact strength value increased when the percent of bio filler used is low. The result between pure HDPE and the composites shows an outcome of significant changes in impact energy values, while the values between different composite change slightly. A composite that contained 5 wt% of fillers is the better energy absorber than 15 wt% and 25 wt% according to impact testing. In addition, the morphology studies on the composite sample show that the bio-filler was successfully embedded. Overall, these finding suggest that HBL and IC can be an alternative filler to be incorporated in polymer matrix.

  2. Improving Thermo-Oxidative Stability of Nitrile Rubber Composites by Functional Graphene Oxide.

    PubMed

    Zhong, Rui; Zhang, Zhao; Zhao, Hongguo; He, Xianru; Wang, Xin; Zhang, Rui

    2018-05-30

    Graphene oxide (GO), modified with anti-aging agent p -phenylenediamine (PPD), was added into nitrile rubber (NBR) in order to improve the thermo-oxidative stability of NBR. The modification of GO and the transformation of functional groups were characterized by Fourier transform infrared spectroscopy (FTIR), Raman, and X-ray diffraction (XRD). Mechanical performances of NBR composites before and after the thermo-oxidative aging were recorded. The results of dynamic mechanical analysis (DMA) show an increased storage modulus (G') and a decreased value of area of tan δ peak after introducing modified GO into NBR. It indicates that filler particles show positive interaction with molecular chains. The thermo-oxidative stability of composites was investigated by thermogravimetric analysis (TG) and differential scanning calorimetry (DSC). Then, the thermo-oxidative aging kinetic parameters were obtained by the Flynn⁻Wall⁻Ozawa (FWO) equation. The results of aging tests show that the thermo-oxidative stability of rubber matrix increases obviously after introducing GO⁻PPD. In addition, mechanical properties (tensile strength and elongation at break) of both before and after aged NBR/GO⁻PPD composites were superior to that of NBR. This work provides meaningful guidance for achieving multifunction thermo-oxidative aging resistance rubber composites.

  3. Electrospinning synthesis and characterization of PLA-PEG-MNPs composite fibrous membranes

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Klimke, S.; Preiss, A.; Unruh, D.; Wengerowsky, D.; Lehmann, R.; Sindelar, R.; Klingelhöfer, G.; Boča, R.; Renz, F.

    2017-11-01

    An electrospinning technique was used to fabricate PLA, PLA-PEG and PLA-PEG-MNPs composite fibrous membranes. The morphology of electrospun composite membranes were characterized by scanning electron microscope. To test the potential availability of MNPs in PLA-PEG composite membranes, TG, Raman, Mössbauer, VSM and ICP-OES analysis were used. The PLA-PEG composite fibrous membranes showed the presence of MNPs, hence offers the possibility for magnetically triggered on-demand drug delivery.

  4. Porosity Measurement in Laminated Composites by Thermography and FEA

    NASA Technical Reports Server (NTRS)

    Chu, Tsuchin Philip; Russell, Samuel S.; Walker, James L.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    This paper presents the correlation between the through-thickness thermal diffusivity and the porosity of composites. Finite element analysis (FEA) was used to determine the transient thermal response of composites that were subjected to laser heating. A series of finite element models were built and thermal responses for isotropic and orthographic materials with various thermal diffusivities subjected to different heating conditions were investigated. Experiments were conducted to verify the models and to estimate the unknown parameters such as the amount of heat flux. The analysis and experimental results show good correlation between thermal diffusivity and porosity in the composite materials. They also show that both laser and flash heating can be used effectively to obtain thermal diffusivity. The current infrared thermography system is developed for use with flash heating. The laser heating models and the FEA results can provide useful tools to develop practical thermal diffusivity measurement scheme using laser heat.

  5. Vacuum brazing of high volume fraction SiC particles reinforced aluminum matrix composites

    NASA Astrophysics Data System (ADS)

    Cheng, Dongfeng; Niu, Jitai; Gao, Zeng; Wang, Peng

    2015-03-01

    This experiment chooses A356 aluminum matrix composites containing 55% SiC particle reinforcing phase as the parent metal and Al-Si-Cu-Zn-Ni alloy metal as the filler metal. The brazing process is carried out in vacuum brazing furnace at the temperature of 550°C and 560°C for 3 min, respectively. The interfacial microstructures and fracture surfaces are investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy spectrum analysis (EDS). The result shows that adequacy of element diffusion are superior when brazing at 560°C, because of higher activity and liquidity. Dislocations and twins are observed at the interface between filler and composite due to the different expansion coefficient of the aluminum alloy matrix and SiC particles. The fracture analysis shows that the brittle fracture mainly located at interface of filler and composites.

  6. Spatial and Temporal Analysis of Eruption Locations, Compositions, and Styles in Northern Harrat Rahat, Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Dietterich, H. R.; Stelten, M. E.; Downs, D. T.; Champion, D. E.

    2017-12-01

    Harrat Rahat is a predominantly mafic, 20,000 km2 volcanic field in western Saudi Arabia with an elongate volcanic axis extending 310 km north-south. Prior mapping suggests that the youngest eruptions were concentrated in northernmost Harrat Rahat, where our new geologic mapping and geochronology reveal >300 eruptive vents with ages ranging from 1.2 Ma to a historic eruption in 1256 CE. Eruption compositions and styles vary spatially and temporally within the volcanic field, where extensive alkali basaltic lavas dominate, but more evolved compositions erupted episodically as clusters of trachytic domes and small-volume pyroclastic flows. Analysis of vent locations, compositions, and eruption styles shows the evolution of the volcanic field and allows assessment of the spatio-temporal probabilities of vent opening and eruption styles. We link individual vents and fissures to eruptions and their deposits using field relations, petrography, geochemistry, paleomagnetism, and 40Ar/39Ar and 36Cl geochronology. Eruption volumes and deposit extents are derived from geologic mapping and topographic analysis. Spatial density analysis with kernel density estimation captures vent densities of up to 0.2 %/km2 along the north-south running volcanic axis, decaying quickly away to the east but reaching a second, lower high along a secondary axis to the west. Temporal trends show slight younging of mafic eruption ages to the north in the past 300 ka, as well as clustered eruptions of trachytes over the past 150 ka. Vent locations, timing, and composition are integrated through spatial probability weighted by eruption age for each compositional range to produce spatio-temporal models of vent opening probability. These show that the next mafic eruption is most probable within the north end of the main (eastern) volcanic axis, whereas more evolved compositions are most likely to erupt within the trachytic centers further to the south. These vent opening probabilities, combined with corresponding eruption properties, can be used as the basis for lava flow and tephra fall hazard maps.

  7. Advanced surface chemical analysis of continuously manufactured drug loaded composite pellets.

    PubMed

    Hossain, Akter; Nandi, Uttom; Fule, Ritesh; Nokhodchi, Ali; Maniruzzaman, Mohammed

    2017-04-15

    The aim of the present study was to develop and characterise polymeric composite pellets by means of continuous melt extrusion techniques. Powder blends of a steroid hormone (SH) as a model drug and either ethyl cellulose (EC N10 and EC P7 grades) or hydroxypropyl methylcellulose (HPMC AS grade) as polymeric carrier were extruded using a Pharma 11mm twin screw extruder in a continuous mode of operation to manufacture extruded composite pellets of 1mm length. Molecular modelling study using commercial Gaussian 09 software outlined a possible drug-polymer interaction in the molecular level to develop solid dispersions of the drug in the pellets. Solid-state analysis conducted via a differential scanning calorimetry (DSC), hot stage microscopy (HSM) and X-ray powder diffraction (XRPD) analyses revealed the amorphous state of the drug in the polymer matrices. Surface analysis using SEM/energy dispersive X-ray (EDX) of the produced pellets arguably showed a homogenous distribution of the C and O atoms in the pellet matrices. Moreover, advanced chemical surface analysis conducted via atomic force microscopy (AFM) showed a homogenous phase system having the drug molecule dispersed onto the amorphous matrices while Raman mapping confirmed the homogenous single-phase drug distribution in the manufactured composite pellets. Such composite pellets are expected to deliver multidisciplinary applications in drug delivery and medical sciences by e.g. modifying drug solubility/dissolutions or stabilizing the unstable drug (e.g. hormone, protein) in the composite network. Copyright © 2016. Published by Elsevier Inc.

  8. Guided Wave Delamination Detection and Quantification With Wavefield Data Analysis

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Campbell Leckey, Cara A.; Seebo, Jeffrey P.; Yu, Lingyu

    2014-01-01

    Unexpected damage can occur in aerospace composites due to impact events or material stress during off-nominal loading events. In particular, laminated composites are susceptible to delamination damage due to weak transverse tensile and inter-laminar shear strengths. Developments of reliable and quantitative techniques to detect delamination damage in laminated composites are imperative for safe and functional optimally-designed next-generation composite structures. In this paper, we investigate guided wave interactions with delamination damage and develop quantification algorithms by using wavefield data analysis. The trapped guided waves in the delamination region are observed from the wavefield data and further quantitatively interpreted by using different wavenumber analysis methods. The frequency-wavenumber representation of the wavefield shows that new wavenumbers are present and correlate to trapped waves in the damage region. These new wavenumbers are used to detect and quantify the delamination damage through the wavenumber analysis, which can show how the wavenumber changes as a function of wave propagation distance. The location and spatial duration of the new wavenumbers can be identified, providing a useful means not only for detecting the presence of delamination damage but also allowing for estimation of the delamination size. Our method has been applied to detect and quantify real delamination damage with complex geometry (grown using a quasi-static indentation technique). The detection and quantification results show the location, size, and shape of the delamination damage.

  9. Analysis of bacterial communities and bacterial pathogens in a biogas plant by the combination of ethidium monoazide, PCR and Ion Torrent sequencing.

    PubMed

    Luo, Gang; Angelidaki, Irini

    2014-09-01

    The present study investigated the changes of bacterial community composition including bacterial pathogens along a biogas plant, i.e. from the influent, to the biogas reactor and to the post-digester. The effects of post-digestion temperature and time on the changes of bacterial community composition and bacterial pathogens were also studied. Microbial analysis was made by Ion Torrent sequencing of the PCR amplicons from ethidium monoazide treated samples, and ethidium monoazide was used to cleave DNA from dead cells and exclude it from PCR amplification. Both similarity and taxonomic analysis showed that the bacterial community composition in the influent was changed after anaerobic digestion. Firmicutes were dominant in all the samples, while Proteobacteria decreased in the biogas reactor compared with the influent. Variations of bacterial community composition in the biogas reactor with time were also observed. This could be attributed to varying composition of the influent. Batch experiments showed that the methane recovery from the digested residues (obtained from biogas reactor) was mainly related with post-digestion temperature. However, post-digestion time rather than temperature had a significant effect on the changes of bacterial community composition. The changes of bacterial community composition were also reflected in the changes of relative abundance of bacterial pathogens. The richness and relative abundance of bacterial pathogens were reduced after anaerobic digestion in the biogas reactor. It was found in batch experiments that bacterial pathogens showed the highest relative abundance and richness after 30 days' post-digestion. Streptococcus bovis was found in all the samples. Our results showed that special attention should be paid to the post-digestion since the increase in relative abundance of bacterial pathogens after post-digestion might reflect regrowth of bacterial pathogens and limit biosolids disposal vectors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Thermal and Mechanical Characteristics of Polymer Composites Based on Epoxy Resin, Aluminium Nanopowders and Boric Acid

    NASA Astrophysics Data System (ADS)

    Nazarenko, O. B.; Melnikova, T. V.; Visakh, P. M.

    2016-01-01

    The epoxy polymers are characterized by low thermal stability and high flammability. Nanoparticles are considered to be effective fillers of polymer composites for improving their thermal and functional properties. In this work, the epoxy composites were prepared using epoxy resin ED-20, polyethylene polyamine as a hardener, aluminum nanopowder and boric acid fine powder as flame-retardant filler. The thermal characteristics of the obtained samples were studied using thermogravimetric analysis and differential scanning calorimetry. The mechanical characteristics of epoxy composites were also studied. It was found that an addition of all fillers enhances the thermal stability and mechanical characteristics of the epoxy composites. The best thermal stability showed the epoxy composite filled with boric acid. The highest flexural properties showed the epoxy composite based on the combination of boric acid and aluminum nanopowder.

  11. Comprehensive and quantitative profiling of lipid species in human milk, cow milk and a phospholipid-enriched milk formula by GC and MS/MSALL.

    PubMed

    Sokol, Elena; Ulven, Trond; Færgeman, Nils J; Ejsing, Christer S

    2015-06-01

    Here we present a workflow for in-depth analysis of milk lipids that combines gas chromatography (GC) for fatty acid (FA) profiling and a shotgun lipidomics routine termed MS/MS ALL for structural characterization of molecular lipid species. To evaluate the performance of the workflow we performed a comparative lipid analysis of human milk, cow milk, and Lacprodan® PL-20, a phospholipid-enriched milk protein concentrate for infant formula. The GC analysis showed that human milk and Lacprodan have a similar FA profile with higher levels of unsaturated FAs as compared to cow milk. In-depth lipidomic analysis by MS/MS ALL revealed that each type of milk sample comprised distinct composition of molecular lipid species. Lipid class composition showed that the human and cow milk contain a higher proportion of triacylglycerols (TAGs) as compared to Lacprodan. Notably, the MS/MS ALL analysis demonstrated that the similar FA profile of human milk and Lacprodan determined by GC analysis is attributed to the composition of individual TAG species in human milk and glycerophospholipid species in Lacprodan. Moreover, the analysis of TAG molecules in Lacprodan and cow milk showed a high proportion of short-chain FAs that could not be monitored by GC analysis. The results presented here show that complementary GC and MS/MS ALL analysis is a powerful approach for characterization of molecular lipid species in milk and milk products. : Milk lipid analysis is routinely performed using gas chromatography. This method reports the total fatty acid composition of all milk lipids, but provides no structural or quantitative information about individual lipid molecules in milk or milk products. Here we present a workflow that integrates gas chromatography for fatty acid profiling and a shotgun lipidomics routine termed MS/MS ALL for structural analysis and quantification of molecular lipid species. We demonstrate the efficacy of this complementary workflow by a comparative analysis of molecular lipid species in human milk, cow milk, and a milk-based supplement used for infant formula.

  12. Comprehensive and quantitative profiling of lipid species in human milk, cow milk and a phospholipid-enriched milk formula by GC and MS/MSALL

    PubMed Central

    Sokol, Elena; Ulven, Trond; Færgeman, Nils J; Ejsing, Christer S

    2015-01-01

    Here we present a workflow for in-depth analysis of milk lipids that combines gas chromatography (GC) for fatty acid (FA) profiling and a shotgun lipidomics routine termed MS/MSALL for structural characterization of molecular lipid species. To evaluate the performance of the workflow we performed a comparative lipid analysis of human milk, cow milk, and Lacprodan® PL-20, a phospholipid-enriched milk protein concentrate for infant formula. The GC analysis showed that human milk and Lacprodan have a similar FA profile with higher levels of unsaturated FAs as compared to cow milk. In-depth lipidomic analysis by MS/MSALL revealed that each type of milk sample comprised distinct composition of molecular lipid species. Lipid class composition showed that the human and cow milk contain a higher proportion of triacylglycerols (TAGs) as compared to Lacprodan. Notably, the MS/MSALL analysis demonstrated that the similar FA profile of human milk and Lacprodan determined by GC analysis is attributed to the composition of individual TAG species in human milk and glycerophospholipid species in Lacprodan. Moreover, the analysis of TAG molecules in Lacprodan and cow milk showed a high proportion of short-chain FAs that could not be monitored by GC analysis. The results presented here show that complementary GC and MS/MSALL analysis is a powerful approach for characterization of molecular lipid species in milk and milk products. Practical applications : Milk lipid analysis is routinely performed using gas chromatography. This method reports the total fatty acid composition of all milk lipids, but provides no structural or quantitative information about individual lipid molecules in milk or milk products. Here we present a workflow that integrates gas chromatography for fatty acid profiling and a shotgun lipidomics routine termed MS/MSALL for structural analysis and quantification of molecular lipid species. We demonstrate the efficacy of this complementary workflow by a comparative analysis of molecular lipid species in human milk, cow milk, and a milk-based supplement used for infant formula. PMID:26089741

  13. Composite material making from empty fruit bunches of palm oil (EFB) and Ijuk (Arengapinnata) using plastic bottle waste as adhesives

    NASA Astrophysics Data System (ADS)

    Rihayat, T.; Salim, S.; Audina, N.; Khan, N. S. P.; Zaimahwati; Sami, M.; Yunus, M.; Salisah, Z.; Alam, P. N.; Saifuddin; Yusuf, I.

    2018-03-01

    Reviewed from the current technological required a new methods to capable offering a high profit value without overriding the quality. The development of composite technology is now beginning to shift from traditional composite materials based petroleum to natural fibers composite. In the present study, aim to made specimens using natural fibers in form of EFB as a composite reinforcedment with Polyethylene Terephtalate (PET) derived from Plastic bottles waste as matrix with mixed composition parameters and time-tolerance in the mixing process to build a biocomposite material. The characterization of mechanical properties includes tensile test (ASTM D638-01) and bending test (ASTM D790-02) followed by thermal analysis using Thermogravimetric Analysis (TGA), and morphological analysis using scanning electron microscope (SEM). The analysis effect of EFB, Ijuk and PET mixtures on the composite matrix is very influential with mechanical properties characterization, including tensile test and bending strength. The results demonstrated that from the sample named : 50 : 25: 25, hybrid composites showed improved properties such as tensile strength of 167 MPa while the 90:05:05 based composites exhibited tensile strength values of 30 MPa, respectively. In term the flexural test the best result of composition on the properties with 10 minutes duration time its load value 7,5 Mpa for 80:10:10.

  14. FEM Analysis of Glass/Epoxy Composite Based Industrial Safety Helmet

    NASA Astrophysics Data System (ADS)

    Ram, Khushi; Bajpai, Pramendra Kumar

    2017-08-01

    Recently, the use of fiber reinforced polymer in every field of engineering (automobile, industry and aerospace) and medical has increased due to its distinctive mechanical properties. The fiber based polymer composites are more popular because these have high strength, light in weight, low cost and easily available. In the present work, the finite element analysis (FEA) of glass/epoxy composite based industrial safety helmet has been performed using solid-works simulation software. The modeling results show that glass fiber reinforced epoxy composite can be used as a material for fabrication of industrial safety helmet which has good mechanical properties than the existing helmet material.

  15. New biocomposites based on bioplastic flax fibers and biodegradable polymers.

    PubMed

    Wróbel-Kwiatkowska, Magdalena; Czemplik, Magdalena; Kulma, Anna; Zuk, Magdalena; Kaczmar, Jacek; Dymińska, Lucyna; Hanuza, Jerzy; Ptak, Maciej; Szopa, Jan

    2012-01-01

    A new generation of entirely biodegradable and bioactive composites with polylactic acid (PLA) or poly-ε-caprolactone (PCL) as the matrix and bioplastic flax fibers as reinforcement were analyzed. Bioplastic fibers contain polyhydroxybutyrate and were obtained from transgenic flax. Biochemical analysis of fibers revealed presence of several antioxidative compounds of hydrophilic (phenolics) and hydrophobic [cannabidiol (CBD), lutein] nature, indicating their high antioxidant potential. The presence of CBD and lutein in flax fibers is reported for the first time. FTIR analysis showed intermolecular hydrogen bonds between the constituents in composite PLA+flax fibers which were not detected in PCL-based composite. Mechanical analysis of prepared composites revealed improved stiffness and a decrease in tensile strength. The viability of human dermal fibroblasts on the surface of composites made of PLA and transgenic flax fibers was the same as for cells cultured without composites and only slightly lower (to 9%) for PCL-based composites. The amount of platelets and Escherichia coli cells aggregated on the surface of the PLA based composites was significantly lower than for pure polymer. Thus, composites made of PLA and transgenic flax fibers seem to have bacteriostatic, platelet anti-aggregated, and non-cytotoxic effect. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  16. Influence of surface rectangular defect winding layer on burst pressure of CNG-II composite cylinder

    NASA Astrophysics Data System (ADS)

    You, H. X.; Peng, L.; Zhao, C.; Ma, K.; Zhang, S.

    2018-01-01

    To study the influence of composite materials’ surface defect on the burst pressure of CNG-II composite cylinder, the surface defect was simplified as a rectangular slot of certain size on the basis of actually investigating the shape of cylinder’s surface defect. A CNG-II composite cylinder with a rectangular slot defect (2mm in depth) was used for burst test, and the numerical simulation software ANSYS was used to calculate its burst pressure. Through comparison between the burst pressure in the test and the numerical analysis result, the correctness of the numerical analysis method was verified. On this basis, the numerical analysis method was conducted for composite cylinders with surface defect in other depth. The result showed that surface defect in the form of rectangular slot had no significant effect on the liner stress of composite cylinder. Instead, it had a great influence on the stress of fiber-wrapped layer. The burst pressure of the composite cylinder decreased as the defect depth increasing. The hoop stress at the bottom of the defect in the shape of rectangular slot exceeded the maximum of the composite materials’ tensile strength, which could result in the burst pressure of composite cylinders decreasing.

  17. Structural, dielectric and magnetic properties of ZnFe2O4-Na0.5Bi0.5TiO3 multiferroic composites

    NASA Astrophysics Data System (ADS)

    Bhasin, Tanvi; Agarwal, Ashish; Sanghi, Sujata; Yadav, Manisha; Tuteja, Muskaan; Singh, Jogender; Rani, Sonia

    2018-04-01

    Multiferroic xNa0.5Bi0.5TiO3-(1-x)ZnFe2O4 (x=0.10, 0.20) composites were prepared by conventional solid state reaction method. Rietveld analysis of XRD data shows that samples exhibit both cubic (Fd-3m) and rhombohedral (R3c) crystal structure. Structural parameters and unit cell volume of samples vary with composition. The dielectric constant and dielectric loss (tanδ) display dispersion at low frequency due to space charge polarization and inhomogeneity in the composites. Magnetic analysis depicts the antiferromagnetic behavior of composites and magnetization is enhanced with the introduction of ferrite (ZnFe2O4) phase.

  18. New Robust Design Guideline forImperfection Sensitive Composite Launcher Structures- The Desicos Project

    NASA Astrophysics Data System (ADS)

    Degenhardt, Richard

    2014-06-01

    Space industry demands for reduced development and operating costs. Structural weight reduction by exploitation of structural reserves in composite space and aerospace structures contributes to this aim, however, it requires accurate and experimentally validated stability analysis. Currently, the potential of composite light weight structures, which are prone to buckling, is not fully exploited as appropriate guidelines in the field of space applications do not exist. This paper deals with the state-of-the-art advances and challenges related to coupled stability analysis of composite structures which show very complex stability behaviour. Improved design guidelines for composites structures are still under development. This paper gives a short state-of-the-art and presents a proposal for a future design guideline.

  19. Partitioning the relative contributions of inorganic plant composition and soil characteristics to the quality of Helichrysum italicum subsp. italicum (Roth) G. Don fil. essential oil.

    PubMed

    Bianchini, Ange; Santoni, François; Paolini, Julien; Bernardini, Antoine-François; Mouillot, David; Costa, Jean

    2009-07-01

    Composition of Helichrysum italicum subsp. italicum essential oil showed chemical variability according to vegetation cycle, environment, and geographic origins. In the present work, 48 individuals of this plant at different development stages and the corresponding root soils were sampled: i) 28 volatile components were identified and measured in essential oil by using GC and GC/MS; ii) ten elements from plants and soils have been estimated using colorimetry in continuous flux, flame atomic absorption spectrometry, or emission spectrometry (FAAS/FAES); iii) texture and acidity (real and potential) of soil samples were also reported. Relationships between the essential-oil composition, the inorganic plant composition, and the soil characteristics (inorganic composition, texture, and acidity) have been established using multivariate analysis such as Principal Component Analysis (PCA) and partial Redundancy Analysis (RDA). This study demonstrates a high level of intraspecific differences in oil composition due to environmental factors and, more particularly, soil characteristics.

  20. Mechanical analysis of CFRP-steel hybrid composites considering the interfacial adhesion

    NASA Astrophysics Data System (ADS)

    Jang, Jinhyeok; Sung, Minchang; Han, Sungjin; Shim, Wonbo; Yu, Woong-Ryeol

    2017-10-01

    Recently, hybrid composites of carbon fiber reinforced plastics (CFRP) and steel have attracted great attention from automotive engineers due to their high potential for lightweight and multi-materials structures. Interestingly, such hybrid composites have demonstrated increased breaking strain, i.e., the breaking strain of CFRP in the hybrid was larger than that of single CFRP. As such the mechanical properties of hybrid composites could not be calculated using the rule of mixture. In addition, such increase is strongly dependent on the adhesion between CFRP and steel. In this study, a numerical analysis model was built to investigate the mechanism behind increased breaking strain of CFRP in the hybrid structure. Using cohesive zone model, the adhesion between CFRP and steel was effectively considered. The numerical results showed that the simulated mechanical behavior of the hybrid composites did not change as much as observed in experimental as the interfacial adhesion varied. We will investigate this discrepancy in detail and will report new analysis method suitable for CFRP and steel hybrid composites.

  1. Composition and microstructure of MTA and Aureoseal Plus: XRF, EDS, XRD and FESEM evaluation.

    PubMed

    Cianconi, L; Palopoli, P; Campanella, V; Mancini, M

    2016-12-01

    The aim of this study was to determine the chemical composition and the phases' microstructure of Aureoseal Plus (OGNA, Italy) and ProRoot MTA (Dentsply Tulsa Dental, USA) and to compare their characteristics. Study Design: Comparing Aureoseal Plus and ProRoot MTA microstructure by means of several analyses type. The chemical analysis of the two cements was assessed following the UNI EN ISO 196-2 norm. X-Ray fluorescence (XRF) was used to determine the element composition. The crystalline structure was analysed quantitatively using x-ray diffraction (XRD). Powders morphology was evaluated using a scanning electron microscope (SEM) with backscattering detectors, and a field emission scanning electron microscope (FESEM). Elemental analysis was performed by energy dispersive x-ray analysis (EDS). The semi-quantitative XRF analysis showed the presence of heavy metal oxides in both cements. The XRD spectra of the two cements reported the presence of dicalcium silicate, tricalcium silicate, tricalcium aluminate, tetracalcium aluminoferrite, bismuth oxide and gypsum. SEM analysis showed that ProRoot MTA powder is less coarse and more homogeneous than Aureoseal. Both powders are formed by particles of different shapes: round, prismatic and oblong. The EDS analysis showed that some ProRoot MTA particles, differently from Aureoseal, contain Ca, Si, Al and Fe. Oblong particles in ProRoot and Aureoseal are rich of bismuth. The strong interest in developing new Portland cement-based endodontic sealers will create materials with increased handling characteristics and physicochemical properties. A thorough investigation on two cement powders was carried out by using XRF, XRD, SEM and EDS analysis. To date there was a lack of studies on Aureoseal Plus. This cement is similar in composition to ProRoot MTA. Despite that it has distinctive elements that could improve its characteristics, resulting in a good alternative to MTA.

  2. [High-precision in situ analysis of the lead isotopic composition in copper using femtosecond laser ablation MC-ICP-MS and the application in ancient coins].

    PubMed

    Chen, Kai-Yun; Fan, Chao; Yuan, Hong-Lin; Bao, Zhi-An; Zong, Chun-Lei; Dai, Meng-Ning; Ling, Xue; Yang, Ying

    2013-05-01

    In the present study we set up a femtosecond laser ablation MC-ICP-MS method for lead isotopic analysis. Pb isotopic composition of fifteen copper (brass, bronze) standard samples from the National Institute of Standards Material were analyzed using the solution method (MC-ICP-MS) and laser method (fLA-MC-ICPMS) respectively, the results showed that the Pb isotopic composition in CuPb12 (GBW02137) is very homogeneous, and can be used as external reference material for Pb isotopic in situ analysis. On CuPb12 112 fLA-MC-ICPMS Pb isotope analysis, the weighted average values of the Pb isotopic ratio are in good agreement with the results analyzed by bulk solution method within 2sigma error, the internal precision RSEs of the 208 Pb/204 Pb ratio and 207 Pb/206 Pb ratio are less than 90 and 40 ppm respectively, and the external precision RSDs of them are less than 60 and 30 ppm respectively. Pb isotope of thirteen ancient bronze coins was analyzed via fLA-MC-ICPMS, the results showed that the Pb isotopic composition of ancient coins of different dynasties is significantly different, and not all the Pb isotopic compositions in the coins even from the same dynasty are in agreement with each other.

  3. A study on structure, morphology, optical properties, and photocatalytic ability of SrTiO3/TiO2 granular composites

    NASA Astrophysics Data System (ADS)

    Thi Mai Oanh, Le; Xuan Huy, Nguyen; Thi Thuy Phuong, Doan; Danh Bich, Do; Van Minh, Nguyen

    2018-03-01

    (1-x)SrTiO3-xTiO2 granular composites with x=0.3, 0.4, 0.5, 0.6, 0.7, and 0.8 were synthesized by sol-gel process. Structure, morphology, optical properties, and photocatalytic activity were investigated in detail using x-ray diffraction (XRD) analysis, Raman scattering, field-emission scanning electron microscopy (FE-SEM), Transmission Electron Microscopy (TEM), ultraviolet-visible (UV-vis) absorption spectra, and photoluminescence (PL). XRD analysis showed the formation of single phase for parent phases and the present of two component phases in all composites without any impurity. A tight cohesion between TiO2 and SrTiO3 (STO) at grain boundary region was inferred from lattice parameter change of STO. Moreover, FE-SEM images revealed a granular structure of composite in which SrTiO3 particles were surrounded by smaller TiO2 nanoparticles. As TiO2 concentration increased, absorption edge firstly shifted to the left for composite with x=0.3 and then shifted gradually to the right with further increasing of TiO2 content from 30 mol% to 80 mol%. Composites exhibited a stronger photocatalytic activity than parent phases, with the highest efficiency at 50 mol% of TiO2. PL analysis result showed that the recombination rate of photogenerated electron-hole pairs decreased in composite sample, which partly explained the enhanced photocatalytic property.

  4. Trade-Off Analysis between Concerns Based on Aspect-Oriented Requirements Engineering

    NASA Astrophysics Data System (ADS)

    Laurito, Abelyn Methanie R.; Takada, Shingo

    The identification of functional and non-functional concerns is an important activity during requirements analysis. However, there may be conflicts between the identified concerns, and they must be discovered and resolved through trade-off analysis. Aspect-Oriented Requirements Engineering (AORE) has trade-off analysis as one of its goals, but most AORE approaches do not actually offer support for trade-off analysis; they focus on describing concerns and generating their composition. This paper proposes an approach for trade-off analysis based on AORE using use cases and the Requirements Conflict Matrix (RCM) to represent compositions. RCM shows the positive or negative effect of non-functional concerns over use cases and other non-functional concerns. Our approach is implemented within a tool called E-UCEd (Extended Use Case Editor). We also show the results of evaluating our tool.

  5. Analysis/design of strip reinforced random composites (strip hybrids)

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.

    1978-01-01

    Advanced analysis methods and composite mechanics were applied to a strip-reinforced random composite square panel with fixed ends to illustrate the use of these methods for the a priori assessment of the composite panel when subjected to complex loading conditions. The panel was assumed to be of E-glass random composite. The strips were assumed to be of three advanced unidirectional composites to cover a range of low, intermediate, and high modulus stiffness. The panels were assumed to be subjected to complex loadings to assess their adequacy as load-carrying members in auto body, aircraft engine nacelle and windmill blade applications. The results show that strip hybrid panels can be several times more structurally efficient than the random composite base materials. Some of the results are presented in graphical form and procedures are described for use of these graphs as guides for preliminary design of strip hybrids.

  6. Quick and simple estimation of bacteria using a fluorescent paracetamol dimer-Au nanoparticle composite

    NASA Astrophysics Data System (ADS)

    Sahoo, Amaresh Kumar; Sharma, Shilpa; Chattopadhyay, Arun; Ghosh, Siddhartha Sankar

    2012-02-01

    Rapid, simple and sensitive detection of bacterial contamination is critical for safeguarding public health and the environment. Herein, we report an easy method of detection as well as enumeration of the bacterial cell number on the basis of fluorescence quenching of a non-antibacterial fluorescent nanocomposite, consisting of paracetamol dimer (PD) and Au nanoparticles (NPs), in the presence of bacteria. The composite was synthesized by reaction of paracetamol (p-hydroxyacetanilide) with HAuCl4. The Au NPs of the composite were characterized using UV-Vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction and selected area electron diffraction analysis. The paracetamol dimer in the composite showed emission peak at 435 nm when excited at 320 nm. The method successfully detected six bacterial strains with a sensitivity of 100 CFU mL-1. The Gram-positive and Gram-negative bacteria quenched the fluorescence of the composite differently, making it possible to distinguish between the two. The TEM analysis showed interaction of the composite with bacteria without any apparent damage to the bacteria. The chi-square test established the accuracy of the method. Quick, non-specific and highly sensitive detection of bacteria over a broad range of logarithmic dilutions within a short span of time demonstrates the potential of this method as an alternative to conventional methods.Rapid, simple and sensitive detection of bacterial contamination is critical for safeguarding public health and the environment. Herein, we report an easy method of detection as well as enumeration of the bacterial cell number on the basis of fluorescence quenching of a non-antibacterial fluorescent nanocomposite, consisting of paracetamol dimer (PD) and Au nanoparticles (NPs), in the presence of bacteria. The composite was synthesized by reaction of paracetamol (p-hydroxyacetanilide) with HAuCl4. The Au NPs of the composite were characterized using UV-Vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction and selected area electron diffraction analysis. The paracetamol dimer in the composite showed emission peak at 435 nm when excited at 320 nm. The method successfully detected six bacterial strains with a sensitivity of 100 CFU mL-1. The Gram-positive and Gram-negative bacteria quenched the fluorescence of the composite differently, making it possible to distinguish between the two. The TEM analysis showed interaction of the composite with bacteria without any apparent damage to the bacteria. The chi-square test established the accuracy of the method. Quick, non-specific and highly sensitive detection of bacteria over a broad range of logarithmic dilutions within a short span of time demonstrates the potential of this method as an alternative to conventional methods. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11837h

  7. Phase Compositions of Self Reinforcement Al2O3/CaAl12O19 Composite using X-ray Diffraction Data and Rietveld Technique

    NASA Astrophysics Data System (ADS)

    Asmi, D.; Low, I. M.; O'Connor, B.

    2008-03-01

    The analysis of x-ray diffraction (XRD) patterns by the Rietveld technique was tested to the quantitatively phase compositions of self reinforcement Al2O3/CaAl12O19 composite. Room-temperature XRD patterns revealed that α-Al2O3 was the only phase presence in the CA0 sample, whereas the α-Al2O3 and CaAl12O19 phases were found for CA5, CA15, CA30, and CA50 samples. The peak intensity of CA6 in the self reinforcement Al2O3/CaAl12O19 composites increased in proportion with increase in CaAl12O19 content in contrast to α-Al2O3. The diffraction patterns for CA100 sample shows minor traces of α-Al2O3 even in relatively low peak intensity. It is suggesting that the in-situ reaction sintering of raw materials were not react completely to form 100 wt% CaAl12O19 at temperature 1650 °C. Quantitative phase compositions of self reinforcement Al2O3/CaAl12O19 composites by Rietveld analysis with XRD data has been well demonstrated. The results showed that the GOF values are relatively low and the fluctuation in the difference plots shows a reasonable fit between the observed and the calculated plot.

  8. Effect of maleated natural rubber on tensile strength and compatibility of natural rubber/coconut coir composite

    NASA Astrophysics Data System (ADS)

    Ujianto, O.; Noviyanti, R.; Wijaya, R.; Ramadhoni, B.

    2017-07-01

    Natural rubber (NR)/coconut coir (CF) composites were fabricated using co-rotating twin screw extruder with maleated NR (MNR) used as compatibilizer. The MNR was produced at three level of maleic anhydride (MA), and analyzed qualitative and quantitatively using FTIR and titration technique. Analysis on MNR using FTIR and titration methods showed that MA was grafted on NR chain at different percentage (0.76, 2.23, 4.79%) depended on MA concentration. Tensile strength data showed the best tensile strength was produced at 7 phr of MNR with 1 phr of MA level in MNR resulting 16.4 MPa. The improvement of compatibilized samples were more than 300% compare to uncompatibilized composite attributed to better interfacial bonding. The improvement on tensile strength was significantly influenced by MNR level and amount of MA added to produce MNR, as well as their interaction. The optimum conditions for producing NR-CF composite were predicted at 6.5 phr of MNR level with 1 phr of MA concentration added in MNR production, regardless screw rotation settings. Results from verification experiments confirm that developed model was capable of describing phenomena during composite preparation. Morphology analysis using scanning electron microscopy shows smooth covered fiber in compatibilized samples than that of without MNR. The morphology also showed less voids on compatibilized samples attributed to better interfacial bonding leading to tensile strength improvement.

  9. Comparison surface characteristics and chemical composition of conventional metallic and nickel-free brackets.

    PubMed

    Shintcovsk, Ricardo Lima; Knop, Luegya Amorim Henriques; Gandini, Luiz Gonzaga; Martins, Lidia Parsekian; Pires, Aline Segatto

    2015-01-01

    This study aims at comparing conventional and nickel-free metal bracket surface characteristics with elemental composition by scanning electron microscopy (SEM), using energy dispersive spectroscopy (EDS). The sample consisted of 40 lower incisor brackets divided into four groups: ABZ = conventional brackets, Kirium Abzil 3M® (n = 10); RL = conventional brackets, Roth Light Morelli® (n = 10); NF = nickel-free brackets, Nickel-Free Morelli® (n = 10); and RM = nickel-free brackets, Roth Max Morelli® (n = 10). Qualitative evaluation of the bracket surface was performed using SEM, whereby surface features were described and compared. The elemental composition was analyzed by EDS. According to surface analysis, groups ABZ and RL showed a homogeneous surface, with better finishing, whereas the surfaces in groups NF and RM were rougher. The chemical components with the highest percentage were Fe, Cr and C. Groups NF and MR showed no nickel in their composition. In conclusion, the bracket surface of the ABZ and RL groups was more homogeneous, with grooves and pores, whereas the surfaces in groups NF and RM showed numerous flaws, cracks, pores and grooves. The chemical composition analysis confirmed that the nickel-free brackets had no Ni in their composition, as confirmed by the manufacturer's specifications, and were therefore safe to use in patients with a medical history of allergy to this metal.

  10. Local viscoelastic response of direct and indirect dental restorative composites measured by AFM.

    PubMed

    Grattarola, Laura; Derchi, Giacomo; Diaspro, Alberto; Gambaro, Carla; Salerno, Marco

    2018-06-08

    We investigated the viscoelastic response of direct and indirect dental restorative composites by the novel technique of AM-FM atomic force microscopy. We selected four composites for direct restorations (Adonis, Optifil, EPH, CME) and three composites for indirect restorations (Gradia, Estenia, Signum). Scanning electron microscopy with micro-analysis was also used to support the results. The mean storage modulus of all composites was in the range of 10.2-15.2 GPa. EPH was the stiffest (p<0.05 vs. all other composites but Adonis and Estenia), while no significant difference was observed between direct and indirect group (p≥0.05). For the loss tangent, Gradia had the highest value (~0.3), different (p<0.05) from Optifil (~0.01) and EPH (~0.04) despite the large coefficient of variation (24%), and the direct composites showed higher loss tangent (p<0.01) than the indirect composites. All composites exhibited minor contrast at the edge of fillers, showing that these are pre-polymerized, as confirmed by EDS.

  11. Characterization of ball-milled carbon nanotube dispersed aluminum mixed powders

    NASA Astrophysics Data System (ADS)

    Maleque, M. A.; Abdullah, U.; Yaacob, I.; Ali, Y.

    2016-04-01

    Currently, carbon nanotube (CNT) is attracting much interest as fibrous materials for reinforcing aluminum matrix composites due to unique properties, such as high strength, elastic modulus, flexibility and high aspect ratios. However, the quality of the dispersion is the major concerning factor which determines the homogeneity of the enhanced mechanical and tribological properties of the composite. This work study and characterized carbon nanotube dispersion in ballmilled CNT-aluminum mixed powders with four different formulations such as 1, 1.5, 2 and 2.5 wt% CNT under high energy planetary ball milling operations. The ball milling was performed for two hours at constant milling speed of 250 rpm under controlled atmosphere. The characterization is performed using FESEM and EDX analyzer for mapping, elemental and line analysis. The experimental results showed homogeneous dispersion of CNTs in aluminum matrix. The composite mixture showed similar pattern from mapping, elemental and line analysis. Identification of only two peaks proved that controlled atmosphere during milling prevented the formation of inter metallic compounds such as aluminum carbide in the composite mixture. Therefore, this CNT-A1 composite powder mixture can be used for new nano-composite development without any agglomeration problem.

  12. Tracking Radionuclide Fractionation in the First Atomic Explosion Using Stable Elements

    DOE PAGES

    Bonamici, Chloë E.; Hervig, Richard L.; Kinman, William S.

    2017-08-25

    Compositional analysis of postdetonation fallout is a tool for forensic identification of nuclear devices. However, the relationship between device composition and fallout composition is difficult to interpret because of the complex combination of physical mixing, nuclear reactions, and chemical fractionations that occur in the chaotic nuclear fireball. By using a combination of in situ microanalytical techniques (electron microprobe analysis and secondary ion mass spectrometry), we show that some heavy stable elements (Rb, Sr, Zr, Ba, Cs, Ba, La, Ce, Nd, Sm, Dy, Lu, U, Th) in glassy fallout from the first nuclear test, Trinity, are reliable chemical proxies for radionuclidesmore » generated during the explosion. Stable-element proxies show that radionuclides from the Trinity device were chemically, but not isotopically, fractionated by condensation. Moreover, stable-element proxies delineate chemical fractionation trends that can be used to connect present-day fallout composition to past fireball composition. Stable-element proxies therefore offer a novel approach for elucidating the phenomenology of the nuclear fireball as it relates to the formation of debris and the fixation of device materials within debris.« less

  13. Tracking Radionuclide Fractionation in the First Atomic Explosion Using Stable Elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonamici, Chloë E.; Hervig, Richard L.; Kinman, William S.

    Compositional analysis of postdetonation fallout is a tool for forensic identification of nuclear devices. However, the relationship between device composition and fallout composition is difficult to interpret because of the complex combination of physical mixing, nuclear reactions, and chemical fractionations that occur in the chaotic nuclear fireball. By using a combination of in situ microanalytical techniques (electron microprobe analysis and secondary ion mass spectrometry), we show that some heavy stable elements (Rb, Sr, Zr, Ba, Cs, Ba, La, Ce, Nd, Sm, Dy, Lu, U, Th) in glassy fallout from the first nuclear test, Trinity, are reliable chemical proxies for radionuclidesmore » generated during the explosion. Stable-element proxies show that radionuclides from the Trinity device were chemically, but not isotopically, fractionated by condensation. Moreover, stable-element proxies delineate chemical fractionation trends that can be used to connect present-day fallout composition to past fireball composition. Stable-element proxies therefore offer a novel approach for elucidating the phenomenology of the nuclear fireball as it relates to the formation of debris and the fixation of device materials within debris.« less

  14. Tracking Radionuclide Fractionation in the First Atomic Explosion Using Stable Elements.

    PubMed

    Bonamici, Chloë E; Hervig, Richard L; Kinman, William S

    2017-09-19

    Compositional analysis of postdetonation fallout is a tool for forensic identification of nuclear devices. However, the relationship between device composition and fallout composition is difficult to interpret because of the complex combination of physical mixing, nuclear reactions, and chemical fractionations that occur in the chaotic nuclear fireball. Using a combination of in situ microanalytical techniques (electron microprobe analysis and secondary ion mass spectrometry), we show that some heavy stable elements (Rb, Sr, Zr, Ba, Cs, Ba, La, Ce, Nd, Sm, Dy, Lu, U, Th) in glassy fallout from the first nuclear test, Trinity, are reliable chemical proxies for radionuclides generated during the explosion. Stable-element proxies show that radionuclides from the Trinity device were chemically, but not isotopically, fractionated by condensation. Furthermore, stable-element proxies delineate chemical fractionation trends that can be used to connect present-day fallout composition to past fireball composition. Stable-element proxies therefore offer a novel approach for elucidating the phenomenology of the nuclear fireball as it relates to the formation of debris and the fixation of device materials within debris.

  15. Preparation and properties of carboxylated styrene-butadiene rubber/cellulose nanocrystals composites.

    PubMed

    Cao, Xiaodong; Xu, Chuanhui; Liu, Yuhong; Chen, Yukun

    2013-01-30

    A series of carboxylated styrene-butadiene rubber (XSBR)/cellulose nanocrystals (CNs) latex composites were successfully prepared. The vulcanization process, morphology, dynamic viscoelastic behavior, dynamic mechanical property, thermal and mechanical performance of the XSBR/CNs composites were investigated in detail. The results revealed that CNs were dispersed uniformly in the XSBR matrix and formed a strong filler-filler network. The dynamic mechanical analysis (DMA) showed that the glass transition temperature (T(g)) of XSBR matrix was shifted from 48.45 to 50.64 °C with 3 phr CNs, but decreased from 50.64 to 46.28 °C when further increasing CNs content up to 15 phr. The composites exhibited a significant enhancement in tensile strength (from 16.9 to 24.1 MPa) and tear strength (from 43.5 to 65.2 MPa) with loading CNs from 0 to 15 phr. In addition, the thermo-gravimetric analysis (TGA) showed that the temperature at 5% weight loss of the XSBR/CNs composites decreased slightly with an increase of the CNs content. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  16. Preparation and properties studies of UV-curable silicone modified epoxy resin composite system.

    PubMed

    Yu, Zhouhui; Cui, Aiyong; Zhao, Peizhong; Wei, Huakai; Hu, Fangyou

    2018-01-01

    Modified epoxy suitable for ultraviolet (UV) curing is prepared by using organic silicon toughening. The curing kinetics of the composite are studied by dielectric analysis (DEA), and the two-phase compatibility of the composite is studied by scanning electron microscopy (SEM). The tensile properties, heat resistance, and humidity resistance of the cured product are explored by changing the composition ratio of the silicone and the epoxy resin. SEM of silicone/epoxy resin shows that the degree of cross-linking of the composites decreases with an increase of silicone resin content. Differential thermal analysis indicates that the glass transition temperature and the thermal stability of the composites decrease gradually with an increase of silicone resin content. The thermal degradation rate in the high temperature region, however, first decreases and then increases. In general, after adding just 10%-15% of the silicone resin and exposing to light for 15 min, the composite can still achieve a better curing effect. Under such conditions, the heat resistance of the cured product decreases a little. The tensile strength is kept constant so that elongation at breakage is apparently improved. The change rate after immersion in distilled water at 60°C for seven days is small, which shows excellent humidity resistance.

  17. Dissolution enhancement of a drug exhibiting thermal and acidic decomposition characteristics by fusion processing: a comparative study of hot melt extrusion and KinetiSol dispersing.

    PubMed

    Hughey, Justin R; DiNunzio, James C; Bennett, Ryan C; Brough, Chris; Miller, Dave A; Ma, Hua; Williams, Robert O; McGinity, James W

    2010-06-01

    In this study, hot melt extrusion (HME) and KinetiSol Dispersing (KSD) were utilized to prepare dissolution-enhanced solid dispersions of Roche Research Compound A (ROA), a BCS class II drug. Preformulation characterization studies showed that ROA was chemically unstable at elevated temperatures and acidic pH values. Eudragit L100-55 and AQOAT LF (HPMCAS) were evaluated as carrier polymers. Dispersions were characterized for ROA recovery, crystallinity, homogeneity, and non-sink dissolution. Eudragit L100-55 dispersions prepared by HME required the use of micronized ROA and reduced residence times in order to become substantially amorphous. Compositions containing HPMCAS were also prepared by HME, but an amorphous dispersion could not be obtained. All HME compositions contained ROA-related impurities. KSD was investigated as a method to reduce the decomposition of ROA while rendering compositions amorphous. Substantially amorphous, plasticizer free compositions were processed successfully by KSD with significantly higher ROA recovery values and amorphous character than those achieved by HME. A near-infrared chemical imaging analysis was conducted on the solid dispersions as a measure of homogeneity. A statistical analysis showed similar levels of homogeneity in compositions containing Eudragit L100-55, while differences were observed in those containing HMPCAS. Non-sink dissolution analysis of all compositions showed rapid supersaturation after pH adjustment to approximately two to three times the equilibrium solubility of ROA, which was maintained for at least 24 h. The results of the study demonstrated that KSD is an effective method of forming dissolution-enhanced amorphous solid solutions in cases where HME is not a feasible technique.

  18. Evaluating Composite Sampling Methods of Bacillus spores at Low Concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, Becky M.; Amidan, Brett G.; Anderson, Kevin K.

    Restoring facility operations after the 2001 Amerithrax attacks took over three months to complete, highlighting the need to reduce remediation time. The most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite: a single cellulose sponge samples multiple coupons; 2) single medium multi-pass composite: a single cellulose sponge is used to sample multiple coupons; and 3) multi-medium post-samplemore » composite: a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155CFU/cm2, respectively). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p-value < 0.0001) and coupon material (p-value = 0.0008). Recovery efficiency (RE) was higher overall using the post-sample composite (PSC) method compared to single medium composite from both clean and grime coated materials. RE with the PSC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, painted wall board, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but significantly lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when responding to a Bacillus anthracis contamination event of clean or dirty surfaces.« less

  19. Joint source based analysis of multiple brain structures in studying major depressive disorder

    NASA Astrophysics Data System (ADS)

    Ramezani, Mahdi; Rasoulian, Abtin; Hollenstein, Tom; Harkness, Kate; Johnsrude, Ingrid; Abolmaesumi, Purang

    2014-03-01

    We propose a joint Source-Based Analysis (jSBA) framework to identify brain structural variations in patients with Major Depressive Disorder (MDD). In this framework, features representing position, orientation and size (i.e. pose), shape, and local tissue composition are extracted. Subsequently, simultaneous analysis of these features within a joint analysis method is performed to generate the basis sources that show signi cant di erences between subjects with MDD and those in healthy control. Moreover, in a cross-validation leave- one-out experiment, we use a Fisher Linear Discriminant (FLD) classi er to identify individuals within the MDD group. Results show that we can classify the MDD subjects with an accuracy of 76% solely based on the information gathered from the joint analysis of pose, shape, and tissue composition in multiple brain structures.

  20. Design of hat-stiffened composite panels loaded in axial compression

    NASA Astrophysics Data System (ADS)

    Paul, T. K.; Sinha, P. K.

    An integrated step-by-step analysis procedure for the design of axially compressed stiffened composite panels is outlined. The analysis makes use of the effective width concept. A computer code, BUSTCOP, is developed incorporating various aspects of buckling such as skin buckling, stiffener crippling and column buckling. Other salient features of the computer code include capabilities for generation of data based on micromechanics theories and hygrothermal analysis, and for prediction of strength failure. Parametric studies carried out on a hat-stiffened structural element indicate that, for all practical purposes, composite panels exhibit higher structural efficiency. Some hybrid laminates with outer layers made of aluminum alloy also show great promise for flight vehicle structural applications.

  1. The effect of environmental factors on stable isotopic composition of n-alkanes in Mediterranean olive oils

    NASA Astrophysics Data System (ADS)

    Pedentchouk, Nikolai; Mihailova, Alina; Abbado, Dimitri

    2014-05-01

    Traceability of the geographic origin of olive oils is an important issue from both commercial and health perspectives. This study evaluates the impact of environmental factors on stable C and H isotope compositions of n-alkanes in extra virgin olive oils from Croatia, France, Greece, Italy, Morocco, Portugal, Slovenia, and Spain. The data are used to investigate the applicability of stable isotope methodology for olive oil regional classification in the Mediterranean region. Analysis of stable C isotope composition of n-C29 alkane showed that extra virgin olive oils from Portugal and Spain have the most positive n-C29 alkane delta13C values. Conversely, olive oils from Slovenia, northern and central Italy are characterized by the most negative values. Overall, the n-C29 alkane delta13C values show a positive correlation with the mean air temperature during August-December and a negative correlation with the mean relative humidity during these months. Analysis of stable H isotope composition of n-C29 alkane revealed that the deltaD values are the most positive in olive oils from Greece and Morocco and the most negative in oils from northern Italy. The deltaD values of oils show significant correlation with all the analyses geographical parameters: the mean air temperature and relative humidity during August-December, the total amount of rainfall (the same months) and the annual deltaD values of precipitation. As predictor variables in the Categorical Data Analysis, the n-C29 alkane deltaD values show the most significant discriminative power, followed by the n-C29 alkane delta13C values. Overall, 93.4% of olive oil samples have been classified correctly into one of the production regions. Our findings suggest that an integrated analysis of C and H isotope compositions of n-alkanes extracted from extra virgin olive oil could become a useful tool for geographical provenancing of this highly popular food commodity.

  2. [Apply fourier transform infrared spectra coupled with two-dimensional correlation analysis to study the evolution of humic acids during composting].

    PubMed

    Bu, Gui-jun; Yu, Jing; Di, Hui-hui; Luo, Shi-jia; Zhou, Da-zhai; Xiao, Qiang

    2015-02-01

    The composition and structure of humic acids formed during composting play an important influence on the quality and mature of compost. In order to explore the composition and evolution mechanism, municipal solid wastes were collected to compost and humic and fulvic acids were obtained from these composted municipal solid wastes. Furthermore, fourier transform infrared spectra and two-dimensional correlation analysis were applied to study the composition and transformation of humic and fulvic acids during composting. The results from fourier transform infrared spectra showed that, the composition of humic acids was complex, and several absorbance peaks were observed at 2917-2924, 2844-2852, 2549, 1662, 1622, 1566, 1454, 1398, 1351, 990-1063, 839 and 711 cm(-1). Compared to humic acids, the composition of fulvci acids was simple, and only three peaks were detected at 1725, 1637 and 990 cm(-1). The appearance of these peaks showed that both humic and fulvic acids comprised the benzene originated from lignin and the polysaccharide. In addition, humic acids comprised a large number of aliphatic and protein which were hardly detected in fulvic acids. Aliphatic, polysaccharide, protein and lignin all were degraded during composting, however, the order of degradation was different between humic and fulvci acids. The result from two-dimensional correlation analysis showed that, organic compounds in humic acids were degraded in the following sequence: aliphatic> protein> polysaccharide and lignin, while that in fulvic acids was as following: protein> polysaccharide and aliphatic. A large number of carboxyl, alcohols and ethers were formed during the degradation process, and the carboxyl was transformed into carbonates. It can be concluded that, fourier transform infrared spectra coupled with two-dimensional correlation analysis not only can analyze the function group composition of humic substances, but also can characterize effectively the degradation sequence of these groups and identified the formation mechanism and dynamics of humic substances during composting.

  3. Computational Fatigue Life Analysis of Carbon Fiber Laminate

    NASA Astrophysics Data System (ADS)

    Shastry, Shrimukhi G.; Chandrashekara, C. V., Dr.

    2018-02-01

    In the present scenario, many traditional materials are being replaced by composite materials for its light weight and high strength properties. Industries like automotive industry, aerospace industry etc., are some of the examples which uses composite materials for most of its components. Replacing of components which are subjected to static load or impact load are less challenging compared to components which are subjected to dynamic loading. Replacing the components made up of composite materials demands many stages of parametric study. One such parametric study is the fatigue analysis of composite material. This paper focuses on the fatigue life analysis of the composite material by using computational techniques. A composite plate is considered for the study which has a hole at the center. The analysis is carried on (0°/90°/90°/90°/90°)s laminate sequence and (45°/-45°)2s laminate sequence by using a computer script. The life cycles for both the lay-up sequence are compared with each other. It is observed that, for the same material and geometry of the component, cross ply laminates show better fatigue life than that of angled ply laminates.

  4. Tungsten Disulfide Nanotubes Reinforced Biodegradable Polymers for Bone Tissue Engineering

    PubMed Central

    Lalwani, Gaurav; Henslee, Allan M.; Farshid, Behzad; Parmar, Priyanka; Lin, Liangjun; Qin, Yi-Xian; Kasper, F. Kurtis; Mikos, Antonios G.; Sitharaman, Balaji

    2013-01-01

    In this study, we have investigated the efficacy of inorganic nanotubes as reinforcing agents to improve the mechanical properties of poly(propylene fumarate) (PPF) composites as a function of nanomaterial loading concentration (0.01-0.2 wt%). Tungsten disulfide nanotubes (WSNTs) were used as reinforcing agents in the experimental groups. Single- and multi- walled carbon nanotubes (SWCNTs and MWCNTs) were used as positive controls, and crosslinked PPF composites were used as baseline control. Mechanical testing (compression and three-point bending) shows a significant enhancement (up to 28-190%) in the mechanical properties (compressive modulus, compressive yield strength, flexural modulus, and flexural yield strength) of WSNT reinforced PPF nanocomposites compared to the baseline control. In comparison to positive controls, at various concentrations, significant improvements in the mechanical properties of WSNT nanocomposites were also observed. In general, the inorganic nanotubes (WSNTs) showed a better (up to 127%) or equivalent mechanical reinforcement compared to carbon nanotubes (SWCNTs and MWCNTs). Sol fraction analysis showed significant increases in the crosslinking density of PPF in the presence of WSNTs (0.01-0.2 wt%). Transmission electron microscopy (TEM) analysis on thin sections of crosslinked nanocomposites showed the presence of WSNTs as individual nanotubes in the PPF matrix, whereas SWCNTs and MWCNTs existed as micron sized aggregates. The trend in the surface area of nanostructures obtained by BET surface area analysis was SWCNTs > MWCNTs > WSNTs. The BET surface area analysis, TEM analysis, and sol fraction analysis results taken together suggest that chemical composition (inorganic vs. carbon nanomaterials), presence of functional groups (such as sulfide and oxysulfide), and individual dispersion of the nanomaterials in the polymer matrix (absence of aggregation of the reinforcing agent) are the key parameters affecting the mechanical properties of nanostructure-reinforced PPF composites, and the reason for the observed increases in the mechanical properties compared to the baseline and positive controls. PMID:23727293

  5. Graphite intercalated polyaniline composite with superior anticorrosive and hydrophobic properties, as protective coating material on steel surfaces

    NASA Astrophysics Data System (ADS)

    Rathnayake, R. M. N. M.; Mantilaka, M. M. M. G. P. G.; Hara, Masanori; Huang, Hsin-Hui; Wijayasinghe, H. W. M. A. C.; Yoshimura, Masamichi; Pitawala, H. M. T. G. A.

    2017-07-01

    Solid polymer composite systems are widely being used for potential technological applications in secondary energy sources and electrochromic devices. In this study, we synthesized and characterized a composite material composed of polyaniline (PANI) and natural needle platy (NPG) vein graphite. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), cyclic voltammetry (CV), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), micro-Raman analysis, thermogravimetric and differential thermal analysis (TGA/DTA), transmission electron microscopy (TEM) were used to study the structural and electrochemical properties of the prepared PANI/NPG graphite composite. XPS, FTIR, and micro-Raman analysis confirmed the existence of relevant functional groups and bonding in the prepared PANI/NPG composite material. The composite shows a very low corrosion rate, approximately 29 μm per year, and high hydrophobicity on steel surfaces, which helps to prevent the corrosion due to O2 penetration towards the metal surface. It indicates that the composite can be used as a high potential surface coating material to anticorrosion. The specific capacitance of PANI/NPG composite is 833.3 F g-1, which is higher than that of PANI. This synergistic electrical performance result proves the prepared PANI/NPG graphite composite as a suitable protective coating material for steel surfaces.

  6. Tensile behavior of unidirectional and cross-ply CMC`s

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann, R.K.; Kampe, S.L.

    1996-12-31

    The tensile behavior of two ceramic matrix composites (CMC`s) was observed. The materials of interest in this study were a glass-ceramic matrix composite (GCMC) and a Blackglas{trademark} matrix composite, both reinforced with Nicalon (SiC) fibers. Both composites were produced in laminate form with a symmetric cross-ply layup. Microstructural observations indicated the presence of significant porosity and some cracking in the Blackglas{trademark} samples, while the GCMC samples showed considerably less damage. From the observed tensile behavior of the cross-ply composites, a {open_quote}back-out{close_quote} factor for determining the unidirectional, 0{degrees} ply data of the composites was calculated using Classical Lamination Theory (CLT) andmore » compared to actual data. While the tensile properties obtained from the Blackglas{trademark} composites showed good correlation with the back-calculated values, those from the GCMC did not. Analysis indicates that the applicability of this technique is strongly influenced by the initial matrix microstructure of the composite, i.e., porosity and cracking present following processing.« less

  7. Surface analysis of graphite fiber reinforced polyimide composites

    NASA Technical Reports Server (NTRS)

    Messick, D. L.; Progar, D. J.; Wightman, J. P.

    1983-01-01

    Several techniques have been used to establish the effect of different surface pretreatments on graphite-polyimide composites. Composites were prepared from Celion 6000 graphite fibers and the polyimide LARC-160. Pretreatments included mechanical abrasion, chemical etching and light irradiation. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were used in the analysis. Contact angle of five different liquids of varying surface tensions were measured on the composites. SEM results showed polymer-rich peaks and polymer-poor valleys conforming to the pattern of the release cloth used durng fabrication. Mechanically treated and light irradiated samples showed varying degrees of polymer peak removal, with some degradation down to the graphite fibers. Minimal changes in surface topography were observed on concentrations of surface fluorine even after pretreatment. The light irradiation pretreatment was most effective at reducing surface fluorine concentrations whereas chemical pretreatment was the least effective. Critical surface tensions correlated directly with the surface fluorine to carbon ratios as calculated from XPS.

  8. The effect of weak interface on transverse properties of a ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Shimansky, R. A.; Hahn, H. T.; Salamon, N. J.

    1990-01-01

    Experimental studies conducted at NASA Lewis on SiC reaction-bonded Si3N4 composite system showed that transverse stiffness and strength were much lower than those predicted from existing analytical models based on good interfacial bonding. It was believed that weakened interfaces were responsible for the decrease in tranverse properties. To support this claim, a two-dimensional FEM analysis was performed for a transverse representative volume element. Specifically, the effect of fiber/matrix displacement compatibility at the interface was studied under both tensile and compressive transverse loadings. Interface debonding was represented using active gap elements connecting the fiber and matrix. The analyses show that the transverse tensile strength and stiffness are best predicted when a debonded interface is assumed for the composite. In fact, the measured properties can be predicted by simply replacing the fibers by voids. Thus, it is found that little or no interfacial bonding exists in the composite, and that an elastic analysis can predict the transverse stiffness and strength.

  9. Mechanical properties of experimental composites with different calcium phosphates fillers.

    PubMed

    Okulus, Zuzanna; Voelkel, Adam

    2017-09-01

    Calcium phosphates (CaPs)-containing composites have already shown good properties from the point of view of dental restorative materials. The purpose of this study was to examine the crucial mechanical properties of twelve hydroxyapatite- or tricalcium phosphate-filled composites. The raw and surface-treated forms of both CaP fillers were applied. As a reference materials two experimental glass-containing composites and one commercial dental restorative composite were applied. Nano-hardness, elastic modulus, compressive, flexural and diametral tensile strength of all studied materials were determined. Application of statistical methods (one-way analysis of variance and cluster agglomerative analysis) allowed for assessing the similarities between examined materials according to the values of studied parameters. The obtained results show that in almost all cases the mechanical properties of experimental CaPs-composites are comparable or even better than mechanical properties of examined reference materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonamici, Chloë E.; Kinman, William S.; Fournelle, John H.

    Reprocessed earth material is a glassy nuclear fallout debris from near-surface nuclear tests. A geochemical approach to analysis of glassy fallout is uniquely suited to determine the means of reprocessing and shed light on the mechanisms of fallout formation. An improved understanding of fallout formation is of interest both for its potential to guide post-detonation nuclear forensic investigations and in the context of possible affinities between glassy debris and other glasses generated by high-energy natural events, such as meteorite impacts and lightning strikes. Our study presents a large major-element compositional dataset for glasses within aerodynamic fallout from the Trinity nuclearmore » test (“trinitite”) and a geochemically based analysis of the glass compositional trends. Silica-rich and alkali-rich trinitite glasses show compositions and textures consistent with formation through melting of individual mineral grains—quartz and alkali feldspar, respectively—from the test-site sediment. Furthermore, the volumetrically dominant glass phase—called the CaMgFe glass—shows extreme major-element compositional variability. Compositional trends in the CaMgFe glass are most consistent with formation through volatility-controlled condensation from compositionally heterogeneous plasma. Radioactivity occurs only in CaMgFe glass, indicating that co-condensation of evaporated bulk ground material and trace device material was the main mechanism of radioisotope incorporation into trinitite. CaMgFe trinitite glasses overlap compositionally with basalts, rhyolites, fulgurites, tektites, and microtektites but display greater compositional diversity than all of these naturally formed glasses. Indeed, the most refractory CaMgFe glasses compositionally resemble early solar system condensates—specifically, CAIs.« less

  11. Investigation on Failures of Composite Beam and Substrate Concrete due to Drying Shrinkage Property of Repair Materials

    NASA Astrophysics Data System (ADS)

    Pattnaik, Rashmi Ranjan

    2017-06-01

    A Finite Element Analysis (FEA) and an experimental study was conducted on composite beam of repair material and substrate concrete to investigate the failures of the composite beam due to drying shrinkage property of the repair materials. In FEA, the stress distribution in the composite beam due to two concentrate load and shrinkage of repair materials were investigated in addition to the deflected shape of the composite beam. The stress distributions and load deflection shapes of the finite element model were investigated to aid in analysis of the experimental findings. In the experimental findings, the mechanical properties such as compressive strength, split tensile strength, flexural strength, and load-deflection curves were studied in addition to slant shear bond strength, drying shrinkage and failure patterns of the composite beam specimens. Flexure test was conducted to simulate tensile stress at the interface between the repair material and substrate concrete. The results of FEA were used to analyze the experimental results. It was observed that the repair materials with low drying shrinkage are showing compatible failure in the flexure test of the composite beam and deform adequately in the load deflection curves. Also, the flexural strength of the composite beam with low drying shrinkage repair materials showed higher flexural strength as compared to the composite beams with higher drying shrinkage value of the repair materials even though the strength of those materials were more.

  12. Effects of compound carboxylate-urea system on nano Ni-Cr/SiC composite coatings from trivalent chromium baths.

    PubMed

    He, Xinkuai; Hou, Bailong; Cai, Youxing; Wu, Luye

    2013-03-01

    The effects of compound carboxylate-urea system on the nano Ni-Cr/SiC composite coatings from trivalent chromium baths have been investigated in ultrasonic field. These results indicated that the SiC and Cr contents and the thickness of the Ni-Cr/SiC composite coatings could be obviously improved by the compound carboxylate-urea system. The steady-state polarization curves showed that the hydrogen evolution reaction (HER) could be significantly inhibited by the compound carboxylate-urea system, which was benefit to increase the SiC and Cr contents and the thickness of the composite coatings. The cyclic voltammetry (CV) curves showed that both of the Cr(III) and Ni(II) cathodic polarization could be increased in the bath containing the compound carboxylate-urea system. Thus, a compact Ni-Cr/SiC composite coating could be obtained using this technique. The surface morphology of the Ni-Cr/SiC composite coatings checked with the scanning electron micrographs (SEM) showed that the surface smoothness could be also improved and the microcracks and pinholes could be decreased due to the presence of the compound carboxylate-urea system. The phase composition of the as-posited coating was measured by the X-ray diffraction. XRD data showed that the as-posited coating was Ni-Cr/SiC composite coating. The chemical composition of the coating was investigated by energy dispersive spectrum (EDS) analysis. The result showed the Ni-Cr/SiC composite coatings with 3.8 wt.% SiC and 24.68 wt.% Cr were obtained in this study, which had best corrosion resistance according to the results of the typical potentiodynamic polarization curves of the Ni-Cr/SiC composite coatings.

  13. Community composition and diversity of ground beetles (Coleoptera: Carabidae) in Yaoluoping National Nature Reserve

    PubMed Central

    Li, Wen-Bo; Liu, Nai-Yi; Wu, Yun-He; Zhang, Yu-Cai; Xu, Qin; Chu, Jun; Wang, Shu-Yan

    2017-01-01

    Abstract This study used pitfall trapping to examine community composition and diversity of ground beetles in five different habitats (coniferous, deciduous, mixed coniferous, farmland, and settlements) within Anhui Yaoluoping National Nature Reserve from May to September 2014. In total, 1,352 ground beetles were collected, belonging to 16 genera and 44 species. Of these, four dominant species Dolichus halensis, Harpalus pastor, Carabus casaleianus, and Pheropsophus jessoensis were identified, respectively, comprising 370, 177, 131, and 123 individuals. The deciduous forest showed greater diversity (3.78 according to Shannon–Weiner index), equitability (0.80 according to Pielou’s index), and dominance (9.52 according to Simpson’s index) when compared with farmland, but species richness in the deciduous forest (27) was lower than that in farmland (35). One-way analysis of variance showed that ground beetle species composition and abundance among different habitats varied significantly. Cluster analysis and principal coordinate analysis showed that farmland shared low community similarity with other habitat types, and coniferous and mixed coniferous forests shared similar community types. Our results indicate that species composition, abundance, and diversity of ground beetles are affected by different habitat types, with deciduous forest types being critical in maintaining the diversity of rare species. We recommend reducing cultivated farmland area and increasing the area of carefully planned deciduous forest in order to better protect ground beetle diversity in the region.

  14. Study on Shear Performance of Cold-formed Steel Composite Wall with New Type of stud

    NASA Astrophysics Data System (ADS)

    Wang, Chungang; Yue, Sizhe; Liu, Hong; Zhang, Zhuangnan

    2018-03-01

    The shear resistance of single oriented-strand board wall and single gypsum board wall can be improved in different degrees by increasing strength of steel. The experimental data of literatures were used, and the test specimens had been simulated and validated by ABAQUS finite element analysis. According to the research, it showed that the compressive bearing capacity of the new stud composite wall was much better than the common stud composite wall, so the establishment and research of all models had been based on the new section stud. The analysis results show that when using new type of stud the shear resistance of the single oriented-strand board wall can be improved efficiently by increasing strength of steel, but the shear resistance of the single gypsum wall can be increased little.

  15. The association of clot lysis time with total obesity is partly independent from the association of PAI-1 with central obesity in African adults.

    PubMed

    Eksteen, Philna; Pieters, Marlien; de Lange, Zelda; Kruger, Herculina S

    2015-08-01

    Preliminary evidence indicates that the association of fibrinolytic potential, measured as clot lysis time (CLT), with body composition may differ from that of plasminogen activator inhibitor type-1 (PAI-1). We therefore investigated the association between fibrinolytic markers (plasminogen activator inhibitor type-1 activity (PAI-1act) and CLT) and body composition using detailed body composition analyses. Data from 1288 Africans were cross-sectionally analyzed. Body composition analysis included BMI, waist circumference (WC); waist to height ratio (WHtR), skinfolds and body fat percentage measured with air-displacement plethysmography and bioelectrical impedance analysis. PAI-1act and CLT were significantly higher in women than in men, despite adjustment for differences in body composition. PAI-1act and CLT showed similar linear positive relationships with body composition (BMI, WC, WHtR, skinfolds) in men. In women CLT also showed a linear relationship with body composition, while PAI-1act levels plateaued at higher BMI and did not differ across skinfold categories. PAI-1act showed stronger correlations with body composition markers in men than it did in women, while no sex differences existed for CLT. PAI-1act associated more strongly with central obesity, while CLT associated with total body fat. Observed differences may be related to differences in adipose tissue type, distribution and sequence of accumulation between sexes. PAI-1act is strongly influenced by accumulation of visceral adipose tissue, whereas CLT is associated with obesity independent of type and sequence of body fat accumulation in this African adult study population. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Composite-Based High Performance Electroactive Polymers For Remotely Controlled Mechanical Manipulations in NASA Applications

    NASA Technical Reports Server (NTRS)

    Zhang, Q. M.

    2003-01-01

    This program supported investigation of an all-polymer percolative composite which exhibits very high dielectric constant (less than 7,000). The experimental results show that the dielectric behavior of this new class of percolative composites follows the prediction of the percolation theory and the analysis of the conductive percolation phenomena. The very high dielectric constant of the all-polymer composites which are also very flexible and possess elastic modulus not very much different from that of the insulation polymer matrix makes it possible to induce a high electromechanical response under a much reduced electric field (a strain of 2.65% with an elastic energy density of 0.18 J/cu cm can be achieved under a field of 16 MV/m). Data analysis also suggests that in these composites, the non-uniform local field distribution as well as interface effects can significantly enhance the strain responses. Furthermore, the experimental data as well as the data analysis indicate that the conduction loss in these composites will not affect the strain hysteresis.

  17. Influence of Mechanical and Chemical Degradation in the Surface Roughness, Gloss, and Color of Microhybrid Composites.

    PubMed

    Lemos, Cleidiel Aa; Mauro, Silvio J; Dos Santos, Paulo H; Briso, Andre Lf; Fagundes, Ticiane C

    2017-04-01

    The aim of this study was to investigate the association of different degradations on the roughness, gloss, and color changes of microhybrid composites. Ten specimens were prepared for Charisma, Amelogen Plus, Point 4, and Opallis resins. Surfaces were polished and baseline measurements of roughness, gloss, and color were recorded. Specimens were then submitted to chemical and mechanical challenges, and the specimens were reevaluated. Roughness and gloss were analyzed by Kruskal -Wallis and Dunn's test (p < 0.05). Color change (ΔE) was analyzed by one-way analysis of variance and Tukey's tests (p < 0.05). The initial and final data were compared using the Wilcoxon test (p < 0.05). Spearman test checked the correlation between the roughness and gloss (p < 0.05). Regarding surface roughness and gloss, there was no difference between composites before challenges. However, all composites showed a significant increase of roughness after challenges, with highest values for Charisma. The gloss was influenced by challenges, evidencing the best gloss for Point 4. Charisma showed the highest value of color change. There was no correlation between surface roughness and gloss for the initial analysis, and after the challenges. Composites were influenced by association of challenges, and Charisma showed the highest changes for roughness, gloss, and color. The type of composite resin influenced the properties of materials, which are surface roughness, gloss, and color change. The dentist should be aware of the performance of different brands, to choose the correct required composite resin for each type of patient or region to be restored.

  18. Feasibility of generating quantitative composition images in dual energy mammography: a simulation study

    NASA Astrophysics Data System (ADS)

    Lee, Donghoon; Kim, Ye-seul; Choi, Sunghoon; Lee, Haenghwa; Choi, Seungyeon; Kim, Hee-Joung

    2016-03-01

    Breast cancer is one of the most common malignancies in women. For years, mammography has been used as the gold standard for localizing breast cancer, despite its limitation in determining cancer composition. Therefore, the purpose of this simulation study is to confirm the feasibility of obtaining tumor composition using dual energy digital mammography. To generate X-ray sources for dual energy mammography, 26 kVp and 39 kVp voltages were generated for low and high energy beams, respectively. Additionally, the energy subtraction and inverse mapping functions were applied to provide compositional images. The resultant images showed that the breast composition obtained by the inverse mapping function with cubic fitting achieved the highest accuracy and least noise. Furthermore, breast density analysis with cubic fitting showed less than 10% error compare to true values. In conclusion, this study demonstrated the feasibility of creating individual compositional images and capability of analyzing breast density effectively.

  19. Development of wide temperature electrolyte for graphite/ LiNiMnCoO2 Li-ion cells: High throughput screening

    NASA Astrophysics Data System (ADS)

    Kafle, Janak; Harris, Joshua; Chang, Jeremy; Koshina, Joe; Boone, David; Qu, Deyang

    2018-07-01

    In this report, we demonstrate that the low temperature power capability of a Li-ion battery can be substantially improved not by adding commercially unavailable additives into the electrolyte, but by rational design of the composition of the most commonly used solvents. Through the detail analysis with electrochemical impedance spectroscopy, the formation of a homogenous solid electrolyte interface (SEI) layer on the carbon anode surface is found to be critical to ensure the performance of a Li-ion battery in a wide temperature range. The post mortem analysis of the negative electrode by XPS revealed that all the electrolyte compositions form similar compounds in the solid electrolyte interphase. However, the electrolytes which give higher capacities at low temperature showed higher percentage of LiF and lower percentage of carbon containing species such as lithium carbonate and lithium ethylene di-carbonate. The electrolyte compositions where cyclic carbonates make up less than 25% of the total solvent showed increased low temperature performance. The solvent composition with higher percentage of linear short chain carbonates showed an improved low temperature performance. The high temperature performances were similar in almost all the combinations.

  20. Two-dimensional collagen-graphene as colloidal templates for biocompatible inorganic nanomaterial synthesis

    PubMed Central

    Kumari, Divya; Sheikh, Lubna; Bhattacharya, Soumya; Webster, Thomas J; Nayar, Suprabha

    2017-01-01

    In this study, natural graphite was first converted to collagen-graphene composites and then used as templates for the synthesis of nanoparticles of silver, iron oxide, and hydroxyapatite. X-ray diffraction did not show any diffraction peaks of graphene in the composites after inorganic nucleation, compared to the naked composite which showed (002) and (004) peaks. Scanning electron micrographs showed lateral gluing/docking of these composites, possibly driven by an electrostatic attraction between the positive layers of one stack and negative layers of another, which became distorted after inorganic nucleation. Docking resulted in single layer-like characteristics in certain places, as seen under transmission electron microscopy, but sp2/sp3 ratios from Raman analysis inferred three-layer composite formation. Strain-induced folding of these layers into uniform clusters at the point of critical nucleation, revealed beautiful microstructures under scanning electron microscopy. Lastly, cell viability studies using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays showed the highest cell viability for the collagen-graphene-hydroxyapatite composites. In this manner, this study provided – to the field of nanomedicine – a new process for the synthesis of several nanoparticles (with low toxicity) of high interest for numerous medical applications. PMID:28553102

  1. Two-dimensional collagen-graphene as colloidal templates for biocompatible inorganic nanomaterial synthesis.

    PubMed

    Kumari, Divya; Sheikh, Lubna; Bhattacharya, Soumya; Webster, Thomas J; Nayar, Suprabha

    2017-01-01

    In this study, natural graphite was first converted to collagen-graphene composites and then used as templates for the synthesis of nanoparticles of silver, iron oxide, and hydroxyapatite. X-ray diffraction did not show any diffraction peaks of graphene in the composites after inorganic nucleation, compared to the naked composite which showed (002) and (004) peaks. Scanning electron micrographs showed lateral gluing/docking of these composites, possibly driven by an electrostatic attraction between the positive layers of one stack and negative layers of another, which became distorted after inorganic nucleation. Docking resulted in single layer-like characteristics in certain places, as seen under transmission electron microscopy, but sp 2 /sp 3 ratios from Raman analysis inferred three-layer composite formation. Strain-induced folding of these layers into uniform clusters at the point of critical nucleation, revealed beautiful microstructures under scanning electron microscopy. Lastly, cell viability studies using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays showed the highest cell viability for the collagen-graphene-hydroxyapatite composites. In this manner, this study provided - to the field of nanomedicine - a new process for the synthesis of several nanoparticles (with low toxicity) of high interest for numerous medical applications.

  2. Structural, optical and electrical properties of WO3-Ag nanocomposites for the electro-optical devices

    NASA Astrophysics Data System (ADS)

    Najafi-Ashtiani, Hamed; Bahari, Ali; Gholipour, Samira; Hoseinzadeh, Siamak

    2018-01-01

    The composites of tungsten trioxide and silver are synthesized by sodium tungstate and silver nitrate precursors. The structural properties of composite coatings are studied by FTIR, XRD, and XPS. The FTIR analysis of synthesized composite powder corroborated the bonds between tungsten and oxygen elements in WO3 molecules. Furthermore, the XRD spectra show crystalline nature while particle size analysis that is investigated by X-powder software shows average particle size of 24 and 25 nm for samples. The structural analyses show that the addition of silver dopant does not change the stoichiometry of tungsten trioxide and only increase the size of the aggregation in the films. Furthermore, these films have an average approximate roughness of about 10.7, 13.1 and 14.2 nm for sample 1, 2 and 3, respectively. The real and imaginative parts of permittivity are investigated using LCR meter in the frequency range 1 Hz-10 GHz. The optical spectra of composite coatings are characterized in the 300-900 nm wavelength range and the calculation of optical band gaps of them exhibited the directly allowed transition with the values of 3.8 and 3.85 eV. From UV-visible spectroscopy studies, the absorption coefficient of the composite thin films is determined to be of the order of 105 cm- 1 and the obtained refraction and extinction indexes indicated normal dispersive coatings. Due to their optical and electrical properties, the synthesized composite material is a promising candidate for use in electro-optical applicants.

  3. Development and characterisation of semi-crystalline composite granules: The effect of particle chemistry and the electrostatic charging

    NASA Astrophysics Data System (ADS)

    Haque, Syed N.; Hussain, Tariq; Chowdhry, Babur Z.; Douroumis, Dennis; Scoutaris, Nikolaos; Nokhodchi, Ali; Maniruzzaman, Mohammed

    2017-12-01

    This study investigated the surface of semi-crystalline composite granules produced via a novel mechano-chemical process and assessed the effect of electrostatic charging. Ibuprofen (IBU), a model drug with low solubility and known associated processing challenges was loaded in composite granules to improve its processibility and dissolution rates. Synthetic amorphous mesoporous magnesium alumina metasilicate (MAS) was co-processed with hydrophilic HPMC polymer in the presence of polyethylene glycol 2000 (PEG) and deionised water. The solid state analyses conducted by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) revealed the existence of semi-crystalline IBU in the complex composite structures. Dynamic vapour sorption (DVS) study showed the water sorption and desorption profiles of the manufactured composite granules as well as the effect of water on the solid-state stability of IBU in various formulations. Advanced surface analysis conducted via energy dispersive X-ray (EDS) revealed homogenous distribution of the drug/excipients on the surface of the granules while atomic force microscopy (AFM) complemented the findings. The electrostatic charge analysis showed variable charge property which is affected by the size of the particles/granules. As expected, the in vitro dissolution study showed about 5 fold increase in the release rates of IBU compared to that of the bulk drug. The mechanochemical processing has been demonstrated as an efficient technique to develop semi-crystalline composite granules with enhanced dissolution rates of water insoluble drugs.

  4. The effect orientation of features in reconstructed atom probe data on the resolution and measured composition of T1 plates in an A2198 aluminium alloy.

    PubMed

    Mullin, Maria A; Araullo-Peters, Vicente J; Gault, Baptiste; Cairney, Julie M

    2015-12-01

    Artefacts in atom probe tomography can impact the compositional analysis of microstructure in atom probe studies. To determine the integrity of information obtained, it is essential to understand how the positioning of features influences compositional analysis. By investigating the influence of feature orientation within atom probe data on measured composition in microstructural features within an AA2198 Al alloy, this study shows differences in the composition of T1 (Al2CuLi) plates that indicates imperfections in atom probe reconstructions. The data fits a model of an exponentially-modified Gaussian that scales with the difference in evaporation field between solutes and matrix. This information provides a guide for obtaining the most accurate information possible. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Two emissive-magnetic composite platforms for Hg(II) sensing and removal: The combination of magnetic core, silica molecular sieve and rhodamine chemosensors

    NASA Astrophysics Data System (ADS)

    Mao, Hanping; Liu, Zhongshou

    2018-01-01

    In this paper, a composite sensing platform for Hg(II) optical sensing and removal was designed and reported. A core-shell structure was adopted, using magnetic Fe3O4 nanoparticles as the core, silica molecular sieve MCM-41 as the shell, respectively. Two rhodamine derivatives were synthesized as chemosensor and covalently immobilized into MCM-41 tunnels. Corresponding composite samples were characterized with SEM/TEM images, XRD analysis, IR spectra, thermogravimetry and N2 adsorption/desorption analysis, which confirmed their core-shell structure. Their emission was increased by Hg(II), showing emission turn on effect. High selectivity, linear working curves and recyclability were obtained from these composite samples.

  6. [Near infrared spectrum analysis and meaning of the soil in 512 earthquake surface rupture zone in Pingtong, Sichuan].

    PubMed

    Yi, Ze-bang; Cao, Jian-jin; Luo, Song-ying; Wang, Zheng-yang; Liao, Yi-peng

    2014-08-01

    Through modern near infrared spectrum, the authors analyzed the yellow soil from the rupture zone located in Ping- tong town,Pingwu, Sichuan province. By rapid identification of the characteristic of peak absorption of mineral particles, the result shows that the soil samples mainly composed of calcite, dolomite, muscovite, sericite, illite, smectite; talc, tremolite, actinolite, chlorite, etc. And the mineral compositions of the soil is basically the same with the yellow soil in Sichuan region. By analyzing and comparing it was revealed that part of mineral compositions of the soil are in accordance with the characteristics of the rock mineral compositions below the rupture zone, indicating that part of the minerals of the soil's evolution is closely related to the rock compositions in this area; and the compositions of the clay mineral in the rupture zone is similar to the Ma Lan loess in the north of China, so it is presumed that the clay minerals in these two kinds of soil have the same genetic type. The characteristic of the mineral composition of the soil is in accordance with evolution characteristics of the rocks which is bellow the rupture zone, also it was demonstrated that the results of soil minerals near-infrared analysis can effectively analyze the mineral particles in the soil and indicate the pedogenic environment. Therefore, the result shows the feasibility of adopting modern near-infrared spectrum for rapid analysis of mineral particles of the soil and research of geology. Meanwhile, the results can be the foundation of this region's soil mineral analysis, and also provide new ideas and methods for the future research of soil minerals and the earthquake rupture zone.

  7. Species richness and composition of epiphytic bryophytes in flooded forests of Caxiuanã National Forest, Eastern Amazon, Brazil.

    PubMed

    Cerqueira, Gabriela R; Ilkiu-Borges, Anna Luiza; Ferreira, Leandro V

    2017-01-01

    This study aimed to compare the richness and composition of the epiphytic bryoflora between várzea and igapó forests in Caxiuanã National Forest, Brazilian Amazon. Bryophytes were collected on 502 phorophytes of Virola surinamensis. Average richness per phorophyte and composition between forests and between dry and rainy periods was tested by two-way analysis and by cluster analysis, respectively. In total, 54 species of 13 families were identified. Richness was greater in igapó forest (44 species) compared to várzea forest (38 species). There was no significant difference in the number of species between the studied periods. Cluster analysis showed the bryoflora composition was different between várzea and igapó, but not between dry and rainy periods. Results did not corroborate the hypothesis that várzea forests harbor higher species richness than igapó forests.

  8. Stability analysis of internally damped rotating composite shafts using a finite element formulation

    NASA Astrophysics Data System (ADS)

    Ben Arab, Safa; Rodrigues, José Dias; Bouaziz, Slim; Haddar, Mohamed

    2018-04-01

    This paper deals with the stability analysis of internally damped rotating composite shafts. An Euler-Bernoulli shaft finite element formulation based on Equivalent Single Layer Theory (ESLT), including the hysteretic internal damping of composite material and transverse shear effects, is introduced and then used to evaluate the influence of various parameters: stacking sequences, fiber orientations and bearing properties on natural frequencies, critical speeds, and instability thresholds. The obtained results are compared with those available in the literature using different theories. The agreement in the obtained results show that the developed Euler-Bernoulli finite element based on ESLT including hysteretic internal damping and shear transverse effects can be effectively used for the stability analysis of internally damped rotating composite shafts. Furthermore, the results revealed that rotor stability is sensitive to the laminate parameters and to the properties of the bearings.

  9. Damage assessment of composite plate structures with material and measurement uncertainty

    NASA Astrophysics Data System (ADS)

    Chandrashekhar, M.; Ganguli, Ranjan

    2016-06-01

    Composite materials are very useful in structural engineering particularly in weight sensitive applications. Two different test models of the same structure made from composite materials can display very different dynamic behavior due to large uncertainties associated with composite material properties. Also, composite structures can suffer from pre-existing imperfections like delaminations, voids or cracks during fabrication. In this paper, we show that modeling and material uncertainties in composite structures can cause considerable problem in damage assessment. A recently developed C0 shear deformable locking free refined composite plate element is employed in the numerical simulations to alleviate modeling uncertainty. A qualitative estimate of the impact of modeling uncertainty on the damage detection problem is made. A robust Fuzzy Logic System (FLS) with sliding window defuzzifier is used for delamination damage detection in composite plate type structures. The FLS is designed using variations in modal frequencies due to randomness in material properties. Probabilistic analysis is performed using Monte Carlo Simulation (MCS) on a composite plate finite element model. It is demonstrated that the FLS shows excellent robustness in delamination detection at very high levels of randomness in input data.

  10. Organosilicon Polymers as Precursors for Silicon-Containing Ceramics.

    DTIC Science & Technology

    1987-02-23

    preceramic polymer , shrinkage on pyrolysis could be considerable. Ceramic fibers of diverse chemical compositions are sought for...In the design of preceramic polymers , achievement of the desired elemental composition in the ceramic obtained from them ( SiC and Si3N4 in the...approximately one, pyrolysis of the product polymer gave a black ceramic solid in 84% yield which analysis showed to have a composition (1 SiC + 0.22

  11. Defluoridation using biomimetically synthesized nano zirconium chitosan composite: kinetic and equilibrium studies.

    PubMed

    Prasad, Kumar Suranjit; Amin, Yesha; Selvaraj, Kaliaperumal

    2014-07-15

    The present study reports a novel approach for synthesis of Zr nanoparticles using aqueous extract of Aloe vera. Resulting nanoparticles were embedded into chitosan biopolymer and termed as CNZr composite. The composite was subjected to detailed adsorption studies for removal of fluoride from aqueous solution. The synthesized Zr nanoparticles showed UV-vis absorption peak at 420nm. TEM result showed the formation of polydispersed, nanoparticles ranging from 18nm to 42nm. SAED and XRD analysis suggested an fcc (face centered cubic) Zr crystallites. EDAX analysis suggested that Zr was an integral component of synthesized nanoparticles. FT-IR study indicated that functional group like NH, CO, CN and CC were involved in particle formation. The adsorption of fluoride on to CNZr composite worked well at pH 7.0, where ∼99% of fluoride was found to be adsorbed on adsorbent. Langmuir isotherm model best fitted the equilibrium data since it presented higher R(2) value than Freundlich model. In comparison to pseudo-first order kinetic model, the pseudo-second order model could explain adsorption kinetic behavior of F(-) onto CNZr composite satisfactorily with a good correlation coefficient. The present study revealed that CNZr composite may work as an effective tool for removal of fluoride from contaminated water. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. [Preparation of curcumin-EC sustained-release composite particles by supercritical CO2 anti-solvent technology].

    PubMed

    Bai, Wei-li; Yan, Ting-yuan; Wang, Zhi-xiang; Huang, De-chun; Yan, Ting-xuan; Li, Ping

    2015-01-01

    Curcumin-ethyl-cellulose (EC) sustained-release composite particles were prepared by using supercritical CO2 anti-solvent technology. With drug loading and yield of inclusion complex as evaluation indexes, on the basis of single factor tests, orthogonal experimental design was used to optimize the preparation process of curcumin-EC sustained-release composite particles. The experiments such as drug loading, yield, particle size distribution, electron microscope analysis (SEM) , infrared spectrum (IR), differential scanning calorimetry (DSC) and in vitro dissolution were used to analyze the optimal process combination. The orthogonal experimental optimization process conditions were set as follows: crystallization temperature 45 degrees C, crystallization pressure 10 MPa, curcumin concentration 8 g x L(-1), solvent flow rate 0.9 mL x min(-1), and CO2 velocity 4 L x min(-1). Under the optimal conditions, the average drug loading and yield of curcumin-EC sustained-release composite particles were 33.01% and 83.97%, and the average particle size of the particles was 20.632 μm. IR and DSC analysis showed that curcumin might complex with EC. The experiments of in vitro dissolution showed that curcumin-EC composite particles had good sustained-release effect. Curcumin-EC sustained-release composite particles can be prepared by supercritical CO2 anti-solvent technology.

  13. Weighting and Aggregation in Composite Indicator Construction: A Multiplicative Optimization Approach

    ERIC Educational Resources Information Center

    Zhou, P.; Ang, B. W.; Zhou, D. Q.

    2010-01-01

    Composite indicators (CIs) have increasingly been accepted as a useful tool for benchmarking, performance comparisons, policy analysis and public communication in many different fields. Several recent studies show that as a data aggregation technique in CI construction the weighted product (WP) method has some desirable properties. However, a…

  14. Thermal Degradation Mechanism of a Thermostable Polyester Stabilized with an Open-Cage Oligomeric Silsesquioxane

    PubMed Central

    Gozalbo, Ana; Mestre, Sergio; Sanz, Vicente

    2017-01-01

    A polyester composite was prepared through the polymerization of an unsaturated ester resin with styrene and an open-cage oligomeric silsesquioxane with methacrylate groups. The effect of the open-cage oligomeric silsesquioxane on the thermal stability of the thermostable polyester was studied using both thermogravimetric analysis and differential thermal analysis. The results showed that the methacryl oligomeric silsesquioxane improved the thermal stability of the polyester. The decomposition mechanism of the polyester/oligomer silsesquioxane composite was proposed by Fourier transform infrared spectroscopy (FTIR) analysis of the volatiles. PMID:29295542

  15. The influence of TiO2 composition in LiBOB electrolyte polymer composite membrane characteristics for lithium ion batteries applications

    NASA Astrophysics Data System (ADS)

    Lestariningsih, T.; Sabrina, Q.; Wigayati, E. M.

    2018-03-01

    Characterization of the composite membrane of LiBOB electrolyte polymers made from poly (vinylidene fluoride co-hexafluororopylene) (PVdF-HFP) as the polymer, LiBOB or LiB(C2O4)2 as electrolyte salt and titanium dioxide (TiO2) as ceramic filler of three different concentrations have been done. Sample of membrane was prepared using solution casting technique. Microstructural study by SEM shows non-uniform distribution of pore over the surface of the sample. X-ray structural analysis, impedance spectroscopy, and cyclic voltammetry (CV) studies were carried out. Membrane composite polymer of LiBOB electrolyte without additional ceramic filler with composition of 70% polymer, 30% LiBOB, and 0% TiO2 has the greatest conductivity for forming amorphous phase and is compatible with material membrane composite. Meanwhile, sample with 70% polymer composition, 28% LiBOB and 2% TiO2 shows oxidation reaction at the most perfect discharge despite very slow current speed.

  16. Demineralized dentin matrix composite collagen material for bone tissue regeneration.

    PubMed

    Li, Jianan; Yang, Juan; Zhong, Xiaozhong; He, Fengrong; Wu, Xiongwen; Shen, Guanxin

    2013-01-01

    Demineralized dentin matrix (DDM) had been successfully used in clinics as bone repair biomaterial for many years. However, particle morphology of DDM limited it further applications. In this study, DDM and collagen were prepared to DDM composite collagen material. The surface morphology of the material was studied by scanning electron microscope (SEM). MC3T3-E1 cells responses in vitro and tissue responses in vivo by implantation of DDM composite collagen material in bone defect of rabbits were also investigated. SEM analysis showed that DDM composite collagen material evenly distributed and formed a porous scaffold. Cell culture and animal models results indicated that DDM composite collagen material was biocompatible and could support cell proliferation and differentiation. Histological evaluation showed that DDM composite collagen material exhibited good biocompatibility, biodegradability and osteoconductivity with host bone in vivo. The results suggested that DDM composite collagen material might have a significant clinical advantage and potential to be applied in bone and orthopedic surgery.

  17. Fabrication and characterization of biomimetic ceramic/polymer composite materials for dental restoration.

    PubMed

    Petrini, Morena; Ferrante, Maurizio; Su, Bo

    2013-04-01

    Conventional dental composites with randomly dispersed inorganic particles within a polymer matrix fail to recapitulate the aligned and anisotropic structure of the dentin and enamel. The aim of the study was to produce a biomimetic composite consisting of a ceramic preform with graded and continuously aligned open pores, infiltrated with epoxy resin. The freeze casting technique was used to obtain the hierarchically structured architecture of the ceramic preforms. Optical and scanning electron microscopy (SEM) and differential thermal analysis and thermogravimetry (TG-DTA) were used to characterize the samples. Three point bending test and compression test were also performed. All analysis confirmed that the biomimetic composite was characterized by a multi-level hierarchical structure along the freezing direction. In the bottom layers close to the cooling plate (up to 2mm thick), a randomly packed ceramic with closed pores were formed, which resulted in incomplete infiltration with resin and resultant poor mechanical propertiesof the composite. Above 2mm, all ceramic samples showed an aligned structure with an increasing lamellae spacing (wavelength) and a decreasing wall thickness. Mechanical tests showed that the properties of the composites made from ceramic preforms above 2mm from cooling plate are similar to those of the dentin. The fabrication processing reported in this work offers a viable route for the fabrication of biomimetic composites, which could be potentially used in a range of dental restorations to compete with the current dental composites and ceramics. Copyright © 2012 Academy of Dental Materials. All rights reserved.

  18. Attritional wear and abrasive surface alterations of composite resin materials in vitro.

    PubMed

    Göhring, T N; Besek, M J; Schmidlin, P R

    2002-01-01

    A laboratory study was performed with 232 specimens and 72 human enamel, 24 gold, 24 ceramic and 12 composite antagonists in 22 groups to test attritional and abrasive wear behavior of composite materials compared to wear behavior of human enamel. Belleglass HP, Concept Inlay/Onlay, Targis and Targis Upgrade 99 composite resin for lab-made restorations was tested as well as Tetric Ceram and FHC Merz light as resins for direct restorations. Natural human enamel specimens served as control. All specimens were subjected to long-term thermo-mechanical loading in a computer-controlled masticator, chemical degradation and toothbrush/toothpaste abrasion. Wear of specimen in occlusal contact area (OCA), contact-free occlusal area and wear of natural enamel cusps as well as antagonists made of gold, ceramic and composite in identical form was measured after 120,000, 240,000, 640,000 and 1200,000 load cycles. A qualitative SEM analysis was performed to support quantitative data. Belleglass HP and Targis Upgrade 99 restorative materials showed wear resistance comparable to human enamel when loaded with enamel cusps. Wear of Targis versus composite and gold antagonists was significantly higher (p<0.0001). Analysis of surface alterations showed hygroscopic expansion in all composite resins during the test. As a consequence of this study, necessity to further improve physical properties of composites for long lasting restorations was obvious. Beside of attritional wear in OCA, attention must be given to stable filler-matrix interfaces and prevention of water sorption.

  19. Investigation on mechanical behavior and material characteristics of various weight composition of SiCp reinforced aluminium metal matrix composite

    NASA Astrophysics Data System (ADS)

    Pichumani, Sivachidambaram; Srinivasan, Raghuraman; Ramamoorthi, Venkatraman

    2018-02-01

    Aluminium - silicon carbide (Al - SiC) metal matrix composite is produced with following wt % of SiC reinforcement (4%, 8% & 12%) using stir casting method. Mechanical testing such as micro hardness, tensile testing and bend testing were performed. Characterizations, namely micro structure, X-ray diffraction (XRD) analysis, inductive coupled plasma - optical emission spectroscopy (ICP-OES) and scanning electron microscopy (SEM) analysis, were carried out on Al - SiC composites. The presence of SiC on Al - SiC composite is confirmed through XRD technique and microstructure. The percentage of SiC was confirmed through ICP-OES technique. Increase in weight percentage of SiC tends to increase micro hardness, ultimate strength & yield strength but it reduces the bend strength and elongation (%) of the material. SEM factrography of tensile tested fractured samples of Al - 8% SiC & Al - 12% SiC showed fine dimples on fractured surface & coarse dimples fractured surface respectively. This showed significant fracture differences between Al - 8% SiC & Al - 12% SiC. From the above experiment, Al - 8% SiC had good micro hardness, ultimate strength & yield strength without significant loss in elongation (%) & bend strength.

  20. Comparison of different types of phacoemulsification tips. I. Quantitative analysis of elemental composition and tip surface microroughness.

    PubMed

    Tsaousis, Konstantinos T; Werner, Liliana; Perez, Jesus Paulo; Li, He J; Reiter, Nicholas; Guan, Jia J; Mamalis, Nick

    2016-09-01

    To evaluate the elemental composition of phacoemulsification tips and their surface roughness in the microscale. John A. Moran Eye Center and Utah Nanofab, College of Engineering, University of Utah, Salt Lake City, Utah, USA. Experimental study. Seven types of phacoemulsification tips were studied. The phaco tips were examined through energy-dispersive x-ray spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS) for elemental composition. In addition, the roughness of the opening in all tips was assessed through 3-dimensional white-light interferometry. Elemental analysis showed considerable differences in the surface layers between manufacturers. Alcon tips had a thinner oxidized titanium (Ti) layer in their surface. Through XPS, vanadium was not detected in the superficial layers of any tip, but only in deeper levels. The microroughness surface analysis showed comparable results regarding their root-mean-square (RMS) metric. Maximum peak valley distance values varied and appeared to be dependent on the quality of material process rather than the material itself. Phacoemulsification tips are made of Ti alloys and showed differences between models, especially regarding their composition in the superficial layers. Their opening end roughness showed an overall appropriate RMS value of less than 1.0 μm in all cases. The existence of small defected areas highlights the importance of adequate quality control of these critical surgical instruments. None of the authors has a financial or proprietary interest in any material or method mentioned. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouza, R.; Barral, L.; Abad, M. J.

    The effects of Pinus Sylvestris wood flour as filler in polypropylene matrix was evaluated. The mechanical properties and the morphology of different wood flour/polypropylene composites (WPC) were studied. The composites materials were prepared with several amounts of wood flour from 10 to 30% wt. Mechanical properties show that the wood flour incorporation increases the rigidity of the composites. Morphological analysis indicates that agglomerates are formed, with amounts exceeding 30% of wood flour. For the silane--treated composites, the dispersion of the filler into the polypropylene (PP) matrix improved. Shore D hardness of the composites is decreased with the addition of themore » coupling agent.« less

  2. Colour stainability of indirect CAD-CAM processed composites vs. conventionally laboratory processed composites after immersion in staining solutions.

    PubMed

    Arocha, Mariana A; Basilio, Juan; Llopis, Jaume; Di Bella, Enrico; Roig, Miguel; Ardu, Stefano; Mayoral, Juan R

    2014-07-01

    The aim of this study was to determine, by using a spectrophotometer device, the colour stainability of two indirect CAD/CAM processed composites in comparison with two conventionally laboratory-processed composites after being immersed 4 weeks in staining solutions such as coffee, black tea and red wine, using distilled water as control group. Two indirect CAD/CAM composites (Lava Ultimate and Paradigm MZ100) and two conventionally laboratory-processed composites (SR Adoro and Premise Indirect) of shade A2 were selected (160 disc samples). Colour stainability was measured after 4 weeks of immersion in three staining solutions (black tea, coffee, red wine) and distilled water. Specimen's colour was measured each week by means of a spectrophotometer (CIE L*a*b* system). Statistical analysis was carried out performing repeated ANOVA measurements and Tukey's HSD test to evaluate differences in ΔE00 measurements between groups; the interactions among composites, staining solutions and time duration were also evaluated. All materials showed significant discoloration (p<0.01) when compared to control group. The highest ΔE00 observed was with red wine, whereas black tea showed the lowest one. Indirect laboratory-processed resin composites showed the highest colour stability compared with CAD/CAM resin blocks. CAD/CAM processed composites immersed in staining solutions showed lower colour stability when compared to conventionally laboratory-processed resin composites. The demand for CAD/CAM restorations has been increasing; however, colour stainability for such material has been insufficiently studied. Moreover, this has not been performed comparing CAD/CAM processed composites versus laboratory-processed indirect composites by immersing in staining solutions for long immersion periods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Incorporation of composite defects from ultrasonic NDE into CAD and FE models

    NASA Astrophysics Data System (ADS)

    Bingol, Onur Rauf; Schiefelbein, Bryan; Grandin, Robert J.; Holland, Stephen D.; Krishnamurthy, Adarsh

    2017-02-01

    Fiber-reinforced composites are widely used in aerospace industry due to their combined properties of high strength and low weight. However, owing to their complex structure, it is difficult to assess the impact of manufacturing defects and service damage on their residual life. While, ultrasonic testing (UT) is the preferred NDE method to identify the presence of defects in composites, there are no reasonable ways to model the damage and evaluate the structural integrity of composites. We have developed an automated framework to incorporate flaws and known composite damage automatically into a finite element analysis (FEA) model of composites, ultimately aiding in accessing the residual life of composites and make informed decisions regarding repairs. The framework can be used to generate a layer-by-layer 3D structural CAD model of the composite laminates replicating their manufacturing process. Outlines of structural defects, such as delaminations, are automatically detected from UT of the laminate and are incorporated into the CAD model between the appropriate layers. In addition, the framework allows for direct structural analysis of the resulting 3D CAD models with defects by automatically applying the appropriate boundary conditions. In this paper, we show a working proof-of-concept for the composite model builder with capabilities of incorporating delaminations between laminate layers and automatically preparing the CAD model for structural analysis using a FEA software.

  4. Failure analysis of energy storage spring in automobile composite brake chamber

    NASA Astrophysics Data System (ADS)

    Luo, Zai; Wei, Qing; Hu, Xiaofeng

    2015-02-01

    This paper set energy storage spring of parking brake cavity, part of automobile composite brake chamber, as the research object. And constructed the fault tree model of energy storage spring which caused parking brake failure based on the fault tree analysis method. Next, the parking brake failure model of energy storage spring was established by analyzing the working principle of composite brake chamber. Finally, the data of working load and the push rod stroke measured by comprehensive test-bed valve was used to validate the failure model above. The experimental result shows that the failure model can distinguish whether the energy storage spring is faulted.

  5. Evaluating Composite Sampling Methods of Bacillus Spores at Low Concentrations

    PubMed Central

    Hess, Becky M.; Amidan, Brett G.; Anderson, Kevin K.; Hutchison, Janine R.

    2016-01-01

    Restoring all facility operations after the 2001 Amerithrax attacks took years to complete, highlighting the need to reduce remediation time. Some of the most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite (SM-SPC): a single cellulose sponge samples multiple coupons with a single pass across each coupon; 2) single medium multi-pass composite: a single cellulose sponge samples multiple coupons with multiple passes across each coupon (SM-MPC); and 3) multi-medium post-sample composite (MM-MPC): a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155 CFU/cm2). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted dry wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p< 0.0001) and coupon material (p = 0.0006). Recovery efficiency (RE) was higher overall using the MM-MPC method compared to the SM-SPC and SM-MPC methods. RE with the MM-MPC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, dry wall, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when responding to a Bacillus anthracis contamination event of clean or dirty surfaces. PMID:27736999

  6. Evaluating Composite Sampling Methods of Bacillus Spores at Low Concentrations.

    PubMed

    Hess, Becky M; Amidan, Brett G; Anderson, Kevin K; Hutchison, Janine R

    2016-01-01

    Restoring all facility operations after the 2001 Amerithrax attacks took years to complete, highlighting the need to reduce remediation time. Some of the most time intensive tasks were environmental sampling and sample analyses. Composite sampling allows disparate samples to be combined, with only a single analysis needed, making it a promising method to reduce response times. We developed a statistical experimental design to test three different composite sampling methods: 1) single medium single pass composite (SM-SPC): a single cellulose sponge samples multiple coupons with a single pass across each coupon; 2) single medium multi-pass composite: a single cellulose sponge samples multiple coupons with multiple passes across each coupon (SM-MPC); and 3) multi-medium post-sample composite (MM-MPC): a single cellulose sponge samples a single surface, and then multiple sponges are combined during sample extraction. Five spore concentrations of Bacillus atrophaeus Nakamura spores were tested; concentrations ranged from 5 to 100 CFU/coupon (0.00775 to 0.155 CFU/cm2). Study variables included four clean surface materials (stainless steel, vinyl tile, ceramic tile, and painted dry wallboard) and three grime coated/dirty materials (stainless steel, vinyl tile, and ceramic tile). Analysis of variance for the clean study showed two significant factors: composite method (p< 0.0001) and coupon material (p = 0.0006). Recovery efficiency (RE) was higher overall using the MM-MPC method compared to the SM-SPC and SM-MPC methods. RE with the MM-MPC method for concentrations tested (10 to 100 CFU/coupon) was similar for ceramic tile, dry wall, and stainless steel for clean materials. RE was lowest for vinyl tile with both composite methods. Statistical tests for the dirty study showed RE was significantly higher for vinyl and stainless steel materials, but lower for ceramic tile. These results suggest post-sample compositing can be used to reduce sample analysis time when responding to a Bacillus anthracis contamination event of clean or dirty surfaces.

  7. SIMS chemical and isotopic analysis of impact features from LDEF experiments AO187-1 and AO187-2

    NASA Technical Reports Server (NTRS)

    Stadermann, Frank J.; Amari, Sachiko; Foote, John; Swan, Pat; Walker, Robert M.; Zinner, Ernst

    1995-01-01

    Previous secondary ion mass spectrometry (SIMS) studies of extended impact features from LDEF capture cell experiment AO187-2 showed that it is possible to distinguish natural and man-made particle impacts based on the chemical composition of projectile residues. The same measurement technique has now been applied to specially prepared gold target impacts from experiment AO187-1 in order to identify the origins of projectiles that left deposits too thin to be analyzed by conventional energy-dispersive x-ray (EDX) spectroscopy. The results indicate that SIMS may be the method of choice for the analysis of impact deposits on a variety of sample surfaces. SIMS was also used to determine the isotopic compositions of impact residues from several natural projectiles. Within the precision of the measurements all analyzed residues show isotopically normal compositions.

  8. Fatty acids, essential oil and phenolics composition of Silybum marianum seeds and their antioxidant activities.

    PubMed

    Mhamdi, Baya; Abbassi, Feten; Smaoui, Abderrazak; Abdelly, Chedly; Marzouk, Brahim

    2016-05-01

    The presentstudydescribes the biochemical evaluation of Silybum marianum seed. The analysis of essential oil composition of Silybum marianum seed by Gas Chromatography-Mass Spectrometry GC-MS showed the presence of14 volatile components with the predominance of γ-cadinene (49.8%) and α-pinene (24.5%). Whereas, the analysis of fatty acids composition, showed the predominance of linoleic (50.5%) and oleic (30.2%) acids. Silybum marainum presented also an important polyphenol contents with 29mgGAE/g DW, a good antiradical activity (CI(50)=39μg/ml) but a lower reducing power ability. Flavonoid and condensed tannin contents were about 3.39mg EC/g DW and 1.8mg EC/gDW, respectively. The main phenolic compounds identified by RP-HPLC, were silybin A (12.2%), silybin B (17.67%), isosilybin A (21.9%), isosilybin B (12.8%), silychristin (7.9%) andsilydianin (7.5%).

  9. Fly ash reinforced thermoplastic vulcanizates obtained from waste tire powder.

    PubMed

    Sridhar, V; Xiu, Zhang Zhen; Xu, Deng; Lee, Sung Hyo; Kim, Jin Kuk; Kang, Dong Jin; Bang, Dae-Suk

    2009-03-01

    Novel thermoplastic composites made from two major industrial and consumer wastes, fly ash and waste tire powder, have been developed. The effect of increasing fly ash loadings on performance characteristics such as tensile strength, thermal, dynamic mechanical and magnetic properties has been investigated. The morphology of the blends shows that fly ash particles have more affinity and adhesion towards the rubbery phase when compared to the plastic phase. The fracture surface of the composites shows extensive debonding of fly ash particles. Thermal analysis of the composites shows a progressive increase in activation energy with increase in fly ash loadings. Additionally, morphological studies of the ash residue after 90% thermal degradation shows extensive changes occurring in both the polymer and filler phases. The processing ability of the thermoplastics has been carried out in a Monsanto processability testing machine as a function of shear rate and temperature. Shear thinning behavior, typical of particulate polymer systems, has been observed irrespective of the testing temperatures. Magnetic properties and percolation behavior of the composites have also been evaluated.

  10. A geochemical approach to constraining the formation of glassy fallout debris from nuclear tests

    DOE PAGES

    Bonamici, Chloë E.; Kinman, William S.; Fournelle, John H.; ...

    2016-12-15

    Reprocessed earth material is a glassy nuclear fallout debris from near-surface nuclear tests. A geochemical approach to analysis of glassy fallout is uniquely suited to determine the means of reprocessing and shed light on the mechanisms of fallout formation. An improved understanding of fallout formation is of interest both for its potential to guide post-detonation nuclear forensic investigations and in the context of possible affinities between glassy debris and other glasses generated by high-energy natural events, such as meteorite impacts and lightning strikes. Our study presents a large major-element compositional dataset for glasses within aerodynamic fallout from the Trinity nuclearmore » test (“trinitite”) and a geochemically based analysis of the glass compositional trends. Silica-rich and alkali-rich trinitite glasses show compositions and textures consistent with formation through melting of individual mineral grains—quartz and alkali feldspar, respectively—from the test-site sediment. Furthermore, the volumetrically dominant glass phase—called the CaMgFe glass—shows extreme major-element compositional variability. Compositional trends in the CaMgFe glass are most consistent with formation through volatility-controlled condensation from compositionally heterogeneous plasma. Radioactivity occurs only in CaMgFe glass, indicating that co-condensation of evaporated bulk ground material and trace device material was the main mechanism of radioisotope incorporation into trinitite. CaMgFe trinitite glasses overlap compositionally with basalts, rhyolites, fulgurites, tektites, and microtektites but display greater compositional diversity than all of these naturally formed glasses. Indeed, the most refractory CaMgFe glasses compositionally resemble early solar system condensates—specifically, CAIs.« less

  11. A geochemical approach to constraining the formation of glassy fallout debris from nuclear tests

    NASA Astrophysics Data System (ADS)

    Bonamici, Chloë E.; Kinman, William S.; Fournelle, John H.; Zimmer, Mindy M.; Pollington, Anthony D.; Rector, Kirk D.

    2017-01-01

    Glassy nuclear fallout debris from near-surface nuclear tests is fundamentally reprocessed earth material. A geochemical approach to analysis of glassy fallout is uniquely suited to determine the means of reprocessing and shed light on the mechanisms of fallout formation. An improved understanding of fallout formation is of interest both for its potential to guide post-detonation nuclear forensic investigations and in the context of possible affinities between glassy debris and other glasses generated by high-energy natural events, such as meteorite impacts and lightning strikes. This study presents a large major-element compositional dataset for glasses within aerodynamic fallout from the Trinity nuclear test ("trinitite") and a geochemically based analysis of the glass compositional trends. Silica-rich and alkali-rich trinitite glasses show compositions and textures consistent with formation through melting of individual mineral grains—quartz and alkali feldspar, respectively—from the test-site sediment. The volumetrically dominant glass phase—called the CaMgFe glass—shows extreme major-element compositional variability. Compositional trends in the CaMgFe glass are most consistent with formation through volatility-controlled condensation from compositionally heterogeneous plasma. Radioactivity occurs only in CaMgFe glass, indicating that co-condensation of evaporated bulk ground material and trace device material was the main mechanism of radioisotope incorporation into trinitite. CaMgFe trinitite glasses overlap compositionally with basalts, rhyolites, fulgurites, tektites, and microtektites but display greater compositional diversity than all of these naturally formed glasses. Indeed, the most refractory CaMgFe glasses compositionally resemble early solar system condensates—specifically, CAIs.

  12. Surface discoloration of composite resins: Effects of staining and bleaching.

    PubMed

    Poggio, Claudio; Beltrami, Riccardo; Scribante, Andrea; Colombo, Marco; Chiesa, Marco

    2012-09-01

    The purpose of this in vitro study was to evaluate surface discoloration of three microhybrid composite resins (Esthet•X HD, Clearfil AP-X, Gradia Direct) and five nanohybrid composite resins (Ceram•X, GC Kalore, G-aenial, Grandio, GrandioSO), after staining and bleaching procedures. The composite resins were polymerized with a curing light (Celalux II, Voco, Cuxhaven, Germany) into 160 silicon molds (6,4 mm in diameter and 2 mm in thickness) to obtain identical specimens. Twenty samples for each composite resin were prepared. The specimens were polished using an automated polishing machine with the sequence of 600-, 800-, 1000-grit abrasive paper under water irrigation. The specimens were immersed in tea and distilled water: the specimens were dipped for 20 min, once a day (every 24 h), for 14 days into the drinks. The specimens were then bleached with carbamide peroxide at 17% (Perfect Bleach-Voco). The color of specimens was measured with a spectrophotometer according to the CIE L(*)a(*)b(*) system after light-polymerization of composite resin specimens, after 7 days, after 14 days, and after bleaching. The color difference h index (DEab(*)) between each measurement was calculated. Statistical analysis was made using analysis of variance (ANOVA). All specimens showed a significant increase in staining with a similar trend and no significant differences between microhybrid and nanohybrid composite resins. After whitening procedures, materials tested showed both significant and unsignificant differences of the h index. Microhybrid and nanohybrid composite resins had similar in vitro surface discoloration in tea. After bleaching, discoloration was removed from some composite resins tested.

  13. Surface discoloration of composite resins: Effects of staining and bleaching

    PubMed Central

    Poggio, Claudio; Beltrami, Riccardo; Scribante, Andrea; Colombo, Marco; Chiesa, Marco

    2012-01-01

    Background: The purpose of this in vitro study was to evaluate surface discoloration of three microhybrid composite resins (Esthet•X HD, Clearfil AP-X, Gradia Direct) and five nanohybrid composite resins (Ceram•X, GC Kalore, G-aenial, Grandio, GrandioSO), after staining and bleaching procedures. Materials and Methods: The composite resins were polymerized with a curing light (Celalux II, Voco, Cuxhaven, Germany) into 160 silicon molds (6,4 mm in diameter and 2 mm in thickness) to obtain identical specimens. Twenty samples for each composite resin were prepared. The specimens were polished using an automated polishing machine with the sequence of 600-, 800-, 1000-grit abrasive paper under water irrigation. The specimens were immersed in tea and distilled water: the specimens were dipped for 20 min, once a day (every 24 h), for 14 days into the drinks. The specimens were then bleached with carbamide peroxide at 17% (Perfect Bleach-Voco). The color of specimens was measured with a spectrophotometer according to the CIE L*a*b* system after light-polymerization of composite resin specimens, after 7 days, after 14 days, and after bleaching. The color difference h index (DEab*) between each measurement was calculated. Statistical analysis was made using analysis of variance (ANOVA). Results: All specimens showed a significant increase in staining with a similar trend and no significant differences between microhybrid and nanohybrid composite resins. After whitening procedures, materials tested showed both significant and unsignificant differences of the h index. Conclusions: Microhybrid and nanohybrid composite resins had similar in vitro surface discoloration in tea. After bleaching, discoloration was removed from some composite resins tested. PMID:23559921

  14. Cytotoxic evaluation of hydroxyapatite-filled and silica/hydroxyapatite-filled acrylate-based restorative composite resins: An in vitro study.

    PubMed

    Chadda, Harshita; Naveen, Sangeetha Vasudevaraj; Mohan, Saktiswaren; Satapathy, Bhabani K; Ray, Alok R; Kamarul, Tunku

    2016-07-01

    Although the physical and mechanical properties of hydroxyapatite-filled dental restorative composite resins have been examined, the biocompatibility of these materials has not been studied in detail. The purpose of this in vitro study was to analyze the toxicity of acrylate-based restorative composite resins filled with hydroxyapatite and a silica/hydroxyapatite combination. Five different restorative materials based on bisphenol A-glycidyl methacrylate (bis-GMA) and tri-ethylene glycol dimethacrylate (TEGDMA) were developed: unfilled (H0), hydroxyapatite-filled (H30, H50), and silica/hydroxyapatite-filled (SH30, SH50) composite resins. These were tested for in vitro cytotoxicity by using human bone marrow mesenchymal stromal cells. Surface morphology, elemental composition, and functional groups were determined by scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), and Fourier-transformed infrared spectroscopy (FTIR). The spectra normalization, baseline corrections, and peak integration were carried out by OPUS v4.0 software. Both in vitro cytotoxicity results and SEM analysis indicated that the composite resins developed were nontoxic and supported cell adherence. Elemental analysis with EDX revealed the presence of carbon, oxygen, calcium, silicon, and gold, while the presence of methacrylate, hydroxyl, and methylene functional groups was confirmed through FTIR analysis. The characterization and compatibility studies showed that these hydroxyapatite-filled and silica/hydroxyapatite-filled bis-GMA/TEGDMA-based restorative composite resins are nontoxic to human bone marrow mesenchymal stromal cells and show a favorable biologic response, making them potential biomaterials. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  15. Effect of Heat Treatment on The Crystal Structur, Electrical Conductivity and Surface of Ba1.5Sr0.5Fe2O5 Composite

    NASA Astrophysics Data System (ADS)

    Purwanto, P.; Adi, WA; Yunasfi

    2017-05-01

    The Composite of Ba1,5Sr0,5Fe2O5 has been synthesized by using powder metallurgy technique. The Ba1.5Sr0.5Fe2O5 were prepared from BaCO3, SrCO3 and Fe2O3 raw materials with a specific weight ratio. The three materials were synthesized by powder metallurgy under heat treatment at 800 °C, 900 °C, and 1000 °C for 5 hours. All the three samples were characterized by using X-ray Diffraction (XRD) to determine the crystal structure and crystal size, LCR meter to determine the conductivity, and Scanning Electron Microscope (SEM) to observe the morphological of the composites. The phase analysis result showed that the composite consists of several minor phases such as BaO2, SrO2, and Fe2O3. The Crystal size of composite Ba1.5Sr0.5Fe2O5 decreased while increases the strain of crystal with increasing of sintering temperature. The crystal size of the Ba1.5Sr0.5Fe2O5 composite is 3.55 nm to 7.23 nm and value of strain is 8.47% until 3.90%. Based on the conductivity measurement, it was obtained that the conductivity of the Ba1.5Sr0.5Fe2O5 composite decreased with increasing sintering temperature. It was also noticed that the conductivity increased with increasing of frequency. The conductivity ranged from 6.619×10-7 S/cm to 65.659×10-7 S/cm. The energy dispersive spectroscopy (EDS) analysis showed that several dominant elements were a good agreement with the phase analysis.

  16. A study on the compatibility between one-bottle dentin adhesives and composite resins using micro-shear bond strength.

    PubMed

    Song, Minju; Shin, Yooseok; Park, Jeong-Won; Roh, Byoung-Duck

    2015-02-01

    This study was performed to determine whether the combined use of one-bottle self-etch adhesives and composite resins from same manufacturers have better bond strengths than combinations of adhesive and resins from different manufacturers. 25 experimental micro-shear bond test groups were made from combinations of five dentin adhesives and five composite resins with extracted human molars stored in saline for 24 hr. Testing was performed using the wire-loop method and a universal testing machine. Bond strength data was statistically analyzed using two way analysis of variance (ANOVA) and Tukey's post hoc test. Two way ANOVA revealed significant differences for the factors of dentin adhesives and composite resins, and significant interaction effect (p < 0.001). All combinations with Xeno V (Dentsply De Trey) and Clearfil S(3) Bond (Kuraray Dental) adhesives showed no significant differences in micro-shear bond strength, but other adhesives showed significant differences depending on the composite resin (p < 0.05). Contrary to the other adhesives, Xeno V and BondForce (Tokuyama Dental) had higher bond strengths with the same manufacturer's composite resin than other manufacturer's composite resin. Not all combinations of adhesive and composite resin by same manufacturers failed to show significantly higher bond strengths than mixed manufacturer combinations.

  17. A primordial origin for the compositional similarity between the Earth and the Moon.

    PubMed

    Mastrobuono-Battisti, Alessandra; Perets, Hagai B; Raymond, Sean N

    2015-04-09

    Most of the properties of the Earth-Moon system can be explained by a collision between a planetary embryo (giant impactor) and the growing Earth late in the accretion process. Simulations show that most of the material that eventually aggregates to form the Moon originates from the impactor. However, analysis of the terrestrial and lunar isotopic compositions show them to be highly similar. In contrast, the compositions of other Solar System bodies are significantly different from those of the Earth and Moon, suggesting that different Solar System bodies have distinct compositions. This challenges the giant impact scenario, because the Moon-forming impactor must then also be thought to have a composition different from that of the proto-Earth. Here we track the feeding zones of growing planets in a suite of simulations of planetary accretion, to measure the composition of Moon-forming impactors. We find that different planets formed in the same simulation have distinct compositions, but the compositions of giant impactors are statistically more similar to the planets they impact. A large fraction of planet-impactor pairs have almost identical compositions. Thus, the similarity in composition between the Earth and Moon could be a natural consequence of a late giant impact.

  18. SEM/XPS analysis of fractured adhesively bonded graphite fibre surface resin-rich/graphite fibre composites

    NASA Technical Reports Server (NTRS)

    Devilbiss, T. A.; Wightman, J. P.; Progar, D. J.

    1988-01-01

    Samples of graphite fiber-reinforced polyimide were fabricated allowing the resin to accumulate at the composite surface. These surface resin-rich composites were then bonded together and tested for lap shear strength both before and after thermal aging. Lap shear strength did not appear to show a significant improvement over that previously recorded for resin-poor samples and was shown to decrease with increasing aging time and temperature.

  19. Structural and optical characterization of pyrolytic carbon derived from novolac resin.

    PubMed

    Theodoropoulou, S; Papadimitriou, D; Zoumpoulakis, L; Simitzis, J

    2004-07-01

    The structural and optical properties of technologically interesting pyrolytic carbons formed from cured novolac resin and cured novolac/biomass composites were studied by X-Ray Diffraction Analysis (XRD), and Fourier Transform Infrared (FTIR), Raman and Photoluminescence (PL) spectroscopy. Pyrolysis of the cured materials took place at temperatures in the range 400-1000 degrees C. The most important weight loss, shrinkage and structural changes of pyrolyzed composites are observed at temperatures up to 600 degrees C due to the olive stone component. In the same temperature range, the changes in pyrolyzed novolac are smaller. The spectroscopic analysis shows that novolac pyrolyzed up to 900 ( degrees )C has less defects and disorder than the composites. However, above 900 ( degrees )C, pyrolyzed novolac becomes more disordered compared to the pyrolyzed composites. It is concluded that partial replacement of novolac by olive stone in the composite materials leads to the formation of a low cost, good quality product.

  20. Thermo-structural analysis and electrical conductivity behavior of epoxy/metals composites

    NASA Astrophysics Data System (ADS)

    Boumedienne, N.; Faska, Y.; Maaroufi, A.; Pinto, G.; Vicente, L.; Benavente, R.

    2017-05-01

    This paper reports on the elaboration and characterization of epoxy resin filled with metallic particles powder (aluminum, tin and zinc) composites. The scanning electron microscopy (SEM) pictures, density measurements and x-ray diffraction analysis (DRX) showed a homogeneous phase of obtained composites. The differential scanning calorimetry revealed a good adherence at matrix-filler interfaces, confirming the SEM observations. The measured glass transition temperatures depend on composites fillers' nature. Afterwards, the electrical conductivity of composites versus their fillers' contents has been investigated. The obtained results depict a nonlinear behavior, indicating an insulator to conductor phase transition at a conduction threshold; with high contrast of ten decades. Hence, the elaborated materials give a possibility to obtain dielectric or electrically conducting phases, which can to be interesting in the choice of desired applications. Finally, the obtained results have been successfully simulated on the basis of different percolation models approach combined with structural characterization inferences.

  1. Mechanical Properties and Thermal Shock Resistance Analysis of BNNT/Si3N4 Composites

    NASA Astrophysics Data System (ADS)

    Wang, Shouren; Wang, Gaoqi; Wen, Daosheng; Yang, Xuefeng; Yang, Liying; Guo, Peiquan

    2018-04-01

    BNNT/Si3N4 ceramic composites with different weight amount of BNNT fabricated by hot isostatic pressing were introduced. The mechanical properties and thermal shock resistance of the composites were investigated. The results showed that BNNT-added ceramic composites have a finer and more uniform microstructure than that of BNNT-free Si3N4 ceramic because of the retarding effect of BNNT on Si3N4 grain growth. The addition of 1.5 wt.% BNNT results in simultaneous increase in flexural strength, fracture toughness, and thermal shock resistance. The analysis of the results indicates that BNNT brings many thermal transport channels in the microstructure, increasing the efficiency of thermal transport, therefore results in increase of thermal shock resistance. In addition, BNNT improves the residual flexural strength of composites by crack deflection, bridging, branching and pinning, which increase the crack propagation resistance.

  2. Oxidation Kinetics and Strength Degradation of Carbon Fibers in a Cracked Ceramic Matrix Composite

    NASA Technical Reports Server (NTRS)

    Halbig, Michael C.

    2003-01-01

    Experimental results and oxidation modeling will be presented to discuss carbon fiber susceptibility to oxidation, the oxidation kinetics regimes and composite strength degradation and failure due to oxidation. Thermogravimetric Analysis (TGA) was used to study the oxidation rates of carbon fiber and of a pyro-carbon interphase. The analysis was used to separately obtain activation energies for the carbon constituents within a C/SiC composite. TGA was also conducted on C/SiC composite material to study carbon oxidation and crack closure as a function of temperature. In order to more closely match applications conditions C/SiC tensile coupons were also tested under stressed oxidation conditions. The stressed oxidation tests show that C/SiC is much more susceptible to oxidation when the material is under an applied load where the cracks are open and allow for oxygen ingress. The results help correlate carbon oxidation with composite strength reduction and failure.

  3. Effect of HNT on the Microstructure, Thermal and Mechanical Properties of Al/FACS-HNT Composites Produced by GPI

    NASA Astrophysics Data System (ADS)

    Siewiorek, A.; Malczyk, P.; Sobczak, N.; Sobczak, J. J.; Czulak, A.; Kozera, R.; Gude, M.; Boczkowska, A.; Homa, M.

    2016-08-01

    To develop an optimised manufacturing method of fly ash-reinforced metal matrix composites, the preliminary tests were performed on the cenospheres selected from fly ash (FACS) with halloysite nanotubes (HNTs) addition. The preform made out of FACS with and without the addition of HNT (with 5 and 10 wt.%) has been infiltrated by the pure aluminium (Al) via adapted gas pressure infiltration process. This paper reveals the influence of HNT addition on the microstructure (analysis was done by computed tomography and scanning electron microscopy combined with energy-dispersive x-ray spectroscopy), thermal properties (thermal expansion coefficient, thermal conductivity and specific heat) and the mechanical properties (hardness and compression test) of manufactured composites. The analysis of structure-property relationships for Al/FACS-HNT composites produced shows that the addition of 5 wt.% of HNT to FACS preform contributes to receiving of the best mechanical and structural properties of investigated composites.

  4. Electrodepositing behaviors and properties of nano Fe-Ni-Cr/SiC composite coatings from trivalent chromium baths containing compound carboxylate-urea system.

    PubMed

    He, Xinkuai; Hou, Bailong; Cai, Youxing; Li, Chen; Jiang, Yumei; Wu, Luye

    2013-06-01

    The nano Fe-Ni-Cr/SiC composite coatings were prepared using pulse electrodeposition method from trivalent chromium baths containing compound carboxylate-urea system and nano SiC in ultrasonic field. The effects of the carboxylate-urea system on the nano Fe-Ni-Cr/SiC composite coatings have been investigated. These results indicated that the SiC and Cr contents and the thickness of the Fe-Ni-Cr/SiC composite coatings could be obviously improved by the compound carboxylate-urea system. The steady-state polarization curves showed that the hydrogen evolution reaction (HER) could be significantly inhibited by the compound carboxylate-urea system, which was benefit to increase the SiC and Cr contents and the thickness of the composite coatings. The cyclic voltammetry (CV) curves showed that the cathodic polarization of the matrix metal ions could be increased in the bath containing the compound carboxylate-urea system. Thus, a compact Fe-Ni-Cr/SiC composite coating could be obtained using this technique. The surface morphology of the Fe-Ni-Cr/SiC composite coatings checked with the scanning electron micrographs (SEM) showed that the surface smoothness could be also improved and the microcracks and pinholes could be decreased due to the presence of the compound carboxylate-urea system. The phase composition of the as-posited coating was measured by the X-ray diffraction (XRD). XRD data showed that the as-posited coating was Fe-Ni-Cr/SiC composite coating. The chemical composition of the coating was investigated by energy dispersive spectrum (EDS) analysis. The result showed the functional Fe-Ni-Cr/SiC composite coatings with 4.1 wt.% SiC and 25.1 wt.% Cr, and 23.9 microm thickness were obtained in this study, which had best corrosion resistance according to the results of the typical potentiodynamic polarization curves of the Fe-Ni-Cr/SiC composite coatings.

  5. Multi-walled carbon nanotubes/polymer composites in absence and presence of acrylic elastomer (ACM).

    PubMed

    Kumar, S; Rath, T; Mahaling, R N; Mukherjee, M; Khatua, B B; Das, C K

    2009-05-01

    Polyetherimide/Multiwall carbon nanotube (MWNTs) nanocomposites containing as-received and modified (COOH-MWNT) carbon nanotubes were prepared through melt process in extruder and then compression molded. Thermal properties of the composites were characterized by thermo-gravimetric analysis (TGA). Field emission scanning electron microscopy (FESEM) images showed that the MWNTs were well dispersed and formed an intimate contact with the polymer matrix without any agglomeration. However the incorporation of modified carbon nanotubes formed fascinating, highly crosslinked, and compact network structure throughout the polymer matrix. This showed the increased adhesion of PEI with modified MWNTs. Scanning electron microscopy (SEM) also showed high degree of dispersion of modified MWNTs along with broken ends. Dynamic mechanical analysis (DMA) results showed a marginal increase in storage modulus (E') and glass transition temperature (T(g)) with the addition of MWNTs. Increase in tensile strength and impact strength of composites confirmed the use the MWNTs as possible reinforcement agent. Both thermal and electrical conductivity of composites increased, but effect is more pronounced on modification due to formation of network of carbon nanotubes. Addition of acrylic elastomer to developed PEI/MWNTs (modified) nanocomposites resulted in the further increase in thermal and electrical properties due to the formation of additional bond between MWNTs and acrylic elastomers at the interface. All the results presented are well corroborated by SEM and FESEM studies.

  6. Two emissive-magnetic composite platforms for Hg(II) sensing and removal: The combination of magnetic core, silica molecular sieve and rhodamine chemosensors.

    PubMed

    Mao, Hanping; Liu, Zhongshou

    2018-01-15

    In this paper, a composite sensing platform for Hg(II) optical sensing and removal was designed and reported. A core-shell structure was adopted, using magnetic Fe 3 O 4 nanoparticles as the core, silica molecular sieve MCM-41 as the shell, respectively. Two rhodamine derivatives were synthesized as chemosensor and covalently immobilized into MCM-41 tunnels. Corresponding composite samples were characterized with SEM/TEM images, XRD analysis, IR spectra, thermogravimetry and N 2 adsorption/desorption analysis, which confirmed their core-shell structure. Their emission was increased by Hg(II), showing emission turn on effect. High selectivity, linear working curves and recyclability were obtained from these composite samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Buckling of a Longitudinally Jointed Curved Composite Panel Arc Segment for Next Generation of Composite Heavy Lift Launch Vehicles: Verification Testing Analysis

    NASA Technical Reports Server (NTRS)

    Farrokh, Babak; Segal, Kenneth N.; Akkerman, Michael; Glenn, Ronald L.; Rodini, Benjamin T.; Fan, Wei-Ming; Kellas, Sortiris; Pineda, Evan J.

    2014-01-01

    In this work, an all-bonded out-of-autoclave (OoA) curved longitudinal composite joint concept, intended for use in the next generation of composite heavy lift launch vehicles, was evaluated and verified through finite element (FE) analysis, fabrication, testing, and post-test inspection. The joint was used to connect two curved, segmented, honeycomb sandwich panels representative of a Space Launch System (SLS) fairing design. The overall size of the resultant panel was 1.37 m by 0.74 m (54 in by 29 in), of which the joint comprised a 10.2 cm (4 in) wide longitudinal strip at the center. NASTRAN and ABAQUS were used to perform linear and non-linear analyses of the buckling and strength performance of the jointed panel. Geometric non-uniformities (i.e., surface contour imperfections) were measured and incorporated into the FE model and analysis. In addition, a sensitivity study of the specimens end condition showed that bonding face-sheet doublers to the panel's end, coupled with some stress relief features at corner-edges, can significantly reduce the stress concentrations near the load application points. Ultimately, the jointed panel was subjected to a compressive load. Load application was interrupted at the onset of buckling (at 356 kN 80 kips). A post-test non-destructive evaluation (NDE) showed that, as designed, buckling occurred without introducing any damage into the panel or the joint. The jointed panel was further capable of tolerating an impact damage to the same buckling load with no evidence of damage propagation. The OoA cured all-composite joint shows promise as a low mass factory joint for segmented barrels.

  8. Advertising, Social Epistemic, and Argumentation in the Composition Class.

    ERIC Educational Resources Information Center

    Turner, Brian

    1998-01-01

    Makes a case for using advertising as the common subject matter in a composition course, and for analyzing advertisements as a means of teaching argumentation. Discusses seeking a social-epistemic curriculum in the heterogeneous writing class. Shows why the close analysis of print advertisements provides an ideal opportunity to discuss questions…

  9. Variation in cell wall composition among forage maize (Zea mays L.) inbred lines and its impact on digestibility: analysis of neutral detergent fiber composition by pyrolysis-gas chromatography-mass spectrometry.

    PubMed

    Fontaine, Anne-Sophie; Bout, Siobhán; Barrière, Yves; Vermerris, Wilfred

    2003-12-31

    Cell wall digestibility is an important determinant of forage quality, but the relationship between cell wall composition and digestibility is poorly understood. We analyzed the neutral detergent fiber (NDF) fraction of nine maize inbred lines and one brown midrib3 mutant with pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). Among 29 pyrolysis fragments that were quantified, two carbohydrate-derived and six lignin-derived fragments showed statistically significant genetic variation. The pyrolysis products 4-vinyl phenol and 2,6-dimethoxy-4-vinyl phenol were negatively correlated with digestibility, whereas furfural and 3-(4-hydroxyphenyl)-3-oxopropanal showed a positive correlation with digestibility. Linear discriminant analysis of the pyrolysis data resulted in the resolution of groups of inbred lines with different digestibility properties based on their chemical composition. These analyses reveal that digestibility is governed by complex interactions between different cell wall compounds, but that several pyrolysis fragments can be used as markers to distinguish between maize lines with different digestibility.

  10. Functionalization of Graphene Oxide and its Composite with Poly(3,4-ethylenedioxythiophene) as Electrode Material for Supercapacitors

    NASA Astrophysics Data System (ADS)

    Wang, Minchao; Jamal, Ruxangul; Wang, Yujie; Yang, Lei; Liu, Fangfang; Abdiryim, Tursun

    2015-09-01

    In this study, poly(3,4-ethylenedioxythiophene)/thiophene-grafted graphene oxide (PEDOT/Th-GO) composites from covalently linking of Th-GO with PEDOT chains were prepared via in situ chemical polymerization with different weight percentage of Th-GO ranging between 40 and 70 % in reaction medium. The resulting composite materials were characterized using a various analytical techniques. The structural analysis showed that the composites displayed a higher degree of conjugation and thermal stability than pure PEDOT, and the weight percentage of Th-GO could affect the doping level, amount of undesired conjugated segments, and porous structure of composites. Electrochemical analysis suggested that the highest specific capacitance of 320 F g-1 at a current density of 1 A g-1 with good cycling stability (capacitance retention of 80 % at 1 A g-1 after 1000 cycles) was achieved for the composite prepared from 50 wt% Th-GO content in reaction medium.

  11. Functionalization of Graphene Oxide and its Composite with Poly(3,4-ethylenedioxythiophene) as Electrode Material for Supercapacitors.

    PubMed

    Wang, Minchao; Jamal, Ruxangul; Wang, Yujie; Yang, Lei; Liu, Fangfang; Abdiryim, Tursun

    2015-12-01

    In this study, poly(3,4-ethylenedioxythiophene)/thiophene-grafted graphene oxide (PEDOT/Th-GO) composites from covalently linking of Th-GO with PEDOT chains were prepared via in situ chemical polymerization with different weight percentage of Th-GO ranging between 40 and 70 % in reaction medium. The resulting composite materials were characterized using a various analytical techniques. The structural analysis showed that the composites displayed a higher degree of conjugation and thermal stability than pure PEDOT, and the weight percentage of Th-GO could affect the doping level, amount of undesired conjugated segments, and porous structure of composites. Electrochemical analysis suggested that the highest specific capacitance of 320 F g(-1) at a current density of 1 A g(-1) with good cycling stability (capacitance retention of 80 % at 1 A g(-1) after 1000 cycles) was achieved for the composite prepared from 50 wt% Th-GO content in reaction medium.

  12. Influence of Implementation of Composite Materials in Civil Aircraft Industry on reduction of Environmental Pollution and Greenhouse Effect

    NASA Astrophysics Data System (ADS)

    Beck, A. J.; Hodzic, A.; Soutis, C.; Wilson, C. W.

    2011-12-01

    Computer-based Life Cycle Analysis (LCA) models were carried out to compare lightweight composites with the traditional aluminium over their useful lifetime. The analysis included raw materials, production, useful life in operation and disposal at the end of the material's useful life. The carbon fibre epoxy resin composite could in some cases reduce the weight of a component by up to 40 % compared to aluminium. As the fuel consumption of an aircraft is strongly influenced by its total weight, the emissions can be significantly reduced by increasing the proportion of composites used in the aircraft structure. Higher emissions, compared to aluminium, produced during composites production meet their 'break even' point after certain number of time units when used in aircraft structures, and continue to save emissions over their long-term operation. The study highlighted the environmental benefits of using lightweight structures in aircraft design, and also showed that utilisation of composites in products without energy saving may lead to increased emissions in the environment.

  13. Effect of electron beam irradiation on thermal and mechanical properties of aluminum based epoxy composites

    NASA Astrophysics Data System (ADS)

    Visakh, P. M.; Nazarenko, O. B.; Sarath Chandran, C.; Melnikova, T. V.; Nazarenko, S. Yu.; Kim, J.-C.

    2017-07-01

    The epoxy resins are widely used in nuclear and aerospace industries. The certain properties of epoxy resins as well as the resistance to radiation can be improved by the incorporation of different fillers. This study examines the effect of electron beam irradiation on the thermal and mechanical properties of the epoxy composites filled with aluminum nanoparticles at percentage of 0.35 wt%. The epoxy composites were exposed to the irradiation doses of 30, 100 and 300 kGy using electron beam generated by the linear electron accelerator ELU-4. The effects of the doses on thermal and mechanical properties of the aluminum based epoxy composites were investigated by the methods of thermal gravimetric analysis, tensile test, and dynamic mechanical analysis. The results revealed that the studied epoxy composites showed good radiation resistance. The thermal and mechanical properties of the aluminum based epoxy composites increased with increasing the irradiation dose up to 100 kGy and decreased with further increasing the dose.

  14. Identification and Modelling of the In-Plane Reinforcement Orientation Variations in a CFRP Laminate Produced by Manual Lay-Up

    NASA Astrophysics Data System (ADS)

    Davila, Yves; Crouzeix, Laurent; Douchin, Bernard; Collombet, Francis; Grunevald, Yves-Henri

    2017-08-01

    Reinforcement angle orientation has a significant effect on the mechanical properties of composite materials. This work presents a methodology to introduce variable reinforcement angles into finite element (FE) models of composite structures. The study of reinforcement orientation variations uses meta-models to identify and control a continuous variation across the composite ply. First, the reinforcement angle is measured through image analysis techniques of the composite plies during the lay-up phase. Image analysis results show that variations in the mean ply orientations are between -0.5 and 0.5° with standard deviations ranging between 0.34 and 0.41°. An automatic post-treatment of the images determines the global and local angle variations yielding good agreements visually and numerically between the analysed images and the identified parameters. A composite plate analysed at the end of the cooling phase is presented as a case of study. Here, the variation in residual strains induced by the variability in the reinforcement orientation are up to 28% of the strain field of the homogeneous FE model. The proposed methodology has shown its capabilities to introduce material and geometrical variability into FE analysis of layered composite structures.

  15. Identification and Modelling of the In-Plane Reinforcement Orientation Variations in a CFRP Laminate Produced by Manual Lay-Up

    NASA Astrophysics Data System (ADS)

    Davila, Yves; Crouzeix, Laurent; Douchin, Bernard; Collombet, Francis; Grunevald, Yves-Henri

    2018-06-01

    Reinforcement angle orientation has a significant effect on the mechanical properties of composite materials. This work presents a methodology to introduce variable reinforcement angles into finite element (FE) models of composite structures. The study of reinforcement orientation variations uses meta-models to identify and control a continuous variation across the composite ply. First, the reinforcement angle is measured through image analysis techniques of the composite plies during the lay-up phase. Image analysis results show that variations in the mean ply orientations are between -0.5 and 0.5° with standard deviations ranging between 0.34 and 0.41°. An automatic post-treatment of the images determines the global and local angle variations yielding good agreements visually and numerically between the analysed images and the identified parameters. A composite plate analysed at the end of the cooling phase is presented as a case of study. Here, the variation in residual strains induced by the variability in the reinforcement orientation are up to 28% of the strain field of the homogeneous FE model. The proposed methodology has shown its capabilities to introduce material and geometrical variability into FE analysis of layered composite structures.

  16. Uncertainty Quantification Analysis of Both Experimental and CFD Simulation Data of a Bench-scale Fluidized Bed Gasifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahnam, Mehrdad; Gel, Aytekin; Subramaniyan, Arun K.

    Adequate assessment of the uncertainties in modeling and simulation is becoming an integral part of the simulation based engineering design. The goal of this study is to demonstrate the application of non-intrusive Bayesian uncertainty quantification (UQ) methodology in multiphase (gas-solid) flows with experimental and simulation data, as part of our research efforts to determine the most suited approach for UQ of a bench scale fluidized bed gasifier. UQ analysis was first performed on the available experimental data. Global sensitivity analysis performed as part of the UQ analysis shows that among the three operating factors, steam to oxygen ratio has themore » most influence on syngas composition in the bench-scale gasifier experiments. An analysis for forward propagation of uncertainties was performed and results show that an increase in steam to oxygen ratio leads to an increase in H2 mole fraction and a decrease in CO mole fraction. These findings are in agreement with the ANOVA analysis performed in the reference experimental study. Another contribution in addition to the UQ analysis is the optimization-based approach to guide to identify next best set of additional experimental samples, should the possibility arise for additional experiments. Hence, the surrogate models constructed as part of the UQ analysis is employed to improve the information gain and make incremental recommendation, should the possibility to add more experiments arise. In the second step, series of simulations were carried out with the open-source computational fluid dynamics software MFiX to reproduce the experimental conditions, where three operating factors, i.e., coal flow rate, coal particle diameter, and steam-to-oxygen ratio, were systematically varied to understand their effect on the syngas composition. Bayesian UQ analysis was performed on the numerical results. As part of Bayesian UQ analysis, a global sensitivity analysis was performed based on the simulation results, which shows that the predicted syngas composition is strongly affected not only by the steam-to-oxygen ratio (which was observed in experiments as well) but also by variation in the coal flow rate and particle diameter (which was not observed in experiments). The carbon monoxide mole fraction is underpredicted at lower steam-to-oxygen ratios and overpredicted at higher steam-to-oxygen ratios. The opposite trend is observed for the carbon dioxide mole fraction. These discrepancies are attributed to either excessive segregation of the phases that leads to the fuel-rich or -lean regions or alternatively the selection of reaction models, where different reaction models and kinetics can lead to different syngas compositions throughout the gasifier. To improve quality of numerical models used, the effect that uncertainties in reaction models for gasification, char oxidation, carbon monoxide oxidation, and water gas shift will have on the syngas composition at different grid resolution, along with bed temperature were investigated. The global sensitivity analysis showed that among various reaction models employed for water gas shift, gasification, char oxidation, the choice of reaction model for water gas shift has the greatest influence on syngas composition, with gasification reaction model being second. Syngas composition also shows a small sensitivity to temperature of the bed. The hydrodynamic behavior of the bed did not change beyond grid spacing of 18 times the particle diameter. However, the syngas concentration continued to be affected by the grid resolution as low as 9 times the particle diameter. This is due to a better resolution of the phasic interface between the gases and solid that leads to stronger heterogeneous reactions. This report is a compilation of three manuscripts published in peer-reviewed journals for the series of studies mentioned above.« less

  17. Influence of artificial accelerated aging on the color stability and opacity of composites of different shades.

    PubMed

    Mundim, F M; Da Fonseca Roberti Garcia, L; Silva Sousa, A B; Cruvinel, D R; De Carvalho Panzeri Pires-De-Souza, F

    2010-10-01

    The aim of this study was to evaluate the influence of artificial accelerated aging on the color stability and opacity of composites of different shades. Four composites for direct use (Heliomolar, 4 Seasons, Tetric EvoCeram; QuiXfil) and one for indirect use (SR Adoro) in two shades were used: light (A2) and dark (C3 for direct, and D4 for indirect composite). QuiXfil was obtained in Universal shade. A Teflon matrix (12 X 2 mm) was used to obtain 54 specimens (N=6), which were submitted to color and opacity analysis (Spectrophotometer PCB 6807, Byk Gardner) before and after artificial accelerated aging for 384 hours. After the statistical analysis (2-way ANOVA - Bonferroni - P<0.05), significant color alteration was observed in the light and dark composites studied (P<0.05), with the exception of QuiXfil. Composite 4 Seasons/C3 showed less color alteration (ΔE=0.91). The opacity alteration (ΔOP) was higher for light composites. Artificial accelerated aging interfered in the optical properties assessed; however, the alterations seemed to be more related to the composites composition than to their shade.

  18. Analysis of the microstructure and mechanical performance of composite resins after accelerated artificial aging.

    PubMed

    De Oliveira Daltoé, M; Lepri, C Penazzo; Wiezel, J Guilherme G; Tornavoi, D Cremonezzi; Agnelli, J A Marcondes; Reis, A Cândido Dos

    2013-03-01

    Researches that assess the behavior of dental materials are important for scientific and industrial development especially when they are tested under conditions that simulate the oral environment, so this work analyzed the compressive strength and microstructure of three composite resins subjected to accelerated artificial aging (AAA). Three composites resins of 3M (P90, P60 and Z100) were analyzed and were obtained 16 specimens for each type (N.=48). Half of each type were subjected to UV-C system AAA and then were analyzed the surfaces of three aged specimens and three not aged of each type through the scanning electron microscope (SEM). After, eight specimens of each resin, aged and not aged, were subjected to compression test. After statistical analysis of compressive strength values, it was found that there was difference between groups (α <0.05). The resin specimens aged P60 presented lower values of compressive strength statistically significant when compared to the not subject to the AAA. For the other composite resins, there was no difference, regardless of aging, a fact confirmed by SEM. The results showed that the AAA influenced the compressive strength of the resin aged P60; confirmed by surface analysis by SEM, which showed greater structural disarrangement on surface material.

  19. Thermal Properties of Cement-Based Composites for Geothermal Energy Applications.

    PubMed

    Bao, Xiaohua; Memon, Shazim Ali; Yang, Haibin; Dong, Zhijun; Cui, Hongzhi

    2017-04-27

    Geothermal energy piles are a quite recent renewable energy technique where geothermal energy in the foundation of a building is used to transport and store geothermal energy. In this paper, a structural-functional integrated cement-based composite, which can be used for energy piles, was developed using expanded graphite and graphite nanoplatelet-based composite phase change materials (CPCMs). Its mechanical properties, thermal-regulatory performance, and heat of hydration were evaluated. Test results showed that the compressive strength of GNP-Paraffin cement-based composites at 28 days was more than 25 MPa. The flexural strength and density of thermal energy storage cement paste composite decreased with increases in the percentage of CPCM in the cement paste. The infrared thermal image analysis results showed superior thermal control capability of cement based materials with CPCMs. Hence, the carbon-based CPCMs are promising thermal energy storage materials and can be used to improve the durability of energy piles.

  20. Facile synthesis of uniform hierarchical composites CuO-CeO2 for enhanced dye removal

    NASA Astrophysics Data System (ADS)

    Xu, Pan; Niu, Helin; Chen, Jingshuai; Song, Jiming; Mao, Changjie; Zhang, Shengyi; Gao, Yuanhao; Chen, Changle

    2016-12-01

    The hierarchically shaped CuO-CeO2 composites were prepared through a facile solvothermal method without using any template. The as-prepared products were characterized by X-ray powder diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and N2 adsorption-desorption analysis. In the characterization, we found that CuO-CeO2 composites were showed uniform size and morphology which were consisted of the secondary nanoflakes interconnected with each other. Most interestingly, the composites showed efficient performance to remove methyl blue and Congo red dyes from water with maximum adsorption capacities of 2131.24 and 1072.09 mg g-1, respectively. In addition, because of their larger surface area and the unique hierarchical structures, the adsorption performance of the CuO-CeO2 composites is much better than the materials of CuO and CeO2.

  1. Thermal Properties of Cement-Based Composites for Geothermal Energy Applications

    PubMed Central

    Bao, Xiaohua; Memon, Shazim Ali; Yang, Haibin; Dong, Zhijun; Cui, Hongzhi

    2017-01-01

    Geothermal energy piles are a quite recent renewable energy technique where geothermal energy in the foundation of a building is used to transport and store geothermal energy. In this paper, a structural–functional integrated cement-based composite, which can be used for energy piles, was developed using expanded graphite and graphite nanoplatelet-based composite phase change materials (CPCMs). Its mechanical properties, thermal-regulatory performance, and heat of hydration were evaluated. Test results showed that the compressive strength of GNP-Paraffin cement-based composites at 28 days was more than 25 MPa. The flexural strength and density of thermal energy storage cement paste composite decreased with increases in the percentage of CPCM in the cement paste. The infrared thermal image analysis results showed superior thermal control capability of cement based materials with CPCMs. Hence, the carbon-based CPCMs are promising thermal energy storage materials and can be used to improve the durability of energy piles. PMID:28772823

  2. Preparation of magnetic and bioactive calcium zinc iron silicon oxide composite for hyperthermia treatment of bone cancer and repair of bone defects.

    PubMed

    Jiang, Yumin; Ou, Jun; Zhang, Zhanhe; Qin, Qing-Hua

    2011-03-01

    In this paper, a calcium zinc iron silicon oxide composite (CZIS) was prepared using the sol-gel method. X-ray diffraction (XRD) was then employed to test the CZIS composite. The results from the test showed that the CZIS had three prominent crystalline phases: Ca(2)Fe(1.7)Zn(0.15)Si(0.15)O(5), Ca(2)SiO(4), and ZnFe(2)O(4). Calorimetric measurements were then performed using a magnetic induction furnace. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) analysis were conducted to confirm the growth of a precipitated hydroxyapatite phase after immersion in simulated body fluid (SBF). Cell culture experiments were also carried out, showing that the CZIS composite more visibly promoted osteoblast proliferation than ZnFe(2)O(4) glass ceramic and HA, and osteoblasts adhered and spread well on the surfaces of composite samples.

  3. Adolescent build plotting on body composition chart and the type of diabetes mellitus.

    PubMed

    Park, Hye Won; Kim, Yong Hyuk; Cho, Myunghyun; Kwak, Byung Ok; Kim, Kyo Sun; Chung, Sochung

    2012-11-01

    Although the prevalence of type 2 diabetes is increasing, there are cases difficult to categorize into certain type in pediatric diabetic patients. The aims of this study were to detect and choose a proper treatment modality for atypical cases of diabetes mellitus, using the body composition chart. We conducted a retrospective study from August 2005 to 2012 with patients who visited Konkuk University Medical Center, and were diagnosed with diabetes mellitus. The medical records were reviewed for the anthropometric data and indices of body composition. The subjects were grouped by the type of diabetes and gender. We constructed a body composition chart plotting fat free mass index and fat mass index (FMI). Body mass index and all body composition indices were higher in type 2 diabetes, in each gender in analysis with Mann-Whitney test. Significant determinant of diabetes type was revealed as FMI and contributing factors on FMI were analyzed with regression analysis. Six atypical cases were identified by a body composition chart including non-obese type 2 diabetes showing suboptimal growth with lower BMI related to relatively lower insulin secretion and type 1 diabetes with insulin resistance resulted from obesity. Body composition chart analysis might be useful in characterization of diabetes type and detection of atypical cases and early adjustment of diabetes management strategy.

  4. Preparation and study of (1 - x)CuFe2O4-xBaTiO3 (x = 0, 0.1 and 1) composite multiferroics

    NASA Astrophysics Data System (ADS)

    Murtaza, Tahir; Ali, Javid; Khan, M. S.

    2018-07-01

    The parent and mixed spinel-perovskite composite of (1 - x)CuFe2O4-xBaTiO3 (x = 0, 0.1 and 1) has been prepared by solid-state reaction method and studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), Mössbauer spectroscopy, magnetometry and P-E lope tracer. The XRD results showed the formation of single phase tetragonal spinel CuFe2O4 and tetragonal perovskite BaTiO3 at room temperature, further XRD of composite 0.1CuFe2O4-0.9BaTiO3 reflects the two crystallographic phases with 1:9 ratio. The SEM micrographs show the homogeneous and uniform formation of the samples. Through EDAX analysis, the chemical composition of the sample is found to be same as the nominal composition. The high field Mossbauer data of CuFe2O4 sample shows the ferrimagnetic ordering in the sample. The observed M-H and P-E loops of the composite 0.1CuFe2O4-0.9BaTiO3 sample show the presence of spontaneous magnetization and spontaneous electric polarization indicating the multiferroic nature of the sample.

  5. Push-out tests on a new silicon carbide/reaction-bonded silicon carbide ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Curtin, William A.; Eldridge, Jeffrey I.; Srinivasan, Gajawalli V.

    1993-01-01

    Fiber push-out tests have been performed on a ceramic matrix composite consisting of carborundum-sintered SiC fibers, with a BN coating, embedded in a reaction-bonded SiC matrix. Analysis of the push-out data, utilizing the most complete theory presently available, shows that one of the fiber/coating/matrix interfaces has a low fracture energy (one-tenth that of the fiber) and a moderate sliding resistance of about 8 MPa. The debonded sliding interface shows some continuous but minor abrasion, which appears to increase the sliding resistance, but overall the system exhibits very clean smooth sliding. The tensile response of a full-scale composite is then modeled using data obtained here and known fiber strengths to demonstrate the good composite behavior predicted for this material.

  6. Controls on the chemistry of runoff from an upland peat catchment

    NASA Astrophysics Data System (ADS)

    Worrall, Fred; Burt, Tim; Adamson, John

    2003-07-01

    This study uses 2 years of data from a detailed weekly water sampling programme in a 11·4 km2 upland peat catchment in the Northern Pennines, UK. The sampling comprised precipitation, soil-water samples and a number of streams, including the basin outlet. Samples were analysed for: pH, conductivity, alkalinity, Na, K, Ca, Mg, Fe, Al, Total N, SO4, Cl and colour. Principal component analysis (PCA) was used to identify end-members and compositional trends in order to identify controls on the development of water composition. The study showed that the direct use of PCA had several advantages over the use of end-member mixing analysis (EMMA) as it combines an analysis of mixing and evolving waters without the assumption of having to know the compositional sources of the water. In its application to an upland peat catchment, the study supports the view that shallow throughflow at the catotelm/acrotelm boundary is responsible for storm runoff generation and shows that baseflow is controlled by cation exchange in the catotelm and mixing with a base-rich groundwater.

  7. Variation of acharan sulfate and monosaccharide composition and analysis of neutral N-glycans in African giant snail (Achatina fulica).

    PubMed

    Park, Youmie; Zhang, Zhenqing; Laremore, Tatiana N; Li, Boyangzi; Sim, Joon-Soo; Im, A-Rang; Ahn, Mi Young; Kim, Yeong Shik; Linhardt, Robert J

    2008-12-01

    Acharan sulfate content from African giant snail (Achatina fulica) was compared in eggs and snails of different ages. Acharan sulfate was not found in egg. Acharan sulfate disaccharide -->4)-alpha-D-GlcNpAc (1-->4)-alpha-L-IdoAp2S(1-->, analyzed by SAX (strong-anion exchange)-HPLC was observed soon after hatching and increases as the snails grow. Monosaccharide compositional analysis showed that mole % of glucosamine, a major monosaccharide of acharan sulfate, increased with age while mole % of galactose decreased with age. These results suggest that galactans represent a major energy source during development, while acharan sulfate appearing immediately after hatching, is essential for the snail growth. The structures of neutral N-glycans released from eggs by peptide N-glycosidase F (PNGase F), were next elucidated using ESI-MS/MS, MALDI-MS/MS, enzyme digestion, and monosaccharide composition analysis. Three types of neutral N-glycan structures were observed, truncated (Hex(2-4)-HexNAc(2)), high mannose (Hex(5-9)-HexNAc(2)), and complex (Hex(3)-HexNAc(2-10)) types. None showed core fucosylation.

  8. Direct comparison of Fe-Cr unmixing characterization by atom probe tomography and small angle scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couturier, Laurent, E-mail: laurent.couturier55@ho

    The fine microstructure obtained by unmixing of a solid solution either by classical precipitation or spinodal decomposition is often characterized either by small angle scattering or atom probe tomography. This article shows that a common data analysis framework can be used to analyze data obtained from these two techniques. An example of the application of this common analysis is given for characterization of the unmixing of the Fe-Cr matrix of a 15-5 PH stainless steel during long-term ageing at 350 °C and 400 °C. A direct comparison of the Cr composition fluctuations amplitudes and characteristic lengths obtained with both techniquesmore » is made showing a quantitative agreement for the fluctuation amplitudes. The origin of the discrepancy remaining for the characteristic lengths is discussed. - Highlights: •Common analysis framework for atom probe tomography and small angle scattering •Comparison of same microstructural characteristics obtained using both techniques •Good correlation of Cr composition fluctuations amplitudes from both techniques •Good correlation of Cr composition fluctuations amplitudes with classic V parameter.« less

  9. [Aging of silorane- and methacrylate-based composite resins: effects on color and translucency].

    PubMed

    Liu, Chang; Pan, Jie; Lin, Hong; Shen, Song

    2015-10-01

    To evaluate the color stability and translucency of silorane-based low shrinkage composite after in vitro aging procedures of thermal cycling and water storage respectively, and to compare with those of conventional methacrylate-based posterior composite. Three light-cured composite resins, dimethacrylate-based composite A (Filtek™ Z350), B (Filtek™ P60) and silorane-based composite C (Filtek™ P90), were tested in this study. Ten specimens (10 mm in diameter, 1 mm in height) of each composite were prepared. The ten specimens in each group were then divided into two subgroups (n = 5). One subgroup underwent thermal cycling [(5.0 ± 0.5)~(55.0 ± 1.0) °C, 10 000 cycles] and the other was stored in 37 C° distilled water for 180 days. With a spectrophotometer, the CIE L * a * b * parameters of the specimens were tested before and after artificial aging against white, medium grey and black backgrounds, respectively. △E, TP and △TP were calculated and data were analyzed using independent-samples t test and partial analysis (P < 0.05). With regard to color stability, silorane-based composite showed color alteration above the clinically acceptable levels (△E > 3.3), and also showed higher △E with a statistically significant difference in comparison with the other composites (B and C) (P < 0.05) after artificial aging. With regard to translucency, composite C showed more alteration compared with composite B (P < 0.05) after thermal cycling. It may be concluded that the silorane-based composite underwent greater alteration with regard to color stability and translucency.

  10. Enhanced adsorption of Eu(III) on mesoporous Al2O3/expanded graphite composites investigated by macroscopic and microscopic techniques.

    PubMed

    Sun, Yubing; Chen, Changlun; Tan, Xiaoli; Shao, Dadong; Li, Jiaxing; Zhao, Guixia; Yang, Shubin; Wang, Qi; Wang, Xiangke

    2012-11-21

    Mesoporous Al(2)O(3) was intercalated into an expanded graphite (EG) interlayer to prepare mesoporous Al(2)O(3)/EG composites. The basal spacing of mesoporous Al(2)O(3)/EG composites was enlarged as compared to raw graphite from the X-ray diffraction analysis. The massive surface functional groups and wedge-shaped pores were observed in terms of potentiometric acid-base titration analysis and scanning electron microscope, respectively. The pH-dependent adsorption of Eu(III) on mesoporous Al(2)O(3)/EG composites was evidently independent of ionic strength. The maximum adsorption capacity of Eu(III) on mesoporous Al(2)O(3)/EG composites at pH 6.0 and T = 293 K was calculated to be 5.14 mg g(-1). Desorption kinetics and cyclic operation results showed that mesoporous Al(2)O(3)/EG composites presented high hydrothermal stability in aqueous solution. The thermodynamic parameters suggested that Eu(III) adsorption on mesoporous Al(2)O(3)/EG composites is an endothermic and a spontaneous process. The decrease of Eu-O bond distance with the increasing pH demonstrated that the adsorption mechanism between Eu(III) and mesoporous Al(2)O(3)/EG composites would shift from outer-sphere surface complexation to inner-sphere surface complexation in terms of extended X-ray absorption fine structure spectroscopy analysis.

  11. Synthesis of Carbon Foam from Waste Artificial Marble Powder and Carboxymethyl Cellulose via Electron Beam Irradiation and Its Characterization

    PubMed Central

    Kim, Hong Gun; Kim, Yong Sun; Kwac, Lee Ku; Chae, Su-Hyeong; Shin, Hye Kyoung

    2018-01-01

    Carbon foams were prepared by carbonization of carboxymethyl cellulose (CMC)/waste artificial marble powder (WAMP) composites obtained via electron beam irradiation (EBI); these composites were prepared by mixing eco-friendly CMC with WAMP as the fillers for improved their poor mechanical strength. Gel fractions of the CMC/WAMP composites obtained at various EBI doses were investigated, and it was found that the CMC/WAMP composites obtained at an EBI dose of 80 kGy showed the highest gel fraction (95%); hence, the composite prepared at this dose was selected for preparing the carbon foam. The thermogravimetric analysis of the CMC/WAMP composites obtained at 80 kGy; showed that the addition of WAMP increased the thermal stability and carbon residues of the CMC/WAMP composites at 900 °C. SEM images showed that the cell walls of the CMC/WAMP carbon foams were thicker more than those of the CMC carbon foam. In addition, energy dispersive X-ray spectroscopy showed that the CMC/WAMP carbon foams contained small amounts of aluminum, derived from WAMP. The results confirmed that the increased WAMP content and hence increased aluminum content improved the thermal conductivity of the composites and their corresponding carbon foams. Moreover, the addition of WAMP increased the compressive strength of CMC/WAMP composites and hence the strength of their corresponding carbon foams. In conclusion, this synthesis method is encouraging, as it produces carbon foams of pore structure with good mechanical properties and thermal conductivity. PMID:29565300

  12. Experimental Study on Impact-Induced Reaction Characteristics of PTFE/Ti Composites Enhanced by W Particles.

    PubMed

    Li, Yan; Wang, Zaicheng; Jiang, Chunlan; Niu, Haohao

    2017-02-13

    Metal/fluoropolymer composites are a category of energetic structural materials that release energy through exothermic chemical reactions initiated under highly dynamic loadings. In this paper, the chemical reaction mechanism of PTFE (polytetrafluoroethylene)/Ti/W composites is investigated through thermal analysis and composition analysis. These composites undergo exothermic reactions at 510 °C to 600 °C, mainly producing TiF x . The tungsten significantly reduces the reaction heat due to its inertness. In addition, the dynamic compression properties and impact-induced reaction behaviors of PTFE/Ti/W composites with different W content prepared by pressing and sintering are studied using Split Hopkinson Pressure Bar and high speed photography. The results show that both the mechanical strength and the reaction degree are significantly improved with the increasing strain rate. Moreover, as W content increases, the mechanical strength is enhanced, but the elasticity/plasticity is decreased. The PTFE/Ti/W composites tend to become more inert with the increasing W content, which is reflected by the reduced reaction degree and the increased reaction threshold for the impact ignition.

  13. Bambara-wheat composite flour: rheological behavior of dough and functionality in bread.

    PubMed

    Erukainure, Ochuko L; Okafor, Jane N C; Ogunji, Akinyele; Ukazu, Happiness; Okafor, Ebele N; Eboagwu, Ijeoma L

    2016-11-01

    The rheological behavior and functional properties of doughs from bambara-wheat composite flour was investigated. Bambara-wheat composite flour was prepared by substituting wheat with 0%, 10%, 15%, and 20% of bambara flour. The rheological behavior of their dough was analyzed with Mixolab. Breads produced from the flour were analyzed for physical characteristics. Organoleptic analysis was carried out by 20 panelists. Mixolab analysis revealed, except for stability time, depreciating values for dough consistency (C1), protein weakening (C2), starch gelatinization (C3), amylase activity (C4), and retrogradation (C5) as the inclusion of bambara flour increased. Physical characteristics of the loaves revealed significant ( P  < 0.05) decreasing bread volume and increasing specific volume, respectively, as bambara inclusion increased. There was significant ( P  < 0.05) difference between wheat bread and the bambara-wheat composites in all the studied quality attributes. 15% bambara-wheat composite bread was the most accepted amongst the composite breads. Inclusion of bambara flour improved the protein behavior of the composite, but did not evidently show benefits in the baking characteristics.

  14. Experimental Study on Impact-Induced Reaction Characteristics of PTFE/Ti Composites Enhanced by W Particles

    PubMed Central

    Li, Yan; Wang, Zaicheng; Jiang, Chunlan; Niu, Haohao

    2017-01-01

    Metal/fluoropolymer composites are a category of energetic structural materials that release energy through exothermic chemical reactions initiated under highly dynamic loadings. In this paper, the chemical reaction mechanism of PTFE (polytetrafluoroethylene)/Ti/W composites is investigated through thermal analysis and composition analysis. These composites undergo exothermic reactions at 510 °C to 600 °C, mainly producing TiFx. The tungsten significantly reduces the reaction heat due to its inertness. In addition, the dynamic compression properties and impact-induced reaction behaviors of PTFE/Ti/W composites with different W content prepared by pressing and sintering are studied using Split Hopkinson Pressure Bar and high speed photography. The results show that both the mechanical strength and the reaction degree are significantly improved with the increasing strain rate. Moreover, as W content increases, the mechanical strength is enhanced, but the elasticity/plasticity is decreased. The PTFE/Ti/W composites tend to become more inert with the increasing W content, which is reflected by the reduced reaction degree and the increased reaction threshold for the impact ignition. PMID:28772534

  15. An Investigation of Fiber Reinforced Chemically Bonded Phosphate Ceramic Composites at Room Temperature.

    PubMed

    Ding, Zhu; Li, Yu-Yu; Lu, Can; Liu, Jian

    2018-05-21

    In this study, chemically bonded phosphate ceramic (CBPC) fiber reinforced composites were made at indoor temperatures. The mechanical properties and microstructure of the CBPC composites were studied. The CBPC matrix of aluminum phosphate binder, metakaolin, and magnesia with different Si/P ratios was prepared. The results show that when the Si/P ratio was 1.2, and magnesia content in the CBPC was 15%, CBPC reached its maximum flexural strength. The fiber reinforced CBPC composites were prepared by mixing short polyvinyl alcohol (PVA) fibers or unidirectional continuous carbon fiber sheets. Flexural strength and dynamic mechanical properties of the composites were determined, and the microstructures of specimens were analyzed by scanning electron micrography, X-ray diffraction, and micro X-ray computed tomography. The flexural performance of continuous carbon fiber reinforced CBPC composites was better than that of PVA fiber composites. The elastic modulus, loss modulus, and loss factor of the fiber composites were measured through dynamic mechanical analysis. The results showed that fiber reinforced CBPC composites are an inorganic polymer viscoelastic material with excellent damping properties. The reaction of magnesia and phosphate in the matrix of CBPC formed a different mineral, newberyite, which was beneficial to the development of the CBPC.

  16. Habitat-related variation in composition of the essential oil of Seseli rigidum Waldst. & Kit. (Apiaceae).

    PubMed

    Marčetić, Mirjana; Kovačević, Nada; Lakušić, Dmitar; Lakušić, Branislava

    2017-03-01

    Plant specialised metabolites like essential oils are highly variable depending on genetic and various ecological factors. The aim of the present work was to characterise essential oils of the species Seseli rigidum Waldst. & Kit. (Apiaceae) in various organs on the individual and populational levels. Geographical variability and the impact of climate and soil type on essential oil composition were also investigated. Individually sampled essential oils of roots, aerial parts and fruits of plants from seven populations were analysed by GC-FID and GC-MS. The investigated populations showed high interpopulational and especially intrapopulational variability of essential oil composition. In regard to the variability of essential oils, different chemotypes were defined. The essential oils of S. rigidum roots represented a falcarinol chemotype, oils of aerial parts constituted an α-pinene or α-pinene/sabinene chemotype and fruit essential oils can be characterised as belonging to a complex sabinene/α-pinene/β-phellandrene/falcarinol/germacrene B chemotype. At the species level, analysis of variance (ANOVA), principal component analysis (PCA) and canonical discriminant analysis (CDA) showed that the plant part exerted the strongest influence on the composition of essential oils. Climate had a high impact on composition of the essential oils of roots, aerial parts and fruits, while influence of the substrate was less pronounced. The variations in main compounds of essential oils based on climate or substrate were complex and specific to the plant part. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, N. B.; Kong, D. F., E-mail: nanbin@ynao.ac.cn

    The Physikalisch Meteorologisches Observatorium Davos total solar irradiance (TSI), Active Cavity Radiometer Irradiance Monitoring TSI, and Royal Meteorological Institute of Belgium TSI are three typical TSI composites. Magnetic Plage Strength Index (MPSI) and Mount Wilson Sunspot Index (MWSI) should indicate the weak and strong magnetic field activity on the solar full disk, respectively. Cross-correlation (CC) analysis of MWSI with three TSI composites shows that TSI should be weakly correlated with MWSI, and not be in phase with MWSI at timescales of solar cycles. The wavelet coherence (WTC) and partial wavelet coherence (PWC) of TSI with MWSI indicate that the inter-solar-cyclemore » variation of TSI is also not related to solar strong magnetic field activity, which is represented by MWSI. However, CC analysis of MPSI with three TSI composites indicates that TSI should be moderately correlated and accurately in phase with MPSI at timescales of solar cycles, and that the statistical significance test indicates that the correlation coefficient of three TSI composites with MPSI is statistically significantly higher than that of three TSI composites with MWSI. Furthermore, the cross wavelet transform (XWT) and WTC of TSI with MPSI show that the TSI is highly related and actually in phase with MPSI at a timescale of a solar cycle as well. Consequently, the CC analysis, XWT, and WTC indicate that the solar weak magnetic activity on the full disk, which is represented by MPSI, dominates the inter-solar-cycle variation of TSI.« less

  18. Calibration of carbonate composition using micro-Raman analysis: application to planetary surface exploration.

    PubMed

    Rividi, Nicolas; van Zuilen, Mark; Philippot, Pascal; Ménez, Bénédicte; Godard, Gaston; Poidatz, Emmanuel

    2010-04-01

    Stromatolite structures in Early Archean carbonate deposits form an important clue for the existence of life in the earliest part of Earth's history. Since Mars is thought to have had similar environmental conditions early in its history, the question arises as to whether such stromatolite structures also evolved there. Here, we explore the capability of Raman spectroscopy to make semiquantitative estimates of solid solutions in the Ca-Mg-Fe(+Mn) carbonate system, and we assess its use as a rover-based technique for stromatolite characterization during future Mars missions. Raman microspectroscopy analysis was performed on a set of carbonate standards (calcite, ankerite, dolomite, siderite, and magnesite) of known composition. We show that Raman band shifts of siderite-magnesite and ankerite-dolomite solid solutions display a well-defined positive correlation (r(2) > 0.9) with the Mg# = 100 x Mg/(Mg + Fe + Mn + Ca) of the carbonate analyzed. Raman shifts calibrated as a function of Mg# were used in turn to evaluate the chemical composition of carbonates. Raman analysis of a suite of carbonates (siderite, sidero-magnesite, ankerite, and dolomite) of hydrothermal and sedimentary origin from the ca. 3.2 Ga old Barite Syncline, Barberton greenstone belt, South Africa, and from the ca. 3.5 Ga old Dresser Formation, Pilbara Craton, Western Australia, show good compositional agreement with electron microprobe analyses. These results indicate that Raman spectroscopy can provide direct information on the composition and structure of carbonates on planetary surfaces.

  19. a Facile Synthesis of Fully Porous Tazo Composite and its Remarkable Gas Sensitive Performance

    NASA Astrophysics Data System (ADS)

    Liang, Dongdong; Liu, Shimin; Wang, Zhinuo; Guo, Yu; Jiang, Weiwei; Liu, Chaoqian; Ding, Wanyu; Wang, Hualin; Wang, Nan; Zhang, Zhihua

    The composite of a nanocrystalline SnO2 thick film deposited on an Al-doped ZnO ceramic substrate was firstly proposed. This study also provided a simple, fast and cost effective method to prepare SnO2 thick film and Al-doped ZnO ceramic as well as the final composite. The crystal structure, morphology, composition, pore size distribution and gas sensitivity of the composite were investigated by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, Barrett-Joyner-Halenda analysis and gas sensitive measurement system. Results indicated that the composite was fully porous consisted of SnO2, ZnO and ZnAl2O4 crystal phases. The macrosized pores generated in the composite could enhance the gas infiltration into the sensing layers effectively. In this way, combining a high gas-transporting-capability and a nanocrystalline SnO2 thick film, the composite showed very impressive performance. The gas sensitivity of the composite was high enough for ethanol vapor with different concentrations, which was comparable to other kinds of reported SnO2 gas sensors, while showing two straight lines with a turning point at 1000ppm. Finally, the gas sensitive mechanism was proposed based on the microstructure and composition of the composite.

  20. Ion composition variety and variability around perihelion

    NASA Astrophysics Data System (ADS)

    Beth, Arnaud; Altwegg, Kathrin; Behar, Étienne; Broiles, Tom; Burch, Jim; Carr, Christopher; Eriksson, Anders; Galand, Marina; Goetz, Charlotte; Henri, Pierre; Heritier, Kévin; Nilsson, Hans; Odelstad, Elias; Richter, Ingo; Rubin, Martin; Vallieres, Xavier

    2017-04-01

    For two years, the Double Focusing Mass Spectrometer (DFMS), one of the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis (ROSINA) onboard Rosetta probed the neutral gas and the plasma composition of the comet 67P/Churyumov-Gerasimenko's coma (67P). Major ion species detected include water ions (e.g, H2O+, H3O+, HO+) observed throughout the escorting phase. The analysis of DFMS data revealed a large zoo of ion species near perihelion (summer 2015). In particular, protonated versions of high proton affinity neutrals (e.g., NH4+) were detected, but also hydrocarbon and organic ion species. Near perihelion, ion composition was also highly variable and showed interesting variations in the complexity of the observed ion species. We will first present an overview of the rich variety of ion species observed during perihelion. This study will be supported by ionospheric modeling of ion composition below the ion exobase. We will then show an intercomparison between DFMS data and Rosetta Plasma Consortium (RPC) plasma and particle data to interpret the DFMS ion composition variability. Our primary goal is to highlight any correlation between observations from these different instruments (i.e. ion composition, ion and electron number density, energy distribution, magnetic field) and to find relevant signatures of physical processes which can affect the chemistry and dynamics (e.g., acceleration and deflection) of the involved neutral and ion species.

  1. Adhesive restorations: comparative evaluation between the adhesion of the glass-ceramics to the composite cement and the adhesion of the ceromer to the composite cement.

    PubMed

    Ceruti, P; Erovigni, F; Casella, F; Lombardo, S

    2005-10-01

    The aim of this work is to compare the adhesion of the glass-ceramic (empress II) to the composite cement and the adhesion of the ceromer to the composite cement. From each of the above materials, 10 little blocks, of 8 x 6 x 2 mm size, have been prepared. All the surface treatments suggested by the manufacturing industry have been performed: sandblasting and acid-etching of the ceramic, ceromer surface roughening with diamond bur and silanization and bonding application on both materials. A homogeneous layer of cement has been placed between couples of blocks of the same material and photopolymerised. Every sample, consisting of 2 bonded blocks, has been submitted to a traction force on a universal test machine connected with a computerized measure system (SINTEC D/10). Samples have been anchored to the machine binding devices by a bicomponent epoxy glue. Data on the breaking charge have been recorded and an analysis of the broken surfaces has been performed in order to classify the breaking modalities. The results ontained showed that the composite-glass-ceramic adhesion force (mean value 64 Mpa) was remarkably higher than the composite-ceromer adhesion (mean value 37.21 Mpa). The analysis of the broken surfaces by SEM showed that a mixed fracture occurred in all samples (both partly adhesive and cohesive).

  2. Compositional analysis of genetically modified corn events (NK603, MON88017×MON810 and MON89034×MON88017) compared to conventional corn.

    PubMed

    Rayan, Ahmed M; Abbott, Louise C

    2015-06-01

    Compositional analysis of genetically modified (GM) crops continues to be an important part of the overall evaluation in the safety assessment for these materials. The present study was designed to detect the genetic modifications and investigate the compositional analysis of GM corn containing traits of multiple genes (NK603, MON88017×MON810 and MON89034×MON88017) compared with non-GM corn. Values for most biochemical components assessed for the GM corn samples were similar to those of the non-GM control or were within the literature range. Significant increases were observed in protein, fat, fiber and fatty acids of the GM corn samples. The observed increases may be due to the synergistic effect of new traits introduced into corn varieties. Furthermore, SDS-PAGE analysis showed high similarity among the protein fractions of the investigated corn samples. These data indicate that GM corn samples were compositionally equivalent to, and as nutritious as, non-GM corn. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Modeling dental composite shrinkage by digital image correlation and finite element methods

    NASA Astrophysics Data System (ADS)

    Chen, Terry Yuan-Fang; Huang, Pin-Sheng; Chuang, Shu-Fen

    2014-10-01

    Dental composites are light-curable resin-based materials with an inherent defect of polymerization shrinkage which may cause tooth deflection and debonding of restorations. This study aimed to combine digital image correlation (DIC) and finite element analysis (FEA) to model the shrinkage behaviors under different light curing regimens. Extracted human molars were prepared with proximal cavities for composite restorations, and then divided into three groups to receive different light curing protocols: regular intensity, low intensity, and step-curing consisting of low and high intensities. For each tooth, the composite fillings were consecutively placed under both unbonded and bonded conditions. At first, the shrinkage of the unbonded restorations was analyzed by DIC and adopted as the setting of FEA. The simulated shrinkage behaviors obtained from FEA were further validated by the measurements in the bonded cases. The results showed that different light curing regimens affected the shrinkage in unbonded restorations, with regular intensity showing the greatest shrinkage strain on the top surface. The shrinkage centers in the bonded cases were located closer to the cavity floor than those in the unbonded cases, and were less affected by curing regimens. The FEA results showed that the stress was modulated by the accumulated light energy density, while step-curing may alleviate the tensile stress along the cavity walls. In this study, DIC provides a complete description of the polymerization shrinkage behaviors of dental composites, which may facilitate the stress analysis in the numerical investigation.

  4. Mechanical properties of kenaf composites using dynamic mechanical analysis

    NASA Astrophysics Data System (ADS)

    Loveless, Thomas A.

    Natural fibers show potential to replace glass fibers in thermoset and thermoplastic composites. Kenaf is a bast-type fiber with high specific strength and great potential to compete with glass fibers. In this research kenaf/epoxy composites were analyzed using Dynamic Mechanical Analysis (DMA). A three-point bend apparatus was used in the DMA testing. The samples were tested at 1 hertz, at a displacement of 10 ?m, and at room temperature. The fiber volume content of the kenaf was varied from 20% - 40% in 5% increments. Ten samples of each fiber volume fraction were manufactured and tested. The flexural storage modulus, the flexural loss modulus, and the loss factor were reported. Generally as the fiber volume fraction of kenaf increased, the flexural storage and flexural loss modulus increased. The loss factor remained relatively constant with increasing fiber volume fraction. Woven and chopped fiberglass/epoxy composites were manufactured and tested to be compared with the kenaf/epoxy composites. Both of the fiberglass/epoxy composites reported higher flexural storage and flexural loss modulus values. The kenaf/epoxy composites reported higher loss factor values. The specific flexural storage and specific flexural loss modulus were calculated for both the fiberglass and kenaf fiber composites. Even though the kenaf composites reported a lower density, the fiberglass composites reported higher specific mechanical properties.

  5. Inducing PLA/starch compatibility through butyl-etherification of waxy and high amylose starch.

    PubMed

    Wokadala, Obiro Cuthbert; Emmambux, Naushad Mohammad; Ray, Suprakas Sinha

    2014-11-04

    In this study, waxy and high amylose starches were modified through butyl-etherification to facilitate compatibility with polylactide (PLA). Fourier transform infrared spectroscopy, proton nuclear magnetic resonance spectroscopy and wettability tests showed that hydrophobic butyl-etherified waxy and high amylose starches were obtained with degree of substitution values of 2.0 and 2.1, respectively. Differential scanning calorimetry, tensile testing, and scanning electron microscopy (SEM) demonstrated improved PLA/starch compatibility for both waxy and high amylose starch after butyl-etherification. The PLA/butyl-etherified waxy and high amylose starch composite films had higher tensile strength and elongation at break compared to PLA/non-butyl-etherified composite films. The morphological study using SEM showed that PLA/butyl-etherified waxy starch composites had a more homogenous microstructure compared to PLA/butyl-etherified high amylose starch composites. Thermogravimetric analysis showed that PLA/starch composite thermal stability decreased with starch butyl-etherification for both waxy and high amylose starches. This study mainly demonstrates that PLA/starch compatibility can be improved through starch butyl-etherification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Infiltrating sulfur into a highly porous carbon sphere as cathode material for lithium–sulfur batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xiaohui; Kim, Dul-Sun; Ahn, Hyo-Jun

    2014-10-15

    Highlights: • A highly porous carbon (HPC) with regular spherical morphology was synthesized. • Sulfur/HPC composites were prepared by melt–diffusion method. • Sulfur/HPC composites showed improved cyclablity and long-term cycle life. - Abstract: Sulfur composite material with a highly porous carbon sphere as the conducting container was prepared. The highly porous carbon sphere was easily synthesized with resorcinol–formaldehyde precursor as the carbon source. The morphology of the carbon was observed with field emission scanning electron microscope and transmission electron microscope, which showed a well-defined spherical shape. Brunauer–Emmett–Teller analysis indicated that it possesses a high specific surface area of 1563 m{supmore » 2} g{sup −1} and a total pore volume of 2.66 cm{sup 3} g{sup −1} with a bimodal pore size distribution, which allow high sulfur loading and easy transportation of lithium ions. Sulfur carbon composites with varied sulfur contents were prepared by melt–diffusion method and lithium sulfur cells with the sulfur composites showed improved cyclablity and long-term cycle life.« less

  7. SiC (SCS-6) Fiber Reinforced-Reaction Formed SiC Matrix Composites: Microstructure and Interfacial Properties

    NASA Technical Reports Server (NTRS)

    Singh, M.; Dickerson, R. M.; Olmstead, Forrest A.; Eldridge, J. I.

    1997-01-01

    Microstructural and interfacial characterization of unidirectional SiC (SCS-6) fiber reinforced-reaction formed SiC (RFSC) composites has been carried out. Silicon-1.7 at.% molybdenum alloy was used as the melt infiltrant, instead of pure silicon, to reduce the activity of silicon in the melt as well as to reduce the amount of free silicon in the matrix. Electron microprobe analysis was used to evaluate the microstructure and phase distribution in these composites. The matrix is SiC with a bi-modal grain-size distribution and small amounts of MoSi2, silicon, and carbon. Fiber push-outs tests on these composites showed that a desirably low interfacial shear strength was achieved. The average debond shear stress at room temperature varied with specimen thickness from 29 to 64 MPa, with higher values observed for thinner specimens. Initial frictional sliding stresses showed little thickness dependence with values generally close to 30 MPa. Push-out test results showed very little change when the test temperature was increased to 800 C from room temperature, indicating an absence of significant residual stresses in the composite.

  8. Creep Behavior of Poly(lactic acid) Based Biocomposites

    PubMed Central

    Morreale, Marco; Mistretta, Maria Chiara; Fiore, Vincenzo

    2017-01-01

    Polymer composites containing natural fibers are receiving growing attention as possible alternatives for composites containing synthetic fibers. The use of biodegradable matrices obtained from renewable sources in replacement for synthetic ones is also increasing. However, only limited information is available about the creep behavior of the obtained composites. In this work, the tensile creep behavior of PLA based composites, containing flax and jute twill weave woven fabrics, produced through compression molding, was investigated. Tensile creep tests were performed at different temperatures (i.e., 40 and 60 °C). The results showed that the creep behavior of the composites is strongly influenced by the temperature and the woven fabrics used. As preliminary characterization, quasi-static tensile tests and dynamic mechanical tests were carried out on the composites. Furthermore, fabrics (both flax and jute) were tested as received by means of quasi-static tests and creep tests to evaluate the influence of fabrics mechanical behavior on the mechanical response of the resulting composites. The morphological analysis of the fracture surface of the tensile samples showed the better fiber-matrix adhesion between PLA and jute fabric. PMID:28772755

  9. Creep Behavior of Poly(lactic acid) Based Biocomposites.

    PubMed

    Morreale, Marco; Mistretta, Maria Chiara; Fiore, Vincenzo

    2017-04-08

    Polymer composites containing natural fibers are receiving growing attention as possible alternatives for composites containing synthetic fibers. The use of biodegradable matrices obtained from renewable sources in replacement for synthetic ones is also increasing. However, only limited information is available about the creep behavior of the obtained composites. In this work, the tensile creep behavior of PLA based composites, containing flax and jute twill weave woven fabrics, produced through compression molding, was investigated. Tensile creep tests were performed at different temperatures (i.e., 40 and 60 °C). The results showed that the creep behavior of the composites is strongly influenced by the temperature and the woven fabrics used. As preliminary characterization, quasi-static tensile tests and dynamic mechanical tests were carried out on the composites. Furthermore, fabrics (both flax and jute) were tested as received by means of quasi-static tests and creep tests to evaluate the influence of fabrics mechanical behavior on the mechanical response of the resulting composites. The morphological analysis of the fracture surface of the tensile samples showed the better fiber-matrix adhesion between PLA and jute fabric.

  10. Size effect of ZnO nanorods on physicochemical properties of plasticized starch composites.

    PubMed

    Guz, L; Famá, L; Candal, R; Goyanes, S

    2017-02-10

    This work demonstrates that the size of ZnO nanorods (ZnONR) with similar aspect ratio determines several physicochemical and microbiological properties of thermoplastic starch composites (TPS/ZnONR) at a given concentration of ZnONRs. A combination of sol-gel and hydrothermal methods was developed to synthesize ZnONR with different sizes but similar aspect ratios. Starch composites containing 1wt.% of ZnONR were prepared by casting. Composites with smaller size nanorods (ZnONR-S) showed more efficiency in shielding UVA radiation and had a higher solubility and water vapor permeability than those with larger nanorods (ZnONR-L). Mechanical properties, biodegradability and antibacterial activity were also influenced by the size of the ZnONR. X-ray diffraction analysis showed that composites with ZnONR-S maintained the typical B-V type starch structure, intensifying the V-type starch structure peaks, while composite with ZnONR-L induced the formation of an amorphous structure, preventing starch retrogradation during storage. Properties affected by nanorods size are fundamental in determining composite applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Do the monomers release from the composite resins after artificial aging?

    PubMed

    Tokay, Ugur; Koyuturk, Alp Erdin; Aksoy, Abdurrahman; Ozmen, Bilal

    2015-04-01

    The aim of this study is to measure the effect of thermal cycling on the amount of monomer released from three different composite materials by HPLC analysis method. Three different composite materials, inlay composite, posterior composite and micro-hybrid composite were used. Sixty cylinder specimens each with a dimension of approximately 1 cm width and 3 mm depth, were prepared before experiments were carried out. Inlay composite material was polymerized according to manufacturers' instructions. Thermal cycling device was used to simulate thermal differences which occur in the mouth media. Monomers were analyzed using HPLC technic after thermal cycling process. The amount of ethoxylated Bis-GMA and urethane dimethacrylate (UDMA) in inlay composite material, the amount of ethoxylated Bis-GMA in posterior composite material, the amount of ethoxylated Bis-GMA and triethyleneglycol dimethacrylate (TEGDMA) in micro-hybrid composite material were investigated. Monomer release of thermal cycles levels showed a linear increase in UDMA and TEGDMA (P < 0.05). In terms of thermal cycles levels, Bis-EMA released from posterior composite showed a cubic change (P < 0.001). It was observed that use of additional polymerization processes might have positive effect on the decrease of residual monomer. In the light of the results, we suggest that indirect composite resins have more outstanding features than direct composite resins in terms of biocompatibility. © 2015 Wiley Periodicals, Inc.

  12. Macroevolutionary trends of atomic composition and related functional group proportion in eukaryotic and prokaryotic proteins.

    PubMed

    Zhang, Yu-Juan; Yang, Chun-Lin; Hao, You-Jin; Li, Ying; Chen, Bin; Wen, Jian-Fan

    2014-01-25

    To fully explore the trends of atomic composition during the macroevolution from prokaryote to eukaryote, five atoms (oxygen, sulfur, nitrogen, carbon, hydrogen) and related functional groups in prokaryotic and eukaryotic proteins were surveyed and compared. Genome-wide analysis showed that eukaryotic proteins have more oxygen, sulfur and nitrogen atoms than prokaryotes do. Clusters of Orthologous Groups (COG) analysis revealed that oxygen, sulfur, carbon and hydrogen frequencies are higher in eukaryotic proteins than in their prokaryotic orthologs. Furthermore, functional group analysis demonstrated that eukaryotic proteins tend to have higher proportions of sulfhydryl, hydroxyl and acylamino, but lower of sulfide and carboxyl. Taken together, an apparent trend of increase was observed for oxygen and sulfur atoms in the macroevolution; the variation of oxygen and sulfur compositions and their related functional groups in macroevolution made eukaryotic proteins carry more useful functional groups. These results will be helpful for better understanding the functional significances of atomic composition evolution. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Synthesis, characterization and nitrite ion sensing performance of reclaimable composite samples through a core-shell structure

    NASA Astrophysics Data System (ADS)

    Cui, Xiao; Yuqing, Zhao; Cui, Jiantao; Zheng, Qian; Bo, Wang

    2018-02-01

    The following paper reported and discussed a nitrite ion optical sensing platform based on a core-shell structure, using superamagnetic nanoparticles as the core, a silica molecular sieve MCM-41 as the shell and two rhodamine derivatives as probe, respectively. This superamagnetic core made this sensing platform reclaimable after finishing nitrite ion sensing procedure. This sensing platform was carefully characterized by means of electron microscopy images, porous structure analysis, magnetic response, IR spectra and thermal stability analysis. Detailed analysis suggested that the emission of these composite samples was quenchable by nitrite ion, showing emission turn off effect. A static sensing mechanism based on an additive reaction between chemosensors and nitrite ion was proposed. These composite samples followed Demas quenching equation against different nitrite ion concentrations. Limit of detection value was obtained as low as 0.4 μM. It was found that, after being quenched by nitrite ion, these composite samples could be reclaimed and recovered by sulphamic acid, confirming their recyclability.

  14. Development of hydrophilic interaction chromatography with quadruple time-of-flight mass spectrometry for heparin and low molecular weight heparin disaccharide analysis.

    PubMed

    Ouyang, Yilan; Wu, Chengling; Sun, Xue; Liu, Jianfen; Linhardt, Robert J; Zhang, Zhenqing

    2016-01-30

    Heparin and low molecular weight heparin (LMWH) are widely used as clinical anticoagulants. The determination of their composition and structural heterogeneity still challenges analysts. Disaccharide compositional analysis, utilizing heparinase-catalyzed depolymerization, is one of the most important ways to evaluate the sequence, structural composition and quality of heparin and LMWH. Hydrophilic interaction chromatography coupled with quadruple time-of-flight mass spectrometry (HILIC/QTOFMS) has been developed to analyze the resulting digestion products. HILIC shows good resolution and excellent MS compatibility. Digestion products of heparin and LMWHs afforded up to 16 compounds that were separated using HILIC and analyzed semi-quantitatively. These included eight common disaccharides, two disaccharides derived from chain termini, three 3-O-sulfo-group-containing tetrasaccharides, along with three linkage region tetrasaccharides and their derivatives. Structures of these digestion products were confirmed by mass spectral analysis. The disaccharide compositions of a heparin, two batches of the LMWH, enoxaparin, and two batches of the LMWH, nadroparin, were compared. In addition to identifying disaccharides, 3-O-sulfo-group-containing tetrasaccharides, linkage region tetrasaccharides were observed having slightly different compositions and contents in these heparin products suggesting that they had been prepared using different starting materials or production processes. Thus, compositional analysis using HILIC/QTOFMS offers a unique insight into different heparin products. Copyright © 2015 John Wiley & Sons, Ltd.

  15. COMPARISON OF POND AND RACEWAY PRODUCTION METHODS ON TEXTURE OF CHANNEL CATFISH (Ictalurus punctatus) FILLETS, SHOWING A DEPENDENCY ON SIZE AND FILLET POSITION

    USDA-ARS?s Scientific Manuscript database

    The objective of this study was to compare the effect of the production environment (pond vs in-pond raceway) on the chemical composition, color, and textural properties of channel catfish fillets. Compositional analysis consisted of percent moisture, lipid, protein, and ash content. Additional sa...

  16. Competitive adsorption of heavy metal by extracellular polymeric substances (EPS) extracted from sulfate reducing bacteria.

    PubMed

    Wang, Jin; Li, Qing; Li, Ming-Ming; Chen, Tian-Hu; Zhou, Yue-Fei; Yue, Zheng-Bo

    2014-07-01

    Competitive adsorption of heavy metals by extracellular polymeric substances (EPS) extracted from Desulfovibrio desulfuricans was investigated. Chemical analysis showed that different EPS compositions had different capacities for the adsorption of heavy metals which was investigated using Cu(2+) and Zn(2+). Batch adsorption tests indicated that EPS had a higher combined ability with Zn(2+) than Cu(2+). This was confirmed and explained by Fourier transform infrared (FTIR) and excitation-emission matrix (EEM) spectroscopy analysis. FTIR analysis showed that both polysaccharides and protein combined with Zn(2+) while only protein combined with Cu(2+). EEM spectra further revealed that tryptophan-like substances were the main compositions reacted with the heavy metals. Moreover, Zn(2+) had a higher fluorescence quenching ability than Cu(2+). Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Experimental and Numerical Analysis of Triaxially Braided Composites Utilizing a Modified Subcell Modeling Approach

    NASA Technical Reports Server (NTRS)

    Cater, Christopher; Xiao, Xinran; Goldberg, Robert K.; Kohlman, Lee W.

    2015-01-01

    A combined experimental and analytical approach was performed for characterizing and modeling triaxially braided composites with a modified subcell modeling strategy. Tensile coupon tests were conducted on a [0deg/60deg/-60deg] braided composite at angles of 0deg, 30deg, 45deg, 60deg and 90deg relative to the axial tow of the braid. It was found that measured coupon strength varied significantly with the angle of the applied load and each coupon direction exhibited unique final failures. The subcell modeling approach implemented into the finite element software LS-DYNA was used to simulate the various tensile coupon test angles. The modeling approach was successful in predicting both the coupon strength and reported failure mode for the 0deg, 30deg and 60deg loading directions. The model over-predicted the strength in the 90deg direction; however, the experimental results show a strong influence of free edge effects on damage initiation and failure. In the absence of these local free edge effects, the subcell modeling approach showed promise as a viable and computationally efficient analysis tool for triaxially braided composite structures. Future work will focus on validation of the approach for predicting the impact response of the braided composite against flat panel impact tests.

  18. Experimental and Numerical Analysis of Triaxially Braided Composites Utilizing a Modified Subcell Modeling Approach

    NASA Technical Reports Server (NTRS)

    Cater, Christopher; Xiao, Xinran; Goldberg, Robert K.; Kohlman, Lee W.

    2015-01-01

    A combined experimental and analytical approach was performed for characterizing and modeling triaxially braided composites with a modified subcell modeling strategy. Tensile coupon tests were conducted on a [0deg/60deg/-60deg] braided composite at angles [0deg, 30deg, 45deg, 60deg and 90deg] relative to the axial tow of the braid. It was found that measured coupon strength varied significantly with the angle of the applied load and each coupon direction exhibited unique final failures. The subcell modeling approach implemented into the finite element software LS-DYNA was used to simulate the various tensile coupon test angles. The modeling approach was successful in predicting both the coupon strength and reported failure mode for the 0deg, 30deg and 60deg loading directions. The model over-predicted the strength in the 90deg direction; however, the experimental results show a strong influence of free edge effects on damage initiation and failure. In the absence of these local free edge effects, the subcell modeling approach showed promise as a viable and computationally efficient analysis tool for triaxially braided composite structures. Future work will focus on validation of the approach for predicting the impact response of the braided composite against flat panel impact tests.

  19. Proteomic and Lipidomic Analysis of Nanoparticle Corona upon Contact with Lung Surfactant Reveals Differences in Protein, but Not Lipid Composition.

    PubMed

    Raesch, Simon Sebastian; Tenzer, Stefan; Storck, Wiebke; Rurainski, Alexander; Selzer, Dominik; Ruge, Christian Arnold; Perez-Gil, Jesus; Schaefer, Ulrich Friedrich; Lehr, Claus-Michael

    2015-12-22

    Pulmonary surfactant (PS) constitutes the first line of host defense in the deep lung. Because of its high content of phospholipids and surfactant specific proteins, the interaction of inhaled nanoparticles (NPs) with the pulmonary surfactant layer is likely to form a corona that is different to the one formed in plasma. Here we present a detailed lipidomic and proteomic analysis of NP corona formation using native porcine surfactant as a model. We analyzed the adsorbed biomolecules in the corona of three NP with different surface properties (PEG-, PLGA-, and Lipid-NP) after incubation with native porcine surfactant. Using label-free shotgun analysis for protein and LC-MS for lipid analysis, we quantitatively determined the corona composition. Our results show a conserved lipid composition in the coronas of all investigated NPs regardless of their surface properties, with only hydrophilic PEG-NPs adsorbing fewer lipids in total. In contrast, the analyzed NP displayed a marked difference in the protein corona, consisting of up to 417 different proteins. Among the proteins showing significant differences between the NP coronas, there was a striking prevalence of molecules with a notoriously high lipid and surface binding, such as, e.g., SP-A, SP-D, DMBT1. Our data indicate that the selective adsorption of proteins mediates the relatively similar lipid pattern in the coronas of different NPs. On the basis of our lipidomic and proteomic analysis, we provide a detailed set of quantitative data on the composition of the surfactant corona formed upon NP inhalation, which is unique and markedly different to the plasma corona.

  20. Preparation of fine powdered composite for latent heat storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fořt, Jan, E-mail: jan.fort.1@fsv.cvut.cz; Trník, Anton, E-mail: anton.trnik@fsv.cvut.cz; Pavlíková, Milena, E-mail: milena.pavlikova@fsv.cvut.cz

    Application of latent heat storage building envelope systems using phase-change materials represents an attractive method of storing thermal energy and has the advantages of high-energy storage density and the isothermal nature of the storage process. This study deals with a preparation of a new type of powdered phase change composite material for thermal energy storage. The idea of a composite is based upon the impregnation of a natural silicate material by a reasonably priced commercially produced pure phase change material and forming the homogenous composite powdered structure. For the preparation of the composite, vacuum impregnation method is used. The particlemore » size distribution accessed by the laser diffraction apparatus proves that incorporation of the organic phase change material into the structure of inorganic siliceous pozzolana does not lead to the clustering of the particles. The compatibility of the prepared composite is characterized by the Fourier transformation infrared analysis (FTIR). Performed DSC analysis shows potential of the developed composite for thermal energy storage that can be easily incorporated into the cement-based matrix of building materials. Based on the obtained results, application of the developed phase change composite can be considered with a great promise.« less

  1. Application of Analytic Hierarchy Process (AHP) in the analysis of the fuel efficiency in the automobile industry with the utilization of Natural Fiber Polymer Composites (NFPC)

    NASA Astrophysics Data System (ADS)

    Jayamani, E.; Perera, D. S.; Soon, K. H.; Bakri, M. K. B.

    2017-04-01

    A systematic method of material analysis aiming for fuel efficiency improvement with the utilization of natural fiber reinforced polymer matrix composites in the automobile industry is proposed. A multi-factor based decision criteria with Analytical Hierarchy Process (AHP) was used and executed through MATLAB to achieve improved fuel efficiency through the weight reduction of vehicular components by effective comparison between two engine hood designs. The reduction was simulated by utilizing natural fiber polymer composites with thermoplastic polypropylene (PP) as the matrix polymer and benchmarked against a synthetic based composite component. Results showed that PP with 35% of flax fiber loading achieved a 0.4% improvement in fuel efficiency, and it was the highest among the 27 candidate fibers.

  2. Comparison of two-step versus four-step composite finishing/polishing disc systems: evaluation of a new two-step composite polishing disc system.

    PubMed

    da Costa, Juliana B; Goncalves, Flavia; Ferracane, Jack L

    2011-01-01

    The purpose of this study was to evaluate surface finish and gloss of a two-step composite finishing/polishing (F/P) disc system compared with two multistep systems on five composites. Seventy-five disc-shaped composite specimens (D=10.0 mm, 2 mm thick, n=15 per composite) were made of microfill (Durafill-D), nanofill (Filtek Supreme-FS), nanohybrid (Premise-PR), and microhybrids (Filtek Z250-FZ, Esthet-EX). One side of each specimen was initially finished with a carbide bur. Five specimens of each resin composite were randomly assigned to receive full F/P by each of the disc systems: two-step (Enhance Flex NST-EF) and four-step (Sof-Lex-SL, Super-Snap-SS). Surface gloss was measured with a glossmeter and surface roughness was measured with a profilometer. Results were analyzed by two-way analysis of variance (ANOVA)/Tukey's (α<0.05). No difference in gloss was noted among the three F/P systems when used with D and EX; no difference between SL and EF when used with any composite, except for FS; and no difference between SL and SS when used with any composite. SL and EF showed similar surface roughness when used on all composites, except for EX. EF and SS showed similar surface roughness on PR. SL and SS showed similar surface roughness values on every composite, except for FZ. EF was capable of providing similar gloss and surface roughness to SL on four composites evaluated but was not able to produce as glossy or as smooth a surface as SS for three of the five composites.

  3. Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography.

    PubMed

    Bagheri, Zahra S; El Sawi, Ihab; Bougherara, Habiba; Zdero, Radovan

    2014-07-01

    The current study is part of an ongoing research program to develop an advanced new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite with a “sandwich structure” as a substitute for metallic materials for orthopedic long bone fracture plate applications. The purpose of this study was to assess the fatigue properties of this composite, since cyclic loading is one of the main types of loads carried by a femur fracture plate during normal daily activities. Conventional fatigue testing, thermographic analysis, and scanning electron microscopy (SEM) were used to analyze the damage progress that occurred during fatigue loading. Fatigue strength obtained using thermography analysis (51% of ultimate tensile strength) was confirmed using the conventional fatigue test (50–55% of ultimate tensile strength). The dynamic modulus (E⁎) was found to stay almost constant at 47 GPa versus the number of cycles, which can be related to the contribution of both flax/epoxy and CF/epoxy laminae to the stiffness of the composite. SEM images showed solid bonding at the CF/epoxy and flax/epoxy laminae, with a crack density of only 0.48% for the plate loaded for 2 million cycles. The current composite plate showed much higher fatigue strength than the main loads experienced by a typical patient during cyclic activities; thus, it may be a potential candidate for bone fracture plate applications. Moreover, the fatigue strength from thermographic analysis was the same as that obtained by the conventional fatigue tests, thus demonstrating its potential use as an alternate tool to rapidly evaluate fatigue strength of composite biomaterials.

  4. Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography.

    PubMed

    Bagheri, Zahra S; El Sawi, Ihab; Bougherara, Habiba; Zdero, Radovan

    2014-07-01

    The current study is part of an ongoing research program to develop an advanced new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite with a "sandwich structure" as a substitute for metallic materials for orthopedic long bone fracture plate applications. The purpose of this study was to assess the fatigue properties of this composite, since cyclic loading is one of the main types of loads carried by a femur fracture plate during normal daily activities. Conventional fatigue testing, thermographic analysis, and scanning electron microscopy (SEM) were used to analyze the damage progress that occurred during fatigue loading. Fatigue strength obtained using thermography analysis (51% of ultimate tensile strength) was confirmed using the conventional fatigue test (50-55% of ultimate tensile strength). The dynamic modulus (E(⁎)) was found to stay almost constant at 47GPa versus the number of cycles, which can be related to the contribution of both flax/epoxy and CF/epoxy laminae to the stiffness of the composite. SEM images showed solid bonding at the CF/epoxy and flax/epoxy laminae, with a crack density of only 0.48% for the plate loaded for 2 million cycles. The current composite plate showed much higher fatigue strength than the main loads experienced by a typical patient during cyclic activities; thus, it may be a potential candidate for bone fracture plate applications. Moreover, the fatigue strength from thermographic analysis was the same as that obtained by the conventional fatigue tests, thus demonstrating its potential use as an alternate tool to rapidly evaluate fatigue strength of composite biomaterials. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Design/Analysis of Metal/Composite Bonded Joints for Survivability at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Bartoszyk, Andrew E.

    2004-01-01

    A major design and analysis challenge for the JWST ISM structure is the metal/composite bonded joints that will be required to survive down to an operational ultra-low temperature of 30K (-405 F). The initial and current baseline design for the plug-type joint consists of a titanium thin walled fitting (1-3mm thick) bonded to the interior surface of an M555/954-6 composite truss square tube with an axially stiff biased lay-up. Metallic fittings are required at various nodes of the truss structure to accommodate instrument and lift-point bolted interfaces. Analytical experience and design work done on metal/composite bonded joints at temperatures below liquid nitrogen are limited and important analysis tools, material properties, and failure criteria for composites at cryogenic temperatures are virtually nonexistent. Increasing the challenge is the difficulty in testing for these required tools and parameters at 30K. A preliminary finite element analysis shows that failure due to CTE mismatch between the biased composite and titanium or aluminum is likely. Failure is less likely with Invar, however an initial mass estimate of Invar fittings demonstrates that Invar is not an automatic alternative. In order to gain confidence in analyzing and designing the ISM joints, a comprehensive joint development testing program has been planned and is currently running. The test program is designed for the correlation of the analysis methodology, including tuning finite element model parameters, and developing a composite failure criterion for the effect of multi-axial composite stresses on the strength of a bonded joint at 30K. The testing program will also consider stress mitigation using compliant composite layers and potential strength degradation due to multiple thermal cycles. Not only will the finite element analysis be correlated to the test data, but the FEA will be used to guide the design of the test. The first phase of the test program has been completed and the preliminary analysis has been revisited based on the test data In this work, we present an overview of the test plan, results today, and resulting design improvements.

  6. Effect of composition ratio on the thermal and physical properties of semicrystalline PLA/PHB-HHx composites.

    PubMed

    Lim, Jung Seop; Park, Ku-il; Chung, Gun Soo; Kim, Jong Hoon

    2013-05-01

    In this study, composites of semicrystalline, biodegradable polylactide (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHB-HHx) were prepared by direct melt compounding. The physical and thermal properties of the composites were investigated as a function of the composition ratio. Differential scanning calorimetry analysis indicated that PLA and PHB-HHx formed immiscible composites over the observed range of composition. The crystallization of PLA was gradually suppressed by increasing proportions of PHB-HHx. Dynamic mechanical analysis results confirmed that the innate ductility of PHB-HHX and its inhibiting effect on PLA crystallization improved the stiffness of the composite compared to those of neat PLA. The infrared spectra of the immiscible PLA/PHB-HHx composites at two crystallization temperatures (30 °C, 130 °C) were obtained and presented. At 30 °C, PHB-HHx existed as crystalline domains in the PLA matrix, while, amorphous phase of molten PHB-HHx was diffused within the crystalline phase of PLA at 130 °C. The interaction between PHB-HHX and PLA could not be elucidated from the temperature data. Mechanical tests showed that the addition of PHB-HHx improves ductility of PLA/PHB-HHx composite. Morphological analysis revealed that small proportions of PHB-HHx exhibited less tendency to aggregate, which resulted in greater plastic deformation and improved toughness. From this study, PLA blended with small portions of PHB-HHx may further expand the use of bio-friendly resources in a variety of applications such as flexible films, food packaging and something like that. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Structural analysis of bioceramic materials for denture application

    NASA Astrophysics Data System (ADS)

    Rauf, Nurlaela; Tahir, Dahlang; Arbiansyah, Muhammad

    2016-03-01

    Structural analysis has been performed on bioceramic materials for denture application by using X-ray diffraction (XRD), X-ray fluorescence (XRF), and Scanning Electron Microscopy (SEM). XRF is using for analysis chemical composition of raw materials. XRF shows the ratio 1 : 1 : 1 : 1 between feldspar, quartz, kaolin and eggshell, respectively, resulting composition CaO content of 56.78 %, which is similar with natural tooth. Sample preparation was carried out on temperature of 800 °C, 900 °C and 1000 °C. X-ray diffraction result showed that the structure is crystalline with trigonal crystal system for SiO2 (a=b=4.9134 Å and c=5.4051 Å) and CaH2O2 (a=b=3.5925 Å and c=4.9082 Å). Based on the Scherrer's equation showed the crystallite size of the highest peak (SiO2) increase with increasing the temperature preparation. The highest hardness value (87 kg/mm2) and match with the standards of dentin hardness. The surface structure was observed by using SEM also discussed.

  8. Influence of ionizing radiation on the mechanical properties of BisGMA/TEGDMA based experimental resin

    NASA Astrophysics Data System (ADS)

    LMP, Campos; Boaro, LC; LKG, Santos; Parra, DF; Lugão, AB

    2015-10-01

    Dental restorative composites are activated by visible light and the polymerization process, known as direct technique, is initiated by absorbing light in a specific wavelength range (450-500 nm). However this technique presented some disadvantages. If light is not inserted correctly, layers uncured can cause countless damage to restoration, especially with regard to mechanical properties. A clinical alternative used to reduce the shortcomings of direct application is the use of composite resins for indirect application. These composites are adaptations of resins prepared for direct use, with differences mainly in the healing process. Besides the traditional photoactivation, indirect application composites may be submitted to particular curing conditions, such as a slow curing rate, heating, vacuum, and inert-gas pressure leading to an oxygen-free environment. However few studies have been conducted on the process of post-curing by ionizing radiation at low doses. On this sense the purpose of this study was to evaluate possible interactions of ionizing radiation in the post-curing process of the experimental composites based on BisGMA/TEGDMA filled with silica Aerosil OX-50 silanized. Characterization of the experimental composites was performed by thermogravimetry analysis, infrared spectroscopy, elastic modulus and flexural strength. Statistical analysis of results was calculated by one-way ANOVA/Tukey's test. Cross-linking of the polymeric matrix caused by ionizing radiation, influenced the thermal stability of irradiated specimens. FTIR analysis showed that the ionizing radiation induced a post-cure reaction in the specimens. The irradiation dose influenced directly the mechanical properties that showed a strong positive correlation between flexural strength and irradiation and between modulus strength and irradiation.

  9. Auger analysis of a fiber/matrix interface in a ceramic matrix composite

    NASA Technical Reports Server (NTRS)

    Honecy, Frank S.; Pepper, Stephen V.

    1988-01-01

    Auger electron spectroscopy (AES) depth profiling was used to characterize the fiber/matrix interface of an SiC fiber, reaction bonded Si3N4 matrix composite. Depth profiles of the as received double coated fiber revealed concentration oscillations which disappeared after annealing the fiber in the environment used to fabricate the composite. After the composite was fractured, the Auger depth profiles showed that failure occurred in neither the Beta-SiC fiber body nor in the Si3N4 matrix but, concurrently, at the fiber coating/matrix interface and within the fiber coating itself.

  10. Effective charge separation in BiOI/Cu2O composites with enhanced photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Xia, Yongmei; He, Zuming; Yang, Wei; Tang, Bin; Lu, Yalin; Hu, Kejun; Su, Jiangbin; Li, Xiaoping

    2018-02-01

    Novel BiOI/Cu2O composites were designed and synthesized for the first time by coupling reduction method at low temperature. The samples were characterized by XRD, XPS, SEM, EDS, HRTEM, UV-vis (DRS), FTIR and photo-electro-chemical (PEC) analysis. Results showed that the BiOI/Cu2O composites consisted of three-dimensional (3D), hierarchical cauliflower-like structure composed of BiOI nanosheet and Cu2O cubic submicrometer structure, the composite absorption band broadened, and the absorption intensity in the visible region strengthened. And the composites exhibited an excellent photocatalytic performance, which might be attributed to the improvement of the composite absorption and effective charge separation in BiOI/Cu2O composites. In addition, the possible photocatalytic mechanism was proposed.

  11. Proceedings of the NATO Advances Research Workshop on Diamond Based Composites, Saint Petersburg, Russia, June 21-22, 1997, Volume 38

    DTIC Science & Technology

    1997-06-01

    composites. The topics ranged from molecular clusters, nanophase materials, growth, processing, and synthesis. Commercial composite materials have been on...example, an analysis of the emission from a GaAs target shows mainly (99.4%) neutral Ga and As atoms. [63] However, the fraction of molecular species...sputtered from ionic crystals can be considerably higher. [64] There is evidence that a large fraction of the molecular species originate from

  12. Large, low cost composite wind turbine blades

    NASA Technical Reports Server (NTRS)

    Gewehr, H. W.

    1979-01-01

    A woven roving E-glass tape, having all of its structural fibers oriented across the tape width was used in the manufacture of the spar for a wind turbine blade. Tests of a 150 ft composite blade show that the transverse filament tape is capable of meeting structural design requirements for wind turbine blades. Composite blades can be designed for interchangeability with steel blades in the MOD-1 wind generator system. The design, analysis, fabrication, and testing of the 150 ft blade are discussed.

  13. Torsional actuation with extension-torsion composite coupling and a magnetostrictive actuator

    NASA Astrophysics Data System (ADS)

    Bothwell, Christopher M.; Chandra, Ramesh; Chopra, Inderjit

    1995-04-01

    An analytical-experimental study of using magnetostrictive actuators in conjunction with an extension-torsion coupled composite tube to actuate a rotor blade trailing-edge flap to actively control helicopter vibration is presented. Thin walled beam analysis based on Vlasov theory was used to predict the induced twist and extension in a composite tube with magnetostrictive actuation. The study achieved good correlation between theory and experiment. The Kevlar-epoxy systems showed good correlation between measured and predicted twist values.

  14. Comparative study of the fluorescence intensity of dental composites and human teeth submitted to artificial aging.

    PubMed

    Jablonski, Tatiana; Takahashi, Marcos Kenzo; Brum, Rafeal Torres; Rached, Rodrigo Nunes; Souza, Evelise M

    2014-01-01

    The aim of this study was to evaluate quantitatively the fluorescence of resin composites and human teeth, and to determine the stability of fluorescence after aging. Ten specimens were built using a 1 mm thick increment of dentin composite overlapped by a 0.5 mm thick increment of enamel composite. Ten sound human molars were sectioned and silicon carbide-polished to obtain enamel and dentin slabs 1.5 mm in thickness. Fluorescence measurements were carried out by a fluorescence spectrophotometer before and after thermocycling (2000 cycles, 5°C and 55°C). One-way analysis of variance (ANOVA) with repeated measures and Tukey's test were performed at a significance level of 5%. Most of the tested composites showed significant differences in fluorescence both before and after aging (P < 0.05). Opallis was the only composite whose fluorescence was similar to that of human teeth at both periods of evaluation (P > 0.05), and was the only composite that showed comparable results of fluorescence to the tooth structure before and after thermocycling. With the exception of Filtek Supreme, there were significant reductions in fluorescence intensity for all the tested composites (P < 0.05).

  15. Development of porous structured polyvinyl alcohol/zeolite/carbon composites as adsorbent

    NASA Astrophysics Data System (ADS)

    Laksmono, J. A.; Sudibandriyo, M.; Saputra, A. H.; Haryono, A.

    2017-05-01

    Adsorption is a separation process that has higher energy efficiency than others. Analyzing the nature of the adsorbate and the selection of suitable adsorbent are key success in adsorption. The performance of the adsorbent can be modified either physically or chemically to obtain the efficiency and effectiveness of the adsorption, this can be facilitated by using a composite adsorbent. In this study, we have conducted the preparation process of a polyvinyl alcohol (PVA)/zeolite/carbon composites. The resulting adsorbent composites are dedicated for ethanol - water dehydration proposes. The composites were prepared using cross-linked polymerization method followed by supercritical fluid extraction (SFE) to obtain the porous structured upon drying process. The characterization of the functional groups and morphology were performed by using Fourier Transform Infra-Red (FTIR) and Scanning Electron Microscopy (SEM), respectively. The FTIR analysis showed that composite prepared by SFE method formed hydrogen bonding confirmed by the appearance of peaks at 2950 - 3000 cm-1 compared to composite without SFE method, whereas, the results of SEM study showed the formation of three layered structures. On basis of the obtained results, it can be shown that PVA/zeolite/carbon has high potential to be develop further as an adsorbent composite.

  16. In vitro blood and fibroblast responses to BisGMA-TEGDMA/bioactive glass composite implants.

    PubMed

    Abdulmajeed, Aous A; Kokkari, Anne K; Käpylä, Jarmo; Massera, Jonathan; Hupa, Leena; Vallittu, Pekka K; Närhi, Timo O

    2014-01-01

    This in vitro study was designed to evaluate both blood and human gingival fibroblast responses to bisphenol A-glycidyl methacrylate-triethyleneglycol dimethacrylate (BisGMA-TEGDMA)/bioactive glass (BAG) composite, aimed to be used as composite implant abutment surface modifier. Three different types of substrates were investigated: (a) plain polymer (BisGMA 50 wt%-TEGDMA 50 wt%), (b) BAG-composite (50 wt% polymer + 50 wt% fraction of BAG-particles, <50 μm), and (c) plain BAG plates (100 wt% BAG). The blood response, including the blood-clotting ability and platelet adhesion morphology were evaluated. Human gingival fibroblasts were plated and cultured on the experimental substrates for up to 10 days, then the cell proliferation rate was assessed using AlamarBlue assay™. The BAG-composite and plain BAG substrates had a shorter clotting time than plain polymer substrates. Platelet activation and aggregation were most extensive, qualitatively, on BAG-composite. Analysis of the normalized cell proliferation rate on the different surfaces showed some variations throughout the experiment, however, by day 10 the BAG-composite substrate showed the highest (P < 0.001) cell proliferation rate. In conclusion, the presence of exposed BAG-particles enhances fibroblast and blood responses on composite surfaces in vitro.

  17. Investigation on Thermal Properties of Kenaf Fibre Reinforced Polyurethane Bio-Composites

    NASA Astrophysics Data System (ADS)

    Athmalingam, Mathan; Vicki, W. V.

    2018-01-01

    This research focuses on the effect of Kenaf fibre on thermal properties of Polyurethane (PU) reinforced kenaf bio-composites. The samples were prepared using the polymer casting method with different percentages of kenaf fibre content (5 wt%, 10 wt%, 15 wt%). The thermal properties of Kenaf/PU bio-composite are determined through the Thermogravimetric Analysis and Differential Scanning Calorimeter test. The TGA results revealed that 10 wt% Kenaf/PU bio-composite appeared to be more stable. DSC results show that the glass transition temperature (Tg) value of 10 wt% Kenaf/PU composite is significant to pure polyurethane. It can be said that the thermal stability of 10 wt% Kenaf/PU bio-composite exhibits higher thermal stability compared to other samples.

  18. The development and mechanical characterization of aluminium copper-carbon fiber metal matrix hybrid composite

    NASA Astrophysics Data System (ADS)

    Manzoor, M. U.; Feroze, M.; Ahmad, T.; Kamran, M.; Butt, M. T. Z.

    2018-04-01

    Metal matrix composites (MMCs) come under advanced materials that can be used for a wide range of industrial applications. MMCs contain a non-metallic reinforcement incorporated into a metallic matrix which can enhance properties over base metal alloys. Copper-Carbon fiber reinforced aluminium based hybrid composites were prepared by compo casting method. 4 weight % copper was used as alloying element with Al because of its precipitation hardened properties. Different weight compositions of composites were developed and characterized by mechanical testing. A significant improvement in tensile strength and micro hardness were found, before and after heat treatment of the composite. The SEM analysis of the fractured surfaces showed dispersed and embedded Carbon fibers within the network leading to the enhanced strength.

  19. Preparation of Graphene-Zinc Oxide Nanostructure Composite for Carbon Monoxide Gas Sensing

    NASA Astrophysics Data System (ADS)

    Muchtar, Ahmad Rifqi; Septiani, Ni Luh Wulan; Iqbal, Muhammad; Nuruddin, Ahmad; Yuliarto, Brian

    2018-03-01

    A simple method to synthesize graphene-zinc oxide nanocomposite has been developed. A reduced graphene oxide-ZnO nanocomposite was prepared using a reflux method with ethylene glycol as medium. X-ray diffraction analysis, scanning electron microscopy, energy-dispersive spectrometry, and nitrogen adsorption-desorption measurements were used to characterize the resulting composite materials. The highest response of about 98% was observed when using pure ZnO at 300°C, while the second highest sensor response of about 96% was achieved by graphene-ZnO with 1:3 composition. It was found that the graphene-zinc oxide hybrid has potential to improve sensor performance at low temperature. The graphene-ZnO hybrid with 1:3 composition showed good response of 36% at 125°C, an operating temperature at which pure ZnO showed no response.

  20. Preparation of Graphene-Zinc Oxide Nanostructure Composite for Carbon Monoxide Gas Sensing

    NASA Astrophysics Data System (ADS)

    Muchtar, Ahmad Rifqi; Septiani, Ni Luh Wulan; Iqbal, Muhammad; Nuruddin, Ahmad; Yuliarto, Brian

    2018-07-01

    A simple method to synthesize graphene-zinc oxide nanocomposite has been developed. A reduced graphene oxide-ZnO nanocomposite was prepared using a reflux method with ethylene glycol as medium. X-ray diffraction analysis, scanning electron microscopy, energy-dispersive spectrometry, and nitrogen adsorption-desorption measurements were used to characterize the resulting composite materials. The highest response of about 98% was observed when using pure ZnO at 300°C, while the second highest sensor response of about 96% was achieved by graphene-ZnO with 1:3 composition. It was found that the graphene-zinc oxide hybrid has potential to improve sensor performance at low temperature. The graphene-ZnO hybrid with 1:3 composition showed good response of 36% at 125°C, an operating temperature at which pure ZnO showed no response.

  1. Effect of water flow and chemical environment on microbiota growth and composition in the human colon.

    PubMed

    Cremer, Jonas; Arnoldini, Markus; Hwa, Terence

    2017-06-20

    The human gut harbors a dynamic microbial community whose composition bears great importance for the health of the host. Here, we investigate how colonic physiology impacts bacterial growth, which ultimately dictates microbiota composition. Combining measurements of bacterial physiology with analysis of published data on human physiology into a quantitative, comprehensive modeling framework, we show how water flow in the colon, in concert with other physiological factors, determine the abundances of the major bacterial phyla. Mechanistically, our model shows that local pH values in the lumen, which differentially affect the growth of different bacteria, drive changes in microbiota composition. It identifies key factors influencing the delicate regulation of colonic pH, including epithelial water absorption, nutrient inflow, and luminal buffering capacity, and generates testable predictions on their effects. Our findings show that a predictive and mechanistic understanding of microbial ecology in the gut is possible. Such predictive understanding is needed for the rational design of intervention strategies to actively control the microbiota.

  2. Synthesis and Characterization of Hydroxyapatite-Collagen-Chitosan (HA/Col/Chi) Composite Coated on Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Charlena; Bikharudin, Ahmad; Wahyudi, Setyanto Tri

    2018-01-01

    HA-collagen-chitosan (HA/col/chi) composite is developed to increase bioactivity adhesiveness between the metal and the material composite and to improve corrosion resistance. The Ti6Al4V alloy was coated by soaking in HA/col/chi composite at room temperature and then allowed to stand for 5, 6, and 7 days. Diffraction pattern analysis of the coated Ti6Al4V alloy showed that the dominant phase were HA and Ti6Al4V alloy. Corrosion resistance test in media by using 0.9% NaCl showed the corrosion rate at the level of 0.3567 mpy, which was better than that of the uncoated Ti6Al4V alloy (0.4152 mpy). In vitro cytocompatibility assay on endothelial cell of calf pulmonary artery endothelium (CPAE) (ATCC-CCL 209) showed there was no toxicity in the cell culture with the percent inhibition of 33.33% after 72 hours of incubation.

  3. Effect of water flow and chemical environment on microbiota growth and composition in the human colon

    PubMed Central

    Cremer, Jonas; Arnoldini, Markus; Hwa, Terence

    2017-01-01

    The human gut harbors a dynamic microbial community whose composition bears great importance for the health of the host. Here, we investigate how colonic physiology impacts bacterial growth, which ultimately dictates microbiota composition. Combining measurements of bacterial physiology with analysis of published data on human physiology into a quantitative, comprehensive modeling framework, we show how water flow in the colon, in concert with other physiological factors, determine the abundances of the major bacterial phyla. Mechanistically, our model shows that local pH values in the lumen, which differentially affect the growth of different bacteria, drive changes in microbiota composition. It identifies key factors influencing the delicate regulation of colonic pH, including epithelial water absorption, nutrient inflow, and luminal buffering capacity, and generates testable predictions on their effects. Our findings show that a predictive and mechanistic understanding of microbial ecology in the gut is possible. Such predictive understanding is needed for the rational design of intervention strategies to actively control the microbiota. PMID:28588144

  4. Bacterial community composition and structure in an Urban River impacted by different pollutant sources.

    PubMed

    Ibekwe, A Mark; Ma, Jincai; Murinda, Shelton E

    2016-10-01

    Microbial communities in terrestrial fresh water are diverse and dynamic in composition due to different environmental factors. The goal of this study was to undertake a comprehensive analysis of bacterial composition along different rivers and creeks and correlate these to land-use practices and pollutant sources. Here we used 454 pyrosequencing to determine the total bacterial community composition, and bacterial communities that are potentially of fecal origin, and of relevance to water quality assessment. The results were analyzed using UniFrac coupled with principal coordinate analysis (PCoA) to compare diversity, abundance, and community composition. Detrended correspondence analysis (DCA) and canonical correspondence analysis (CCA) were used to correlate bacterial composition in streams and creeks to different environmental parameters impacting bacterial communities in the sediment and surface water within the watershed. Bacteria were dominated by the phyla Proteobacteria, Bacteroidetes, Acidobacteria, and Actinobacteria, with Bacteroidetes significantly (P<0.001) higher in all water samples than sediment, where as Acidobacteria and Actinobacteria where significantly higher (P<0.05) in all the sediment samples than surface water. Overall results, using the β diversity measures, coupled with PCoA and DCA showed that bacterial composition in sediment and surface water was significantly different (P<0.001). Also, there were differences in bacterial community composition between agricultural runoff and urban runoff based on parsimony tests using 454 pyrosequencing data. Fecal indicator bacteria in surface water along different creeks and channels were significantly correlated with pH (P<0.01), NO2 (P<0.03), and NH4N (P<0.005); and in the sediment with NO3 (P<0.015). Our results suggest that microbial community compositions were influenced by several environmental factors, and pH, NO2, and NH4 were the major environmental factors driving FIB in surface water based on CCA analysis, while NO3 was the only factor in sediment. Published by Elsevier B.V.

  5. Clinical utility of bioelectrical impedance analysis in patients with locoregional muscle invasive or metastatic urothelial carcinoma: a subanalysis of changes in body composition during neoadjuvant systemic chemotherapy.

    PubMed

    Miyake, Makito; Owari, Takuya; Iwamoto, Takashi; Morizawa, Yosuke; Hori, Shunta; Marugami, Nagaaki; Shimada, Keiji; Iida, Kota; Ohnishi, Kenta; Gotoh, Daisuke; Tatsumi, Yoshihiro; Nakai, Yasushi; Inoue, Takeshi; Anai, Satoshi; Torimoto, Kazumasa; Aoki, Katsuya; Yoneda, Tatsuo; Tanaka, Nobumichi; Fujimoto, Kiyohide

    2018-04-01

    The aim of this study was to determine the clinical utility of bioelectrical impedance analysis (BIA) in a cohort of patients with advanced urothelial carcinoma (UC). We prospectively evaluated body composition in 35 patients with locoregional muscle invasive (≥ T2 and N0-2M0) or metastatic UC. Body composition was evaluated using multifrequency BIA at baseline (n = 35) and during chemotherapy in patients receiving neoadjuvant chemotherapy (n = 14). The BIA-predicted body composition index was compared with the computed tomography-measured muscle index and the prognostic nutrition index. Changes in body composition during neoadjuvant chemotherapy were recorded and compared with the incidence of hematological adverse events. There was a significant correlation between the BIA-predicted skeletal muscle index and the computed tomography-measured skeletal muscle index (P = 0.004), while there was no significant correlation between the prognostic nutrition index and the BIA-predicted nutrition index. After the completion of 3 cycles of neoadjuvant chemotherapy, the skeletal muscle index showed a significant decrease (P = 0.016), while the total body fat mass (P = 0.025), body fat percentage (P = 0.013), and body mass index (P = 0.004) showed a significant increase (a tendency toward "sarcopenic obesity"). Patients who experienced grade 2-3 anemia during neoadjuvant chemotherapy showed a significantly lower increase in body mass index compared with patients who did not experience high-grade toxicities (P = 0.032). BIA could contribute to other methods of nutrition and muscle assessment for pretreatment risk stratification in patients with UC. Further study of a larger cohort is required to elucidate the clinical impact of changes in body composition during chemotherapy.

  6. Improved thermal stability of polylactic acid (PLA) composite film via PLA-β-cyclodextrin-inclusion complex systems.

    PubMed

    Byun, Youngjae; Rodriguez, Katia; Han, Jung H; Kim, Young Teck

    2015-11-01

    The effects of the incorporation of PLA-β-cyclodextrin-inclusion complex (IC) and β-cyclodextrin (β-CD) on biopolyester PLA films were investigated. Thermal stability, surface morphology, barrier, and mechanical properties of the films were measured at varying IC (1, 3, 5, and 7%) and β-CD (1 and 5%) concentrations. The PLA-IC-composite films (IC-PLA-CFs) showed uniform morphological structure, while samples containing β-CD (β-CD-PLA-CFs) showed high agglomeration of β-CD due to poor interfacial interaction between β-CD and PLA moieties. According to the thermal property analysis, the 5% IC-PLA-CFs showed 6.6 times lower dimensional changes (6.5%) at the temperature range of 20-80°C than that of pure PLA film (43.0%). The increase of IC or β-CD content in the PLA-composite films shifted the glass transition and crystallization temperature to higher temperature regions. The crystallinity of both composite films improved by increasing IC or β-CD content. Both composite films had higher oxygen and water vapor permeability as IC or β-CD content increased in comparison to pure PLA film. All the composite films had less flexibility and lower tensile strength than the pure PLA film. In conclusion, this study shows that the IC technique is valuable to improve the thermal expansion stability of PLA-based films. Published by Elsevier B.V.

  7. Nutritional composition, bioactive compounds and volatile profile of cocoa beans from different regions of Cameroon.

    PubMed

    Caprioli, Giovanni; Fiorini, Dennis; Maggi, Filippo; Nicoletti, Marcello; Ricciutelli, Massimo; Toniolo, Chiara; Prosper, Biapa; Vittori, Sauro; Sagratini, Gianni

    2016-06-01

    Analysis of the complex composition of cocoa beans provides fundamental information for evaluating the quality and nutritional aspects of cocoa-based food products, nutraceuticals and supplements. Cameroon, the world's fourth largest producer of cocoa, has been defined as "Africa in miniature" because of the variety it habitats. In order to evaluate the nutritional characteristics of cocoa beans from five different regions of Cameroon, we studied their polyphenolic content, volatile compounds and fatty acids composition. The High Performance Thin Layer Chromatography (HPTLC) analysis showed that the Mbalmayo sample had the highest content of theobromine (11.6 mg/g) and caffeic acid (2.1 mg/g), while the Sanchou sample had the highest level of (-)-epicatechin (142.9 mg/g). Concerning fatty acids, the lowest level of stearic acid was found in the Mbalmayo sample while the Bertoua sample showed the highest content of oleic acid. Thus, we confirmed that geographical origin influences the quality and nutritional characteristics of cocoa from these regions of Cameroon.

  8. The optical and electrical properties of graphene oxide with water-soluble conjugated polymer composites by radiation.

    PubMed

    Jungo, Seung Tae; Oh, Seung-Hwan; Kim, Hyun Bin; Jeun, Joon-Pyo; Lee, Bum-Jae; Kang, Phil-Hyun

    2013-11-01

    In order to overcome the difficulty of dispersion and low conductivity in composite containing graphene, graphene oxide (GO) has been used instead of neat graphene. And the GO treated by radiation, could give improved conductivity of the GO-containing polymer composite. In this study, fluorene based water-soluble conjugated polymer (WPF-6-oxy-F) was introduced in GO solution to investigate the change of optical and electrical properties through radiation process. UV-Vis absorption of irradiated WPF-6-oxy-F-GO composite was red shifted and I(D)/I(G) ratio of Raman spectra decreased. XPS analysis showed that C-N bonds was formed after the irradiation and confirmed the increased bonds between the GO and the water-soluble conjugated polymer matrix. From the AFM and XPS analysis, it was found that the water-soluble conjugated polymer matrix was stacked between the modified GO in the morphology of irradiated WPF-6-oxy-F-GO composite was increased after gamma ray irradiation up to 10(-2) S/cm.

  9. Ultra-low temperature curable nano-silver conductive adhesive for piezoelectric composite material

    NASA Astrophysics Data System (ADS)

    Yan, Chao; Liao, Qingwei; Zhou, Xingli; Wang, Likun; Zhong, Chao; Zhang, Di

    2018-01-01

    Limited by the low thermal resistance of composite material, ultra-low temperature curable conductive silver adhesive with curing temperature less than 100 °C needed urgently for the surface conduction treatment of piezoelectric composite material. An ultra-low temperature curable nano-silver conductive adhesive with high adhesion strength for the applications of piezoelectric composite material was investigated. The crystal structure of cured adhesive, SEM/EDS analysis, thermal analysis, adhesive properties and conductive properties of different content of nano-silver filler or micron-silver doping samples were studied. The results show that with 60 wt.% nano-silver filler the ultra-low temperature curable conductive silver adhesive had the relatively good conductivity as volume resistivity of 2.37 × 10-4 Ω cm, and good adhesion strength of 5.13 MPa. Minor micron-doping (below 15 wt.%) could improve conductivity, but would decrease other properties. The ultra-low temperature curable nano-silver conductive adhesive could successfully applied to piezoelectric composite material.

  10. Modeling Geometry and Progressive Failure of Material Interfaces in Plain Weave Composites

    NASA Technical Reports Server (NTRS)

    Hsu, Su-Yuen; Cheng, Ron-Bin

    2010-01-01

    A procedure combining a geometrically nonlinear, explicit-dynamics contact analysis, computer aided design techniques, and elasticity-based mesh adjustment is proposed to efficiently generate realistic finite element models for meso-mechanical analysis of progressive failure in textile composites. In the procedure, the geometry of fiber tows is obtained by imposing a fictitious expansion on the tows. Meshes resulting from the procedure are conformal with the computed tow-tow and tow-matrix interfaces but are incongruent at the interfaces. The mesh interfaces are treated as cohesive contact surfaces not only to resolve the incongruence but also to simulate progressive failure. The method is employed to simulate debonding at the material interfaces in a ceramic-matrix plain weave composite with matrix porosity and in a polymeric matrix plain weave composite without matrix porosity, both subject to uniaxial cyclic loading. The numerical results indicate progression of the interfacial damage during every loading and reverse loading event in a constant strain amplitude cyclic process. However, the composites show different patterns of damage advancement.

  11. Application of far infrared rare earth mineral composite materials to liquefied petroleum gas.

    PubMed

    Zhu, Dongbin; Liang, Jinsheng; Ding, Yan; Xu, Anping

    2010-03-01

    Far infrared rare earth mineral composite materials were prepared by the coprecipitation method using tourmaline, cerium acetate, and lanthanum acetate as raw materials. The results of Fourier transform infrared spectroscopy show that tourmaline modified with the rare earths La and Ce has a better far infrared emitting performance. Through XRD analysis, we attribute the improved far infrared emission properties of the tourmaline to the unit cell shrinkage of the tourmaline arising from La enhancing the redox properties of nano-CeO2. The effect of the composite materials on the combustion of liquefied petroleum gas (LPG) was studied by the flue gas analysis and water boiling test. Based on the results, it was found that the composite materials could accelerate the combustion of LPG, and that the higher the emissivity of the rare earth mineral composite materials, the better the effects on combustion of LPG. In all activation styles, both air and LPG to be activated has a best effect, indicating the activations having a cumulative effect.

  12. Effect of Laser-assisted and Conventional In-office Bleaching on Monomer Release from Microhybrid and Nanohybrid Composite.

    PubMed

    Omrani, Ladan Ranjbar; Farjadfar, Shayan; Pedram, Parham; Sadray, Sima; Kamangar, Sedighe Sadat Hashemi; Chiniforoush, Nasim

    2017-06-30

    Bleaching might affect structural properties of composite materials, and lead to monomer release. This study aimed to evaluate the effect of Laser-assisted and conventional in-office bleaching on the release of BIS-GMA, TEGDMA, and UDMA monomers from a nanohybrid and a microhybrid BIS-GMA based composite. 32 samples of each composite, were divided into 4 subgroups; subgroup 1: Conventional in-office bleaching (CIB) with the Opalescence Boost PF 38% gel, subgroup 2: Laser-assisted bleaching (LBO) with the Opalescence Boost PF 38% gel, subgroup 3: Laser-assisted bleaching (LBH) with the JW Power bleaching gel, subgroup 4: (CO) control without bleaching. All the samples were immersed in tubes of 2cc Ethanol 75% medium. The released monomers were analyzed using the high performance liquid chromatography (HPLC) method 24 h, 7, and 28 days. Data's were analyzed by Univariate Analysis of Variance test followed by Tukeys HSD. The amount of TEGDMA monomer released was not significant. However, nanohybrid composites showed significantly more monomer release than microhybrid composites (P < 0.05). For UDMA the interaction was significant only after 1 week. In microhybrid composites, the CO subgroup showed more monomer release than LBH and LBO. In nanohybrid composites, LBH showed more monomer release than CIB and CO subgroups. For BIS-GMA monomers the interaction was significant at all time periods and the LBH subgroup of nanohybrid composite had significantly more BIS_GMA release in comparison to other subgroups. Bleaching by laser with JW Power Bleaching gel led to more monomer release in nanohybrid composite.

  13. Dissecting genetic architecture of grape proanthocyanidin composition through quantitative trait locus mapping

    PubMed Central

    2012-01-01

    Background Proanthocyanidins (PAs), or condensed tannins, are flavonoid polymers, widespread throughout the plant kingdom, which provide protection against herbivores while conferring organoleptic and nutritive values to plant-derived foods, such as wine. However, the genetic basis of qualitative and quantitative PA composition variation is still poorly understood. To elucidate the genetic architecture of the complex grape PA composition, we first carried out quantitative trait locus (QTL) analysis on a 191-individual pseudo-F1 progeny. Three categories of PA variables were assessed: total content, percentages of constitutive subunits and composite ratio variables. For nine functional candidate genes, among which eight co-located with QTLs, we performed association analyses using a diversity panel of 141 grapevine cultivars in order to identify causal SNPs. Results Multiple QTL analysis revealed a total of 103 and 43 QTLs, respectively for seed and skin PA variables. Loci were mainly of additive effect while some loci were primarily of dominant effect. Results also showed a large involvement of pairwise epistatic interactions in shaping PA composition. QTLs for PA variables in skin and seeds differed in number, position, involvement of epistatic interaction and allelic effect, thus revealing different genetic determinisms for grape PA composition in seeds and skin. Association results were consistent with QTL analyses in most cases: four out of nine tested candidate genes (VvLAR1, VvMYBPA2, VvCHI1, VvMYBPA1) showed at least one significant association with PA variables, especially VvLAR1 revealed as of great interest for further functional investigation. Some SNP-phenotype associations were observed only in the diversity panel. Conclusions This study presents the first QTL analysis on grape berry PA composition with a comparison between skin and seeds, together with an association study. Our results suggest a complex genetic control for PA traits and different genetic architectures for grape PA composition between berry skin and seeds. This work also uncovers novel genomic regions for further investigation in order to increase our knowledge of the genetic basis of PA composition. PMID:22369244

  14. Study of nano mechanical properties polydimethylsiloxane (PDMS)/MWCNT composites

    NASA Astrophysics Data System (ADS)

    Murudkar, Vrishali; Gaonkar, Amita; Deshpande, V. D.; Mhaske, S. T.

    2018-05-01

    Polydimethylsiloxane (PDMS), a clear elastomer, is a common material used in many applications; but has poor mechanical properties. Carbon nano tubes (CNT) exhibit excellent mechanical properties & hence are used as filler in PDMS. It was found that the elastic modulus and strength of the PDMS/MWCNT nano composites were enhanced by adding MWCNT [1]. Through the nano indentation experiment, the hardness (H), the elastic modulus (E), and other mechanical properties can be determined from very small volumes of materials [2]; hence nano indentation is widely used to study mechanical properties. PDMS/MWCNT composites have enhanced mechanical properties over neat PDMS. FTIR analysis shows bonding between MWCNT and PDMS; which affects the mechanical properties. From AFM study it shows decreasing roughness for increasing MWCNT concentration. Surface morphology (SEM) study shows well dispersion of MWCNT into PDMS matrix.

  15. Multi-Scale Modeling of an Integrated 3D Braided Composite with Applications to Helicopter Arm

    NASA Astrophysics Data System (ADS)

    Zhang, Diantang; Chen, Li; Sun, Ying; Zhang, Yifan; Qian, Kun

    2017-10-01

    A study is conducted with the aim of developing multi-scale analytical method for designing the composite helicopter arm with three-dimensional (3D) five-directional braided structure. Based on the analysis of 3D braided microstructure, the multi-scale finite element modeling is developed. Finite element analysis on the load capacity of 3D five-directional braided composites helicopter arm is carried out using the software ABAQUS/Standard. The influences of the braiding angle and loading condition on the stress and strain distribution of the helicopter arm are simulated. The results show that the proposed multi-scale method is capable of accurately predicting the mechanical properties of 3D braided composites, validated by the comparison the stress-strain curves of meso-scale RVCs. Furthermore, it is found that the braiding angle is an important factor affecting the mechanical properties of 3D five-directional braided composite helicopter arm. Based on the optimized structure parameters, the nearly net-shaped composite helicopter arm is fabricated using a novel resin transfer mould (RTM) process.

  16. Experimental Tensile Strength Analysis of Woven-Glass/Epoxy Composite Plates with Central Circular Hole

    NASA Astrophysics Data System (ADS)

    Hadi, Bambang K.; Rofa, Bima K.

    2018-04-01

    The use of composite materials in aerospace engineering, as well as in maritime structure has increased significantly during the recent years. The extensive use of composite materials in industrial applications should make composite structural engineers and scientists more aware of the advantage and disadvantage of this material and provide them with necessary data and certification process. One of the problems in composite structures is the existence of hole. Hole can not be avoided in actual structures, since it may be the necessity of providing access for maintenance or due to impact damage. The presence of hole will weaken the structures. Therefore, in this paper, the effect of hole on the strength of glass-woven/epoxy composite will be discussed. Extensive tests have been carried out to study the effect of hole-diameter on the tensile strengths of these specimens. The results showed that the bigger the hole-diameter compared to the width of the specimens has weakened the structures further, as expected. Further study should be carried in the future to model it with the finite element and theoretical analysis precisely.

  17. Surface analysis of anodized aluminum clamps from NASA-LDEF satellite

    NASA Technical Reports Server (NTRS)

    Grammer, H. L.; Wightman, J. P.; Young, Philip R.

    1992-01-01

    Surface analysis results of selected anodized aluminum clamps containing black (Z306) and white (A276) paints which received nearly six years of Low Earth Orbit (LEO) exposure on the Long Duration Exposure Facility are reported. Surface analytical techniques, including x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and scanning electron microscopy/energy dispersive analysis by x-ray (SEM/EDAX), showed significant differences in the surface composition of these materials depending upon the position on the LDEF. Differences in the surface composition are attributed to varying amounts of atomic oxygen and vacuum ultraviolet radiation (VUV). Silicon containing compounds were the primary contaminant detected on the materials.

  18. Influent of Borax Decahydrate Composition as Additional Flux into Stoneware Bodies

    NASA Astrophysics Data System (ADS)

    Bakil, Siti Natrah Abd; Hussin, Rosniza; Bakar Aramjat, Abu

    2017-08-01

    Stoneware is vitrified, has less porosity and requires high sintering temperature. The influent of borax decahydrate composition at sintering temperature 1050°C and 1150°C on the thermal analysis, fracture surface, linear shrinkage, water absorption and modular of rapture (MOR) were investigated. Rectangular sample were produced by uniaxially pressing at 40MPa. The thermal behavior was determined by thermogravimetric and different thermal analysis (TGA-DTA). The Scanning electron microscopy (SEM) was used for fracture surface analysis. The water absorption (%) of the sample were determined using Archimedes’ method. The experimental result showed that content of borax decahydrate have influent the properties of stoneware bodies.

  19. Thermal and mechanical analysis of PVA / sulfonated carbon nanotubes composite

    NASA Astrophysics Data System (ADS)

    Yadav, Vikrant; Sharma, Prem P.; Rajput, Abhishek; Kulshrestha, Vaibhav

    2018-04-01

    Nanocomposites of polyvinyl alcohol (PVA) and sulfonated carbon nanotubes (s-CNT) with enhanced properties were synthesized successfully. Effect of different amount of sulfonated nanotubes on thermal and mechanical properties of resultant nanocomposites derived from s-CNT and PVA were studied. Structural analysis for functionalization of CNT was done by using FTIR spectra. Thermal and mechanical analysis were done by using TGA, DSC and UTM. Nanocomposite containing s-CNT shows higher elastic moduli, higher melting temperature in consort with lower weight loss at same temperature, compared with pristine PVA. The novelty of this work is to use PVA/s-CNT based composites with improved thermomechanical properties in different nanotechnologies.

  20. Elasto-plastic analysis of interface layers for fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Doghri, I.; Leckie, F. A.

    1991-01-01

    The mismatch in coefficients of thermal expansion (CTE) of fiber and matrix in metal matrix composites reinforced with ceramic fibers induces high thermal stresses in the matrix. Elasto-plastic analyses - with different degrees of simplification and modelization - show that an interface layer with a sufficiently high CTE can reduce the tensile hoop stress in the matrix substantially.

  1. Microbial diversity and chemical analysis of the starters used in traditional Chinese sweet rice wine.

    PubMed

    Cai, Haiying; Zhang, Ting; Zhang, Qi; Luo, Jie; Cai, Chenggang; Mao, Jianwei

    2018-08-01

    Chinese sweet rice wine (CSRW) is a popular alcoholic drink in China. To investigate the effect of the microbial composition in CSRW starters on the final quality of the alcoholic drink, high-throughput sequencing on the fungal internal transcribed spacer II and bacterial 16S rRNA gene of the microflora in 8 starter samples was performed. The sequencing data analysis showed that 10 genera of yeasts and mold, and 11 genera of bacteria were identified. Fungal diversity analyses showed the significant variances in the fungal compositions among the starter samples. Starter microbiota were dominated by the Rhizopus genus in SZ5, LS6, NN8, QD9, DZ10 and DZ11, indicating its important role in starch hydrolysis during CSRW brewing. According to principal coordinate analyses, the bacterial composition had even less similarity among the 8 starter samples. The chemical determination of CSRW fermented with the 8 starters demonstrated that the CSRW quality and flavor were drastically influenced by the taxonomic composition and metabolism of the microbes in the starters. This study suggests it is necessary to standardize rice wine manufacturing and flavor classification by specifying starter and fermentation techniques. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. The chemical composition of tertiary Indian coal ash and its combustion behaviour - a statistical approach: Part 2

    NASA Astrophysics Data System (ADS)

    Sharma, Arpita; Saikia, Ananya; Khare, Puja; Dutta, D. K.; Baruah, B. P.

    2014-08-01

    In Part 1 of the present investigation, 37 representative Eocene coal samples of Meghalaya, India were analyzed and their physico-chemical characteristics and the major oxides and minerals present in ash samples were studied for assessing the genesis of these coals. Various statistical tools were also applied to study their genesis. The datasets from Part 1 used in this investigation (Part 2) show the contribution of major oxides towards ash fusion temperatures (AFTs). The regression analysis of high temperature ash (HTA) composition and initial deformation temperature (IDT) show a definite increasing or decreasing trend, which has been used to determine the predictive indices for slagging, fouling, and abrasion propensities during combustion practices. The increase or decrease of IDT is influenced by the increase of Fe2O3, Al2O3, SiO2, and CaO, respectively. Detrital-authigenic index (DAI) calculated from the ash composition and its relation with AFT indicates Sialoferric nature of these coals. The correlation analysis, Principal Component Analysis (PCA), and Hierarchical Cluster Analysis (HCA) were used to study the possible fouling, slagging, and abrasion potentials in boilers during the coal combustion processes. A positive relationship between slagging and heating values of the coal has been found in this study.

  3. Characteristic analysis for odor gas emitted from food waste anaerobic fermentation in the pretreatment workshop.

    PubMed

    Di, Yanqiang; Liu, Jiemin; Liu, Jianguo; Liui, Siyuan; Yan, Luchun

    2013-10-01

    Gas chromatography-mass spectrometry, olfactometry, and other related methods were applied for the qualitative and quantitative analysis of the characteristics of odorous gases in the pretreatment workshop. The composition of odorous gases emitted from municipal food waste was also investigated in this study. The results showed that the tested gases are mainly composed of aromatic gases, which account for 49% of the total volatile organic compounds (VOC) concentrations. The nitrogenous compounds comprise 15% of the total concentration and the other gases comprise the remaining 36%. The level of odor concentration ranged from 2523 odor units (OU) m(-3) to 3577 OU m(-3). The variation of the total chemical composition ranged from 19,725 microg m(-3) to 24,184 microg m(-3). Among the selected four sampling points, the discharge outlet was detected to have the highest concentration in terms of odor, total chemical, sulfur compounds, and aromatics. The correlation analysis showed that the odor concentrations were evidently related to the total chemical composition, sulfur compounds, and aromatics (P < 0.05, n = 5). The odor activity value analysis identified the top three compounds, hydrogen sulfide (91.8), ethyl sulfide (35.8), and trimethylamine (70.6), which contribute to air pollution complaint of waste materials.

  4. Fractography and Mechanical Properties of Urethane Dimethacrylate Dental Composites Reinforced with Glass Nanoparticles.

    PubMed

    M, Monfared; Me, Bahrololoom

    2016-12-01

    Dental resin composites are becoming prevalent in restorative dentistry and have almost replaced amalgam nowadays. Consequently, their mechanical properties and durability are critical. The aim of this study was to produce Pyrex glass nano-particles by wet milling process and use them as reinforcement in dental resins for anterior restorations and then examination of fractographic properties of these composites. The glass nano-particles were achieved via wet milling. The surface of the particles was modified with 3-(Trimethoxysilyl) propyl methacrylate (γ-MPTMS) silane in order to improve their surface. Fourier transform infra-red (FTIR) analysis showed that the silane groups provided double bonds to the surface of the particles and prevented agglomeration. Then, the composite resins were made with different weight percentages of Pyrex glass. The mechanical properties of samples flexural test were evaluated. The required energy for fracture of the specimens was achieved via this test. The fracture surfaces of the samples were analyzed using a scanning electron microscope (SEM) in order to explain the mechanisms of fracture. The results and analysis showed that increasing the glass nano-particles mass fraction had a great effect on mechanical properties of the composites due to the mechanisms of crack propagation and crack deflection as well as preventing void formation. The effective energy dissipation mechanisms such as crack pinning and deflection, was observed in SEM micrographs. Void formation in the low filler content composite is one of the mechanisms to decrease the energy required for fracture of these composites and eventually weaken them.

  5. Fractography and Mechanical Properties of Urethane Dimethacrylate Dental Composites Reinforced with Glass Nanoparticles

    PubMed Central

    M*, Monfared; ME, Bahrololoom

    2016-01-01

    Statement of Problem: Dental resin composites are becoming prevalent in restorative dentistry and have almost replaced amalgam nowadays. Consequently, their mechanical properties and durability are critical. Objectives: The aim of this study was to produce Pyrex glass nano-particles by wet milling process and use them as reinforcement in dental resins for anterior restorations and then examination of fractographic properties of these composites. Materials and Methods: The glass nano-particles were achieved via wet milling. The surface of the particles was modified with 3-(Trimethoxysilyl) propyl methacrylate (γ-MPTMS) silane in order to improve their surface. Fourier transform infra-red (FTIR) analysis showed that the silane groups provided double bonds to the surface of the particles and prevented agglomeration. Then, the composite resins were made with different weight percentages of Pyrex glass. The mechanical properties of samples flexural test were evaluated. The required energy for fracture of the specimens was achieved via this test. The fracture surfaces of the samples were analyzed using a scanning electron microscope (SEM) in order to explain the mechanisms of fracture. Results: The results and analysis showed that increasing the glass nano-particles mass fraction had a great effect on mechanical properties of the composites due to the mechanisms of crack propagation and crack deflection as well as preventing void formation. The effective energy dissipation mechanisms such as crack pinning and deflection, was observed in SEM micrographs. Conclusions: Void formation in the low filler content composite is one of the mechanisms to decrease the energy required for fracture of these composites and eventually weaken them. PMID:28959761

  6. Thermal, mechanical, and physical properties of seaweed/sugar palm fibre reinforced thermoplastic sugar palm Starch/Agar hybrid composites.

    PubMed

    Jumaidin, Ridhwan; Sapuan, Salit M; Jawaid, Mohammad; Ishak, Mohamad R; Sahari, Japar

    2017-04-01

    The aim of this research is to investigate the effect of sugar palm fibre (SPF) on the mechanical, thermal and physical properties of seaweed/thermoplastic sugar palm starch agar (TPSA) composites. Hybridized seaweed/SPF filler at weight ratio of 25:75, 50:50 and 75:25 were prepared using TPSA as a matrix. Mechanical, thermal and physical properties of hybrid composites were carried out. Obtained results indicated that hybrid composites display improved tensile and flexural properties accompanied with lower impact resistance. The highest tensile (17.74MPa) and flexural strength (31.24MPa) was obtained from hybrid composite with 50:50 ratio of seaweed/SPF. Good fibre-matrix bonding was evident in the scanning electron microscopy (SEM) micrograph of the hybrid composites' tensile fracture. Fourier transform infrared spectroscopy (FT-IR) analysis showed increase in intermolecular hydrogen bonding following the addition of SPF. Thermal stability of hybrid composites was enhanced, indicated by a higher onset degradation temperature (259°C) for 25:75 seaweed/SPF composites than the individual seaweed composites (253°C). Water absorption, thickness swelling, water solubility, and soil burial tests showed higher water and biodegradation resistance of the hybrid composites. Overall, the hybridization of SPF with seaweed/TPSA composites enhances the properties of the biocomposites for short-life application; that is, disposable tray, plate, etc. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Composite Sampling Approaches for Bacillus anthracis Surrogate Extracted from Soil

    PubMed Central

    France, Brian; Bell, William; Chang, Emily; Scholten, Trudy

    2015-01-01

    Any release of anthrax spores in the U.S. would require action to decontaminate the site and restore its use and operations as rapidly as possible. The remediation activity would require environmental sampling, both initially to determine the extent of contamination (hazard mapping) and post-decon to determine that the site is free of contamination (clearance sampling). Whether the spore contamination is within a building or outdoors, collecting and analyzing what could be thousands of samples can become the factor that limits the pace of restoring operations. To address this sampling and analysis bottleneck and decrease the time needed to recover from an anthrax contamination event, this study investigates the use of composite sampling. Pooling or compositing of samples is an established technique to reduce the number of analyses required, and its use for anthrax spore sampling has recently been investigated. However, use of composite sampling in an anthrax spore remediation event will require well-documented and accepted methods. In particular, previous composite sampling studies have focused on sampling from hard surfaces; data on soil sampling are required to extend the procedure to outdoor use. Further, we must consider whether combining liquid samples, thus increasing the volume, lowers the sensitivity of detection and produces false negatives. In this study, methods to composite bacterial spore samples from soil are demonstrated. B. subtilis spore suspensions were used as a surrogate for anthrax spores. Two soils (Arizona Test Dust and sterilized potting soil) were contaminated and spore recovery with composites was shown to match individual sample performance. Results show that dilution can be overcome by concentrating bacterial spores using standard filtration methods. This study shows that composite sampling can be a viable method of pooling samples to reduce the number of analysis that must be performed during anthrax spore remediation. PMID:26714315

  8. Comparison of Free Total Amino Acid Compositions and Their Functional Classifications in 13 Wild Edible Mushrooms.

    PubMed

    Sun, Liping; Liu, Qiuming; Bao, Changjun; Fan, Jian

    2017-02-24

    Thirteen popular wild edible mushroom species in Yunnan Province, Boletus bicolor , Boletus speciosus , Boletus sinicus , Boletus craspedius , Boletus griseus , Boletus ornatipes , Xerocomus , Suillus placidus , Boletinus pinetorus , Tricholoma terreum , Tricholomopsis lividipileata , Termitomyces microcarpus , and Amanita hemibapha , were analyzed for their free amino acid compositions by online pre-column derivazation reversed phase high-performance liquid chromatography (RP-HPLC) analysis. Twenty free amino acids, aspartic acid, glutamic acid, serine, glycine, alanine, praline, cysteine, valine, methionine, phenylalanine, isoleucine, leucine, lysine, histidine, threonine, asparagines, glutamine, arginine, tyrosine, and tryptophan, were determined. The total free amino acid (TAA) contents ranged from 1462.6 mg/100 g in B. craspedius to 13,106.2 mg/100 g in T. microcarpus . The different species showed distinct free amino acid profiles. The ratio of total essential amino acids (EAA) to TAA was 0.13-0.41. All of the analyzed species showed high contents of hydrophobic amino acids, at 33%-54% of TAA. Alanine, cysteine, glutamine, and glutamic acid were among the most abundant amino acids present in all species. The results showed that the analyzed mushrooms possessed significant free amino acid contents, which may be important compounds contributing to the typical mushroom taste, nutritional value, and potent antioxidant properties of these wild edible mushrooms. Furthermore, the principal component analysis (PCA) showed that the accumulative variance contribution rate of the first four principal components reached 94.39%. Cluster analysis revealed EAA composition and content might be an important parameter to separate the mushroom species, and T. microcarpus and A. hemibapha showed remarkable EAA content among the 13 species.

  9. Qualitative and quantitative studies of chemical composition of sandarac resin by GC-MS.

    PubMed

    Kononenko, I; de Viguerie, L; Rochut, S; Walter, Ph

    2017-01-01

    The chemical composition of sandarac resin was investigated qualitatively and quantitatively by gas chromatography-mass spectrometry (GC-MS). Six compounds with labdane and pimarane skeletons were identified in the resin. The obtained mass spectra were interpreted and the mass spectrometric behaviour of these diterpenoids under EI conditions was described. Quantitative analysis by the method of internal standard revealed that identified diterpenoids represent only 10-30% of the analysed sample. The sandarac resin from different suppliers was analysed (from Kremer, Okhra, Color Rare, La Marchande de Couleurs, L'Atelier Montessori, Hevea). The analysis of different lumps of resins showed that the chemical composition differs from one lump to another, varying mainly in the relative distributions of the components.

  10. Analysis and experiments for composite laminates with holes and subjected to 4-point bending

    NASA Technical Reports Server (NTRS)

    Shuart, M. J.; Prasad, C. B.

    1990-01-01

    Analytical and experimental results are presented for composite laminates with a hole and subjected to four-point bending. A finite-plate analysis is used to predict moment and strain distributions for six-layer quasi-isotropic laminates and transverse-ply laminates. Experimental data are compared with the analytical results. Experimental and analytical strain results show good agreement for the quasi-isotropic laminates. Failure of the two types of composite laminates is described, and failure strain results are presented as a function of normalized hole diameter. The failure results suggest that the initial failure mechanism for laminates subjected to four-point bending are similar to the initial failure mechanisms for corresponding laminates subjected to uniaxial inplane loadings.

  11. TOF-SIMS Analysis of Crater Residues from Wild 2 Cometary on Stardust Aluminum Foil

    NASA Technical Reports Server (NTRS)

    Leutner, Jan; Stephan, Thomas; Kearsley, T.; Horz, Friedrich; Flynn, George J.; Sandford, Scott A.

    2006-01-01

    Impact residues of cometary particles on aluminum foils from the Stardust mission were investigated with TOF-SIMS for their elemental and organic composition. The residual matter from comet 81P/Wild 2 shows a wide compositional range, from nearly monomineralic grains to polymict aggregates. Despite the comparably small analyzed sample volume, the average element composition of the investigated residues is similar to bulk CI chondritic values. Analysis of organic components in impact residues is complicated, due to fragmentation and alteration of the compounds during the impact process and by the presence of contaminants on the aluminum foils. Nevertheless, polycyclic aromatic hydrocarbons (PAHs) that are unambiguously associated with the impact residues were observed, and thus are most likely of cometary origin.

  12. Modeling the effects of free-living marine bacterial community composition on heterotrophic remineralization rates and biogeochemical carbon cycling

    NASA Astrophysics Data System (ADS)

    Teel, E.; Liu, X.; Cram, J. A.; Sachdeva, R.; Fuhrman, J. A.; Levine, N. M.

    2016-12-01

    Global oceanic ecosystem models either disregard fluctuations in heterotrophic bacterial remineralization or vary remineralization as a simple function of temperature, available carbon, and nutrient limitation. Most of these models were developed before molecular techniques allowed for the description of microbial community composition and functional diversity. Here we investigate the impact of a dynamic heterotrophic community and variable remineralization rates on biogeochemical cycling. Specifically, we integrated variable microbial remineralization into an ecosystem model by utilizing molecular community composition data, association network analysis, and biogeochemical rate data from the San Pedro Ocean Time-series (SPOT) station. Fluctuations in free-living bacterial community function and composition were examined using monthly environmental and biological data collected at SPOT between 2000 and 2011. On average, the bacterial community showed predictable seasonal changes in community composition and peaked in abundance in the spring with a one-month lag from peak chlorophyll concentrations. Bacterial growth efficiency (BGE), estimated from bacterial production, was found to vary widely at the site (5% to 40%). In a multivariate analysis, 47.6% of BGE variability was predicted using primary production, bacterial community composition, and temperature. A classic Nutrient-Phytoplankton-Zooplankton-Detritus model was expanded to include a heterotroph module that captured the observed relationships at the SPOT site. Results show that the inclusion of dynamic bacterial remineralization into larger oceanic ecosystem models can significantly impact microzooplankton grazing, the duration of surface phytoplankton blooms, and picophytoplankton primary production rates.

  13. Volatile composition of coffee berries at different stages of ripeness and their possible attraction to the coffee berry borer Hypothenemus hampei (Coleoptera: Curculionidae).

    PubMed

    Ortiz, Américo; Ortiz, Aristófeles; Vega, Fernando E; Posada, Francisco

    2004-09-22

    The analysis of volatile emissions of coffee berries in different physiological states of ripeness was performed using dynamic headspace and gas chromatography/mass spectrometry analysis for Coffea arabica, var. Colombia. The composition of the volatiles emitted by coffee berries is dominated by very high levels of alcohols, mainly ethanol, in all stages of ripeness in comparison with other compounds. Overripe coffee berries have high volatile emissions and show a composition dominated mainly by esters followed by alcohols, ketones, and aldehydes. The lowest level compounds were monoterpenes. 2-Methyl furan was detected in various ripening stages; this compound has not been previously reported as a coffee berry volatile. The presence of ethanol and other alcohols in the volatile composition might explain the effectiveness of using traps with mixed alcohols for detection and capture of coffee berry borers.

  14. Analysis of the hot-cavity mode composition of an X-band overmoded relativistic backward wave oscillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Yuzhang; Zhang, Jun; Zhong, Huihuang

    Overmoded RBWO (Relativistic Backward Wave Oscillators) is utilized more and more often for its high power capacity. However, both sides of SWS (Slow Wave Structure) of overmoded RBWO consist multi TM{sub 0n} modes; in order to achieve the design of reflector, it is essential to make clear of the mode composition of TM{sub 0n}. NUDT (National University of Defence Technology) had done research of the output mode composition in overmoded O-type Cerenkov HPM (High Power Microwave) Oscillators in detail, but in the area where the electron beam exists, the influence of electron beam must be taken into account. Hot-cavity dispersionmore » equation is figured out in this article first, and then analyzes the hot-cavity mode composition of an X-band overmoded RBWO tentatively. The results show that in collimating hole, the hot-cavity mode analysis is more accurate.« less

  15. Guided Wave Propagation Study on Laminated Composites by Frequency-Wavenumber Technique

    NASA Technical Reports Server (NTRS)

    Tian, Zhenhua; Yu, Lingyu; Leckey, Cara A. C.

    2014-01-01

    Toward the goal of delamination detection and quantification in laminated composites, this paper examines guided wave propagation and wave interaction with delamination damage in laminated carbon fiber reinforced polymer (CFRP) composites using frequency-wavenumber (f-kappa) analysis. Three-dimensional elastodynamic finite integration technique (EFIT) is used to acquire simulated time-space wavefields for a CFRP composite. The time-space wavefields show trapped waves in the delamination region. To unveil the wave propagation physics, the time-space wavefields are further analyzed by using two-dimensional (2D) Fourier transforms (FT). In the analysis results, new f-k components are observed when the incident guided waves interact with the delamination damage. These new f-kappa components in the simulations are experimentally verified through data obtained from scanning laser Doppler vibrometer (SLDV) tests. By filtering the new f-kappa components, delamination damage is detected and quantified.

  16. The effect of rotatory inertia on the natural frequencies of composite beams

    NASA Astrophysics Data System (ADS)

    Auclair, Samuel C.; Sorelli, Luca; Salenikovich, Alexander; Fafard, Mario

    2016-03-01

    This paper focuses on the dynamic behaviour of two-layer composite beams, which is an important aspect of performance of structures, such as a concrete slab on a girder in residential floors or bridges. After briefly reviewing the composite beam theory based on Euler-Bernoulli hypothesis, the dynamic formulation is extended by including the effect of the relative longitudinal motion of the layers in the rotatory inertia, which can be particularly important for timber-concrete composite beams. The governing equation and the finite element model are derived in detail and validated by comparing the natural frequency predictions against other methods. A parametric analysis shows the key factors, which affect the rotatory inertia and its influence on the frequency of a single-span composite beam with different boundary conditions. The effect of the rotatory inertia on the first natural frequency of the composite beam appears below 5 percent; however, the effect on the higher natural frequencies becomes more important and not negligible in a full dynamics analysis. Finally, a simplified equation is proposed to account for the effect of the rotatory inertia on the calculation of the frequency of a composite beam for design purpose.

  17. Electrochemical performance of an air-breathing direct methanol fuel cell using poly(vinyl alcohol)/hydroxyapatite composite polymer membrane

    NASA Astrophysics Data System (ADS)

    Yang, Chun-Chen; Chiu, Shwu-Jer; Lin, Che-Tseng

    A novel composite polymer membrane based on poly(vinyl alcohol)/hydroxyapatite (PVA/HAP) was successfully prepared by a solution casting method. The characteristic properties of the PVA/HAP composite polymer membranes were examined by thermal gravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), micro-Raman spectroscopy and AC impedance method. An air-breathing DMFC, comprised of an air cathode electrode with MnO 2/BP2000 carbon inks on Ni-foam, an anode electrode with PtRu black on Ti-mesh, and the PVA/HAP composite polymer membrane, was assembled and studied. It was found that this alkaline DMFC showed an improved electrochemical performance at ambient temperature and pressure; the maximum peak power density of an air-breathing DMFC in 8 M KOH + 2 M CH 3OH solution is about 11.48 mW cm -2. From the application point of view, these composite polymer membranes show a high potential for the DMFC applications.

  18. Computer-composite mapping for geologists

    USGS Publications Warehouse

    van Driel, J.N.

    1980-01-01

    A computer program for overlaying maps has been tested and evaluated as a means for producing geologic derivative maps. Four maps of the Sugar House Quadrangle, Utah, were combined, using the Multi-Scale Data Analysis and Mapping Program, in a single composite map that shows the relative stability of the land surface during earthquakes. Computer-composite mapping can provide geologists with a powerful analytical tool and a flexible graphic display technique. Digitized map units can be shown singly, grouped with different units from the same map, or combined with units from other source maps to produce composite maps. The mapping program permits the user to assign various values to the map units and to specify symbology for the final map. Because of its flexible storage, easy manipulation, and capabilities of graphic output, the composite-mapping technique can readily be applied to mapping projects in sedimentary and crystalline terranes, as well as to maps showing mineral resource potential. ?? 1980 Springer-Verlag New York Inc.

  19. Composite polymer electrolytes based on MG49 and carboxymethyl cellulose from kenaf

    NASA Astrophysics Data System (ADS)

    Jafirin, Serawati; Ahmad, Ishak; Ahmad, Azizan

    2013-11-01

    The development of 49% poly(methyl methacrylate)-grafted natural rubber (MG49) and carboxymethyl cellulose as a composite polymer electrolyte film incorporating LiCF3SO3 were explored. Carboxymethyl cellulose was synthesized from kenaf bast fibres via carboxymethylation process by alkali catalyzed reaction of cellulose with sodium chloroacetate. Reflection fourier transform infrared (ATR-FTIR) spectroscopy showed the presence of carboxyl peak after modification of cellulose with sodium chloroacetate. X-ray diffraction (XRD) analysis revealed that the crystallinity of cellulose was decrease after synthesis. High performance composite polymer electrolytes were prepared with various composition of carboxymethyl cellulose (2-10 wt%) via solution-casting method. The conductivity was increased with carboxymethyl cellulose loading. The highest conductivity value achieved was 3.3 × 10-7 Scm-1 upon addition of 6% wt carboxymethyl cellulose. 6% wt carboxymethyl cellulose composition showed the highest tensile strength value of 7.9 MPa and 273 MPa of modulus value which demonstrated high mechanical performance with accepatable level of ionic conductivity.

  20. Highly efficient flexible optoelectronic devices using metal nanowire-conducting polymer composite transparent electrode

    NASA Astrophysics Data System (ADS)

    Jung, Eui Dae; Nam, Yun Seok; Seo, Houn; Lee, Bo Ram; Yu, Jae Choul; Lee, Sang Yun; Kim, Ju-Young; Park, Jang-Ung; Song, Myoung Hoon

    2015-09-01

    Here, we report a comprehensive analysis of the electrical, optical, mechanical, and surface morphological properties of composite nanostrutures based on silver nanowires (AgNW) and PEDOT:PSS conducting polymer for the use as flexible and transparent electrodes. Compared to ITO or the single material of AgNW or PEDOT:PSS, the AgNW/PEDOT:PSS composite electrode showed high electrical conductivity with a low sheet resistance of 26.8 Ω/sq at 91% transmittance (at 550 nm), improves surface smoothness, and enhances mechanical properties assisted by an amphiphilic fluoro-surfactant. The polymeric light-emitting diodes (PLEDs) and organic solar cells (OSCs) using the AgNW/PEDOT:PSS composite electrode showed higher device performances than those with AgNW and PEDOT:PSS electrodes and excellent flexibility under bending test. These results indicates that the AgNW/PEDOT:PSS composite presented is a good candidate as next-generation transparent elelctrodes for applications into flexible optoelectronic devices. [Figure not available: see fulltext.

  1. Characterization of new functionalized calcium carbonate-polycaprolactone composite material for application in geometry-constrained drug release formulation development.

    PubMed

    Wagner-Hattler, Leonie; Schoelkopf, Joachim; Huwyler, Jörg; Puchkov, Maxim

    2017-10-01

    A new mineral-polymer composite (FCC-PCL) performance was assessed to produce complex geometries to aid in development of controlled release tablet formulations. The mechanical characteristics of a developed material such as compactibility, compressibility and elastoplastic deformation were measured. The results and comparative analysis versus other common excipients suggest efficient formation of a complex, stable and impermeable geometries for constrained drug release modifications under compression. The performance of the proposed composite material has been tested by compacting it into a geometrically altered tablet (Tablet-In-Cup, TIC) and the drug release was compared to commercially available product. The TIC device exhibited a uniform surface, showed high physical stability, and showed absence of friability. FCC-PCL composite had good binding properties and good compactibility. It was possible to reveal an enhanced plasticity characteristic of a new material which was not present in the individual components. The presented FCC-PCL composite mixture has the potential to become a successful tool to formulate controlled-release dosage solid forms.

  2. Characterization and processing of heat treated aluminium matrix composite

    NASA Astrophysics Data System (ADS)

    Doifode, Yogesh; Kulkarni, S. G.

    2018-05-01

    The present study is carried out to determine density and porosity of Aluminium bagasse ash reinforced composite produced by powder metallurgy method. Bagasse ash is used as reinforcement material having high silica and alumina contents and varied from 5 weight % to 40 weight%. The manufactured composite is heat treated, the main objective of heat treatment is to prepare the material structurally and physically fit for engineering application. The results showed that the density decreases with percentage increase in reinforcement of bagasse ash from 2.6618 gm/cm3 to 1.9830 gm/cm3 with the minimum value at 40 weight% bagasse ash without heat treatment whereas after heat treatment density of composite increases due filling up of voids and porous holes. Heat treatment processing is the key to this improvement, with the T6 heat treated composite to convene the reduced porosity of composite. Consequently aluminium metal matrix composite combines the strength of the reinforcement to achieve a combination of desirable properties not available in any single material. It may observe that porosity in case of powder metallurgy samples showed more porosity portions compare to the casting samples. In order to achieve optimality in structure and properties of Bagasse ash-reinforcement heat treatment techniques have evolved. Generally, the ceramic reinforcements increase the density of the base alloy during fabrication of composites. However, the addition of lightweight reinforcements reduces the density of the hybrid composites. The results also showed that, the density varies from to with minimum value at 40 wt. % BA. The results of the statistical analysis showed that there are significant differences among the means of each property of the composites at various levels of BA replacement .It was concluded that bagasse ash can be used as reinforcement and the produced composites have low density and heat treatment reduces porosity which could be used in automobile industry for the production of engine parts.

  3. Comparative analysis of taxonomic, functional, and metabolic patterns of microbiomes from 14 full-scale biogas reactors by metagenomic sequencing and radioisotopic analysis.

    PubMed

    Luo, Gang; Fotidis, Ioannis A; Angelidaki, Irini

    2016-01-01

    Biogas production is a very complex process due to the high complexity in diversity and interactions of the microorganisms mediating it, and only limited and diffuse knowledge exists about the variation of taxonomic and functional patterns of microbiomes across different biogas reactors, and their relationships with the metabolic patterns. The present study used metagenomic sequencing and radioisotopic analysis to assess the taxonomic, functional, and metabolic patterns of microbiomes from 14 full-scale biogas reactors operated under various conditions treating either sludge or manure. The results from metagenomic analysis showed that the dominant methanogenic pathway revealed by radioisotopic analysis was not always correlated with the taxonomic and functional compositions. It was found by radioisotopic experiments that the aceticlastic methanogenic pathway was dominant, while metagenomics analysis showed higher relative abundance of hydrogenotrophic methanogens. Principal coordinates analysis showed the sludge-based samples were clearly distinct from the manure-based samples for both taxonomic and functional patterns, and canonical correspondence analysis showed that the both temperature and free ammonia were crucial environmental variables shaping the taxonomic and functional patterns. The study further the overall patterns of functional genes were strongly correlated with overall patterns of taxonomic composition across different biogas reactors. The discrepancy between the metabolic patterns determined by metagenomic analysis and metabolic pathways determined by radioisotopic analysis was found. Besides, a clear correlation between taxonomic and functional patterns was demonstrated for biogas reactors, and also the environmental factors that shaping both taxonomic and functional genes patterns were identified.

  4. The comparison study of bioactivity between composites containing synthetic non-substituted and carbonate-substituted hydroxyapatite.

    PubMed

    Borkowski, Leszek; Sroka-Bartnicka, Anna; Drączkowski, Piotr; Ptak, Agnieszka; Zięba, Emil; Ślósarczyk, Anna; Ginalska, Grażyna

    2016-05-01

    Apatite forming ability of hydroxyapatite (HAP) and carbonate hydroxyapatite (CHAP) containing composites was compared. Two composite materials, intended for filling bone defects, were made of polysaccharide polymer and one of two types of hydroxyapatite. The bioactivity of the composites was evaluated in vitro by soaking in a simulated body fluid (SBF), and the formation of the apatite layer was determined by scanning electron microscopy with energy-dispersive spectrometer and Raman spectroscopy. The results showed that both the composites induced the formation of apatite layer on their surface after soaking in SBF. In addition, the sample weight changes and the ion concentration of the SBF were scrutinized. The results showed the weight increase for both materials after SBF treatment, higher weight gain and higher uptake of calcium ions by HAP containing scaffolds. SBF solution analysis indicated loss of calcium and phosphorus ions during experiment. All these results indicate apatite forming ability of both biomaterials and suggest comparable bioactive properties of composite containing pure hydroxyapatite and carbonate-substituted one. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Wear study of Al-SiC metal matrix composites processed through microwave energy

    NASA Astrophysics Data System (ADS)

    Honnaiah, C.; Srinath, M. S.; Prasad, S. L. Ajit

    2018-04-01

    Particulate reinforced metal matrix composites are finding wider acceptance in many industrial applications due to their isotropic properties and ease of manufacture. Uniform distribution of reinforcement particulates and good bonding between matrix and reinforcement phases are essential features in order to obtain metal matrix composites with improved properties. Conventional powder metallurgy technique can successfully overcome the limitation of stir casting techniques, but it is time consuming and not cost effective. Use of microwave technology for processing particulate reinforced metal matrix composites through powder metallurgy technique is being increasingly explored in recent times because of its cost effectiveness and speed of processing. The present work is an attempt to process Al-SiC metal matrix composites using microwaves irradiated at 2.45 GHz frequency and 900 W power for 10 minutes. Further, dry sliding wear studies were conducted at different loads at constant velocity of 2 m/s for various sliding distances using pin-on-disc equipment. Analysis of the obtained results show that the microwave processed Al-SiC composite material shows around 34 % of resistance to wear than the aluminium alloy.

  6. Effect of in-office bleaching agents on physical properties of dental composite resins.

    PubMed

    Mourouzis, Petros; Koulaouzidou, Elisabeth A; Helvatjoglu-Antoniades, Maria

    2013-04-01

    The physical properties of dental restorative materials have a crucial effect on the longevity of restorations and moreover on the esthetic demands of patients, but they may be compromised by bleaching treatments. The purpose of this study was to evaluate the effects of in-office bleaching agents on the physical properties of three composite resin restorative materials. The bleaching agents used were hydrogen peroxide and carbamide peroxide at high concentrations. Specimens of each material were prepared, cured, and polished. Measurements of color difference, microhardness, and surface roughness were recorded before and after bleaching and data were examined statistically by analysis of variance (ANOVA) and Tukey HSD post-hoc test at P < .05. The measurements showed that hue and chroma of silorane-based composite resin altered after the bleaching procedure (P < .05). No statistically significant differences were found when testing the microhardness and surface roughness of composite resins tested (P > .05). The silorane-based composite resin tested showed some color alteration after bleaching procedures. The bleaching procedure did not alter the microhardness and the surface roughness of all composite resins tested.

  7. Variation of acharan sulfate and monosaccharide composition and analysis of neutral N-glycans in African giant snail (Achatina fulica)

    PubMed Central

    Park, Youmie; Zhang, Zhenqing; Laremore, Tatiana N.; Li, Boyangzi; Sim, Joon-Soo; Im, A-Rang; Ahn, Mi Young

    2009-01-01

    Acharan sulfate content from African giant snail (Achatina fulica) was compared in eggs and snails of different ages. Acharan sulfate was not found in egg. Acharan sulfate disaccharide →4)-α-d-GlcNpAc (1→4)-α-l-IdoAp2S(1→, analyzed by SAX (strong-anion exchange)–HPLC was observed soon after hatching and increases as the snails grow. Monosaccharide compositional analysis showed that mole % of glucosamine, a major monosaccharide of acharan sulfate, increased with age while mole % of galactose decreased with age. These results suggest that galactans represent a major energy source during development, while acharan sulfate appearing immediately after hatching, is essential for the snail growth. The structures of neutral N-glycans released from eggs by peptide N-glycosidase F (PNGase F), were next elucidated using ESI-MS/MS, MALDI-MS/MS, enzyme digestion, and monosaccharide composition analysis. Three types of neutral N-glycan structures were observed, truncated (Hex2–4-Hex-NAc2), high mannose (Hex5–9-HexNAc2), and complex (Hex3-HexNAc2–10) types. None showed core fucosylation. PMID:18670878

  8. Correlation between thermal behavior of clays and their chemical and mineralogical composition: a review

    NASA Astrophysics Data System (ADS)

    Dwi Yanti, Evi; Pratiwi, I.

    2018-02-01

    Clay's abundance has been widely used as industrial raw materials, especially ceramic and tile industries. Utilization of these minerals needs a thermal process for producing ceramic products. Two studies conducted by Septawander et al. and Chin C et al., showed the relationship between thermal behavior of clays and their chemical and mineralogical composition. Clays are characterized by XRD analysis and thermal analysis, ranging from 1100°C to 1200°C room temperature. Specimen of raw materials of clay which is used for the thermal treatment is taken from different geological conditions and formation. In raw material, Quartz is almost present in all samples. Halloysite, montmorillonite, and feldspar are present in Tanjung Morawa raw clay. KC and MC similar kaolinite and illite are present in the samples. The research illustrates the interrelationships of clay minerals and chemical composition with their heat behavior. As the temperature of combustion increases, the sample reduces a significant weight. The minerals which have undergone a transformation phase became mullite, cristobalite or illite and quartz. Under SEM analysis, the microstructures of the samples showed irregularity in shape; changes occurred due the increase of heat.

  9. Preparation and electrochemical characterization of polyaniline/activated carbon composites as an electrode material for supercapacitors.

    PubMed

    Oh, Misoon; Kim, Seok

    2012-01-01

    Polyaniline (PANI)/activated carbon (AC) composites were prepared by a chemical oxidation polymerization. To find an optimum ratio between PANI and AC which shows superior electrochemical properties, the preparation was carried out in changing the amount of added aniline monomers. The morphology of prepared composites was investigated by scanning electron microscopy (SEM) and transmission electron microscope (TEM). The structural and thermal properties were investigated by Fourier transform infrared spectra (FT-IR) and thermal gravimetric analysis (TGA), respectively. The electrochemical properties were characterized by cyclic voltammetry (CV). Composites showed a summation of capacitances that consisted of two origins. One is double-layer capacitance by ACs and the other is faradic capacitance by redox reaction of PANI. Fiber-like PANIs are coated on the surface of ACs and they contribute to the large surface for redox reaction. The vacancy among fibers provided the better diffusion and accessibility of ion. High capacitances of composites were originated from the network structure having vacancy made by PANI fibers. It was found that the composite prepared with 5 ml of aniline monomer and 0.25 g of AC showed the highest capacitance. Capacitance of 771 F/g was obtained at a scan rate of 5 mV/s.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wen; Banerjee, Debasis; Liu, Jian

    Incorporating, a redox active organometallic molIncorporating, a redox active organometallic molecule within a porous matrix is a useful strategy to form redox active composite materials for emerging applications such as energy storage, electro-catalysis and electro-magnetic separation. Herein we report a new class of stable, redox active metal organic composites for oxygen/air separation with exceptional efficiency. In particular, Ferrocene impregnated in a thermally stable hierarchical porous framework showed a saturation uptake capacity of >51 mg/g for oxygen at a very low relative saturation pressure (P/Po) of 0.06. The material shows excellent O2 selectivity from air as evident from experimental and simulatedmore » breakthrough experiments. In detail structural analysis using 57Fe-Mössbauer, X-ray photoelectron spectroscopy (XPS) and pair distribution function (PDF) analysis show that of O2 adsorption affinity and selectivity originates by the formation Fe3+-O oxide due to the highly reactive nature of the organometallics imbedded in the porous matrix.« less

  11. Influence of Polyvinyl Alcohol (PVA) Addition on Silica Membrane Performance Prepared from Rice Straw

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ramelan, A. H.; Wardoyo, D. T.; Ichsan, S.; Kristiawan, Y. R.

    2018-03-01

    The utilization and modification of silica from rice straw as the main ingredient of adsorbent has been studied. The aim of this study was to determine the optimum composition of PVA (polyvinyl alcohol): silica to produce adsorbents with excellent pore characteristics, optimum adsorption efficiency and optimum pH for methyl yellow adsorptions. X-Ray Fluorescence (XRF) analysis results showed that straw ash contains 82.12 % of silica (SiO2). SAA (Surface Area Analyzer) analysis showed optimum composition ratio 5:5 of PVA: silica with surface area of 1.503 m2/g. Besides, based on the pore size distribution of PVA: silica (5:5) showed the narrow pore size distribution with the largest pore cumulative volume of 2.8 x 10-3 cc/g. The optimum pH for Methanyl Yellow adsorption is pH 2 with adsorption capacity = 72.1346%.

  12. Finite Element Analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites

    NASA Technical Reports Server (NTRS)

    Gao, Xiu-Jie; Turner, Travis L.; Burton, Deborah; Brinson, L. Catherine

    2005-01-01

    The usage of shape memory materials has extended rapidly to many fields, including medical devices, actuators, composites, structures and MEMS devices. For these various applications, shape memory alloys (SMAs) are available in various forms: bulk, wire, ribbon, thin film, and porous. In this work, the focus is on SMA hybrid composites with adaptive-stiffening or morphing functions. These composites are created by using SMA ribbons or wires embedded in a polymeric based composite panel/beam. Adaptive stiffening or morphing is activated via selective resistance heating or uniform thermal loads. To simulate the thermomechanical behavior of these composites, a SMA model was implemented using ABAQUS user element interface and finite element simulations of the systems were studied. Several examples are presented which show that the implemented model can be a very useful design and simulation tool for SMA hybrid composites.

  13. Development and computer implementation of design/analysis techniques for multilayered composite structures. Probabilistic fiber composite micromechanics. M.S. Thesis, Mar. 1987 Final Report, 1 Sep. 1984 - 1 Oct. 1990

    NASA Technical Reports Server (NTRS)

    Stock, Thomas A.

    1995-01-01

    Probabilistic composite micromechanics methods are developed that simulate expected uncertainties in unidirectional fiber composite properties. These methods are in the form of computational procedures using Monte Carlo simulation. The variables in which uncertainties are accounted for include constituent and void volume ratios, constituent elastic properties and strengths, and fiber misalignment. A graphite/epoxy unidirectional composite (ply) is studied to demonstrate fiber composite material property variations induced by random changes expected at the material micro level. Regression results are presented to show the relative correlation between predictor and response variables in the study. These computational procedures make possible a formal description of anticipated random processes at the intraply level, and the related effects of these on composite properties.

  14. Evaluation of polymerization-dependent changes in color and translucency of resin composites using two formulae.

    PubMed

    Paravina, Rade D; Kimura, Mikio; Powers, John M

    2005-09-01

    The aim of this study was to evaluate polymerization-dependent changes in the color and translucency parameter (TP) of resin composites and to compare results obtained using two color-difference metric formulae, CIELAB and CIEDE 2000. Twenty-eight shades of commercial resin composites were analyzed. Specimens (n = 5) were made as discs, 11 mm in diameter and 2-mm thick, using cylindrical molds. Data were collected before and after composite polymerization, using a spectrophotometer. In regard to in vitro color changes of composites (DeltaE*) a DeltaE76 of 3.7 or greater was considered to be an unacceptable color change. Data were analyzed by analysis of variance, and Fisher's protected least significant difference (PLSD) intervals for comparison of means were calculated at the 0.05 level of significance. Mean polymerization-dependent differences in color were DeltaE00 = 4.48 (2.11) and DeltaE76 = 5.51 (2.68). The DeltaTP00 range was 2.57, while the DeltaTP76 range was 2.89. Mean polymerization-dependent differences in translucency were DeltaTP00 = 0.84 (0.77) and DeltaTP76 = 0.87 (0.76). Analysis of variance showed significant differences among composites, shades, and their interactions (P < 0.0001; power = 1.0). Regression equations and r values for the two color-difference formulae and all evaluated TP values showed very strong correlation. In conclusion, within the limitations of this study, polymerization-dependent changes in color and translucency were highly varied. The majority of shades showed polymerization-dependent differences in color higher than the DeltaE76 = 3.7. The TP generally increased after light polymerization by light activation. The very strong correlation (r > 0.97) between the two color-difference formulae indicates that the limitations of the CIELAB system do not appear to be a problem when evaluating composites; however, recorded differences between DeltaE76 and DeltaE00 values stress the importance of data conversion.

  15. Improved microstructure of cement-based composites through the addition of rock wool particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Wei-Ting; Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 32546, Taiwan; Cheng, An, E-mail: ancheng@niu.edu.tw

    2013-10-15

    Rock wool is an inorganic fibrous substance produced by steam blasting and cooling molten glass. As with other industrial by-products, rock wool particles can be used as cementitious materials or ultra fine fillers in cement-based composites. This study investigated the microstructure of mortar specimens produced with cement-based composites that include various forms of rock wool particles. It conducted compressive strength testing, rapid chloride penetration tests, X-ray diffraction analysis, thermo-gravimetric analysis, and scanning electronic microscopy to evaluate the macro- and micro-properties of the cement-based composites. Test results indicate that inclusion of rock wool particles in composites improved compressive strength and reducedmore » chloride ion penetration at the age of 91 days due to the reduction of calcium hydroxide content. Microscopic analysis confirms that the use of rock wool particles contributed to the formation of a denser, more compact microstructure within the hardened paste. In addition, X-ray diffraction analysis shows few changes in formation of pozzolanic reaction products and no new hydrations are formed with incorporating rock wool particles. - Highlights: • We report the microstructural characterization of cement-based composites. • Different mixes produced with various rock wool particles have been tested. • The influence of different mixes on macro and micro properties has been discussed. • The macro properties are included compressive strength and permeability. • XRD and SEM observations confirm the pozzolanic reaction in the resulting pastes.« less

  16. Fabrication de couches minces a memoire de forme et effets de l'irradiation ionique

    NASA Astrophysics Data System (ADS)

    Goldberg, Florent

    1998-09-01

    Nickel and titanium when combined in the right stoichiometric proportion (1:1) can form alloys showing the shape memory effect. Within the scope of this thesis, thin films of such alloys have been successfully produced by sputtering. Precise control of composition is crucial in order to obtain the shape memory effect. A combination of analytical tools which can accurately determine the behavior of such materials is also required (calorimetric analysis, crystallography, composition analysis, etc.). Rutherford backscattering spectrometry has been used for quantitative composition analysis. Thereafter irradiation of films with light ions (He+) of few MeV was shown to allow lowering of the characteristic premartensitic transformation temperatures while preserving the shape memory effect. Those results open the door to a new field of research, particularly for ion irradiation and its potential use as a tool to modify the thermomechanical behavior of shape memory thin film actuators.

  17. Comprehensive NMR analysis of compositional changes of black garlic during thermal processing.

    PubMed

    Liang, Tingfu; Wei, Feifei; Lu, Yi; Kodani, Yoshinori; Nakada, Mitsuhiko; Miyakawa, Takuya; Tanokura, Masaru

    2015-01-21

    Black garlic is a processed food product obtained by subjecting whole raw garlic to thermal processing that causes chemical reactions, such as the Maillard reaction, which change the composition of the garlic. In this paper, we report a nuclear magnetic resonance (NMR)-based comprehensive analysis of raw garlic and black garlic extracts to determine the compositional changes resulting from thermal processing. (1)H NMR spectra with a detailed signal assignment showed that 38 components were altered by thermal processing of raw garlic. For example, the contents of 11 l-amino acids increased during the first step of thermal processing over 5 days and then decreased. Multivariate data analysis revealed changes in the contents of fructose, glucose, acetic acid, formic acid, pyroglutamic acid, cycloalliin, and 5-(hydroxymethyl)furfural (5-HMF). Our results provide comprehensive information on changes in NMR-detectable components during thermal processing of whole garlic.

  18. A Numerical Analysis of the Resistance and Stiffness of the Timber and Concrete Composite Beam

    NASA Astrophysics Data System (ADS)

    Szumigała, Ewa; Szumigała, Maciej; Polus, Łukasz

    2015-03-01

    The article presents the results of a numerical analysis of the load capacity and stiffness of the composite timber and concrete beam. Timber and concrete structures are relatively new, they have not been thoroughly tested and they are rarely used because of technological constraints. One of the obstacles to using them is difficulty with finding a method which would allow successful cooperation between concrete and timber, which has been proposed by the authors of the present article. The modern idea of sustainable construction design requires the use of new more environmentally-friendly solutions. Wood as an ecological material is easily accessible, less energy-consuming, and under certain conditions more corrosion-resistant than steel. The analysis presented in the article showed that cooperation between a wooden beam and a concrete slab on profiled steel sheeting is possible. The analysed composite beam has a greater load capacity and stiffness than the wooden beam.

  19. Apollo 15 clastic materials and their relationship to local geologic features

    NASA Technical Reports Server (NTRS)

    Fruchter, J. S.; Stoeser, J. W.; Lindstrom, M. M.; Goles, G. G.

    1973-01-01

    Ninety sub-samples of Apollo 15 materials have been analyzed by instrumental neutron activation analysis techniques for as many as 21 elements. Soil and soil breccia compositions show considerable variation from station to station although at any given station the soils and soil breccias were compositionally very similar to one another. Mixing model calculations show that the station-to-station variations can be related to important local geologic features. These features include the Apennine Front, Hadley Rille and the ray from the craters Aristillus or Autolycus. Compositional similarities between soils and soil breccias at the Apollo 15 site indicate that the breccias and soils are related in some fundamental way, although the exact nature of this relationship is not yet fully understood.

  20. Chemical composition, phytotoxic and antifungal properties of Ruta chalepensis L. essential oils.

    PubMed

    Bouabidi, Wafa; Hanana, Mohsen; Gargouri, Samia; Amri, Ismail; Fezzani, Tarek; Ksontini, Mustapha; Jamoussi, Bassem; Hamrouni, Lamia

    2015-01-01

    The chemical composition, and phytotoxic and antifungal activities of the essential oils isolated by using hydrodistillation from the aerial parts of Tunisian rue were evaluated. Significant variations were observed among harvest periods. The analysis of the chemical composition by gas chromatography/mass spectrometry showed that 2-undecanone (33.4-49.8%), 2-heptanol acetate (13.5-15.4%) and α-pinene (9.8-11.9%) were the main components. The antifungal ability of rue essential oils was tested by using disc agar diffusion against ten plant pathogenic fungi. A high antifungal activity was observed for the essential oil isolated at flowering developmental phase. Furthermore, rue essential oils showed high level of herbicidal activity against several weeds.

  1. RuO2/Activated Carbon Composite Electrode Prepared by Modified Colloidal Procedure and Thermal Decomposition Method

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Zheng, Feng; Gan, Weiping; Luo, Xun

    2016-01-01

    RuO2/activated carbon (AC) composite electrode was prepared by a modified colloidal procedure and a thermal decomposition method. The precursor for RuO2/AC was coated on tantalum sheet and annealed at 150°C to 190°C for 3 h to develop thin-film electrode. The microstructure and morphology of the RuO2/AC film were characterized by thermogravimetric analysis (TGA), x-ray diffraction (XRD) analysis, and scanning electron microscopy (SEM). The TGA results showed the maximum loss of RuO2/AC composite film at 410°C, with residual RuO2 of 23.17 wt.%. The amorphous phase structure of the composite was verified by XRD analysis. SEM analysis revealed that fine RuO2 particles were dispersed in an activated carbon matrix after annealing. The electrochemical properties of RuO2/AC electrode were examined by cycling voltammetry, galvanostatic charge-discharge, and cyclic behavior measurements. The specific capacitance of RuO2/AC electrode reached 245 F g-1. The cyclic behavior of RuO2/AC electrode was stable. Optimal annealing was achieved at 170°C for 3 h.

  2. Quantitative allochem compositional analysis of Lochkovian-Pragian boundary sections in the Prague Basin (Czech Republic)

    NASA Astrophysics Data System (ADS)

    Weinerová, Hedvika; Hron, Karel; Bábek, Ondřej; Šimíček, Daniel; Hladil, Jindřich

    2017-06-01

    Quantitative allochem compositional trends across the Lochkovian-Pragian boundary Event were examined at three sections recording the proximal to more distal carbonate ramp environment of the Prague Basin. Multivariate statistical methods (principal component analysis, correspondence analysis, cluster analysis) of point-counted thin section data were used to reconstruct facies stacking patterns and sea-level history. Both the closed-nature allochem percentages and their centred log-ratio (clr) coordinates were used. Both these approaches allow for distinguishing of lowstand, transgressive and highstand system tracts within the Praha Formation, which show gradual transition from crinoid-dominated facies deposited above the storm wave base to dacryoconarid-dominated facies of deep-water environment below the storm wave base. Quantitative compositional data also indicate progradative-retrogradative trends in the macrolithologically monotonous shallow-water succession and enable its stratigraphic correlation with successions from deeper-water environments. Generally, the stratigraphic trends of the clr data are more sensitive to subtle changes in allochem composition in comparison to the results based on raw data. A heterozoan-dominated allochem association in shallow-water environments of the Praha Formation supports the carbonate ramp environment assumed by previous authors.

  3. Elemental composition and structural characteristics of as-received TriTaniumTM orthodontic archwire

    NASA Astrophysics Data System (ADS)

    Ilievska, I.; Petrov, V.; Mihailov, V.; Karatodorov, S.; Andreeva, L.; Zaleski, A.; Mikli, V.; Gueorgieva, M.; Petrova, V.; Stoyanova-Ivanova, A.

    2018-03-01

    Orthodontic archwires are among the most important devices of fixed orthodontic therapy. Many types of archwires are made available on the market by various manufacturers with different elemental composition and structural characteristics. Knowing this information is important when choosing a suitable archwire for a particular stage of orthodontic treatment. The aim of our study is to characterize a new type orthodontic archwires (TriTaniumTM, American Orthodontics) before their placement in the oral cavity. To achieve the aim, we used modern methods for determining their elemental composition and structural characteristics: laser-induced plasma spectroscopy (LIBS), X-ray diffraction analysis (XRD), scanning electronic microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and differential scanning calorimetry (DSC). The results obtained from the qualitative elemental analysis by LIBS and the quantitative elemental analysis by EDX showed that Ni and Ti are the main elements in the archwire studied. The room-temperature XRD patterns showed peaks typical for a Ni-Ti alloy with an austenite-type structure. Monitoring the phase transitions by means of DSC measurements in the temperature range from –50 °C to +50 °C, we showed that in TriTaniumTM archwires, besides the austenite to martensite transition, there exists a rhombohedral intermediate phase (R phase). This study will be useful in assisting orthodontists in applying appropriate nickel-titanium orthodontic archwires in the clinical practice.

  4. Composition and diversity of rhizosphere fungal community in Coptis chinensis Franch. continuous cropping fields

    PubMed Central

    Li, Longyun; Wu, Xiaoli; Wang, Yu

    2018-01-01

    In this study, effects of continuous cropping on soil properties, enzyme activities, and relative abundance, community composition and diversity of fungal taxa were investigated. Rhizosphere soil from field continuously cropped for one-year, three-year and five-year by Coptis chinensis Franch. was collected and analyzed. Illumina high-throughput sequencing analysis showed that continuous cropping of C. chinensis resulted in a significant and continuous decline in the richness and diversity of soil fungal population. Ascomycota, Zygomycota, Basidiomycota, and Glomeromycota were the dominant phyla of fungi detected in rhizosphere soil. Fungal genera such as Phoma, Volutella, Pachycudonia, Heterodermia, Gibberella, Cladosporium, Trichocladium, and Sporothrix, were more dominant in continuously cropped samples for three-year and five-year compared to that for one-year. By contrast, genera, such as Zygosaccharomyces, Pseudotaeniolina, Hydnum, Umbelopsis, Humicola, Crustoderma, Psilocybe, Coralloidiomyces, Mortierella, Polyporus, Pyrenula, and Monographella showed higher relative abundance in one-year samples than that in three-year and five-year samples. Cluster analysis of the fungal communities from three samples of rhizosphere soil from C. chinensis field revealed that the fungal community composition, diversity, and structure were significantly affected by the continuous cropping. Continuous cropping of C. chinensis also led to significant declines in soil pH, urease, and catalase activities. Redundancy analysis showed that the soil pH had the most significant effect on soil fungal population under continuous cropping of C. chinensis. PMID:29538438

  5. Composition and diversity of rhizosphere fungal community in Coptis chinensis Franch. continuous cropping fields.

    PubMed

    Song, Xuhong; Pan, Yuan; Li, Longyun; Wu, Xiaoli; Wang, Yu

    2018-01-01

    In this study, effects of continuous cropping on soil properties, enzyme activities, and relative abundance, community composition and diversity of fungal taxa were investigated. Rhizosphere soil from field continuously cropped for one-year, three-year and five-year by Coptis chinensis Franch. was collected and analyzed. Illumina high-throughput sequencing analysis showed that continuous cropping of C. chinensis resulted in a significant and continuous decline in the richness and diversity of soil fungal population. Ascomycota, Zygomycota, Basidiomycota, and Glomeromycota were the dominant phyla of fungi detected in rhizosphere soil. Fungal genera such as Phoma, Volutella, Pachycudonia, Heterodermia, Gibberella, Cladosporium, Trichocladium, and Sporothrix, were more dominant in continuously cropped samples for three-year and five-year compared to that for one-year. By contrast, genera, such as Zygosaccharomyces, Pseudotaeniolina, Hydnum, Umbelopsis, Humicola, Crustoderma, Psilocybe, Coralloidiomyces, Mortierella, Polyporus, Pyrenula, and Monographella showed higher relative abundance in one-year samples than that in three-year and five-year samples. Cluster analysis of the fungal communities from three samples of rhizosphere soil from C. chinensis field revealed that the fungal community composition, diversity, and structure were significantly affected by the continuous cropping. Continuous cropping of C. chinensis also led to significant declines in soil pH, urease, and catalase activities. Redundancy analysis showed that the soil pH had the most significant effect on soil fungal population under continuous cropping of C. chinensis.

  6. Receding Water Line and Interspecific Competition Determines Plant Community Composition and Diversity in Wetlands in Beijing

    PubMed Central

    Wang, Zhengjun; Gong, Huili; Zhang, Jing

    2015-01-01

    Climate and human-induced wetland degradation has accelerated in recent years, not only resulting in reduced ecosystem services but also greatly affecting the composition and diversity of wetland plant communities. To date, the knowledge of the differences in community parameters and their successional trends in degraded wetlands remains scarce. Here based on remote sensing images, geographic information system technology, and statistical methods, we produced a successional gradient map of the Yeyahu Wetland Nature Reserve in Beijing, which has experienced a steady decline in water level in recent decades. In addition, we analyzed community composition and diversity along with each identified gradient. The results showed that community diversity decreases while dominance increases with the progress of succession, with the highest diversity occurring during the early stage of succession. Moreover, the community demonstrates greater similarity among subareas during later successional stages, and the similarity coefficients calculated from the important value (IV) of each species are more accurate. Correlation analysis showed that the impact of soil factors on diversity was not significant at a subarea scale, although these nutrients showed an increasing trend with the community succession. Furthermore, the IVs of the dominant species had a particularly significant impact on diversity, showing a significantly negative correlation with diversity indices and a significantly positive correlation with dominance indices. Further analysis showed that the retreat of water level resulted from sustained drought and local human activities was a major extrinsic driving force resulting in observed differences in the community successional stages, which resulted in differences in community composition and diversity. On the other hand, interspecific competition was the main intrinsic mechanism, which significantly influenced the IVs of the dominant species and community diversity. The results of this study could aid in improving the understanding of community composition, diversity, and its successional trends in degraded wetlands. PMID:25848799

  7. Simulated Data for High Temperature Composite Design

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Abumeri, Galib H.

    2006-01-01

    The paper describes an effective formal method that can be used to simulate design properties for composites that is inclusive of all the effects that influence those properties. This effective simulation method is integrated computer codes that include composite micromechanics, composite macromechanics, laminate theory, structural analysis, and multi-factor interaction model. Demonstration of the method includes sample examples for static, thermal, and fracture reliability for a unidirectional metal matrix composite as well as rupture strength and fatigue strength for a high temperature super alloy. Typical results obtained for a unidirectional composite show that the thermal properties are more sensitive to internal local damage, the longitudinal properties degrade slowly with temperature, the transverse and shear properties degrade rapidly with temperature as do rupture strength and fatigue strength for super alloys.

  8. Preparation and Characterisation of Linear Low-Density Polyethylene / Thermoplastic Starch Blends Filled with Banana Fibre

    NASA Astrophysics Data System (ADS)

    Kahar, A. W. M.; Ann, L. Ju

    2017-06-01

    In this study, the influence of banana fibre (BF) loading using sodium hydroxide (NaOH) pre-treated and succinic anhydride-treated (SA) BF on the mechanical properties of linear low-density polyethylene (LLDPE)/thermoplastic starch (TPS) matrix is investigated. LLDPE/TPS/BF composites were developed under different BF conditions, with and without chemical modifications with the BF content ranging from 5% to 30% based on the total composite. The tensile strength showed an increase with an increase of fibre content up to 10%, thereby decreasing gradually beyond this level. NaOH pre-treated and SA treated BF added with LLDPE/TPS composite displays a higher tensile strength as compared to untreated BF in LLDPE/TPS composites. Thermal behaviour of the BF incorporated in LLDPE/TPS composite was characterised using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). This showed that SA treated BF exhibits better thermal stability, compared to other composites. This is because of the improvement in interfacial adhesion existing between both the fibre and matrix. In addition, a morphology study confirmed that pre-treated and treated BF had excellent interfacial adhesion with LLDPE/TPS matrix, leading to better mechanical properties of resultant composites.

  9. Lattice Matched Carbide–Phosphide Composites with Superior Electrocatalytic Activity and Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Regmi, Yagya N.; Roy, Asa; King, Laurie A.

    Composites of electrocatalytically active transition-metal compounds present an intriguing opportunity toward enhanced activity and stability. Here, to identify potentially scalable pairs of a catalytically active family of compounds, we demonstrate that phosphides of iron, nickel, and cobalt can be deposited on molybdenum carbide to generate nanocrystalline heterostructures. Composites synthesized via solvothermal decomposition of metal acetylacetonate salts in the presence of highly dispersed carbide nanoparticles show hydrogen evolution activities comparable to those of state-of-the-art non-noble metal catalysts. Investigation of the spent catalyst using high resolution microscopy and elemental analysis reveals that formation of carbide–phosphide composite prevents catalyst dissolution in acid electrolyte.more » Lattice mismatch between the two constituent electrocatalysts can be used to rationally improve electrochemical stability. Among the composites of iron, nickel, and cobalt phosphide, iron phosphide displays the lowest degree of lattice mismatch with molybdenum carbide and shows optimal electrochemical stability. Turnover rates of the composites are higher than that of the carbide substrate and compare favorably to other electrocatalysts based on earth-abundant elements. Lastly, our findings will inspire further investigation into composite nanocrystalline electrocatalysts that use molybdenum carbide as a stable catalyst support.« less

  10. Lattice Matched Carbide–Phosphide Composites with Superior Electrocatalytic Activity and Stability

    DOE PAGES

    Regmi, Yagya N.; Roy, Asa; King, Laurie A.; ...

    2017-10-19

    Composites of electrocatalytically active transition-metal compounds present an intriguing opportunity toward enhanced activity and stability. Here, to identify potentially scalable pairs of a catalytically active family of compounds, we demonstrate that phosphides of iron, nickel, and cobalt can be deposited on molybdenum carbide to generate nanocrystalline heterostructures. Composites synthesized via solvothermal decomposition of metal acetylacetonate salts in the presence of highly dispersed carbide nanoparticles show hydrogen evolution activities comparable to those of state-of-the-art non-noble metal catalysts. Investigation of the spent catalyst using high resolution microscopy and elemental analysis reveals that formation of carbide–phosphide composite prevents catalyst dissolution in acid electrolyte.more » Lattice mismatch between the two constituent electrocatalysts can be used to rationally improve electrochemical stability. Among the composites of iron, nickel, and cobalt phosphide, iron phosphide displays the lowest degree of lattice mismatch with molybdenum carbide and shows optimal electrochemical stability. Turnover rates of the composites are higher than that of the carbide substrate and compare favorably to other electrocatalysts based on earth-abundant elements. Lastly, our findings will inspire further investigation into composite nanocrystalline electrocatalysts that use molybdenum carbide as a stable catalyst support.« less

  11. Properties and Applications of High Emissivity Composite Films Based on Far-Infrared Ceramic Powder

    PubMed Central

    Xiong, Yabo; Huang, Shaoyun; Wang, Wenqi; Liu, Xinghai; Li, Houbin

    2017-01-01

    Polymer matrix composite materials that can emit radiation in the far-infrared region of the spectrum are receiving increasing attention due to their ability to significantly influence biological processes. This study reports on the far-infrared emissivity property of composite films based on far-infrared ceramic powder. X-ray fluorescence spectrometry, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray powder diffractometry were used to evaluate the physical properties of the ceramic powder. The ceramic powder was found to be rich in aluminum oxide, titanium oxide, and silicon oxide, which demonstrate high far-infrared emissivity. In addition, the micromorphology, mechanical performance, dynamic mechanical properties, and far-infrared emissivity of the composite were analyzed to evaluate their suitability for strawberry storage. The mechanical properties of the far-infrared radiation ceramic (cFIR) composite films were not significantly influenced (p ≥ 0.05) by the addition of the ceramic powder. However, the dynamic mechanical analysis (DMA) properties of the cFIR composite films, including a reduction in damping and shock absorption performance, were significant influenced by the addition of the ceramic powder. Moreover, the cFIR composite films showed high far-infrared emissivity, which has the capability of prolonging the storage life of strawberries. This research demonstrates that cFIR composite films are promising for future applications. PMID:29186047

  12. Properties and Applications of High Emissivity Composite Films Based on Far-Infrared Ceramic Powder.

    PubMed

    Xiong, Yabo; Huang, Shaoyun; Wang, Wenqi; Liu, Xinghai; Li, Houbin

    2017-11-29

    Polymer matrix composite materials that can emit radiation in the far-infrared region of the spectrum are receiving increasing attention due to their ability to significantly influence biological processes. This study reports on the far-infrared emissivity property of composite films based on far-infrared ceramic powder. X-ray fluorescence spectrometry, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray powder diffractometry were used to evaluate the physical properties of the ceramic powder. The ceramic powder was found to be rich in aluminum oxide, titanium oxide, and silicon oxide, which demonstrate high far-infrared emissivity. In addition, the micromorphology, mechanical performance, dynamic mechanical properties, and far-infrared emissivity of the composite were analyzed to evaluate their suitability for strawberry storage. The mechanical properties of the far-infrared radiation ceramic (cFIR) composite films were not significantly influenced ( p ≥ 0.05) by the addition of the ceramic powder. However, the dynamic mechanical analysis (DMA) properties of the cFIR composite films, including a reduction in damping and shock absorption performance, were significant influenced by the addition of the ceramic powder. Moreover, the cFIR composite films showed high far-infrared emissivity, which has the capability of prolonging the storage life of strawberries. This research demonstrates that cFIR composite films are promising for future applications.

  13. Preparation of MWCNT-Fe3O4 Nanocomposites from Iron Sand Using Sonochemical Route

    NASA Astrophysics Data System (ADS)

    Rahmawati, R.; Melati, A.; Taufiq, A.; Sunaryono; Diantoro, M.; Yuliarto, B.; Suyatman, S.; Nugraha, N.; Kurniadi, D.

    2017-05-01

    The composites of multi-walled carbon nanotube (MWCNT) and magnetite (Fe3O4) nanoparticles from iron sand were successfully prepared via the sonochemical route. In this experiment, the MWCNT-Fe3O4 nanocomposites were prepared with different compositions of MWCNT (0.01%, 0.02%, and 0.04%) with the constant composition of Fe3O4 particles. The characterizations were performed by means of X-Ray Diffractometry (XRD), Fourier Transform Infra-Red (FTIR) Spectrometer and Scanning Electron Microscopy (SEM) integrated with Energy Dispersive X-Ray (EDX). The XRD data analysis showed that the Fe3O4 crystallize in spinel structure in nanometric size. Furthermore, the crystallinity of the samples tended to reduce by increasing the MWCNT compositions. The SEM images showed that Fe3O4 tend to agglomerate in nanometric size. The FTIR spectra detected the functional groups of Fe-O bonding that showed the existence of Fe2+ and Fe3+. In the composites, the Fe3O4 nanoparticles were physically mixed with the MWCNTs constructing a unique structure. The as prepared MWCNT-Fe3O4 nanocomposites have the potential for bio-applications.

  14. Body composition and blood pressure in children based on age, race, and sex.

    PubMed

    Brandon, L J; Fillingim, J

    1993-01-01

    We evaluated 675 nine- and twelve-year-old children for body composition and circulatory differences based on age, race, and sex. The specific variables measured included height, weight, triceps and subscapula skinfolds, body mass index, percentage fat, fat-free weight, and systolic, diastolic, and mean arterial blood pressures. A 2 x 2 x 2 factorial multiple analysis of variance (MANOVA) test of significance showed body composition and blood pressure differences (P < .01) for race, age, and sex. The univariate test of the specific variables within the factors showed that black children had higher fat-free weights and lower fat levels but higher blood pressure values (P < .05) than white children. Boys had lower fat levels than girls, and the older children had higher values on the body composition variables but not on blood pressure. Zero order correlations between body composition and blood pressure ranged from 0.14 to 0.55; systolic blood pressure and body weight shared the highest correlation. These data show that, although black children have less body fat than white children, they are heavier and have higher blood pressure. We hypothesize that some aspect of fat-free body weight may contribute to hypertension in black individuals.

  15. Advanced composite vertical fin for L-1011 aircraft

    NASA Technical Reports Server (NTRS)

    Jackson, A. C.

    1984-01-01

    The structural box of the L-1011 vertical fin was redesigned using advanced composite materials. The box was fabricated and ground tested to verify the structural integrity. This report summarizes the complete program starting with the design and analysis and proceeds through the process development ancillary test program production readiness verification testing, fabrication of the full-scale fin boxes and the full-scale ground testing. The program showed that advanced composites can economically and effectively be used in the design and fabrication of medium primary structures for commercial aircraft. Static-strength variability was demonstrated to be comparable to metal structures and the long term durability of advanced composite components was demonstrated.

  16. Enhanced biocompatibility of PLGA nanofibers with gelatin/nano-hydroxyapatite bone biomimetics incorporation.

    PubMed

    Li, Daowei; Sun, Haizhu; Jiang, Liming; Zhang, Kai; Liu, Wendong; Zhu, Yang; Fangteng, Jiaozi; Shi, Ce; Zhao, Liang; Sun, Hongchen; Yang, Bai

    2014-06-25

    The biocompatibility of biomaterials is essentially for its application. The aim of current study was to evaluate the biocompatibility of poly(lactic-co-glycolic acid) (PLGA)/gelatin/nanohydroxyapatite (n-HA) (PGH) nanofibers systemically to provide further rationales for the application of the composite electrospun fibers as a favorable platform for bone tissue engineering. The PGH composite scaffold with diameter ranging from nano- to micrometers was fabricated by using electrospinning technique. Subsequently, we utilized confocal laser scanning microscopy (CLSM) and MTT assay to evaluate its cyto-compatibility in vitro. Besides, real-time quantitative polymerase chain reaction (qPCR) analysis and alizarin red staining (ARS) were performed to assess the osteoinductive activity. To further test in vivo, we implanted either PLGA or PGH composite scaffold in a rat subcutaneous model. The results demonstrated that PGH scaffold could better support osteoblasts adhesion, spreading, and proliferation and show better cyto-compatibility than pure PLGA scaffold. Besides, qPCR analysis and ARS showed that PGH composite scaffold exhibited higher osteoinductive activity owing to higher phenotypic expression of typical osteogenic genes and calcium deposition. The histology evaluation indicated that the incorporation of Gelatin/nanohydroxyapatite (GH) biomimetics could significantly reduce local inflammation. Our data indicated that PGH composite electrospun nanofibers possessed excellent cyto-compatibility, good osteogenic activity, as well as good performance of host tissue response, which could be versatile biocompatible scaffolds for bone tissue engineering.

  17. Effects of transgenic cry1Ie maize on non-lepidopteran pest abundance, diversity and community composition.

    PubMed

    Guo, Jingfei; He, Kanglai; Bai, Shuxiong; Zhang, Tiantao; Liu, Yunjun; Wang, Fuxin; Wang, Zhenying

    2016-12-01

    Non-lepidopteran pests are exposed to, and may be influenced by, Bt toxins when feeding on Bt maize that express insecticidal Cry proteins derived from Bacillus thuringiensis (Bt). In order to assess the potential effects of transgenic cry1Ie maize on non-lepidopteran pest species and ecological communities, a 2-year field study was conducted to compare the non-lepidopteran pest abundance, diversity and community composition between transgenic cry1Ie maize (Event IE09S034, Bt maize) and its near isoline (Zong 31, non-Bt maize) by whole plant inspections. Results showed that Bt maize had no effects on non-lepidopteran pest abundance and diversity (Shannon-Wiener diversity index, Simpson's diversity index, species richness, and Pielou's index). There was a significant effect of year and sampling time on those indices analyzed. Redundancy analysis indicated maize type, sampling time and year totally explained 20.43 % of the variance in the non-lepidopteran pest community composition, but no association was presented between maize type (Bt maize and non-Bt maize) and the variance. Nonmetric multidimensional scaling analysis showed that sampling time and year, rather than maize type had close relationship with the non-lepidopteran pest community composition. These results corroborated the hypothesis that, at least in the short-term, the transgenic cry1Ie maize had negligible effects on the non-lepidopteran pest abundance, diversity and community composition.

  18. Diatomite reinforced chitosan composite membrane as potential scaffold for guided bone regeneration.

    PubMed

    Tamburaci, Sedef; Tihminlioglu, Funda

    2017-11-01

    In this study, natural silica source, diatomite, incorporated novel chitosan based composite membranes were fabricated and characterized for bone tissue engineering applications as possible bone regeneration membrane. The effect of diatomite loading on the mechanical, morphological, chemical, thermal and surface properties, wettability and in vitro cytotoxicity and cell proliferation on of composite membranes were investigated and observed by tensile test, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), protein adsorption assay, air/water contact angle analysis and WST-1 respectively. Swelling studies were also performed by water absorption capacity determination. Results showed that incorporation of diatomite to the chitosan matrix increased the surface roughness, swelling capacity and tensile modulus of membranes. An increase of about 52% in Young's modulus was achieved for 10wt% diatomite composite membranes compared with chitosan membranes. High cell viability results were obtained with indirect extraction method. Besides, in vitro cell proliferation and ALP activity results showed that diatom incorporation significantly increased the ALP activity of Saos-2 cells cultured on chitosan membranes. The novel composite membranes prepared in the present study with tunable properties can be considered as a potential candidate as a scaffold in view of its enhanced physical & chemical properties as well as biological activities for bone tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Synthesis spherical porous hydroxyapatite/graphene oxide composites by ultrasonic-assisted method for biomedical applications.

    PubMed

    Duan, Peizhen; Shen, Juan; Zou, Guohong; Xia, Xu; Jin, Bo; Yu, Jiaxin

    2018-04-10

    Spherical porous hydroxyapatite (SHA)/graphene oxide (GO) composites with different GO (w/w) content of 16%, 40%, and 71% have been fabricated through a facile and controllable ultrasonic-assisted method at room temperature. The products were characterized by x-ray diffraction, field emission scanning electron microscopy, thermogravimetric analysis, mechanical testing and biomimetic mineralization. Results showed SHA were covered by GO, and SHA/GO composites had an irregular surface with different degrees of wrinkles. The elastic modulus and hardness of SHA/GO-3 composites were up to 12.45 ± 0.33 GPa and 686.67 ± 26.95 MPa, which indicated that the contents of GO had an effect on SHA/GO composites. And the mechanical properties of SHA/GO-2 composites were similar to SHA particles. The biomimetic mineralization in SBF solution showed the bone-like apatite layer on composites surface, which demonstrated that the SHA/GO materials had osseointegration property. Moreover, in vitro cytocompatibility of SHA/GO-2 composites and pure GO were evaluated by cell adhesion and proliferation tests using MC3T3-E1 cells, which demonstrated that the SHA/GO composites can act as a good template for the cells growth and adhesion. These results suggested that the SHA/GO composites will be a promising material for biomedical application.

  20. Interpretation of a compositional time series

    NASA Astrophysics Data System (ADS)

    Tolosana-Delgado, R.; van den Boogaart, K. G.

    2012-04-01

    Common methods for multivariate time series analysis use linear operations, from the definition of a time-lagged covariance/correlation to the prediction of new outcomes. However, when the time series response is a composition (a vector of positive components showing the relative importance of a set of parts in a total, like percentages and proportions), then linear operations are afflicted of several problems. For instance, it has been long recognised that (auto/cross-)correlations between raw percentages are spurious, more dependent on which other components are being considered than on any natural link between the components of interest. Also, a long-term forecast of a composition in models with a linear trend will ultimately predict negative components. In general terms, compositional data should not be treated in a raw scale, but after a log-ratio transformation (Aitchison, 1986: The statistical analysis of compositional data. Chapman and Hill). This is so because the information conveyed by a compositional data is relative, as stated in their definition. The principle of working in coordinates allows to apply any sort of multivariate analysis to a log-ratio transformed composition, as long as this transformation is invertible. This principle is of full application to time series analysis. We will discuss how results (both auto/cross-correlation functions and predictions) can be back-transformed, viewed and interpreted in a meaningful way. One view is to use the exhaustive set of all possible pairwise log-ratios, which allows to express the results into D(D - 1)/2 separate, interpretable sets of one-dimensional models showing the behaviour of each possible pairwise log-ratios. Another view is the interpretation of estimated coefficients or correlations back-transformed in terms of compositions. These two views are compatible and complementary. These issues are illustrated with time series of seasonal precipitation patterns at different rain gauges of the USA. In this data set, the proportion of annual precipitation falling in winter, spring, summer and autumn is considered a 4-component time series. Three invertible log-ratios are defined for calculations, balancing rainfall in autumn vs. winter, in summer vs. spring, and in autumn-winter vs. spring-summer. Results suggest a 2-year correlation range, and certain oscillatory behaviour in the last balance, which does not occur in the other two.

  1. Statistical tables and charts showing geochemical variation in the Mesoproterozoic Big Creek, Apple Creek, and Gunsight formations, Lemhi group, Salmon River Mountains and Lemhi Range, central Idaho

    USGS Publications Warehouse

    Lindsey, David A.; Tysdal, Russell G.; Taggart, Joseph E.

    2002-01-01

    The principal purpose of this report is to provide a reference archive for results of a statistical analysis of geochemical data for metasedimentary rocks of Mesoproterozoic age of the Salmon River Mountains and Lemhi Range, central Idaho. Descriptions of geochemical data sets, statistical methods, rationale for interpretations, and references to the literature are provided. Three methods of analysis are used: R-mode factor analysis of major oxide and trace element data for identifying petrochemical processes, analysis of variance for effects of rock type and stratigraphic position on chemical composition, and major-oxide ratio plots for comparison with the chemical composition of common clastic sedimentary rocks.

  2. Ecologically friendly ways to clean up oil spills in harbor water areas: crude oil and diesel sorption behavior of natural sorbents.

    PubMed

    Paulauskiene, Tatjana

    2018-04-01

    This work aimed to evaluate the sorption capacity of natural sorbents (wool, moss, straw, peat) and their composites during the sorption of crude oil and of diesel overspread on the water surface. The work presents the research results of the maximum sorption capacity of the sorbents/their composites using crude oil/diesel; the sorption capacity of the sorbents/their composites when crude oil/diesel is spilled on the water surface; and the research results of the unrealized part of the crude oil/diesel in the sorbents. The results of the analysis showed that all the sorbents and their composites have their selectivity to crude oil less than 50%. Also the results showed that the distribution of diesel and water in the sorbents and their composites is very different compared with the distribution of crude oil during the sorption analyses. In total, the diesel in the liquid mass absorbed by the straw and the peat amounted to 17 and 20%, respectively. This shows that these sorbents are much more selective for water but not for diesel. A larger part of the diesel was in the liquid amount absorbed by the composites-up to 33%. Accordingly, the use of these composites in watery environments is much more effective than the use of individual sorbents. The composition of sorbents in the composite enhanced both the hydrophobic and the oleophilic properties; as a result, a more effective removal of the diesel and oil from the water surface was achieved.

  3. [Biomimetic nanohydroxyapatite/gelatin composite material preparation and in vitro study].

    PubMed

    Li, Siriguleng; Hu, Xiaowen

    2014-09-01

    To prepare nHA/gelatin porous scaffold and to evaluate its physical and chemical properties and biocompatibility. We used nano-powders of HA and gelatin to prepare 3D porous composite scaffold by freeze-drying technique, and used scanning electron microscope, fourier transform infrared spectroscopy and universal testing machine to characterize the composite material. Osteoblasts were primarily cultured, and the third-passage osteoblasts were co-cultured with the composite material. The cell adhesion and morphology were examined under scanning electron microscope. The cell viability analysis was performed by MTT assay, and the alkaline phosphatase activity was measured with alkaline phosphatase kit. Scanning electron microscope showed that the scaffold possessed a 3-dimensional interconnected homogenous porous structure with pore sizes ranging from 150 to 400 μm. Fourier transform infrared spectroscopy showed that the composite material had a strong chemical bond between the inorganic phase and organic phase. The scaffold presented the compressive strength of (3.28 ± 0.51) MPa and porosities of (80.6 ± 4.1)%. Composite materials showed features of had good biocompatibility. Mouse osteoblasts were well adhered and spread on the materials. The grade of the cell toxicity ranged from I to II. On the 5th and 7th day the proliferative rate of osteoblasts on scaffolds in the composite materials was significantly higher than that in the control group. The activity of alkaline phosphatase was obviously higher than that in the control group on Day 1 and 3. Nano-hydroxyapatite and gelatin in certain proportions and under certain conditions can be prepared into a composite biomimetic porous scaffolds with high porosity and three-dimensional structure using freeze-drying method. The scaffold shows good biocompatibility with mouse osteoblasts and may be a novel scaffolds for bone tissue engineering.

  4. Evaluation of marginal failures of dental composite restorations by acoustic emission analysis.

    PubMed

    Gu, Ja-Uk; Choi, Nak-Sam

    2013-01-01

    In this study, a nondestructive method based on acoustic emission (AE) analysis was developed to evaluate the marginal failure states of dental composite restorations. Three types of ring-shaped substrates, which were modeled after a Class I cavity, were prepared from polymethyl methacrylate, stainless steel, and human molar teeth. A bonding agent and a composite resin were applied to the ring-shaped substrates and cured by light exposure. At each time-interval measurement, the tooth substrate presented a higher number of AE hits than polymethyl methacrylate and steel substrates. Marginal disintegration estimations derived from cumulative AE hits and cumulative AE energy parameters showed that a signification portion of marginal gap formation was already realized within 1 min at the initial light-curing stage. Estimation based on cumulative AE energy gave a higher level of marginal failure than that based on AE hits. It was concluded that the AE analysis method developed in this study was a viable approach in predicting the clinical survival of dental composite restorations efficiently within a short test period.

  5. Weighted analysis of composite endpoints with simultaneous inference for flexible weight constraints.

    PubMed

    Duc, Anh Nguyen; Wolbers, Marcel

    2017-02-10

    Composite endpoints are widely used as primary endpoints of randomized controlled trials across clinical disciplines. A common critique of the conventional analysis of composite endpoints is that all disease events are weighted equally, whereas their clinical relevance may differ substantially. We address this by introducing a framework for the weighted analysis of composite endpoints and interpretable test statistics, which are applicable to both binary and time-to-event data. To cope with the difficulty of selecting an exact set of weights, we propose a method for constructing simultaneous confidence intervals and tests that asymptotically preserve the family-wise type I error in the strong sense across families of weights satisfying flexible inequality or order constraints based on the theory of χ¯2-distributions. We show that the method achieves the nominal simultaneous coverage rate with substantial efficiency gains over Scheffé's procedure in a simulation study and apply it to trials in cardiovascular disease and enteric fever. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.

  6. Properties of anodic oxides grown on a hafnium–tantalum–titanium thin film library

    PubMed Central

    Mardare, Andrei Ionut; Ludwig, Alfred; Savan, Alan; Hassel, Achim Walter

    2014-01-01

    A ternary thin film combinatorial materials library of the valve metal system Hf–Ta–Ti obtained by co-sputtering was studied. The microstructural and crystallographic analysis of the obtained compositions revealed a crystalline and textured surface, with the exception of compositions with Ta concentration above 48 at.% which are amorphous and show a flat surface. Electrochemical anodization of the composition spread thin films was used for analysing the growth of the mixed surface oxides. Oxide formation factors, obtained from the potentiodynamic anodization curves, as well as the dielectric constants and electrical resistances, obtained from electrochemical impedance spectroscopy, were mapped along two dimensions of the library using a scanning droplet cell microscope. The semiconducting properties of the anodic oxides were mapped using Mott–Schottky analysis. The degree of oxide mixing was analysed qualitatively using x-ray photoelectron spectroscopy depth profiling. A quantitative analysis of the surface oxides was performed and correlated to the as-deposited metal thin film compositions. In the concurrent transport of the three metal cations during oxide growth a clear speed order of Ti > Hf > Ta was proven. PMID:27877648

  7. Composite flexible skin with large negative Poisson’s ratio range: numerical and experimental analysis

    NASA Astrophysics Data System (ADS)

    Chen, Y. J.; Scarpa, F.; Farrow, I. R.; Liu, Y. J.; Leng, J. S.

    2013-04-01

    This paper describes the manufacturing, characterization and parametric modeling of a novel fiber-reinforced composite flexible skin with in-plane negative Poisson’s ratio (auxetic) behavior. The elastic mechanical performance of the auxetic skin is evaluated using a three-dimensional analytical model based on the classical laminate theory (CLT) and Sun’s thick laminate theory. Good agreement is observed between in-plane Poisson’s ratios and Young’s moduli of the composite skin obtained by the theoretical model and the experimental results. A parametric analysis carried out with the validated model shows that significant changes in the in-plane negative Poisson’s ratio can be achieved through different combinations of matrix and fiber materials and stacking sequences. It is also possible to identify fiber-reinforced composite skin configurations with the same in-plane auxeticity but different orthotropic stiffness performance, or the same orthotropic stiffness performance but different in-plane auxeticity. The analysis presented in this work provides useful guidelines to develop and manufacture flexible skins with negative Poisson’s ratio for applications focused on morphing aircraft wing designs.

  8. Fatigue stipulation of bulk-fill composites: An in vitro appraisal.

    PubMed

    Vidhawan, Shruti A; Yap, Adrian U; Ornaghi, Barbara P; Banas, Agnieszka; Banas, Krzysztof; Neo, Jennifer C; Pfeifer, Carmem S; Rosa, Vinicius

    2015-09-01

    The aim of this study was to determine the Weibull and slow crack growth (SCG) parameters of bulk-fill resin based composites. The strength degradation over time of the materials was also assessed by strength-probability-time (SPT) analysis. Three bulk-fill [Tetric EvoCeram Bulk Fill (TBF); X-tra fil (XTR); Filtek Bulk-fill flowable (BFL)] and a conventional one [Filtek Z250 (Z250)] were studied. Seventy five disk-shaped specimens (12mm in diameter and 1mm thick) were prepared by inserting the uncured composites in a stainless steel split mold followed by photoactivation (1200mW/cm(2)/20s) and storage in distilled water (37°C/24h). Degree of conversion was evaluated in five specimens by analysis of FT-IR spectra obtained in the mid-IR region. The SCG parameters n (stress corrosion susceptibility coefficient) and σf0 (scaling parameter) were obtained by testing ten specimens in each of the five stress rates: 10(-2), 10(-1), 10(0), 10(1) and 10(2)MPa/s using a piston-on-three-balls device. Weibull parameter m (Weibull modulus) and σf0 (characteristic strength) were obtained by testing additional 20 specimens at 1MPa/s. Strength-probability-time (SPT) diagrams were constructed by merging SCG and Weibull parameters. BFL and TBF presented higher n values, respectively (40.1 and 25.5). Z250 showed the highest (157.02MPa) and TBF the lowest (110.90MPa) σf0 value. Weibull analysis showed m (Weibull modulus) of 9.7, 8.6, 9.7 and 8.9 for TBF, BFL, XTR and Z250, respectively. SPT diagram for 5% probability of failure showed strength decrease of 18% for BFL, 25% for TBF, 32% for XTR and 36% for Z250, respectively, after 5 years as compared to 1 year. The reliability and decadence of strength over time for bulk-fill resin composites studied are, at least, comparable to conventional composites. BFL shows the highest fatigue resistance under all simulations followed by TBF, while XTR was at par with Z250. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  9. Structural and thermal properties of silk fibroin - Silver nanoparticles composite films

    NASA Astrophysics Data System (ADS)

    Shivananda, C. S.; Rao B, B. Lakshmeesha; Shetty, G. Rajesh; Sangappa, Y.

    2018-05-01

    In this work, silk fibroin-silver nanoparticles (SF-AgNPs) composite films have been prepared by simple solution casting method. The composite films were examined for structural and thermal properties using X-ray diffraction (XRD), thermogravimatric (TGA) and differential scanning calorimetry (DSC) analysis. The XRD results showed that with the introduction of AgNPs in the silk fibroin matrix the amorphous nature of the silk fibroin decreases with increasing nanoparticles concentration. The silk fibroin films possess good thermal stability with the presence of AgNPs.

  10. Toughening Effect of Microscale Particles on the Tensile and Vibration Properties of S-Glass-Fiber-Reinforced Epoxy Composites

    NASA Astrophysics Data System (ADS)

    Erkliğ, A.; Bulut, M.; Fayzulla, B.

    2018-03-01

    The effect of borax, sewage sludge ash, silicon carbide, and perlite microparticles on the tensile, damping, and vibration characteristics of S-glass/epoxy composite laminates was examined Their damping and vibration properties were evaluated experimentally by using the dynamic modal analysis, identifying the response of the fundamental natural frequency to the type and weight content of the particulates. The results obtained showed that the introduction of specific amounts of such particulates into the matrix of S-glass/epoxy composite noticeably improved its mechanical properties.

  11. Energy scale of compositional disorder in Ga(AsBi)

    NASA Astrophysics Data System (ADS)

    Shakfa, M. K.; Jandieri, K.; Wiemer, M.; Ludewig, P.; Volz, K.; Stolz, W.; Baranovskii, S. D.; Koch, M.

    2015-10-01

    We report on a study of compositional disorder in Ga(AsBi) structures. Temperature-dependent photoluminescence measurements on Ga(AsBi)/GaAs heterostructures with different Bi contents are performed. Experimental observations show an essentially non-monotonous dependence of the energy scale of disorder on the Bi content. Our theoretical analysis concludes that this peculiar behavior is a consequence of an essential bowing of the valence band edge as a function of Bi content and of a specific compositional dependence of the hole effective mass in Ga(AsBi) compounds.

  12. Comparison of two bioelectrical impedance devices and dual-energy X-ray absorptiometry to evaluate body composition in heart failure.

    PubMed

    Alves, F D; Souza, G C; Biolo, A; Clausell, N

    2014-12-01

    The utilisation of bioelectrical impedance analysis (BIA) in heart failure can be affected by many factors and its applicability remains controversial. The present study aimed to verify the adequacy of single-frequency BIA (SF-BIA) and multifrequency BIA (MF-BIA) compared to dual-energy x-ray absorptiometry (DEXA) for evaluating body composition in outpatients with heart failure. In this cross-sectional study, 55 patients with stable heart failure and left ventricle ejection fraction ≤45% were evaluated for fat mass percentage, fat mass and fat-free mass by DEXA and compared with the results obtained by SF-BIA (single frequency of 50 kHz) and MF-BIA (frequencies of 20 and 100 kHz). MF-BIA and DEXA gave similar mean values for fat mass percentage, fat mass and fat-free mass, whereas values from SF-BIA were significantly different from DEXA. Both SF-BIA and MF-BIA measures of body composition correlated strongly with DEXA (r > 0.8; P < 0.001), except for fat mass assessed by SF-BIA, which showed a moderate correlation (r = 0.760; P < 0.001). MF-BIA also showed a better agreement with DEXA by Bland-Altman analysis in all measurements. However, both types of equipment showed wide limits of agreement and a significant relationship between variance and bias (Pitmans's test P > 0.05), except MF-BIA for fat-free mass. Compared with DEXA, MF-BIA showed better accuracy than SF-BIA, although both types of equipment showed wide limits of agreement. The BIA technique should be used with caution, and regression equations might be useful for correcting the observed variations, mainly in extreme values of body composition. © 2014 The British Dietetic Association Ltd.

  13. Full in-vitro analyses of new-generation bulk fill dental composites cured by halogen light.

    PubMed

    Tekin, Tuçe Hazal; Kantürk Figen, Aysel; Yılmaz Atalı, Pınar; Coşkuner Filiz, Bilge; Pişkin, Mehmet Burçin

    2017-08-01

    The objective of this study was to investigate the full in-vitro analyses of new-generation bulk-fill dental composites cured by halogen light (HLG). Two types' four composites were studied: Surefill SDR (SDR) and Xtra Base (XB) as bulk-fill flowable materials; QuixFill (QF) and XtraFill (XF) as packable bulk-fill materials. Samples were prepared for each analysis and test by applying the same procedure, but with different diameters and thicknesses appropriate to the analysis and test requirements. Thermal properties were determined by thermogravimetric analysis (TG/DTG) and differential scanning calorimetry (DSC) analysis; the Vickers microhardness (VHN) was measured after 1, 7, 15 and 30days of storage in water. The degree of conversion values for the materials (DC, %) were immediately measured using near-infrared spectroscopy (FT-IR). The surface morphology of the composites was investigated by scanning electron microscopes (SEM) and atomic-force microscopy (AFM) analyses. The sorption and solubility measurements were also performed after 1, 7, 15 and 30days of storage in water. In addition to his, the data were statistically analyzed using one-way analysis of variance, and both the Newman Keuls and Tukey multiple comparison tests. The statistical significance level was established at p<0.05. According to the ISO 4049 standards, all the tested materials showed acceptable water sorption and solubility, and a halogen light source was an option to polymerize bulk-fill, resin-based dental composites. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Electric, Magnetic, and Magnetoelectric Properties of Yttrium-Containing BaY0.025Ti0.9625O3-SrFe12O19 Composite

    NASA Astrophysics Data System (ADS)

    Rather, Mehraj ud Din; Samad, Rubiya; Want, Basharat

    2018-03-01

    The physical properties of BaY0.025Ti0.9625O3, SrFe12O19, and 0.90BaY0.025Ti0.9625O3-0.10 SrFe12O19 composite have been studied. The proposed composite was synthesized by solid-state reaction method from yttrium barium titanate processed by solid-state reaction and strontium hexaferrite obtained by a sol-gel process. Microstructural analysis revealed monophasic grains for yttrium barium titanate phase, while loosely packed biphasic structure was observed for the composite. Powder x-ray analysis showed that the individual phases retained their crystal structure in the composite, without formation of any new additional phase. Measurement of magnetic hysteresis loops at room temperature indicated that the magnetic parameters of the composite were diluted by the presence of the ferroelectric phase. The ferroelectric hysteresis of yttrium barium titanate confirmed the ferroelectric transition at 119°C. Meanwhile, the symmetrical ferroelectric loops observed at different fields established the ferroelectric nature of the composite. Improved dielectric properties and low dielectric losses were observed due to yttrium doping in the composite. The diffuseness of the ferroelectric transitions for the composite was confirmed by the Curie-Weiss law. Activation energy calculations revealed the charge-hopping conduction mechanism in the composite. Magnetodielectric studies confirmed that the overall magnetocapacitance in the composite exhibited combined effects of magnetoresistance and magnetoelectric coupling.

  15. Fullerene reinforced ionic polymer transducer

    NASA Astrophysics Data System (ADS)

    Jung, J. H.; Cheng, T. H.; Oh, I. K.

    2009-07-01

    Novel fullerene reinforced nano-composite transducers based on nafion were developed inorder to improve the ionic polymer metal composite transducer. The fullerene reinforced nano-composite membranes were fabricated by recasting method with 0.1 and 0.5 weight percentage of a Fullerenes. Stress-Strain tests showed tremendous increase in stiffness and modulus of the nano-composite membranes even at these minute concentrations of Fullerenes. Ionic exchange capacity analysis and proton conductivity test were performed to calculate the electrical property of the composite films. Water uptake was measured to understand the liquid adsorbing characteristics of the membranes. Also, tip displacement of the nano-composite membrane transducer was investigated under AC excitations with various magnitudes and frequencies. Furthermore, the generated energy was measured from external sinusoidal physical input vibration with several displacements and frequencies by using a mechanical shaker. As a result, the fullerene reinforced nanocomposite membrane based on nafion shows higher stiffness and Young's modulus than that of pure nafion membrane. Also, the nano-composite membrane had better water uptake and proton conductivity than the pure membrane. Fullerene reinforced nano-composite membrane transducer actuates to a much larger deformations than pure nafion membrane transducer. The developed membrane transducer dissipates more energy from the physical input vibration than that of unfilled(or virgin) Nafion membrane transducer.

  16. Testing a laser-induced breakdown spectroscopy technique on the Arctic sediments

    NASA Astrophysics Data System (ADS)

    Han, D.; Nam, S. I.

    2017-12-01

    Physical and geochemical investigations coupled with the Laser-induced Breakdown Spectroscopy (LIBS) were performed on three surface sediment cores (ARA03B/24BOX, ARA02B/01(A)MUC, ARA02B/02MUC and ARA02B/03(A)MUC) recovered from the western Arctic Ocean (Chukchi Sea) during IBRV ARON expeditions in 2012. The LIBS technique was applied to carry out elemental chemical analysis of the Arctic sediments and compared with that measured by ITRAX X-ray fuorescence (XRF) core scanning. LIBS and XRF have shown similar elemental composition within each sediment core. In this study, mineral composition (XRD), grain size distribution and organic carbon content as well as elemental composition (LIBS) were all considered to understand paleoenvironmental changes (ocean circulation, sea-ice drift, iceberg discharge, and etc.) recorded in the Arctic Holocene sediment. Quantitative LIBS analysis shows a gradually varying distribution of the elements along the sampled core and clear separation between the cores. The cores are geochemically characterized by elevated Mn profile. The gradient of mineral composition and grain sizes among the cores shows regional distribution and variation in sedimentary condition due to geological distance between East Siberian and North America. The present study reveals that a LIBS technique can be employed for in-situ sediment analyses for the Arctic Ocean. Furthermore, LIBS does not require costly equipment, trained operators, and complicated sample pre-treatment processes compared to Atomic absorption spectroscopy (AAS) and inductively coupled plasma emission spectroscopy (ICP), and also known to show relatively high levels of sensitivity, precision, and distinction than XRF analysis, scanning electron microscopy-energy dispersive spectrometry (SEM-EDS), and electron probe X-ray microanalysis (EPMA).

  17. Evolutionary tradeoffs in cellular composition across diverse bacteria

    PubMed Central

    Kempes, Christopher P; Wang, Lawrence; Amend, Jan P; Doyle, John; Hoehler, Tori

    2016-01-01

    One of the most important classic and contemporary interests in biology is the connection between cellular composition and physiological function. Decades of research have allowed us to understand the detailed relationship between various cellular components and processes for individual species, and have uncovered common functionality across diverse species. However, there still remains the need for frameworks that can mechanistically predict the tradeoffs between cellular functions and elucidate and interpret average trends across species. Here we provide a comprehensive analysis of how cellular composition changes across the diversity of bacteria as connected with physiological function and metabolism, spanning five orders of magnitude in body size. We present an analysis of the trends with cell volume that covers shifts in genomic, protein, cellular envelope, RNA and ribosomal content. We show that trends in protein content are more complex than a simple proportionality with the overall genome size, and that the number of ribosomes is simply explained by cross-species shifts in biosynthesis requirements. Furthermore, we show that the largest and smallest bacteria are limited by physical space requirements. At the lower end of size, cell volume is dominated by DNA and protein content—the requirement for which predicts a lower limit on cell size that is in good agreement with the smallest observed bacteria. At the upper end of bacterial size, we have identified a point at which the number of ribosomes required for biosynthesis exceeds available cell volume. Between these limits we are able to discuss systematic and dramatic shifts in cellular composition. Much of our analysis is connected with the basic energetics of cells where we show that the scaling of metabolic rate is surprisingly superlinear with all cellular components. PMID:27046336

  18. Atomic-level study on mechanical properties and strengthening mechanisms of Al/SiC nano-composites

    NASA Astrophysics Data System (ADS)

    Huo, Shiyan; Xie, Lijing; Xiang, Junfeng; Pang, Siqin; Hu, Fang; Umer, Usama

    2018-02-01

    Molecular dynamics (MD) models for the study on the mechanical properties of β-SiC particles-reinforced aluminum matrix nano-composites (Al/SiC nano-composites) are established. The nano-composites in the model are fabricated by a powder metallurgy (P/M) process, followed by a hot isostatic pressing and then annealing to room temperature. The fabricated nano-composites have dense and even distributions of reinforced particles. Then representative volume elements (RVEs) of the fabricated nano-composites are built by adding periodic boundary conditions (PBCs). In this way, RVEs with different volume fractions and particle sizes of SiC are produced and put into the simulation of tension tests. The elasticity and strength in single axial tension obtained from MD analysis are in good agreement with those calculated according to the rule of mixture. It is found that the dispersion of SiC particles into the Al matrix leads to a significant enhancement in the strength of nano-composites compared to pure Al, which is also dramatically affected by both the volume fraction and particle size. Additionally, the Al/SiC nano-composites with finer SiC particles get greater enhancement in the mechanical behavior than those with coarser ones. MD analysis clearly shows the contributions of load-transfer effect, thermal mismatch strengthening and Orowan strengthening to the strengthening of Al/SiC nano-composites.

  19. Fabrication, characterization and gamma rays shielding properties of nano and micro lead oxide-dispersed-high density polyethylene composites

    NASA Astrophysics Data System (ADS)

    Mahmoud, Mohamed E.; El-Khatib, Ahmed M.; Badawi, Mohamed S.; Rashad, Amal R.; El-Sharkawy, Rehab M.; Thabet, Abouzeid A.

    2018-04-01

    Polymer composites of high-density polyethylene (HD-PE) filled with powdered lead oxide nanoparticles (PbO NPs) and bulk lead oxide (PbO Blk) were prepared with filler weight fraction [10% and 50%]. These polymer composites were investigated for radiation-shielding of gamma-rays emitted from radioactive point sources [241Am, 133Ba, 137Cs, and 60Co]. The polymer was found to decrease the heaviness of the shielding material and increase the flexibility while the metal oxide fillers acted as principle radiation attenuators in the polymer composite. The prepared composites were characterized by Fourier transform infrared spectrophotometer (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), Brunauer-Emmett-Teller surface area (BET) and field emission transmission electron microscope (FE-TEM). The morphological analysis of the assembled composites showed that, PbO NPs and PbO Blk materials exhibited homogenous dispersion in the polymer-matrix. Thermogravimetric analysis (TGA) demonstrated that the thermal-stability of HD-PE was enhanced in the presence of both PbO Blk and PbO NPs. The results declared that, the density of polymer composites was increase with the percentage of filler contents. The highest density value was identified as 1.652 g cm-3 for 50 wt% of PbO NPs. Linear attenuation coefficients (μ) have been estimated from the use of XCOM code and measured results. Reasonable agreement was attended between theoretical and experimental results. These composites were also found to display excellent percentage of heaviness with respect to other conventional materials.

  20. Fast classification and compositional analysis of cornstover fractions using Fourier transform near-infrared techniques.

    PubMed

    Philip Ye, X; Liu, Lu; Hayes, Douglas; Womac, Alvin; Hong, Kunlun; Sokhansanj, Shahab

    2008-10-01

    The objectives of this research were to determine the variation of chemical composition across botanical fractions of cornstover, and to probe the potential of Fourier transform near-infrared (FT-NIR) techniques in qualitatively classifying separated cornstover fractions and in quantitatively analyzing chemical compositions of cornstover by developing calibration models to predict chemical compositions of cornstover based on FT-NIR spectra. Large variations of cornstover chemical composition for wide calibration ranges, which is required by a reliable calibration model, were achieved by manually separating the cornstover samples into six botanical fractions, and their chemical compositions were determined by conventional wet chemical analyses, which proved that chemical composition varies significantly among different botanical fractions of cornstover. Different botanic fractions, having total saccharide content in descending order, are husk, sheath, pith, rind, leaf, and node. Based on FT-NIR spectra acquired on the biomass, classification by Soft Independent Modeling of Class Analogy (SIMCA) was employed to conduct qualitative classification of cornstover fractions, and partial least square (PLS) regression was used for quantitative chemical composition analysis. SIMCA was successfully demonstrated in classifying botanical fractions of cornstover. The developed PLS model yielded root mean square error of prediction (RMSEP %w/w) of 0.92, 1.03, 0.17, 0.27, 0.21, 1.12, and 0.57 for glucan, xylan, galactan, arabinan, mannan, lignin, and ash, respectively. The results showed the potential of FT-NIR techniques in combination with multivariate analysis to be utilized by biomass feedstock suppliers, bioethanol manufacturers, and bio-power producers in order to better manage bioenergy feedstocks and enhance bioconversion.

  1. The compositional transition of vertebrate genomes: an analysis of the secondary structure of the proteins encoded by human genes.

    PubMed

    D'Onofrio, Giuseppe; Ghosh, Tapash Chandra

    2005-01-17

    Fluctuations and increments of both C(3) and G(3) levels along the human coding sequences were investigated comparing two sets of Xenopus/human orthologous genes. The first set of genes shows minor differences of the GC(3) levels, the second shows considerable increments of the GC(3) levels in the human genes. In both data sets, the fluctuations of C(3) and G(3) levels along the coding sequences correlated with the secondary structures of the encoded proteins. The human genes that underwent the compositional transition showed a different increment of the C(3) and G(3) levels within and among the structural units of the proteins. The relative synonymous codon usage (RSCU) of several amino acids were also affected during the compositional transition, showing that there exists a correlation between RSCU and protein secondary structures in human genes. The importance of natural selection for the formation of isochore organization of the human genome has been discussed on the basis of these results.

  2. Color change of composite resins subjected to accelerated artificial aging.

    PubMed

    Tornavoi, Denise Cremonezzi; Agnelli, José Augusto Marcondes; Panzeri, Heitor; Dos Reis, Andréa Cândido

    2013-01-01

    The aim of this study was to evaluate the influence of accelerated artificial aging (AAA) on the color change of composite resins used in dentistry. Three composite resins were evaluated: Two microhybrids and one hybrid of higher viscosity, with different amounts and sizes of filler particles, shades C2 and B2. A total of 54 specimens were obtained (18 for each composite resin), made of a Teflon matrix (15 mm in diameter and 2 mm in height). The color measurements were obtained with a Spectrophotometer, (PCB 6807 BYK Gardner) before and after AAA. Data were submitted to the Kolmogorov-Smirnov test (α >0.05), ANOVA and Tukey test (α <0.05). After statistical analysis, the color difference among composite resins with the same shades was analyzed. All composite resins showed unacceptable color changes after AAA (ΔE > 3). Considering the variable ∆E, it was observed that the color tone C2 was already statistically different for the microhybrid composite resin prior to AAA (P < 0.05) and in shade B2 for hybrid of higher viscosity and microhybrid with barium glass fluoride aluminum and silica dioxide (P < 0.01). After this process, a statistically significant difference was observed only for shade B2 between microhybrid composite resins (P < 0.01) and for hybrid of higher viscosity and microhybrid with barium glass fluoride aluminum and silica dioxide (P < 0.05). Regarding the color difference within a same composite resin group, before aging the composite resin hybrid of higher viscosity B2 showed the highest color variation rate and microhybrid with zirconium/silica C2 showed the lowest. All composite resins presented unacceptable color changes after 382 h of aging and different composite resins with same hue, presented different colors before being subjected to the aging process (B2 and C2) and after (B2). It was also observed color difference within a group of the same composite resin and same hue.

  3. Real-time measurement of size-resolved elemental composition ratio for flame synthesized composite nanoparticle aggregates using a tandem SMPS-ICP-OES

    PubMed Central

    Reed, Nathan; Fang, Jiaxi; Chavalmane, Sanmathi; Biswas, Pratim

    2017-01-01

    Composite nanoparticles find application in catalysis, drug delivery, and energy storage and require increasingly fine control of their physical properties and composition. While composite nanoparticles have been widely synthesized and characterized, little work has systematically correlated the initial concentration of precursors and the final composition of flame synthesized composite nanoparticles. This relationship is explored in a diffusion flame aerosol reactor by coupling a scanning mobility particle sizer (SMPS) with an inductively coupled plasma optical emission spectrometer (ICP-OES). A framework for studying the relationship between the initial precursor concentrations of different elements and the final nanoparticle composition is explored. The size-resolved elemental composition was measured by directly injecting size-selected fractions of aggregated magnetite and silicon dioxide composite nanoparticles into the ICP-OES plasma. This work showed a correlation between precursor molar ratio and the measured elemental ratio in the mobility size range of 50 to 140 nm. Building on previous work studying size resolved elemental composition of engineered nanoparticles, the analysis is extended to flame synthesized composite nanoparticle aggregates in this work. PMID:28435179

  4. Real-time measurement of size-resolved elemental composition ratio for flame synthesized composite nanoparticle aggregates using a tandem SMPS-ICP-OES.

    PubMed

    Reed, Nathan; Fang, Jiaxi; Chavalmane, Sanmathi; Biswas, Pratim

    2017-01-01

    Composite nanoparticles find application in catalysis, drug delivery, and energy storage and require increasingly fine control of their physical properties and composition. While composite nanoparticles have been widely synthesized and characterized, little work has systematically correlated the initial concentration of precursors and the final composition of flame synthesized composite nanoparticles. This relationship is explored in a diffusion flame aerosol reactor by coupling a scanning mobility particle sizer (SMPS) with an inductively coupled plasma optical emission spectrometer (ICP-OES). A framework for studying the relationship between the initial precursor concentrations of different elements and the final nanoparticle composition is explored. The size-resolved elemental composition was measured by directly injecting size-selected fractions of aggregated magnetite and silicon dioxide composite nanoparticles into the ICP-OES plasma. This work showed a correlation between precursor molar ratio and the measured elemental ratio in the mobility size range of 50 to 140 nm. Building on previous work studying size resolved elemental composition of engineered nanoparticles, the analysis is extended to flame synthesized composite nanoparticle aggregates in this work.

  5. Preparation and characterization of flame retardant n-hexadecane/silicon dioxide composites as thermal energy storage materials.

    PubMed

    Fang, Guiyin; Li, Hui; Chen, Zhi; Liu, Xu

    2010-09-15

    Flame retardant n-hexadecane/silicon dioxide (SiO(2)) composites as thermal energy storage materials were prepared using sol-gel methods. In the composites, n-hexadecane was used as the phase change material for thermal energy storage, and SiO(2) acted as the supporting material that is fire resistant. In order to further improve flame retardant property of the composites, the expanded graphite (EG) was added in the composites. Fourier transformation infrared spectroscope (FT-IR), X-ray diffractometer (XRD) and scanning electronic microscope (SEM) were used to determine chemical structure, crystalloid phase and microstructure of flame retardant n-hexadecane/SiO(2) composites, respectively. The thermal properties and thermal stability were investigated by a differential scanning calorimeter (DSC) and a thermogravimetric analysis apparatus (TGA), respectively. The SEM results showed that the n-hexadecane was well dispersed in the porous network of the SiO(2). The DSC results indicated that the melting and solidifying latent heats of the composites are 147.58 and 145.10 kJ/kg when the mass percentage of the n-hexadecane in the composites is 73.3%. The TGA results showed that the loading of the EG increased the charred residue amount of the composites at 700 degrees C, contributing to the improved thermal stability of the composites. It was observed from SEM photographs that the homogeneous and compact charred residue structure after combustion improved the flammability of the composites. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Advanced Composite Wind Turbine Blade Design Based on Durability and Damage Tolerance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abumeri, Galib; Abdi, Frank

    2012-02-16

    The objective of the program was to demonstrate and verify Certification-by-Analysis (CBA) capability for wind turbine blades made from advanced lightweight composite materials. The approach integrated durability and damage tolerance analysis with robust design and virtual testing capabilities to deliver superior, durable, low weight, low cost, long life, and reliable wind blade design. The GENOA durability and life prediction software suite was be used as the primary simulation tool. First, a micromechanics-based computational approach was used to assess the durability of composite laminates with ply drop features commonly used in wind turbine applications. Ply drops occur in composite joints andmore » closures of wind turbine blades to reduce skin thicknesses along the blade span. They increase localized stress concentration, which may cause premature delamination failure in composite and reduced fatigue service life. Durability and damage tolerance (D&DT) were evaluated utilizing a multi-scale micro-macro progressive failure analysis (PFA) technique. PFA is finite element based and is capable of detecting all stages of material damage including initiation and propagation of delamination. It assesses multiple failure criteria and includes the effects of manufacturing anomalies (i.e., void, fiber waviness). Two different approaches have been used within PFA. The first approach is Virtual Crack Closure Technique (VCCT) PFA while the second one is strength-based. Constituent stiffness and strength properties for glass and carbon based material systems were reverse engineered for use in D&DT evaluation of coupons with ply drops under static loading. Lamina and laminate properties calculated using manufacturing and composite architecture details matched closely published test data. Similarly, resin properties were determined for fatigue life calculation. The simulation not only reproduced static strength and fatigue life as observed in the test, it also showed composite damage and fracture modes that resemble those reported in the tests. The results show that computational simulation can be relied on to enhance the design of tapered composite structures such as the ones used in turbine wind blades. A computational simulation for durability, damage tolerance (D&DT) and reliability of composite wind turbine blade structures in presence of uncertainties in material properties was performed. A composite turbine blade was first assessed with finite element based multi-scale progressive failure analysis to determine failure modes and locations as well as the fracture load. D&DT analyses were then validated with static test performed at Sandia National Laboratories. The work was followed by detailed weight analysis to identify contribution of various materials to the overall weight of the blade. The methodology ensured that certain types of failure modes, such as delamination progression, are contained to reduce risk to the structure. Probabilistic analysis indicated that composite shear strength has a great influence on the blade ultimate load under static loading. Weight was reduced by 12% with robust design without loss in reliability or D&DT. Structural benefits obtained with the use of enhanced matrix properties through nanoparticles infusion were also assessed. Thin unidirectional fiberglass layers enriched with silica nanoparticles were applied to the outer surfaces of a wind blade to improve its overall structural performance and durability. The wind blade was a 9-meter prototype structure manufactured and tested subject to three saddle static loading at Sandia National Laboratory (SNL). The blade manufacturing did not include the use of any nano-material. With silica nanoparticles in glass composite applied to the exterior surfaces of the blade, the durability and damage tolerance (D&DT) results from multi-scale PFA showed an increase in ultimate load of the blade by 9.2% as compared to baseline structural performance (without nano). The use of nanoparticles lead to a delay in the onset of delamination. Load-displacement relationships obtained from testing of the blade with baseline neat material were compared to the ones from analytical simulation using neat resin and using silica nanoparticles in the resin. Multi-scale PFA results for the neat material construction matched closely those from test for both load displacement and location and type of damage and failure. AlphaSTAR demonstrated that wind blade structures made from advanced composite materials can be certified with multi-scale progressive failure analysis by following building block verification approach.« less

  7. Clinical anthropometrics and body composition from 3D whole-body surface scans.

    PubMed

    Ng, B K; Hinton, B J; Fan, B; Kanaya, A M; Shepherd, J A

    2016-11-01

    Obesity is a significant worldwide epidemic that necessitates accessible tools for robust body composition analysis. We investigated whether widely available 3D body surface scanners can provide clinically relevant direct anthropometrics (circumferences, areas and volumes) and body composition estimates (regional fat/lean masses). Thirty-nine healthy adults stratified by age, sex and body mass index (BMI) underwent whole-body 3D scans, dual energy X-ray absorptiometry (DXA), air displacement plethysmography and tape measurements. Linear regressions were performed to assess agreement between 3D measurements and criterion methods. Linear models were derived to predict DXA body composition from 3D scan measurements. Thirty-seven external fitness center users underwent 3D scans and bioelectrical impedance analysis for model validation. 3D body scan measurements correlated strongly to criterion methods: waist circumference R 2 =0.95, hip circumference R 2 =0.92, surface area R 2 =0.97 and volume R 2 =0.99. However, systematic differences were observed for each measure due to discrepancies in landmark positioning. Predictive body composition equations showed strong agreement for whole body (fat mass R 2 =0.95, root mean square error (RMSE)=2.4 kg; fat-free mass R 2 =0.96, RMSE=2.2 kg) and arms, legs and trunk (R 2 =0.79-0.94, RMSE=0.5-1.7 kg). Visceral fat prediction showed moderate agreement (R 2 =0.75, RMSE=0.11 kg). 3D surface scanners offer precise and stable automated measurements of body shape and composition. Software updates may be needed to resolve measurement biases resulting from landmark positioning discrepancies. Further studies are justified to elucidate relationships between body shape, composition and metabolic health across sex, age, BMI and ethnicity groups, as well as in those with metabolic disorders.

  8. Optimization of Composite Material System and Lay-up to Achieve Minimum Weight Pressure Vessel

    NASA Astrophysics Data System (ADS)

    Mian, Haris Hameed; Wang, Gang; Dar, Uzair Ahmed; Zhang, Weihong

    2013-10-01

    The use of composite pressure vessels particularly in the aerospace industry is escalating rapidly because of their superiority in directional strength and colossal weight advantage. The present work elucidates the procedure to optimize the lay-up for composite pressure vessel using finite element analysis and calculate the relative weight saving compared with the reference metallic pressure vessel. The determination of proper fiber orientation and laminate thickness is very important to decrease manufacturing difficulties and increase structural efficiency. In the present work different lay-up sequences for laminates including, cross-ply [ 0 m /90 n ] s , angle-ply [ ±θ] ns , [ 90/±θ] ns and [ 0/±θ] ns , are analyzed. The lay-up sequence, orientation and laminate thickness (number of layers) are optimized for three candidate composite materials S-glass/epoxy, Kevlar/epoxy and Carbon/epoxy. Finite element analysis of composite pressure vessel is performed by using commercial finite element code ANSYS and utilizing the capabilities of ANSYS Parametric Design Language and Design Optimization module to automate the process of optimization. For verification, a code is developed in MATLAB based on classical lamination theory; incorporating Tsai-Wu failure criterion for first-ply failure (FPF). The results of the MATLAB code shows its effectiveness in theoretical prediction of first-ply failure strengths of laminated composite pressure vessels and close agreement with the FEA results. The optimization results shows that for all the composite material systems considered, the angle-ply [ ±θ] ns is the optimum lay-up. For given fixed ply thickness the total thickness of laminate is obtained resulting in factor of safety slightly higher than two. Both Carbon/epoxy and Kevlar/Epoxy resulted in approximately same laminate thickness and considerable percentage of weight saving, but S-glass/epoxy resulted in weight increment.

  9. A systematic comparison of recurrent event models for application to composite endpoints.

    PubMed

    Ozga, Ann-Kathrin; Kieser, Meinhard; Rauch, Geraldine

    2018-01-04

    Many clinical trials focus on the comparison of the treatment effect between two or more groups concerning a rarely occurring event. In this situation, showing a relevant effect with an acceptable power requires the observation of a large number of patients over a long period of time. For feasibility issues, it is therefore often considered to include several event types of interest, non-fatal or fatal, and to combine them within a composite endpoint. Commonly, a composite endpoint is analyzed with standard survival analysis techniques by assessing the time to the first occurring event. This approach neglects that an individual may experience more than one event which leads to a loss of information. As an alternative, composite endpoints could be analyzed by models for recurrent events. There exists a number of such models, e.g. regression models based on count data or Cox-based models such as the approaches of Andersen and Gill, Prentice, Williams and Peterson or, Wei, Lin and Weissfeld. Although some of the methods were already compared within the literature there exists no systematic investigation for the special requirements regarding composite endpoints. Within this work a simulation-based comparison of recurrent event models applied to composite endpoints is provided for different realistic clinical trial scenarios. We demonstrate that the Andersen-Gill model and the Prentice- Williams-Petersen models show similar results under various data scenarios whereas the Wei-Lin-Weissfeld model delivers effect estimators which can considerably deviate under commonly met data scenarios. Based on the conducted simulation study, this paper helps to understand the pros and cons of the investigated methods in the context of composite endpoints and provides therefore recommendations for an adequate statistical analysis strategy and a meaningful interpretation of results.

  10. Study of Erosive Wear Behaviour on SIC/SIC Composites

    NASA Astrophysics Data System (ADS)

    Suh, Min-Soo

    In the field of aerospace propulsion system, erosive wear on continuous silicon carbide (SiC) fibre-reinforced SiC (SiC/SiC) composites is of significant issue to achieve high energy efficiency. This paper proposes a crucial factor and a design guideline of SiC/SiC composites for higher erosion performance regarding cost effectiveness. Fabrication and evaluation of impacts and wear on SiC/SiC composites are successfully carried out. Erosive wear behaviours of the CVI and the LPS composites evidently show that the crucial fabrication factor against solid particle erosion (SPE). Erosive wear mechanisms on various SiC/SiC composites are determined based on the analysis of erosive wear behaviour. Designing guideline for the SiC/SiC composites for pursuit of high erosion performance is also proposed as focusing on the followings; volume fraction of matrix, strength of the matrix, bonding strength, and PyC interface.

  11. Mechanical Property Analysis on Sandwich Structured Hybrid Composite Made from Natural Fibre, Glass Fibre and Ceramic Fibre Wool Reinforced with Epoxy Resin

    NASA Astrophysics Data System (ADS)

    Bharat, K. R.; Abhishek, S.; Palanikumar, K.

    2017-06-01

    Natural fibre composites find wide range of applications and usage in the automobile and manufacturing industries. They find lack in desired properties, which are required for present applications. In current scenario, many developments in composite materials involve the synthesis of Hybrid composite materials to overcome some of the lacking properties. In this present investigation, two sandwich structured hybrid composite materials have been made by reinforcing Aloe Vera-Ceramic Fibre Wool-Glass fibre with Epoxy resin matrix and Sisal fibre-Ceramic Fibre Wool-Glass fibre with Epoxy resin matrix and its mechanical properties such as Tensile, Flexural and Impact are tested and analyzed. The test results from the two samples are compared and the results show that sisal fibre reinforced hybrid composite has better mechanical properties than aloe vera reinforced hybrid composite.

  12. Spectroscopy of hot subdwarf binaries

    NASA Astrophysics Data System (ADS)

    Kreuzer, Simon; Irrgang, Andreas; Heber, Ulrich

    2018-06-01

    We present a status report of our spectroscopic analysis of subdwarf binaries consisting of a subdwarf and a F/G/K-type main-sequence companion. These systems selected from SDSS photometry show significant excess in the (infra-)red which can not be explained by interstellar reddening. Inspection of SDSS spectra revealed that most of them are composite spectrum sdB binaries. Once their spectra are disentangled, a detailed spectral analysis can be carried out. It reveals Teff, log g and the metal abundance of each individual star. The cool companion is of particular interest, because its spectrum reveals the original chemical composition of the binary.

  13. Major and trace element chemistry of Luna 24 samples from Mare Crisium

    NASA Technical Reports Server (NTRS)

    Blanchard, D. P.; Brannon, J. C.; Aaboe, E.; Budahn, J. R.

    1978-01-01

    Atomic absorption spectrometry and instrumental neutron activation analysis were employed to analyze six Luna 24 soils for major and trace elements. The analysis revealed well-mixed soils, though size fractions of each of the soils showed quite dissimilar compositions. Thus the regolith apparently has not been extensively reworked. Noritic breccia admixed preferentially to the finest size fractions and differential comminution of one or more other soil components accounted for the observed elemental distributions as a function of grain size. The ferrobasalt composition and one or more components with higher MgO contents have been identified in the samples.

  14. Effects of Fiber/Matrix Interface and its Composition on Mechanical Properties of Hi-Nicalon/Celsian Composites

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Eldridge, Jeffrey I.

    1999-01-01

    To evaluate the effects of fiber coatings on composite mechanical properties. unidirectional celsian matrix composites reinforced with uncoated Hi-Nicalon fibers and those precoated with a dual BN/SiC layer in two separate batches (batch 1 and batch 2) were tested in three-point flexure. The uncoated-fiber reinforced composites showed catastrophic failure with strength of 210+/-35 MPa and a flat fracture surface. In contrast, composites reinforced with coated fibers exhibited graceful failure with extensive fiber pullout and showed significantly higher ultimate strengths, 904 and 759 MPa for the batch 1 and 2 coatings. respectively. Fiber push-in tests and microscopic examination indicated no chemical reaction at the uncoated or coated fiber-matrix interfaces that might be responsible for fiber strength degradation. Instead, the low strength of composite with uncoated fibers was due to degradation of the fiber strength from mechanical damage during composite processing. Despite identical processing, the first matrix cracking stresses (Sigma(sub mc)) of the composites reinforced with fibers coated in batch 1 and batch 2 were quite different, 436 and 122 MPa, respectively. The large difference in Sigma(sub mc) of the coated-fiber composites was attributed to differences in fiber sliding stresses (Tau(sub friction)), 121.2+/-48.7 and 10.4+/-3.1 MPa, respectively. for the two composites as determined by the fiber push-in method. Such a large difference in Tau(sub friction). for the two composites was found to be due to the difference in the compositions of the interface coatings. Scanning Auger microprobe analysis revealed the presence of carbon layers between the fiber and BN. and also between the BN and SiC coatings in the composite showing lower Tau(sub friction). This resulted in lower Sigma(sub mc) in agreement with the ACK theory. The ultimate strengths of the two composites depended mainly on the fiber volume fraction and were not significantly effected by Tau(sub friction) values, as expected. The poor reproducibility of the fiber coating composition between the two batches was judged to be the primary source of the large differences in performance of the two composites.

  15. Current-voltage hysteresis and dielectric properties of PVA coated MWCNT film

    NASA Astrophysics Data System (ADS)

    Das, Amit Kumar; Meikap, Ajit Kumar

    2017-12-01

    In this work, we have prepared polyvinyl alcohol (PVA) coated multiwall carbon nanotube (MWCNT) film by an in situ chemical oxidative preparation technique. The thermogravimetric analysis clearly explains the thermal degradation of pure polymer and polymer nanocomposite film. We have studied the AC electrical transport properties and current-voltage (I-V) characteristic of PVA-MWCNT composites within the temperature range 300 ≤ T ≤ 423 K and frequency range 150 Hz ≤ f ≤ 2 MHz. It is observed that the dielectric constant of the composite film increases significantly. The frequency variation of AC conductivity follows the power law ( ωS ) and a sharp transition from small polaron tunneling to correlated barrier hopping model is found. The imaginary part of electric modulus shows non-Debye type asymmetric behaviour. The impedance spectroscopy shows the negative temperature coefficient of resistance of the composite film. Nyquist plot of the composite film at different temperatures is established from impedance measurement. The current-voltage characteristic (under ± 20 V) shows hysteresis behaviour and field dependent resistance. We simulate the experimentally observed current density-electric field data with the established theory.

  16. Current-voltage hysteresis and dielectric properties of PVA coated MWCNT film

    NASA Astrophysics Data System (ADS)

    Das, Amit Kumar; Meikap, Ajit Kumar

    2018-06-01

    In this work, we have prepared polyvinyl alcohol (PVA) coated multiwall carbon nanotube (MWCNT) film by an in situ chemical oxidative preparation technique. The thermogravimetric analysis clearly explains the thermal degradation of pure polymer and polymer nanocomposite film. We have studied the AC electrical transport properties and current-voltage (I-V) characteristic of PVA-MWCNT composites within the temperature range 300 ≤ T ≤ 423 K and frequency range 150 Hz ≤ f ≤ 2 MHz. It is observed that the dielectric constant of the composite film increases significantly. The frequency variation of AC conductivity follows the power law ( ωS ) and a sharp transition from small polaron tunneling to correlated barrier hopping model is found. The imaginary part of electric modulus shows non-Debye type asymmetric behaviour. The impedance spectroscopy shows the negative temperature coefficient of resistance of the composite film. Nyquist plot of the composite film at different temperatures is established from impedance measurement. The current-voltage characteristic (under ± 20 V) shows hysteresis behaviour and field dependent resistance. We simulate the experimentally observed current density-electric field data with the established theory.

  17. [Quantitative surface analysis of Pt-Co, Cu-Au and Cu-Ag alloy films by XPS and AES].

    PubMed

    Li, Lian-Zhong; Zhuo, Shang-Jun; Shen, Ru-Xiang; Qian, Rong; Gao, Jie

    2013-11-01

    In order to improve the quantitative analysis accuracy of AES, We associated XPS with AES and studied the method to reduce the error of AES quantitative analysis, selected Pt-Co, Cu-Au and Cu-Ag binary alloy thin-films as the samples, used XPS to correct AES quantitative analysis results by changing the auger sensitivity factors to make their quantitative analysis results more similar. Then we verified the accuracy of the quantitative analysis of AES when using the revised sensitivity factors by other samples with different composition ratio, and the results showed that the corrected relative sensitivity factors can reduce the error in quantitative analysis of AES to less than 10%. Peak defining is difficult in the form of the integral spectrum of AES analysis since choosing the starting point and ending point when determining the characteristic auger peak intensity area with great uncertainty, and to make analysis easier, we also processed data in the form of the differential spectrum, made quantitative analysis on the basis of peak to peak height instead of peak area, corrected the relative sensitivity factors, and verified the accuracy of quantitative analysis by the other samples with different composition ratio. The result showed that the analytical error in quantitative analysis of AES reduced to less than 9%. It showed that the accuracy of AES quantitative analysis can be highly improved by the way of associating XPS with AES to correct the auger sensitivity factors since the matrix effects are taken into account. Good consistency was presented, proving the feasibility of this method.

  18. Preparation of manganese doped cadmium sulfide nanoparticles in zincblende phase and their magnetic properties.

    PubMed

    Nakaya, Masafumi; Tanaka, Itaru; Muramatsu, Atsushi

    2012-12-01

    In this study, the random dope of Mn into CdS nanoparticles in zincblende phase has been carried out under the mild reaction condition. The resulting nanoparticles were characterized by energy dispersive X-ray analysis (EDX), transmission electron microscopy (TEM), X-ray diffractometer (XRD), UV-Vis spectrometer, PL spectrometer, and SQUID. EDX showed that the compositions of Mn doped CdS nanoparticles were readily controlled. TEM showed the particle sizes were not significantly affected by the compositions, retaining to be ca. 3 nm with a narrow size distribution. UV-Vis and PL spectra of the resulting nanoparticles showed the intra-Mn level may be affected by the quantum size effect. SQUID measurement showed that the resulting nanoparticles showed diamagnetism, paramagnetism and superparamagnetism dependent on Mn content.

  19. Using fluorescence spectroscopy coupled with chemometric analysis to investigate the origin, composition, and dynamics of dissolved organic matter in leachate-polluted groundwater.

    PubMed

    He, Xiao-Song; Xi, Bei-Dou; Gao, Ru-Tai; Wang, Lei; Ma, Yan; Cui, Dong-Yu; Tan, Wen-Bing

    2015-06-01

    Groundwater was collected in 2011 and 2012, and fluorescence spectroscopy coupled with chemometric analysis was employed to investigate the composition, origin, and dynamics of dissolved organic matter (DOM) in the groundwater. The results showed that the groundwater DOM comprised protein-, fulvic-, and humic-like substances, and the protein-like component originated predominantly from microbial production. The groundwater pollution by landfill leachate enhanced microbial activity and thereby increased microbial by-product-like material such as protein-like component in the groundwater. Excitation-emission matrix fluorescence spectra combined with parallel factor analysis showed that the protein-like matter content increased from 2011 to 2012 in the groundwater, whereas the fulvic- and humic-like matter concentration exhibited no significant changes. In addition, synchronous-scan fluorescence spectra coupled with two-dimensional correlation analysis showed that the change of the fulvic- and humic-like matter was faster than that of the protein-like substances, as the groundwater flowed from upstream to downstream in 2011, but slower than that of the protein-like substance in 2012 due to the enhancement of microbial activity. Fluorescence spectroscopy combined with chemometric analysis can investigate groundwater pollution characteristics and monitor DOM dynamics in groundwater.

  20. Influence of Thermo-Oxidative Ageing on the Thermal and Dynamical Mechanical Properties of Long Glass Fibre-Reinforced Poly(Butylene Terephthalate) Composites Filled with DOPO

    PubMed Central

    Zhang, Daohai; He, Min; He, Weidi; Zhou, Ying; Qin, Shuhao; Yu, Jie

    2017-01-01

    In this work, the long glass fibre-reinforced poly(butylene terephthalate) (PBT) composites filled with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) were prepared by melt blending, and the influence of thermo-oxidative ageing on the static and dynamic mechanical properties, thermal behaviours and morphology of composites with different ageing time at 120 °C were investigated and analysed. The results showed that the mechanical properties decreased in the primary stage of ageing, while embrittlement occurs in the later period, and the crystallinity of PBT decreases first, and then recovers to some extent. The scanning electron microscopy (SEM) photos of the samples indicated that the obvious crack appeared on the sample surface and a deeper, broader crack occurred with a longer ageing time. The results of energy dispersive X-ray analysis (EDAX) proved the DOPO filler diffused to the sample surface by measuring the content of phosphorus. Thermal gravimetric analysis (TGA) curves showed that the thermal stabilities of composites increased with longer ageing time, as did the values of the limited oxygen index (LOI). Meanwhile, the results of dynamic mechanical analysis (DMA) indicated that the glass transition temperature shifted to a higher temperature after ageing due to the effect of crosslinking, and both the crosslinking and degradation of PBT molecular chains act as the main factors in the whole process of thermo-oxidative ageing. PMID:28772860

  1. Influence of Thermo-Oxidative Ageing on the Thermal and Dynamical Mechanical Properties of Long Glass Fibre-Reinforced Poly(Butylene Terephthalate) Composites Filled with DOPO.

    PubMed

    Zhang, Daohai; He, Min; He, Weidi; Zhou, Ying; Qin, Shuhao; Yu, Jie

    2017-05-04

    In this work, the long glass fibre-reinforced poly(butylene terephthalate) (PBT) composites filled with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) were prepared by melt blending, and the influence of thermo-oxidative ageing on the static and dynamic mechanical properties, thermal behaviours and morphology of composites with different ageing time at 120 °C were investigated and analysed. The results showed that the mechanical properties decreased in the primary stage of ageing, while embrittlement occurs in the later period, and the crystallinity of PBT decreases first, and then recovers to some extent. The scanning electron microscopy (SEM) photos of the samples indicated that the obvious crack appeared on the sample surface and a deeper, broader crack occurred with a longer ageing time. The results of energy dispersive X-ray analysis (EDAX) proved the DOPO filler diffused to the sample surface by measuring the content of phosphorus. Thermal gravimetric analysis (TGA) curves showed that the thermal stabilities of composites increased with longer ageing time, as did the values of the limited oxygen index (LOI). Meanwhile, the results of dynamic mechanical analysis (DMA) indicated that the glass transition temperature shifted to a higher temperature after ageing due to the effect of crosslinking, and both the crosslinking and degradation of PBT molecular chains act as the main factors in the whole process of thermo-oxidative ageing.

  2. Antibacterial and antibiofouling clay nanotube-silicone composite.

    PubMed

    Boyer, C J; Ambrose, J; Das, S; Humayun, A; Chappidi, D; Giorno, R; Mills, D K

    2018-01-01

    Invasive medical devices are used in treating millions of patients each day. Bacterial adherence to their surface is an early step in biofilm formation that may lead to infection, health complications, longer hospital stays, and death. Prevention of bacterial adherence and biofilm development continues to be a major healthcare challenge. Accordingly, there is a pressing need to improve the anti-microbial properties of medical devices. Polydimethylsiloxane (PDMS) was doped with halloysite nanotubes (HNTs), and the PDMS-HNT composite surfaces were coated with PDMS-b-polyethylene oxide (PEO) and antibacterials. The composite material properties were examined using SEM, energy dispersive spectroscopy, water contact angle measurements, tensile testing, UV-Vis spectroscopy, and thermal gravimetric analysis. The antibacterial potential of the PDMS-HNT composites was compared to commercial urinary catheters using cultures of E. coli and S. aureus . Fibrinogen adsorption studies were also performed on the PDMS-HNT-PEO composites. HNT addition increased drug load during solvent swelling without reducing material strength. The hydrophilic properties provided by PEO were maintained after HNT addition, and the composites displayed protein-repelling properties. Additionally, composites showed superiority over commercial catheters at inhibiting bacterial growth. PDMS-HNT composites showed superiority regarding their efficacy at inhibiting bacterial growth, in comparison to commercial antibacterial catheters. Our data suggest that PDMS-HNT composites have potential as a coating material for anti-bacterial invasive devices and in the prevention of institutional-acquired infections.

  3. Antibacterial and antibiofouling clay nanotube–silicone composite

    PubMed Central

    Boyer, CJ; Ambrose, J; Das, S; Humayun, A; Chappidi, D; Giorno, R; Mills, DK

    2018-01-01

    Introduction Invasive medical devices are used in treating millions of patients each day. Bacterial adherence to their surface is an early step in biofilm formation that may lead to infection, health complications, longer hospital stays, and death. Prevention of bacterial adherence and biofilm development continues to be a major healthcare challenge. Accordingly, there is a pressing need to improve the anti-microbial properties of medical devices. Materials and Methods Polydimethylsiloxane (PDMS) was doped with halloysite nanotubes (HNTs), and the PDMS-HNT composite surfaces were coated with PDMS-b-polyethylene oxide (PEO) and antibacterials. The composite material properties were examined using SEM, energy dispersive spectroscopy, water contact angle measurements, tensile testing, UV-Vis spectroscopy, and thermal gravimetric analysis. The antibacterial potential of the PDMS-HNT composites was compared to commercial urinary catheters using cultures of E. coli and S. aureus. Fibrinogen adsorption studies were also performed on the PDMS-HNT-PEO composites. Results HNT addition increased drug load during solvent swelling without reducing material strength. The hydrophilic properties provided by PEO were maintained after HNT addition, and the composites displayed protein-repelling properties. Additionally, composites showed superiority over commercial catheters at inhibiting bacterial growth. Conclusion PDMS-HNT composites showed superiority regarding their efficacy at inhibiting bacterial growth, in comparison to commercial antibacterial catheters. Our data suggest that PDMS-HNT composites have potential as a coating material for anti-bacterial invasive devices and in the prevention of institutional-acquired infections. PMID:29713206

  4. Development of Composite PCMs by Incorporation of Paraffin into Various Building Materials

    PubMed Central

    Memon, Shazim Ali; Liao, Wenyu; Yang, Shuqing; Cui, Hongzhi; Shah, Syed Farasat Ali

    2015-01-01

    In this research, we focused on the development of composite phase-change materials (CPCMs) by incorporation of a paraffin through vacuum impregnation in widely used building materials (Kaolin and ground granulated blast-furnace slag (GGBS)). The composite PCMs were characterized using environmental scanning electron microscopy (ESEM), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) techniques. Moreover, thermal performance of cement paste composite PCM panels was evaluated using a self-designed heating system. Test results showed that the maximum percentage of paraffin retained by Kaolin and GGBS was found to be 18% and 9%, respectively. FT-IR results show that CPCMs are chemically compatible. The phase-change temperatures of CPCMs were in the human comfort zone, and they possessed considerable latent-heat storage capacity. TGA results showed that CPCMs are thermally stable, and they did not show any sign of degradation below 150 °C. From thermal cycling tests, it was revealed that the CPCMs are thermally reliable. Thermal performance tests showed that in comparison to the control room model, the room models prepared with CPCMs reduced both the temperature fluctuations and maximum indoor center temperature. Therefore, the prepared CPCMs have some potential in reducing peak loads in buildings when applied to building facade. PMID:28787953

  5. Surface characterization of LDEF materials

    NASA Astrophysics Data System (ADS)

    Wightman, J. P.; Grammer, Holly Little

    1993-10-01

    The NASA Long Duration Exposure Facility (LDEF), a passive experimental satellite, was placed into low-Earth orbit by the Shuttle Challenger in Apr. 1984. The LDEF spent an unprecedented 69 months in space. The flight and recovery of the LDEF provided a wealth of information on the longterm space environmental effects of a variety of materials exposed to the low-Earth orbit environment. Surface characterization of LDEF materials included polymers, composites, thermal control paints, and aluminum. X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), scanning electron microscopy (SEM), and contact angle analysis were used to document changes in both the surface composition and surface chemistry of these materials. Detailed XPS analysis of the polymer systems, such as Kapton, polyimide polysiloxane copolymers, and fluorinated ethylene propylene thermal blankets on the backside of the LDEF revealed significant changes in both the surface composition and surface chemistry as a result of exposure to the low-Earth orbit environment. Polymer systems such as Kapton, polyimide polysiloxane copolymers, and polysulfone showed a common trend of decreasing carbon content and increasing oxygen content with respect to the control sample. Carbon 1s curve fit XPS analysis of the composite samples, in conjunction with SEM photomicrographs, revealed significant ablation of the polymer matrix resin to expose the carbon fibers of the composite during exposure to the space environment. Surface characterization of anodized aluminum tray clamps, which were located at regular intervals over the entire LDEF frame, provided the first results to evaluate the extent of contamination with respect to position on the LDEF. The XPS results clearly showed that the amount and state of both silicon and fluorine contamination were directly dependent upon the position of the tray clamp on the LDEF.

  6. Surface characterization of LDEF materials

    NASA Technical Reports Server (NTRS)

    Wightman, J. P.; Grammer, Holly Little

    1993-01-01

    The NASA Long Duration Exposure Facility (LDEF), a passive experimental satellite, was placed into low-Earth orbit by the Shuttle Challenger in Apr. 1984. The LDEF spent an unprecedented 69 months in space. The flight and recovery of the LDEF provided a wealth of information on the longterm space environmental effects of a variety of materials exposed to the low-Earth orbit environment. Surface characterization of LDEF materials included polymers, composites, thermal control paints, and aluminum. X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), scanning electron microscopy (SEM), and contact angle analysis were used to document changes in both the surface composition and surface chemistry of these materials. Detailed XPS analysis of the polymer systems, such as Kapton, polyimide polysiloxane copolymers, and fluorinated ethylene propylene thermal blankets on the backside of the LDEF revealed significant changes in both the surface composition and surface chemistry as a result of exposure to the low-Earth orbit environment. Polymer systems such as Kapton, polyimide polysiloxane copolymers, and polysulfone showed a common trend of decreasing carbon content and increasing oxygen content with respect to the control sample. Carbon 1s curve fit XPS analysis of the composite samples, in conjunction with SEM photomicrographs, revealed significant ablation of the polymer matrix resin to expose the carbon fibers of the composite during exposure to the space environment. Surface characterization of anodized aluminum tray clamps, which were located at regular intervals over the entire LDEF frame, provided the first results to evaluate the extent of contamination with respect to position on the LDEF. The XPS results clearly showed that the amount and state of both silicon and fluorine contamination were directly dependent upon the position of the tray clamp on the LDEF.

  7. Does the use of a novel self-adhesive flowable composite reduce nanoleakage?

    PubMed

    Naga, Abeer Abo El; Yousef, Mohammed; Ramadan, Rasha; Fayez Bahgat, Sherif; Alshawwa, Lana

    2015-01-01

    The aim of the study reported here was to evaluate the performance of a self-adhesive flowable composite and two self-etching adhesive systems, when subjected to cyclic loading, in preventing the nanoleakage of Class V restorations. Wedge-shape Class V cavities were prepared (4×2×2 mm [length × width × depth]) on the buccal surfaces of 90 sound human premolars. Cavities were divided randomly into three groups (n=30) according to the used adhesive (Xeno(®) V [self-etching adhesive system]) and BOND-1(®) SF (solvent-free self-etching adhesive system) in conjunction with Artiste(®) Nano Composite resin, and Fusio™ Liquid Dentin (self-adhesive flowable composite), consecutively. Each group was further divided into three subgroups (n=10): (A) control, (B) subjected to occlusal cyclic loading (90N for 5,000 cycles), and (C) subjected to occlusal cyclic loading (90N for 10,000 cycles). Teeth then were coated with nail polish up to 1 mm from the interface, immersed in 50% silver nitrate solution for 24 hours and tested for nanoleakage using the environmental scanning electron microscopy and energy dispersive analysis X-ray analysis. Data were statistically analyzed using two-way analysis of variance and Tukey's post hoc tests (P≤0.05). The Fusio Liquid Dentin group showed statistically significant lower percentages of silver penetration (0.55 μ) compared with the BOND-1 SF (3.45 μ) and Xeno V (3.82 μ) groups, which were not statistically different from each other, as they both showed higher silver penetration. Under the test conditions, the self-adhesive flowable composite provided better sealing ability. Aging of the two tested adhesive systems, as a function of cyclic loading, increased nanoleakage.

  8. Does the use of a novel self-adhesive flowable composite reduce nanoleakage?

    PubMed Central

    Naga, Abeer Abo El; Yousef, Mohammed; Ramadan, Rasha; Fayez Bahgat, Sherif; Alshawwa, Lana

    2015-01-01

    Objective The aim of the study reported here was to evaluate the performance of a self-adhesive flowable composite and two self-etching adhesive systems, when subjected to cyclic loading, in preventing the nanoleakage of Class V restorations. Methods Wedge-shape Class V cavities were prepared (4×2×2 mm [length × width × depth]) on the buccal surfaces of 90 sound human premolars. Cavities were divided randomly into three groups (n=30) according to the used adhesive (Xeno® V [self-etching adhesive system]) and BOND-1® SF (solvent-free self-etching adhesive system) in conjunction with Artiste® Nano Composite resin, and Fusio™ Liquid Dentin (self-adhesive flowable composite), consecutively. Each group was further divided into three subgroups (n=10): (A) control, (B) subjected to occlusal cyclic loading (90N for 5,000 cycles), and (C) subjected to occlusal cyclic loading (90N for 10,000 cycles). Teeth then were coated with nail polish up to 1 mm from the interface, immersed in 50% silver nitrate solution for 24 hours and tested for nanoleakage using the environmental scanning electron microscopy and energy dispersive analysis X-ray analysis. Data were statistically analyzed using two-way analysis of variance and Tukey’s post hoc tests (P≤0.05). Results The Fusio Liquid Dentin group showed statistically significant lower percentages of silver penetration (0.55 μ) compared with the BOND-1 SF (3.45 μ) and Xeno V (3.82 μ) groups, which were not statistically different from each other, as they both showed higher silver penetration. Conclusion Under the test conditions, the self-adhesive flowable composite provided better sealing ability. Aging of the two tested adhesive systems, as a function of cyclic loading, increased nanoleakage. PMID:25848318

  9. A silicone rubber based composites using n-octadecane/poly (styrene-methyl methacrylate) microcapsules as energy storage particle

    NASA Astrophysics Data System (ADS)

    Wu, W. L.; Chen, Z.

    A phase-change energy-storage material, silicone rubber (SR) coated n-octadecane/poly (styrene-methyl methacrylate) (SR/OD/P(St-MMA)) microcapsule composites, was prepared by mixing SR and OD/P(St-MMA) microcapsules. The microcapsule content and silicone rubber coated method were investigated. The morphology and thermal properties of the composites were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TG), differential scanning calorimetry (DSC) and heat storage properties. The results showed that the thermal and mechanical properties of SR/OD/P(St-MMA) composites were excellent when the microcapsules were coated with room temperature vulcanized silicone rubber (RTVSR), of which content was 2 phr (per hundred rubber). The enthalpy value of the composites was 67.6 J g-1 and the composites were found to have good energy storage function.

  10. Flexible regenerated cellulose/polypyrrole composite films with enhanced dielectric properties.

    PubMed

    Raghunathan, Sreejesh Poikavila; Narayanan, Sona; Poulose, Aby Cheruvathur; Joseph, Rani

    2017-02-10

    Flexible regenerated cellulose/polypyrrole (RC-PPy) conductive composite films were prepared by insitu polymerization of pyrrole on regenerated cellulose (RC) matrix using ammonium persulphate as oxidant. FTIR, XPS and XRD analysis of RC-PPy composite films revealed strong interaction between polypyrrole (PPy) and RC matrix. XRD results indicated that crystalline structure of RC matrix remains intact even after composite formation. SEM micrographs revealed the formation of a continuous conductive network of PPy particles in the RC matrix, leading to significant improvement in electrical and dielectric properties. The electrical conductivity of RC-PPy composites with 12wt% of PPy was 3.2×10 -5 S/cm, which is approximately seven fold higher than that of RC. Composites showed high dielectric constant and low dielectric loss values, which is essential in capacitor application. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Efficient removal of dyes from aqueous solutions using a novel hemoglobin/iron oxide composite.

    PubMed

    Essandoh, Matthew; Garcia, Rafael A

    2018-05-10

    Magnetic particles entrapped in different matrices that display high thermal stability, low toxicity, interactive functions at the surface, and high saturation magnetization are of great interest. The objective of this work was to synthesize a novel hemoglobin/iron oxide composite (Hb/Fe 3 O 4 ) for the removal of different dyes (indigo carmine, naphthol blue black, tartrazine, erythrosine, eriochrome black T and bromophenol blue) from aqueous solutions. The Hb/Fe 3 O 4 composite was characterized using scanning electron microscopy (SEM), laser diffraction particle size analysis, FT-IR spectroscopy, isoelectric point determination and thermogravimetric analysis (TGA). The Hb/Fe 3 O 4 composite showed high removal efficiency toward all the different classes of dyes studied and the mechanism of adsorption was dominated by electrostatic interaction. Adsorption was found to follow pseudo-second order kinetic model and Langmuir isotherm. The Langmuir monolayer adsorption capacities for all the dyes range from 80 to 178 mg/g. The Hb/Fe 3 O 4 composite possesses extra advantage of being easily isolated from aqueous suspension using an external magnet. The stability of the prepared Hb/Fe 3 O 4 composite was also demonstrated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. A Simple Geotracer Compositional Correlation Analysis Reveals Oil Charge and Migration Pathways

    NASA Astrophysics Data System (ADS)

    Yang, Yunlai; Arouri, Khaled

    2016-03-01

    A novel approach, based on geotracer compositional correlation analysis is reported, which reveals the oil charge sequence and migration pathways for five oil fields in Saudi Arabia. The geotracers utilised are carbazoles, a family of neutral pyrrolic nitrogen compounds known to occur naturally in crude oils. The approach is based on the concept that closely related fields, with respect to filling sequence, will show a higher carbazole compositional correlation, than those fields that are less related. That is, carbazole compositional correlation coefficients can quantify the charge and filling relationships among different fields. Consequently, oil migration pathways can be defined based on the established filling relationships. The compositional correlation coefficients of isomers of C1 and C2 carbazoles, and benzo[a]carbazole for all different combination pairs of the five fields were found to vary extremely widely (0.28 to 0.94). A wide range of compositional correlation coefficients allows adequate differentiation of separate filling relationships. Based on the established filling relationships, three distinct migration pathways were inferred, with each apparently being charged from a different part of a common source kitchen. The recognition of these charge and migration pathways will greatly aid the search for new accumulations.

  13. A Simple Geotracer Compositional Correlation Analysis Reveals Oil Charge and Migration Pathways

    PubMed Central

    Yang, Yunlai; Arouri, Khaled

    2016-01-01

    A novel approach, based on geotracer compositional correlation analysis is reported, which reveals the oil charge sequence and migration pathways for five oil fields in Saudi Arabia. The geotracers utilised are carbazoles, a family of neutral pyrrolic nitrogen compounds known to occur naturally in crude oils. The approach is based on the concept that closely related fields, with respect to filling sequence, will show a higher carbazole compositional correlation, than those fields that are less related. That is, carbazole compositional correlation coefficients can quantify the charge and filling relationships among different fields. Consequently, oil migration pathways can be defined based on the established filling relationships. The compositional correlation coefficients of isomers of C1 and C2 carbazoles, and benzo[a]carbazole for all different combination pairs of the five fields were found to vary extremely widely (0.28 to 0.94). A wide range of compositional correlation coefficients allows adequate differentiation of separate filling relationships. Based on the established filling relationships, three distinct migration pathways were inferred, with each apparently being charged from a different part of a common source kitchen. The recognition of these charge and migration pathways will greatly aid the search for new accumulations. PMID:26965479

  14. A Simple Geotracer Compositional Correlation Analysis Reveals Oil Charge and Migration Pathways.

    PubMed

    Yang, Yunlai; Arouri, Khaled

    2016-03-11

    A novel approach, based on geotracer compositional correlation analysis is reported, which reveals the oil charge sequence and migration pathways for five oil fields in Saudi Arabia. The geotracers utilised are carbazoles, a family of neutral pyrrolic nitrogen compounds known to occur naturally in crude oils. The approach is based on the concept that closely related fields, with respect to filling sequence, will show a higher carbazole compositional correlation, than those fields that are less related. That is, carbazole compositional correlation coefficients can quantify the charge and filling relationships among different fields. Consequently, oil migration pathways can be defined based on the established filling relationships. The compositional correlation coefficients of isomers of C1 and C2 carbazoles, and benzo[a]carbazole for all different combination pairs of the five fields were found to vary extremely widely (0.28 to 0.94). A wide range of compositional correlation coefficients allows adequate differentiation of separate filling relationships. Based on the established filling relationships, three distinct migration pathways were inferred, with each apparently being charged from a different part of a common source kitchen. The recognition of these charge and migration pathways will greatly aid the search for new accumulations.

  15. Probabilistic Dynamic Buckling of Smart Composite Shells

    NASA Technical Reports Server (NTRS)

    Abumeri, Galib H.; Chamis, Christos C.

    2003-01-01

    A computational simulation method is presented to evaluate the deterministic and nondeterministic dynamic buckling of smart composite shells. The combined use of composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right below the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 10 percent at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load while uncertainties in the electric field strength and smart material volume fraction have moderate effects. For the specific shell considered in this evaluation, the use of smart composite material is not recommended because the shell buckling resistance can be improved by simply re-arranging the orientation of the outer plies, as shown in the dynamic buckling analysis results presented in this report.

  16. Probabilistic Dynamic Buckling of Smart Composite Shells

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Abumeri, Galib H.

    2007-01-01

    A computational simulation method is presented to evaluate the deterministic and nondeterministic dynamic buckling of smart composite shells. The combined use of intraply hybrid composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right next to the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 10% at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load while uncertainties in the electric field strength and smart material volume fraction have moderate effects. For the specific shell considered in this evaluation, the use of smart composite material is not recommended because the shell buckling resistance can be improved by simply re-arranging the orientation of the outer plies, as shown in the dynamic buckling analysis results presented in this report.

  17. Influence of finishing/polishing on color stability and surface roughness of composites submitted to accelerated artificial aging.

    PubMed

    Pinto, Gustavo Da Col dos Santos; Dias, Kleber Campioni; Cruvinel, Diogo Rodrigues; Garcia, Lucas da Fonseca Roberti; Consani, Simonides; Pires-De-Souza, Fernanda de Carvalho Panzeri

    2013-01-01

    To assess the influence of finishing/polishing procedure on color stability (ΔE ) and surface roughness (R(a)) of composites (Heliomolar and Tetric - color A2) submitted to accelerated artificial aging (AAA). Sixty test specimens were made of each composite (12 mm × 2 mm) and separated into six groups (n = 10), according to the type of finishing/polishing to which they were submitted: C, control; F, tip 3195 F; FF, tip 3195 FF; FP, tip 3195 F + diamond paste; FFP, tip 3195 FF + diamond paste; SF, Sof-Lex discs. After polishing, controlled by an electromechanical system, initial color (spectrophotometer PCB 6807 BYK GARDNER) and R(a) (roughness meter Surfcorder SE 1700, cut-off 0.25 mm) readings were taken. Next, the test specimens were submitted to the AAA procedure (C-UV Comexim) for 384 hours, and at the end of this period, new color readings and R(a) were taken. Statistical analysis [2-way analysis of variance (ANOVA), Bonferroni, P < 0.05] showed that all composites demonstrated ΔE alteration above the clinically acceptable limits, with the exception of Heliomolar composite in FP. The greatest ΔE alteration occurred for Tetric composite in SF (13.38 ± 2.10) statistically different from F and FF (P < 0.05). For R(a), Group F showed rougher samples than FF with statistically significant difference (P < 0.05). In spite of the surface differences, the different finishing/polishing procedures were not capable of providing color stability within the clinically acceptable limits.

  18. Relationship between body composition and postural control in prepubertal overweight/obese children: A cross-sectional study.

    PubMed

    Villarrasa-Sapiña, Israel; Álvarez-Pitti, Julio; Cabeza-Ruiz, Ruth; Redón, Pau; Lurbe, Empar; García-Massó, Xavier

    2018-02-01

    Excess body weight during childhood causes reduced motor functionality and problems in postural control, a negative influence which has been reported in the literature. Nevertheless, no information regarding the effect of body composition on the postural control of overweight and obese children is available. The objective of this study was therefore to establish these relationships. A cross-sectional design was used to establish relationships between body composition and postural control variables obtained in bipedal eyes-open and eyes-closed conditions in twenty-two children. Centre of pressure signals were analysed in the temporal and frequency domains. Pearson correlations were applied to establish relationships between variables. Principal component analysis was applied to the body composition variables to avoid potential multicollinearity in the regression models. These principal components were used to perform a multiple linear regression analysis, from which regression models were obtained to predict postural control. Height and leg mass were the body composition variables that showed the highest correlation with postural control. Multiple regression models were also obtained and several of these models showed a higher correlation coefficient in predicting postural control than simple correlations. These models revealed that leg and trunk mass were good predictors of postural control. More equations were found in the eyes-open than eyes-closed condition. Body weight and height are negatively correlated with postural control. However, leg and trunk mass are better postural control predictors than arm or body mass. Finally, body composition variables are more useful in predicting postural control when the eyes are open. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Reinforcement effect of poly(butylene succinate) (PBS)-grafted cellulose nanocrystal on toughened PBS/polylactic acid blends.

    PubMed

    Zhang, Xuzhen; Zhang, Yong

    2016-04-20

    Poly(butylene succinate) (PBS)/polylactic acid (PLA) blends modified with dicumyl peroxide (DCP) were reinforced by PBS-g-cellulose nanocrystal (CNC) through melt mixing. PBS-g-CNC was prepared through in situ polymerization and its structure was confirmed by FTIR, (13)C NMR, XPS and GPC analysis after saponification. The morphological analysis of PBS/PLA/PBS-g-CNC composites before and after etched by CH2Cl2 shows that the addition of DCP and PBS-g-CNC could decrease the size of PBS as a dispersed phase in PLA matrix and improve the dispersion of PBS-g-CNC in both PBS and PLA phases, which could affect the crystallization and mechanical properties of composites. The crystallinity of PLA α'-phase crystal in PBS/PLA/PBS-g-CNC composites is increased obviously by the addition of PBS-g-CNC, leading to an increase of the crystallinity of the composites. PBS/PLA blends modified by DCP have high Notched Izod impact strength and moduli, and the values are increased by the addition of PBS-g-CNC. Both storage modulus and glass translation temperature of PBS/PLA blend are increased by DCP and PBS-g-CNC, which is proved by DMA results, showing a weak molecular segment mobility of PBS/PLA matrix. The addition of DCP decreases the crystallization temperature and crystallinity of PBS/PLA composite, but increases the thermal stability of composites, mostly because of the crosslink effect of DCP on PBS/PLA matrix. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. The complicated substrates enhance the microbial diversity and zinc leaching efficiency in sphalerite bioleaching system.

    PubMed

    Xiao, Yunhua; Xu, YongDong; Dong, Weiling; Liang, Yili; Fan, Fenliang; Zhang, Xiaoxia; Zhang, Xian; Niu, Jiaojiao; Ma, Liyuan; She, Siyuan; He, Zhili; Liu, Xueduan; Yin, Huaqun

    2015-12-01

    This study used an artificial enrichment microbial consortium to examine the effects of different substrate conditions on microbial diversity, composition, and function (e.g., zinc leaching efficiency) through adding pyrite (SP group), chalcopyrite (SC group), or both (SPC group) in sphalerite bioleaching systems. 16S rRNA gene sequencing analysis showed that microbial community structures and compositions dramatically changed with additions of pyrite or chalcopyrite during the sphalerite bioleaching process. Shannon diversity index showed a significantly increase in the SP (1.460), SC (1.476), and SPC (1.341) groups compared with control (sphalerite group, 0.624) on day 30, meanwhile, zinc leaching efficiencies were enhanced by about 13.4, 2.9, and 13.2%, respectively. Also, additions of pyrite or chalcopyrite could increase electric potential (ORP) and the concentrations of Fe3+ and H+, which were the main factors shaping microbial community structures by Mantel test analysis. Linear regression analysis showed that ORP, Fe3+ concentration, and pH were significantly correlated to zinc leaching efficiency and microbial diversity. In addition, we found that leaching efficiency showed a positive and significant relationship with microbial diversity. In conclusion, our results showed that the complicated substrates could significantly enhance microbial diversity and activity of function.

  1. Geometrical Effect on Thermal Conductivity of Unidirectional Fiber-Reinforced Polymer Composite along Different In-plane Orientations

    NASA Astrophysics Data System (ADS)

    Fang, Zenong; Li, Min; Wang, Shaokai; Li, Yanxia; Wang, Xiaolei; Gu, Yizhuo; Liu, Qianli; Tian, Jie; Zhang, Zuoguang

    2017-11-01

    This paper focuses on the anisotropic characteristics of the in-plane thermal conductivity of fiber-reinforced polymer composite based on experiment and simulation. Thermal conductivity along different in-plane orientations was measured by laser flash analysis (LFA) and steady-state heat flow method. Their heat transfer processes were simulated to reveal the geometrical effect on thermal conduction. The results show that the in-plane thermal conduction of unidirectional carbon-fiber-reinforced polymer composite is greatly influenced by the sample geometry at an in-plane orientation angle between 0° to 90°. By defining radius-to-thickness as a dimensionless shape factor for the LFA sample, the apparent thermal conductivity shows a dramatic change when the shape factor is close to the tangent of the orientation angle (tanθ). Based on finite element analysis, this phenomenon was revealed to correlate with the change of the heat transfer process. When the shape factor is larger than tanθ, the apparent thermal conductivity is consistent with the estimated value according to the theoretical model. For a sample with a shape factor smaller than tanθ, the apparent thermal conductivity shows a slow growth around a low value, which seriously deviates from the theory estimation. This phenomenon was revealed to correlate with the change of the heat transfer process from a continuous path to a zigzag path. These results will be helpful in optimizing the ply scheme of composite laminates for thermal management applications.

  2. Optical properties study of nano-composite filled D shape photonic crystal fibre

    NASA Astrophysics Data System (ADS)

    Udaiyakumar, R.; Mohamed Junaid, K. A.; Janani, T.; Maheswar, R.; Yupapin, P.; Amiri, I. S.

    2018-06-01

    With the nano-composite materials gaining momentum in the optical field, a new nano-composite filled D shape Photonic Crystal Fiber (PCF) is designed and the various optical properties are investigated with help of Finite Element Method. In the proposed structure the D-shape PCF is made up of silica with embedded silver nanoparticles and air holes are distributed along the fibre. The designed fibre shows various optical properties such as dispersion, birefringence, beat length and loss with respect to wavelength and compared with different filling factor like 0.1, 0.3 and 0.5. From our estimation and comparative analysis, it has been proved that the fibre loss has been decreased with increasing filling factor. Further this also showed flat dispersion at maximum filling factor.

  3. Optical, mechanical and structural properties of PMMA/SiO2 nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Soni, Gyanesh; Srivastava, Subodh; Soni, Purushottam; Kalotra, Pankaj; Vijay, Y. K.

    2018-01-01

    We have fabricated PMMA/SiO2 nanocomposite flexible thin films of 60 μm thicknesses by using solution casting method in the presence of transverse electric field. In this paper, we have investigated the effect of SiO2 nanoparticle (NP) loading on optical and mechanical properties of the composite thin film. The SEM images show that nanocomposite thin films have a smoother and uniform morphology. The transmittance peak near 1103 cm-1 in FT-IR spectrum confirms the presence of SiO2 NPs in the composite thin film. It is observed that optical bandgap decreases with an increase in the SiO2 NP concentration. Dynamic mechanical analysis shows that presence of SiO2 NP enhances the mechanical strength of the composite thin film.

  4. The Use of Spray-Dried Mn₃O₄/C Composites as Electrocatalysts for Li-O₂ Batteries.

    PubMed

    Yang, Hong-Kai; Chin, Chih-Chun; Chen, Jenn-Shing

    2016-11-07

    The electrocatalytic activities of Mn₃O₄/C composites are studied in lithium-oxygen (Li-O₂) batteries as cathode catalysts. The Mn₃O₄/C composites are fabricated using ultrasonic spray pyrolysis (USP) with organic surfactants as the carbon sources. The physical and electrochemical performance of the composites is characterized by X-ray diffraction, scanning electron microscopy, particle size analysis, Brunauer-Emmett-Teller (BET) measurements, elemental analysis, galvanostatic charge-discharge methods and rotating ring-disk electrode (RRDE) measurements. The electrochemical tests demonstrate that the Mn₃O₄/C composite that is prepared using Trition X-114 (TX114) surfactant has higher activity as a bi-functional catalyst and delivers better oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic performance in Li-O₂ batteries because there is a larger surface area and particles are homogeneous with a meso/macro porous structure. The rate constant ( k f ) for the production of superoxide radical (O₂ • - ) and the propylene carbonate (PC)-electrolyte decomposition rate constant ( k ) for M₃O₄/C and Super P electrodes are measured using RRDE experiments and analysis in the 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF₆)/PC electrolyte. The results show that TX114 has higher electrocatalytic activity for the first step of ORR to generate O₂ • - and produces a faster PC-electrolyte decomposition rate.

  5. Effect of titanium addition on the thermal properties of diamond/cu-ti composites fabricated by pressureless liquid-phase sintering technique.

    PubMed

    Chung, Chih-Yu; Chu, Chao-Hung; Lee, Mu-Tse; Lin, Chun-Ming; Lin, Su-Jien

    2014-01-01

    In this study, minor-addition elements such as Si, Co, Cr, W, Mo, and Ti were added to matrix to improve the wettability between the diamonds and Cu matrix. The pressureless liquid-phase sintering technique adopted in this study provides a low-cost method for producing diamond/Cu composites with high potential for industrial mass production. Thermal properties of the diamond/Cu-Ti composites fabricated by pressureless liquid-phase sintering at 1373 K with variation in Ti contents were thoroughly investigated. XRD and TEM analysis show that TiC layer formed in the interface between Cu and diamond. The composites exhibited thermal conductivity as high as 620 W/m · K for 50 vol% diamond/Cu-0.6 at % Ti composite with diamond particle size of 300 µm. This value comes up to 85% of the thermal conductivity calculated by the Hasselman and Johnson (H-J) theoretical analysis. Under these conditions, a suitable coefficient of thermal expansion of 6.9 ppm/K was obtained.

  6. Effect of Titanium Addition on the Thermal Properties of Diamond/Cu-Ti Composites Fabricated by Pressureless Liquid-Phase Sintering Technique

    PubMed Central

    Chung, Chih-Yu; Chu, Chao-Hung; Lee, Mu-Tse; Lin, Chun-Ming; Lin, Su-Jien

    2014-01-01

    In this study, minor-addition elements such as Si, Co, Cr, W, Mo, and Ti were added to matrix to improve the wettability between the diamonds and Cu matrix. The pressureless liquid-phase sintering technique adopted in this study provides a low-cost method for producing diamond/Cu composites with high potential for industrial mass production. Thermal properties of the diamond/Cu-Ti composites fabricated by pressureless liquid-phase sintering at 1373 K with variation in Ti contents were thoroughly investigated. XRD and TEM analysis show that TiC layer formed in the interface between Cu and diamond. The composites exhibited thermal conductivity as high as 620 W/m·K for 50 vol% diamond/Cu-0.6  at % Ti composite with diamond particle size of 300 µm. This value comes up to 85% of the thermal conductivity calculated by the Hasselman and Johnson (H-J) theoretical analysis. Under these conditions, a suitable coefficient of thermal expansion of 6.9 ppm/K was obtained. PMID:24715816

  7. Statistical analysis of atom probe data: detecting the early stages of solute clustering and/or co-segregation.

    PubMed

    Hyde, J M; Cerezo, A; Williams, T J

    2009-04-01

    Statistical analysis of atom probe data has improved dramatically in the last decade and it is now possible to determine the size, the number density and the composition of individual clusters or precipitates such as those formed in reactor pressure vessel (RPV) steels during irradiation. However, the characterisation of the onset of clustering or co-segregation is more difficult and has traditionally focused on the use of composition frequency distributions (for detecting clustering) and contingency tables (for detecting co-segregation). In this work, the authors investigate the possibility of directly examining the neighbourhood of each individual solute atom as a means of identifying the onset of solute clustering and/or co-segregation. The methodology involves comparing the mean observed composition around a particular type of solute with that expected from the overall composition of the material. The methodology has been applied to atom probe data obtained from several irradiated RPV steels. The results show that the new approach is more sensitive to fine scale clustering and co-segregation than that achievable using composition frequency distribution and contingency table analyses.

  8. Preparation & characterization of SiO2 interface layer by dip coating technique on carbon fibre for Cf/SiC composites

    NASA Astrophysics Data System (ADS)

    Kumar, Kundan; Jariwala, C.; Pillai, R.; Chauhan, N.; Raole, P. M.

    2015-08-01

    Carbon fibres (Cf) are one of the most important reinforced materials for ceramic matrix composites such as Cf - SiC composites and they are generally sought for high temperature applications in as space application, nuclear reactor and automobile industries. But the major problem arise when Cf reinforced composites exposed to high temperature in an oxidizing environment, Cf react with oxygen and burnt away. In present work, we have studied the effect of silica (SiO2) coating as a protective coating on Cf for the Cf / SiC composites. The silica solution prepared by the sol-gel process and coating on Cf is done by dip coating technique with varying the withdrawing speed i.e. 2, 5, 8 mm/s with fixed dipping cycle (3 Nos.). The uniform silica coating on the Cf is shown by the Scanning Electron Microscope (SEM) analysis. The tensile test shows the increase in tensile strength with respect to increase in withdrawing speed. The isothermal oxidation analysis confirmed enhancement of oxidation resistance of silica coated Cf as compared tothe uncoated Cf.

  9. Dittrichia graveolens (L.) Greuter Essential Oil: Chemical Composition, Multivariate Analysis, and Antimicrobial Activity.

    PubMed

    Mitic, Violeta; Stankov Jovanovic, Vesna; Ilic, Marija; Jovanovic, Olga; Djordjevic, Aleksandra; Stojanovic, Gordana

    2016-01-01

    The chemical composition and in vitro antimicrobial activities of Dittrichia graveolens (L.) Greuter essential oil was studied. Moreover, using agglomerative hierarchical cluster (AHC) and principal component analyses (PCA), the interrelationships of the D. graveolens essential-oil profiles characterized so far (including the sample from this study) were investigated. To evaluate the chemical composition of the essential oil, GC-FID and GC/MS analyses were performed. Altogether, 54 compounds were identified, accounting for 92.9% of the total oil composition. The D. graveolens oil belongs to the monoterpenoid chemotype, with monoterpenoids comprising 87.4% of the totally identified compounds. The major components were borneol (43.6%) and bornyl acetate (38.3%). Multivariate analysis showed that the compounds borneol and bornyl acetate exerted the greatest influence on the spatial differences in the composition of the reported oils. The antimicrobial activity against five bacterial and one fungal strain was determined using a disk-diffusion assay. The studied essential oil was active only against Gram-positive bacteria. Copyright © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  10. Interfacial enhancement of carbon fiber/nylon 12 composites by grafting nylon 6 to the surface of carbon fiber

    NASA Astrophysics Data System (ADS)

    Hui, Chen; Qingyu, Cai; Jing, Wu; Xiaohong, Xia; Hongbo, Liu; Zhanjun, Luo

    2018-05-01

    Nylon 6 (PA6) grafted onto carbon fiber (CF) after chemical oxidation treatment was in an attempt to reinforce the mechanical properties of carbon fiber composites. Scanning electronic microscopy (SEM), Fourier transform infrared analysis (FT-IR), X-ray photoelectron spectroscope (XPS) and thermogravimetric analysis (TG) were selected to characterize carbon fibers with different surface treated. Experimental results showed that PA6 was grafted uniformly on the fiber surface through the anionic polymerization. A large number of functional groups were introduced to the fiber surface and the surface roughness was increased. After grafting PA6 on the oxidized carbon fibers, it played an important role on improving the interfacial adhesion between the fibers and the matrix by improving PA12 wettability, increasing chemical bonding and mechanical interlocking. Compared with the desized CF composites, the tensile strength of PA6-CF/PA12 composites was increased by 30.8% from 53.9 MPa to 70.2 MPa. All results indicated that grafting PA6 onto carbon fiber surface was an effective method to enhance the mechanical strength of carbon fiber/nylon 12 composites.

  11. Essential Oil Composition of Pinus peuce Griseb. Needles and Twigs from Two National Parks of Kosovo.

    PubMed

    Hajdari, Avni; Mustafa, Behxhet; Nebija, Dashnor; Selimi, Hyrmete; Veselaj, Zeqir; Breznica, Pranvera; Quave, Cassandra Leah; Novak, Johannes

    The principal aim of this study was to analyze the chemical composition and qualitative and quantitative variability of essential oils obtained from seven naturally grown populations of the Pinus peuce Grisebach, Pinaceae in Kosovo. Plant materials were collected from three populations in the Sharri National Park and from four other populations in the Bjeshkët e Nemuna National Park, in Kosovo. Essential oils were obtained by steam distillation and analyzed by GC-FID (Gas Chromatography-Flame Ionization Detection) and GC-MS (Gas Chromatography-Mass Spectrometry). The results showed that the yield of essential oils (v/w dry weight) varied depending on the origin of population and the plant organs and ranged from 0.7 to 3.3%. In total, 51 compounds were identified. The main compounds were α-pinene (needles: 21.6-34.9%; twigs: 11.0-24%), β-phellandrene (needles: 4.1-27.7; twigs: 29.0-49.8%), and β-pinene (needles: 10.0-16.1; twigs: 6.9-20.7%). HCA (Hierarchical Cluster Analysis) and PCA (Principal Component Analyses) were used to assess geographical variations in essential oil composition. Statistical analysis showed that the analyzed populations are grouped in three main clusters which seem to reflect microclimatic conditions on the chemical composition of the essential oils.

  12. Analysis of Compositions and Physical Characteristics of Different Rice From Heilongjiang China

    NASA Astrophysics Data System (ADS)

    Chen, Fenglian; Li, Xinming; Lv, Mingshou; Shi, Yanguo

    2018-03-01

    Diversity and correlation between composition, texture characteristics and sensory features of twenty kinds of purebred rice from Heilongjiang China were studied. Experimental results showed significant differences in content of fat, amylose and protein, however those differences were not extended to perceived taste evaluation by sensory evaluation. More protein led to lower viscosity but better hardness and springiness, higher amylose content resulted lower taste but higher springiness. Moisture content was significantly negatively correlated with resilience; the content of protein was significantly positively correlated with resilience. The adhesiveness of texture characteristic and the viscosity of taste showed significant positive correlation.

  13. Distribution of Chironomidae in a semiarid intermittent river of Brazil.

    PubMed

    Farias, R L; Carvalho, L K; Medeiros, E S F

    2012-12-01

    The effects of the intermittency of water flow on habitat structure and substrate composition have been reported to create a patch dynamics for the aquatic fauna, mostly for that associated with the substrate. This study aims to describe the spatial distribution of Chironomidae in an intermittent river of semiarid Brazil and to associate assemblage composition with environmental variables. Benthic invertebrates were sampled during the wet and dry seasons using a D-shaped net (40 cm wide and 250 μm mesh), and the Chironomidae were identified to genus level. The most abundant genera were Tanytarsus, Polypedilum, and Saetheria with important contributions of the genera Procladius, Aedokritus, and Dicrotendipes. Richness and density were not significantly different between the study sites, and multiple regression showed that the variation in richness and density explained by the environmental variables was significant only for substrate composition. The composition of genera showed significant spatial segregation across the study sites. Canonical Correspondence Analysis showed significant correspondence between Chironomidae composition and the environmental variables, with submerged vegetation, elevation, and leaf litter being important predictors of the Chironomidae fauna. This study showed that Chironomidae presented important spatial variation along the river and that this variation was substantially explained by environmental variables associated with the habitat structure and river hierarchy. We suggest that the observed spatial segregation in the fauna results in the high diversity of this group of organisms in intermittent streams.

  14. Size-confined fixed-composition and composition-dependent engineered band gap alloying induces different internal structures in L-cysteine-capped alloyed quaternary CdZnTeS quantum dots

    NASA Astrophysics Data System (ADS)

    Adegoke, Oluwasesan; Park, Enoch Y.

    2016-06-01

    The development of alloyed quantum dot (QD) nanocrystals with attractive optical properties for a wide array of chemical and biological applications is a growing research field. In this work, size-tunable engineered band gap composition-dependent alloying and fixed-composition alloying were employed to fabricate new L-cysteine-capped alloyed quaternary CdZnTeS QDs exhibiting different internal structures. Lattice parameters simulated based on powder X-ray diffraction (PXRD) revealed the internal structure of the composition-dependent alloyed CdxZnyTeS QDs to have a gradient nature, whereas the fixed-composition alloyed QDs exhibited a homogenous internal structure. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis confirmed the size-confined nature and monodispersity of the alloyed nanocrystals. The zeta potential values were within the accepted range of colloidal stability. Circular dichroism (CD) analysis showed that the surface-capped L-cysteine ligand induced electronic and conformational chiroptical changes in the alloyed nanocrystals. The photoluminescence (PL) quantum yield (QY) values of the gradient alloyed QDs were 27-61%, whereas for the homogenous alloyed QDs, the PL QY values were spectacularly high (72-93%). Our work demonstrates that engineered fixed alloying produces homogenous QD nanocrystals with higher PL QY than composition-dependent alloying.

  15. Synthesis, Structural, and Adsorption Properties and Thermal Stability of Nanohydroxyapatite/Polysaccharide Composites.

    PubMed

    Skwarek, Ewa; Goncharuk, Olena; Sternik, Dariusz; Janusz, Wladyslaw; Gdula, Karolina; Gun'ko, Vladimir M

    2017-12-01

    A series of composites based on nanohydroxyapatite (nHAp) and natural polysaccharides (PS) (nHAp/agar, nHAp/chitosan, nHAp/pectin FB300, nHAp/pectin APA103, nHAp/sodium alginate) was synthesized by liquid-phase two-step method and characterized using nitrogen adsorption-desorption, DSC, TG, FTIR spectroscopy, and SEM. The analysis of nitrogen adsorption-desorption data shows that composites with a nHAp: PS ratio of 4:1 exhibit a sufficiently high specific surface area from 49 to 82 m 2 /g. The incremental pore size distributions indicate mainly mesoporosity. The composites with the component ratio 1:1 preferably form a film-like structure, and the value of S BET varies from 0.3 to 43 m 2 /g depending on the nature of a polysaccharide. Adsorption of Sr(II) on the composites from the aqueous solutions has been studied. The thermal properties of polysaccharides alone and in nHAp/PS show the influence of nHAp, since there is a shift of characteristic DSC and DTG peaks. FTIR spectroscopy data confirm the presence of functional groups typical for nHAp as well as polysaccharides in composites. Structure and morphological characteristics of the composites are strongly dependent on the ratio of components, since nHAp/PS at 4:1 have relatively large S BET values and a good ability to adsorb metal ions. The comparison of the adsorption capacity with respect to Sr(II) of nHAp, polysaccharides, and composites shows that it of the latter is higher than that of nHAp (per 1 m 2 of surface).

  16. The influence of maternal ethnic group and diet on breast milk fatty acid composition.

    PubMed

    Su, Lin Lin; S K, Thamarai Chelvi; Lim, Su Lin; Chen, Yuming; Tan, Elizabeth A T; Pai, Namratha Narayan; Gong, Yin Han; Foo, Janie; Rauff, Mary; Chong, Yap Seng

    2010-09-01

    Breast milk fatty acids play a major role in infant development. However, no data have compared the breast milk composition of different ethnic groups living in the same environment. We aimed to (i) investigate breast milk fatty acid composition of three ethnic groups in Singapore and (ii) determine dietary fatty acid patterns in these groups and any association with breast milk fatty acid composition. This was a prospective study conducted at a tertiary hospital in Singapore. Healthy pregnant women with the intention to breastfeed were recruited. Diet profile was studied using a standard validated 3-day food diary. Breast milk was collected from mothers at 1 to 2 weeks and 6 to 8 weeks postnatally. Agilent gas chromatograph (6870N) equipped with a mass spectrometer (5975) and an automatic liquid sampler (ALS) system with a split mode was used for analysis. Seventy-two breast milk samples were obtained from 52 subjects. Analysis showed that breast milk ETA (Eicosatetraenoic acid) and ETA:EA (Eicosatrienoic acid) ratio were significantly different among the races (P = 0.031 and P = 0.020), with ETA being the highest among Indians and the lowest among Malays. Docosahexaenoic acid was significantly higher among Chinese compared to Indians and Malays. No difference was demonstrated in n3 and n6 levels in the food diet analysis among the 3 ethnic groups. Differences exist in breast milk fatty acid composition in different ethnic groups in the same region, although no difference was demonstrated in the diet analysis. Factors other than maternal diet may play a role in breast milk fatty acid composition.

  17. Scaffolds for bone regeneration made of hydroxyapatite microspheres in a collagen matrix.

    PubMed

    Cholas, Rahmatullah; Kunjalukkal Padmanabhan, Sanosh; Gervaso, Francesca; Udayan, Gayatri; Monaco, Graziana; Sannino, Alessandro; Licciulli, Antonio

    2016-06-01

    Biomimetic scaffolds with a structural and chemical composition similar to native bone tissue may be promising for bone tissue regeneration. In the present work hydroxyapatite mesoporous microspheres (mHA) were incorporated into collagen scaffolds containing an ordered interconnected macroporosity. The mHA were obtained by spray drying of a nano hydroxyapatite slurry prepared by the precipitation technique. X-ray diffraction (XRD) analysis revealed that the microspheres were composed only of hydroxyapatite (HA) phase, and energy-dispersive x-ray spectroscopy (EDS) analysis revealed the Ca/P ratio to be 1.69 which is near the value for pure HA. The obtained microspheres had an average diameter of 6 μm, a specific surface area of 40 m(2)/g as measured by Brunauer-Emmett-Teller (BET) analysis, and Barrett-Joyner-Halenda (BJH) analysis showed a mesoporous structure with an average pore diameter of 16 nm. Collagen/HA-microsphere (Col/mHA) composite scaffolds were prepared by freeze-drying followed by dehydrothermal crosslinking. SEM observations of Col/mHA scaffolds revealed HA microspheres embedded within a porous collagen matrix with a pore size ranging from a few microns up to 200 μm, which was also confirmed by histological staining of sections of paraffin embedded scaffolds. The compressive modulus of the composite scaffold at low and high strain values was 1.7 and 2.8 times, respectively, that of pure collagen scaffolds. Cell proliferation measured by the MTT assay showed more than a 3-fold increase in cell number within the scaffolds after 15 days of culture for both pure collagen scaffolds and Col/mHA composite scaffolds. Attractive properties of this composite scaffold include the potential to load the microspheres for drug delivery and the controllability of the pore structure at various length scales. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Testing Mechanisms and Scales of Equilibrium Using Textural and Compositional Analysis of Porphyroblasts in Rocks with Heterogeneous Garnet Distributions

    NASA Astrophysics Data System (ADS)

    Ruthven, R. C.; Ketcham, R. A.; Kelly, E. D.

    2015-12-01

    Three-dimensional textural analysis of garnet porphyroblasts and electron microprobe analyses can, in concert, be used to pose novel tests that challenge and ultimately increase our understanding of metamorphic crystallization mechanisms. Statistical analysis of high-resolution X-ray computed tomography (CT) data of garnet porphyroblasts tells us the degree of ordering or randomness of garnets, which can be used to distinguish the rate-limiting factors behind their nucleation and growth. Electron microprobe data for cores, rims, and core-to-rim traverses are used as proxies to ascertain porphyroblast nucleation and growth rates, and the evolution of sample composition during crystallization. MnO concentrations in garnet cores serve as a proxy for the relative timing of nucleation, and rim concentrations test the hypothesis that MnO is in equilibrium sample-wide during the final stages of crystallization, and that concentrations have not been greatly altered by intracrystalline diffusion. Crystal size distributions combined with compositional data can be used to quantify the evolution of nucleation rates and sample composition during crystallization. This study focuses on quartzite schists from the Picuris Mountains with heterogeneous garnet distributions consisting of dense and sparse layers. 3D data shows that the sparse layers have smaller, less euhedral garnets, and petrographic observations show that sparse layers have more quartz and less mica than dense layers. Previous studies on rocks with homogeneously distributed garnet have shown that crystallization rates are diffusion-controlled, meaning that they are limited by diffusion of nutrients to growth and nucleation sites. This research extends this analysis to heterogeneous rocks to determine nucleation and growth rates, and test the assumption of rock-wide equilibrium for some major elements, among a set of compositionally distinct domains evolving in mm- to cm-scale proximity under identical P-T conditions.

  19. New Composites LnBDC@AC and CB[6]@AC: From Design toward Selective Adsorption of Methylene Blue or Methyl Orange

    PubMed Central

    Santos, Guilherme de C.; Barros, Amanda L.; de Oliveira, Carlos A. F.; da Luz, Leonis L.; da Silva, Fausthon F.; Demets, Grégoire J.-F.; Alves Júnior, Severino

    2017-01-01

    New porous composites LnBDC@AC (AC = Activated carbon, Ln = Eu and Gd and BDC = 1,4-benzenedicaboxylate) and CB[6]@AC (CB[6] = Cucurbit[6]uril) were obtained using hydrothermal route. The LnBDC and CB[B] are located inside the pore of the carbon materials as was observed in SEM-EDS, XRPD and FT-IR analysis. Porosimetry analysis showed values typically between AC and LnBDC material, with pore size and surface area, respectively, 29,56 Å and 353.98 m2g-1 for LnBDC@AC and 35,53 Å and 353.98 m2g-1 for CB[6]@AC. Both materials showed good absorptive capacity of metil orange (MO) and methylene blue (MB) with selectivity as a function of pH. For acid pH, both materials present selectivity by MB and alkaline pH for MO, with notable performance for CB[6]@AC. Additionally, europium luminescence was used as structural probe to investigate the coordination environment of Eu3+ ions in the EuBDC@AC composite after adsorption experiment. PMID:28107440

  20. Microstructural and optical properties of CdS nanoparticles synthesized by sol gel method

    NASA Astrophysics Data System (ADS)

    Mahdi, Hadeel Salih; Parveen, Azra; Agrawal, Shraddha; Azam, Ameer

    2018-05-01

    Semiconductor nanoparticles of CdS are of great interest for both fundamental research and industrial development due to their unique size-dependent optical and electronic properties and their exciting utilization in the fields of light-emitting diode, electro-chemical cells, laser, hydrogen producing catalyst, biological label. We present a scheme to measure the optical properties of CdS nanoparticles The peaks were indexed by powder-x software. The XRD pattern analysis showed that CdS composition was found to have hexagonal structure with well crystalline nature. the surface morphology and the composition of the samples were investigated by SEM (JEOL, japan). The image shows the presence of large spherical aggregates of smaller individual nanoparticles of various sizes for pure cds. to check the chemical composition of the material, energy dispersive X-ray (EDX) spectroscopic analysis was also performed which further confirmed the presence of cd and s ions in the matrix. The optical absorption spectra of CdS sample was recorded by uv-vis spectrophotometer in the range of 200 to 800 nm.

  1. A preliminary investigation of finite-element modeling for composite rotor blades

    NASA Technical Reports Server (NTRS)

    Lake, Renee C.; Nixon, Mark W.

    1988-01-01

    The results from an initial phase of an in-house study aimed at improving the dynamic and aerodynamic characteristics of composite rotor blades through the use of elastic couplings are presented. Large degree of freedom shell finite element models of an extension twist coupled composite tube were developed and analyzed using MSC/NASTRAN. An analysis employing a simplified beam finite element representation of the specimen with the equivalent engineering stiffness was additionally performed. Results from the shell finite element normal modes and frequency analysis were compared to those obtained experimentally, showing an agreement within 13 percent. There was appreciable degradation in the frequency prediction for the torsional mode, which is elastically coupled. This was due to the absence of off-diagonal coupling terms in the formulation of the equivalent engineering stiffness. Parametric studies of frequency variation due to small changes in ply orientation angle and ply thickness were also performed. Results showed linear frequency variations less than 2 percent per 1 degree variation in the ply orientation angle, and 1 percent per 0.0001 inch variation in the ply thickness.

  2. Fabrication of borassus fruit lignocellulose fiber/PP composites and comparison with jute, sisal and coir fibers.

    PubMed

    Sudhakara, P; Jagadeesh, Dani; Wang, YiQi; Prasad, C Venkata; Devi, A P Kamala; Balakrishnan, G; Kim, B S; Song, J I

    2013-10-15

    Novel composites based on borassus fruit fine fiber (BFF) and polypropylene (PP) were fabricated with variable fiber composition (5, 10, 15 and 20 wt%) by injection molding. Maleated PP (MAPP) was also used as compatibilizer at 5 wt% for effective fiber-matrix adhesion. FTIR analysis confirms the evidence of a chemical bonding between the fiber and polymeric matrix through esterification in presence of MAPP. The tensile and flexural properties were found to increase with 15 and 10 wt% fiber loadings respectively, and decreased thereafter. Coir, jute and sisal fiber composites were also fabricated with 15 wt% fiber loading under the same conditions as used for BFF/PP composites. It was found that the mechanical properties of BFF (15 wt%)/PP composites were equivalent to jute/PP, sisal/PP and superior to coir/PP composites. Jute/PP and sisal/PP composites showed higher water absorption than BFF/PP and coir/PP composites. These results have demonstrated that the BFF/PP composites can also be an alternative material for composites applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Modification of natural matrix lac-bagasse for matrix composite films

    NASA Astrophysics Data System (ADS)

    Nurhayati, Nanik Dwi; Widjaya, Karna; Triyono

    2016-02-01

    Material technology continues to be developed in order to a material that is more efficient with composite technology is a combination of two or more materials to obtain the desired material properties. The objective of this research was to modification and characterize the natural matrix lac-bagasse as composite films. The first step, natural matrix lac was changed from solid to liquid using an ethanol as a solvent so the matrix homogenly. Natural matrix lac was modified by adding citric acid with concentration variation. Secondly, the bagasse delignification using acid hydrolysis method. The composite films natural matrix lac-bagasse were prepared with optimum modified the addition citric acid 5% (v/v) and delignification bagasse optimum at 1,5% (v/v) in hot press at 80°C 6 Kg/cm-1. Thirdly, composite films without and with modification were characterized functional group analysis using FTIR spectrophotometer and mechanical properties using Universal Testing Machine. The result of research showed natural matrix lac can be modified by reaction with citric acid. FTIR spectra showed without and with modification had functional groups wide absorption 3448 cm-1 group -OH, C=O ester strong on 1712 cm-1 and the methylene group -CH2 on absorption 1465 cm-1. The mechanical properties showed tensile strength 0,55 MPa and elongation at break of 0,95 %. So that composite films natural matrix lac can be made with reinforcement bagasse for material application.

  4. Spectral analysis of the structure of ultradispersed diamonds

    NASA Astrophysics Data System (ADS)

    Uglov, V. V.; Shimanski, V. I.; Rusalsky, D. P.; Samtsov, M. P.

    2008-07-01

    The structure of ultradispersed diamonds (UDD) is studied by spectral methods. The presence of diamond crystal phase in the UDD is found based on x-ray analysis and Raman spectra. The Raman spectra also show sp2-and sp3-hybridized carbon. Analysis of IR absorption spectra suggests that the composition of functional groups present in the particles changes during the treatment.

  5. Proximate composition and nutritional evaluation of the adductor muscle of pen shell.

    PubMed

    Wu, Shengjun; Wu, Yuping

    2017-07-01

    The proximate composition of pen shell adductor muscle (PSAM) was determined, and its nutrition value was evaluated. Proximate composition analysis indicated that PSAM contained 91.07% (w/w) protein, 5.77% (w/w) ash, and 2.46% (w/w) fat. Calcium was the predominant mineral followed by zinc and then iron. The amino acid profile was in accordance with the recommended pattern of FAO/WHO except for histidine. At the same time, the first limiting amino acid was histidine. Fatty acid composition showed that docosahexaenoic acid was the major fatty acid, followed by palmitic, stearic, and arachidonic acids. Results indicated that PSAM was rich in nutrition and may be developed as a functional food.

  6. Structural studies on carbon materials for advanced space technology. Part 1: Structure and oxidation behavior of some carbon/carbon composite materials

    NASA Technical Reports Server (NTRS)

    Fischbach, D. B.; Uptegrove, D. R.; Srinivasagopalan, S.

    1974-01-01

    The microstructure and some microstructural effects of oxidation have been investigated for laminar carbon fiber cloth/cloth binder matrix composite materials. It was found that cloth wave is important in determining the macrostructure of the composites X-ray diffraction analysis showed that the composites were more graphitic than the constituent fiber phases, indicating a graphitic binder matrix phase. Various tests which were conducted to investigate specific properties of the material are described. It was learned that under the moderate temperature and oxidant flow conditions studied, C-700, 730 materials exhibit superior oxidation resistance primarily because of the inhibiting influence of the graphitized binder matrix.

  7. Effect of Thermal Diffusivity on the Detectability of TNDE

    NASA Technical Reports Server (NTRS)

    Zhao, Junduo; Chu, Tsuchin; Russell, Samuel S.

    2000-01-01

    The effect of thermal diffusively on the defect detectability in Carbon/Epoxy composite panels by transient thermography is presented in this paper. A series of Finite Element Models were constructed and analyzed to simulate the transient heat transfer phenomenon during Thermographic Non-destructive Evaluation (TNDE) of composite panels with square defects. Six common carbon fibers were considered. The models were built for composites with various combinations of fibers and volumetric ratios. Finite Element Analysis of these models showed the trends of the detectable range and the maximum thermal contrast versus the thermal diffusivity of various composites. Additionally, the trends of defect size to depth ratio and the thermal contrast has been investigated.

  8. Landscape pattern of seed banks and anthropogenic impacts in forested wetlands of the northern Mississippi River Alluvial Valley

    USGS Publications Warehouse

    Middleton, B.; Wu, X.B.

    2008-01-01

    Agricultural development on floodplains contributes to hydrologic alteration and forest fragmentation, which may alter landscape-level processes. These changes may be related to shifts in the seed bank composition of floodplain wetlands. We examined the patterns of seed bank composition across a floodplain watershed by looking at the number of seeds germinating per m2 by species in 60 farmed and intact forested wetlands along the Cache River watershed in Illinois. The seed bank composition was compared above and below a water diversion (position), which artificially subdivides the watershed. Position of these wetlands represented the most variability of Axis I in a Nonmetric Multidimensional Scaling (NMS) analysis of site environmental variables and their relationship to seed bank composition (coefficient of determination for Axis 1: r2 = 0.376; Pearson correlation of position to Axis 1: r = 0.223). The 3 primary axes were also represented by other site environmental variables, including farming status (farmed or unfarmed), distance from the mouth of the river, latitude, and longitude. Spatial analysis based on Mantel correlograms showed that both water-dispersed and wind/water-dispersed seed assemblages had strong spatial structure in the upper Cache (above the water diversion), bur the spatial structure of water-dispersed seed assemblage was diminished in the lower Cache (below the water diversion), which lost floodpulsing. Bearing analysis also Suggested that water-dispersal process had a stronger influence on the overall spatial pattern of seed assemblage in the upper Cache, while wind/water-dispersal process had a stronger influence in the lower Cache. An analysis of the landscapes along the river showed that the mid-lower Cache (below the water diversion) had undergone greater land cover changes associated with agriculture than did the upper Cache watershed. Thus, the combination of forest fragmentation and hydrologic changes in the surrounding landscape may have had an influence on the seed bank composition and spatial distribution of the seed banks of the Cache River watershed. Our study suggests that the spatial pattern of seed bank composition may be influenced by landscape-level factors and processes.

  9. Development of pH-responsive biopolymer-silica composites loaded with Larrea divaricata Cav. extract with antioxidant activity.

    PubMed

    Alvarez Echazú, María Inés; Olivetti, Christian Ezequiel; Peralta, Ignacio; Alonso, Maria Rosario; Anesini, Claudia; Perez, Claudio Javier; Alvarez, Gisela Solange; Desimone, Martin Federico

    2018-05-07

    A detailed study of biomaterials is mandatory to comprehend their feasible biomedical applications in terms of drug delivery and tissue regeneration. Particularly, mucoadhesive biopolymers such as chitosan (chi) and carboxymethylcellulose (CMC) have become interesting biomaterials regards to their biocompatibility and non-toxicity for oral mucosal drug delivery. In this work, pH-responsive biopolymer-silica composites (Chi-SiO 2 , Chi-CMC-SiO 2 ) were developed. These two types of composites presented a different swelling behavior due to the environmental pH. Moreover, the nanocomposites were loaded with aqueous Larrea divaricata Cav. extract (Ld), a South American plant which presents antioxidant properties suitable for the treatment of gingivoperiodontal diseases. Chi-CMC-SiO 2 composites showed the highest incorporation and reached the 100% of extract release in almost 4 days while they preserved their antioxidant properties. In this study, thermal and swelling behavior were pointed out to show the distinct water-composite interaction and therefore to evaluate their mucoadhesivity. Furthermore, a cytotoxicity test with 3T3 fibroblasts was assessed, showing that in both composites the addition of Larrea divaricata Cav. extract increased fibroblast proliferation. Lastly, preliminary in vitro studies were performed with simulated body fluids. Indeed, SEM-EDS analysis indicated that only chi-SiO 2 composite may provide an environment for possible biomineralization while the addition of CMC to the composites discouraged calcium accumulation. In conclusion, the development of bioactive composites could promote the regeneration of periodontal tissue damaged throughout periodontal disease and the presence of silica nanoparticles could provide an environment for biomineralization. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Evaluation of Beef by Electronic Tongue System TS-5000Z: Flavor Assessment, Recognition and Chemical Compositions According to Its Correlation with Flavor.

    PubMed

    Zhang, Xinzhuang; Zhang, Yawei; Meng, Qingxiang; Li, Ning; Ren, Liping

    2015-01-01

    The aim of this study was to assess the ability of electronic tongue system TS-5000Z to evaluate meat quality based on flavor assessment, recognition and correlation with the meat chemical composition. Meat was sampled from eighteen beef cattle including 6 Wagyu breed cattle, 6 Angus breed cattle and 6 Simmental breed cattle. Chemical composition including dry matter, crude protein, fat, ash, cholesterol and taurine and flavor of the meat were measured. The results showed that different breed cattle had different chemical compositions and flavor, which contains sourness, umami, saltiness, bitterness, astringency, aftertaste from astringency, aftertaste from bitterness and aftertaste from umami, respectively. A principal component analysis (PCA) showed an easily visible separation between different breeds of cattle and indicated that TS-5000Z made a rapid identification of different breeds of cattle. In addition, TS-5000Z seemed to be used to predict the chemical composition according to its correlation with the flavor. In conclusion, TS-5000Z would be used as a rapid analytical tool to evaluate the beef quality both qualitatively and quantitatively, based on flavor assessment, recognition and chemical composition according to its correlation with flavor.

  11. Long-Term Viscoelastic Response of E-glass/Bismaleimide Composite in Seawater Environment

    NASA Astrophysics Data System (ADS)

    Yian, Zhao; Zhiying, Wang; Keey, Seah Leong; Boay, Chai Gin

    2015-12-01

    The effect of seawater absorption on the long-term viscoelastic response of E-glass/BMI composite is presented in this paper. The diffusion of seawater into the composite shows a two-stage behavior, dominated by Fickian diffusion initially and followed by polymeric relaxation. The Glass transition temperature (Tg) of the composite with seawater absorption is considerably lowered due to the plasticization effect. However the effect of water absorption at 50 °C is found to be reversible after drying process. The time-temperature superposition (TTS) was performed based on the results of Dynamic Mechanical Analysis to construct the master curve of storage modulus. The shift factors exhibit Arrhenius behavior when temperature is well below Tg and Vogel-Fulcher-Tammann (VFT) like behavior when temperature gets close to glass transition region. As a result, a semi-empirical formulation is proposed to account for the seawater absorption effect in predicting long-term viscoelastic response of BMI composites based on temperature dependent storage modulus and TTS. The predicted master curves show that the degradation of storage modulus accelerates with both seawater exposure and increasing temperature. The proposed formulation can be applied to predict the long-term durability of any thermorheologically simple composite materials in seawater environment.

  12. Composite films from pectin and fish skin gelatin or soybean flour protein.

    PubMed

    Liu, LinShu; Liu, Cheng-Kung; Fishman, Marshall L; Hicks, Kevin B

    2007-03-21

    Composite films were prepared from pectin and fish skin gelatin (FSG) or pectin and soybean flour protein (SFP). The inclusion of protein promoted molecular interactions, resulting in a well-organized homogeneous structure, as revealed by scanning electron microscopy and fracture-acoustic emission analysis. The resultant composite films showed an increase in stiffness and strength and a decrease in water solubility and water vapor transmission rate, in comparison with films cast from pectin alone. The composite films inherited the elastic nature of proteins, thus being more flexible than the pure pectin films. Treating the composite films with glutaraldehyde/methanol induced chemical cross-linking with the proteins and reduced the interstitial spaces among the macromolecules and, consequently, improved their mechanical properties and water resistance. Treating the protein-free pectin films with glutaraldehyde/methanol also improved the Young's modulus and tensile strength, but showed little effect on the water resistance, because the treatment caused only dehydration of the pectin films and the dehydration is reversible. The composite films were biodegradable and possessed moderate mechanical properties and a low water vapor transmission rate. Therefore, the films are considered to have potential applications as packaging or coating materials for food or drug industries.

  13. Thermo-hydroforming of a fiber-reinforced thermoplastic composites considering fiber orientations

    NASA Astrophysics Data System (ADS)

    Ahn, Hyunchul; Kuuttila, Nicholas Eric; Pourboghrat, Farhang

    2018-05-01

    The Thermoplastic woven composites were formed using a composite thermal hydroforming process, utilizing heated and pressurized fluid, similar to sheet metal forming. This study focuses on the modification of 300-ton pressure formation and predicts its behavior. Spectra Shield SR-3136 is used in this study and material properties are measured by experiments. The behavior of fiber-reinforced thermoplastic polymer composites (FRTP) was modeled using the Preferred Fiber Orientation (PFO) model and validated by comparing numerical analysis with experimental results. The thermo-hydroforming process has shown good results in the ability to form deep drawn parts with reduced wrinkles. Numerical analysis was performed using the PFO model and implemented as commercial finite element software ABAQUS / Explicit. The user subroutine (VUMAT) was used for the material properties of the thermoplastic composite layer. This model is suitable for working with multiple layers of composite laminates. Model parameters have been updated to work with cohesive zone model to calculate the interfacial properties between each composite layer. The results of the numerical modeling showed a good correlation with the molding experiment on the forming shape. Numerical results were also compared with experimental results on punch force-displacement curves for deformed geometry and forming processes of the composite layer. Overall, the shape of the deformed FRTP, including the distribution of wrinkles, was accurately predicted as shown in this study.

  14. The Role of Physical and Human Landscape Properties on Carbon Composition of Organic Matter in Tropical Rivers

    NASA Astrophysics Data System (ADS)

    Ballester, M. R.; Krusche, A. V.; Victoria, R. L.; Richey, J. E.; Deegan, L.; Neill, C.

    2011-12-01

    To evaluate physical and human controls organic matter carbon composition in tropical rivers, we applied an integrated analysis of landscape properties and riverine isotopic composition. Our goal was to establish the relationships between basin attributes and forms and composition of dissolved and particulate organic matter in rivers. A GIS template was developed as tool to support the understanding of the biogeochemistry of the surface waters of the Ji-Paraná (Western Amazonia) and the Piracicaba (southeastern of Brazil)rivers. Each basin was divided into drainage units, organized according to river network morphology and degree of land-use impact. The delineated drainage areas were individually characterized in terms of topography, soils and land use using data sets compiled as layers in ArcGis and ERDAS-IMAGINE software. DOM and POM carbon stable isotopic composition were determined at several sites along the main tributaries and small streams. The effects of these drivers on the fluvial carbon was quantified by a multiple linear regression analysis, relating basin characteristics and river isotopic composition. The results showed that relatively recent land cover changes have already had an impact on the composition of the riverine DOM and POM, indicating that, as in natural ecosystems, the vegetation plays a key role in the composition of the riverine organic matter in agricultural systems.

  15. A comparative study on the properties of graphene oxide and activated carbon based sustainable wood starch composites.

    PubMed

    Baishya, Prasanta; Maji, Tarun Kumar

    2018-08-01

    Activated carbon (AC) prepared from Jatropha curcas and graphene oxide (GO) were employed in the preparation of natural polymer based wood starch composites (WSC) through the solution blending technique using water as a solvent. In this study, methyl methacrylate (MMA) was grafted onto the starch polymer and this MMA grafted starch (MMA-g-starch) was cross-linked with the cheap soft wood flour using the citric acid as cross-linker and water as a solvent in the whole process. The prepared GO and AC were characterized through Fourier transform infrared spectroscopy (FTIR), X-ray diffractometry (XRD), thermogravimetric analysis (TGA) and Raman study. The interaction of GO and AC, with MMA-g-starch, citric acid and wood were studied by FTIR, XRD and SEM analysis. The GO and AC treated composites exhibited outstanding mechanical properties, thermal stability and fire resistance properties. The tensile strength of the composites increased by 178% and 200% with addition of 2 phr AC and GO respectively compared to untreated composites. A significant enhancement in water resistance properties of GO and AC treated composites was also attained. The study showed that the properties of the composites containing AC prepared from the seeds of Jatropha curcas was quite comparable with the composites reinforced with GO. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Temperature effect on stress concentration around circular hole in a composite material specimen representative of X-29A forward-swept wing aircraft

    NASA Technical Reports Server (NTRS)

    Yeh, Hsien-Yang

    1988-01-01

    The theory of anisotropic elasticity was used to evaluate the anisotropic stress concentration factors of a composite laminated plate containing a small circular hole. This advanced composite was used to manufacture the X-29A forward-swept wing. It was found for composite material, that the anisotropic stress concentration is no longer a constant, and that the locations of maximum tangential stress points could shift by changing the fiber orientation with respect to the loading axis. The analysis showed that through the lamination process, the stress concentration factor could be reduced drastically, and therefore the structural performance could be improved. Both the mixture rule approach and the constant strain approach were used to calculate the stress concentration factor of room temperature. The results predicted by the mixture rule approach were about twenty percent deviate from the experimental data. However, the results predicted by the constant strain approach matched the testing data very well. This showed the importance of the inplane shear effect on the evaluation of the stress concentration factor for the X-29A composite plate.

  17. A 3D-Printable Polymer-Metal Soft-Magnetic Functional Composite-Development and Characterization.

    PubMed

    Khatri, Bilal; Lappe, Karl; Noetzel, Dorit; Pursche, Kilian; Hanemann, Thomas

    2018-01-25

    In this work, a 3D printed polymer-metal soft-magnetic composite was developed and characterized for its material, structural, and functional properties. The material comprises acrylonitrile butadiene styrene (ABS) as the polymer matrix, with up to 40 vol. % stainless steel micropowder as the filler. The composites were rheologically analyzed and 3D printed into tensile and flexural test specimens using a commercial desktop 3D printer. Mechanical characterization revealed a linearly decreasing trend of the ultimate tensile strength (UTS) and a sharp decrease in Young's modulus with increasing filler content. Four-point bending analysis showed a decrease of up to 70% in the flexural strength of the composite and up to a two-factor increase in the secant modulus of elasticity. Magnetic hysteresis characterization revealed retentivities of up to 15.6 mT and coercive forces of up to 4.31 kA/m at an applied magnetic field of 485 kA/m. The composite shows promise as a material for the additive manufacturing of passive magnetic sensors and/or actuators.

  18. Analysis and interpretation of lidar observations of the stratospheric aerosol

    NASA Technical Reports Server (NTRS)

    Hamill, P.; Swissler, T. J.; Osborn, M.; Mccormick, M. P.

    1980-01-01

    Data obtained with a 48 in. telescope lidar system are compared with results obtained using a one-dimensional stratospheric aerosol model to analyze various microphysical processes influencing the formation of this aerosol. Special attention is given to the following problems: (1) how lidar data can help determine the composition of the aerosol particles and (2) how the layer corresponds to temperature profile variations. The lidar record during the period 1974 to 1979 shows a considerable decrease of the peak value of the backscatter ratio. Seasonal variations in the aerosol layer and a gradual decrease in stratospheric loading are observed. The aerosol model simulates a background stratospheric aerosol layer, and it predicts stratospheric aerosol concentrations and compositions. Numerical experiments are carried out by using the model and by comparing the theoretical results with the experimentally obtained lidar record. Comparisons show that the backscatter profile is consistent with the composition when the particles are sulfuric acid and water; it is not consistent with an ammonium sulfate composition. It is shown that the backscatter ratio is not sensitive to the composition or stratospheric loading of condensation nuclei such as meteoritic debris.

  19. Long-term variability in sugarcane bagasse feedstock compositional methods: Sources and magnitude of analytical variability

    DOE PAGES

    Templeton, David W.; Sluiter, Justin B.; Sluiter, Amie; ...

    2016-10-18

    In an effort to find economical, carbon-neutral transportation fuels, biomass feedstock compositional analysis methods are used to monitor, compare, and improve biofuel conversion processes. These methods are empirical, and the analytical variability seen in the feedstock compositional data propagates into variability in the conversion yields, component balances, mass balances, and ultimately the minimum ethanol selling price (MESP). We report the average composition and standard deviations of 119 individually extracted National Institute of Standards and Technology (NIST) bagasse [Reference Material (RM) 8491] run by seven analysts over 7 years. Two additional datasets, using bulk-extracted bagasse (containing 58 and 291 replicates each),more » were examined to separate out the effects of batch, analyst, sugar recovery standard calculation method, and extractions from the total analytical variability seen in the individually extracted dataset. We believe this is the world's largest NIST bagasse compositional analysis dataset and it provides unique insight into the long-term analytical variability. Understanding the long-term variability of the feedstock analysis will help determine the minimum difference that can be detected in yield, mass balance, and efficiency calculations. The long-term data show consistent bagasse component values through time and by different analysts. This suggests that the standard compositional analysis methods were performed consistently and that the bagasse RM itself remained unchanged during this time period. The long-term variability seen here is generally higher than short-term variabilities. It is worth noting that the effect of short-term or long-term feedstock compositional variability on MESP is small, about $0.03 per gallon. The long-term analysis variabilities reported here are plausible minimum values for these methods, though not necessarily average or expected variabilities. We must emphasize the importance of training and good analytical procedures needed to generate this data. As a result, when combined with a robust QA/QC oversight protocol, these empirical methods can be relied upon to generate high-quality data over a long period of time.« less

  20. Long-term variability in sugarcane bagasse feedstock compositional methods: Sources and magnitude of analytical variability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Templeton, David W.; Sluiter, Justin B.; Sluiter, Amie

    In an effort to find economical, carbon-neutral transportation fuels, biomass feedstock compositional analysis methods are used to monitor, compare, and improve biofuel conversion processes. These methods are empirical, and the analytical variability seen in the feedstock compositional data propagates into variability in the conversion yields, component balances, mass balances, and ultimately the minimum ethanol selling price (MESP). We report the average composition and standard deviations of 119 individually extracted National Institute of Standards and Technology (NIST) bagasse [Reference Material (RM) 8491] run by seven analysts over 7 years. Two additional datasets, using bulk-extracted bagasse (containing 58 and 291 replicates each),more » were examined to separate out the effects of batch, analyst, sugar recovery standard calculation method, and extractions from the total analytical variability seen in the individually extracted dataset. We believe this is the world's largest NIST bagasse compositional analysis dataset and it provides unique insight into the long-term analytical variability. Understanding the long-term variability of the feedstock analysis will help determine the minimum difference that can be detected in yield, mass balance, and efficiency calculations. The long-term data show consistent bagasse component values through time and by different analysts. This suggests that the standard compositional analysis methods were performed consistently and that the bagasse RM itself remained unchanged during this time period. The long-term variability seen here is generally higher than short-term variabilities. It is worth noting that the effect of short-term or long-term feedstock compositional variability on MESP is small, about $0.03 per gallon. The long-term analysis variabilities reported here are plausible minimum values for these methods, though not necessarily average or expected variabilities. We must emphasize the importance of training and good analytical procedures needed to generate this data. As a result, when combined with a robust QA/QC oversight protocol, these empirical methods can be relied upon to generate high-quality data over a long period of time.« less

  1. Axisymmetric elastodynamic response from normal and radial impact of layered composites with embedded penny-shaped cracks

    NASA Technical Reports Server (NTRS)

    Sih, G. C.; Chen, E. P.

    1980-01-01

    A method is developed for the dynamic stress analysis of a layered composite containing an embedded penny-shaped crack and subjected to normal and radial impact. Quantitatively, the time-dependent stresses near the crack border can be described by the dynamic stress intensity factors. Their magnitude depends on time, on the material properties of the composite and on the relative size of the crack compared to the composite local geometry. Results obtained show that, for the same material properties and geometry of the composite, the dynamic stress intensity factors for an embedded (penny-shaped) crack reach their peak values within a shorter period of time and with a lower magnitude than the corresponding dynamic stress factors for a through-crack.

  2. Nutritional status and body composition by bioelectrical impedance vector analysis: A cross sectional study in mild cognitive impairment and Alzheimer's disease.

    PubMed

    Cova, Ilaria; Pomati, Simone; Maggiore, Laura; Forcella, Marica; Cucumo, Valentina; Ghiretti, Roberta; Grande, Giulia; Muzio, Fulvio; Mariani, Claudio

    2017-01-01

    Analysis of nutritional status and body composition in Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI). A cross-sectional study was performed in a University-Hospital setting, recruiting 59 patients with AD, 34 subjects with MCI and 58 elderly healthy controls (HC). Nutritional status was assessed by anthropometric parameters (body mass index; calf, upper arm and waist circumferences), Mini Nutritional Assessment (MNA) and body composition by bioelectrical impedance vector analysis (BIVA). Variables were analyzed by analysis of variance and subjects were grouped by cognitive status and gender. Sociodemographic variables did not differ among the three groups (AD, MCI and HC), except for females' age, which was therefore used as covariate in a general linear multivariate model. MNA score was significantly lower in AD patients than in HC; MCI subjects achieved intermediate scores. AD patients (both sexes) had significantly (p<0.05) higher height-normalized impedance values and lower phase angles (body cell mass) compared with HC; a higher ratio of impedance to height was found in men with MCI with respect to HC. With BIVA method, MCI subjects showed a significant displacement on the RXc graph on the right side indicating lower soft tissues (Hotelling's T2 test: men = 10.6; women = 7.9;p < 0,05) just like AD patients (Hotelling's T2 test: men = 18.2; women = 16.9; p<0,001). Bioelectrical parameters significantly differ from MCI and AD to HC; MCI showed an intermediate pattern between AD and HC. Longitudinal studies are required to investigate if BIVA could reflect early AD-changes in body composition in subjects with MCI.

  3. Relative Pigment Composition and Remote Sensing Reflectance of Caribbean Shallow-Water Corals

    PubMed Central

    Torres-Pérez, Juan L.; Guild, Liane S.; Armstrong, Roy A.; Corredor, Jorge; Zuluaga-Montero, Anabella; Polanco, Ramón

    2015-01-01

    Reef corals typically contain a number of pigments, mostly due to their symbiotic relationship with photosynthetic dinoflagellates. These pigments usually vary in presence and concentration and influence the spectral characteristics of corals. We studied the variations in pigment composition among seven Caribbean shallow-water Scleractinian corals by means of High Performance Liquid Chromatography (HPLC) analysis to further resolve the discrimination of corals. We found a total of 27 different pigments among the coral species, including some alteration products of the main pigments. Additionally, pigments typically found in endolithic algae were also identified. A Principal Components Analysis and a Hierarchical Cluster Analysis showed the separation of coral species based on pigment composition. All the corals were collected under the same physical environmental conditions. This suggests that pigment in the coral’s symbionts might be more genetically-determined than influenced by prevailing physical conditions of the reef. We further investigated the use of remote sensing reflectance (Rrs) as a tool for estimating the total pigment concentration of reef corals. Depending on the coral species, the Rrs and the total symbiont pigment concentration per coral tissue area correlation showed 79.5–98.5% confidence levels demonstrating its use as a non-invasive robust technique to estimate pigment concentration in studies of coral reef biodiversity and health. PMID:26619210

  4. Relative Pigment Composition and Remote Sensing Reflectance of Caribbean Shallow-Water Corals.

    PubMed

    Torres-Pérez, Juan L; Guild, Liane S; Armstrong, Roy A; Corredor, Jorge; Zuluaga-Montero, Anabella; Polanco, Ramón

    2015-01-01

    Reef corals typically contain a number of pigments, mostly due to their symbiotic relationship with photosynthetic dinoflagellates. These pigments usually vary in presence and concentration and influence the spectral characteristics of corals. We studied the variations in pigment composition among seven Caribbean shallow-water Scleractinian corals by means of High Performance Liquid Chromatography (HPLC) analysis to further resolve the discrimination of corals. We found a total of 27 different pigments among the coral species, including some alteration products of the main pigments. Additionally, pigments typically found in endolithic algae were also identified. A Principal Components Analysis and a Hierarchical Cluster Analysis showed the separation of coral species based on pigment composition. All the corals were collected under the same physical environmental conditions. This suggests that pigment in the coral's symbionts might be more genetically-determined than influenced by prevailing physical conditions of the reef. We further investigated the use of remote sensing reflectance (Rrs) as a tool for estimating the total pigment concentration of reef corals. Depending on the coral species, the Rrs and the total symbiont pigment concentration per coral tissue area correlation showed 79.5-98.5% confidence levels demonstrating its use as a non-invasive robust technique to estimate pigment concentration in studies of coral reef biodiversity and health.

  5. Identification and production of bioflocculants by Enterobacter sp. and Bacillus sp. and their characterization studies.

    PubMed

    Muthulakshmi, L; Nellaiah, H; Kathiresan, T; Rajini, N; Christopher, Fenila

    2017-05-28

    In this work, two bioflocculants, namely, EB-EPS and B1-EPS, were derived from Enterobacter sp. and Bacillus sp., respectively, and analyzed with regard to their production and characterization. About 0.9 and 0.16 g of purified EB and B1 were obtained from I L of fermentation broth. Chemical analysis showed the contents of purified EB and B1 mainly as 88.7 and 92.8% (w/w) of carbohydrate, and 11.3 and 21.8% (w/w) protein, respectively. Fourier-transform infrared spectrometry analysis revealed the presence of hydroxyl, amide, and carboxyl groups in the identified bioflocculant. Thermogravimetric analysis (TGA) results exhibited enhanced thermal stability with a minimum mass loss of 50% while 25% were found to have occurred at higher temperatures (>400°C) for microbe-derived compounds EB and B1 leading to the possibility of using these compounds as fillers or for fabricating composite films for high-temperature applications. Further, the compounds from both the bacteria exhibited good antibacterial characteristics against pathogenic Escherichia coli. Degradability study of bioflocculant-embedded composite films shows the possibility of attaining eco-friendly bioremediation. Accordingly, experimental results revealed the suitability of developed composite films as a suitable alternative for food packaging and biomedical applications.

  6. Comparative analysis of the proximate and elemental composition of the blue crab Callinectes sapidus, the warty crab Eriphia verrucosa, and the edible crab Cancer pagurus.

    PubMed

    Zotti, Maurizio; Coco, Laura Del; Pascali, Sandra Angelica De; Migoni, Danilo; Vizzini, Salvatrice; Mancinelli, Giorgio; Fanizzi, Francesco Paolo

    2016-02-01

    The proximate composition and element contents of claw muscle tissue of Atlantic blue crabs (Callinectes sapidus) were compared with the native warty crab (Eriphia verrucosa) and the commercially edible crab (Cancer pagurus). The scope of the analysis was to profile the chemical characteristics and nutritive value of the three crab species. Elemental fingerprints showed significant inter-specific differences, whereas non-significant variations in the moisture and ash contents were observed. In the blue crab, protein content was significantly lower than in the other two species, while its carbon content resulted lower than that characterizing only the warty crab. Among micro-elements, Ba, Cr, Cu, Li, Mn, Ni, and Pb showed extremely low concentrations and negligible among-species differences. Significant inter-specific differences were observed for Na, Sr, V, Ba, Cd and Zn; in particular, cadmium and zinc were characterized in the blue crab by concentrations significantly lower than in the other two species. The analysis of the available literature on the three species indicated a general lack of comparable information on their elemental composition. The need to implement extended elemental fingerprinting techniques for shellfish quality assessment is discussed, in view of other complementary profiling methods such as NMR-based metabolomics.

  7. High-Strength Konjac Glucomannan/Silver Nanowires Composite Films with Antibacterial Properties

    PubMed Central

    Lei, Jia; Zhou, Lei; Tang, Yongjian; Luo, Yong; Duan, Tao; Zhu, Wenkun

    2017-01-01

    Robust, high-strength and environmentally friendly antibacterial composite films were prepared by simply blending konjac glucomannan (KGM) and silver nanowires (Ag NWs) in an aqueous system. The samples were then characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), thermal gravimetric analysis, mechanical property tests, Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy (XPS) and antimicrobial tests. The results showed that there was a high ratio of Ag NWs uniformly distributed in the composite films, which was vital for mechanical reinforcement and stable antibacterial properties. The enhanced thermal stability and mechanical intensity increased, while the elongation at break was reduced with an increase in the amount of Ag NWs found in the composite films. When the percentage of Ag NWs in the composite films reached 5%, the tensile strength was 148.21 MPa, Young’s modulus was 13.79 GPa and the ultimate strain was 25.28%. Antibacterial tests showed that the KGM films had no antibacterial effect. After the addition of Ag NWs, the composite films had an obvious inhibitory effect on bacteria, with the uniform dispersion of Ag NWs promoting the antibacterial effect to a certain degree. These results indicated that these composite films would have a potential application in the fields of environmentally friendly packaging or medicine. PMID:28772883

  8. Fabrication, characterization, and modeling of piezoelectric fiber composites

    NASA Astrophysics Data System (ADS)

    Lin, Xiujuan; Zhou, Kechao; Button, Tim W.; Zhang, Dou

    2013-07-01

    Piezoelectric fiber composites (PFCs) with interdigitated electrodes have attracted increasing interest in a variety of industrial, commercial, and aerospace markets due to their unique flexibility, adaptability, and improved transverse actuation performance. Viscous plastic processing technique was utilized for the fabrication of PFCs with customized feature sizes. The assembly parameters showed great influence on the performance of PFCs, which was verified by the finite element analysis. The cracks were identified in the fibers underneath the electrode finger after several millions cycles due to the stress and electric field concentration. The electrode finger width was an important structural parameter and showed great influence on the actuation performance and the stress distribution in the PFCs. The finite element analysis revealed that wider electrode finger would be beneficial for reducing the risk of materials failure with slight influence on the actuation performance.

  9. Characteristics and Composition of African Oil Bean Seed (Pentaclethra macrophylla Benth)

    NASA Astrophysics Data System (ADS)

    Ikhuoria, Esther U.; Aiwonegbe, Anthony E.; Okoli, Peace; Idu, Macdonald

    The African oil bean (Pentaclethra macrophylla) seed was analyzed for its proximate composition. The seed oil was also analyzed for mineral content and physicochemical characteristics. Proximate analysis revealed that the percentage crude protein, crude fibre, moisture and carbohydrate were 9.31, 21.66, 39.05 and 38.95%, respectively. The percentage oil content was 47.90% while the ash content was 3.27%. Results of minerals analysis showed that calcium had the highest concentration of all the elements analyzed and were found to be of the order: Ca > Mg > Pb > Fe > Mn > P > Cu. The low iodine value of the seed oil showed that it can be classified as non-drying oil and thus not suitable for paint and polish production. However, the low acid and free fatty acid values suggest its utilization as edible oil.

  10. Bacterial adhesion on direct and indirect dental restorative composite resins: An in vitro study on a natural biofilm.

    PubMed

    Derchi, Giacomo; Vano, Michele; Barone, Antonio; Covani, Ugo; Diaspro, Alberto; Salerno, Marco

    2017-05-01

    Both direct and indirect techniques are used for dental restorations. Which technique should be preferred or whether they are equivalent with respect to bacterial adhesion is unclear. The purpose of this in vitro study was to determine the affinity of bacterial biofilm to dental restorative composite resins placed directly and indirectly. Five direct composite resins for restorations (Venus Diamond, Adonis, Optifil, Enamel Plus HRi, Clearfil Majesty Esthetic) and 3 indirect composite resins (Gradia, Estenia, Signum) were selected. The materials were incubated in unstimulated whole saliva for 1 day. The biofilms grown were collected and their bacterial cells counted. In parallel, the composite resin surface morphology was analyzed with atomic force microscopy. Both bacterial cell count and surface topography parameters were subjected to statistical analysis (α=.05). Indirect composite resins showed significantly lower levels than direct composite resins for bacterial cell adhesion, (P<.001). No significant differences were observed within the direct composite resins (P>.05). However, within the indirect composite resins a significantly lower level was found for Gradia than Estenia or Signum (P<.01). A partial correlation was observed between composite resin roughness and bacterial adhesion when the second and particularly the third-order statistical moments of the composite resin height distributions were considered. Indirect dental restorative composite resins were found to be less prone to biofilm adhesion than direct composite resins. A correlation of bacterial adhesion to surface morphology exists that is described by kurtosis; thus, advanced data analysis is required to discover possible insights into the biologic effects of morphology. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  11. Study on voids of epoxy matrix composites sandwich structure parts

    NASA Astrophysics Data System (ADS)

    He, Simin; Wen, Youyi; Yu, Wenjun; Liu, Hong; Yue, Cheng; Bao, Jing

    2017-03-01

    Void is the most common tiny defect of composite materials. Porosity is closely related to composite structure property. The voids forming behaviour in the composites sandwich structural parts with the carbon fiber reinforced epoxy resin skins was researched by adjusting the manufacturing process parameters. The composites laminate with different porosities were prepared with the different process parameter. The ultrasonic non-destructive measurement method for the porosity was developed and verified through microscopic examination. The analysis results show that compaction pressure during the manufacturing process had influence on the porosity in the laminate area. Increasing the compaction pressure and compaction time will reduce the porosity of the laminates. The bond-line between honeycomb core and carbon fiber reinforced epoxy resin skins were also analyzed through microscopic examination. The mechanical properties of sandwich structure composites were studied. The optimization process parameters and porosity ultrasonic measurement method for composites sandwich structure have been applied to the production of the composite parts.

  12. Acoustical evaluation of carbonized and activated cotton nonwovens.

    PubMed

    Jiang, N; Chen, J Y; Parikh, D V

    2009-12-01

    An activated carbon fiber nonwoven (ACF) was manufactured from a cotton nonwoven fabric. For the ACF acoustic application, a nonwoven composite of ACF with cotton nonwoven as a base layer was developed. Also produced were the composites of the cotton nonwoven base layer with a layer of glassfiber nonwoven, and the cotton nonwoven base layer with a layer of cotton fiber nonwoven. Their noise absorption coefficients and sound transmission loss were measured using the Brüel and Kjaer impedance tube instrument. Statistical significance of the differences between the composites was tested using the method of Duncan's grouping. The study concluded that the ACF composite exhibited a greater ability to absorb normal incidence sound waves than the composites with either glassfiber or cotton fiber. The analysis of sound transmission loss revealed that the three composites still obeyed the mass law of transmission loss. The composite with the surface layer of cotton fiber nonwoven possessed a higher fabric density and therefore showed a better sound insulation than the composites with glassfiber and ACF.

  13. Nanocellulose based polymer composite for acoustical materials

    NASA Astrophysics Data System (ADS)

    Farid, Mohammad; Purniawan, Agung; Susanti, Diah; Priyono, Slamet; Ardhyananta, Hosta; Rahmasita, Mutia E.

    2018-04-01

    Natural fibers are biodegradable materials that are innovatively and widely used for composite reinforcement in automotive components. Nanocellulose derived from natural fibers oil palm empty bunches have properties that are remarkable for use as a composite reinforcement. However, there have not been many investigations related to the use of nanocellulose-based composites for wideband sound absorption materials. The specimens of nanocellulose-based polyester composite were prepared using a spray method. An impedance tube method was used to measure the sound absorption coefficient of this composite material. To reveal the characteristics of the nanocellulose-based polyester composite material, SEM (scanning electron microscope), TEM (Transmission Electron Microscope), FTIR (Fourier Transform Infra Red), TGA (Thermogravimetric Analysis), and density tests were performed. Sound absorption test results showed the average value of sound absorption coefficient of 0.36 to 0,46 for frequency between 500 and 4000 Hz indicating that this nanocellulose-based polyester composite materials had a tendency to wideband sound absorption materials and potentially used as automotive interior materials.

  14. The partial replacement of palm kernel shell by carbon black and halloysite nanotubes as fillers in natural rubber composites

    NASA Astrophysics Data System (ADS)

    Daud, Shuhairiah; Ismail, Hanafi; Bakar, Azhar Abu

    2017-07-01

    The effect of partial replacement of palm kernel shell powder by carbon black (CB) and halloysite nanotube (HNT) on the tensile properties, rubber-filler interaction, thermal properties and morphological studies of natural rubber (NR) composites were investigated. Four different compositions of NR/PKS/CB and NR/PKS/HNT composites i.e 20/0, 15/5, 10/10,5/15 and 0/20 parts per hundred rubber (phr) were prepared on a two roll mill. The results showed that the tensile strength and modulus at 100% elongation (M100) and 300% elongation (M300) were higher for NR/PKS/CB compared to NR/PKS/HNT composites. NR/PKS/CB composites had the lowest elongation at break (Eb). The effect of commercial fillers in NR/PKS composites on tensile properties was confirmed by the rubber-filler interaction and scanning electron microscopy (SEM) study. The thermal stability of PKS filled NR composites with partially replaced by commercial fillers also determined by Thermo gravimetric Analysis (TGA).

  15. Preliminary Design and Investigation of Integrated Compressor with Composite Material Wheel

    NASA Astrophysics Data System (ADS)

    Wang, Jifeng; Müller, Norbert

    2012-06-01

    An integrated water vapor compressor with composite material wheel is developed and strength analysis using FEM is presented. The design of wound composite material allows for integrating all rotating parts of the drive that may simply reduce to only the rotor of the electrical motor, since no drive shaft is required anymore. This design can reduce the number of parts and mass, which is convenient for engineers to maintain the compressor. The electrical motors are brushless DC motors operating through a frequency drive and apply a torque on the wheels through the materials bonded in the wheel shrouds. This system allows a large amount of compression to be produced in a multi-stage compression setup. To determine the stress and vibration characteristics of this integrated compressor, numerical analysis is carried out using FEM. The simulation result shows that the integrated compressor with composite material wheel can be used in a chiller system where water as a refrigerant.

  16. Mango kernel starch-gum composite films: Physical, mechanical and barrier properties.

    PubMed

    Nawab, Anjum; Alam, Feroz; Haq, Muhammad Abdul; Lutfi, Zubala; Hasnain, Abid

    2017-05-01

    Composite films were developed by the casting method using mango kernel starch (MKS) and guar and xanthan gums. The concentration of both gums ranged from 0% to 30% (w/w of starch; db). Mechanical properties, oxygen permeability (OP), water vapor permeability (WVP), solubility in water and color parameters of composite films were evaluated. The crystallinity and homogeneity between the starch and gums were also evaluated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The scanning electron micrographs showed homogeneous matrix, with no signs of phase separation between the components. XRD analysis demonstrated diminished crystalline peak. Regardless of gum type the tensile strength (TS) of composite films increased with increasing gum concentration while reverse trend was noted for elongation at break (EAB) which found to be decreased with increasing gum concentration. The addition of both guar and xanthan gums increased solubility and WVP of the composite films. However, the OP was found to be lower than that of the control with both gums. Furthermore, addition of both gums led to changes in transparency and opacity of MKS films. Films containing 10% (w/w) xanthan gum showed lower values for solubility, WVP and OP, while film containing 20% guar gum showed good mechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Rapid determination of chemical composition and classification of bamboo fractions using visible-near infrared spectroscopy coupled with multivariate data analysis.

    PubMed

    Yang, Zhong; Li, Kang; Zhang, Maomao; Xin, Donglin; Zhang, Junhua

    2016-01-01

    During conversion of bamboo into biofuels and chemicals, it is necessary to efficiently predict the chemical composition and digestibility of biomass. However, traditional methods for determination of lignocellulosic biomass composition are expensive and time consuming. In this work, a novel and fast method for quantitative and qualitative analysis of chemical composition and enzymatic digestibilities of juvenile bamboo and mature bamboo fractions (bamboo green, bamboo timber, bamboo yellow, bamboo node, and bamboo branch) using visible-near infrared spectra was evaluated. The developed partial least squares models yielded coefficients of determination in calibration of 0.88, 0.94, and 0.96, for cellulose, xylan, and lignin of bamboo fractions in raw spectra, respectively. After visible-near infrared spectra being pretreated, the corresponding coefficients of determination in calibration yielded by the developed partial least squares models are 0.994, 0.990, and 0.996, respectively. The score plots of principal component analysis of mature bamboo, juvenile bamboo, and different fractions of mature bamboo were obviously distinguished in raw spectra. Based on partial least squares discriminant analysis, the classification accuracies of mature bamboo, juvenile bamboo, and different fractions of bamboo (bamboo green, bamboo timber, bamboo yellow, and bamboo branch) all reached 100 %. In addition, high accuracies of evaluation of the enzymatic digestibilities of bamboo fractions after pretreatment with aqueous ammonia were also observed. The results showed the potential of visible-near infrared spectroscopy in combination with multivariate analysis in efficiently analyzing the chemical composition and hydrolysabilities of lignocellulosic biomass, such as bamboo fractions.

  18. Model nebulae and determination of the chemical composition of the Magellanic Clouds

    PubMed Central

    Aller, L. H.; Keyes, C. D.; Czyzak, S. J.

    1979-01-01

    An analysis of previously presented photoelectric spectrophotometry of HII regions (emission-line diffuse nebulae) in the two Magellanic Clouds is carried out with the aid of theoretical nebular models, which are used primarily as interpolation devices. Some advantages and limitations of such theoretical models are discussed. A comparison of the finally obtained chemical compositions with those found by other observers shows generally a good agreement, suggesting that it is possible to obtain reliable chemical compositions from low excitation gaseous nebulae in our own galaxy as well as in distant stellar systems. PMID:16592633

  19. The luminescent properties of polyethylene films with admixtures of luminophores based on europium compounds

    NASA Astrophysics Data System (ADS)

    Kalinovskaya, I. V.; Zadorozhnaya, A. N.; Karasev, V. E.

    2008-11-01

    Polyethylene films activated with europium(III) complexes with carboxylic acids and Eu(L)3 · nD · xH2O + ANT compositions, where L is the trifluoroacetic, toluyl, or cinnamic acid anion and ANT is anthranilic acid, were prepared. The intensity of luminescence of the polymeric compositions depended on the content of luminophores (molar ratio between europium compounds and anthranilic acid). An analysis of the excitation spectra showed that, in polymer—Eu(L)3 · nPhen · xH2O + ANT compositions, there was effective energy transfer from phenanthroline to anthranilic acid levels.

  20. Priority compositions of boron carbide crystals obtained by self-propagating high-temperature synthesis

    NASA Astrophysics Data System (ADS)

    Ponomarev, V. I.; Konovalikhin, S. V.; Kovalev, I. D.; Vershinnikov, V. I.

    2015-09-01

    Splitting of reflections from boron carbide has been found for the first time by an X-ray diffraction study of polycrystalline mixture of boron carbide В15- х С х , (1.5 ≤ x ≤ 3) and its magnesium derivative C4B25Mg1.42. An analysis of reflection profiles shows that this splitting is due to the presence of boron carbide phases of different compositions in the sample, which are formed during crystal growth. The composition changes from В12.9С2.1 to В12.4С2.6.

  1. Nanocellulose-Zeolite Composite Films for Odor Elimination.

    PubMed

    Keshavarzi, Neda; Mashayekhy Rad, Farshid; Mace, Amber; Ansari, Farhan; Akhtar, Farid; Nilsson, Ulrika; Berglund, Lars; Bergström, Lennart

    2015-07-08

    Free standing and strong odor-removing composite films of cellulose nanofibrils (CNF) with a high content of nanoporous zeolite adsorbents have been colloidally processed. Thermogravimetric desorption analysis (TGA) and infrared spectroscopy combined with computational simulations showed that commercially available silicalite-1 and ZSM-5 have a high affinity and uptake of volatile odors like ethanethiol and propanethiol, also in the presence of water. The simulations showed that propanethiol has a higher affinity, up to 16%, to the two zeolites compared with ethanethiol. Highly flexible and strong free-standing zeolite-CNF films with an adsorbent loading of 89 w/w% have been produced by Ca-induced gelation and vacuum filtration. The CNF-network controls the strength of the composite films and 100 μm thick zeolite-CNF films with a CNF content of less than 10 vol % displayed a tensile strength approaching 10 MPa. Headspace solid phase microextraction (SPME) coupled to gas chromatography-mass spectroscopy (GC/MS) analysis showed that the CNF-zeolite films can eliminate the volatile thiol-based odors to concentrations below the detection ability of the human olfactory system. Odor removing zeolite-cellulose nanofibril films could enable improved transport and storage of fruits and vegetables rich in odors, for example, onion and the tasty but foul-smelling South-East Asian Durian fruit.

  2. Research on the preparation, uniformity and stability of mixed standard substance for rapid detection of goat milk composition.

    PubMed

    Zhu, Yuying; Wang, Jianmin; Wang, Cunfang

    2018-05-01

    Taking fresh goat milk as raw material after filtering, centrifuging, hollow fiber ultrafiltration, allocating formula, value detection and preparation processing, a set of 10 goat milk mixed standard substances was prepared on the basis of one-factor-at-a-time using a uniform design method, and its accuracy, uniformity and stability were evaluated by paired t-test and F-test of one-way analysis of variance. The results showed that three milk composition contents of these standard products were independent of each other, and the preparation using the quasi-level design method, and without emulsifier was the best program. Compared with detection value by cow milk standards for calibration fast analyzer, the calibration by goat milk mixed standard was more applicable to rapid detection of goat milk composition, detection value was more accurate and the deviation showed less error. Single factor analysis of variance showed that the uniformity and stability of the mixed standard substance were better; it could be stored for 15 days at 4°C. The uniformity and stability of the in-units and inter-units could meet the requirements of the preparation of national standard products. © 2018 Japanese Society of Animal Science.

  3. Effects of legacy nuclear waste on the compositional diversity and distributions of sulfate-reducing bacteria in a terrestrial subsurface aquifer.

    PubMed

    Bagwell, Christopher E; Liu, Xuaduan; Wu, Liyou; Zhou, Jizhong

    2006-03-01

    The impact of legacy nuclear waste on the compositional diversity and distribution of sulfate-reducing bacteria in a heavily contaminated subsurface aquifer was examined. dsrAB clone libraries were constructed and restriction fragment length polymorphism (RFLP) analysis used to evaluate genetic variation between sampling wells. Principal component analysis identified nickel, nitrate, technetium, and organic carbon as the primary variables contributing to well-to-well geochemical variability, although comparative sequence analysis showed the sulfate-reducing bacteria community structure to be consistent throughout contaminated and uncontaminated regions of the aquifer. Only 3% of recovered dsrAB gene sequences showed apparent membership to the Deltaproteobacteria. The remainder of recovered sequences may represent novel, deep-branching lineages that, to our knowledge, do not presently contain any cultivated members; although corresponding phylotypes have recently been reported from several different marine ecosystems. These findings imply resiliency and adaptability of sulfate-reducing bacteria to extremes in environmental conditions, although the possibility for horizontal transfer of dsrAB is also discussed.

  4. Novel synthesis of cobalt/poly vinyl alcohol/gamma alumina nanocomposite for catalytic application

    NASA Astrophysics Data System (ADS)

    Hatamie, Shadie; Ahadian, Mohammad Mahdi; Rashidi, Alimoradeh; Karimi, Ali; Akhavan, Omid

    2017-05-01

    In this manuscript, synthesis of cobalt/poly vinyl alcohol (PVA)/gamma alumina nanocomposite via a simple room temperature, as well as its catalyst performance were explored. Brunauer-Emmett-Teller analysis, X-ray diffraction, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy were conducted. The surface area of the polymeric composite was obtained to be 280 m2/g. The cobalt loading on the nanocomposite was measured using inductivity couple plasma. Transmission electron microscopy analysis showed that the size of cobalt crystalline encapsulate inside the polymer was confined to 5 nm. Magnetic property analysis, using vibrating sample magnetometer, confirmed ferromagnetic nature of the composite. Thermo-gravimetric analyses were employed to explain the degradation process for the polymeric base nanocomposite. Temperature-programmed reduction was used to evaluate the structural form of cobalt oxide in nanocomposite. The catalysis activity was determined by Fischer-Tropsch synthesize, which showed a high catalyst selectivity to C2-C4 hydrocarbons.

  5. Rheological properties in relation to molecular structure of quinoa starch.

    PubMed

    Li, Guantian; Zhu, Fan

    2018-07-15

    Quinoa starch granules are small (~0.5 - 3μm) with potentials for some food and other applications. To better exploit it as a new starch resource, this study investigates the steady shear and dynamic oscillatory properties of 9 quinoa starches varying in composition and structure. Steady shear analysis shows that the flow curves could be well described by 4 selected mathematic models. Temperature sweep analysis reveals that the quinoa starch encounters a 4-stage process including 2 phase transitions. Structure-function relationship analysis showed that composition as well as unit and internal chain length distribution of amylopectin have significant impact on the rheological properties (e.g., G' at 90°C) of quinoa starch. The roles of some individual unit chains and super-long unit chains of amylopectin in determining the rheological properties of quinoa starch were revealed. This study may stimulate further interest in understanding the structural basis of starch rheology. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Quantitative 13C NMR characterization of fast pyrolysis oils

    DOE PAGES

    Happs, Renee M.; Lisa, Kristina; Ferrell, III, Jack R.

    2016-10-20

    Quantitative 13C NMR analysis of model catalytic fast pyrolysis (CFP) oils following literature procedures showed poor agreement for aromatic hydrocarbons between NMR measured concentrations and actual composition. Furthermore, modifying integration regions based on DEPT analysis for aromatic carbons resulted in better agreement. Solvent effects were also investigated for hydrotreated CFP oil.

  7. Quantitative 13C NMR characterization of fast pyrolysis oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Happs, Renee M.; Lisa, Kristina; Ferrell, III, Jack R.

    Quantitative 13C NMR analysis of model catalytic fast pyrolysis (CFP) oils following literature procedures showed poor agreement for aromatic hydrocarbons between NMR measured concentrations and actual composition. Furthermore, modifying integration regions based on DEPT analysis for aromatic carbons resulted in better agreement. Solvent effects were also investigated for hydrotreated CFP oil.

  8. In vitro study of biocompatibility of a graphene composite with gold nanoparticles and hydroxyapatite on human osteoblasts.

    PubMed

    Crisan, Liana; Crisan, Bogdan; Soritau, Olga; Baciut, Mihaela; Biris, Alexandru Radu; Baciut, Grigore; Lucaciu, Ondine

    2015-10-01

    The purpose of this study was to evaluate the biocompatibility of some composites consisting of different proportions of graphene in combination with gold nanoparticles (AuNPs) and nanostructured hydroxyapatite (HA) on osteoblast viability, proliferation and differentiation. Au/HA@graphene composites synthesized by the catalytic chemical vapor deposition induction heating method with acetylene as the carbon source and over an Au/HA catalyst, were characterized by transmission electron microscopy, thermogravimetric analysis and Raman spectroscopy and showed that the few-layer graphene was grown over the Au/HA catalyst. The cytocompatibility study was performed using the fluorescein diacetate assay for assessment of the viability and proliferation of osteoblasts cultivated in the presence of HA, Au/HA and Au/HA@graphene composites as colloidal suspensions or as substrates. The most favorable composites for cell adhesion and proliferation were HA, Au/HA and Au/HA composites with 1.6% and 3.15% concentration of graphenes. Immunocytochemical staining performed after 19 days of osteoblasts cultivation on substrates showed that the graphene composites induced low expression of alkaline phosphatase compared to the control group and HA and Au/HA substrates. The presence of graphene in the substrate composition also induced an increased level of intracellular osteopontin and cytoskeleton reorganization (actin-F) depending on graphene concentration, suggesting cell activation, increased cellular adhesion and acquisition of a mechanosensorial osteocyte phenotype. Copyright © 2015 John Wiley & Sons, Ltd.

  9. ICAN Computer Code Adapted for Building Materials

    NASA Technical Reports Server (NTRS)

    Murthy, Pappu L. N.

    1997-01-01

    The NASA Lewis Research Center has been involved in developing composite micromechanics and macromechanics theories over the last three decades. These activities have resulted in several composite mechanics theories and structural analysis codes whose applications range from material behavior design and analysis to structural component response. One of these computer codes, the Integrated Composite Analyzer (ICAN), is designed primarily to address issues related to designing polymer matrix composites and predicting their properties - including hygral, thermal, and mechanical load effects. Recently, under a cost-sharing cooperative agreement with a Fortune 500 corporation, Master Builders Inc., ICAN was adapted to analyze building materials. The high costs and technical difficulties involved with the fabrication of continuous-fiber-reinforced composites sometimes limit their use. Particulate-reinforced composites can be thought of as a viable alternative. They are as easily processed to near-net shape as monolithic materials, yet have the improved stiffness, strength, and fracture toughness that is characteristic of continuous-fiber-reinforced composites. For example, particlereinforced metal-matrix composites show great potential for a variety of automotive applications, such as disk brake rotors, connecting rods, cylinder liners, and other hightemperature applications. Building materials, such as concrete, can be thought of as one of the oldest materials in this category of multiphase, particle-reinforced materials. The adaptation of ICAN to analyze particle-reinforced composite materials involved the development of new micromechanics-based theories. A derivative of the ICAN code, ICAN/PART, was developed and delivered to Master Builders Inc. as a part of the cooperative activity.

  10. Stand-off molecular composition analysis

    NASA Astrophysics Data System (ADS)

    Hughes, Gary B.; Lubin, Philip; Meinhold, Peter; O'Neill, Hugh; Brashears, Travis; Zhang, Qicheng; Griswold, Janelle; Riley, Jordan; Motta, Caio

    2015-09-01

    Molecular composition of distant stars is explored by observing absorption spectra. The star produces blackbody radiation that passes through the molecular cloud of vaporized material surrounding the star. Characteristic absorption lines are discernible with a spectrometer, and molecular composition is investigated by comparing spectral observations with known material profiles. Most objects in the solar system—asteroids, comets, planets, moons—are too cold to be interrogated in this manner. Molecular clouds around cold objects consist primarily of volatiles, so bulk composition cannot be probed. Additionally, low volatile density does not produce discernible absorption lines in the faint signal generated by low blackbody temperatures. This paper describes a system for probing the molecular composition of cold solar system targets from a distant vantage. The concept utilizes a directed energy beam to melt and vaporize a spot on a distant target, such as from a spacecraft orbiting the object. With sufficient flux (~10 MW/m2), the spot temperature rises rapidly (to ~2 500 K), and evaporation of all materials on the target surface occurs. The melted spot creates a high-temperature blackbody source, and ejected material creates a molecular plume in front of the spot. Bulk composition is investigated by using a spectrometer to view the heated spot through the ejected material. Spatial composition maps could be created by scanning the surface. Applying the beam to a single spot continuously produces a borehole, and shallow sub-surface composition profiling is also possible. Initial simulations of absorption profiles with laser heating show great promise for molecular composition analysis.

  11. Hard TiCx/SiC/a-C:H nanocomposite thin films using pulsed high energy density plasma focus device

    NASA Astrophysics Data System (ADS)

    Umar, Z. A.; Rawat, R. S.; Tan, K. S.; Kumar, A. K.; Ahmad, R.; Hussain, T.; Kloc, C.; Chen, Z.; Shen, L.; Zhang, Z.

    2013-04-01

    Thin films of TiCx/SiC/a-C:H were synthesized on Si substrates using a complex mix of high energy density plasmas and instability accelerated energetic ions of filling gas species, emanated from hot and dense pinched plasma column, in dense plasma focus device. The conventional hollow copper anode of Mather type plasma focus device was replaced by solid titanium anode for synthesis of TiCx/SiC/a-C:H nanocomposite thin films using CH4:Ar admixture of (1:9, 3:7 and 5:5) for fixed 20 focus shots as well as with different number of focus shots with fixed CH4:Ar admixture ratio 3:7. XRD results showed the formation of crystalline TiCx/SiC phases for thin film synthesized using different number of focus shots with CH4:Ar admixture ratio fixed at 3:7. SEM results showed that the synthesized thin films consist of nanoparticle agglomerates and the size of agglomerates depended on the CH4:Ar admixture ratio as well as on the number of focus shots. Raman analysis showed the formation of polycrystalline/amorphous Si, SiC and a-C for different CH4:Ar ratio as well as for different number of focus shots. The XPS analysis confirmed the formation of TiCx/SiC/a-C:H composite thin film. Nanoindentation results showed that the hardness and elastic modulus values of composite thin films increased with increasing number of focus shots. Maximum values of hardness and elastic modulus at the surface of the composite thin film were found to be about 22 and 305 GPa, respectively for 30 focus shots confirming the successful synthesis of hard composite TiCx/SiC/a-C:H coatings.

  12. Preparation and characterization of polydimethylsiloxane/poly(vinylalcohol) coated solid phase microextraction fibers using sol-gel technology.

    PubMed

    Lopes, Alexandre Leite; Augusto, Fabio

    2004-11-12

    The applicability of a composite composed of polydimethylsiloxane (PDMS) and poly(vinyl alcohol) (PDMS/PVA) as coating sorbent for SPME fibers is demonstrated here. Fused silica (FS) fibers were coated with PDMS/PVA composite through a sol-gel process, using methyltrimethoxysilane as reticulating agent. The chemical and physical properties of the sol-gel PDMS/PVA composite were determined by infrared spectroscopy and thermogravimetric analysis. Electron scanning microscopy of the prepared fibers, showed that the coating obtained was highly microporous, having a thickness of approximately 5 microm. The fibers were tested for the headspace extraction of several organic compounds (o-xylene, naphthalene, ethyl caprate, p-chlorotoluene and PCB) prior to gas chromatographic analysis. The extractive capacity of the PDMS/PVA coating was found to be superior to that of pure conventional PDMS fibers.

  13. Mechanical performance and parameter sensitivity analysis of 3D braided composites joints.

    PubMed

    Wu, Yue; Nan, Bo; Chen, Liang

    2014-01-01

    3D braided composite joints are the important components in CFRP truss, which have significant influence on the reliability and lightweight of structures. To investigate the mechanical performance of 3D braided composite joints, a numerical method based on the microscopic mechanics is put forward, the modeling technologies, including the material constants selection, element type, grid size, and the boundary conditions, are discussed in detail. Secondly, a method for determination of ultimate bearing capacity is established, which can consider the strength failure. Finally, the effect of load parameters, geometric parameters, and process parameters on the ultimate bearing capacity of joints is analyzed by the global sensitivity analysis method. The results show that the main pipe diameter thickness ratio γ, the main pipe diameter D, and the braided angle α are sensitive to the ultimate bearing capacity N.

  14. Body composition of collegiate football players: bioelectrical impedance and skinfolds compared to hydrostatic weighing.

    PubMed

    Oppliger, R A; Nielsen, D H; Shetler, A C; Crowley, E T; Albright, J P

    1992-01-01

    The need for simple, valid techniques of body composition assessment among athletes is a growing concern of the physical therapist. This paper reports on several common methods applied to university football players. Body composition analysis was conducted on 28 Division IA football players using three different bioelectrical impedance analysis (BIA) systems, skinfolds (SF), and hydrostatic weighing (HYDRO). Correlations for all methods with HYDRO were high (>.88), but BIA significantly overpredicted body fatness. In contrast, three SF equations showed small differences with HYDRO and reasonable measurement error. Clinicians should exercise caution when using BIA based on the existing manufacturers' equations with athletic populations. Adjustments to BIA regression equations by including modifying or anthropometric variables could enhance the predictive accuracy of these methods with lean, athletic males. J Orthop Sports Phys Ther 1992;15(4):187-192.

  15. Micromechanics, Fracture Mechanics and Gas Permeability of Composite Laminates for Cryogenic Storage Systems

    NASA Technical Reports Server (NTRS)

    Choi, Sukjoo; Sankar, Bhavani; Ebaugh, Newton C.

    2005-01-01

    A micromechanics method is developed to investigate microcrack propagation in a liquid hydrogen composite tank at cryogenic temperature. The unit cell is modeled using square and hexagonal shapes depends on fiber and matrix layout from microscopic images of composite laminates. Periodic boundary conditions are applied to the unit cell. The temperature dependent properties are taken into account in the analysis. The laminate properties estimated by the micromechanics method are compared with empirical solutions using constituent properties. The micro stresses in the fiber and matrix phases based on boundary conditions in laminate level are calculated to predict the formation of microcracks in the matrix. The method is applied to an actual liquid hydrogen storage system. The analysis predicts micro stresses in the matrix phase are large enough to cause microcracks in the composite. Stress singularity of a transverse crack normal to a ply-interface is investigated to predict the fracture behavior at cryogenic conditions using analytical and finite element analysis. When a transverse crack touches a ply-interface of a composite layer with same fiber orientation, the stress singularity is equal to 1/2. When the transverse crack propagates to a stiffer layer normal to the ply-direction, the singularity becomes less than 1/2 and vice versa. Finite element analysis is performed to predict the fracture toughness of a laminated beam subjected to fracture loads measured by four-point bending tests at room and cryogenic temperatures. As results, the fracture load at cryogenic temperature is significantly lower than that at room temperature. However, when thermal stresses are taken into consideration, for both cases of room and cryogenic temperatures, the difference of the fracture toughness becomes insignificant. The result indicates fracture toughness is a characteristic property, which is independent to temperature changes. The experimental analysis is performed to investigate the effect of cryogenic cycling on permeability for various composite material systems. Textile composites have lower permeability than laminated composites even with increasing number of cryogenic cycle. Nano-particles dispersed in laminated composites do not show improvement on permeability. The optical inspection is performed to investigate the microcrack propagation and void content in laminated composites and compared the microscopic results before and after cryogenic cycling.

  16. Proximate composition, fatty acid analysis and protein digestibility-corrected amino acid score of three Mediterranean cephalopods.

    PubMed

    Zlatanos, Spiros; Laskaridis, Kostas; Feist, Christian; Sagredos, Angelos

    2006-10-01

    Proximate composition, fatty acid analysis and protein digestibility-corrected amino acid score (PDCAAS) in three commercially important cephalopods of the Mediterranean sea (cuttlefish, octopus and squid) were determined. The results of the proximate analysis showed that these species had very high protein:fat ratios similar to lean beef. Docosahexaenoic, palmitic and eicosipentaenoic acid were the most abundant fatty acids among analyzed species. The amount of n-3 fatty acids was higher than that of saturated, monounsaturated and n-6 fatty acids. Despite the fact that cephalopods contain small amounts of fat they were found quite rich in n-3 fatty acids. Finally, PDCAAS indicated that these organisms had a very good protein quality.

  17. Optimization of process parameters in drilling of fibre hybrid composite using Taguchi and grey relational analysis

    NASA Astrophysics Data System (ADS)

    Vijaya Ramnath, B.; Sharavanan, S.; Jeykrishnan, J.

    2017-03-01

    Nowadays quality plays a vital role in all the products. Hence, the development in manufacturing process focuses on the fabrication of composite with high dimensional accuracy and also incurring low manufacturing cost. In this work, an investigation on machining parameters has been performed on jute-flax hybrid composite. Here, the two important responses characteristics like surface roughness and material removal rate are optimized by employing 3 machining input parameters. The input variables considered are drill bit diameter, spindle speed and feed rate. Machining is done on CNC vertical drilling machine at different levels of drilling parameters. Taguchi’s L16 orthogonal array is used for optimizing individual tool parameters. Analysis Of Variance is used to find the significance of individual parameters. The simultaneous optimization of the process parameters is done by grey relational analysis. The results of this investigation shows that, spindle speed and drill bit diameter have most effect on material removal rate and surface roughness followed by feed rate.

  18. Analysis of essential oils from Voacanga africana seeds at different hydrodistillation extraction stages: chemical composition, antioxidant activity and antimicrobial activity.

    PubMed

    Liu, Xiong; Yang, Dongliang; Liu, Jiajia; Ren, Na

    2015-01-01

    In this study, essential oils from Voacanga africana seeds at different extraction stages were investigated. In the chemical composition analysis, 27 compounds representing 86.69-95.03% of the total essential oils were identified and quantified. The main constituents in essential oils were terpenoids, alcohols and fatty acids accounting for 15.03-24.36%, 21.57-34.43% and 33.06-57.37%, respectively. Moreover, the analysis also revealed that essential oils from different extraction stages possessed different chemical compositions. In the antioxidant evaluation, all analysed oils showed similar antioxidant behaviours, and the concentrations of essential oils providing 50% inhibition of DPPH-scavenging activity (IC50) were about 25 mg/mL. In the antimicrobial experiments, essential oils from different extraction stages exhibited different antimicrobial activities. The antimicrobial activity of oils was affected by extraction stages. By controlling extraction stages, it is promising to obtain essential oils with desired antimicrobial activities.

  19. USDA's National Food and Nutrient Analysis Program (NFNAP) produces high-quality data for USDA food composition databases: Two decades of collaboration.

    PubMed

    Haytowitz, David B; Pehrsson, Pamela R

    2018-01-01

    For nearly 20years, the National Food and Nutrient Analysis Program (NFNAP) has expanded and improved the quantity and quality of data in US Department of Agriculture's (USDA) food composition databases (FCDB) through the collection and analysis of nationally representative food samples. NFNAP employs statistically valid sampling plans, the Key Foods approach to identify and prioritize foods and nutrients, comprehensive quality control protocols, and analytical oversight to generate new and updated analytical data for food components. NFNAP has allowed the Nutrient Data Laboratory to keep up with the dynamic US food supply and emerging scientific research. Recently generated results for nationally representative food samples show marked changes compared to previous database values for selected nutrients. Monitoring changes in the composition of foods is critical in keeping FCDB up-to-date, so that they remain a vital tool in assessing the nutrient intake of national populations, as well as for providing dietary advice. Published by Elsevier Ltd.

  20. Microtomography evaluation of dental tissue wear surface induced by in vitro simulated chewing cycles on human and composite teeth.

    PubMed

    Bedini, Rossella; Pecci, Raffaella; Notarangelo, Gianluca; Zuppante, Francesca; Persico, Salvatore; Di Carlo, Fabio

    2012-01-01

    In this study a 3D microtomography display of tooth surfaces after in vitro dental wear tests has been obtained. Natural teeth have been compared with prosthetic teeth, manufactured by three different polyceramic composite materials. The prosthetic dental element samples, similar to molars, have been placed in opposition to human teeth extracted by paradontology diseases. After microtomography analysis, samples have been subjected to in vitro fatigue test cycles by servo-hydraulic mechanical testing machine. After the fatigue test, each sample has been subjected again to microtomography analysis to obtain volumetric value changes and dental wear surface images. Wear surface images were obtained by 3D reconstruction software and volumetric value changes were measured by CT analyser software. The aim of this work has been to show the potential of microtomography technique to display very clear and reliable wear surface images. Microtomography analysis methods to evaluate volumetric value changes have been used to quantify dental tissue and composite material wear.

  1. Analysis of DGGE profiles to explore the relationship between prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru Margin.

    PubMed

    Fry, John C; Webster, Gordon; Cragg, Barry A; Weightman, Andrew J; Parkes, R John

    2006-10-01

    The aim of this work was to relate depth profiles of prokaryotic community composition with geochemical processes in the deep subseafloor biosphere at two shallow-water sites on the Peru Margin in the Pacific Ocean (ODP Leg 201, sites 1228 and 1229). Principal component analysis of denaturing gradient gel electrophoresis banding patterns of deep-sediment Bacteria, Archaea, Euryarchaeota and the novel candidate division JS1, followed by multiple regression, showed strong relationships with prokaryotic activity and geochemistry (R(2)=55-100%). Further correlation analysis, at one site, between the principal components from the community composition profiles for Bacteria and 12 other variables quantitatively confirmed their relationship with activity and geochemistry, which had previously only been implied. Comparison with previously published cell counts enumerated by fluorescent in situ hybridization with rRNA-targeted probes confirmed that these denaturing gradient gel electrophoresis profiles described an active prokaryotic community.

  2. Pyronin Y (basic xanthene dye)-bentonite composite: A spectroscopic study

    NASA Astrophysics Data System (ADS)

    Tabak, A.; Kaya, M.; Yilmaz, N.; Meral, K.; Onganer, Y.; Caglar, B.; Sungur, O.

    2014-02-01

    The expansion by 1.43 Angstrom of basal spacing and the shift to higher frequencies of in-plane ring vibrations of the Pyronin Y molecule at 1603 and 1527 cm-1 on the formation of Pyronin Y-bentonite composite exhibited that the dye cations might be oriented as a monolayer form in the interlamellar spacing with aromatic rings parallel to clay layers. Thermal analysis results of this composite compared to those of raw bentonite signified the different outer sphere water entities associated with the replacement of inorganic cations with organic dye cations and the gradual decomposition of the organic molecule in the interlamellar spacing. Thermo-Infrared spectra of Pyronin Y-bentonite sample up to high temperatures showed the thermal stability of the dye-clay composite as a result of the presence of π interactions. The pore structure characteristics of Pyronin Y-bentonite composite exhibited the increase in the number of mesopores during formation of the composite.

  3. A study of the diffusional behavior of a two-phase metal matrix composite exposed to a high temperature environment

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.

    1974-01-01

    The progress of diffusion-controlled filament-matrix interaction in a metal matrix composite where the filaments and matrix comprise a two-phase binary alloy system was studied by mathematically modeling compositional changes resulting from prolonged elevated temperature exposure. The analysis treats a finite, diffusion-controlled, two-phase moving-interface problem by means of a variable-grid finite-difference technique. The Ni-W system was selected as an example system. Modeling was carried out for the 1000 to 1200 C temperature range for unidirectional composites containing from 6 to 40 volume percent tungsten filaments in a Ni matrix. The results are displayed to show both the change in filament diameter and matrix composition as a function of exposure time. Compositional profiles produced between first and second nearest neighbor filaments were calculated by superposition of finite-difference solutions of the diffusion equations.

  4. Preparation and tribological behavior of Ni-graphene composite coating under room temperature

    NASA Astrophysics Data System (ADS)

    Chen, Juanjuan; Li, Jianliang; Xiong, Dangsheng; He, Yong; Ji, Yujuan; Qin, Yongkun

    2016-01-01

    In this paper, Ni-graphene composite coatings with different graphene addition amounts were prepared on 45 steel disk by using dipulse composite electrodeposition technology. Meanwhile, the influence of plating time, bath temperature and load on friction and wear of the coating was studied. The tribological behavior of composite coating was tested against a Si3N4 ceramic ball under dry condition. Cross-sectional morphologies showed that Ni-graphene coating was successfully coated on the substrate with an average thickness of 85 ± 5 μm. XRD analysis concluded that with the increase of addition amount of graphene, the average crystallite size of coating decreased. EDS analyses and Raman spectra proved the presence of graphene. Friction coefficient of composite coating decreased with the increase of graphene addition amounts, while the hardness increased. Meanwhile, the wear resistance of composite coating improved. The optimum experimental conditions were obtained.

  5. Assessment of variations in wear test methodology.

    PubMed

    Gouvêa, Cresus V D; Weig, Karin; Filho, Thales R M; Barros, Renata N

    2010-01-01

    The properties of composite resin for dental fillings were improved by development, but its weakness continues to be its wear strength. Several tests have been proposed to evaluate wear in composite resin materials. The aim of this study was to verify how polishing and the type of abrasive can influence the wear rate of composite resin. The test was carried out on two groups. In one group we employed an ormocer and a hybrid composite that was polished group the composite was polished with the same abrasive paper plus a 1 microm and 0.25 microm grit diamond paste. A three-body wear test was performed using the metal sphere of the wear test machine, the composite and an abrasive. A diamond paste and aluminum oxide dispersion were used as abrasive. Analysis of the results showed that there was no difference between polishing techniques, but revealed a difference between abrasives.

  6. Synthesis of ZnO decorated graphene nanocomposite for enhanced photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Gayathri, S.; Jayabal, P.; Kottaisamy, M.; Ramakrishnan, V.

    2014-05-01

    Zinc oxide/Graphene (GZ) composites with different concentrations of ZnO were successfully synthesized through simple chemical precipitation method. The X-ray diffraction pattern and the micro-Raman spectroscopic technique revealed the formation of GZ composite, and the energy dispersive X-ray spectrometry analysis showed the purity of the prepared samples. The ZnO nanoparticles decorated graphene sheets were clearly visible in the field emission scanning electron micrograph. Raman mapping was employed to analyze the homogeneity of the prepared samples. The diffuse-reflectance spectra clearly indicated that the formation of GZ composites promoted the absorption in the visible region also. The photocatalytic activity of ZnO and GZ composites was studied by the photodegradation of Methylene blue dye. The results revealed that the GZ composites exhibited a higher photocatalytic activity than pristine ZnO. Hence, we proposed a simple wet chemical method to synthesize GZ composite and its application on photocatalysis was demonstrated.

  7. Assuring Life in Composite Systems

    NASA Technical Reports Server (NTRS)

    Chamis, Christos c.

    2008-01-01

    A computational simulation method is presented to assure life in composite systems by using dynamic buckling of smart composite shells as an example. The combined use of composite mechanics, finite element computer codes, and probabilistic analysis enable the effective assessment of the dynamic buckling load of smart composite shells. A universal plot is generated to estimate the dynamic buckling load of composite shells at various load rates and probabilities. The shell structure is also evaluated with smart fibers embedded in the plies right below the outer plies. The results show that, on the average, the use of smart fibers improved the shell buckling resistance by about 9% at different probabilities and delayed the buckling occurrence time. The probabilistic sensitivities results indicate that uncertainties in the fiber volume ratio and ply thickness have major effects on the buckling load. The uncertainties in the electric field strength and smart material volume fraction have moderate effects and thereby in the assured life of the shell.

  8. Water Deficit and Seasonality Study on Essential Oil Constituents of Lippia gracilis Schauer Germplasm

    PubMed Central

    Cruz, Elizangela Mércia de Oliveira; Pinto, Jéssika Andreza Oliveira; Fontes, Saymo Santos; Arrigoni-Blank, Maria de Fátima; Bacci, Leandro; de Jesus, Hugo César Ramos; Santos, Darlisson de Alexandria; Alves, Péricles Barreto; Blank, Arie Fitzgerald

    2014-01-01

    The aim of this study was to analyze the chemical composition of the essential oil from leaves of Lippia gracilis genotypes, in the dry and rainy seasons, and with and without irrigation. The extraction of essential oil was realized by hydrodistillation in a Clevenger apparatus. The chemical composition analysis was performed using a GC-MS/FID. The leaves of the L. gracilis genotypes provide essential oil with content between 1.25% and 1.92% in the rainy season and 1.42% and 2.70% in the dry season; when irrigation was used the content was between 1.42% and 2.87%, without irrigation contents were between 1.60% and 3.00%. The chemical composition of L. gracilis showed high levels of terpenes. The major constituent of genotypes LGRA-106 was thymol and carvacrol was the major constituent for the other genotypes. Concentrations showed little variation between seasons, demonstrating the stability of the chemical composition of L. gracilis even with different climatic conditions. PMID:25302321

  9. Topological and thermal properties of polypropylene composites based on oil palm biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhat, A. H., E-mail: aamir.bhat@petronas.com.my, E-mail: anie-yal88@yahoo.com; Dasan, Y. K., E-mail: aamir.bhat@petronas.com.my, E-mail: anie-yal88@yahoo.com

    Roughness on pristine and polymer composite surfaces is of enormous practical importance for polymer applications. This study deals with the use of varying quantity of oil palm ash as a nanofiller in a polypropylene based matrix. The oil palm ash sample was preprocessed to break the particles into small diameter by using ultra sonication before using microfluidizer for further deduction in size and homogenization. The oil palm ash was made to undergo many passes through the microfluidizer for fine distribution of particles. Polypropylene based composites containing different loading percentage oil palm ash was granulated by twin screw extruder and thenmore » injection molded. The surface morphology of the OPA passed through microfluidizer was analyzed by Tapping Mode - Atomic Force Microscopy (TMAFM). Thermal analysis results showed an increase in the activation energy values. The thermal stability of the composite samples showed improvement as compared to the virgin polymer as corroborated by the on-set degradation temperatures and the temperatures at which 50% degradation occurred.« less

  10. Feasibility study on development of metal matrix composite by microwave stir casting

    NASA Astrophysics Data System (ADS)

    Lingappa, S. M.; Srinath, M. S.; Amarendra, H. J.

    2018-04-01

    Need for better service oriented materials has boosted the demand for metal matrix composite materials, which can be developed to have necessary properties. One of the most widely utilized metal matrix composite is Al-SiC, which is having a matrix made of aluminium metal and SiC as reinforcement. Lightweight and conductivity of aluminium, when combined with hardness and wear resistance of SiC provides an excellent platform for various applications in the field of electronics, automotives, and aerospace and so on. However, uniform distribution of reinforcement particles is an issue and has to be addressed. The present study is an attempt made to develop Al-SiC metal matrix composite by melting base metal using microwave hybrid heating technique, followed by addition of reinforcement and stirring the mixture for obtaining homogenous mixture. X-Ray Diffraction analysis shows the presence of aluminium and SiC in the cast material. Further, microstructural study shows the distribution of SiC particles in the grain boundaries.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jafirin, Serawati; Ahmad, Ishak; Ahmad, Azizan

    The development of 49% poly(methyl methacrylate)-grafted natural rubber (MG49) and carboxymethyl cellulose as a composite polymer electrolyte film incorporating LiCF{sub 3}SO{sub 3} were explored. Carboxymethyl cellulose was synthesized from kenaf bast fibres via carboxymethylation process by alkali catalyzed reaction of cellulose with sodium chloroacetate. Reflection fourier transform infrared (ATR-FTIR) spectroscopy showed the presence of carboxyl peak after modification of cellulose with sodium chloroacetate. X-ray diffraction (XRD) analysis revealed that the crystallinity of cellulose was decrease after synthesis. High performance composite polymer electrolytes were prepared with various composition of carboxymethyl cellulose (2–10 wt%) via solution-casting method. The conductivity was increased withmore » carboxymethyl cellulose loading. The highest conductivity value achieved was 3.3 × 10{sup −7} Scm{sup −1} upon addition of 6% wt carboxymethyl cellulose. 6% wt carboxymethyl cellulose composition showed the highest tensile strength value of 7.9 MPa and 273 MPa of modulus value which demonstrated high mechanical performance with accepatable level of ionic conductivity.« less

  12. Wood plastic composites from agro-waste materials: Analysis of mechanical properties.

    PubMed

    Nourbakhsh, Amir; Ashori, Alireza

    2010-04-01

    This article presents the application of agro-waste materials (i.e., corn stalk, reed stalk, and oilseed stalk) in order to evaluate and compare their suitability as reinforcement for thermoplastics as an alternative to wood fibers. The effects of fiber loading and CaCO(3) content on the mechanical properties were also studied. Overall trend shows that with addition of agro-waste materials, tensile and flexural properties of the composites are significantly enhanced. Oilseed fibers showed superior mechanical properties due to their high aspect ratio and chemical characteristics. The order of increment in the mechanical properties of the composites is oilseed stalk >corn stalk>reed stalk at all fiber loadings. The tensile and flexural properties of the composite significantly decreased with increasing CaCO(3) content, due to the reduction of interface bond between the fiber and matrix. It can be concluded from this study that the used agro-waste materials are attractive reinforcements from the standpoint of their mechanical properties. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Physical and mechanical properties of modified bacterial cellulose composite films

    NASA Astrophysics Data System (ADS)

    Indrarti, Lucia; Indriyati, Syampurwadi, Anung; Pujiastuti, Sri

    2016-02-01

    To open wide range application opportunities of Bacterial Cellulose (BC) such as for agricultural purposes and edible film, BC slurries were blended with Glycerol (Gly), Sorbitol (Sor) and Carboxymethyl Cellulose (CMC). The physical and mechanical properties of BC composites were investigated to gain a better understanding of the relationship between BC and the additive types. Addition of glycerol, sorbitol and CMC influenced the water solubility of BC composite films. FTIR analysis showed the characteristic bands of cellulose. Addition of CMC, glycerol, and sorbitol slightly changed the FTIR spectrum of the composites. Tensile test showed that CMC not only acted as cross-linking agent where the tensile strength doubled up to 180 MPa, but also acted as plasticizer with the elongation at break increased more than 100% compared to that of BC film. On the other hand, glycerol and sorbitol acted as plasticizers that decreased the tensile strength and increased the elongation. Addition of CMC can improve film transparency, which is quite important in consumer acceptance of edible films in food industry.

  14. Non-Deterministic Dynamic Instability of Composite Shells

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Abumeri, Galib H.

    2004-01-01

    A computationally effective method is described to evaluate the non-deterministic dynamic instability (probabilistic dynamic buckling) of thin composite shells. The method is a judicious combination of available computer codes for finite element, composite mechanics, and probabilistic structural analysis. The solution method is incrementally updated Lagrangian. It is illustrated by applying it to thin composite cylindrical shell subjected to dynamic loads. Both deterministic and probabilistic buckling loads are evaluated to demonstrate the effectiveness of the method. A universal plot is obtained for the specific shell that can be used to approximate buckling loads for different load rates and different probability levels. Results from this plot show that the faster the rate, the higher the buckling load and the shorter the time. The lower the probability, the lower is the buckling load for a specific time. Probabilistic sensitivity results show that the ply thickness, the fiber volume ratio and the fiber longitudinal modulus, dynamic load and loading rate are the dominant uncertainties, in that order.

  15. Dynamic Probabilistic Instability of Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2009-01-01

    A computationally effective method is described to evaluate the non-deterministic dynamic instability (probabilistic dynamic buckling) of thin composite shells. The method is a judicious combination of available computer codes for finite element, composite mechanics and probabilistic structural analysis. The solution method is incrementally updated Lagrangian. It is illustrated by applying it to thin composite cylindrical shell subjected to dynamic loads. Both deterministic and probabilistic buckling loads are evaluated to demonstrate the effectiveness of the method. A universal plot is obtained for the specific shell that can be used to approximate buckling loads for different load rates and different probability levels. Results from this plot show that the faster the rate, the higher the buckling load and the shorter the time. The lower the probability, the lower is the buckling load for a specific time. Probabilistic sensitivity results show that the ply thickness, the fiber volume ratio and the fiber longitudinal modulus, dynamic load and loading rate are the dominant uncertainties in that order.

  16. Use of Modal Acoustic Emission to Monitor Damage Progression in Carbon Fiber/Epoxy Tows and Implications for Composite Structures

    NASA Technical Reports Server (NTRS)

    Waller, Jess M.; Saulsberry, Regor L.; Nichols, Charles T.; Wentzel, Daniel J.

    2010-01-01

    This slide presentation reviews the use of Modal Acoustic Emission to monitor damage progression to carbon fiber/epoxy tows. There is a risk for catastrophic failure of composite overwrapped pressure vessels (COPVs) due to burst-before-leak (BBL) stress rupture (SR) failure of carbon-epoxy (C/Ep) COPVs. A lack of quantitative nondestructive evaluation (NDE) is causing problems in current and future spacecraft designs. It is therefore important to develop and demonstrate critical NDE that can be implemented during stages of the design process since the observed rupture can occur with little of no advanced warning. Therefore a program was required to develop quantitative acoustic emission (AE) procedures specific to C/Ep overwraps, but which also have utility for monitoring damage accumulation in composite structure in general, and to lay the groundwork for establishing critical thresholds for accumulated damage in composite structures, such as COPVs, so that precautionary or preemptive engineering steps can be implemented to minimize of obviate the risk of catastrophic failure. A computed Felicity Ratio (FR) coupled with fast Fourier Transform (FFT) frequency analysis shows promise as an analytical pass/fail criterion. The FR analysis and waveform and FFT analysis are reviewed

  17. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Weis, Dominique; Kieffer, Bruno; Maerschalk, Claude; Barling, Jane; de Jong, Jeroen; Williams, Gwen A.; Hanano, Diane; Pretorius, Wilma; Mattielli, Nadine; Scoates, James S.; Goolaerts, Arnaud; Friedman, Richard M.; Mahoney, J. Brian

    2006-08-01

    The Pacific Centre for Isotopic and Geochemical Research (PCIGR) at the University of British Columbia has undertaken a systematic analysis of the isotopic (Sr, Nd, and Pb) compositions and concentrations of a broad compositional range of U.S. Geological Survey (USGS) reference materials, including basalt (BCR-1, 2; BHVO-1, 2), andesite (AGV-1, 2), rhyolite (RGM-1, 2), syenite (STM-1, 2), granodiorite (GSP-2), and granite (G-2, 3). USGS rock reference materials are geochemically well characterized, but there is neither a systematic methodology nor a database for radiogenic isotopic compositions, even for the widely used BCR-1. This investigation represents the first comprehensive, systematic analysis of the isotopic composition and concentration of USGS reference materials and provides an important database for the isotopic community. In addition, the range of equipment at the PCIGR, including a Nu Instruments Plasma MC-ICP-MS, a Thermo Finnigan Triton TIMS, and a Thermo Finnigan Element2 HR-ICP-MS, permits an assessment and comparison of the precision and accuracy of isotopic analyses determined by both the TIMS and MC-ICP-MS methods (e.g., Nd isotopic compositions). For each of the reference materials, 5 to 10 complete replicate analyses provide coherent isotopic results, all with external precision below 30 ppm (2 SD) for Sr and Nd isotopic compositions (27 and 24 ppm for TIMS and MC-ICP-MS, respectively). Our results also show that the first- and second-generation USGS reference materials have homogeneous Sr and Nd isotopic compositions. Nd isotopic compositions by MC-ICP-MS and TIMS agree to within 15 ppm for all reference materials. Interlaboratory MC-ICP-MS comparisons show excellent agreement for Pb isotopic compositions; however, the reproducibility is not as good as for Sr and Nd. A careful, sequential leaching experiment of three first- and second-generation reference materials (BCR, BHVO, AGV) indicates that the heterogeneity in Pb isotopic compositions, and concentrations, could be directly related to contamination by the steel (mortar/pestle) used to process the materials. Contamination also accounts for the high concentrations of certain other trace elements (e.g., Li, Mo, Cd, Sn, Sb, W) in various USGS reference materials.

  18. Acoustic emission analysis of the effect of simulated pulpal pressure and cavity type on the tooth-composite interfacial de-bonding.

    PubMed

    Kim, Ryan Jin-Young; Choi, Nak-Sam; Ferracane, Jack; Lee, In-Bog

    2014-08-01

    The aim of this study was to evaluate the influence of in vitro pulpal pressure and cavity type on the tooth-composite bonding interface by means of acoustic emission (AE) analysis. Classes I and II cavities on extracted third molars were prepared and assigned to four groups of seven teeth each: (1) direct composite restoration without simulated pulpal pressure (SPP) in class I cavity, (2) direct composite restoration with SPP in class I cavity, (3) direct composite restoration without SPP in class II cavity, (4) direct composite restoration with SPP in class II cavity. The teeth were restored with Filtek Z250 composite and Adper Scotchbond Multi-Purpose adhesive system (3M ESPE, St. Paul, MN, USA). AE events were recorded for 2000s during light-curing. Groups 2 and 4 were subjected to 20 cm H2O hydrostatic pressure throughout the procedures. The data were analyzed with two-way ANOVA. After the AE test, teeth were sectioned longitudinally in mesio-distal direction, the tooth-composite interface was examined using SEM. SPP in Groups 2 (4.57 ± 1.40) and 4 (3.43 ± 1.13) yielded significantly higher AE events number than those of Groups 1 (3.43 ± 1.51) and 3 (1.71 ± 0.95) where the SPP was not applied (p<0.05). The number of AE events of class I cavity in Groups 1 and 2 were significantly higher than those of class II cavity in Groups 3 and 4 (p<0.05). SEM examination showed that all groups had intact enamel-composite interface, while micro-gaps were observed at the dentin-composite interface, mainly at the pulpal floor of the cavity. The class I cavities with SPP in Group 2 showed wider gaps more frequently than class II cavities without SPP in Group 3. The SPP and class I cavity with high C-factor triggered more AE events, confirming its negative impact on the bonding interface. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Studies on magnetocapacitance, dielectric, ferroelectric, and magnetic properties of microwave sintered (1-x) (Ba0.8Sr0.2TiO3) - x (Co0.9Ni0.1Fe2O4) multiferroic composite

    NASA Astrophysics Data System (ADS)

    Mane, Sagar M.; Tirmali, Pravin M.; Ranjit, Bhakti; Khan, Madiha; Khan, Nargis; Tarale, Arjun N.; Kulkarni, Shrinivas B.

    2018-07-01

    Present paper reports the synthesis of multiferroic composite (1-x) [Ba0.8Sr0.2Ti)O3]-x[Co0.9Ni0.1Fe2O4] were x = 0.1, 0.2, 0.3 and 0.4. Both phases of the composite i.e. ferroelectric (BST) and ferrite (CNFO) are synthesized via hydroxide co-precipitation method followed by microwave sintering technique at 1100 °C. These composites were characterized for their structural, microstructural, dielectric analysis, magnetodielectric (MD) effect and ferroelectric properties. Presence of both the phases ferroelectric (BST) and ferromagnetic (CNFO) are confirmed by the x-ray diffraction and scanning electron microscopic analysis. Maxwell-Wagner type dielectric dispersion is observed in frequency dependent dielectric measurement. Temperature-dependent dielectric properties were measured from 25 °C to 500 °C at various applied frequencies. Ferroelectric behavior in the composites was confirmed by the polarization vs. Electric field analysis. The magnetodielectric effect was studied in the presence of applied magnetic field from 0 to 1 Tesla. Magnetocapacitance (%) increases with increase in the ferrite concentration in the ferroelectric phase. The maximum percentage of magnetocapacitance is observed in 60BST-40CNFO composite which is MC = 30% at the frequency 1 KHz with the applied magnetic field is 1-Tesla. Room temperature magnetic hysteresis loops show an increase in saturation magnetization (Ms) with an increase in ferrite concentration.

  20. Government Partisanship and Human Well-Being

    ERIC Educational Resources Information Center

    Matsubayashi, Tetsuya; Ueda, Michiko

    2012-01-01

    This paper shows that the partisan composition of government is strongly related to the well-being of citizens, measured by the reported level of life satisfaction and suicide rates in industrial countries. Our analysis, using survey data of 14 nations between 1980 and 2002, shows that the presence of left-leaning parties in government is…

  1. Std trends in chengalpattu hospital.

    PubMed

    Krishnamurthy, V R; Ramachandran, V

    1996-01-01

    A retrospective data analysis was carried out to find the trends in frequency and distribution of different STDs at Chengalpattu during 1988-1994. Of the 4549 patients who attended the clinic 3621 (79.6%) were males and 928 (20.4%) were females. The commonest STD was Chancroid (24.4%) in men and Syphillis (29%) in women. Balanoposthitis (11.4%) ranked third among STDs in males. Though the STD attendance showed a declining trend, most diseases showed a constant distribution. The percentage composition of secondary and latent syphillis, Genital Warts, Genital Herpes and the Non-Venereal group showed an increased composition in recent years. Primary syphillis in females showed a definite declining trend. The HIV sero-positive detection rate was 2.06%. Of the 1116 patients screened for HIV antibody, 23 patients were detected sero-positive. Time Series Regression Analysis was used to predict the number of patients who would attend the STD clinic with various STDs in 1995 and 1996 to help in the understanding of the disease load and pattern in future, in resources management and in developing and evaluating preventive measures.

  2. Pectins filled with LDH-antimicrobial molecules: preparation, characterization and physical properties.

    PubMed

    Gorrasi, Giuliana; Bugatti, Valeria; Vittoria, Vittoria

    2012-06-05

    Nanohybrids of layered double hydroxide (LDH) with intercalated active molecules: benzoate, 2,4-dichlorobenzoate, para-hydroxybenzoate and ortho-hydroxybenzoate, were incorporated into pectins from apples through high energy ball milling in the presence of water. Cast films were obtained and analysed. X-ray diffraction analysis showed a complete destructuration of all nanohybrids in the pectin matrix. Thermogravimetric analysis showed a better thermal resistance of pectin in the presence of fillers, especially para-hydroxybenzoate and ortho-hydroxybenzoate. Mechanical properties showed an improvement of elastic modulus in particular for LDH-para-hydroxybenzoate nanohybrid, due probably to a better interaction between pectin matrix and nanohybrid layers. Barrier properties (sorption and diffusion) to water vapour showed improvement in the dependence on the intercalated active molecule, the best improvement was achieved for composites containing para-hydroxybenzoate molecules, suggesting that the interaction between the filler phase and the polymer plays an important role in sorption and diffusion phenomena. Incorporation of these active molecules gave antimicrobial properties to the composite films giving opportunities in the field of active packaging. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. The Use of Lead Isotope and Rare Earth Element Geochemistry for Forensic Geographic Provenancing

    NASA Astrophysics Data System (ADS)

    Carey, A.; Darrah, T.; Harrold, Z.; Prutsman-Pfeiffer, J.; Poreda, R.

    2008-12-01

    Lead isotope and rare earth element composition of modern human bones are analyzed to explore their utility for geographical provenancing. DNA analysis is the standard for identification of individuals. DNA analysis requires a DNA match for comparison. Thus, DNA analysis is of limited use in cases involving unknown remains. Trace elements are incorporated into bones and teeth during biomineralization, recording the characteristics of an individual's geochemical environment. Teeth form during adolescence, recording the geochemical environment of an individual's youth. Bones remodel throughout an individual's lifetime. Bones consist of two types of bone tissue (cortical and trabecular) that remodel at different rates, recording the geochemical environment at the time of biomineralization. Cortical bone tissue, forming the outer surface of bones, is dense, hard tissue that remodels in 25-30 yrs. Conversely, trabecular bone tissue, the inner cavity of bones, is low density, porous and remodels in 2-5 years. Thus, analyzing teeth and both bone tissues allows for the development of a geographical time line capable of tracking immigration patterns through time instead of only an individual's youth. Geochemical isotopic techniques (Sr, O, C, N) have been used for geographical provenancing in physical anthropology. The isotopic values of Sr, C, O, N are predominantly a function of soil compositions in areas where food is grown or water is consumed. Application of these provenancing techniques has become difficult as an individual's diet may reflect the isotopic composition of foods obtained at the local grocer as opposed to local soil compositions. Thus, we explore the use of REEs and Pb isotopes for geographical provenancing. Pb and REEs are likely more reliable indicators of modern geographical location as their composition are high in bio-available sources such as local soils, atmospheric aerosols, and dust as opposed to Sr, C, O, N that are controlled by food and drinking water. Lead isotope and REE analysis of trabecular and cortical bone tissue of 60 femoral heads resected during hip replacement surgery at the Univ. of Roch. Medical Center were analyzed by a combination of TIMS and ICP-MS. Results show that Pb compositions are consistent with local soil with variable inputs from known environmental sources. Several samples demonstrate inputs from known environmental sources (e.g. Mississippi Valley ore) that was used in paint, solder, and US gasoline. Additionally, results suggest bioincorporation of Pb with isotopic composition consistent with that observed for Canadian gasoline aerosols. Immigrants included in the study show Pb compositions distinctly different than local residents.

  4. Bioactive Glass Fiber Reinforced Starch-Polycaprolactone Composite for Bone Applications

    NASA Astrophysics Data System (ADS)

    Jukola, H.; Nikkola, L.; Gomes, M. E.; Chiellini, F.; Tukiainen, M.; Kellomäki, M.; Chiellini, E.; Reis, R. L.; Ashammakhi, N.

    2008-02-01

    For bone regeneration and repair, combinations of different materials are often needed. Biodegradable polymers are often combined with osteoconductive materials, such as bioactive glass (BaG), which can also improve the mechanical properties of the composite. The aim of this study was to develop and characterize BaG fiber-reinforced starch-poly-ɛ-caprolactone (SPCL) composite. Sheets of SPCL (30/70 wt%) were produced using single-screw extrusion. They were then cut and compression molded in layers with BaG fibers to form composite structures of different combinations. Thermal, mechanical, and degradation properties of the composites were studied. The actual amount of BaG in the composites was determined using combustion tests. A strong endothermic peak indicating melting at about 56 °C was observed by differential scanning calorimetry (DSC) analysis. Thermal gravimetry analysis (TGA) showed that thermal decomposition of SPCL started at 325 °C with the decomposition of starch and continued at 400 °C with the degradation of polycaprolactone (PCL). Initial mechanical properties of the reinforced composites were at least 50% better than the properties of the non-reinforced composites. However, the mechanical properties of the composites after two weeks of hydrolysis were comparable to those of the non-reinforced samples. During the six weeks' hydrolysis the mass of the composites had decreased only by about 5%. The amount of glass in the composites remained the same for the six-week period of hydrolysis. In conclusion, it is possible to enhance the initial mechanical properties of SPCL by reinforcing it with BaG fibers. However, the mechanical properties of the composites are only sufficient for use as filler material and they need to be further improved to allow long-lasting bone applications.

  5. Bioactive Glass Fiber Reinforced Starch-Polycaprolactone Composite for Bone Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jukola, H.; Nikkola, L.; Tukiainen, M.

    2008-02-15

    For bone regeneration and repair, combinations of different materials are often needed. Biodegradable polymers are often combined with osteoconductive materials, such as bioactive glass (BaG), which can also improve the mechanical properties of the composite. The aim of this study was to develop and characterize BaG fiber-reinforced starch-poly-{epsilon}-caprolactone (SPCL) composite. Sheets of SPCL (30/70 wt%) were produced using single-screw extrusion. They were then cut and compression molded in layers with BaG fibers to form composite structures of different combinations. Thermal, mechanical, and degradation properties of the composites were studied. The actual amount of BaG in the composites was determined usingmore » combustion tests. A strong endothermic peak indicating melting at about 56 deg. C was observed by differential scanning calorimetry (DSC) analysis. Thermal gravimetry analysis (TGA) showed that thermal decomposition of SPCL started at 325 deg. C with the decomposition of starch and continued at 400 deg. C with the degradation of polycaprolactone (PCL). Initial mechanical properties of the reinforced composites were at least 50% better than the properties of the non-reinforced composites. However, the mechanical properties of the composites after two weeks of hydrolysis were comparable to those of the non-reinforced samples. During the six weeks' hydrolysis the mass of the composites had decreased only by about 5%. The amount of glass in the composites remained the same for the six-week period of hydrolysis. In conclusion, it is possible to enhance the initial mechanical properties of SPCL by reinforcing it with BaG fibers. However, the mechanical properties of the composites are only sufficient for use as filler material and they need to be further improved to allow long-lasting bone applications.« less

  6. Mössbauer study of Brazilian soapstone

    NASA Astrophysics Data System (ADS)

    Gonçalves, M. A.; de Jesus Filho, M. F.; Garg, V. K.

    1991-11-01

    Steatite mineral rocks, soapstone, have been studied by X-ray diffraction, optical microscopic analysis (modal analysis), electron probe micro analysis and Mössbauer spectroscopy for characterization, mineral percentages and chemical composition. Mössbauer spectra show both, magnetic interactions corresponding to magnetite and doublets corresponding to talc. chlorite, dolomite and tremolite. The temperature dependence of the quadrupole splitting in dolomite has been explained in terms of crystal field interaction.

  7. The dynamic relationship between Bursa Malaysia composite index and macroeconomic variables

    NASA Astrophysics Data System (ADS)

    Ismail, Mohd Tahir; Rose, Farid Zamani Che; Rahman, Rosmanjawati Abd.

    2017-08-01

    This study investigates and analyzes the long run and short run relationships between Bursa Malaysia Composite index (KLCI) and nine macroeconomic variables in a VAR/VECM framework. After regression analysis seven out the nine macroeconomic variables are chosen for further analysis. The use of Johansen-Juselius Cointegration and Vector Error Correction Model (VECM) technique indicate that there are long run relationships between the seven macroeconomic variables and KLCI. Meanwhile, Granger causality test shows that bidirectional relationship between KLCI and oil price. Furthermore, after 12 months the shock on KLCI are explained by innovations of the seven macroeconomic variables. This indicate the close relationship between macroeconomic variables and KLCI.

  8. Chemical composition measurements of the low activity waste (LAW) EPA-Series glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.; Edwards, T. B.

    2016-03-01

    In this report, the Savannah River National Laboratory provides chemical analysis results for a series of simulated low activity waste glasses provided by Pacific Northwest National Laboratory as part of an ongoing development task. The measured chemical composition data are reported and compared with the targeted values for each component for each glass. A detailed review showed no indications of errors in the preparation or measurement of the study glasses. All of the measured sums of oxides for the study glasses fell within the interval of 100.2 to 100.8 wt %, indicating recovery of all components. Comparisons of the targetedmore » and measured chemical compositions showed that the measured values for the glasses met the targeted concentrations within 10% for those components present at more than 5 wt %.« less

  9. Discrimination of the rare medicinal plant Dendrobium officinale based on naringenin, bibenzyl, and polysaccharides.

    PubMed

    Chen, Xiaomei; Wang, Fangfei; Wang, Yunqiang; Li, Xuelan; Wang, Airong; Wang, Chunlan; Guo, Shunxing

    2012-12-01

    The aim of this study was to establish a method for discriminating Dendrobium officinale from four of its close relatives Dendrobium chrysanthum, Dendrobium crystallinum, Dendrobium aphyllum and Dendrobium devonianum based on chemical composition analysis. We analyzed 62 samples of 24 Dendrobium species. High performance liquid chromatography analysis confirmed that the four low molecular weight compounds 4',5,7-trihydroxyflavanone (naringenin), 3,4-dihydroxy-4',5-dime-thoxybibenzyl (DDB-2), 3',4-dihydroxy-3,5'-dimethoxybibenzyl (gigantol), and 4,4'-dihydroxy-3,3',5-trimethoxybibenzy (moscatilin), were common in the genus. The phenol-sulfuric acid method was used to quantify polysaccharides, and the monosaccharide composition of the polysaccharides was determined by gas chromatography. Stepwise discriminant analysis was used to differentiate among the five closely related species based on the chemical composition analysis. This proved to be a simple and accurate approach for discriminating among these species. The results also showed that the polysaccharide content, the amounts of the four low molecular weight compounds, and the mannose to glucose ratio, were important factors for species discriminant. Therefore, we propose that a chemical analysis based on quantification of naringenin, bibenzyl, and polysaccharides is effective for identifying D. officinale.

  10. Optimization of Parameter Ranges for Composite Tape Winding Process Based on Sensitivity Analysis

    NASA Astrophysics Data System (ADS)

    Yu, Tao; Shi, Yaoyao; He, Xiaodong; Kang, Chao; Deng, Bo; Song, Shibo

    2017-08-01

    This study is focus on the parameters sensitivity of winding process for composite prepreg tape. The methods of multi-parameter relative sensitivity analysis and single-parameter sensitivity analysis are proposed. The polynomial empirical model of interlaminar shear strength is established by response surface experimental method. Using this model, the relative sensitivity of key process parameters including temperature, tension, pressure and velocity is calculated, while the single-parameter sensitivity curves are obtained. According to the analysis of sensitivity curves, the stability and instability range of each parameter are recognized. Finally, the optimization method of winding process parameters is developed. The analysis results show that the optimized ranges of the process parameters for interlaminar shear strength are: temperature within [100 °C, 150 °C], tension within [275 N, 387 N], pressure within [800 N, 1500 N], and velocity within [0.2 m/s, 0.4 m/s], respectively.

  11. Croissance de couches de Si{1-x}Ge{x} par réaction chimique a partir d'une phase gazeuse : étude thermodynamique et analyse du transfert de matière

    NASA Astrophysics Data System (ADS)

    Rouch, H.; Pons, M.; Bernard, C.; Madar, R.

    1995-06-01

    The growth of Si{1-x}Gex layers at a high temperature (1300 K) and low pressure (315 Pa) (by chemical vapour deposition) was studied by a thermodynamic approach and a mass transport analysis using simplifying assumptions. The results showed that the thermodynamic analysis does not permit alone to explain the experimental measurements concerning the composition of the layer. The mass transport analysis showed that thermodiffusion would be of importance on layer composition and uniformity for large substrates. La croissance de couches de Si{1-x}Gex à haute température (1300 K) et basse pression (315 Pa) par réaction chimique à partir d'une phase gazeuse a été étudiée à l'aide d'une approche thermodynamique et de l'analyse du transfert de matière pour laquelle des hypothèses très simplificatrices ont été émises. Les résultats ont montré que l'analyse thermodynamique, seule, ne permet pas d'interpréter les mesures concernant la composition du matériau déposé. Quant à l'étude du transfert de matière, elle a montré que la thermodiffusion jouait un rôle important sur la composition du matériau déposé ainsi que sur l'uniformité du dépôt sur des substrats de grandes dimensions.

  12. Sensorial and fatty acid profile of ice cream manufactured with milk of crossbred cows fed palm oil and coconut fat.

    PubMed

    Corradini, S A S; Madrona, G S; Visentainer, J V; Bonafe, E G; Carvalho, C B; Roche, P M; Prado, I N

    2014-11-01

    This work was carried out to study the nutritional quality of milk of cows fed palm oil (PAL) or coconut fat (COC), and the use of that milk as raw material for ice cream production. Three treatments were tested with 23 healthy cows: control (CON), PAL, and COC. The milk was collected at d 21 and 36 of the experimental diet. Proximate composition (moisture, ash, fat, protein, and carbohydrates) and fatty acid composition were evaluated on milk and ice cream, and sensorial analysis, color (lightness, green/red, and blue/yellow), overrun, and texture were evaluated on the ice cream. Fatty acids present in milk and ice cream were determined by gas chromatography. Sensory analysis results showed that the ice cream acceptability index was above 70%. No difference was observed for proximate composition in milk and ice cream. Chromatographic analysis showed an increase in saturated fatty acid concentration in CON and lower levels in PAL; polyunsaturated fatty acid concentration was higher in PAL and lower in CON, in milk and ice cream; monounsaturated fatty acid concentration in milk was higher in PAL and lower in CON but no difference was found in ice cream. Comparing n-3 content in milk and ice cream, we observed that PAL had higher levels than CON and COC. The results indicate that it is feasible to add sources of fat to the animal feed for fatty acid composition modulation of milk and ice cream. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Brain, music, and non-Poisson renewal processes

    NASA Astrophysics Data System (ADS)

    Bianco, Simone; Ignaccolo, Massimiliano; Rider, Mark S.; Ross, Mary J.; Winsor, Phil; Grigolini, Paolo

    2007-06-01

    In this paper we show that both music composition and brain function, as revealed by the electroencephalogram (EEG) analysis, are renewal non-Poisson processes living in the nonergodic dominion. To reach this important conclusion we process the data with the minimum spanning tree method, so as to detect significant events, thereby building a sequence of times, which is the time series to analyze. Then we show that in both cases, EEG and music composition, these significant events are the signature of a non-Poisson renewal process. This conclusion is reached using a technique of statistical analysis recently developed by our group, the aging experiment (AE). First, we find that in both cases the distances between two consecutive events are described by nonexponential histograms, thereby proving the non-Poisson nature of these processes. The corresponding survival probabilities Ψ(t) are well fitted by stretched exponentials [ Ψ(t)∝exp (-(γt)α) , with 0.5<α<1 .] The second step rests on the adoption of AE, which shows that these are renewal processes. We show that the stretched exponential, due to its renewal character, is the emerging tip of an iceberg, whose underwater part has slow tails with an inverse power law structure with power index μ=1+α . Adopting the AE procedure we find that both EEG and music composition yield μ<2 . On the basis of the recently discovered complexity matching effect, according to which a complex system S with μS<2 responds only to a complex driving signal P with μP⩽μS , we conclude that the results of our analysis may explain the influence of music on the human brain.

  14. Finite Element Analysis of the Endodontically-treated Maxillary Premolars restored with Composite Resin along with Glass Fiber Insertion in Various Positions.

    PubMed

    Navimipour, Elmira Jafari; Firouzmandi, Maryam; Mirhashemi, Fatemeh Sadat

    2015-04-01

    This study evaluated the effect of three methods of glass fiber insertion on stress distribution pattern and cusp movement of the root-filled maxillary premolars using finite element method (FEM) analysis. A three-dimensional (3 D) FEM model of a sound upper premolar tooth and four models of root-filled upper premolars with mesiocclusodistal (MOD) cavities were molded and restored with: (1) Composite resin only (NF); (2) Composite resin along with a ribbon of glass fiber placed in the occlusal third (OF); (3) Composite resin along with a ribbon of glass fiber placed circumferentially in the cervical third (CF), and (4) Composite resin along with occlusal and circumferential fibers (OCF). A static vertical load was applied to calculate the stress distributions. Structural analysis program by Solidworks were used for FEM analysis. Von-Mises stress values and cusp movements induced by occlusal loading were evaluated. Maximum Von-Mises stress of enamel occurred in sound tooth, followed by NF, CF, OF and OCF. Maximum Von-Mises stress of dentin occurred in sound tooth, followed by OF, OCF, CF and NF. Stress distribution patterns of OF and OCF were similar. Maximum overall stress values were concentrated in NF. Although stress distribution patterns of NF and CF were found as similar, CF showed lower stress values. Palatal cusp movement was more than buccal cusp in all of the models. The results of our study indicated that while the circumferential fiber had little effect on overall stress concentration, it provided a more favorable stress distribution pattern in cervical region. The occlusal fiber reduced the average stress in the entire structure but did not reduce cuspal movement. Incorporating glass fiber in composite restorations may alter the stress state within the structure depending on fiber position.

  15. Effect of electron beam irradiation on the structural properties of poly(vinyl alcohol) formulations with triphenyl tetrazolium chloride dye (TTC)

    NASA Astrophysics Data System (ADS)

    Ali, Z. I.; Said, Hossam M.; Ali, H. E.

    2006-01-01

    Films of poly(vinyl alcohol) (PVA) composites with triphenyl tetrazolium chloride (TTC) dye were prepared and exposed to various radiation doses delivered by accelerated electrons. The results showed that at a low dose of 50 kGy, the colour difference (Δ E*) of PVA/TTC films was increased by ˜10 times of the initial value. However, the change in colour differences did not go systematically with increasing the TTC content, in which the composite with 1.5 wt% displayed higher value than that with 3.5 wt%. The differential scanning calorimetry (DSC) showed that the presence of the TTC dye caused a depression in the melting point ( Tm) and heat of fusion (Δ Hf) of the PVA bulk polymer. However, the thermogravimetric analysis (TGA) showed that the presence of the TTC dye improved the thermal stability of PVA. Also, the tensile strength at break of PVA/TTC composites was improved after electron beam irradiation.

  16. Theoretical study of the composition pulling effect in InGaN metalorganic vapor-phase epitaxy growth

    NASA Astrophysics Data System (ADS)

    Inatomi, Yuya; Kangawa, Yoshihiro; Ito, Tomonori; Suski, Tadeusz; Kumagai, Yoshinao; Kakimoto, Koichi; Koukitu, Akinori

    2017-07-01

    The composition pulling effect in metalorganic vapor-phase InGaN epitaxy was theoretically investigated by thermodynamic analysis. The excess energies of biaxial-strained In x Ga1- x N were numerically calculated using empirical interatomic potentials considering different situations: (i) coherent growth on GaN(0001), (ii) coherent growth on In0.2Ga0.8N(0001), and (iii) bulk growth. Using the excess energies, the excess chemical potentials of InN and GaN alloys were computed. Our results show that compressive strain suppresses In incorporation, whereas tensile strain promotes it. Moreover, assuming chemical equilibrium, the relationship between the solid composition and the growth conditions was predicted. The results successfully reproduced the typical composition pulling effect.

  17. Preparation of superhydrophobic glass fiber and interfacially reinforced glass fiber/epoxy composites by grafting polysiloxane nanowires

    NASA Astrophysics Data System (ADS)

    Lv, Junwei; Wang, Bin; Ma, Qi; Li, Mengyao; Wang, Wenjing; Lu, Gaotaihang; Li, Hui; Zhao, Chunxia

    2018-04-01

    Ethyltrichlorosilane used as precursor reacted with glass fiber (GF) surface. Then polysiloxane was functionalized onto GF surface to improve GF’s hydrophobicity and interfacial properties of GF reinforced composites. Fourier transform infrared spectroscopy (FTIR) confirmed the successful grafting of polysiloxane onto GF’s surface. Energy dispersive spectroscopy (EDS) characterized the variation of chemical composition of GF surface. Scanning electron microscopy (SEM) images showed that the polysiloxane was grafted onto GF’s surface uniformly and the surface roughness of GF was enhanced obviously. Static contact angle analysis (SCA) revealed the significant improvement of surface hydrophobicity. Compared with the original GF composites, the interfacial shear strength (IFSS) increased by 36.52%. Meanwhile, we discovered a facile way to accomplish the experiment.

  18. The Effect of Time, Temperature and Composition on Boron Carbide Synthesis by Sol-gel Method

    NASA Astrophysics Data System (ADS)

    Hadian, A. M.; Bigdeloo, J. A.

    2008-02-01

    To minimize free carbon residue in the boron carbide (B4C) powder, a modified sol-gel process is performed where the starting materials as boric acid and citric acid compositions are adjusted. Because of boron loss in the form of B2O2(g) during the reduction reaction of the stoichiometric starting composition, the final B4C powders contain carbon residues. Thus, an excess H3BO3 is used in the reaction to compensate the loss and to obtain stoichiometric powders. Parameters of production have been determined using x-ray diffraction analysis and particle size analyses. The synthesized B4C powder using an excess boric acid composition shows no trace of carbon.

  19. Improved mechanical and electrical properties in electrospun polyimide/multiwalled carbon nanotubes nanofibrous composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zha, Jun-Wei; Sun, Fang; Wang, Si-Jiao

    2014-10-07

    Highly aligned polyimide (PI) and PI/multi-walled carbon nanotubes (PI/MWCNTs) nanofibrous composites by incorporating poly(ethylene oxide) as the dispersing medium were fabricated using electrospinning technique. The morphology, mechanical, and electrical properties of the electrospun nanofibrous composites were investigated. Scanning electron microscope showed that the functionalized MWCNTs (f-MWCNTs) were well dispersed and oriented along the nanofiber axis. Analysis of electrical properties indicated a remarkable improvement on the alternating current conductivity by introduction of the aligned f-MWCNTs. Besides, with addition of 3 vol. % f-MWCNTs, the obvious enhancement of tensile modulus and strength was achieved. Thus, the electrospun PI/MWCNTs nanofibrous composites have greatmore » potential applications in multifunctional engineering materials.« less

  20. Compositional analysis of various layers of upper urinary tract stones by infrared spectroscopy

    PubMed Central

    He, Zhang; Jing, Zhang; Jing-Cun, Zheng; Chuan-Yi, Hu; Fei, Gao

    2017-01-01

    The objective of the present study was to determine the composition of various layers of upper urinary stones and assess the mechanisms of stone nucleation and aggregation. A total of 40 integrated urinary tract stones with a diameter of >0.8 cm were removed from the patients. All of the stones were cut in half perpendicularly to the longitudinal axis. Samples were selected from nuclear, internal and external layers of each stone. Fourier transform infrared spectroscopy (FT-IR) was adopted for qualitative and quantitative analysis of all of the fragments and compositional differences among nuclear, internal and external layers of various types of stone were subsequently investigated. A total of 25 cases of calcium oxalate (CaOx) stones and 10 cases of calcium phosphate (CaP) stones were identified to be mixed stones, while 5 uric acid (UA) calculi were pure stones (purity, >95%). In addition, the contents of CaOx and carbapatite (CA.AP) crystals in various layers of the mixed stones were found to be variable. In CaOx stones, the content of CA.AP in nuclear layers was significantly higher than that of the outer layers (32.0 vs. 6.8%; P<0.05), while the content of CaOx was lower in the inner than in the outer layers (57.6 vs. 86.6%; P<0.05). In CaP stones, the content of CA.AP in the nuclear layers was higher than that in the outer layers (74.0 vs. 47.3%; P<0.05), while the content of CaOx was lower in the inner than in the outer layers (7.0 vs. 40.0%; P<0.05). The UA stones showed no significant differences in their composition among different layers. In conclusion, FT-IR analysis of various layers of human upper urinary tract stones revealed that CaOx and CaP stones showed differences in composition between their core and surface, while all of the UA calculi were pure stones. The composition showed a marked variation among different layers of the stones, indicating that metabolism has an important role in different phases of the evolution of stones. The present study provided novel insight into the pathogenesis of urinary tract stones and may contribute to their prevention and treatment. PMID:28912866

Top